
This paper is included in the Proceedings of the
16th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’19).
February 26–28, 2019 • Boston, MA, USA

ISBN 978-1-931971-49-2

Open access to the Proceedings of the
16th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’19)
is sponsored by

End-to-end I/O Monitoring
on a Leading Supercomputer

Bin Yang, Shandong University, National Supercomputing Center in Wuxi; Xu Ji, Tsinghua University,
National Supercomputing Center in Wuxi; Xiaosong Ma, Qatar Computing Research institute, HBKU;

Xiyang Wang, National Supercomputing Center in Wuxi; Tianyu Zhang and Xiupeng Zhu, Shandong
University, National Supercomputing Center in Wuxi; Nosayba El-Sayed, Emory University;

Haidong Lan and Yibo Yang, Shandong University; Jidong Zhai, Tsinghua University;
Weiguo Liu, Shandong University, National Supercomputing Center in Wuxi;

Wei Xue, Tsinghua University, National Supercomputing Center in Wuxi

https://www.usenix.org/conference/nsdi19/presentation/yang

End-to-end I/O Monitoring on a Leading Supercomputer

Bin Yang1,3, Xu Ji2,3, Xiaosong Ma4, Xiyang Wang3, Tianyu Zhang1,3, Xiupeng Zhu1,3,
Nosayba El-Sayed∗ 5, Haidong Lan1, Yibo Yang1, Jidong Zhai2, Weiguo Liu1,3, and Wei Xue† 2,3

1Shandong University, 2Tsinghua University, 3National Supercomputer Center in Wuxi, 4Qatar
Computing Research institute, HBKU, 5Emory University

Abstract

This paper presents an effort to overcome the complexities
of production system I/O performance monitoring. We de-
sign Beacon, an end-to-end I/O resource monitoring and
diagnosis system, for the 40960-node Sunway TaihuLight
supercomputer, current ranked world No.3. Beacon si-
multaneously collects and correlates I/O tracing/profiling
data from all the compute nodes, forwarding nodes, stor-
age nodes and metadata servers. With mechanisms such as
aggressive online+offline trace compression and distributed
caching/storage, it delivers scalable, low-overhead, and sus-
tainable I/O diagnosis under production use. Higher-level
per-application I/O performance behaviors are reconstructed
from system-level monitoring data to reveal correlations be-
tween system performance bottlenecks, utilization symp-
toms, and application behaviors. Beacon further provides
query, statistics, and visualization utilities to users and ad-
ministrators, allowing comprehensive and in-depth analysis
without requiring any code/script modification.

With its deployment on TaihuLight for around 18 months,
we demonstrate Beacon’s effectiveness with real-world use
cases for I/O performance issue identification and diagnosis.
It has successfully helped center administrators identify ob-
scure design or configuration flaws, system anomaly occur-
rences, I/O performance interference, and resource under- or
over-provisioning problems. Several of the exposed prob-
lems have already been fixed, with others being currently
addressed. In addition, we demonstrate Beacon’s generality
by its recent extension to monitor interconnection networks,
another contention point on supercomputers. Both Beacon
codes and part of collected monitoring data are released.1

1 Introduction
Modern supercomputers are networked systems with in-
creasingly deep storage hierarchy, serving applications with
growing scale and complexity. The long I/O path from stor-
age media to application, combined with complex software

∗Most work conducted at Qatar Computing Research Institute.
†Wei Xue is the corresponding author. Email: xuewei@tsinghua.edu.cn
1Github link: https://github.com/Beaconsys/Beacon

stacks and hardware configurations, makes I/O optimiza-
tions increasingly challenging, both for application devel-
opers and supercomputer administrators. In addition, since
I/O utilizes heavily shared system components (unlike com-
putation or memory accesses), it usually suffers substantial
inter-workload interference, causing high performance vari-
ance [37, 44, 47, 55, 60, 71].

Online tools that can capture/analyze I/O activities and
guide optimization are highly needed. They also need to
provide I/O usage information and performance records to
guide future systems’ design, configuration, and deploy-
ment. To this end, several profiling/tracing tools and frame-
works have been developed, including application-side (e.g.,
Darshan [31] and ScalableIOTrace [77]), backend-side (e.g.,
LustreDU [29], IOSI [50] and LIOProf [85]), and multi-layer
tools (e.g., Modular Darshan [70] and GUIDE [91]).

These proposed tools, however, suffer one or more of the
following limitations. Application-oriented tools often re-
quire developers to instrument their source code or link extra
libraries. They also do not offer intuitive ways to analyze
inter-application I/O performance behaviors such as interfer-
ence issues. Backend-oriented tools can collect system-level
performance data and monitor cross-application interactions,
but have difficulty in identifying performance issues for spe-
cific applications and in finding their root causes. Finally,
problematic applications issuing inefficient I/O requests es-
cape the radar of backend-side analytical methods [50, 52]
relying on high-bandwidth applications.

This paper reports our design, implementation, and de-
ployment of a light-weight, end-to-end I/O resource monitor-
ing and diagnosis system, Beacon, for TaihuLight, currently
the world’s No.3 supercomputer [75]. It works with Taihu-
Light’s 40,960 compute nodes (over ten-million cores in to-
tal), 288 forwarding nodes, 288 storage nodes, and 2 meta-
data nodes. Beacon integrates frontend tracing and backend
profiling into a seamless framework, enabling tasks such as
automatic per-application I/O behavior profiling, I/O bottle-
neck/interference analysis, and system anomaly detection.

To our best knowledge, this is the first system-level, multi-
layer monitoring and real-time diagnosis framework de-
ployed on ultra scale supercomputers. Beacon collects per-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 379

formance data simultaneously from different types of nodes
(including compute, I/O forwarding, storage, and metadata
nodes) and analyzes them collaboratively, without requiring
any involvement of application developers. Its elaborated
collection scheme and aggressive compression minimize the
system cost: only 85 part-time servers to monitor the en-
tire 40960-node system, with < 1% performance overhead
on user applications.

We have deployed Beacon for production use since April,
2017. It has helped the TaihuLight system administra-
tion and I/O performance team to identify several perfor-
mance degradation problems. With its rich I/O perfor-
mance data collection and real-time system monitoring, Bea-
con successfully exposes the mismatch between applica-
tion I/O patterns and widely-adopted underlying storage
design/configurations. To help application developers and
users, it enables detailed per-application I/O behavior study,
with novel inter-application interference identification and
analysis. Beacon also performs automatic anomaly detec-
tion. Finally, we have recently started to expand Beacon be-
yond I/O, to network switch monitoring.

Based on our design and deployment experience, we argue
that having such end-to-end detailed I/O monitoring frame-
work is a highly rewarding practice. Beacon’s all-system-
level monitoring decouples it from language, library, or com-
piler constraints, enabling monitoring data collection and
analysis for all applications and users. Much of its infrastruc-
ture reuses existing server/network/storage resources, and it
has proven to bring with it negligible overhead. In exchange,
users and administrators harvest deep insights into the com-
plex I/O system components’ operation and interaction, and
save both human resources and machine core-hours wasted
on unnecessarily slow/jittery I/O, or system anomalies.

2 Background: TaihuLight Network Storage

TaihuLight compute
nodes(40960)

I/O forwarding nodes (288) Storage nodes (2*144)

40 cabinets

…

Supernode
(256 nodes)

Sugon
DS800

Disk arrays
(72)

……

6 OSTs

/Online1(default) /Online2(reserved)
I/O forwarding(reserved)

IB FDR

Monitoring and management network
ҁGigabit Ethernet҂

……

I/O forwarding(default)

Sugon
DS800

Disk arrays
(72)

Metadata QRGHV (2)

IB FDR

…

Login nodes

…

Auxiliary Compute Cluster

…

…

Sunway TaihuLight

Figure 1: TaihuLight and its Icefish storage system architecture
overview. Beacon uses the separate monitoring and management
Ethernet network shown at the bottom.

We first introduce the TaihuLight supercomputer (and its
Icefish I/O subsystem), where we performed our implemen-
tation and deployment. Though the rest of our discussion

will be based on this specific platform, many aspects of Bea-
con’s design and operation can be applied to other large-scale
supercomputers or clusters.

TaihuLight is currently the world No.3 supercomputer, a
many-core accelerated 125-petaflop system [36]. Figure 1 il-
lustrates its architecture, highlighting the Icefish storage sub-
system. The 40,960 260-core compute nodes are organized
in 40 cabinets, each containing 4 supernodes. Through dual-
rail FDR InfiniBand, all the 256 compute nodes in one su-
pernode are fully connected and then connected to Icefish
via a Fat-tree network. In addition, Icefish serves an Aux-
iliary Compute Cluster (ACC) with Intel Xeon processors,
mainly used for data pre- and post-processing.

The Icefish backend employs the Lustre parallel file sys-
tem [26], with an aggregate capacity of 10 PB on top of 288
storage nodes and 144 Sugon DS800 disk enclosures. An en-
closure contains 60 1.2 TB SAS HDD drives, composing 6
OSTs, each an 8+2 RAID6 array. The controller within each
enclosure connects to two storage nodes, via 2 fiber channels
for path redundancy. Therefore every storage node manages
3 OSTs, while the two adjacent storage nodes sharing a con-
troller form a failover pair.

Between the compute nodes and the Lustre backend is a
layer of 288 I/O forwarding nodes. Each plays a dual role,
both as a LWFS (Lightweight File System) based on Glus-
ter [6] server to the compute nodes and client to the Lustre
backend. This I/O forwarding practice is adopted by multiple
other platforms that operate at such scale [15, 28, 54, 78, 90].

A forwarding node provides a bandwidth of 2.5 GB/s, ag-
gregating to over 720 GB/s for the entire forwarding system.
Each backend controller provides about 1.8 GB/s, amounting
to a file system bandwidth of around 260 GB/s. Overall Ice-
fish delivers 240 GB/s and 220 GB/s aggregate bandwidths
for reads and writes, respectively.

TaihuLight debuted on the Top500 list in June 2016. At
the time of this study, Icefish was equally partitioned into two
namespaces: Online1 (for everyday workloads) and Online2
(reserved for ultra-scale jobs that occupy the majority of the
compute nodes), with disjoint sets of forwarding nodes. A
batch job can only use either namespace. I/O requests from a
compute node are served by a specified forwarding node us-
ing a static mapping strategy for easy maintenance (48 fixed
forwarding nodes for ACC and 80 fixed forwarding nodes
for Sunway compute nodes).

Therefore the two namespaces, along with statically par-
titioned backend resources, are currently utilized separately
by routine jobs and “VIP” jobs. One motivation for deploy-
ing an end-to-end monitoring system is to analyze the I/O
behavior of the entire supercomputer’s workloads and to de-
sign more flexible I/O resource allocation/scheduling mech-
anisms. For example, motivated by the findings of our mon-
itoring system, a dynamic forwarding allocation system [43]
for better forwarding resource utilization has been developed
and test deployed.

380 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

3 Beacon Design and Implementation
3.1 Beacon Architecture Overview
Figure 2 outlines the working of Beacon on top of the Ice-
fish I/O architecture, designed to operate at different levels
of distribution for both scalability and ease of management.

Beacon performs I/O monitoring at all five Icefish com-
ponents: the LWFS client (on compute nodes), the LWFS
server and Lustre client (both on forwarding nodes), the Lus-
tre server (on storage nodes), and the Lustre metadata server
(on metadata nodes). At each of these monitoring points,
Beacon deploys lightweight monitoring daemons that col-
lect I/O-relevant events, status, and performance data lo-
cally, then transmit data for aggregation. Aggressive first-
pass compression is conducted on all compute nodes for ef-
ficient per-application I/O trace collection/storage.

 84+1 “part-time” servers (running on 85 storage nodes)

I/O forwarding
nodes (240)

Storage
nodes(288)

N1

Metadata
nodes(2)

Compute nodes
(40960)

LWFS client̴ LWFS server̴ MDS

App
users

Profiling

Lustre client̴

Lustre server̴

N81 N84N82 N83

Job
database
(MySQL)

N80

In-memory cache (Redis)
I/O data collector (Logstash)

Distributed I/O record database (Elasticsearch)

N85ŏ

Tracing Sampled monitoring Monitoring point

Dedicated Beacon server

Periodic update

In-memory cache for recent Jobs (Redis)

Per-job I/O information summarization (MySQL)

Log processing&inter-node compression (Elasticsearch)

Web interface for query/visualization

ŏ

ŏ

Sys
admin

Figure 2: Beacon’s main components: daemons at monitoring
points, distributed I/O record database, job database, plus a dedi-
cated Beacon server. The different width of arrows into and out
from a module indicates data compression.

Beacon has its major backend processing and storage
workflow distributed to part of the storage nodes on their
node-local disks, utilizing hardware resources and paral-
lelism. To this end, Beacon divides the 40,960 compute
nodes into 80 groups and enlists 80 of the 288 storage
nodes to communicate with one group each. Two more
storage nodes are used to collect data from the forwarding
nodes, plus another for storage nodes and one last for MDS.
Together, these 84 “part-time” servers (shown as “N1” to
“N84” in Figure 2) are called log servers, which host a dis-
tributed I/O record database of Beacon. The numbers of
such servers were selected empirically considering Icefish’s
peak monitoring data processing workload.

These log servers adopt a layered software architecture
built upon mature open-source frameworks. They collect
I/O-relevant events, status and performance data through
Logstash [9], a server-side log processing pipeline for simul-
taneously ingesting data from multiple sources. The data are
then imported to Redis [16], a widely-used in-memory data

store, acting as a cache to quickly absorb monitoring output.
Persistent data storage and subsequent analysis are done via
Elasticsearch [5], a distributed, lightweight search and ana-
lytics engine supporting a NoSQL database. It also supports
efficient Beacon queries, for real-time and offline analysis.

One more storage node (N85 in Figure 2) is used to host
Beacon’s job database (implemented using MySQL [11]),
which interacts with the job queuing system and keeps track
of per-job information obtained by Beacon.

Finally, Beacon processes and presents its monitoring re-
sults to users (either system administrators or application
users) using a dedicated Beacon server. There it performs
two kinds of offline data analysis periodically: (1) second-
pass, inter-node compression to further remove data re-
dundancy by comparing and combining logs from compute
nodes running the same job, and (2) extracting and caching
in MySQL using SQL views the per-job statistic summary,
while generating and caching in Redis common performance
visualization results, to facilitate speedy user response. Log
and monitoring data, after the two-pass compression, are per-
manently stored using Elasticsearch on this dedicated Bea-
con server. 2 Considering the typical daily data collection
size of 10-100 GB, its 120 TB RAID5 capacity far exceeds
the system’s lifetime storage space needs.

(a) For user: per-job I/O performance (b) For admin: OST anomaly detection

Figure 3: Sample display from Beacon’s web interface: (a) cross-
layer read/write bandwidth of one user job, (b) bandwidth of three
OSTs identified as undergoing anomaly.

On top of its Elasticsearch-MySQL-Redis stack, Beacon’s
web interface provides users with a friendly GUI for I/O-
related job/system information query processing and visual-
ization. For instance, application users could query a sum-
mary of their programs’ I/O behavior based on job ID, along
the entire I/O path, to help diagnosing I/O performance prob-
lems; system administrators can monitor real-time load lev-
els on all forwarding, storage nodes and metadata servers,
facilitating future job scheduling optimizations and center-
level resource allocation policies. Figure 3 shows corre-
sponding screenshots. Section 4 provides more details with
concrete case studies.

All communication among Beacon entities uses a low-
cost, easy-to-maintain Ethernet connection (marked in green
in Figure 1), separate from both the main computation and

2Data in the distributed I/O record database are kept for 6 months.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 381

the storage interconnects.

3.2 Multi-layer I/O Monitoring
Compute nodes On each of the 40,960 compute nodes,
Beacon collects LWFS client trace logs. Each log entry con-
tains the node’s IP, I/O operation type, file descriptor, offset,
request size, and timestamp.

On a typical day, such raw trace data alone amounts
to over 100 GB, making their collection/processing a non-
trivial task on Beacon’s I/O record database, which takes
away resources from the storage nodes. However, there ex-
ists abundant redundancy in HPC workloads’ I/O operations.
For example, since each compute node is usually dedicated
to one job at a time, the job IDs are identical among many
trace entries. Similarly, due to the regular, tightly coupled
nature of many parallel applications, adjacent I/O operations
likely have common components such as target file, opera-
tion type, and request size. Recognizing this, Beacon per-
forms aggressive online compression on each compute node
to dramatically reduce the I/O trace size. This is done by a
simple, linear algorithm comparing adjacent log items and
combining those with identical operation type, file descrip-
tor, and request size, and accessing contiguous areas. These
log items are replaced with a single item plus a counter. Con-
sidering the low computing overhead, we perform such par-
allel first-pass compression on compute nodes.

Beacon conducts offline log processing and second-pass
compression on the dedicated server. Here it extracts the
feature vector <time, operation, file descriptor, size, offset>
from the original log records, and performs inter-node com-
pression by comparing feature vector lists from all nodes
and merging identical vectors, using a similar approach as
in block trace modeling [74] or ScalaTrace [61].

The compute-node-side first-pass compression reduces
the raw trace size by a factor of 5.4 to 34.6 across 8 real-
world, large-scale applications, where the gain relies on the
amount of “immediate” redundancy in an application’s I/O
operations. The second-pass compression on the dedicated
Beacon server further delivers a 2- to 4-fold reduction. De-
tailed results are given in Appendix A.
Forwarding nodes On each forwarding node, Beacon pro-
files both the LWFS server and Lustre client. It collects the
latency and processing time for each LWFS server request,
and the request queue length for each LWFS server (by sam-
pling the queue status once per 1000 requests). Rather than
saving the per-request traces, the Beacon daemon periodi-
cally processes new traces and only saves I/O request statis-
tics such as latency and queue length distribution.

For the Lustre client, Beacon collects request statistics by
sampling the status of all outstanding RPC requests, once
every second. Each sample contains the forwarding ID and
RPC request size to the Lustre server.
Storage nodes and MDS On the storage nodes, Beacon
daemons periodically sample the Lustre OST status table,

record data items such as the OST ID and OST total data size,
and further send high-level statistics such as count of RPC
requests and average per-RPC data size in the past time win-
dow. On the Lustre MDS, Beacon also periodically collects
and records statistics on active metadata operations (such as
open and lookup) at 1-second intervals, while storing a sum-
mary of the periodic statistics in its database.

3.3 Multi-layer I/O Profiling Data Analysis
All the aforementioned monitoring data are transmitted for
long-term storage and processing at the Elasticsearch-based
database on the dedicated Beacon server as JSON objects,
on top of which Beacon builds I/O monitoring/profiling ser-
vices. These include automatic anomaly detection that runs
periodically, as well as query and visualization tools that
supercomputer users and administrators could use interac-
tively. Below we give more detailed descriptions.
Automatic anomaly detection Outright failures are rela-
tively easy to detect in a large system, commonly handled
by tools such as heartbeat detection [67, 72], and is beyond
the scope of this work. However, alive yet very slow com-
ponents, such as forwarding nodes and OSTs under perfor-
mance degradation, may continue to serve requests, but at
a much lower pace that drags down entire applications’ per-
formance and reduces overall system utilization. With a busy
storage system serving multiple platforms and on each many
concurrent applications, such stragglers are rather hard to be
identified. Assisted by its continuous, end-to-end I/O moni-
toring, Beacon enables automatic I/O system anomaly detec-
tion, identifying system components processing I/O work-
load at a significantly slower pace than their peers.

This is done by processing I/O monitoring data from the
current and historical execution(s) of the same application,
using clustering to detect apparent performance degradation
on forwarding nodes and OSTs. The frequency of running
such detection processing is configurable and is currently set
at once every hour. Upon the identification of a serious sys-
tem anomaly, an alarm email will be automatically generated
and sent to TaihuLight administrators. We give a use case
study in Section 4.2, plus detailed workflow description in
Appendix B.
Per-job I/O performance analysis Upon a job’s comple-
tion, Beacon performs automatic analysis of its I/O moni-
toring data collected from all layers. It performs inter-layer
correlation by first identifying jobs from the job database
that run on given compute node(s) at the log entry collection
time. The involved forwarding nodes, leading to relevant for-
warding monitoring data, are then located via the compute-
to-forwarding node mapping using a system-wide mapping
table lookup. Finally, relevant OSTs and corresponding stor-
age node monitoring data entries are found by file system
lookup using the Lustre command lfs.

From the above data, Beacon derives and stores coarse-
grained information for quick query, including average and

382 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

peak I/O bandwidth, average IOPS, runtime, number of pro-
cesses (and compute nodes) performing I/O, I/O mode, total
count of metadata operations, and average metadata opera-
tions per second during I/O phases. Among them, the I/O
mode indicates the parallel file sharing mode among pro-
cesses, where common modes include “N-N” (each compute
process accesses a separate file), “N-1” (all processes share
one file), “N-M” (N processes perform I/O aggregation to
access M files, M<N), and “1-1” (only one of all processes
performs sequential I/O on a single file).

To help users understand/debug their applications’ I/O
performance, Beacon provides web-based I/O data visual-
ization. This diagnosis system can be queried using a job
ID, after appropriate authentication, and allows visualizing
the I/O statistics of the job, both real-time and post-mortem.
It reports the measured I/O metrics (such as bandwidth and
IOPS) and inferred characteristics (such as the number of
I/O processes and I/O mode). Users are also presented with
user-configurable visualization tools, showing time-series
measurement in I/O metrics, statistics information such as
request type/size distribution, and performance variances.
Our powerful I/O monitoring database allows further user-
initiated navigation such as per-compute-node traffic history,
and zooming control to examine data at different granular-
ity. For security/privacy, users are only allowed to view I/O
data from compute, forwarding, and storage nodes involved
in and for the duration of their jobs’ execution.
I/O subsystem monitoring for administrators Beacon
also provides administrators with the capability of monitor-
ing the I/O status for any time period, on any node.

Besides all the user-visible information and facilities men-
tioned above, the administrators can further obtain and visu-
alize: (1) detailed I/O bandwidth and IOPS for each com-
pute node, forwarding node, and storage node, (2) resource
utilization status of forwarding nodes, storage nodes and the
MDS, including detailed request queue length statistics, and
(3) I/O request latency distribution on forwarding nodes. Ad-
ditionally, Beacon authorizes administrators with direct I/O
record database access, to facilitate in-depth analysis.

Combining such facilities, administrators could perform
powerful and thorough I/O traffic and performance analysis,
e.g., by checking multi-level traffic, latency, and throughput
monitoring information regarding a certain job execution.

3.4 Generality and Limitations
Beacon can be adopted by other platforms. The I/O forward-
ing architecture is widely used, by 9 out of the current Top 20
machines (listed in Table 1). It is also targeted by the DAOS
Exascale storage design [54] and the TOKIO I/O monitoring
framework [24].

Beacon’s building blocks, such as operation log col-
lection and compression, scheduler-assisted per-application
data correlation and analysis, history-based anomaly identi-
fication, automatic I/O mode detection, and built-in interfer-

Rank Machine Vendor File system
3 Taihulight [19] NRCPC Lustre
4 Tianhe-2A [87] NUDT Lustre+H2FS
5 Piz Daint [15] Cray Lustre+GPFS
6 Trinity [21] Cray Lustre
9 Titan [20] Cray Lustre

10 Sequoia [17] IBM Lustre
12 Cori [1] Cray Lustre+GPFS
14 Oakforest-PACS [12] Fujitsu Lustre
18 K computer [8] Fujitsu FEFS [65]

Table 1: I/O forwarding adopters among top-20 supercomputers, as
of November 2018

ence analysis, can all be performed on other supercomputers.
Its data management components, such as Logstash, Redis,
and ElasticSearch, are open-source software that will run on
these machines as well. Our forwarding layer design valida-
tion and load analysis could also help recent platforms with
a layer of burst buffer nodes, such as NERSC’s Cori [2].

Meanwhile, the current Beacon system has limitations that
can be addressed in future work or application to other plat-
forms. For example, it currently performs data analysis and
detects anomalies by bringing unusual patterns to the atten-
tion of system administrators. Additional historical data col-
lection to correlate symptoms and solutions would make the
process more intelligent and reduce human labor require-
ment [86]. Similarly, application users who are not parallel
I/O experts could benefit from system-generated direct sug-
gestions (such as for I/O mode or request size change, and
against using the parallel file system for metadata-heavy in-
teractive tasks), beyond performance data visualization.

4 Beacon Use Cases
Beacon has been deployed on TaihuLight for around 18
months and has gathered massive I/O information. So far
it has accumulated around 10 TB of trace data (after two
passes of compression). This history contains 116,765 jobs
that used at least 32 compute nodes, consuming 323,951,208
core-hours in total. 28,330 (24%) of these jobs featured non-
trivial I/O, with per-job I/O volume over 200 MB.

The insights and issues revealed by Beacon’s monitoring
and diagnosis have already helped TaihuLight administrators
fix several design flaws, develop a dynamic and automatic
forwarding node allocation tool, and improve system relia-
bility/consistency plus application efficiency. Due to space
limit, we focus on three types of use cases: (1) Performance
issue diagnosis, (2) Automatic I/O anomaly diagnosis, and
(3) Application and user behavior analysis.

4.1 Performance Issue Diagnosis
Forwarding node cache thrashing Beacon’s end-to-end
monitoring facilitates cross-layer correlation of I/O profiling
data, at different temporal or spatial granularity. By compar-
ing the total request volume at each layer, Beacon has helped
TaihuLight’s infrastructure management team in identifying
a previously unknown performance issue, as detailed next.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 383

A major reason driving the adoption of I/O forwarding or
burst buffer layer is the opportunity to perform prefetching,
caching, and buffering, to reduce the pressure on slower disk
storage. Figure 4 shows the read volume on compute and
forwarding node layers, during two sampled 70-hour peri-
ods in August 2017. Figure 4(a) shows a case with expected
behavior, where the total volume requested by the compute
nodes is significantly higher than that requested by the for-
warding nodes, signaling good access locality and effective
caching. Figure 4(b), however, tells the opposite story (that
surprised system administrators): the forwarding layer could
incur much higher read traffic from the backend than re-
quested by user applications, reading much more data from
the storage nodes than returning to compute nodes. Such sit-
uation does not apply to writes, where Beacon always shows
matching aggregate bandwidth across the two levels.

0 20 40 60
Time (hour)

0

2

4

6

I/
O

 v
o

lu
m

e
 (

G
B

)

10
4

Comp_Read Fwd_Read

(a) 70 hours starting from 08/14/2017

0 20 40 60
Time (hour)

0

1

2

3

4

I/
O

 v
o

lu
m

e
 (

G
B

)

10
5

Comp_Read Fwd_Read

(b) 70 hours starting from 08/01/2017

Figure 4: Sample segments of TaihuLight read volume history, each
collected at two layers

Further analysis of the applications executed and their
assigned forwarding nodes during the problem period in
Figure 4(b) reveals an unknown cache thrashing problem,
caused by the N-N sequential data access behavior. By de-
fault, the Lustre client has a 40 MB read-ahead cache for
each file. Under the N-N sequential read scenarios, such ag-
gressive prefetching causes severe memory contention, with
data repeatedly read from the backend (and evicted on for-
warding nodes). E.g., an 1024-process Shentu [25] execu-
tion has each I/O process read an 1-GB single file, incur-
ring a 3.5× I/O amplification at the Lustre backend of Ice-
fish. This echos previous finding on the existence of I/O self-
contention within a single application [55].
Solution This problem can be addressed by adjusting the
Lustre prefetching cache size per file. For example, changing
it from 40MB per file to 2MB is shown to remove the thrash-
ing. Automatic, per-job forwarding node cache reconfigura-
tion, which leverages real-time Beacon monitoring results, is
currently under development for TaihuLight. Alternatively,
switching the application from an N-N to N-M mode (per-
forming I/O aggregation, by having each set of N/M com-
pute processes group their I/O to one file) also eliminates
cache thrashing, and brings 3× I/O performance improve-
ment. Given the close collaboration between application
teams and machine administrators, making performance-
critical program changes as suggested by monitoring data

analysis is an accepted practice on leading supercomputers.
Bursty forwarding node utilization Beacon’s continuous
end-to-end I/O monitoring gives center management a global
picture on system resource utilization. While such systems
were often built and configured using rough estimates based
on past experience, Beacon collects detailed resource usage
history to help both in improving the current system’s effi-
ciency and in assisting future system upgrade and design.

Figure 5 gives one example, again on forwarding load dis-
tribution, by showing two one-day samples from July 2017.
Each row portraits the by-hour peak load on one of the same
40 forwarding nodes randomly sampled from the 80 active
ones. The darkness reflects the maximum bandwidth reached
within that hour. The labels “high”, “mid”, “low”, and “idle”
correspond to that maximum residing in the >90%, 50-90%,
10-50%, or 0-10% interval (relative to the benchmarked per-
forwarding-node peak bandwidth), respectively.

4 8 12 16 20 24
Time (hour)

Idle

Low

Mid

High

(a) Regular load (07/01/2017)

4 8 12 16 20 24
Time (hour)

Idle

Low

Mid

High

(b) Heavy load (07/28/2017)

Figure 5: Sample TaihuLight one-day load summary, showing peak
load level by hour, across 40 randomly sampled forwarding nodes

Figure 5(a) shows the more typical load distribution,
where the majority of forwarding nodes stay lightly used for
the vast majority of time (90.7% of cells show maximum
load being under 50% of peak bandwidth). Figure 5(b) gives
a very different picture, with a significant set of sampled for-
warding nodes serving I/O-intensive large jobs for a good
part of the day. 35.7% of the cells actually see a maximum
load of over 99% of peak forwarding node bandwidth.

These results indicate that (1) overall there is forwarding
resource overprovisioning (confirming prior findings [41,52,
57, 64]), (2) even with the more representative low-load sce-
narios, it is not rare for forwarding node bandwidth to be sat-
urated by application I/O, and (3) load imbalance across for-
warding nodes exists regardless of load level, presenting idle
resources potentially helpful to I/O-intensive applications.
Solution Recognizing the above, recently TaihuLight has
enlisted more of its “backup forwarding nodes” into regu-
lar service. Meanwhile, a dynamic, application-aware for-
warding node allocation scheme is designed and partially de-
ployed (turned on for a subset of applications) [43]. Lever-
aging application-specific job history information, such an
allocation scheme is intended to replace the default, static
mapping between compute and forwarding nodes.
MDS request priority setting While overall we found
that most TaihuLight jobs are rather metadata-light, Beacon

384 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

does observe a small fraction of parallel jobs (0.69%) with
high metadata request rate (more than 300 metadata oper-
ations/s on average during I/O phases). Beacon found that
these metadata-heavy (“high-MDOPS”) applications tend to
cause significant I/O performance interference. Among jobs
with Beacon-detected I/O performance anomaly, those shar-
ing forwarding nodes with high-MDOPS jobs experienced
an average 13.6× increase in read/write request latency dur-
ing affected time periods.

Such severe delay and corresponding Beacon forwarding
node queue status history prompted us to examine the Taihu-
Light LWFS server policy. We found that metadata requests
were given priority over file I/O, based on the single-MDS
design and the need to provide fast response to interactive
user operations such as ls. Here, as neither disk bandwidth
nor metadata server capacity was saturated, such interference
could easily remain undetected using existing approaches
that focus on I/O-intensive workloads only [37, 52].

0 50 100 150 200

Time (s)

1

2

3

4

I/
O

 t
h

ro
u

g
h

p
u

t
(G

B
/s

) LAMMPS-Solo
LAMMPS-Co-run
LAMMPS-Adjusted

Co-run end

Adjusted Co-run end

(a) LAMMPS

0 50 100 150 200

Time (s)

100

200

300

400

500

600

700

M
D

O
P

S

DNDC-Solo
DNDC-Co-run
DNDC-Adjusted

Co-run end

Adjusted Co-run end

(b) DNDC

Figure 6: Impact of metadata operations’ priority adjustment

Solution As a temporary solution, we added probabilistic
processing across priority classes to the TaihuLight LWFS
scheduling. Instead of always giving metadata requests high
priority, an LWFS server thread now follows a P : (1−P)
split (P configurable) between picking the next request from
the separate queues hosting metadata and non-metadata re-
quests. Figure 6 shows the “before” and “after” pictures,
with LAMMPS [34] (a classical molecular dynamics simula-
tor with middle scale 256 compute nodes) running against
the high-MDOPS DNDC [39] (a bio-geochemistry application
for agro-ecosystems simulation). Throughput of their solo-
runs, where each application runs by itself on an isolated
testbed, is given as reference. With a simple equal proba-
bility split, LAMMPS co-run throughput doubles, while DNDC

only perceives a 10% slowdown. For a long-term solution,
we plan to leverage Beacon to automatically adapt the LWFS
scheduling policies, considering operation types, the MDS
load level, and application request scheduling fairness.

4.2 Automatic I/O Anomaly Diagnosis
In extreme-scale supercomputers, users typically accept jit-
tery application performance, recognizing wide-spread re-
source sharing among jobs. System administrators, mean-
while, see different behaviors among system components

with homogeneous configuration, but cannot tell how much
of that difference comes from these components’ function-
ing, and how much from the diversity of tasks they perform.

Beacon’s multi-layer monitoring capacity, therefore,
presents a new window for supercomputer administra-
tors to examine system health, by connecting statistics on
application-issued I/O requests all the way to that of individ-
ual OST’s bandwidth measurement. Such connection guides
Beacon to deduce what is considered the norm and what an
exception. Leveraging this capability, we design and im-
plement a lightweight, automatic anomaly detection tool to
identify such apparent exceptions that signal significant per-
formance degradation or faulty system components.

Application-driven anomaly detection Most I/O-intensive
applications have distinct I/O phases, i.e., episodes in their
execution where they perform I/O continuously, such as
those to read input files during initialization or to write in-
termediate results or checkpoints. For a given application,
such I/O phase behavior is often quite consistent. Taking
advantage of such repeated I/O operations and its multi-
layer I/O information collection, Beacon performs automatic
I/O phase recognition, on top of which it conducts I/O-
related anomaly detection. More specifically, larger applica-
tions (such as those using 1024 compute nodes or more) are
spreading their I/O load to multiple forwarding nodes and
backend nodes, giving us opportunities to directly compare
the behavior of these servers processing requests known to
Beacon as homogeneous or highly similar.

0 50 100 150 200 250 300 350 400 450 500
Time (s)

0

3

3

3

I/O
 b

an
dw

id
th

 (G
B

/s
)

Write

Fwd1

Fwd2

Fwd3

Figure 7: Forwarding bandwidth in a 6000-process LAMMPS run

Figure 7 gives an example of a 6000-process LAMMPS run
with checkpointing. The 1500 compute nodes are assigned
to 3 forwarding nodes, whose bandwidth and I/O time are
reflected in the time-series data from Beacon. We can clearly
see here the Fwd1 node is a straggler in this case, serving at
a bandwidth much slower than its peak (without answering
to other applications). As a result, there is a 20× increase in
the application-visible checkpoint operation time, estimated
using the other two forwarding nodes’ I/O phase duration.

0 50 100 150 200 250 300 350 400
OST_ID

0

200

400

I/O
 B

W
 (M

B
/s

)

Figure 8: Per-OST bandwidth during a Shentu execution

Anomaly alert and node screening Such continuous, on-
line application performance anomaly detection could iden-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 385

tify forwarding nodes or backend units with deviant perfor-
mance metrics, which in turn will trigger Beacon’s more de-
tailed monitoring and analysis. If it finds such a system com-
ponent to consistently under-perform relative to peers serv-
ing similar workloads, with configurable thresholds in mon-
itoring window and degree of behavior deviation, it reports
this as an automatically detected system anomaly. By gen-
erating and sending an alarm email to the system adminis-
tration team, Beacon prompts system administrators to do a
thorough examination, where its detailed performance his-
tory information and visualization tools are also helpful.

Such anomaly screening is especially important for expen-
sive, large-scale executions. For example, among all applica-
tions running on TaihuLight so far, the parallel graph engine
Shentu [49] has the most intensive I/O load. It scales well to
the entire supercomputer in both computation and I/O, with
160,000 processes and large input graphs distributed evenly
to nearly 400 Lustre OSTs. During test runs preparing for its
Gordon Bell bid in April 2018, Beacon’s monitoring discov-
ered a few OSTs significantly lagging behind in the parallel
read, slowing down the initialization as a result (Figure 8).
By removing them temporarily from service and relocating
their data to other OSTs, Shentu cut its production run ini-
tialization time by 60%, saving expensive dedicated system
allocation and power consumption. In this particular case,
further manual examination attributed the problem to these
OSTs’ RAID controllers, which were later fixed.

Had it not been for Beacon’s backend monitoring, applica-
tions like Shentu would have accepted whatever bandwidth
they got, without suspecting I/O performance being abnor-
mal. Similarly, had it not been for Beacon’s routine frontend
tracing, profiling, and per-application performance anomaly
detection, it would not have noticed the backend outliers. As
full-system benchmarking requires taking the supercomputer
offline and cannot be regularly attempted, Beacon provides
a much more affordable way for continuous system health
monitoring and diagnosis, by coupling application-side and
server-side tracing/profiling information.

Location of anomaly
Duration (hours) Forwarding node (times) OSS+OST (times)

(0,1) 23 31
[1,4) 14 17
[4,12) 5 9
[12,96) 3 6

≥96, manually verified 6 8

Table 2: Duration of Beacon-identified system anomalies

Beacon’s deployment on TaihuLight started around April
2017, with features and tools incrementally developed and
added to production use. Table 2 summarizes the automat-
ically identified I/O system anomaly occurrences at the two
service layers, from Apr 2017 to Aug 2018. Such identifi-
cation adopted a minimum threshold of measured maximum
bandwidth under 30% of the known peak value, as well as
a minimum duration of 60 minutes. Such parameters can be
configured to adjust the anomaly detection system sensitiv-

ity. Most performance anomaly occurrences are found to be
transient, lasting under 4 hours.

There are a total of 14 occasions of performance anomaly
over 4 hours on the forwarding layer, and 23 on the back-
end layer, confirming the existence of fail-slow situations
found common with data centers [42]. Reasons for such
relatively long yet “self-healed” anomalies include service
migration and RAID reconstruction. With our rather con-
servative setting during such initial deployment period, Bea-
con was set to send the aforementioned alert email when a
detected anomaly situation lasted beyond 96 hours (except
for large-scale production runs as in the Shentu example
above, where the faulty units were immediately reported).
With all these occasions, the Beacon detected anomaly was
confirmed by human examination.

4.3 Application and User Behavior Analysis
With its powerful information collection and multi-layer I/O
activity correlation, Beacon provides new capability to per-
form detailed application or user behavior analysis. Re-
sults of such analysis assist in performance optimization,
resource provisioning, and future system design. Here we
showcase several application/user behavior studies, some of
which have brought corresponding optimizations or design
changes to the TaihuLight system.

Type (0,1K] (1K,10K] (10K,100K] (100K,1000K] (1000K,∞)
Read 8.1 GB 101.0 GB 166.9 GB 1172.9 GB 2010.6 GB
Write 18.2 GB 83.9 GB 426.6 GB 615.9 GB 41458.8 GB

Table 3: Avg. per-job I/O volume by core-hour consumption

(a) Read (b) Write

Figure 9: Distribution of file access modes, in access volume

I/O mode Avg. read volume Avg. write volume Job count
N-N 96.8 GB 120.1 GB 11073
N-M 36.2 GB 63.2 GB 324
N-1 19.6 GB 19.3 GB 2382
1-1 33.0 GB 142.3 GB 16251

Table 4: Avg. I/O volume and job count by I/O mode

Application I/O mode analysis First, Table 3 gives an
overview of I/O volume across all profiled jobs with non-
trivial I/O, categorized by per-job core-hour consumption.
Here, 1000K core-hours correspond to a 10-hour run using
100,000 cores on 25,000 compute nodes, and jobs with such
consumption or higher write more than 40 TB of data on av-
erage.3 Overall, the amount of data read/written grows as

3Further examination reveals that in each core-hour category, average
read/write volumes are influenced by a minority group of heavy consumers.

386 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the jobs consume more compute node resources. The less
resource-intensive applications tend to perform more reads,
while the larger consumers are more write-intensive.

Figure 9 shows the breakdown of I/O-mode adoption
among all TaihuLight jobs performing non-trivial I/O, by to-
tal read/write volume. The first impression one gets from
these results is that the rather “extreme” cases, such as N-N
and 1-1, form the dominant choices, especially in the case of
writes. We suspected that this distribution could be skewed
by a large number of small jobs doing very limited I/O, and
calculated the average per-job read/write volume for each
I/O mode. The results (Table 4) show that this is not the
case. Actually, applications that choose to use 1-1 mode for
writes actually have a much higher overall write volume.

The 1-1 mode is the closest to sequential processing be-
havior and is conceptually simple. However, it obviously
lacks scalability and fails to utilize the abundant hardware
parallelism in the TaihuLight I/O system. The wide presen-
tation of this I/O mode might help explain the overall under-
utilization of forwarding resources, discussed earlier in Sec-
tion 4.1. Echoing similar findings (though not so extreme) on
other supercomputers [57] (including Intrepid [7], Mira [10]
and Edison [4]), effective user education on I/O performance
and scalability would both help improve storage system uti-
lization and reduce wasted compute resources.

The N-1 mode has a different story. It is an intuitive par-
allel I/O solution that allows compute processes to directly
read to or write from their local memory without gather-
scatter operations, while retaining the convenience of having
a single input/output file. However, our detailed monitoring
finds it a quite damaging I/O mode that users should steer
away from, as explained below.

First, our monitoring results confirm findings by existing
research [23, 56] that the N-1 mode offers low application
I/O performance (by reading/writing to a shared file). Even
with a large N, such applications receive no more than 250
MB/s I/O aggregate throughput, despite the peak TaihuLight
backend combined bandwidth of 260 GB/s. For read op-
erations, users here also rarely modify the default Lustre
stripe width, confirming behavior reported in a recent ORNL
study [48]. The problem is much worse with writes, as per-
formance severely degrades due to file system locking.

This study, however, finds N-1 applications to be extraor-
dinarily disruptive as they harm all kinds of neighbor appli-
cations that share forwarding nodes with them, particularly
when N is large (e.g., over 32 compute nodes).

The reason is that each forwarding node operates an
LWFS server thread pool (currently sized at 16), providing
forwarding service to assigned compute nodes. Applications
using the N-1 mode tend to flood this thread pool with re-
quests in bursts. Unlike with the N-N or N-M modes, N-1
suffers from the aforementioned poor backend performance
by using a single shared file. This, in turn, makes N-1 re-
quests slow to process, further exacerbating their conges-

tion in the queue and delaying requests from other applica-
tions, even when those victims are accessing disjoint back-
end servers and OSTs.

Here we give a concrete example of I/O mode-induced
performance interference, featuring the earthquake simula-
tion AWP [35] (2017 Gordon Bell Prize winner) that started
with N-1 mode. In this sample execution, it co-runs with the
weather forecast application WRF [69] using the 1-1 mode,
each having 1024 processes on 256 compute nodes. Under
the “solo” mode, we assign each application a dedicated for-
warding node in a small testbed partition of TaihuLight. In
the “co-run” mode, we let them share one forwarding node
(as the default compute-to-forwarding mapping is 512-to-1).

Operation Avg. wait time Avg. proc. time Avg. queue length
WRF write (solo) 2.73 ms 0.052 ms 0.22
WRF write (co-run) 30.06 ms 0.054 ms 208.51
AWP read (solo) 58.17 ms 3.44 ms 226.37
AWP read (co-run) 58.18 ms 3.44 ms 208.51

Table 5: Performance interference during WRF and AWP co-run shar-
ing a forwarding node

Table 5 lists the two applications’ average request
wait/processing time and forwarding node queue length dur-
ing these runs. Note that with “co-run”, the queue is shared
by both applications. We find that the average wait time of
WRF has been increased by 11× when co-running, but AWP is
not affected. This result reveals the profound malpractice of
the N-1 file sharing mode and confirms prior finding that I/O
interference is access-pattern-dependent [47, 53].
Solution Our tests confirm that increasing the LWFS thread
pool size does not help in this case, as the bottleneck lies
on the OSTs. Meanwhile, avoiding the N-1 mode has been
advised in prior work [23, 84], as well as numerous paral-
lel I/O tutorials. Considering our new inter-application study
results, it is rather an obvious “win-win” strategy that simul-
taneously improves large applications’ I/O performance and
reduces their disruption to concurrent workloads. However,
based on our experience with real applications, this message
needs to be better promoted.

In our case, the Beacon developers worked with the AWP

team to replace its original N-1 file read (for initializa-
tion/restart) with the N-M mode, during the 2017 Gorden
Bell Prize final submission phase. This change produced
an over 400% enhancement in I/O performance. Note that
the GB Prize submission does not report I/O time; we found
that AWP’s 130,000-process production runs spend the bulk
of their execution time reading around 100 TB of input or
checkpoint data. Significant reduction in this time greatly
facilitated AWP’s development/testing and saved non-trivial
supercomputer resources.
Metadata Server Usage Unlike forwarding nodes utiliza-
tion (discussed earlier), the Lustre MDS is found with rather
evenly distributed load levels by Beacon’s continuous load
monitoring (Figure 10(a)). In particular, in 26.8% of the
time, the MDS experiences a load level (in requests per sec-
ond) above 75% of its peak processing throughput.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 387

Beacon allows us to further split the requests between sys-
tems sharing the MDS, including the TaihuLight forwarding
nodes, login nodes, and the ACC. TaihuLight administrators
were surprised to find that over 80% of the metadata access
workload actually comes from the ACC (Figure 10(b)).

Note that the login node and ACC have their own local file
systems, ext4 and GPFS [66], respectively, which users are
encouraged to use for purposes such as application compila-
tion and data post-processing/visualization. However, since
the users are likely TaihuLight users too, we found most of
them prefer to directly use the main Lustre scratch file sys-
tem intended for TaihuLight jobs, for convenience. While
the I/O bandwidth/IOPS resources consumed by such tasks
are negligible, user interactive activities (such as compiling
or post-processing) turn out to be metadata heavy.

Large waves of unintended user activities correspond to
the most heavy-load periods at the tail end in Figure 10(a),
and have led to MDS crashes that directly affected applica-
tions running on TaihuLight. According to our survey, many
other machines, including 2 out of the top 10 supercomput-
ers (Sequoia [17] and Sierra [18]), also have a single MDS,
assuming that their users follow similar usage guidelines.

0 1000 2000 3000 4000 5000

Metadata access request /s

0

20%

40%

60%

80%

100%

P
e

rc
e

n
ta

g
e

 o
f

s
y

s
te

m
 t

im
e

(a) CDF of MDS utilization (b) MDS load across platforms

Figure 10: TaihuLight Lustre MDS load statistics

Solution There are several potential solutions to this prob-
lem. With the help of Beacon, we can identify and remind
users performing metadata-heavy activities to avoid using
the PFS directly. Or we can support more scalable Lustre
metadata processing with an MDS cluster. A third approach
is to facilitate intelligent workflow support that automatically
performs data transfer, based on users’ needs. This third ap-
proach is the one we are currently developing.

4.4 Extension to network monitoring
Encouraged by Beacon’s success in I/O monitoring, in sum-
mer 2018 we began to design and test its extension to
monitor and analyze network problems, motivated by the
network performance debugging needs of ultra large-scale
applications. Figure 11(a) shows the architecture of this
new module. Beacon samples performance counters on the
5984 Mellanox InfiniBand network switches, such as per-
port sent and received volumes. Again the data collected
are passed to low-overhead daemons on Beacon log servers,
more specifically, 75 of its 85 part-time servers, each as-
signed 80 switches. Similar processing and compression are
conducted, with result data persisted in Beacon’s distributed

database, then periodically relocated to its dedicated server
for user queries and permanent storage.

monitoring servers
(running on 75 storage nodes)

5984 fat-tree
interconnection

switches

performance counter

monitoring data

0

Monitoring daemon

N1 N2 N3 N750

75 Beacon “part-time” servers

(a) Overview of Beacon’s network
monitoring module

(0,2] (2,3] (3,4] (4,5] (5,7]
Inter-supernode

communication volume (GB)

0

10

20

30

S
u

p
e

rn
o

d
e

 s
w

it
c

h
s

FixedPart FlexPart

(b) Distribution of communication
volume inter-supernode

Figure 11: Network monitoring architecture and its use case

This Beacon network monitoring prototype was tested in
time to help in the aforementioned Shentu [49] production
runs, for its final submission to Supercomputing’18 as an
ACM Gordon Bell Award finalist. Beacon was called upon
to identify the reason of aggregate network bandwidth sig-
nificantly lower than theoretical peak. Figure 11(b) illus-
trates this with a 3-supernode Shentu test run. The dark bars
(FixedPart) form a histogram of communication volumes
measured on 40 switches connecting these 256-node supern-
odes for inter-supernode communication, reporting the count
of switches within 5 volume brackets. There is a clear bi-
polar distribution, showing severe load imbalance and more
than expected inter-supernode communication. This mon-
itoring result led to discovery that due to the existence of
faulty compute nodes within each supernode, the fixed par-
titioning relay strategy adopted by Shentu led to a subset
of relay nodes receiving twice the “normal” load. Note that
Shentu’s own application-level profiling found communica-
tion volume across compute nodes very well balanced, hence
the problem was not obvious to application developers until
Beacon provided such switch-level traffic data.
Solution This finding prompted Shentu designers to opti-
mize their relay strategy, using a topology-aware scholastic
assignment algorithm to uniformly partition source nodes to
relay nodes [49], whose results are shown by gray bars (Flex-
Part) in Figure 11(b). The peak per-switch communication
volume is reduced by 27.0% (from 6.3 GB to 4.6 GB), with
significantly improved load balance, bringing a total com-
munication performance enhancement of around 30%.

5 Beacon Framework Evaluation
We now evaluate Beacon’s per-application profiling accu-
racy, as well as its performance overhead.

5.1 Accuracy Verification
Beacon collects full traces from the compute node side, thus
has access to complete application-level I/O operation infor-
mation. However, since the LWFS client trace interface pro-
vides only coarse timestamp data (at per-second granularity),
and due to the clock drift across compute nodes, it is possi-
ble that the I/O patterns recovered from Beacon logs deviate
from the application-level captured records.

388 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

To evaluate the degree of such errors, we compare the I/O
throughput statistics reported by MPI-IO Test [40] to those
by Beacon. In the experiments, we use MPI-IO Test to test
different parallel I/O modes, including N-N and N-1 inde-
pendent operations, plus MPI-IO library collective calls. 10
experiments were repeated at each execution scale.

The accuracy evaluation results are shown in Figure 12.
We plot the average error in Beacon, measured as the per-
centage of deviation of the recorded aggregate compute
node-side I/O throughput from the application-level through-
put reported by the MPI-IO library.

We find Beacon able to accurately capture application per-
formance, even for applications with non-trivial parallel I/O
activities. More precisely, Beacon’s recorded throughput
deviates from MPI-IO Test reported values by only 0.78–
3.39% (1.84% on average) for the read test and 0.81–3.31%
(2.03% on average) for write, respectively. Results are simi-
lar with high-IOPS applications, omitted due to space limit.

16 64 256 1024 409610000
No. of processes

0

1

2

3

4

5

Er
ro

r (
%

)

N-N
N-1
Collective

(a) Read tests

16 64 256 1024 409610000
No. of processes

0

1

2

3

4

5

Er
ro

r (
%

)

N-N
N-1
Collective

(b) Write tests

Figure 12: Average error rate of Beacon reported bandwidth (error
bars show 95% confidence intervals.)

Beacon’s accuracy can be attributed to that it records
all compute node-side trace logs, facilitated by its efficient
and nearly lossless compression method (described in Sec-
tion 3.2). We find that even though individual trace items
may be off in timestamps, data-intensive applications on su-
percomputers seldom perform isolated, fast I/O operations
(which are not of interest for profiling purposes); instead,
they exhibit I/O phases with sustained high I/O intensity.
By collecting a large set of per-application I/O trace entries,
Beacon is able to paint an accurate picture of an application’s
I/O behavior and performance.

5.2 Monitoring and Query Overhead
We now evaluate Beacon’s monitoring overhead in a pro-
duction environment. We compare the performance of im-
portant I/O-intensive real-world applications and the MPI-IO
Test benchmark discussed earlier, with and without Beacon
turned on (Tw and Tw/o, respectively). We report the overall
run time of each program and calculate the slowdown in-
troduced by turning on Beacon. Table 6 shows the results,
listing the average slowdown measured from at least 5 runs
for each program (variance of slowdown across runs very
low: under 2%). Note that for the largest applications, such
testing was piggybacked on actual production runs of stable
codes, with Beacon turned on during certain allocation time

frames. Applications like AWP often break their executions to
run a certain number of simulation timesteps at a time.

Application #Process Tw/o (s) Tw (s) %Slowdown
MPI-ION 64 26.6 26.8 0.79%
MPI-ION 128 31.5 31.6 0.25%
MPI-ION 256 41.6 41.9 0.72%
MPI-ION 512 57.9 58.4 0.86%
MPI-ION 1024 123.1 123.5 0.36%
WRF1 1024 2813.3 2819.1 0.21%
DNDC 2048 1041.2 1045.5 0.53%
XCFD 4000 2642.1 2644.6 0.09%
GKUA 16384 297.5 299.9 0.82%
GKUA 32768 182.8 184.1 0.66%
AWP 130000 3233.5 3241.5 0.25%

Shentu 160000 5468.2 5476.3 0.15%

Table 6: Avg. Beacon monitoring overhead on applications

These results show that the Beacon tool introduces very
low overhead: under 1% across all test cases. Also, the over-
head does not grow with application execution scale, and
actually appears smaller (below 0.25%) for the two largest
jobs, which use 130K processes or more. Such cost is partic-
ularly negligible considering the significant I/O performance
enhancement and run time saving produced by optimizations
or problem diagnosis from Beacon-supplied information.

Table 7 lists the CPU and memory usage of Beacon’s
data collection daemon. In addition, the storage overhead
from Beacon’s deployment on TaihuLight since April 2017
is around 10 TB. Such low operational overhead and scalable
operation attest to Beacon’s lightweight design, with back-
ground trace-collection and compression generating negligi-
ble additional resource consumption. Also, having separate
monitoring network and storage avoids potential disturbance
to application execution.

Level CPU usage Memory usage (MB)
Compute node 0.0% 10

Forwarding node 0.1% 6
Storage node 0.1% 5

Table 7: System overhead of Beacon

0 100 200 300 400 500
Query processing time (s)

0

20%

40%

60%

80%

100%

%
 o

f
q

u
e
ri

e
s

Caching on
Caching off

95.6% < 10s

54.3% < 1s

Figure 13: CDF of Beacon query processing time

Finally we assess Beacon’s query processing perfor-
mance. We measured the query processing time of 2000 Bea-
con queries in September 2018, including both application
users accessing job performance analysis and system admin-
istrators checking forwarding/storage nodes performance. In
particular, we examined the impact of Beacon’s in-memory
cache system between the web interface and Elasticsearch,
as shown in Figure 2. Figure 13 gives the CDF of queries

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 389

in processing time and demonstrates that (1) the majority of
Beacon user queries can be processed within 1 second and
95.6% of them under 10 seconds (visualization queries take
longer), and (2) Beacon’s in-memory caching significantly
improves user experience. Additional checking reveals that
about 95% of these queries can be served from data cached.

6 Related Work
Several I/O tracing and profiling tools have been proposed
for HPC systems, which can be divided into two categories:
application-oriented tools and backend-oriented tools.

Application-oriented tools can provide detailed informa-
tion about a particular execution on a function-by-function
basis. Work at this front includes Darshan [31], IPM [76],
and RIOT [81], all aiming at building an accurate picture
of application I/O behavior by capturing key characteristics
of the mainstream I/O stack on compute nodes. Carns et
al. evaluated performance and runtime overheads of Dar-
shan [30]. Wu et al. proposed a scalable methodology for
MPI and I/O event tracing [58, 82, 83]. Recorder [56] fo-
cused on collecting additional HDF5 trace data.

Tools like Darshan provide user-transparent monitoring
via automatic environment configuration. Still, instrumenta-
tion based tools have restrictions on programming languages
or libraries/linkers. In contrast, Beacon is designed to be a
non-stop, full-system I/O monitoring system capturing I/O
activities at the system level.

Backend-oriented tools collect system-level I/O perfor-
mance data across applications and provide summary statis-
tics (e.g. LIOProf [85], LustreDU [29,48,62] and LMT [38]).
However, identifying application performance issues and
finding the cause of application performance degradation are
difficult with these tools. While backend analytical meth-
ods [50, 52] made progress in identifying high-throughput
applications using backend logs only, they lack application-
side information. Beacon, on the other hand, holds complete
cross-layer monitoring data to afford such tasks.

Along this line, there exist tools collecting multi-layer
data. Static instrumentation was used to trace parallel I/O
calls from MPI to PVFS servers [46]. SIOX [80] and
IOPin [45] characterize HPC I/O workloads across the I/O
stack. These projects extended the application-level I/O in-
strumentation approach that Darshan [31] used, to other sys-
tem layers. However, their overhead hinders its deployment
on large-scale production environments [70].

Regarding end-to-end frameworks, the TOKIO [24] ar-
chitecture combined frontend tools (Darshan, Recorder) and
backend ones (LMT). E.g., the UMAMI monitoring infer-
face [53] provided cross-layer I/O performance analysis and
visualization. In addition, OVIS [27] used the Cray specific
tool LDMS [22] to provide scalable failure and anormaly
detection. GUIDE [91] performed center-wide and multi-
source log collection and motivated further analysis and op-
timizations. Beacon differs by its aggressive real-time per-

formance and utilization monitoring, automatic anomaly de-
tection, and continuous per-application I/O pattern profiling.

I/O interference is identified as an important cause for per-
formance variability in HPC systems [52,63]. Kuo et al. [47]
focused on interference from different file access patterns
with synchronized time-slice profiles. Yildiz et al. [88] stud-
ied root causes of cross-application I/O interference across
software and hardware configurations. To our knowledge,
Beacon is the first monitoring framework with built-in fea-
tures for inter-application interference analysis. Our study
confirms findings on large-scale HPC applications’ adoption
of poor I/O design choices [57]. It further suggests that aside
from workload-dependent, I/O-aware scheduling [33,52], in-
terference should be countered with application I/O mode
optimization and adaptive I/O resource allocation.

Finally, on network monitoring, there are dedicated
tools [51, 59, 68] for monitoring switch performance,
anomaly detection, and resource utilization optimization.
There are also tools specializing in network monitor-
ing/debugging for data centers [14, 73, 89]. However, these
tools/systems typically do not target InfiniBand interconnec-
tions commonly used on supercomputers. To this end, Bea-
con adopts the open-source OFED stack [13, 32] to retrieve
relevant information from IB network. More importantly, it
leverages its scalable and efficient monitoring infrastructure,
originally designed for I/O, for network problems.

7 Conclusion
We present Beacon, an end-to-end I/O resource monitoring
and diagnosis system for the leading supercomputer Tai-
huLight. It facilitates comprehensive I/O behavior analy-
sis along the long I/O path and has identified hidden per-
formance and user I/O behavior issues, as well as system
anomalies. Enhancement enabled by Beacon in the past 18
months has significantly improved ultra large-scale applica-
tions’ I/O performance and the overall TaihuLight I/O re-
source utilization. More generally, our results and experi-
ence indicate that this type of detailed multi-layer I/O moni-
toring/profiling is affordable at state-of-the-art supercomput-
ers, offering valuable insights while incurring very low cost.

Acknowledgement
We appreciate the thorough and constructive comments from
all reviewers. Particularly, we thank our shepherd, Haryadi
Gunawi, for his responsiveness and detailed guidance. We
also thank Prof. Zheng Weimin for his valuable guidance and
advice, and colleagues Xiongchao Tang and Haojie Wang for
their input. We thank NSCC-Wuxi for supporting our devel-
opment, data collection, and deployment. This work is par-
tially supported by the National Key R&D Program of China
(Grant No. 2017YFA0604500 and 2016YFA0602100) and
the National Natural Science Foundation of China (Grant
No. 61722208, 41776010, and U1806205).

390 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Cori supercomputer. http://www.nersc.gov/users/

computational-systems/cori/.

[2] Cray burst buffer in Cori. http://www.nersc.gov/

users/computational-systems/cori/burst-buffer/

burst-buffer/.

[3] DBSCAN. https://scikit-learn.org/stable/modules/

generated/sklearn.cluster.DBSCAN.html.

[4] Edison supercomputer. http://www.nersc.gov/users/

computational-systems/edison/.

[5] Elasticsearch. https://www.elastic.co/products/

elasticsearch.

[6] GlusterFS. https://www.gluster.org/.

[7] Intrepid. https://www.alcf.anl.gov/intrepid.

[8] K supercomputer. http://www.aics.riken.jp/en/.

[9] Logstash. https://www.elastic.co/products/logstash.

[10] Mira supercomputer. https://www.alcf.anl.gov/mira.

[11] MySQL database. https://www.mysql.com/.

[12] Oakforest-PACS supercomputer. http://jcahpc.jp/eng/ofp_

intro.html.

[13] Open Fabrics Alliance. http://www.openfabrics.org/.

[14] PathDump. https://github.com/PathDump.

[15] Piz Daint supercomputer. https://www.cscs.ch/computers/

dismissed/piz-daint-piz-dora/.

[16] Redis. http://redis.io/.

[17] Sequoia supercomputer. https://computation.llnl.gov/

computers/sequoia.

[18] Sierra supercomputer. https://hpc.llnl.gov/hardware/

platforms/sierra.

[19] Sunway TaihuLight supercomputer. https://http://www.

nsccwx.cn/.

[20] Titan supercomputer. https://www.olcf.ornl.gov/

olcf-resources/compute-systems/titan/.

[21] Trinity supercomputer. http://www.lanl.gov/projects/

trinity/.

[22] AGELASTOS, A., ALLAN, B., BRANDT, J., CASSELLA, P., ENOS,
J., FULLOP, J., GENTILE, A., MONK, S., NAKSINEHABOON,
N., OGDEN, J., RAJAN, M., SHOWERMAN, M., STEVENSON, J.,
TAERAT, N., AND TUCKER, T. The lightweight distributed met-
ric service: A scalable infrastructure for continuous monitoring of
large scale computing systems and applications. In ACM/IEEE Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis (SC) (2014).

[23] BENT, J., GIBSON, G., GRIDER, G., MCCLELLAND, B.,
NOWOCZYNSKI, P., NUNEZ, J., POLTE, M., AND WINGATE, M.
PLFS: A Checkpoint filesystem for parallel applications. In Proceed-
ings of Supercomputing (2009).

[24] BERKELEY, L., AND ANL. TOKIO:Total knowledge of I/O, 2017.
http://www.nersc.gov/research-and-development/tokio.

[25] BOWEN YU, YOUWEI ZHOU, H. L. X. T. W. C. J. Z. W. Y., AND
ZHENG, W. Scalable graph traversal on Sunway TaihuLight with ten
million cores. In IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS) (2017).

[26] BRAAM, P. J., AND ZAHIR, R. Lustre: A scalable, high performance
file system. Cluster File Systems, Inc (2002).

[27] BRANDT, J., GENTILE, A., MAYO, J., PEBAY, P., ROE, D., THOMP-
SON, D., AND WONG, M. Resource monitoring and management
with OVIS to enable HPC in cloud computing environments. In
IEEE International Parallel and Distributed Processing Symposium
(IPDPS) (2009).

[28] BUDNIK, T., KNUDSON, B., MEGERIAN, M., MILLER, S., MUNDY,
M., AND STOCKDELL, W. Blue Gene/Q resource management archi-
tecture. In IEEE Workshop on Many-Task Computing on Grids and
Supercomputers (MTAGS) (2010).

[29] CARLYLE, A. G., MILLER, R. G., LEVERMAN, D. B., RENAUD,
W. A., AND MAXWELL, D. E. Practical support solutions for a
workflow-oriented Cray environment. In Proceedings of Cray User
Group Conference (CUG) (2012).

[30] CARNS, P., HARMS, K., LATHAM, R., AND ROSS, R. Performance
analysis of Darshan 2.2.3 on the Cray XE6 platform. Argonne Na-
tional Laboratory (ANL) (2012).

[31] CARNS, P. H., LATHAM, R., ROSS, R. B., ISKRA, K., LANG, S.,
AND RILEY, K. 24/7 characterization of petascale I/O workloads. In
Proceedings of the First Workshop on Interfaces and Abstractions for
Scientific Data Storage (IASDS) (2009).

[32] DANDAPANTHULA, N., SUBRAMONI, H., VIENNE, J., KANDALLA,
K., SUR, S., PANDA, D. K., AND BRIGHTWELL, R. INAM-a scal-
able infiniband network analysis and monitoring tool. In European
Conference on Parallel Processing (Euro-Par) (2011).

[33] DORIER, M., ANTONIU, G., ROSS, R., KIMPE, D., AND IBRAHIM,
S. CALCioM: Mitigating I/O interference in HPC systems through
cross-application coordination. In IEEE International Parallel and
Distributed Processing Symposium (IPDPS) (2014).

[34] DUAN, X., CHEN, D., MENG, X., YANG, G., GAO, P., ZHANG,
T., ZHANG, M., LIU, W., ZHANG, W., AND XUE, W. Re-
designing LAMMPS for petascale and hundred-billion-atom simula-
tion on Sunway TaihuLight. In ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC) (2018).

[35] FU, H., HE, C., CHEN, B., YIN, Z., ZHANG, Z., ZHANG, W.,
ZHANG, T., XUE, W., LIU, W., YIN, W., YANG, G., AND CHEN, X.
18.9-Pflops nonlinear earthquake simulation on Sunway TaihuLight:
Enabling depiction of 18-Hz and 8-meter scenarios. In ACM/IEEE In-
ternational Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC) (2017).

[36] FU, H., LIAO, J., YANG, J., WANG, L., SONG, Z., HUANG, X.,
YANG, C., XUE, W., LIU, F., QIAO, F., ZHAO, W., YIN, X., HOU,
C., ZHANG, C., GE, W., ZHANG, J., WANG, Y., ZHOU, C., AND
YANG, G. The Sunway TaihuLight supercomputer: System and ap-
plications. Science China Information Sciences (2016).

[37] GAINARU, A., AUPY, G., BENOIT, A., CAPPELLO, F., ROBERT, Y.,
AND SNIR, M. Scheduling the I/O of HPC applications under con-
gestion. In IEEE International Parallel and Distributed Processing
Symposium (IPDPS) (2015).

[38] GARLICK, J. Lustre monitoring tool, 2010. https://github.com/
LLNL/lmt.

[39] GILTRAP, D. L., LI, C., AND SAGGAR, S. DNDC: A process-based
model of greenhouse gas fluxes from agricultural soils. Agriculture,
Ecosystems & Environment (2010).

[40] GRIDER, G., NUNEZ, J., AND BENT, J. LANL MPI-IO test, 2008.
http://freshmeat.sourceforge.net/projects/mpiiotest.

[41] GUNASEKARAN, R., ORAL, S., HILL, J., MILLER, R., WANG, F.,
AND LEVERMAN, D. Comparative I/O workload characterization of
two leadership class storage clusters. In Proceedings of the 10th Par-
allel Data Storage Workshop (2015).

[42] GUNAWI, H. S., SUMINTO, R. O., SEARS, R., GOLLIHER,
C., SUNDARARAMAN, S., LIN, X., EMAMI, T., SHENG, W.,

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 391

http://www.nersc.gov/users/computational-systems/cori/
http://www.nersc.gov/users/computational-systems/cori/
http://www.nersc.gov/users/computational-systems/cori/burst-buffer/burst-buffer/
http://www.nersc.gov/users/computational-systems/cori/burst-buffer/burst-buffer/
http://www.nersc.gov/users/computational-systems/cori/burst-buffer/burst-buffer/
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
http://www.nersc.gov/users/computational-systems/edison/
http://www.nersc.gov/users/computational-systems/edison/
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch
https://www.gluster.org/
https://www.alcf.anl.gov/intrepid
http://www.aics.riken.jp/en/
https://www.elastic.co/products/logstash
https://www.alcf.anl.gov/mira
https://www.mysql.com/
http://jcahpc.jp/eng/ofp_intro.html
http://jcahpc.jp/eng/ofp_intro.html
http://www.openfabrics.org/
https://github.com/PathDump
https://www.cscs.ch/computers/dismissed/piz-daint-piz-dora/
https://www.cscs.ch/computers/dismissed/piz-daint-piz-dora/
http://redis.io/
https://computation.llnl.gov/computers/sequoia
https://computation.llnl.gov/computers/sequoia
https://hpc.llnl.gov/hardware/platforms/sierra
https://hpc.llnl.gov/hardware/platforms/sierra
https://http://www.nsccwx.cn/
https://http://www.nsccwx.cn/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
http://www.lanl.gov/projects/trinity/
http://www.lanl.gov/projects/trinity/
http://www.nersc.gov/research-and-development/tokio
https://github.com/LLNL/lmt
https://github.com/LLNL/lmt
http://freshmeat.sourceforge.net/projects/mpiiotest

BIDOKHTI, N., MCCAFFREY, C., SRINIVASAN, D., PANDA, B.,
BAPTIST, A., GRIDER, G., FIELDS, P. M., HARMS, K., ROSS,
R. B., JACOBSON, A., RICCI, R., WEBB, K., ALVARO, P., RUNE-
SHA, H. B., HAO, M., AND LI, H. Fail-slow at scale: evidence
of hardware performance faults in large production systems. In 16th
USENIX Conference on File and Storage Technologies (FAST) (2018).

[43] JI, X., YANG, B., ZHANG, T., MA, X., ZHU, X., WANG, X.,
EI-SAYED, N., ZHAI, J., LIU, W., AND XUE, W. Automatic,
Application-Aware I/O Forwarding Resource Allocation for High-end
System. In 17th USENIX Conference on File and Storage Technolo-
gies (FAST) (2019).

[44] JOKANOVIC, A., SANCHO, J. C., RODRIGUEZ, G., LUCERO, A.,
MINKENBERG, C., AND LABARTA, J. Quiet neighborhoods: Key to
protect job performance predictability. In IEEE International Parallel
and Distributed Processing Symposium (IPDPS) (2015).

[45] KIM, S. J., SON, S. W., LIAO, W.-K., KANDEMIR, M., THAKUR,
R., AND CHOUDHARY, A. IOPin: Runtime profiling of parallel I/O in
HPC systems. In High Performance Computing, Networking, Storage
and Analysis (SCC) (2012).

[46] KIM, S. J., ZHANG, Y., SON, S. W., PRABHAKAR, R., KANDEMIR,
M., PATRICK, C., LIAO, W.-K., AND CHOUDHARY, A. Automated
tracing of I/O stack. In European MPI Users’ Group Meeting (2010).

[47] KUO, C.-S., SHAH, A., NOMURA, A., MATSUOKA, S., AND
WOLF, F. How file access patterns influence interference among clus-
ter applications. In IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS) (2014).

[48] LIM, SEUNG-HWAN AND SIM, HYOGI AND GUNASEKARAN,
RAGHUL AND VAZHKUDAI, SUDHARSHAN S. Scientific user behav-
ior and data-sharing trends in a petascale file system. In ACM/IEEE
International Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC) (2017).

[49] LIN, H., ZHU, X., YU, B., TANG, X., XUE, W., CHEN, W.,
ZHANG, L., HOEFLER, T., MA, X., LIU, X., ZHENG, W., AND XU,
J. Shentu: Processing multi-trillion edge graphs on millions of cores
in seconds. In ACM/IEEE International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC) (2018).

[50] LIU, Y., GUNASEKARAN, R., MA, X., AND VAZHKUDAI, S. S. Au-
tomatic identification of application I/O signatures from noisy server-
side traces. In 12th USENIX Conference on File and Storage Tech-
nologies (FAST) (2014).

[51] LIU, Z., MANOUSIS, A., VORSANGER, G., SEKAR, V., AND
BRAVERMAN, V. One sketch to rule them all: Rethinking network
flow monitoring with univmon. In Proceedings of the 2016 ACM SIG-
COMM Conference (2016).

[52] LIU, YANG AND GUNASEKARAN, RAGHUL AND MA, XIAOSONG
AND VAZHKUDAI, SUDHARSHAN S. Server-side log data analytics
for I/O workload characterization and coordination on large shared
storage systems. In ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis (SC)
(2016).

[53] LOCKWOOD, G. K., YOO, W., BYNA, S., WRIGHT, N. J., SNYDER,
S., HARMS, K., NAULT, Z., AND CARNS, P. UMAMI: A recipe
for generating meaningful metrics through holistic I/O performance
analysis. In Proceedings of the 2nd Joint International Workshop on
Parallel Data Storage & Data Intensive Scalable Computing Systems
(2017).

[54] LOFSTEAD, J., JIMENEZ, I., MALTZAHN, C., KOZIOL, Q., BENT,
J., AND BARTON, E. Daos and friends: A proposal for an exascale
storage system. In ACM/IEEE International Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC) (2016).

[55] LOFSTEAD, J., ZHENG, F., LIU, Q., KLASKY, S., OLDFIELD, R.,
KORDENBROCK, T., SCHWAN, K., AND WOLF, M. Managing
variability in the I/O performance of petascale storage systems. In
ACM/IEEE International Conference for High Performance Comput-
ing, Networking, Storage and Analysis (SC) (2010).

[56] LUU, H., BEHZAD, B., AYDT, R., AND WINSLETT, M. A multi-
level approach for understanding I/O activity in HPC applications.
In IEEE International Conference on Cluster Computing (CLUSTER)
(2013).

[57] LUU, H., WINSLETT, M., GROPP, W., ROSS, R., CARNS, P.,
HARMS, K., PRABHAT, M., BYNA, S., AND YAO, Y. A multi-
platform study of I/O behavior on petascale supercomputers. In In-
ternational ACM Symposium on High-Performance Parallel and Dis-
tributed Computing (HPDC) (2015).

[58] MUELLER, F., WU, X., SCHULZ, M., DE SUPINSKI, B. R., AND
GAMBLIN, T. ScalaTrace: tracing, analysis and modeling of HPC
codes at scale. In International Workshop on Applied Parallel Com-
puting (2010).

[59] NATHAN, V., NARAYANA, S., SIVARAMAN, A., GOYAL, P., ARUN,
V., ALIZADEH, M., JEYAKUMAR, V., AND KIM, C. Demonstration
of the marple system for network performance monitoring. In Pro-
ceedings of the SIGCOMM Posters and Demos (2017).

[60] NEUWIRTH, S., WANG, F., ORAL, S., VAZHKUDAI, S., ROGERS,
J., AND BRUENING, U. Using balanced data placement to address
I/O contention in production environments. In International Sympo-
sium on Computer Architecture and High PERFORMANCE Comput-
ing (SBAC-PAD) (2016).

[61] NOETH, M., RATN, P., MUELLER, F., SCHULZ, M., AND
DE SUPINSKI, B. R. Scalatrace: Scalable compression and replay
of communication traces for high-performance computing. Journal of
Parallel and Distributed Computing (2009).

[62] ORAL, S., SIMMONS, J., HILL, J., LEVERMAN, D., WANG, F.,
EZELL, M., MILLER, R., FULLER, D., GUNASEKARAN, R., KIM,
Y., GUPTA, S., VAZHKUDAI, D. T. S. S., ROGERS, J. H., DILLOW,
D., SHIPMAN, G. M., AND BLAND, A. S. Best practices and lessons
learned from deploying and operating large-scale data-centric parallel
file systems. In ACM/IEEE International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC) (2014).

[63] OUYANG, J., KOCOLOSKI, B., LANGE, J. R., AND PEDRETTI, K.
Achieving performance isolation with lightweight co-kernels. In In-
ternational ACM Symposium on High-Performance Parallel and Dis-
tributed Computing (HPDC) (2015).

[64] PAUL, A. K., GOYAL, A., WANG, F., ORAL, S., BUTT, A. R.,
BRIM, M. J., AND SRINIVASA, S. B. I/O load balancing for big data
HPC applications. In IEEE International Conference on Big Data (Big
Data) (2017).

[65] SAKAI, K., SUMIMOTO, S., AND KUROKAWA, M. High-
performance and highly reliable file system for the K computer. Fu-
jitsu Scientific & Technical Journal (2012).

[66] SCHMUCK, F. B., AND HASKIN, R. L. Gpfs: A shared-disk file
system for large computing clusters. In 1st USENIX Conference on
File and Storage Technologies (FAST) (2002).

[67] SERGENT, N., DÉFAGO, X., AND SCHIPER, A. Impact of a fail-
ure detection mechanism on the performance of consensus. In Pro-
ceedings 2001 Pacific Rim International Symposium on Dependable
Computing (2001).

[68] SHEN, S.-H., AND AKELLA, A. Decor: A distributed coordinated re-
source monitoring system. In IEEE International Workshop on Qual-
ity of Service (IWQoS) (2012).

[69] SKAMAROCK, W. C., KLEMP, J. B., DUDHIA, J., GILL, D. O.,
BARKER, D. M., WANG, W., AND POWERS, J. G. A description
of the advanced research wrf version 2. National Center For Atmo-
spheric Research Boulder Co Mesoscale and Microscale Meteorology
Div (2005).

[70] SNYDER, S., CARNS, P., HARMS, K., ROSS, R., LOCKWOOD,
G. K., AND WRIGHT, N. J. Modular HPC I/O characterization with
Darshan. In Proceedings of the 5th Workshop on Extreme-Scale Pro-
gramming Tools (2016).

392 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[71] SONG, H., YIN, Y., SUN, X. H., THAKUR, R., AND LANG, S.
Server-side I/O coordination for parallel file systems. In ACM/IEEE
International Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC) (2011).

[72] TAI, A. T., TSO, K. S., AND SANDERS, W. H. Cluster-based fail-
ure detection service for large-scale ad hoc wireless network applica-
tions. In International Conference on Dependable Systems and Net-
works (DSN) (2004).

[73] TAMMANA, P., AGARWAL, R., AND LEE, M. Distributed network
monitoring and debugging with switchpointer. In 15th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI)
(2018).

[74] TARASOV, V., KUMAR, S., MA, J., HILDEBRAND, D., POVZNER,
A., KUENNING, G., AND ZADOK, E. Extracting flexible, replayable
models from large block traces. In 10th USENIX Conference on File
and Storage Technologies (FAST) (2012).

[75] Top 500 list. https://www.top500.org/resources/

top-systems/.

[76] USELTON, A., HOWISON, M., WRIGHT, N., SKINNER, D., KEEN,
N., SHALF, J., KARAVANIC, K., AND OLIKER, L. Parallel I/O per-
formance: From events to ensembles. In Proceedings of the Interna-
tional Parallel Distributed Processing Symposium (IPDPS) (2010).

[77] VIJAYAKUMAR, K., MUELLER, F., MA, X., AND ROTH, P. C. Scal-
able I/O tracing and analysis. In Proceedings of the 4th Annual Work-
shop on Petascale Data Storage (PDSW) (2009).

[78] VISHWANATH, V., HERELD, M., ISKRA, K., KIMPE, D., MORO-
ZOV, V., PAPKA, M. E., ROSS, R., AND YOSHII, K. Accelerating I/O
forwarding in ibm blue gene/p systems. In ACM/IEEE International
Conference for High Performance Computing, Networking, Storage
and Analysis (SC) (2010).

[79] WANG, Y., LIU, J., QIN, H., YU, Z., AND YAO, Y. The accurate
particle tracer code. Computer Physics Communications (2017).

[80] WIEDEMANN, M. C., KUNKEL, J. M., ZIMMER, M., LUDWIG, T.,
RESCH, M., BÖNISCH, T., WANG, X., CHUT, A., AGUILERA, A.,
NAGEL, W. E., KLUGE, M., AND MICKLER, H. Towards I/O anal-
ysis of HPC systems and a generic architecture to collect access pat-
terns. Computer Science-Research and Development (2013).

[81] WRIGHT, S. A., HAMMOND, S. D., PENNYCOOK, S. J., BIRD,
R. F., HERDMAN, J., MILLER, I., VADGAMA, A., BHALERAO, A.,
AND JARVIS, S. A. Parallel file system analysis through application
I/O tracing. The Computer Journal (2013).

[82] WU, X., AND MUELLER, F. Elastic and scalable tracing and accurate
replay of non-deterministic events. In International Conference on
Supercomputing (ICS) (2013).

[83] WU, X., VIJAYAKUMAR, K., MUELLER, F., MA, X., AND ROTH,
P. C. Probabilistic communication and I/O tracing with deterministic
replay at scale. In International Conference on Parallel Processing
(ICPP) (2011).

[84] XIE, B., CHASE, J., DILLOW, D., DROKIN, O., KLASKY, S.,
ORAL, S., AND PODHORSZKI, N. Characterizing output bottle-
necks in a supercomputer. In ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC) (2012).

[85] XU, C., BYNA, S., VENKATESAN, V., SISNEROS, R., KULKARNI,
O., CHAARAWI, M., AND CHADALAVADA, K. LIOProf: Exposing
Lustre file system behavior for I/O middleware. In Proceedings of
Cray User Group Conference (CUG) (2016).

[86] XU, T., JIN, X., HUANG, P., ZHOU, Y., LU, S., JIN, L., AND PASU-
PATHY, S. Early Detection of Configuration Errors to Reduce Failure
Damage. In 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI) (2016).

[87] XU, W., LU, Y., LI, Q., ZHOU, E., SONG, Z., DONG, Y., ZHANG,
W., WEI, D., ZHANG, X., CHEN, H., XING, J., AND YUAN, Y. Hy-
brid hierarchy storage system in MilkyWay-2 supercomputer. Fron-
tiers of Computer Science (2014).

[88] YILDIZ, O., DORIER, M., IBRAHIM, S., ROSS, R., AND ANTONIU,
G. On the root causes of cross-application I/O interference in HPC
storage systems. In IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS) (2016).

[89] YU, M., GREENBERG, A. G., MALTZ, D. A., REXFORD, J., YUAN,
L., KANDULA, S., AND KIM, C. Profiling network performance
for multi-tier data center applications. In 8th USENIX Symposium on
Networked Systems Design and Implementation (NSDI) (2011).

[90] YU, W., VETTER, J. S., AND ORAL, H. S. Performance character-
ization and optimization of parallel I/O on the Cray XT. In IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS)
(2008).

[91] ZIMMER, CHRISTOPHER J. GUIDE: A scalable information directory
service to collect, federate, and analyze logs for operational insights
into a leadership HPC facility. In ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC) (2017).

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 393

https://www.top500.org/resources/top-systems/
https://www.top500.org/resources/top-systems/

Appendix A Evaluation of Beacon Data Com-
pression

App. 1st-pass 2nd-pass (lossless) 2nd-pass (lossy)
APT 5.4 2.1 2.3
WRF 14.2 3.8 5.5

DNDC 10.1 3.4 5.3
XCFD 12.2 3.8 6.2
GKUA 34.6 3.6 5.1
CAM 9.2 4.4 5.4
AWP 15.1 3.2 11.3

Shentu 22.2 2.6 5.7

Table 8: Compression ratio of sample applications

Table 8 summarizes the effectiveness of Beacon’s moni-
toring data compression. It gives the compression ratio un-
der three kinds of methods of 8 applications, 5 of which are
Shentu, LAMMPS, DNDC, WRF and AWP, discussed in more de-
tails previously. The other three are APT [79] (particle dy-
namics simulation), plus GKUA and XCFD (both closed-source
computational fluid dynamics simulators).

We report the compression ratio of the 1st-pass compres-
sion (intra-node compression during monitoring data col-
lection) and 2nd-pass compression (inter-node compression
during offline log processing on dedicated Beacon server).
We experimented with two compression techniques for the
latter, one lossless and one lossy (with reduced data preci-
sion in file descriptor and offset).

Results in Table 8 indicate significant data size reduction
by the 1st-pass compression, with a factor of 5.4 to 34.6
right at the source of monitoring. The second pass, on the
other hand, achieves less impressive reduction, partly due
to that data have already undergone one pass of compres-
sion. Here, though the compute nodes are performing simi-
lar I/O operations, different values in parameters such as file
offset make it harder to combine data entries. In particular,
lossy compression may bring an additional 2.3×-11.3× af-
ter 1st-pass compression improvement in compression ratio,
however trading the capability of performing certain analy-
sis tasks. Considering our dedicated Beacon server’s storage
capacity (120 TB) and Beacon’s data collection rate (10 TB
in 18 months), we elect to use a lossless algorithm for our
2nd-pass compression.

Appendix B Anomaly Detection

Beacon performs two types of automatic anomaly detection,
to identify job I/O performance anomaly and node anomaly,
respectively.

Beacon detects job I/O performance anomaly by checking
newly measured I/O performance results against historical
records, based on the assumption that most data-intensive
applications have rather consistent I/O behavior. First, it
adopts the automatic I/O phase identification technique as
in the IOSI system [50] developed on the Oak Ridge Na-

tional Laboratory Titan supercomputer, which uses Discrete
Wavelet Transform (DWT) to find distinct “I/O bursts” from
continuous I/O bandwidth time-series data. It then deploys
DBSCAN algorithm [3], also used in IOSI, to check whether
I/O phases from the new job execution conform to known
clusters of the same application’s past executions at the same
scale. More specifically, it performs 2-D clustering in terms
of the I/O phases’ time duration and total I/O volume. When
outliers are found, Beacon further utilizes its rich monitoring
data to examine neighbor jobs that share forwarding node(s)
with the job in question. In particular, it determines whether
such neighbors have interference-prone features, such as
high MDOPS, high I/O bandwidth, high IOPS, or N-1 I/O
mode. Such findings are saved in the Beacon database and
provided to users via the Beacon web-based application I/O
query tool. Applications of course will need to accumulate
at least several executions for such detection to take effect.

Beacon’s node anomaly detection relies on the execu-
tion of large-scale jobs (those using 1024 or more compute
nodes in our current implementation), where it leverages the
common homogeneity in I/O behavior across compute and
server nodes to spot outliers. Its multi-level monitoring al-
lows the correlation of I/O activities or loads back to ac-
tual client side issued requests. Again by using clustering
algorithms like DBSCAN and configurable thresholds, Bea-
con performs outlier detection across forwarding nodes and
OSTs involved in a single job, where the vast majority of en-
tities report highly similar performance while a few members
produce contrasting readings. Figure 8 in Section 4.2 gives
an example of per-OST bandwidth data within the same ex-
ecution.

394 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Background: TaihuLight Network Storage
	Beacon Design and Implementation
	Beacon Architecture Overview
	Multi-layer I/O Monitoring
	Multi-layer I/O Profiling Data Analysis
	Generality and Limitations

	Beacon Use Cases
	Performance Issue Diagnosis
	Automatic I/O Anomaly Diagnosis
	Application and User Behavior Analysis
	Extension to network monitoring

	Beacon Framework Evaluation
	Accuracy Verification
	Monitoring and Query Overhead

	Related Work
	Conclusion
	Appendix Evaluation of Beacon Data Compression
	Appendix Anomaly Detection

