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Abstract

A growing number of devices and services collect detailed
time series data that is stored in the cloud. Protecting the
confidentiality of this vast and continuously generated data is
an acute need for many applications in this space. At the same
time, we must preserve the utility of this data by enabling
authorized services to securely and selectively access and run
analytics. This paper presents TimeCrypt, a system that pro-
vides scalable and real-time analytics over large volumes of
encrypted time series data. TimeCrypt allows users to define
expressive data access and privacy policies and enforces it
cryptographically via encryption. In TimeCrypt, data is en-
crypted end-to-end, and authorized parties can only decrypt
and verify queries within their authorized access scope. Our
evaluation of TimeCrypt shows that its memory overhead and
performance are competitive and close to operating on data
in the clear.

1 Introduction

Recent years have seen explosive growth in systems and de-
vices that collect time series data and relay it to cloud-based
services for analysis. This growth is only expected to ac-
celerate with the proliferation of IoT devices, telemetry ser-
vices, and improvements in data analytics. However, with this
growth has come mounting concerns over data protection and
data privacy [66]. Today, the public concern over data privacy
and confidentiality is reaching new heights in light of the
growing scale and scope of data breaches [17, 29, 56]. To
grasp the extent of this issue, one can look at the number of
data breaches reported under the new GDPR obligation to no-
tify, which has already exceeded 65,000 in the first year [73].

Over the last decade, encrypted databases [60, 61, 63, 75,
81] have emerged as a promising solution to tackle the prob-
lem of data breaches. The approach of keeping data encrypted
while in-use allows users to query encrypted data while pre-
serving both confidentiality and functionality. Research in
this domain has led to various encrypted database designs, in-
cluding designs for key-value stores [25], batch analytics [60],
graph databases [53], and relational databases [63, 81]. This
motivates the following natural question: can we enable en-
crypted data processing for time series workloads?

2UC Berkeley

Time series workloads come with unique performance and
security requirements that existing encrypted data processing
systems fail to meet:

(i) Scalability and Interactivity. Query processing over
time series data must simultaneously scale to large volumes
of data, support low-latency interactive queries, and sustain
high write throughput. To meet these challenges several ded-
icated databases have been designed for time series work-
loads [12, 33, 42, 45, 50, 62, 78]. A key aspect of these sys-
tems is their use of in-memory indices that store aggregate
statistics, enabling faster query response times and data sum-
marization. As we discuss in §6/§7, prior work on encrypted
data processing does not easily lend itself to maintaining these
in-memory indices. The overhead of the crypto primitives in
encrypted data processing needs to be negligible to meet the
scaling, latency, and performance requirements associated
with time series workloads.

(ii) Secure Sharing. A key challenge in modern systems is
that privacy must co-exist with the desire to extract value from
the data, which typically implies sharing data to be analyzed
by third-party services [54]. Hence, a truly comprehensive
approach to data protection must also comprise mechanisms
for secure sharing of encrypted data. Sharing should also be
fine-grained since it is undesirable and often unnecessary to
give parties unfettered access to the data. Instead, users may
want to (/) share only aggregated statistics about the data (e.g.,
avg/min/max), (2) limit the resolution at which such statistics
are reported (e.g., hourly vs. per-minute), (3) limit the time
interval over which queries are issued (e.g., only June 2019),
(4) or a combination of the above. Moreover, the desired gran-
ularity and scope of sharing can vary greatly across users and
applications. Hence, support for encrypted query processing
must go hand-in-hand with access control that limits the scope
of data that users might query. The sharing paradigm in data-
stream systems is distinctly different than in conventional
databases. Data-stream settings feature a multitude of data
sources continuously pushing data to the cloud, where various
services that are often not known in advance can subscribe to
consume and analyze data streams. Therefore, such systems
require flexible access policies. Frequently, there is a need
to fuse and analyze data from different sources collectively;
this implies that we need to devise an end-to-end encryption
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scheme that is compatible with this sharing paradigm.
TimeCrypt. In this paper, we present TimeCrypt, a system
that augments time series databases with efficient encrypted
data processing. TimeCrypt provides cryptographic means
to restrict the query scope based on data owners’ defined
policies. With TimeCrypt, data owners can cryptographically
restrict user A to query encrypted data at a defined temporal
range and granularity, while simultaneously allowing user B
to execute queries on the same data at a different granularity
without (i) introducing ciphertext expansion or data redun-
dancy, (ii) introducing any noticeable delays, or (iii) requiring
a trusted entity to facilitate this.

In this work, we introduce a partially homomorphic-
encryption-based access control construction (HEAC) that
supports both fine-grained access control and computations
over encrypted data within a unified scheme. These two as-
pects have traditionally been addressed independently: the
former through cryptographically enforced access control
schemes [35, 39, 49, 59, 83] and the latter through encrypted
data processing [60, 63, 75, 81]. HEAC simultaneously sup-
ports both while meeting the performance and access control
requirements of time series workloads. A key insight behind
the design of HEAC is based on the observation that time
series data streams are continuous and time is the natural
attribute for accessing and processing this data. Hence, we
discretize data streams into fixed-length time segments, and
encrypt each segment with a different key using symmetric-
key homomorphic encryption. This allows us to express fine-
grained access policies at the stream segment granularity.
This, however, raises two challenges; we need to manage a
large number of keys in an efficient and scalable manner and
translate stream access policies to the corresponding keys suc-
cinctly. To overcome these challenges in HEAC, we associate
keys with temporal segments. With this, we avoid the need to
maintain a mapping between keys and ciphertexts. We derive
these keys from a hierarchical key-derivation tree construc-
tion that allows us to express fine-grained access policies over
stream data and share keys efficiently (i.e., with logarithmic
complexity).

We provide an implementation and evaluation of a proto-
type of TimeCrypt on top of Cassandra. We evaluate Time-
Crypt in a range of scenarios combining IoT devices, AWS
(for data storage and processing), and time series traces from
real-world applications. We show that TimeCrypt can support
a wide range of applications by developing four applications
which vary in complexity and scalability requirements. Fi-
nally, we show that TimeCrypt’s performance is competitive
with the baseline (plaintext) and it outperforms prior work
by a factor of 2 to 52 (§6). Considering an ingest workload
with 5.77 million data points per second on a single machine,
TimeCrypt’s throughput is reduced only by 2.9% for both data
ingest and statistical queries over encrypted data.

Contributions. In summary, our contributions are:

e We introduce HEAC, an encryption-based access control
construction for stream data that is additively homomor-
phic. HEAC additionally provides verifiable computations
over ciphertexts to ensure the integrity of the outsourced
encrypted computation.

e We design, implement, and evaluate TimeCrypt, the first
scalable privacy-preserving time series database that meets
the scalability and low-latency requirements associated
with time series workloads. We introduce a design that
protects the data confidentiality, yet maintains its utility by
efficiently supporting a rich set of functionalities and ana-
lytics that are key to time series data. TimeCrypt supports
data lifecycle operations such as ongoing data summariza-
tion and deletion that are common in time series databases.
TimeCrypt supports expressive data access and privacy
policies, enforceable by encryption.

e We make TimeCrypt’s code publicly available', both as a
standalone system and as a library to be integrated with
other time series databases.

2  Overview

TimeCrypt achieves its competitive performance through a
careful design of cryptographic primitives tailored for time
series data workloads. To understand the rationale behind
our techniques, we start this section by presenting relevant
background on time series data, then we give an overview of
TimeCrypt, and describe our security model.

2.1 Background on Time Series Data

Time series Applications. Time series data is increasingly
prevalent across a wide range of systems (e.g., monitoring,
telemetry, IoT) in diverse domains such as health, agricul-
ture [82], transportation [69], operational insight [2], and
smart cities. The growth of time series data is largely at-
tributed to the rising demand for instrumentation. Individuals
and organizations are continuously logging various metrics
which report the state of systems or organisms for better diag-
noses, forecasting, decision making, and resource allocation.
The ability to capture and analyze this data in a timely manner
is key for automation and is enabling a whole new spectrum
of applications [2, 33, 40, 69, 82]. The proliferation of time
series data has been coupled with increasing demand for high-
performance analytics over large volumes of time series, and
has led to numerous designs for databases that are optimized
for time series workloads [12, 33, 42, 45, 50, 62, 78].

Time series Workloads. (i) Write and Read: Data is append-
only and typically generated at an extremely high rate (high
velocity) and is initially stored at a high resolution (large vol-
ume) [12, 62]. It is not unusual for applications in this space
to report hundreds of millions of data points per day [7, 12].

! Available at: https://timecrypt.io/
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Hence, sustaining high read and write throughputs and scal-
ability are key requirements when storing and processing
time series data. Time is the primary dimension for access-
ing and processing data. Queries primarily consider tempo-
ral ranges (e.g., values from the last 3h) rather than target-
ing individual points. (ii) Analytics: Queries are primarily
of aggregate and statistical nature, and specialized indices
for accelerating statistical queries are common in time series
databases [12, 42, 65]. Additionally, analytics of diagnostic
(e.g., anomaly or trend detection) and predictive nature (e.g.,
forecasting) are common in this space. (iii) Data decay: Time
series data is often machine generated, continuous, and mas-
sive. Simultaneously, the value and relevance of data decays
rapidly with time. Analytics largely favor recent data over
older, and roll up aggregation is commonly applied to older
data to reduce storage requirements. Hence, data retention
and summarization [7, 62] are crucial for these systems.

The goal of our work is to retain the performance, function-
ality, and scalability of existing time series databases while
augmenting them with strong security and privacy guarantees.

2.2 Architecture

TimeCrypt’s architecture is analogous to that of conventional
times-series databases [10, 11, 12, 42, 50], where a standard
distributed key-value store is extended with additional logic
for time series workloads. TimeCrypt includes a trusted client
library to realize end-to-end encryption paired with access
control and integrity verification. TimeCrypt consists of two
components (i.e., the client and server libraries) and involves
four parties (i.e., data owner, data producer, data consumer,
and database server), as illustrated in Fig. |. A data producer
is an entity (e.g., [oT device) that generates and uploads time
series data, and runs TimeCrypt’s client library which han-
dles stream preprocessing and encryption. The data owner
can express access permissions to its generated data. Mean-
while, data consumers are entities (e.g., services) that are au-
thorized to access a user’s data to provide added value, such
as visualizations, monitoring, and diagnoses. TimeCrypt’s
server executes statistical and analytical queries directly on
encrypted data. TimeCrypt supports a rich set of foundational
queries that are widely used in time series workloads (§4), i.e.,
statistical queries (e.g., min/max/mean), analytics (e.g., predic-
tion, trend detection), and lifecycle operations (e.g., ongoing
data summarization, deletion). The server builds in-memory
encrypted indices to support fast queries and analytics (§4).

2.3 Goals for Stream Data Access Control

Encryption is an effective tool for protecting data from exter-
nal threats, breaches, or malicious providers. However, a truly
comprehensive approach to data protection must also include
mechanisms for enforcing access control policies, to support
the privacy and security principles of least privilege and data
minimization, where data is protected by limiting unnecessary
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Figure 1: TimeCrypt’s architecture.

exposure. State-of-the-art relational databases have security
mechanisms designed for this purpose. The most adopted
approach to support access control is based on views’ and
row-level access policies. However, specifying effective ac-
cess control policies necessitates taking into consideration
the semantics of data. Therefore, we investigated the major
state-of-the-art time series databases [1, 4, 12, 42, 58, 65, 78]
to understand the state of affairs in stream data access policies.
We found that the only access policy restriction provided at the
database interface, if any, is at the stream unit (i.e., grant or de-
cline access to the entire stream). This binary protection level
is however too coarse. This prompted the following question:
What type of policies can offer the fine-grained protection that
is required for selective and secure sharing of data streams?
Stream data access control literature [24, 71] and time series
applications designed for multi-user settings[5, 40] both rec-
ognize that policies which are expressed in time, resolution,
and attributes are ideal for fine-grained access restrictions on
streams. Examples of such policies can be a user choosing
to simultaneously share hourly averages of their measured
heart rate with their doctor and per-minute averages with their
trainer but only for the duration of their workout session. Sim-
ilarly, a datacenter operator might share resource utilization
levels with a tenant but only for the duration of her job. Our
goal is to translate these stream-specific sharing semantics
into a cryptographically enforceable access control mecha-
nism.

2.4 Threat Model

Our goal is to maintain the confidentiality and integrity of
computations running on a cloud infrastructure that is po-
tentially subject to an adversary that can read and tamper
with data and manipulate query execution. In order to support
sharing, we require a public-key infrastructure, such that en-
tities can be identified and that a private/public key-pair can
be associated with them. TimeCrypt provides the following
guarantees in this setting:

Confidentiality. Data is encrypted using semantically secure
encryption before it leaves the client device. Since decryption
keys are never disclosed to the cloud provider, data confiden-
tiality is guaranteed even in the case of a system compromise

2A view; also referred to as virtual table, is a dynamic window of a subset
of the rows and columns in a database.
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or malicious provider. Note that we do not employ property-
revealing encryption, avoiding their inherent information leak-
age issues [55]. Our cryptographic access control mechanism
ensures that data consumers can only query and access data
according to the access policies defined by the data owner.
Integrity. TimeCrypt’s integrity protection guarantees that,
if a query completes, its output is equivalent to a correct
execution on a trusted platform. Therefore, a malicious server
cannot affect the computation, except by denying service.
Note that even in case an integrity key for a stream is leaked,
confidentiality remains intact.
Access Patterns. Similar to previous work [60, 63, 74, 81],
TimeCrypt is non-oblivious, i.e., it does not protect against
access pattern-based inferences in a trade-off for performance
and scalability. Therefore, an adversary can learn which data
the consumers are authorized to access by observing access
patterns. TimeCrypt could be complemented with Oblivious
RAM approaches [67] to hide these access patterns.
Access Control Collusion. Resolution based sharing in com-
bination with interval sharing is not collusion resistant, even
when considering a plaintext system. For example, any entity
with access to aggregation over the intervals [tg,#,) and [f],12),
can trivially derive the aggregation [fy,#;) over the overlapped
range by computing the difference. Hence, clients must be
careful when sharing different resolutions over overlapping
intervals. Furthermore, TimeCrypt comes with a trade-off be-
tween performance and collusion resistance when sharing
non-continuous intervals. In the default mode, an adversary
with access to two non-continuous intervals can compute the
aggregation between the two intervals. For cases where this
poses a privacy risk to applications, TimeCrypt provides a
mechanism to prevent such collusion (§3.1) at the cost of
increased decryption time.

A full security analysis with formal definitions and proofs
can be found in the appendix of the extended version of the
paper [23].

2.5 TimeCrypt Approach

TimeCrypt is a new encrypted time series database design
that meets the scalability and low-latency requirements associ-
ated with time series workloads. We propose a new approach
for data stream encryption that supports processing over en-
crypted data streams, computation integrity, and powerful
access control within a unified scheme.

Data Abstraction. TimeCrypt stores data points in a stream
as time-ordered chunks of predefined time intervals, i.e.,
[ti,ti+1) with a fixed interval size A = t;1; —¢;. Each data
chunk also includes an encrypted digest that consists of statis-
tical summaries about the underlying data. The digest enables
TimeCrypt to compute statistical queries over time ranges
efficiently, as we discuss next. At the client, the chunks are en-
crypted with standard symmetric encryption while the digests
are encrypted with HEAC.

Aggregatable Digests. As HEAC is additively homomor-
phic?, it supports secure aggregation of ciphertexts. However,
to support queries beyond sum, we leverage aggregatable
encoding techniques that exist in literature to support sophis-
ticated statistical and analytical queries over encrypted data.
At a high level, we introduce a per-chunk digest, which holds
a vector of encoded values {xo, ..., x, } that are encrypted with
HEAC. To process queries, the server computes the aggregate
function on the encrypted encodings across different digests.
With this, we can support statistical queries that are inherently
aggregation-based (e.g., sum, mean) or can be transformed to
be aggregation-based (e.g., min/max, regression) (§4).
Encryption and Access Control. A key aspect of our
scheme is tied to the observation that time series data streams
are continuous. Consequently, to enable encrypted data pro-
cessing that natively supports access control, we model data
streams as a series of time segments, where each segment
is encrypted with a different encryption key. We introduce
a time-encoded keystream that maps keys to segments of
the data stream, such that when a user restricts access to the
data stream, only the corresponding range in the keystream
is shared with the data consumer (§3.1). Based on the access
policy, a data consumer is provided with the necessary decryp-
tion keys via an access tokens. Access tokens are encrypted
with the data consumer’s public key (hybrid encryption) and
stored at the server. To enable sharing without enumerating
all the keys and to support a succinct key state, we derive keys
from a hierarchical tree key-derivation construction (§3.3).
We also introduce a technique to support restricting access to
a particular resolution level (§3.3.2), e.g., aggregated values
at 10-minute resolution.

3 Encryption in TimeCrypt

In this section, we introduce the cryptographic components
of TimeCrypt and present HEAC in more detail. HEAC,
in essence is based on a symmetric homomorphic encryp-
tion [27]. However, we improve its performance by a factor of
2x for time series workloads by mapping keys to time and op-
timizing it for in-range ciphertext aggregations. Furthermore,
we extend it to support fine-grained cryptographic access con-
trol capabilities tailored to time series data. Finally, we ensure
computation integrity on encrypted data via Homomorphic
Message Authentication Codes.

3.1 Symmetric Homomorphic Encryption.

We encrypt an integer m; from the message space [0, M — 1]
as ¢; = Ency,(m;) = m; +k; mod M, with key k; € [0,M — 1].
Given k;, one can decrypt ¢; as Decy, (¢;) = ¢; —k; mod M =
m;. This scheme is semantically secure when the keys are
pseudorandom and no key is reused [27].

3 An additive homomorphic encryption scheme supports additions on
ciphertexts, such that decrypt(Cy & C2) = decrypt(Cy) +decrypt(Cs).
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Given the aggregated secret keys, one can decrypt the aggre-
gated ciphertexts:

n n n n
Zmi = Dec):;zzoki(z ¢i) = Z ci— Zki mod M (1)
i=0 i=0 i=0 i=0

We set M to 264, to support all integer sizes, without leaking
any information about their original size.

Key Canceling. In the above scheme, the local computation
to aggregate keys is linear in the number of aggregated ci-
phertexts, forcing the client to perform the same amount of
computations as the server. We reduce this linear overhead
to a constant, by leveraging the fact that time series data is
generally aggregated in-range (i.e., over a contiguous range
in time) as discussed in §2.1. We can therefore employ key
canceling [6, 19, 31, 60]. This technique will also be rele-
vant later, when we discuss integrity and access control (§3.2,
§3.3). To enable this optimization, we choose the individual
encryption keys such that the inner keys cancel each other out
during aggregation. We do this by replacing the individual
key k; with a composite key that links subsequent messages:

Enck§ (m;) = m; +k; mod M, with ki = k; — ki1 (2)

For decryption of an in-range aggregated ciphertext (Eq. 1),
we now require only the two boundary keys:

gk;:<ko—%>+<%—%>...<%—kn+l> o)

With key canceling, the decryption time in TimeCrypt is in-
dependent of the number of in-range aggregated ciphertexts.
This scheme remains semantically secure [23, 27, 31]; an
attacker without access to the keys cannot exploit the cancel-
ing property. However, when given access to keys for two
non-continuous intervals, an adversary could learn aggregates
about the skipped time between the two intervals. For ex-
ample, when given access to ko, ..., ks and kjo, ..., k15, they
could compute ):}205 m; mod M, given ks and k1¢. The ramifi-
cations of this issue arise when users share adjacent intervals
in the same stream with small gaps. TimeCrypt provides a
hybrid key-canceling mechanism that limits this leakage in a
trade-off for longer decryption times. We split the keys into
epochs by replacing some k; with non-canceling skip-keys
k. k! in ki — k; and k; — k; 1, respectively. With this, we can
share one interval per epoch without leakage. This increases
the cost of aggregations over the epoch borders by two key
derivations and one addition.

Time-Encoded Keystream. In TimeCrypt, access permis-
sions are expressed with temporal ranges, e.g., Sep-14-15:00
till Sep-17-06:00 2019. Internally, TimeCrypt chunks data into
fixed time segments of size A, which can be set per stream
(e.g., 10 s intervals). In addition to the raw data points, each
chunk is augmented with digests that are used for statisti-
cal query processing. Each chunk is encrypted with a fresh

key from the keystream, indexed by the time window of the
chunk. Assuming the data stream starts at timestamp fy, the
chunk digest m; for the interval from ¢; to #; 4 is encrypted as
¢i = Ency,—,;, , (m;). By mapping keys to temporal ranges, a
time range implicitly determines the position of the used key
in the keystream. As a result, we sidestep the need to store
identifiers of the keys along with the ciphertexts and avoid
ciphertext expansion.

3.2 Integrity

Homomorphic encryption schemes are by design malleable,
and therefore susceptible to ciphertext manipulation. In our
setting, a dishonest server could try to drop, duplicate, or
manipulate ciphertexts, resulting in incorrect query outputs.
Incentives for deviations from the protocol could be as simple
as trying to preserve resources by reducing the complexity
of queries [72]. Beyond malicious behavior, integrity checks
help to prevent faulty executions (e.g., data corruption, hard-
ware faults, or misconfigurations). Ensuring computation in-
tegrity is essential, but is rarely considered in existing en-
crypted databases. Computation integrity can be achieved
by requiring the server to provide a proof that the encrypted
result was computed using the targeted data and function.
Along this line, we introduce a verification protocol that al-
lows the server to validate the output of in-range aggregations
over ciphertexts with a succinct tag that can be verified in
constant time at the client. To generate the proof, we use ho-
momorphic Message Authentication Codes (HoOMAC) [28].
While HOMACs have been introduced as cryptographic build-
ing blocks in the literature, existing solutions do not achieve
integrity while maintaining scalability.

HoMAC. Conventional Message Authentication Codes
(MAC:s) are small tags generated for each ciphertext which
later ensure the authenticity and integrity of the ciphertext.
HoMAC:s [9, 28] are conceptually similar to MACs, but ad-
ditionally allow the server to perform computations like ag-
gregations over the ciphertexts, and to produce new tags that
authenticate the outputs of the computation. More precisely,
the client generates a HoOMAC tag ¢ for each ciphertext ¢ and
uploads (c, ), where G is defined as follows:

6 = HoMAC(c) = (s—c¢)/Z mod p 4)

where s is a per-ciphertext key, Z the HOMAC key, and p a
prime number. The server computes aggregations on both the
ciphertext and HoMAC tags Z?;OI (¢i,6i) = (Cres;Ores). The
resulting tag G,.s authenticates and verifies that the output
Cres corresponds to that specific aggregation. A client in pos-
session of the HoOMAC key material can verify the result by
checking that the received G, tag matches the ciphertext c,:
n—1
Z N ; Cres + GresZ mod p (5)
i=0
HoMAC:s are interesting for our use-case, since their symmet-
ric nature makes them appealing to integrate with HEAC.

USENIX Association

17th USENIX Symposium on Networked Systems Design and Implementation 839



In contrast to authenticated data structures [46, 84], which can
be used for outsourced computation verification, HOMAC tags
do not need to be updated when new data is inserted. How-
ever, without further optimization, their verification overhead
prevents their use in our setting.

Integrity Protocol. While HOMACs provide the desired in-
tegrity guarantees, they suffer from a verification overhead
that is linear in the number of records in the aggregation query.
Therefore, we apply a similar key canceling technique as al-
ready discussed above in the context of encryption: We define
a HoMAC keystream {so,s1,52, ...} and, for each ciphertext
¢i, the client computes the HoMAC tag o; as follows:

HoMAC(ci) = (si—ci)/Z = (si — sit1 —ci)/Z mod p (6)

Setting s§ = s; — s;+1 enables a constant time verification at
the client side regardless of the input size, since only the two
outer keys are required:

n—1 ”

Z sg =50 — Sp = Cres +OresZ mod p 7

i=0

Using the key canceling concept in both encryption and in-
tegrity is a key enabler for our efficient cryptographic access
control (§3.3). Since verification of aggregation results does
not require access to the individual messages that were ag-
gregated, our integrity protocol also integrates well with the
resolution-based access control (§3.3.2).

HoMAC Security. For an attacker, it is computationally
infeasible to generate a forged ciphertext and a tag which
pass the verification. Note that we use different HOMAC key
streams not just per-stream, but also per type of digest, i.e., tar-
get function. Therefore, the server cannot substitute a digest
aggregation with another. In the case of key leakage, a party
with access to the HOMAC key Z would be able to forge tags,
but data confidentiality always remains intact. For a complete
security treatment of HOMAC we refer to [28, 31] and the
extended paper [23].

3.3 Cryptographic Access Control

The symmetric homomorphic encryption and HoOMAC both
require a pseudorandom keystream with one key for each
message. The conventional approach to efficiently generat-
ing such keystreams would be to leverage a pseudorandom
function with an initially exchanged secret key. This allows
handling a large number of keys with one secret. However,
with this approach, one could only share the entire data stream
(i.e., all-or-none or in other words no fine-grained access con-
trol). Instead, we want to allow efficient sharing of arbitrary
intervals, and want to allow users to restrict access to lower-
resolution data, e.g., hourly or daily summaries. To realize
this granular access control and to allow data owners to cryp-
tographically enforce the scope of access to their data, we
design a novel key derivation construction.

? derived keys

G(\O Gl()
K B shared node
A pseudorandom
generator
Sesaeeens : G(x) = Gy)||G,(x)
H H H H H H H H H KDF
79%%%9¢ ¢ .
eystream

ko ki ko ks ky ks ke Ky o
Figure 2: TimeCrypt’s key derivation tree (leafs form a keystream).

3.3.1 Key Derivation Trees

Our key derivation is based on key derivation trees, i.e. bal-
anced binary trees where each node contains a unique pseu-
dorandom string. The leaf nodes represent the inputs to a
key derivation function (KDF) to compute the keystream
{ko,k1,k2,....,k,n_, } as depicted in Fig. 2. The key derivation
tree is built top-down from a secret random seed as the root.
The child nodes are generated with a pseudorandom genera-
tor (PRG) that takes the parent string as the input. Our PRG
consists of Go(x) for the left-hand child and G;(x) for the
right-hand child, where x is the parent node. This procedure
is applied recursively until the desired depth # in the tree is
reached. We select a large & such that the keystream is virtu-
ally infinite, especially when considering that high-frequency
streams will be chunked into e.g., one chunk per second. The
pseudorandom generator can be realized from hash functions
Go(x) = H(0||x),G1(x) = H(1||x) with x as the key.

Access Token. The key derivation tree allows us to share
segments of the keystream efficiently. Instead of sharing the
segment key-by-key, the client shares a few inner tree nodes,
combined into an access token. For instance in Fig. 2’s toy
example, a data owner grants access to the stream from #( to
t7, and the corresponding key segment {ko, ..., k7} is shared
using a single node. In practice, a single node in the tree
can be used to share thousands of keys. Note that given a
node it is computationally not feasible (i.e., due to one-way
property of PRGs) to compute the parent, sibling, or any of
the ancestor nodes. Hence, a data consumer cannot compute
any keys outside the segment they are granted access to.
Token Distribution. Once the data owner specifies an access
policy for a data consumer, the TimeCrypt client generates an
access token which encapsulates the inner nodes of the tree
needed to derive the corresponding shared keystream segment
specified in the access policy. We use the same key derivation
tree for the encryption and HoOMAC keystreams, but with a
different KDF*. The token also contains encoded information
about the subtree height and key identifier offset. TimeCrypt
then encrypts the tokens with the data consumer’s public key
(i.e., hybrid encryption) and stores it at the server, such that
the data consumer can fetch it to gain access to the keying

4Each leaf node of the primary key derivation tree is used to produce
cryptographic keys needed for its corresponding chunk. Namely, keys for
each element in the digest (i.e., query type), chunk, and HoOMAC. Hence, we
use different KDFs with the same node.
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Figure 3: Envelope encryption for resolution-based access, showing
envelopes required to share [t3,7]5] at a resolution of 3A.

material required to decrypt the data or query results. Note
that TimeCrypt’s key distribution is pluggable and we can
employ alternative solutions. For instance, we can encrypt
the token with attribute based encryption [83] to share tokens
based on attributes (e.g., month as a key attribute).

3.3.2 Resolution-based Access Restriction

We now discuss how TimeCrypt provides crypto-enforced ac-
cess control over the resolution at which data can be queried;
i.e., the data owner not only restricts access to a time range
per data consumer but also defines the temporal granularity
(e.g., per minute) at which they can retrieve or query data.
Resolution Levels. In TimeCrypt, the highest resolution for
queries and access control is defined by the chunk size A.
Whenever we aggregate over an interval, we reduce the data
resolution. For example, with one second chunks, an aggrega-
tion over 60 chunks results in a per-minute resolution. We can
exploit the fact that keys cancel out during in-range aggrega-
tions, as described in §3.1, to cryptographically restrict access
to lower resolution levels. In general, a ciphertext generated
through an in-range aggregation over the time period [1;,;)
has the form:

Jj—1 Jj—1
Zcxzzmx+ki_kj (8)
x=i x=i

where the inner keys are canceled out. Hence, given access
to just the boundary keys k; and k;, one can decrypt the ag-
gregation, but none of the individual ciphertexts. Resolution
levels must be multiples of the chunk size A and the segments
at a given level must not overlap. Otherwise, data consumers
could compute the difference of two aggregates overlapping
by e.g., one chunk, allowing them to learn the data for that
chunk which would violate the resolution-based access policy.
For example, if the data owner wants to restrict access to a
3-fold resolution of the chunk size, the data owner would
share only {ko,ks,ks,...} with the data consumer. The data
consumer can then decrypt the aggregated ciphertexts at the 3-
fold (i.e., 3- A) or lower resolutions, but cannot access higher
resolutions since the inner keys are missing.

Envelopes. While a data owner could share the boundary
keys required for resolution-based access directly, this is
not efficient since the number of keys necessary is linear
in the length of the shared interval. Instead, the data pro-
ducer stores the required boundary keys for a stream on the

server, protected by another layer of encryption, the enve-
lope. The keys used for the envelope encryption are derived
from a new tree-based keystream {ko,k;,kz,...}. For each
resolution level, we use a different keystream for the en-
velope encryption. For example, if a data owner wants to
make a per-minute resolution available for a stream with
20 s data chunks, the data owner encrypts the boundary
keys {ko,k3,ke, ...} with the envelope keystream, and stores
{ency, (ko). ency, (k3),ency, (ko),...} on the server, as shown
in Fig. 3.

Sharing a stream at a lower resolution is then again a mat-

ter of sharing a single access token, with the difference that
the token now contains nodes of the key derivation tree for
the envelope keystream, rather than for the original encryp-
tion keystream. A lower-resolution query returns, in addition
to the encrypted result, two envelopes containing the two
boundary keys required to decrypt the aggregated ciphertext.
The overhead of resolution-based access control is similar to
access control without resolution restrictions (§3.3), i.e., an
access token consist of at most O(log(n)) nodes from the key
derivation tree.
Dynamic Resolution Levels. In TimeCrypt, a user does not
need to decide a priori on a fixed resolution for data consumers
and can dynamically at any point in time define a new reso-
lution. E.g., Alice can share her health data with a physician
at minute-level (high-resolution) during physiotherapy from
Jan-to-Feb, and from March reduce the resolution to hourly
(low-resolution). The physician only sees high-resolution data
for Jan-Feb and only hourly-data from March onwards.

3.4 Access Control Extensibility

Beyond temporal and resolution-based access policies, our
construction also lends itself to enabling privacy policies on
encrypted data, as combining ciphertexts from multiple users
creates valid ciphertexts under a new virtual aggregate key.
In the context of private operations, privacy policies permit a
data consumer (e.g., analyst) to only run cross-stream aggre-
gate queries, without having access to individual data streams.
Similar to data access policies, privacy policies in our sys-
tem are enforceable via encryption. As a concrete example, a
user might want to allow a research lab to query her data but
only if aggregated with a fixed set of n users, to preserve her
individual privacy. Ensuring that a data consumer can only
decrypt aggregates across a set of users can be realized by
ensuring that she only has access to the virtual aggregate key
(i.e., the data consumer never sees the keys for a particular
user’s stream in isolation). For instance, if a service is autho-
rized to access an aggregate query over n encrypted messages
from different users, then sharing only the virtual aggregate
key Zfi’l’ k; will ensure that the analyst can only decrypt the
aggregated result. Therefore, we need a way to compute the
virtual aggregate key without exposing the individual keys
k; of each user to any of the involved parties; the storage
provider, authorized data consumer, or other users.
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Function

Description

(1) CreateStream(uuid, [config])
(2) DeleteStream (uuid)
(3) RollupStream(uuid, res, [Ty, T.])

Create a new stream, config defines parameters, e.g., chunk interval, operators.
Delete specified stream with all associated data.
Rollup an existing stream or a segment of it to the specified resolution.

(4) InsertRecord (uuid, [t, vall)

(5) GetRange (uuid, Ty, T)

(6) GetStatRange ([uuid], Ty, T,, resolution, [operators])
(7) DeleteRange (uuid, start, end)

Serialize data points in a chunk and append to the end of the stream.

Retrieve all data records within the specified time interval.

Retrieve statistics for the given time interval and resolution, default [sum, count, mean, var, freq].
Delete specified segment of the stream, while maintaining per-chunk digest.

(8) GrantViewAccess (viewid, [princ-id])
(9) CreateView (viewid, [policy])
(10) CheckView (viewid, princ-id)

Grant access to an existing View.
Create a View with the given policy in JSON format.
Retrieve a View token.

Table 1: TimeCrypt’s basic APL

Digests used in [to,ti) [te.tar)
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Figure 4: A statistical index for time series data with a k-ary time-
partitioned aggregation tree. The pre-computed encrypted index
allows for fast response times for statistical queries.

in-memory index

This can be accomplished by a secure aggregation proto-
col [6, 19] between the involved users and the analyst. The
inputs to the protocol are the users’ individual keys k; and
the output is the blinded contributions towards the virtual
aggregate key. Queries across streams can be performed effi-
ciently on the server, and the analyst can only decrypt the final
result via a virtual aggregate key. In §6, we discuss a private
crowdsourcing application atop of TimeCrypt that uses this
technique.

4 Fast Analytics and Processing

To meet the requirements of time series databases, TimeCrypt
must handle massive amounts of data, yet at the same time
be able to serve queries with low latency. We address this
challenge by introducing efficient client-side serialization/en-
cryption and efficient encrypted indices on the server.
Client-side Data Serialization. The client serializes and
encrypts data chunks containing the raw data, and digests.
The content of a digest is set per stream based on the sup-
ported queries. The default query configuration of TimeCrypt
supports sum, count, and mean. Other query types such as
variance, standard deviation, histogram, bucket min/max,
approximated quantiles, trend detection, and limited filter
queries, can be enabled.

Server-side In-memory Encrypted Index. TimeCrypt’s
server maintains an in-memory encrypted index based on
a time-partitioned aggregation tree over encrypted data. This
is a key building-block that enables us to serve low-latency
analytics on large encrypted data streams and enables efficient
data retention. The index structure is a k-ary tree, where each
internal node (digest) holds k statistical summaries of the sub-
tree below it. The tree leaves store the chunk digests encrypted

with HEAC at the client and represent the highest resolution
data summaries (Fig. 4). On the arrival of a new chunk di-
gest, the server inserts it as a leaf node, and updates statistical
summaries of the parent nodes’s by performing an encrypted
aggregation. Any operation that can be expressed as an aggre-
gation of the intermediate results from the child subtrees can
be included in the summaries (see §4). Time series workloads
are in-order and append-only, therefore updating the tree is
straightforward. The encrypted index enables TimeCrypt to
significantly decrease the response time for statistical queries,
as the server avoids expensive serial scans. When executing
a statistical range query over a time interval, the server tra-
verses the tree and selects only the digests required to cover
this interval, as illustrated in Fig. 4.

Statistical Queries. So far, we have developed the means to
evaluate aggregates over ciphertexts, now we briefly” discuss
how we combine aggregation with known encoding tech-
niques [32, 47, 68] to allow TimeCrypt to compute more
sophisticated statistics over ciphertexts. At a high level, each
per-chunk digest holds a vector of encoded values that are
encrypted with HEAC. For example, this vector might include
the encrypted sum and count of the data points in the chunk.
From this, we can then also calculate the mean. To compute
quadratic functions, e.g., var and stdev, the vector includes the
sum of squares of the points in the chunk. We can also include
the frequency count of data points in the chunk, which yields
valuable information to compute several statistical functions,
such as min, max, top N, bottom N, histograms, and quantiles.
For frequency counts, we use a vector [cv1 . cvn], where each
element in the vector ¢,, tracks the count of data points with
value v;. This works well for small n, which is often the case
for (discrete) time series data. For larger ranges of values,
we approximate the frequency count, i.e., each c,, tracks the
count of a small range (bin) around v; [32].

Advanced Analytics. In principle, any operations with ag-
gregatable transformations can be supported in TimeCrypt,
including a variety of sketch algorithms [52]. In addition,
we can support many forms of machine learning, e.g., via
aggregation-based encodings that allow private training of
linear models [32, 47, 68]. These types of analytics are often
employed in time series data to understand and detect runtime

Due to space constraints, we keep the description here brief and refer
to [32, 47, 68] for detailed description.
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anomalies, trends, and patterns. We show how such analytics
can be realized in TimeCrypt, using the example of private
trend detection, i.e., identifying a general tendency over a de-
fined time interval. It allows users to estimate the magnitude
of a trend and is a highly related task to event detection (e.g.,
runtime anomalies). Linear regression using least-squares is a
simple yet powerful method for trend detection [15]. To com-
pute a linear regression model over a stream, the per chunk
digest is defined as (¥;x;, Y;#ix;) for i € [0,n). This way the
expensive aggregations are done at the server. Such learning
on summarized data also delivers privacy gains, as the raw
data is not exposed in the training phase. In §6, we discuss
the performance aspects of implementing such applications
atop TimeCrypt.

Filter Queries. TimeCrypt supports filter queries with prede-
fined predicates. One can define digest encodings that contain
statistics over the values of the underlying chunk filtered with
a predicate P (e.g., the sum of all values larger than 10). In the
query phase, the filtered digests are used to compute statistics
over the values matching the predicate P.

Time-Decayed Data Processing. As time series data ages, it
is often aggregated into lower resolutions for long-term reten-
tion of historical data, while high-resolution data is aged-out.
Typical strategies are based on compact summaries through
aggregates [7, 43, 80]. TimeCrypt natively supports these ap-
proaches: as our index maintains aggregated summaries of
the raw data, we can selectively delete aged-out raw data and
prune lower nodes in the index. For example, we implement
a retention policy based on the time-decayed merge algo-
rithm [7] which keeps the data store compact (logarithmic in
the input size) by dynamically re-compacting older data as
new data arrives.

5 Prototype

API. TimeCrypt is realized as a service which exposes an
interface similar to conventional time series stores [7, 12, 50];
applications can insert encrypted data, retrieve encrypted data
by specifying an arbitrary time range, and process statistical
queries over arbitrary ranges of encrypted data, as summarized
in Table 1. In TimeCrypt, each stream is identified by a unique
UUID and associated stream metadata, e.g., hostname, data
type, sensor ID, location. Each stream has one writer (i.e., data
producer) and one or multiple readers (i.e., consumers). A
data owner can grant and specify access polices to consumers.
Granting Access to Stream Views. Data owners can man-
age access to their stream resources with the View APIL. Views
define what a data consumer can access within the scope of
the View. Views are set in JSON format, containing a unique
identifier and a list of per stream access policies. In the current
version, an owner can define the time range and the granu-
larity that is accessible per stream, as for example: "viewid":
2999, "streams": [{"uuid": [9,10], "from": "1546315200",
"to": "1546315800", "granularity”: "60s" }]. This View de-
fines an access scoped to stream 9 and 10 in the specified time

window with a minute granularity. After the user defines a
policy, the API assembles the access token with the necessary
inner nodes of the key construction for the specified View
(§3.3). The client library then derives a View key, encrypts
the token along with the JSON description using AES-GCM
and uploads it to the server. To give data consumers access to
the View, the client invokes the GrantViewAccess command,
which encrypts the View key with the respective consumer’s
public keys. The authorized consumers can download the
tokens for the given View and can query the streams in the
defined scope by the access policy. Though access policies are
enforced by encryption, the intricacies of the key management
are insulated from users in our design.

Reference Implementation. TimeCrypt’s prototype is im-
plemented in Java and consists of 6k SLOC with additional
4k SLOC for the applications and benchmark code. We used
Netty [44] for network communication. TimeCrypt’s server
and client communicate over Google’s protobuffers [37] pro-
tocol. The current prototype uses Cassandra [26] as the stor-
age backend. The encrypted index is augmented with the
in-memory cache caffeine [51] to speed up index node ac-
cess. For the implementation of the cryptographic schemes,
we used the Java security provider and a native C implemen-
tation of AES-NI. We compare the encrypted index perfor-
mance with HEAC against alternative private aggregation
schemes. We implemented three variants of the encrypted
index based on Paillier [77] (Java Biglntegers), EC-ElGamal
(OpenSSL [57]), and ASHE (we implemented it as described
in [60]). Our code is available online.

6 Evaluation

In this section, we evaluate TimeCrypt’s practicality. Our eval-
uation answers three core questions: (/) Can TimeCrypt meet
the performance requirements of time series applications?
(2) What are the performance gains of HEAC compared to
alternatives? — HEAC supports access control and secure
computation simultaneously; both aspects have traditionally
been addressed with different schemes, consequently we ex-
amine alternatives independently in our evaluation. (3) Can
TimeCrypt run compelling real-world applications?

Setup. Our experiments are conducted in Amazon AWS, on
MS instances equipped with a 2.5 GHz CPU running Ubuntu
(16.04 LTS). TimeCrypt’s server runs on an m5.2xlarge in-
stance with 8 virtual processor cores (vcores) and 32 GB of
RAM and a Cassandra node runs on an m5.xlarge instance
with 4 vcores and 16 GB of RAM. The clients are simulated
on several m5.xlarge instances. The client and server are lo-
cated in the same data center network, with up to 10 Gbps
bandwidth. In the microbenchmark, we quantify the over-
heads of encryption and decryption on end devices. We con-
sider resource-constrained IoT devices; this class of devices
is a major source of sensitive time series data. We use IoT
OpenMotes (32-bit ARM M3 SoC 32 MHz) and a MacBook
Pro 2.8 GHz Intel Core 17, with 16 GB RAM.
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Micro Index - Size

Average Ingest Time

Average Query Time (worst-case)

System

ADD M 1k 100M 1k M 100M
TimeCrypt Ins 8.1MB (1x) 10us (1.7x)  16us (1.3x)  22us (1.3x)  21us (1.6x)  46us (1.3x) 50us (1.1x)
TimeCrypt+ 3ns 243MB (3x)  16us (2.6x)  35us (2.9x)  39us (2.3x)  38us (2.9x)  87us (2.4x)  109us (2.4x)
Plaintext Ins 8.1MB (1x) 6us (1x) 12us (1x) 17us (1x) 13us (1x) 36us (1x) 45us (1x)

Table 2: Overview of evaluation results on the cloud, with 128-bit security, except for plaintext. The largest index size with 100M chunks,

represents 50 billion data points in our health app.
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Figure 5: Aggregate queries over varying time ranges (i.e., query
range size). Aggregating the entire index corresponds to retrieving
the encrypted root.

We quantify the overhead of TimeCrypt (confidentiality)
and TimeCrypt+ (confidentiality plus query verification),
and compare it to (i) operating on plaintext as the baseline,
and (ii) prior work where we consider alternative encryp-
tion schemes for encrypting the digest, i.e., Paillier (used in
CryptDB [63]), EC-ElGamal (used in Pilatus [74]) and ASHE
(used in Seabed [60]). For access control, we compare to a
strawman solution and a construction of KP-ABE (used in
Sieve [83]), that we use to realize temporal access control
similar to that supported by HEAC. Unless noted otherwise,
we use 128-bit security [13], i.e., 3072-bit keys for Paillier
and 256-bit elliptic curves for EC-ElGamal (i.e., prime256v1).
For the microbenchmarks, we use synthetic large data that
resembles the mhealth application (§6.4) dataset.

6.1 Encrypted Data Processing Performance

We now discuss the evaluation results of different aspects
of the encrypted index, as summarized in Table 2. In the
microbenchmark, the index supports one statistical operation
(i.e., sum) for isolated overhead quantification, whereas in
the E2E benchmark the index supports all our default queries.
In all experiments, we instantiate 64-ary index trees and a
keystream with one billion keys via the key derivation tree.

Index Size Expansion. To improve query efficiency, in-
memory time series databases aggressively seek to reduce
storage footprint, to support a model where almost all recent
data can be stored in memory. When considering encryp-
tion for time series data, the degree of ciphertext expansion
has a direct impact on the encrypted index storage footprint,
hence impacting query efficiency. TimeCrypt has no cipher-
text expansion for 64-bit values, TimeCrypt+ introduces a
128-bit expansion due to the HOMAC tag. The encryption
schemes in prior work [63, 75, 81] exhibit large ciphertext ex-
pansion, e.g., for one million chunks we experience 96x index

size expansion with Paillier. Hence, limiting the performance
gains of in-memory processing and impacting query latency.
ASHE [60] uses an encoding where the expansion depends
on the order of aggregation. With in-range aggregation this
amounts to 12.5% higher expansion compared to TimeCrypt.
Ingest Time. On each ingest, i.e., insertion of a leaf node,
statistical aggregates of ancestor nodes are updated. In Time-
Crypt, additions are as efficient as in plaintext. Hence, the
average ingest time increases slightly due to the encryption
cost; 1.3x for the large index. With verification the average
ingest time increases by 3.2x due to the HOMAC overhead.
Query Performance. Fig. 5 shows the performance of the in-
dex for statistical range queries of different lengths, i.e., [0,2]
with x € [0..26]. As the length of queries increases fewer tree
levels are traversed, which results in fewer cache fetches and
lower computation time, e.g., the index depth of five is ob-
servable in Fig. 5. For plaintext and TimeCrypt the resulting
pattern is similar due to the low cost of additions, while for
TimeCrypt the decryption overhead is visible. Queries with
non-power-of-k ranges require an index drill down on either
end of the range. This increases the computation time log-
arithmic, O(2(k-1)logy(n)) for a worst-case alignment, and
not linear to the n stored chunks.

Comparison to Alternatives. In Fig. 6, we show HEAC’s
performance gains relative to the encryption schemes used in
the other encrypted systems. For this experiment we launch
an ingest/query workload, with one machine and 100 threads,
where each thread constantly performs four statistical queries
after each chunk ingest. The plaintext setting reaches a
throughput of 5.77M records/s for ingest and 46.1k ops/s for
statistical queries, as shown in Fig. 6a-b. TimeCrypt demon-
strates an outstanding throughput for both ingest and statis-
tical queries with only 2.9% slowdown compared to plain-
text. With verification (TimeCrypt+), the slowdown increases
to 7.8% due to the larger index size and HOMAC compu-
tations. TimeCrypt is by a factor of 2x, 20x, and 52x faster
than ASHE, EC-ElGamal, and Paillier, respectively. Despite
ASHE’s lower encryption and decryption cost, the system
throughput is by 2x lower due to the higher aggregation costs
on the server. This is due to ASHE’s key-encoding updates,
which TimeCrypt eliminates with the time-to-key mapping.
Fig. 6¢-d shows the respective observed query latency. The
impact of a small index cache (1 MB) is distinct, but similar
for both plaintext and TimeCrypt, due to higher cache misses.
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Figure 6: Latency and throughput for ingest and statistical queries for TimeCrypt with HEAC vs. EC-ElGamal, Paillier, & ASHE, and operating
on plaintext indices. Heavy load experiment with a read-write ratio of 4 to 1, and also with extremely small (S) index cache (1 MB). The AWS
load generator creates 1200 streams with 100 clients, corresponding to 48579 streams in our health app (A:10s, 50Hz data rate).

HEAC ASHE Paillier
[Enc/Dec] [HoMAC | [Enc/Dec] [Enc/Dec]
IoT 1.08ms 20us 0.3ms 1.59s /1.62s
Laptop S5.1us 0.2us 1.5us/1.3us  30ms/ 15ms

Table 3: Performance of crypto operations with at least 80-bit se-
curity and 32-bit integers on IoT devices (OpenMote) vs. laptop
(MacBook). TimeCrypt uses a key derivation tree with 230 keys.

To compare how other encrypted systems perform while
processing encrypted time series workloads, we run one ag-
gregate query over one billion data records on CryptDB, Pi-
latus, Seabed, and TimeCrypt. Seabed requires seconds to
process this query while CryptDB and Pilatus require min-
utes, whereas TimeCrypt can process such a query within a
few milliseconds on a single machine.

6.2 Client Performance

Table 3 summarizes the enc/decryption and HOMAC costs of
HEAC in TimeCrypt. TimeCrypt’s cryptographic costs are
dominated by the key derivation tree. Enc/decryption amount
to 5.1 us, which accounts for the time to compute the key.
With HOMAC the clients incur 4% higher costs. To put this
in prospective, this is three orders of magnitude faster than
Paillier, EC-ElGamal, and ABE schemes with only few at-
tributes. ASHE is faster in enc/decryption; the slight overhead
in HEAC is due to the cost of deriving keys from our key
derivation construction to support access control. Though
overall, TimeCrypt is more performant in ingest and query
performance due to its faster aggregations. The overhead of
resolution-based access is defined by the access granularity.
For instance, with 10 s chunk intervals and minute and hourly
resolutions, the encryption cost increases by only 1% per day.

Low Power Devices. TimeCrypt is particularly compelling
for battery-powered constrained devices used in the IoT and
environmental sensing, where the power consumption of en-
cryption is a serious challenge. Assuming one minute chunk
intervals with TimeCrypt default queries, encryption con-
sumes only 1.4% (400mJ) more battery per day on an Open-
Mote device compared to sending data in the clear.

6.3 Access Control

In the following, we look at the performance and scalability
of our encryption-based access control mechanism. The over-
head can be quantified as the cost of key distribution, deriving
HoMAC and encryption keys, and computing the resolution
envelopes. To characterize the overhead, we consider an ex-
ample scenario where a data owner has 1000 streams and
shares a subset of each stream with a data consumer.

Naive Key Management. TimeCrypt realizes access control
by encrypting units of stream data with unique keys. Conse-
quently, efficient key distribution is important for the scalabil-
ity of this approach. In a naive approach, data owner can com-
pile all the keys associated with the specified access policy
and distribute the keys encrypted individually to each princi-
ple. However, this leads to access tokens of size O(n) where
n is the number of keys (i.e., units of stream data included in
the access policy). With our key derivation construction, we
have a logarithmic worst-case complexity in the number of
shared stream units O(log(n)).

Communication. An access token in TimeCrypt contains
in the worst-case 2(log(n) — 1) inner nodes of the tree key-
derivation construction where n is the number of keys in the
tree. This reduces the communication cost from a naive ap-
proach from 50 GB to 1.28 MB, considering one year of data
shared in our example scenario. With resolution-based access
policies, the data consumer has to additionally download two
envelopes per aggregation query (72 additional bytes).
Computation. Deriving the access token for all streams re-
quires 145 ms. The decryption keys can be computed at a rate
of 400k per second. With resolution-based access, the princi-
pal has to perform an additional decryption (for the envelope),
which reduces the rate to 380k keys per second.

Storage. The storage cost can be broken down into two parts;
key storage at the data consumer (1.28 MB), and resolution-
related keying material at the server, which grows linearly
with time (i.e., the envelopes). With a stream that consists
of 10 s chunk intervals over one year with hour/day/month
resolution support, the server stores 1.6 MB keying material
(45.7k envelopes) per stream.

Comparison to an ABE-based Approach. Although,
key-policy attribute-based encryption (KP-ABE) (used in
Sieve [83]) is a powerful tool for access control, it comes
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Figure 7: Latency in log-scale for statistical queries of one month
data in our health app (121M records). The x-axis shows the granu-
larity of the requested data from one minute to one month.

with a relatively high computational cost, especially for low-
power devices and when used to enable fine-grained polices
as needed in time series data. Compared to KP-ABE (im-
plementation from [3]), HEAC is three orders of magnitude
more efficient for encryption/decryption. For an IoT device
encrypting one chunk per minute, an ABE-based solution
drains one order of magnitude more battery life compared to
HEAC. Additionally, ABE does not support computation on
encrypted data.

Interrupt Key Canceling. TimeCrypt can add epoch borders
to reduce the risk of leakage from aggregating the skipped
interval between two shared non-continuous intervals (§3.1).
Each additional epoch border within the query range incurs
an additional computational cost to decryption (i.e., one key
derivation and two additions). For example, considering a
weekly epoch and a daily epoch in a data stream, the decryp-
tion cost for a monthly aggregate result increases by a factor of
2.5x and 14.5x, respectively. However, even for fine-grained
epochs (e.g., over 300 per range), the decryption latency re-
mains well below 1 ms and would not impact user perception.

6.4 Applications

In this section, we evaluate the end-to-end overhead of Time-
Crypt and its effectiveness in running complex, real-world
applications. We developed four apps atop of TimeCrypt that
represent different challenging requirements and workloads.
mHealth Views - Interactivity. We implemented an
mHealth dashboard for the Biovotion health tracker [18]. The
dashboard shows summary plots of the underlying data (i.e,
windowed AVG). The data consists of 12 different metrics at
50 Hz from the Biovotion sensor over two weeks, which we
stretch to one year worth of data. Fig. 7 shows the response
time for aggregation plots of last month’s data (121M records).
We also consider the extreme case of plotting one-month data
at minute granularity (403 MB plot), which induces an over-
head of 1.45x (2.0x for TimeCrypt+) in latency compared to
plaintext. With lower granularity, the overhead sharply de-
creases and reaches 1.06x (1.29x for TimeCrypt+).

DevOps Trend Detection - Complex Analytics. We devel-
oped a trend detection app for CPU utilization. We use a CPU
monitoring dataset generated by the time series benchmark
suite [79] with 10 metrics, 10s data rate, and per minute chunk
size A over one year. The results of a two-dimensional linear
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= e -e TimeCrypt — 70
% 11k Z 60
E M ; 50 .
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Figure 8: Applications: (a) DevOps trend detection queries on CPU
utilization over different number of records. (b) Energy consumption
queries for a day over multiple streams in a smart meter application.

regression model on different ranges of an encrypted CPU
monitoring stream are shown in Fig. 8a. TimeCrypt matches
the plaintext performance (0.75% slowdown).

Smart Energy Service - Access Control Scalability. We
extended a smart meter application, where a service computes
the aggregated energy consumption per day over households.
Each smart meter uploads a chunk every Ss, but the service can
only compute per day aggregates for each stream. We use the
ECO dataset [48], which contains smart meter data sampled
at 1 HZ rate and collected over 8 months. Fig. 8b shows the
query latency for the aggregated energy consumption over up
to 1000 streams. TimeCrypt’s overhead is attributed to multi-
stream processing and resolution-based access. The overhead
stems from the linearly increasing decryption costs in the
number of streams that are aggregated.

Crowdsourced mHealth - Privacy Policy Transformation.
We enhance the mHealth app with a crowdsourcing feature
which enables users to opt-in their data to be part of crowd-
sourcing for a targeted research project, as described in §3.4.
For n users, the secure aggregation protocol [19] adds a com-
munication overhead of n Diffie-Hellman key exchanges per
user to create the envelopes. The envelope enc/decryption
increases linearly (e.g., below 1 ms for 100 users).

7 Related Work

There is a large body of research on privacy-preserving sys-
tems, encrypted search, and secure outsourced computation.
For brevity, we focus our discussion here on works that are
closest to TimeCrypt.

Encrypted Databases. Fuller et al. [34] provide a compre-
hensive overview of the encrypted database landscape. We
now discuss several works in this space that are analogues
to TimeCrypt. CryptDB [63] and Monomi [81] augment re-
lational databases with encrypted data processing capabili-
ties, however, encryption schemes used in these systems are
not efficient enough to support interactive queries on large
data. Seabed [60] focuses on Spark-like batch processing
workloads and resorts to symmetric partial-homomorphic en-
cryption to enable interactive queries on big data but without
the tight latency requirements of time series data. CryptDB,
Monomi, and Seabed do not support cryptographic access
control or verifiable computation, as the case with TimeCrypt.
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ENKI [41] and Pilatus [74] support sharing and encrypted
computations but they scale poorly with the number of prin-
cipals and the size of data. Also, they do not support fine-
grained policies. Bolt [40] is an encrypted data storage sys-
tem for time series data that supports retrieval of encrypted
chunks but does not support server-side computation on en-
crypted data or fine-grained sharing. BlindSeer [61] enables
private boolean search queries over an encrypted database by
building an index with Yao’s garbled circuits and primarily
targets private search over large data with no support for sta-
tistical queries. It integrates access control for search queries
but requires two non-colluding parties. Another line of re-
search considers building data processing systems in trusted
execution environments [14, 64, 72], which can provide con-
fidentiality and integrity of queries. In TimeCrypt, we do not
require dedicated hardware and rely on cryptographic primi-
tives to ensure confidentiality and integrity of computation.

Cryptography-based Access. Cryptographically enforced
access control is explored by crypto-systems [35] such as
identity-based encryption, attribute-based encryption (ABE),
predicate encryption, and functional encryption. They enable
complex access control to encrypted data. ABE [8, 16, 38,
39, 59, 70] is the most expressive among them, though it
comes with limitations with respect to fine-grained access
and and dynamic updates [35]. Current ABE-based systems
lack homomorphic capabilities (i.e., no computation on ci-
phertexts) and scalability required for time series data work-
loads. In general, adding homomorphic capabilities to ABE
remains an open challenge [22]. Recently, important progress
has been made on constructions of homomorphic attribute
based encryption [20, 22, 30, 36]. However, they remain lim-
ited in functionality and are computationally expensive. A
related line of work is searching over encrypted data with
predicate evaluation [21, 76]. While predicate encryption
schemes [21, 76] support range queries over encrypted data,
they lack the required efficiency in our setting, as they re-
quire a linear scan through the database and also due to their
underlying computationally expensive pairing-crypto.

8 Conclusion

In this paper, we presented TimeCrypt, a new scalable system
that enables fast analytics over large encrypted data streams.
TimeCrypt introduces HEAC, a novel encryption construction
that enables execution of real-time analytics over encrypted
stream data and empowers data owners to enforce access re-
strictions on encrypted data based on their privacy and access
control preferences. Our evaluation on various large-scale
workloads shows TimeCrypt’s performance is close to operat-
ing on plaintext data, demonstrating the feasibility of provid-
ing high-performance and strong confidentiality guarantees
when operating on large-scale sensitive time series data.
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