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Abstract
Traditional approaches to replication require client requests
to be ordered before making them durable by copying them to
replicas. As a result, clients must wait for two round-trip times
(RTTs) before updates complete. In this paper, we show that
this entanglement of ordering and durability is unnecessary
for strong consistency. The Consistent Unordered Replica-
tion Protocol (CURP) allows clients to replicate requests that
have not yet been ordered, as long as they are commutative.
This strategy allows most operations to complete in 1 RTT
(the same as an unreplicated system). We implemented
CURP in the Redis and RAMCloud storage systems. In
RAMCloud, CURP improved write latency by ∼2x (14 µs
→ 7.1 µs) and write throughput by 4x. Compared to un-
replicated RAMCloud, CURP’s latency overhead for 3-way
replication is just 1 µs (6.1 µs vs 7.1 µs). CURP transformed
a non-durable Redis cache into a consistent and durable
storage system with only a small performance overhead.

1 Introduction
Fault-tolerant systems rely on replication to mask individ-

ual failures. To ensure that an operation is durable, it cannot
be considered complete until it has been properly replicated.
Replication introduces a significant overhead because it
requires round-trip communication to one or more additional
servers. Within a datacenter, replication can easily double
the latency for operations in comparison to an unreplicated
system; in geo-replicated environments the cost of replication
can be even greater.

In principle, the cost of replication could be reduced or
eliminated if replication could be overlapped with the execu-
tion of the operation. In practice, however, this is difficult to
do. Executing an operation typically establishes an ordering
between that operation and other concurrent operations, and
the order must survive crashes if the system is to provide
consistent behavior. If replication happens in parallel with
execution, different replicas may record different orders for
the operations, which can result in inconsistent behavior
after crashes. As a result, most systems perform ordering
before replication: a client first sends an operation to a server
that orders the operation (and usually executes it as well);
then that server issues replication requests to other servers,
ensuring a consistent ordering among replicas. As a result,
the minimum latency for an operation is two round-trip
times (RTTs). This problem affects all systems that provide
consistency and replication, including both primary-backup
approaches and consensus approaches.

Consistent Unordered Replication Protocol (CURP) re-
duces the overhead for replication by taking advantage of the
fact that most operations are commutative, so their order of ex-
ecution doesn’t matter. CURP supplements a system’s exist-
ing replication mechanism with a lightweight form of replica-
tion without ordering based on witnesses. A client replicates
each operation to one or more witnesses in parallel with send-
ing the request to the primary server; the primary can then ex-
ecute the operation and return to the client without waiting for
normal replication, which happens asynchronously. This al-
lows operations to complete in 1 RTT, as long as all witnessed-
but-not-yet-replicated operations are commutative. Non-
commutative operations still require 2 RTTs. If the primary
crashes, information from witnesses is combined with that
from the normal replicas to re-create a consistent server state.

CURP can be easily applied to most existing systems
using primary-backup replication. Changes required by
CURP are not intrusive, and it works with any kind of backup
mechanism (e.g. state machine replication [31], file writes to
network replicated drives [1], or scattered replication [26]).
This is important since most high-performance systems
optimize their backup mechanisms, and we don’t want to lose
those optimizations (e.g. CURP can be used with RAMCloud
without sacrificing its fast crash recovery [26]).

To show its performance benefits and applicability, we
implemented CURP in two NoSQL storage systems: Re-
dis [30] and RAMCloud [27]. Redis is generally used as
a non-durable cache due to its very expensive durability
mechanism. By applying CURP to Redis, we were able to
provide durability and consistency with similar performance
to the non-durable Redis. For RAMCloud, CURP reduced
write latency by half (only a 1 µs penalty relative to RAM-
Cloud without replication) and increased throughput by 3.8x
without compromising consistency.

Overall, CURP is the first replication protocol that com-
pletes linearizable deterministic update operations within
1 RTT without special networking. Instead of relying
on special network devices or properties for fast replica-
tion [21, 28, 22, 12, 3], CURP exploits commutativity, and it
can be used for any system where commutativity of client re-
quests can be checked just from operation parameters (CURP
cannot use state-dependent commutativity). Even when
compared to Speculative Paxos or NOPaxos (which require
a special network topology and special network switches),
CURP is faster since client request packets do not need to de-
tour to get ordered by a networking device (NOPaxos has an
overhead of 16µs, but CURP only increased latency by 1µs).
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2 Separating Durability from Ordering
Replication protocols supporting concurrent clients have

combined the job of ordering client requests consistently
among replicas and the job of ensuring the durability of
operations. This entanglement causes update operations to
take 2 RTTs.

Replication protocols must typically guarantee the
following two properties:
• Consistent Ordering: if a replica completes operation a

before b, no client in the system should see the effects of
b without the effects of a.
• Durability: once its completion has been externalized

to an application, an executed operation must survive
crashes.

To achieve both consistent ordering and durability, current
replication protocols need 2 RTTs. For example, in master-
backup (a.k.a. primary-backup) replication, client requests
are always routed to a master replica, which serializes
requests from different clients. As part of executing an
operation, the master replicates either the client request itself
or the result of the execution to backup replicas; then the
master responds back to clients. This entire process takes 2
RTTs total: 1 from clients to masters and another RTT for
masters to replicate data to backups in parallel.

Consensus protocols with strong leaders (e.g. Multi-
Paxos [17] or Raft [25]) also require 2 RTTs for update
operations. Clients route their requests to the current leader
replica, which serializes the requests into its operation log.
To ensure durability and consistent ordering of the client
requests, the leader replicates its operation log to a majority
of replicas, and then it executes the operation and replies
back to clients with the results. In consequence, consensus
protocols with strong leaders also require 2 RTTs for updates:
1 RTT from clients to leaders and another RTT for leaders to
replicate the operation log to other replicas.

Fast Paxos [19] and Generalized Paxos [18] reduced the
latency of replicated updates from 2 RTTs to 1.5 RTT by
allowing clients to optimistically replicate requests with
presumed ordering. Although their leaders don’t serialize
client requests by themselves, leaders must still wait for a
majority of replicas to durably agree on the ordering of the
requests before executing them. This extra waiting adds 0.5
RTT overhead. (See §B.3 for a detailed explanation on why
they cannot achieve 1 RTT.)

Network-Ordered Paxos [21] and Speculative Paxos [28]
achieve near 1 RTT latency for updates by using special net-
working to ensure that all replicas receive requests in the same
order. However, since they require special networking hard-
ware, it is difficult to deploy them in practice. Also, they can’t
achieve the minimum possible latency since client requests
detour to a common root-layer switch (or a middlebox).

The key idea of CURP is to separate durability and
consistent ordering, so update operations can be done in 1
RTT in the normal case. Instead of replicating totally ordered

Figure 1: CURP clients directly replicate to witnesses. Witnesses
only guarantee durability without ordering. Backups hold data that
includes ordering information. Witnesses are temporary storage to ensure
durability until operations are replicated to backups.

operations in 2 RTTs, CURP achieves durability without
ordering and uses the commutativity of operations to defer
agreement on operation order.

To achieve durability in 1 RTT, CURP clients directly
record their requests in temporary storage, called a witness,
without serializing them through masters. As shown in Fig-
ure 1, witnesses do not carry ordering information, so clients
can directly record operations into witnesses in parallel with
sending operations to masters so that all requests will finish in
1 RTT. In addition to the unordered replication to witnesses,
masters still replicate ordered data to backups, but do so
asynchronously after sending the execution results back to the
clients. Since clients directly make their operations durable
through witnesses, masters can reply to clients as soon as
they execute the operations without waiting for permanent
replication to backups. If a master crashes, the client requests
recorded in witnesses are replayed to recover any operations
that were not replicated to backups. A client can then
complete an update operation and reveal the result returned
from the master if it successfully recorded the request in
witnesses (optimistic fast path: 1 RTT), or after waiting for
the master to replicate to backups (slow path: 2 RTT).

CURP’s approach introduces two threats to consistency:
ordering and duplication. The first problem is that the order
in which requests are replayed after a server crash may not
match the order in which the master processed those requests.
CURP uses commutativity to solve this problem: all of the
unsynced requests (those that a client considers complete,
but which have not been replicated to backups) must be com-
mutative. Given this restriction, the order of replay will have
no visible impact on system behavior. Specifically, a witness
only accepts and saves an operation if it is commutative with
every other operation currently stored by that witness (e.g.,
writes to different objects). In addition, a master will only
execute client operations speculatively (by responding before
replication is complete), if that operation is commutative with
every other unsynced operation. If either a witness or master
finds that a new operation is not commutative, the client must
ask the master to sync with backups. This adds an extra RTT
of latency, but it flushes all of the speculative operations.

The second problem introduced by CURP is duplication.
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When a master crashes, it may have completed the replication
of one or more operations that are recorded by witnesses. Any
completed operations will be re-executed during replay from
witnesses. Thus there must be a mechanism to detect and
filter out these re-executions. The problem of re-executions is
not unique to CURP, and it can happen in distributed systems
for a variety of other reasons. There exist mechanisms to
filter out duplicate executions, such as RIFL [20], and they
can be applied to CURP as well.

We can apply the idea of separating ordering and durability
to both consensus-based replicated state machines (RSM) and
primary-backup, but this paper focuses on primary-backup
since it is more critical for application performance. Fault-
tolerant large-scale high-performance systems are mostly
configured with a single cluster coordinator replicated by
consensus and many data servers using primary-backup (e.g.
Chubby [6], ZooKeeper [15], Raft [25] are used for cluster
coordinators in GFS [13], HDFS [32], and RAMCloud [27]).
The cluster coordinators are used to prevent split-brains for
data servers, and operations to the cluster coordinators (e.g.
change of master node during recovery) are infrequent and
less latency sensitive. On the other hand, operations to data
servers (e.g. insert, replace, etc) directly impact application
performance, so the rest of this paper will focus on the CURP
protocol for primary-backup, which is the main replication
technique for data servers. In §B.2, we sketch how the same
technique can be applied for consensus.

3 CURP Protocol
CURP is a new replication protocol that allows clients

to complete linearizable updates within 1 RTT. Masters in
CURP speculatively execute and respond to clients before
the replication to backups has completed. To ensure the
durability of the speculatively completed updates, clients
multicast update operations to witnesses. To preserve
linearizability, witnesses and masters enforce commutativity
among operations that are not fully replicated to backups.
3.1 Architecture and Model

CURP provides the same guarantee as current primary-
backup protocols: it provides linearizability to client requests
in spite of failures. CURP assumes a fail-stop model and does
not handle byzantine faults. As in typical primary-backup
replications, it uses a total of f + 1 replicas composed of 1
master and f backups, where f is the number of replicas that
can fail without loss of availability. In addition to that, it
uses f witnesses to ensure durability of updates even before
replications to backups are completed. As shown in Figure 2,
witnesses may fail independently and may be co-hosted
with backups. CURP remains available (i.e. immediately
recoverable) despite up to f failures, but will still be strongly
consistent even if all replicas fail.

Throughout the paper, we assume that witnesses are
separate from backups. This allows CURP to be applied to
a wide range of existing replicated systems without modi-

Figure 2: CURP architecture for f =3 fault tolerance.

fying their specialized backup mechanisms. For example,
CURP can be applied to a system which uses file writes to
network replicated drives as a backup mechanism, where
the use of witnesses will improve latency while retaining its
special backup mechanism. However, when designing new
systems, witnesses may be combined with backups for extra
performance benefits. (See §B.1 for details.)

CURP makes no assumptions about the network. It
operates correctly even with networks that are asynchronous
(no bound on message delay) and unreliable (messages
can be dropped). Thus, it can achieve 1 RTT updates on
replicated systems in any environment, unlike other alter-
native solutions. (For example, Speculative Paxos [28] and
Network-Ordered Paxos [21] require special networking
hardware and cannot be used for geo-replication.)
3.2 Normal Operation
3.2.1 Client

Client interaction with masters is generally the same as it
would be without CURP. Clients send update RPC requests
to masters. If a client cannot receive a response, it retries the
update RPC. If the master crashes, the client may retry the
RPC with a different server.

For 1 RTT updates, masters return to clients before replica-
tion to backups. To ensure durability, clients directly record
their requests to witnesses concurrently while waiting for
responses from masters. Once all f witnesses have accepted
the requests, clients are assured that the requests will survive
master crashes, so clients complete the operations with the
results returned from masters.

If a client cannot record in all f witnesses (due to failures or
rejections by witnesses), the client cannot complete an update
operation in 1 RTT. To ensure the durability of the operation,
the client must wait for replication to backups by sending
a sync RPC to the master. Upon receiving sync RPCs, the
master ensures the operation is replicated to backups before
returning to the client. This waiting for sync increases the
operation latency to 2 RTTs in most cases and up to 3 RTT in
the worst case where the master hasn’t started syncing until it
receives a sync RPC from a client. If there is no response to
the sync RPC (indicating the master might have crashed), the
client restarts the entire process; it resends the update RPC to
a new master and tries to record the RPC request in witnesses
of the new master.
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3.2.2 Witness
Witnesses support 3 basic operations: they record opera-

tions in response to client requests, hold the operations until
explicitly told to drop by masters, and provide the saved
operations during recovery.

Once a witness accepts a record RPC for an operation, it
guarantees the durability of the operation until told that the
operation is safe to drop. To be safe from power failures,
witnesses store their data in non-volatile memory (such as
flash-backed DRAM). This is feasible since a witness needs
only a small amount of space to temporarily hold recent client
requests. Similar techniques are used in strongly-consistent
low-latency storage systems, such as RAMCloud [27].

A witness accepts a new record RPC from a client only
if the new operation is commutative with all operations that
are currently saved in the witness. If the new request doesn’t
commute with one of the existing requests, the witness must
reject the record RPC since the witness has no way to order
the two noncommutative operations consistent with the
execution order in masters. For example, if a witness already
accepted “x←1”, it cannot accept “x←5”.

Witnesses must be able to determine whether operations are
commutative or not just from the operation parameters. For
example, in key-value stores, witnesses can exploit the fact
that operations on different keys are commutative. In some
cases, it is difficult to determine whether two operations com-
mute each other. SQL UPDATE is an example; it is impos-
sible to determine the commutativity of “UPDATE T SET
rate = 40 WHERE level = 3” and “UPDATE T SET
rate = rate + 10 WHERE dept = SDE” just from
the requests themselves. To determine the commutativity of
the two updates, we must run them with real data. Thus, wit-
nesses cannot be used for operations whose commutativity
depends on the system state. In addition to the case explained,
determining commutativity can be more subtle for complex
systems, such as DBMS with triggers and views.

Each of f witnesses operates independently; witnesses
need not agree on either ordering or durability of operations.
In an asynchronous network, record RPCs may arrive at
witnesses in different order, which can cause witnesses to
accept and reject different sets of operations. However, this
does not endanger consistency. First, as mentioned in §3.2.1,
a client can proceed without waiting for sync to backups
only if all f witnesses accepted its record RPCs. Second,
requests in each witness are required to be commutative
independently, and only one witness is selected and used
during recovery (described in §3.3).
3.2.3 Master

The role of masters in CURP is similar to their role in
traditional primary-backup replications. Masters in CURP
receive, serialize, and execute all update RPC requests from
clients. If an executed operation updates the system state, the
master synchronizes (syncs) its current state with backups by
replicating the updated value or the log of ordered operations.

Figure 3: Sequence of executed operations in the crashed master.

Unlike traditional primary-backup replication, masters
in CURP generally respond back to clients before syncing
to backups, so that clients can receive the results of update
RPCs within 1 RTT. We call this speculative execution since
the execution may be lost if masters crash. Also, we call
the operations that were speculatively executed but not yet
replicated to backups unsynced operations. As shown in
Figure 3, all unsynced operations are contiguous at the tail of
the masters’ execution history.

To prevent inconsistency, a master must sync before
responding if the operation is not commutative with any
existing unsynced operations. If a master responds for a non-
commutative operation before syncing, the result returned to
the client may become inconsistent if the master crashes. This
is because the later operation might complete and its result
could be externalized (because it was recorded to witnesses)
while the earlier operation might not survive the crash
(because, for example, its client crashed before recording it
to witnesses). For example, if a master speculatively executes
“x← 2” and “read x”, the returned read value, 2, will not be
valid if the master crashes and loses “x←2”. To prevent such
unsafe dependencies, masters enforce commutativity among
unsynced operations; this ensures that all results returned to
clients will be valid as long as they are recorded in witnesses.

If an operation is synced because of a conflict, the master
tags its result as “synced” in the response; so, even if the
witnesses rejected the operation, the client doesn’t need to
send a sync RPC and can complete the operation in 2 RTTs.
3.3 Recovery

CURP recovers from a master’s crash in two phases: (1)
restoration from backups and (2) replay from witnesses.
First, the new master restores data from one of the backups,
using the same mechanism it would have used in the absence
of CURP.

Once all data from backups have been restored, the new
master replays the requests recorded in witnesses. The new
master picks any available witness. If none of the f witnesses
are reachable, the new master must wait. After picking
the witness to recover from, the new master first asks it to
stop accepting more operations; this prevents clients from
erroneously completing update operations after recording
them in a stale witness whose requests will not be retried
anymore. After making the selected witness immutable, the
new master retrieves the requests recorded in the witness.
Since all requests in a single witness are guaranteed to be
commutative, the new master can execute them in any order.
After replaying all requests recorded in the selected witness,
the new master finalizes the recovery by syncing to backups
and resetting witnesses for the new master (or assigning a new
set of witnesses). Then the new master can start accepting
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client requests again.
Some of the requests in the selected witness may have been

executed and replicated to backups before the master crashed,
so the replay of such requests will result in re-execution of
already executed operations. Duplicate executions of the
requests can violate linearizability [20].

To avoid duplicate executions of the requests that are
already replicated to backups, CURP relies on exactly-once
semantics provided by RIFL [20], which detects already
executed client requests and avoids their re-execution. Such
mechanisms for exactly-once semantics are already neces-
sary to achieve linearizability for distributed systems [20],
so CURP does not introduce a new requirement. In RIFL,
clients assign a unique ID to each RPC; servers save the IDs
and results of completed requests and use them to detect and
answer duplicate requests. The IDs and results are durably
preserved with updated objects in an atomic fashion. (If a
system replicates client requests to backups instead of just
updated values, providing atomic durability becomes trivial
since each request already contains its ID and its result can be
obtained from its replay during recovery.)

This recovery protocol together with the normal operation
protocol described in §3.2 guarantee linearizability of client
operations even with server failures. An informal proof of
correctness can be found in appendix §A.
3.4 Garbage Collection

To limit memory usage in witnesses and reduce possible
rejections due to commutativity violations, witnesses must
discard requests as soon as possible. Witnesses can drop the
recorded client requests after masters make their outcomes
durable in backups. In CURP, masters send garbage collec-
tion RPCs for the synced updates to their witnesses. The
garbage collection RPCs are batched: each RPC lists several
operations that are now durable (using RPC IDs provided by
RIFL [20]).
3.5 Reconfigurations

This section discusses three cases of reconfiguration:
recovery of a crashed backup, recovery of a crashed witness,
and data migration for load balancing. First, CURP doesn’t
change the way to handle backup failures, so a system can
just recover a failed backup as it would without CURP.

Second, if a witness crashes or becomes non-responsive,
the system configuration manager (the owner of all cluster
configurations) decommissions the crashed witness and
assigns a new witness for the master; then it notifies the
master of the new witness list. When the master receives the
notification, it syncs to backups to ensure f -fault tolerance
and responds back to the configuration manager that it is now
safe to recover from the new witness. After this point, clients
can use f witnesses again to record operations. However,
CURP does not push the new list of witnesses to clients. Since
clients cache the list of witnesses, clients may still use the
decommissioned witness (if it was temporarily disconnected,
the witness will continue to accept record RPCs from clients).

This endangers consistency since requests recorded in the old
witnesses will not be replayed during recovery.

To prevent clients from completing an unsynced update op-
eration with just recording to old witnesses, CURP maintains
a monotonically increasing integer, WitnessListVersion, for
each master. A master’s WitnessListVersion is incremented
every time the witness configuration for the master is updated,
and the master is notified of the new version along with the
new witness list. Clients obtain the WitnessListVersion when
they fetch the witness list from the configuration manager. On
all update requests, clients include the WitnessListVersion,
so that masters can detect and return errors if the clients used
wrong witnesses; if they receive errors, the clients fetch new
witness lists and retry the updates. This ensures that clients’
update operations can never complete without syncing to
backups or recording to current witnesses.

Third, for load balancing, a master can split its data into
two partitions and migrate a partition to a different master.
Migrations usually happen in two steps: a prepare step
of copying data while servicing requests and a final step
which stops servicing (to ensure that all recent operations are
copied) and changes configuration. To simplify the protocol
changes from the base primary-backup protocol, CURP
masters sync to backups and reset witnesses before the final
step of migration, so witnesses are completely ruled out of
migration protocols. After the migration is completed, some
clients may send updates on the migrated partition to the old
master and old witnesses; the old master will reject and tell
the client to fetch the new master information (this is the same
as without CURP); then the client will fetch the new master
and its witness information and retry the update. Meanwhile,
the requests on the migrated partition can be accidentally
recorded in the old witness, but this does not cause safety
issues; masters will ignore such requests during the replay
phase of recovery by the filtering mechanism used to reject
requests on not owned partitions during normal operations.
3.6 Read Operations

CURP handles read operations in a fashion similar to that
of primary-backup replication. Since such operations don’t
modify system state, clients can directly read from masters,
and neither clients nor masters replicate read-only operations
to witnesses or backups.

However, even for read operations, a master must check
whether a read operation commutes with all currently
unsynced operations as discussed in §3.2.3. If the read
operation conflicts with some unsynced update operations,
the master must sync the unsynced updates to backups before
responding for the read.
3.7 Consistent Reads from Backups

In primary-backup replication, clients normally issue
all read operations to the master. However, some systems
allow reading from backups because it reduces the load on
masters and can provide better latency in a geo-replicated
environment (clients can read from a backup in the same
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Figure 4: Three cases of reading the value of x from a backup replica
while another client is changing the value of x from 0 to 1: (a) client R first
confirms that a nearby witness has no request that is not commutative with
“read x,” so the client directly reads the value of x from a nearby backup.
(b) Just after client W completes “x ← 1”, client R starts another read.
Client R finds that there is a non-commutative request saved in a nearby
witness, so it must read from a remote master to guarantee consistency.
(c) After syncing “x ← 1” to the backup, the master garbage collected
the update request from witnesses and acknowledged the full sync to
backups. Now, client R sees no non-commutative requests in the witness
and can complete read operation by reading from the nearby backup.

region to avoid wide-area RTTs). However, naively reading
from backups can violate linearizability since updates in
CURP can complete before syncing to backups.

To avoid reading stale values, clients in CURP use a nearby
witness (possibly colocated with a backup) to check whether
the value read from a nearby backup is up to date. To perform
a consistent read, a client must first ask a witness whether the
read operation commutes with the operations currently saved
in the witness (as shown in Figure 4). If it commutes, the client
is assured that the value read from a backup will be up to date.
If it doesn’t commute (i.e. the witness retains a write request
on the key being read), the value read from a backup might be
stale. In this case, the client must read from the master.

In addition, we assume that the underlying primary-backup
replication mechanism prevents backups from returning new
values that are not yet fully synced to all backups. Such mech-
anism is neccessary even before applying CURP since return-
ing a new value prematurely can cause inconsistency; even if
a value is replicated to some of backups, the value may get lost
if the master crashes and a new master recovers from a backup
that didn’t receive the new value. A simple solution for this
problem is that backups don’t allow reading values that are not
yet fully replicated to all backups. For backups to track which
values are fully replicated and ok to be read, a master can pig-
gyback the acknowlegements for successful previous syncs
when it sends sync requests to backups. When a client tries
to read a value that is not known to be yet fully replicated, the
backup can wait for full replication or ask the client to retry.

Thanks to the safety mechanisms discussed above, CURP
still guarantees linearizability. With a concurrent update,
reading from backups could violate linearizability in two
ways: (1) a read sees the old value after the completion
of the update operation and (2) a read sees the old value

after another read returned the new value. The first issue
is prevented by checking a witness before reading from a
backup. Since clients can complete an update operation only
if it is synced to all backups or recorded in all witnesses, a
reader will either see a noncommutative update request in the
witness being checked or find the new value from the backup;
thus, it is impossible for a read after an update to return the
old value. For the second issue, since both a master and
backups delay reads of a new value until it is fully replicated
to all backups, it is impossible to read an older value after
another client reads the new value.

4 Implementation on NoSQL Storage
This section describes how to implement CURP on low-

latency NoSQL storage systems that use primary-backup
replications. With the emergence of large-scale Web ser-
vices, NoSQL storage systems became very popular (e.g.
Redis [30], RAMCloud [27], DynamoDB [33] and Mon-
goDB [7]), and they range from simple key-value stores to
more fully featured stores supporting secondary indexing and
multi-object transactions; so, improving their performance
using CURP is an important problem with a broad impact.

The most important piece missing from §3 to implement
CURP is how to efficiently detect commutativity violations.
Fortunately for NoSQL systems, CURP can use primary
keys to efficiently check the commutativity of operations.
NoSQL systems store data as a collection of objects, which
are identified by primary keys. Most update operations in
NoSQL specify the affected object with its primary key (or a
list of primary keys), and update operations are commutative
if they modify disjoint sets of objects. The rest of this section
describes an implementation of CURP that exploits this
efficient commutativity check.
4.1 Life of A Witness

Witnesses have two modes of operation: normal and
recovery. In each mode, witnesses service a subset of
operations listed in Figure 5. When it receives a start RPC,
a witness starts its life for a master in normal mode, in
which the witness is allowed to mutate its collection of saved
requests. In normal mode, the witness services record RPCs
for client requests targeted to the master for which the witness
was configured by start; by accepting only requests for the
correct master, CURP prevents clients from recording to
incorrect witnesses. Also, witnesses drop their saved client
requests as they receive gc RPCs from masters.

A witness irreversibly switches to a recovery mode once
it receives a getRecoveryData RPC. In recovery mode,
mutations on the saved requests are prohibited; witnesses
reject all record RPCs and only service getRecoveryData
or end. As a recovery is completed and the witness becomes
useless, the cluster coordinator may send end to free up the
resources, so that the witness server can start another life for
a different master.
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CLIENT TO WITNESS:
record(masterID, list of keyHash, rpcId, request) → {ACCEPTED or
REJECTED}

Saves the client request (with rpcId) of an update on keyHashes.
Returns whether the witness could accomodate and save the request.

MASTER TO WITNESS:
gc(list of {keyHash, rpcId})→ list of request

Drops the saved requests with the given keyHashes and rpcIds. Returns
stale requests that haven’t been garbage collected for a long time.

getRecoveryData()→ list of request
Returns all requests saved for a particular crashed master.

CLUSTER COORDINATOR TO WITNESS:
start(masterId)→ {SUCCESS or FAIL}

Start a witness instance for the given master, and return SUCCESS. If
the server fails to create the instance, FAIL is returned.

end()→ NULL
This witness is decommissioned. Destruct itself.

Figure 5: The APIs of Witnesses.

4.2 Data Structure of Witnesses
Witnesses are designed to minimize the CPU cycles spent

for handling record RPCs. For client requests mutating a
single object, recording to a witness is similar to inserting
in a set-associative cache; a record operation finds a set of
slots using a hash of the object’s primary key and writes
the given request to an available slot in the set. To enforce
commutativity, the witness searches the occupied slots in
the set and rejects if there is another request with the same
primary key (for performance, we compare 64-bit hashes of
primary keys instead of full keys). If there is no slot available
in the set for the key, the record operation is rejected as well.

For client requests mutating multiple objects, witnesses
perform the commutativity and space check for every affected
object; to accept an update affecting n objects, a witness must
ensure that (1) no existing client request mutates any of the
n objects and (2) there is an available slot in each set for all n
objects. If the update is commutative and space is available,
the witness writes the update request n times as if recording
n different requests on each object.
4.3 Commutativity Checks in Masters

Every NoSQL update operation changes the values of one
or more objects. To enforce commutativity, a master can
check if the objects touched (either updated or just read) by
an operation are unsynced at the time of its execution. If an
operation touches any unsynced value, it is not commutative
and the master must sync all unsynced operations to backups
before responding back to the client.

If the object values are stored in a log, masters can
determine if an object value is synced or not by comparing its
position in the log against the last synced position.

If the object values are not stored in a log, masters can use
monotonically increasing timestamps. Whenever a master
updates the value of an object, it tags the new value with a
current timestamp. Also, the master keeps the timestamp of
when last backup sync started. By comparing the timestamp
of an object against the timestamp of the last backup sync,
a master can tell whether the value of the object has been
synced to backups.

4.4 Improving Throughput of Masters
Masters in primary-backup replication are usually the bot-

tlenecks of systems since they drive replication to backups.
Since masters in CURP can respond to clients before syncing
to backups, they can delay syncs until the next batch without
impacting latency. This batching of syncs improves masters’
throughput in two ways.

First, by batching replication RPCs, CURP reduces the
number of RPCs a master must handle per client request.
With 3-way primary-backup replication, a master must
process 4 RPCs per client request (1 update RPC and 3
replication RPCs). If the master batches replication and syncs
every 10 client requests, it handles 1.3 RPCs on average. On
NoSQL storage systems, sending and receiving RPCs takes a
significant portion of the total processing time since NoSQL
operations are not compute-heavy.

Second, CURP eliminates wasted resources and other inef-
ficiencies that arise when masters wait for syncs. For example,
in the RAMCloud [27] storage system, request handlers use
a polling loop to wait for completion of backup syncs. The
syncs complete too quickly to context-switch to a different
activity, but the polling still wastes more than half of the CPU
cycles of the polling thread. With CURP, a master can com-
plete a request without waiting for syncing and move on to the
next request immediately, which results in higher throughput.

The batch size of syncs is limited in CURP to reduce
witness rejections. Delaying syncs increases the chance of
finding non-commutative operations in witnesses and mas-
ters, causing extra rejections in witnesses and more blocking
syncs in masters. A simple way to limit the batching would be
for masters to issue a sync immediately after responding to a
client if there is no outstanding sync; this strategy gives a rea-
sonable throughput improvement since at most one CPU core
will be used for syncing, and it also reduces witness rejections
by syncing aggresively. However, to find the optimal batch
size, an experiment with a system and real workload is neces-
sary since each workload has a different sensitivity to larger
batch sizes. For example, workloads which randomly access
large numbers of keys uniformly can use a very large batch
size without increasing the chance of commutativity conflicts.
4.5 Garbage Collection

As discussed in §3.4, masters send garbage collection RPCs
for synced updates to their witnesses. Right after syncing to
backups, masters send gc RPCs (in Figure 5), so the witnesses
can discard data for the operations that were just synced.

To identify client requests for removal, CURP uses 64-bit
key hashes and RPC IDs assigned by RIFL [20]. Upon
receiving a gc RPC, a witness locates the sets of slots using
the keyHashes and resets the slots whose occupying requests
have the matching RPC IDs. Witnesses ignore keyHashes
and rpcIds that are not found since the record RPCs might
have been rejected. For client requests that mutate multiple
objects, gc RPCs include multiple 〈keyHash, rpcIds〉 pairs
for all affected objects, so that witnesses can clear all slots

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation    53



occupied by the request.
Although the described garbage collection can clean up

most records, some slots may be left uncollected: if a client
crashes before sending the update request to the master,
or if the record RPC is delayed significantly and arrives
after the master finished garbage collection for the update.
Uncollected garbage will cause witnesses to indefinitely
reject requests with the same keys.

Witnesses detect such uncollected records and ask masters
to retry garbage collection for them. When it rejects a record,
a witness recognizes the existing record as uncollected
garbage if there have been many garbage collections since
the record was written (three is a good number if a master
performs only one gc RPC at a time). Witnesses notify
masters of the requests that are suspected as uncollected
garbage through the response messages of gc RPCs; then the
masters retry the requests (most likely filtered by RIFL), sync
to backups, and thus include them in the next gc requests.
4.6 Recovery Steps

To recover a crashed master, CURP first restores data
from backups and then replays requests from a witness.
To fetch the requests to replay, the new master sends a
getRecoveryData RPC (in Figure 5), which has two effects:
(1) it irreversibly sets the witness into recovery mode, so that
the data in the witness will never change, (2) it provides the
entire list of client requests saved in the witness.

With the provided requests, the new master replays all of
them. Since operations already recovered from backups will
be filtered out by RIFL [20], the replay step finishes very
quickly. In total, CURP increases recovery time by the exe-
cution time for a few requests plus 2 RTT (1 RTT for getRe-
coveryData and another RTT for backup sync after replay).
4.7 Zombies

For a fault-tolerant system to be consistent, it must neutral-
ize zombies. A zombie is a server that has been determined
to have crashed, so some other server has taken over its
functions, but the server has not actually crashed (e.g., it may
have suffered temporary network connectivity problems).
Clients may continue to communicate with zombies; reads or
updates accepted by a zombie may be inconsistent with the
state of the replacement server.

CURP assumes that the underlying system already has
mechanisms to neutralize zombies (e.g., by asking backups
to reject replication requests from a crashed master [27]).
The witness mechanism provides additional safeguards.
If a zombie responds to a client request without waiting
for replication, then the client must communicate with all
witnesses before completing the request. If it succeeds before
the witness data has been replayed during recovery, then
the update will be reflected in the new master. If the client
contacts a witness after its data has been replayed, the witness
will reject the request; the client will then discover that the
old master has crashed and reissue its request to the new
master. Thus, the witness mechanism does not create new

RAMCloud cluster Redis cluster
CPU Xeon X3470 (4x2.93 GHz) Xeon D-1548 (8x2.0 GHz)
RAM 24 GB DDR3 at 800 MHz 64 GB DDR4
Flash 2x Samsung 850 PRO SSDs Toshiba NVMe flash

NIC Mellanox ConnectX-2 Mellanox ConnectX-3
InfiniBand HCA (PCIe 2.0) 10 Gbps NIC (PCIe 3.0)

Switch Mellanox SX6036 (2 level) HPE 45XGc
OS Linux 3.16.0-4-amd64 Linux 3.13.0-100-generic

Table 1: The server hardware configuration for benchmarks.

safety issues with respect to zombies.
4.8 Modifications to RIFL

In order to work with CURP, the garbage collection
mechanism of RIFL described in [20] must be modified. See
§C.1 for details.

5 Evaluation
We evaluated CURP by implementing it in the RAMCloud

and Redis storage systems, which have very different backup
mechanisms. First, using the RAMCloud implementation, we
show that CURP improves the performance of consistently
replicated systems. Second, with the Redis implementation,
we demonstrate that CURP can make strong consistency
affordable in a system where it had previously been too
expensive for practical use.
5.1 RAMCloud Performance Improvements

RAMCloud [27] is a large-scale low latency distributed
key-value store, which primarily focuses on reducing latency.
Small read operations take 5 µs, and small writes take
14 µs. By default, RAMCloud replicates each new write to 3
backups, which asynchronously flush data into local drives.
Although replicated data are stored in slow disk (for cost sav-
ing), RAMCloud features a technique to allow fast recovery
from a master crash (it recovers within a few seconds) [26].

With the RAMCloud implementation of CURP, we
answered the following questions:
• How does CURP improve RAMCloud’s latency and

throughput?
• How many resources do witness servers consume?
• Will CURP be performant under highly-skewed work-

loads with hot keys?
Our evaluations using the RAMCloud implementation

were conducted on a cluster of machines with the specifica-
tions shown in Table 1. All measurements used InfiniBand
networking and RAMCloud’s fastest transport, which by-
passes the kernel and communicates directly with InfiniBand
NICs. Our CURP implementation kept RAMCloud’s fast
crash recovery [26], which recovers from master crashes
within a few seconds using data stored on backup disks.
Servers were configured to replicate data to 1–3 different
backups (and 1–3 witnesses for CURP results), indicated as
a replication factor f . The log cleaner of RAMCloud did not
run in any measurements; in a production system, the log
cleaner can reduce the throughput.

For RAMCloud, CURP moved backup syncs out of
the critical path of write operations. This decoupling not
only improved latency but also improved the throughput of

54    16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



1x10
-6

1x10
-5

1x10
-4

1x10
-3

1x10
-2

1x10
-1

1x10
0

5 6 7 20 30 200 10  100

F
ra

c
ti
o

n
 o

f 
W

ri
te

s

Latency (µs)

Original (f = 3)
CURP (f = 3)
CURP (f = 2)
CURP (f = 1)
Unreplicated

Figure 6: Complementary cumulative distribution of latency for 100B
random RAMCloud writes with CURP. Writes were issued sequentially
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syncs. A point (x,y) indicates that y of the 1M measured writes took at
least x µs to complete. f refers to fault tolerance level (i.e. number of
backups and witnesses). “Original” refers to the base RAMCloud system
before adopting CURP. “Unreplicated” refers to RAMCloud without any
replication. The median latency for synchronous, CURP ( f = 3), and
unreplicated writes were 14 µs, 7.1 µs, and 6.1 µs respectively.
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Figure 7: The aggregate throughput for one server serving 100B
RAMCloud writes with CURP, as a function of the number of clients.
Each client repeatedly issued random writes back to back to a single
server, which batches 50 writes before syncs. Each experiment was
run 15 times, and median values are displayed. “Original” refers to the
base RAMCloud system before adding CURP. “Unreplicated” refers to
RAMCloud without any replication. In “Async” RAMCloud, masters
return to clients before backup syncs, and clients complete writes without
replication to witnesses or backups.

RAMCloud writes.
Figure 6 shows the latency of RAMCloud write operations

before and after applying CURP. CURP cuts the median write
latencies in half. Even the tail latencies are improved overall.
When compared to unreplicated RAMCloud, each additional
replica with CURP adds 0.3 µs to median latency.

Figure 7 shows the single server throughput of write
operations with and without CURP by varying the number
of clients. The server batches 50 writes before starting a
sync. By batching backup syncs, CURP improves throughput
by about 4x. When compared to unreplicated RAMCloud,
adding an additional CURP replica drops throughput by∼6%.

To illustrate the overhead of CURP on throughput (e.g.
sending gc RPCs to witnesses), we measured RAMCloud
with asynchronous replication to 3 backups, which is identical
to CURP ( f =3) except that it does not record information on
witnesses. Achieving strong consistency with CURP reduces
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Figure 8: Throughput of a single RAMCloud server for YCSB-A and
YCSB-B workloads with CURP at different Zipfian skewness levels.
Each experiment was run 5 times, and median values are displayed with
errorlines for min and max.

throughput by 10%. In all configurations except the original
RAMCloud, masters are bottlenecked by a dispatch thread
which handles network communications for both incoming
and outgoing RPCs. Sending witness gc RPCs burdens the
already bottlenecked dispatch thread and reduces throughput.

We also measured the latency and throughput of RAM-
Cloud read operations before and after applying CURP, and
there were no differences.
5.2 Resource Consumption by Witness Servers

Each witness server implemented in RAMCloud can
handle 1270k record requests per second with occasional
garbage collection requests (1 every 50 writes) from master
servers. A witness server runs on a single thread and con-
sumes 1 hyper-thread core at max throughput. Considering
that each RAMCloud master server uses 8 hyper-thread
cores to achieve 728k writes per second, adding 1 witness
increases the total CPU resources consumed by RAMCloud
by 7%. However, CURP reduces the number of distinct
backup operations performed by masters, because it enables
batching; this offsets most of the cost of the witness requests
(both backup and witness operations are so simple that most
of their cost is the fixed cost of handling an RPC; a batched
replication request costs about the same as a simple one).

The second resource overhead is memory usage. Each
witness server allocates 4096 request storage slots for each as-
sociated master, and each storage slot is 2KB. With additional
metadata, the total memory overhead per master-witness pair
is around 9MB.

The third issue is network traffic amplification. In CURP,
each update request is replicated both to witnesses and
backups. With 3-way replication, CURP increases network
bandwidth use for update operations by 75% (in the original
RAMCloud, a client request is transferred over the network
to a master and 3 backups).
5.3 Impact of Highly-Skewed Workloads

CURP may lose its performance benefits when used
with highly-skewed workloads with hot keys; in CURP, an
unsynced update on a key causes conflicts on all following
updates or reads on the same key until the sync completes. To
measure the impact of hot keys, we measured RAMCloud’s
performance with CURP using a highly-skewed Zipfian
distribution [14] with 1M objects. Specifically, we used two
different workloads similar to YCSB-A and YCSB-B [9];
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Figure 9: Average RAMCloud client request latency for YCSB-A and
YCSB-B workloads with CURP at different Zipfian skewness levels. 10
clients issued requests to maintain a certain throughput level (250 kops
for YCSB-A and 700 kops for YCSB-B). Each experiment was run 5
times, and median values are displayed with errorlines for min and max.
Latency values are averaged over both read and write operations.

since RAMCloud is a key-value store and doesn’t support
100B field writes in 1k objects, we modified the YCSB
benchmark to read and write 100B objects with 30B keys.

Figure 8 shows the impact of workload skew (defined
in [14]) on the throughput of a single server. For YCSB-A
(write-heavy workload), the server throughput with CURP
is similar to an unreplicated server when skew is low, but
it drops as the workload gets more heavily skewed. For
YCSB-B, since most operations are reads, the throughput is
less affected by skew. CURP’s throughput benefit degrades
starting at a Zipfian parameter θ =0.8 (about 3% of accesses
are on hot keys) and almost disappears at θ =0.99.

Figure 9 shows the impact of skew on CURP’s latency;
unlike the throughput benefits, CURP retains its latency
benefits even with extremely skewed workloads. We mea-
sured latencies under load since an unloaded system will not
experience conflicts even with extremely skewed workloads.
For YCSB-A, the latency of CURP increases starting at
θ = 0.85, but CURP still reduces latency by 42% even at
θ = 0.99. For YCSB-B, only 5% of operations are writes, so
the latency improvements are not as dramatic as YCSB-A.

Figure 10 shows the latency distributions of reads and
writes separately at θ = 0.95 under the same loaded con-
ditions as Figure 9. For YCSB-A, CURP increases the tail
latency for read operations slightly since reads occasionally
conflict with unsynced writes on the same keys. CURP
reduces write latency by 2–4x: write latency with CURP
is almost as low as for unreplicated writes until the 50th
percentile, where conflicts begins to cause blocking on syncs.
Overall, the improvement of write latency by CURP more
than compensates for the degradation of read latency.

For YCSB-B, operation conflicts are more rare since
all reads (which compose 95% of all operations) are com-
mutative with each other. In this workload, CURP actually
improved the overall read latency; this is because, by batching
replication, CURP makes CPU cores more readily available
for incoming read requests (which is also why unreplicated
reads have lower latency). For YCSB-A, CURP doesn’t
improve read latency much since frequent conflicts limit
batching replication. In general, read-heavy workloads
experience fewer conflicts and are less affected by hot keys.

5.4 Making Redis Consistent and Durable
Redis [30] is another low-latency in-memory key-value

store, where values are data structures, such as lists, sets, etc.
For Redis, the only way to achieve durability and consistency
after crashes is to log client requests to an append-only file
and invoke fsync before responding to clients. However,
fsyncs can take several milliseconds, which is a 10–100x
performance penalty. As a result, most Redis applications do
not use synchronous mode; they use Redis as a cache with no
durability guarantees. Redis also offers replication to multi-
ple servers, but the replication mechanism is asynchronous,
so updates can be lost after crashes; as a result, this feature is
not widely used either.

For this experiment, we used CURP to hide the cost of
Redis’ logging mechanism: we modified Redis to record
operations on witnesses, so that operations can return
without waiting for log syncs. Log data is then written
asynchronously in the background. The result is a system
with durability and consistency, but with performance
equivalent to a system lacking both of these properties. In
this experiment the log data is not replicated, but the same
mechanism could be used to replicate the log data as well.

With the Redis implementation of CURP, we answered the
following questions:
• Can CURP transform a fast in-memory cache into a

strongly-consistent durable storage system without
degrading performance?

• How wide a range of operations can CURP support?
Measurements of the Redis implementation were con-

ducted on a cluster of machines in CloudLab [29], whose
specifications are in Table 1. All measurements were col-
lected using 10 Gbps networking and NVMe SSDs for Redis
backup files. Linux fsync on the NVMe SSDs takes around
50–100 µs; systems with SATA3 SSDs will perform worse
with the fsync-always option.

For the Redis implementation, we used Redis 3.2.8 for
servers and “C++ Client” [34] for clients. We modified “C++
Client” to construct Redis requests more quickly.

Figure 11 shows the performance of Redis before and after
adding CURP to its local logging mechanism; it graphs the
cumulative distribution of latencies for Redis SET operations.
After applying CURP (using 1 witness server), the median
latency increased by 3 µs (12%). The additional cost is
caused primarily by the extra syscalls for send and recv on
the TCP socket used to communicate with the witness; each
syscall took around 2.5 µs.

When a second witness server is added in Figure 11,
latency increases significantly. This occurs because the
Redis RPC system has relatively high tail latency. Even for
the non-durable original Redis system, which makes only a
single RPC request per operation, latency degrades rapidly
above the 80th percentile. With two witnesses, CURP must
wait for three RPCs to finish (the original to the server,
plus two witness RPCs). At least one of these is likely
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Figure 10: Complementary cumulative distribution of read and write latencies with CURP on a loaded server (250 kops for YCSB-A and 700 kops for
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to experience high tail latency and slow down the overall
completion. We didn’t see a similar effect in RAMCloud
because its latency is consistent out to the 99th percentile:
when issuing three concurrent RPCs, it is unlikely that any of
them will experience high latency.

Figure 12 shows the throughput of Redis SET operations
for a single Redis server with varying numbers of clients.
Applying CURP reduced the throughput of Redis about 18%.
With a large number of clients, the original synchronous
form of Redis can offer throughput approaching non-durable
Redis. The reason for this is that Redis batches fsyncs in
synchronous mode: in each cycle through its event loop, it
processes all of the requests waiting on its incoming sockets,
issues a single fsync, then responds to all of those requests.
The disadvantage of this approach is that it results in very
high latency for clients.
5.5 Applicability of CURP

CURP can be applied to a variety of operations, not just
write operations in key-value stores. Redis supports many
data structures, such as strings, hashmaps, lists, counters, and
so on. All of these update operations (including ones that
are non-idempotent or return read values) can benefit from
CURP. Since each data structure is assigned to a specific key,
CURP can execute many update operations on different keys
without blocking on syncs.

Figure 13 shows the median latency with and without
CURP on three different Redis commands: SET, which
writes ASCII data to a string data structure; HMSET, which

writes data to a member of a hashmap; and INCR, which
increments an integer counter and returns its current value.
For all three operations, latency overheads were small for
CURP with 1 witness. CURP with 2 witnesses increased
latency about 10 µs because of tail latency issues. We believe
that the TCP transport library used by the C++ client is
inefficient for waiting for multiple responses concurrently,
and we will continue to investigate this.

6 Related work
Table 2 summarizes the performance of CURP and other

fast replication protocols. The paragraphs below explain
these numbers in detail. We present analytical performance
instead of emprical results since empirical performance de-
pends too much on implementation and underlying systems
(e.g. CURP on RAMCloud and CURP on Redis have very
different absolute performance).

Generalized Paxos [18] allows clients to complete op-
erations (i.e. receive execution results) in 1.5 RTTs and
supersedes Fast Paxos [19]. Both protocols allow clients to
send requests directly to replicas and reduce latency from 2
RTTs to 1.5 RTT. Fast Paxos has a contention problem and
performs well only at low throughput. Generalized Paxos
resolves the contention problem by using commutativity; it
groups commutative requests from concurrent clients into
an unordered set, and it only orders between sets. Although
Generalized Paxos allows a leader replica to learn that oper-
ations are committed in 1 RTT, clients need to wait another
half RTT to receive the execution results from the leader; so
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CURP Gen.Paxos EPaxos NOPaxos

L
at

en
cy L
A

N read 1 RTT 1.5 RTTs 2 RTTs 1 RTT + α

write 1 RTT 1.5 RTTs 2 RTTs 1 RTT + α

W
A

N read ∼0 RTT 1.5 RTTs ∼1 RTT Not Avail.
write 1 RTT 1.5 RTTs ∼1 RTT Not Avail.

load on read <1 RPC ∼n RPCs ∼2 RPCs 1 RPC
leader write 1 RPC ∼n RPCs ∼2 RPCs 1 RPC

Table 2: Performance comparisons of replication protocols. “LAN”
means intra-datacenter replications. “WAN” means geo-replication and
assumes that all clients have a local replica; clients in a datacenter without
local replicas must send requests to a remote replica and experience the
WAN RTTs same as in “LAN”. NOPaxos’s RTT is longer than usual since
network packets must detour through a sequencer. All latency numbers
omitted the time to make data persistent, which is same for all protocols
(1 persistence time per request) and insignificant with the use of modern
fast storage technologies. “Load on leader” shows how many RPCs a
leader (or master) processes per client request. “n” denotes the number of
replicas.

its end-to-end latency becomes 1.5 RTTs, as opposed to 1
RTT for CURP. (See §B.3 for a detailed explanation why they
cannot achieve 1 RTT.)

Egalitarian Paxos (EPaxos) [22] relies on commutativity
to allow multiple leaders to propose and execute operations
concurrently. This approach improves throughput. In geo-
replicated environments, EPaxos allows clients to choose a
nearby replica as leader, so operations can complete in 1 wide-
area RTT. However, in LAN environments, EPaxos clients
cannot hide the message delay to a leader, so operations take
2 RTT. Also, since EPaxos does not have a strong leader, read
operations must run through full consensus and be written to
replicated command logs; for read-heavy workloads, EPaxos
will perform worse than traditional 2 RTT protocols with
read leases, such as Raft [25]. On the other hand, CURP can
directly execute read operations in masters or even in backups
with the help of witnesses. Another limitation of EPaxos is
that clients in a datacenter that doesn’t host a replica must use
a remote leader, increasing its latency to 2 wide-area RTTs.

Speculative Paxos [28] and Network-Ordered Paxos
(NOPaxos) [21] reduce latency almost to 1 RTT by seri-
alizing client requests within network. Both protocols use
SDNs to detour requests from all clients through a single
network device (a root layer switch or middlebox); so, they
can be deployed only in specialized environments (e.g. a
privately-owned datacenter). Also, due to detouring of
packets, they actually add latency overhead over unreplicated
systems; Speculative Paxos (∼25 µs) or NOPaxos(∼16 µs)
have higher latency overhead compared to CURP (∼1 µs).

TAPIR [37] and Janus [23] commit distributed transactions
in 1 wide-area RTT; before them, transaction commits took
2 RTTs: 1 for transaction prepares and 1 for geo-replicating
the data of prepare. They flattened out these serial steps by
replicating data before the prepare is executed. They mod-
ified concurrency control protocols to fix inconsistencies in
replications. They also require commutativity of workloads
for 1 RTT commits.

To avoid the performance penalty of consistent replica-
tions, eventual consistency [36] has been widely adopted in

industry [10, 8, 5]. Systems using eventual consistency return
from updates before replication is complete, and replications
happen asynchronously; since nearby replicas are stale,
clients must read from far-away masters for consistency.
Pileus [35] and Tuba [2] allowed applications to declare
their consistency and latency priorities, and they dynamically
select replicas to read from.

Broadcast-broadcast (BB) protocols [4, 3, 12, 16] for total
order broadcasts [11] have similarities to CURP. Senders in
BB protocols broadcast a message to all destinations (repli-
cated processes) plus a sequencer before ordering, followed
by a second broadcast from the sequencer about the ordering
information. Some variants of BB protocols [3, 12] exploit
the fact that broadcasts are mostly delivered in-order in small
LAN environments and let processes optimistically consume
messages without waiting for the ordering information from
the sequencer. If the suspected order turned out to be different
from the order determined by the sequencer, the process must
rollback to correct the inconsistency. On the other hand, in
CURP, replicas wait for the ordered replication from a master
instead of executing operations with a presumed ordering, so
CURP doesn’t require rollbacks, which is expensive and diffi-
cult to implement. Furthermore, even if client requests arrive
in a master and witnesses out of order, CURP still achieves 1
RTT as long as the reordered requests are commutative.

7 Conclusion
In this paper we have uncovered an opportunity for intro-

ducing concurrency into mechanisms for consistent replica-
tion. By exploiting the commutativity of operations, replica-
tion without ordering can be performed in parallel with send-
ing requests to an execution server. This general approach can
be applied to improve a variety of replication mechanisms,
including primary-backup approaches and consensus proto-
cols with strong leaders. We presented Consistent Unordered
Replication Protocol (CURP), which supplements standard
primary-backup replication mechanisms. CURP reduces the
latency to complete operations from 2 RTTs to 1 RTT while
retaining strong consistency. We implemented CURP in
RAMCloud and Redis to demonstrate its benefits.
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der broadcast and multicast algorithms: Taxonomy and
survey. ACM Comput. Surv. 36, 4 (Dec. 2004), 372–421.

[12] FELBER, P., AND SCHIPER, A. Optimistic active
replication. In Proceedings of the The 21st Interna-
tional Conference on Distributed Computing Systems

(Phoenix, AZ, USA, 2001), ICDCS ’01, IEEE Com-
puter Society, pp. 333–341.

[13] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T.
The Google file system. SIGOPS Oper. Syst. Rev. 37,
5 (Oct. 2003), 29–43.

[14] GRAY, J., SUNDARESAN, P., ENGLERT, S., BA-
CLAWSKI, K., AND WEINBERGER, P. J. Quickly gen-
erating billion-record synthetic databases. SIGMOD
Rec. 23, 2 (May 1994), 243–252.

[15] HUNT, P., KONAR, M., JUNQUEIRA, F. P., AND REED,
B. ZooKeeper: Wait-free coordination for internet-
scale systems. In Proceedings of the 2010 USENIX
Conference on USENIX Annual Technical Conference
(Boston, MA, 2010), USENIXATC’10, USENIX Asso-
ciation, pp. 11–11.

[16] KAASHOEK, M. F., AND TANENBAUM, A. S. Group
communication in the amoeba distributed operating sys-
tem. In [1991] Proceedings. 11th International Con-
ference on Distributed Computing Systems (May 1991),
pp. 222–230.

[17] LAMPORT, L. The part-time parliament. ACM Transac-
tions on Computer Systems 16, 2 (May 1998), 133–169.

[18] LAMPORT, L. Generalized consensus and Paxos. Tech.
rep., March 2005.

[19] LAMPORT, L. Fast Paxos. Distributed Computing 19
(October 2006), 79–103.

[20] LEE, C., PARK, S. J., KEJRIWAL, A., MATSUSHITA,
S., AND OUSTERHOUT, J. Implementing linearizabil-
ity at large scale and low latency. In Proceedings of
the 25th Symposium on Operating Systems Principles
(Monterey, CA, 2015), SOSP ’15, ACM, pp. 71–86.

[21] LI, J., MICHAEL, E., SHARMA, N. K., SZEKERES,
A., AND PORTS, D. R. K. Just say no to Paxos over-
head: Replacing consensus with network ordering. In
Proceedings of the 12th USENIX Conference on Oper-
ating Systems Design and Implementation (Savannah,
GA, 2016), OSDI’16, USENIX Association, pp. 467–
483.

[22] MORARU, I., ANDERSEN, D. G., AND KAMINSKY,
M. There is more consensus in egalitarian parlia-
ments. In Proceedings of the Twenty-Fourth ACM Sym-
posium on Operating Systems Principles (Farminton,
PA, 2013), SOSP ’13, ACM, pp. 358–372.

[23] MU, S., NELSON, L., LLOYD, W., AND LI, J. Con-
solidating concurrency control and consensus for com-
mits under conflicts. In Proceedings of the 12th USENIX

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation    59



Conference on Operating Systems Design and Imple-
mentation (Savannah, GA, 2016), OSDI’16, USENIX
Association, pp. 517–532.

[24] OKI, B. M., AND LISKOV, B. H. Viewstamped repli-
cation: A new primary copy method to support highly-
available distributed systems. In Proceedings of the
Seventh Annual ACM Symposium on Principles of Dis-
tributed Computing (Toronto, Ontario, Canada, 1988),
PODC ’88, ACM, pp. 8–17.

[25] ONGARO, D., AND OUSTERHOUT, J. In search
of an understandable consensus algorithm. In 2014
USENIX Annual Technical Conference (USENIX ATC
14) (Philadelphia, PA, 2014), USENIX Association,
pp. 305–319.

[26] ONGARO, D., RUMBLE, S. M., STUTSMAN, R.,
OUSTERHOUT, J., AND ROSENBLUM, M. Fast crash
recovery in RAMCloud. In Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Princi-
ples (Cascais, Portugal, 2011), SOSP ’11, ACM, pp. 29–
41.

[27] OUSTERHOUT, J., GOPALAN, A., GUPTA, A., KEJRI-
WAL, A., LEE, C., MONTAZERI, B., ONGARO, D.,
PARK, S. J., QIN, H., ROSENBLUM, M., RUMBLE,
S., STUTSMAN, R., AND YANG, S. The RAMCloud
storage system. ACM Trans. Comput. Syst. 33, 3 (Aug.
2015), 7:1–7:55.

[28] PORTS, D. R. K., LI, J., LIU, V., SHARMA, N. K.,
AND KRISHNAMURTHY, A. Designing distributed sys-
tems using approximate synchrony in data center net-
works. In Proceedings of the 12th USENIX Confer-
ence on Networked Systems Design and Implementation
(Oakland, CA, 2015), NSDI’15, USENIX Association,
pp. 43–57.

[29] RICCI, R., EIDE, E., AND TEAM, C. Introducing
CloudLab: Scientific infrastructure for advancing cloud
architectures and applications. ; login:: the magazine of
USENIX & SAGE 39, 6 (2014), 36–38.

[30] SANFILIPPO, S., ET AL. Redis. https://redis.
io/, 2015. Accessed: 2017-04-18.

[31] SCHNEIDER, F. B. Implementing fault-tolerant ser-
vices using the state machine approach: A tutorial. ACM
Comput. Surv. 22, 4 (Dec. 1990), 299–319.

[32] SHVACHKO, K., KUANG, H., RADIA, S., AND
CHANSLER, R. The Hadoop distributed file system. In
2010 IEEE 26th Symposium on Mass Storage Systems
and Technologies (MSST) (May 2010), pp. 1–10.

[33] SIVASUBRAMANIAN, S. Amazon dynamoDB: A seam-
lessly scalable non-relational database service. In Pro-
ceedings of the 2012 ACM SIGMOD International Con-
ference on Management of Data (Scottsdale, AZ, 2012),
SIGMOD ’12, ACM, pp. 729–730.

[34] SPRENKER, L., AND HAMMOND, B. Redis
C++ Client. https://github.com/mrpi/
redis-cplusplus-client, 2011. Accessed:
2017-04-20.

[35] TERRY, D. B., PRABHAKARAN, V., KOTLA, R., BAL-
AKRISHNAN, M., AGUILERA, M. K., AND ABU-
LIBDEH, H. Consistency-based service level agree-
ments for cloud storage. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Princi-
ples (Farminton, PA, 2013), SOSP ’13, ACM, pp. 309–
324.

[36] VOGELS, W. Eventually consistent. Commun. ACM 52,
1 (Jan. 2009), 40–44.

[37] ZHANG, I., SHARMA, N. K., SZEKERES, A., KR-
ISHNAMURTHY, A., AND PORTS, D. R. K. Build-
ing consistent transactions with inconsistent replication.
In Proceedings of the 25th Symposium on Operating
Systems Principles (Monterey, CA, 2015), SOSP ’15,
ACM, pp. 263–278.

[38] ZHAO, W. Fast Paxos made easy: Theory and imple-
mentation. International Journal of Distributed Systems
and Technologies (IJDST) 6, 1 (2015), 15–33.

60    16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://redis.io/
https://redis.io/
https://github.com/mrpi/redis-cplusplus-client
https://github.com/mrpi/redis-cplusplus-client


A Informal Proof of Correctness
With the normal operation behaviors described in §3.2,

the recovery protocol in §3.3 guarantees the following
correctness properties.
• Durability: if a client completes an operation, it survives

server crashes.
• Consistency: if a client completes an operation, its result

returned to an application remains consistent after server
crash recoveries.

• Linearizability: an operation appears to be executed
exactly once between start and completion.

Before presenting proofs, we reiterate some key behaviors
of the CURP protocol.

(Rule 1) from §3.2.1, a client only completes an update
operation if (1) it is recorded in all f witnesses or (2) it is
replicated to f backups.

(Rule 2) a completed unsynced operation must be individ-
ually commutative with all preceding operations that are not
synced yet. This is the behavior described in §3.2.3; a master
must sync before responding if the current operation is not
commutative with any other existing (preceding) unsynced
operations.

Now, we present proof sketches for the properties.
Durability: recovery of a master only completes after

recovery from 1 backup and 1 witness, and the completed
operation must exist in the backup or the witness by (Rule 1);
thus, the completed operation must be recovered when the
recovery is completed. �

Consistency: Consider an individual completed operation
α and its consistency. To prove that α’s result doesn’t change
even after crash recovery, we will think about the operation
execution sequence before α , which we will call history of α

(or Hα ).
Case 1: the operation α has been synced to the backup

used for recovery. This operation will be recovered from
the backup (phase 1) and any replay from witnesses (phase
2) will be ignored (by RIFL). Since backup syncs preserve
the execution order of operations, the Hα didn’t change; so
the post-recovery execution sequence should regenerate the
original execution result of α .

Case 2: the operation α has not been synced to the backup
used for recovery. α must have been recorded in all witnesses
by (Rule 1) and will be recovered during phase 2. We can
split the original execution history of α into two parts as in
Figure 3: 〈synced〉 followed by 〈unsynced〉. The 1st phase
of recovery will recover the exactly same execution history
for the 〈synced〉 part. By (Rule 2), we know that losing any
〈unsynced〉 part of history after crash will not change the
execution result of α . During phase 2 of recovery (from
a witness), we may replay some other operations before
replaying α , but the result of α doesn’t change since all
operations recorded in the witness must be commutative. �

Linearizability: we assume that the underlying system
before applying CURP guarantees linearizability for op-

erations that are replicated to backups. CURP may break
the linearizability of the underlying system since masters in
CURP return before syncing to backups. So, we will reason
about how CURP recovers from master crashes without
breaking linearizability.

The definition of linearizability can be reworded as
following: if the execution of an operation is observed by
the issuing client or other clients, no contrary observation
can occur afterwards (i.e. it should not appear to revert or
be reordered). Since we only care about what happens after
recovery, we prove the following proposition: if the execution
of an individual operation α is observed before crash, no
contrary observation can occur after recovery.

Case 1: the execution of α was observed by other depen-
dent operations (e.g. reads). By (Rule 2), the master must
have synced α to backups since dependent operations don’t
commute with α . Since it was replicated to backups, α will
be linearizable as long as the underlying system is.

Case 2: the execution was observed only by the completion
of α . α must be recovered because of the Durability property.
The only observation about α before crash was the returned
execution result, and it must be still consistent even after
recovery because of the Consistency property.

Case 3: no observation was made before crash. α may
be lost if it didn’t reach to either the backup or witness used
for recovery. In CURP, the client keeps retrying until it can
complete α . Regardless of whether α was recovered or not,
RIFL ensures the retry will only execute α at-most once and
return the result of the sole execution. �

B Extra Discussions
B.1 Why Are Witnesses Separate from Backups?

By having witnesses separated from backups, CURP
requires fewer changes to the existing systems and is more
applicable to many wildly different backup mechanisms.
Both of our two implementations leveraged this flexibility:
in RAMCloud, a master keeps changing backups to which
it replicates (to spread data over the entire cluster), so
clients don’t know which backups are currently used by the
master; in Redis, operation logs are stored in local disks to
ensure durability, so there are no separate backup servers
to which CURP clients can record inputs. Thus, separating
witnesses from backups improves CURPs applicability to
many existing primary-backup systems.

On the other hand, when designing a new storage system,
combining witnesses and backups can bring extra perfor-
mance benefits. When they are combined, clients directly
send requests to a master and backups, which now also serve
as witnesses. The key change is masters now sync operation
orders (by listing IDs as in witness gc RPCs) instead of full
client requests; then backups lookup the matching requests
from their witness storage and move them to backup logs.
This approach will lower network bandwidth consumption.
Also, most witness gc RPCs can be eliminated; immediately
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after handling the sync, the requests in the witness storage
can be deleted as they are now safe in the backup log. (For
safety, the recovery protocol must pick 1 witness/backup
combo and must not mix.) This saving of gc RPCs will
improve masters’ throughput and will reduce the chance of
commutativity conflicts.
B.2 Extending CURP to Consensus Protocols

This section illustrates how CURP can be extended to
reduce the latency of consensus protocols. CURP can be in-
tegrated in most consensus protocols with strong leaders (e.g.
Raft [25], Viewstamped Replication [24]). In such protocols,
clients send requests to the current leader, which serializes
the requests into its command log. The leader then replicates
its command log to a majority of replicas before executing
the requests and replying back to clients with the results. This
process takes 2 RTTs, and CURP can reduce it to 1 RTT.

As in primary-backup replication, CURP on consensus
allows clients to replicate requests to witnesses in parallel
with sending requests to the leader; the leader then specu-
latively executes the requests and responds to clients before
replicating the requests to a quorum of replicas. A client can
complete an operation if it is accepted by a superquorum of
witnesses or committed in a quorum of replicas.

To mask f failures, consensus protocols use 2 f + 1 repli-
cas, and systems stay available with f failed replicas. For the
same guarantee, CURP also uses 2 f + 1 replicas, but each
replica also has a witness component in addition to existing
components for consensus. Although CURP can proceed
with f +1 available replicas, it needs f +d f/2e+1 replicas
(for superquorum of witnesses) to use 1 RTT operations.
With less than f +d f/2e+1 replicas, clients must ask masters
to commit operations in f +1 replicas before returning result
(2 RTTs).

Like masters in regular CURP, leader replicas execute oper-
ations speculatively if they are commutative with existing un-
synced operations; for an incoming client request, the leader
serializes it into its command log, executes it, and responds
to the client before committing it in a majority of replicas.

For clients to complete an operation in 1 RTT, it must be
recorded in a superquorum of f + d f/2e+1 witnesses. The
reason why CURP needs a superquorum instead of a simple
majority is to ensure commutativity of replays from witnesses
during recovery. During recovery, only f + 1 out of 2 f + 1
replicas (each of which embeds a witness) might be available.
If a client could complete an operation after recording to
f + 1 witnesses, the completed operation may exist in only
1 witness out of available f + 1 witnesses during recovery
(since intersection of two quorums is 1 replica). If the other f
witnesses accepted other operations that are not commutative
with the completed operation (since each witness enforces
commutativity individually), recovery cannot distinguish
which one is the completed one; executing all appearing
in any f + 1 witnesses is also not safe since they are not
commutative, so they must be replayed in a correct order.

For correctness, the client requests replayed from witnesses
during recovery must be commutative and inclusive of all
completed operations that are not yet committed in a major-
ity of replicas. By recording to a superquorum, all completed
operations (but not yet committed) are guaranteed to exist in
a majority (d f/2e+1) of any quorum of f +1 witnesses, and
any operations that don’t commute with the completed oper-
ations cannot exist in more than b f/2c (less than majority of
any quorum). Thus, during recovery, all requests that appear
in a majority (d f/2e+1) from any quorum of f +1 witnesses
are guaranteed to be commutative and include all completed
operations; so, recovery can replay requests that appear in
more than d f/2e+1 witnesses out of any f +1 witnesses.

When leadership changes (e.g. leader election in Raft [25]
or view change in Viewstamped Replication [24]), the new
leader must recover from witnesses before accepting new op-
erations. To do so, the new leader must collect saved requests
from at least f +1 witnesses. This collection can be included
in the existing data collection (e.g. Raft votes) that is required
by most leadership change protocols. As mentioned in the
previous paragraph, the new leader should only replay client
requests that are recorded in at least d f/2e+ 1 witnesses to
ensure commutativity.

After leadership changes, the state machine of the old
leader could have diverged from other replicas due to
speculatively executed operations that were not recovered
from witnesses. To fix this, the old leader must reload from
a checkpoint that does not have speculative executions.
However, we can avoid reloading from checkpoints if the
leadership change was not because of a crash or disconnect of
the old leader; instead of requring old leader to reload from a
checkpoint, we can require the new leader to fetch and commit
all uncommitted operations in the old leader’s command log.

The last problem introduced by speculative execution is
that clients may use old zombie leaders (which believe they
are current leaders). Zombie leaders were not possible before
CURP since an operation must be committed in a majority
before being executed and at least one replica would reject
the operation. To prevent clients from completing operations
with an old (possibly disconnected) leader, they tag record
RPCs with a term number (e.g. a Raft term or a view-number
in Viewstamped Replication), which increments every time
when leadership changes. A witness checks the term number
against the term used by its replica (recall that a witness is a
part of a consensus replica); if the record RPC has an old term
number, the witness rejects the request and tells the client to
fetch new leader information.

CURP can use read leases like many consensus protocols
so that read operations can be executed solely by leaders
within 1 RTT without recording to witnesses. Optimizing
read operations using read leases is common for consensus
protocols with strong leaders. A leader replica with a
valid read lease can safely execute read operations without
committing the read operations through consensus. For the
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optimization, each replica grants the read lease to the current
leader, promising not to agree on a leader change for a lease
period. With valid leases from a majority of replicas, the
leader knows that no operations can be committed from other
replicas, so it can safely execute read operations without
consulting with other replicas. CURP does not interfere with
this read lease mechanism.
B.3 Why Do Fast / Generalized Paxos require 1.5 RTTs?

There is a widespread misunderstanding that both Fast
Paxos and Generalized Paxos already achieve 1 RTT opera-
tions. The confusion probably stems from the fact that both
Fast and Generalized Paxos allow Paxos learners to know
about acceptance of an operation in 1 RTT.

However, 1 RTT is sufficient to know only that an operation
is committed but not enough to know the result: that requires
another 0.5 RTT. The abstract for Generalized Paxos says that
a server can execute the command in two message delays;
however, it take an additional message delay for the result to
reach a client, for a total of three message delays (1.5 RTT). It
doesn’t help for the client to be a Paxos learner, because even
learners don’t know the result after 1 RTT.

For most operations, results are not trivial and clients must
wait for the results from real executions before completing
operations. Many writes, such as conditional writes or read-
modify-writes, have results that clients cannot know before
executions. Blind writes (those that don’t return results)
could potentially complete in 1 RTT. However, truly blind
writes are rarely feasible because they can return exceptions,
such as “table no longer on this server” or “permission
denied”; clients must be aware of these exceptions.

As a result, Fast/Generalized Paxos are generally con-
sidered to have 1.5 RTT latency for clients to complete
operations. [21, 28, 38]

C Implementation Details
C.1 Modifications to RIFL

RIFL [20] is a mechanism for detecting duplicate invoca-
tions of RPCs. With RIFL, masters make a durable comple-
tion record of each RPC that updates state, which includes
the RPC result. The completion record survives crashes and
can be used to detect duplicate invocations of the RPC. When
a duplicate is detected, the master skips the execution of the
RPC and returns the result from the completion record.

RIFL has two mechanisms for garbage collecting com-
pletion records: (1) on RPC requests, clients piggyback
acknowledgments of the results of their previous requests (so
servers can safely delete these completion records), and (2)
clients maintain leases in a central server; if a client’s lease
expires, masters can delete all completion records for that
client. Both of these must be modified to work with CURP.

Since both garbage collection mechanisms assume that
retries always come from the same client that made the
original request, RIFL must be modified to accommodate
retries from witnesses. Firstly, once clients acknowledge
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Figure 14: Simulation results for the expected number of recordings
before a collision occurs in a witness’ cache, assuming a random
distribution of keys. Each data point is the average of 10000 simulations.
Introducing associativity reduces the chance of collisions significantly.

the receipts of results, masters remove their completion
records and start to ignore (not returning results) the duplicate
requests. Since replays from witnesses happen in random
orders, acknowledgements piggybacked on later requests can
make masters to ignore the replay of earlier requests. Thus,
clients’ acknowledgments included in RPC requests must be
ignored during recovery from witnesses.

Secondly, if a client crashes and its lease expires, masters
remove all of the completion records for the client; then any
requests from the expired client are ignored. This can be
a problem in CURP since the replay of the expired client’s
requests will be ignored during witness-based recovery. To
prevent this, masters must sync all operations to backups
before expiring a client lease. In practice, the period of syncs
is much smaller than the grace period between the time of
a client crash and the time of its lease expiration; so, most
systems are safe automatically.
C.2 Why Use Set-associative Cache for Witnesses?

We initially used a direct-mapped cache instead of set-
associative cache, but this resulted in a high rate of rejections
because of conflicts (i.e. no slot is available for the mapped
set). Figure 14 shows the expected number of recordings
before a conflict occurs on a witness slot. Using a direct
mapping and 4096 total slots, it is expected to have a false
conflict after about 80 insertions. Thus, we switched to
4-way associative cache, to reduce witness rejections. We
didn’t need 8-way associativity (a bit slower than 4-way)
since the number of requests in witnesses is already limited
by commutativity. (Once a master hits a non-commutative
operation and syncs to backups, all saved requests in the
witness are garbage collected.)

D Additional Evaluations
D.1 RAMCloud’s Throughput by Batch Size

Figure 15 shows the single-server throughput of write
operations with CURP while varying the aggressiveness of
syncs. After introducing CURP, RAMCloud can delay the
sync to backups after responding back to clients; delaying
and batching sync to backups makes the server more efficient
and improves throughput about 4 times. Since RAMCloud
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Figure 16: Observed latency at a specific throughput level for one
server serving 100B Redis SET operations with CURP. “Original Redis
(durable)” refers to the base Redis without CURP, but configured to
invoke fsync before replying to clients. Original Redis processes requests
from multiple clients, fsyncs once per eventloop, and replies to all clients.

allows only one outstanding sync, syncs are naturally batched
for around 15 writes even at 1 minimum batch size.
D.2 Redis Latency vs. Throughput

Figure 16 shows observed latency during the throughput
benchmark. Both CURP and non-durable Redis maintains la-
tency low until it reaches 80% of max throughput. The latency
of durable Redis increases almost linearly due to bathcing.
The original Redis is designed to provide maximum through-
put under high load and natively batches fsyncs; for each
event-loop cycle, Redis iterates through TCP sockets for all
clients and executes all requests from them; after the iteration,
Redis fsyncs once and responds to the clients. This batching
amortizes the cost of fsync, and throughput of durable Redis
approaches that of non-durable Redis as the number of clients
increases. However, this batching adds extra delay before
responding back to clients, so latency increases linearily.
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