
Size-aware Sharding For Improving Tail Latencies in In-memory Key-value Stores

Diego Didona
EPFL

Willy Zwaenepoel
EPFL and University of Sydney

Abstract

This paper introduces the concept of size-aware sharding to
improve tail latencies for in-memory key-value stores, and
describes its implementation in the Minos key-value store.

Size-aware sharding distributes requests for keys to cores
according to the size of the item associated with the key.
In particular, requests for small and large items are sent to
disjoint subsets of cores. Size-aware sharding improves tail
latencies by avoiding that a request for a small item gets
queued behind a request for a large item.

Minos uses hardware dispatch for all requests for small
items, which form the very large majority of all requests,
to achieve high throughput, and achieves load balancing by
adapting the number of cores handling requests for small and
large items to their relative presence in the workload.

We compare Minos to three state-of-the-art designs of in-
memory KV stores. Compared to its closest competitor, Mi-
nos achieves a 99th percentile latency that is up to 20 times
lower. Put differently, for a target 99th percentile latency
equal to 10 times the mean service time, Minos achieves a
throughput that is up to 7.4 times higher.

1 Introduction

Many distributed applications use in-memory key-value
(KV) stores as caches or as (non-persistent) data reposito-
ries [3, 10, 13, 34, 41, 44, 51, 55]. Many of these applica-
tions exhibit a high fan-out pattern, i.e., they issue a large
number of requests in parallel [55]. From the application’s
standpoint, the overall response time is then determined by
the slowest of the responses to these requests, hence the cru-
cial importance of tail latency for KV stores [17].

The performance of KV stores has been the subject
of much work, both in terms of software and hardware.
Software optimizations include zero-copy network stacks,
polling, run-to-completion processing, and sharding of re-
quests among cores [37, 45, 57]. Hardware optimizations
primarily rely on the use of RDMA [35, 36], programmable

NICs [38, 41] or GPUs [30, 64]. The work reported in this
paper does not require any particular hardware support. We
assume only commodity NICs with multiple queues and a
hardware mechanism to direct requests to a particular queue.

Variable item sizes and tail latency. The workload ob-
served for many KV stores consists of a very large number
of requests for small items and a much smaller number of re-
quests for large items [3, 9, 55]. Because of their higher ser-
vice times, however, handling the requests for larger items
consumes a significant share of the available resources. Pro-
cessing these large items therefore increases the probability
of head-of-line blocking, a situation in which a request for a
small item ends up waiting while a large item is being pro-
cessed. As a result of the wait, that request experiences addi-
tional latency, which in turn may increase the tail latency of
the KV store. Even a very small number of requests for large
items can significantly drive up tail latencies. As we show in
Section 2.2, a percentage of large requests smaller than N%
can lead to a substantial increase of the (100-N)th percentile.

Size-aware sharding. This paper introduces the notion of
size-aware sharding to address this issue. In general, size-
aware sharding means that requests for items of different
sizes go to different cores. In its simplest form, it means
that, for some cutoff value between small and large, small
and large items are served by disjoint sets of cores. The in-
tuition behind size-aware sharding is that by isolating the re-
quests for small items, they do not experience any head-of-
line blocking, and, given that they account for a very large
percentage of requests, the corresponding percentile of the
latency distribution is improved.

The implementation of size-aware sharding poses several
challenges. A first challenge is how to use hardware dispatch
of an incoming request to the right core. In general, a client
of the KV store does not know the size of an item to be read,
and moreover it does not know which cores are responsi-
ble for small or large items. Therefore, size-aware sharding
would seem to necessitate a software handoff in which an
I/O core reads incoming requests and dispatches them to the

proper core. Instead, we demonstrate a method by which
software dispatch is required only for the very small number
of requests for large items. Second, cutoff values between
large and small items must be chosen and the proper num-
ber of cores must be allocated for handling small and large
items. We show that, even in the presence of a workload that
varies over time, this can be done by a simple control loop.
Minos. This paper describes the Minos in-memory KV store
that implements size-aware sharding. We compare Minos
to alternative size-unaware designs based on keyhash-based
request sharding, software handoff and work stealing, im-
plemented by state-of-the-art systems such as MICA [45],
RAMCloud [57] and ZygOS [58].

We show that Minos achieves a 99th percentile latency
that is up to two 20 times lower than the second best ap-
proach. Put differently, for a given value for the 99th per-
centile latency equal to 10 times the mean service time, Mi-
nos achieves a throughput that is up to 7.4 times higher.
Contributions. The contributions of this paper are:
1) the introduction of the notion of size-aware sharding for
in-memory KV stores,
2) the design and implementation of the Minos KV store that
implements size-aware sharding efficiently, and
3) the evaluation of Minos against state-of-the-art size-
unaware designs.
Outline of the paper. Section 2 provides background on KV
store workloads and discusses the shortcomings of existing
approaches in achieving low tail latency. Section 3 presents
Minos’ size-aware sharding approach. Section 4 discusses
implementation details. Section 5 describes the experimental
environment. Section 6 presents experimental results. Sec-
tion 7 discusses related work. Section 8 concludes the paper.

2 Background

2.1 Item Sizes in Production KV Workloads
The sizes of the items stored and manipulated by KV stores
in production environments can span orders of magnitude.
For instance, large variations in item size have been re-
ported in several deployments of the popular memcached KV
store [51]. The Facebook ETC memcached pool stores items
that vary in size from a handful of bytes to 1 Mbyte [3].
The size distribution is heavy-tailed: the 5th percentile in
the regional pool is 231 bytes, while the 99th percentile
is 381KB [55]. A similar degree of variability in item size
has also been reported for other KV deployments such as
Wikipedia [46] and Flickr [9], where item sizes span up to 4
orders of magnitude, from 500B to 1 MB.

Moreover, Atikoglu et al. report that in the ETC

memcached pool at Facebook requests for large items, de-
spite being rare, consume a large share of the computa-
tional resources, because service times are closely related

0.2
1

10

100

1000

 0.001 0.01 0.1 1 10 100 1000

T
im

e
 (

µ
s
e

c
,

lo
g

)

Item size (KB, log)

Avg. request service time

Figure 1: Service time of GET operations on items of dif-
ferent sizes on our platform (axes in log scale). The service
time measures the interval from the reception of the client
request on the server to the transmission of the reply. To
avoid queueing effects, only one client performs operations.
The time to process a large item can be up to almost four
orders of magnitude higher than what is needed for a small
one. This is due to the higher time needed to copy the con-
tent of the item to the network packets that are placed on the
TX queue of the NIC.

to item size, and account for a significant fraction of the
transfered data [3]. This dynamic is consistent with obser-
vations from similar application domains, such as, e.g., web
servers [2, 15] and large-scale clusters [62].

2.2 Variations in Item Size and Tail Latencies
Variations in item size have profound implications for tail la-
tencies. As anecdotal evidence, Nishtala et al. report that in
the Facebook memcached servers the median response time
is 333 microseconds, while the 95th percentile is 1.135 mil-
liseconds [55]. In this section we show that this finding goes
beyond the anecdotal, and that all common size-unaware
sharding techniques exhibit high tail latencies for workloads
in which even only a small fraction of requests targets large
items. In particular, we show that, even under moderate
loads, the (100-N)th percentile is affected dramatically by a
fraction, much smaller than N%, of requests for large items.
In the following we report on the 99th percentile, commonly
used in Service Level Objective (SLO) definitions, but the
results apply also to other high percentiles.

We simulate three common size-unaware sharding tech-
niques on a server with 8 cores, each with a queue to store
incoming requests1:
• Early binding: requests are dispatched to a queue for a
particular core, often based on a keyhash, similar to what is
used, for instance, in the EREW version of MICA [45].
• Late binding: requests are kept in a single queue and dis-
patched to a core when it becomes idle, similar to what is
used, for instance, in RAMCloud [57].

1The goal of this simulation is not to predict quantitatively the perfor-
mance differences between these strategies in any real implementation, as
their performance is affected by factors such as locality, cost of synchro-
nization, and cost of dispatching, which we do not simulate. Our goal is to
demonstrate, for all three methods, the substantial increase in tail latency as
a result of the presence of a small fraction of requests for large items.

50000

 10

 100

 1000

 10000

 0 0.2 0.4 0.6 0.8 1

9
9

p
 (

lo
g

)

Throughput (norm w.r.t. max with K = 1)

K = 1
10

100
1000

(a) Early binding.

 0 0.2 0.4 0.6 0.8 1
Throughput (norm w.r.t. max with K = 1)

K = 1
10

100
1000

(b) Late binding.

 0 0.2 0.4 0.6 0.8 1
Throughput (norm w.r.t. max with K = 1)

K = 1
10

100
1000

(c) Early binding + work stealing.

Figure 2: Throughput vs. 99th percentile of response times for different types of size-unaware sharding techniques (y axis in
log scale). The workload distribution is bimodal: 0.125% of requests is for large items, whose service time is K time units; the
remaining is for small ones, whose service time is 1 time unit. K is varied from 1 to 1,000. K = 1 corresponds to a baseline
workload with only small requests. A small (<1%) fraction of large requests suffices to hamper greatly the 99th percentile of
response times, and to considerably reduce the achievable throughput.

• Early binding with work stealing: requests are handled
as in the early binding case, but in addition idle cores steal
requests from the queues of other cores, similar to what is
used, for instance, in ZygOS [58].

For simplicity, we use a workload with a bimodal size dis-
tribution. Small requests form 99.875% of the workload, and
have a service time of 1 time unit. Large requests form the re-
maining 0.125%. We run different simulations in which the
service time of large requests is, respectively, K = 1, 10, 100
and 1,000 time units. These values are in line with the order-
of-magnitude differences in service time between small and
large items observed on our platform (see Figure 1). We use
K = 1 to establish a baseline where all requests are small.
Inter-arrival times follow an exponential distribution.

Figure 2 shows the 99th percentiles for the three sharding
strategies under the bimodal workload compared to a work-
load with an identical offered load, but with only requests
for small items. Even though the fraction of large items re-
quested is much smaller than 1%, all three strategies suffer
from a considerable increase in the 99th percentile latency.
For K = 100 and K = 1,000, at only 10% utilization the 99th
percentile for the early binding design is two orders of mag-
nitude higher than the 99th percentile in the workload com-
posed only of small requests. Stealing and late binding are
more resilient to service time variability at low load, but at
higher loads they also suffer from one or two orders of mag-
nitude degradation of the 99th percentile, with respect to the
workload with only small requests.

The reasons for these increases in the 99th percentile la-
tency are different from one strategy to the next. Early bind-
ing suffers from head-of-line blocking when a request for a
small item ends up in a queue behind a request for a large
item, or behind a request for a large item being executed by
this core. The late binding of requests to cores is more re-
silient to head-of-line blocking, a well known result from
queueing theory [28], but it does not avoid it. Late binding
is vulnerable to cases in which the arrival of many large re-

quests in a short period of time leads many (or even all) cores
to be busy serving large requests. Such an event temporarily
reduces the amount of resources available to serve small re-
quests, which impacts tail latency. Stealing improves the tail
latency of the early binding design, as it steals some of the
requests that would otherwise experience head-of-line block-
ing but it cannot completely avoid head-of-line-blocking.
First, stealing only occurs when a core is idle, and the like-
lihood of a core being idle decreases as the load increases.
Second, by the time a core becomes idle, a request that it
steals is likely to have already experienced some head-of-
line blocking in the queue from which it is stolen.

In light of these results, Minos processes requests for
small and large items on disjoint set of cores, a technique
we call size-aware sharding. This addresses the shortcom-
ings of existing approaches, by avoiding that a small request
waits for the completion of a large one.

3 Minos design

3.1 Size-aware sharding

Preliminaries. We consider a server with n cores. The
server has a NIC with multiple receive (RX) and transmit
(TX) queues. We configure the NIC to use n RX queues
and n TX queues. At any time, there are nl cores handling
requests for large items and ns cores handling requests for
small items (nl + ns = n). With a slight abuse of language,
we say that a request for a small (large) item is a small (large)
request, and that a core handling small (large) requests is a
small (large) core. In addition to an RX and a TX queue,
each large core maintains a software queue.

In the following, we assume all n cores are within the
same NUMA domain, so that KV item accesses and inter-
core communication happen within the same NUMA do-
main. Minos can seamlessly scale to multiple NUMA do-
mains by running an independent set of small and large cores

within each NUMA domain, and by having clients send re-
quests to the NUMA domain that stores the target key [45].

We consider a KV store with the usual CRUD (Create,
Read, Update, Delete) semantics. A client can perform a
GET(key) and a PUT(key, value). Create and delete are con-
sidered special versions of PUT, and not discussed any fur-
ther. When a client issues GET and PUT operations, the
client software puts in the request the id of the RX queue in
which the corresponding packets are deposited when they ar-
rive at the server. The target RX queue is chosen at random
for GET operations, and depends on the keyhash for PUT
operations (as we describe in Section 4.2). A PUT request
also includes the size of the item that is being written. The
client does not know the size of an item to be read. Further-
more, the client does not need to know which or how many
cores on the server handle small or large requests.

In the following discussion we initially assume that we
know the threshold on the item size that separates small and
large items. We explain later how the threshold is deter-
mined. We first explain size-aware sharding with a given
number of small cores and one large core. Then, we show
how the number of small and large cores is determined, and
how the system operates with more than one large core.
Receiving incoming requests. Only the small cores read in-
coming requests from the RX queues. They do so in batches,
to amortize the cost of communicating with the NIC. Each
small core repeats the following sequence of actions w.r.t.
the RX queues. First, it reads a batch of B requests from its
own RX queue. Then it reads a batch of B/ns requests from
the RX queue of the large core. In this way, all RX queues
are drained at approximately the same rate. The reason a
large core never reads incoming requests from its RX queue
is that, if it were to receive a small request, this request could
experience head-of-line blocking behind large requests.

We start by explaining how GET operations are handled.
Operation of the small cores. For each request, a small core
starts processing the request by looking up the item associ-
ated with the requested key. If its size is below the threshold,
the small core continues the GET operation and replies to the
client with the requested item (by putting the corresponding
reply packet(s) on its TX queue). Else, the small core puts
the request in the software queue of the large core.
Operation of a large core. For each request in its software
queue, a large core finds the corresponding item, and replies
to the client by putting the reply packet(s) on its TX queue.

The operation of a PUT is mostly similar, except that the
size is present in the request. Hence, there is no need to do
a lookup to find the size. Depending on the size, the request
is handled either immediately by the small core or passed on
by the small core to the large core, and handled there.
How to find the threshold between large and small re-
quests. Each small core maintains a histogram of the number
of requests that correspond to item sizes in certain ranges.

Each range corresponds to a size class. This histogram is
updated on the receipt of every request according to the size
of the target item. Periodically, core 0 aggregates these his-
tograms, finds the size class corresponding to the Nth per-
centile of item sizes, declares that class to be the threshold
for the next epoch, and resets the histograms.

To be resilient to workload oscillations, core 0 smooths
the values in the aggregated histogram (noted H) according
to a moving average that uses the histogram obtained in the
previous epoch (noted Hcurr). For each entry i, core 0 com-
putes Hcurr[i] = (1−α)Hcurr[i] +αH[i], and uses the new
Hcurr to determine the Nth percentile. α is a discount fac-
tor in the range [0,1], and determines the weight of the new
measurements over previous ones. Because Minos targets
high throughput workloads, many requests are sampled dur-
ing an epoch. Hence, H is highly representative of the cur-
rent workload, and is assigned a weight equal to 0.9 [65].
How to choose the number of small cores. Minos main-
tains a cost function that gives us for a request of a given
size a certain processing cost. Minos can use various cost
functions, but currently uses the number of network pack-
ets handled to serve the request as cost, either the number of
packets in an incoming PUT request or the number of packets
in an outgoing GET reply. Alternatives could be the number
of bytes or a constant plus the number of bytes. The number
of small cores is then set to the ceiling of the fraction of the
total processing cost for small requests times the total num-
ber of cores. The remaining cores are used as large cores.
Operating with a number of large cores different from
one. If, as a result of the above calculation, there is more
than one large core, then Minos distributes the large requests
over the large cores such that each large core handles a non-
overlapping contiguous size range of requests, and such that
the cumulative processing cost of requests assigned to each
large core is the same. By doing so, not only does Minos
balance the load on large cores, but it also shards large re-
quests in a size-aware fashion. That is, the smallest among
the large requests are assigned to the first large core, and
larger requests are progressively assigned to other cores. A
small core that receives a large request puts the request in the
software queue of the large core that is handling the size of
the requested item.

If all cores are deemed to be small cores, then one core is
designated a standby large core. In other words, it handles
small requests, but if a large request arrives, it is sent to this
core, which then becomes a large core.

3.2 Discussion

Design rationale. The goal of Minos is to improve the Nth
percentile. To that end, Minos identifies the smallest N per-
cent of the requests, and isolates the processing of these re-
quests from the processing of larger requests, such that no

head-of-line blocking occurs. Furthermore, Minos assigns
a number of cores to small/large requests proportionally to
the expected load generated by requests of that size, so as to
balance the load across cores.

The use of randomization and of the hashed value of the
key to decide the target RX queue for a request leads to rea-
sonable load balance among the RX queues. A similar ob-
servation was made in the context of MICA [45]. Since the
small cores handle the requests that arrive in their own RX
queue, and an equal portion of the requests that arrive in the
RX queues of the large cores, overall the load is balanced
among the small cores. By using purely hardware dispatch
for the small requests we eliminate any unnecessary over-
head in their processing, such as, for instance, software dis-
patches. We achieve these results while never dropping large
requests, since there is always at least one core available for
handling large requests.

The only overheads compared to a purely hardware dis-
patch solution such as MICA are then: 1) software dispatch
for the very small number of large requests, 2) synchroniza-
tion on the RX queue and the software queue of the large
cores, for which we found contention to be low, and 3) some
minor loss in locality for the small requests that arrive in the
RX queues of large cores.
Not sharding small requests. Minos could implement size-
aware sharding for small requests. This would allow for iso-
lating requests of different sizes at a finer granularity. Minos
eschews this design choice because it targets SLOs expressed
in terms of a single response time percentile. Hence, it is less
important to further improve the performance of smaller re-
quests than to achieve the highest throughput with low target
tail latency. Sharding small requests across multiple class
sizes, instead, may result into a less efficient design because
small cores would spend much of their resources in dispatch-
ing requests that are served by other cores, and may be idle
while waiting to receive dispatched requests. We have ex-
perimented with a design in which we shard small requests,
and it proved to perform poorly. Assigning all small requests
to the same set of cores allows Minos to perform software
handoff only for the few large operations, and to achieve high
throughput and low Nth percentile latency.
Target percentile setting. The latency benefits brought by
Minos naturally depend on the setting of the target percentile
and the item size distribution. For example, an item size dis-
tribution could be such that the 95th percentile is 10B, the
96th percentile is 500KB and the 99th percentile is 1MB.
Then, optimizing for the 95th percentile would benefit the
latency of the smallest 95% of operations more than what
would happen for the smallest 99% of operations if Minos
was set to optimize for the 99th percentile. However, if the
target SLO of the application using the key value store is ex-
pressed in terms of the 99th percentile, it is less important
to achieve a very good 95th percentile by separating 10B re-
quests from the rest, and Minos should be configured to tar-

get the 99th percentile. In this setting, Minos would improve
the 99th percentile latency as much as possible by segregat-
ing 1MB operations and larger ones from the rest.

In the current design, Minos takes the target percentile
as input. The system administrator may determine such
percentile with the aid of workload traces collected offline,
which are typically available in production systems [3, 5,
59]. Automatically determining a suitable percentile that re-
sults in high latency gains and high throughput is an orthog-
onal research issue that we are currently investigating.

Trade-offs. In Minos small and large operations each have
access only to a subset of the processing power available on
the machine. This may lead some requests to experience a
longer queueing time than what they would experience if the
request could be served by any core. The impact of this ad-
ditional delay on short requests is outweighed by the benefits
that stem from avoiding head-of-line blocking. This design,
however, penalizes large requests. The rationale underly-
ing this trade-off is that Minos aims to reduce a target Nth
percentile of the response time distribution by favoring the
smallest N% of the operations. Larger requests that fall out
of such percentile, then, are processed in a best effort fashion
–and, importantly, never dropped.

Penalizing larger request is an inevitable price to pay to
favor smaller ones, as shown by the theoretical and quanti-
tative analysis of scheduling policies similar to size-aware
sharding [1, 6, 18]. We assess the effects of this trade-off on
performance in Section 6.1, and we discuss the differences
between size-aware sharding in Minos and related schedul-
ing techniques in Section 7.

Alternative designs. We now discuss alternative designs to
address item size variability, and why we do not adopt them.
1) Use a dedicated set of machines to serve large requests,
as suggested in [45]. This solution may lead to waste of re-
sources because the workloads of large and small requests
cannot be consolidated. It also requires migrating items
across machines in case an item changes size, and adds one
network hop to redirect large requests.
2) Splitting large operations in smaller chunks. This allows
interleaving the processing of such chunks with small re-
quests. This design may lead to lower resource efficiency
with respect to the run-to-completion model adopted by Mi-
nos. First, it may lead to worse data locality, by access-
ing memory regions corresponding to different requests, and
by interleaving request processing with networking opera-
tions. Second, it requires the implementation of nontrivial
scheduling mechanisms, whose costs may be not negligible
with µsecond scale SLOs. Instead, the run-to-completion
model enables high efficiency [57], and allows us to re-use
state-of-the-art techniques proposed for such model [45]. In
addition, it allows Minos to avoid head-of-line blocking by
implementing a simple FIFO scheduling policy within each
core.

4 Implementation

4.1 Network stack

Minos relies on the availability of a multi-queue NIC with
support for redirecting, in hardware, a packet to a specific
queue on the NIC (e.g., RSS [32] or Flow Director [33]).
This feature is now commonplace in commodity NICs.

To reduce packet processing overhead, Minos uses the In-
tel DPDK library [23] to implement a user-level zero-copy
network stack. All memory for the DPDK library is stati-
cally allocated and accessible by all cores. Packets are re-
ceived directly in memory, thus enabling zero-copy packet
processing. Furthermore, Minos uses DPDK-provided lock-
less software rings to dispatch large requests from small to
large cores without any copies [39]. Small cores check for
incoming requests by means of polling, to avoid costly inter-
rupts [57]. Similarly, large cores use polling to check for
incoming requests on their software queue. Requests are
moved in batches to further limit overhead.

Clients and servers communicate using UDP, imple-
mented on top of Ethernet and IP. Clients use the UDP header
to specify the target RX queue for a given packet. Requests
that span multiple frames (large PUT requests and large GET
replies) are fragmented and defragmented at the UDP level.

Retransmission is handled by the client. Similar to pre-
vious work [45], Minos does not support exactly-once se-
mantics and assumes idempotent operations. Exactly-once
semantics can be achieved by means of request identifiers.

4.2 KV store and memory management

Data structures. Minos employs the KV data structures
used in MICA [45]. Keys are split in partitions. Each parti-
tion is a hash table, each entry of which points to a bucket,
equal in size to a cache line. Each bucket contains a num-
ber of slots, each of which contains a tag and a pointer to
a key-value item. A first portion of the keyhash is used to
determine the partition, a second portion to map a key to
a bucket within a partition, and a third portion forms the
tag [22, 45], which is used to reduce the number of random
memory accesses when performing a key lookup. Overflow
buckets are dynamically assigned to a bucket when it has
reached its maximum capacity.
Memory management. The current prototype of Minos em-
ploys the memory manager of the DPDK library to handle
allocation of memory regions for key-value entries. Minos
can be extended to integrate more efficient memory alloca-
tors, such as the one based on segregated fits of MICA, or a
dynamic one as in Facebook’s memcached deployment [55].

Concurrency control. Minos uses a concurrency control
scheme that is similar to Concurrent Read Exclusive Write
(CREW) [45]. Each core is the master of one partition, and

each key can be written only by the master core of corre-
sponding partition. This serializes write operations on a key.

The concurrency control scheme in Minos differs slightly
from CREW, as a result of the distinction between small and
large cores. PUTs on keys whose master core is a small core
proceed along the lines of CREW. PUTs on keys whose mas-
ter core is a large core may be served by any core (either
because the request is small, or because it is dispatched to a
large core different from the one which receives the request).
In addition, two concurrent PUT operations on the same key
may be assigned to two different cores (a small and a large
one, or two large ones), depending on the size of the corre-
sponding values. Hence, all PUTs are guarded by a spinlock.

We argue (and we experimentally show) that the corre-
sponding overhead of spinlocks is largely outweighed by
the benefits of size-aware sharding, especially for the read-
dominated workloads that are prevalent in production envi-
ronments [3, 10, 55, 56]. First, in such workloads PUTs are
rare. Second, PUTs on large cores proceed mostly without
contention, because large cores serve non-overlapping size
ranges, so requests for the same large item are sent to the
same core. Third, PUTs on small cores mostly proceed with-
out contention because of the CREW nature of the concur-
rency protocol for keys whose master is a small core.

GETs can be served by any core, and are processed by
means of an optimistic concurrency control scheme [45].
Each bucket has a 64-bit epoch, which is incremented when
starting and ending a write on a key stored in that bucket.
Upon reading, a core looks at the epoch. If it is odd, then
there is an ongoing write on a key of the bucket, and the
read is stalled until the epoch becomes even. If (or when) the
epoch is even, the core saves the current epoch value and per-
forms the read. After the read, the core re-reads the epoch of
the bucket. If the value is the same as when the read started,
the read is successful. Else, a conflicting write might have
taken place, and the read is restarted. Because all memory is
pre-allocated, a writer thread can safely modify/erase a KV
entry that is concurrently accessed by a read.

5 Experimental Platform

5.1 Hardware
Our platform is composed of 8 identical machines equipped
with an Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz with
8 physical cores and 64 GB of main memory. The machines
run Ubuntu 16.04.2 with a 4.4.0-72-generic kernel. One ma-
chine acts as server and the other 7 run the client processes.
We disable hyperthreading and power-saving modes on all
the machines. All the machines are equipped with a 40Gbit
Mellanox MT27520 NIC (ConnectX-3 Pro), are located in
the same physical rack, and are connected via a top-of-rack
switch. The network stack relies on the Intel DPDK library
(version 17.02.1), to which we allocate 50 1GB huge pages.

Our NIC supports only RSS to implement hardware
packet-to-RX queue redirection [50]. RSS determines the
RX queue for an incoming packet by performing the hash of
the quintuplet composed of source and destination IP, source
and destination port and the transport layer protocol. To al-
low the clients and the server to send packets to specific RX
queues, we ran a set of preliminary experiments to determine
to which port to send a packet so that it is received by a spe-
cific RX queue. More flexible hardware packet redirection
methods can be used on NICs that support them. For exam-
ple Minos can use Flow Director [33, 49] to set the target RX
queue as UDP destination port of a packet.

5.2 Systems used in comparison

We compare Minos with three systems that implement state-
of-the-art designs of KV store, and that are based on the
queueing models that we have described in Section 2.
•Hardware Keyhash-based sharding (HKH). This system
implements early binding of requests to cores, as done in
MICA [45]. Requests are redirected in hardware to the target
core, according to the CREW policy. This policy performs
the best on skewed read-dominated workloads [45], such as
our default workload.
• Software hand-off (SHO). This system implements the
late binding of requests to cores, as in RAMCloud [57]. SHO
uses disjoint sets of handoff and worker cores. Each handoff
core has a software queue, in which it deposits the requests
taken from its RX queue. Worker cores pull one request at
a time from the handoff queues, process the corresponding
KV request, and reply to the client. The best number of
handoff cores depends on whether the workload is CPU or
network bound. We have experimented with 1,2 and 3 hand-
off cores. We report experimental results corresponding to
the best configuration for each workload.
• HKH + work stealing (HKH+WS). This system imple-
ments request stealing on top of HKH, as in ZygOS [58].
Each core has a software queue where it places the requests
taken from its own RX queue. An idle core can steal requests
from the software queues of other cores, and from their RX
queues, if no request is found in any software queue.

All designs are implemented in the same codebase. This
allows us to focus on the effects of item size heterogeneity on
performance, and to factor out implementation differences
(e.g., in the KV store data structure and concurrency control
scheme) and limitations (e.g., leak of support for multi-frame
packets and additional overheads to support richer APIs) of
the existing systems that implement the designs we consider.

The internal parameters of Minos are set as follows.
Workload statistics are collected by core 0 every second. The
byte range corresponding to the i-th size class is [2(i−1),2i),
and i ranges from 1 to 10. The size of a batch of requests
read from a RX queue is 32, and the same batch size is used

% large reqs (pL) Max size (sL) % data for large reqs

0.125
250 KB 25
500 KB 40

1000 KB 60
0.0625

500 KB

25
0.25 60
0.5 75

0.75 80

Table 1: Item size variability profiles.

for other systems as well.

5.3 Workloads
We use workloads characterized by different degrees of item
size variability and GET:PUT ratios.
Item size variability. We use, as a starting point, the charac-
terization of the ETC workload at Facebook [3]. Specifically,
we consider a trimodal item size distribution, according to
which an item can be tiny (1-13 bytes), small (14-1400 bytes)
or large (1500-maximum size). The size of an item within a
class is drawn uniformly at random. To generate workloads
with different degrees of item size variability, we vary both
the percentage of large requests, (noted pL), and the size of
items corresponding to large requests, by changing the max-
imum size of large items (noted sL). We let sL range from
250KB to 1MB. These values are consistent with the pro-
duction workloads we discussed in Section 2.1. Similarly to
what is seen for the ETC workload, we set pL < 1%, so that
the 99th percentile of the requests service times corresponds
to small and tiny items only. Specifically, we vary pL from
0.0625 to 0.75. Table 1 reports the combinations of pL and
sL we consider. It also reports the corresponding percentage
of bytes that are exchanged because of large requests.
Key popularity. We consider a skewed workload that fol-
lows a zipfian distribution with parameter 0.99. This repre-
sents the default value in YCSB [14], is widely used in the
evaluation of several KV stores [45, 35], and is representa-
tive of the strong skew of many production workloads [3].

We use the zipfian distribution on the sets of tiny and small
items, because they are many and they exhibit small vari-
ability in size. Large items, instead, are much fewer and ex-
hibit much higher variability, and are therefore chosen uni-
formly at random. This avoids pathological cases in which
the most accessed large item is the biggest or the smallest
item, thereby skewing the results.

We consider a dataset of 16M key-value pairs, out of
which 10K are large elements. Of the remaining key-value
pairs, 40% correspond to tiny items, and 60% to small ones.
This setting is consistent with the item size distribution and
the low access probability of individual large keys that char-
acterize the ETC workload. Each large item has, in fact, a
probability pL/100 · 10K/16M of being accessed. For sim-
plicity, we keep the size of the keys constant to 8 bytes.

Write intensity. We consider a read-dominated and a write-
intensive workloads, corresponding, respectively, to a 95:5
and 50:50 GET:PUT ratio. These values are used as default
values in YCSB and KV store evaluations [45, 35] (the ETC
workload has a 97:3 GET:PUT ratio).
Default workload. We set a default value for each parame-
ter, and generate different workloads by changing the value
of one parameter at a time while keeping the other ones to
their default values. The default workload is skewed with a
95:5 GET:PUT ratio, a percentage of large requests equal to
0.125 and a maximum large item size of 500 KB.

5.4 Benchmarking methodology
Load generation. We spawn 8 threads per client machine,
each pinned to a separate physical core and to an RX queue.
Client threads simulate an open system by generating re-
quests at a given rate, which varies depending on the target
throughput. The time between two consecutive requests of a
thread is exponentially distributed.
Measurements. Each request is timestamped with the send
time at the client, which is piggybacked by the server on the
reply message. Client threads constantly check their own RX
queues for replies, and compute the end-to-end latency of a
request using the timestamp in the reply message.

A client thread can have multiple requests in flight, so
for simplicity packet retransmission is not enabled. For this
reason, we only report performance values corresponding to
scenarios in which the packet loss rate is equal to 0.

Each workload runs for 60 seconds. The first and last 10
seconds are not included in the reported results.
Performance metrics. We focus on maximum achievable
throughput (number of of successful operations completed
per second) and 99th percentile of end-to-end latencies, since
large requests correspond to less than 1% of the total. We
also measure the utilization of the server NIC to evaluate
whether Minos is able to fully use the available bandwidth.

We consider SLOs in the form “The 99th percentile of la-
tencies must be within X µsec“. We use X = 50 and X =
100 to evaluate the performance gains of Minos as a func-
tion of the strictness of the SLO. These values correspond to
10 and 20 times the mean service time for a GET request in
our default workload (similarly to previous work [58]).

6 Evaluation

6.1 Default workload
Throughput vs. 99th percentile latency. Figure 3 shows
the 99th percentile latency (99p) as a function of the through-
put with the default workload. Minos achieves the high-
est peak throughput (6.2 Mops) and the lowest latency (≤
50µsec up to 90% of peak throughput).

10

50

400

 100

 0 1 2 3 4 5 6 7

9
9

p
 (

µ
s
e

c
,

lo
g

)

Throughput (Mops/s)

Minos
HKH+WS

HKH
SHO

Figure 3: Throughput vs. 99th percentile latency (y axis
in log scale) with the default workload. Minos matches
the throughput of the purely hardware-based design and
achieves the lowest latency.

Minos achieves the same peak throughput as HKH and
HKH+WS, reflecting the fact that all three systems rely
mostly or entirely on hardware handoff for request distribu-
tion (at very high load, stealing in HKS+WS rarely happens).
SHO achieves 10% less peak throughput, because it is bottle-
necked by the software handoff. In terms of 99th percentile,
Minos does better than HKH at any load, with improvements
reaching one order of magnitude as soon as the load exceeds
1 Mops. HKH+WS and SHO start out with similar 99th per-
centile latencies as Minos under loads below 1 Mops, but
under high load their 99th percentile latencies rapidly deteri-
orate to reach values similar to HKH. For an SLO on the 99th
percentile latency of 50 µsec Minos can perform 5.6 Mops,
2.4 times the throughput of its best competitor (HKH+WS).
For an SLO of 100 µsec, Minos still achieves 1.75 times the
throughput of its best competitor.

Minos achieves the best performance by overcoming the
limitations of existing designs when dealing with variable-
size items, and that we have discussed in Section 2.2. Inter-
estingly, the performance curves of the competitor systems
we consider follow the ones depicted in Figure 2, which por-
trays the behavior of the same systems in idealized condi-
tions (i.e., without dispatching and synchronization costs).
This indicates that the reason for the worse 99th percentile
tail latency exhibited by such systems is primarily due to the
shortcomings of their designs in presence of item size vari-
ability, and not to low level implementation details.
Latency of large requests. Minos leverages the insight that
the latency of the largest N% of the requests should not im-
pact the (100-N)th percentile. Minos restricts the N% largest
requests to a subset of the cores (N=1 in our setting), which
may result in increased latencies for such requests. We now
evaluate the performance penalty incurred by large requests
in Minos as a consequence of size-aware sharding. Figure 4
reports the 99th percentile latency of large requests in Minos
and HKH+WS (the best alternative).

Inevitably, Minos imposes some penalty on the perfor-
mance of large requests, reaching up to a factor of 2 for the
99th percentile latency of large requests before the system
goes into saturation. We argue that moderately penalizing

400

1000

1500

2500

 0 1 2 3 4 5 6 7 8

9
9
p
 (

µ
s
e
c
,
lo

g
)

Throughput (Mops/s)

Minos HKH+WS

Figure 4: Throughput vs. 99th percentile latency of large re-
quests with the default workload (y axis in log scale). Minos
trades its large benefits in terms of the overall 99th percentile
for a moderate penalty on the large requests, which represent
a small fraction of the workload.

large requests is a reasonable price to pay for the order-of-
magnitude improvement for the target (100-N)th percentile.

Minos can improve the latency of large requests by allo-
cating more cores to them. Minos currently determines the
number of small cores by taking the ceiling of the total num-
ber of cores times the fraction of load generated by small
requests. For this workload, it allocates only one core to the
large requests. This represents an over-allocation to small
requests to completely isolate them from large requests, and
hence an under-allocation for large requests. An alternative
strategy is to allocate one more core to large requests, and let
large cores steal from the RX queues of small ones to fully
use any extra capacity. To avoid re-introducing head-of-line
blocking, stealing can be done one request at a time, so that
there is never a small request queued behind a large request.
We are currently experimenting with this alternative design,
which would improve performance for large requests, while
only introducing a small degradation for small requests.

6.2 Write-intensive workload

We now investigate the effect of write intensity on Minos.
Figure 5 reports the 99th percentile of response times with
all four systems and a 50:50 GET:PUT workload.

Minos continues to deliver a 99th percentile latency one
order of magnitude lower than alternative approaches, up to
the saturation point at 6.3 Mops, but overall achieves a lower
(by 10%) throughput than HKH and HKH+WS. Throughput
values are in general higher than with the 95:5 workload,
because replying to a PUT requires less network bandwidth,
since the response message does not contain any item value
payload. This behavior is consistent with that observed by
previous work [45]. SHO is the only exception, as handoff
cores represent the bottleneck.

Minos achieves a lower throughput with respect to HKH
and HKH+WS because of the overhead stemming from pro-
filing the workload and periodically aggregating them on
core 0 to compute the 99th percentile of the item sizes. We
are currently investigating techniques to reduce such over-

10

50

400

 100

 0 1 2 3 4 5 6 7 8

9
9
p
 (

µ
s
e
c
,
lo

g
)

Throughput (Mops/s)

Minos
HKH+WS

HKH
SHO

Figure 5: Throughput vs. 99th percentile latency for Minos
vs. existing designs with the 50:50 GET:PUT workload (y
axis in log scale).

head, e.g., sampling only a subset of the requests. Alterna-
tively, the threshold between large and small requests can be
set statically if it does not vary over time and traces of the tar-
get workload are available for off-line analysis (as typical in
production workloads [3, 55, 59]). With this variant, Minos
is able to match the throughput of HKH and HKH+WS.

6.3 Sensitivity to item size distribution

We vary the percentage of large requests in the workload (pL)
and the maximum size of large requests (sL). When changing
the value of one, the other parameter keeps the default value.
We then measure the maximum throughput achievable under
the two SLOs we consider.

Figure 6 and Figure 7 report the increase in throughput
achieved by Minos compared to the other designs (y axis in
log scale). Figure 6 shows the results of the experiments in
which we change pL. Figure 7 refers to changing sL. The
graph on the left uses an SLO of 50 µsec, the one on the
right 100 µsec. When varying pL, the maximum through-
put achieved by Minos within the 50µsec (100µsec) SLO
ranges from 6.2 to 1.7 Mops (6.9 to 2.3 Mops), correspond-
ing to pL = 0.0625 and pL = 0.75. When varying sL, the
maximum throughput achieved by Minos within the 50µsec
(100µsec) ranges from 6.2 to 4.7 Mops (6.9 to 4.7 Mops),
corresponding to sL = 250KB and sL = 1000KB.

Minos outperforms existing designs, achieving consis-
tently higher throughput for a given workload and a given
SLO. The throughput speedup grows with pL and sL, because
the increased presence of large(r) requests negatively affects
the latency of small requests, and hence the 99th percentile,
in alternative designs. As expected, the throughput gains are
higher with the stricter SLO: the looser is the performance
target, the smaller is the impact of Minos’ design. For the
stricter SLO, Minos achieves a speedup of up to 7.4 w.r.t
HHK+WS (corresponding to the pL = 0.75 case), i.e., the
second best design. For the looser SLO, the speedup ranges
from 1.34 (sL = 250KB) to 3.9 (pL = 0.75).

2

5

20

 0.1

 1

 10

0.0625 0.125 0.25 0.5 0.75M
in

o
s
 t
h
ro

u
g
h
p
u
t
s
p
e
e
d
u
p

% large requests

HKH HKH+WS SHO

(a) 99p ≤ 50µsec.

2

5

20

 0.1

 1

 10

0.0625 0.125 0.25 0.5 0.75M
in

o
s
 t
h
ro

u
g
h
p
u
t
s
p
e
e
d
u
p

% large requests

HKH HKH+WS SHO

(b) 99p ≤ 100µsec.

Figure 6: Maximum throughput achievable for a given 99th percentile latency SLO with different percentages of large requests
(y axis in log scale). Each bar represents the speedup of Minos over an alternative design (higher is better).

2

5

20

 0.1

 1

 10

250 KB 500 KB 1000 KBM
in

o
s
 t

h
ro

u
g
h
p
u

t
s
p
e

e
d
u
p

Max. size of large requests

HKH HKH+WS SHO

(a) 99p ≤ 50µsec.

2

5

20

 0.1

 1

 10

250 KB 500 KB 1000 KBM
in

o
s
 t

h
ro

u
g
h
p
u

t
s
p
e

e
d
u
p

Max. size of large requests

HKH HKH+WS SHO

(b) 99p ≤ 100µsec.

Figure 7: Maximum throughput achievable for a given 99th percentile latency SLO with different maximum sizes of large
requests (y axis in log scale). Each bar represents the speedup of Minos over an alternative design (higher is better).

6.4 Higher network bandwidth

With the default workload, the NIC is 93% utilized. With
higher percentages of large requests, the system becomes
even more network-bound. In this section we investigate
whether Minos can take advantage of larger network band-
widths. Because we cannot provision our machines with
more bandwidth, we relieve the NIC bottleneck by sampling
the number of replies that the server sends back to clients.
That is, the server processes requests as before, up to the
time at which it would otherwise send the reply to the client.
Then, instead, it only sends replies to a percentage S% of
the total requests, and drops the remaining ones. We vary S
from 100 to 25, and we measure the achieved performance
(throughput and 99th percentile latency), as well as the uti-
lization of the NIC. We choose the read-intensive workload
with pL = 0.75, as it quickly saturates the NIC with S = 100.

Figure 8 reports the results of the experiment. The left plot
shows the throughput vs. 99th percentile latency (y axis in
log scale). The right one shows the utilization of the NIC
as a function of the throughput. As S decreases, Minos can
sustain higher loads, because the bottleneck is increasingly
shifted towards the CPU. Minos is able to fully utilize the
available resources, by reaching throughput values that sat-
urate (or almost saturate) the NIC (S = 100,75,50) except
when the bottleneck is query processing (S = 25).

6.5 Load balancing

We now evaluate the ability of Minos to distribute the load
evenly across cores according to the provided cost function.
To this end, we measure the load sustained by each core
with pl = 0.0625, 0.25, 0.75, corresponding to low, medium
and high load posed by large requests. Figure 9a reports the
percentage of requests performed, and Figure 9b reports the
percentage of packets processed by each core (y axis in log
scale). Two conclusions can be drawn. First, all cores pro-
cess roughly the same number of packets, and hence roughly
perform the same amount of work. Small cores obviously
process more requests per second, as these requests involve
less work. Large cores process different requests per sec-
ond among each other, as a consequence of the size-aware
sharding that Minos implements also within large requests.
Second, Minos varies the number of small and large cores as
a function of the workload, such that enough resources are
allocated to small and large requests.

6.6 Dynamic workload

We finally demonstrate the capability of Minos to adapt to
changing workloads. To this end, we run a workload in
which the percentage of large operations pL varies every 20
seconds. It first grows gradually from 0.125 to 0.75, and

10

50

 200

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

9
9

p
 (

µ
s
e

c
)

Throughput (Mops/s)

S = 25
S = 50

S = 75
S = 100

(a) Throughput vs. 99th percentile latency

90

 0

 25

 50

 75

 100

 125

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

N
IC

 u
ti
liz

a
ti
o

n
 (

%
)

Throughput (Mops/s)

S = 25
S = 50

S = 75
S = 100

(b) Throughput vs. NIC utilization.

Figure 8: Scalability of Minos with more network bandwidth (pL = 0.75). S is the sampling percentage used to simulate more
network bandwidth. Minos processes and replies to S% of the requests. The remainder is processed, but the reply is dropped.
Minos scales with more bandwidth (a) and saturates the NIC (b), except when query processing is the bottleneck ((b), S = 25).

2

5

20

 0.01

 0.1

 1

 10

0.0625 0.25 0.75

%
 O

ps
 p

er
fo

rm
ed

% large requests

Small core Large core

2

5

20

 0.01

 0.1

 1

 10

0.0625 0.25 0.75

%
 T

hr
ou

gh
pu

t

% large requests

2

5

20

 0.01

 0.1

 1

 10

0.0625 0.25 0.75

%
 O

ps
 p

er
fo

rm
ed

% large requests

(a) Operations per second.

2

5

20

 0.01

 0.1

 1

 10

0.0625 0.25 0.75
%

 p
ac

ke
ts

 p
ro

ce
ss

ed

% large requests

Small core Large core

2

5

20

 0.01

 0.1

 1

 10

0.0625 0.25 0.75
%

 p
ac

ke
ts

 p
ro

ce
ss

ed

% large requests

2

5

20

 0.01

 0.1

 1

 10

0.0625 0.25 0.75
%

 p
ac

ke
ts

 p
ro

ce
ss

ed

% large requests

(b) Packets per second.

Figure 9: Breakdown of the load per core in Minos (y axis in log scale). Large cores process fewer requests per second than
small cores (a), but the number of packets processed per second is uniformly distributed across cores (b).

then shrinks back to 0.125. We keep the request arrival rate
fixed at 2.25 Mops, corresponding to high load for pL = 0.75.
Figure 10(top) compares the performance achieved by Mi-
nos and HKH+WS, i.e., the second best design. Each point
represents the 99th percentile latency as measured over a
1 second window (y axis in log scale). Figure 10(bottom)

 10

 100

 1000

P
9

9
 (

µ
s
e

c
,

lo
g

) Minos HKH+WS

 1
 2
 3
 4

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

#
 C

o
re

s
 (

in
 M

in
o

s
)

Time (sec)

large cores

Figure 10: Evolution over time of the 99th percentile latency
of Minos and HKH+WS with a dynamic workload (top, with
y axis in log scale) and evolution over time of number of
large cores in Minos (bottom). Every 20 seconds the per-
centage of large requests changes, first growing from 0.125
to 0.75 and then shrinking back. Minos adapts to changing
workload conditions and delivers up to 20X lower 99th per-
centile latencies.

shows how many cores Minos assigns to large requests over
time. Minos achieves latencies up to 20 times lower than
HKH+WS (70 µsec vs ≈ 1.5 msec with pL = 0.75). Minos
achieves this result by programmatically allocating cores to
small and large requests proportionally to their correspond-
ing loads.

7 Related Work

To the best of our knowledge, Minos is the first KV store to
introduce the concept of size-aware sharding to address the
challenges of delivering µsec-scale tail latency in presence
of item size variability. We now discuss related systems.
In-memory KV stores. A plethora of in-memory KV
stores have been proposed in the last years. These sys-
tems propose different designs based on new data-structures
(CPHash [52], Masstree [48], MemC3 [22]) and lightweight
network stacks (Chronos [37], MICA [43, 45], Ram-
Cloud [57], RockSteady [40]), or on the use of RDMA (Pi-
laf [53], Herd [35], FaRM [21], RFF [60], FaSST [36],
TailWind [61]), FPGAs (KV-Direct [41]), GPUs (Mega-
KV [64], MemcacheGPU [30]), HTMs (DrTM [11, 63]), or
other specialized hardware ([38, 9]).

None of these systems addresses the problem of achieving
low tail latency in presence of item size variability, which

is the primary focus of Minos. In addition, Minos only as-
sumes the availability of commodity hardware. Investigating
the synergies between the design of Minos and specialized
hardware is an interesting avenue for future work.
Size-aware data-stores. We are aware of a few data stores
that take into account the size of items or requests to improve
performance. Rein [59] supports multi-key get requests and
processes them taking into account the number of keys in-
volved in a request. Rein relies on the assumption that there
is only a weak correlation between the size of an item and
the service time of a request for that item. Minos, instead,
targets workloads with high item size variability, for which
the service time of a request strongly depends on the size of
the corresponding item (see Figure 1).

AdaptSize [8] is a caching system that reduces the proba-
bility of caching large objects, so as to increase the hit rate
of smaller, more frequently accessed ones. AdaptSize tar-
gets a problem that is orthogonal to Minos, which assumes
the presence in memory of both small and large items.

The systems in [12, 29, 65] target static content and lever-
age a central component (the Linux kernel on a single-
core architecture [29] or a scheduler in a distributed sys-
tem [12, 65]) to implement request scheduling. By contrast,
Minos deals with mixed read/write workloads and targets
multi-core architectures with multi-queue NICs.
Operating systems. IX [7] and ZygOS [58] use lightweight
network stacks to meet µsec-scale SLOs. ZygOS uses work
stealing to avoid core idleness and reduce head-of-line block-
ing. As we show by means of simulation (§ 2.2) and exper-
imental data (§ 6), this approach cannot fully avoid head-
of-line blocking as done by Minos, because work stealing i)
is agnostic of the CPU time corresponding to serving a re-
quest; and ii) is only triggered by idle cores, whose presence
becomes less likely as the load increases.
Scheduling systems. There is a vast literature on schedul-
ing requests with heterogeneous service demands. Several
approaches have been applied in the context of flow schedul-
ing [1, 4, 24, 25, 31, 54], single-server request schedul-
ing [26, 42, 47] and cluster request scheduling [18, 20, 19].
Proposed approaches include workload partitioning [16, 18,
29], preempting [6, 19] or migrating requests [26, 27], and
stealing [20, 42]. One common result of these approaches is
that favoring small requests inevitably comes at the expense
of the performance of the largest requests.

Size-aware sharding draws from these techniques, and
makes the same trade-off between the latencies of small and
large requests. However, Minos substantially deviates from
these systems, to apply size-aware sharding in an in-memory
key value store efficiently. In particular,
•Minos does not rely on any a priori information on the size
of a request. This contrasts with existing systems that rely on
request runtime estimates, such as Hawk [20].
• Minos avoids head-of-line blocking by processing short

and large requests on disjoint sets of cores. This contrasts
with systems like 2DFQ [47], where all resources are shared
between short and large requests, and hence a burst of large
requests may delay shorter ones.
• The design of Minos is tailored for the in-memory key
value store domain. i) Minos integrates size-aware shard-
ing with the run-to-completion model, which avoids inter-
rupts and context switches, enhances locality, and reduces
cache pollution [45, 57]. This is unlike the aforementioned
systems, which target the classic multi-threaded approach
and migrates requests across cores [26, 42, 44], or across
servers [27]. ii) Minos leverages the hardware request-to-
core dispatching enabled by multi-queue NICs to reduce the
amount of software hand-offs. This allows Minos to achieve
throughput values equal or close to those achievable by pure
hardware request-to-core dispatching. iii) Minos co-designs
size-aware-sharding and the concurrency control scheme to
both achieve load balance and avoid head-of-line blocking.
These characteristics allow Minos to target µscale tail laten-
cies, whereas the aforesaid scheduling approaches reportedly
support SLOs in the order of the milliseconds or higher.

8 Conclusion

This paper presents Minos, an in-memory key-value store
designed to deliver µsec-scale tail latency with workloads
characterized by highly variable item sizes, as frequent in
production workloads. Minos implements size-aware shard-
ing, a new technique that assigns small and large requests to
disjoint set of cores. This ensures small requests never wait
due to the collocation with a long request. Minos identifies at
runtime the size threshold between long and short requests,
and the amount of cores to allocate to them. We compare Mi-
nos to three state-of-the-art designs and we show that, com-
pared to its closest competitor, Minos achieves a 99th per-
centile latency that is up to 20 times lower. Put differently,
for a given value for the 99th percentile latency equal to 10
times the mean service time, Minos achieves a throughput
that is up to 7.4 times higher.

Acknowledgements

We thank the anonymous reviewers, Richard L. Sites and
our shepherd Amar Phanishayee for their feedback. We also
thank Hyeontaek Lim for his help in setting up the DPDK
library. This research has been supported by an EcoCloud
post-doctoral research fellowship.

References
[1] ALIZADEH, M., KABBANI, A., EDSALL, T., PRABHAKAR, B.,

VAHDAT, A., AND YASUDA, M. Less is more: Trading a little band-
width for ultra-low latency in the data center. In Proceedings of the 9th

USENIX Conference on Networked Systems Design and Implemen-
tation (Berkeley, CA, USA, 2012), NSDI’12, USENIX Association,
pp. 19–19.

[2] ARLITT, M. F., AND WILLIAMSON, C. L. Internet web servers:
Workload characterization and performance implications. IEEE/ACM
Trans. Netw. 5, 5 (Oct. 1997), 631–645.

[3] ATIKOGLU, B., XU, Y., FRACHTENBERG, E., JIANG, S., AND
PALECZNY, M. Workload analysis of a large-scale key-value store.
In Proc. of SIGMETRICS (2012).

[4] BAI, W., CHEN, L., CHEN, K., HAN, D., TIAN, C., AND WANG, H.
Information-agnostic flow scheduling for commodity data centers. In
Proceedings of the 12th USENIX Conference on Networked Systems
Design and Implementation (Berkeley, CA, USA, 2015), NSDI’15,
USENIX Association, pp. 455–468.

[5] BALMAU, O., DIDONA, D., GUERRAOUI, R., ZWAENEPOEL, W.,
YUAN, H., ARORA, A., GUPTA, K., AND KONKA, P. TRIAD: Cre-
ating synergies between memory, disk and log in log structured key-
value stores. In 2017 USENIX Annual Technical Conference (USENIX
ATC 17) (Santa Clara, CA, 2017), USENIX Association, pp. 363–375.

[6] BANSAL, N., AND HARCHOL-BALTER, M. Analysis of srpt schedul-
ing: Investigating unfairness. In Proceedings of the 2001 ACM SIG-
METRICS International Conference on Measurement and Modeling of
Computer Systems (New York, NY, USA, 2001), SIGMETRICS ’01,
ACM, pp. 279–290.

[7] BELAY, A., PREKAS, G., PRIMORAC, M., KLIMOVIC, A., GROSS-
MAN, S., KOZYRAKIS, C., AND BUGNION, E. The ix operating
system: Combining low latency, high throughput, and efficiency in a
protected dataplane. ACM Trans. Comput. Syst. 34, 4 (Dec. 2016),
11:1–11:39.

[8] BERGER, D. S., SITARAMAN, R. K., AND HARCHOL-BALTER, M.
Adaptsize: Orchestrating the hot object memory cache in a content
delivery network. In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17) (Boston, MA, 2017), USENIX
Association, pp. 483–498.

[9] BLOTT, M., LIU, L., KARRAS, K., AND VISSERS, K. Scaling out
to a single-node 80gbps memcached server with 40terabytes of mem-
ory. In Proceedings of the 7th USENIX Conference on Hot Topics in
Storage and File Systems (Berkeley, CA, USA, 2015), HotStorage’15,
USENIX Association, pp. 8–8.

[10] BRONSON, N., AMSDEN, Z., CABRERA, G., CHAKKA, P., DIMOV,
P., DING, H., FERRIS, J., GIARDULLO, A., KULKARNI, S., LI,
H., MARCHUKOV, M., PETROV, D., PUZAR, L., SONG, Y. J., AND
VENKATARAMANI, V. Tao: Facebook’s distributed data store for
the social graph. In Proceedings of the 2013 USENIX Conference on
Annual Technical Conference (Berkeley, CA, USA, 2013), USENIX
ATC’13, USENIX Association, pp. 49–60.

[11] CHEN, Y., WEI, X., SHI, J., CHEN, R., AND CHEN, H. Fast and
general distributed transactions using rdma and htm. In Proceedings of
the Eleventh European Conference on Computer Systems (New York,
NY, USA, 2016), EuroSys ’16, ACM, pp. 26:1–26:17.

[12] CIARDO, G., RISKA, A., AND SMIRNI, E. Equiload: a load bal-
ancing policy for clustered web servers. performance evaluation. In
Performance Evaluation 46 (2001), 46–101.

[13] CIDON, A., RUSHTON, D., RUMBLE, S. M., AND STUTSMAN, R.
Memshare: a dynamic multi-tenant key-value cache. In 2017 USENIX
Annual Technical Conference (USENIX ATC 17) (Santa Clara, CA,
2017), USENIX Association, pp. 321–334.

[14] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISHNAN, R.,
AND SEARS, R. Benchmarking cloud serving systems with ycsb. In
Proceedings of the 1st ACM Symposium on Cloud Computing (New
York, NY, USA, 2010), SoCC ’10, ACM, pp. 143–154.

[15] CROVELLA, M. E., AND BESTAVROS, A. Self-similarity in world
wide web traffic: Evidence and possible causes. IEEE/ACM Trans.
Netw. 5, 6 (Dec. 1997), 835–846.

[16] CROVELLA, M. E., HARCHOL-BALTER, M., AND MURTA, C. D.
Task assignment in a distributed system (extended abstract): Improv-
ing performance by unbalancing load. In Proceedings of the 1998
ACM SIGMETRICS Joint International Conference on Measurement
and Modeling of Computer Systems (New York, NY, USA, 1998),
SIGMETRICS ’98/PERFORMANCE ’98, ACM, pp. 268–269.

[17] DEAN, J., AND BARROSO, L. A. The tail at scale. Commun. ACM
56, 2 (Feb. 2013), 74–80.

[18] DELGADO, P., DIDONA, D., DINU, F., AND ZWAENEPOEL, W. Job-
aware scheduling in eagle: Divide and stick to your probes. In Pro-
ceedings of the Seventh ACM Symposium on Cloud Computing (New
York, NY, USA, 2016), SoCC ’16, ACM, pp. 497–509.

[19] DELGADO, P., DIDONA, D., DINU, F., AND ZWAENEPOEL, W.
Kairos: Preemptive data center scheduling without runtime estimates.
In Proceedings of the Ninth ACM Symposium on Cloud Computing
(2018), SoCC ’18.

[20] DELGADO, P., DINU, F., KERMARREC, A.-M., AND
ZWAENEPOEL, W. Hawk: Hybrid datacenter scheduling. In
Proceedings of the 2015 USENIX Conference on Usenix Annual
Technical Conference (Berkeley, CA, USA, 2015), USENIX ATC
’15, USENIX Association, pp. 499–510.

[21] DRAGOJEVIĆ, A., NARAYANAN, D., HODSON, O., AND CAS-
TRO, M. Farm: Fast remote memory. In Proceedings of the 11th
USENIX Conference on Networked Systems Design and Implemen-
tation (Berkeley, CA, USA, 2014), NSDI’14, USENIX Association,
pp. 401–414.

[22] FAN, B., ANDERSEN, D. G., AND KAMINSKY, M. Memc3: Com-
pact and concurrent memcache with dumber caching and smarter
hashing. In Proceedings of the 10th USENIX Conference on Net-
worked Systems Design and Implementation (Berkeley, CA, USA,
2013), nsdi’13, USENIX Association, pp. 371–384.

[23] FOUNDATION, T. L. Data plane development kit. https://dpdk.org,
2017.

[24] GROSVENOR, M. P., SCHWARZKOPF, M., GOG, I., WATSON, R.
N. M., MOORE, A. W., HAND, S., AND CROWCROFT, J. Queues
don’t matter when you can jump them! In Proceedings of the 12th
USENIX Conference on Networked Systems Design and Implemen-
tation (Berkeley, CA, USA, 2015), NSDI’15, USENIX Association,
pp. 1–14.

[25] GUO, L., AND MATTA, I. The war between mice and elephants. In
Proceedings of the Ninth International Conference on Network Proto-
cols (Washington, DC, USA, 2001), ICNP ’01, IEEE Computer Soci-
ety, pp. 180–.

[26] HAQUE, M. E., HE, Y., ELNIKETY, S., NGUYEN, T. D., BIAN-
CHINI, R., AND MCKINLEY, K. S. Exploiting heterogeneity for
tail latency and energy efficiency. In Proceedings of the 50th An-
nual IEEE/ACM International Symposium on Microarchitecture (New
York, NY, USA, 2017), MICRO-50 ’17, ACM, pp. 625–638.

[27] HARCHOL-BALTER, M. Task assignment with unknown duration. J.
ACM 49, 2 (Mar. 2002), 260–288.

[28] HARCHOL-BALTER, M. Performance Modeling and Design of Com-
puter Systems: Queueing Theory in Action, 1st ed. Cambridge Uni-
versity Press, New York, NY, USA, 2013.

[29] HARCHOL-BALTER, M., SCHROEDER, B., BANSAL, N., AND
AGRAWAL, M. Size-based scheduling to improve web performance.
ACM Trans. Comput. Syst. 21, 2 (May 2003), 207–233.

[30] HETHERINGTON, T. H., O’CONNOR, M., AND AAMODT, T. M.
Memcachedgpu: Scaling-up scale-out key-value stores. In Proceed-
ings of the Sixth ACM Symposium on Cloud Computing (New York,
NY, USA, 2015), SoCC ’15, ACM, pp. 43–57.

[31] HONG, C.-Y., CAESAR, M., AND GODFREY, P. B. Finishing flows
quickly with preemptive scheduling. In Proceedings of the ACM SIG-
COMM 2012 Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communication (New York, NY,
USA, 2012), SIGCOMM ’12, ACM, pp. 127–138.

[32] HUDEK, T. Introduction to receive side scal-
ing. https://docs.microsoft.com/en-us/windows-
hardware/drivers/network/introduction-to-receive-side-scaling.

[33] INTEL. Intel 82599 10 gigabit ethernet controller: Datasheet.
https://www.intel.com/content/www/us/en/embedded/products/networking/82599-
10-gbe-controller-datasheet.html, 2014.

[34] JIN, X., LI, X., ZHANG, H., SOULÉ, R., LEE, J., FOSTER, N.,
KIM, C., AND STOICA, I. Netcache: Balancing key-value stores
with fast in-network caching. In Proceedings of the 26th Symposium
on Operating Systems Principles (New York, NY, USA, 2017), SOSP
’17, ACM, pp. 121–136.

[35] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Using rdma
efficiently for key-value services. In Proceedings of the 2014 ACM
Conference on SIGCOMM (New York, NY, USA, 2014), SIGCOMM
’14, ACM, pp. 295–306.

[36] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Fasst: Fast,
scalable and simple distributed transactions with two-sided (rdma)
datagram rpcs. In Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation (Berkeley, CA, USA,
2016), OSDI’16, USENIX Association, pp. 185–201.

[37] KAPOOR, R., PORTER, G., TEWARI, M., VOELKER, G. M., AND
VAHDAT, A. Chronos: Predictable low latency for data center ap-
plications. In Proceedings of the Third ACM Symposium on Cloud
Computing (New York, NY, USA, 2012), SoCC ’12, ACM, pp. 9:1–
9:14.

[38] KAUFMANN, A., PETER, S., SHARMA, N. K., ANDERSON, T., AND
KRISHNAMURTHY, A. High performance packet processing with
flexnic. In Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and Operating
Systems (New York, NY, USA, 2016), ASPLOS ’16, ACM, pp. 67–81.

[39] KIT, D. P. D. Ring library.
http://dpdk.org/doc/guides/prog guide/ring lib.html, 2017.

[40] KULKARNI, C., KESAVAN, A., ZHANG, T., RICCI, R., AND
STUTSMAN, R. Rocksteady: Fast migration for low-latency in-
memory storage. In Proceedings of the 26th Symposium on Operating
Systems Principles (New York, NY, USA, 2017), SOSP ’17, ACM,
pp. 390–405.

[41] LI, B., RUAN, Z., XIAO, W., LU, Y., XIONG, Y., PUTNAM, A.,
CHEN, E., AND ZHANG, L. Kv-direct: High-performance in-memory
key-value store with programmable nic. In Proceedings of the 26th
Symposium on Operating Systems Principles (New York, NY, USA,
2017), SOSP ’17, ACM, pp. 137–152.

[42] LI, J., AGRAWAL, K., ELNIKETY, S., HE, Y., LEE, I.-T. A., LU, C.,
AND MCKINLEY, K. S. Work stealing for interactive services to meet
target latency. In Proceedings of the 21st ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (New York, NY,
USA, 2016), PPoPP ’16, ACM, pp. 14:1–14:13.

[43] LI, S., LIM, H., LEE, V. W., AHN, J. H., KALIA, A., KAMINSKY,
M., ANDERSEN, D. G., SEONGIL, O., LEE, S., AND DUBEY, P.
Architecting to achieve a billion requests per second throughput on a
single key-value store server platform. In Proceedings of the 42Nd An-
nual International Symposium on Computer Architecture (New York,
NY, USA, 2015), ISCA ’15, ACM, pp. 476–488.

[44] LI, X., SETHI, R., KAMINSKY, M., ANDERSEN, D. G., AND
FREEDMAN, M. J. Be fast, cheap and in control with switchkv. In
13th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 16) (2016).

[45] LIM, H., HAN, D., ANDERSEN, D. G., AND KAMINSKY, M. Mica:
A holistic approach to fast in-memory key-value storage. In Proceed-
ings of the 11th USENIX Conference on Networked Systems Design
and Implementation (Berkeley, CA, USA, 2014), NSDI’14, USENIX
Association, pp. 429–444.

[46] LIM, K., MEISNER, D., SAIDI, A. G., RANGANATHAN, P., AND
WENISCH, T. F. Thin servers with smart pipes: Designing soc ac-
celerators for memcached. In Proceedings of the 40th Annual Inter-
national Symposium on Computer Architecture (New York, NY, USA,
2013), ISCA ’13, ACM, pp. 36–47.

[47] MACE, J., BODIK, P., MUSUVATHI, M., FONSECA, R., AND
VARADARAJAN, K. 2dfq: Two-dimensional fair queuing for multi-
tenant cloud services. In Proceedings of the 2016 ACM SIGCOMM
Conference (New York, NY, USA, 2016), SIGCOMM ’16, ACM,
pp. 144–159.

[48] MAO, Y., KOHLER, E., AND MORRIS, R. T. Cache craftiness for fast
multicore key-value storage. In Proceedings of the 7th ACM European
Conference on Computer Systems (New York, NY, USA, 2012), Eu-
roSys ’12, ACM, pp. 183–196.

[49] MELLANOX. Mellanox connectx-3 prod-
uct brief. http://www.mellanox.com/related-
docs/prod adapter cards/ConnectX3 EN Card.pdf, 2013.

[50] MELLANOX. Mellanox dpdk release notes (v 16.11.1.5.
http://www.mellanox.com/related-docs/prod software/, 2017.

[51] MEMCACHED. memcached. http://www.memcached.org.

[52] METREVELI, Z., ZELDOVICH, N., AND KAASHOEK, M. F. Cphash:
A cache-partitioned hash table. In Proceedings of the 17th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Program-
ming (New York, NY, USA, 2012), PPoPP ’12, ACM, pp. 319–320.

[53] MITCHELL, C., GENG, Y., AND LI, J. Using one-sided rdma reads to
build a fast, cpu-efficient key-value store. In Proceedings of the 2013
USENIX Conference on Annual Technical Conference (Berkeley, CA,
USA, 2013), USENIX ATC’13, USENIX Association, pp. 103–114.

[54] MONTAZERI, B., LI, Y., ALIZADEH, M., AND OUSTERHOUT, J.
Homa: A receiver-driven low-latency transport protocol using net-
work priorities. In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication (New York, NY,
USA, 2018), SIGCOMM ’18, ACM, pp. 221–235.

[55] NISHTALA, R., FUGAL, H., GRIMM, S., KWIATKOWSKI, M., LEE,
H., LI, H. C., MCELROY, R., PALECZNY, M., PEEK, D., SAAB,
P., STAFFORD, D., TUNG, T., AND VENKATARAMANI, V. Scaling
memcache at facebook. In Proc. of NSDI (2013).

[56] NOGHABI, S. A., SUBRAMANIAN, S., NARAYANAN, P.,
NARAYANAN, S., HOLLA, G., ZADEH, M., LI, T., GUPTA, I., AND
CAMPBELL, R. H. Ambry: Linkedin’s scalable geo-distributed object
store. In Proceedings of the 2016 International Conference on Man-
agement of Data (New York, NY, USA, 2016), SIGMOD ’16, ACM,
pp. 253–265.

[57] OUSTERHOUT, J., GOPALAN, A., GUPTA, A., KEJRIWAL, A., LEE,
C., MONTAZERI, B., ONGARO, D., PARK, S. J., QIN, H., ROSEN-
BLUM, M., RUMBLE, S., STUTSMAN, R., AND YANG, S. The ram-
cloud storage system. ACM Trans. Comput. Syst. 33, 3 (Aug. 2015),
7:1–7:55.

[58] PREKAS, G., KOGIAS, M., AND BUGNION, E. Zygos: Achieving
low tail latency for microsecond-scale networked tasks. In Proceed-
ings of the 26th Symposium on Operating Systems Principles (New
York, NY, USA, 2017), SOSP ’17, ACM, pp. 325–341.

[59] REDA, W., CANINI, M., SURESH, L., KOSTIĆ, D., AND BRAITH-
WAITE, S. Rein: Taming tail latency in key-value stores via multiget
scheduling. In Proceedings of the Twelfth European Conference on
Computer Systems (New York, NY, USA, 2017), EuroSys ’17, ACM,
pp. 95–110.

[60] SU, M., ZHANG, M., CHEN, K., GUO, Z., AND WU, Y. Rfp: When
rpc is faster than server-bypass with rdma. In Proceedings of the
Twelfth European Conference on Computer Systems (New York, NY,
USA, 2017), EuroSys ’17, ACM, pp. 1–15.

[61] TALEB, Y., STUTSMAN, R., ANTONIU, G., AND CORTES, T. Tail-
wind: Fast and atomic rdma-based replication. In 2018 USENIX An-
nual Technical Conference (USENIX ATC 18) (2018).

[62] WANG, F., XIN, Q., HONG, B., BRANDT, S. A., MILLER, E. L.,
LONG, D. D. E., AND MCLARTY, T. T. File system workload analy-
sis for large scientific computing applications. In NASA/IEEE Confer-
ence on Mass Storage Systems and Technologies (MSST 2004) (Apr.
2004), p. 139152.

[63] WEI, X., SHI, J., CHEN, Y., CHEN, R., AND CHEN, H. Fast in-
memory transaction processing using rdma and htm. In Proceedings
of the 25th Symposium on Operating Systems Principles (New York,
NY, USA, 2015), SOSP ’15, ACM, pp. 87–104.

[64] ZHANG, K., WANG, K., YUAN, Y., GUO, L., LEE, R., AND
ZHANG, X. Mega-kv: A case for gpus to maximize the throughput of
in-memory key-value stores. Proc. VLDB Endow. 8, 11 (July 2015),
1226–1237.

[65] ZHANG, Q., RISKA, A., SUN, W., SMIRNI, E., AND CIARDO,
G. Workload-aware load balancing for clustered web servers. IEEE
Trans. Parallel Distrib. Syst. 16, 3 (Mar. 2005), 219–233.

