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Abstract
Realtime network verification ensures the correctness of

network by incrementally checking data plane updates in real
time (e.g., < 1ms per rule update). Even state-of-the-art meth-
ods can already achieve sub-millisecond verification time,
such speed is achieved mostly for pure IP forwarding devices,
and is unrealistic for real-world networks, due to two reasons.
(1) Their network models cannot express the forwarding be-
havior of real devices, which have various functions including
IP forwarding, ACL, NAT, policy-based routing, etc. (2) Their
update algorithms do not scale in space and/or time: multi-
field rules (e.g., ACL rules) can make these tools run out of
memory and/or incur long verification time. To scale real-
time verification to real networks, we propose APKeep based
on a new modular network model that is expressive for real
devices, and propose new algorithms that can achieve low
memory cost and fast update speed at the same time. Our
experiments show that for real-world update traces consisting
of IP forwarding rules and ACL rules, existing methods either
run out of memory or incur a prohibitively long verification
time, while APKeep still achieves a sub-millisecond verifica-
tion time. We also show that APKeep can verify an update of
NAT rule mostly in less than 1 millisecond.

1 Introduction

Computer networks are prone to faults due to protocol miscon-
figurations, software bugs, and hardware failures [7,17,26,35].
Manually troubleshooting the faults often costs a network
downtime up to several hours [7]. How to prevent network
faults by ensuring network correctness becomes a fundamen-
tal problem posed to network operators and researchers.

Network verification seeks to automatically check network
correctness at both control plane [9, 12, 13, 16, 18, 19, 30]
and data plane [10, 15, 20, 22–24, 27, 36–40]. Compared to
control plane verification which focuses on detecting protocol
misconfigurations, data plane verification directly checks the
data plane, which is closer to the actual forwarding behaviors

of packets, and thus can catch a broader range of faults due to
switch software bugs and hardware failures.

More recently, realtime data plane verification allows op-
erators to check the correctness of data plane as it updates
in realtime [20, 22, 24, 37–39]. To achieve this, realtime data
plane verifiers often partition packets into equivalence classes
(ECs), and maintain a model of forwarding behavior for these
ECs. When the data plane updates, they incrementally update
the model, and check the updated model against correctness
properties.

State-of-the-art realtime data plane verifiers have already
achieved sub-millisecond verification time [20, 24]. However,
such speed is mostly achieved for pure forwarding devices.
For real devices consisting of various functions other than for-
warding, these verifiers exhibit two fundamental limitations.

Network model is not expressive for real devices. Apart
from IP forwarding, real devices have many other functions
including access control list (ACL), network address trans-
lation (NAT), etc., which are composed in specific orders to
implement various processing logic. For example, inside a
typical router, multiple ACLs can be chained and applied at
multiple ports to filter inbound and/or outbound packets [1].
Some routers may perform NAT on packets matching an ACL.
Tools like VeriFlow [24] and Delta-net [20] assume simple
models which only express forwarding functions. Models of
NetPlumber [22] and AP Verifier [38, 39] can express more
functions, but are hard to extend. For example, most vendors
provide variants of policy-based routing [8], and adding such
a feature requires heavy modification of their models. Even
for the same set of functions, different devices may also have
different pipelines, and writing a model for each of them is
clearly not scalable.

Verification algorithms are not scalable for real devices.
Range EC-based methods like VeriFlow and Delta-net repre-
sent each EC as a range of packet headers, thereby achieving
a fast verification speed for IP forwarding rules. For example,
Delta-net can check an update of IP forwarding rule in tens
of microseconds on average. However, when there are multi-
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field rules, e.g., ACL rules, range EC-based methods may
suffer from the problem of EC explosion, where the number
of ECs grows exponentially with the number of multi-field
rules. We find that for a real-world dataset consisting of only
686 ACL rules, an open-source version of VeriFlow and our
multi-field extension of Delta-net can create up to 15 million
ECs, causing either prohibitively long verification times or
memory overflows.

AP Verifier computes the minimum number of ECs with
respect to the network behavior. The downside, however, is
that the update of ECs is more difficult, and can cost up to 10
milliseconds [37].

To overcome the above limitations and bring realtime net-
work verification closer to the real world, this paper presents
APKeep, a new realtime data plane verifier.

APKeep builds on a new network model that is modu-
lar and expressive. It models networks in a granularity of
logical functions instead of physical devices. Each function,
e.g., forwarding, filtering, rewriting, is modeled as a logically-
independent element, which holds a set of logical ports cor-
responding to different actions on packets. APKeep views
packets forwarded to the same port (i.e., undergoing the same
actions) at each element as an EC, and encodes each EC with a
logical predicate. The modularity of our model makes it easy
to support common functions and vendor-specific composi-
tions of functions in real devices. In addition, it also reduces
the update scope and makes the update more efficient.

APKeep uses novel algorithms to compute and maintain
the minimum number of ECs in realtime. A key reason
for EC explosion of existing methods is that they create ECs
based on the match fields of rules, resulting in a lot of unnec-
essary ECs with the same forwarding behavior. In addition,
they cannot compress these ECs after creation. APKeep sig-
nificantly reduces the number of ECs based on two principles.
(1) Creating ECs only when necessary. APKeep creates ECs
only when it needs more ECs to express new forwarding be-
haviors. (2) Merging ECs when possible. APKeep tracks the
forwarding behavior of each EC, and merges multiple ECs
with the same forwarding behavior. We proved that by ap-
plying the above principles, APKeep always maintains the
minimum number of ECs during update.

In summary, our contribution is three-fold:
• We introduce a new network model that is modular and

expressive for modeling real network devices.
• We design APKeep, which uses novel algorithms to fast

update the network model for realtime verification.
• We show APKeep achieves a sub-millisecond verifica-

tion time for update traces consisting of IP forwarding
rules, ACL rules, and NAT rules.

Roadmap. We present the design overview (§ 2) and details
(§ 3) of APKeep, followed by a case study (§ 4). Then, we
show the experiment results (§ 5). After discussing related
work (§ 6) and potential issues (§ 7), we conclude (§ 8).

2 Design Overview

This section overviews the design of APKeep. We will first
introduce the network model that APKeep builds on, and then
show how APKeep can fast update the model.

2.1 The Modular Network Model

To achieve realtime network verification for real networks,
the network model should satisfy three key requirements: (1)
expressive for common functions in real devices, e.g., IP for-
warding, ACL, NAT, policy-based routing, etc.; (2) extensible
for different devices with different vendor-specific implemen-
tations of these functions; (3) efficient to update for achieving
realtime verification.

We propose Port-Predicate Map (PPM), a new network
model that meets all the above requirements. To demonstrate
how PPM works, we use the example network shown at the
top-left corner of Figure 1. In this network, switch C has four
functions or modules (two ACLs, one forwarding, and one
NAT), each having its own rules. If packets arrive at port1,
two ACLs ACL1 and ACL2 are applied in sequence; if they
arrive at port2, only ACL1 is applied. Then, the packets will
be sent to an output port according to the forwarding rules. If
the output port is port5, packets will go through an NAT.

As an alternative, we could model a device as a monolithic
box. This approach has the following drawbacks. First, it will
be difficult to extend the model for new functionalities. For
example, a device from another vendor may have a different
chaining of modules (e.g., NAT before IP forwarding), or a
new function (e.g., overriding IP forwarding with user poli-
cies). Then, we need to compose another device model. In
addition, it will also make the update inefficient. For example,
suppose a rule is inserted into ACL1, then we need to update
the ECs allowed by the two input ports.

Element. Instead of modeling a network as a set of devices,
PPM models at a granularity of element, defined as a logically-
independent function (e.g., IP forwarding, ACL, or NAT).
Each element has its own set of rules, and holds a set of
logical ports. Different from physical ports, i.e., interfaces,
logical ports represent generic actions including “output to
VLAN 10”, “permit SSH traffic”, “rewrite dstIP to 10.0.0.1”.
This allows elements to express a broad range of functions
other than IP forwarding. In specific, an element holds one
port for each distinct action of rules in the element, and a
special port for the default action is reserved for packets not
matching any rules. When a packet arrives at an element, it
will be “forwarded to” to exactly one port of the element, i.e.,
taking the actions of that port. Currently, PPM supports three
types of elements, and more types can be added in the future.
• A forwarding element has rules that match IP prefixes

and whose actions are “output packets to a specific set
of interfaces”. A forwarding element holds one port for
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Figure 1: An example showing how APKeep divides devices into elements.

each distinct set of interfaces, and a de f ault port for the
default action, e.g., dropping packets.
• A filtering element has rules that match 5-tuples and

whose actions are either “permit” or “deny”. A filtering
element holds exactly two ports: permit and deny.
• A rewriting element has rules which match 5-tuples

and whose actions are “rewrite a specific header field to
a specific value”. A rewriting element holds one port for
each distinct rewriting action, and an id port correspond-
ing to no packet rewrite.

When a device has multiple functions, we break it into
multiple elements. As shown in the left bottom of Figure 1,
device C breaks into a forwarding element FW-C, two filtering
elements ACL1-C, ACL2-C, and a rewriting element NAT-C.

Equivalence Class. Let E be the set of all elements in the
network, and H be the set of all packet headers. For each
header h ∈H and element e ∈E , let Porte(h) be the port that
h would be “forwarded to”, assuming h has been received
by e. Then, we have the following definition for equivalence
class (EC).

Definition 1. We say C = {c1,c2, . . . ,cn} is a set of equiva-
lence classes (ECs) with respect to element set E and header
set H if: (1) ci∧ c j = /0, i 6= j; (2) ∨n

i=1ci = H ; (3) ∀h1,h2 ∈
H , h1 6= h2: ∃c ∈ C , h1,h2 ∈ c ⇒ ∀e ∈ E ,Porte(h1) =
Porte(h2)

1. We say C is the minimum set of ECs if it is the
smallest set satisfying the above conditions.

APKeep encodes an EC with a logical predicate, i.e., Boolean
formula. The reason to use predicate instead of range as in [20,
24] is that a predicate can encode an arbitrary set of packet
headers, such that multiple range-based ECs having the same
forwarding behavior can be represented as a single predicate.
This allows APKeep to merge ECs with the same forwarding
behavior, thereby avoiding explosion of ECs (§ 2.2).

Port-Predicate Map. For each predicate c and each element
e, let Porte(c) = Porte(h),∀h ∈ c. Suppose p = Porte(c), then
we say port p holds predicate c. Define the predicate set of

1Condition (3) says that for each h1 and h2 in H such that h1 6= h2, we
have: if there exists an c in C such that h1 and h2 both belong to c, then for
each element e in E , Porte(h1) = Porte(h2)

port p as: Pred(p) = {c ∈ C |Porte(c) = p,e ∈ E}. We can
see that Pred is a map from port to predicates, which encodes
the network forwarding behavior: given a packet h at element
e, suppose it belongs to predicate c, then h will be forwarded
by e to the port p satisfying c ∈ Pred(p).

Element Topology. PPM uses the element topology to de-
scribe how elements are chained to process packets in the net-
work. The right of Figure 1 shows the element topology of the
example. First, each node represents an “application” of the
corresponding element. For example, since ACL1-C is applied
to port1 and port2, there are two nodes ACL1-C-Port1-in
and ACL1-C-Port2-in. The forwarding element FW-C is ap-
plied once, and thus it corresponds to a single node. Creating
a separate node for each application allows elements to be
agnostic of input ports where packets are received. Second,
each node has a set of ports, each holding a set of predicates,
in the same way as its corresponding element. Thus, we only
need to update a single element rather than all its nodes. For
example, when a rule is inserted into ACL1, we only update
the element ACL1, rather than its two nodes. Third, nodes are
connected based on the physical topology, and how the ele-
ments are applied inside devices. For example, a port of A is
connected to port1 of C in the network topology. Then, in
the element topology, the port of A connects to the in port
of ACL1-C-Port1-in, whose permit port connects to the in
port of ACL2-C-Port1-in, and its permit port connects to
the port1 of FW-C. The element topology will be used to
construct forwarding graphs for verification (§ 3.3).

As shown above, PPM achieves modularity by break-
ing the composite functions inside a device into logically-
independent elements. This brings the following benefits.

Expressiveness. Using the three types of elements as build-
ing blocks, PPM can express the forwarding, ACL, and NAT
functions. Besides that, we will show how PPM can express
the policy-based routing function offered by a major device
vendor (§ 4).

Extensibility. Even most devices share roughly the same set
of functions, the implementations and compositions of these
functions are often vendor-specific. Writing a model for each
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different device wastes time and effort. PPM models each
device at the function level with elements, therefore it is rel-
atively easy to model devices with vendor-specific composi-
tions of functions by properly chaining the elements.

Reduced update scope. First, updates of multiple elements
are decoupled, and when a rule is updated, we only need to up-
date the element where the rule is updated, without affecting
other elements. For example, multiple ACLs may be chained
and applied to an interface. If a rule is inserted to one ACL,
we only need to update the element of that ACL. Secondly, the
application of elements is decoupled away from the elements
themselves. For example, an ACL can be applied to multiple
interfaces, and we only need to update the element of the
ACL once, instead of updating all these interfaces. As another
example, an operator may activate/deactivate an existing ACL
on a port, or even migrate an ACL from a port to another [33].
In this case, we do not need to update the element of the ACL,
as the forwarding behavior of the element is not affected.

2.2 The Update of Network Model
In the following, we show how APKeep updates the network
model using a simple example in Figure 2. As shown in (a),
the device has an ACL applied to its input port, followed by a
forwarding module. For simplicity, we assume there are two
match fields: dstIP represented with 2 bits x1,x2, and dstPort
represented with 2 bits y1,y2. The forwarding module matches
only dstIP with longest prefix match, and the ACL matches
both dstIP and dstPort according to priorities (larger number
means higher priority). We assume that by default, the ACL
denies all packets and the forwarding module forwards all
packets to port1. Initially, we have one EC a, which appears
at the port port1 of element FW, and the port deny of element
ACL. We will insert two ACL rules R1 and R2 shown in (b),
and two forwarding rules R3 and R4 shown in (c).

First, we insert an ACL rule R1, whose match fields are
x1x2 = 0∗,y1y2 = 00, as shown at the top of (d). APKeep
analyzes how R1 will affect the behaviors of element ACL.
Specifically, APKeep finds R1 overrides the default deny rule
in the red dashed rectangle. However, since R1 also has a
deny action, packets in the rectangle will not change. Thus,
APKeep does not update the EC a, which still appears at
port1 of FW and deny of ACL, as shown at the bottom of (d).
In contrast, if we create range-based ECs based on match
fields, we will split EC a into three ECs, each of which is a
rectangle in the header space.

Suppose another ACL rule R2 is inserted. Since R2 has a
lower priority than R1, APKeep finds R2 can match only the
shaded area, where it overrides default deny rule. As a result,
packets matching the shaded area will change their behavior
from deny to permit. To reflect that change, APKeep decides
to transfer those packets from port deny to port permit. Since
the packets are a portion of EC a, it splits a into two ECs, i.e.,
b for the shaded area, and another one by subtracting b from a.

Then, APKeep transfers b to port permit, as shown at the bot-
tom of (e). The reason that the EC b can be a non-rectangle
area is that ECs are encoded with predicates. Specifically,
the match fields of R1 and R2 can be represented as predi-
cates x̄1ȳ1ȳ2 and ȳ1, respectively. Then, b can be calculated by
logical operations as b = ȳ1∧¬(x̄1ȳ1ȳ2) = (ȳ1x1)∨ (ȳ1y2).

Suppose a forwarding rule R3 is inserted. R3 overrides the
default rule in the red dashed rectangle, which changes its port
from port1 to port2. APKeep creates two new EC c and d by
splitting a and b, respectively, and transfers them to port2, as
shown in (f). The insertion of another forwarding rule R4 is
similar and shown in (g). At this time, APKeep finds two ECs
d and f appear at the same port at both elements, meaning
that they have the same forwarding behavior – permitted by
the ACL and forwarded to port2. Thus, APKeep merges d
and f into a single EC. Similarly, APKeep merges c and e into
a single EC, as shown in (h). The merging of ECs translates
into logical disjunction of predicates. For example, d and f
are merged into an EC represented by (x̄1x̄2ȳ1y2)∨ (x1x̄2ȳ1).

Finally, after inserting R1 through R4, APKeep creates 4
ECs. In contrast, if we create range-based ECs based on match
fields, we will need 10 ECs, one for each rectangle of (h). The
above is just an over-simplified example with only two fields
which have 3-4 values. In real scenarios, the reduction rate
can be as high as 99.99% (see Table 3). Actually, we prove
that APKeep always maintains the minimum number of ECs
during update (see Theorem 1).

The reason that APKeep can update such a small number of
ECs is two-fold: (1) Creating new ECs only when necessary.
APKeep creates a new EC only when part of an existing EC
changes its forwarding behavior and the EC needs to be split
into two ECs. In contrast, creating new ECs whenever the
match fields of the new rule split some existing ECs will result
in many redundant ECs. (2) Merging ECs whenever possible.
APKeep tracks the forwarding behaviors of ECs, and merges
multiple ECs if they have the same forwarding behavior. In
contrast, range-based EC presentation mostly does not allow
ECs to be merged.

The update of ECs in APKeep is much faster compared to
AP Verifier due to the following reason. APKeep can quickly
identify the changes of forwarding behaviors, and incremen-
tally update predicates instead of re-computing them (§ 3.2).
In contrast, AP Verifier maintains a port predicate for each de-
vice port, and computes atomic predicates (minimum number
of ECs) based on all port predicates. When a rule is updated,
it needs to first update the port predicates, and if new port
predicates are created, it re-computes the atomic predicates
based on the updated port predicates. We observe an up to
200× speedup in our experiments.

3 Design Details

This section presents the design of APKeep. Figure 3 shows
the architecture of APKeep, which consists of three layers:
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The driver layer serves as the interface between network
data plane and the model layer. In the bootstrap stage, the
config parser reads in the network topology and configura-
tion files, and generates the vendor-neutral data plane config,
describing the configuration of interfaces, VLANs, ACLs, etc.
for each device. The update parser fetches the FIB/ACL/NAT
(changes) from each device and generates data plane updates,
including insertion/deletion/modification of rules.
The model layer is the core of APKeep system. The model
builder constructs PPM model by creating all the elements
based on the data plane config. The model updater continu-
ously updates the PPM model by processing each data plane
update in sequence.
The verifier layer hosts verification applications on top of
the model layer. The forwarding graph constructor generates
forwarding graphs based on the PPM model, and on top of the
graphs, various applications can be deployed to check network
invariants, operator policies, or conduct what-if analysis.

In the following, we show how APKeep builds and updates
the PPM model, and performs verification. Then, we show
how APKeep supports packet rewrites, and present some op-
timization techniques.

3.1 Building PPM
For each device, APKeep constructs a device model based on
its configuration of interfaces, ACLs, NAT, etc., and decom-
poses the device model into a set of elements. Currently, AP-
Keep offers three types of elements, i.e., forwarding element,
filtering element, and rewriting element. Initially without any
rules, a forwarding element has a de f ault port; a filtering ele-
ment has a permit port and a deny port; a rewriting element
has an id port. For forwarding and rewriting elements, more
ports can be created on-the-fly during rule insertions.

After creating elements, APKeep constructs the element
topology by augmenting the physical topology with intra-
device element connections, based on how elements are com-
posed inside the device. For example, if an ACL ACL1 is
declared to filter inbound traffic at port port1, then there is a
connection from the permit port of ACL1 to the port1 port of
the forwarding element.

Initially there is only one True predicate, standing for the
set of all possible packets. For each element, the True predi-
cate is held by its de f ault, deny, or id port, depending on the
element type. APKeep initializes the predicate set Pred(p)
(§ 2.1) to {True} if p is de f ault, deny, or id port, and to
empty set otherwise.

3.2 Updating PPM
For each rule update, APKeep updates the PPM using three
steps: (1) encoding the match fields of the rule, (2) identifying
the changes of forwarding behavior, and (3) updating the
predicates and the map from port to predicates. The following
only shows the case for rule insertion, and rule deletion differs
only slightly in Step (2). Rule modification can be seen as a
pair of rule deletion and insertion.

Let r be the rule to be inserted, specified as a 3-tuple
(priority,match,action), and let e be the element where r
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Algorithm 1: IdentifyChangesInsert(r, R )
Input: r: the newly inserted rule; R : the list of existing rules,

sorted by decreasing priorities.
Output: C: the set of changes due to the insertion of rule r.

1 C←{};
2 r.hit← r.match;
3 foreach r′ ∈ R do
4 if r′.prio > r.prio and r′.hit ∧ r.hit 6= /0 then
5 r.hit← r.hit ∧¬r′.hit;

6 if r′.prio < r.prio and r′.hit ∧ r.hit 6= /0 then
7 if r′.port 6= r.port then
8 C←C∨{(r.hit ∧ r′.hit,r′.port,r.port)};
9 r′.hit← r′.hit ∧¬r.hit;

10 Insert r into R ;
11 return C;

is inserted.

Step 1. Encoding match fields. Assume each packet header
has h bits, each of which can be represented as a Boolean
variable. Then, the match field of a rule corresponds to a set
of packet headers, and can be represented as Boolean formula
of h variables. For example, an IP match field of 128.0.0.∗
can be represented as x1∧ x̄2∧·· ·∧ x̄24. We adopt the methods
of [37] to encode the Boolean formulas of match fields based
on Binary Decision Diagram (BDD [11]). BDD is a data
structure that can canonically represent Boolean formulas,
and it allows efficient logical operations including conjunction
(∧), disjunction (∨), and negation (¬). By encoding the match
fields with BDDs, we can efficiently compute and update
predicates leveraging these logical operations. We use r.match
to denote the match fields of r, encoded with BDD.

Step 2. Identifying changes. This step identifies the changes
of forwarding behavior at element e, by analyzing how the in-
sertion of r affects existing rules of e. Here, a behavior change
takes the form of (δ, f rom, to), meaning packets satisfying
predicate δ, which are originally forwarded to port f rom, will
now be forwarded to port to. Note that this step is locally
performed at e.

Before introducing the algorithm, we define the hit and
port fields for each rule. First, note that multiple rules may
have overlapping match fields, and packets will take the action
of the rule with the highest priority. Thus, some headers in
r.match may not “hit” rule r due to the presence of some
higher-priority rules. To represent the headers that actually
“hit” a rule, we define the hit field for each rule r as:

r.hit , ¬(∨r′.prio>r.prior′.match)∧ r.match (1)

If h ∈ r.hit, we know that h will take the action of r. Initially
when there is only one default rule, the hit field of the default
rule is equal to its match field, i.e., True. Second, recall that
each element has a port corresponding to each distinct action

of rules in the element. We use r.port to denote the port
corresponding to the action field of r. As an example, if r is
a forwarding rule whose action field is “output to interface
eth0/0”, then r.port = eth0/0.

Algorithm 1 summarizes the procedure to identify the set
of all behavior changes when a rule is inserted. It calculates
the hit field r.hit by subtracting the match fields of higher-
priority rules from r.match (Line 3-5), and identifies all behav-
ior changes by analyzing how r.hit “overrides” lower-priority
rules with different ports (Line 6-9). The algorithm for rule
deletion differs only slightly and is not given here.
Step 3. Updating predicates. In this stage, APKeep takes the
set of behavior changes caused by the inserted rule, denoted
by C, and computes the set of transferred predicates, denoted
by D. The process is summarized in Algorithm 2. In order
to track which ports hold a given predicate, the algorithm
maintains a map Port from each predicate c to the set of ports
holding c, defined as Port(c) = {Porte(c)|e ∈ E}. We term
Port(c) as the port set of predicate c.

Initially, the set of transferred predicates D is set to empty
(Line 1). For each change (δ, f rom, to), we iterate over each
predicate p in the predicate set of f rom, and check whether
p overlaps with δ (Lines 2-4). If so, we further perform the
following three steps (Lines 5-10).

(1) Splitting predicates. In this step, we check whether
p belongs to δ (Line 5). If not so, we need to split p into
two new predicates p∧δ and p∧¬δ. by invoking the Split
function (Line 6). As shown in Lines 11-17, the function
Split(p, p1, p2) first updates the predicate set of each port
in Port(p), by replacing p with p1 and p2 (Lines 12-13).
Then, it initializes the port set of p1 and p2 with that of p
(Lines 14-15). Finally, it updates the set of transferred predi-
cates if needed (Lines 16-17).

(2) Transferring predicates. This step transfers the pred-
icate p ∧ δ from port f rom to port to by invoking the
Transfer function (Line 7), as shown in Lines 18-22.

(3) Merging predicates. This step checks whether each
predicate p′ held by port to has the same port set with p
(Line 8). If so, p′ and p have the same forwarding behavior,
and we merge them into a new predicate p∨ p′, by invoking
the Merge function (Line 9), as shown in Lines 23-28.

After the above three steps, we update δ by subtracting
p from it, and proceed to the next predicate of port f rom
(Line 10).

Theorem 1. APKeep maintains the minimum set of equiva-
lence classes after each rule update.

The proof is given in Appendix A.

3.3 Verification

Checking Invariants. APKeep can check network invariants
including loop-freedom and blackhole-freedom, which are
defined as follows.
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Algorithm 2: Update(C)
Input: C: the set of changes identified in the first stage.
Output: D: the set of transferred predicates.

1 D←{};
2 foreach (δ, f rom, to) ∈C do
3 foreach p ∈ Pred( f rom) do
4 if p∧δ 6= /0 then
5 if p∧δ 6= p then
6 Split(p, p∧δ, p∧¬δ);

7 Transfer(p∧δ, f rom, to);
8 if ∃p′ 6= p,Port(p′) = Port(p) then
9 Merge(p, p′, p∨ p′);

10 δ← δ∧¬p;

11 Function Split(p, p1, p2):
12 foreach port ∈ Port(p) do
13 Pred(port)← Pred(port)∪{p1, p2}\{p};
14 Port(p1)← Port(p);
15 Port(p2)← Port(p);
16 if p ∈ D then
17 D← D∪{p1, p2}\{p};

18 Function Transfer(p, f rom, to):
19 Pred( f rom)← Pred( f rom)\{p};
20 Pred(to)← Pred(to)∪{p};
21 Port(p)← Port(p)∪{to}\{ f rom};
22 D← D∪{p};
23 Function Merge(p1, p2, p):
24 foreach port ∈ Port(p1) do
25 Pred(port)← Pred(port)∪{p}\{p1, p2};
26 Port(p)← Port(p1);
27 if p1 ∈ D or p2 ∈ D then
28 D← D∪{p}\{p1, p2};

29 return D;

• Loop. A packet traverses the same device for the second
time, without being modified.
• Blackhole. A packet arrives at a device but does not

match any forwarding rule.
Similar to Delta-net, APKeep checks invariants by construct-
ing and traversing a delta forwarding graph (DFG), a graph
with each edge labeled with the ECs allowed on the edge.
The difference is that APKeep updates the PPM model rather
than DFG, and only constructs DFG based on the PPM model
when checking invariants. Specifically, given a set of trans-
ferred predicates, APKeep constructs the DFG by adding the
transferred predicates and the corresponding edges on the
element topology. Then, APKeep traverses the DFG with a
set of predicates P, which is initialized to the transferred pred-
icates. When an edge is visited, P is intersected with the set
of predicates on that edge. The traversal terminates when P
becomes empty, reaching an edge with no next hop (blackhole
detected), or the same node is visited twice (loop detected).

The construction and traversal algorithms of DFG are given
in Appendix B.

Checking policies. Operators may need to check user-defined
policies such as hosts in a specific prefix can or cannot access
a web server, traffic from subnet1 to subnet2 should pass the
firewall, etc. We show how APKeep can support this task.
Here, we define a policy as a pair of match condition and
path constraint, where the match condition can be specified
by header fields (e.g., 5-tuple), and a path constraint can be
specified by a regular expression. Given a policy, APKeep can
convert its match condition into a policy predicate, i.e., a BDD
denoted as q, and its path constraint into an automata denoted
as A. APKeep can check whether the policy is satisfied after
an update as follows.

Let D be the transferred predicates after an update. APKeep
computes a new set of predicates Dq←{δ∈D|δ∧q 6= f alse},
and constructs the DFG Gq based on Dq. Then, APKeep tra-
verses Gq while updating an instance of automata A for each
pi ∈ Dq, denoted as Ai. Specifically, APKeep updates the au-
tomata Ai if the predicate pi visits a new node in DFG. The
policy is satisfied if after traversal, all the automata enter the
absorbing states; otherwise, the policy is violated. Note here
multiple policies can be checked in parallel, and for each
policy, the updating of each automata can also be parallelized.

What-if analysis. Operators can use APKeep to conduct
“what-if analysis”, e.g., will the invariants break if a specific
link fails? APKeep answers such a query by retrieving all the
predicates traversing the link, constructing a DFG using these
predicates, and traversing the DFG to check invariants. The
time to answer such a query heavily depends on the total num-
ber of ECs. We will show APKeep achieves a much shorter
running time than Delta-net (§ 5.4).

3.4 Supporting Packet Rewrites

APKeep supports packet rewrites with rewriting elements. A
rewriting element consists of a list T of rewrite rules, where
each T ∈ T matches on 5-tuples, and rewrites the header to
a specific value. APKeep creates a port for each rule in the
rewriting element.

Based on the match fields of rewrite rules, we can com-
pute predicates, and assign them to each port of the rewriting
element, just as the forwarding and filtering element. The dif-
ferent part is: (1) how to encode packet rewrites using logical
operations; (2) how to update predicates in the presence of
rewrites.

Encoding packet rewrites. we adopt the methods in [39]
to encode packet rewrites with logical operations as follows.
First, it uses the existential quantification on predicate. Let p
be a predicate, and x be one of the Boolean variables that p is
defined on. The existential quantification of x is defined as:

∃x.p = p|x=true∧ p|x= f alse (2)
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, where p|x=true sets the value of variable x in p as true.
Suppose the header has two bits x1,x2, then an NAT rule T
that rewrites it to x1 = 1, x2 = 0 can be encoded as a logical
function:

T (p) = (∃x1∃x2.p)∧ (x1∧ x̄2) (3)

The existential quantification operation is supported by BDD.

Updating predicates in the presence of rewrites. Recall
that for verification, we need to traverse a DFG which is
constructed based on PPM. When there are only forwarding
and filtering elements, we only need to perform intersections
on predicate sets during traversal. However, when there are
rewriting elements, predicates need to be transformed, and
we need to ensure two conditions:

(1) Each predicate should be unambiguously transformed,
i.e., the transformation should be defined for each predicate
in PPM. For example, suppose p is split into p1 and p2, we
should know how to transform each of them; otherwise, when
traversing with only p1 or p2 in the predicate set, the rewriting
element does not know how to transform it.

(2) The result of transformation should be represented by a
set of predicates in PPM such that the traversal can proceed.
For example, suppose a predicate p is held by the port of
rewrite rule T , and T (p) = p′. If p′ cannot be represented by
a set of predicates in PPM, the traversal cannot continue since
p′ is not “recognized” by other elements.

In order to satisfy these two conditions, we apply the fol-
lowing two operations: (1) when a predicate p of a rewriting
port is split into p1 and p2, we compute p1′ = T (p1) and
p2′ = T (p2), and apply operation (2). (2) if the transforma-
tion result p cannot be represented as a set of predicates, we
create new predicates to represent p. Note that this may split
a predicate of some rewriting port and trigger operation (1).

Algorithm 3 summarizes how APKeep handles rule updates
for rewriting elements. First, it updates the predicates with
Algorithm 2 (Line 1). The difference lies in that the algorithm
also maintains a rewrite table, where for each entry (k,v),
k is a predicate before rewrite, and v is a set of predicates
after rewrite. After transferring one predicate p to the port
of another rule r′, we need to apply the rewrite rule r′ on p,
and ensure the values in the rewrite table are still predicates
(Lines 2-12).

3.5 Optimization

Delayed predicate merging. In Algorithm 2, APKeep
merges two predicates instantly if they have the same port
set. However, for some datasets, we find that some predicates
are repeatedly merged and split, resulting in a waste of time.
Thus, we adopt a delayed predicate merging: when a predicate
can be merged, we record it, and when the total number of
predicates exceeds a threshold (500 by default), we merge all
the recorded predicates. To fast determine whether a predicate
can be merged, we maintain a hash table where the key is an

Algorithm 3: UpdateRewrite(C,R T )
Input: C: the set of changes identified in the first stage; R T :

the rewrite table.
Output: D: the set of transferred predicates.

1 D← UpdateRW(C);
2 while true do
3 updated← f alse;
4 foreach (k,v) ∈ R T do
5 foreach p ∈ v do
6 if p /∈ P then
7 foreach p

′ ∈ P do
8 if p

′ ∧ p 6= f alse and p
′ ∧¬p 6= f alse

then
9 SplitRW (p

′
, p
′ ∧ p, p

′ ∧¬p);

10 updated← true;

11 if updated = f alse then
12 break;

13 Function SplitRW(p, p1, p2):
14 Split(p, p1, p2);
15 foreach (k,v) ∈ R T do
16 if p ∈ v then
17 v← v∪{p1, p2}\{p};

18 R T .remove(p);
19 R T .add(p1,{T (p1)});
20 R T .add(p2,{T (p2)});
21 return D;

ordered list of ports, and the value is a set of predicates that
appear at all these ports.

Separate update for different types of elements. Updating
both forwarding rules and ACL rules may result in a large
number of predicates. For example, suppose there are n ECs
generated by forwarding rules, and an ACL rule matching a
destination port range will create n new ECs. AP Verifier [37]
proposed to compute the atomic predicates for forwarding
and ACL rules, separately. We adopt this approach and update
two sets of predicates, one for forwarding elements, and one
for ACL elements. When traversing the forwarding graph,
we need to carry two sets of predicates, and set intersection
only happen between the same set of predicates. Different
from [37], our algorithm avoids false positives when verifying
invariants. For example, when a node is visited twice, we
evaluate whether there exist two predicates, one from each
set, that have non-empty conjunction. If so, the loop exists;
otherwise, the loop is a false positive.

4 Case Study

We study the expressiveness of our PPM model by showing
how to model a vendor-specific function with the three built-in
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Figure 4: Modeling traffic policy in APKeep.

element types.
Policy-Based Routing (PBR) is a function commonly avail-

able in many routers and switches. It allows operators to
override the IP forwarding rules such that packets are for-
warded based on criteria other than destination IP address.
Different vendors may implement their own version of PBR,
and here we study one such implementation offered by a large
device vendor.

The vendor offers a function named traffic policy, defined
as a set of classifier-behavior pairs. The following shows a
traffic policy p1 applied to inbound traffic of interface eth0/0
at switch C. p1 is defined by a classifier c1 and a behavior
b1, meaning that packets satisfying c1 will be forwarded
according to b1. c1 is defined using an ACL ACL1, and the
behavior is redirecting traffic to interface eth1/1. The top-
left and top-right of Figure 4 show the processing logic of
switch C and the network topology, respectively.

interface eth0/0
traffic-policy p1 inbound
#
traffic policy p1 match-order config
classifier c1 behavior b1
#
traffic classifier c1 operator or precedence 5
if-match acl ACL1
#
traffic behavior b1
permit
redirect interface eth1/1

In our PPM model, the above traffic policy can be easily
modeled by creating an ACL element ACL1-C, and properly
chaining it into the forwarding graph, as shown in the bottom
of Figure 4: (1) connecting its in port to the upstream port
originally connected to eth0/0, (2) connecting its permit
port to the downstream port originally connected to eth1/1,
(3) connecting its deny port to the eth0/0 port of FW-C.

The above is just the simplest form of traffic policy, and in
a more general case, a policy can contain multiple classifier-
behavior pairs, and each classifier can contain multiple ACLs.
Then, we need to create multiple elements, one for each ACL,
and cascade them together.

In addition to 5-tuples, a traffic policy also matches various
information including VLAN ID, layer-3 packet length, time
ranges, etc. Since the predicate-based EC representation has
no restriction on the match fields, we can encode these match
conditions by adding more fields. For example, we can add a

Table 1: Dataset statistics.
Network Nodes Links Forwarding rules ACL rules Updates

Airtel1 68 260 6.89×104 0 1.42×107

Airtel2 68 260 9.84×104 0 5.05×108

4Switch 12 16 1.12×106 0 1.12×106

Internet2 9 56 1.26×105 0 2.52×105

Stanford∗ 16 74 3.84×103 0 7.68×103

Purdue∗ 1,646 3,094 3.52×106 0 7.04×106

Stanford 124 182 3.84×103 686 9.05×103

Purdue 2,159 3,607 3.52×106 2,707 7.05×106

16-bit field to encode the packet length from 0 to 65535, and
a 5-bit field to encode the hour-level time range. Note since
PPM models the packet forwarding behaviors of symbolic
packets, the fields to add do not have to be packet headers.

Apart from PBR, the traffic policy function also supports
other behaviors including traffic statistics, flow mirroring, etc.,
which do not change the forwarding behaviors, and rate lim-
iting, congestion avoidance, which selectively drop packets.
As all previous data plane verifiers, PPM cannot model these
features.

5 Evaluation

5.1 Setup

Implementation. We implemented APKeep with around 5K
lines of Java code. Currently, we have implemented config
parsers for three different vendors, which translate vendor-
specific configuration files into a unified representation in
JSON format. We also implemented an update parser for
one vendor, whose devices support fetching data plane state
including FIBs and ACLs. For verification, we implemented
an invariant checker that can detect loop and blackhole, and
a what-if analyzer that can reason about the possible impact
of link failures. For BDD operations, we use JDD, a BDD
library for Java [34].

Dataset. Table 1 shows the datasets we use. The first six
consist of updates of IPv4 forwarding rules, and the last two
consist of updates of both IPv4 forwarding rules and ACL
rules. The first three datasets are generated by Delta-net [20]
using the ONOS SDN-IP application [6], and the Internet2
dataset is from [5]. The Stanford dataset [2] consists of both
IPv4 forwarding rules and ACL rules, and the original Pur-
due dataset [32] consists of only ACL rules. We generate
forwarding rules for the Purdue dataset, using shortest path
routing. Finally, we remove the ACL rules from these two
datasets, and obtain another two pure-IP datasets Stanford∗

and Purdue∗. Since the last five datasets are snapshots of rules,
we generate a sequence of updates from each of them as fol-
lows. First, we add all the ACL rules (if any), one rule per
ACL each time, and then all the forwarding rules, one rule
per device each time. After that we delete these rules in the
reverse order as they are inserted.
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Figure 5: The distribution of verification time for APKeep.

Methods to compare. We compare APKeep with four data
plane verification tools.
AP Verifier [37]. We use its open-source implementation in
Java [4], and also the authors’ implementation of incremen-
tal update algorithms [3]. We modify it to process our rule
updates, and implement an incremental loop checker for it.
Delta-net [20]. We implement an extended version of Delta-
net using C++, referred to as Delta-netMF. It handles single-
field IP forwarding rules in the same way as Delta-net, and
handles multi-field ACL rules using a multi-layered tree ap-
proach as in VeriFlow. Note, Delta-netMF may not be the
best approach for extending Delta-net so that it can apply to
multiple fields.
VeriFlow [24]. We use its open-source implementation in C.
Since VeriFlow only supports match fields expressed with
prefixes, an ACL rule matching port ranges may be split into
multiple ones which match prefixes.
NetPlumber [22]. We use its open-source implementation in
C++ [2]. Since NetPlumber takes transfer function (TF) rule
as input, we translate our rule updates into equivalent TF rule
updates. Prior to update, we insert all the default rules created
by NetPlumber since the insertion and deletion of them take
a long time, as confirmed by the paper. We attach one source
node to each device for NetPlumber to inject “flows” in the
network model.

Apart from the above four methods, we also consider
APKeep−, standing for APKeep without merging predicates.
For benchmark purpose, we let each method check loops after
each update. All the experiments run on a Linux desktop with
a 3.0GHz Intel Core i5 CPU and 32GB RAM.

5.2 Verification Time
Figure 5 shows the verification time of APKeep. We can see
for all datasets, the verification time is less than 250µs for
90% of updates. Table 2 compares the average running time
of APKeep with the other methods. For datasets with only IP
forwarding rules, the running time of APKeep is comparable
to Delta-netMF, and much shorter than the other methods. For
the 4Switch dataset, APKeep is 253×, 128×, and 937× faster
than AP Verifier and VeriFlow, and NetPlumber, respectively.
Note that NetPlumber is relatively slow since it models each
rule as a node, and computes all the flows through these rules.

Thus, its model is more fine-grained than APKeep, but in-
curs a relatively high cost. Surprisingly, APKeep− is even
faster than APKeep on some datasets. The reason is that these
datasets have a rather small number of ECs (see Table 3), and
therefore merging ECs incurs additional overhead without
paying off. However, for the 4Switch dataset, APKeep− is
much slower as it has 271,793 ECs, while APKeep has only
557 ECs. For datasets with multiple match fields, all other
methods including APKeep− either incur a prohibitively long
running time or run out of memory. For the Purdue dataset,
only APKeep runs to completion, with an average running
time of 13µs; all other methods either time out or run out
of memory. This demonstrates existing methods can hardly
meet the realtime requirement when the rules to update match
multiple fields.

5.3 Number of Equivalence Classes

We observe that the number of ECs heavily impacts the run-
ning time of realtime data plane verifiers. To confirm this, we
report the number of ECs maintained by APKeep, APKeep−,
and Delta-netMF in Table 3.

We can see that when there is a single match field,
APKeep− computes slightly fewer ECs than Delta-netMF. The
reduction is due to the fact that predicates can encode arbi-
trary packet sets, rather than ranges. By merging predicates,
APKeep computes much fewer ECs than APKeep−. This in-
dicates that using predicates alone cannot efficiently reduce
the number of ECs.

The number of ECs computed by Delta-netMF grows from
2283 to 15 million after only 686 ACL rules are inserted
in the Stanford dataset, and reaches over 100 million after
2,707 ACL rules are inserted in the Purdue dataset. Note that
Delta-netMF actually does not run to completion for Stanford
and Purdue datasets, and the numbers are counted by running
only the functions related to the creation of ECs. In contrast,
APKeep computes only 515 and 4,160 ECs for these two
datasets, a 99.99% reduction compared with Delta-netMF.

The above results show that range-based EC representa-
tion easily leads to an explosion of ECs when there are only
a small number of rules with multiple match fields. On the
other hand, by representing ECs with predicates, and updating
the minimum number predicates, APKeep can dramatically
reduce the total number of ECs, thereby achieving a fast veri-
fication speed with small memory footprint.

Figure 6 shows the number of ECs maintained by APKeep
and Delta-netMF during the updates. The Airtel1 dataset con-
sists of rule insertions and deletions which are generated to
react to link failures. Thus, the number of rules is small during
update, and the total number of ECs is also quite small. The
4Switch dataset only has rule insertions; and the last three
datasets insert all rules and remove them later. Thus, for In-
ternet2 and Stanford, APKeep finally has only one and two
predicates, respectively. For the Purdue dataset, since both
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Table 2: Average verification time of different methods (DMF is shorthand for Delta-netMF). TO means timeout (> 24h), and MO
means memory overflow (> 32GB).

Network Average verification time (µs) Percentage < 250µs
AP Verifier VeriFlow NetPlumber DMF APKeep− APKeep AP Verifier VeriFlow NetPlumber DMF APKeep− APKeep

Airtel1 80 59 3,804 3 5 7 91.3% 99.9% 3.8% 99.9% 99.9% 99.8%
Airtel2 135 48 TO 4 4 6 77.4% 99.9% TO 99.9% 99.9% 99.9%
4Switch 5,316 2,706 19,678 4 2,190 21 7.8% 8.2% 0.8% 99.9% 75.1% 99.8%
Internet2 1,660 144 2,123 3 9 12 24.2% 93.3% 9.9% 99.9% 99.5% 99.7%
Stanford∗ 1,953 468 8,700 9 98 94 13.3% 96.1% 23.6% 99.9% 93.6% 96.4%
Purdue∗ 777 648 MO 15 2 9 83.7% 66.5% MO 99.9% 99.9% 99.9%
Stanford 2,072 4.8×106 9,532 MO 3.1×105 127 24.3% 0.4% 34.0% MO 11.8% 91.7%
Purdue TO TO MO MO MO 13 TO TO MO MO MO 99.8%
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Figure 6: Number of equivalence classes maintained by APKeep and Delta-netMF during updates.

Table 3: Number of ECs for APKeep and Delta-netMF.
Network Delta-netMF APKeep− APKeep Reduction Rate

Airtel1 2,799 1,401 16 99.4%
Airtel2 2,799 1,401 64 97.8%
4Switch 443,443 271,793 557 99.9%
Internet2 22,212 14,819 216 99.0%
Stanford∗ 2,283 1,515 494 78.4%
Purdue∗ 1,176 939 267 77.4%
Stanford 15,100,968 842,734 515 99.99%
Purdue >104,743,229 >168,891 4,160 99.99%

Table 4: Verification time for “what if” queries. The results
for Delta-net were from paper [20], whose experiments ran
on a 3.47GHz Intel Xeon CPU.

Network # Rules Average query time (ms) +Loops (ms)
Delta-net APKeep Delta-net APKeep

Airtel 38,100 0.04 0.02 2.3 0.13
4Switch 1,120,000 21.1 0.48 128.1 1.37

Delta-netMF and APKeep− cannot run to completion, we only
show the number for the first 3000 updates.

5.4 Answering “What if” Queries
We evaluate the running time for APKeep to answer “what if”
queries. In particular, we consider the query “what is the fate
of packets that use a link if the link fails?”. To answer this
query, Delta-net constructs a forwarding graph using those
ECs on that link, and is reported to be 10× faster than Veri-
Flow. Thus, we only compare our results to those of Delta-net.
In Table 4, Columns 3-4 show the average query time, and
Columns 5-6 show the average query time if we additionally
check loops. We can see that APKeep is 17× and 93× faster
than Delta-net in overall query time for the Airtel and 4Switch
datasets, respectively. The reason is that the number of ECs
in APKeep is much smaller than that in Delta-net.
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when different number of NATs are added.

5.5 Updating Rewrite Rules

We evaluate the time for APKeep to handle updates of rewrite
rules. We use the Stanford∗ and Purdue∗ dataset, and add NAT
rules into the network as follows. First, for each dataset, we
find all the edge ports: an edge port holds a non-empty set of
predicates, and is not connected to any other switches. Then,
for each edge port, we randomly select a predicate associated
with it, and compute an IP prefix that satisfies the predicate.
Finally, for each IP prefix, we generate 25 NAT rules, each of
which translates an IP address to another address belonging
to a different IP prefix. We place the updates of NAT rules
after the updates of forwarding rules.

Figure 7 shows the running time of APKeep for different
numbers of NATs ranging from 0 to 20. Since each NAT has
25 rules, the number of NAT rules ranges from 0 to 1000. We
can see that the running time of APKeep is mostly less than
1ms, and scales well with the number of NAT rules.

6 Related Work
Offline data plane verification was originally studied by
Xie et al. [36], and later advanced by FlowChecker [10],
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Anteater [27], HSA [23], and NoD [25]. These tools take a
snapshot of the data plane state, and check whether it satisfies
network invariants like blackhole-freedom, loop-freedom, etc.
AP Verifier [37–39] uses Binary Decision Diagraph (BDD) to
compute a predicate for each port, and uses all port predicates
to generate atomic predicates, which are the minimum set of
ECs. APKeep differs in that it builds on a modular element-
level model that is much more expressive than the monolithic
model used by AP Verifier. In addition, APKeep incrementally
updates the ECs instead of re-computing them from scratch,
thereby achieving up to 200× speedup compared to the incre-
mental version of AP Verifier (Table 2). To scale verification
to large networks, Libra [40] uses MapReduce to parallelize
verification. Plotkin et al. [29] propose to transform large
networks into smaller ones for scalable verification, based on
network surgery and symmetry. APKeep can leverage this
technique to reduce network size, thereby scaling to larger
networks. RCDC [15] decomposes data plane verification into
the validation of local contracts. However, RCDC assumes
structured datacenter networks so as to track the topology
and address locality, while APKeep targets general networks.
SymNet [31] and VMN [28] focus on verifying stateful data
planes with middleboxes.

Realtime data plane verification incrementally checks
the network data plane for each update in real time. Net-
Plumber [22] builds on the plumbing graph model, where
each node is a rule and a flow is a set of packets traversing
the same sequence of rules. Thus, the model has a finer grain
than PPM, while the downside is that updating the model is
relatively slow (Table 2). VeriFlow [24] achieves a smaller ver-
ification time (< 1ms) by computing the equivalence classes
(ECs) affected by an update, and checking the forwarding
graph of each affected EC. Delta-net [20] further reduces
the verification time by incrementally maintaining a single
EC-labelled graph, rather than constructing multiple graphs
for each update. VeriFlow and Delta-net can achieve sub-
millisecond verification time for updates of single-field IP
forwarding rules. Howerver, they may suffer from the prob-
lem of EC explosion when there are multi-field rules, and
cannot handle updates of rewriting rules.

Representation of ECs. Bjørner et al. propose ddNF [14],
a new data structure for representing ECs, and show it out-
performs BDD on datasets consisting of forwarding rules.
However, the set of ECs represented using ddNF may not be
minimal. #PEC [21] introduces a new lattice-theoretic method
which can construct the minimum number of ECs, faster than
using BDD. #PEC may serve as a better foundation for multi-
field extension of Delta-net, and it would also be interesting
to study how to leverage #PEC to further speed up APKeep.

Control plane verification checks whether protocol configu-
rations are correct [9,12,13,16,18,19,30]. They are orthogo-
nal to APKeep, while tools like Batfish [18] may use APKeep
to speed up the verification of generated data planes.

7 Discussion
Model modularity vs. number of ECs. Modeling the net-
work at a fine granularity can make the update more efficient,
while may also increase the number of ECs. The reason is
that the model may have more different forwarding behaviors,
which need to be represented with more ECs. For example,
even two packets behave the same at a device level, their be-
haviors may differ in the intra-device processing, and thus
should be represented with different ECs. Thus, there is a
tradeoff between the model granularity and the number of
ECs. It will be interesting to further navigate such tradeoff in
the future.

Fetching data plane state. APKeep fetches the whole data
plane state only once in the bootstrap stage, and only fetches
data plane updates afterwards, whose cost can be much less
compared to fetching the whole data plane. To ensure time-
liness, APKeep needs to fetch the updates from devices at a
sufficient frequency. We are aware some new devices have al-
ready provided APIs for fetching FIB updates, and we expect
this feature will be supported by more devices in the future.

Ensuring update consistency. Since the data plane state is
in continuous transition, a violation can be falsely triggered
by a transient state. APKeep can be made robust to such
inconsistency as follows. If an update fails the verification
of an invariant, APKeep flags it as suspicious without raising
an alarm. After a configured time window, APKeep checks
the invariant again to confirm whether the update is a true
violation. Detailed design is left as one of our future work.

Why microsecond-level verification. One major purpose of
speeding up incremental verification is to ensure the network
model, which verification is based on, can keep up with fast
network updates. For example, in a large datacenter with 1k
devices, a 1ms model update time only allows the verifier to
keep up with an average network update rate of 1 update per
device every second. Thus, further speeding up data plane
verifiers can scale the verification to larger network size and
higher data plane update rate.

8 Conclusion
This paper presented APKeep, a new realtime data plane veri-
fier. APKeep builds atop PPM, a modular network model that
is expressive for real devices, and incrementally maintains
the minimum number of equivalence classes in realtime. We
showed that for real updates consisting of both forwarding
and ACL rules, all other methods either ran out of memory or
incurred a prohibitively long verification time, while APKeep
still achieved a sub-millisecond verification time.
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A Proof of Theorem 1

Proof. According to Definition 1, it is easy to see that a set
of ECs is minimum if the other direction of condition (3)
also holds, i.e., if two packets are forwarded to the same
port at each element, then they must belong to the same EC.
Therefore, define (3)’ by replacing “⇒” with “⇔” in (3),
and we need to prove that conditions (1)(2)(3)’ hold for all
predicates in the PPM model.

Clearly, these conditions hold initially when there are no up-
dates: each element has a single default rule, and there is only
one True predicate, which is assigned to the default/deny/id
port depending on element type. We prove the theorem by
induction: if the conditions hold before an update, then they
still hold after the update.

Let e be the element whose rule is updated. For condition
(1)(2), it is clear that transfer operations do not modify
predicates, and thus have no effect on these conditions. Also,
since split and merge only move part of one predicate into
another one, they will not break these conditions, either. In
the following, we show both directions of (3)’ hold.

⇒: Suppose h1,h2 ∈ c after update, we show they ap-
pear in the same set of ports. There are two cases. (1) h1
and h2 belong to the same predicate before update. Then,
we know Ports(h1) = Ports(h2),∀s, and the update only
changes Porte(h1) and Porte(h2). Then, we only need to show
Porte(h1) = Porte(h2) after update. Clearly this holds if nei-
ther h1 or h2 changes its port at e. Suppose at least one of them
changes its port at e, and let Porte(h1) = Porte(h2) = pa be-
fore update. Without loss of generality, suppose h1 changes its
port to pb 6= pa, we prove by contradiction that h2 must have
also changed its port to pb. Assume h2 either keeps its port un-
changed or changes its port to pc 6= pb. Suppose h1 ∈ c1 and
h2 ∈ c2 after transferring predicates, then c1 appears at port
pb, and c2 appears at port pa or pc. Since c1 and c2 appear in
different ports at e, they cannot be merged, contradicting our
assumption that h1,h2 ∈ c after update. (2) h1 and h2 belong
to different predicates before update. Let h1 ∈ c1 and h2 ∈ c2
before update, then c1 and c2 must have been merged into c.
That is, c1 and/or c2 must have been transferred to the same
port after update, which implies that h1 and h2 must have
changed their ports to the same one at e.

⇐: Suppose Ports(h1) = Ports(h2),∀s after update, there
are two cases. (1) h1,h2 ∈ c′ before update. Then, Ports(h1) =
Ports(h2),∀s before update, implying that both h1 and h2 do
not change their ports or change to the same port. If they
do not change their ports, then they will still belong to the
same predicate (either c′ if c′ is not split or c′ ∧¬δ if c is
split). If they change their ports, then a predicate including
h1,h2 (either c′ if c′ is not split or c′ ∧ δ if c′ is split) will
be transferred to a new port, and they will still belong to
the same predicate, no matter whether the transferred pred-
icate is merged or not. (2) h1 ∈ c1,h2 ∈ c2 before update,
then we know Porte(h1) 6= Porte(h2) before update, and thus
at least one of them must have changed its port. Without
loss of generality, suppose h1 has changed its port such that
Ports(h1) = Ports(h2) after the change, and let c′ be the trans-
ferred predicate satisfying h1 ∈ c′. This will trigger our algo-
rithm to merge c′ and c2.
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Algorithm 4: ConstructDeltaForwardingGraph(D)
Input: D: the set of transferred predicates.
Output: G: the forwarding graph used for invariant checking.

1 V ←{}, E←{}, A←⊥;
2 foreach δ ∈ D do
3 foreach port ∈ Port(δ) do
4 s1← the node holding port;
5 if s1 /∈V then
6 V ←V ∪{s1};
7 s2← the node connected to port;
8 if s2 /∈V then
9 V ←V ∪{s2};

10 if (s1,s2) /∈ E then
11 A(s1,s2)←{};
12 E← E ∪{(s1,s2)};
13 A(s1,s2)← A(s1,s2)∪{δ};

14 return G(V,E,A);

B Algorithms for Constructing Delta For-
warding Graphs and Checking Invariants

Constructing delta forwarding graphs. Algorithm 4 sum-
marizes the process of constructing delta forwarding graphs.
It takes the set of transferred predicates, denoted as D, com-
puted by Algorithm 2, and returns a delta forwarding graph,
denoted as G(V,E,A). Here, V is the set of nodes, E is the set
of edges, and A : E→ 2C is a map from each edge to the set
of predicates allowed on that edge (C denotes the set of all
predicates). That is, A(s1,s2) is the set of predicates that can
be sent from switch s1 to switch s2. First, V , E, and A are ini-
tialized (Line 1). For each predicate δ in D, APKeep iterates
over each port in the port set of δ (Lines 2-3). If the node s1
holding port is not in the node set V , then s1 is added into V
(Lines 4-6). Similarly, if the node directly connected to port
is not in V , then s2 is also added into V (Lines 7-9). Note here
if the port is “default”, we assume it is connected to a virtual
node named “default”. If the edge (s1,s2) is not in the edge
set E, then it is added into E, and the mapping A(s1,s2) is
initialized to empty set (Lines 10-12). Finally, the transferred
predicate δ is added into the set A(s1,s2) (Line 13).
Checking invariants. With the delta forwarding graph G,
operators can check network invariants by traversing G. Al-
gorithm 5 shows an example program for checking blackhole-
freedom and loop-freedom (defined in § 3.3). The algorithm
starts the traversal from each node s ∈V . Here V includes all
nodes corresponding to the element where the rule is updated.
Before each traversal, the algorithm initializes pset, the cur-
rent set of predicates, to D, and history, the nodes that have
been visited, to empty set (Lines 2-3). The traversal stops
when pset becomes empty (Line 6-7) or the visited node is
already in history (Line 8-10), meaning a loop is detected,

Algorithm 5: CheckInvariants(G,D,V )
Input: G: the forwarding graph used for invariant checking, D:

the set of transferred predicates, V : the set of nodes to
start check.

1 foreach s ∈V do
2 pset← D;
3 history←{};
4 Traverse (s, predicates,history);

5 Function Traverse(s, pset,history):
6 if pset = /0 then
7 return;

8 if s ∈ history then
9 Alter(’loop’);

10 return;

11 foreach (s,s′) ∈ E do
12 if s′ = de f ault then
13 Alter(’backhole’);
14 return;

15 Traverse (s′, pset ∧A(s,s′),history∪{s});
16 return;

Table 5: Memory cost. TO means timeout (> 24h), and MO
means memory overflow (> 32GB).

Network Memory cost (MB)
AP Verifier VeriFlow NetPlumber Delta-netMF APKeep

Airtel1 417 508 4,283 61 180
Airtel2 5170 16,049 TO 74 193
4Switch 7,722 2,520 1,749 785 936
Internet2 360 206 613 44 87
Stanford∗ 6 16 4,971 25 3
Purdue∗ 1,465 1,414 MO 3,414 648
Stanford 6 98 8,607 MO 3
Purdue TO TO MO MO 744

or the next hop is de f ault (Line 12-14), meaning packets in
pset match no forwarding rule in the corresponding device,
i.e., a blackhole is detected. Otherwise, the algorithm updates
pset and history and traverses the next hop (Line 15).

C Memory Cost

We compare the memory cost of APKeep with the other four
methods. Not surprisingly, for single-field datasets, the mem-
ory cost of APKeep is comparable to Delta-netMF, and both
of them have smaller memory footprint than others. For the
multi-field Stanford dataset, Delta-netMF runs out of 32GB
memory. For the multi-field Purdue dataset, AP Verifier and
VeriFlow do not run to completion within 24 hours; Net-
Plumber and Delta-netMF run out of 32GB memory. APKeep
still maintains a small memory footprint for these two multi-
field datasets.
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