
This paper is included in the Proceedings of the
17th USENIX Symposium on Networked Systems Design

and Implementation (NSDI ’20)
February 25–27, 2020 • Santa Clara, CA, USA

978-1-939133-13-7

Open access to the Proceedings of the
17th USENIX Symposium on Networked

Systems Design and Implementation
(NSDI ’20) is sponsored by

High Throughput Cryptocurrency Routing
in Payment Channel Networks

Vibhaalakshmi Sivaraman, Massachusetts Institute of Technology; Shaileshh
Bojja Venkatakrishnan, Ohio State University; Kathleen Ruan, Carnegie Mellon

University; Parimarjan Negi and Lei Yang, Massachusetts Institute of Technology;
Radhika Mittal, University of Illinois at Urbana-Champaign; Giulia Fanti, Carnegie
Mellon University; Mohammad Alizadeh, Massachusetts Institute of Technology

https://www.usenix.org/conference/nsdi20/presentation/sivaraman

High Throughput Cryptocurrency Routing in Payment Channel Networks

Vibhaalakshmi Sivaraman*, Shaileshh Bojja Venkatakrishnan**, Kathleen Ruan†, Parimarjan Negi*,

Lei Yang *, Radhika Mittal ‡, Giulia Fanti†, Mohammad Alizadeh*

*Massachusetts Insititute of Technology, ** Ohio State University,
† Carnegie Mellon University, ‡University of Illinois at Urbana-Champaign

Abstract
Despite growing adoption of cryptocurrencies, making fast

payments at scale remains a challenge. Payment channel

networks (PCNs) such as the Lightning Network have emerged

as a viable scaling solution. However, completing payments on

PCNs is challenging: payments must be routed on paths with

sufficient funds. As payments flow over a single channel (link)

in the same direction, the channel eventually becomes depleted

and cannot support further payments in that direction; hence,

naive routing schemes like shortest-path routing can deplete

key payment channels and paralyze the system. Today’s PCNs

also route payments atomically, worsening the problem. In this

paper, we present Spider, a routing solution that “packetizes”

transactions and uses a multi-path transport protocol to achieve

high-throughput routing in PCNs. Packetization allows Spider

to complete even large transactions on low-capacity payment

channels over time, while the multi-path congestion control

protocol ensures balanced utilization of channels and fairness

across flows. Extensive simulations comparing Spider with

state-of-the-art approaches shows that Spider requires less

than 25% of the funds to successfully route over 95% of

transactions on balanced traffic demands, and offloads 4x

more transactions onto the PCN on imbalanced demands.

1 Introduction

Despite their growing adoption, cryptocurrencies suffer

from poor scalability. For example, the Bitcoin [5] network

processes 7 transactions per second, and Ethereum [14] 15

transactions/second, which pales in comparison to the 1,700

transactions per second achieved by the VISA network [56].

Scalability thus remains a major hurdle to the adoption of

cryptocurrencies for retail and other large-scale applications.

The root of the scalability challenge is the inefficiency of

the underlying consensus protocol: every transaction must

go through full consensus to be confirmed, which can take

anywhere from several minutes to hours [43].

A leading proposal among many solutions to improve

cryptocurrency scalability [23, 32, 40] relies on so-called

payment channels. A payment channel is a cryptocurrency

transaction that escrows or dedicates money on the blockchain

for exchange with a prespecified user for a predetermined

duration. For example, Alice can set up a payment channel

with Bob in which she escrows 10 tokens for a month. Now

Alice can send Bob (and only Bob) signed transactions from

the escrow account, and Bob can validate them privately in

a secure manner without mediation on the blockchain (§2).

If Bob or Alice want to close the payment channel at any point,

they can broadcast the most recent signed transaction message

to the blockchain to finalize the transfer of funds.

The versatility of payment channels stems from payment

channel networks (PCNs), in which users who do not share

direct payment channels can route transactions through

intermediaries for a nominal fee. PCNs enable fast, secure

transactions without requiring consensus on the blockchain

for every transaction. PCNs have received a great deal of

attention in recent years, and many blockchains are looking to

PCNs to scale throughput without overhauling the underlying

consensus protocol. For example, Bitcoin has deployed the

Lightning network [10, 15], and Ethereum uses Raiden [18].

For PCNs to be economically viable, the network must be

able to support high transaction throughput. This is necessary

for intermediary nodes (routers) to profitably offset the

opportunity cost of escrowing funds in payment channels, and

for encouraging end-user adoption by providing an appealing

quality of payment service. But, a transaction is successful

only if all channels along its route have sufficient funds. This

makes payment channel routing, the protocol by which a path

is chosen for a transaction, of paramount importance.

Existing payment channel routing protocols achieve poor

throughput, for two main reasons. First, they attempt to route

each incoming transaction atomically and instantaneously, in

full. This approach is harmful, particularly for larger transac-

tions, because a transaction fails completely if there is no path

to the destination with enough funds. Second, existing routing

protocols fail to keep payment channels balanced. A payment

channel becomes imbalanced when the transaction rate across

it is higher in one direction than the other; the party making

more transactions eventually runs out of funds and cannot send

further payments without “refilling” the channel via either

an on-chain transaction (i.e., committing a new transaction

to the blockchain) or coordinated cyclic payments between a

series of PCN nodes [39]. Most PCNs today route transactions

naively on shortest paths with no consideration for channel

balance; this can leave many channels depleted, reducing

throughput for everyone in the network. We describe a third

problem, the creation of deadlocks in certain scenarios, in §3.

In this paper we present Spider, a multi-path transport

protocol that achieves balanced, high-throughput routing in

PCNs, building on concepts in an earlier position paper [51].

Spider’s design centers on two ideas that distinguish it

from existing approaches. First, Spider senders “packetize”

transactions, splitting them into transaction-units that can

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 777

be sent across different paths at different rates. By enabling

congestion-control-like mechanisms for PCNs, this packet-

switched approach makes it possible to send large payments on

low-capacity payment channels over a period of time. Second,

Spider develops a simple multi-path congestion control

algorithm that promotes balanced channels while maximizing

throughput. Spider’s senders use a simple one-bit congestion

signal from the routers to adjust window sizes, or the number

of outstanding transaction-units, on each of their paths.

Spider’s congestion control algorithm is similar to multi-

path congestion control protocols like MPTCP [59] developed

for Internet congestion control. But the routing problem it

solves in PCNs differs from standard networks in crucial ways.

Payment channels can only route transactions by moving a

finite amount of funds from one end of the channel to the other.

Because of this, the capacity of a payment channel — the

transaction rate that it can support — varies depending on

how it is used; a channel with balanced demand for routing

transactions in both directions can support a higher rate than an

imbalanced one. Surprisingly, we find that a simple congestion

control protocol can achieve such balanced routing, despite

not being designed for that purpose explicitly.

We make the following contributions:

1. We articulate challenges for high-throughput routing

in payment channel networks (§3), and we formalize

the balanced routing problem (§5). We show that the

maximum throughput achievable in a PCN depends

on the nature of the transaction pattern: circulation

demands (participants send on average as much as they

receive) can be routed entirely with sufficient network

capacity, while demands that form Directed Acyclic

Graphs (DAGs) where some participants send more

than they receive cannot be routed entirely in a balanced

manner. We also show that introducing DAG demands

can create deadlocks that stall all payments.

2. We propose a packet-switched architecture for PCNs

(§4) that splits transactions into transaction-units and

multiplexes them across paths and time.

3. We design Spider (§6), a multi-path transport protocol

that (i) maintains balanced channels in the PCN, (ii) uses

the funds escrowed in a PCN efficiently to achieve high

throughput, and (iii) is fair to different payments.

4. We build a packet-level simulator for PCNs and validate

it with a small-scale implementation of Spider on the

LND Lightning Network codebase [15]. Our evaluations

(§7) show that (i) on circulation demands where 100%

throughput is achievable, compared to the state-of-the-art,

Spider requires 25% of the funds to route over 95% of the

transactions and completes 1.3-1.8x more of the largest

25% of transactions based on a credit card transactions

dataset [34]; (ii) on DAG demands where 100% through-

put is not achievable, Spider offloads 7-8x as many

transactions onto the PCN for every transaction on the

blockchain, a 4x improvement over current approaches.

2 Background

Bidirectional payment channels are the building blocks of a

payment channel network. A bidirectional payment channel

allows a sender (Alice) to send funds to a receiver (Bob) and

vice versa. To open a payment channel, Alice and Bob jointly

create a transaction that escrows money for a fixed amount

of time [46]. Suppose Alice puts 3 units in the channel, and

Bob puts 4 (Fig. 1). Now, if Bob wants to transfer one token

to Alice, he sends her a cryptographically-signed message

asserting that he approves the new balance. This message is

not committed to the blockchain; Alice simply holds on to it.

Later, if Alice wants to send two tokens to Bob, she sends a

signed message to Bob approving the new balance (bottom

left, Fig. 1). This continues until one party decides to close

the channel, at which point they publish the latest message

to the blockchain asserting the channel balance. If one party

tries to cheat by publishing an earlier balance, the cheating

party loses all the money they escrowed to the other party [46].

Alice Bob

Txn 2

- Alice

(3)

Alice Bob

Open

Channel

(1)

Alice Bob

Txn 1

- Bob

ç

(2)

Alice Bob

Close

Channel

(4)

Figure 1: Bidirectional payment channel between Alice and Bob.

A blue shaded block indicates a transaction that is committed to the

blockchain.

Figure 2: In a payment channel network, Alice can transfer money

to Bob by using intermediate nodes’ channels as relays. There are

two paths from Alice to Bob, but only the path (Alice, Charlie, Bob)

can support 3 tokens.

A payment channel network is a collection of bidirectional

payment channels (Fig. 2). If Alice wants to send three tokens

to Bob, she first finds a path to Bob that can support three

tokens of payment. Intermediate nodes on the path (Charlie)

will relay payments to their destination. Hence in Fig. 2, two

transactions occur: Alice to Charlie, and Charlie to Bob. To

incentivize Charlie to participate, he receives a routing fee.

To prevent him from stealing funds, a cryptographic hash

lock ensures that all intermediate transactions are only valid

after a transaction recipient knows a private key generated by

Alice [18]. 1 Once Alice is ready to pay, she gives that key to

1The protocol called Hashed Timelock Contracts (HTLCs) can be

implemented in two ways: the sender generates the key, as in Raiden [18] or

the receiver generates the key, as in Lightning [46]. Spider assumes that the

sender generates the key.

778 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Bob out-of-band; he can either broadcast it (if he decides to

close the channel) or pass it to Charlie. Charlie is incentivized

to relay the key upstream to Alice so that he can also get paid.

Note that Charlie’s payment channels with Alice and Bob

are independent: Charlie cannot move funds between them

without going through the blockchain.

3 Challenges in Payment Channel Networks

A major cost of running PCNs is the collateral needed to set up

payment channels. As long as a channel is open, that collateral

is locked up, incurring an opportunity cost for the owner. For

PCNs to be financially viable, this opportunity cost should be

offset by routing fees, which are charged on each transaction

that passes through a router. To collect more routing fees,

routers try to process as many transactions as possible for

a given amount of collateral. A key performance metric is

therefore the transaction throughput per unit collateral where

throughput itself is measured either in number of transactions

per second or transaction value per second.

Current PCN designs exhibit poor throughput due to

naive design choices in three main areas: (1) how to route

transactions,(2) when to send them and, (3) deadlocks.

Challenge #1: How to route transactions? A central ques-

tion in PCNs is what route(s) to use for sending a transaction

from sender to destination. PCNs like the Lightning and

Raiden networks are source-routed. 2 Most clients by default

pick the shortest path from the source to the destination.

However, shortest-path routing degrades throughput in two

key ways. The first is to cause underutilization of the network.

To see this, consider the PCN shown in Fig. 3a. Suppose we

have two clusters of nodes that seek to transact with each

other at roughly the same rate on average, and the clusters are

connected by two paths, one consisting of channels a−b, and

the other channel c. If the nodes in cluster A try to reach cluster

B via the shortest path, they would all take channel c, as would

the traffic in the opposite direction. This leads to congestion

on channel c, while channels a and b are under-utilized.

A second problem is more unique to PCNs. Consider a

similar topology in Figure 3b, and suppose we fully utilize

the network by sending all traffic from cluster A→B on edge

a and all traffic from cluster B→A on edge b. While the rate

on both edges is the same, as funds flow in one direction over a

channel, the channel becomes imbalanced: all of the funds end

up on one side of the channel. Cluster A can no longer send

payments until it receives funds from cluster B on the edge

a or it deposits new funds into the channel a via an on-chain

transaction. The same applies to cluster B on edge b. Since

on-chain transactions are expensive and slow, it is desirable to

avoid them. Routing schemes like shortest-path routing do not

account for this problem, thereby leading to reduced through-

put (§7). In contrast, it is important to choose routes that

2This was done in part for privacy reasons: transactions in the Lightning net-

work use onion-routing, which is easy to implement with source routing [33].

actively prevent channel imbalance. For example, in Figure

3b, we could send half of the A→B traffic on edge a, and half

on edge b, and the same for the B→A traffic. The challenge

is making these decisions in a fully decentralized way.

Challenge #2: When to send transactions? Another

problem is when to send transactions. Most existing PCNs are

circuit-switched: transactions are processed instantaneously

and atomically upon arrival [18, 46]. This causes a number of

problems. If a transaction’s value exceeds the available balance

on each path from the source to the destination, the transaction

fails. Since transaction values in the wild tend to be heavy-

tailed [29, 34], either a substantial fraction of real transactions

will fail as PCN usage grows, or payment channel operators

will need to provision higher collateral to satisfy demand.

Even when transactions do not fail outright, sending

transactions instantaneously and atomically exacerbates the

imbalance problem by transferring the full transaction value

to one side of the channel. A natural idea to alleviate these

problems is to “packetize” transactions: transactions can be

split into smaller transaction-units that can be multiplexed over

space (by traversing different paths) and in time (by being sent

at different rates). Versions of this idea have been proposed be-

fore; atomic multi-path payments (AMP) enable transactions

to traverse different paths in the Lightning network [3], and the

Interledger protocol uses a similar packetization to conduct

cross-ledger payments [54]. However, a key observation is that

it is not enough to subdivide transactions into smaller units:

to achieve good throughput, it is also important to multiplex

in time as well, by performing congestion control. If there is a

large transaction in one direction on a channel, simply sending

it out in smaller units that must all complete together doesn’t

improve the likelihood of success. Instead, in our design, we

allow each transaction-unit to complete independently, and a

congestion control algorithm at the sender throttles the rate of

these units to match the rate of units in the opposite direction

at the bottlenecked payment channel. This effectively allows

the tokens at that bottleneck to be replenished and reused

multiple times as part of the same transaction, achieving a

multiplicative increase in throughput for the same collateral.

Challenge #3: Deadlocks. The third challenge in PCNs is the

idea that the introduction of certain flows can actively harm the

throughput achieved by other flows in the network. To see this,

consider the topology and demand rates in Figure 3c. Suppose

nodes 1 and 2 want to transmit 1-unit transactions to node 3 at

rates of 1 and 2 units/second, respectively, and node 3 wants

to transact 2 units/sec with node 1.3 Notice that the specified

transaction rates are imbalanced: there is a net flow of funds out

of node 2 and into nodes 1 and 3. Suppose the payment channels

are initially balanced, with 10 units on each side and we only

start out with flows between nodes 1 and 3. For this demand

and topology, the system can sustain 2 units/sec by only having

nodes 1 and 3 to send to each other at a rate of 1 unit/second.

3For simplicity,we show three nodes,but a node in this example could repre-

sent a cluster of many users who wish to transact at the rates shown in aggregate.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 779

(a) Underutilized channels (b) Imbalanced channels (c) Deadlock

Figure 3: Example illustrating the problems with state-of-the-art PCN routing schemes.

However, once transactions from node 2 are introduced, this

example achieves zero throughput at steady-state. The reason

is that node 2 sends transactions to node 3 faster than its funds

are being replenished, which reduces its funds to 0. Slowing

down 2’s transactions would only delay this outcome. Since

node 2 needs a positive balance to route transactions between

nodes 1 and 3, the transactions between 1 and 3 cannot be

processed, despite the endpoints having sufficient balance. The

network finds itself in a deadlock that can only be resolved by

node 2 replenishing its balance with an on-chain transaction.

Why these problems are difficult to solve. The above

problems are challenging because their effects are closely

intertwined. For example, because poor routing and rate-

control algorithms can cause channel imbalance, which

in turn degrades throughput, it is difficult to isolate the

effects of each. Similarly, simply replacing circuit switching

with packet-switching gives limited benefits without a

corresponding rate control and routing mechanism.

From a networking standpoint, PCNs are very different

from traditional communication networks: payment channels

do not behave like a standard communication link with a

certain capacity, say in transactions per second. Instead, the

capacity of a channel in a certain direction depends on two

factors normally not seen in communication networks: (a) the

rate that transactions are received in the reverse direction on

that channel, because tokens cannot be sent faster on average

in one direction than they arrive in the other, (b) the delay it

takes for the destination of a transaction to receive it and send

back the secret key unlocking the funds at routers (§2). Tokens

that are “in flight”, i.e. for which a router is waiting for the

key, cannot be used to service new transactions. Therefore

the network’s capacity depends on its delay, and queued up

transactions at a depleted link can hold up funds from channels

in other parts of the network. This leads to cascading effects

that make congestion control particularly critical.

4 Packet-Switched PCN

Spider uses a packet-switched architecture that splits trans-

actions into a series of independently routed transaction-units.

Each transaction-unit transfers a small amount of money

bounded by a maximum-transaction-unit (MTU) value.

Packetizing transactions is inspired by packet switching for the

Internet, which is more effective than circuit switching [41].

Note that splitting transactions does not compromise the

security of payments; each transaction-unit can be created

with an independent secret key. As receivers receive and

acknowledge transaction-units, senders can selectively reveal

secret keys only for acknowledged transaction-units (§2).

Senders can also use proposals like Atomic Multi-Path

Payments (AMP) [3] if they desire atomicity of transactions.

In Spider, payments transmitted by source end-hosts are

forwarded to their destination end-hosts by routers within the

PCN. Spider routers queue up transaction-units at a payment

channel whenever the channel lacks the funds to forward them

immediately. As a router receives funds from the other side of

its payment channel, it uses these funds to forward transaction-

units waiting in its queue. Current PCN implementations [15]

do not queue transactions at routers—a transaction fails imme-

diately if it encounters a channel with insufficient balance on

its route. Thus, currently, even a temporary lack of channel bal-

ance can cause many transactions to fail, which Spider avoids.

5 Modeling Routing

A good routing protocol must satisfy the following objectives:

1. Efficiency. For a PCN with a fixed amount of escrowed

capital, the aggregate transaction throughput achieved

must be as high as possible.

2. Fairness. The throughput allocations to different users

must be fair. Specifically, the system should not starve

transactions of some users if there is capacity.

Low latency, a common goal in communication networks,

is desirable but not a first order concern, as long as transaction

latency on the PCN is significantly less than an on-chain

transaction (which can take minutes to hours today). However,

as mentioned previously (§3), very high latency could hurt

the throughput of a PCN, and must therefore be avoided.

We assume that the underlying communication network is

not a bottleneck and PCN users can communicate payment

attempts, success and failures with one another easily since

these messages do not require much bandwidth.

To formalize the routing problem, we consider a fluid

model of the system in which payments are modeled as

continuous “fluid flows” between users. This allows us to cast

routing as an optimization problem and derive decentralized

780 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

algorithms from it, analogous to the classical Network Utility

Maximization (NUM) framework for data networks [45].

More specifically, for the fluid model we consider a PCN

modeled as a graph G(V,E) in which V denotes the set of

nodes (i.e., end-hosts or routers), and E denotes the set of

payment channels between them. For a path p, let xp denote

the (fluid) rate at which payments are sent along p from a

source to a destination. The fluid rate captures the long-term

average rate at which payments are made on the path.

For maximizing throughput efficiency, routing has to be

done such that the total payment flow through each channel

is as high as possible. However, routers have limited capital

on their payment channels, which restricts the maximum

rate at which funds can be routed (Fig. 3a). In particular,

when transaction units are sent at a rate xu,v across a payment

channel between u and v with cu,v funds in total and it takes

∆ time units on average to receive the secret key from a

destination once a payment is forwarded, then xu,v∆ credits

are locked (i.e., unavailable for use) at any point in time in

the channel. This implies that the average rate of transactions

(across both directions) on a payment channel cannot exceed

cu,v/∆. This leads to capacity constraints on channels.

Sustaining a flow in one direction through a payment

channel requires funds to be regularly replenished from the

other direction. This requirement is a key difference between

PCNs and traditional data networks. In PCNs if the long-term

rates xu,v and xv,u are mismatched on a channel (u, v), say

xu,v>xv,u, then over time all the funds cu,v will accumulate at v

deeming the channel unusable in the direction u to v (Fig. 3b).

This leads to balance constraints which stipulate that the total

rate at which transaction units are sent in one direction along a

payment channel matches the total rate in the reverse direction.

Lastly, for enforcing fairness across flows we assume

sources have an intrinsic utility for making payments, which

they seek to maximize. A common model for utility at a source

is the logarithm of the total rate at which payments are sent

from the source [31, 37, 38]. A logarithmic utility ensures that

the rate allocations are proportionally fair [38]—no individual

sender’s payments can be completely throttled. Maximizing

the overall utility across all source-destination pairs subject

to the capacity and balance constraints discussed above, can

then be computed as

maximize ∑
i, j∈V

log
(

∑
p∈Pi, j

xp

)

(1)

s.t. ∑
p∈Pi, j

xp≤di, j ∀i, j∈V (2)

xu,v+xv,u≤
cu,v

∆
∀(u,v)∈E (3)

xu,v=xv,u ∀(u,v)∈E (4)

xp≥0 ∀p∈P , (5)

where for a source i and destination j, Pi, j is the set of all paths

from i to j, di, j is the demand from i to j, xu,v is the total flow

2 31
10 10 10 10

1

1
1

(a) Payment graph

1 2 3
10 10 10 10

1

1

(b) Circulation

1 2 3
10 10 10 10

1

1
1

(c) DAG

Figure 4: Payment graph (denoted by blue lines) for a 3 node

network (left). It decomposes into a maximum circulation and DAG

components as shown in (b) and (c).

going from u to v for a channel (u,v), cu,v is the total amount

of funds escrowed into (u,v), ∆ is the average round-trip time

of the network taken for a payment to be completed, and P is

the set of all paths. Equation (2) specifies demand constraints

which ensures that the total flow for each sender-receiver pair

across all of their paths, is no more than their demand.

5.1 Implications for Throughput

A consequence of the balance constraints is that certain traffic

demands are more efficient to route than certain others. In

particular, demands that have a circulation structure (total

outgoing demand matches total incoming demand at a router)

can be routed efficiently. The cyclic structure of such demands

enables routing along paths such that the rates are naturally

balanced in channels. However, for demands without a

circulation structure, i.e., if the demand graph is a directed

acyclic graph (DAG), balanced routing is impossible to

achieve in the absence of periodic replenishment of channel

credits, regardless of how large the channel capacities are.

For instance, Fig. 4a shows the traffic demand graph for

a PCN with nodes {1,2,3} and payment channels between

nodes 1−2 and 2−3. The weight on each blue edge denotes

the demand in transaction-units per second between a pair

of users. The underlying black lines denote the topology and

channel sizes. Fig. 4b shows the circulation component of

the demand in Fig. 4a. The entire demand contained in this

circulation can be routed successfully as long as the network

has sufficient capacity. In this case, if the confirmation latency

for transaction-units between 1 and 3 is less than 10s, then

the circulation demand can be satisfied indefinitely. The

remaining component of the demand graph, which represents

the DAG, is shown in Fig. 4c. This portion cannot be routed

indefinitely since it shifts all tokens onto node 3 after which

the 2−3 channel becomes unusable.

App. A formalizes the notion of circulation and shows

that the maximum throughput achievable by any balanced

routing scheme is at most the total demand contained within

the circulation.

6 Design

6.1 Intuition

Spider routers queue up transactions at a payment channel

whenever the channel lacks funds to forward them immediately

(§5). Thus, queue buildup is a sign that either transaction-units

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 781

Available funds

In-flight funds

router

𝑥"𝑦"

	𝑣

𝑞"

router

𝑥' 𝑦'

𝑞'

	𝑢
X X

(a) A capacity limited payment channel.

Available funds

In-flight funds

router

𝑥" 𝑦"

𝑞"

	𝑢 router

𝑥'𝑦'

	𝑣

𝑞'

X

(b) An imbalance limited payment channel.

Figure 5: Example of queue growth in a payment channel between

routers u and v, under different scenarios of transaction arrival rates

at u and v. (a) If the rate of arrival at v, xv, and the rate of arrival at

u, xu, are such that their sum exceeds the channel capacity, neither

router has available funds and queues build up at both u and v. (b)

If the arrival rates are imbalanced, e.g., if xv >xu, then u has excess

funds while v has none, causing queue build-up at v.

are arriving faster (in both directions) than the channel can

process (Fig. 5a) or that one end of the payment channel

lacks sufficient funds(Fig. 5b). It indicates that the capacity

constraint (Equation 3) or the balance constraint (Equation 4)

is being violated and the sender should adjust its sending rate.

Therefore, if senders use a congestion control protocol that

controls queues, they could detect both capacity and imbalance

violations and react to them. For example, in Fig. 5a, the proto-

col would throttle both xu and xv. In Fig. 5b, it would decrease

xv to match the rate at which queue qv drains, which is precisely

xu, the rate at which new funds become available at router v.

This illustrates that a congestion controller that satisfies two

basic properties can achieve both efficiency and balanced rates:

1. Keeping queues non-empty, which ensures that any avail-

able capacity is being utilized, i.e., there are no unused

tokens at any router.

2. Keeping queues stable (bounded), which ensures that (a)

the flow rates do not exceed a channel’s capacity, (b) the

flow rates are balanced. If either condition is violated,

then at least one of the channel’s queues would grow.

Congestion control algorithms that satisfy these properties

abound (e.g., Reno [19], Cubic [35], DCTCP [22], Vegas [27],

etc.) and could be adapted for PCNs.

In PCNs, it is desirable to transmit transaction-units along

multiple paths to better utilize available capacity. Conse-

quently, Spider’s design is inspired by multi-path transport pro-

tocols like MPTCP [59]. These protocols couple rate control de-

cisions for multiple paths to achieve both high throughput and

fairness among competing flows [58]. We describe an MPTCP-

like protocol for PCNs in §6.2–6.3. In §6.4 we show that the

rates found by Spider’s protocol for parallel network topolo-

gies, match the solution to the optimization problem in §5.

6.2 Spider Router Design

Fig. 6 shows a schematic diagram of the various components

in the Spider PCN. Spider routers monitor the time that each

Figure 6: Routers queue up transaction-units and schedule them

based on priorities when funds become available. and transaction

priorities. If the delay through the queue for a packet exceeds a

threshold, they mark the packet. End-hosts maintain and adjust

windows for each path to a receiver based on the marks they observe.

packet spends in their queue and mark the packet if the time

spent exceeds a pre-determined threshold T . If the transaction-

unit is already marked, routers leave the field unchanged

and merely forward the transaction-unit. Routers forward

acknowledgments from the receiving end-host back to the

sender which interprets the marked bit in the ack accordingly.

Spider routers schedule transaction-units from their queues

according to a scheduling policy, like Smallest-Payment-First

or Last-In-First-Out (LIFO). Our evaluations (§7.5) shows

that LIFO provides the highest transaction success rate. The

idea behind LIFO is to prioritize transaction units from new

payments, which are likely to complete within their deadline.

6.3 Spider Transport Layer at End-Hosts

Spider senders send and receive payments on a PCN by

interfacing with their transport layer. This layer is configured

to support both atomic and non-atomic payments depending

on user preferences. Non-atomic payments utilize Spider’s

packet-switching which breaks up large payments into

transaction-units that are delivered to the receiver indepen-

dently. In this case, senders are notified of how much of the pay-

ment was completed allowing them to cancel the rest or retry it

on the blockchain. While this approach crucially allows token

reuse at bottleneck payment channels for the same transaction

(§3), senders also have the option of requesting atomic pay-

ments (likely for a higher fee). Our results (§7) show that even

with packetization, more than 95% payments complete in full

The transport layer also involves a multi-path protocol

which controls the rates at which payments are transferred,

based on congestion in the network. For each destination host,

a sender chooses a set of k paths to route transaction-units

along. The route for a transaction-unit is decided at the

sender before transmitting the unit. It is written into the

transaction-unit using onion encryption, to hide the full route

from intermediate routers [17, 33]. In §7.5, we evaluate the

impact of different path choices on Spider’s performance and

propose using edge-disjoint widest paths [21] between each

sender and receiver in Spider.

To control the rate at which payments are sent on a path,

end-hosts maintain a window size wp for every candidate

782 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

path to a destination. This window size denotes the maximum

number of transaction-units that can be outstanding on path p

at any point in time. End-hosts track the transaction-units that

have been sent out on each path but have not yet been acked

or canceled. A new transaction-unit is transmitted on a path

p only if the total amount pending does not exceed wp.

End-hosts adjust wp based on router feedback on congestion

and imbalance. In particular, on a path p between source i and

receiver j the window changes as

wp←wp−β, on every marked packet and, (6)

wp←wp+
α

∑
p′:p′∈Pi, j

wp′
, on every unmarked packet. (7)

Here, α and β are both positive constants that denote the

aggressiveness with which the window size is increased and

decreased respectively. Eq. (6)–(7) are similar to MPTCP,

but with a multiplicative decrease factor that depends on the

fraction of packets marked on a path (similar to DCTCP [22]).

We expect the application to specify a deadline for every

transaction. If the transport layer fails to complete the payment

within the deadline, the sender cancels the payment, clearing

all of its state from the PCN. In particular, it sends a cancella-

tion message to remove any transaction-units queued at routers

on each path to the receiver. Notice that transaction-units that

arrive at the receiver in the meantime cannot be unlocked be-

cause we assume the sender holds the secret key (§2). Senders

can then choose to retry the failed portion of the transaction

again on the PCN or on the blockchain; such retries would be

treated as new transactions. Canceled packets are considered

marked and Spider decreases its window in response to them.

6.4 Optimality of Spider

Under a fluid approximation model for Spider’s dynamics,

we can show that the rates computed by Spider are an optimal

solution to the routing problem in Equations (1)–(5) for

parallel networks (such as Fig. 20 in App. B). In the fluid

model, we let xp(t) denote the rate of flow on a path p at time t;

for a channel (u,v), fu,v(t) denotes the fraction of packets that

are marked at router u as a result of excessive queuing. The

dynamics of the flow rates xp(t) and marking fractions fu,v(t)
can be specified using differential equations to approximate

the window update dynamics in Equations (6) and (7). We

elaborate more on this fluid model, including specifying how

the queue sizes and marking fractions evolve, in App. B.

Now, consider the routing optimization problem (Equa-

tions (1)–(5)) written in the context of a parallel network. If

Spider is used on this network, we can show that there is a map-

ping from the rates {xp} and marking fractions { fu,v} values

after convergence, to the primal and dual variables of the op-

timization problem, such that the Karush-Kuhn-Tucker (KKT)

conditions for the optimization problem are satisfied. This

proves that the set of rates found by Spider is an optimal solu-

tion to the optimization problem [26]. The complete and formal

mathematical proof showing the above is presented in App. B.

7 Evaluation

We develop an event-based simulator for PCNs, and use it to

extensively evaluate Spider across a wide range of scenarios.

We describe our simulation setup (§7.1), validate it via a

prototype implementation (§7.2), and present detailed results

for circulation demands (§7.3). We then show the effect of

adding DAG components to circulations (§7.4), and study

Spider’s design choices (§7.5).

7.1 Experimental Setup

Simulator. We extend the OMNET++ simulator (v5.4.1) [1]

to model a PCN. Our simulator accurately models the network-

wide effects of transaction processing, by explicitly passing

messages between PCN nodes (endhosts and routers).4 Each

endhost (i) generates transactions destined for other endhosts

as per the specified workload, and (ii) determines when to send

a transaction and along which path, as per the specified routing

scheme. All endhosts maintain a view of the entire PCN topol-

ogy, to compute suitable source-routes. The endhosts can’t

view channel balances, but they do know each channel’s size

or total number of tokens (e). Endhosts also split generated

transactions into MTU-sized segments (or transaction-units)

before routing, if required by the routing scheme (e.g. by

Spider). Each generated transaction has a timeout value and

is marked as a failure if it fails to reach its destination by

then. Upon receiving a transaction, an endhost generates an

acknowledgment that is source-routed along its reverse path.

A router forwards incoming transactions and acknowledg-

ments along the payment channels specified in their route,

while correspondingly decrementing or incrementing the chan-

nel balances. Funds consumed by a transaction in a channel are

inflight and unavailable until its acknowledgment is received.

A transaction is forwarded on a payment channel only if the

channel has sufficient balance; otherwise the transaction is

stored in a per-channel queue that is serviced in a last in first

out (LIFO) order §7.5. If the queue is full, an incoming trans-

action is dropped, and a failure message is sent to the sender.

Routing Schemes. We implement and evaluate five different

routing schemes in our simulator.

(1) Spider: Every Spider sender maintains a set of up to k edge-

disjoint widest paths to each destination and a window size per

path. The sender splits transactions into transaction-units and

sends a transaction-unit on a path if the path’s window is larger

than amount inflight on the path. If a transaction-unit cannot

be sent, it is placed in a per-destination queue at the sender that

is served in LIFO order. Spider routers mark transaction-units

experiencing queuing delays higher than a pre-determined

threshold. Spider receivers echo the mark back to senders who

adjust the window size according to the equations in §6.3.

4https://github.com/spider-pcn/spider-omnet

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 783

(2) Waterfilling: Waterfilling uses balance information explic-

itly in contrast to Spider’s 1-bit feedback. As with Spider, a

sender splits transactions into transaction-units and picks up

to k edge-disjoint widest paths per destination. It maintains

one outstanding probe per path that computes the bottleneck

(minimum) channel balance along it. When a path’s probe is

received, the sender computes the available balance based on

its bottleneck and the in-flight transaction-units. A transaction-

unit is sent along the path with the highest available balance.

If the available balance for all of the k paths is zero (or less),

the transaction-unit is queued and retried after the next probe.

(3) Shortest Path: This baseline sends transactions along the

shortest path to the destination without transaction splitting.

(4) Landmark Routing: Landmark routing, as used in prior

PCN routing schemes [42, 47, 50], chooses k well-connected

landmark nodes in the topology. For every transaction, the

sender computes its shortest path to each landmark and

concatenates it with the shortest path from that landmark to the

destination to obtain k distinct paths. Then, the sender probes

each path to obtain its bottleneck balance, and partitions the

transaction such that each path can support its share of the

total transaction. If such a partition does not exist or if any of

the partitions fail, the transaction fails.

(5) LND: The PCN scheme currently deployed in the Lightning

Network Daemon (LND) [15] attempts first send a transaction

along the shortest path to its destination. If the transaction fails

due to insufficient balance at a channel, the sender removes

that channel from its local view, recomputes the shortest path,

and retries the transaction on the new path until the destination

becomes unreachable or the transaction times out. A channel

is added back to the local view 5 seconds after its removal.

(6) Celer: App. C.1 compares Spider to Celer’s cRoute as

proposed in a white-paper [11]. Celer is a back-pressure

routing algorithm that routes transactions based on queue and

imbalance gradients. Due to computation overheads associated

with Celer’s large queues, we evaluate it on a smaller topology.

Workload. We generate two forms of payment graphs to

specify the rate at which a sender transacts with every other re-

ceiver: (i) pure circulations, with a fixed total sending rate x per

sender generated by adding x random permutation matrices;

(ii) circulations with a DAG component, having a total rate y

generated by sampling y different sender-receiver pairs where

senders and receivers are chosen from two separate exponen-

tial distributions. The distribution’s skew is set proportional

to the desired DAG component in the total traffic matrix.

We translate the rates from the payment graph to discrete

transactions with a Poisson arrival process The transaction

size distribution (Fig. 7a) is drawn from credit card transaction

data [34], and has a mean of 88e and median 25e with the

largest transaction being 3930e. Each sender sends 30 tx/sec

on average shared across 10 destinations. Note that a sender

represents a router in our setup, sending transactions to other

routers on behalf of many users.

Topology. We set up an LND node [15] to retrieve the Light-

(a) Transaction Size Distribution (b) LN Channel Size Distribution

Figure 7: Transaction dataset and channel size distribution used for

real-world evaluations.

ning Network topology on July 15, 2019. We snowball sam-

ple [36] the full topology (which has over 5000 nodes and

34000 edges), resulting in a PCN with 106 nodes and 265 pay-

ment channels. For compatibility with our transaction dataset,

we convert LND payment channel sizes from Satoshis toe, and

set the minimum channel size to the median transaction size of

25e. The distribution of channel sizes for this topology has a

mean and median size of 421e and 163e respectively (Fig. 7b).

This distribution is highly skewed, resulting in a mean that is

much larger than the median or the smallest payment channels.

We refer to this distribution as the Lightning Channel Size

Distribution (LCSD). We draw channel propagation delays

based on ping times from our LND node to all reachable nodes

in the Lightning Network, resulting in RTTs of about a second.

We additionally simulate two synthetic topologies: a

Watts-Strogatz small world topology [20] with 50 nodes

and 200 edges, and a scale-free Barabasi-Albert graph [4]

with 50 nodes and 336 edges. We set the per-hop delay to

30ms in both cases, resulting in RTTs of 200-300ms. For

payment channel sizes, we use real capacities in the Lightning

topology and sample capacities from LCSD for synthetic

topologies. We vary the mean channel size across experiments

by proportionally scaling up the size of each payment channel.

All payment channels are initialized with perfect balance.

Parameters. We set the MTU as 1e. Every transaction has

a timeout of 5 seconds. Schemes with router queues enabled

have a per-channel queue size of 12000e. The number of path

choices is set to k=4 for schemes that use multiple paths. We

vary both the number of paths and the nature of paths in §7.5.

For Spider, we set α (window increase factor) to 10, β (mul-

tiplicative decrease factor) to 0.1, and the marking threshold

for the queue delay to 300ms. For the experiments in §7.4, we

set this threshold to 75ms to for faster response to congestion.

Metrics. We use the following evaluation metrics: (i) transac-

tion success ratio: the number of completed transactions over

the number of generated transactions. A packetized transaction

is complete when all of its transaction-units are successful,

(ii) normalized throughput: the total amount of payments (in

e) completed over the total amount of payments generated,

(iii) transaction latency: time between arrival and completion

for successful transactions, and (iv) offload factor: number

of transactions offloaded to the PCN for every on-chain trans-

action. All of these metrics are computed over a measurement

784 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

●

●

●

●

●

●
●

●

●

●

●

Figure 8: Comparison of performance on simulator and implemen-

tation for LND and Spider on a 10 node scale-free topology with 1e

transactions. Spider outperforms LND in both settings. Further, the

average success ratio on the simulator and implementation for both

schemes are within 5% of each other.

interval when all schemes are in steady-state. Unless specified

otherwise, we use a measurement interval of 800-1000s,

run experiments for 1010s, and denote the maximum and

minimum statistic across five runs using error-bars.

7.2 Prototype Implementation

To support Spider, we modify the Lightning Network Daemon

(LND) [15] which is currently deployed on the live Bitcoin

Network. We repurpose the router queues to queue up

transactions (or HTLCs) that cannot be immediately serviced.

When a transaction spends more than 75ms in the queue,

Spider marks it. The marking is echoed back via an additional

field in the transaction acknowledgement (FulfillHTLC) to

the sender. We maintain a per-receiver state at the sender to

capture the window and number inflight on each path, as well

as the queue of unattempted transactions. Each sender finds

4 edge-disjoint shortest paths to every destination. We do not

implement transaction-splitting.

We deploy our modified LND implementation [15] on

Amazon EC2’s c5d.4xlarge instances with 16 CPU cores, 16

GB of RAM, 400 GB of NVMe SSD, and a 10 Gbps network in-

terface. Each instance hosts one end-host and one router. Every

LND node is run within a docker container with a dedicated bit-

coin daemon [6]. We create our own regtest [8] blockchain for

the nodes. Channels are created corresponding to a scale-free

graph with 10 nodes and 25 edges. We vary the mean channel

size from 25e to 400e. Five circulation payment graphs are

generated with each sender sending 100 tx/s (each 1e). Re-

ceiving nodes communicate invoices via etcd [13] to sending

nodes who then complete them using the appropriate scheme.

We run LND and Spider on the implementation and measure

the transaction RTTs to inform propagation delays on the

simulator. We then run the same experiments on the simulator.

Fig. 8 shows the average success ratio that Spider and LND

achieve on the implementation and the simulator. There are

two takeaways: (i) Spider outperforms LND in both settings

and, (ii) the average success ratio on the simulator is within

5% of the implementation for both schemes. Our attempts

at running experiments at larger scale showed that the LND

codebase is not optimized for high throughput. For example,

persisting HTLC state on disk causes IO bottlenecks and

variations of tens of seconds in transaction latencies even

on small topologies. Given the fidelity and flexibility of the

simulator, we chose to use it for the remaining evaluations.

7.3 Circulation Payment Graph Performance

Recall that on circulation payment graphs, all the demand

can theoretically be routed if there is sufficient capacity (§5.1

and App. A). However, the capacity at which a routing scheme

attains 100% throughput depends on the scheme’s ability to

balance channels: the more balanced a scheme is, the less

capacity it needs for high throughput.

Efficiency of Routing Schemes. We run five circulation traffic

matrices on our three topologies (§7.1). Notice that the channel

sizes are much larger on the Lightning Topology compared

to the other two due to the highly skewed nature of capacities

(Fig. 7b). We measure success ratio for the transactions across

different channel sizes. Fig. 9 shows that on all topologies,

Spider outperforms the state-of-the-art schemes. Spider suc-

cessfully routes more than 95% of the transactions with less

than 25% of the capacity required by LND. At lower capacities,

Spider completes 2-3×more transactions than LND. This is be-

cause Spider maintains balance in the network by responding

quickly to queue buildup at payment channels, thus making bet-

ter use of network capacity. The explicit balance-aware scheme,

Waterfilling, also routes more transactions than LND. However,

when operating in low capacity regimes, where many paths are

congested and have near-zero available balance, senders are

unable to use just balance information to differentiate paths. As

a result, Waterfilling’s performance degrades at low capacity

compared to Spider which takes into account queuing delays.

Size of Successful Payments. Spider’s benefits are most

pronounced at larger transaction sizes, where packetization

and congestion control helps more transactions complete.

Fig. 10 shows success ratio as a function of transaction size.

We use mean channel sizes of 4000e and 16880 e for the

synthetic and real topologies, respectively. Each shaded

region denotes a different range of transaction sizes, each

corresponding to about 12.5% of the transactions in the

workload. A point within a range represents the average

success ratio for transactions in that interval across 5 runs.

Spider outperforms LND across all sizes, and is able to route

5-30% more of the largest transactions compared to LND.

Impact on Latency. We anticipate Spider’s rate control

mechanism to increase latency. Fig. 11 shows the average

and 99th percentile latency for successful transactions on the

Lightning topology as a function of transaction size. Spider’s

average and tail latency increase with transaction size because

larger transactions are multiplexed over longer periods of

time. However, the tail latency increases much more than the

average because of the skew in channel sizes in the Lightning

topology: most transactions use large channels while a few

unfortunate large transactions need more time to reuse tokens

from smaller channels. Yet, the largest Spider transactions

experience at most 2 seconds of additional delay when

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 785

●

●

●
●

●

●
●

● ● ●

●

●
● ● ●

●

Figure 9: Performance of different algorithms on small-world, scale-free and Lightning Network topologies, for different per sender transaction

arrival rates. Spider consistently outperforms all other schemes achieving near 100% average success ratio. Note the log scale of the x-axes.

Figure 10: Breakdown of performance of different schemes by size of transactions completed. Each point reports the success ratio for

transactions whose size belongs to the interval denoted by the shaded region. Each interval corresponds roughly to a 12.5% weight in the

transaction size CDF shown in Fig. 7a. The graphs correspond to the midpoints of the corresponding Lightning sampled channel sizes in Fig. 9.

compared to LND, a small hit relative to the 20% increase in

overall success ratio at a mean channel size of 16880e. LND’s

latency also increases with size since it retries transactions,

often upto 10 times until it finds a single path with enough

capacity. In contrast, Landmark Routing and Shortest path are

size-agnostic in their path-choice for transactions.

Waterfilling pauses transactions when there is no available

balance and resumes sending when balance becomes available.

Small transactions are unlikely to be paused in their lifetime

while mid-size transactions are paused a few times before

they complete. In contrast, large transactions are likely to be

paused many times, eventually getting canceled if paused too

much. This has two implications: (i) the few large transactions

that are successful with Waterfilling are not paused much and

contribute smaller latencies than mid-size transactions, and

(ii) Waterfilling’s conservative pause and send mechanism

implies there is less contention for the large transactions that

are actually sent into the network, leading to smaller latencies

than what they experience with Spider.

7.4 Effect of DAGs

Real transaction demands are often not pure circulations:

consumer nodes spend more, and merchant nodes receive

●Shortest Path Landmark Routing Waterfilling LND Spider

● ● ● ● ●
●

●

●

1000

2000

3000

5

1
0

1
5

2
5

4
1

8
2

1
6
4

3
9
3
0

Transaction Size (Euros)

A
ve

ra
g

e
 L

a
te

n
c
y
 (

m
s
)

●

●
●

●
●

●

●

●

2000

3000

4000

5000

5

1
0

1
5

2
5

4
1

8
2

1
6
4

3
9
3
0

Transaction Size (Euros)

9
9

%
ile

 L
a

te
n

c
y
 (

m
s
)

Figure 11: Average and 99%ile transaction latency for different

routing schemes on the Lightning topology. Transactions experience

1-2s of additional latency with Spider relative to LND for a 20%

improvement in throughput.

more. To simulate this, we add 5 DAG payment graphs (§7.1)

to circulation payment graphs, varying the relative weight

to generate effectively 5%, 20% and 40% DAG in the total

demand matrix. We run all schemes on the Lightning topology

with a mean channel size of 16880e; results on the synthetic

topologies are in App. C.4.

Fig. 12 shows the success ratio and normalized throughput.

We immediately notice that no scheme achieves the theoretical

upper bound on throughput (i.e., the % circulation demand).

However, throughput is closer to the bound when there is a

smaller DAG component in the demand matrix. This suggests

786 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Shortest Path Landmark Routing Waterfilling LND Spider Circulation

0

25

50

75

100

0 10 20 30 40
DAG Amount (%)

S
u

c
c
e

s
s
 R

a
ti
o

 (
%

)

0

25

50

75

100

0 10 20 30 40
DAG Amount (%)

N
o

rm
.

T
h

ro
u

g
h

p
u

t
(%

)
Figure 12: Performance of different algorithms on the Lightning

topology as the DAG component in the transaction demand matrix is

varied. As the DAG amount is increased, the normalized throughput

achieved is further away from the expected optimal circulation

throughput.

that not only is the DAG itself unroutable, it also alters the PCN

balances in a way that prevents the circulation from being fully

routed. Further, the more DAG there is, the more affected the

circulation is. This is because the DAG causes a deadlock (§3).

To illustrate this, we run two scenarios: (i) a pure circulation

demand X for 3000s, and (ii) a traffic demand (X +Y) con-

taining 20% DAG for 2000s followed by the circulation X for

1000s after that. Here, each sender sends 200e/s of unit-sized

transactions in X . We observe a time series of the normalized

throughput over the 3000s. The mean channel size is 4000e

and 16990e for the synthetic and real topologies respectively.

Fig. 13 shows that Spider achieves 100% throughput

(normalized by the circulation demand) at steady state for the

pure circulation demand on all topologies. However, when

the DAG component is introduced to the demand, it affects the

topologies differently. Firstly, we do not observe the expected

80% throughput for the circulation in the presence of the DAG

workload suggesting that the DAG affects the circulation.

Further, even once the circulation demand is restored for the

last 1000s, in the scale free and Lightning Network topology,

the throughput achieved is no longer 100%. In other words, in

these two topologies, the DAG causes a deadlock that affects

the circulation even after the DAG is removed.

As described in §3, the solution to this problem involves

replenishing funds via on-chain rebalancing, since DAG

demands continuously move money from sources to sinks. We

therefore implement a simple rebalancing scheme where every

router periodically reallocates funds between its payment

channels to equalize their available balance. The frequency of

rebalancing for a router, is defined by the number of successful

transaction-units (in e) between consecutive rebalancing

events. In this model, the frequency captures the on-chain

rebalancing cost vs. routing fee trade-off for the router.

Fig. 14 shows the success ratio and normalized throughput

achieved by different schemes when rebalancing is enabled

for the traffic demand with 20% DAG from Fig. 12, or Fig. 13.

Spider is able to achieve 90% success ratio even when its

routers rebalance only every 10,000e routed while LND is

never able to sustain more than 85% success ratio even when

rebalancing for every 10e routed. This is because LND deems

Small World Scale Free Lightning Network

0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000

0

25

50

75

100

Time (s)

N
o

rm
.

T
h

ro
u

g
h

p
u

t(
%

)

Pure Circulation DAG + Circulation

Figure 13: Comparing throughput when a pure circulation demand

is run for 3000s to a scenario where a circulation demand is restored

for 1000s after 2000s of a demand with 20% DAG. The throughput

achieved on the last 1000s of circulation is not always the expected

100% even after the DAG is removed.

Figure 14: Performance of different algorithms on the Lightning

topology when augmented with on-chain rebalancing. Spider needs

less frequent rebalancing to sustain high throughput. Spider offloads

3-4x more transactions onto a PCN per blockchain transaction than

LND.

a channel unusable for 5 seconds every time a transaction

fails on it due to lack of funds and this is further worsened by

its lack of transaction splitting. This implies that when using

Spider, routers need to pay for only one on-chain transaction

typically costing under 1e [7] for every 10,000e routed. Thus,

for a router to break even, it would have to charge 1e for every

10000e routed. This translates into significantly lower routing

fees for end-users than today’s payment systems [12]. Fig. 14

also captures the same result in the form of the best offloading

or number of off-chain PCN transactions per blockchain trans-

action achieved by each algorithm. Transactions that fail on the

PCN as well as rebalancing transactions are counted towards

the transactions on the blockchain. Spider is able to route 7-8

times as many transactions off-chain for every blockchain

transaction, a 4x improvement from the state-of-the-art LND.

7.5 Spider’s Design Choices

In this section, we investigate Spider’s design choices with re-

spect to the number of paths, type of paths, and the scheduling

algorithm that services transaction-units at Spider’s queues.

We evaluate these on both the real and synthetic topologies

with channel sizes sampled from the LCSD, and scaled to have

mean of 16880e and 4000e respectively .

Choice of Paths. We vary the type of paths that Spider uses by

replacing edge-disjoint widest paths with edge-disjoint short-

est paths, Yen’s shortest paths [60], oblivious paths [48] and

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 787

0

25

50

75

100

Small World Scale Free Lightning Topology

Topology

S
u
c
c
e
s
s
 R

a
ti
o
 (

%
)

Edge−disjoint Widest
Edge−disjoint Shortest

Shortest (Yen's)
Heuristic

Oblivious

Figure 15: Performance of Spider as the type of paths considered

per sender-receiver pair is varied. Edge-disjoint widest outperforms

others by 1-10% on the Lightning Topology without being much

worse on the synthetic topologies.

0

25

50

75

100

Small World Scale Free Lightning Topology

Topology

S
u

c
c
e

s
s
 R

a
ti
o
 (

%
)

 1 2 4 8

Figure 16: Performance of Spider as the number of edge-disjoint

widest paths considered per sender-receiver pair is varied on different

topologies. Increasing the number of paths increases success ratio,

but the gains are low in going from 4 to 8 paths.

a heuristic approach. For the widest and oblivious path com-

putations, the channel size acts as the edge weight. The heuris-

tic picks 4 paths for each flow with the highest bottleneck

balance/RTT value. Fig. 15 shows that edge-disjoint widest

paths outperforms other approaches by 1-10% on the Lightning

Topology while being only 1-2% worse that edge-disjoint short-

est paths on the synthetic topologies. This is because widest

paths are able to utilize the capacity of the network better when

there is a large skew (Fig. 7b) in payment channel sizes.

Number of Paths. We vary the maximum number of edge-

disjoint widest paths Spider allows from 1 to 8. Fig. 16 shows

that, as expected, the success ratio increases with an increase

in number of paths, as more paths allow Spider to better utilize

the capacity of the PCN. While moving from 1 to 2 paths

results in 30-50% improvement in success ratio, moving from

4 to 8 paths has negligible benefits (<5%). This is because the

sparseness of the three PCN topologies causes most flows to

have at most 5-6 edge-disjoint widest paths. Further, Spider

prefers paths with smaller RTTs since they receive feedback

faster resulting in the shortest paths contributing most to the

overall rate for the flow. As a result, we use 4 paths for Spider.

Scheduling Algorithms. We modify the scheduling algo-

rithm at the per-destination queues at the sender as well as

the router queues in Spider to process transactions as per

First-In-First-Out (FIFO), Earliest-Deadline-First (EDF)

and Smallest-Payment-First (SPF) in addition to the LIFO

baseline. Fig. 17 shows that LIFO achieves a success ratio

that is 10-28% higher than its counterparts. This is because

0

25

50

75

100

Small World Scale Free Lightning Topology

Topology

S
u
c
c
e
s
s
 R

a
ti
o
 (

%
)

 Smallest−Payment−First
 Earliest−Deadline−First

 First−In−First−Out
 Last−In−First−Out

Figure 17: Performance of Spider as the scheduling algorithm at

the sender and router queues is varied. Last in first out outperforms

all other approaches by over 10% on all topologies.

LIFO prioritizes transactions that are newest or furthest from

their deadlines and thus, most likely complete especially when

the PCNs is overloaded. Spider’s rate control results in long

wait times in the sender queues themselves. This causes FIFO

and EDF that send out transactions closest to their deadlines

to time out immediately in the network resulting in poor

throughput. When SPF deprioritizes large payments at router

queues, they consume funds from other payment channels for

longer, reducing the effective capacity of the network.

7.6 Additional Results

In addition to the results described so far, we run additional

experiments that are described in the Appendices.

1. We compare Spider to Celer, as proposed in a white-

paper [11], and show that Spider outperforms Celer’s

success ratio by 2x on a scale free topology with 10 nodes

and 25 edges (App. C.1).

2. We evaluate the schemes on the synthetic and real

topologies with a simpler channel size distribution where

all channels have equal numbers of tokens. Even in

this scenario, Spider is able to successfully route more

than 95% of the transactions with less than 25% of the

capacity required by LND (App. C.2).

3. We evaluate the schemes for their fairness across multiple

payments and show that Spider does not hurt small

payments to gain on throughput (App. C.3).

4. We show the effect of DAG workloads on synthetic

topologies. In particular, we identify deadlocks with those

topologies too and show that Spider requires rebalancing

only every 10,000e successfully routed to sustain high

success ratio and normalized throughput (App. C.4).

8 Related Work

PCN Improvements. Nodes in current Lightning Network

implementations, maintain a local view of the network

topology and source-route transactions along the shortest

path [2, 15]. Classical max-flow-based alternatives are

impractical for the Lightning Network that has over 5000

nodes and 30,000 channels [9, 16] due to their computational

complexity. Recent proposals have used a modified version

of max-flow that differentiates based on the size of transac-

tions [57]. However, inferring the size of payments is hard in

788 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

an onion-routed network like Lightning.

Two main alternatives to max-flow routing have been

proposed: landmark routing and embedding-based routing.

In landmark routing, select routers (landmarks) store routing

tables for the rest of the network, and nodes only route trans-

actions to a landmark [55]. This approach is used in Flare [47]

and SilentWhispers [42, 44]. Embedding-based or distance-

based routing learns a vector embedding for each node, such

that nodes that are close in network hop distance are also

close in embedded space. Each node relays each transaction to

the neighbor whose embedding is closest to the destination’s

embedding. VOUTE [49] and SpeedyMurmurs [50] use

embedding-based routing. Computing and updating the embed-

ding dynamically as the topology and link balances change is

a primary challenge of these approaches. Our experiments and

prior work [51] show that Spider outperforms both approaches.

PCN improvements outside of the routing layer focus on

rebalancing existing payment channels more easily [28, 39].

Revive [39] leverages cycles within channels wanting to

rebalance and initiates balancing off-chain payments between

them. These techniques are complementary to Spider and can

be used to enhance overall performance. However, §7.4 shows

that a more general rebalancing scheme that moves funds at

each router independently fails to achieve high throughput

without a balanced routing scheme.

Utility Maximization and Congestion Control. Network

Utility Maximization (NUM) is a popular framework for de-

veloping decentralized transport protocols in data networks to

optimize a fairness objective [37]. NUM uses link “prices” de-

rived from the solution to the utility maximization problem,and

senders compute rates based on these router prices. Congestion

control algorithms that use buffer sizes or queuing delays as

router signals [22,30,53] are closely related. While the Internet

congestion control literature has focused on links with fairly

stable capacities, this paper shows that they can be effective

even in networks with capacities dependent on the input rates

themselves. Such problems have also been explored in the

context of ride-sharing, for instance [24, 25], and require new

innovation in both formulating and solving routing problems.

9 Conclusion

We motivate the need for efficient routing on PCNs and

propose Spider, a protocol for balanced, high-throughput

routing in PCNs. Spider uses a packet-switched architecture,

multi-path congestion control, and and in-network scheduling.

Spider achieves nearly 100% throughput on circulation

payment demands across both synthetic and real topologies.

We show how the presence of DAG payments causes deadlocks

that degrades circulation throughput, necessitating on-chain

intervention. In such scenarios, Spider is able to support 4x

more transactions than the state-of-the-art on the PCN itself.

This work shows that Spider needs less on-chain rebalanc-

ing to relieve deadlocked PCNs. However, it remains to be

seen if deadlocks can be prevented altogether. Spider relies on

routers signaling queue buildup correctly to the senders, but

this work does not analyze incentive compatibility for rogue

routers aiming to maximize fees. A more rigorous treatment

of the privacy implications of Spider routers relaying queuing

delay is left to future work.

Acknowledgments

We thank Andrew Miller, Thaddeus Dryja, Evan Schwartz,

Vikram Nathan, and Aditya Akella for their detailed feed-

back. We also thank the Sponsors of Fintech@CSAIL,

the Initiative for CryptoCurrencies and Contracts (IC3),

Distributed Technologies Research Foundation, the Cisco

Research Center, the National Science Foundation grants

CNS-1718270, CNS-1563826, CNS-1910676, CCF-1705007

and CNS-1617702, and the Army Research Office under grant

W911NF1810332 for their support.

References

[1] http://omnetpp.org/.

[2] Amount-independent payment routing in Lightning Net-

works. https://medium.com/coinmonks/amount-
independent-payment-routing-in-lightning-

networks-6409201ff5ed.

[3] AMP: Atomic Multi-Path Payments over Lightning.

https://lists.linuxfoundation.org/pipermail/
lightning-dev/2018-February/000993.html.

[4] Barabasi Albert Graph. https://

networkx.github.io/documentation/
networkx-1.9.1/reference/generated/
networkx.generators.random_graphs.
barabasi_albert_graph.html.

[5] Bitcoin Core. https://bitcoin.org/en/bitcoin-
core/.

[6] Bitcoin Core Daemon. https://bitcoin.org/en/
full-node#other-linux-daemon.

[7] Bitcoin historical fee chart. https://

bitinfocharts.com/comparison/bitcoin-
median_transaction_fee.html.

[8] Bitcoin Regtest Mode. https://bitcoin.org/en/
developer-examples#regtest-mode.

[9] Blockchain caffe. https://blockchaincaffe.org/
map/.

[10] c-lightning: A specification compliant Light-

ning Network implementation in C. https:

//github.com/ElementsProject/lightning.

[11] Celer Network: Bring Internet Scale to Every Blockchain.

https://www.celer.network/doc/CelerNetwork-
Whitepaper.pdf.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 789

[12] Credit Card Merchant Processing Fees. https:

//paymentdepot.com/blog/average-credit-
card-processing-fees/.

[13] etcd: A distributed, reliable key-value store for

the most critical data of a distributed system.

https://github.com/etcd-io/etcd.

[14] Ethereum. https://www.ethereum.org/.

[15] Lightning Network Daemon. https://github.com/
lightningnetwork/lnd.

[16] Lightning Network Search and Analysis Engine.

https://1ml.com.

[17] Onion Routed Micropayments for the Lightning Net-

work. https://github.com/lightningnetwork/
lightning-onion.

[18] Raiden network. https://raiden.network/.

[19] The NewReno Modification to TCP’s Fast Recovery Al-

gorithm. https://tools.ietf.org/html/rfc6582.

[20] Watts Strogatz Graph. https://

networkx.github.io/documentation/
networkx-1.9/reference/generated/
networkx.generators.random_graphs.watts_
strogatz_graph.html.

[21] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network

Flows: Theory, Algorithms and Applications. Prentice

Hall, 1993.

[22] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,

P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan.

Data center tcp (dctcp). ACM SIGCOMM computer

communication review, 41(4):63–74, 2011.

[23] V. Bagaria, S. Kannan, D. Tse, G. Fanti, and P. Viswanath.

Deconstructing the blockchain to approach physical

limits. arXiv preprint arXiv:1810.08092, 2018.

[24] S. Banerjee, R. Johari, and C. Riquelme. Pricing in

ride-sharing platforms: A queueing-theoretic approach.

In Proceedings of the Sixteenth ACM Conference on Eco-

nomics and Computation, pages 639–639. ACM, 2015.

[25] S. Banerjee, R. Johari, and C. Riquelme. Dynamic

pricing in ridesharing platforms. ACM SIGecom

Exchanges, 15(1):65–70, 2016.

[26] S. Boyd and L. Vandenberghe. Convex optimization.

Cambridge university press, 2004.

[27] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP

Vegas: New techniques for congestion detection and

avoidance, volume 24. ACM, 1994.

[28] C. Burchert, C. Decker, and R. Wattenhofer. Scalable

funding of bitcoin micropayment channel networks.

Royal Society open science, 5(8):180089, 2018.

[29] C. N. Cordi. Simulating high-throughput cryptocurrency

payment channel networks. PhD thesis, 2017.

[30] N. Dukkipati. Rate Control Protocol (RCP): Congestion

control to make flows complete quickly. Citeseer, 2008.

[31] A. Eryilmaz and R. Srikant. Joint congestion control,

routing, and mac for stability and fairness in wire-

less networks. IEEE Journal on Selected Areas in

Communications, 24(8):1514–1524, 2006.

[32] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zel-

dovich. Algorand: Scaling byzantine agreements for

cryptocurrencies. In Proceedings of the 26th Symposium

on Operating Systems Principles, pages 51–68. ACM,

2017.

[33] D. Goldschlag, M. Reed, and P. Syverson. Onion routing.

Communications of the ACM, 42(2):39–41, 1999.

[34] U. M. L. Group. Credit card fraud detection,

2018. https://www.kaggle.com/mlg-ulb/
creditcardfraud.

[35] S. Ha, I. Rhee, and L. Xu. Cubic: a new tcp-friendly

high-speed tcp variant. ACM SIGOPS operating systems

review, 42(5):64–74, 2008.

[36] P. Hu and W. C. Lau. A survey and taxonomy of graph

sampling. arXiv preprint arXiv:1308.5865, 2013.

[37] F. Kelly and T. Voice. Stability of end-to-end algorithms

for joint routing and rate control. ACM SIGCOMM

Computer Communication Review, 35(2):5–12, 2005.

[38] F. P. Kelly, A. K. Maulloo, and D. K. Tan. Rate control for

communication networks: shadow prices, proportional

fairness and stability. Journal of the Operational

Research society, 49(3):237–252, 1998.

[39] R. Khalil and A. Gervais. Revive: Rebalancing

off-blockchain payment networks. In Proceedings of

the 2017 ACM SIGSAC Conference on Computer and

Communications Security, pages 439–453. ACM, 2017.

[40] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly,

E. Syta, and B. Ford. Omniledger: A secure, scale-out,

decentralized ledger via sharding. In 2018 IEEE Sym-

posium on Security and Privacy (SP), pages 583–598.

IEEE, 2018.

[41] B. M. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn,

L. Kleinrock, D. C. Lynch, J. Postel, L. G. Roberts, and

S. Wolff. A brief history of the internet. SIGCOMM

Comput. Commun. Rev., 39(5):22–31, Oct. 2009.

790 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[42] G. Malavolta, P. Moreno-Sanchez, A. Kate, and M. Maf-

fei. SilentWhispers: Enforcing Security and Privacy

in Decentralized Credit Networks. IACR Cryptology

ePrint Archive, 2016:1054, 2016.

[43] R. McManus. Blockchain speeds & the scalability

debate. Blocksplain, February 2018.

[44] P. Moreno-Sanchez, A. Kate, M. Maffei, and K. Pecina.

Privacy preserving payments in credit networks. In

Network and Distributed Security Symposium, 2015.

[45] D. P. Palomar and M. Chiang. A tutorial on decom-

position methods for network utility maximization.

IEEE Journal on Selected Areas in Communications,

24(8):1439–1451, 2006.

[46] J. Poon and T. Dryja. The Bitcoin Lightning Network:

Scalable Off-chain Instant Payments. draft version 0.5,

9:14, 2016.

[47] P. Prihodko, S. Zhigulin, M. Sahno, A. Ostrovskiy, and

O. Osuntokun. Flare: An approach to routing in lightning

network. 2016.

[48] H. Racke. Minimizing congestion in general networks.

In The 43rd Annual IEEE Symposium on Foundations

of Computer Science, 2002. Proceedings., pages 43–52.

IEEE, 2002.

[49] S. Roos, M. Beck, and T. Strufe. Anonymous addresses

for efficient and resilient routing in f2f overlays. In

Computer Communications, IEEE INFOCOM 2016-The

35th Annual IEEE International Conference on, pages

1–9. IEEE, 2016.

[50] S. Roos, P. Moreno-Sanchez, A. Kate, and I. Goldberg.

Settling Payments Fast and Private: Efficient Decen-

tralized Routing for Path-Based Transactions. arXiv

preprint arXiv:1709.05748, 2017.

[51] V. Sivaraman, S. B. Venkatakrishnan, M. Alizadeh,

G. Fanti, and P. Viswanath. Routing cryptocurrency

with the spider network. In Proceedings of the 17th

ACM Workshop on Hot Topics in Networks, pages 29–35.

ACM, 2018.

[52] R. Srikant. The mathematics of Internet congestion

control. Springer Science & Business Media, 2012.

[53] C.-H. Tai, J. Zhu, and N. Dukkipati. Making large scale

deployment of rcp practical for real networks. In IEEE

INFOCOM 2008-The 27th Conference on Computer

Communications, pages 2180–2188. IEEE, 2008.

[54] S. Thomas and E. Schwartz. A protocol for interledger

payments. URL https://interledger. org/interledger. pdf,

2015.

[55] P. F. Tsuchiya. The landmark hierarchy: a new hierarchy

for routing in very large networks. In ACM SIGCOMM

Computer Communication Review, volume 18, pages

35–42. ACM, 1988.

[56] Visa. Visa acceptance for retailers. https:

//usa.visa.com/run-your-business/small-
business-tools/retail.html.

[57] P. Wang, H. Xu, X. Jin, and T. Wang. Flash: efficient

dynamic routing for offchain networks. arXiv preprint

arXiv:1902.05260, 2019.

[58] D. Wischik, M. Handley, and M. B. Braun. The

resource pooling principle. ACM SIGCOMM Computer

Communication Review, 38(5):47–52, 2008.

[59] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley.

Design, Implementation and Evaluation of Congestion

Control for Multipath TCP. In NSDI, volume 11, pages

8–8, 2011.

[60] J. Y. Yen. Finding the k shortest loopless paths in a

network. management Science, 17(11):712–716, 1971.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 791

45

321

2

2

1 2

1
2

11

(a) Payment graph

45

321

2

1

1

1
1

11

(b) Circulation

45

321

1

1 1

1

(c) DAG

Figure 18: Example payment graph (denoted by blue lines) for a

five node network (left). It decomposes into a maximum circulation

and DAG components as shown in (b) and (c).

Appendices

A Circulations and Throughput Bounds

For a network G(V, E) with set of routers V , we define a

payment graph H(V,EH) as a graph that specifies the payment

demands between different users. The weight of any edge (i, j)
in the payment graph is the average rate at which user i seeks

to transfer funds to user j. A circulation graph C(V,EC) of a

payment graph is any subgraph of the payment graph in which

the weight of an edge (i, j) is at most the weight of (i, j) in the

payment graph, and moreover the total weight of incoming

edges is equal to the total weight of outgoing edges for each

node. Of particular interest are maximum circulation graphs

which are circulation graphs that have the highest total demand

(i.e., sum of edge weights), among all possible circulation

graphs. A maximum circulation graph is not necessarily

unique for a given payment graph.

Proposition 1. Consider a payment graph H with a maximum

circulation graph C∗. Let ν(C∗) denote the total demand in C∗.

Then, on a network in which each payment channel has at least

ν(C∗) units of escrowed funds, there exists a balanced routing

scheme that can achieve a total throughput of ν(C∗). However,

no balanced routing scheme can achieve a throughput greater

than ν(C∗) on any network.

Proof. Let wC∗(i, j) denote the payment demand from any

user i to user j in the maximum circulation graph C∗. To see

that a throughput of ν(C∗) is achievable, consider routing the

circulation demand along the shortest paths of any spanning

tree T of the payment network G. In this routing, for any pair of

nodes i, j∈V there exists a unique path from i to j in T through

which wC∗(i, j) amount of flow is routed. We claim that such

a routing scheme is perfectly balanced on all the links. This

is because for any partition S,V\S of C∗, the net flow going

from S to V\S is equal to the net flow going from V\S to S in

C∗. Since the flows along an edge e of T correspond precisely

to the net flows across the partitions obtained by removing e in

T , it follows that the flows on e are balanced as well. Also, for

any flow (i, j) in the demand graph C∗, the shortest path route

from i to j in T can cross an edge e at most once. Therefore

the total amount of flow going through an edge is at most the

total amount of flow in C∗, which is ν(C∗).
Next, to see that no balanced routing scheme can achieve

a throughput greater than ν(C∗), assume the contrary and

Figure 19: Model of queues at a payment channel between nodes

u and v. xuv and yuv denote the rates at which transaction-units for

v arrive into and get serviced at the queue at u respectively. cuv is the

capacity of the payment channel and quv denotes the total number

of transaction-units waiting in u’s queue to be serviced.

suppose there exists a balanced routing scheme SCH with a

throughput greater than ν(C∗). Let HSCH ⊆ H be a payment

graph where the edges represent the portion of demand that

is actually routed in SCH. Since ν(HSCH)>ν(C∗), HSCH is not

a circulation and there exists a partition S,V\S such that the

net flow from S to V\S is strictly greater than the net flow from

V\S to S in HSCH. However, the net flows routed by SCH across

the same partition S,V\S in G are balanced (by assumption)

resulting in a contradiction. Thus we conclude there does

not exist any balanced routing scheme that can achieve a

throughput greater than ν(C∗).

B Optimality of Spider

B.1 Fluid Model

In this section we describe a fluid model approximation of the

system dynamics under Spider’s protocol. Following a similar

notation as in §5, for a path p we let xp(t) denote the rate of

flow on it at time t. For a channel (u,v) and time t, let qu,v(t)
be the size of the queue at router u, fu,v(t) be the fraction of

incoming packets that are marked at u, xu,v(t) be the total

rate of incoming flow at u, and yu,v(t) be the rate at which

transactions are serviced (i.e., forwarded to router v) at u. All

variables are real-valued. We approximate Spider’s dynamics

via the following system of equations

ẋp(t)=

[

xp(t)

∑p′∈Pip , jp
xp′(t)

− ∑
(u,v)∈p

fu,v(t)xp(t)

]+

xp(t)

∀p∈P

(8)

q̇u,v(t)=[xu,v(t)−yu,v(t)]
+
qu,v(t)

∀(u,v)∈E (9)

ḟu,v(t)=[qu,v(t)−qthresh]
+
fu,v(t)

∀(u,v)∈E, (10)

where yu,v(t)=yv,u(t)=

cu,v

2∆ if qu,v(t)>0 & qv,u(t)>0

min{
cu,v

2∆ ,xv,u(t)} if qu,v(t)>0 & qv,u(t)=0

min{
cu,v

2∆ ,xu,v(t)} if qu,v(t)=0 & qv,u(t)>0

min{
cu,v

2∆ ,xu,v(t),xv,u(t)} if qu,v(t)=0 & qv,u(t)=0

(11)

for each (u, v) ∈ E. Let ip and jp denote the source and

destination nodes for path p respectively. Then, Pip, jp denotes

792 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the set of all paths ip uses to route to jp. Equation (8) models

how the rate on a path p increases upon receiving successful

acknowledgements or decreases if the packets are marked,

per Equations (6) and (7) in §6.3. If the fraction of packets

marked at each router is small, then the aggregate fraction of

packets that return marked on a path p can be approximated

by the sum ∑(u,v)∈p fu,v [52]. Hence the rate which marked

packets arrive for a path p is ∑(u,v)∈p fu,vxp. Similarly, the

rate which successful acknowledgements are received on a

path p is xp(1 − ∑(u,v)∈p fu,v), which can be approximated

as simply xp if the marking fractions are small. Since Spider

increases the window by 1/(∑p′∈Pip , jp
wp′) for each successful

acknowledgement received, the average rate at which xp

increases is xp/(∑p′∈Pip , jp
xp′). Lastly, the rate xp cannot

become negative; so if xp = 0 we disallow ẋp from being

negative. The notation (x)+y means x if y>0 and 0 if y=0.

Equations (9) and (10) model how the queue sizes and

fraction of packets marked, respectively, evolve at the routers.

For a router u in payment channel (u, v), by definition yu,v

is the rate at which transactions are serviced from the queue

qu,v, while transactions arrive at the queue at a rate of xu,v

(Figure 19). Hence the net rate at which qu,v grows is given by

the difference xu,v−yu,v. The fraction of packets marked at a

queue grows if the queue size is larger than a threshold qthresh,

and drops otherwise, as in Equation (10). This approximates

the marking model of Spider (§6.2) in which packets are

marked at a router if their queuing delay exceeds a threshold.

To understand how the service rate yu,v evolves (Equa-

tion (11)), we first make the approximation that the rate at

which transactions are serviced from the queue at a router u is

equal to the rate at which tokens are replenished at the router,

i.e., yu,v=yv,u for all (u,v)∈E. The precise value for yu,v at any

time, depends on both the arrival rates and current occupancy of

the queues at routers u and v. If both qu,v and qv,u are non-empty,

then there are no surplus of tokens available within the chan-

nel. A token when forwarded by a router is unavailable for ∆
time units, until its acknowledgement is received. Therefore the

maximum rate at which tokens on the channel can be forwarded

is cu,v/∆, implying yu,v+yv,u=cu,v or yu,v=yv,u=cu,v/(2∆) in

this case. If qu,v is non-empty and qv,u is empty, then there are

no surplus tokens available at u’s end. Router v however may

have tokens available, and service transactions at the same rate

at which they are arriving, i.e., yv,u=xv,u. This implies tokens

become available at router u at a rate of xv,u and hence yu,v=xv,u.

However, if the transaction arrival rate xv,u is too large at v, it

cannot service them at a rate more than cu,v/(2∆) and a queue

would start building up at qv,u. The case where qu,v is empty

and qv,u is non-empty follows by interchanging the variables u

and v in the description above. Lastly, if both qu,v and qv,u are

empty, then the service rate yu,v can at most be equal to the ar-

rival rate xv,u. Similarly yv,u can be at most xu,v. Since yu,v=yv,u

by our approximation, we get the expression in Equation (11).

We have not explicitly modeled delays, and have made

simplifying approximations in the fluid model above. Nev-

𝑟"

𝑟#

𝑟"
$

𝑟#
$

𝑒"

𝑒#

𝑒"
$

𝑒#
$

path 1

pa
th

 2

end-host payment channelrouter

𝑟& 𝑟&
$ 𝑒&

$

Figure 20: Example of a parallel network topology with bidirectional

flows on each payment channel.

ertheless this model is useful for gaining intuition about the

first-order behavior of the Spider protocol. In the following

section, we use this model to show that Spider finds optimal

rate allocations for a parallel network topology.

B.2 Proof of Optimality

Consider a PCN comprising of two sets of end-hosts

{e1,...,em} and {e′1,...,e
′
n} that are connected via k parallel

payment channels (r1,r
′
1),...,(rk,r

′
k) as shown in Figure 20.

The end-hosts from each set have demands to end-hosts on

the other set. The end-hosts within a set, however, do not have

any demands between them. Let the paths for different source-

destination pairs be such that for each path p, if p contains

a directed edge (ri, r
′
i) for some i then there exists another

path (for a different source-destination pair) that contains the

edge (r′i,ri). We will show that running Spider on this network

results in rate allocations that are an optimal solution to the op-

timization problem in Equations (1)–(5). Under a fluid model

for Spider as discussed in §B.1, assuming convergence, we

observe that in the steady-state the time derivatives of the rate

of flow of each path (Equation (8)) must be non-positive, i.e.,

1

∑p′∈Pip , jp
x∗

p′
− ∑

(u,v)∈p

f ∗u,v

{

=0 if x∗p>0

≤0 if x∗p=0
∀p∈P , (12)

where the superscript ∗ denotes values at convergence (e.g.,

x∗p is the rate of flow on path p at convergence). Similarly, the

rate of growth of the queues must be non-positive, or

x∗u,v

{

=y∗u,v if q∗u,v>0

≤y∗u,v if q∗u,v=0
∀(u,v)∈E. (13)

Now, consider the optimization problem in Equations (1)–(5)

for this parallel network. For simplicity we will assume

the sender-receiver demands are not constrained. From

Equation (13) above, the transaction arrival rates x∗u,v and

x∗v,u for a channel (u, v) satisfy the capacity constraints in

Equation (3). This is because x∗u,v ≤ y∗u,v from Equation (13)

and yu,v(t) is at most
cu,v

2∆ from Equation (11). Similarly the

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 793

transaction arrival rates also satisfy the balance constraints

in Equation (4). To see this, we first note the that the queues

on all payment channels through which a path (corresponding

to a sender-receiver pair) passes must be non-empty. For

otherwise, if a queue q∗u,v is empty then the fraction of marked

packets on a path p through (u,v) goes to 0, and the rate of

flow x∗p would increase as per Equation (8). Therefore we have

x∗u,v=y∗u,v (from Equation (13)) for every channel. Combining

this with yu,v(t)=yv,u(t) (Equation (11)), we conclude that the

arrival rates are balanced on all channels. Thus the equilibrium

rates {x∗p : p∈P} resulting from Spider are in the feasible set

for the routing optimization problem.

Next, let λu,v ≥ 0 and µu,v ∈ R be the dual variables

corresponding to the capacity and balance constraints,

respectively, for a channel (u, v). Consider the following

mapping from f ∗u,v to λu,v and µu,v

λ∗u,v←(f ∗u,v+ f ∗v,u)/2 ∀(u,v)∈E (14)

µ∗u,v← f ∗u,v/2 ∀(u,v)∈E, (15)

where the superscript ∗ on the dual variables indicate that they

have been derived from the equilibrium states of the Spider

protocol. Since fu,v(t) is always non-negative (Equation (10)),

we see that λ∗u,v≥ 0 for all (u,v). Therefore {λ∗u,v : (u,v)∈E}
and {µ∗u,v : (u,v)∈E} are in the feasible set of the dual of the

routing optimization problem.

Next, we have argued previously that the queues on all pay-

ment channels through which a path (corresponding to a sender-

received pair) passes must be non-empty. While we used this

observation to show that the channel rates x∗u,v are balanced, it

also implies that the rates are at capacity, i.e., x∗u,v=cu,v/(2∆),
or x∗u,v+x∗v,u =cu,v/∆ for all (u,v). This directly follows from

Equation (13) and the first sub-case in Equation (11). It follows

that the primal variables {x∗p : p∈ P} and the dual variables

{λ∗u,v :(u,v)∈E},{µ∗u,v :(u,v)∈E} satisfy the complementary

slackness conditions of the optimization problem.

Last, the optimality condition for the primal variables on

the Lagrangian defined with dual variables {λ∗u,v : (u,v)∈E}
and {µ∗u,v :(u,v)∈E} stipulates that

1

∑p′∈Pip , jp
xp′
− ∑

(u,v)∈p

(λ∗u,v+µ∗u,v−µ∗v,u)

{

=0 if xp>0

≤0 if xp=0
,

(16)

for all p∈P . However, note that for any path p

∑
(u,v)∈p

(λ∗u,v+µ∗u,v−µ∗v,u)= ∑
(u,v)∈p

f ∗u,v+ f ∗v,u

2
+

f ∗u,v

2
−

f ∗v,u

2

= ∑
(u,v)∈p

f ∗u,v, (17)

where the first equation above follows from our mapping

for λ∗u,v and µ∗u,v in Equations (14), (15). Combining this

with Equation (12), we see that xp ← x∗p for all p ∈ P is

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 21: Spider’s performance relative to Celer on a 10 node scale

free topology. Spider achieves a 2x improvement in success ratio

even at Celer’s peak performance. Celer’s performance dips after a

peak since it maintains larger queues at higher capacities, eventually

causing timeouts.

a valid solution to the Equation (16). Hence we conclude

that {x∗p : p ∈ P} and {λ∗u,v : (u,v) ∈ E}, {µ∗u,v : (u,v) ∈ E}
are optimal primal and dual variables, respectively, for the

optimization problem. The equilibrium rates found by Spider

for the parallel network topology are optimal.

C Additional Results

C.1 Comparison with Celer

We run five circulation traffic matrices for 610s on a scale free

topology with 10 nodes and 25 edges to compare Spider to

Celer [11], a back-pressure based routing scheme. Each node

sends 30 txns/s and we vary the mean channel size from 200e

to 6400e. We measure the average success ratio and success

volume for transactions in the 400-600s interval and observe

that Spider outperforms Celer at all channel sizes. Celer splits

transactions into transaction-units at the source but does not

source-route individual transaction-units. Instead, transaction-

units for a destination are queued at individual routers and

forwarded on the link with the maximum queue and imbalance

gradient for that destination. This approach tries to maximize

transaction-units in queues to improve network utilization.

However, queued-up and in-flight units in PCNs hold up tokens

in other parts of the network while they are in-flight waiting

for acknowledgements, reducing its capacity. Celer transac-

tions also use long paths, sometimes upto 18 edges in this

network with 25 edges. Consequently, tokens in Celer spend

few seconds in-flight in contrast to the hundreds of millisec-

onds with Spider. The time tokens spent in-flight also increases

with channel size since Celer tries to maintain larger queues.

Celer’s performance dips once the in-flight time has increased

to the point where transactions start timing out before they can

be completed. Due to computational constraints associated

with large queues, we do not run Celer on larger topologies.

C.2 Circulations on Synthetic Topologies

We run five circulation traffic matrices for 1010s on our three

topologies with all channels having exactly the tokens denoted

by the channel size. Fig. 22 shows that across all topologies,

794 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

●

●

●

●
● ●

●

●
● ● ● ●

●

●

●
● ● ●

●

Figure 22: Performance of different algorithms on different topologies with equal channel sizes with different per sender transaction arrival

rates. Spider consistently outperforms all other schems achieving near 100% average success ratio. Error-bars denote the maximum and minimum

success ratio across five runs. Note the log scale of the x-axes.

Figure 23: Breakdown of performance of different schemes by size of transactions completed. Each point reports the success ratio for

transactions whose size belongs to the interval denoted by the shaded region. Each interval corresponds roughly to 12.5% of the CDF denoted

in Fig. 7a. The graphs correspond to the (right) midpoints of the corresponding Lightning sampled channel sizes in Fig. 9.

Figure 24: CDF of normalized throughput achieved by different flows

under different schemes across topologies. Spider achieves close to

100% throughput given its proximity to the black demand line. Spider

is more vertical line than LND because it is fairer: it doesn’t hurt the

throughput of smaller flows to attain good overall throughput.

Spider outperforms the state-of-the-art schemes on success

ratio. Spider is able to successfully route more than 95% of

the transactions with less than 25% of the capacity required by

LND. Further Fig. 23 shows that Spider completes nearly 50%

more of the largest 12.5% of the transactions attempted in the

PCN across all three topologies. Even the waterfilling heuristic

outperforms LND by 15-20% depending on the topology.

C.3 Fairness of Schemes

In §7.3, we show that Spider outperforms state-of-the art

schemes on the success ratio achieved for a given channel

capacity. Here, we break down the success volume by flows

(sender-receiver pairs) to understand the fairness of the scheme

to different pairs of nodes transacting on the PCN. Fig. 24

shows a CDF of the absolute throughput in e/s achieved by

different protocols on a single circulation demand matrix when

each sender sends an average of 30 tx/s. The mean channel

sizes for the synthetic topologies and the real topologies with

LCSD channel sizes are 4000e and 16880e respectively. We

run each protocol for 1010s and measure the success volume

for transactions arriving between 800-1000s. We make two

observations: (a) Spider achieves close to 100% throughput

in all three scenarios, (b)Spider is fairer to small flows (most

vertical line) and doesn’t hurt the smallest flows just to benefit

on throughput. This is not as true for LND.

C.4 DAG Workload on Synthetic Topologies

Fig. 25 shows the effect of adding a DAG component to

the transaction demand matrix on the synthetic small world

and scale free topologies. We observe the success ratio and

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 795

Shortest Path Landmark Routing Waterfilling LND Spider Circulation

Small World Scale Free

0 10 20 30 40 0 10 20 30 40

0

25

50

75

100

S
u
c
c
e
s
s
 R

a
ti
o
 (

%
)

0 10 20 30 40 0 10 20 30 40

0

25

50

75

100

DAG Amount (%)

N
o

rm
.

T
h

ro
u

g
h

p
u

t
(%

)

Figure 25: Performance of different algorithms across all topologies

as the DAG component in the transaction demand matrix is varied. As

the DAG amount is increased, the normalized throughput achieved

is further away from the expected optimal circulation throughput.

The gap is more pronounced on the real topology.

Figure 26: Performance of different algorithms across all topologies

as the DAG component in the transaction demand matrix is varied. As

the DAG amount is increased, the normalized throughput achieved

is further away from the expected optimal circulation throughput.

The gap is more pronounced on the real topology.

normalized throughput of different schemes with five different

traffic matrices with 30 transactions per second per sender

under 5%, 20%, 40% DAG components respectively. No

scheme is able to achieve the maximum throughput. However,

the achieved throughput is closer to the maximum when there

is a smaller component of DAG in the demand matrix. This

suggests again that the DAG affect PCN balances in a way

that also prevents the circulation from going through. We

investigate what could have caused this and how pro-active

on-chain rebalancing could alleviate this in §7.4.

Fig. 26 shows the success ratio and normalized throughput

achieved by different schemes when rebalancing is enabled

for the 20% DAG traffic demand from Fig. 25. Spider is

able to achieve over 95% success ratio and 90% normalized

throughput even when its routers balance only every 10,000e

while LND is never able to sustain more than 75% success ratio

even when rebalancing for every 10e routed. This implies that

Spider makes PCNs more economically viable for both routers

locking up funds in payment channels and end-users routing

via them since they need far fewer on-chain rebalancing events

to sustain high throughput and earn routing fees.

796 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Background
	Challenges in Payment Channel Networks
	Packet-Switched PCN
	Modeling Routing
	Implications for Throughput

	Design
	Intuition
	Spider Router Design
	Spider Transport Layer at End-Hosts
	Optimality of Spider

	Evaluation
	Experimental Setup
	Prototype Implementation
	Circulation Payment Graph Performance
	Effect of DAGs
	Spider's Design Choices
	Additional Results

	Related Work
	Conclusion
	Circulations and Throughput Bounds
	Optimality of Spider
	Fluid Model
	Proof of Optimality

	Additional Results
	Comparison with Celer
	Circulations on Synthetic Topologies
	Fairness of Schemes
	DAG Workload on Synthetic Topologies

