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Abstract
Datacenters need networks that support both low-latency

and high-bandwidth packet delivery to meet the stringent
requirements of modern applications. We present Opera, a
dynamic network that delivers latency-sensitive traffic quickly
by relying on multi-hop forwarding in the same way as
expander-graph-based approaches, but provides near-optimal
bandwidth for bulk flows through direct forwarding over
time-varying source-to-destination circuits. Unlike prior ap-
proaches, Opera requires no separate electrical network and
no active circuit scheduling. The key to Opera’s design is
the rapid and deterministic reconfiguration of the network,
piece-by-piece, such that at any moment in time the network
implements an expander graph, yet, integrated across time,
the network provides bandwidth-efficient single-hop paths be-
tween all racks. We show that Opera supports low-latency traf-
fic with flow completion times comparable to cost-equivalent
static topologies, while delivering up to 4× the bandwidth
for all-to-all traffic and supporting up to 60% higher load for
published datacenter workloads.

1 Introduction
Datacenter networks are tasked with providing connectiv-

ity between an ever-increasing number of end hosts whose
link rates improve by orders of magnitude every few years.
Preserving the “big-switch” illusion of full bisection band-
width [2, 21] by augmenting the internal switching capacity of
the network accordingly is increasingly cost prohibitive and
likely soon infeasible [35]. Practitioners have long favored
over-subscribed networks that provide all-to-all connectiv-
ity, but at only a fraction of host-link speeds [21, 41]. Such
networks realize cost savings by dramatically reducing the
amount of in-network capacity (in terms of both the number
and rate of links and switches internal to the network fabric),
providing full-speed connectivity between only a subset of
hosts, and more limited capacity between others.

The catch, of course, is that any under-provisioned topology
inherently biases the network toward certain workloads. Tradi-
tional over-subscribed Clos topologies only support rack-local
traffic at full line rate; researchers have proposed alternate
ways of deploying a limited amount of switching capacity—
either through disparate link and switch technologies [31,
38, 40, 44], non-hierarchical topologies [27, 29, 42, 43], or

both [20, 34]—that can deliver higher performance for pub-
lished workloads [4, 39] at similar costs. Because workloads
can be dynamic, many of these proposals implement reconfig-
urable networks that allocate link capacity in a time-varying
fashion, either on a fixed schedule [34, 40] or in response to
recent demand [20, 31, 44]. Unfortunately, practical recon-
figurable technologies require non-trivial delay to retarget
capacity, limiting their utility for workloads with stringent
latency requirements.

Under-provisioned networks often incorporate some flavor
of indirect traffic routing to address inopportune traffic de-
mands; because application workloads do not always align
well with the structure of the network, some traffic may transit
longer, less-efficient paths. The benefits of indirection come
at significant cost, however: traversing more than a single hop
through the network imposes a “bandwidth tax.” Said another
way, x bytes sent over a direct link between two end points
consume only x bytes of network capacity. If that same traffic
is instead sent over k links, perhaps indirecting through mul-
tiple switches, it consumes (k · x) bytes of network capacity,
where (k−1)x corresponds to the bandwidth tax. Hence, the
effective carrying capacity of a network, i.e., net the band-
width tax, can be significantly less than its raw switching
capacity; aggregate tax rates of 200–500% are common in
existing proposals.

Reconfigurable networks seek to reduce the overall band-
width tax rate of a given workload by provisioning direct
links between end points with the highest demands, elimi-
nating the tax on the largest, “bulk” flows whose completion
time is gated by available network capacity, rather than propa-
gation delay. The time required to identify such flows [31, 44]
and reconfigure the network [20, 34], however, is generally
orders-of-magnitude larger than the one-way delay of even an
indirect route through the network, which is the main driver of
completion times for small flows. Hence, dynamic networks
face a fundamental trade-off between amortizing the overhead
of reconfiguration against the inefficiency of sub-optimal con-
figurations. The upshot is existing proposals are either unsuit-
able for latency sensitive traffic (which is frequently shunted
to an entirely separate network in so-called hybrid architec-
tures [31, 34, 38]), or pay substantial bandwidth tax to provide
low-latency connectivity, especially when faced with dynamic
or unpredictable workloads.
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Figure 1: Published empirical flow-size distributions.

Opera is a network architecture that minimizes the band-
width tax paid by bulk traffic—which makes up the vast major-
ity of the bytes in today’s networks [4, 39]—while ensuring
low-latency delivery for the (small fraction of) traffic that
cannot tolerate added delays. Opera implements a dynamic,
circuit-switched topology that constantly reconfigures a small
number of each top-of-rack (ToR) switch’s uplinks, moving
through a series of time-varying expander graphs (without re-
quiring runtime circuit selection algorithms or network-wide
traffic demand collection). Opera’s ever-changing topology
ensures that every pair of end points is periodically allocated
a direct link, delivering bandwidth-efficient connectivity for
bulk traffic, while indirecting latency-sensitive traffic over
the same, low-diameter network to provide near-optimal flow
completion times.

By strategically pre-configuring the assignment of rack-
to-rack circuits at each instant in time such that those cir-
cuits form an expander graph, Opera can always forward
low-latency traffic over an expander without waiting for any
circuits to be (re-)configured. Thus, on a per-packet basis,
Opera can choose to either (1) immediately send a packet
over whatever static expander is currently instantiated, in-
curring a modest tax on this small fraction of traffic, or (2)
buffer the packet and wait until a direct link is established
to the ultimate destination, eliminating the bandwidth tax on
the vast majority of bytes. Our simulation results show this
trade-off results in up to a 4× increase in throughput for shuf-
fle workloads compared to cost-equivalent static topologies.
Moreover, for published, skewed datacenter workloads, Opera
delivers an effective 8.4% bandwidth tax rate, resulting in up
to a 60% increase in throughput while maintaining equivalent
flow completion times across all flow sizes. We further val-
idate the stability of this result across a range of workloads,
network scales, and cost factors.

2 Network efficiency
The reality of datacenter networks is one of non-stop

change: developers are continuously deploying new appli-

u = (k/2) – 1 uplinks 
to core circuit switches

d = k/2 downlinks
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ToR switch
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Figure 2: Oversubscribed folded-Clos networks allocate
fewer uplinks than downlinks, and static expander-graph-
based networks typically allocate more upward ports than
downward ports. In Opera, the ToR switch is provisioned 1:1.
When a circuit switch is reconfiguring, the associated ToR
port cannot carry traffic through that uplink.

cations and updating existing applications, and user behavior
is in a constant state of flux. As a result, operators cannot
risk designing networks that support only a narrow range of
workloads, and instead must choose a design that supports a
wide range of workloads, applications, and user behavior.

2.1 Workload properties
One saving grace of the need to service a wide range

of workloads is the likelihood that there will, in fact, be
a spectrum of needs in practice. A concrete example is
the distribution of flow sizes, which is known to be highly
skewed in today’s networks: Figure 1 shows data published
by Microsoft [4, 21] (Websearch and Datamining) and Face-
book [39] (Hadoop) depicting the distributions of traffic ac-
cording to individual flows (top) and total number of transmit-
ted bytes (bottom) that we consider in this paper. The vast ma-
jority of bytes are in bulk flows, not the short, latency-sensitive
ones, suggesting that to make the most out of available capac-
ity, an ideal network must seek to minimize the bandwidth
tax paid on bulk traffic while not substantially impacting the
propagation delay experienced by short flows.

While there are myriad ways to measure a network’s suit-
ability for a given workload, flow completion time (FCT)
is frequently offered as a useful figure of merit [14] due to
its applicability across a wide range of workloads. The flow
completion time of small flows is constrained by the underly-
ing network’s propagation delay. Thus, lowering the network
diameter and/or reducing queuing reduces the FCT for this
type of traffic. On the other hand, the FCT of bulk traffic is
governed by the available capacity along a flow’s path.

Because the FCT of short flows is dictated by propaga-
tion delay, such traffic is commonly referred to as “latency-
sensitive” or, equivalently, “low-latency”. (While applications
may be equally sensitive to the FCT of larger flows, their FCT
is dominated by available bandwidth.) In today’s networks,
flows are classified into these categories either explicitly (e.g.,
by application type, port number, or sender-based rules), or
implicitly (e.g., by remaining flow size for shortest-remaining-
time-first (SRTF) scheduling). Opera is agnostic to the manner
in which traffic is classified; for our purposes latency-sensitive
and short flows are synonymous. Because latency-sensitive
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traffic’s impact on network capacity is negligible in today’s
workloads, it suffices to use priority queuing to ensure short
flows receive unimpeded service while allowing bulk traffic
to consume any remaining capacity [7, 22]. The challenge is
to simultaneously provide high-capacity paths while main-
taining a short path length.

2.2 The “big switch” abstraction
If cost (and practicality) were no object, a perfect network

would consist of one large, non-blocking switch that connects
all the end points. It is precisely such a “big switch” illu-
sion that scale-out packet-switched network fabrics based on
folded-Clos topologies [2, 21, 37] were designed to provide.
These topologies rely on multiple stages of packet switches in-
terconnected with shuffle networks. The abundance of packet
switches at each stage and surfeit of links between them en-
sures that there is sufficient capacity to support any mixture of
(admissible) inter-server communication. Proposals such as
Hedera [3], pHost [19], HULL [5], NDP [24], PIAS [7], and
Homa [36] introduce flow scheduling techniques that assign
traffic to well-chosen paths to maximize throughput while
minimizing in-network queuing when servicing a mixture of
bulk and low-latency traffic.

2.3 Reduced capacity networks
While full-bandwidth “big switch” network designs are

ideal in the sense that they provide operators with the max-
imum flexibility to deploy services, schedule jobs, and dis-
aggregate storage and compute, they are impractical to con-
struct at scale. Indeed, published reports confirm the largest
datacenter networks in existence, while based upon folded-
Clos topologies, are not fully provisioned [15, 41]. Moreover,
some have observed that packet-switching technology may
not be able to keep up as link rates surpass 400 Gb/s, so it is
unclear how much longer the “big switch” abstraction will
even be feasible [35]. Hence, researchers and practitioners
alike have considered numerous ways to under-provision or
“over-subscribe” network topologies.

One way to view over-subscription in a rack-based data-
center is to consider how each individual ToR switch is provi-
sioned. Consider a scenario in which servers in a cluster or
datacenter are organized into racks, each with a k-radix ToR
packet switch that connects it to the rest of the network. We
say that a ToR with d connected servers has d “downward”
facing ports. A ToR with u ports connected to the rest of the
network has u “upward” facing ports, or uplinks. (In a fully
populated ToR, d +u = k.) In this context, we now overview
existing proposals for interconnecting such racks.

Over-subscribed Fat Trees: As shown in the left-most por-
tion of Figure 2, designers can build M:1 over-subscribed
folded-Clos networks in which the network can deliver only
(1/M = u/d) the bandwidth of a fully-provisioned design.
Common values of (d : u) are between 3:1 and 5:1 [41]. The
cost and bandwidth delivered in folded-Clos networks scale

almost linearly according to the over-subscription factor, and
so decreasing overall cost necessitates decreasing the maxi-
mum network throughput—and vice versa. Routing remains
direct, however, so over-subscription does not introduce a
bandwidth tax; rather, it severely reduces the available net-
work capacity between end points in different racks. As a
result, application frameworks such as MapReduce [13] and
Hadoop [18] schedule jobs with locality in mind in an effort
to keep traffic contained within a rack.

Expander topologies: To address the limited cross-
network bandwidth available in over-subscribed Fat Trees,
researchers have proposed alternative reduced-capacity net-
work topologies based on expander graphs. In these proposals,
the u uplinks from each ToR are directly connected to other
ToRs, either randomly [42] or deterministically [27, 29, 43],
reducing the number of switches and inter-switch links in-
ternal to the network itself. Expander-graph-based network
topologies are sparse graphs with the property that there are
many potential short paths from a given source to a particular
destination.

Because there are no in-network switches, packets must
“hop” between ToRs a number of times to reach their ultimate
destination, resulting in a bandwidth tax. An expander graph
with an average ToR-to-ToR hop count of LAvg pays an overall
bandwidth tax rate of (LAvg −1)× in expectation because in-
dividual packets must indirect across a number of in-network
links. The average path lengths for large networks can be in
the range of 4–5 hops, resulting in a bandwidth tax rate of
300–400%. Moreover, a recent proposal [29] employs Valiant
load balancing (VLB)—which imposes an additional level
of explicit indirection—to address skewed traffic demands,
doubling the bandwidth tax in some circumstances. One way
that expanders counter-act their high bandwidth tax rate is
by over-provisioning: ToRs in expander topologies typically
have more upward-facing ports than down (u> d, as shown in
the center of Figure 2)—and, hence, far more upward-facing
ports than over-subscribed Fat Trees—which provides more
in-network capacity. Said another way, the impact of the band-
width tax is reduced by a factor of u/d.

Reconfigurable topologies: In an effort to reduce the band-
width tax, other proposals rely on some form of reconfig-
urable link technology, including RF [28, 45], free-space op-
tical [20, 23], and circuit switching [16, 31, 38, 40, 44]. Most
reconfigurable topologies dynamically establish end-to-end
paths within the network core in response to traffic demand,
although RotorNet [34] employs a fixed, deterministic sched-
ule. In either case, these networks establish and tear down
physical-layer links over time. When the topology can be
matched to the demand—and setting aside latency concerns—
traffic can be delivered from source to destination in a single
hop, avoiding any bandwidth tax. In some cases, similar to
expander-based topologies, they employ 2-hop VLB [34, 40],
resulting in a 100% bandwidth tax rate.
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A fundamental limitation of any reconfigurable topology,
however, is that during the time a link/beam/circuit (for sim-
plicity we will use the latter term in the remainder of the paper)
is being provisioned, it cannot convey data. Moreover, most
proposals do not provision links between all sources and desti-
nations at all times, meaning that traffic may incur significant
delay as it waits for the appropriate circuit to be provisioned.
For existing proposals, this end-to-end delay is on the order
of 10–100s of milliseconds. Hence, previous proposals for
reconfigurable network topologies rely on a distinct, generally
packet-switched, network to service latency-sensitive traffic.
The requirement for a separate network built using a different
technology is a significant practical limitation and source of
cost and power consumption.

3 Design
We start with an overview of our design before working

through an example. We then proceed to describe how we
construct the topology of a given network, how routes are
chosen, how the network moves through its fixed set of con-
figurations, and address practical considerations like cabling
complexity, switching speeds, and fault tolerance.

3.1 Overview
Opera is structured as a two-tier leaf-spine topology, with

packet-switched ToRs interconnected by reconfigurable cir-
cuit switches as shown in Figure 5. Each of a ToR’s u uplinks
are connected to one of u circuit switches, and each circuit
switch has a number of ports equal to the number of ToRs in
the network. Opera’s design is based around two fundamental
starting blocks that follow directly from the requirements for
small network diameter and low bandwidth tax.

Expansion for short paths: Because the FCT of short,
latency-sensitive flows is gated by end-to-end delay, we seek
a topology with the lowest possible expected path length.
Expander-based topologies are known to be ideal [27]. Ex-
panders also have good fault-tolerance properties; if switches
or links fail, there are likely to be alternative paths that remain.
Thus, to efficiently support low-latency traffic, we require a
topology with good expansion properties at all times.

Reconfigurability to avoid the bandwidth tax: A fully-
connected graph (i.e. full mesh) could avoid a bandwidth
tax entirely, but is infeasible to construct at scale. Rather
than providing a full mesh in space, reconfigurable circuit
switches offer the ability to establish, over time, direct one-
hop paths between every rack pair using a relatively small
number of links. Because bulk flows can generally amortize
modest reconfiguration overheads if they result in increased
throughput, we incorporate reconfigurability into our design
to minimize the bandwidth tax on bulk traffic.

Opera combines the elements of expansion and reconfig-
urability to efficiently (and simultaneously) serve both low-
latency and bulk traffic with low FCTs. Similar to Rotor-

Switch 1: 

Time 

1A 1B 

2A 2B 

3A 3B 

4A 4B 

Switch 2: 

Switch 3: 

Switch 4: 

(a) Simultaneous reconfig.

Time 

1A 1B 

2A 2B 

3A 3B 

4A 

3B 

4B 

(b) Offset reconfiguration

Figure 3: Reconfiguring all switches in unison (a) leads to
periodic disruptions; staggered reconfigurations (b) ensure
some paths are always available.

Net [34], Opera incorporates reconfigurable circuit switches
that cyclically set up and tear down direct connections be-
tween ToRs, such that after a “cycle time” of connections,
every ToR has been connected to every other ToR. We lever-
age ToR-uplink parallelism to stagger the reconfigurations of
multiple circuit switches, allowing “always-on” (albeit ever-
changing) multi-hop connectivity between all ToR pairs.

Critically, the combination of circuits at any time forms an
expander graph. Thus, during a single cycle, every packet has
a choice between waiting for a bandwidth-tax-avoiding direct
connection, or being immediately sent over a multi-hop path
through the time-varying expander. The end result is a single
fabric that supports bulk and low-latency traffic as opposed
to two separate networks used in hybrid approaches. As we
will show, Opera does not require any runtime selection of
circuits or system-wide collection of traffic demands, vastly
simplifying its control plane relative to approaches that re-
quire active circuit scheduling, such as ProjecToR [20] and
Mordia [38]. We leave to future work the possibility (and com-
plexity) of adjusting Opera’s matchings over long timescales
to, for example, adapt to diurnal traffic patterns.

3.1.1 Eliminating reconfiguration disruptions
Circuit switches impose a technology-dependent reconfigu-

ration delay, necessitating that flows be re-routed before recon-
figuration. Even in a network with multiple circuit switches,
if all switches reconfigure simultaneously (Figure 3a), the
global disruption in connectivity requires routes to recon-
verge. For today’s switching technologies, this would lead to
traffic delays that could severely impact the FCTs of short,
latency-sensitive flows. To avoid this scenario and allow for
low-latency packet delivery, Opera offsets the reconfigura-
tions of circuit switches. For example, in the case of small
topologies with few switches, at most one switch may be re-
configuring at a time (Figure 3b), allowing flows traversing
a circuit with an impending reconfiguration to be migrated
to other circuits that will remain active during that time pe-
riod (for large-scale networks with many circuit switches, it
is advantageous to reconfigure more than one switch at a time
as described in Appendix C). As a result, while Opera is in
near-constant flux, changes are incremental and connectivity
is continuous across time.
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3.1.2 Ensuring good expansion
While offsetting reconfigurations guarantees continuous

connectivity, it does not, by itself, guarantee complete connec-
tivity. Opera must simultaneously ensure that (1) multi-hop
paths exist between all racks at every point in time to support
low-latency traffic, and (2) direct paths are provisioned be-
tween every rack-pair over a fixed period of time to support
bulk traffic with low bandwidth tax. We guarantee both by
implementing a (time-varying) expander graph across the set
of circuit switches.

In Opera, each of a ToR’s u uplinks is connected to a (rotor)
circuit switch [33] that, at any point in time, implements a
(pre-determined) random permutation between input and out-
put ports (i.e., a “matching”). The inter-ToR network topology
is then the union of u random matchings, which, for u ≥ 3,
results in an expander graph with high probability [6]. More-
over, even if a switch is reconfiguring, there are still u− 1
active matchings, meaning that if u ≥ 4, the network will still
be an expander with high probability, no matter which switch
is reconfiguring. In Opera, we let u = k/2 where k is O(10)
to O(100) ports for today’s packet switches (depending on
the configured per-port bandwidth).

Figure 4 shows the distribution of path lengths in one ex-
ample 648-host network considered in our evaluation, where
u = 6. Opera’s path lengths are almost always substantially
shorter than those in a Fat Tree that connects the same num-
ber of hosts, and only marginally longer than an expander
with u = 7 which we argue later has similar cost, but per-
forms poorly for certain workloads. Clearly, ensuring good
expansion alone is not an issue with modest switch radices.
However, Opera must also directly connect each rack pair over
time. We achieve this by having each switch cycle through
a set of matchings; we minimize the total number of match-
ings (and thus the time required to cycle through them) by
constructing a disjoint set.

3.2 Example
Figure 5 depicts a small-scale Opera network. Each of the

eight ToRs has four uplinks to four different circuit switches
(with one potentially down due to reconfiguration at any par-
ticular moment). By forwarding traffic through those ToRs,

they can reach any ToRs to which they, in turn, are connected.
Each circuit switch has two matchings, labeled A and B (note
that all matchings are disjoint from one another). In this ex-
ample topology, any ToR-pair can communicate by utilizing
any set of three matchings, meaning complete connectivity
is maintained regardless of which matchings happen to be
implemented by the switches at a given time. Figure 5 depicts
two network-wide configurations. In Figure 5a switches 2–4
are implementing matching A, and in Figure 5b, switches 2–4
implement matching B. In both cases switch 1 is unavailable
due to reconfiguration.

In this example, racks 1 and 8 are directly connected by
the configuration shown in Figure 5b, and so the lowest
bandwidth-tax way to send bulk data from 1 to 8 would be to
wait until matching B is instantiated in switch 2, and then to
send the data through that circuit; such traffic would arrive at
ToR 8 in a single hop. On the other hand, low-latency traffic
from ToR 1 to ToR 8 can be sent immediately, e.g. during the
configuration shown in Figure 5a, and simply take a longer
path to get to ToR 8. The traffic would hop from ToR 1 to
ToR 6 (via switch 4), then to ToR 8 (via switch 2), and incur a
100% bandwidth tax. Although not highlighted in the figure,
similar alternatives exist for all rack pairs.

3.3 Topology generation
The algorithm to generate an N-rack Opera topology is as

follows. First, we randomly factor a complete graph (i.e. N ×
N all-ones matrix) into N disjoint (and symmetric) matchings.
Because this factorization can be computationally expensive
for large networks, we employ graph lifting to generate large
factorizations from smaller ones. Next, we randomly assign
the N matchings to u circuit switches, so that each switch has
N/u matchings assigned to it. Finally, we randomly choose
the order in which each switch cycles through its matchings.
These choices are fixed at design time, before the network is
put into operation; there is no topology computation during
network operation.

Because our construction approach is random, it is possible
(although unlikely) that a specific Opera topology realization
will not have good expander properties at all points across
time. For example, the combination of matchings in a given
set of u−1 switches at a particular time may not constitute
an expander. In this case, it would be trivial to generate and
test additional realizations at design time until a solution
with good properties is found. This was not necessary in
our experience, as the first iteration of the algorithm always
produced a topology with near-optimal properties. We discuss
the properties of these graphs in detail in Appendix E.

3.4 Forwarding
We are now left to decide how to best serve a given flow

or packet: (1) send it immediately over multi-hop expander
paths and pay the bandwidth tax (we refer to these as “indi-
rect” paths), or (2) delay transmission and send it over one-hop
paths to avoid the bandwidth tax (we refer to these as “di-
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Figure 5: An Opera topology with eight ToR switches and four rotor circuit switches (from RotorNet [34]). Two different paths
from rack 1 to rack 8 are highlighted: (a) a two-hop path in red, and (b) a one-hop path in blue. Each direct inter-rack connection
is implemented only once per configuration, while multi-hop paths are available between each rack-pair at all times.

rect” paths). For skewed traffic patterns that, by definition,
leave spare capacity in the network, two-hop paths based on
Valiant load balancing can be used to carry bulk traffic in
Opera. Our baseline approach is to make the decision based
on flow size. Since the delay in waiting for a direct path can
be an entire cycle time, we only let flows that are long enough
to amortize that delay use direct paths, and place all other
traffic on indirect paths. However, we can do even better if
we know something about application behavior. Consider an
all-to-all shuffle operation, where a large number of hosts
simultaneously need to exchange a small amount of data with
one another. Although each flow is small, there will be signif-
icant contention, extending the flow completion time of these
flows. Minimizing bandwidth tax is critical in these situations.
With application-based tagging, Opera can route such traffic
over direct paths.

3.5 Synchronization
Opera employs reconfigurable circuit switches, and so its

design requires a certain level of synchronization within the
system to operate correctly. In particular, there are three syn-
chronization requirements that must be met: (1) ToR switches
must know when core circuit switches are reconfiguring, (2)
ToR switches must update their forwarding tables in sync with
the changing core circuits, and (3) end hosts must send bulk
traffic to their local ToR only during the timeslots when the
ToR is directly connected to the destination (to prevent exces-
sive queueing in the ToR). In the first case, since each ToR’s
uplink is connected directly to one of the circuit switches, the
ToR can monitor the signal strength of the transceiver attached
to that link to re-synchronize with the circuit switch. Alter-
natively, the ToR could rely on IEEE 1588 (PTP), which can
synchronize switches to within ±1 µs [1]. For low-latency
traffic, end hosts simply transmit packets immediately, with-
out any coordination or synchronization. For bulk traffic, end
hosts transmit when polled by their attached ToR. To evaluate
the practicality of this synchronization approach, we built a
small-scale prototype based on a programmable P4 switch,
described in Section 6.

Opera can tolerate arbitrary bounds on (de-)synch-
ronization by introducing “guard bands” around each con-
figuration, in which no data is sent to ensure the network

is configured as expected when transmissions do occur. To
analyze the impact of guard bands, we hold the circuit tim-
ings constant and reduced the effective time of the slot during
which data can be transmitted. Each µs of guard time con-
tributes a 1% relative reduction in low-latency capacity and a
0.2% reduction for bulk traffic. In practice, if any component
becomes de-synchronized beyond the guard-band tolerance,
it can simply be declared failed (see Section 3.6.2).

3.6 Practical considerations
While Opera’s design draws its power from graph-theoretic

underpinnings, it is also practical to deploy. Here, we consider
two real-world constraints on networks.

3.6.1 Cabling and switch complexity
Today’s datacenter networks are based on folded-Clos

topologies which use perfect-shuffle cabling patterns between
tiers of switches. While proposals for static expander graphs
alter that wiring pattern [42] leading to concerns about ca-
bling complexity, Opera does not. In Opera, the intercon-
nection complexity is contained within the circuit switches
themselves, while the inter-switch cabling remains the famil-
iar perfect shuffle. In principle, Opera can be implemented
with a variety of electronic or optical circuit switch technolo-
gies. We focus on optical switching for our analysis due to its
cost and data-rate transparency benefits. Further, because each
circuit switch in Opera must only implement N/u matchings
(rather than O(N!)), Opera can make use of optical switches
with limited configurability such as those proposed in Rotor-
Net [34], which have been demonstrated to scale better than
optical crossbar switches [17, 33].

3.6.2 Fault tolerance
Opera detects, shares, and recovers from link, ToR, and

circuit switch failures using common routing protocol prac-
tices. We take advantage of Opera’s cyclic connectivity to
detect and communicate failures: each time a new circuit is
configured, the ToR CPUs on each end of the link exchange a
short sequence of “hello” messages (which contain informa-
tion of new failures, if applicable). If no hello messages are
received within a configurable amount of time, the ToR marks
the link in question as bad. Because all ToR-pair connections
are established every cycle, any ToR that remains connected
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to the network will learn of any failure event within two cy-
cles (<10ms). Upon receiving information of a new failure, a
ToR recomputes and updates its routing tables to route around
failed components.

4 Implementation
Here, we describe the implementation details of Opera. To

ground our discussion, we refer to an example 108-rack, 648-
host, k = 12 topology (we evaluate this topology along with
a larger one in Section 5).

4.1 Defining bulk and low-latency traffic
In Opera, traffic is defined as low-latency if it cannot wait

until a direct bandwidth-efficient path becomes available.
Thus the division between low-latency and bulk traffic de-
pends on the rate at which Opera’s circuit switches cycle
through direct matchings. The faster Opera steps through
these matchings, the lower the overhead for sending traffic on
direct paths, and thus the larger the fraction of traffic that can
utilize these paths. Two factors impact cycle speed: circuit
amortization and end-to-end delay.

Circuit amortization: The rate at which a circuit switch
can change matchings is technology dependent. State-of-the-
art optical switches with the large port counts needed for
practical datacenter deployment have reconfiguration delays
on the order of 10 µs [20, 34, 38]. A 90% amortization of this
delay would limit circuit reconfigurations to every 100 µs.
In Opera, each switch cycles through N/u matchings, which
could range from 10 matchings for small networks (e.g. N =
320 racks and u = 32 uplinks) to 32 matchings for larger
networks (e.g. N = 4096 racks and u = 128 uplinks). This
means any flow than can amortize a 1–3 ms increase in its FCT
could take the bandwidth-efficient direct paths (and shorter
flows would take indirect paths).

End-to-end delay: Perhaps surprisingly, a second timing
constraint, end-to-end delay, has a larger impact on cycle time.
In particular, consider a low-latency packet that is emitted
from a host NIC. At the first ToR, the packet is routed toward
its destination, and in general, at each hop along the way,

each ToR routes the packet along an expander-graph path. If,
during the packet’s journey, the circuit topology changes, it
is possible the packet could be caught in a loop or redirected
along a sub-optimal path. Dropping the packet immediately
(and expecting the sender to resend it) would significantly
delay the flow completion time of that flow.

Our approach, depicted in Figure 6, to avoid the problems
described above, requires that subsequent circuit reconfigu-
rations be spaced by at least the sum of the end-to-end delay
under worst-case queuing, ε, and the reconfiguration delay, r.
We refer to this time period ε+r as a “topology slice”. Any
packets sent during a slice are not routed through the circuit
with an impending reconfiguration during that slice. This way,
packets always have at least ε time to make it through the
network before a switch reconfigures.

The parameter ε depends on the worst-case path length (in
hops), the queue depth, the link rate, and propagation delay.
Path length is a function of the expander, while the data rate
and propagation delay are fixed; the key driver of ε is the
queue depth. As explained in the following section, we choose
a shallow queue depth of 24 KB (8 1500-byte full packets +
187 64-byte headers). When combined with a worst-case path
length of 5 ToR-to-ToR hops (Figure 4), 500-ns propagation
delay per hop (100 meters of fiber), and 10-Gb/s link speed,
we set ε to 90 µs. In our example 108-rack network, there are
6 circuit switches, meaning the inter-reconfiguration period
of a single switch is 6ε, yielding a duty cycle of 98%. Further,
our example network has N/u = 108/6 = 18 matchings per
switch, yielding a cycle time of N × ε = 10.8 ms. We use this
cycle time of 10.8 ms in our simulations in Section 5. For
these time constants, flows ≥15 MB will have an FCT well
within a factor of 2 of their ideal (link-rate-limited) FCT. As
we will show in Section 5, depending on traffic conditions,
shorter flows may benefit from direct paths as well.

4.2 Transport protocols
Opera requires transport protocols that can (1) immediately

send low-latency traffic into the network, while (2) delaying
bulk traffic until the appropriate time. To avoid head-of-line
blocking, NICs and ToRs perform priority queuing. Our de-
sign replaces the typical TCP stack with the protocols below,
but keeps the familiar sockets application interface.

4.2.1 Low-latency transport
As discussed in the previous section, minimizing the cy-

cle time is predicated on minimizing the queue depth for
low-latency packets at ToRs. The recently proposed NDP
protocol [24] is a promising choice because it achieves high
throughput with very shallow queues. We find that 12-KB
queues work well for Opera (each port has an additional
equal-sized header queue). NDP also has other beneficial
characteristics for Opera, such as zero-RTT convergence and
no packet metadata loss to eliminate RTOs. Despite being de-
signed for fully-provisioned folded Clos networks, we find in
simulation that NDP works well with minimal modification in
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Opera, despite Opera’s continuously-varying topology. Other
transports, like the recently proposed Homa protocol [36],
may also be a good fit for low-latency traffic in Opera, but we
leave this to future work.
4.2.2 Bulk transport

Opera’s bulk transport protocol is relatively simple. We
draw heavily from the RotorLB protocol proposed in Rotor-
Net [34], which buffers traffic at end hosts until direct con-
nections to the destination are available. When bulk traffic is
heavily skewed, and there is necessarily spare capacity else-
where in the network, RotorLB automatically transitions to
using two-hop routing (i.e. Valiant load balancing) to improve
throughput. Unlike low-latency traffic, which can be sent at
any time, bulk traffic admission is coordinated with the state
of the circuit switches, as described in Section 3.5. In addition
to extending RotorLB to work with offset reconfigurations,
we also implemented a NACK mechanism to handle cases
where large bursts of priority-queued low-latency traffic can
cause bulk traffic queued at the ToR to be delayed beyond the
transmission window and dropped at the ToR. Retransmitting
a small number of packets does not significantly affect the
FCT of bulk traffic. Unlike TCP, RotorLB does not rely on
retransmission timeouts, which could otherwise cause band-
width throttling for bulk traffic.

4.3 Packet forwarding
Opera relies on ToR switches to route packets along di-

rect or multi-hop paths depending on the requested network
service model. We implement this routing functionality us-
ing the P4 programming language. Each ToR switch has a
built-in register that stores the current network configuration,
updated either in-band or via PTP. When a packet arrives at
the first ToR switch, the packet’s metadata is updated with the
value of the configuration register. What happens next, and at
subsequent ToR switches, depends on the value of the DSCP
field. If that field indicates a low-latency packet, the switch
consults a low-latency table to determine the next hop along
the expander path, and then forwards the packet out that port.
If the field indicates bulk traffic, the switch consults a bulk
traffic table which indicates which circuit switch—if any—
provides a direct connection, and the packet is forwarded to
that port. We measure the amount of in-switch memory re-
quired to implement this P4 program for various datacenter
sizes in Section 6.2.

5 Evaluation
We evaluate Opera in simulation. Initially, we focus on

a concrete 648-host network, comparing to cost-equivalent
folded-Clos, static expander, non-hybrid RotorNet, and (non-
cost-equivalent) hybrid RotorNet networks. We then validate
against a range of network sizes, skewed workloads, and un-
derlying cost assumptions. We use the htsim packet simula-
tor [26], which was previously used to evaluate the NDP proto-
col [24], and extend it to model static expander networks and

dynamic networks. We ported our RotorNet simulator [34] to
htsim, first validating its performance against prior results.
We also modify NDP to handle <1500 byte packets, which is
necessary for some workloads considered. Both the folded-
Clos and static expander use NDP as the transport protocol.
Opera and RotorNet use NDP to transport low-latency traffic
and RotorLB for bulk traffic. Because Opera explicitly uses
priority queuing, we simulate the static networks with ide-
alized priority queuing where appropriate to maintain a fair
comparison. Following prior work [20, 29], we set the link
bandwidth to 10 Gb/s. We use a 1500-byte MTU and set the
propagation delay to 500 ns between ToRs (equivalent to 100
meters of fiber).

5.1 Real-world traffic
We start by considering Opera’s target scenario, a workload

with an inherent mix of bulk and low-latency traffic. Here we
consider the Datamining workload from Microsoft [21], and
use a Poisson flow-arrival process to generate flows. We vary
the Poisson rate to adjust the load on the network, defining
load relative to the aggregate bandwidth of all host links (i.e.,
100% load means all hosts are driving their edge links at
full capacity, an inadmissible load for any over-subscribed
network). As shown in the top portion of Figure 1, flows in
this workload range in size from 100 bytes to 1 GB. We use
Opera’s default configuration to decide how to route traffic:
flows <15 MB are treated as low-latency and are routed over
indirect paths, while flows ≥15 MB are treated as bulk and
are routed over direct paths.

Figure 7 shows the performance of Opera as well as cost-
comparable 3:1 folded-Clos and u = 7 static expander net-
works for various offered loads. We also compared to a hy-
brid RotorNet which faces one of the six ToR uplinks to a
multi-stage packet switched network to accommodate low-
latency traffic (for 1.33× the cost), and a cost-equivalent non-
hybrid RotorNet with no packet switching above the ToR.
Appendix B discusses the tradeoffs for a hybrid RotorNet
in more detail. We report the 99th percentile FCT except in
the case of 1% load, where the variance in the tail obscures
the trend and so report the average instead. Note that Opera
priority queues all low-latency flows, while by default the
static networks do not. For fairness, we also present the ex-
pander and folded Clos with “ideal” priority queuing—that is,
removing all flows ≥15 MB. For reference, we also plot the
minimum achievable latency in each network, derived from
the end-to-end delay and link capacity.

The static networks start to saturate past 25% load: folded
Clos have limited network capacity, and expanders have high
bandwidth tax. Opera, on the other hand, is able to ser-
vice 40% load despite having lower innate capacity than the
cost-comparable expander. Opera offloads bulk traffic onto
bandwidth-efficient paths, and only pays bandwidth tax on the
small fraction (4%) of low-latency traffic that transits indirect
paths, yielding an effective aggregate bandwidth tax of 8.4%
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Figure 7: FCTs for the Datamining workload. All networks are cost comparable except hybrid RotorNet, which is 1.33× more
expensive. In (a) and (b), dashed lines are without priority queuing, and solid lines are with ideal priority queuing.
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Figure 8: Network throughput over time for a 100-KB all-
to-all Shuffle workload. Opera carries all traffic over direct
paths, greatly increasing throughput. (The small “step” down
in Opera’s throughput around 50 ms is due to some flows
taking one additional cycle to finish.)

for this workload. Hybrid RotorNet, even with 1/6th of its core
capacity packet-switched (for 33% higher cost than the other
networks), delivers longer FCTs than Opera for short flows
at loads >10%. A non-hybrid (i.e. all-optical-core) RotorNet
is cost-equivalent to the other networks, but its latency for
short flows is three orders of magnitude higher than the other
networks, as shown in Figure 7c.

5.2 Bulk traffic
Opera’s superiority in the mixed case stems entirely from

its ability to avoid paying bandwidth tax on the bulk traf-
fic. We highlight this ability by focusing on a workload in
which all flows are routed over direct paths. We consider
an all-to-all shuffle operation (common to MapReduce style
applications), and choose the flow size to be 100 KB based
on the median inter-rack flow size reported in a Facebook
Hadoop cluster [39] (c.f. Figure 1). Here we presume the
application tags its flows as bulk, so we do not employ flow-
length based classification; i.e., Opera does not indirect any
flows in this scenario. We let all flows start simultaneously
in Opera, as RotorLB accommodates such cases gracefully,
and stagger flow arrivals over 10 ms for the static networks,
which otherwise suffer from severe startup effects. Because
the shuffle operation correlates the start times of all flows, this
workload can drive the network to 100% utilization.

Figure 8 shows the delivered bandwidth over time for the
different networks. The limited capacity of the 3:1 Clos and
high bandwidth tax rates of the expander significantly extend

the FCT of the shuffle operation, yielding 99th-percentile
FCTs of 227 ms and 223 ms, respectively. Opera’s direct
paths are bandwidth-tax-free, allowing higher throughput and
reducing the 99th-percentile FCT to 60 ms.

5.3 Only low-latency flows
Conversely, workloads in which all flows are routed over

indirect low-latency paths represents the worst case for Opera,
i.e., it always pays a bandwidth tax. Given our 15 MB thresh-
old for bulk traffic, it is clear from the bottom portion of
Figure 1 that the Websearch workload [4] represents such a
case. A lower threshold would avoid the bandwidth tax, but
would require a shorter cycle time to prevent a significant
increase in FCT for these short “bulk” flows.

Figure 9 shows the results for the Websearch workload,
again under a Poisson flow arrival process. As before, the
cost-equivalent all-optical RotorNet suffers from long FCTs.
Hybrid RotorNet (with 1/6th of its capacity packet switched
for 33% higher cost) can only admit just over 10% load, at
which point the throughput saturates. At more than 5% load,
its FCTs are significantly higher than the other networks.
All other networks provide equivalent FCTs across all flow
sizes for loads at or below 10%, at which point Opera is
not able to admit additional load. Both the 3:1 folded Clos
and expander saturate (slightly) above 25% load, but at that
point both deliver FCTs nearly 100× worse than at 1% load.
While Opera forwards traffic analogous to the expander in this
scenario, it has only 60% the capacity and pays an additional
41% bandwidth tax due to its longer expected path length.

5.4 Mixed traffic
To drive home Opera’s ability to trade off low-latency ca-

pacity against lower effective bandwidth taxes, we explic-
itly combine the Websearch (low-latency) and Shuffle (bulk)
workloads from above in varying proportions. Figure 10
shows the aggregate network throughput as a function of
Websearch (low-latency) traffic load, defined as before as a
fraction of the aggregate host link capacity. We see that for
low Websearch load, Opera delivers up to 4× more through-
put than the static topologies. Even at 10% Websearch load
(near its maximum admissible load), Opera still delivers al-
most 2× more throughput. In essence, Opera “gives up” a
factor of 2 in low-latency capacity (due to its relatively under-
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Figure 9: FCTs for the Websearch workload. All networks are cost comparable except hybrid RotorNet, which is 1.33× more
expensive. Opera carries all traffic over indirect paths, and supports up to 10% low-latency traffic load with near-equivalent FCTs
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Figure 10: Network throughput vs. Websearch traffic load
for a combined Websearch/Shuffle workload.

provisioned ToRs) to gain a factor of 2–4 in bulk capacity
from its vastly lower effective bandwidth tax.

Facebook has reported that only 25% of traffic is attributed
to bulk-dominated Hadoop jobs, but also that the total average
network load is less than 1% [39]. Even if the other 75% of
traffic was solely low-latency flows, Opera can accommodate
this light overall load with little-to-no degradation in FCT
while significantly improving throughput for Hadoop traffic,
which has a high momentary peak load due to the correlated
start times of constituent flows.

5.5 Fault tolerance
Next, we demonstrate Opera’s ability to maintain and re-

establish connectivity in the face of component failures by
injecting random link, ToR, and circuit switch failures into
the network. We then step through the topology slices and
record (1) the number of ToR pairs that were disconnected in
the worst-case topology slice and (2) the number of unique
disconnected ToR pairs integrated across all slices. Figure 11
shows that Opera can withstand about 4% of links failing, 7%
of ToRs failing, or 33% (2 out of 6) of circuit switches failing
without suffering any loss in connectivity. Opera’s robustness
to failure stems from the good fault tolerance properties of ex-
pander graphs. As discussed in Appendix F, Opera has better
fault tolerance than a 3:1 folded Clos, and is less tolerant than
the u = 7 expander (which has higher fanout). Maintaining
connectivity under failure does require some degree of path
stretch in Opera; Appendix F discusses this in more detail.

5.6 Network scale and cost sensitivity
Finally, we examine Opera’s relative performance across a

range of network sizes and cost assumptions. We introduce a
parameter α, which is defined following [29] to be the cost of
an Opera “port” (consisting of a ToR port, optical transceiver,
fiber, and circuit switch port) divided by the cost of a static net-
work “port” (consisting of a ToR port, optical transceiver, and
fiber). A full description of this cost-normalization method is
presented in Appendix A. If α > 1 (i.e. circuit switch ports
are not free) then a cost-equivalent static network can use the
extra capital to purchase more packet switches and increase
its aggregate capacity.

We evaluated workloads previously analyzed in [29] using
htsim: (1) hot rack, which is a highly skewed workload where
one rack communicates with one other rack; (2) skew[0.1,1],
(10% of racks are hot [29]), (3) skew[0.2,1] (20% hot); and
(4) host permutation, where each host sends to one other non-
rack-local host. For each workload, we considered a range
of relative Opera port costs (reallocating any resulting cost
savings in the static networks to increase their capacity). We
considered both k= 12 and k= 24 ToR radices, corresponding
to 648-host and 5,184-host networks. Figure 12 shows the
results for k = 24; the k = 12 case has nearly identical cost-
performance scaling and is presented in Appendix D, along
with path length scaling analysis.

The throughput of the folded Clos topology is indepen-
dent of traffic pattern, whereas the throughput of the ex-
pander topology decreases as workloads become less skewed.
Opera’s throughput initially decreases with a decrease in skew,
then increases as the traffic becomes more uniform. As long
as α < 1.8 (Opera’s circuit switch ports cost less than a packet
switch port populated with an optical transceiver), Opera de-
livers higher throughputs than either an expander or folded
Clos for permutation traffic and moderately skewed traffic
(e.g. 20% of racks communicating). In the case of a single
hot rack, Opera offers comparable performance to a static
expander. In the case of shuffle (all-to-all) traffic, Opera deliv-
ers 2× higher throughput than either the expander or folded
Clos even for α = 2. As discussed further in Appendix A,
we believe α = 1.3 is achievable today with certain optical
switching technologies.
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Figure 11: Fault tolerance in a 648-host, 108-rack Opera network with 6 circuit switches and k = 12 port ToRs. Connectivity
loss is the fraction of disconnected ToR pairs. In cases involving ToR failures, connectivity loss refers to non-failed ToRs.
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Figure 12: Throughput for (left to right) hotrack, skew[0.1,1], skew[0.2,1], and permutation workloads for k = 24 ports.

Opera does not offer an advantage for skewed and permu-
tation workloads when the relative cost of its ports is signifi-
cantly higher than packet switches (α > 2), or in deployments
where more than 10% of the link rate is devoted to urgent,
delay-intolerant traffic, as described in Section 5.3.

6 Prototype
Priority queueing plays an important role in Opera’s design,

ensuring that low-latency packets do not get buffered behind
bulk packets in the end hosts and switches, and our simulation
study reflects this design. In a real system, low-latency packets
that arrive at a switch might temporarily buffer behind lower-
priority bulk packets that are being transmitted out an egress
port. To better understand the impact of this effect on the
end-to-end latency of Opera, we built a small-scale hardware
prototype.

The prototype consists of eight ToR switches, each with
four uplinks connected to one of four emulated circuit
switches (the same topology shown in Figure 5). All eight ToR
and four circuit switches are implemented as virtual switches
within a single physical 6.5-Tb/s Barefoot Tofino switch. We
wrote a P4 program to emulate the circuit switches, which for-
ward bulk packets arriving at an ingress port based on a state
register, regardless of the destination address of the packet.
We connect the virtual ToR switches to the four virtual circuit
switches using eight physical 100-Gb/s cables in loopback
mode (logically partitioned into 32 10-Gb/s links). Each vir-
tual ToR switch is connected via a cable to one attached end
host, which hosts a Mellanox ConnectX-5 NIC. There are
eight such end hosts (one per ToR switch) each configured to
run at 10 Gb/s.

An attached control server periodically sends a packet to
the Tofino’s ASIC that updates its state register. After con-
figuring this register, the controller sends RDMA messages
to each of the attached hosts, signaling that one of the emu-
lated circuit switches has reconfigured. The end hosts run two
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Figure 13: RTT values for low-latency traffic with and with-
out bulk background traffic in the prototype.

processes: an MPI-based shuffle program patterned on the
Hadoop workload, and a simple “ping-pong” application that
sends low-latency RDMA messages to a randomly selected
receiver, which simply returns a response back to the sender.
The relatively low sending rate of the ping-pong application
did not require us to implement NDP for this traffic.

6.1 End-to-end latency
Figure 13 shows the observed application-level latency of

sending a ping message from a random source to a random
destination (and back). We plot this distribution both with and
without bulk background traffic. The latency observed without
bulk traffic is due to a combination of the path length and the
time to forward a packet through Tofino’s P4 program, which
we observe to be about 3 µs per hop, resulting in latency of
up to 9 µs depending on path length. The observed tail is
due to RoCE/MPI variance at the end hosts. In the presence
of bulk traffic, low-latency packets potentially need to queue
behind bulk packets currently being sent from the egress port.
Because we emulate circuit switches within the Barefoot
switch, each transit of a circuit-switch introduces additional
latency that would not be present in a deployment, adding
additional latency. For our testbed there are as many as eight
serialization points from source to destination, or 16 for each
ping-pong exchange. Each serialization point can introduce
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#Racks #Entries % Utilization
108 12,096 0.7
252 65,268 3.8
520 276,120 16.2
768 600,576 35.3

1008 1,032,192 60.7
1200 1,461,600 85.9

Table 1: Number of entries and resulting resource utilization
for Opera rulesets for datacenters of varying sizes.

as much as 1.2 µs (one MTU at 10 Gb/s), or 19.2 µs in total,
as shown in Figure 13. The distribution is smooth because
when low-latency packets buffer behind bulk packets currently
exiting the switch, the amount of remaining time is effectively
a random variable.

6.2 Routing state scalability
Opera requires more routing state than a static topology.

A straightforward implementation would require the tables
in each switch to contain O(Nrack)

2 entries as there are Nrack
topology slices and Nrack − 1 possible destinations within
each slice. We use Barefoot’s Capilano compiler tool to mea-
sure the size of the ruleset for various datacenter sizes, and
compare that size to the capacity of the Tofino 65x100GE
switch. The ruleset consists of both bulk and low-latency
non-rack-local rules. The resulting number of rules and the
percent utilization of the switch’s memory are shown in Ta-
ble 1. Because the practical rulesize limit may be lower than
the compiler-predicted size due to hash collisions within the
switch, we loaded the generated rules into a physical switch to
validate that the rules would fit into the resource constraints.
These results show that today’s hardware is capable of hold-
ing the rules needed to implement Opera, while also leaving
spare capacity for additional non-Opera rules.

7 Related work
Opera builds upon previous network designs focused on

cluster and low-latency environments. In addition to the
folded-Clos and expander graph topologies described thus
far, a number of additional static and dynamic network topolo-
gies have been proposed for clusters and datacenters.

Static topologies: Dragonfly [30] and SlimFly [8] topolo-
gies connect localized pools of high cross-section bandwidth
with a sparse inter-cluster set of links, and have been adopted
in HPC environments. Diamond [12] and WaveCube [9] stati-
cally interconnect switches with optical wavelength MUXes,
resulting in a connected topology without reconfiguration.
Quartz [32] interconnects switches into rings, and relies on
multi-hop forwarding for low-latency traffic.

Dynamic topologies: Several dynamic network topologies
have been proposed, which we can group into two categories:
those that cannot support low-latency traffic and those that

can. In the former case, Helios [16], Mordia [38], and C-
Through [44] aim to reactively establish high-bandwidth con-
nections in response to observed traffic patterns; they all rely
on a separate packet-switched network to support low-latency
traffic. RotorNet [34] relies on deterministic reconfiguration
to deliver constant bandwidth between all endpoints, and re-
quires endpoints inject traffic using Valiant load balancing to
support skewed traffic. RotorNet requires a separate packet-
switched network for low latency traffic.

ProjecToR [20], on the other hand, always maintains a
“base mesh” of connected links that can handle low-latency
traffic while it opportunistically reconfigures free-space links
in response to changes in traffic patterns. The authors ini-
tially evaluated the use of a random base network, ruling it
out due to poor support of skew. Instead, they proposed a
weighted matching of sources and sinks, though it is not clear
what the expected diameter of that network would be in gen-
eral. Similar to ProjecToR, Opera maintains an “always on”
base network which consists of a repeating sequence of time-
varying expander graphs, which has a well-known structure
and performance characteristics.

There are also reconfigurable network proposals that rely
on multi-hop indirection to support low-latency traffic. In
OSA [10], during reconfiguration some end-to-end paths may
not be available, and so some circuit-switch ports can be
reserved specifically to ensure connectivity for low-latency
traffic. Megaswitch [11] could potentially support low-latency
traffic in a similar manner.

8 Conclusions

Static topologies such as oversubscribed folded-Clos and
expander graphs support low-latency traffic but have lim-
ited overall network bandwidth. Recently proposed dynamic
topologies provide high bandwidth, but cannot support low-
latency traffic. In this paper, we propose Opera, which is a
topology that implements a series of time-varying expander
graphs that support low-latency traffic, and when integrated
over time, provide direct connections between all endpoints
to deliver high throughput to bulk traffic. Opera can deliver a
4× increase in throughput for shuffle workloads and a 60%
increase in supported load for skewed datacenter workloads
compared to cost-equivalent static networks, all without ad-
versely impacting the flow completion times of short flows.
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Appendix
A Cost-normalization approach

In this section, we detail the method we used to analyze
a range of cost-equivalent network topologies at various net-
work scales and technology cost points. We begin by defining
α as the cost of an Opera “port” (consisting of a ToR port,
optical transceiver, fiber, and circuit switch port) divided by
the cost of a static network “port” (consisting of a ToR port,
optical transceiver, and fiber), following [29].

We can also interpret α as the cost of the “core” ports (i.e.
upward-facing ToR ports and above) per edge port (i.e. server-
facing ToR port). Core ports drive the network cost because
they require optical transceivers. Thus, for a folded Clos we
can write α = 2(T − 1)/F (where T is the number of tiers
and F is the oversubscription factor). For a static expander,
we can write α = u/(k−u) (where u is the number of ToR
uplinks and k is the ToR radix).

We use a T = 3 three tier (i.e. three layer) folded Clos as
the normalizing basis and keep the packet switch radix (k)
and number of hosts (H) constant for each point of network
comparison. To determine the number of hosts as a function
of k and α, we first solve the for the oversubscription factor
as a function of α: F = 2(T −1)/α (note T = 3). Then, we
find the number of hosts H in a folded Clos as a function
of F , k, and α: H = (4F/(F + 1))(k/2)T (note T = 3, and
F is a function of α). This allows us to compare networks
for various values of k and α, but we also estimate α given
technology assumptions described below.

Opera’s cost hinges largely on the circuit switching tech-
nology used. While a wide variety of technologies could be
used in principle, using optical rotor switches [34] is likely
the most cost-effective because (1) they provide low optical
signal attenuation (about 3 dB) [33], and (2) they are com-
patible with either single mode or multimode signaling by
virtue of their imaging-relay-based design [33]. These factors
mean that Opera can use the same (cost) multimode or simgle-
mode transceivers used in traditional networks, unlike many
other optical network proposals that require expensive and
sophisticated telecom grade gear such as wavelength tunable
transceivers or optical amplifiers. Based on the cost estimates
of commodity components taken from [29] and rotor switch
components (summarized in Table 2), we approximate that
an Opera port costs about 1.3× more than a static network
port (i.e. α=1.3).

B Hybrid cost-performance tradeoff
In Section 5, we evaluated the performance of a hybrid

RotorNet which faced one of the six available ToR uplinks to
a multi-stage packet switched network (for 1.33× the cost of
the other networks evaluated). Here, we consider the tradeoff
between FCT and cost for a broader range of hybrid packet
switched bandwidths. To consider small fractions of packet
switched bandwidth, we allow the bandwidth of a single ToR
uplink to be split arbitrarily between the packet and circuit
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Component Static Opera
SR transceiver $80 $80
Optical fiber ($0.3/m) $45 $45
ToR port $90 $90
Optical fiber array - $30 †
Optical lenses - $15 †
Beam-steering element - $5 †
Optical mapping - $10 †
Total $215 $275
α ratio 1 1.3

Table 2: Cost per “port” for a static network vs. Opera. A
“port” in a static network consists of a packet switch port,
optical transceiver, and fiber. A “port” in Opera consists of
a packet switched (ToR) port, optical transceiver, and fiber,
as well as the components needed to build a rotor switch.
The cost of rotor switch components is amortized across the
number of ports on a given rotor switch, which can be 100s
or 1,000s; we present values in the table assuming 512 port
rotor switches. († per duplex fiber port)
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Figure 15: Relative cycle time is improved at larger scale by
grouping circuit switches and allowing one switch in each
group to reconfigure simultaneously.

networks. Figure 14 shows the resulting tradeoff between
cost and the FCTs for 1 kB flows in the Datamining workload
running at 25% load (similar trends were observed for other
loads and flow sizes). As cost is reduced in hybrid RotorNet
(by allocating a smaller percent of total network bandwidth to
the packet switched network), FCTs begin to rise substantially
due to increased network congestion.

C Reducing cycle time at scale
Larger Opera networks are enabled by higher radix ToR

switches, which commensurately increase the number of cir-
cuit switches. To prevent the cycle time from scaling quadrat-
ically with the ToR radix, we allow multiple circuit switches
to reconfigure simultaneously (ensuring that the remaining
switches deliver a fully-connected network at all times). As
an example, doubling the ToR radix doubles the number of
circuit switches, but presents the opportunity to cut the cycle
time in half by reconfiguring two circuit switches at a time.
This approach offers linear scaling in the cycle time with
the ToR radix, as shown in Figure 15. Assuming we divide
circuit switches into groups of 6, parallelizing the cycle of
each group, the cycle time increases by a factor of 6 from a
k = 12 (648-host network) to a k = 64 (98,304-host network),
corresponding to a flow length cutoff for “bulk” flows of 90
MB in the latter case.

D Additional scaling analysis
Figure 16 shows the performance-cost scaling trends for

various traffic patterns for networks with k = 12 port ToRs.
Comparing with Figure 12, we observed nearly identical per-
formance between networks with k = 12 and k = 24, indi-
cating the (cost-normalized) network performance is nearly
independent of scale for all networks considered (folded Clos,
static expanders, and Opera).

To analyze this result at a more fundamental level, we
evaluated the average and worst-case path lengths for ToR
radices between k = 12 and k = 48 for both Opera and static
expanders at various cost points (α). Figure 17 shows that
the average path lengths converge for large network sizes
(the worst-case path length for all networks including Opera
was 4 ToR-to-ToR hops for k = 24 and above). Given that
the network performance properties of static expanders are
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correlated with their path length properties [6], Figure 17
supports our observation that the cost-performance properties
of the networks do not change substantially with network size.

E Spectral efficiency and path lengths
The spectral gap of a network is a graph-theoretic metric

indicating how close a graph is to an optimal Ramanujan
expander [25]. Larger spectral gaps imply better expansion.
We evaluated the spectral gap for each the 108 topology slices
in the example 648-host 108-rack Opera network analyzed in
the text, and compared it to the spectral gaps of a number or
randomly-generated static expanders with varying d:u ratios.
All networks used k = 12 radix ToRs and were constrained to
have a nearly-equal number of hosts. The results are shown
in Figure 18. Note that expanders with larger u require more
ToR switches (i.e., cost more) to support the same number of
hosts.

Interestingly, when the number of hosts is held constant, we
observe that the average and worst-case path length is not a
strong function of the spectral gap. Further, we see that Opera
comes very close to the best average path length achievable
with a static expander, indicating that it makes good use of
the ToR uplinks in each topology slice. Opera achieves this

0.5 1 1.5 2 2.5 3
Spectral Gap

0

1

2

3

4

5

6

Pa
th

 L
en

gt
h

Worst-cases
Averages

Opera

Static
u = 5

Static
u = 6

Static
u = 7

Static
u = 8

Figure 18: Average and worst-case path lengths and spectral
gap for Opera and static expander networks. All networks
use k = 12-port ToR switches and have between 644 and 650
hosts. Each data point for Opera corresponds to one of its 108
topology slices.

good performance despite the fact that we have imposed addi-
tional constraints to support bulk traffic with low bandwidth
tax: unlike a static expander, Opera must provide a set of
Nracks = 108 expanders across time, and those expanders are
constructed from an underlying set of disjoint matchings.
F Additional failure analysis

Opera recomputes paths to route around failed links, ToRs,
and circuit switches, and in general these paths will be longer
than those under zero failures. Figure 19 shows the correlation
between the degree of each type of failure and the average
and maximum path length (taken across all topology slices).

For reference, we also analyzed the fault tolerance proper-
ties of the 3:1 folded Clos and u = 7 expander discussed in
the paper. Figure 20 shows the results for the 3:1 Clos and
Figure 21 shows results for the u = 7 expander. We note that
Opera has better fault tolerance properties than the 3:1 folded
Clos, but the u = 7 expander is better yet. This is not surpris-
ing considering the u = 7 expander has significantly more
links and switches, as well as higher fanout at each ToR.
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for various failure conditions. Path length is reported for all finite-length paths. Figure 11 indicates how many ToR-pairs are
disconnected (i.e. have infinite path length).
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Figure 20: Connectivity loss and impact on path lengths in the 3:1 folded Clos for link failures (top two) and ToR failures
(bottom two).
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Figure 21: Connectivity loss and impact on path lengths in the u = 7 expander for link failures (top two) and ToR failures
(bottom two).
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