
This paper is included in the Proceedings of the 
17th USENIX Symposium on Networked Systems Design  

and Implementation (NSDI ’20)
February 25–27, 2020 • Santa Clara, CA, USA

978-1-939133-13-7

Open access to the Proceedings of the  
17th USENIX Symposium on Networked  

Systems Design and Implementation  
(NSDI ’20) is sponsored by

Scalog: Seamless Reconfiguration  
and Total Order in a Scalable Shared Log

Cong Ding, David Chu, and Evan Zhao, Cornell University; Xiang Li, Alibaba Group; 
Lorenzo Alvisi and Robbert van Renesse, Cornell University 

https://www.usenix.org/conference/nsdi20/presentation/ding



Scalog: Seamless Reconfiguration and Total Order in a Scalable Shared Log

Cong Ding David Chu Evan Zhao Xiang Li† Lorenzo Alvisi Robbert van Renesse

Cornell University †Alibaba Group

Abstract

The shared log paradigm is at the heart of modern distributed

applications in the growing cloud computing industry. Of-

ten, application logs must be stored durably for analytics,

regulations, or failure recovery, and their smooth operation

depends closely on how the log is implemented. Scalog

is a new implementation of the shared log abstraction that

offers an unprecedented combination of features for continu-

ous smooth delivery of service: Scalog allows applications to

customize data placement, supports reconfiguration with no

loss in availability, and recovers quickly from failures. At the

same time, Scalog provides high throughput and total order.

The paper describes the design and implementation of Sca-

log and presents examples of applications running upon it. To

evaluate Scalog at scale, we use a combination of real exper-

iments and emulation. Using 4KB records, a 10 Gbps infras-

tructure, and SSDs, Scalog can totally order up to 52 million

records per second.

1 Introduction

A shared log1 offers a simple and powerful abstraction: a

sequence of ordered records that can be accessed and ap-

pended to by multiple clients. This combination of power

and simplicity makes them a popular building block for

many modern datacenter applications. All cloud providers

offer a shared log service (e.g., AlibabaMQ [2], Amazon

Kinesis [3], Google Pub/Sub [8], IBM MQ [10], Microsoft

Event Hubs [13], and Oracle Messaging Cloud Service [14]),

which is also available through multiple open source imple-

mentations (e.g, Apache Kafka [36], Corfu [21], and Fuzzy-

Log [41]).

Shared logs are used to (1) record and analyze web ac-

cesses for recommendations, ad placement, intrusion detec-

tion, performance debugging, etc. [11, 31, 36, 50]; (2) pre-

pare a transport between stages in a processing pipeline

that may be replayed for failure recovery [11, 50], and

more broadly; (3) address the trade-off between scalability

and consistency [51]. Consider, for instance, deterministic

databases [22, 34, 35, 47, 48]: retrieving transactions from a

1A shared log is also known as a message bus, but not all message buses

provide a durable message store.

single shared log allows these databases to shorten or elim-

inate distributed commit protocols, avoid distributed dead-

locks, and achieve, in principle, superior transactional scal-

ability [44, 47, 48].

An ideal implementation of the shared log abstraction

should be capable of growing elastically in response to the

needs of its client applications, without compromising avail-

ability; recover quickly from failures; adopt the data layout

that best matches the performance requirement of its clients;

and scale write throughput without giving up on total order.

Unfortunately, no single shared log today can offer this com-

bination of features. In particular, no shared log provides

both total order and seamless reconfiguration, i.e., the capa-

bility to reconfigure the service without compromising its

global availability.

The state-of-the-art Corfu [21] can adapt to applications’

needs by adding or removing storage servers, while main-

taining total order across records stored on different servers.

However, any change in the set of storage servers makes

Corfu unavailable until the new configuration has been com-

mitted at all storage servers and clients. The Corfu data

layout is defined by an inflexible round-robin policy, with

significant performance implications: for example, reads re-

quire playing back the log where relevant updates are in-

terspersed with unrelated records (a potential performance

bottleneck) and writes cannot be directed to the closest stor-

age server to reduce latency. vCorfu [51], an object store

based on Corfu, addresses the issue of slow reads by com-

plementing the Corfu shared log with materialized streams,

log-like data structures that store together updates that refer

to the same object. For this gain in performance, vCorfu pays

in robustness: whenever a log replica and a stream replica

fail concurrently—a more likely event as the system scales

up [25]—vCorfu is at risk of losing data. Finally, the tension

between scaling across multiple storage servers and guar-

anteeing total order ultimately limits Corfu’s write through-

put. The optimized Corfu implementation used in Tango [22]

achieves, to the best of our knowledge, the best throughput

among today’s totally ordered shared logs but, at about 570K

writes/sec, its performance falls short of the needs of appli-

cations like Taobao [16], Alibaba’s online market, which ran

millions of database writes/sec at its 2017 peak [1].

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation    325



Scalog, the new shared log that this paper introduces, aims

to address these limitations. Like Corfu, Scalog can scale

horizontally by adding shards and guarantees a single to-

tal order for all records, across all shards. However, recon-

figuring Scalog by adding or removing shards requires no

global coordination and does not affect its availability. Fur-

ther, Scalog’s API gives applications the flexibility to select

which records will be stored in which shard: this allows Sca-

log to replicate the functionality offered by vCorfu’s materi-

alized streams without trading off robustness. Indeed, Sca-

log operates under weaker failure assumptions (and hence

is inherently more robust) than prior totally-ordered shared

logs [21,22,51]: it assumes that faulty servers will crash [29],

rather than fail-stop [45], thus sidestepping the so-called

“split-brain syndrome” [26].2 Finally, though Scalog cannot

scale write throughput indefinitely, it can deliver throughput

almost two orders of magnitude higher than Corfu’s, with

comparable latency.

Scalog’s properties derive from a new way of decoupling

global ordering from data dissemination. Decoupling these

two steps is not a new idea. For example, in Corfu, the se-

quencer that globally orders records is not responsible for

their replication; once the order has been decided, replica-

tion is left to the clients, thus allowing data dissemination to

scale until ordering ultimately becomes the bottleneck.

The key to Scalog’s singular combination of features is

to turn on its head how decoupling has traditionally been

achieved. In Corfu (as well as Facebook’s LogDevice [12]),

order comes before persistence: records are first assigned

unique sequence numbers in the total order, and then repli-

cated; in Scalog, the opposite is true: records are first repli-

cated, and only then assigned a position in the total order.

As mentioned above, Corfu requires that all clients and

storage servers hold the same function to map sequence

numbers to specific shards, causing Corfu to be temporar-

ily unavailable when shards are added or removed. By or-

dering only records that have already been replicated, Sca-

log sidesteps the need to resolve the delicate case in which a

client, having reserved a slot in the total order for one of its

records, fails before making that record persistent. Without

this burden, Scalog can seamlessly reconfigure without any

loss of availability, and give applications the flexibility to in-

dependently specify which shards should store their records,

thus matching vCorfu’s data locality without the need of ded-

icated stream replicas.

Specifically, Scalog clients write records directly to stor-

age servers, where they are (trivially) FIFO ordered without

the mediation of a global sequencer. Records received by

a storage server are then immediately replicated across the

other storage servers in the same shard. To produce a total

2The essential difference is that crash failures cannot be accurately de-

tected, while in the fail-stop model, it is assumed that failures can be de-

tected accurately by some oracle. Violation of this assumption can lead to

inconsistencies.

order, Scalog periodically interleaves the FIFO ordered se-

quences of records stored at each server.

We recognize that not all applications require a global total

order, and many industrial applications have been built using

shared logs such as Kafka [36] that only provide a total order

per shard. However, our unique way of providing total order

comes at practically no cost to throughput even under recon-

figuration, while latency within a datacenter is no more than

a few milliseconds. Programmers thus only need to consider

performance when deciding how to shard their applications,

an otherwise difficult balancing game between achieving the

required throughput and correctness [18, 27, 28, 44]. Also, a

global total order supports reproducibility, simplifying find-

ing bugs in today’s complex distributed applications.

Our evaluation of a Scalog prototype implemented on a

CloudLab cluster [4] confirms that Scalog’s persistence-first

approach comes closer to an ideal implementation of the

shared log abstraction in three main respects:

• It provides seamless reconfiguration. Our prototype

sees no increase in latency or drop in throughput while

Scalog is being reconfigured.

• It offers applications the flexibility to select where the

records they produce should be stored. We use this ca-

pability to build vScalog, a Scalog-based object store

that matches the read latency of vCorfu (and achieves

twice its read throughput) while offering stronger fault-

tolerance guarantees.

• It offers (almost) guilt-free total ordering of log records

across multiple shards. While Scalog does not elim-

inate the trade-off between scalable write throughput

and total order, it pushes the pain point much further: its

maximum throughput is essentially limited by the max-

imum number of shards times the maximum through-

put of each shard. With 17 shards, each with two stor-

age servers, each processing 15K writes/sec, our pro-

totype achieves a total throughput of 255K totally or-

dered writes/sec. Through emulation, we demonstrate

that, at a latency of about 1.6 ms, Scalog can handle

about 3,500 shards, or about 52M writes/sec—two or-

ders of magnitude higher than the best reported value to

date at comparable latency [22].

2 Motivation and Design

We motivate Scalog and its design principles with an on-

line marketplace that enables sellers to list and advertise

their merchandise, and allows buyers to browse and purchase.

Page views and purchases are stored in a log that is used for

multiple purposes, including extracting statistics (such as the

number of unique visitors), training machine learning algo-

rithms that can recommend merchandise and sellers to buy-

ers, and simplifying fault tolerance by providing applications

with a shared “ground truth” about the system’s state.

This example highlights six key requirements for the un-

derlying shared log. First, the log requires auto-scaling, the

326    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



append(r) Append record r, and return the global

sequence number.

trim(l) Delete records before global sequence

number l.

subscribe(l) Subscribe to records starting from

global sequence number l.

setShardPolicy(p) Set the policy for which records get

placed at which storage servers in

which shards.

appendToShard(r) Append record r, and return the global

sequence number and shard identifier.

readRecord(l, s) Request the record with sequence

number l from shard s.

Table 1: Scalog API

ability to dynamically increase or decrease available through-

put as needs change (e.g., during the holiday seasons) with-

out causing any downtime. Second, for reproducibility dur-

ing debugging and consistent failure recovery, the log should

be totally ordered. Third, the log must minimize latency,

for example, by allowing log clients to write to the nearest

replica. Fourth, the log must provide high append throughput

to support large volumes of store activity. Fifth, the log must

provide high sequential read throughput to support analytics,

which periodically read sub-sequences of the log. Finally, the

log must be fault tolerant, as the online services that depend

on it should be uninterrupted. Below, we discuss how Scalog

addresses these requirements.

2.1 Scalog API

Scalog provides the abstraction of a totally ordered shared

log. Table 1 presents a simplified API that omits support for

authentication and authorization, as well as the ability to sub-

scribe only to records that satisfy a specific predicate.

The first three methods are sufficient for most applications.

The append method adds a record to the log. When it returns,

the client is guaranteed that the record is committed, mean-

ing that it cannot be lost (it has been replicated onto multiple

disks) and that it has been assigned a global sequence num-

ber (its unique log position among committed records). The

trim method allows a prefix of the log to be garbage col-

lected. Finally, the subscribe method subscribes to com-

mitted log records starting from global sequence number l.

Scalog guarantees that (1) if append(r) returns a sequence

number, each subscriber will eventually deliver r; and (2) any

two subscribers deliver the same records in the same order.3

Note that these guarantees are sufficient to implement a repli-

cated state machine [46] using Scalog.

To achieve high throughput and support flexible alloca-

tion of resources, Scalog structures a log as a collection of

shards, each in turn containing a collection of records. Ap-

plications can exploit the existence of shards to optimize

3These guarantees hold only in the absence of trimming. Trimmed

records may never be delivered to some subscribers.

performance with the remaining three API methods. The

setShardPolicy method lets applications specify a func-

tion used to assign records to storage servers and shards.

The appendToShard method behaves as append, but in ad-

dition returns the identifier of the shard where the record is

stored. The readRecord method allows random access to

records by sequence number, assuming the shard identifier is

known (e.g., for having been returned by a prior invocation

of appendToShard). Under concurrent access, Scalog offers

fully linearizable semantics [32]—the strongest possible con-

sistency guarantee.

Besides this API, Scalog provides various management

interfaces that allow reconfiguring the log seamlessly in re-

sponse to failures and to the changing needs of the applica-

tions it serves. Specifically, Scalog can create new shards on-

the-fly (if load increases), as well as turn shards from live to

finalized. New records can only be appended to live shards;

once finalized, a shard is immutable.

Finalizing shards serves three purposes. First, Scalog opti-

mizes finalized shards for read throughput. To prevent read-

heavy analytics workloads from affecting the performance of

online services, an operator may create new shards, finalize

the old shards (effectively, creating a checkpoint), and then

run the analytics workload on the finalized shards. Second,

when a storage server in a shard fails, append throughput may

be affected; rather than recovering the failed server, Scalog

allows finalizing the entire shard and replacing it with a new

one (see §3). If one wishes to restore the level of durability,

additional replicas may be created after a shard is finalized.

Third, finalized shards may be garbage collected: this is how

resources are reclaimed after a log is trimmed.

2.2 “Order first” Considered Harmful

Current totally ordered log implementations [6, 12, 21, 22]

share a similar architecture: to append a new record, a client

first obtains the record’s position in the log, the log sequence

number, via some sequencer, and then proceeds to make the

record persistent. This design raises two challenges.

The first challenge is supporting flexible data placement

and seamless reconfiguration. The difficulty comes from hav-

ing to maintain the consistency of the log when failures

occur—a dilemma that arises whenever a storage system

makes decisions about an item’s metadata before making per-

sistent the item itself [20,30]. Under failure, a record may get

lost; this “hole” in the log needs to be filled before other tasks

can read beyond the missing entry. Solving this problem re-

quires a costly system-wide agreement on a mapping from

log sequence numbers to where records are stored: changes

to this mapping are exceedingly expensive, since, until a new

mapping is agreed upon, the system cannot operate. For ap-

plications using the log, this cost translates into two main

limitations. First, they have no practical way of dynamically

optimizing the placement of the records they generate, since

frequent changes to the mapping would be prohibitively ex-

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation    327



pensive; second, each time storage servers are added or re-

moved for any reason, they experience a system-wide outage

until the new mapping is committed and distributed [21, 22].

The second challenge is that the sequencer can quickly

become a bottleneck: designing a sequencer capable of

operating at high throughput requires significant engineer-

ing effort, frequently involving custom hardware, such as

programmable switches (e.g., NOPaxos [40]) or write-once

disks (e.g., Corfu [21]).

2.3 Scalog Design Overview

By adopting a persistence-first architecture, Scalog avoids

these challenges. It achieves no-downtime reconfiguration,

quick failure recovery, and high throughput, without using

custom hardware, via a new, simple, protocol for totally or-

dering persistent records across multiple shards.

In Scalog, each shard is a group of storage servers that

mutually replicate each other’s records. Scalable throughput

is achieved by creating many high-throughput shards, as in

Kafka [50]; however, unlike Kafka, which only provides total

order within individual shards, Scalog delivers a single total

order across all shards.

Persistence in Scalog is straightforward. A client sends a

record to a storage server of its choice, before knowing the

record’s global sequence number. Storage servers append in-

coming records, which may come from different clients, to a

log segment which they replicate by forwarding new records

through FIFO channels to all other storage servers within

their shard. Thus, each storage server maintains a primary

log segment as well as backup log segments for every other

storage server in its shard. Because of FIFO channels, every

backup log segment is a prefix of the primary log segment.

Scalog’s second key insight is leveraging the FIFO order-

ing of records at each storage server to leapfrog the through-

put limits of traditional sequencers.

Periodically, each storage server reports the lengths of the

log segments it stores to an ordering layer. The ordering

layer, also periodically, determines which records have been

fully replicated and informs the storage servers. Using the

globally ordered sequence of reports from the ordering layer,

a storage server can interleave its log segments into a global

order consistent with the original partial order. Afterward, the

storage server can inform clients that their records are both

durably replicated and totally ordered.

The ordering layer of Scalog interleaves not only records

but also other reconfiguration events. As a result, all storage

servers see the same update events in the same order. When a

storage server in a shard fails, Scalog’s ordering layer will no

longer receive reports from the storage server and naturally

exclude further records. Other shards are not affected. Thus,

clients connected to a shard containing a faulty storage server

can quickly reconnect and send requests to servers in other

shards. Concurrently, the affected shard is finalized.

Ordering Layer

Aggregators

Paxos

Leader

Paxos

Followers

Data Layer

Live Shards Finalized Shards

... ...

... ...
Storage Servers

Clients and

Client Libraries

Figure 1: Scalog’s architecture: arrows denote communica-

tion links; circles denote servers; each rectangle denotes one

shard. Servers in the same shard communicate with each

other. In this example, both shards and the Paxos instance

in the ordering layer are configured to tolerate one crash.

3 Architecture

Figure 1 presents an overview of Scalog’s architecture, high-

lighting its three components: a client library, used to is-

sue append, subscribe, and trim operations; a data layer,

consisting of a collection of shards, storing and replicating

records received from clients; and an ordering layer, respon-

sible for totally ordering records across shards.

Client Library. The library implements the Scalog API and

communicates with the data layer (see Table 1).

Data Layer. Scalog’s data layer distributes load along two

dimensions: each log consists of multiple shards, and each

shard consists of multiple storage servers. Each storage

server is in charge of a log segment. Clients send records

directly to a storage server within a shard. When a storage

server receives a record from a client, it stores the record in

its own log segment. For durability, each server replicates the

records in its log segment onto the other storage servers in

its shard. To tolerate f failures, a shard must contain at least

n = f +1 storage servers.

Ordering Layer. The ordering layer periodically summa-

rizes the fully replicated prefix of the primary log segment of

each storage server in a cut, which it then shares with all stor-

age servers. In a Scalog deployment with m shards, each com-

prising n storage servers, the cut has m ·n entries, each map-

ping a storage server identifier to the sequence number of the

latest durable record in its log segment. The storage servers

use these cuts to deterministically assign a unique global se-

quence number to each durable record in their log segments.

Besides enabling global ordering, the ordering layer is also

responsible for notifying storage servers of reconfigurations.

The ordering layer must address two concerns: fault tol-

erance and scalability under high ordering load. Scalog ad-

dresses the first concern by implementing the ordering layer

logic using Paxos [38]. The second concern is that the over-

328    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



Shard 1 in Data Layer

Storage

Server 1

Storage

Server 2

Scalog’s Write Path:

1: Clients send APPEND to servers

2: Servers replicate records to backups

3: Servers send local cuts to order layer

4: Order layer sends global cut to servers

5: Servers send ACK to clients

Shard 2

Storage

Server 1

Storage

Server 2

P 1

B 2

B 1

P 2

LOG: · · ·

LOG: · · ·

LOG: · · ·

LOG: · · ·

Client

Client

Client

Primary 1

Backup 2

Backup 1

Primary 2

LOG: a,b,c LOG: a,b

LOG: d,e, f LOG: d,e, f ,g

Ordering Layer: Paxos and Aggregators

1: AP
PEN

D,c

1: APP
END,

f

1: APPEND,b
2: a,b

2: d,e, f

3:
lo

ca
l c

ut
(3
,3
)

3
:

lo
ca

l
cu

t
(2
,
4
)

4:
gl

ob
al

cu
t (

2,
3,

6,
4)

4
:

g
lo

b
al

cu
t
(2
,
3
,
6
,
4
)

5: ACK, l = 2

5: ACK, l = 5

3
:

lo
cal

cu
t
(8
,4)

3
:

lo
cal

cu
t
(6
,5)

4
:

g
lo

b
al

cu
t
(2
,3
,6
,4)

4
:

g
lo

b
al

cu
t
(2
,3
,6
,4)

Figure 2: Scalog message flow for append operations

head of managing TCP connections and handling the order-

ing requests could overwhelm the ordering layer when there

are a large number of shards. This concern is addressed with

the help of the aggregators, illustrated in Figure 1. Scalog

spreads the load using a tree of aggregators that relay or-

dering information from the storage servers at the leaves up

to the replicated ordering service. Each leaf aggregator col-

lects information from a subset of storage servers (we as-

sume servers in the same shard report to the same leaf ag-

gregator) and determines the most recent durable record in

their log segment before passing the information up. Aggre-

gators use soft state and do not need to be replicated—if sus-

pected of failure, they can easily be replaced. The ordering

reports passed up the tree are self-sufficient, and need not be

delivered in FIFO order. The aggregator tree is maintained

by the replicated service in its root—no decentralized algo-

rithms are needed to eliminate loops and orphans.

4 Scalog’s Workflow

To further elucidate how Scalog works, we present a detailed

explanation of the execution paths for append, read, and trim

(garbage collection) operations.

4.1 Append Operations

When an application process first invokes its client library

to start appending data to the log, the client library chooses

a shard according to the current sharding policy set by

setShardPolicy(p). If no policy has been specified, Sca-

log applies its default selection policy, choosing a random

storage server in a random live shard as the write target.

Having established a destination shard s and storage server

d, the application process can add records to the log. When

append(r) or appendToShard(r) is invoked, the client li-

brary forwards record r to storage server d in an APPEND

message (Figure 2, Step 1) and awaits an acknowledgment.

As shown in Step 2 of Figure 2, each storage server repli-

cates in FIFO order the records it receives onto its peer

storage servers in s. In-shard replication resembles Primary-

Backup (PB) [19, 24]: each storage server acts as both

Primary for the records received directly from clients and

Backup for the records in the log segments of its peer storage

servers in the shard. Scalog differs from PB in how storage

servers learn which records in their log segment have become

durable. Instead of relying on direct acknowledgments from

its peers, each storage server periodically reports to the or-

dering layer a local cut—an integer vector summarizing the

records stored in this storage server’s log segments (Step 3

in Figure 2). Because log segment replication occurs in FIFO

order, each integer in the local cut is an accurate count of the

number of records stored in the corresponding log segment.

The ordering layer combines these local cuts to determine

the latest durable record in the log segment of each storage

server. Let vi be the local cut for server i in shard s; vi[i] repre-

sents the number of records in i’s log segment (i.e., those that

i, serving as Primary, received directly from its clients) while

vi[ j], j 6= i, is the number of records that server i is backing

up for its peer storage server j. The ordering layer can then

compute the number of durable records in i’s log segment as

the element-wise minimum of all v j[i] for all storage servers

j in s. For instance, assume f = 1 and suppose the order-

ing layer has received from the two storage servers r1 and

r2 in shard s the local cuts v1 = 〈3,3〉 and v2 = 〈2,4〉. Then,

〈2,3〉 expresses all durable records in shard s (see Shard 1 in

Figure 2). By repeating this process for all storage servers in

every shard, the ordering layer assembles a global cut, a map

that represents records stored in all log segment replicas and

therefore durable. To prevent the number of entries in global

cuts from growing indefinitely, we use a single integer to rep-

resent the total number of records in all finalized shards. The

ordering layer then forwards each global cut to all storage

servers (Step 4 in Figure 2).

The totally ordered sequence of cuts can be used to in-

duce a total ordering on individual records. Summing the

sequence numbers in the elements of a cut gives the total

number of records that are ordered up to and including that

cut. The difference between any two cuts determines which

records are covered by those two cuts. We use a determinis-

tic function that specifies how to order the records in between

two consecutive cuts. In our current implementation, we use

a simple lexicographic ordering: records in lower-numbered

shards go before records in higher-numbered shards, and

within a shard records from lower-numbered storage servers

go before records from higher-numbered storage servers.

Therefore, upon receipt of a global cut, a storage server can

determine which records in its primary log segment are now

globally ordered, and then acknowledge the corresponding

append requests by returning the record’s global sequence

number to the client (Step 5 in Figure 2). Should a storage

server fail, a client can ask any of its backup for the current

status of its records.

Note that the load on the ordering layer is independent of

the write throughput—it only depends on the number of stor-

age servers and the frequency of their reports.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation    329



4.2 Read Operations

Applications can read from the log either by subscribing or

by requesting specific records. The subscribe operation

broadcasts the request to a random storage server in each

shard. Upon receiving a subscribe(l) request, the storage

server sends the client all records it already stores whose

global sequence number is at least l and then continues for-

warding future committed records.

Recall that an application process, by calling

appendToShard(r), obtains the shard identifier s that

stores record r, as well as its global sequence number l. If

at a later time the process needs to bring r back in memory,

it can do so by invoking readRecord(l,s). In response,

the client library contacts a random storage server in s to

read the record associated with global sequence number

l. The receiving storage server then computes lmax, the

largest global sequence number it has observed, by applying

the deterministic scheme of §4.1 to the latest cut received

from the ordering layer, and proceeds to compare l and

lmax. If l ≤ lmax, the storage server uses l to look for r in

its local log and, if it finds it, returns it; otherwise, if the

record has been trimmed (see §4.3), it returns an error. If

l > lmax, the storage server waits for new cuts from the

ordering layer and updates lmax until l ≤ lmax; only then

does it proceed, as in the previous case, returning to the

application process either r or an error message. Allowing

responses only from storage servers for which l ≤ lmax is

critical to guarantee linearizability for concurrent read and

append operations, as it prevents stale storage servers from

incorrectly returning error messages. The client library may,

however, timeout, waiting for a storage server to respond; if

so, the client library contacts another storage server in s (the

storage server holding r in its log segment is guaranteed to

eventually respond).

4.3 Trim Operations

Calling trim(l) garbage collects the log prior to the record

with global sequence number l. The client library broadcasts

the trim(l) operation to all storage servers in all shards;

upon receipt, they proceed to delete the appropriate prefix

of the log stored in their respective log segments.

4.4 Reconfiguration and Failure Handling

Reconfiguration can happen often in Scalog, not only to re-

cover from failures (which are more likely as scale increases),

but also to handle growing throughput or needed capacity.

For example, an application that needs to run a read-intensive

analytics job can finalize the shards storing the relevant data,

making them read-only. For these reasons, Scalog strives to

make adding and finalizing shards seamless.

4.4.1 Adding and Finalizing Shards

Adding a new shard is straightforward: as soon as the shard

and its servers register with the ordering layer, the new shard

can be advertised to clients. Other shards are unaffected, but

for the larger-sized cut, its storage servers will henceforth re-

ceive from the ordering layer.

We distinguish two types of shard finalization: scheduled

finalization and emergency finalization. Scheduled finaliza-

tions are initiated in anticipation of shard workload changes.

To transition clients off of shards facing impending finaliza-

tion, Scalog supports a management operation that causes the

ordering layer to stop accepting ordering reports from a shard

after a configurable number of committed cuts. This gives

clients a “grace period” so that they can smoothly transition

to another live shard. Emergency finalizations are needed

when a server in a shard fails (see Finalize & Add in §4.4.2);

these failed shards are finalized immediately.

4.4.2 Handling Storage Server Failures

Failing or straggling storage servers are detected either by

Paxos servers directly connected to them or by aggregators.

Problems are notified to the ordering layer, which in turn

initiates reconfiguration. Applications have three options to

configure how Scalog handles slow or failed storage servers.

Finalize & Add (Requires at least f + 1 storage servers per

shard): If a storage server is suspected of having failed or is

intolerably slow, its entire shard s is finalized. Clients of s

can redirect their writes to other shards; concurrently, a new

shard is added to restore the log’s overall throughput. Be-

cause the ordering layer totally orders finalization operations

and cuts, the latest cut before s is finalized reveals which

records s successfully received and ordered: these records

can be retrieved from any of the surviving storage servers in

the shard. Records received but not incorporated in s’s latest

cut must be retransmitted by the originating clients to differ-

ent shards. Corfu also responds to a storage server failure by

finalizing its shard and adding a new one. During this pro-

cess, however, all Corfu’s shards are unavailable; in contrast,

Scalog’s non-faulty shards are unaffected (see §6.2).

Applications that require data locality may run applica-

tion processes in storage servers (see §5.3). Finalize & Add

would force those processes, if an entire shard is finalized, to

migrate. Instead, Scalog supports two alternative options.

Remove & Replace (Requires at least f + 1 storage servers

per shard): As in vCorfu, Scalog can replace a failed storage

server with a new one, which can then copy records from its

shard’s surviving storage servers. During this process, the af-

fected shard is temporarily unavailable for writes (but contin-

ues to serve reads). This option suffers from a longer service

recovery time [25].

Mask (Requires at least 2 f + 1 storage servers per shard):

At the cost of extra resources, this option ensures that, if no

more than f of its storage servers fail, a shard will continue to

process both reads and writes. This option also masks strag-

gling storage servers. For long-term availability, new storage

servers can be added to replace faulty ones; they can copy

records from the shard’s surviving servers.

330    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



Replicas Data Service

per Shard Locality Recovery Time

Finalize & Add f +1 No Short

Remove & Replace f +1 Yes Long

Mask 2 f +1 Yes Zero

Corfu f +1 No Short

vCorfu f +1 Yes Long

Table 2: Trade-offs of different approaches to handling stor-

age server failures

All options guarantee linearizable semantics under crash

failures, but they provide different trade-offs with respect to

resource usage, data locality, and service recovery time after

a failure. Table 2 summarizes these trade-offs and compares

these options with failure recovery in Corfu and vCorfu.

4.4.3 Handling Ordering Layer Failures

Failures in the ordering layer can affect replicas running Sca-

log’s ordering logic as well as aggregators. Replica failures

are handled by Paxos; aggregator failures are handled by

leveraging the statelessness of aggregators. A storage server

or an aggregator that suspects its neighboring aggregator of

having failed reports to the ordering layer, which responds

by creating a new aggregator to replace the suspected one.

A mistaken suspicion does not harm correctness, as both the

new and the wrongly suspected aggregator correctly report

local ordering information to their parent.

A distinguishing feature of Scalog is that Scalog suffers

no net throughput loss because of ordering layer failures. Be-

cause of Scalog’s approach to decoupling ordering from data

replication, storage servers continue accepting client append

requests and ordering records locally in their log segments,

independent of the status of the ordering layer. Any tem-

porary loss of throughput caused by an ordering layer fail-

ure is thus made up for as soon as the failure is recovered,

when these locally ordered records are seamlessly inserted

in the next cut issued by the repaired ordering layer. It does

cause a spike in throughput because the repair interleaves

all delayed records that are already replicated in one single

cut. This is in contrast to sequencer-based logs where, after

throughput halts because of a sequencer failure and reconfig-

uration [17, 21]), throughput goes back to normal instead of

compensating for the loss of availability.

5 Applications

Applications can configure Scalog and customize sharding

policies to satisfy their requirements. This section discusses

typical applications that benefit from Scalog and demon-

strates how to configure Scalog and set sharding policies.

5.1 The Online Marketplace

The online marketplace we used to motivate the Scalog

design logs user activities (sellers listing products, buyers

browsing and purchasing products, etc.) to Scalog for analyt-

ics and fault tolerance. To satisfy the requirements discussed

in §2, we configured Scalog to use Finalize & Add to handle

storage server failures and for a sharding policy we let each

application process write to the nearest storage server.

If an application process writes at a rate that may over-

whelm a single shard, it may select multiple shards to dis-

tribute the writes. Periodically, analytics jobs read Scalog,

which may negatively affect the write rate; therefore, before

performing analytics jobs, the online marketplace finalizes

shards and adds new shards: the online marketplace writes

to newly added shards, and analytics jobs read from finalized

shards. This isolation makes sure analytics reads do not neg-

atively affect online writes.

Using the API discussed in §2, the online marketplace

calls append to log user activities. Periodically, analytics

jobs use the subscribe API to extract data. When any of

the system components fail, the online marketplace calls

subscribe to replay the log and reproduce its state.

5.2 Scalog-Store

Modeled after Corfu-Store [21], Scalog-Store uses Scalog

as its underlying storage. Scalog-Store configures Scalog to

handle storage server failures using Finalize & Add, as it is

the same as how Corfu handles failures. Like the online mar-

ketplace’s sharding policy, the sharding policy is for an ap-

plication process to select the nearest storage server.

Scalog-Store supports the same operations as Corfu-Store:

atomic multi-get, multi-put, and test-and-multi-put

(conditional multi-put). Scalog-Store uses a mapping

server with an in-memory hash map that maps each key to a

pair (l,s) containing a global sequence number l and a shard

identifier s where the latest record containing the value of

that key is stored.

To implement multi-get, which takes a set of keys as in-

put, a client retrieves, in a single atomic request, the (l,s)
pairs for the keys from the mapping server. The client then

calls readRecord(l,s) for each pair to get each key’s value.

To implement multi-put, a client first executes

appendToShard(〈key,value〉) for each key to receive

corresponding (l,s) pairs. Next, the client creates a commit

record that contains the set of (key,(l,s)) records for each

key and uses appendToShard to add the commit record

to the log. (An optimization for single-key multi-put

operations is only to log a commit record containing the key

and value.) The client then forwards the commit record to

the mapping server, which updates its hash map accordingly

and responds. multi-put finishes on receipt of the response.

Should the mapping server crash, a new server can re-read

the log and rebuild a current hash map.

The implementation of test-and-multi-put is similar to

that of multi-put, but adds a test condition to the commit

record. Upon receiving the forwarded commit record, the

mapping server evaluates the test condition to decide whether

to commit the operation. If so, the mapping server processes

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation    331



the operation normally; otherwise, the mapping server pro-

cesses the operation as a no-op. Finally, the mapping server

returns the result to the client.

5.3 vScalog

Modeled after vCorfu [51], an object store based on Corfu,

vScalog is an object store that runs on Scalog. The key differ-

ence between vScalog and vCorfu is how they guarantee data

locality. vCorfu maintains a separate log, a so-called materi-

alized stream, for each object, in addition to a global shared

log. A client has to write an object update to the shared log

for total order and to the materialized stream for data local-

ity. vScalog, instead, leverages Scalog’s sharding policy to

map each object to one shard, effectively using each Scalog

shard as a materialized stream. As a result, the single shared

log guarantees both total order and data locality. vScalog can

configure Scalog to handle storage server failures using ei-

ther Remove & Replace or Mask; our implementation uses

Remove & Replace because it is how vCorfu handles failures.

Compared with vCorfu, vScalog offers two main advan-

tages. First, it is more robust: it can tolerate f failures in each

shard, while vCorfu cannot handle a log replica and a stream

replica failing simultaneously. Second, it offers higher read

throughput: it lets clients read from all the replicas in a shard,

while vCorfu’s clients only read from stream replicas. A dis-

advantage is that vScalog requires all transactions, including

those that will eventually abort, to be written to the log. The

fundamental reason goes back to Scalog’s persistence-first ar-

chitecture, as the predicate on a test-and-multi-put opera-

tion may depend on the position of the corresponding record

in the log, which Scalog decides after the record is replicated.

6 Evaluation

The goal of Scalog is to provide a scalable totally ordered

shared log with seamless reconfiguration. In our assessment

of Scalog, we ask the following questions:

• How do reconfigurations impact Scalog? (§6.1)

• How well does Scalog handle failures? (§6.2)

• How much write throughput can Scalog achieve and

what is the latency of its write operations? (§6.3)

• How well do Scalog read operations perform in differ-

ent settings? (§6.4)

• How do Scalog applications perform? (§6.5)

We have implemented a prototype of Scalog in golang [7],

using Google protocol buffers [9] for communication. To tol-

erate f failures, the ordering layer runs Paxos with 2 f + 1

replicas and each shard comprises f + 1 storage servers; un-

less otherwise specified, we set f = 1.

Some of our experiments use Corfu as a baseline for Sca-

log. To enable an “apples-to-apples” comparison, we imple-

mented a prototype of Corfu in golang: it uses one server

as a sequencer, f + 1 servers for each storage shard, and

Google protocol buffers for communication. Our Corfu im-

plementation achieves higher throughput and lower latency

 0

 40

 80

 120

 0  100  200  300

Scalog: adding a shard

T
h

ro
u

g
h

p
u

t
[K

 w
ri
te

s
/s

e
c
]

 

 0  100  200  300

Scalog: finalizing a shard

 

 0

 40

 80

 120

 0  100  200  300

Corfu: adding a shard

T
h

ro
u

g
h

p
u

t
[K

 w
ri
te

s
/s

e
c
]

Time [ms]

 0  100  200  300

Corfu: finalizing a shard

Time [ms]

Figure 3: Throughput during reconfiguration

than Corfu’s open-source implementation [5]. To simplify

comparison with published Corfu benchmarks, we fix the

record size at 4KB.

We run our experiments on 40 c220g1 servers in Cloud-

lab’s Wisconsin datacenter. Each server has two Intel E5-

2630 v3 8-core CPUs at 2.40GHz, 128GB ECC memory, a

480GB SSD, and a 10Gbps intra-datacenter network connec-

tion. Since exploring the limits of Scalog’s write throughput

requires many more than the 40 servers available to us, we

resorted to simulation for results that report on larger config-

urations (specifically, those in Figure 5 in §6.3.2).

6.1 Reconfiguration

To evaluate how Scalog and Corfu perform when shards are

added and finalized, we run both with six shards, each shard

having two storage servers ( f = 1). We target 50K writes/sec,

roughly half of the maximum throughput in this setting. We

either add a shard or finalize a shard at t = 100ms.

Figure 3 shows that Scalog’s throughput is unaffected by

adding or finalizing shards. When shards are added, clients

can continue to use the original shards. Clients connected to

shards are notified prior to finalization (we set the value of

the configuration variable described in §4.4 to 10). During

reconfiguration, throughput in Corfu ceases for roughly 30

ms because all storage servers must be notified before the

new configuration can be used [21].

6.2 Failure Recovery

To evaluate how Scalog and Corfu perform under failure, we

again deploy them with six shards, each with two storage

servers, and use 50K writes/sec. To evaluate performance

under aggregator failure, we add two aggregators to Scalog,

each handling half of the shards. We measure throughput

under four failure scenarios in Scalog: Paxos leader failure,

Paxos follower failure, aggregator failure, and storage server

failure, and under two failure scenarios in Corfu: sequencer

failure and storage server failure. In each scenario, we in-

tentionally kill one server at time t = 2s and measure how

throughput is affected. Figure 4 reports the results for the six

failure scenarios:

Scalog’s Paxos leader and Corfu’s sequencer. Although

records are temporarily unable to commit, Scalog’s storage

servers can continue receiving new records, which are com-

332    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



 0

 40

 80

 120

 0  1  2  3  4  5  6  7  8

Scalog’s Paxos leader failure

Failure time

T
h

ro
u

g
h

p
u

t
[K

 w
ri
te

s
/s

e
c
]

 

 0  1  2  3  4  5  6  7  8

Scalog’s Paxos follower failure

Failure time

 

 0

 40

 80

 120

 0  1  2  3  4  5  6  7  8

Scalog’s aggregator failure

T
h
ro

u
g
h
p
u
t

[K
 w

ri
te

s
/s

e
c
]

 

 0  1  2  3  4  5  6  7  8

Scalog’s storage server failure

 

 0

 40

 80

 120

 0  1  2  3  4  5  6  7  8

Corfu’s sequencer failure

Failure time

T
h
ro

u
g
h
p
u
t

[K
 w

ri
te

s
/s

e
c
]

Time [sec]

 0  1  2  3  4  5  6  7  8

Corfu’s storage server failure

Failure time

Time [sec]

Figure 4: Throughput under different failure scenarios

mitted as soon as a new Paxos leader is elected. Hence, af-

ter a dip, throughput temporarily spikes to catch up, and to-

tal throughput is unaffected, although latency suffers until

a new leader is elected. On the other hand, Corfu’s clients

compete for log positions when the sequencer is unavail-

able [21]. Heavy contention among clients causes Corfu’s

throughput to drop to nearly zero until a replacement se-

quencer joins [17]. Thereupon, Corfu runs at peak through-

put until it catches up and stores all the delayed records; dur-

ing this time, Corfu experiences higher latency.

Scalog’s Paxos follower. No effect on throughput or latency.

Scalog’s aggregator. Again, although the affected storage

servers (in this case, half of all storage servers) are temporar-

ily unable to commit new records, they can continue to re-

ceive them. Thus, the effects on throughput and latency are

similar to those of a Paxos leader failure.

Scalog’s and Corfu’s storage servers. We compare Sca-

log’s Finalize & Add with Corfu because they have the same

trade-offs. In Scalog’s Finalize & Add, the faulty server’s

shard is finalized. Throughput decreases temporarily until

the failure is detected (relying, in our setting, on a one-second

timeout) and all clients connected to the finalized shard are

redirected to storage servers in other shards. Throughput is

restored after slightly more than a second. In Corfu, the faulty

storage server triggers a change in the mapping function;

while this takes place, Corfu is unavailable [21]. Again, once

the failure recovery completes, Corfu is saturated until all

buffered records are stored.

6.3 Write Performance

We measure Scalog’s write latency and throughput by run-

ning each client in a closed loop in which it sends a record

and then awaits an acknowledgment. Latency measures the

time difference between when a client sends the record and

when it receives the acknowledgment. Throughput measures

the number of write operations per second over all clients.

Corfu’s peak throughput depends on the number of shards

and the sequencer’s throughput. Scalog’s peak throughput

depends on the number of shards and the configuration of

the aggregators; in addition, it also depends on the length of

the interleaving interval. By increasing the interleaving inter-

val, Scalog can increase its throughput because a higher in-

terleaving interval allows Scalog’s ordering layer to manage

larger numbers of shards and storage servers at the expense

of higher latency. To compare fairly against Corfu, we run

our evaluation with a fixed interleaving interval, set at 0.1ms

to match Corfu’s write latency. As we will see in §6.3.2, even

with this short interval, Scalog already supports many more

storage servers than we have resources to deploy.

6.3.1 System Configuration

In both systems, as the number of shards increases, ordering

becomes a bottleneck. To properly configure each system to

measure its peak throughput, we run microbenchmarks to de-

termine, (1) the maximum throughput of a single shard (us-

ing f + 1 storage servers) and (2) the maximum number of

shards that their respective ordering layer can handle.

Throughput from one shard. A shard in Scalog peaks at

18.7K writes/sec; our implementation of Corfu, while outper-

forming previously reported figures for Corfu [21], reaches

13.9K writes/sec. The difference is due to how the two sys-

tems enforce total order at each storage server. In Scalog,

where storage servers sequence records in the order in which

they receive them, it is natural to write these records to disk

sequentially. In contrast, records in Corfu are ordered by the

sequencer, not by the storage servers. Records from different

clients may reach storage servers out of order. Corfu storage

servers first skip over missing records and later perform ran-

dom writes to fix the log once those records are received.

The number of shards each system can support depends on

the maximum load Scalog’s aggregators can sustain and the

maximum throughput of Corfu’s sequencer.

Scalog’s aggregators. We measure the number of shards and

child aggregators that an aggregator can handle by having

its neighboring servers (be they storage servers, the Paxos

leader, or other aggregators) send synthetic messages. We

find that each aggregator can handle either 24 storage servers

(i.e., 12 shards in our f = 1 setting) or 23 child aggregators,

while the ordering layer can handle up to either 12 shards or

22 aggregators. We use these numbers to estimate the max-

imum number of shards that Scalog can support for a given

number of aggregators.

Corfu’s sequencer. We find that the sequencer of our Corfu

implementation handles about 530K writes/sec, comparable

to the optimized Corfu implementation used in Tango [22].

We want the throughput of both systems to scale linearly in

the number of shards until ordering becomes the bottleneck.

To avoid overloading the storage servers, we then configure

each shard in Scalog and Corfu at 80% of their peak through-

put, respectively, at 15.0K writes/sec and 11.1K writes/sec.

To avoid overloading Scalog’s Paxos leader and aggregators,

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation    333



 0

 1

 2

 3

 4

 5

 6

 1  10  100  1000

Real servers
Emulated servers

W
ri
te

 l
a

te
n

c
y
 [

m
s
]

Throughput [K writes/sec]

Scalog
Corfu

Figure 5: Latency vs throughput for Scalog and Corfu.

The vertical dotted line separates results obtained with real

servers from those obtained through emulation. For Scalog,

we emulate storage servers, but not aggregators. Scalog’s

maximum throughput in this configuration is limited by the

number of machines available to us.

we never assign to the ordering layer or to individual aggre-

gators more than half of maximum load they can sustain (i.e.,

either six shards or 11 aggregators); if the load exceeds what

the system’s current configuration can handle under this pol-

icy, we add a new layer of aggregators. Thus, we configure

these systems as follows:

Scalog. We add one shard for every 15.0K writes/sec of

throughput. With up to six shards, we do not use aggregators.

Between 7 and 66 shards, we use one layer of aggregation,

with one aggregator for every six shards. With more than 66

shards, we use multiple layers of aggregators, where the or-

dering layer handles at most 11 aggregators, each aggregator

handles at most 11 child aggregators, and each leaf aggrega-

tor handles at most six shards.

Corfu. We add one shard for every 11.1K writes/sec of

throughput, until the sequencer becomes a bottleneck.

6.3.2 Write Scalability

We now proceed to determine how much load Scalog and

Corfu can handle and, in particular, the throughput and la-

tency that they achieve. Unfortunately, we only have access

to 40 servers in CloudLab; in cases that require more servers,

we emulate storage servers and their load. When communi-

cating with the ordering layer, each (emulated) storage server

reports to be receiving records at the same throughput and

latency as a real storage server, though it is not receiving

records from clients. This setup allows one physical machine

to emulate hundreds of storage servers.

Let l1 be the time elapsed at the client between sub-

mitting a record and learning that it is committed, and let

l2 be the time elapsed between submitting a report to the

ordering layer and learning the corresponding cut. Both are

measured using real storage servers. For our emulation, we

use as latency the sum of (1) the time elapsed at the emu-

lated storage server between submitting a report to the order-

ing layer and learning the corresponding cut and (2) l1 − l2.

Figure 5, which presents throughput/latency measure-

ments as we increase the number of shards, shows that Sca-

log significantly outperforms Corfu’s throughput while expe-

riencing lower latency.

 0
 1
 2
 3
 4
 5

2 3 4 5 6

f=1
f=2

f=3
f=4

f=5

W
ri
te

 l
a

te
n

c
y
 [

m
s
]

Number of servers in each shard

Scalog
Corfu

Figure 6: Write latency vs. shard size

Corfu’s maximum throughput is limited by the sequencer

at 530K writes/sec. Emulating only storage servers, but not

aggregators, with our 40 machines, Scalog reaches 2.34M

writes/sec, but is still far from being saturated. To explore the

limits of the workload that can be handled by Scalog’s order-

ing layer, we deployed Paxos with multiple layers of aggre-

gators: we used physical servers for the Paxos replicas and

the uppermost layer of aggregators, and emulated additional

layers of aggregators as necessary against an emulated work-

load corresponding to a varying number of storage servers.

We found that, before Paxos becomes a bottleneck, Scalog

can handle up to 3,500 shards with three layers of aggrega-

tors, which translates to 52M writes/sec.4 This throughput

could be further increased by using a larger interleaving in-

terval, trading latency for throughput.

Scalog’s latency in Figure 5 grows slightly (by about 0.1

ms) whenever a new layer of aggregators is added, but re-

mains lower than Corfu’s. Based on our experiments with

one and two layers of aggregators, we estimate the latency

at 52M writes/sec to be around 1.6 ms (the client perceived

latency is 1.3 ms when there are no aggregators, plus three

layers of aggregators at about 0.1 ms per layer).

Corfu’s latency is negatively impacted by two factors: first,

Corfu replicates records across storage servers using client-

driven chain replication [49] that writes to each server in

sequence; second, since Corfu’s clients may (and, in suffi-

ciently long runs, likely will) write records to any storage

server, the overhead paid by servers in managing client con-

nections grows with the number of clients.

Finally, we investigate how write throughput and latency

are affected by f , the number of failures that a shard toler-

ates. We find that throughput in both Scalog and Corfu is not

significantly affected when varying f ; thus, we focus our dis-

cussion on latency. Figure 6 shows that, for a single shard,

client-perceived latency in Scalog is roughly constant, while

in Corfu, latency increases linearly with f . The reason is,

again, that Corfu replicates a record within a shard by writing

sequentially to each of its storage servers, while Scalog al-

lows a record to be replicated in parallel on multiple storage

servers. Thus, as the number of storage servers in the shard

increases to tolerate higher values of f , so does the latency

gap between Scalog and Corfu.

4We use emulation to measure the maximum number of shards the order-

ing layer can handle. We are unable to assess other scaling issues (e.g., the

network bottleneck), because we do not have access to a sufficiently large

testing infrastructure.

334    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



6.4 Read Performance

Unlike writes, reads in Corfu and Scalog follow similar paths

with identical performance. We therefore only focus on Sca-

log’s read latency and throughput.

Using a single storage server s, we measure latency with

a single client and measure throughput as a function of the

number of clients. To evaluate the performance of sequential

reads, we have a client call subscribe(l), where l ≤ lmax, the

maximum global sequence number the storage server has ob-

served (see §4.2). We measure latency as the time between

the subscribe call and the receipt of the first record; for

throughput, we divide the number of records between [l, lmax]
in s by the time needed to receive them. To evaluate random

reads, we have a client call readRecord(l,s) in a closed

loop, where l is randomly generated such that l ≤ lmax and

record l is stored in shard s.

Normally, the client library connects to all shards for

subscribe(l) and chooses a random server in shard s for

readRecord(l,s) (§4.2); instead, for these measurements

we modified the client library so that it connects only to the

storage server in s that is the focus of our evaluation.

When the client reads data that is still stored in the mem-

ory of the storage server, the throughput for both subscribe

and readRecord is 280K records/sec (i.e., the limit of a stor-

age server’s network bandwidth) and the latency for both a

readRecord request and for receiving the first record after a

subscribe call is about 0.09 ms.

When the client reads data that is no longer in memory (as

is often the case with finalized shards), latency and through-

put are limited by the performance of storage server disks.

With our hardware, readRecord achieves 4.5K records/sec

throughput and 0.31 ms latency; as for subscribe, by read-

ing sequentially and returning 256KB log chunks, it achieves

57K records/sec throughput with 1.21 ms latency to receive

the first record; larger chunks improve throughput somewhat,

but at the cost of significantly higher latency.

When a client reads from many storage servers concur-

rently (whether from one or multiple shards), throughput is

limited by the client’s network bandwidth, which is on aver-

age 280K records/sec in our evaluation.

6.5 Impact on Applications

We focus on the applications discussed in §5. Of these, the

online marketplace uses Scalog to store user activities using

append and reads the log using subscribe, so its perfor-

mance is simply that of Scalog. The other two applications

are more involved and deserve a more careful investigation.

6.5.1 Scalog-Store

We have implemented prototypes in golang using protocol

buffers of both Scalog-Store and Corfu-Store based on our

Scalog and Corfu implementations.

 0

 40

 80

 120

 160

1 2 3 4 5 6 7 8

K
 m

u
lt
i-
p
u
ts

/s
e
c

Number of keys in multi-put

Scalog-Store
Corfu-Store

Figure 7: throughput of

multi-put with 10 shards

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8

K
 m

u
lt
i-
g
e
ts

/s
e
c

Number of keys in multi-get

Scalog-Store
Corfu-Store

Figure 8: throughput of

multi-get with 10 shards

In this experiment, both Scalog-Store and Corfu-Store run

on 20 storage servers (10 shards). The keys are 64-bit inte-

gers, while values are 4088 bytes (creating 4KB records).

Figure 7 shows that Scalog-Store has higher multi-put

throughput than Corfu-Store, because each storage server in

Scalog has higher throughput (see §6.3.1). For both Scalog-

Store and Corfu-Store, the throughput of multi-put opera-

tions is limited by the throughput of the log given the limited

number of shards we have available. An exception is when

Scalog-Store has 10 shards and one key in multi-put, when

the bottleneck is the mapping server.

If we had many more shards but few keys in multi-put

operations, then the mapping server would be the bottleneck

for both Scalog-Store and Corfu-Store, and we would expect

the multi-put throughput to be the same. However, if we

increase the number of keys, we would expect Scalog-Store

to eventually have higher throughput than Corfu-Store be-

cause the bottleneck will eventually shift to the log. This is

because the throughput of the mapping server does not de-

teriorate much with the number of keys and the throughput

that the log has to provide equals the number of keys times

the throughput of the mapping server. For Corfu-Store, the

shift happens when there are eight keys. Because Scalog pro-

vides superior throughput to Corfu, Scalog-Store can provide

higher multi-put throughput when the number of keys is

larger than eight.

To summarize, Scalog-Store achieves higher per-shard

write throughput than Corfu-Store, because Scalog-Store

uses fewer shards to achieve the same total throughput. When

there are eight or more keys in each multi-put operation,

Corfu reaches its maximum throughput and becomes a bot-

tleneck while Scalog does not.

For both Scalog-Store and Corfu-Store, the throughput of

multi-get operations (Figure 8) is limited by random read

throughput of storage servers.

6.5.2 vScalog

Starting respectively from our Scalog and Corfu implemen-

tations, we prototyped vScalog and vCorfu in golang, using

protocol buffers. We implemented each object as a key-value

pair and ran each system as a key-value store.

We first measure the maximum write throughput of a sin-

gle materialized stream, since it limits the maximum up-

date rate of a single object. Our evaluation shows that

one materialized stream of vScalog and vCorfu achieves

18.6K writes/sec and 13.6K writes/sec, respectively, which

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation    335



are roughly the same as the respective single shard through-

puts of Scalog and Corfu shown in §6.3.1. The client per-

ceived latencies for vScalog and vCorfu are 1.2ms and 1.5ms,

respectively; vCorfu is slower because it writes to disks se-

quentially while vScalog writes to disks in parallel.

Next we measure the total throughput of vScalog and

vCorfu. Our experiments show that, using the same number

of shards, vScalog has roughly the same throughput as Sca-

log. Using the same number of stream replicas in vCorfu

as the number of shards in Corfu, and given enough log

replicas, vCorfu and Corfu also achieve approximately the

same throughput. However, the single shard throughput of

vCorfu’s underlying shared log reduces to 9.3K writes/sec

(due to the cost of writing a commit bit, matching the 40%

penalty reported in [51]).

7 Limitations

Scalog’s current prototype suffers from several limitations.

Some seem to be relatively easy to address: for example,

while Scalog allows applications to dynamically add and fi-

nalize shards, it does not provide automated policies to trig-

ger such actions. Other limitations are common to storage

systems that operate at large scale: as server failures become

frequent, the steps needed for recovery may complicate the

scheduling and allocation of resources. Others yet, however,

appear to be more fundamental to Scalog’s design. In par-

ticular, although Scalog offers unprecedented throughput at

latency comparable to, or better than, prior shared log im-

plementations, it is not well suited for applications that re-

quire ultra-low latency (such as high-speed trading), highly-

predictable latency and throughput, or low tail latencies. The

question of whether it is possible to drastically reduce latency

while maintaining Scalog’s throughput and ordering proper-

ties remains open. Finally, some issues are outside of Sca-

log’s current scope: in particular, Scalog’s design does not

address security concerns.

8 Related Work

The shared log abstraction is, implicitly or explicitly, at the

core of state machine replication protocols [46], and Scalog

draws inspiration from several of them.

In Vertical Paxos [39], configurations can change from slot

to slot, allowing for seamless reconfiguration similar to Sca-

log. Like Scalog, EPaxos [43] allows all replicas to accept

client requests. However, EPaxos only builds a partial or-

der consistent with specified dependencies among records;

in addition, maintaining and checking dependencies creates

a bottleneck. In networks that almost never reorder messages,

NOPaxos [40] achieves very high throughput and low latency

using a custom hardware switch to order records.

Mencius [42] and Derecho [23] partition log slots among

multiple leaders. Essentially, each process creates a locally

ordered log, which is then interleaved in round-robin or-

der. Similarly, Calvin [48] dispatches to multiple sequencers

transaction requests, which are compiled into batches. The

batches are then interleaved in round-robin order to build a

total order. Scalog generalizes this idea and allows for more

flexibility in how the logs are interleaved, which is not sensi-

tive to slow servers.

Kafka [36], a widely-used shared log system, uses shard-

ing to scale and provides total order within each shard, but

not across them. Pravega [15] provides a sharded log sim-

ilar to Kafka and focuses on a rich set of reconfiguration

operations that support scaling. FuzzyLog [41] builds a par-

tially ordered log by tracking Lamport’s happened-before re-

lation [37] between records stored in different shards. Dis-

tributedLog [6] also supports sharding and provides a to-

tally ordered log, but its single-writer-multiple-reader access

model is not conducive to high write throughput.

To provide both total order and high throughput, it is nec-

essary to separate ordering from data dissemination. Like

Scalog, Corfu [21] separates ordering from data dissemi-

nation and relies on sharding. A function, maintained in

ZooKeeper [33], maps sequence numbers to shards. A client

first obtains a sequence number for a record from the Corfu

sequencer, and forwards the record to the shard indicated by

the mapping function. Each shard comprises a collection of

replicas, each consisting of a flash unit (an SSD plus FPGA

to implement a write-once block device), kept consistent us-

ing a variant of chain replication [49].

LogDevice [12] is similar to Corfu, but replaces the map-

ping function with a non-deterministic record placement

strategy. By allowing clients to write to any shard, LogDe-

vice achieves flexible data placement. However, all records

still need to be ordered by a sequencer similar to Distributed-

Log’s single writer [6], limiting throughput.

9 Conclusion

Inspired by crash-resistant storage systems, Scalog departs

from previous implementations of the totally ordered shared

log abstraction by making records persistent before deter-

mining their positions in the log. This simple but essential

change of perspective lets Scalog scale out elastically and re-

cover from failures quickly; allows applications to customize

which storage servers should hold their records; and enables

a new ordering protocol that, by interleaving the local or-

ders built by each storage server as a side product of replicat-

ing records, achieves almost two order of magnitude higher

throughput than the state-of-art shared log implementation.

Acknowledgments

We thank our shepherd, Aurojit Panda, and the anonymous

reviewers for their insightful comments. We also thank

Matthew Burke, Natacha Crooks, Youer Pu, Chunzhi Su, Flo-

rian Suri-Payer, Cheng Wang, and Yunhao Zhang for their

valuable feedback on earlier drafts of this paper. This work

was supported by NIST F568386 and by NSF grants CSR-

1409555 and CNS-1704742.

336    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



References

[1] Achieving high concurrency with ApsaraDB for

RDS. https://www.alibabacloud.com/blog/

achieving-high-concurrency-with-apsaradb-for-rds_

594297.

[2] AlibabaMQ for Apache RocketMQ. https://www.

alibabacloud.com/product/mq.

[3] Amazon Kinesis. https://aws.amazon.com/

kinesis/.

[4] CloudLab. https://cloudlab.us.

[5] CorfuDB. https://github.com/CorfuDB/CorfuDB.

[6] DistributedLog. http://bookkeeper.apache.org/

distributedlog/.

[7] The Go programming language. https://golang.

org.

[8] Google Cloud Pub/Sub. https://cloud.google.

com/pubsub/.

[9] Google protocol buffers. https://developers.

google.com/protocol-buffers/.

[10] IBM MQ. https://www.ibm.com/products/mq.

[11] Kafka uses. https://kafka.apache.org/uses.

[12] LogDevice: distributed storage for sequential data.

https://logdevice.io/.

[13] Microsoft Event Hubs. https://azure.microsoft.

com/en-us/services/event-hubs/.

[14] Oracle Messaging Cloud Service. https://

www.oracle.com/application-development/

cloud-services/messaging/.

[15] Pravega. http://pravega.io.

[16] Taobao. https://www.taobao.com.

[17] Zlog: a high-performance distributed shared-log for

Ceph. https://github.com/cruzdb/zlog.

[18] D. Abadi. Partitioned consensus and its

impact on Spanner’s latency. https://

dbmsmusings.blogspot.com/2018/12/

partitioned-consensus-and-its-impact-on.

html, 2018.

[19] P. A. Alsberg and J. D. Day. A principle for resilient

sharing of distributed resources. In Proceedings of the

2nd International Conference on Software Engineering,

1976.

[20] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau.

Crash consistency: fsck and journaling. In Operating

Systems: Three Easy Pieces. 2018.

[21] M. Balakrishnan, D. Malkhi, V. Prabhakaran, T. Wob-

ber, M. Wei, and J. D. Davis. Corfu: a shared log design

for flash clusters. In Proceedings of the 9th USENIX

conference on Networked Systems Design and Imple-

mentation (NSDI), 2012.

[22] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu,

V. Prabhakaran, M. Wei, J. D. Davis, S. Rao, T. Zou,

and A. Zuck. Tango: distributed data structures over a

shared log. In Proceedings of the 24th ACM Symposium

on Operating Systems Principles (SOSP), 2013.

[23] J. Behrens, K. Birman, S. Jha, M. Milano, E. Tremel,

E. Bagdasaryan, T. Gkountouvas, W. Song, and

R. van Renesse. Derecho: group communication at the

speed of light. Technical report, Cornell University,

2016.

[24] N. Budhiraja, K. Marzullo, F. B. Schneider, and

S. Toueg. The primary-backup approach. Distributed

systems, 1993.

[25] A. Cidon, S. Rumble, R. Stutsman, S. Katti, J. Ouster-

hout, and M. Rosenblum. Copysets: reducing the fre-

quency of data loss in cloud storage. In Preceedings of

the 2013 USENIX Annual Technical Conference, 2013.

[26] S. B. Davidson, H. Garcia-Molina, and D. Skeen. Con-

sistency in a partitioned network: a survey. ACM Com-

puting Surveys (CSUR), 17(3), 1985.

[27] F. D. T. e Silva. Kafka: ordering guarantees.

https://medium.com/@felipedutratine/

kafka-ordering-guarantees-99320db8f87f,

2018.

[28] R. C. Fernandez, P. R. Pietzuch, J. Kreps, N. Narkhede,

J. Rao, J. Koshy, D. Lin, C. Riccomini, and G. Wang.

Liquid: unifying nearline and offline big data integra-

tion. In CIDR, 2015.

[29] M. J. Fischer. The consensus problem in unreliable

distributed systems (a brief survey). In Proceedings of

the International Conference on Foundations of Com-

putations Theory, Lecture Notes in Computer Science,

volume 158. Springer, 1983.

[30] G. R. Ganger and Y. N. Patt. Metadata update perfor-

mance in file systems. In Proceedings of 1th USENIX

Symposium on Operating Systems Design and Imple-

mentation (OSDI), 1994.

[31] K. Goodhope, J. Koshy, J. Kreps, N. Narkhede, R. Park,

J. Rao, and V. Y. Ye. Building LinkedIn’s real-time ac-

tivity data pipeline. IEEE Data Eng. Bull., 35(2), 2012.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation    337

https://www.alibabacloud.com/blog/achieving-high-concurrency-with-apsaradb-for-rds_594297
https://www.alibabacloud.com/blog/achieving-high-concurrency-with-apsaradb-for-rds_594297
https://www.alibabacloud.com/blog/achieving-high-concurrency-with-apsaradb-for-rds_594297
https://www.alibabacloud.com/product/mq
https://www.alibabacloud.com/product/mq
https://aws.amazon.com/kinesis/
https://aws.amazon.com/kinesis/
https://cloudlab.us
https://github.com/CorfuDB/CorfuDB
http://bookkeeper.apache.org/distributedlog/
http://bookkeeper.apache.org/distributedlog/
https://golang.org
https://golang.org
https://cloud.google.com/pubsub/
https://cloud.google.com/pubsub/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://www.ibm.com/products/mq
https://kafka.apache.org/uses
https://logdevice.io/
https://azure.microsoft.com/en-us/services/event-hubs/
https://azure.microsoft.com/en-us/services/event-hubs/
https://www.oracle.com/application-development/cloud-services/messaging/
https://www.oracle.com/application-development/cloud-services/messaging/
https://www.oracle.com/application-development/cloud-services/messaging/
http://pravega.io
https://www.taobao.com
https://github.com/cruzdb/zlog
https://dbmsmusings.blogspot.com/2018/12/partitioned-consensus-and-its-impact-on.html
https://dbmsmusings.blogspot.com/2018/12/partitioned-consensus-and-its-impact-on.html
https://dbmsmusings.blogspot.com/2018/12/partitioned-consensus-and-its-impact-on.html
https://dbmsmusings.blogspot.com/2018/12/partitioned-consensus-and-its-impact-on.html
https://medium.com/@felipedutratine/kafka-ordering-guarantees-99320db8f87f
https://medium.com/@felipedutratine/kafka-ordering-guarantees-99320db8f87f


[32] M. P. Herlihy and J. M. Wing. Linearizability: a correct-

ness condition for concurrent objects. ACM Transac-

tions on Programming Languages and Systems, 1990.

[33] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.

ZooKeeper: wait-free coordination for Internet-scale

systems. In USENIX Annual Technical Conference

(ATC), 2010.

[34] R. Jiménez-Peris, M. Patiño-Martínez, and S. Aré-

valo. Deterministic scheduling for transactional mul-

tithreaded replicas. In Proceedings 19th IEEE Sympo-

sium on Reliable Distributed Systems (SRDS), 2000.

[35] B. Kemme and G. Alonso. Don’t be lazy, be consistent:

Postgres-R, a new way to implement database replica-

tion. In Proceedings of the VLDB Endowment, 2000.

[36] J. Kreps, N. Narkhede, J. Rao, et al. Kafka: a distributed

messaging system for log processing. In Proceedings

of the NetDB, 2011.

[37] L. Lamport. Time, clocks, and the ordering of events

in a distributed system. Communications of the ACM,

21(7), 1978.

[38] L. Lamport. The part-time parliament. ACM Transac-

tions on Computer Systems (TOCS), 16(2), 1998.

[39] L. Lamport, D. Malkhi, and L. Zhou. Vertical Paxos

and primary-backup replication. In Proceedings of

the 28th ACM Symposium on Principles of Distributed

Computing (PODC), 2009.

[40] J. Li, E. Michael, N. K. Sharma, A. Szekeres, and D. R.

Ports. Just say NO to Paxos overhead: replacing con-

sensus with network ordering. In Proceedings of 12th

USENIX Symposium on Operating Systems Design and

Implementation (OSDI), 2016.

[41] J. Lockerman, J. M. Faleiro, J. Kim, S. Sankaran, D. J.

Abadi, J. Aspnes, S. Sen, and M. Balakrishnan. The

FuzzyLog: a partially ordered shared log. In Proceed-

ings of 13th USENIX Symposium on Operating Systems

Design and Implementation (OSDI), 2018.

[42] Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius:

building efficient replicated state machines for WANs.

In Proceedings of 8th USENIX Symposium on Operat-

ing Systems Design and Implementation (OSDI), 2008.

[43] I. Moraru, D. G. Andersen, and M. Kaminsky. There is

more consensus in egalitarian parliaments. In Proceed-

ings of the 24th ACM Symposium on Operating Systems

Principles (SOSP), 2013.

[44] K. Ren, A. Thomson, and D. J. Abadi. An evaluation

of the advantages and disadvantages of deterministic

database systems. In Proceedings of the VLDB Endow-

ment, 2014.

[45] R. D. Schlichting and F. B. Schneider. Fail-Stop pro-

cessors: an approach to designing fault-tolerant com-

puting systems. ACM Transactions on Computer Sys-

tems (TOCS), 1(3), 1983.

[46] F. B. Schneider. Implementing fault-tolerant services

using the state machine approach: A tutorial. ACM

Computing Surveys (CSUR), 22(4), 1990.

[47] A. Thomson and D. J. Abadi. The case for determin-

ism in database systems. In Proceedings of the VLDB

Endowment, 2010.

[48] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao,

and D. J. Abadi. Calvin: fast distributed transactions

for partitioned database systems. In Proceedings of the

2012 ACM SIGMOD International Conference on Man-

agement of Data, 2012.

[49] R. van Renesse and F. B. Schneider. Chain replication

for supporting high throughput and availability. In Pro-

ceedings of 6th USENIX Symposium on Operating Sys-

tems Design and Implementation (OSDI), 2004.

[50] G. Wang, J. Koshy, S. Subramanian, K. Paramasivam,

M. Zadeh, N. Narkhede, J. Rao, J. Kreps, and J. Stein.

Building a replicated logging system with Apache

Kafka. In Proceedings of the VLDB Endowment, 2015.

[51] M. Wei, A. Tai, C. J. Rossbach, I. Abraham, M. Mun-

shed, M. Dhawan, J. Stabile, U. Wieder, S. Fritchie,

S. Swanson, M. J. Freedman, and D. Malkhi. vCorfu:

A cloud-scale object store on a shared log. In Proceed-

ings of 14th USENIX conference on Networked Systems

Design and Implementation (NSDI), 2017.

338    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association


	Introduction
	Motivation and Design
	Scalog API
	``Order first'' Considered Harmful
	Scalog Design Overview

	Architecture
	Scalog's Workflow
	Append Operations
	Read Operations
	Trim Operations
	Reconfiguration and Failure Handling
	Adding and Finalizing Shards
	Handling Storage Server Failures
	Handling Ordering Layer Failures


	Applications
	The Online Marketplace
	Scalog-Store
	vScalog

	Evaluation
	Reconfiguration
	Failure Recovery
	Write Performance
	System Configuration
	Write Scalability

	Read Performance
	Impact on Applications
	Scalog-Store
	vScalog


	Limitations
	Related Work
	Conclusion

