
D E C E M B E R 2 0 1 1 V O L . 3 6 , N O . 6

The Danger of Unrandomized Code
E D W A R D J . S C H W A R T Z

Of Headless User Accounts and Restricted Shells
J A N S C H A U M A N N

DevOps from a Sysadmin Perspective
P A T R I C K D E B O I S

Conference Reports from the 20th USENIX Security
Symposium, CSET, HotSec, and more

U P C O M I N G E V E N T S

4th USENIX Workshop on Hot Topics in
Parallelism (HotPar ’12)
S P O N S O R E D B Y U S E N I X I N C O O P E R AT I O N W I T H A C M S I G M E T R I C S ,
A C M S I G S O F T , A C M S I G O P S , A C M S I G A R C H , A N D A C M S I G P L A N

June 7–8, 2012, Berkeley, CA, USA
http://www.usenix.org/hotpar12
Paper registration due: January 24, 2012

2012 USENIX Federated Conferences Week
June 12–15, 2012, Boston, MA, USA

2012 USENIX Annual Technical Conference
(USENIX ATC ’12)
June 13–15, 2012
http://www.usenix.org/atc12
Paper titles and abstracts due: January 10, 2012

3rd USENIX Conference on Web Application
Development (WebApps ’12)
June 13–14, 2012
http://www.usenix.org/webapps12
Submissions due: January 23, 2012

4th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud ’12)

4th USENIX Workshop on Hot Topics in Storage
and File Systems (HotStorage ’12)

21st USENIX Security Symposium
(USENIX Security ’12)
August 6–10, 2012, Bellevue, WA, USA

10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’12)
October 8–10, 2012, Hollywood, CA, USA
http://www.usenix.org/osdi12
Submissions due: May 3, 2012

26th Large Installation System Administration
Conference (LISA ’12)
December 9–14, 2012, San Diego, CA, USA

10th USENIX Conference on File and Storage
Technologies (FAST ’12)
S P O N S O R E D B Y U S E N I X I N C O O P E R AT I O N W I T H A C M S I G O P S

February 14–17, 2012, San Jose, CA, USA
http://www.usenix.org/fast12

In Cooperation: EuroSys 2012
S P O N S O R E D B Y A C M S I G O P S I N C O O P E R AT I O N W I T H U S E N I X

April 10–13, 2012, Bern, Switzerland
http://eurosys2012.unibe.ch

2nd USENIX Workshop on Hot Topics in Man-
agement of Internet, Cloud, and Enterprise
Networks and Services (Hot-ICE ’12)
C O - L O C AT E D W I T H N S D I ’ 1 2

April 24, 2012, San Jose, CA, USA
http://www.usenix.org/hotice12
Paper registration due: January 6, 2012

5th USENIX Workshop on Large-Scale Exploits
and Emergent Threats (LEET ’12)
C O - L O C AT E D W I T H N S D I ’ 1 2

April 24, 2012, San Jose, CA, USA
http://www.usenix.org/leet12
Submissions due: February 13, 2012

9th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’12)
S P O N S O R E D B Y U S E N I X I N C O O P E R AT I O N W I T H A C M S I G C O M M A N D
A C M S I G O P S

April 25–27, 2012, San Jose, CA, USA
http://www.usenix.org/nsdi12

In Cooperation: 5th Annual International
Systems and Storage Conference (SYSTOR 2012)
I N C O O P E R AT I O N W I T H A C M S I G O P S (P E N D I N G) A N D U S E N I X

June 4–6, 2012, Haifa, Israel
http://www.research.ibm.com/haifa/conferences/
 systor2012

F O R A C O M P L E T E L I S T O F A L L U S E N I X A N D U S E N I X C O - S P O N S O R E D E V E N T S ,
S E E H T T P : // W W W . U S E N I X . O R G / E V E N T S

E D I T O R

Rik Farrow
rik@usenix.org

M A N A G I N G E D I T O R

Jane-Ellen Long
jel@usenix.org

C O P Y E D I T O R

Steve Gilmartin
proofshop@usenix.org

P R O D U C T I O N

Arnold Gatilao
Casey Henderson
Jane-Ellen Long

T Y P E S E T T E R

Star Type
startype@comcast.net

U S E N I X A S S O C I AT I O N

2560 Ninth Street, Suite 215,
Berkeley, California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

http://www.usenix.org
http://www.sage.org

;login: is the official magazine of the USENIX
Association. ;login: (ISSN 1044-6397)
is published bi-monthly by the USENIX
Association, 2560 Ninth Street, Suite 215,
 Berkeley, CA 94710.

$90 of each member’s annual dues is for
a subscription to ;login:. Subscriptions for
nonmembers are $125 per year.
Periodicals postage paid at Berkeley, CA,
and additional offices.

POSTMASTER: Send address changes to
;login:, USENIX Association, 2560 Ninth
Street, Suite 215, Berkeley, CA 94710.

©2011 USENIX Association
USENIX is a registered trademark of the
USENIX Association. Many of the designa-
tions used by manufacturers and sellers
to distinguish their products are claimed
as trademarks. USENIX acknowledges all
trademarks herein. Where those designa-
tions appear in this publication and USENIX
is aware of a trademark claim, the designa-
tions have been printed in caps or initial
caps.

D E C E M B E R 2 0 1 1 , V O L . 3 6 , N O . 6

O P I N I O N

Musings R I K F A R R O W .2

S E C U R I T Y

The Danger of Unrandomized Code E D W A R D J . S C H W A R T Z .7

Exploit Programming: From Buffer Overflows to “Weird Machines” and Theory of
Computation S E R G E Y B R AT U S , M I C H A E L E . L O C A S T O , M E R E D I T H L . P AT T E R S O N ,

L E N S A S S A M A N , A N D A N N A S H U B I N A . 13

The Halting Problems of Network Stack Insecurity L E N S A S S A M A N , M E R E D I T H L .

P AT T E R S O N , S E R G E Y B R AT U S , A N D A N N A S H U B I N A . 22

S Y S A D M I N

Beyond the Basics of HTTPS Serving A D A M L A N G L E Y . 33

Of Headless User Accounts and Restricted Shells J A N S C H A U M A N N . 38

DevOps from a Sysadmin Perspective P AT R I C K D E B O I S . 45

C O L U M N S

Practical Perl Tools: From the Editor D AV I D N . B L A N K - E D E L M A N . 48

iVoyeur: Changing the Game D AV E J O S E P H S E N . 54

/dev/random R O B E R T G . F E R R E L L . 58

B O O K S

Book Reviews E L I Z A B E T H Z W I C K Y, W I T H S A M S T O V E R . 61

U S E N I X N O T E S

2012 Election for the USENIX Board of Directors A LVA L . C O U C H . 64

USENIX Remembers Dennis Ritchie (1941–2011) . 65

USA Team Wins Big at International Programming Competition B R I A N D E A N 65

Thanks to Our Volunteers . 66

C O N F E R E N C E S

20th USENIX Security Symposium . 68

4th Workshop on Cyber Security Experimentation and Test . 97

USENIX Workshop on Free and Open Communications on the Internet 104

5th USENIX Workshop on Offensive Technologies . 106

2nd USENIX Workshop on Health Security and Privacy . 111

6th USENIX Workshop on Hot Topics in Security .120

 2 ;login: VOL. 36, NO. 6

Rik is the editor of ;login:.

rik@usenix.org

The latest effort to improve computer and network security has been for the US
Congress to pass new laws . Currently proposed laws will increase penalties for
attackers, including the perhaps misguided hackers who point out easy-to-find
flaws in public servers, to the point of treating them like racketeers . The real
culprits, the companies who leave treasure troves of information with real worth
easily accessible, will be encouraged to do better . I think there are better solutions .

And for a change, this issue actually includes an article that points the way for-
ward to improving network security . I have whined way too often about how bad
things are, giving the appearance that I’m terribly depressed, so I am happy to pre-
sent something much more useful than more complaints about the state of things .

The Exploit Issue

The first three articles in this issue deal with exploits, the methods used for
attacking server and client software . You might not think that reading more about
exploits will result in techniques for preventing them, but please give us a moment
of your time .

We begin with an article by Ed Schwartz . Ed presented a paper at USENIX Secu-
rity ’11 on Q [1], software that finds short code segments that can be used in one
type of exploit . I wanted Ed to write for ;login: because he did an outstanding job of
explaining return-oriented programming (ROP) during his Security presentation .
Ed’s excellent article starts by explaining how different exploits work, two of the
current countermeasures, and why they do not always succeed . He also provides
a first-rate discussion of both past and current methods for taking control of the
flow of execution, then executing the code of the attacker’s choice . As Ed writes,
“At a high level, all control flow exploits have two components: a computation and
a control hijack . The computation specifies what the attacker wants the exploit to
do . For example, the computation might create a shell for the attacker, or create a
back-door account . A typical computation is to spawn a shell by including execut-
able machine code called shellcode .”

And as Ed has pointed out, the attacker wants to do something that the target
software was neither designed nor written to do . Instead, the attacker needs to use
existing mechanisms in the software, and its supporting libraries, to do something
completely unexpected .

Next, the paper by Sergey Bratus and his co-authors ties in quite beautifully with
Ed’s article . I first met Sergey Bratus during WOOT ’11, where he was explaining

OPINIONMusings
R I K F A R R O W

 ;login: DECEMBER 2011 Musings 3

how code found in every Linux executable actually includes a complete Turing
machine that can be abused [2] . Sergey called this code, and examples like it, weird
machines, and I find I like this terminology . A weird machine provides an attacker
with the ability to execute his own code, completely contrary to the intentions
of the software’s designers . Yet these weird machines must be present for this to
work . And we have hundreds, if not thousands, of existing exploits that prove that
these weird machines actually exist .

Sergey also acted as the point person for the third article in this collection . He had
to, because its lead author, Len Sassaman, died this summer, before the article was
proposed . Len, his wife, Meredith Patterson, and others had been working on a
paper that looked at exploits in a different light . What makes exploits work, besides
having weird machines to run them on, are the inputs to those weird machines .
The authors’ proposition was that every program that accepts inputs has its own
input language . If that input language reaches beyond a minimal level of complex-
ity, it is impossible to prove that the program that parses the input language will
behave as expected . Instead, the program will be one of the weird machines that
run exploits for attackers .

The Sassaman proposal has its basis in formal language theory, where a program’s
input forms the language and the program includes the parser for this language .
We are all familiar with this concept, whether we have written programs or simply
entered command lines with options . The options make up the input language,
and the program must include a parser that interprets that input language . This
example may sound too simple, but there have been command-line programs that
were exploitable . And network servers have much more complex input languages,
with databases supporting SQL perhaps near the pinnacle of complexity . The
authors do a fine job of arguing this point .

When Sergey first described this idea to me, in the hallway at Security, I made an
immediate connection to an early, and somewhat effective, security prophylactic:
application gateways . Application gateways were used, usually as part of firewalls,
to parse the input to the services they protected . For example, the application
gateway for the SMTP protocol follows the RFC for the protocol exactly (RFC 821,
when smapd [3] was written) . One result of the slavish adherence to protocol speci-
fications was that crafted inputs from exploits that violated the protocol in any
way were prevented from reaching the mail server . If the exploit relied on email
addresses that were longer than 256 bytes or message lines longer than 1024 bytes,
these inputs would be blocked . This is how application gateways could block never-
before-seen attacks: they only accepted a very precisely defined input language and
rejected all others .

Although application gateways are uncommon today, their close relatives are still
in use . Web application firewalls may either enforce a well-defined input language
or act more like an Intrusion Prevention System by watching for and blocking
known attack signatures . But these were just perspectives that I had when I began
talking with Sergey .

Sassaman et al . lay out three points that can be used as a test of their theory’s
usefulness . They also contrast programming languages, which have input pars-
ers derived from a formal grammar, to most programs, whose input parsers are
improvised to support specifications—not nearly as robust a process . And once the
input language has grown behind a very simple level of complexity, the parser for

 4 ;login: VOL. 36, NO. 6

the language can become Turing machine complete: itself a complete computer for
which the halting problem can never be decided .

If the suggestions in Sassaman et al . were perfectly understood and universally
adopted, they would not end exploitation . There would still be bugs in implemen-
tation that a simple and provably correct input parser could not protect from
exploitation . But the attack surface would be greatly diminished by keeping the
input simple, and thus easier for programmers to understand and for designers to
specify . And there will always be some input languages (JavaScript and X .509 are
examples) which can never be made secure from crafted inputs .

More Security

Let’s shift gears a bit, as I describe the next article in the lineup . Adam Langley
works for Google as a Chrome developer . I didn’t meet him in San Francisco during
Security, but I did get to read the summary of the panel on SSL/TLS certificates .
Given the recent event where a Dutch certificate authority was compromised [4]
and their signing key used to produce bogus and yet totally valid certificates, I
thought it would be useful to have someone who could write about this issue .

Adam surprised me by writing about how to properly configure Web servers, when
I thought he might be writing about browser insecurity . Yet he is in a very good
position to be talking to Web server administrators, as he knows what the browser
developers (including Mozilla Firefox) have done or plan to do . Adam is also aware
of issues impacting browser users that can be mitigated through the correct use of
HTTPS, as well as the proper design of Web pages that will be served over HTTPS .

Adam also discusses the potential for DNSSEC and certificate verification, some-
thing that I had really hoped he would do . Paul Vixie’s article about DNSSEC in the
October 2011 issue had gotten me more interested in the potential for DNSSEC to
help with the complex issue of certificate authorities, and Adam presents a clear
and direct browser developer’s perspective .

Sliding more directly into the intersection of sysadmin and security, Jan
Schaumann tells us about a tool he wrote while working at Yahoo! that has since
been released as open source . Jan’s tool, sigsh, allows the execution of shell scripts
that have been signed by authorized users . The signature verifies both the integrity
of the script and that the script itself has been authorized for use . Just by main-
taining the public key file found on the servers—in this case, many thousands of
distributed systems—arbitrary commands can be executed safely for the purposes
of system maintenance .

Patrick Debois completes the lineup with an article about DevOps from the sys-
admin’s perspective . As DevOps is LISA ’11’s theme, I wanted to understand more
about it . And Patrick, as one of the standard bearers for this movement, seemed
like just the person to write about DevOps . Patrick does a great job of explaining
both the motivation behind DevOps and the goals that can be achieved through its
use .

Columns

David Blank-Edelman explains how you can invoke Perl from within your favorite
text editor and perform useful, Perl-related tasks . I had often wondered if David
just might be a bit obsessive, because of the way he would line everything up just
so in his code examples . It turns out he wasn’t wasting time, but was using Perl

 ;login: DECEMBER 2011 Musings 5

modules invoked from within his editor of choice to beautify his code . David also
explains other tools you can use . Thanks, David, as I for one am relieved .

Dave Josephsen has found a new suite of system monitoring tools, Graphite, that
has got him excited . Graphite is a game changer, writes Dave, and consists of three
Python programs: Whisper is a reimplementation of a round-robin data program,
Carbon collects data from the network and writes it to Whisper, and Graphite
(with the same name as the suite) provides the Web front end . Dave promises to
write much more about the elegant solution provided by Graphite in future col-
umns .

Robert Ferrell decided to stick to writing about exploits . Well, sort of . Robert
engages in a search for the real meaning of “exploit,” and the outcome is as unpre-
dictable as ever .

Elizabeth Zwicky tells us about the books she has been reading, including two that
consider what motivates people—in this case, two very distinct groups of people .
She also reviews a book about software quality and statistics (another of her favor-
ite topics) . Sam Stover, meanwhile, got really excited about the new Kevin Mitnick
book . While Mitnick will always be a villain in many people’s eyes, Sam loved the
way Mitnick and his co-author manage to tell stories with many technical details
while taking the reader for a great ride . I don’t expect that this book will change
anyone’s feelings about Mitnick, but it will certainly educate anyone who reads it
about the hacking scene in the 1990s, as well as how one of the most accomplished
hackers of that era went about learning his craft .

We also have reports from the Security Symposium and many of the co-located
workshops . We had a good crew of summarizers, as well as lots of fascinating
presentations . I particularly enjoyed the Symposium, which I spent mainly in
the Papers track, as well as WOOT and HotSec . But those just represent my own
interests .

Besides the summaries, USENIX also provides both recordings and videos of most
presentations . These are available online, via the pages for the Symposium and
the workshops . Also, as of this August, thanks to the support of you, the members,
USENIX expanded its Open Access policy to open all videos to everyone .

I want to leave you with a couple of thoughts . Back in the ’90s, when Kevin Mitnick
was plying his skills with great success, few people knew, or cared, about computer
and network security . That lack of concern helped people like Mitnick simply
because people were not expecting to be compromised .

Today, things are a little different . Having watched organizations that should not
be vulnerable fall to fairly simple attacks, organizations such as security compa-
nies, security contractors, defense contractors, and even a certificate authority,
expectations are different . People have grown to expect that their systems will be
exploited . That is even more true for desktop users, where being able to do what-
ever the user wants to do, including entertainment, is the norm for both work and
home systems .

If we want to have more secure systems, we will need to accept some changes .
The Sassaman proposal that appears in this issue provides a concrete step toward
creating more secure programs in the future, as well as identifying programs and
protocols that can never be made secure . Perhaps the best we can do is to sandbox
the unsafe programs as best we can . But that works poorly when the program in

 6 ;login: VOL. 36, NO. 6

question has access to our personal information or defense secrets . In those cases,
the Sassaman proposal becomes a much more critical tool for deciding what proto-
cols can be used when security is required .

References

[1] Edward J . Schwartz, Thanassis Avgerinos, and David Brumley, “Q: Exploit
Hardening Made Easy,” Proceedings of the 20th USENIX Security Symposium
(USENIX Security ’11): http://www .usenix .org/events/sec/tech/full_papers/
Schwartz .pdf .

[2] James Oakley and Sergey Bratus, “Exploiting the Hard-Working DWARF:
Trojan and Exploit Techniques with No Native Executable Code,” 5th USENIX
Workshop on Offensive Technologies: http://www .usenix .org/events/woot11/tech/
final_files/Oakley .pdf .

[3] The Firewall Toolkit: http://www .fwtk .org/fwtk/ .

[4] Dutch CA compromised: https://www .net-security .org/secworld .php?id=11565 .

 ;login: DECEMBER 2011 7

SECURITY
You might not be aware of it, but your operating system is defending you from
software attacks: Microsoft Windows, Mac OS X, and Linux all include operat-
ing system (OS)–level defenses . In this article, I focus on two modern defenses:
address space layout randomization (ASLR) and data execution prevention (DEP) .
The beauty of these defenses is that they have little runtime overhead and can
provide some protection for all programs—even ones with serious vulnerabilities—
without requiring access to the program’s source code . This flexibility comes with
a tradeoff, however: the deployed defenses are not perfect . In this article, I shed
some light on how these defenses work, when they work, and how the presence of
unrandomized code can allow attackers to bypass them .

To understand the motivation behind ASLR and DEP, we need to understand the
exploits they were designed to protect against . Specifically, when we say exploit
in this article, we are referring to a control flow hijack exploit . Control flow hijack
exploits allow an attacker to take control of a program and force it to execute arbi-
trary code .

At a high level, all control flow exploits have two components: a computation and
a control hijack . The computation specifies what the attacker wants the exploit to
do . For example, the computation might create a shell for the attacker or create a
back-door account . A typical computation is to spawn a shell by including execut-
able machine code called shellcode .

The control hijack component of an exploit stops the program from executing its
intended control flow and directs (hijacks) execution to attacker-selected code
instead . In a traditional stack-based buffer overflow vulnerability, the attacker
overflows a buffer and overwrites control structures such as function pointers or
saved return addresses . As long as the attacker knows the address of his shellcode
in memory, the attacker can hijack control of the program by overwriting one
of these structures with the shellcode’s address . In this article, I will call such
exploits that use shellcode and a pointer to the shellcode traditional exploits . Such
an exploit is illustrated in Figure 1 .

Figure 1: Anatomy of a traditional code injection exploit

The Danger of Unrandomized Code
E D W A R D J . S C H W A R T Z

Ed is currently working on his

PhD in computer security at

Carnegie Mellon University.

His current research interests

include operating system defenses and

automatic discovery and exploitation of

security bugs.

edmcman@cmu.edu

Shellcode Padding
Address of
Shellcode

Higher Memory Addresses

Points To

 8 ;login: VOL. 36, NO. 6

Non-Executable Memory

Operating systems have two primary defenses against traditional exploits, called
DEP and ASLR . Data execution prevention (DEP) [8] stops an attacker from inject-
ing her own code and then executing it . This effectively prevents the shellcode in
traditional exploits from executing successfully . DEP is based on a simple policy:
memory should be writable or executable, but never both, at program runtime . To
understand the motivation for this policy, consider user input . User input must be
written somewhere to memory at runtime, and thus cannot be executable when
DEP is enforced . Since shellcode is user input and thus not executable, an exploit
utilizing shellcode will crash when DEP is enabled, and the attacker will not be
able to execute her computation .

At a high level, DEP sounds like a great defense; it prevents shellcode, and many
existing exploits that rely on shellcode will therefore not work . However, one
practical limitation is that some programs, such as JIT (just-in-time) compilers,
intentionally violate the DEP policy . If DEP is simply enabled for all programs,
these programs would stop functioning correctly . As a result, some DEP imple-
mentations only protect code modules explicitly marked as DEP-safe .

Another, more fundamental problem is that even when DEP is enabled, code reuse
attacks can encode a computation in a way that bypasses the defense entirely . The
idea is that rather than injecting new code into the program, the attacker reuses the
executable code that is already there . Because user input is not directly executed,
DEP does not prevent the attack .

To perform code reuse attacks, the attacker can find gadgets, which are short
instruction sequences that perform useful actions . For instance, a gadget might
add two registers, or load bytes from memory to a register . The attacker can then
chain such gadgets together to perform arbitrary computations . One way of chain-
ing gadgets is to look for instruction sequences that end in ret . Recall that ret
is equivalent to popping the address on the top of the stack and jumping to that
address . If the attacker controls the stack, then she can control where the ret will
jump to . This is best demonstrated with an example .

Assume that the attacker controls the stack and would like to encode a computa-
tion that writes 0xdeadbeef to memory at address 0xcafecafe . Consider what
happens if the attacker finds the gadget pop %eax; ret in the executable segment
of libc and transfers controls there . The instruction pop %eax will pop the current
top of the stack—which the attacker controls—and store it in the register %eax .
The ret instruction will pop the next value from the stack—which the attacker
also controls—and jump to the address corresponding to the popped value . Thus, a
ret instruction allows the attacker to jump to an address of her choosing, and the
gadget pop %eax; ret allows the attacker to place a value of her choosing in %eax
and then jump to an address of her choosing . Similarly, pop %ebp; ret allows the
attacker to control %ebp and jump somewhere . Finally, if the attacker transfers
control to the gadget movl %eax, (%ebp); ret, it will move the value in %eax to the
memory address specified in %ebp . By executing these three gadgets in that order,
the attacker can control the values in %eax and %ebp and then cause the value in
%eax to be written to the address in %ebp . In this way the attacker can perform an
arbitrary memory write . Figure 2 illustrates a code reuse payload for using these
gadgets .

 ;login: DECEMBER 2011 The Danger of Unrandomized Code 9

Figure 2: Example of a code reuse payload

Krahmer [3] pioneered the idea of using simple gadgets like these to call functions,
which he called the borrowed code chunks technique . Later, Shacham [12] found a
set of gadgets in libc that could execute arbitrary programs (or, more formally, arbi-
trary Turing machines) . Shacham’s technique is facetiously called return oriented
programming (ROP), due to the ret at the end of each gadget . Both Krahmer’s and
Shacham’s techniques demonstrate that code reuse can allow very serious attacks
when DEP is the only defense enabled .

Randomizing Code Layout

Address space layout randomization (ASLR) [7] is the second primary OS defense .
ASLR breaks code reuse attacks by randomizing the location of objects in memory .
The idea is that, at some point, exploits need to know something about the layout
of memory . For instance, the traditional exploit (shown in Figure 1) uses a pointer
to the attacker’s shellcode . Similarly, a ROP payload (shown in Figure 2) includes
addresses of gadgets in program or library code . If the attacker sets one of these
pointers incorrectly, the exploit will fail and the program will probably crash .

It might seem that ASLR completely prevents ROP from succeeding deterministi-
cally . If ASLR implementations were perfect, this could be true for some programs .
Unfortunately, in practice, ASLR implementations leave at least small amounts of
code unrandomized, and this unrandomized code can still be used for ROP .

The details of what gets randomized and when differ for each operating system .
On Linux, shared libraries like libc are always randomized, but the program image
itself cannot be randomized without incurring a runtime performance penalty .
Windows is capable of randomizing both program images and libraries without
overhead, but will only do so for modules marked as ASLR-safe when compiled .
Although Microsoft’s Visual Studio C++ 2010 compiler now marks images as
ASLR-safe by default, a great deal of software still contains some modules marked
as ASLR-unsafe [9, 6] .

These limitations beg the question of why modern operating systems don’t
randomize all code in memory . On Linux, the reason is because randomizing the
program image adds a runtime overhead . Linux programs must be compiled as
position-independent executables (PIEs) for the program image to be randomized .
On x86 Linux, PIEs run 5–10% slower than non-PIEs [14], but not for x86-64 .

Interestingly, the Windows ASLR implementation does not have this problem . The
difference is related to how the OSes share code between processes . For instance,
if 10 processes of the same program are open, the OS should only have to allocate
memory for one copy of the code . One challenge for these shared code mechanisms
is that code often needs to refer to objects in memory by their absolute addresses
(which might not be known at link time, because of ASLR) . Linux uses PIEs to

addr1

0xdeadbeef

addr2

0xcafecafe

addr3

nextAddr

pop %eax

ret

pop %ebp

ret

ret

H
ig
h
er

M
em

or
y

32-bits
Consumed By
Instruction

 10 ;login: VOL. 36, NO. 6

address this problem . PIEs replace each use of an absolute address with a table
lookup, which is where the 5–10% overhead comes from . On Windows, the shared
code implementation does not require PIEs (and avoids the 5–10% overhead) but
typically randomizes each code module only once per boot as a result . Even though
Windows can fully randomize program images and libraries with little overhead,
it does leave code unrandomized if it is not marked as ASLR-safe, to avoid break-
ing old third-party programs or libraries which might assume they are always
loaded at the same address [6] . This tension between backwards compatibility and
security is not just limited to ASLR, either; Windows by default will only protect
modules with DEP if they are explicitly marked as safe .

Unrandomized Code

Until fairly recently, it hasn’t been clear how dangerous it is to leave small amounts
of code unrandomized . Prior work has shown that large unrandomized code bases
are very dangerous [12, 3] . For instance, we know we can execute arbitrary pro-
grams using libc, which is approximately 1 .5 MB . But what can an attacker do with
only 20–100 KB of unrandomized code from a program image?

There is already some evidence that even these small amounts of code can lead to
successful exploits . Although academic research on ROP has typically focused on
Turing completeness, attackers get by in practice with only a few types of gadgets .
For instance, rather than encoding their entire computations using ROP, attackers
often include shellcode in their exploit but use ROP to disable DEP and transfer
control to the shellcode . This can be done by calling the mprotect and VirtualPro-

tect functions on Linux and Windows, respectively . Many real-world exploits that
use these techniques can be found in Metasploit [4], for instance .

Evaluating how applicable these attacks are on large scale is difficult, for two rea-
sons . First, it is intuitively harder to reuse code when there is less code to choose
from . This means it will take longer to manually find useful gadgets in the program
image of /bin/true than it will to find gadgets in libc . Second, the unrandomized
code in each program is usually different . This implies that we have to look for dif-
ferent ROP gadgets in every program we would like to exploit . Clearly, constructing
ROP attacks by hand for a large number of programs is a tedious and potentially
inconsistent task . To evaluate how universal ROP attacks can be, some form of
automation is needed . This has motivated some of the joint research with my col-
leagues, Thanassis Avgerinos and David Brumley .

Specifically, we wanted to know how much unrandomized code is needed for
attackers to launch practical attacks such as calling system(‘/bin/bash’) . To
study this, we built an automated ROP system, Q [11], that is specifically designed
to work with small amounts of code, similar to what you might find in a program
image . Q takes as input a binary and a target computation and tries to find a
sequence of instructions in the binary that is semantically equivalent to the target
computation .

The results from our experiments surprised us . Very little code is actually neces-
sary to launch practical ROP attacks . If a function f is linked by the vulnerable
program, then Q could create a payload to call f with any arguments in 80% of pro-
grams, as long as the program was at least as large as the /bin/true command (20
KB) . However, attackers often want to call a function g in libc (or another library)
that the program did not specifically link . Q was able to create payloads for calling
g with any argument in 80% of programs at least as big as nslookup (100 KB) .

 ;login: DECEMBER 2011 The Danger of Unrandomized Code 11

These results are particularly disturbing, because /bin/true and nslookup are
much smaller than the programs often targeted by real attackers .

Other attacks, such as derandomizing libc, can be performed with even greater
probability [10] . Derandomizing libc allows the attacker to call functions in libc,
but does not necessarily allow the attacker to specify pointer arguments when
ASLR randomizes the stack and heap . So, the attacker can call exit(1) but not
necessarily system(‘/bin/bash’) . Even with this restriction, this is a dangerous
attack . This type of attack has been shown to be possible in 96% of executables as
large as /bin/true (20 KB) .

Researchers [13] have also noted that the implementations of ASLR on x86 only
randomize by 16 bits . This means that an attacker can expect her attack to work
after approximately 216 = 65536 attempts, which is feasible . The suggested fix for
this particular problem is to upgrade to a 64-bit architecture .

Defenses

Given that attacks like ROP are so dangerous against ASLR and DEP, it is natural
to think of defenses against such attacks . One natural defense against ROP is to
disallow unrandomized code in memory . Unfortunately, for performance and back-
wards compatibility reasons, this is unlikely to happen by default on x86 Windows
and Linux . However, Microsoft has released the Enhanced Mitigation Experience
Toolkit (EMET) [5], which allows system administrators to force full randomiza-
tion for selected executables . On Linux, achieving full randomization is possible,
but requires recompilation of programs as position-independent executables
(PIEs) and incurs a noticeable performance overhead .

A number of other defenses have been proposed to thwart ROP attacks . Many of
these defenses are based on the assumption that ROP gadgets always end with a
ret instruction . Unfortunately, researchers [2] have proven that this assumption
is not always true, suggesting that more general defenses, such as control flow
integrity (CFI) [1], are needed in practice . Although researchers consider CFI and
similar defenses to be low overhead, operating system developers seem unwilling
to add defenses with any overhead or backwards compatibility problems . Thus,
developing a negligible-overhead defense that can prevent ROP without compat-
ibility problems remains an important open problem .

Conclusion

ASLR and DEP are important and useful defenses when used together, but can be
undermined when unrandomized code is allowed by the operating system . Recent
research [11, 10] has shown that as little as 20 KB of unrandomized code is enough
to enable serious attacks when ASLR and DEP are enabled . Unfortunately, modern
operating systems currently allow more than 20 KB of unrandomized code, which
is unsafe . Until this is remedied, ASLR and DEP are more likely to slow an attacker
down than to prevent a reliable exploit from being developed .

References

[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti, “Control-Flow
Integrity Principles, Implementations, and Applications,” ACM Transactions on
Information and System Security, vol . 13, no . 1, October 2009 .

 12 ;login: VOL. 36, NO. 6

[2] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi,
Hovav Shacham, and Marcel Winandy, “Return-Oriented Programming without
Returns,” Proceedings of the ACM Conference on Computer and Communications
Security, 2010 .

[3] Sebastian Krahmer, “x86-64 Buffer Overflow Exploits and the Borrowed Code
Chunks Exploitation Technique,” 2005: http://www .suse .de/~krahmer/no-nx .pdf .

[4] Metasploit: http://metasploit .org .

[5] Microsoft: Enhanced Mitigation Experience Toolkit v2 .1, May 2011: z://www .
microsoft .com/download/en/details .aspx?id=1677 .

[6] Microsoft, SDL Progress Report, 2011: http://www .microsoft .com/download/
en/details .aspx?id=14107 .

[7] PaX Team, PaX Address Space Layout Randomization (ASLR): http://
pax .grsecurity .net/docs/aslr .txt .

[8] PaX Team ., PaX Non-executable Stack (NX): http://pax .grsecurity .net/docs/
noexec .txt .

[9] Alin Rad Pop (Secunia Research), “DEP/ASLR Implementation Progress in
Popular Third-Party Windows Applications”: http://secunia .com/gfx/pdf/
DEP_ASLR_2010_paper .pdf, 2010 .

[10] Giampaolo Fresi Roglia, Lorenzo Martignoni, Roberto Paleari, and Danilo
Bruschi, “Surgically Returning to Randomized lib(c),” Proceedings of the Annual
Computer Security Applications Conference, 2009, pp . 60–69 .

[11] Edward J . Schwartz, Thanassis Avgerinos, and David Brumley, “Q: Exploit
Hardening Made Easy,” Proceedings of the USENIX Security Symposium, 2011 .

[12] Hovav Shacham, “The Geometry of Innocent Flesh on the Bone: Return-into-
libc without Function Calls (on the x86),” Proceedings of the ACM Conference on
Computer and Communications Security, October 2007, pp . 552–561 .

[13] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu,
and Dan Boneh, “On the Effectiveness of Address-Space Randomization,” Proceed-
ings of the ACM Conference on Computer and Communications Security, 2004, pp .
298–307 .

[14] Ubuntu wiki, Security Features: https://wiki .ubuntu .com/Security/
Features?action=recall&rev=52 .

 ;login: DECEMBER 2011 13

Hacker-driven exploitation research has developed into a discipline of its own,
concerned with practical exploration of how unexpected computational properties
arise in actual multi-layered, multi-component computing systems, and of what
these systems could and could not compute as a result . The staple of this research
is describing unexpected (and unexpectedly powerful) computational models
inside targeted systems, which turn a part of the target into a so-called “weird
machine” programmable by the attacker via crafted inputs (a .k .a . “exploits”) .
Exploits came to be understood and written as programs for these “weird
machines” and served as constructive proofs that a computation considered
impossible could actually be performed by the targeted environment .

This research defined and fulfilled the need of such practical exploration in real
systems that we must trust . Hacker research has also dominated this area, while
academic analysis of the relevant computational phenomena lagged behind .

We show that at its current sophistication and complexity, exploitation research as
a discipline has come full circle to the fundamental questions of computability and
language theory . Moreover, application of language-theoretic and computation-
theoretic methods in it has already borne impressive results, helping to discover
and redefine computational models and weaknesses previously overlooked . We
believe it is time to bring the hacker craft of finding and programming “weird
machines” inside targets and the theorists’ understanding of computational
models together for the next step in designing secure, trustworthy computing
systems .

Exploit Programming

From Buffer Overflows to “Weird Machines” and
Theory of Computation

S E R G E Y B R A T U S , M I C H A E L E . L O C A S T O , M E R E D I T H L . P A T T E R S O N ,
L E N S A S S A M A N , A N D A N N A S H U B I N A

In memory of Len Sassaman, who articulated many of the following observations, connecting the mun-
dane and the deeply theoretical aspects of hacking .

Sergey Bratus is a Research

Assistant Professor of

Computer Science at

Dartmouth College. He sees

state-of-the-art hacking as a distinct research

and engineering discipline that, although not

yet recognized as such, harbors deep insights

into the nature of computing. He has a PhD

in mathematics from Northeastern University

and worked at BBN Technologies on natural

language processing research before coming to

Dartmouth.

sergey@cs.dartmouth.edu

Michael E. Locasto is an

assistant professor in

the Computer Science

Department at the University

of Calgary. He seeks to understand why it

seems difficult to build secure, trustworthy

systems and how we can get better at it. He

graduated magna cum laude from The College

of New Jersey (TCNJ) with a BSc degree in

computer science. Dr. Locasto also holds an

MSc and PhD from Columbia University.

locasto@ucalgary.ca

Meredith L. Patterson is a

software engineer at Red

Lambda. She developed

the first language-theoretic

defense against SQL injection in 2005, as a

PhD student at the University of Iowa, and has

continued expanding the technique ever since.

She lives in Brussels, Belgium.

mlp@thesmartpolitenerd.com

Len Sassaman was a PhD

student in the COSIC research

group at Katholieke Universiteit

Leuven. His early work with the

Cypherpunks on the Mixmaster anonymous

remailer system and the Tor Project helped

establish the field of anonymity research, and

in 2009 he and Meredith Patterson began

formalizing the foundations of language-

theoretic security, which he was working on at

the time of his death in July 2011. He was 31.

Anna Shubina chose “Privacy”

as the topic of her doctoral

thesis and was the operator

of Dartmouth’s Tor exit node

when the Tor network had about 30 nodes

total. She is currently a research associate

at the Dartmouth Institute for Security,

Technology, and Society and manages the

CRAWDAD.org repository of traces and data

for all kinds of wireless and sensor network

research.

ashubina@cs.dartmouth.edu

 14 ;login: VOL. 36, NO. 6

The Rise of the Weird Machines

It is hard to say exactly when their story began; chances are that at the beginning
they were thought of as just handy tricks to assist more important techniques
rather than the essence of exploitation .

The classic “Smashing the Stack for Fun and Profit” by Aleph One [11] manages to
explain the conversion of an implicit input data flow into altered program control
flow in two short paragraphs:

So a buffer overflow allows us to change the return address of a function .
In this way we can change the flow of execution of the program

strcpy() will then copy [the shellcode] onto buffer without doing any
bounds checking, and will overflow the return address, overwriting it
with the address where our code is now located . Once we reach the end of
main and it tried to return it jumps to our code, and execs a shell .

For readers who concentrated on the details of constructing the shellcode (and
encountered a hands-on exposition of syscalls and ABI for the first time), it was
easy to miss the fact that both the implicit data flow and the subsequent transfer
of control were performed by the program’s own code, borrowed by the exploit for its
own purposes . Yet it was this borrowed code, the copying loop of strcpy() and the
function’s post-amble, that added up to the “remote execution” call as good as any
API, into which the shellcode was fed .

This borrowing turned out to be crucial, far more important than the details of
shellcode’s binary instructions, as Solar Designer showed next year (1997): more
of the target’s code could be borrowed . In fact, enough code could be borrowed that
there was no longer any need to bring any of your own executable code to drop a
shell—the target process’s runtime already conveniently included such code, in
libc . One just needed to arrange the overwriting stack data the way that borrowed
code expected it, faking a stack frame and giving control to the snippet inside libc’s
exec() .

This was a handy technique for bypassing non-executable stack protections, and
it was pigeonholed by many as such . But its real meaning was much deeper: the
entire process’s runtime address space contents were ripe for borrowing, as long as
one spoke the language of implicit data flows (owing to the target’s input handling
of logic flaws or features) that those borrowed pieces understood .

The borrowings did not need to be a one-off: they could be chained . Quoting all of
non-code contents of Tim Newsham’s 2000 post that probably holds the record for
fewest words per idea value:

Here’s an overflow exploit [for the lpset bug in sol7 x86] that works on a
non-exec stack on x86 boxes . It demonstrates how it is possible to thread
together several libc calls . I have not seen any other exploits for x86 that
have done this . [10]

It was soon generalized to any code snippets present in the target, unconstrained
by the code’s originally intended function or granularity . Borrowed pieces of code
could be strung together, the hijacked control flow linking them powered by their
own effects with the right crafted data arranged for each piece . Gerardo (gera)
Richarte, presenting this technique, wrote less than half a year later: “Here I pre-
sent a way to code any program, or almost any program, in a way such that it can be

 ;login: DECEMBER 2011 Exploit Programming 15

fetched into a buffer overflow in a platform where the stack (and any other place in
memory, but libc) is executable” [12] .

So exploitation started to look like programming—with crafted input data for
overflows or other memory corruptions—in really weird assembly-like instruc-
tions (“weird instructions”) borrowed from the target . Nergal’s “Advanced return-
into-lib(c) Exploits” [9] described the chaining of faked overflow-delivered stack
frames in detail, each borrowed post-amble with its RET instruction bringing the
control flow back to the next faked frame, and out into the target’s code or libraries,
in careful stitches . Also, the granularity of features so stitched can be mixed-and-
matched: should the load addresses of the desired snippets be obscured (e .g ., with
the help of PaX hardening), then why not craft the call to the dynamic linker itself
to resolve and even load the symbols, as is its job, let it do its thing, and then go back
to snippet-stitching?

It does feel weird to so program with crafted data, but then actual assembled
binary code is nothing but data to the CPUs in its fetch-decode-execute cycle,
snippets of silicon circuits responsible for performing predictable actions when fed
certain formatted inputs, then fetching more inputs . The exploit merely makes a
“processor” out of the borrowed target code snippets, which implement the “weird
instructions” just as digital logic implements conventional ones .

Altogether, they make up a “weird machine” inside the target on which the crafted-
input program executes .

“Weird instructions” can be subtle, multi-step, and spread through the target’s
execution timeline . The original combination of strcpy() and a RET was a fair
example, but just about any interface or library data interpretation code may offer a
graceful specimen .

For example, Doug Lea’s original memory allocator implementation keeps the freed
blocks in a doubly linked list, realized as pointers in chunk headers interspersed
with the chunks themselves . A bug in code writing to a heap-allocated buffer may
result in a write past the end of the buffer’s malloc-ed chunk, overwriting the next
chunk’s header with our crafted data . When the overwritten chunk is free-ed, the
allocator’s bookkeeping code will then traverse and patch the doubly linked list
whose pointers we now control . This gives us a “weird MOV instruction” that takes
four overwritten chunk header bytes and writes them where another four bytes are
pointing!

This is beautiful, and we can program with it, if only we can cause the overwrite of
a freed block and then cause the free() to happen . Such “weird instruction” tech-
niques derived from a combination of an application-specific dynamically allo-
cated buffer overwrite that corrupts the chunk headers and the normal malloc-ed
chunk maintenance code are explained in detail in “Vudo malloc tricks” and “Once
upon a free()” [7, 1] .

Another famous example of a “weird instruction” is provided by the (in)famous
printf-family format string vulnerabilities (in which the attacker could control the
format string fed to aprintf()) . From the computational point of view, any imple-
mentation of printf() must contain a parser for the format string, combined with
an automaton that retrieves the argument variable’s values from the stack and con-
verts them to the appropriate string representations as specified by the %-expres-
sion . It was not commonly understood, however, that the %n specifier in the format
string caused that automaton to write the length of the output string printed so

 16 ;login: VOL. 36, NO. 6

far to the stack-fetched address—and therefore the attacker who controlled the
format string and the quantity of output could write that length-of-output to some
completely unanticipated address! (Even though printf was not passed a proper
pointer to such a variable, it would grab whatever was on the stack at the offset that
argument would be at, and use that as a pointer .)

What unites the printf’s handling of the format string argument and an imple-
mentation of malloc? The “weird instruction” primitives they supply to exploits .
This strange confluence is explained in “Advanced Doug Lea’s malloc Exploits” [5],
which follows the evolution of the format string-based “4-bytes-write-anything-
anywhere” primitive in “Advances in Format String Exploitation” [14] to the
malloc-based “almost arbitrary 4 bytes mirrored overwrite,” for which the authors
adopted a special “weird assembly” mnemonic, aa4bmo .

Such primitives enable the writing of complex programs, as explained by Gerardo
Richarte’s “About Exploits Writing” [13]; Haroon Meer’s “The(Nearly) Complete
History of Memory Corruption” [8] gives a (nearly) complete timeline of memory
corruption bugs used in exploitation .

Remarkably, weird machines can be elicited from quite complex algorithms such
as the heap allocator, as Sotirov showed with his “heap feng shui” techniques
[16] . The algorithm can be manipulated to place a chunk with a potential memory
corruption next to another chunk with the object where corruption is desired .
The resulting implicit data flow from the bug to the targeted object would seem
“ephemeral” or improbable to the programmer, but can in fact be arranged by a
careful sequence of allocation-causing inputs, which help instantiate the “latent”
weird machine .

The recent presentation by Thomas Dullien (aka Halvar Flake) [3], subtitled “Pro-
gramming the ‘Weird Machine,’ Revisited,” links the craft of exploitation at its best
with the theoretical models of computation . He confirms the essence of exploit
development as “setting up, instantiating, and programming the weird machine .”

The language-theoretic approach we discuss later provides a deeper understand-
ing of where to look for “weird instructions” and “weird machines”—but first we’ll
concentrate on what they are and what they tell about the nature of the target .

Exploitation and the Fundamental Questions of Computing

Computer security’s core subjects of study—trust and trustworthiness in comput-
ing systems—involve practical questions such as “What execution paths can pro-
grams be trusted to not take under any circumstances, no matter what the inputs?”
and “Which properties of inputs can a particular security system verify, and which
are beyond its limits?” These ultimately lead to the principal questions of computer
science since the times of Church and Turing: “What can a given machine com-
pute?” and “What is computable?”

The old anecdote of the Good Times email virus hoax provides a continually
repeated parable of all security knowledge . In the days of ASCII text-only email,
the cognoscenti laughed when their newbie friends and relatives forwarded around
the hoax warning of the woes to befall whoever reads the fateful message . We knew
that an ASCII text could not possibly hijack an email client, let alone the rest of
the computer . In a few years, however, the laugh was on us, courtesy of Microsoft’s
push for “e-commerce-friendly” HTMLized email with all sorts of MIME-enabled
goodies, including “active” executable code . Suddenly, seriously giving “security”

 ;login: DECEMBER 2011 Exploit Programming 17

advice to not “open” or “click” emails from “untrusted sources” was a lesser evil, all
the sarcastic quotes in this paragraph notwithstanding . So long as our ideas met
the computational reality we were dead right, and then those of us who missed the
shift were embarrassingly wrong .

Successful exploitation is always evidence of someone’s incorrect assumptions
about the computational nature of the system—in hindsight, which is 20-20 . The
challenge of practical security research is to reliably predict, expose, and demon-
strate such fallacies for common, everyday computing systems—that is, to develop
a methodology for answering or at least exploring the above fundamental questions
for these systems . This is what the so-called “attack papers” do .

What “Attack Papers” Are Really About

There is a growing disconnect between the academic and the practitioner sides of
computer security research . On the practitioner side, so-called “attack papers”—
which academics tend to misunderstand as merely documenting attacks on pro-
grams and environments—are the bread and butter of practical security (hacker)
education, due to their insights into the targets’ actual computational properties
and architectures . On the academic side, however, the term “attack paper” has
become something of a pejorative, implying a significant intellectual flaw, an
incomplete or even marginal contribution .

However, a review of the often-quoted articles from Phrack, Uninformed .org, and
similar sources reveals a pattern common to successful papers . These articles
describe what amounts to an execution model and mechanism that is explicitly or
implicitly present in the attacked environment—unbeknownst to most of its users
or administrators . This mechanism may arise as an unforeseen consequence of
the environment’s design, or due to interactions with other programs and environ-
ments, or be inherent in its implementation .

Whatever the reasons, the point of the description is that the environment is
capable of executing unforeseen computations (say, giving full shell control to the
attacker, merely corrupting some data, or simply crashing) that can be reliably
caused by attacker actions—essentially, programmed by the attacker in either
the literal or a broader sense (creating the right state in the target, for example, by
making it create enough threads or allocate and fill enough memory for a probabi-
listic exploitation step to succeed) .

The attack then comes as a constructive proof that such unforeseen computations
are indeed possible, and therefore as evidence that the target actually includes the
described execution model (our use of “proof” and “evidence” aims to be rigorous) .
The proof is accomplished by presenting a computationally stronger automaton
or machine than expected . Exploit programming has been a productive empirical
study of these accidental or unanticipated machines and models and of the ways
they emerge from bugs, composition, and cross-layer interactions .

Following [2], we distinguish between formal proofs and the forms of mathemati-
cal reasoning de-facto communicated, discussed, and checked as proofs by the
community of practicing mathematicians . The authors observe that a long string
of formal deductions is nearly useless for establishing believability in a theorem,
no matter how important, until it can be condensed, communicated, and verified
by the mathematical community . The authors of [2] extended this community

 18 ;login: VOL. 36, NO. 6

approach to validation of software—which, ironically, the hacker research commu-
nity approaches rather closely in its modus operandi, as we will explain .

In other words, a hacker research article first describes a collection of the target’s
artifacts (including features, errors, and bugs) that make the target “programma-
ble” for the attacker . These features serve as an equivalent of elementary instruc-
tions, such as assembly instructions, and together make up a “weird machine”
somehow embedded in the target environment . The article then demonstrates the
attack as a program for that machine—and we use the word “machine” here in the
sense of a computational model, as in “Turing machine,” and similar to “automa-
ton” in “finite automaton .”

Accordingly, the most appreciated part of the article is usually the demonstration
of how the target’s features and bugs can be combined into usable and convenient
programming primitives, as discussed above . The attack itself comes almost as a
natural afterthought to this mechanism description .

Exploits Are Working, Constructive Proofs of the Presence of a
“Weird Machine”

It may come as a great surprise to academic security researchers that the practice
of exploitation has provided an empirical exploration methodology—with strong
formal implications .

For decades, hacker research on exploitation was seen by academia as at best a use-
ful sideshow of vulnerability specimens and ad hoc attack “hacks,” but lacking in
general models and of limited value to designers of defenses . The process of finding
and exploiting vulnerabilities was seen as purely opportunistic; consequently,
exploiting was not seen as a source of general insights about software or computing
theory .

However, as we mentioned above, a more attentive examination of exploit structure
and construction shows that they are results akin to mathematical proofs and are
used within the community in a similar pattern . Just like proofs, they are checked
by peers and studied for technical “tricks” that made them possible; unlike most
mathematical proofs, they are runnable, and are in a sense dual to correctness
proofs for software such as the seL4 project .

This proof’s syntactic expression is typically a sequence of crafted inputs—col-
loquially known as the “exploit,” the same term used for the program/script that
delivers these inputs—that reliably cause the target to perform a computation it
is deemed incapable of (or does so with no less than a given probability) . In some
cases—arguably, the most interesting, and certainly enjoying a special place of
respect among hackers—these crafted inputs are complemented with physical
manipulations of the targeted computing environment, such as irradiating or
otherwise “glitching” IC chips, or even controlling the values of the system’s analog
inputs .

The semantics of the exploit is that of a program for the target’s computational
environment in its entirety, i .e ., the composition of all of its abstraction layers,
such as algorithm, protocol, library, OS API, firmware, or hardware . This composi-
tion by definition includes any bugs in the implementation of these abstractions,
and also any potential interactions between these implementations . The practi-
cal trustworthiness of a computer system is naturally a property of the composed

 ;login: DECEMBER 2011 Exploit Programming 19

object: a secure server that relies on buggy libraries for its input processing is
hardly trustworthy .

Constructing “Weird Machines”

From the methodological point of view, the process of constructing an exploit for a
platform (common server or application software, an OS component, firmware, or
other kind of program) consists of :

 1 . identifying computational structures in the targeted platform that allow the
attacker to affect the target’s internal state via crafted inputs (e .g ., by memory
corruption);

 2 . distilling the effects of these structures on these inputs to tractable and isolat-
able primitives;

 3 . combining crafted inputs and primitives into programs to comprehensively
manipulate the target computation .

The second and third steps are a well-understood craft, thanks to the historical
work we described . The first step, however, requires further understanding .

Halvar Flake [3] speaks of the original platform’s state explosion in the presence
of bugs . The exploded set of states is thus the new, actual set of states of the target
platform .

As much as the “weird machines” are a consequence of this state explosion, they
are also defined by the set of reliably triggered transitions between these “weird”
states . It is the combination of the two that make up the “weird machine” that is,
conceptually, the substrate on which the exploit program runs, and, at the same
time, proves the existence of the said “weird machine .” In academic terms, this is
what the so-called “malicious computation” runs on .

From the formal language theory perspective, these transitions define the compu-
tational structure on this state space that is driven by the totality of the system’s
inputs, in turn determining which states are reachable by crafted inputs such as
exploit programs . The “weird machine,” then, is simply a concise description of the
transition-based computational structures in this exploded space .

In this view, the exploitation primitives we have discussed provide the state transi-
tions that are crucial for the connectivity of the “weird states” graph’s components .
In practice, the graph of states is so large that we study only these primitives, but it
is the underlying state space that matters .

In a nutshell, it is only a comprehensive exploration of this space and transitions in
it that can answer the fundamental question of computing trustworthiness: what
the target can and cannot compute . The language-theoretic approach is a tool for
study of this space, and it may be the only hope of getting it right .

The Next Step: Security and Computability

The language-theoretic approach and “weird machines” meet at exploitation .

Practical exploration of real-world computing platforms has led to a discipline
whose primary product is concise descriptions of unexpected computation models
inherent in everyday systems . The existence of such a model is demonstrated by
creating an exploit program for the target system in the form of crafted inputs that
cause the target to execute it .

 20 ;login: VOL. 36, NO. 6

This suggests that studying the target’s computational behavior on all possible
inputs as a language-theoretic phenomenon is the way forward for designing
trustworthy systems: those that compute exactly what we believe, and do not com-
pute what we believe they cannot . Starting at the root of the problem, exploits are
programs for the actual machine—with all its weird machines—presented as input
(which is what “crafted” stands for) .

This approach was taken by Sassaman and Patterson in their recent research [15,
6] . They demonstrate that computational artifacts (which, in the above terms,
make “weird machines”) can be found by considering the target’s input-processing
routines as recognizers for the language of all of its valid or expected inputs .

To date, language-theoretic hierarchies of computational power, and the targets’
language-theoretic properties, were largely viewed as orthogonal to security, their
natural application assumed to be in compilation and programming language
design . Sassaman and Patterson’s work radically changes this, and demonstrates
that theoretical results are a lot more relevant to security than previously thought .

Among the many problems where theory of computation and formal languages
meets security, one of paramount importance to practical protocol design is algo-
rithmically checking the computational equivalence of parsers for different classes
of languages that components of distributed systems use to communicate . Without
such equivalence, answering the above questions for distributed or, indeed, any
composed systems becomes mired in undecidability right from the start . The key
observation is that the problem is decidable up to a level of computational power
required to parse the language, and becomes undecidable thereafter—that is,
unlikely to yield to any amount of programmer effort .

This provides a mathematical explanation of why we need to rethink the famous
“Postel’s Principle”—which coincides with Dan Geer’s reflections on the historical
trend of security issues in Internet protocols [4] .

References

[1] “Once upon a free(),” Phrack 57:9: http://phrack .org/issues .html?issue=57&id=9 .

[2] Richard A . DeMillo, Richard J . Lipton, and Alan J . Perlis, “Social Processes and
Proofs of Theorems and Programs,” technical report, Georgia Institute of Tech-
nology, Yale University, 1982: http://www .cs .yale .edu/publications/techreports/
tr82 .pdf .

[3] Thomas Dullien, “Exploitation and State Machines: Programming the ‘Weird
Machine,’ Revisited,” Infiltrate Conference presentation, April 2011: http://www
 .immunityinc .com/infiltrate/2011/presentations/Fundamentals_of_exploitation
_revisited .pdf .

[4] Dan Geer, “Vulnerable Compliance,” ;login: The USENIX Magazine, vol . 35, no .
6, December 2010: http://db .usenix .org/publications/login/2010-12/pdfs/geer .pdf .

[5] jp, “Advanced Doug Lea’s malloc Exploits,” Phrack 61:6: http://phrack .org/
issues .html?issue=61&id=6 .

[6] Dan Kaminsky, Len Sassaman, and Meredith Patterson, “PKI Layer Cake: New
Collision Attacks against the Global X .509 Infrastructure,” Black Hat USA, August
2009: http://www .cosic .esat .kuleuven .be/publications/article-1432 .pdf .

 ;login: DECEMBER 2011 Exploit Programming 21

[7]Michel “MaXX” Kaempf, “Vudo malloc Tricks,” Phrack 57:8: http://phrack .org/
issues .html?issue=57&id=8 .

[8] Haroon Meer, “The (Almost) Complete History of Memory Corruption
Attacks,” Black Hat USA, August 2010 .

[9] Nergal, “Advanced return-into-lib(c) Exploits: PaX Case Study,” Phrack 58:4:
http://phrack .org/issues .html?issue=58&id=4 .

[10] Tim Newsham, “Non-exec Stack,” Bugtraq, May 2000: http://seclists .org/
bugtraq/2000/May/90 (pointed out by Dino Dai Zovi) .

[11] Aleph One, “Smashing the Stack for Fun and Profit,” Phrack 49:14 . http://
phrack .org/issues .html?issue=49&id=14 .

[12] Gerardo Richarte, “Re: Future of Buffer Overflows,” Bugtraq, October 2000:
http://seclists .org/bugtraq/2000/Nov/32 .

[13] Gerardo Richarte, “About Exploits Writing,” Core Security Technologies pre-
sentation, 2002 .

[14] riq and gera, “Advances in Format String Exploitation,” Phrack 59:7: http://
phrack .org/issues .html?issue=59&id=7 .

[15] Len Sassaman and Meredith L . Patterson, “Exploiting the Forest with Trees,”
Black Hat USA, August 2010 .

[16] Alexander Sotirov, “Heap Feng Shui in JavaScript,” Black Hat Europe, April
2007: http://www .blackhat .com/presentations/bh-europe-07/Sotirov/
Presentation/bh-eu-07-sotirov-apr19 .pdf .

 22 ;login: VOL. 36, NO. 6

Everyday computer insecurity has only gotten worse, even after many years of
concerted effort . We must be missing some fundamental yet easily applicable
insights into why some designs cannot be secured, how to avoid investing in them
and re-creating them, and why some result in less insecurity than others . We posit
that by treating valid or expected inputs to programs and network protocol stacks
as input languages that must be simple to parse we can immensely improve security .
We posit that the opposite is also true: a system whose valid or expected inputs
cannot be simply parsed cannot in practice be made secure.

In this article we demonstrate why we believe this a defining issue and suggest
guidelines for designing protocols as secure input languages—and, thus, secure
programs . In doing so, we link the formal languages theory with experiences and
intuitions of both program exploitation and secure programming .

Indeed, a system’s security is largely defined by what computations can and cannot
occur in it under all possible inputs . Parts of the system where the input-driven
computation occurs are typically meant to act together as a recognizer for the
inputs’ validity (i .e ., they are expected to reject bad inputs) . Exploitation—an unex-
pected input-driven computation—usually occurs there as well; thinking of it as an
input language recognizer bug helps find it (as we will show) .

Crucially, for complex inputs (input languages) the recognition that matches the
programmer’s expectations can be equivalent to the “halting problem”—that is,
UNDECIDABLE . Then no generic algorithm to establish the inputs’ validity is

The Halting Problems of Network Stack
Insecurity
L E N S A S S A M A N , M E R E D I T H L . P A T T E R S O N , S E R G E Y B R A T U S ,
A N D A N N A S H U B I N A

Len Sassaman was a PhD

student in the COSIC

research group at Katholieke

Universiteit Leuven. His early

work with the Cypherpunks on the Mixmaster

anonymous remailer system and the Tor

Project helped establish the field of anonymity

research, and in 2009 he and Meredith began

formalizing the foundations of language-

theoretic security, which he was working on at

the time of his death in July 2011. He was 31.

Meredith L. Patterson is a

software engineer at Red

Lambda. She developed

the first language-theoretic

defense against SQL injection in 2005 as a

PhD student at the University of Iowa and has

continued expanding the technique ever since.

She lives in Brussels, Belgium.

mlp@thesmartpolitenerd.com

Sergey Bratus is a Research

Assistant Professor of

Computer Science at

Dartmouth College. He sees

state-of-the-art hacking as a distinct research

and engineering discipline that, although not

yet recognized as such, harbors deep insights

into the nature of computing. He has a PhD in

Mathematics from Northeastern University

and worked at BBN Technologies on natural

language processing research before coming to

Dartmouth.

sergey@cs.dartmouth.edu

Anna Shubina chose “Privacy”

as the topic of her doctoral

thesis and was the operator

of Dartmouth’s Tor exit node

when the Tor network had about 30 nodes

total. She is currently a research associate

at the Dartmouth Institute for Security,

Technology, and Society, and manages the

CRAWDAD.org repository of traces and data

for all kinds of wireless and sensor network

research.

ashubina@cs.dartmouth.edu

 ;login: DECEMBER 2011 The Halting Problems of Network Stack Insecurity 23

SIDEBAR

The Chomsky hierarchy ranks languages
according to their expressive power in a strict
classification of language/grammar/automata
classes that establishes a correspondence
between language classes, their grammars,
and the minimum strength of a computational
model required to recognize and parse them .

Regular languages, the weakest class of lan-
guages, need only a finite state machine and
can be parsed with regular expressions .

Unambiguous context-free grammars, the first
class that allows some recursively nested data
structures, need deterministic pushdown
automata (i .e ., they require adding a stack to
the limited memory of a finite state machine) .

Ambiguous context-free grammars need non-
deterministic pushdown automata to account
for ambiguity .

The more powerful classes of languages,
context-sensitive languages and recursively
enumerable languages, require linear bounded
automata and Turing machines, respectively,
to recognize them . Turing-recognizable lan-
guages are UNDECIDABLE . There is a bound-
ary of decidability which it is unwise for an
input language or protocol designer to cross, as
is discussed in Principle 1 (p . 29, below) .

For the regular and deterministic context-free
grammars, the equivalence problem—do two
grammars produce exactly the same lan-
guage?—is DECIDABLE . For all other classes
of grammar, the equivalence problem is
UNDECIDABLE, and they should be avoided
wherever security relies on computational
equivalence of parser implementations, as
Principle 2 posits .

possible, no matter how much effort is put into making the input data
“safe .” In such situations, whatever actual checks the software per-
forms on its inputs at various points are unlikely to correspond to the
programmer assumptions of validity or safety at these points or after
them . This greatly raises the likelihood of exploitable input handling
errors .

A protocol that appears to frustratingly resist efforts to implement it
securely (or even to watch it effectively with an IDS) behaves that way,
we argue, because its very design puts programmers in the position of
unwittingly trying to solve (or approximate a solution to) an UNDE-
CIDABLE problem . Conversely, understanding the flavor of mismatch
between the expected and the required (or impossible) recognizer
power for the protocol as an input language to a program eases the task
of 0-day hunting .

Yet we realize it is all too easy to offer general theories of insecurity
without improving anything in practice . We set the following three-
pronged practical test as a threshold for a theory’s usefulness, and hope
to convince the reader that ours passes it . We posit that a theory of inse-
curity must:

u explain why designs that are known to practitioners as hard to secure
are so, by providing a fundamental theoretical reason for this hard-
ness;

u give programmers and architects clear ways to avoid such designs in
the future, and prevent them from misinvesting their effort into try-
ing to secure unsecurable systems rather than replacing them;

u significantly facilitate finding insecurity when applied to analysis
of existing systems and protocols—that is, either help point out new
classes of 0-day vulnerabilities or find previously missed clusters of
familiar ones .

As with any attempted concise formulation of a general principle,
parts of an up-front formulation may sound similar to some previously
mooted pieces of security wisdom; to offset such confusion, we precede
the general principles with a number of fundamental examples . We
regret that we cannot review the large corpus of formal methods work
that relates to various aspects of our discussion; for this, we refer the
reader to our upcoming publications (see langsec .org) .

The Need for a New Understanding of Computer
(In)Security

Just as usefulness of a computing system and its software in particu-
lar has become synonymous with it being network-capable, network-
accessible, or containing a network stack of its own, we are clearly at an
impasse as to how to combine this usefulness with security .

A quote commonly attributed to Einstein is, “The significant problems
we face cannot be solved at the same level of thinking we were at when
we created them .” We possess sophisticated taxonomies of vulnerabili-
ties and, thanks to hacker research publications, intimate knowledge
of how they are exploited . We also possess books on how to program

 24 ;login: VOL. 36, NO. 6

securely, defensively, and robustly . Yet for all this accumulated knowledge and
effort, insecurity prevails—a sure sign that we are still missing this “next level” in
theoretical understanding of how it arises and how to control it .

A Language Theory Look at Exploits and Their Targets

The “common denominator” of insecurity is unexpected computation (a .k .a . “mali-
cious computation”) reliably caused by crafted inputs in the targeted computing
environment—to the chagrin of its designers, implementers, and operators . As we
point out in [2], this has long been the intuition among hacker researchers, leading
them to develop a sophisticated approach that should inform our theoretical next
step .

The exploit is really a program that executes on a collection of the target’s compu-
tational artifacts, including bugs such as memory corruptions or regular features
borrowed for causing unexpected control or data flows . The view of creating
exploits as a kind of macro-assembler programming with such artifacts as “primi-
tives” or macros has firmly established itself (e .g ., [3]), the full collection of such
artifacts referred to as a “weird machine” within the target . In these terms, “mali-
cious computation” executes on the “weird machine,” and, vice versa, the weird
machine is what runs the exploit program .

The crucial observation is that the exploit program, whatever else it is, is expressed
as crafted input and is processed by the target’s input processing routines . Fur-
thermore, it is these processing routines that either provide the bugs for the weird
machine’s artifacts or allow crafted input clauses to make their way to such arti-
facts further inside the target .

Thus a principled way to study crafted input exploit programs and targets in
conjunction is to study both the totality of the target’s intended or accepted inputs
as a language in the sense of the formal language theory, and the input-handling
routines as machines that recognize this language . This means, in turn, that evalu-
ating the design of the program’s input-handling units and the program itself based
on the properties of these languages is indispensable to security analysis .

Throughout this article, we refer to a program’s inputs and protocols interchange-
ably, to stress that we view protocols as sequences of inputs, which for every
intended or accepted protocol exchange or conversation should be considered as a
part of the respective input language . Moreover, we speak of applications’ inputs
and network stack inputs interchangeably, as both stack layers and applications
contain input-handling units that form an important part of the overall system’s
attack surface .

Let us now apply this general principle to the study of insecurities and finding
0-days in network stacks . We will then explain how it quantifies the hardness of
secure design and testing, and helps the designers steer around potentially unse-
curable or hard-to-secure designs .

We note that although insecurity obviously does not stop at input handling (which
our own examples of composition-based insecurity will illustrate), a provably
correct input parser will greatly reduce the reachable attack surface—even though
it lacks the magical power to make the system unexploitable . Moreover, the
language-theoretic approach applies beyond mere input-parsing, as it sheds light
on such questions as, “Can a browser comprehensively block ‘unsafe’ JavaScript for
some reasonable security model and what computational power would be required
to do so?” and “Does JSON promote safer Web app development?”

 ;login: DECEMBER 2011 The Halting Problems of Network Stack Insecurity 25

Language-theoretic Attacks on Protocol Parsers

Since the 1960s, programming-language designers have employed automated
parser generators to translate the unique defining grammar of a machine-parsable
language into a parser for that language . Every parser for a given language or
protocol is also a recognizer for that language: it accepts strings (e .g ., binary byte
strings) that are valid in its language, and rejects invalid ones—and is therefore a
security-crucial component . Although this approach has been of great benefit to
compiler and interpreter design, it has largely gone unused with respect to protocol
design and implementation—at great detriment to security .

Most protocol implementations, in particular network protocol stacks, are still
built on essentially handwritten recognizers . This leads to implementation errors
that introduce security holes or actually accept a broader set of strings than the
protocol recognizes . This, in turn, propagates security problems into other imple-
mentations that need to accommodate the broken implementation (e .g ., several
Web servers incorrectly implement TLS/SSL 3 .0 in order to interoperate with
Internet Explorer [9]) .

Furthermore, most approaches to input validation also employ handwritten rec-
ognizers, at most using regular expressions to whitelist acceptable inputs and/or
blacklist potentially malicious ones . Such recognizers, however, are powerless to
validate stronger classes of languages allowing for recursively nested data struc-
tures, such as context-free languages, which require more powerful recognizers .
The sidebar (p . 23, above) describes the Chomsky hierarchy of language grammar
classes and their respective recognizer automata classes, by the required computa-
tional strength .

This suggests that our language-theoretic approach should reveal clusters of
potential 0-days in network stacks, starting at the top, and descending through
the middle layers to its very bottom, the PHY layer . Indeed, consider the following
examples .

X.509 Parsing

In [8], Kaminsky, Patterson, and Sassaman observed that ASN .1 requires a
context-sensitive parser, but the specification of ASN .1 is not written in a way con-
ducive to implementing a parser generator, causing ASN .1 parsers to be handwrit-
ten . The parse trees generated by these parsers would thus most likely be different,
and their mismatches would indicate potential vulnerabilities .

The authors examined how different ASN .1 parsers handle X .509 documents,
focusing on unusual representations of their components, such as Common Name .
The results of this examination were numerous vulnerabilities, some of which,
when exploited, would allow an attacker to claim a certificate of any site .

Here are just two examples of the many problems with X .509 they discovered using
this method:

 1 . Multiple Common Names in one X .509 Name are handled differently by dif-
ferent implementations . The string CN=www.badguy.com/CN=www.bank.com/

CN=www.bank2.com/CN=* will pass validation by OpenSSL, which returns only

 26 ;login: VOL. 36, NO. 6

the first Common Name, but authenticate both www .bank .com and www .bank2 .
com for Internet Explorer, and authenticate all possible names in Firefox .

 2 . Null terminators in the middle of an X .509 Name can cause some APIs to see dif-
ferent names than others . In case of the name “www .bank .com00 .badguy .com,”
some APIs would see “badguy .com,” but IE’s CryptoAPI and Firefox’s NSS will
see “www .bank .com” . Due to NSS’s permissive parsing of wildcards, it would also
accept a certificate for “*00 .badguy .com” for all possible names .

It should be stressed that individual protocol parser vulnerabilities can be found
in other ways; for instance, the second item above was independently discovered
by Moxie Marlinspike . However, by themselves they may look like “random” bugs
and show neither the size of the attack surface nor the systematic nature of the
implementers’ errors, whereas a language-theoretic analysis reveals the roots of
the problem; the difference is that between finding a nugget and striking a gold
mine of 0-days .

SQL Parsing and Validation

In [7], Hansen and Patterson discuss SQL injection attacks against database
applications . SQL injection attacks have been extremely successful, due to both
the complicated syntax of SQL and application developers’ habit of sanitizing SQL
inputs by using regular expressions to ban undesirable inputs, whereas regular
expressions are not powerful enough to validate non-regular languages .

In particular, SQL was context-free until the introduction of the WITH RECUR-
SIVE clause, at which point it became Turing-complete [4] (although in some
SQL dialects it may also be possible to concoct a Turing machine using triggers
and rules; we are indebted to David Fetter for this observation) . Mere regular
expressions, which recognize a weaker class of languages, could not validate (i .e .,
recognize) it even when it was context-free . Turing completeness makes validation
hopeless, since recognizing such languages is an undecidable problem . Trying to
solve it in all generality is a misinvestment of effort .

The authors suggest that a correct way to protect from SQL injection is to define a
safe subset of SQL, which is likely to be a very simple language for any particular
application accepting user inputs, and to proceed by generating a parser for that
language . This approach offers complete security from SQL injection attacks .

Generalization: Parse Tree Differential Analysis

In [8] Kaminsky, Sassaman, and Patterson further generalized their analysis
technique to arbitrary protocols, developing the parse tree differential attack, a
powerful technique for discovering vulnerabilities in protocol implementations,
generating clusters of 0-days, and saving effort from being misinvested into incor-
rect solutions . This attack compares parse trees corresponding to two different
implementations of the same protocol . Any differences in the parse trees indicate
potential problems, as they demonstrate the existence of inputs that will be parsed
differently by the two implementations .

This method applies everywhere where structured data is marshalled into a string
of bytes and passed to another program unit, local or remote . In particular, it
should be a required part of security analysis for any distributed system’s design .
We will discuss its further implications for secure composition below .

 ;login: DECEMBER 2011 The Halting Problems of Network Stack Insecurity 27

IDS Evasion and Network Stack Fingerprinting

Differences in protocol parsing at Layers 3 and 4 of TCP/IP network stacks have
long been exploited for their fingerprinting (by Nmap, Xprobe, etc .) . Then it was
discovered that the impact of these differences on security was much stronger
than just enabling reconnaissance: network streams could be crafted in ways that
made the NIDS or “smart” firewalls “see” (i .e ., have its network stack reassemble)
completely different session contents than the targets they protected .

The seminal 1998 paper by Ptacek and Newsham [10] was the first to broach this
new research direction . A lot of work followed; for a brief summary see [11] . In
retrospect, Ptacek and Newsham’s paper was a perfect example of analysis that
implicitly treated network protocol stacks’ code as protocol recognizers . It also
suggested that the target and the NIDS were parts of a composed system, and a
NIDS’s security contribution was ad hoc at best (and negative at worst, for creating
a false expectation of security) unless it matched the target in this composition .

Digital Radio Signaling

Recent discovery of overlooked signaling issues as deep as the PHY layer of a broad
range of digital radio protocols (802 .15 .4, Bluetooth, older 802 .11, and other popu-
lar RF standards) [6] shows another example of a surprisingly vulnerable design
that might have gone differently had a language-theoretic approach been applied
from the start—and that language-theoretic intuitions have helped to uncover .

The authors demonstrated that the abstraction of PHY layer encapsulation of Link
Layer frames in most forms of unencrypted variable-frame-length digital radio
can be violated simply by ambient noise . In particular, should the preamble or Start
of Frame Delimiter (SFD) be damaged, the “internal” bytes of a frame (belonging
to a crafted higher layer protocol payload) can be received by local radios as a PHY
layer frame . This essentially enables remote attackers who can affect payloads at
Layer 3 and above on the local RF to inject malicious frames without ever owning
a radio .

This is certainly not what most Layer 2 and above protocol engineers expect of
these PHY layer implementations . From the language recognizer standpoint,
however, it is obvious that the simple finite automaton used to match the SFD in
the stream of radio symbols and so distinguish between the noise, signaling, and
payloads can be easily tricked into “recognizing” signaling as data and vice versa .

Defensive Recognizers and Protocols

To complete our outlook, we must point to several successful examples of program
and protocol design that we see as proceeding from and fulfilling related intu-
itions .

The most recent and effective example of software specifically designed to address
the security risks of an input language in common Internet use is Blitzableiter by
Felix ‘FX’ Lindner and Recurity Labs [12, 13] . It takes on the task of safely recog-
nizing Flash, arguably the most complex input language in common Internet use,
due to two versions of bytecode allowed for backward compatibility and the com-
plex SWF file format; predictably, Flash is a top exploitation vector with continu-
ally surfacing vulnerabilities . Blitzableiter (a pun on lightning rod) is an armored
recognizer for Flash, engineered to maximally suppress implicit data and control
flows that help turn ordinary Flash parsers into “weird machines .”

 28 ;login: VOL. 36, NO. 6

Another interesting example is the observations by D .J . Bernstein on the 10 years
of qmail [13] . We find several momentous insights in these, in particular avoid-
ing parsing (i .e ., in our terms, dealing with non-trivial input languages) whenever
possible as a way of making progress in eliminating insecurity, and pointing to
handcrafting input-handling code for efficiency as a dangerous distraction . In
addition, Bernstein stresses using UNIX context isolation primitives as a way
of enforcing explicit data flows (in our terms, hobbling construction of “weird
machines”) . Interestingly, Bernstein also names the Least Privilege Principle—as
currently understood—as a distraction; we argue that this principle needs to be
updated rather than discarded, and we see Bernstein’s insights as being actually in
line with our proposed update (see below) .

There are also multiple examples of protocols designed with easy and unambigu-
ous parsing in mind . Lacking space for a comprehensive review of the protocol
design space, we point the reader to our upcoming publication, and only list a few
examples here:

u The ATM packet format is a regular language, the class of input languages
parsable with a finite-state machine, easiest to parse, which helps avoid signaling
attacks as discussed above . The same is true for other fixed-length formats .

u JSON is arguably the closest to our recommendation for a higher-layer language
for encoding and exchanging complex, recursive objects between parts of a
distributed program . Such a language needs to be context-free (the classic
example of this class is S-expressions), but not stronger .

Language-theoretic Principles of Secure Design

Decidability matters. Formally speaking, a correct protocol implementation is
defined by the decision problem of whether the byte string received by the stack’s
input handling units is a member of the protocol’s language . This problem has two
components: first, whether the input is syntactically valid according to the gram-
mar that specifies the protocol, and second, whether the input, once recognized,
generates a valid state transition in the state machine that represents the logic of
the protocol . The first component corresponds to the parser and the second to the
remainder of the implementation .

The difficulty of this problem is directly defined by the class of languages to which
the protocol belongs . Good protocol designers don’t let their protocols grow up to be
Turing-complete, because then the decision problem is UNDECIDABLE .

In practice, undecidability suggests that no amount of programmer or QA effort is
likely to expose a comprehensive selection of the protocol’s exploitable vulnerabilities
related to incorrect input data validity assumptions. Indeed, if no generic algorithm
to establish input validity is possible, then whatever actual validity checks the
software performs on its inputs at various points are unlikely to correspond to the
programmer’s assumptions of such validity . Inasmuch as the target’s potential
vulnerability set is created by such incorrect assumptions, it is likely to be large
and non-trivial to explore and prune .

From malicious computation as the basis of the threat model and the language-
theoretic understanding of inputs as languages, several bedrock security prin-
ciples follow:

 ;login: DECEMBER 2011 The Halting Problems of Network Stack Insecurity 29

Principle 1: Starve the Turing Beast—Request and Grant Minimal
Computational Power

Computational power is an important and heretofore neglected dimension of the
attack surface . Avoid exposing unnecessary computational power to the attacker .

An input language should only be as computationally complex as absolutely
needed, so that the computational power of the parser necessary for it can be mini-
mized . For example, if recursive data structures are not needed, they should not be
specified in the input language .

The parser should be no more computationally powerful than it needs to be . For
example, if the input language is context-free, then the parser should be no more
powerful than a deterministic pushdown automaton .

For Internet engineers, this principle can be expressed as follows:

u a parser must not provide more than the minimal computational strength neces-
sary to interpret the protocol it is intended to parse;

u protocols should be designed to require the computationally weakest parser
necessary to achieve the intended operation .

An implementation of a protocol that exceeds the computational requirements for
parsing that protocol’s inputs should be considered broken .

Protocol designers should design their protocols to be as weak as possible . Any
increase in computational strength of input should be regarded as a grant of
additional privilege, thus increasing security risk . Such increases should therefore
be entered into reluctantly, with eyes open, and should be considered as part of
a formal risk assessment . At the very least, the designer should be guided by the
Chomsky hierarchy (described in the sidebar, p . 23) .

Input-handling parts of most programs are essentially Turing machines, whether
this level of computational power is needed or not . From the previously discussed
malicious computation perspective of exploitation it follows that this delivers the
full power of a Turing-complete environment into the hands of the attacker, who
finds a way of leveraging it through crafted inputs .

Viewed from the venerable perspective of Least Privilege, Principle 1 states that
computational power is privilege, and should be given as sparingly as any other kind
of privilege to reduce the attack surface. We call this extension the Minimal Compu-
tational Power Principle .

We note that recent developments in common protocols run contrary to these
principles . In our opinion, this heralds a bumpy road ahead . In particular, HTML5
is Turing-complete, whereas HTML4 was not .

Principle 2: Secure Composition Requires Parser Computational
Equivalence

Composition is and will remain the principal tool of software engineering . Any
principle that aims to address software insecurity must pass the test of being
applicable to practical software composition, lest it forever remain merely theory .
In particular, it should specify how to maintain security in the face of (inevitable)
composition—including, but not limited to, distributed systems, use of libraries,
and lower-layer APIs .

 30 ;login: VOL. 36, NO. 6

From our language-theoretic point of view, any composition that involves convert-
ing data structures to streams of bytes and back for communications between
components necessarily relies for its security on the different components of the
system performing equivalent computations on the input languages .

However, computational equivalence of automata/machines accepting a language
is a highly non-trivial language-theoretic problem that becomes UNDECIDABLE
starting from non-deterministic context-free languages (cf . the sidebar for the
decidability of the equivalence problem) .

The X .509 example above shows that this problem is directly related to insecu-
rity of distributed systems’ tasks . Moreover, undecidability essentially precludes
construction of efficient code testing and/or verification algorithmic techniques
and tools .

On the Relevance of Postel’s Law

This leads to a re-evaluation of Postel’s Law and puts Dan Geer’s observations in
“Vulnerable Compliance” [5] in solid theoretical perspective .

Postel’s Robustness Principle (RFC 793), best known today as Postel’s Law, laid the
foundation for an interoperable Internet ecosystem . In his specification of TCP,
Postel advises to “be conservative in what you do, be liberal in what you accept
from others .” Despite being a description of the principle followed by TCP, this
advice became widely accepted in IETF and general Internet and software engi-
neering communities as a core principle of protocol implementation .

However, this policy maximizes interoperability at the unfortunate expense of
consistent parser behavior, and thus at the expense of security .

Why Secure Composition Is Hard

The second principle provides a powerful theoretical example of why composition—
the developer’s and engineer’s primary strategy against complexity—is hard to do
securely . Specifically, a composition of communicating program units must rely
on computational equivalence of its input-handling routines for security (or even
correctness when defined); yet such equivalence is UNDECIDABLE for complex
protocols (starting with those needing a nondeterministic pushdown automaton as
a recognizer of their input language), and therefore cannot in practice be checked
even for differing implementations of the same communication logic .

Conversely, this suggests a principled approach for reducing insecurity of composi-
tion: keep the language of the messages exchanged by the components of a system
to a necessary minimum of computational power required for their recognition .

Parallels with Least Privilege Principle

The understanding of “malicious computation” programmed by crafted inputs on
the “weird machine” made of a target’s artifacts as a threat naturally complements
and extends the Least Privilege Principle as a means of containing the attacker . In
particular, just as the attacker should not be able to spread the compromise beyond
the vulnerable unit or module, he should not be able to propagate it beyond the
minimal computational power needed . This would curtail his ability to perform
malicious computations .

 ;login: DECEMBER 2011 The Halting Problems of Network Stack Insecurity 31

Thus the Least Privilege Principle should be complemented by the Minimal Com-
putational Power Principle . This approach should be followed all the way from the
application protocol to hardware . In fact, we envision hardware that limits itself
from its current Turing machine form to weaker computational models according
to the protocol parsing tasks it must perform, lending no more power to the parsing
task than the corresponding language class requires—and therefore no more power
for the attacker to borrow for exploit programs in case of accidental exposure,
starving the potential “weird machines” of such borrowed power . This restriction
can be accomplished by reprogramming the FPGA to only provide the appropri-
ate computational model—say, finite automaton or a pushdown automaton—to
the task, with appropriate hardware-configured and enforced isolation of this
environment from others (cf . [1]) .

Conclusion

Computer security is often portrayed as a never-ending arms race between attack-
ers seeking to exploit weak points in software and defenders scrambling to defend
regions of an ever-shifting battlefield . We hold that the front line is, instead, a
bright one: the system’s security is defined by what computations can and can-
not occur in it under all possible inputs . To approach security, the system must be
analyzed as a recognizer for the language of its valid inputs, which must be clearly
defined by designers and understood by developers .

The computational power required to recognize the system’s valid input lan-
guage(s) must be kept at a minimum when designing protocols . This will serve
to both reduce the power the attacker will be able to borrow, and help to check
that handling of structured data across the system’s communicating compo-
nents is computationally equivalent . The lack of such equivalence is a core cause
of insecurity in network stacks and in other composed and distributed systems;
undecidability of checking such equivalence for computationally demanding (or
ambiguously specified) protocols is what makes securing composed systems hard
or impossible in both theory and practice .

We state simple and understandable but theoretically fundamental principles that
could make protection from unexpected computations a reality, if followed in the
design of protocols and systems . Furthermore, we suggest that in future designs
hardware protections should be put in place to control and prevent exposure of
unnecessary computational power to attackers .

References

[1] Sergey Bratus, Michael E . Locasto, Ashwin Ramaswamy, and Sean W . Smith,
“New Directions for Hardware-Assisted Trusted Computing Policies” (position
paper), 2008 .

[2] Sergey Bratus, Michael Locasto, Meredith L . Patterson, Len Sassaman, and
Anna Shubina, “Exploit Programming: From Buffer Overflows to Theory of Com-
putation,” in preparation .

[3] Thomas Dullien, “Exploitation and State Machines: Programming the ‘Weird
Machine,’ Revisited,” Infiltrate Conference, April 2011: http://www .immunityinc
 .com/infiltrate/presentations/Fundamentals_of_exploitation_revisited .pdf .

[4] David Fetter, “Lists and Recursion and Trees, Oh My!” OSCON, 2009 .

 32 ;login: VOL. 36, NO. 6

[5] Dan Geer, “Vulnerable Compliance,” ;login:, vol . 35, no . 6 (December 2010):
http://www .usenix .org/publications/login/2010-12/pdfs/geer .pdf .

[6] Travis Goodspeed, Sergey Bratus, Ricky Melgares, Rebecca Shapiro, and Ryan
Speers, “Packets in Packets: Orson Welles’ In-Band Signaling Attacks for Modern
Radios,” 5th USENIX Workshop on Offensive Technologies, August 2011: http://
www .usenix .org/events/woot11/tech/final_files/Goodspeed .pdf .

[7] Robert J . Hansen and Meredith L . Patterson, “Guns and Butter: Towards
Formal Axioms of Input Validation,” Black Hat USA, August 2005: http://
www .blackhat .com/presentations/bh-usa-05/BH_US_05-Hansen-Patterson/
HP2005 .pdf .

[8] Dan Kaminsky, Len Sassaman, and Meredith Patterson, “PKI Layer Cake: New
Collision Attacks against the Global X .509 Infrastructure,” Black Hat USA, August
2009: http://www .cosic .esat .kuleuven .be/publications/article-1432 .pdf .

[9] Katsuhiko Momoi, “Notes on TLS-SSL 3 .0 Intolerant Servers”: http://developer
 .mozilla .org/en/docs/Notes_on_TLS_-_SSL_3 .0_Intolerant_Servers, 2003 .

[10] Thomas H . Ptacek and Timothy N . Newsham, “Insertion, Evasion, and Denial
of Service: Eluding Network Intrusion Detection, “ technical report, Secure Net-
works, Inc ., January 1998: http://insecure .org/stf/secnet_ids/secnet_ids .html .

[11] Sumit Siddharth, “Evading NIDS, Revisited”: http://www .symantec .com/
connect/articles/evading-nids-revisited .

[12] Stefan Krempl, “Protection against Flash Security Holes,” December 30, 2009:
http://www .h-online .com/security/news/item/26C3-Protection-against-Flash
-security-holes-893689 .html .

[13] Felix “FX” Lindner, “The Compromised Observer Effect,” McAfee Security
Journal, 6 (2010): 16–19 .

[13] Daniel J . Bernstein, “Some Thoughts on Security after 10 Years of qmail 1 .0,”
November 1, 2007: cr .yp .to/qmail/qmailsec-20071101 .pdf .

 ;login: DECEMBER 2011 33

SYSADMIN
A number of factors are contributing to an increase in the number of Web sites that
choose to deploy HTTPS . Tools such as Firesheep [1] have highlighted the vulnera-
bility of the transport layer now that hosts are often connected via public, wireless
networks; at the much larger scale, there have been several instances of national-
level actors performing countrywide attacks [2, 3] .

As the incentives to use HTTPS have increased, the costs have decreased . CPU
time spent on SSL is a diminishing fraction for increasingly complex Web sites,
even as processing power becomes cheaper .

None of these forces seem likely to change, so running an HTTPS site is increas-
ingly likely to be part of your job in the future, if it isn’t already .

The Stripping Problem

When entering a URL into a browser’s address bar, few users bother to enter any
scheme part at all . Since the default scheme is HTTP, they are implicitly request-
ing an insecure connection . Although sites which use HTTPS pervasively will
immediately redirect them to an HTTPS URL, this gap is all an attacker needs . By
stopping the redirect, an attacker can proxy the real site over HTTP and effectively
bypass HTTPS entirely . Very observant users may notice the lack of security indi-
cations in their browser, but this is generally a very effective attack that is com-
monly known as SSL stripping, after the demonstration tool by Moxie Marlinspike
of the same name [4] .

HTTP Strict Transport Security (HSTS) [5] allows a Web site to opt in to being
HTTPS only . For an HSTS site, a browser will only send HTTPS requests, elimi-
nating the window of insecurity . HSTS is currently an IETF draft, but has already
been implemented by both Chrome and Firefox .

Web sites opt into HSTS by means of an HTTP header, such as:

Strict-Transport-Security: max-age=31536000; includeSubDomains

HSTS headers are only accepted over HTTPS to stop denial-of-service attacks .
The HSTS property is cached for the given number of seconds (about a year in this
example) and, optionally, also for all subdomains of the current domain . (Including
subdomains is highly recommended, as it stops an attacker from directing a user to
a subdomain over HTTP and capturing any domain-wide, insecure cookies .)

HSTS also makes certificate errors fatal for the site in question . As the Web has
penetrated into everyday life, users are now ordinary people, and asking them to

Beyond the Basics of HTTPS Serving
A D A M L A N G L E Y

Adam Langley is a software

engineer working on Google

Chrome.

agl@chromium.org

 34 ;login: VOL. 36, NO. 6

evaluate complex certificate validity questions is ridiculous . Fatal errors do, of
course, make it critical that you renew certificates in a timely fashion, but remain-
ing certificate validity should be part of any monitoring setup . It’s also important
that the names in your certificate match what you actually use . Remember that a
wildcard matches exactly one label . So * .example .com doesn’t match example .com
or foo .bar .example .com . Usually you want to request a certificate from your CA
that includes example .com and * .example .com .

As HSTS properties are learned on the first visit, there’s still a gap before a user
has visited a site for the first time where HSTS isn’t in effect . This gap is also
a problem after the user has cleared browsing history . In order to counter this,
Chrome has a built-in list of HSTS sites which is always in effect . High-security
sites are invited to contact the author in order to be included . Over time this list
may grow unwieldy, but that’s a problem that we would love to have . At the moment
the list is just over 60 entries, although that does include sites such as Gmail, Pay-
pal, and Twitter .

Mixed Scripting

Mixed scripting is a subset of the more general problem of mixed content . Mixed
content arises whenever an HTTPS origin loads resources over an insecure trans-
port . Since the insecure resources cannot be trusted, the security of the whole page
is called into question .

The impact of a mixed content error depends on the importance of the resource in
question . In the case of an insecure image, the attacker can only control that image .
However, in the case of JavaScript, CSS, and embedded objects, the attacker can
use them to take control of the whole page and, due to the same-origin policy, any
page in that origin . When these types of resources are insecure, we call it mixed
scripting because of the greatly increased severity of the problem .

Browsers typically inform the user of mixed scripting in some fashion, either by
removing the security indicators that usually come with HTTPS, or by highlight-
ing the insecurity itself . Chrome will track the problem across pages within the
same origin, which yields a more accurate indication of which pages are untrust-
worthy, even though this has confused some developers .

But years of nasty warnings have failed to solve the problem, and mixed scripting
is an insidious threat for sites that mix HTTP and HTTPS . Such sites will often
have HTTP pages that are not expected to be served over HTTPS, but which are
accessible as such . Since no normal interaction will lead to the HTTPS version, no
warnings will ever appear . But with mixed scripting the attacker gets to choose the
location . By injecting an iFrame or a redirect into any HTTP request (to any site),
an attacker can cause a browser to load a given HTTPS page . By picking a page
with mixed scripting, they can then hijack the insecure requests for resources and
compromise the origin .

The real solution is for browsers to block mixed script loads . Internet Explorer
version 9 already does this and Chrome will soon, so it’s past time to pay attention
to any mixed script warnings before your site breaks . But for other browsers, which
will still be dominant for many years to come, you have to make sure that there’s
no mixed scripting on any of your pages, by actively searching for them in the same
way that an attacker would (although some respite may come in the form of CSP,
which we’ll consider next) .

 ;login: DECEMBER 2011 Beyond the Basics of HTTPS Serving 35

Content Security Policy

I will only briefly reference CSP [6] here, as it’s a large topic and one that strays
outside of transport security . However, it is being implemented in both WebKit
and Firefox, and it allows a site, by means of another HTTP header, to limit the
origins from which active resources can be sourced . By using it to eliminate any
non-HTTPS origins, mixed scripting can be solved for the set of browsers that
implement CSP but don’t block by default .

CSP also has the ability to send reports back when it encounters a violation of the
policy . By monitoring these reports, a site can discover mixed-scripting errors that
real-world users are experiencing .

Secure Cookies

For sites that aren’t HSTS, it’s important that they mark any sensitive cookies as
“secure .” By default, the same origin policy for cookies does not consider port or
protocol [11] . So any insecure requests to the same domain will contain the full set
of cookies in the clear, where an attacker can capture them . Without HSTS, users
are likely to make HTTP requests even to HTTPS-only sites when they enter a
domain name to navigate .

Cookies marked as secure will only be sent over HTTPS . Even if your site is using
HSTS, with all subdomains included, you should still mark your sensitive cookies
as secure, simply as a matter of good practice .

DNSSEC and Certificate Verification

Once you have all of the above sorted out, you may want to worry about how
certificate verification works . The number of root certificate authorities trusted
by Windows, OS X, or Firefox may provoke worry in some quarters, but, due to an
unfortunate legacy, the situation is rather worse .

Normal certificates, used by sites for HTTPS, are end-entity certificates . They
contain a public key which is used to provide transport security for a host, and that
public key can’t be used to sign other certificates . But there are a number of cases
where organizations want an intermediate CA certificate, one that can be used to
sign other certificates . There do exist mechanisms for limiting the power of inter-
mediate CA certificates, but they are far from universally supported by clients,
which will often reject such certificates . This leads to intermediate CA certificates
typically being issued with the full signing power of the root CA that issues them .

Although the root CA is technically responsible for them, the identities of interme-
diate CA holders are not public, nor are the handling requirements that the root CA
imposes on them . Thanks to stellar work by the EFF [7], which crawled the Web
for the subset of intermediate CAs that have issued public Web site certificates, we
know that there are at least 1,482 such certificates held by an estimated 651 differ-
ent organizations .

This has prompted questions about the foundations of HTTPS and several efforts
to address the problem . Probably the most prominent area of focus for solutions
involves using DNSSEC, either as an alternative or as a constraint .

As a PKI, DNSSEC has much to commend it . Although it’s certainly not simple, it is
much less complex than PKIX (the standard for existing certificates) . It inherently

 36 ;login: VOL. 36, NO. 6

solves the intermediate CA problem, because of DNS’s hierarchical nature . It may
also encourage the use of HTTPS, because Web sites must already have a relation-
ship with a DNS registrar, who can also provide DNSSEC .

Most existing certificates are based on proving ownership of a DNS name, often
via email . These are called Domain Validation (DV) certificates and they funda-
mentally rest on DNS . A compromise of your DNS can easily be turned into a DV
certificate via an existing certificate authority, so DNSSEC has a good claim to
be at least as strong as DV certificates . (Extended Validation (EV) certificates
are significantly more rigorous and are not candidates for any of the measures
described here .)

With DNSSEC in hand, there are two broad categories of statements that we might
want to make about certificates . We might wish to exclude existing certificates
(“This site’s CA is X, accept nothing else”), or we might wish to authorize certifi-
cates that wouldn’t otherwise be valid (“X is a valid public key for this site”) . On
another axis, we might want these statements to be processed by clients or by CAs .

In the “exclusion” and “processed by CAs” corner, we have CA Authorization
(CAA) records [8] . These DNS records are designed to inform a CA whether they
are authorized to issue a certificate in a given domain . Although CAs will check
DNS ownership in any case, this provides a useful second line of defense, and,
since there aren’t many root CAs that issue to the general public, deployment is a
tangible goal in the medium term . Additionally, since DNSSEC is signature based,
CAs can retain the DNSSEC chain that they resolved as a proof of correctness in
the event of a dispute .

Covering both types of statements designed to be processed by clients is DANE [9],
and this is where much of the work is occurring . Although DANE is by no means
designed exclusively for browsers, browsers are the dominant HTTPS client on the
Internet at the moment and much of the discussion tends to start with them .

On that basis, it’s worth considering some of the headwinds that any DNSSEC
solution designed for browsers to implement will face .

First, DNSSEC resolution ability on the client is almost non-existent at the
moment . Without this, browsers would be forced to ship their own DNSSEC
resolver libraries, which is a degree of complexity and bloat that we would really
rather avoid . Even assuming that the client is capable of resolution, DNS is prob-
ably the most adulterated protocol on the Internet; it seems that every cheap
firewall and hotel network abuses and filters it . In an experiment conducted by a
large population of consenting Chrome users, around 0 .5–1% of DNS requests for a
random DNS resource record type (13172) failed to get any reply, even after retries,
for domain names that were known to exist . Based on this, any DNSSEC resolu-
tion will have to assume a significant amount of filtering and misbehavior of the
network when faced with DNSSEC record types .

These troubles suggest that any certificate exclusion will have a very troubled
deployment as, in order to be effective, exclusion has to block on getting a secure
answer . An exclusion scheme that can be defeated by filtering DNS requests is
ineffective . Even DNSSEC-based certificate authorization would be unreliable and
frustrating .

Setting aside the functionality problems for the moment, performance is also a
concern . In the same experiment described above, 2 .5% of the replies that were

 ;login: DECEMBER 2011 Beyond the Basics of HTTPS Serving 37

received arrived over 100 ms after the browser had set up a TCP connection to,
performed a TLS handshake with, and verified the certificate of the same domain
name . For authorization, the site bears the performance impact and so that, at
least, is tenable . For exclusion, with its blocking lookup, these penalties would be
imposed on every site .

Although DNSSEC resolution on the client would appear to face significant
hurdles, there are still options . First, for exclusion we could sacrifice the absolute
guarantees and use a learning scheme,as HSTS does . In this design, the lookups
would proceed asynchronously, but the results would be persisted by the browser
in order to protect future connections . This is workable, but a similar scheme that
used HSTS-like HTTP headers would be able to achieve the same results with
dramatically reduced complexity .

Finally, as DNSSEC is signature based, there’s no reason why DNSSEC records
have to be transported using the DNS protocol . If the correct data and signatures
can be delivered in another fashion, they can be verified just as well . So, as an
experiment, Chrome accepts a form of self-signed certificate that carries a DNS-
SEC chain proving its validity [10], effectively adding DNSSEC as another root
CA . Since it’ll be several decades before any new form of certificate can achieve 99
or even 95 percent acceptance in browsers, there’s no chance of major sites using
them . But there are many HTTPS sites on the Internet that don’t currently have a
valid certificate and this may be attractive for them . We’ll be evaluating the level of
support in twelve months and considering whether to continue the experiment .

In conclusion, there are several modern developments that HTTPS sites should be
planning and implementing right now . If nothing else, I highly recommend using
the HTTPS scanner at https://ssllabs .com to check your sites for any configuration
errors . Securing cookies and fixing mixed scripting is essential, and for sites that
are exclusively HTTPS, HSTS should be implemented . Certificate validation is
likely to see some changes in the coming years and it’s worth keeping an eye open,
even if there’s no immediate action needed for most sites .

References

[1] http://codebutler .com/firesheep .

[2] http://www .eff .org/deeplinks/2011/05/syrian-man-middle-against-facebook .

[3] https://www .eff .org/deeplinks/2011/08/iranian-man-middle-attack-against
-google .

[4] http://www .thoughtcrime .org/software/sslstrip/ .

[5] http://tools .ietf .org/html/draft-hodges-strict-transport-sec .

[6] https://wiki .mozilla .org/Security/CSP/Specification .

[7] https://www .eff .org/observatory .

[8] http://tools .ietf .org/html/draft-hallambaker-donotissue-04 .

[9] http://tools .ietf .org/html/draft-ietf-dane-protocol-11 .

[10] http://www .imperialviolet .org/2011/06/16/dnssecchrome .html .

[11] http://code .google .com/p/browsersec/wiki/Part2#Same-origin_policy_for
_cookies .

 38 ;login: VOL. 36, NO. 6

UNIX system accounts not bound to a particular user, so-called “headless user
accounts,” are frequently used to allow for automation of certain tasks . For secu-
rity reasons, such headless accounts usually have a very restricted shell, allowing
only a few select commands . At the same time, system administrators and service
engineers frequently have a need to let such accounts execute additional com-
mands, even though allowing an interactive shell is not an option . To address this
problem, we developed a command interpreter called sigsh [1] that requires a cryp-
tographic proof of authenticity and integrity (i .e ., a “signature”) by an authorized
party before it executes a set of commands . sigsh(1) is currently used by Yahoo! Inc .
on over a quarter-million hosts to help discover potential software vulnerabilities .

Systems engineers frequently make use of a headless account in order to, for exam-
ple, automate the transfer files in and out of a host, perform certain asynchronous
monitoring and reporting tasks, or run specific commands . In addition to possibly
diluting the audit trail of any such actions, such accounts may pose a risk if access
credentials (such as a public SSH key) are shared . To mitigate the risk of such an
account being used in unauthorized ways, it is common practice to restrict the set
of commands the account can execute to a select few . However, by restricting the
set of allowed commands, usability is lost; people frequently need to be able to run
additional commands not included in the restricted shell’s internal whitelist . As a
result, it is unfortunately not entirely uncommon for engineers to simply change
the restricted shell to a fully interactive shell, proving once more, “The more
secure you make something, the less secure it becomes” [2] .

The conundrum posed can thus be described as the need to combine the conflict-
ing requirements of unrestricted access for usability reasons with a restricted and
individually authenticated way to execute commands: what’s required is a way to
allow arbitrary commands, provided they were sanctioned by somebody we trust .
(“Arbitrary” here does not mean any random command, but, rather, any command
not previously whitelisted .)

Account Types and Trusted Commands

In general, headless user accounts can be grouped into the following categories:

u system accounts provided by the operating system (OS)
u headless accounts with a completely disabled shell (such as /sbin/nologin or

/usr/bin/false)
u headless accounts with a restricted shell
u headless account with an interactive shell

Of Headless User Accounts and Restricted
Shells
J A N S C H A U M A N N

Jan Schaumann is a Principal

Paranoid at Yahoo!, a

nice place to stay on the

Internet, where he worries

about scalable infrastructure and systems

architecture. He is also a part-time instructor

at Stevens Institute of Technology, where he

teaches classes in system administration as

well as in UNIX programming.

jschauma@netmeister.org

 ;login: DECEMBER 2011 Of Headless User Accounts and Restricted Shells 39

Let’s take a close look at each of these cases, focusing on two core components in
system security: data integrity and authenticity (the third main component, data
confidentiality, is, in this context of command execution, irrelevant, although
provided by the transport mechanism, that is, ssh/ssl) and the impact on the trust-
worthiness of the system as a whole .

System Accounts and Headless Accounts with Logins Disabled

The concept of system accounts and how they help implement the Principle of
Least Privilege is assumed to be understood, so allow me to simply assert that
these accounts are implicitly trusted to be running the given service (and any
processes forked off it), but are not trusted to execute anything else . The most
common examples for this type of account are the various system accounts used
by some of the standard UNIX daemons such as named (commonly used by the
DNS system), apache (commonly used by the Apache Web server) or sshd (used
by the SSH service for the explicit purpose of privilege separation), to name but a
few . With interactive logins explicitly disabled, they are included here purely for
completeness’ sake .

Headless Accounts with a Restricted Shell

Some headless accounts need to be able to run commands that are triggered
asynchronously . That is, while it’s possible to use these accounts to run sched-
uled commands (say, via cron(8)), their main purpose is to allow semi-interactive
access to the system from the outside . A typical setup consists of a system account
that is allowed to execute a pre-determined set of commands and a mechanism to
authenticate and trigger remote invocations of said commands, such as retrieval or
deposit of data files .

At Yahoo!, we usually perform these functions using a specific account included in
our OS images with a custom restricted shell . This shell only allows a select set of
commands (most notably the use of rsync(1), scp(1), and tar(1)) and is meant to let
engineers safely transfer files between hosts in an automated fashion . The inten-
tion here is to avoid letting a headless user account run arbitrary commands that
might be used to compromise a system .

The trust model for these kinds of accounts is somewhat complex: they are explic-
itly untrusted, but are simultaneously trusted to execute a very small set of com-
mands only, because their use has been reviewed and determined to not pose a risk
under the given circumstances (or, more precisely, the risk has been determined to
be outweighed by the functionality gained by allowing this use) .

The main problem with this approach is that it tries to impose a one-size-fits-all
solution on all use cases . If a specific command needs to be added to the list of
whitelisted executables, this requires careful review, as the command would then
be made available to all users of this restricted shell . Thus, any and all use cases of
the new command need to be considered (in contrast to the possibly very restric-
tive use case initially proposed) . At a company the size of Yahoo!, this opens up a
very wide field .

To illustrate the problem with this approach, consider the example of an often
requested feature addition for this shell, namely, to allow execution of the ln(1)
utility . Most specific use cases are non-controversial and ought to be allowed—
however, ln(1) is also frequently used to set up an attack known as a “symlink
race,” which is based on a race condition when creating temporary files leading to

 40 ;login: VOL. 36, NO. 6

information exposure or corruption . For this reason, ln(1) executions cannot be
approved as a generic command in this restricted shell .

Similarly, the existing feature in some shells to invoke a “restricted shell” (think
bash -r or rksh(1)) has proven itself to be much too stringent for practical use .
Many tasks that need to be run are impossible in such an environment; at the same
time, many such implementations can trivially be circumvented (for example, by
invoking an editor that allows you to invoke a new shell) .

Headless Account with an Interactive Shell

Due to the shortcomings of the restricted shell, and at times also simply due to
ignorance or laziness, some people set up headless users with a fully interactive
shell (for example, /bin/bash) .

The concern here is that this effectively opens up a regular user account for use
by many people and other automated systems . The more people have access to
the login credentials (i .e ., the ssh keys used to authorize as the headless account),
the more likely it is that these credentials might be compromised or abused, be
that by way of accidental exposure (granting read permissions to the private ssh
key to members outside of your team) or even maliciously . This, in turn, may lead
to unauthorized access to a host and any of the data stored on the host, enabling
a possible attacker not only to access specific data, but also to mount additional
privilege escalation attacks from inside the host .

With an interactive login shell, these accounts fall into a bizarre state of simul-
taneously being completely trusted (effectively, by virtue of being able to run any
given command) and explicitly not being trusted at all (implicitly, by being a head-
less user account; explicitly, by policy) .

A Signature Verifying Shell

To overcome the above-mentioned issues, a new solution is needed . Engineers
should be given the ability to define a wide range of commands to be run head-
lessly, but at the same time it must be ensured that they cannot cause problems by
being invoked in unintended ways . For example, the headless account should be
able to run ln -s <dated-dir> <dir> but not be allowed to ln -s /etc/passwd

/tmp/4jc5ba, for example .

Once we change the goal from trying to determine a fixed list of commands that
are always safe to execute—a difficult task, given the intentional flexibility of the
UNIX operating system family—and shift our focus to the underlying trust model,
it quickly becomes clear what is needed: a shell that verifies that the commands
it is about to execute come from a trusted user, but allowing such users to run
any command they choose . That is, we are not trying to protect the account from
authorized users running “bad” commands, but, rather, access by unauthorized
users to any commands .

To implement this new paradigm, we need a way to feed the shell a signature of
the code to be executed and for the shell to be able to verify validity and trustwor-
thiness of the signature . The most obvious solution for many people might be to
implement such signature verification using a PGP-based approach . However, even
though an entirely suitable solution, the UNIX-based tools that implement a PGP-
based public-key infrastructure may not be part of the basic OS images as installed
on all of your servers . To ensure ease of adoption of the new tool, the prerequisites

 ;login: DECEMBER 2011 Of Headless User Accounts and Restricted Shells 41

need to be restricted to the bare minimum . That is, the tool needs to work without
requiring installation of any additional packages .

Fortunately, there is another set of tools that can be used to accomplish the same
goal and which is included in most stock open source images as a core component .
The openssl(1) utility implements the de facto industry public-key cryptography
standard (PKCS) #7 secure message standard via its smime(1) utility, which
allows, among other things, for signature creation and verification of secure/multi-
purpose Internet mail extension (S/MIME) messages as defined in RFC 5751 . The
signing of such a message simultaneously provides message integrity (the message
was not modified in transport and is in fact what was sent) and authentication (the
origin of the message is confirmed) .

Even though S/MIME is, as the name suggests, mainly used in the context of
email, a “message” can of course be anything—a shell script, for example . That
means that you can authenticate and verify a given shell script so long as you have
the right certificates installed on the host in question:

openssl smime -verify -inform pem -CAfile \

 /etc/sigsh.pem <input

The certificate file found in /etc/sigsh .pem contains the public-key certificates
of all users who are authorized to sign commands for execution by this shell . A
certificate is generated via a command like the following:

openssl req -x509 -nodes -days <expiration> \

 -newkey rsa:2048 -batch \

 -keyout <keyfile> -out <certfile>

It is worth noting that this certificate creation is a one-time step to be issued by the
user in question and that /etc/sigsh .pem may contain any number of certificates .
That is, multiple people can simultaneously be allowed to sign scripts for execu-
tion, eliminating the possibility of a single point of failure .

Once a certificate has been created and the public component has been installed on
the desired hosts, a script can be signed for execution as follows:

openssl smime -sign -nodetach \

 -signer <public-cert> \

 -inkey <private-key> -in <script> \

 -outform pem

The result is a signed S/MIME message generated on stdout containing the given
script . This can be either directly piped into an ssh(1) connection to the given host
or simply stored in a separate file . Once signed, anybody can invoke the commands
so long as they have access to the signed script . This is of particular importance, as
it is desirable to limit the number of people able to sign scripts for remote execu-
tion by a headless account, but simultaneously to be able to let a larger number of
engineers, or even other systems, run the commands headlessly without opening
the door to let them run any other command .

Putting it all together, the following becomes a pipeline illustrating script signing,
verification, and execution:

script signing

openssl smime -sign -nodetach \

 -signer <public-cert> \

 -inkey <private-key> -in <script> \

 42 ;login: VOL. 36, NO. 6

 -outform pem | \

script verification

openssl smime -verify -inform pem -CAfile \

 /etc/sigsh.pem | \

script execution

/bin/sh -s

As a standard UNIX command pipeline, it is of course possible to redirect the
output of any one of these steps into a file or to insert additional commands in
between . For example, it would make sense to let a trusted engineer review and
then sign the contents of the file script .sh into the file script .pem and then let
another system execute this script on another host via:

cat script.pem | ssh headless@remote-host \

 “openssl smime -verify -inform pem \

 -CAfile /etc/sigsh.pem | /bin/sh -s”

This simple pipeline is the only thing the account on the remote host needs to be
able to execute, yet using this construct it is possible to let it run any kind of com-
mand . In fact, this short openssl(1) command piping into a regular shell is the basis
for the new tool we developed, sigsh(1) . With some syntactic sugar, some assur-
ance of meaningful exit codes, commentary, and the like, we managed to grow this
simple pipeline to over 140 lines, but at its core sigsh(1) easily fits into a twitter
message [3] .

Threats Not Protected Against

Within the context of trust relationships between systems and users, headless
users and commands executed, it is important to note that, while sigsh(1) provides
assurance that the commands fed into it were the ones a trusted authority pro-
vided, there are a number of important caveats:

u sigsh(1) reads the list of certificates to trust from /etc/sigsh .pem, i .e ., the local file
system .

u /etc/sigsh .pem may contain multiple certificates .
u Certificates may expire .
u Host administrators have control over the certificates .
u sigsh(1) does not verify that the commands it executes are themselves trustworthy .

Looking at these items, a connection between the flexibility this program provides
and possible issues can easily be seen . At the same time, it is worth remembering
what we wanted—use of the headless user to gain unauthorized access to a host,
that is, privilege escalation . We also made some assumptions, either explicitly or
implicitly .

It is entirely true that a user with permissions to write to /etc/sigsh .pem can
update that file to add their own certificate . However, an attacker capable of doing
that already has, by definition, gained superuser privileges, and is able to install
any other back door or wreak havoc in a myriad of other ways .

Multiple certificates, certificate expiration, and control over the certificates by
host owners all provide precisely the desired flexibility: the respective drawbacks
(multiple authorities, users forgetting to renew their certificates, the operational
overhead involved in getting new certificates installed, engineers possibly remov-
ing a central authority’s certificate, etc .) are all inherent in the design but are offset
by exactly that flexibility, as required within the given threat model .

 ;login: DECEMBER 2011 Of Headless User Accounts and Restricted Shells 43

The last item listed above, however, deserves additional attention: it is worth
stressing that protection against accidental execution of compromised binaries is
not a goal . That is, the system does in fact assume that any of the commands fed
into the shell after signature verification is indeed safe to execute .

Related Work

Our investigation of the initial problem statement led us to a number of interesting
related projects . Within the UNIX world, there is a lot of focus on technologies that
prevent accidental execution of compromised binaries, of detection of tampering
with the system, and the like .

NetBSD, for example, has developed a file integrity subsystem named Veriexec [4] .
This system allows you to permit execution of individual commands or command-
interpreters only if they match a given signature . While this sounds similar to
what sigsh(1) implements, it addresses a rather different threat model: here, the
system does not verify that a sequence of commands was approved by a trustwor-
thy entity to be executed but, rather, that a command, when it is to be executed, is
in fact unmodified .

Other operating systems have similarly focused on this problem of a “trusted path .”
OpenBSD’s Stephanie project initially developed a series of patches implement-
ing “Trusted Path Execution” [5], which focuses on assurance of ownership and
possible modifications of executables prior to invocation . A Linux Security Module
was based on this work, similarly focusing on the integrity of the executables .
While highly desirable functionality, it does not relate directly to the problems
sigsh(1) was developed to address .

Early on in the conceptual development phase of sigsh(1), one system we encoun-
tered did, however, appear to exhibit all desired features: a shell that allows the
administrator to set an “execution policy” specifying under what circumstances
scripts may be executed, including settings that require a valid signature of said
scripts . This tool had but one drawback: it only runs on Microsoft Windows .

The “Windows PowerShell” [6] is, much like a regular UNIX shell, both a com-
mand interpreter and a scripting language, which implements the concept of an
“execution policy” that allows you to specify, for example, that any and all scripts
executing using the PowerShell must be accompanied by a valid signature verified
prior to execution .

It would be highly desirable to integrate the concept of multiple execution policies
into our simple sigsh(1) implementation; at the same time, it would be nice if it
were possible to allow signatures from a given certificate to work only for a subset
of commands .

Of Signatures, Revocation of Privileges, and Audit Trails

One of the key points of the certificate-based solution is that certificates have an
expiration date . That is, any given signing party may only be able to sign scripts for
execution for a limited amount of time—this ensures regular audits of the list of
certificates contained in /etc/sigsh .pem .

Similarly, certificates can be revoked . That is, if one of the people with the author-
ity to sign scripts leaves the company, there is no need to wait for the certificate to
expire . Instead, the ability to simply revoke the certificate and thus disable it with-
out any changes occurring on the client hosts would be desirable . This, however,

 44 ;login: VOL. 36, NO. 6

would require sigsh(1) to check a certificate revocation list (CRL) and thus would
introduce additional complexity (and network communications at runtime) . It was
decided that letting the hosts’ configuration management system handle control of
the contents of /etc/sigsh .pem was sufficient: removal of a trusted cert prior to its
expiration thus becomes trivial .

Finally, sigsh(1) itself does not currently implement any sort of audit trail . While
certificates added to /etc/sigsh .pem can be tracked via the configuration manage-
ment system’s changelog, input to the shell is executed without logging if it can be
verified against the list of certificates found on the host . It would be desirable to
have the shell log the commands executed, the identity of the signing party, and
any errors or repeated signature mismatches . Future versions will likely include
this ability, allowing you to discover and react to (intentional or accidental) misuse
of the tool .

Conclusion

sigsh(1), Yahoo!’s simple signature verifying command interpreter, allows you to
use headless accounts with arbitrary yet trusted input scripts by checking them
against public-key certificates prior to execution . This removes a number of
hurdles in the setup of complex interconnected systems that require asynchronous
event triggering or data collection via non-trivial scripts and commands, and it
improves overall system security .

The tool, implemented in only a few lines of code and using the universally avail-
able openssl(1) tool for all heavy lifting, puts the power of self-administration into
the engineer’s hands and eliminates cumbersome and overly restrictive solu-
tions that are frequently circumvented . Deployed on over a quarter-million hosts,
sigsh(1) has a proven track record across all divisions of Yahoo! .

In February of 2011, Yahoo! open sourced sigsh(1): it is available for use by anybody
under a BSD-style license from github .com . Future enhancements may include
more fine-grained control over who may sign what kinds of scripts or what kinds of
signatures are required under what circumstances . Integration with a host-based
file integrity check would then complete the goal of having assurance that com-
mands executed by headless users are . . .“safe .”

References

[1] sigsh—a signature verifying command interpreter: http://www .netmeister .org/
apps/sigsh/ .

[2] Don Norman, “When Security Gets in the Way”: http://jnd .org/dn .mss/when
_security_gets_in_the_way .html .

[3] https://twitter .com/#!/jschauma/status/35490334251294720 .

[4] The NetBSD Veriexec subsystem: http://www .netbsd .org/docs/guide/en/
chap-veriexec .html .

[5] Niki A . Rahimi, “Trusted Path Execution for the Linux 2 .6 Kernel as a Linux
Security Module,” in Proceedings of the 2004 USENIX Annual Technical Confer-
ence: http://www .usenix .org/events/usenix04/tech/freenix/full_papers/rahimi/
rahimi_html/index .html .

[6] Microsoft, “Windows PowerShell”: http://technet .microsoft .com/en-us/
library/bb978526 .aspx .

 ;login: DECEMBER 2011 45

While there is not one true definition of DevOps (similar to cloud) [0], four of its key
points resolve around culture, automation, measurement, and sharing (CAMS) [1] .
In this article, I will show how this affects the traditional thinking of the sysadmin .

As a sysadmin you are probably familiar with the automation and measurement
part: it has been good and professional practice to script/automate work to make
things faster and repeatable, and gathering metrics and doing monitoring is an
integral part of the job to make sure things are running smoothly .

The Pain

For many years, operations, of which the sysadmin is usually part, has been seen
as an endpoint in the software delivery process: developers code new functionality
during a project in isolation from operations and, once the software is considered
finished, it is presented to the operations department to run it .

During deployment a lot of issues tend to surface . some typical examples are that
the development and test environment are not representative of the production
environment, or not enough thought has been given to backup and restore strate-
gies . Often it is too late in the project to change much of the architecture and
structure of the code and it gives way to many fixes and ad hoc solutions . This fric-
tion has created disrespect between the two groups: developers feel that operations
knows nothing about software, and operations feels that developers know nothing
about running servers . Management tends to isolate the two groups from each other,
keeping the interaction to the minimum required . The result is a “wall of confu-
sion” [2] .

Culture of Collaboration

Historically, two drivers have propelled DevOps: Agile Development, which led
in many companies to many more deployments than operations was used to, and
cloud and large-scale Web operations, where the scale required a much closer col-
laboration between development and operations .

When things really go wrong, organizations often create a multi-disciplined task
force to tackle production problems . The truth is that in today’s IT, environments
have become so complex that they can’t be understood by one person or even one
group . Therefore, instead of separating developers and operations as we used to do,
we need to bring them together more closely; we need more practice, and our motto
should be, “If it’s hard, do it more often .”

DevOps from a Sysadmin Perspective
P A T R I C K D E B O I S

Patrick Debois is a senior

independent consultant, who

has made a habit of changing

both his consultancy role and

the domain in which he works: sometimes

as a developer, manager, sysadmin, tester,

or even as customer. The one thing that

annoys him most is the great divide between

all these groups. Mr. Debois first presented

concepts on agile infrastructure at Agile

2008 in Toronto, and in 2009 he organized

the first DevOpsdays conference. Since then

he has been promoting the notion of DevOps

to exchange ideas between these different

organizational groups and show how they

can help each other achieve better results in

business. He can be found via his blog, http://

jedi.be/blog, and twitter, @patrickdebois.

Patrick.Debois@jedi.be

 46 ;login: VOL. 36, NO. 6

DevOps recognizes that software only provides value if it’s running in production .
And running a server without software does not provide value either . Develop-
ment and operations are both working to serve the customer, not to run their own
departments .

Although many sysadmins have been collaborating with other departments, this
has never been seen as a strategic advantage . The cultural part of DevOps seeks to
promote this constant collaboration across silos, in order to better meet business
demands . It goes for “friction-less” IT and promotes the cross-departmental/cross-
disciplinary approach .

A good place to get started with collaboration is places where the discussion often
escalates: deployment, packaging, testing, monitoring, and building environments .
These places can be seen as boundary objects [3]: places about which every silo has
its own understanding . These are exactly the places where technical debt accumu-
lates, so they should contain real pain issues .

Culture of Sharing

Silos exist in many forms in the organization, not only between developers and
operations . In some organizations there are even silos inside operations: network,
security, storage, servers groups avoid collaboration, and each works in its own
world . This has been referred to as the Ops-Ops problem . So in geek-speak, DevOps
is actually a wildcard for *dev*ops* collaboration .

DevOps doesn’t mean all sysadmins need to know how to code software now, or all
developers need to know how to install a server . But by collaborating constantly,
both groups can learn from each other and rely on each other to do the work . A
similar approach has been promoted by Agile Development between developers
and testers . DevOps can be seen as the extension of bringing system administra-
tors into the Agile equation .

Starting the conversation sometimes takes courage, but think about the benefits:
you get to learn the application as it grows, and you can actively shape it by provid-
ing your input during the process . A sysadmin has a lot to offer to the developers:
for instance, you have the knowledge of what production looks like, and therefore
you can build a representative environment in test/dev . You can be involved in load
testing, failover testing . Or you can set up a monitoring system that developers can
use to see what’s wrong . You can provide access to production logs so developers
can understand real-world usage .

A great way to share information and knowledge is by pairing with developers or
colleagues: while you are deploying code he comments on what the impact is on the
code and this allows you to directly ask questions . This interaction is of great value
in understanding both worlds better .

Revisiting Automation

As specified in the Agile Manifesto [4], DevOps values “individuals and interac-
tions over processes and tools .” The great thing about tools, as opposed to culture,
is that they are concrete and can have a direct benefit . It was hard to grasp the
impact of virtualization and the cloud unless you started doing it . Tools can shape
the way we work and consequently change our behavior .

A good example is configuration management and infrastructure as code . A lot of
people rave about its flexibility and power for automation . If you look beyond the

 ;login: DECEMBER 2011 DevOps from a Sysadmin Perspective 47

effect of saving time, you will find that it also has great sharing aspects: it has cre-
ated a “shared” language that allows you to exchange the way you manage systems
with colleagues and even outside your company by publishing recipes/cookbooks on
GitHub . Because we use concepts such as version control and testing, we have a com-
mon problem space with developers . And, most importantly, automation is freeing
us from the trivial stuff and allows us to discuss and focus on what really matters [5] .

Revisiting Metrics

Measuring the effects of collaboration can’t be done by measuring the number of
interactions; after all, more interaction doesn’t mean a better party . It’s similar to a
black hole; you have to look at the objects nearby [6] . So how do you see that things
are improving? You collect metrics about the number of incidents, failed deploys,
number of successful deploys, number of tickets . Instead of keeping this information
in your own silo, you radiate these stats to the other parts of the company so they can
learn from them . Celebrate successes and learn from failures . Do post-mortems with
all parties involved and find ways to improve . Again, this changes the focus of met-
rics and monitoring from making fast repairs to supplying feedback to the whole
organization . Aim to optimize the whole instead of only your own part .

The Secret Sauce

Several of the “new” companies have been leaders in these practices . Amazon with
their two-pizza team approach [7] and Flickr with their 10 deploys a day [8] were
front-runners in the field, but more traditional companies such as National Instru-
ments are also seeing the value of this culture of collaboration . They see collabora-
tion as the “secret sauce” that will set them apart from their competition [9] .

Why? Because it recognizes the individual not as a resource but as resourceful
enough to tackle the challenges that exist in this complex world called IT .

References

[0] Patrick Debois: http://www .jedi .be/blog/2011/09/06/DevOpsdays-melbourne
-keynote/ .

[1] John Willis: http://www .opscode .com/blog/2010/07/16/what-DevOps-means
-to-me/ .

[2] Damon Edwards: http://dev2ops .org/blog/2010/2/22/what-is-DevOps .html .

[3] Israel Gat: http://theagileexecutive .com/2010/07/06/boundary-objects-in
-DevOps/ .

[4] http://agilemanifesto .org/ .

[5] Ernest Mueller: http://blog .cutter .com/2011/09/11/originality-and-operations/ .

[6] Patrick Debois: http://www .jedi .be/blog/2011/09/06/velocityconf-DevOps
-metrics/ .

[7] http://highscalability .com/amazon-architecture .

[8] John Allspaw and Paul Hammond: http://www .slideshare .net/jallspaw/
10-deploys-per-day-dev-and-ops-cooperation-at-flickr .

[9] Jesse Robbins: http://radar .oreilly .com/2007/10/operations-is-a-competitive
-ad .html .

 48 ;login: VOL. 36, NO. 6

The vast majority of the columns we’ve spent together so far have focused on how
to improve your life within the bubble of the programming experience . We’ve
looked at tools to make programming easier, more efficient, perhaps even a little
more fun . For this column, let’s try something different and bust out of our usual
snow globe . We’re going to look at three ways we can call out to Perl or Perl-based
tools from within the editor we are using to improve our lives . So still Perl, but
perhaps a little bit more at the periphery than before .

Reflowing and Reformatting Text

Once upon a time, Damian Conway, one of the leading lights of the Perl community,
decided he didn’t like any of the existing tools for reformatting and reflowing plain
text . They couldn’t handle bulleted lists, indentation, quoting, embedded struc-
tures like lists within quoted text, and so on . Or if they handled them, they didn’t
handle all of them simultaneously . As the documentation for the module we are
about to see notes, if you take this sample text:

In comp.lang.perl.misc you wrote:

: > <CN = Clooless Noobie> writes:

: > CN> PERL sux because:

: > CN> * It doesn’t have a switch statement and you have to put $

: > CN>signs in front of everything

: > CN> * There are too many OR operators: having |, || and ‘or’

: > CN>operators is confusing

: > CN> * VB rools, yeah!!!!!!!!!

: > CN> So anyway, how can I stop reloads on a web page?

: > CN> Email replies only, thanks - I don’t read this newsgroup.

: >

: > Begone, sirrah! You are a pathetic, Bill-loving, microcephalic

: > script-infant.

: Sheesh, what’s with this group - ask a question, get toasted! And how

: *dare* you accuse me of Ianuphilia!

and run it through the UNIX fmt tool (or even the Perl module Text::Wrap), you get
this:

In comp.lang.perl.misc you wrote: : > <CN = Clooless Noobie> writes: : > CN>

PERL sux because: : > CN> * It doesn’t have a switch statement and you

have to put $: > CN>signs in front of everything : > CN> * There are too

COLUMNSPractical Perl Tools
From the Editor

D A V I D N . B L A N K - E D E L M A N

David N. Blank-Edelman is

the director of technology at

the Northeastern University

College of Computer and

Information Science and the author of the

O’Reilly book Automating System Administration

with Perl (the second edition of the Otter

book), available at purveyors of fine dead

trees everywhere. He has spent the past 24+

years as a system/network administrator in

large multi-platform environments, including

Brandeis University, Cambridge Technology

Group, and the MIT Media Laboratory. He was

the program chair of the LISA ’05 conference

and one of the LISA ’06 Invited Talks co-chairs.

David is honored to have been the recipient

of the 2009 SAGE Outstanding Achievement

Award and to serve on the USENIX Board of

Directors beginning in June of 2010.

dnb@ccs.neu.edu

 ;login: DECEMBER 2011 Practical Perl Tools: From the Editor 49

many OR operators: having |, || and ‘or’ : > CN>operators is confusing : > CN>

* VB rools, yeah!!!!!!!!! : > CN> So anyway, how can I stop reloads on a web

page? : > CN> Email replies only, thanks - I don’t read this newsgroup. : >

: > Begone, sirrah! You are a pathetic, Bill-loving, microcephalic : > script-

infant. : Sheesh, what’s with this group - ask a question, get toasted! And

how : *dare* you accuse me of Ianuphilia!

Not exactly an improvement . Conway decided to write a Perl module that would
grok all of these things, and so the modules Text::Autoformat and Text::Reform
were born . Text::Autoformat tries to determine the various structures found in
text and then call Text::Reform to reformat them in a pleasing fashion . How pleas-
ing? Here are the results when we run them on our sample text above:

In comp.lang.perl.misc you wrote:

: > <CN = Clooless Noobie> writes:

: > CN> PERL sux because:

: > CN> * It doesn’t have a switch statement and you

: > CN> have to put $ signs in front of everything

: > CN> * There are too many OR operators: having |, ||

: > CN> and ‘or’ operators is confusing

: > CN> * VB rools, yeah!!!!!!!!! So anyway, how can I

: > CN> stop reloads on a web page? Email replies

: > CN> only, thanks - I don’t read this newsgroup.

: >

: > Begone, sirrah! You are a pathetic, Bill-loving,

: > microcephalic script-infant.

: Sheesh, what’s with this group - ask a question, get toasted!

: And how *dare* you accuse me of Ianuphilia!

When Conway wrote the Text::Autoformat module, I believe his main desire was
not to call it from within a larger Perl program, but, rather, to let it be used more
handily from your favorite text editor of choice . To do that, you need to pass the
text you want to reformat out of your text editor into an invocation of the Perl
interpreter that looks like this:

perl -MText::Autoformat -e “{autoformat{all=>1,right=>75};}”

To break this down, it says:

 - load the Text::Autoformat module
 - then call the autoformat subroutine with the following options:

 all = 1 to instruct the module to reformat all of the text (vs . just the first
 paragraph)

 right = 75 to instruct the module to reformat things with a right margin of 75

I use that command all the time from within a TextMate macro (for example, on
the very text you are reading), but you could map a key in vim to do the same thing:

map <C-J> !G perl -MText::Autoformat -e “{autoformat{all=>0,right=>75};}”<cr>

I apologize if this seems obvious, but if you attempt to run a command like this
in vim (or another editor), and instead of returning nicely reformatted text, your
original paragraph is replaced with something that looks like this:

Can’t locate Text/Autoformat.pm in @INC (@INC contains:

/opt/local/lib/perl5/site_perl/5.14.1/darwin-multi-2level

 50 ;login: VOL. 36, NO. 6

/opt/local/lib/perl5/site_perl/5.14.1 /opt/local/lib/perl5/vendor_perl/5.14.1/

darwin-multi-2level

/opt/local/lib/perl5/vendor_perl/5.14.1

/opt/local/lib/perl5/5.14.1/darwin-multi-2level

/opt/local/lib/perl5/5.14.1

/opt/local/lib/perl5/site_perl

/opt/local/lib/perl5/vendor_perl/5.14.0

/opt/local/lib/perl5/vendor_perl .).

BEGIN failed--compilation aborted.

it means that you will need to install the Text::Autoformat module before you
can proceed . For those of you who have multiple versions of Perl installed on your
machine (e .g ., because you have both the Perl that ships with the system and the
one you installed through MacPorts/Homebrew/Fink), sometimes you will find
you will get this message because your editor configuration is picking up the wrong
Perl (the one without Text::Autoformat installed in its @INC) from your path . An
easy fix is to change the command being run to include a full path to the right Perl
interpreter (e .g ., /opt/local/bin/perl -MText::Autoformat . . .) .

Tidy Your Lousy Code

Although we are not actually doing any programming in this column, this seems
like a natural place to point out two other tools that can be called from an editor to
improve the programming process . Both of these have made at least one appear-
ance in this column, but I love them too much not to mention them again: Perl::Tidy
and Perl::Critic . Both of these things are modules designed to work on Perl code
and both come with a script that runs on the command line .

In the case of Perl::Tidy, or, more precisely, when using its accompanying com-
mand-line perltidy, code can get read in from stdin and printed out again in a much,
much prettier form to stdout . As a demonstration, here’s some sample code found
embedded in the Perl::Tidy documentation:

use strict;

my @editors=(‘Emacs’, ‘Vi ‘); my $rand = rand();

print “A poll of 10 random programmers gave these results:\n”;

foreach(0..10) {

my $i=int ($rand+rand());

print “ $editors[$i] users are from Venus” . “, “ .

“$editors[1-$i] users are from Mars” .

“\n”;

If I run it through perltidy from my editor (the command I call is perltidy -st -q

$FILENAME, but for vi we could use just :%!perltidy) using some defaults (more on
that in a moment), I get:

use strict;

my @editors = (‘Emacs’, ‘Vi ‘);

my $rand = rand();

print “A poll of 10 random programmers gave these results:\n”;

foreach (0 .. 10) {

 my $i = int($rand + rand());

 print “ $editors[$i] users are from Venus” . “, “

 . “$editors[1-$i] users are from Mars” . “\n”;

}

 ;login: DECEMBER 2011 Practical Perl Tools: From the Editor 51

If you look at the difference between the two, there are lots of little cleanups going
on (e .g ., the space around arguments in parenthesis) . I realize it is a particularly
geeky thing to say this, but when I start with code that looks like this:

my %a = (

$a => 1,

$apple => 2,

$bigapple => 3,

$verylargeapple => ‘new york’,);

and I turn it into this using a single keystroke:

my % a = (

$a => 1,

$apple => 2,

$bigapple => 3,

$verylargeapple => ‘new york’,

);

such that the arrows all line up it is deeply satisfying . If you’ve noticed that all, or
at least most, of the arrows in this column have lined up over the years, that’s not
my doing . I have Perl::Tidy to thank . One last note before I move on to Perl::Critic:
I mentioned running perltidy with defaults . Perl::Tidy has a ton of configurable
options . Don’t like it if your arrows line up? (Of course you do!) Prefer to leave a
closing parenthesis at the end of a line of code without wrapping it as above? All of
these things can be set as options . By default, if you create a .perltidyrc, Perl::Tidy
will attempt to read it to set your favorite options . At the moment I use the fol-
lowing .perltidyrc file, which was recommended in Conway’s excellent Perl Best
Practices:

PBP .perltidyrc file

-l=78 # Max line width is 78 cols

-i=4 # Indent level is 4 cols

-ci=4 # Continuation indent is 4 cols

-st # Output to STDOUT

-se # Errors to STDERR

-vt=2 # Maximal vertical tightness

-cti=0 # No extra indentation for closing brackets

-pt=1 # Medium parenthesis tightness

-bt=1 # Medium brace tightness

-sbt=1 # Medium square bracket tightness

-bbt=1 # Medium block brace tightness

-nsfs # No space before semicolons

-nolq # Don’t outdent long quoted strings

-wbb=”% + - * / x != == >= <= =~ < > | & **= += *= &= <<= &&= -= /= |=+ >>=

||= .= %= ^= x=” # Break before all operators

(The last line, beginning -wbb, should be all one line .)

If you don’t feel like setting up a .perltidyrc as I did many moons ago when I first
read the book, you can now use a -pbp argument to perltidy and it will set these
parameters for you .

The second Perl-based command I mentioned above was perlcritic, installed as
part of the Perl::Critic module . The mention of Perl Best Practices above is a good

 52 ;login: VOL. 36, NO. 6

segue because that book basically helped spawn Perl::Critic . Perl::Critic is meant
to analyze Perl code and determine if it is complying with certain policies meant to
enforce coding best practices . The original rules were based on the Conway book,
but more have been added over time . Perl::Critic also lets you use add-on modules
to add all sorts of different policies to the checking process . When it finds anything
that violates any of these rules it will spit out warning messages . If you would like
to see examples of these messages, take a peek back at the December 2009 column
where I first mentioned both Perl::Critic and Perl::Tidy .

These error messages have a similar form to those you might expect to see emit-
ted from another language’s compiler . As a result, most of the editors that offer
perlcritic integration do so using a variation of their already existing functionality
that lets a user try to compile code from within the editor (jumping to the lines
with errors if any are found) . There are add-on packages for a number of the more
popular editors/IDEs, including vim, Emacs, Komodo, Eclipse (within the Eclipse
Perl Integration project), BBEdit, Padre, and so on .

And You Thought Grep Was Cool

For the last tool that we are going to see which you can integrate into your editor, I
want to introduce you to three little letters that may significantly improve how you
find things in your ever-increasing mountain of data: ack . ack is a grep-ish utility
by Andy Lester . Like grep, it was designed to help you find data within files . It is
just a bit smarter (okay, a lot smarter) . I don’t think I can do any better describing
why you might want to use it than to quote from the documentation:

Top 10 reasons to use ack instead of grep .
 1 . It’s blazingly fast because it only searches the stuff you want searched .
 2 . ack is pure Perl, so it runs on Windows just fine . It has no dependencies other

than Perl 5 .
 3 . The standalone version uses no non-standard modules, so you can put it in

your ~/bin without fear .
 4 . Searches recursively through directories by default, while ignoring .svn, CVS,

and other VCS directories .
Which would you rather type?
$ grep pattern $(find . -type f | grep -v ‘\.svn’)

$ ack pattern

 5 . ack ignores most of the crap you don’t want to search:
 o VCS directories
 o blib, the Perl build directory
 o backup files like foo~ and #foo#
 o binary files, core dumps, etc .
 6 . Ignoring .svn directories means that ack is faster than grep for searching

through trees .
 7 . Lets you specify file types to search, as in --perl or --nohtml . Which would you

rather type?
$ gr ep pattern $(find . -name ‘*.pl’ -or -name ‘*.pm’ -or -name ‘*.pod’ \

| grep -v .svn)

$ ack --perl pattern

 Note that ack’s --perl also checks the shebang lines of files without suf-
fixes, which the find command will not .

 ;login: DECEMBER 2011 Practical Perl Tools: From the Editor 53

 8 . File-filtering capabilities usable without searching with ack -f . This lets you
create lists of files of a given type .
$ ack -f --perl > all-perl-files

 9 . Color highlighting of search results .
10 . Uses real Perl regular expressions, not a GNU subset .
11 . Allows you to specify output using Perl’s special variables . To find all #include

files in C programs:
ack --cc ‘#include\s+<(.*)>’ --output ‘$1’ -h

12 . Many command-line switches are the same as in GNU grep:
-w does word-only searching
-c shows counts per file of matches
-l gives the filename instead of matching lines
etc .

13 . Command name is 25% fewer characters to type! Save days of free-time!
Heck, it’s 50% shorter compared to grep -r .

So there you go, 13 of the top 10 reasons why ack may replace grep as a command
you type on a regular basis . TextMate, Vim, Emacs and other add-ons let you do
things like conduct fast searches from within the editor and then jump to the
places in the files where your search text was found .

With that high note, I think we’ll end our exploration of Perl utilities that can be
called from an editor . If you have a particularly cool example of this sort of thing
that you use all the time, please write me a note so I can include it in a future col-
umn . Take care, and I’ll see you next time .

 54 ;login: VOL. 36, NO. 6

At my last job, the Windows sysadmin would plan, for every new software imple-
mentation, sufficient time to install and configure the application a minimum of
three times . This was not padding—they actually installed and configured every
new application the company brought in three times . For more complex applica-
tions they would rebuild more often . I seem to recall that they rebuilt “Documen-
tum” [1] something like nine times .

I thought it was kind of crazy at the time, but, looking back, I think I can, if not
relate, at least understand . With technology, there is some operational coeffi-
cient of long-term success that defies prediction . Sometimes you don’t know what
you’re not going to like about a solution until you’ve installed it . Sometimes proper
integration into the existing environment isn’t obvious until a solution is improp-
erly integrated . Sometimes you need to throw a few things at the wall to see what
sticks, and sometimes you need to break a thing, to see what can be made of the
pieces .

I don’t know if this property has a name, but I get that it’s there . The Windows guys
at my last job built and rebuilt to tune their systems for this variable in a kind of
institutionalized brute force attack . They did this every time (probably without
being able to articulate exactly why) partly because their choices were limited and
partly because that’s just the kind of thing they do . I think the reason I (and prob-
ably you) find their technique questionable is that, to some extent, optimizing for
this property is the meat of what professional system administrators do; that this
is what it means to hone our craft . We strive to excel at solving for elegance . A lot
of the time, even when we get it right something new will come along that makes
us rethink our architecture . Game changers create new possibilities, and our solu-
tions might need to change to encompass them .

I can remember reading the first papers on RRDTool and considering the options
for Nagios integration . Various Nagios plugins (as you’re no doubt aware) pass back
performance data along with their normal output . The way Nagios deals with this
performance data is configurable . The shortest path is to configure Nagios to send
performance data to a tool that parses out the metrics and loads them into RRDs .
Several tools in various languages exist to do this, such as NagiosGraph [2] and
PNP [3] .

This light glue-layer between Nagios and RRDTool seemed elegant . You were using
data you already had in a new way . The regex-based parsing gave you performance
graphs across all of your hosts and services for just a few lines of configuration,

iVoyeur
Changing the Game

D A V E J O S E P H S E N

Dave Josephsen is the

author of Building a

Monitoring Infrastructure

with Nagios (Prentice

Hall PTR, 2007) and is senior systems

engineer at DBG, Inc., where he maintains

a gaggle of geographically dispersed server

farms. He won LISA ’04’s Best Paper award for

his co-authored work on spam mitigation, and

he donates his spare time to the SourceMage

GNU Linux Project.

dave-usenix@skeptech.org

 ;login: DECEMBER 2011 iVoyeur: Changing the Game 55

RRDTool lends itself to exactly this sort of data exportation, and you were using
hooks built into Nagios to make it happen . For the price of a Perl script (or what-
ever) and a few lines of configuration, you’d just bought yourself performance data
for every monitored service .

The problems become apparent at around 350 hosts for most modest hardware .
It just doesn’t scale well . Even for small installations, Nagios isn’t going to get
anywhere near real-time data; it’s intended to operate on the order of minutes, not
seconds . Accompanying this realization was a second: namely, that you couldn’t
easily scale the system horizontally by adding more hardware, nor could you bolt
on a new solution in a way that would make it easy to display the data gleaned from
both Nagios and the new stuff . Nagios and RRDTool had been tied together for bet-
ter and for worse .

For most sysadmins, Cacti [4] and/or Ganglia [5] changed the game toward dis-
crete systems for availability and performance monitoring . We had to go through
and install new agents on all of our hosts, but we did it because these solutions
(and Ganglia in particular) do a fantastic job of getting near-real-time data from
a massive number of hosts with very little overhead . This also seems elegant, but
there are still several problems . For one, Ganglia assumes a cluster model, which
is a handy assumption that helps us combine and summarize data, but also forces
a dashboard view of our environment that may not always be optimal . For another,
it’s still difficult to mix and match the data from different sources . If I want to
graph something new, then I’m going to have to send it through Gmond or use a dif-
ferent front end to do my graphing .

It seems odd to me, given the problem RRDTool was intended to solve, that taking
data from different places and storing it together in such a way that a generic front-
end can graph it is this difficult . That last sentence could just about be a reworded
mission statement for RRDTool, and yet nearly all the tools we’ve built on top of it
are purpose-specific . I’ve long thought that the folks writing the front ends were
just not thinking big enough, but now I’m beginning to believe this isn’t accidental .

Some of the problem might have to do with the way RRDTool itself is architected .
Different data sources and types of data, and even different intended uses for
the same data imply different RRD requirements . For example, the heartbeat
for a metric collected from Ganglia is going to differ wildly from one collected
from Nagios . Any higher-level tool must make some assumptions and provide
sane defaults, and while I don’t think it’s impossible to write something on top of
RRDTool that could deal with a much larger set of assumptions, I have to admit
that RRDTool’s configuration rigidity is encouraging the higher level tools to be
purpose-specific to some degree .

To have a more source-agnostic storage layer, it would be easier if we had some-
thing akin to RRDTool that was more relaxed about how often data was updated,
and less concerned about categorizing it into pre-defined types .

Enter Graphite [6] .

Graphite was developed internally by the engineers at Orbits .com and changes the
game all over again . The name actually refers to a suite of three discrete but com-
plementary Python programs, one of which is itself called “Graphite” (I assume
they did this to make it more difficult to write articles about Graphite) .

 56 ;login: VOL. 36, NO. 6

The first of these is Whisper, a reimplementation of the RRD format that makes
the modifications to the data layer I mentioned above . Whisper does not particu-
larly care how far apart your data points are spaced, or, indeed, if they arrive in
sequential order . It also does not care what kind of data it is internally . Whisper
stores all values the same way RRDTool would store a “Gauge” data point .

Data interpretation is handled by the front end using various built-in functions
that modify the characteristics of the data when it’s displayed . For example, at dis-
play time, the user runs the “derive” function to obtain a bytes-per-second graph
from byte counter data stored in Whisper in its raw format .

The critically important upshot is that by making the storage layer agnostic to
data type and frequency, new Whisper databases may be created on the fly with
very little pre-configuration . In practice, the sysadmin specifies a default storage
configuration (and, optionally, more specific configurations for metrics matching
more specific patterns), and after that all Whisper needs to record a data point is a
name, a value, and a date-stamp .

Carbon, the second Python program, listens to the network for name/value/date-
stamp tuples and records them to Whisper RRDs . Carbon can create Whisper
DBs for named metrics that it has never heard of, and begin storing those metrics
immediately . Metric names are hierarchal from left to right, and use dots as field
separators . For example, given the name “appliances .breakroom .coffee .pot1 .
temp”, Carbon will create a Whisper DB called temp in the $WHISPER_STOR-
AGE/appliances/breakroom/coffee/pot1 directory on the Graphite server . Carbon
listens on TCP port 2003 for a string of the form “name value date” . Dates are in
EPOCH seconds . Continuing the coffee pot example, I could update that metric
with the value 105 with the following command line:

echo “appliances.breakroom.coffee.pot1.temp 105 1316996698” | nc -c <IP> 2003

I passed -c to netcat so that it wouldn’t hang waiting for a reply from Carbon . Obvi-
ously, you need the netcat with -c support to do that (http://netcat .sourceforge .
net) . Most large Graphite installations front-end Carbon with a UDP datapoint
aggregator, but more on that later . The critically important upshot of this is that
there is a socket on your network to which anyone (with access) can send data and
have it stored and ready for graphing immediately . Whisper’s data agnosticism and
Carbon’s network presence combine in such a way that data collection and presen-
tation is no longer an ops-specific endeavor . For example, Carbon clients have been
written for about every popular programming language out there, making it trivial
for developers to build applications that send interesting metrics to the Graphite
server . There’s no reason why the security guys couldn’t tie in their snort stats and/
or logsurfer instances for that matter .

In his now famous blog post “Tracking Every Release” [7], Mike Brittain shares
how the engineers at Etsy have their deployment tool sending a 1 to their Graphite
server every time a code deployment takes place . Since Whisper doesn’t care about
data frequency, it’s possible to graph instances of things like deployments that only
happen every so often . At Etsy they superimpose these data points as vertical lines
over other metrics to correlate events, such as PHP warnings per second, to code
releases .

Finally, Graphite is the Web front end to . . . well, Graphite . Graphite runs on the
Apache Web server with mod_python, and includes a novel Web-based command-
line interface (with tab completion) that makes it easy to create on-the-fly graphs

 ;login: DECEMBER 2011 iVoyeur: Changing the Game 57

from any combination of stored metrics . It also has a tree view reminiscent of
Cacti, and a user-configurable dashboard view . My favorite piece of the front end is
the URL interface, which allows the creation of graphs by specifying URLs . This
feature is something I’ve been wanting for a long time . It enables integration with
just about every monitoring system out there, including Nagios via its “action_url”
attribute .

This seems elegant . We’ve certainly come a step closer to separating the polling
engines from the storage engines from the display engines . It’s unfortunate that,
once again, I’m looking at a single application that is storing and displaying the
data, but I think this has more to do with the lack of independent front ends that
support the Whisper data store than any intrinsic dependency between the two .
Graphite changes things . It introduces new possibilities . I plan to write a few more
articles exploring Graphite, its installation and usage intricacies, and especially
the integration possibilities . So stay tuned .

Take it easy .

References

[1] EMC Documentum: http://www .emc .com/domains/documentum/index .htm .

[2] NagiosGraph: http://nagiosgraph .sourceforge .net/ .

[3] PNP: http://docs .pnp4nagios .org/pnp-0 .4/start .

[4] Cacti: http://www .cacti .net/ .

[5] Ganglia: http://ganglia .sourceforge .net/ .

[6] Graphite: http://graphite .wikidot .com/ .

[7] Mike Brittain’s “tracking every release” post: http://codeascraft .etsy .com/
2010/12/08/track-every-release/ .

 58 ;login: VOL. 36, NO. 6

Today, whilst cogitating on whether I had brain cancer or just a headache from
smelling cabbage cooking, I decided instead to cogitate on the word “exploit .” I
thought deeply about what it means to exploit, because that’s what I wanted to
write about . I came face to face in the process with one of the more insidious curses
to which writers are subject, which I will term “lexicopathy” with the full knowl-
edge that this name has probably already been taken by a Croatian metal band and
is stapled to utility poles across Zagreb even as I write this . My defense will be that
I don’t speak Croatian and so can’t be held accountable .

Lexicopathy, as I have defined it, is the condition that arises when writers get so
close to a word that they get the urge to dismantle it and play with the structural
components as though they were parts from an Erector set (with which activ-
ity I was, not surprisingly, inordinately enamored as a lad) . More to the point, it
prevents said writers from actually writing anything (which many will no doubt
consider a salutary result) and instead lures them along the primrose path to a
secret garden where the similarity between etymology and entomology is revealed
to be no mere linguistic coincidence .

Crawling around on the bark and buds of the tree of English are a plethora of multi-
legged beasties, prominent among which are the adjective-flies, noun-beetles,
verbipedes, pronoun-bugs, adverbydids, gerund-hoppers, conjunction-worms,
preposition-mites, and participle-thrips . Interjection-midges can often be found
buzzing in the writer’s face in an annoying manner, surprisingly loud for their tiny
size . The forest floor is aswarm with armies of article-ants . (Two species are pres-
ent: definite and indefinite; the latter are much more difficult to pin down .) This is
where words go to be broken down, digested, and regurgitated as new offerings to
provide the folks who compile dictionaries with a robust livelihood .

Those suffering from lexicopathy are able miraculously to see and interact with
these grammaranimals and the curious world they inhabit . To a normal person
the word “exploit” is just that: a word, a sequential list of alphabetic characters
that forms a unit we English speakers have been taught to interpret in a certain
manner . It creates an abstract image in our minds—a concept with specific associ-
ated memories and constructs . When the system works right it’s more or less the
same concept for me as it is for you . To the denizens of the secret garden, however,
“exploit” is a juicy, crunchy, sweetmeat ripe for the feasting . They pull it apart like a
succulent crab leg and suck out the savory marrow, accompanied by a cool, refresh-
ing mixed metaphor salad .

/dev/random
R O B E R T G . F E R R E L L

Robert G. Ferrell is a fourth-

generation Texan, literary

techno-geek, and finalist for

the 2011 Robert Benchley

Society Humor Writing Award.

rgferrell@gmail.com

 ;login: DECEMBER 2011 /dev/random 59

Let us begin this lexicological repast with the prefix, a very fine place to start .
“Ex” is one of the more versatile of two-letter Latin expropriations, being gainfully
employed in words sprinkled liberally throughout the dictionary . (Most of them are
located in the “E’s,” come to think of it, but you get my drift .) (By “Latin” I mean,
incidentally, “Roman .” How “Latin” came to be applied as well to those with a rich
and complex heritage based on a mélange of Spanish and indigenous Mesoameri-
can/South American cultures is puzzling to me, but then so are a great many other
things in life .)

“Ex” can indicate “out of,” “landed from,” “former,” “exclusive of,” “drive out,”
“not including,” “no longer occupying,” and several other related meanings . The
Compact Oxford English Dictionary (2nd edition), in fact, spans two pages (pp .
480–481) in an exploration of “ex .” It has gained a measure of modern linguistic
notoriety serving as the monosyllabic representation, often uttered harshly, with
venomous disdain, and occasionally accompanied by forcible expectoration, for a
former significant other . “Ex” additionally morphed into prefixes like “ef” and “eb”
over time, or so sayeth the venerable OED . It may also be heard in the classic pre-
WWII college cheer: “give ’em the ex, give ’em the ex, give ’em the e-x ex!” At least,
that’s what it sounded like to me watching old cartoons before dawn on Saturday
mornings in the ’60s . It could have been the intense sugar buzz affecting my hearing .

“Ploit” has no real meaning by itself (although “ploiter” once signified to putter
around ineffectively), except as an acronym for “Path Loss Over Irregular Terrain .”
However, a few minutes’ consideration will reveal that this is singularly appropri-
ate . To navigate successfully to one’s destination is to “pilot .” Why, then, wouldn’t
an unsuccessful application of that procedure be to “ploit”? Why, it’s as sensible as
lemon in your iced tea .

This brings us around once again, somewhat the worse for wear, to “exploit .” By
now you’re probably looking at that word in a wholly different light (the day having
worn on considerably since you started reading, slowby) . Our little bout with lexi-
copathy has left us weak, perspiring, and vaguely nauseous: true . But in exchange
it has whisked away a deceptive camouflage covering the rich tapestry woven by
that simple and increasingly oft-encountered infosec cliché, e-x-p-l-o-i-t . Let me
hear you say it . No, wait until you’ve finished swallowing your coffee first . Jiminy .
I can’t take you anywhere .

Employing our newfound lexicological onion-peeling skills, let us drag our word of
the day over under the streetlamp and examine its components more closely: “out
of,” “landed from,” “former,” “exclusive of” “drive out,” “not including,” or “no longer
occupying,” “path loss over irregular terrain .” Here, then, is the deceptively simple-
appearing word “exploit,” which the unwashed masses so smugly assume they
understand, laid out bare naked on the driveway . We alone are able to derive its
true meaning from our examination of the deepest roots: those that lay shrouded in
shadows in the secret garden . We alone are enlightened . (I must admit that many
of my trips to the dictionary leave me endarkened .)

After exhaustive examination of the historical evidence, and taking into account
the various etymological elements that come into play—bearing in mind, of course,
the principles of enfilade and defilade and cross-indexing to the commodities
markets—we are able to synthesize using least-reasoning analysis a definition for
“exploit” that well and truly represents both its simplistic overt and more complex
underlying metaphoric linguistic fabric (85% cotton, 10% silk, 5% Rhodesian ridge-

 60 ;login: VOL. 36, NO. 6

back iguana hair . Machine wash, dry in the microwave using the “artichoke hearts
casserole” setting) .

Where was I? Oh, yes—the definition of “exploit .” That’s easy: a retired dyslexic
aircraft operator . I have no idea how this relates to taking advantage of computer
vulnerabilities . Possibly a misunderstanding .

Thanks to USENIX and SAGE Corporate Supporters

USENIX Patrons
EMC

Facebook

Google

Microsoft Research

USENIX
Benefactors
Admin Magazine: Net-

work & Security

Hewlett-Packard

Infosys

Linux Journal

Linux Pro Magazine

NetApp

VMware

USENIX & SAGE
Partners
Can Stock Photos

DigiCert® SSL
Certification

FOTO SEARCH Stock
Footage and Stock
Photography

Xssist Group Pte. Ltd

USENIX Partners
Cambridge Computer

Xirrus

SAGE Partner
MSB Associates

 ;login: DECEMBER 2011 61

demic ire, but it is repetitive, full of useful but difficult tables,
and generally a slog to read . On the other hand, if you feel that
what you’ve always wanted is a good feel for the actual data
about what makes better software, particularly when build-
ing big systems, this is what you’ve been looking for .

Agile? It actually helps people make better software! That is,
as long as you’re not building anything with 10,000+ users,
so all you Web companies out there, feel worried now . Almost
any official standard? Will help you not be completely lousy,
but will not help you excel . Lines of code? Just as stupid a
measurement as you might have imagined . All those claims,
with dollar amounts, of how it’s cheap to fix a problem you
discover in the requirements stage, but expensive once you’ve
deployed? The authors very carefully verified that, indeed,
those claims appear to have been made up, and are for many
reasons nonsensical . But to the extent they are true, they
imply that you should very, very carefully test your require-
ments—which almost nobody does .

This is fascinating meaty stuff, and really fun to think about .
It’s worth the trouble if the topic interests you, but it would be
nice if it were somewhat less arduous .

Think Stats
Allen B . Downey
O’Reilly, 2011 . 112 pp .
ISBN 978-1-44-930711-0

This is a nice, experimental approach to statistics for pro-
gramming types, with good questions, real data sets, and
practical instructions on how to write programs to work
with statistics (in Python, which might or might not be your
first choice but is at least a general-purpose programming
language) . Unfortunately, it’s a textbook, and it has exercises .
What it doesn’t have is answers to the exercises . If you can do
the exercises (especially if you can, but you won’t if you can
look the answers up), this is not a problem . For the right sort
of personality, this is going to be an extremely effective way
of learning basic probability-based statistics . If you want a

Drive: The Surprising Truth About
What Motivates Us
Daniel Pink
Riverhead Trade, 2011 . 272 pp .
ISBN 978-1-59-448480-3

It is a coincidence that this book and Gamification showed
up in the same lot of books to review, but it is in most ways
a happy coincidence, precisely because they come at things
from pretty much opposite directions . Drive is about inher-
ent motivation, doing things because they are worth doing .
Gamification is about extrinsic motivation, offering people
prizes in the hope that they will do things . Before you decide
that gamification is the way you want to go, it’s worth paying
careful attention to Drive’s section on when straightforward
reward systems make sense .

Drive is a convincing explanation of why working with
rewards and threats is not an effective way to get great
results; it ties nicely to other books I’ve recommended
(there’s a pleasant synergy with Carol Dweck’s work on
mindsets, for instance) . It is, for me, just on the acceptable
side of breathless enthusiasm and catchy naming schemes,
although, frankly, “Motivation 3 .0” does make me wince; if
your tolerance for management-speak is low, Drive may be
over the line . On the other hand, if you want to try to convert
traditional managers of your acquaintance to a less control-
ling style, it’s likely to be palatable to them . It should also be
very useful if you are a non-controlling manager in a work
environment where that’s not the norm, and you need some
way to get a stamp of approval for what may be seen as letting
your people run wild .

The Economics of Software Quality
Capers Jones and Olivier Bonsignour
Addison Wesley, 2011 . 559 pp .
ISBN 978-0-13-258220-9

This book is much like waybread is said to be: nourishing but
not particularly enjoyable . It does have moments of humor,
especially if you appreciate the spectacle of well-earned aca-

BOOKSBook Reviews
E L I Z A B E T H Z W I C K Y , W I T H S A M S T O V E R

 62 ;login: VOL. 36, NO. 6

scope, but it is almost impossible to resist discussing once the
authors bring it up .

Making something into a game often changes the context .
That’s fine if you were already in a superficial context, but it
can be a real loss . For instance, many of your worst customer
service experiences were probably created at least partially
by somebody’s bright idea about adding a scoring system to
the customer service process . Many of your worst children-
and-food nightmares were probably created by somebody
deciding that they needed to win some food-related game .
Any deep meaningful human interaction can be turned into a
power struggle if you’re not careful . I find this book’s discus-
sion of these issues far too uncritical .

I’m also annoyed by the book’s tendency to mention sites as
if the reader will automatically know what’s being discussed .
I’m supposed to go to Huffington Post just to discover what
is undesirable about their badges? There couldn’t be an
example? There were frequent references to games or sites
without quite enough context; I often mostly knew what they
were talking about, but sometimes, as in the Huffington
badges, I had no idea . Perhaps you can only gamify things if
you already hang out on every popular gamified site and play
some version of every popular game, but it seems like this
could be avoided .

Ghost in the Wires
Kevin Mitnick
Brown and Company, 2011 . 413 pp .
ISBN 978-0-31-603770-9

Wow . Just wow . I know the topic of Kevin Mitnick is a volatile
one, but regardless of your opinion, you gotta read this book .
I’ve never experienced an emotional rollercoaster in a techni-
cal book before—this book steps out of the ordinary and takes
you for a ride . I find myself alternating between condemna-
tion and adulation . Some parts of the story aren’t pretty (or
legal), but it’s all interesting . For everyone who doesn’t know
who Kevin Mitnick is, let me give a brief overview . Back in
the early ’90s he was one of a small group of hackers . I don’t
mean to say he was a member of a small group, I mean to say
that in those days there weren’t that many hackers . It was a
different world back then, and security was a shadow of what
it is now . I’ve heard a lot of criticism against Kevin along
the lines of “all he did was social engineer some people—big
deal,” and I think this book should put that line of thinking
to bed . It’s chock full of techno jargon and I’m amazed at the
level of detail used to describe hacks that took place 15 years
ago . That’s not to say there isn’t a lot of social engineering
going on, because there is, but to say that’s all he was good at
is not accurate at all .

voyage of discovery, go for it; if you were looking for more of a
guided tour, pick another book .

You should also be aware that this book is going to be of
much more use to you in doing hands-on statistics than
it is in passing statistics exams in any other course . The
programming-based methods it teaches are useful, but they
are not always mainstream approaches, which is entirely
intentional on the author’s part .

Gamification by Design: Implementing Game
Mechanics in Web and Mobile Apps
Gabe Zichermann and Christopher Cunningham
O’Reilly, 2011 . 192 pp .
ISBN 978-1-44-939767-8

This time seems to be the column for recommendations with
caveats . Suppose you have a Web site, or you’re about to have
one, and you have determined that what you want out of life
is game features, some kind of a scoring system, but you’re
not sure how you would do that . What do you give scores to?
What are the common pitfalls? How do you implement the
system? If so, this is the book for you .

This is not the book for you if you need a thoughtful discus-
sion of when gamification is a good idea, because its discus-
sion of this is not deep or convincing . If you want your child
to eat broccoli, eat broccoli happily yourself, serve very small
amounts in varied ways, repeat often in a context where
experimentation is safe—or, better yet, just don’t worry
about it, broccoli is not a deal-breaker, there is really no need
for your child to eat it, there are lots of other vegetables in
the world, and if you don’t do anything silly, most kids will
eventually grow up to eat and enjoy broccoli . That’s not really
unsolicited parenting advice; that’s semi-solicited gamifica-
tion advice . Making broccoli-eating into a game may “work .”
If done well, it will probably have no long-term ill effects .

But it’s a waste of your valuable time and energy at best, and
at worst, it’s an invitation to turn a non-issue into a struggle .
What works as a way to get kids to eat broccoli involves some
general principles (model the behavior you want, provide
different ways of reaching the desired goal, don’t fight about
it) and some domain-specific knowledge (kids often don’t eat
broccoli because it’s bitter, and bitterness is best cut by sour-
ness or by creating sweetness, for instance by roasting—my
kid eats raw broccoli with balsamic vinegar, which is sour
and sweet, very happily, partly for these excellent scientific
reasons and partly because she’ll eat anything with balsamic
vinegar on it) . Fortunately, child broccoli eating is not actu-
ally a Web or mobile app, putting it outside the book’s actual

 ;login: DECEMBER 2011 Book Reviews 63

Ultimately, Kevin was captured and incarcerated in 1995,
released in 2000, and kept under supervision until 2003 .
It’s an amazing story, and I’m not going to go into the level of
detail I would normally offer in a book review, for a couple
of reasons . First, I don’t want to spoil anything for you, the
reader . Second, I’m marginally uncomfortable doing a book
review about a person and not a technology . It’s Kevin’s story
to tell, and I’m going to let him tell it . All I can do is try to
convince you that you should listen . Whatever your feelings
are about Kevin, I can assure you that this book will not be a
waste of your time, money, or effort .

Kevin Free .

—Reviewed by Sam Stover

Starting at an early age with magic tricks, Kevin slowly
became obsessed with outsmarting other people . Once he
discovered the telephone system, starting with learning
ham radio, he had found a way to couple the rush of out-
smarting people with his fascination with technology . As
he progressed, he began to meet other people with similar
interests, which added impetus to his activities . He and his
friends soon began to try to outdo each other, which meant
pushing the envelope further and further . This eventually
led to investigation by the FBI, which caused Kevin to go on
the lam . I found this part of the book fascinating—how many
people can just relocate to a different state, construct a new
identity, and basically start a whole new life? Amazing .

Statement of Ownership, Management, and Circulation, 9/30/11
Title: ;login: Pub. No. 0008-334. Frequency: Bimonthly. Number of issues published annually: 6. Subscription price $125.
Office of publication: USENIX Association, 2560 Ninth Street, Suite 215, Berkeley, CA 94710.
Headquarters of General Business Office of Publisher: Same. Publisher: Same.
Editor: Rik Farrow; Managing Editor: Jane-Ellen Long, located at office of publication.
Owner: USENIX Association. Mailing address: As above.
Known bondholders, mortgagees, and other security holders owning or holding 1 percent or more of total amount of bonds,
mortgages, or other securities: None.
The purpose, function, and nonprofit status of this organization and the exempt status for federal income tax purposes have
not changed during the preceding 12 months.

Extent and nature of circulation Average no. copies each issue No. copies of single issue (Oct. 2010)
 during preceding 12 months published nearest to filing date of
9/30/11

A. Total number of copies 5184 4900
B. Paid circulation
 Outside-county mail subscriptions 3118 2981
 In-county subscriptions 0 0
 Other non-USPS paid distribution 1551 1489
 Other classes 0 0
C. Total paid distribution 4669 4470
D. Free distribution by mail
 Outside-county 0 0
 In-county 0 0
 Other classes mailed through the USPS 77 57
E. Free distribution outside the mail 334 280
F. Total free distribution 411 337
G. Total distribution 5080 4807
H. Copies not distributed 104 93
I. Total 5184 4900
Percent Paid and/or Requested Circulation 92% 93%

 I certify that the statements made by me above are correct and complete.
 Jane-Ellen Long, Managing Editor

 64 ;login: VOL. 36, NO. 6

NOTES
USENIX Board of Directors

Communicate directly with the USENIX
Board of Directors by writing to
board@usenix .org .

P R E S I D E N T

Clem Cole, Intel
clem@usenix.org

V I C E P R E S I D E N T

Margo Seltzer, Harvard University and
Oracle Corporation
margo@usenix.org

S E C R E T A R Y

Alva Couch, Tufts University
alva@usenix.org

T R E A S U R E R

Brian Noble, University of Michigan
noble@usenix.org

D I R E C T O R S

John Arrasjid, VMware
johna@usenix.org

David Blank-Edelman, Northeastern
University
dnb@usenix.org

Matt Blaze, University of Pennsylvania
matt@usenix.org

Niels Provos, Google
niels@usenix.org

A C T I N G E X E C U T I V E D I R E C T O R

Margo Seltzer
execdir@usenix.org

USENIX Member Benefits

Members of the USENIX Association
 receive the following benefits:

Free subscription to ;login:, the
Association’s magazine, published six
times a year, featuring technical articles,
system administration articles, tips and
techniques, practical columns on such
topics as security, Perl, networks, and
operating systems, book reviews, and
reports of sessions at USENIX
conferences .

Access to ;login: online from October
1997 to this month:
www .usenix .org/publications/login/

Discounts on registration fees for all
 USENIX conferences .

Special discounts on a variety of prod-
ucts, books, software, and periodicals:
www .usenix .org/membership/
specialdisc .html .

Contributing to USENIX Good Works
projects such as open access for papers,
videos, and podcasts; student grants and
scholarships; USACO; awards recogniz-
ing achievement in our community; and
others: http://www .usenix .org/about/
goodworks .html

The right to vote on matters affecting
the Association, its bylaws, and election
of its directors and officers .

For more information regarding
membership or benefits, please see
www .usenix .org/membership/
or contact office@usenix .org,
510-528-8649 .

2012 Election for the USENIX
Board of Directors

USENIX is a member organization; its
vision, focus, and initiatives are centered
on serving the needs of its members
and their various constituencies . The
USENIX Board is responsible for the
decision-making and proactive action
that best serves the needs of the mem-
bership .

The biennial election for officers and
directors of the Association will be held
in the spring of 2012 . People can be
nominated for the USENIX board in two
ways: either by contacting the Nominat-
ing Committee (nomcomm@usenix .org)
or by submitting a written statement of
nomination signed by at least five (5)
USENIX members in good standing .

The Nominating Committee Report is
now online at www .usenix .org/about/
elections12/elections12nomcomm .html .
The report includes a slate of nominees
who, in the opinion of the Nominat-
ing Committee, would best serve the
interests of the organization and the
membership .

It is not too late to consider running for
the USENIX Board . Nominations from
the membership are open until Janu-
ary 6, 2012 . To nominate an individual,
send a written statement of nomination
signed by at least five (5) members in
good standing, or five separately signed
nominations for the same person, to
the Acting Executive Director at the
Association offices, to be received by
noon PST, January 6, 2012 . Please also

 ;login: DECEMBER 2011 USENIX Notes 65

USA Team Wins Big at Interna-
tional Programming Competi-
tion

The four-student USA team attend-
ing the 2011 International Olympiad in
Informatics (IOI) delivered an impres-
sive set of results, earning three gold
medals and one silver . The IOI, widely
regarded as the world championship
programming competition at the high
school level, was held this August in Pat-
taya, Thailand, where 302 of the world’s
best high school programmers from
78 countries tested the limits of their
computational problem-solving abilities .
The USA was among only four countries
earning three gold medals (the others
being China, Taiwan, and Croatia), and
our point total was exceeded only by
China and Russia, making this one of
our best overall results ever .

The 2011 USA team includes:

u	 Wenyu Cao (gold, 6th place overall),
from Phillips Academy in Andover,
Massachusetts, who is now attending
Princeton

u	 Johnny Ho (gold, 17th place overall),
a sophomore from Lynbrook High
School in San Jose, California

u	 Albert Gu (gold, 19th place overall), a
senior from Saratoga High School in
Saratoga, California, who is now at-
tending Carnegie Mellon University

u	 Nathan Pinsker (silver, 42nd place
overall), a senior from Palo Alto High
School in Palo Alto, California, who
is now attending MIT

The USA team is selected and trained by
the USA Computing Olympiad (USACO),
a national organization supporting the
advancement of high school computing
by identifying, motivating, and train-
ing top computing students across the
country . The USACO offers six monthly
programming contests in three divisions
(bronze, silver, gold) throughout the aca-
demic year, a set of online training pages
that have benefitted tens of thousands of
students from nearly 90 countries, and

USENIX Remembers Dennis
Ritchie (1941–2011)

Our community suffered a serious loss
this past October with the passing of
UNIX co-inventor and C programming
language creator Dennis Ritchie . Den-
nis was a quiet man who left behind a
far-reaching legacy . He was awarded
the Turing Award in 1983, the National
Medal of Technology in 1999, and the
Japan Prize in 2011 . While the world
and the technical community mourn the
loss of a true pioneer, USENIX lost that
and much more—Dennis was one of us .
He was a frequent attendee at USENIX
events for over two decades, a mentor to
many, and a friend to all .

If you have a favorite Dennis story,
please share it with the community
on our Facebook page (https://www .
facebook .com/pages/USENIX-Asso-
ciation/124487434386)—and visit our
online tribute page (http://www .usenix .
org/about/Ritchie .html) .

A Note from Dennis’s Family
As Dennis’s siblings, Lynn, John, and
Bill Ritchie—on behalf of the entire
Ritchie family—we wanted to convey to
all of you how deeply moved, astonished,
and appreciative we are of the loving
tributes to Dennis that we have been
reading . We can confirm what we keep
hearing again and again: Dennis was an
unfailingly kind, sweet, unassuming,
and generous brother—and of course a
complete geek . He had a hilariously dry
sense of humor, and a keen appreciation
for life’s absurdities—though his world
view was entirely devoid of cynicism or
mean-spiritedness .

We are terribly sad to have lost him, but
touched beyond words to realize what
a mark he made on the world, and how
well his gentle personality—beyond his
accomplishments—seems to be under-
stood .

prepare a plain-text Candidate’s State-
ment of up to 260 words and send both
the statement and a 600 dpi photograph
to jel@usenix .org, to be included with
the ballots .

There are five distinct roles on the USE-
NIX Board . The Board consists of eight
directors, four of whom are “at large .”
The others are officers, including the
president, vice president, secretary, and
treasurer . Written statements of nomi-
nation should specify the role (president,
vice-president, secretary, treasurer, or
at-large director) to which the nomina-
tion pertains .

Ballots will be mailed to all paid-up
members by January 31, 2012 . Ballots
must be received in the USENIX offices
by March 12, 2012 . The results of the
election will be announced on the USE-
NIX Web site by March 30 and will be
published in the June issue of ;login: .

The balloting is preferential: those
candidates with the largest numbers of
votes are elected . Ties in elections for di-
rectors shall result in run-off elections,
the results of which shall be determined
by a majority of the votes cast . Newly
elected directors will take office at the
conclusion of the first regularly sched-
uled meeting following the election, or
on July 1, 2012, whichever comes earlier .

—Alva L. Couch, Chair, USENIX Board
Nominating Committee

 66 ;login: VOL. 36, NO. 1

deputy leader and three-time former
IOI gold medalist Neal Wu, and the four
team members, all had the experience of
a lifetime .

The USACO is indebted to our long-term
sponsors, USENIX and IBM . Without
the support of forward-looking organi-
zations like these, USACO would never
have the means of fulfilling its goals of
elevating high-school computing nation-
wide . There are many alarming trends
in high-school computing at the present
time: undergraduate CS enrollments
are at near 30-year lows, and only 1% of
high-school seniors take the AP com-
puter science exam . Our sponsors are
among the few organizations that truly
recognize that building the foundation
for a future workforce to succeed in a
high-tech global economy requires dra-
matic investments to promote excellence
in high school computing education .

—Brian Dean, USACO Associate Director

Thanks to Our Volunteers

As many of our members know, USE-
NIX’s success is attributable to a large
number of volunteers, who lend their
expertise and support for our confer-
ences, publications, good works, and
member services . They work closely
with our staff in bringing you the best
there is in the fields of systems research
and system administration . Many of you
have participated on program commit-
tees, steering committees, and subcom-
mittees, as well as contributing to this
magazine . We are most grateful to you
all . We would like to make special men-
tion of some people who made particu-
larly significant contributions in 2011 .

Acting Executive Director
We would like to extend a special thank
you to Margo Seltzer, Vice President of
the USENIX Board of Directors, for her
dedication to USENIX and for taking the
reins with enthusiasm and commitment .

Program Chairs
Greg Ganger and John Wilkes: 9th

USENIX Conference on File and Storage
Technologies (FAST ’11)

David G . Andersen and Sylvia Rat-
nasamy: 8th USENIX Symposium on
Networked Systems Design and Imple-
mentation (NSDI ’11)

Anees Shaikh and Kobus Van der
Merwe: Workshop on Hot Topics in
management of Internet, Cloud, and
Enterprise Networks and Services (Hot-
ICE ’11)

Christopher Kruegel: 4th USENIX
Workshop on Large-Scale Exploits and
Emergent Threats: Botnets, Spyware,
Worms, and More (LEET ’11)

Matt Welsh: 13th Workshop on Hot
Topics in Operating Systems (HotOS
XIII)

Michael McCool and Mendel Rosen-
blum: 3rd USENIX Workshop on Hot
Topics in Parallelism (HotPar ’11)

Jason Nieh and Carl Waldspurger: 2011
USENIX Annual Technical Conference
(USENIX ATC ’11)

a rigorous invitational summer train-
ing camp for the top 16 students in the
USA . USACO is sponsored by USENIX
and IBM, and relies on a dedicated team
of volunteer coaches for its operation;
thanks are due to Jacob Steinhardt, Alex
Schwendner, Richard Peng, Jelle van
den Hooff, Neal Wu, Eric Price, and Rob
Kolstad, as well as to a host of volunteer
problem-solvers who help us in prepar-
ing our contests .

The problem lineup at the IOI this year
was quite challenging, involving several
problems that required students to
think “outside the box .” In addition to a
challenging set of programming tasks,
participants in the IOI were treated
to a rich cultural program, including
excursions into Bangkok, demonstra-
tions of Thai martial arts, singing and
dance, elephant rides, and authentic
Thai cuisine . The entire USA delegation,
including team leader Dr . Brian Dean,

Left to right: Albert Gu, Wenyu Cao, Brian Dean, Johnny Ho, Nathan Pinsker .
Not pictured: Deputy leader Neal Wu, who had to leave a day early to compete
in the international finals of the Google Code Jam competition in Tokyo .

 ;login: DECEMBER 2011 USENIX Notes 67

Other Major Contributors

John Arrasjid, David Blank-Edelman,
Matt Blaze, Clem Cole, Alva Couch,
Brian Noble, Niels Provos, and Margo
Seltzer for their service on the USENIX
Board of Directors

John Arrasjid, Jeff Bates, Stephen
Bourne, Bryan Cantrill, Clem Cole,
Æleen Frisch, Dan Klein, Thomas A .
Limoncelli, Timothy Lord, Jim McGin-
ness, Brian Noble, and Theodore Ts’o
for serving on the USENIX Awards
Committee

Brian Dean, Rob Kolstad, Don Piele,
Richard Peng, Eric Price, Alex Schwend-
ner, Jacob Steinhardt, Jelle van den
Hoof, and Neal Wu, this year’s directors
and coaches for the USA Computing
Olympiad, co-sponsored by USENIX

Dan Geer, Theodore Ts’o, Brian Noble,
and Margo Seltzer for serving on the
Audit Committee

Alva Couch for chairing the USENIX
Board of Directors Nominating Com-
mittee

Eddie Kohler for his many cheerful and
speedy responses to our requests for cus-
tomizations of his HotCRP submissions
and reviewing system

Jacob Farmer of Cambridge Computer
for his sponsorship of the USENIX
Education on the Road series and for or-
ganizing the Storage Pavilion and Data
Storage Day at LISA

John Y . Arrasjid, Ben Lin, Raman
Veeramraju, Steve Kaplan, Duncan Ep-
ping, Michael Haines, Haythum Babiker,
Irena Nikolova, and Kiran Kumar Chit-
timaneni for writing the two Short Top-
ics books published by USENIX in 2011

Matt Simmons for blogging about USE-
NIX activities

Invited Talks/Special Track Chairs

John Wilkes: Work-in-Progress Re-
ports (WiPs) and Posters Chair at FAST

David Pease: Tutorial Chair at FAST
Michael Walfish: Poster Session Chair

at NSDI
Ajay Gulati: Poster Session Chair at

USENIX Annual Tech
Irini Fundulaki: Local Workshop

Chair at TaPP
Grigoris Karvounarakis: Workshop

Organization and Proceedings Coordi-
nator at TaPP

Sandy Clark, Dan Geer, and Dan
Wallach: Invited Talks Committee at
USENIX Security

Patrick Traynor: Poster Session Chair
at USENIX Security

Matt Blaze: Rump Session Chair at
USENIX Security

Æleen Frisch and Kent Skaar: Invited
Talks Coordinators at LISA

Cory Lueninghoener: Workshops Coor-
dinators at LISA

Chris St . Pierre: Guru Is In Coordina-
tor at LISA

Matt Disney: Poster Session Coordina-
tor at LISA

William Bilancio: Work-in-Progress
Reports (WiPs) Coordinator at LISA

Program Chairs (continued)

Armando Fox: 2nd USENIX Confer-
ence on Web Application Development
(WebApps ’11)

Ion Stoica and John Wilkes: 3rd USE-
NIX Workshop on Hot Topics in Cloud
Computing (HotCloud ’11)

Irfan Ahmad: 3rd USENIX Workshop
on Hot Topics in Storage and File Sys-
tems (HotStorage ’11)

Sanjay Kumar, Himanshu Raj, and
Karsten Schwan: 3rd Workshop on I/O
Virtualization (WIOV ’11)

Peter Buneman and Juliana Freire: 3rd
USENIX Workshop on the Theory and
Practice of Provenance (TaPP ’11)

David Wagner: 20th USENIX Security
Symposium (Security ’11)

Hovav Shacham and Vanessa Teague:
2011 Electronic Voting Technology
Workshop/Workshop on Trustworthy
Elections (EVT/WOTE ’11)

Sean Peisert and Stephen Schwab: 4th
Workshop on Cyber Security Experi-
mentation and Test (CSET ’11)

Nick Feamster and Wenke Lee: USE-
NIX Workshop on Free and Open Com-
munications on the Internet (FOCI ’11)

David Brumley and Michal Zalewski:
5th USENIX Workshop on Offensive
Technologies (WOOT ’11)

Ben Adida and Umesh Shankar: 2nd
USENIX Workshop on Health Security
and Privacy (HealthSec ’11)

Patrick McDaniel: 6th USENIX Work-
shop on Hot Topics in Security (HotSec
’11)

Alex Hutton: Sixth Workshop on Secu-
rity Metrics (MetriCon 6 .0)

Thomas A . Limoncelli and Doug
Hughes: 25th Large Installation System
Administration Conference (LISA ’11)

 68 ;login: VOL. 36, NO. 6

CONFERENCE
20th USENIX Security Symposium
(USENIX Security ’11)

August 8–12, 2011
San Francisco, CA

Opening Remarks, Awards, and Keynote
Address
Summarized by Rik Farrow (rik@usenix.org)

Tadoyoshi Kohno (University of Washington), the chair of
Security ’12, stood in for David Wagner, who was sick, and
announced two Outstanding Paper awards: to Clark et al.
for “Why (Special Agent) Johnny (Still) Can’t Encrypt,”
and to Caballero et al. for “Measuring Pay-per-Install.” He
also announced that Security ’12 would be held in Bellevue,
Washington, an edge city of Seattle.

Network Security in the Medium Term: 2061–2561 AD
Charles Stross, Author of award-winning science fiction

Charlie Stross pointed out that, by 2061, networking will
have been around about as long as steam engines have been
today, but that we ourselves might not be around, having been
wiped out by some global kernel panic or a nearby cosmic ray
burst. And if we don’t solve the energy crisis, we won’t have a
network to secure—there will be no power.

Stross covered many possible future scenarios. He decried
the notion of the AI Singularity, the point of human-equiva-
lent artificial intelligences, saying this was a fantasy akin to
a steam-powered tin man. Reading his speech from his iPad
(no graphics), Stross spoke eloquently, sometimes dancing
closer to his supposed target, network security. I highly sug-
gest listening to the MP3 of his speech on the USENIX Web
site.

Stross posited that advances in both computing and band-
width will allow complete lifelogging. Not only will cameras
and microphones record everything we see, background
processing will convert printed text and spoken voice into
searchable text, and face recognition will identify anyone we
come into contact with. Lifelogs would be an incredibly pre-

In this issue:

20th USENIX Security Symposium 68
Summarized by Julie Ard, Adam Bates, Shane Clark, Italo Dacosta,
Tamara Denning, Rik Farrow, Ed Gould, Nathaniel Husted, Nick
Jones, Michael Z. Lee, Mihir Nanavati, Lakshmanan Nataraj, Ben
Ransford, Christian Rossow, Robert Walls, and Samee Zahur

4th Workshop on Cyber Security Experimentation and
Test 97
Summarized by Kevin Killourhy, Sean Peisart, and Peter A.H.
Peterson

USENIX Workshop on Free and Open Communications on
the Internet 104
Summarized by Nick Jones

5th USENIX Workshop on Offensive Technologies 106
Summarized by Rik Farrow, Karl Koscher, and Mihir Nanavati

2nd USENIX Workshop on Health Security and Pri-
vacy 111
Summarized by Shane S. Clark, Shrirang Mare, Aarathi Prasad, and
Ben Ransford

6th USENIX Workshop on Hot Topics in Security 120
Summarized by Julie Ard, Rik Farrow, and Ryan MacArthur

Conference Reports

MULTIMEDIA at USENIX

Did you know that all USENIX conference videos
and MP3s are now free and open to the public?
Check out the videos and MP3s of these events:
 http://www.usenix.org/publications/
multimedia/

Plus, don’t forget to subscribe to the USENIX You-
Tube channel for the latest conference highlights
and greatest hits:
http://www.youtube.com/usenixassociation

 ;login: DECEMBER 2011 Conference Reports 69

CONFERENCE
Toward Secure Embedded Web Interfaces
Baptiste Gourdin, LSV ENS-Cachan; Chinmay Soman, Hristo Bojinov, and

Elie Bursztein, Stanford University

Elie Bursztein presented work analyzing the security of Web
interfaces on embedded devices and subsequently developing
a framework for secure Web interfaces. Bursztein discussed
the prevalence of Web interfaces for customization of con-
sumer electronics such as routers, printers, VoIP phones,
and digital photo frames: there are at least twice as many
Web interfaces on embedded devices as there are traditional
servers hosting Web sites. Additionally, these Web interfaces
tend to be custom-developed on a tight deadline and feature-
driven, leading to many vulnerabilities. The authors audited
the security of over 30 devices from a variety of brands and
categories, and found vulnerabilities in all devices tested.

In an effort to improve the bottom line of security for embed-
ded Web interfaces, the authors developed WebDroid, a
framework built on Android for providing secure embedded
Web interfaces. More specifically, WebDroid protects against
the vulnerabilities revealed in the motivating security audits.
The authors performed benchmark testing to evaluate the
performance of WebDroid’s security features, and found that
WebDroid has a 10–15% loss in performance (requests per
second and process time of requests) when using security
features.

During questions, Bursztein clarified that most of these
embedded devices could use WebDroid after installing
Android, since they mostly have ARM processors. Bursztein
was also asked whether the team looked at open source router
firmware such as DD-WRT and OpenWrt; they did not.

Zozzle: Fast and Precise In-Browser JavaScript Malware
Detection
Charlie Curtsinger, University of Massachusetts Amherst; Benjamin

Livshits and Benjamin Zorn, Microsoft Research; Christian Seifert,

Microsoft

Benjamin Livshits presented Zozzle, a low-overhead in-
browser method for detecting malware. Zozzle, which does
static, online analysis can be contrasted with Nozzle, which
performs offline runtime analysis to detect heap sprays.
Zozzle detects JavaScript malware via machine learning;it
was trained using one thousand malicious samples and seven
thousand benign samples. Zozzle uses hierarchical features
and Naive Bayes classification; it deals with obfuscated code
by unfolding the code using the JavaScript runtime in the
browser, then reclassifying it.

When using 300 features, Zozzle has a throughput of 1 MB
of code per second. When run over 1.2 million samples of
JavaScript code, this resulted in four false positives and a

cious resource, one that would require protection, both while
being transmitted and then later, when stored.

 Stross made another point that I considered very significant
in the near term. Currently, service providers cap our data
transfers instead of supplying the networking infrastructure
that would support practically unlimited access. He said that
this expense of data transfer had pushed him into turning
his iPhone into a dumb phone. This bandwidth-limiting by
today’s providers suggests that we need to keep computa-
tion local instead of moving masses of data into the cloud
for computation (the network infrastructure model). With
bandwidth caps, the cloud may remain just as distant as real
clouds are to earthbound humans.

Web Security
Summarized by Tamara Denning (tdenning@cs.washington.edu)

Fast and Precise Sanitizer Analysis with Bek
Pieter Hooimeijer, University of Virginia; Benjamin Livshits and David

Molnar, Microsoft Research; Prateek Saxena, University of California,

Berkeley; Margus Veanes, Microsoft Research

Pieter Hooimeijer presented BEK, a formal language for
defining browser input sanitizers and a back-end system
for supporting that language. The work is prompted by the
inability to make formal determinations about the behaviors
of current Web input sanitizers; for example, it is not trivial
to determine whether applying a sanitizer twice—or apply-
ing two different sanitizers—may result in unsafe output.
Specifying a sanitizer via BEK allows one to check whether
specific strings (e.g., XSS attack) are potential outputs of the
sanitizer. In addition, BEK allows one to check for proper-
ties such as commutativity, idempotence, equivalence, and
reversibility. The back-end of BEK is supported by a symbolic
state transducer model of the sanitizer that can be used to
run analysis or generate sanitizer code.

The authors evaluated BEK using 35 currently deployed
sanitizers: 76% of tested sanitizers could be ported to the
BEK language without modifying the language (90% with
multi-character lookahead). The authors found that BEK
could check for equivalence between sanitizers in under one
minute. Lastly, the authors used BEK to determine whether
or not the sanitizers were capable of allowing any XSS attack
strings as sanitized output.

During the questions, Hooimeijer clarified that sanitizers
were manually ported to BEK, but that the BEK language
was designed to resemble the way that current sanitizers are
written so that coders will be able to write sanitizers in BEK.

 70 ;login: VOL. 36, NO. 6

not only requires a large network of computers but also the
ability to maintain a large amount of up-to-date information
regarding targets and exploits. Such a large network incurs
large costs, and only an enormous organizations, like Google,
Amazon, or the US government, has this sort of computing
infrastructure. Moreover, creating a 0-day exploit for a piece
of software takes roughly 450 hours, according to metrics
obtained by Dave’s company, Immunity. It takes 18 hours
to run a modern exploit against a machine. If an exploited
machine is discovered by the defender, i.e., cleaned up, the
attacker must also assume that all their information on this
machine is compromised and they must start over.

Defending against attackers is also cheaper than we have
come to believe. Aitel says that the attackers are winning
because they have a much better strategy. Defenders are
hampered by the culture. For example, law enforcement is
very successful against hackers with economic motives, but
very bad about deterring anyone without a financial motive.
The academic community is not a serious player in this
area: many of their discoveries do not keep pace with reality.
Defenders also continue consistently to underestimate their
attackers’ abilities. Finally, defenders more often than not
continue to use software with serious vulnerabilities. Dave
asked, “How many issues do you have to come up with before
your company will stop using a product?”

Rik Farrow wondered about the ability of organizations
to avoid using insecure software, as all software has some
insecurities. Dave answered that there are relatively secure
options, such as Google Chrome in the browsing market,
for example, but companies don’t choose them. How can
organizations that completely misunderstand cyberwar use
this new information to change their strategies? One of the
biggest things they can do is run new purchases and prod-
ucts through a security team. If the security team says it
isn’t secure, don’t use it or release it. Carson Gaspar (Gold-
man Sachs) said that businesses think that being secure
is more expensive than being insecure and asked how this
relates to Dave’s talk. Dave replied that, viewed on a quarterly
basis, they may be right. However, in the long run not being
secure costs far more. Adam Drew (Qualcomm) asked Dave
what advice he’d give to help students in academic research
become more effective in this area. Dave replied that they
need to be taught to think like attackers, but it’s compli-
cated. Many attackers are “crazy people” who have ingrained
characteristics that make them very skilled at what they do
but are not easily taught (or managed). However, he also said
there are good people in academia doing good work.

The slides for Dave Aitel’s talk are available at http://prezi
.com/vunircise2q8/three-cyber-war-fallacies/.

false negative rate of 9%, both of which are comparable to the
results given by antivirus engines.

One person asked if it is possible for an attacker to overwrite
Zozzle’s weight table in order to avoid detection; Livshits
answered that this is a possibility but that Zozzle provides
the benefit of online analysis for sites behind paywalls and
other similar situations, due to its in-browser nature. In
answer to another question, Livshits said that the team com-
pared the ongoing results of Nozzle against Zozzle, and found
that Zozzle identifies new malware threats before they are
encountered by Zozzle. In another answer, Livshits clarified
that Zozzle identifies threats beyond heap sprays.

Invited Talk

The Three Cyber-War Fallacies
Dave Aitel, CEO of Immunity, Inc.

Summarized by Nathaniel Husted (nhusted@indiana.edu)

Dave Aitel defined the three fallacies in the current under-
standing of cyberwarfare as being that cyberwar is asym-
metric, non-kinetic, and not attributable. He gave examples of
these fallacies from sites such as The Economist and CNAS.
However, the Pentagon has defined “cyber” as a new warfare
domain, thus making it a fact that can’t be ignored, and mod-
ern hackers are now part of this domain.

Dave Aitel first attacked the fallacy that cyberwar is non-
kinetic. The term kinetic, in this sense, is used to refer to
bombs, ammunition, and other objects causing physical dam-
age. For example, disabling a smart grid or the water pumps
of New Orleans would have dire physical consequences.
Another example of the kinetic nature of cyberwar is that
it can change nation-state behavior. For example, sites like
WikiLeaks can affect the policy and actions of a country as
large as the United States. Also, considering the number of
Fortune 500 companies that are most likely compromised in
some way, shape, or form (Dave suggested many might not
even know), it would be possible to affect their supply chain.

As for the second fallacy, attribution happens all the time in
cyberwar. Dave mentions articles from McAfee, The Econo-
mist, and a number of other news sources. That organizations
from China commenced “Operation ShadyRat” has been
published in a large number of publications after McAfee’s
original statements. Such declarations lead to attribution.

The final fallacy is that cyberwar is asymmetric. In this case,
Dave discussed the cost of both attacking and defending. The
popular view is that attacking is cheap while defending is
very expensive. The phrase, “An attacker only needs to find
one hole while a defender has to defend many,” is a prime
example of this. But creating a worldwide strike capability

 ;login: DECEMBER 2011 Conference Reports 71

Questions from the audience addressed government reaction
to the research and further details about mitigation. Blaze
responded that the researchers approached the government
“very politely” and that the government employees they
interacted with all understood that identifying an attack
was not equivalent to launching one. He also pointed out that
all of the passive attacks they identified could be effectively
stopped by improving user awareness of radio state. Accord-
ing to Blaze, however, the active attacks that the researchers
identified are fundamental to the protocol and require a rede-
sign to mitigate effectively.

Dark Clouds on the Horizon: Using Cloud Storage as
Attack Vector and Online Slack Space
Martin Mulazzani, Sebastian Schrittwieser, Manuel Leithner, Markus

Huber, and Edgar Weippl, SBA Research

Martin Mulazzani presented this work on cloud storage
system vulnerabilities. Mulazzani and his collaborators iden-
tified three attacks, all of which they launched successfully
against the popular Dropbox cloud storage system.

The first vulnerability takes advantage of Dropbox’s use of
SHA-1 hashes for data deduplication. If a file hash already
exists in the system, then the file is linked to the account
rather than uploaded. An attacker can thus check for file
existence or get a copy of a file, assuming knowledge of its
SHA-1 hash. This attack is applicable to any cloud storage
system that implements client-side data deduplication with-
out requiring a client-side data possession proof. Attackers
can also steal entire Dropbox folders if they steal a user’s
“Host ID,” which is a unique credential used for authenti-
cation at setup time. It is stored in cleartext on the user’s
computer. Finally, an attacker can upload unlimited data not
linked to an account by taking advantage of a vulnerability
in the upload/download system. The data will eventually
be reclaimed as garbage, but were reliably available for at
least four weeks, according to Mulazzani’s experiments.
The researchers suggested several techniques to prevent the
data deduplication attack by requiring client-side proofs.
Since the researchers notified Dropbox of these attacks, the
company has removed data deduplication, fixed the upload/
download system vulnerability, and encrypted the Host ID.
Mulazzani noted that the plaintext Host ID is still resident in
RAM, so the folder stealing attack is more difficult, but not
impossible.

During the Q&A, Ian Goldberg suggested that one approach
to data deduplication is to challenge the client to compute
a MAC of the file. Mulazzani agreed, but speculated that it
might be slower in the case that the file already exists. Mark
Seiden (Yahoo!) asked if the researchers had verified that

Analysis of Deployed Systems
Summarized by Shane Clark (ssclark@cs.umass.edu)

Why (Special Agent) Johnny (Still) Can’t Encrypt: A
Security Analysis of the APCO Project 25 Two-Way
Radio System
Sandy Clark, Travis Goodspeed, Perry Metzger, Zachary Wasserman,

Kevin Xu, and Matt Blaze, University of Pennsylvania

n Awarded Outstanding Paper!

Matt Blaze presented this security analysis of the APCO
Project 25 (P25) radio system. P25 is a digital radio standard
used by law enforcement groups and the US Secret Service.
It provides a radio system that is backwards compatible with
existing analog solutions while also supporting encryption
for sensitive communications. Blaze and his colleagues iden-
tified vulnerabilities in P25 radios, including susceptibility
to tracking attacks and efficient denial of service. They also
found that legitimate P25 users often unknowingly transmit
in the clear because of usability issues that make it difficult
to verify when encryption is in use.

Both active and passive tracking attacks are possible. Active
attackers can “ping” a radio with a malformed frame to
which it responds whenever in range, without the victim’s
knowledge. Radios can be passively tracked while in use,
because they transmit a unique ID in the clear with each
message, though the protocol specifies an option to encrypt
the ID. Denial of service attacks can be launched with a 14
dB energy advantage given to the attacker. By jamming only
a 64-bit subfield, an attacker can render an entire 1728-bit
voice frame unreadable. The researchers prototyped a jam-
ming device using a $15 child’s toy. While a realistic attack
would require an amplifier, the prototype highlights the
simplicity of the attack.

Finally, Blaze addressed usability issues and mitigation
techniques. The radios tested give users little feedback
about whether outgoing traffic is being encrypted, and also
demodulate and play any incoming traffic without giving the
user an indication of whether the traffic is encrypted. The
over-the-air rekeying protocol that the radios use also fails
regularly, forcing users to communicate in the clear until
their radios can be rekeyed successfully. The researchers
purchased hardware to measure the sensitive voice traffic
transmitted in the clear in several metropolitan areas. They
observed an average of 20 minutes of sensitive cleartext
per city per day. This sensitive cleartext included informa-
tion such as confidential informant names. Eavesdropping
attacks could be mitigated by using the over-the-air rekeying
protocol less frequently and by preventing unencrypted voice
traffic from mixing transparently with encrypted traffic.

 72 ;login: VOL. 36, NO. 6

Forensic Analysis
Summarized by Lakshmanan Nataraj
(lakshmanan_nataraj@umail.ucsb.edu)

Forensic Triage for Mobile Phones with DEC0DE
Robert J. Walls, Erik Learned-Miller, and Brian Neil Levine, University of

Massachusetts Amherst

A typical crime scene investigation includes lots of digi-
tal evidence such as computers, mobile phones, etc., and it
takes law enforcement agencies quite a while to extract data
from these devices. In order to acquire evidence quickly and
on-scene, Robert Walls proposed a system called DEC0DE
for forensic triage of mobile phones. The authors chose
mobile phones instead of computers since phones are not
only ubiquitous but also contain key information (address
books, images, etc.). For this work, the authors specifically
dealt only with feature phones, which account for 60% of the
phones used in the US. This system extracts digital informa-
tion directly from the phone storage in, at maximum, around
20 minutes. The interesting point to be noted is that this
system is agnostic to the file system and operating system of
the phone. This is important, since it allows the possibility
of handling phone models that have not been previously seen
without any extra work (critical for triage).

The input to the system is raw storage (stream of bytes) from
a phone. In order to remove unwanted bytes that need not
be parsed, the raw storage is first filtered using a technique
called block hash filtering (BHF), which preserves important
fields such as timestamps and phone numbers. The system
later locates these fields and interprets a combination of
fields as a record. As the name suggests, BHF is carried out
by dividing the storage into blocks and computing a hash on
every block. Duplicate blocks are filtered out by comparing
the hashes against a library of known hashes so that only
important data is retained. Experimental evaluations on dif-
ferent phone models show that this filtering helps in remov-
ing lots of extraneous data (69% on average). There was also a
lot of overlap between phones of the same model.

Once the filtering step is completed, the next step is infer-
ence. The system uses machine learning algorithms for this
step, with the assumption that similar phone models have
similar call logs. The formats are encoded using probabilis-
tic finite state machines and then parsed using a dynamic
programming algorithm (Viterbi). The state machines differ
depending on the record of consideration. In the end, a deci-
sion-tree-based classifier helps to remove false positives. The
whole system was evaluated by manually selecting known
models from different manufacturers and known records
and verified on models that closely match the former. Around
93% of the records were recovered. The main limitation of

Dropbox computes the SHA-1 hash at the server for each
upload. Mulazzani confirmed that the system does so.

Comprehensive Experimental Analyses of Automotive
Attack Surfaces
Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson,

Hovav Shacham, and Stefan Savage, University of California, San Diego;

Karl Koscher, Alexei Czeskis, Franziska Roesner, and Tadayoshi Kohno,

University of Washington

Cars are increasingly complex systems that typically contain
10+ electronic control units (ECUs), embedded systems. In
this work, the researchers extracted firmware from several
ECUs, reverse-engineered it to identify vulnerabilities,
and finally created a series of attacks, all of which give the
attacker complete control of the vehicle (brakes, engine,
locks, etc.) without requiring physical access.

Stephen Checkoway described attacks using the car’s media
player, Bluetooth interface, and telematics unit (used for
systems such as OnStar). The media player attack used a spe-
cially crafted WMA file, the Bluetooth attack used a trojaned
Android phone, and the telematics attack could be triggered
via the audio in a phone call. Checkoway played a video
demonstrating a compromise via the telematics unit in which
a remote researcher was able to unlock the car, disable the
anti-theft system, and start the engine, allowing an onsite
researcher to simply drive the car away. A second video dem-
onstrated surreptitious tracking and audio recording via the
onboard GPS and telematics systems. Checkoway attributed
the proliferation of vulnerabilities mainly to a lack of past
adversarial pressure and the heterogeneous multi-vendor
development of modern car systems. Almost all the bugs they
found appeared at component boundaries, often through
incorrect assumptions made by suppliers. Finally, Checko-
way said that relevant stakeholders such as SAE, USCAR,
and the US Department of Transportation have been notified
of the vulnerabilities and are taking action in response.

Bill Cheswick asked if modern military gear used the same
equipment. Checkoway said that he did not know. J. Alex Hal-
derman asked if a monoculture might be worse for security
than the heterogeneous status quo. Checkoway responded
that he is not sure and clarified that the researchers did not
mean to suggest that one vendor should make all systems, but
that fewer vendors should be used for each car. Mike Ryan
(ISI) asked if the researchers could steer the car remotely.
Checkoway said that they could not steer the car and did not
test acceleration because of the risk involved. Rik Farrow
asked how widespread the compromised telematic unit is.
Checkoway answered that they only tested one make and
model so he is unsure, but his understanding is that each
manufacturer uses at least one unique telematics unit.

 ;login: DECEMBER 2011 Conference Reports 73

illustration and are not required by the algorithm. Someone
asked about applications besides transportation cards and
what knowledge was needed by the system about a card.
Sjouke said they need contextual information about what is
represented in the bit stream. Another application could be
protocol reverse engineering, for which memory dumps are
not needed but the communication can be inspected.

ShellOS: Enabling Fast Detection and Forensic Analysis
of Code Injection Attacks
Kevin Z. Snow, Srinivas Krishnan, and Fabian Monrose, University of

North Carolina at Chapel Hill; Niels Provos, Google

Code injection attacks are one of the most common methods
of gaining control over a computer. Readily available exploit
kits are making it very easy to deploy exploits. At a higher
level, a code injection attack transfers the application control
flow to a code supplied by the attacker. In most cases, though,
it transfers the control to a shell code regardless of the
method of exploitation.

Detecting the shell code itself aids in subverting a code
injection attack. Lightweight emulation based on dynamic
analysis is the state of the art in detecting shell code, but it is
very slow. Emulators have also proven to be detectable, which
makes lightweight emulation-based analysis weak. Kevin
Snow described how the authors designed a new, faster, and
more efficient dynamic analysis technique which is not
based on emulation. For this sole purpose, they built an oper-
ating system, called ShellOS, that executes code streams.
The entire OS consists of approximately 2500 lines of code
written in C and assembly code.

The most interesting and useful part of this system is that
it can run on a standard OS as a guest OS using hardware
virtualization. When ShellOS first boots, it creates a suitable
environment to execute shell code by allocating memory
given by some user-supplied process memory snapshot.
The host OS then supplies the ShellOS with a code stream
to analyze through a shared memory region, which triggers
ShellOS to execute the code stream from every triggered
offset. Shell OS observes faults and timeouts in the code. In
order to trace these to memory, ShellOS catches page faults at
memory addresses that are defined by the above heuristics.
To determine the effectiveness of their system, they con-
ducted some experiments on throughput and detectability
and compared them against the state-of-the-art shell code
detection system called Nemu. The experiments showed
ShellOS to be faster and more efficient than Nemu.

They did a case study on a real world scenario where shell
codes are injected in PDF files. They used 374 suspicious
PDF documents provided by Google that were collected
between 2007 and 2010. They also had a benign set to test

this system is that the authors assume raw storage can be
acquired, which itself is a great challenge. Another limitation
is that success depends on the quality of the state machine.

In Q&A, Rik Farrow mentioned that often service providers
can transfer contacts from an old phone to a new phone with
ease, so is it not a better idea to use those same tools? Robert
replied that even their own tools don’t do a good job. He
illustrated this by describing how his lab mate had the ser-
vice provider transfer contacts for him, but the process only
transferred a small fraction of the contacts; his system, how-
ever, was able to extract all the contacts without any changes
to his system. Ben Fuller asked about the poor performance
working with two LG phones. Robert answered that the sys-
tem could get better as more phone models become available.

mCarve: Carving Attributed Dump Sets
Ton van Deursen, Sjouke Mauw, and Saša Radomirović, University of

Luxembourg

Sjouke Mauw started off by saying that there is a general
feeling that MIFARE transportation cards can be easily
hacked. In this work, the authors verified this by finding
vulnerabilities on a Luxembourg-based transportation card
called the e-go card. To kick-start the project, they first used
standard data carving tools from digital forensics, which
gave them a lot of dumps along with attributes such as iden-
tity of the card, purchase date, and number of rides left. They
then posed a research question: given a series of dumps with
many attributes, is it possible to map a dump attribute to the
set of dumps? They made some strong assumptions, though,
such as equal length dumps, same location of attributes in
every dump, and that the encoding of an attribute is the same
or deterministic. Although these assumptions seem very
strong, they are acceptable given that they are dealing with
dumps of transportation cards.

Sjouke discussed strategies for finding all possible mappings
of an attribute to a dump set. The first strategy is based on
commonalities. It is done by XORing the set of dump bits and
finding the common indices. The second strategy is a little
more complex and is based on dissimilarities. The whole
methodology was validated by making several trips on a bus
and manually noting known attributes such as date, rides
left, etc. On applying the above algorithms, several attributes
were found and matched with the manually noted set. And all
this took only a few seconds per card. Sjouke concluded with
future work such as automatic encoding and better algo-
rithms to improve robustness. The current version of the tool
is open source and available for download from http://satoss.
uni.lu/mcarve.

Do the bits need to be consecutive for the dissimilarity
algorithm to work? The consecutive bits were only shown for

 74 ;login: VOL. 36, NO. 6

core engine—add-ons are aimed at power users. Features
that require extensive user interaction or break a large pro-
portion of the Web are perfectly acceptable for add-ons but
are impractical for core adoption.

While it is tempting to attribute lack of adoption to the
inertia or general laziness of browser vendors, this is unfair.
Browser vendors can move very quickly if the feature meets
certain criteria and is deemed necessary to the community—
clickjacking defenses like x-frame-options were imple-
mented in every major browser in under two years, while
history privacy has largely been adopted in under a year.

Jackson then considered the differences between ideas that
had successfully been adopted and those that had failed to
make the cut. Generally, browser vendors tend to favor small,
simple features that fix something that is badly broken. Ones
that can be implemented in a verifiable way, preferably across
multiple browsers, and don’t break existing Web pages are
preferable. This is in contrast to academia, which tends to
reward novel ideas that open new avenues for research and
often involve complex and significant implementations.

He outlined a set of general guidelines on how best to select
ideas for browser adoption. Ideally, features should attempt
to make themselves indispensable by solving a real world
problem, especially those that are receiving a fair degree of
media coverage. Getting adopted by a single Web browser
and championed by large Web sites are good ways of getting
noticed. Same-origin policy is an example of such an indis-
pensable feature, as is PostMessage, which was originally
introduced by Opera to allow different browser windows to
communicate without making a round trip to the server.

Second, sometimes even imperfect solutions may be pre-
ferred over more complex solutions if they are easily imple-
mentable in a standard way and can be deployed unilaterally.
Features that require cooperation from Web sites often break
a lot of functionality, since Web sites are very slow to react to
changes in browsers.

Finally, low-risk proposals have the best chance of adoption.
Generally, people are annoyed when Web sites do not load,
and rather than understanding the reasoning behind it or fil-
ing a bug report, they tend to just switch to another browser.
If it is imperative to break functionality, Jackson strongly
suggested minimizing the impact by analyzing how neces-
sary the break was, and whether the feature could be made
opt-in and Web sites gradually be persuaded to use it.

Switching back to the theme of academia vs. industry, Jack-
son noted that feature evaluations in research tended to be
far short of what is expected in industry. Simply verifying the
front page of sites on the Alexa Top 100 or that the browser

false positives, which consisted of 179 PDFs from previous
USENIX conferences. The system was initially able to detect
325 PDFs from the malicious set and the remaining were
detected after unpacking. None of the PDFs from the benign
set was flagged as malicious. Although ShellOS is fast and
detects shell code effectively, it does have some limitations.
First, it is not easy to extract shell code. Second, hardware
virtualization may also be detectable. However, future ver-
sions of ShellOS may not need hardware virtualization. The
authors plan to release the source code of ShellOS soon.

What would be the effect if the shell code invokes an API call
that affects the external environment, such as file manipula-
tions or process creation? Is another process created in the
virtual machine? The results of the API calls are simulated
within ShellOS, and process call creation is not currently
supported. The shell code will still be detected but their sys-
tem will not be able to follow it in the diagnostics. What if an
attacker has access to their system and keeps tweaking his
code till the system does not detect it? That would certainly
be a problem, as with all other approaches.

Invited Talk

Crossing the Chasm: Pitching Security Research to
Mainstream Browser Vendors
Collin Jackson, Assistant Research Professor at Carnegie Mellon

University

Summarized by Mihir Nanavati (mihirn@cs.ubc.ca)

Collin Jackson addressed some of the reasons why very few
ideas proposed in academia for increasing browser security
ever get adopted by the browser community. He discussed
some of the fundamental differences in the goals of academia
and publishing papers, and those in building browsers for
mass market adoption. Using real-world illustrations, he also
gave some “rules” to keep in mind to try to increase the pos-
sibility of getting a feature added to a browser.

Jackson started by quantifying what crossing the chasm to
mass market adoption really means. Jackson argued that
even very popular add-ons such as NoScript are only used
by a small fraction of the total user base. To really make an
impact, a feature needs to make it into the browser’s main
code. The easiest way to do this is to be picked up by at least
one of the major browsers, which is usually followed by adop-
tion by the other browser vendors.

Getting a few people interested in an idea is easy, and even
getting several technically oriented early adopters on board
is not too hard a feat. It is at the next stage, that of making
it acceptable to ordinary users, that most flounder. This is a
fundamental difference between browser add-ons and the

 ;login: DECEMBER 2011 Conference Reports 75

where their abstract execution pattern naturally fits into the
finite automaton structure used by their models here.

In the rest of the presentation, Domagoj outlined how
dynamic symbolic analysis normally works, and how their
approach differs. Normally, the process starts by running
through the program with some concrete input sequence and
collecting a trace of every single branch condition. This pro-
duces a set of constraints that the input sequence must sat-
isfy in order to follow through the same path in the program.
Other paths are then explored by negating the last constraint
of each prefix of each constraint sequence. Their procedure,
however, takes an additional input from the user: an output
abstraction function. This groups all program outputs into
coarse-grained categories or abstractions, and this is what
determines the quality of the learnt program model. Using
this, and a variation of the L* learning algorithm, they were
able to deduce the sequences of inputs that cause signifi-
cant program state changes. Thus MACE would iteratively
build up a deterministic finite automaton (DFA) modeling
internal state changes of the program, and also produce exact
sequences of inputs that will cause transitions between the
states. As new states and transitions of this DFA are discov-
ered, they are fed back into the learning algorithm. Further
exploration is then guided by this model, as MACE can now
use the known input sequences for transitioning between
states to start further exploration at any given state. It can
also filter out redundant input sequences that cause the same
transitions, making the analysis more tractable.

This enabled them to find a number of vulnerabilities in
network programs, ones Domagoj called “deep vulnerabili-
ties,” that is, those hard for an unguided analyzer to find.
He explained this by showing a graph that demonstrated
how an unguided analyzer quickly loses its ability to explore
deeper states. At the end, however, one of the audience mem-
bers noted that the improvement in code coverage over an
unguided search seemed to vary—6.5% for Vino versus 59%
for Samba—and asked why it was so. Domagoj conjectured
that since Vino implemented a simpler protocol, it is likely
that the baseline was already able to explore a large part it.
Session chair Sam King asked what was the most surpris-
ing discovery they made during development. Domagoj
answered, “It was surprising to see that it works!”.

Static Detection of Access Control Vulnerabilities in Web
Applications
Fangqi Sun, Liang Xu, and Zhendong Su, University of California, Davis

Fangqi Sun presented their work on static analysis of Web
sites to detect access control violations. Even large com-
panies like Bloomberg and Disney often have such vul-

can still play YouTube videos is completely insufficient.
Evaluations involving a deep crawl of the Web site and using
client-side measurements are far more likely to reveal com-
patibility problems due to the addition of a feature.

Jackson then asked whether there was any point in pursu-
ing bold and complex solutions, since the probability of them
ever getting mainstreamed is so low. He concluded that even
if such ideas are never mainstreamed, they push the bound-
aries of research and could be successful even if only a very
small subset of the entire system they proposed gets adopted.

The questions revolved around whether browser vendors
were being too conservative and trying to protect users too
much. Couldn’t Web browsers just leave the decision of trust-
ing a Web site or not to the user? Jackson explained how Web
developers would like to provide users with rich function-
ality, often using JavaScript, regardless of the user’s trust
perception of the Web site, making sandboxing and protec-
tion in Web browsers necessary. Jackson was then asked if
a way to improve research evaluations would be to release
better benchmarks to the community. While wholeheart-
edly approving the idea, he had doubts about whether this
was possible, due to copyright issues. The session concluded
with the observation that there was a disconnect between
developers and users, and that a feature that required any
amount of effort from a user would be unpopular and likely
to be turned off. For this reason, the importance of keeping
features simple cannot be overstated.

Static and Dynamic Analysis
Summarized by Samee Zahur (sza4uq@virginia.edu)

MACE: Model-inference-Assisted Concolic Exploration
for Protocol and Vulnerability Discovery
Chia Yuan Cho, University of California, Berkeley, and DSO National Labs;

Domagoj Babić, University of California, Berkeley; Pongsin Poosankam,

University of California, Berkeley, and Carnegie Mellon University;

Kevin Zhijie Chen, Edward XueJun Wu, and Dawn Song, University of

California, Berkeley

Domagoj Babić introduced their new tool for dynamic sym-
bolic analysis, MACE. Although many companies already use
such tools for some of their software development projects,
he noted that testing remains the most widely used means of
weeding out software bugs and vulnerabilities. While most
existing automated tools do not remember anything from one
iteration to the next, MACE improves on this by learning an
approximation of the application’s state space and then using
that approximation to guide further search. Its effectiveness
was demonstrated particularly well for programs implement-
ing various network protocols, such as Vino and Samba,

 76 ;login: VOL. 36, NO. 6

antee the safety of a sandboxing library, and how they used it
to verify the ADsafe library.

Arjun described, one by one, how their type system guar-
antees each of the claimed safety properties, e.g., not being
able to load arbitrary code at runtime, not being able to affect
DOM outside a designated part, etc. One of their key observa-
tions was that ADsafe already requires JavaScript codes to
pass an existing static checker, JSLint. They could there-
fore design their type system to be a superset of everything
JSLint accepts, allowing them to significantly simplify their
design of the type system.

Arjun ended with several bugs they found in ADsafe with
their automated system, as well as a bug in JSLint. Sam King
asked whether we should move to a better language that is
easier to check, or to a subset of JavaScript. Arjun answered
that JSLint and other static checkers already do require code
to be rewritten in a restricted subset of JavaScript, to the
point where it is almost a new language. David Evans (Uni-
versity of Virginia) noted that the use of a keyword whitelist
(as opposed to the keyword blacklist of identifiers, as used
here) may be more effective in filtering unsafe attributes.
Since browsers are adding new features and keywords all the
time, some of them may be unsafe. Arjun replied that if the
external environment cannot be relied on, even a whitelist-
based filter can be defeated, pointing out that redefinition of
built-in keywords by the hosting page is always a problem. A
questioner sought clarification on which bugs were empiri-
cally found and which proven by their type system. Only the
JSLint bug was empirically found.

Invited Talk

I’m from the Government and I’m Here to Help:
Perspectives from a Privacy Tech Wonk
Tara Whalen, Office of the Privacy Commissioner of Canada

Summarized by Julie Ard (julieard@gmail.com)

The Canadian Office of the Privacy Commissioner (OPC),
established in 1983, has a mandate to oversee compliance
with the Canadian Privacy Act, covering governmental
privacy, and its expansion in 2000 to protect and promote the
privacy rights of individuals. The OPC acts as an ombuds-
man. Its powers include investigation, audit, and the abil-
ity to pursue court actions, publicly report on information
handling practices, promote public awareness, and to support
research on privacy issues (they awarded $350,000 in grants
last year for privacy research and public education proj-
ects). The Technology Analysis Branch in the OPC supports
investigations, among other duties. Technologists undertook
two major technical investigations which Tara discussed in
detail, emphasizing the importance of government employees

nerabilities on their Web sites, where they make implicit
assumptions about access control policies and simply forget
to place guards on sensitive Web pages. This often allows
an attacker to gain access to restricted parts of a Web site
by just typing a URL in a browser. She pointed out that
frequently used methods of code review are neither com-
prehensive nor efficient, and automated detection of access
control vulnerabilities is often hard in the absence of formal
specifications. Their approach, instead, was to automatically
explore hyperlinks produced by PHP scripts to produce role-
specific sitemaps. Once they obtain such sitemaps for normal
users, sysadmins, etc., their tool can automatically attempt
to explore pages that should be accessible by one role and not
another (e.g., by sysadmins and not normal users). If it suc-
ceeds, the tool flags a vulnerability.

Rationales behind various design choices were given. For
example, Fangqi described how static analysis provided
better code coverage compared to dynamic analysis tech-
niques, but also required the use of context-free grammars
to approximate various links produced by PHP scripts.
The presentation ended with evaluations and some limita-
tions of their tool. It was able to find vulnerabilities in both
traditional and Web 2.0 applications. The evaluation also
demonstrated the usefulness of a specialized tool: it can scan
through 12,000 lines of code in two minutes.

Someone asked how their tool explores privileged pages
not found in the code. Fangqi said developers can manually
specify additional Web pages to explore. Session chair Sam
King asked how dynamically generated links were being
handled. Fangqi said that JavaScript-generated links are
indeed a limitation, as she had already pointed out, and they
intend to address it in the future.

ADsafety: Type-Based Verification of JavaScript
Sandboxing
Joe Gibbs Politz, Spiridon Aristides Eliopoulos, Arjun Guha, and Shriram

Krishnamurthi, Brown University

As advertisements and other mashup components in today’s
Web applications often require the use of third-party
JavaScripts, they also require sandboxing to provide safety
guarantees. Arjun Guha said that the authors’ work tries
to verify safety properties of various trusted sandboxing
libraries often employed, for which they specifically focus on
Yahoo!’s ADsafe library as a typical example. Arjun showed
how common such third-party scripts are, how hard it is to
verify sandboxing libraries that are trusted to provide safety,
and how even a single mistake can provide attackers with
the upper hand. The rest of the presentation consisted of the
details of how a type-based static checker can provably guar-

 ;login: DECEMBER 2011 Conference Reports 77

Tara encouraged researchers to make their work presentable,
visualizable, and accessible so that it can influence the world
of politics. Evidence is vital for informing the policy debate.
She applauded the creation of tools like Tor to empower
citizens. Canada’s role in establishing the facts of the Google
and Facebook cases heavily influenced their outcomes: Face-
book’s initial reaction was to implement Canada’s requests,
and Google’s press release essentially mirrored elements of
Canada’s complaint by promising to implement changes that
the OPC suggested. Tara reiterated that these debates have
the power to shape company policies, as evidenced by Google
and Facebook’s reactions to the complaints, and that Canada
values its role in fostering global cooperation.

Understanding the Underground Economy
Summarized by Robert Walls (rjwalls@cs.umass.edu)

Measuring Pay-per-Install: The Commoditization of
Malware Distribution
Juan Caballero, IMDEA Software Institute; Chris Grier, Christian

Kreibich, and Vern Paxson, University of California, Berkeley, and ICSI

Chris Grier began the session with an in-depth look at the
ecosystem that has built up around pay-per-install (PPI) ser-
vices. PPI services provide a way for clients to quickly install
their malware on a large number of pre-compromised hosts
by simply purchasing installs from these services. To mea-
sure the PPI ecosystem, they infiltrated four programs and
set up a number of hosts, in geographically diverse locations,
to automatically download the malware provided by the PPI
service. This allowed the team to perform real-time monitor-
ing, infer the types of clients using PPI services, and estimate
the financial impact of a botnet takedown.

They drew three major conclusions from their study. First,
they found that PPI services are popular: 12 of the 20 most
common malware families are at least partly distributed
by PPI services. Second, they found that malware regularly
performs repacking to avoid detection, every 11 days on aver-
age. Third, clients target specific geographic locations for
their malware, resulting in differing demand and therefore
different install rates for each country. Chris attributed this
demand to the client’s ability to monetize their malware in
each particular country. For example, their measurements
indicate that spambots tend to be installed uniformly across
different countries, while click-fraud binaries largely focus
on Western countries. Finally, Chris mentioned that they
observed instances of PPI arbitrage, where individuals would
exploit price differences between PPI providers by buying
installs from one provider and selling them to another.

Dan Farmer asked if someone could exploit the PPI system
by cheaply acquiring virtual hosts through cloud services,

and investigators having technical expertise. One investiga-
tion concerned Facebook’s privacy policies and possible con-
flicts with Canadian privacy law. The second investigation
was into Google’s inadvertent collection of data from WiFi
networks while taking pictures for their Street View service.

Data protection authorities exist in over 40 countries
(predominantly in Europe). The most similar governmental
organization in the US is the Federal Trade Commission. A
very active discussion included questions regarding how both
Facebook and Google responded to the OPC’s complaints.
Over 30 countries were involved in the Google complaint.
Many simply requested that data associated with their citi-
zens be deleted. Some (including Canada) requested access to
the data so that they could perform their own investigation.
Canada’s investigation was performed on-site; copies of the
data in question were not made. American lawsuits are ongo-
ing. A question from the audience initiated a discussion about
secure deletion and technical assurance.

Another member of the audience observed that companies
tend to push the line on privacy, characterizing Facebook’s
privacy policies as a moving target and suggesting that they
tend to beg for forgiveness rather than ask permission. For
example, the Facebook CEO stated publicly that our notions
of privacy are obsolete. The audience recognized that the
choices these companies make affect society and privacy
standards. Governmental data protection authorities expend
vast resources investigating, and making complaints and
recommendations. This process may take several months to
a year, depending on complexity. The OPC does not think that
it is a losing battle or a “done deal” that privacy is obsolete.

Someone asked whether it’s possible to use location ser-
vices for oneself but not share that information with Big
Brother.”One can disable location services altogether, but it
would be more desirable for the individual to choose which
applications can use location data. This preference can vary
based on the application. For example, in the US government
employers do want information from BlackBerry to track
their government employees. A member of the audience
asked whether that happens in Canada; Tara said that such
actions are covered by established legislation.

Another topic presented was that of lawful intercept based
on a case study covered in the presentation of a German who
published his own mobile data in order to see what could be
determined from that data. A discussion ensued on the topic
of lawful intercept for law enforcement and national security.
In Canada, numerous bills have been proposed but none have
been passed. Someone asked about data crossing borders
into the US, for example, where organizations are required to
retain Patriot Act data. Tara said that to established legisla-
tion covers those situations.

 78 ;login: VOL. 36, NO. 6

he analyzed was online social network (OSN) linking. He
defined OSN linking as buying friends, followers, or sub-
scribers on sites such as Facebook, Twitter, and YouTube.
They found that the commissioned workers were generally
unable to deliver high-quality social links, since many of the
delivered links came from fake OSN accounts. Finally, Marti
covered search engine abuse, specifically jobs for creating
written content that contains certain links or keywords. He
observed that 10% of the jobs seen on freelancer.com fall into
this category. The freelancer.com workers delivered mixed
results for this task, with some doing very well and others
ignoring job requirements.

Marti concluded that the large, cheap labor pool available to
abusers changes the threat model to Web services and that
traditional security mechanisms are not sufficient to stop
abuse. However, he claimed it is possible for outsourcing
sites to detect and remove abusive jobs. During the Q&A,
Tyler Moore asked whether sites like freelancer.com are
actually interested in filtering abusive jobs, given that they
earn revenue from these jobs. Marti responded that they do
very little enforcement, especially when compared to similar
sites such as Amazon Mechanical Turk. He then added that
freelancer.com is a legitimate business, so they might be will-
ing to address the issue if the scope of the problem is brought
to their attention. Finally, another attendee commented that
even if freelancer.com is taken down, it is likely that another
site will be created to provide the same abuse service. Marti
agreed that this is a possibility.

Show Me the Money: Characterizing Spam-advertised
Revenue
Chris Kanich, University of California, San Diego; Nicholas Weaver,

International Computer Science Institute; Damon McCoy and Tristan

Halvorson, University of California, San Diego; Christian Kreibich,

International Computer Science Institute; Kirill Levchenko, University

of California, San Diego; Vern Paxson, International Computer Science

Institute and University of California, Berkeley; Geoffrey M. Voelker and

Stefan Savage, University of California, San Diego

Chris Kanich started his presentation by pointing out two
questions he is commonly asked about spam: who buys this
stuff and how much money do the spammers make? In begin-
ning to address these questions, Chris said that, at its core,
spam is about advertising goods. The spammer—“affiliate
marketer,” in spam parlance—earns a commission on every
sale they can provide to their affiliate program. Chris found
that the order IDs for many affiliate programs appeared to
be sequential and thus he was able to measure the IDs over
time and estimate the sales throughput for those programs.
Overall, the throughput varied from as low as 49 to nearly
900 orders per day. By combining the throughput with an
estimated cost per order, Chris was able to calculate the

selling them to the PPI providers, and then turning off the
hosts. Chris replied that this is probably possible, but the
PPI services will eventually detect the abuse and withhold
payment. One audience member asked how the volume of
PPI installation of malware compares to other distribution
mechanisms. Chris said they are working on expanding their
study to include this data, but they do know that most of the
popular malware uses multiple installation vectors. Another
attendee inquired about the specific payment mechanisms.
Chris explained that most programs advertised payouts
using WebMoney and some mentioned PayPal. Finally,
Jelena Mirkovic (ISI) wanted to know about the implications
for researchers. Chris suggested that researchers should be
aware of how malware fits in the PPI ecosystem. He reiter-
ated that malware using PPI services may not include any
infection mechanisms. Anecdotally, Chris said they found
PPI loaders that were misclassified as another family of
malware. Such loaders might exhibit different behavior each
time they are run. Co-author Vern Paxson helpfully added to
Chris’s comments by pointing out that the PPI loaders can be
used as a source to acquire new samples of malware.

Dirty Jobs: The Role of Freelance Labor in Web Service
Abuse
Marti Motoyama, Damon McCoy, Kirill Levchenko, Stefan Savage, and

Geoffrey M. Voelker, University of California, San Diego

Marti Motoyama continued the session with his work on the
role of freelance labor in abusing Web services. He argued
that scammers, spammers, and other Internet denizens
can leverage the large labor pool provided by sites such as
freelancer.com and Amazon’s Mechanical Turk to cheaply
and effectively abuse free Web services. Marti used Gmail
and spamming as an example, pointing out how one can use
outsourced human labor to circumvent many of Gmail’s
technological protections against creating bulk accounts.
They estimate that about 30% of the jobs on freelancer.com
are abusive. Marti primarily covered three different job types
commonly submitted to freelancer.com: account registration,
online social network linking, and search engine abuse. For
each of these types, he commissioned his own job on free-
lancer.com to measure the quality of the workers’ responses.

The goal of the first job type, account registration, is to
obtain access to a large number of accounts on a target Web
service. After looking at seven years’ worth of job data on
freelancer.com, Marti and his colleagues found that Gmail
and Craigslist were the most targeted Web services for this
job type. Marti commissioned the task of creating Web-based
email accounts to 10 workers, the majority of whom delivered
valid accounts. He observed that the accounts in many of
the delivered sets were fairly old, indicating that they were
stockpiled and not created on demand. The second job type

 ;login: DECEMBER 2011 Conference Reports 79

illustrate that throughout the course of human history we
have been concerned with both our public and our private
lives, as well as with controlling the information about us in
the public sphere.

Alessandro’s talk revolved around four major research
experiments performed by Alessandro and his co-authors:
the inconsistency of privacy evaluation, the paradoxical
nature of privacy control, humans’ ability to discount past
information, and the use of social networks and face recogni-
tion for individual re-identification. These experiments try to
look at how technology affects our privacy decisions and how
privacy decisions affect our technology; how we make trade-
offs and decisions regarding what information we want to
keep private and make public; and what are the cost-benefit
trade-offs in revealing private information.

The first experiment focused on whether people’s evaluations
of privacy can be manipulated. The experiment contrasted
the willingness to accept cash to reveal personal data versus
the willingness to pay cash to protect personal data. The
results showed that participants’ valuations of privacy
changed significantly based on the priming and framing of
the offer. If they started with less privacy, they valued privacy
less; if they started with more privacy, they valued it more.

The second experiment focused on the paradoxical nature of
control and its relation to privacy. Traditionally, control over
personal information is believed to be a means of protecting
privacy. Their experiment investigated whether more control
can lead to less privacy. For this experiment, more than 100
students were asked to perform an online survey where a
portion of the questions asked were sensitive in nature. One
version of the survey stated that the answers to the survey,
if provided by the subjects, would be published by research-
ers; the second version of the survey allowed individuals to
choose what answers would be published. When allowed
explicit control via the added box, individuals not only
answered more questions but also allowed more answers
to be made public. The results of the experiment show that
making people feel more in control over their privacy can lead
to more public disclosures of sensitive information.

The third experiment focused on how we judge individu-
als for past and present behavior, both good and bad. The
experiment consisted of a survey in which individuals were
asked to read a story about Mr. A, who either found a purse
and kept a large sum of money or returned the purse with
the money. This event either occurred five years ago or 12
months ago. Individuals formed very negative impressions
of Mr. A when he was presented as having kept the money, no
matter how long ago that event happened. However, when Mr.
A was presented as having returned the money, individuals
thought positively of him—but only if his good deed happened

average revenue per month for each program. This revenue
varied from $200,000 per month to as high as $2,400,000 per
month for the larger spam pharmacies.

Chris explained that they inferred information about the
purchasers using the Web logs of a compromised image host-
ing server. The spam sites received views from all across the
world, but sales were concentrated in the United States and
Western Europe. Chris estimates 91% of all customers to
be located in Western countries. While the vast majority of
purchases are for recreational drugs such as Viagra, 29% are
for non-recreational pharmaceuticals. US-based customers
are four times more likely to buy non-recreational drugs than
other Western customers.

Mark Seiden (Yahoo!) questioned the legitimacy of the
drugs. Chris said that the drugs they tested contained the
active ingredient in the correct amount, but they couldd not
make any claims about other aspects of the drug. Another
attendee asked about the percentage of purchases that
arrived. Chris said that most arrived; the ones that did not
were likely due to errors on his part. John Spring wanted to
know to what extent this becomes a public health problem.
Chris commented that their goal is to bring this issue to light
and they are currently in contact with the FDA. Finally, an
attendee brought up the issue of credit card fraud, pointing
out that selling these drugs is already illegal, so why don’t
the programs go that extra step? Chris replied that these are
businesses, and it is trivial for customers to contact the credit
card company to cancel orders. In fact, the customer service
for these programs tends to be very good.

Invited Talk

Privacy in the Age of Augmented Reality
Alessandro Acquisti, Associate Professor of Information Technology and

Public Policy at Heinz College, Carnegie Mellon University

Summarized by Nathaniel Husted (nhusted@indiana.edu)

Alessandro Acquisti started his talk by discussing Cincinna-
tus, a Roman consul who, after being called back to service,
defended Rome from northern invaders. A photograph of his
statue was shown, in which the general is returning a symbol
of military power with one hand and retrieving his agricul-
ture tools with the other, dramatizing his choice to return to
private life after his military victory. This story was used to
indicate the importance of private life in ancient Rome. Ales-
sandro then retold a story regarding a man who destroyed
the legendary Temple of Artemis in Ephesus so that his
name would be recorded for all history. The individual was
captured and killed by the citizens of Ephesus. His captors
also attempted to purge his name from history, but failed. We
know the individual as Herostratus. Together, the two stories

 80 ;login: VOL. 36, NO. 6

the user presses a button on both devices within a certain
time window. However, on a wireless medium, simple DH
is vulnerable to man-in-the-middle (MITM) attacks. Past
academic work has proposed pairing protocols that require
trustworthy out-of-band channels to bootstrap mutual trust,
but Gollakota argued that out-of-band channels are difficult
to incorporate in devices such as medical and home sensors,
for reasons of both cost and size.

Gollakota described a new pairing protocol, Tamper-Evident
Pairing (TEP), that is secure against MITM attacks and uses
only in-band communication. The key idea is that, because
an adversary cannot create radio silence by transmitting,
pairing devices can reliably detect MITM tampering. TEP
surrounds DH packets with a long leading synchroniza-
tion packet and a specially constructed trailing hash. These
modifications make TEP secure against adversarial message
alteration, message hiding, and channel hogging. Because
TEP messages are tamper-evident, if each pairing device
receives exactly one untampered-with pairing request during
the designated time window, they have successfully authenti-
cated each other and can pair. The authors implemented TEP
in the driver of a mainstream 802.11 card and evaluated it on
a network test bed at MIT.

An audience member suggested that an attacker could selec-
tively overpower the silent hash bits. TEP uses a balanced
hash with an equal number of ones and zeroes to ensure that
every one corresponds to a radio-silence zero. Zack Weinberg
asked whether users would be willing to wait for the timeout
period. A user with physical access can press a hardware
button to preempt the timeout. Carson Gaspar (Goldman-
Sachs) asked whether an attacker could overpower both
the synchronization packet and the balanced hash. Such
behavior would be detectable. Someone pointed out that TEP
devices might interpret cross-technology interference from
other products (e.g., microwave ovens) as TEP synchroniza-
tion packets; Gollakota responded with some empirical data
to demonstrate that only certain devices would interfere, and
that those interfering devices would delay the pairing by only
a few minutes. If a device persistently interferes, it breaks the
paired devices’ ability to communicate at all.

TRESOR Runs Encryption Securely Outside RAM
Tilo Müller and Felix C. Freiling, University of Erlangen; Andreas Dewald,

University of Mannheim

Tilo Müller described a Linux kernel patch that allows AES
operations to occur entirely outside of RAM. The patch
addresses a well-known shortcoming of most cryptography
implementations targeting microprocessors: secret keys are
stored in RAM, where they are vulnerable to attacks that
allow a miscreant to dump system memory—for example,

recently. If the good deed happened five years ago, there was
no positive impact.

The fourth, and most recent, experiment concerned Ales-
sandro’s work on combining Facebook, personal informa-
tion facial recognition software, and data mining. It is this
portion of the talk where Alessandro’s group is bridging
the gap between science fiction and modern society. In this
project they were able to compare images from Facebook’s
searchable profiles with head shots taken manually on the
CMU campus or with images coming from dating Web sites,
with the goal of identifying individuals online and offline.
The culmination of this project was a sample augmented
reality application that can perform the transfer from face to
personal information on a mobile smartphone.

Alessandro discussed how these new technologies will affect
our views on privacy. We can view our social network profiles
as real IDs. In fact, social networks have, in some ways,
turned into an inadvertent national ID. The convergence of
various technologies also creates a “democratization of sur-
veillance,” because in a world where all personal information
can be gathered from a face, we all become each other’s big
brothers with the aided use of a mere smartphone.

Some questions focused on whether younger people value
privacy less; on whether the amount of value a person places
on privacy changes if the loss is more concrete; on whether
gender affects our decisions regarding discounting individu-
als’ behavior; and on what the take-home message from the
talk was. Alessandro tackled the first question by mention-
ing that what is most likely to happen is that views on what
should be private and what public will change with time.
Alessandro found that the concreteness or abstractness
of the reward did not affect a person’s behavior in the first
experiment. He also found that, in the current studies, gender
did not have a significant effect. Finally, the positive message
from this talk was the hope provided by research advances in
privacy enhancing technologies (PETS).

Defenses and New Directions
Summarized by Ben Ransford (ransford@cs.umass.edu)

Secure In-Band Wireless Pairing
Shyamnath Gollakota, Nabeel Ahmed, Nickolai Zeldovich, and Dina

Katabi, Massachusetts Institute of Technology

Shyamnath Gollakota presented a protocol that allows a
user to pair two wireless devices. When two devices are
paired, they share a secret and can authenticate each other’s
transmissions. Some consumer-grade wireless devices, such
as WiFi routers and Bluetooth audio equipment, establish
a shared key via Diffie-Hellman (DH) key exchange when

 ;login: DECEMBER 2011 Conference Reports 81

making them an attractive target for malefactors who wish
to know how certain people voted. Clarkson’s group used a
set of 92 anonymized surveys to train a classifier on several
features of the markings such as shape, radius, center, and
color distribution. They trained the classifier on 12 (out of
20) filled bubbles per person, then tested the classifier’s
performance on the remaining eight. The results invalidated
the common assumption that people cannot be identified by
their markings on bubble forms: their classifier ranked the
true respondent over all others more than half the time on
1200 dpi scans. Clarkson reported that the scans were robust
against downsampling, with 45% of respondents correctly
identified at only 150 dpi. Clarkson suggested several applica-
tions of bubble-form de-anonymization, such as the detection
of cheaters on standardized tests. He concluded by suggest-
ing several ways of making bubble forms more robust against
their attacks; for example, making bubbles’ borders thicker
decreased the classifier’s accuracy.

An audience member asked whether the authors’ chosen
features were robust against changing the environment in
which a person filled in the form; Clarkson explained their
attempts to avoid overfitting by their classifier and remarked
that people seem to be consistent as conditions vary. Another
person asked about varying the scanner; Clarkson said
that their blurring step normalized for scanner variations.
Adrian Mettler suggested that users could use felt-tip pens
to confound de-anonymization. An audience member asked
whether stress affected bubble-form filling, and Clarkson
acknowledged that it might. Another audience member asked
whether the authors’ techniques could de-anonymize users
from a much larger set; Clarkson agreed that further testing
was necessary but said that voting, for example, often occurs
in smaller precincts in which their classifier could work.
Peter Neumann (SRI) suggested that a malicious party could
de-anonymize voters using other techniques, such as mark-
ing ballots with invisible ink. Clarkson clarified the authors’
assumption that the parties that receive the bubble forms are
not tampering with them.

Securing Search
Summarized by Ed Gould (summary@left.wing.org)

Measuring and Analyzing Search-Redirection Attacks in
the Illicit Online Prescription Drug Trade
Nektarios Leontiadis, Carnegie Mellon University; Tyler Moore, Harvard

University; Nicolas Christin, Carnegie Mellon University

Nektarios Leontiadis described their work measuring and
analyzing specific attacks against search results, namely
those used by illicit online pharmacies. This work seeks to
determine the size, effectiveness, and weak points of the
attacks. The specific choice of drug sales was motivated

the “cold boot” attacks presented at USENIX Security in
2009. Even popular full-disk encryption (FDE) implemen-
tations store secret keys in vulnerable memory. TRESOR
implements AES in such a way that key material is stored in
processor registers rather than RAM. It uses the large debug
registers that are available only to processes running at the
highest privilege level. Under normal operation, these regis-
ters are unused; they are available for breakpoints and rarely
accessed configuration information. To circumvent RAM
storage of keys, the authors implemented AES in x86 assem-
bly, avoiding putting runtime variables in data segments and
using 2-kilobit x86 SSE registers for intermediate states.

Müller compared TRESOR to an AES implementation using
only generic x86 instructions, which was too slow, and to an
implementation using Intel’s new AES-NI instruction set,
which provides fast AES instructions but stores round keys
in insecure RAM. TRESOR, in comparison, generates round
keys on the fly and does not store them in RAM. Müller noted
that the kernel’s normal context switching stomps on the
debug registers, inspiring the authors to make TRESOR run
in an atomic section. In the authors’ evaluation under QEMU,
their search of emulated RAM with the open-source aeskey-
find tool failed to find the key under TRESOR but succeeded
under the alternative schemes. In future work the authors
plan to store keys in the Trusted Platform Module (TPM) or
x86 machine-specific registers (MSRs). TRESOR is open
source software available at http://www1.cs.fau.de/tresor.

An audience member noted that TRESOR keeps secrets in
RAM briefly before they are moved to the debug registers,
and asked whether the secrets had to be in RAM at all. Müller
replied that passwords on Linux can be much larger than any
available register. Frank Stajano asked about the perfor-
mance impact of TRESOR and whether off-the-shelf FDE is
usable under TRESOR; Müller said that TRESOR’s overhead
compared to AES-NI was not huge. John Criswell noted that
an attacker could change the kernel in memory or on disk
to attack TRESOR, which Müller acknowledged. Another
audience member asked whether the authors had studied
other side channels; Müller reported that TRESOR should
be resistant to timing attacks because the code does not use
input-dependent branches; he pointed out that the authors
had not yet considered power side channels.

Bubble Trouble: Off-Line De-Anonymization of Bubble
Forms
Joseph A. Calandrino, William Clarkson, and Edward W. Felten,

Princeton University

Bubble forms are machine-readable pieces of paper on
which people place marks to indicate their preferences or
opinions. Will Clarkson pointed out that bubble forms are
used for voting in some precincts and then posted online,

 82 ;login: VOL. 36, NO. 6

offers an additional incentive to compromise them. Files are
uploaded to the compromised servers, and use PHP to gener-
ate malware pages. They were able to download a PHP script
from a buggy server, even though this is not usually possible,
and were thus able to analyze the script.

The general pattern is that there is a dense link structure on
the pages generated, linking to more than 20 other sites with
some 40 million pages generated, poisoning 20,000 popular
search terms. Ninety-five percent of Google Trends terms
are poisoned, targeting 100,000 victims over 10 weeks. It is
difficult to detect and blacklist these pages, because they are
typically cloaked to crawlers and search analysis, as the PHP
scripts detect crawlers and produce benign results. Often
it takes user interaction (e.g., mouse movement or clicks) to
produce the malware. Features that can cause a site to get
noticed are diverse behavior before compromise and similar
behavior among pages after compromise.

The deSEO tool uses history-based filtering, cluster analysis
of suspicious domains, and similarity analysis. They found
about 1000 domains, with 15,000 URLs infected.

Alva Couch pointed out that John had just told us how to
defeat his technique: use sparsity. Do they have any fallback
mechanism? John replied that relevant keywords are still
necessary, and clustering is needed to get the rankings. It is
possible that the bad guys could use this information, but it
seems unlikely.

Someone asked how the malware keeps lists of pages to link
with up-to-date, and John answered that the malware server
includes a list of sites to link to, and the PHP script selects
from this list.

Securing Smart Phones
Summarized by Italo Dacosta (idacosta@gatech.edu)

A Study of Android Application Security
William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri,

The Pennsylvania State University

One of the reasons for the increasing popularity of smart-
phones is the great number of mobile applications available.
For example, Google Android, one of the most popular mobile
OSes, has hundreds of thousands of mobile applications
available in the Android market. However, these applications
are not security certified, due to their large numbers and the
lack of a common definition for security. As a result, mali-
cious applications can be found in the Android market. This
paper describes a breadth of security properties in a large set
of popular Android applications to characterize their secu-
rity and provides a better understanding of mobile applica-
tions’ and developers’ behaviors.

by the potential dangers of improper use of the drugs. As a
form of illicit advertising, email spam is inefficient. Social
network and blog spam are better, but Search Engine Opti-
mization targets users more directly. A Google search for “no
prescription cialis” will produce some odd results; some are
legitimate, some are malicious.

To collect data, the team issued more than 200 queries
daily during the experimental period. They note that SEO
attacks are growing, while blog and email spam are declin-
ing. The number of pharmacies (both legitimate and illicit)
is constant. Infections on the attacked systems tend to be
long-lived, and seem to persist the longest on .edu sites. The
researchers identified 34 connected components of the
attack. They noted seven organized groups, loosely con-
nected, that represent 50% of the infected nodes. Eleven
ASes hosted most of the redirect servers.

They conclude that there is one major group of affiliates
perpetrating these attacks, and that .edu sites are popular to
attack.

Neil Schwarz asked why .edu domains take longer to dis-
infect. It is difficult to notice the infections. Lucas Ballard
asked about query selection: when looking for good sites,
how often do bad sites outperform good ones? They only have
aggregated results, not differentiated by type of query. Lucas
followed up by asking why the domain count is rising. Is the
count limited to domains (domain rotation) or does it also
include IPs? They just counted domains, not IPs. Stefan Sav-
age pointed out a source of possible bias by using page access
as an estimator. Some sites use on-site billing, others off-site.
Off-site billing involves an extra redirect, and their data do
not include payment sites.

deSEO: Combating Search-Result Poisoning
John P. John, University of Washington; Fang Yu and Yinglian Xie, MSR

Silicon Valley; Arvind Krishnamurthy, University of Washington; Martín

Abadi, MSR Silicon Valley

John described a tool, called deSEO, to combat Search
Engine Optimization (SEO) attacks. The “malware pipeline”
is, roughly, find vulnerable servers, compromise them to host
malware, and spread links via search results that point to the
malware. A Google search for “flintstones pictures myspace”
yields a “scareware” link as the first result, claiming that the
user’s computer is infected by one or more viruses. About
40% of popular search terms are infected (changing, as
what’s popular changes). There is an estimated $150M profit
in the scareware market.

John described how the mechanisms work, what the research
can show, and the development of deSEO. Their analysis of
attacks was carried out from August to October 2010. E-com-
merce sites often contain credit card information, which

 ;login: DECEMBER 2011 Conference Reports 83

change the application sample set if he could. Enck would
probably obtain a list of all available applications and select
applications randomly. Also, the lists of recently added and
paid applications can be interesting to study.

Permission Re-Delegation: Attacks and Defenses
Adrienne Porter Felt, University of California, Berkeley; Helen J. Wang

and Alexander Moshchuk, Microsoft Research; Steve Hanna and Erika

Chin, University of California, Berkeley

In modern client platforms such as browsers and mobile
operating systems, applications are untrusted and isolated
from each other by using IPC and specific communication
mechanisms. They also require explicit permission to access
resources such as camera, microphone, and user location
data. These permissions are assigned per application to
reflect user needs and level of trust in the application. How-
ever, a system that uses IPC and per-application permissions
can be vulnerable to permission re-delegation attacks, where
an application that lacks permissions gains access to addi-
tional privileges by communicating with another application
(a special case of the confused deputy problem).

Adrienne Porter Felt described how they analyzed the per-
missions of 872 Android applications to find candidates that
could facilitate this type of attacks. They found that 37% of
the applications meet the required conditions for a candidate:
a dangerous permission and a public interface. To discover
the attacks, the authors built an automated tool that uses call
graph analysis, and they manually verified the attacks found.
The authors found 15 vulnerabilities in 5 system applications;
however, other vulnerable applications may not have been
detected.

Felt presented IPC Inspection, an OS or browser mechanism
to prevent permission re-delegation attacks. When a deputy
application (the privileged application) receives a message,
the system reduces the deputy’s permissions for the length
of the session to the intersection of the deputy’s previous
permissions and the requester permissions. Also, to prevent
DoS attacks, the deputy can specify who can and cannot send
it messages. IPC inspection was implemented for Android OS
and ServiceOS (Microsoft’s research browser). The evalu-
ation focused on determining whether IPC Inspection does
not break applications and whether it effectively blocks per-
mission re-delegation attacks. The evaluation results showed
that 11 out of 20 randomly selected Android applications
(from the set of 872) may require minor changes or addi-
tional permissions. In addition, the evaluation showed that
IPC Inspection prevents all of the permission re-delegation
attacks described in this study.

William Enck asked about the case where, in install-time
systems, an intentional deputy attenuates authority, which

The sample set used in this study consisted of the top 10
most popular applications in each of the Android market’s
categories—a total of 1,100 applications. To analyze the secu-
rity and behavior of the applications, access to their source
code was required. Android applications are written in Java
but use a different bytecode (.dex files) and runtime (Dalvik
virtual machine); therefore, existing Java decompiler tools
cannot be used directly. Hence, the authors built a Dalvik
decompiler, ded, which takes the application’s .dex files as
input and returns the corresponding Java source code. The
ded decompiler works as a multistage process (retarget-
ing, optimization, and decompilation) and it is available on
the project’s Web site. Using ded to decompile the selected
applications produced a total of 21 millions lines of code. The
authors performed static and manual analysis of this code to
look for dangerous behavior and vulnerabilities and to under-
stand how applications handle sensitive information. The
static analysis used Fortify SCA, a commercial tool for Java
vulnerability analysis. The authors created custom rules to
analyze the applications’ source code, using different tech-
niques such as control flow, data flow, structural analysis,
and semantic analysis.

This study reports 27 findings which provide insight into the
applications’ and developers’ behavior. In the area of phone
identifiers, the authors found that 33 applications leak phone
IDs. Regarding location data, 13 applications were found with
location data flows to the network. The authors also found
that 51% of the applications include an ad or analytics library.
In many cases, applications have more than one third-party
library. In addition, this study shows evidence of the use
of developer kits, which hide the identity of the original
developers and may include some dangerous functionalities.
Also, several Android-specific vulnerabilities were detected.
William Enck described some of the limitations of this study,
such as the focus on popular applications, code recovery
failures, limitations of the static analysis tool, and obfus-
cated code in some applications. Finally, Enck noted that this
study offers the opportunity for a more automated security
certification process for mobile applications.

Bill Soley (Oracle) asked if there are other implications
besides privacy regarding phone identifiers such as IMEI
numbers. While other malicious activity is possible, right
now the main concern is privacy. David Evans (University of
Virginia) said that developers are not being malicious but are
just making mistakes and that a possible solution could be to
generate unique IDs that do not leak privacy. Enck agreed and
pointed out some recent research that follows this approach.
Another participant asked if native code was found during
the decompilation process. Yes, around 70 or fewer applica-
tions had native code; this is an area malware developers are
beginning to push. Finally, someone asked how Enck would

 84 ;login: VOL. 36, NO. 6

The QUIRE implementation consists of four components: the
authority manager OS service, the network service provider
OS service, the IPC stub/proxy code generators, and the
trusted UI. To evaluate QUIRE, the authors built two demo
applications: a secure mobile payment system and a mobile
ad service. Through these applications, the authors demon-
strated the security benefits and practicality of QUIRE. In
addition, the performance evaluation showed that QUIRE
overhead is small (80 microseconds per IPC).

Arjun Guha (Brown University) asked what applications’
installation looks like under the QUIRE model. Dietz
responded that applications will need to use dependencies
at installation time to learn what other applications need to
be installed. William Enck asked if provenance happens on
intents. Dietz explained that QUIRE hooks to the service
binding IPC at this point. He has not looked at intents yet but
anything using Binder should work well. Paul Pearce asked
about ad networks functionality not supported by QUIRE
prototype implementation. Dietz responded that he could not
think of one at the moment. QUIRE was designed as a system
that application developers can use to build a policy on top
and, in some cases, it may break functionality. Dave Evans
asked what happens when applications use the network
instead of IPC for communications. Dietz responded that this
will prevent provenance, but it has not been an issue yet. It
will be something to consider when the boundary between
mobile and Web applications blurs.

Invited Talk

Deport on Arrival: Adventures in Technology, Politics,
and Power
J. Alex Halderman, Assistant Professor, Computer Science and

Engineering, The University of Michigan

Summarized by Adam Bates (amb@cs.uoregon.edu)

J. Alex Halderman presented stories from three strands of
his research—early digital-rights management attempts in
audio CDs, security analysis of voting machines in the United
States, and security analysis of voting machines in India.
Through these stories, Halderman explained the risks for
researchers whose work leads them to a stand-off with politi-
cally or economically powerful parties. He also demonstrated
the importance of being able to explain highly technical
security issues in a manner that is palatable to the public.

Halderman’s work in digital rights management began
at Princeton University as a graduate student in 2003. At
the time, companies like Sony were trying to secure their
intellectual property that was being distributed in a legacy
format, the compact disc. In an early generation of this
technology, Halderman discovered that Sony was leverag-

can lead to permission bloat. You could add a time-of-use
check, specifically for this case, that does not need to be
necessarily a permission prompt. Felt also noted that people
in her research group are working on “user driven access con-
trol with access control gadgets” to give the OS a way to know
that an action is being approved by the user. Also, someone
asked about when a singleton application is used. In this case,
the deputy needs to declare itself as a singleton, because
otherwise the application could crash. This problem does not
happen on the Web, only in the Android OS. Adrian Mettler
(UCB) asked about the possibility of escaping from the stack
introspection protection option. This is possible, but develop-
ers could end up using this for all their messages. However,
the option can be added, to make sure it does not break the
application and to help application developers.

Quire: Lightweight Provenance for Smart Phone
Operating Systems
Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu, and Dan S.

Wallach, Rice University

Android protects applications from each other by using OS
security mechanisms. In this model, applications should
be slick (i.e., minimal permissions). Instead, however, most
applications are complex, due to the use of third-party
libraries such as mobile ads and mobile payments. Third-
party libraries typically require additional permissions not
originally required by the application and that can introduce
bugs that affect the application’s stability. Also, applications
and third-party libraries mutually distrust each other. A
simple solution to this problem is to split apart third-party
libraries into separate applications. However, this approach
introduces a new problem—it increases the risk of confused
deputy attacks. In this type of attack, an application lacking a
particular permission sends a request through another appli-
cation that has this permission (confused deputy). The sec-
ond application then forwards the request to the OS, allowing
the first application to evade the permission mechanism.

Dietz described QUIRE, a mechanism that enables the
separation of libraries from applications and protects data
provenance and integrity, while preventing confused deputy
problems. For this purpose, QUIRE introduces the idea of
provenance-carrying IPC, where an application can protect
itself by quoting the call chain that called it. Quoting only
reduces the privileges of the application that chooses to quote
the call chain; therefore, confused deputy attacks will not
work even if a malicious application lies about the call chain.
In addition, QUIRE provides verifiable communication
between applications by using simple cryptographic mecha-
nisms to protect data moving over IPC and RPC channels.
Moreover, QUIRE does not require changes to the Dalvik
virtual machine.

 ;login: DECEMBER 2011 Conference Reports 85

More recently, Halderman became involved in an analysis of
India’s voting machines. In spite of solid design and effective
deployment, fraud was rumored to have occurred in Indian
elections. The study found two serious vulnerabilities: (1)
installing a dishonest display board by replacing the LED
component; (2) designing a device that modified the votes
while in storage on the EEPROM. As a result of these find-
ings, Halderman and his colleagues fell out of favor with the
Indian Election Commission and with local law enforcement.
After Hari Prasad, one of the Indian collaborators, promoted
these findings on television, he was detained by the police.
The Commission finally accepted the need for change, but on
a subsequent trip to India Halderman was barred from enter-
ing the country for 24 hours. Stalling for as long as possible
to avoid Halderman’s deportation, the Election Commission
was able to speak on his behalf and get him into the country
as their guest. The Commission, now prototyping a paper
trail add-on, is seen as a model for developing democracies.

Lessons learned included the power of being technically
correct, the importance of effective communication with the
public, and the dire threat to democracy posed by insecure
electronic voting systems. Halderman concluded by charg-
ing the audience to continue to change the world through
computer security.

Poster Session

First set of posters summarized by Michael Z. Lee
(mzlee@cs.utexas.edu)

IMD Shield: Securing Implantable Medical Devices
Shyamnath Gollakota and Haitham Al Hassanieh, Massachusetts Institute

of Technology; Benjamin Ransford, University of Massachusetts Amherst;

Dina Katabi, Massachusetts Institute of Technology; Kevin Fu, University

of Massachusetts Amherst

Benjamin Ransford (ransford@cs.umass.edu) presented this
work. The goal is to counter a set of attacks on implantable
medical devices (IMDs) published in 2008. The primary
issue is that some devices are susceptible to passive and
active attacks. However, invasive surgery to retroactively
fix these issues is expensive and carries risk, so the authors
sought another solution. Their proposal is a wearable device,
called the IMD Shield, that uses friendly jamming to block
messages to and from an IMD. This device blocks incom-
ing active attacks as well as outgoing messages. The radio
configuration employs two antennas, which allows them to
simultaneously receive the sensitive signal from the IMD and
jam the signal so that eavesdroppers cannot decode it. The
IMD Shield’s random jamming signal works like a one-time
pad; it is the only device that is able to decode the new signal.

ing the Windows Autorun feature to install software that
interfered with the CD Driver. Using the Freedom to Tin-
ker blog as a mouthpiece, he posted that the DRM software
could be avoided by holding down the Shift key as the CD
was inserted. The “DRM is defeated by the Shift key” story
caused the responsible company’s stock to drop by 80%.
Halderman also spoke out against Sony’s infamous DRM-as-
rootkit attempts, going back and forth with the company in
a “delightfully public” manner. Communicating these issues
via a blog helped the Center for Information Technology
Policy (CITP) to speak directly to the public. The negative
publicity eventually forced Sony to abandon the initiative.

Halderman next related his history with the Diebold voting
machines. The move to electronic voting systems was moti-
vated by the voting fraud vulnerabilities of bulky, lever-based
machines. Unfortunately, the early generation machines were
rushed to market without much regard for computer secu-
rity. Companies like Diebold had not voluntarily subjected
their machines to any kind of independent analysis. In 2006,
the CITP lab at Princeton was able to acquire a machine
and reverse engineer the hardware for thorough analysis.
They discovered and published a number of easily deliver-
able vulnerabilities, including the ability to infect a machine
with malicious software without leaving a trace. It was also
possible to create a virus that could spread from machine to
machine. This led to another public standoff, where Diebold
touted the importance of overlooked security features such as
the need for a key in order to gain physical access to machine
hardware. However, only one key was used universally and it
was easily obtainable commercially.

Halderman went on to work on California’s “top-to-bottom”
voting machine analysis. California was one of the first
states to recognize the threat that insecure electronic vot-
ing posed. Under threat of decertification, voting machine
manufacturers were required to share their code with the
study. However, the fact that the study was being called for by
politicians exposed a potential conflict of interest. For this
reason, it was important to this research team that they had
permission to share their results with the public.

The efforts of Halderman and his students at the University
of Michigan also helped to draw attention to very serious
issues in Washington DC’s prototype Internet voting system.
The system was about to go live for an actual election when
they were opened for security probing. Halderman’s group
launched attacks that altered ballots and broke the confiden-
tiality of legitimately cast votes. In spite of the fact that they
added the “Hail to the Victors” audio track to the vote con-
firmation page, their penetration went unnoticed for several
days. This work eventually helped to derail Washington DC’s
use of the online system.

 86 ;login: VOL. 36, NO. 6

with a helper program installed by the hypervisor. They use
TPM and SecVisor-like (Cylab/CMU) properties to guaran-
tee that an attacker cannot statically replace the VMM or
tamper with its data dynamically during runtime.

Automated Model-based Security Management of Web
Services
Rajat Mehrotra and Qian Chen, Mississippi State University; Abhishek

Dubey, Institute for Software Integrated Systems, Vanderbilt University;

Sherif Abdelwahed, Mississippi State University; Krisa Rowland, US

Army Engineer Research and Development Center

Rajat Mehrotra (rm651@msstate.edu) presented an auto-
nomic performance and security management framework for
Web services. The goal is to integrate system control, opti-
mization, and security analysis into a common model-based
framework. It enables distributed Web services to efficiently
adapt to varying load requirements and identify and miti-
gate potential security incidents. In modeling the behavior
of a system, the authors wish to efficiently estimate system
behavior and make adjustments as necessary. Using vari-
ous inputs from security, performance, network, and system
measurements, they can differentiate between different safe
and unsafe system scenarios.

NotiSense: An Urban Sensing Notification System to
Improve Bystander Privacy
Rob Smits, Sarah Pidcock, Ian Goldberg, and Urs Hengartner, University

of Waterloo

Although crowd-sourcing data collection using mobile
devices is de-anonymizing for the participant, bystanders
should be notified so that they can preserve their privacy
while protecting the identity of the data collector. Sarah
Pidcock (snpidcoc@cs.uwaterloo.ca) presented NotiSense, a
service to help notify such bystanders. The authors accom-
plish this by collecting enough information about the data
collector, hashing and filtering the locations, and then
having the collector’s mobile device rebroadcast informa-
tion. Bystanders in the area can see these broadcasts, check
whether they’re affected, and notify users. In a field test,
they find that it is effective enough to cover a reasonable area
around a data collector.

Secure Computation with Neural Networks
Brittany Harris and Jiamin Chen, University of Virginia

Brittany Harris (bjh3ev@virginia.edu) and Jiamin Chen
(cjmyezi@gmail.com) presented this work. Oblivious compu-
tation can be used to jointly compute values while preserving
each party’s privacy. This work applies Yao’s Garbled Circuit
to enable the joint computation of the weights of a neural net.

Using GPUs for OS Kernel Security
Weibin Sun and Robert Ricci, University of Utah

Security can be computationally expensive, but some
opera tions can be parallelized and would benefit greatly
from using the computational power of a GPU. Weibin Sun
(wbsun@cs.utah.edu) presented KGPU, a kernel driver that
leverages the GPU to offload expensive but easily parallelized
operations such as encryption and AV signature matching.
Because the current interface to GPUs is through a propri-
etary driver, they use a helper program to translate between
KGPU requests and CUDA calls. Although this requires
extra memory copying from kernel to user space, it seems to
provide a nice speedup.

The Art of War Applied to Intrusion Detection in
Wireless Ad-Hoc Networks
Stefan Stafrace and Bogdan Vrusias, University of Surrey

When working with intrusion detection systems in wireless
ad hoc networks, the efficient use of resources is key, because
nodes in ad hoc networks are resource-constrained. In a
traditional network, you’re able to deploy intrusion detec-
tion systems in strategic choke-points, but in wireless ad
hoc networks this is not possible, due to the use of the shared
medium and node churn. Stefan Stafrace (s.stafrace@sur-
rey.ac.uk) suggests applying risk-based military principles
to efficiently detect intrusions in wireless ad hoc networks.
The authors offered a case study in which systematic route
patrols were conducted by squads of agents to detect a sink-
hole attack. The results show that high detection precision
can be obtained while also conserving resources and limiting
the data packet loss due to the attack.

A Digital Forensics System Using a Virtual Machine
Monitor Integrated with an ID Management Mechanism
Manabu Hirano and Hiromu Ogawa, Toyota National College of

Technology, Japan; Takeshi Okuda, Nara Institute of Science and

Technology (NAIST), Japan; Eiji Kawai, National Institute of Information

and Communications Technology (NICT), Japan; Youki Kadobayashi and

Suguru Yamaguchi, Nara Institute of Science and Technology (NAIST),

Japan

Manabu Hirano (hirano@toyota-ct.ac.jp) presented this
poster. When performing digital forensics, one can run into
the problem of unattributed data tampering, which can lead
to false accusations and other bad outcomes. The authors
propose a system called BitVisor, a hypervisor-based solution
that employs user ID management to securely record who
is accessing and modifying data. The end result is that the
VMM is able to securely store the ID outside the reach of the
guest operating system, translating actions in the guest OS

 ;login: DECEMBER 2011 Conference Reports 87

Unifying Data Policies across the Server and Client
Jonathan Burket, Jenny Cha, Austin DeVinney, Casey Mihaloew, Yuchen

Zhou, and David Evans, University of Virginia

Web applications currently take a decentralized and ad hoc
approach to security. Austin DeVinney (adevinney@radford.
edu) and Yuchen Zhou (yz8ra@virginia.edu) presented a
unifying framework applied to specific security policies once
and then automatically enforced throughout the application.
On the server side, they provide GuardRails, an additional
layer on top of Ruby on Rails which allows an author to
specify certain server security properties that are automati-
cally enforced throughout the application. In addition, they
modified the Chromium browser to interpret the generated
attributes and enforce policies that protect private content
from untrusted scripts running in the browser.

Improved XSS Protection for Web Browsers
Riccardo Pelizzi and R. Sekar, Stony Brook University

Riccardo Pelizzi (rpelizzi@cs.stonybrook.edu) presented
this poster. Chrome and IE have implemented detection for
reflected cross-site scripting (XSS) attacks from GET and
POST parameters. However, the two browsers do not detect
partial XSS injection attacks that take advantage of exist-
ing scripts already in the Web page. The authors found that
8% of the Web sites surveyed are vulnerable to this type of
attack. Their approach to this problem is to improve filter-
ing by parsing the input from GET and POST requests into
parameters, and to use approximate substring matching to
cover a wider range of Web application sanitization logic.
Their implementation and evaluation shows that they cover
more cases than Chrome’s own filtering with an acceptable
overhead as compared to Chrome.

Challenges in Deployment and Ongoing Management of
Identity Management Systems
Pooya Jaferian, University of British Columbia; Kirstie Hawkey,

Dalhousie University; Konstantin Beznosov, University of British

Columbia

Pooya Jaferian (pooya@ece.ubc.ca) presented this poster,
which tries to answer the question, how do people (corpora-
tions) do ID management? Their preliminary results from
collecting and analyzing support logs show that, overwhelm-
ingly, issues arise during installation. The process of trouble-
shooting is a close collaboration among consultants, support
staff, and users employing a variety of content and debug
methods such as interactive debugging, screen shots, and
calls through many rounds of communication over a variety
of channels.

This allows two parties to jointly train a neural net using
data from both parties, without exposing their private train-
ing data or intermediate weight results to the other party.
Alice first computes the weights using her training data
directly, and then Alice and Bob execute a garbled circuit pro-
tocol where the inputs are Alice’s learned weights and Bob’s
training data, to obtain the final weights without revealing
either the intermediate results or training data.

SPATor: Improving Tor Bridges with Single Packet
Authorization
Rob Smits, Divam Jain, Sarah Pidcock, Ian Goldberg, and Urs Hengartner,

University of Waterloo

Tor is used for anonymity but is susceptible to some kinds
of attacks. Rob Smits (rdfsmits@cs.uwaterloo.ca) and his
colleagues are addressing an attack on Tor clients who have
opted to become Tor bridges. The adversary assumes that the
correct IP address for his victim is contained in one of the
bridge descriptors. He can perform aliveness checks on the
Tor bridges he has collected and then take an intersection of
bridge IP addresses that were detected as online to de-ano-
nymize this Tor client. The authors propose that, as clients
receive bridge descriptors, an additional time-limited key be
included. From this, clients derive a ConnectionTag—a 32-bit
field, encoded in the initial sequence number and TCP time-
stamp of the initial SYN packet. If it does not validate, the
Tor Bridge can drop the request before revealing aliveness.

Vulnerabilities in Google Chrome Extensions
Nicholas Carlini, Adrienne Felt, Prateek Saxena, and David Wagner,

University of California, Berkeley

Adrienne Felt (apf@cs.berkeley.edu) presented this poster.
Chrome allows users to install extensions that run with
elevated browser privileges. Bugs in extensions can leak
privileges to malicious Web sites or active network attack-
ers. To help mitigate this, Chrome’s extension platform
includes several security features. However, in analyzing
the top 50 Chrome App Store extensions and 50 randomly
selected extensions, the authors found that 42 have vulner-
abilities. For example, the Google Voice Chrome extension
automatically searches for strings that look like phone
numbers and converts them into links that, upon click, will
make a call. Thus, a malicious site can use JavaScript to click
pay-per-call numbers. Isolated worlds successfully reduce
the number of vulnerabilities that a malicious Web attacker
can leverage, but there are numerous bugs that active HTTP
modification can attack. In general, privilege separation is
not effective, because developers circumvent privilege sepa-
ration, either intentionally or accidentally.

 88 ;login: VOL. 36, NO. 6

Information Sciences Institute (ISI); Brett Wilson, Cobham, Inc.; Anthony

Joseph and Keith Sklower, University of California, Berkeley

DETERlab, the DETER Testbed, is an Emulab-based cluster
testbed for cyber-security research which has been operated
for many years by the DETER group. This poster showed new
capabilities of the testbed, particularly that DETER is able
to scale up to emulating an entire Internet infrastructure,
including an autonomous-systems network.

An Analysis of Chinese Search Engine Filtering
Tao Zhu, Independent Researcher; Christopher Bronk and Dan S. Wallach,

Rice University

Tao Zhu (zhutao777@gmail.com) presented work that
analyzes the extent to which Chinese search engines cen-
sor search results for specific keyword groups. The authors
found that pornographic terms and names of politically
important persons are commonly filtered. A long-term
analysis shows temporal changes in the censorship, presum-
ably caused by extending filter blacklists. The authors also
observed that some search engines maintain whitelists of
presumably safe Web sites for specific search keywords.

More Efficient Secure Computation on Smartphones
Sang Koo, Yan Huang, Peter Chapman, and David Evans, University of

Virginia

Yan Huang (yhuang@virginia.edu) presented this work on
efficient and privacy-conforming data calculations on smart-
phones. The authors explored a protocol to find common
contacts between two mobile phone users without sharing
any contacts. Efficiency is gained by using a garbled circuit
framework. The authors also show other privacy-preserving
use cases for their framework, e.g., to determine geographical
proximity between two mobile devices.

Understanding Attacks
Summarized by Robert Walls (rjwalls@cs.umass.edu)

SMS of Death: From Analyzing to Attacking Mobile
Phones on a Large Scale
Collin Mulliner, Nico Golde, and Jean-Pierre Seifert, Technische

Universität Berlin and Deutsche Telekom Laboratories

Collin Mulliner began his talk by pointing out that previ-
ous work on mobile phone security has largely neglected the
more common feature phone in favor of smartphones. In fact,
feature phones still dominate the market, with some estimat-
ing that only 16% of mobiles are smartphones. For this work,
Collin set out to test the security of feature phones by looking
at the SMS implementations across a variety of different
phones. Since it is infeasible to test all models, he focused on

An Arithmetic Operation Implementation Strategy for
Privacy-Aware Role-Based Access Control
Yoonjeong Kim, Hyun-Hea Na, and Ji-Youn Lee, Seoul Women’s

University; Eunjee Song, Baylor University

Role -based access control (RBAC) is a model that effec-
tively limits security vulnerability by controlling access to a
specific role. However, the model is incomplete—the intent of
a user is equally important when trying to enforce least privi-
lege. Yoonjeong Kim (yjkim@swu.ac.kr) presented this work
whose goal is to add arithmetic operations to allow easier
specification of purpose, obligation, and conditions of access.
To this end, the authors use XPath and XML specification to
port Java applications to allow for arithmetic operations.

Second set of posters summarized by Christian Rossow
(christian.rossow@gmail.com)

AdSentry: Comprehensive and Flexible Confinement of
JavaScript-based Advertisements
Xinshu Dong, National University of Singapore; Minh Tran, North

Carolina State University; Zhenkai Liang, National University of

Singapore; Xuxian Jiang, North Carolina State University

Xinshu Dong presented AdSentry, a framework to reliably
execute JavaScript Web advertisements. The system is based
on a shadow JavaScript engine that is used as a sandbox to
run untrusted ads in parallel to the normal JavaScript execu-
tion. The sandbox monitors accesses, and access control poli-
cies help to mitigate the insecurity of malicious JavaScript
code. AdSentry was implemented as a prototype for Mozilla
Firefox.

The Socialbot Network: When Bots Socialize for Fame
and Money
Yazan Boshmaf, Ildar Muslukhov, Konstantin Beznosov, and Matei

Ripeanu, University of British Columbia

Many users of social networks make their personal data
private and only accessible to their friends. Yazan Boshmaf
(boshmaf@ece.ubc.ca) presented work in which the authors
created more than 100 artificial Facebook accounts and
analyzed how users reacted to friendship requests from
these accounts. More than a third of the friend requests
were accepted. As a consequence, attackers were able to gain
significantly more personal data about other users than is
accessible via public profiles.

DETER Testbed: New Capabilities for Cyber Security
Researchers
Terry Benzel, John Wroclawski, Bob Braden, Jennifer Chen, Young Cho,

Ted Faber, Greg Finn, John Hickey, Jelena Mirkovic, Cliff Neuman, Mike

Ryan, Arun Viswanathan, Alefiya Hussain, and Stephen Schwab, USC

 ;login: DECEMBER 2011 Conference Reports 89

an exploit’s shellcode from executing. DEP can be bypassed
by using return oriented programming (ROP), which utilizes
instructions, or gadgets, that are already present in the target
binary. ASLR seemingly makes ROP difficult to use by ran-
domizing the location of those instructions; however, modern
ASLR implementations actually leave small amounts of code
unrandomized in memory. Edward’s solution to evade OS
defenses is called Q. Q searches the unrandomized program
image to automatically build the gadgets needed for ROP,
arrange gadget types such that they implement the desired
computation, and assign compatible gadgets to the arrange-
ment.

Edward then discussed how Q can automatically modify
existing exploits to bypass DEP and ASLR. Q uses trace-
based analysis to identify the execution path of the exploit.
Using the resulting path constraints along with a set of
exploit constraints, Q can automatically create a modi-
fied exploit that is unaffected by DEP and ASLR. Edward
demonstrated this in a video showing Q hardening an exploit
which was then successfully used on a machine with DEP
and ASLR enabled. Edward went on to explain how Q was
able to successfully harden a number of real exploits for both
Windows and Linux. Further, he claimed that Q is able to
create ROP payloads for most programs that are larger than
100 KB. He also discussed a number of limitations of Q. First,
it currently only uses single path analysis, and this prevents
Q from finding certain exploits. Second, Q’s gadgets are not
Turing-complete. Third, Q does not support conditional gad-
gets. Edward concluded by saying that even small amounts
of unrandomized code makes DEP and ASLR completely
ineffective.

John Grizzle (Illinois) asked if control flow integrity would
prevent these types of attacks. Edward replied that it would.
They chose to investigate DEP and ASLR because they know
they are not perfect and they wanted to gauge how good they
actually are. Dave Melski (GrammaTech) pointed out that
a lot of vulnerabilities will place constraints on the type of
inputs, e.g., no null bytes. He wondered how Q handled this.
Edward responded that this is partially addressed by the path
constraints; if a payload violated path constraints, Q would
not find an exploit. For generating payloads, the user can
specify the type of bytes that are allowed. Joe Werther (MIT)
asked about the prevalence of non-ASLR images in modern
operating systems. Edward responded that they did not have
widespread statistics, but there is a report referenced in their
paper which claims that many popular software packages
have at least one module that is not marked as randomized.
Finally, Karl Koscher (U. Washington) suggested that you
could come up with a subset of gadgets to locate libc and
subsequently use all of the gadgets provided by libc. Edward

phones from the most popular manufacturers. Collin claimed
that due to the reuse of phone platforms, a bug found on one
phone model is likely to translate to all other models that
share the same platform. Unfortunately, it is very difficult to
actually analyze feature phones, because the many platforms
are all closed source. Collin’s solution was to look outside of
the phone and perform his analysis using his own custom
GSM network and fuzz-based testing.

Collin then covered the results of his SMS fuzz testing for a
select set of phones. For most phones, the found bugs crashed
the phone, causing it to disconnect from the network and
reboot. Many of the bugs can be triggered without direct
interaction by the user of the target phone: merely receiv-
ing the message will cause the crash. Interestingly, some of
the bugs caused the phone to crash before it could send an
acknowledgment to the provider. Collin suggested that this
behavior could be used to amplify the attack’s effect, because
the provider will repeatedly retransmit the attack message.
Collin went on to discuss a number of possible large-scale
attacks, including targeting all of the customers of a specific
provider or manufacturer. He noted that existing bulk SMS
operators can provide the necessary SMS throughputs to
make such attacks possible. Finally, Collin discussed a few
possible countermeasures, including patching the firmware
and filtering SMS messages. However, he pointed out that
both techniques are poorly suited to addressing this problem.

Rik Farrow suggested that it might be possible for a specially
crafted SMS attack to modify and effectively gain control
of the phone. Collin remarked that they saw at least one bug
that could possibly be used this way, but such attacks are
infeasible; it is a tremendous amount of effort to exploit a
single phone, and even then only that particular model would
be affected. Dan Farmer wondered if there was a way to fin-
gerprint phones to identify the specific model. Collin replied
that there are some methods that rely on MMS implementa-
tions, but they found it was only possible with a small number
of providers. Collin concluded the Q&A by showing a video
demonstration of his attacks crashing a number of mobile
phones.

Q: Exploit Hardening Made Easy
Edward J. Schwartz, Thanassis Avgerinos, and David Brumley, Carnegie

Mellon University

Modern OS defenses are designed to make exploiting
binaries more difficult. Edward Schwartz questioned the
true effectiveness of these defenses. In his talk he focused
on hardening exploits against two common defenses: data
execution prevention (DEP) and address space layout ran-
domization (ASLR). DEP prevents memory from being both
writable and executable at the same time, thereby preventing

 90 ;login: VOL. 36, NO. 6

industry actually has any incentives to fix TPM’s physical
compromises. Alan conceded that this claim was closer to an
opinion than a fact.

Invited Talk

The (Decentralized) SSL Observatory
Peter Eckersley, Senior Staff Technologist for the Electronic Frontier

Foundation, and Jesse Burns, Founding Partner, iSEC Partners

Summarized by Italo Dacosta (idacosta@gatech.edu)

SSL/TLS is the most popular cryptographic system. It allows
establishment of a secure communication channel between a
client and a server by relying on X.509 certificates signed by
a certificate authority (CA). SSL/TLS robustness is as good
as its ability to authenticate the other party. However, as has
been shown recently, there are several problems with the CA
trust model. Certifying identities on the Internet is a hard job
with odd incentives. CAs often make mistakes resulting in
vulnerabilities, there is (circumstantial) evidence of govern-
ments compelling CAs to sign rogue certificates, and there
are a great number of CAs, all equally trusted. In addition, the
X.509 standard has a history of implementation vulnerabili-
ties, and its extreme flexibility and generality have created a
large number of disparate certificates.

The goal of the SSL Observatory is to investigate the prob-
lems associated with CAs, the types of certificates they
are signing, and the size of the PKIX (public X.509) attack
surface. In 2010, the SSL Observatory collected all avail-
able X.509 certificates on the Internet by scanning the IPv4
address space (3 billion IANA-allocated addresses) for port
443/TCP. They found 16.2 million IP addresses listening on
port 443, 11.3 million SSL handshakes, and 4.3+ million valid
certificate chains, with only 1.5+ million distinct certificates
(leaves). The results are publicly available for anyone inter-
ested in analyzing them. The approach used with IPv4 will
not work with IPv6, due to its larger address space, so new
approaches will be required once IPv6 is fully deployed. The
new version of this project is the Decentralized SSL Observa-
tory, a browser extension that will allow the SSL Observatory
to collect certificates from different network viewpoints.
This approach is important because most attacks against
SSL/TLS are only visible in the network path between the
victim’s client and the server (i.e., localized attacks).

Eckersley and Burns then explained their findings. First, the
results confirmed that there are a lot of CAs on the Internet:
1,482 CAs trustable by Microsoft or Mozilla from 651 organi-
zations. Second, CAs are located in approximately 52 coun-
tries, which means exposure to many jurisdictions. Third,
several vulnerabilities were detected: around 30,000 servers
were using broken keys or valid certificates with generic

agreed that this would be interesting and said there is
another paper, “Surgically Returning to Randomized libc,”
which discusses locating libc, but for a different application.

Cloaking Malware with the Trusted Platform Module
Alan M. Dunn, Owen S. Hofmann, Brent Waters, and Emmett Witchel,

The University of Texas at Austin

Trusted computing aims to provide a secure environment
for computation. It attempts to accomplish this by creating
a hardware root of trust, most commonly using a trusted
platform module (TPM). Interestingly, Alan Dunn argues
that the same security properties provided by a TPM can be
used to provide a hardware cloak for malware. Alan said that
malware can, for example, use TPMs to store secret keys,
prevent monitoring by security analysts, and ensure that only
unmodified malware is executed. More concretely, the TPM
can be used with special processor instructions to provide
secure execution via a non-analyzable late launch environ-
ment that is separate from system software on the platform.
To do this, the malware writers must first make sure that
sensitive computations are separated and encrypted such
that they can only be decrypted by the TPM within the late
launch environment. This is accomplished through use of
TPM binding keys and remote attestation. When a remote
malware distribution platform is satisfied that the conditions
are met, it returns the encrypted payload for execution on
the compromised host. Alan and his colleagues implemented
three examples of malware using the TPM.

Alan described some possible defenses against TPM mal-
ware. The first defense is whitelisting late launch binaries.
This defense is largely satisfying; however, it requires a
hypervisor, which may be troublesome for home users to
install. Additionally, it might be difficult to maintain the
whitelist. The second defense is manufacturer cooperation,
in which the manufacturer breaks TPM security guarantees
to allow a security analyst to impersonate a legitimate TPM.
The last defense is based on physical compromise of a TPM.
However, the industry has incentives to fix existing physical
attacks in order to maintain meaningful TPM security guar-
antees. Alan argues that strengthening TPMs against physi-
cal attacks actually makes TPM malware more resilient.

Bryan Parno (Microsoft Research) questioned whether an
analyst would really have a problem analyzing this type of
malware, given that they have sufficient resources to physi-
cally compromise the TPM. Alan questioned Bryan’s asser-
tion that the TPM’s physical protections are only there to
protect against low-capability attackers like common laptop
thieves. Alan then suggested that there might be a range of
adversaries between laptop thieves and the NSA. Another
attendee expanded on Bryan’s question by asking if the

 ;login: DECEMBER 2011 Conference Reports 91

to implement. Adam Langley (Google) talked about the many
problems with current certificate revocation mechanisms
(e.g., performance and privacy issues) and asserted that new
approaches are required. Stephen Kent (PKIX WG chair)
commented that PKIX is not in itself bad—it is the way it
is implemented in browsers. Eckersley noted the seman-
tic problem caused by the increasing number of top-level
domains. Finally, Burns mentioned that more transparency
is needed regarding the sub-CA information of each root CA.

Dealing with Malware and Bots
Summarized by Lakshmanan Nataraj
(lakshmanan_nataraj@umail.ucsb.edu)

Detecting Malware Domains at the Upper DNS
Hierarchy
Manos Antonakakis, Damballa Inc. and Georgia Institute of Technology;

Roberto Perdisci, University of Georgia; Wenke Lee, Georgia Institute of

Technology; Nikolaos Vasiloglou II, Damballa Inc.; David Dagon, Georgia

Institute of Technology

Manos Antonakakis said that Internet Protocol (IP) address-
based blocking techniques can no longer keep up with the
number of IP addresses the command and control (C&C)
servers use. Also, there is a time delay between the day a
malware is actually released in the wild and the day security
researchers analyze that malware. Furthermore, the daily
DNS lookup signal for malware-related domain names is
different from that of normal Web sites. Hence, the authors
propose a system, called Kopis, that statistically models the
DNS lookup signal by utilizing the data in the upper part of
the DNS hierarchy and builds an early warning system to
detect malicious domain names. It leverages the fact that
since DNS is a distributed hierarchical database, there must
be a place in the DNS hierarchy that enables one to have
global visibility from the point of view of who is looking up
the domain names. Based on this observation, the system
detects malicious domain names.

An interesting and important point to be noted here is that
the system does not need a malware binary to detect malware
domain names. The system can analyze large volumes of
DNS messages at AuthNS or TLD servers. It also introduces
an alternative IP reputation classification signal for DNS due
to which botnets can be identified several weeks before the
malware is actually found.

The basic building block of the system is an authoritative
domain name tuple with two components: the resource
record, which is a mapping from the domain name to its
IP address, and the requester. Features such as requester
diversity, requester profile, and resolved-IPs reputation are
used. The requester diversity feature identifies whether the

names (e.g., localhost). Fourth, several problems associated
with certificate revocation were found—for example, a large
number of revoked certificates (~1.96 million revocations),
the lack of revocation support (683 certificates without revo-
cation information), and lack of a clear reason for revocation.
Fifth, they found several configuration errors: violations of
Extended Validation (EV) rules, CA certificates with keys
from expired certificates, 512 and 1024 EV certificates, and
certificates with huge list of names. They concluded that the
attack surface includes not only CAs and target server but
also the DNS infrastructure and anywhere in the network
path between the client and the server.

Next, they discussed some proposed solutions to the SSL/
TLS problems. (1) the consensus measurement approach
(e.g., Perspectives and Convergence.io) attempts to get cer-
tificate information from different network vantage points
to detect any anomaly; a disadvantage of this approach is
the possibility of false positives. (2) More vigilant auditing,
such as the SSL Observatory project, could be done. (3) The
DNSSEC+DANE solution uses the existing relationship with
the domain registrar to get the certificates for a Web site
without requiring a CA, but this solution requires DNSSEC
to be fully deployed. Also, DNSSEC+DANE defends against
attacks to CAs but does not protect the rest of the attack
surface. (4) Certificate pinning could be done via HTTPS
headers: “whoever used to be domain.com should stay
domain.com.” This idea is simpler than DNSSEC and pro-
vides better security if implemented correctly (it protects the
whole attack surface except for the first request). Eckersley
described use of a private CA per domain in parallel to PKIX
to cross-sign pinned certificates. However, X.509 certificates
do not support cross-signatures. He suggested possibly using
a second leaf certificate signed by the pinned “private CA”
key or using an X.509 extension with a cross-signature.

A member of the audience commented on client certificates
as another possible solution to the attacks against SSL/TLS
and noted that federated login could help to deploy client
certificates. The presenters responded that while the use
of client certificates prevents the theft of authentication
credentials, many other attacks are possible and additional
solutions are still required. To the question of how pinned
certificates are revoked, Eckersley commented that he has
several ideas in mind, such as adding a timestamp, but more
discussion is needed. Someone suggested having a hierar-
chical structure like DNS, where CAs are limited to sign
certificates for particular domains. The speakers agreed and
noted that an X.509 extension, name constraints, allows such
functionality. The problem is that this extension is not widely
supported, and it introduces some operational problems.
Another person added that limiting the scope of CAs is also
against their financial model and therefore will be difficult

 92 ;login: VOL. 36, NO. 6

outside the target set, and that it has contacted at least one
destination in the characterizing set.

They validated their approach by studying the Cutwail
botnet, for which there was direct data available about the
IP addresses of the infected machines. The C&C servers
that were analyzed accounted for 30% of the botnet, and
the validation experiment was run for 18 days. During this
period, the spam campaigns were identified using the spam
trap, and the seed and magnified pools were generated. Most
of the original IP addresses were identified, indicating a
good detection rate. Finally, the system ran for a period of
four months, during which it tracked close to 2 million IP
addresses. Of these, nearly half were from the magnified
pools and the rest were seed pools. In an experiment where
they use network logs to identify spam bots, the authors
showed that their system is data-stream independent .

Vern Paxson (UCB) wondered about the rules in the paper
that a bot should have sent a message to an IP address that
is not in the seed pool. Paxson asked why that should be the
case when a bot can send to a unique destination not in the
seed pool. Gianluca answered that this was because the
current system did not support that case; in the in future
they would make it more general. Jelena Mirkovic (USC/ISI)
asked if they had tried dropping that criterion, and Gianluca
said that they had not.

Jackstraws: Picking Command and Control Connections
from Bot Traffic
Gregoire Jacob, University of California, Santa Barbara; Ralf Hund, Ruhr-

University Bochum; Christopher Kruegel, University of California, Santa

Barbara; Thorsten Holz, Ruhr-University Bochum

Gregoire Jacob began the talk by presenting a system, called
Jackstraws, that will identify command and control con-
nections from bot traffic. Existing techniques for detecting
botnets are either host-based (traditional malware detection,
signature generation, behavioral monitoring) or network-
based (IP blacklists of C&C severs). However, both these
techniques are difficult to automate. This is because these
techniques require clean C&C logs of system calls or traffic.
But getting these logs is difficult, since the traffic could be
encrypted. Furthermore, not all the traffic in a bot is associ-
ated with C&C activity.

In order to address these issues and identify C&C traffic in
bot traffic, the authors propose a system called Jackstraws.
The basic rationale behind the system is that C&C traf-
fic results in observable activity at the host such as system
modifications, critical information accesses, etc. Hence, the
authors combine the network traces with the host-based
activity, i.e., they use both a host-based model (system call
graphs with data dependencies) and network-related links

machines that query a given domain name are localized or
globally distributed. Using this feature, the authors show that
malicious domain names are more widespread than benign
domain names. The requester profile feature allows one to
see whether a certain IP has historically had lookups for
some specific malicious domain names. This enables one to
know if a network has been well protected or not. Using these
features, the authors perform a long-term evaluation where
they show their system can reliably detect malicious domain
names with a low false-positive rate. Manos concluded the
talk with some case studies on some of the botnets their
system had discovered. Kopis can be incorporated as an early
warning system that can detect malicious domain names
well before the malware reaches a network.

Marc Eisenbarth (HP) asked if their system would work from
lower tiers in the DNS hierarchy. Manos answered that their
system works as long as you have enough visibility.

BotMagnifier: Locating Spambots on the Internet
Gianluca Stringhini, University of California, Santa Barbara; Thorsten

Holz, Ruhr-University Bochum; Brett Stone-Gross, Christopher Kruegel,

and Giovanni Vigna, University of California, Santa Barbara

Gianluca began by noting that 85% of worldwide spam is
through botnets and it is important to locate those spambots
responsible for sending most of the spam. A simple approach
to track spambots would be set up spam traps with fake email
IDs and use the spam received in these fake IDs to track the
bots. However, spam traps suffer from some limitations,
since only a subset of spambots which are trapped using the
spam trap can be detected. Also, the implementation of spam
traps may not be easy, since some spambots operate only in
certain countries and send spam only within those countries.
Based on the premise that bots within a botnet share simi-
larities, the authors propose a system called BotMagnifier,
which observes a portion of a botnet and identifies more bots
belonging to it.

The system builds on two inputs. The first is a set of IP
addresses of known spam bots called seed pools. These are
the ones that participate in a specific spam campaign (emails
with similar subject) and are obtained by setting spam
traps. The second is a log of both benign and malicious email
transactions called a transactions log. This log was obtained
from a Spamhaus mirror. The system is operated periodically
where, at every instant, a set of seed pools (minimum of 1000
IPs) are supplied as input, and at the end of each observation
period (typically a day), the IP addresses of bots in the magni-
fied pool and the botnet name are generated as output. The
system considers an IP address as behaving similarly to bots
in a seed pool if three conditions are satisfied: that address
has sent emails to at least a finite number of destinations in
the target set, that it has never sent an email to a destination

 ;login: DECEMBER 2011 Conference Reports 93

too many people are trusted, trust can be delegated almost
infinitely, and accountability is difficult to achieve. He said
it’s a fundamental problem that users’ perception of secu-
rity is very different from the security they actually have.
Additionally, the expansion of the existing Web architecture
onto mobile devices exacerbates this problem, by having even
fewer UI indicators and a much longer patch cycle.

Adam Langley from Google discussed the mindset of browser
vendors who are considering the implementation of new
features. At Google, when considering deployment of new
features, they consider the possible security gain multiplied
by the number of users affected. Specifically, in the case of
CA controls for Android, Langley argued that only a small
number of users would take advantage of the feature and
that it didn’t make sense to spend significant development
resources implementing it. Langley then discussed several
up-and-coming technologies for increased security, such
as HTTP strict transport security (HSTS), blocking mixed
scripting, and DNSSEC signed certificates. He said that fea-
tures like strict transport security take priority over fixing
the certificate model, because they pose a larger risk and are
easier to fix.

Brian Smith from Mozilla’s Firefox team pointed out that,
from a browser vendor’s perspective, there are several
requirements which must be met before a new security fea-
ture can be deployed: new features must not confuse users,
must be fast, and must not be prone to misconfiguration
by server admins. He acknowledged that many security-
enhancing features cannot meet these requirements, and
he endorsed Firefox’s extension architecture as a model for
testing new security features. Smith discussed DANE, one
technique Mozilla is considering implementing for increased
certificate security. DANE is currently an IETF draft stan-
dard, which proposes using DNSSEC to associate certificates
with domain names.

Steve Kent of BBN Technologies advocated the “Mao Zedong
approach to PKI,” arguing that the fundamental requirement
of any CA is to establish and maintain an accurate binding of
public key to identity attributes. Kent favors a model with lots
of CAs, with a focus on organizational and proprietary CAs.
In his model, a proprietary CA serves applications tied to the
name space for which the CA is authoritative. Similarly, an
organizational CA would serve entities associated with that
organization.

During the Q&A, one person asked if the panel would be
happy if they lived in an ideal world where all of the techni-
cal infrastructure problems were solved. Schultze said that
even with the technical problems fully solved, there are still
real-world security problems, such as typo squatting, which

(every graph associated with a network connection). Another
observation is that similar commands will result in similar
core activities even if the bots are different. These similari-
ties can be learned using machine learning to identify and
generalize C&C-related host activity. This is done using
graph mining over known connections and then clustering
these graphs to identify similar activities. These graphs are
then merged into a template and template matching is car-
ried out to detect C&C activity over unknown connections.

Gregoire then focused on a more detailed explanation of the
above basic steps. The system was evaluated on a malware
dataset of around 37,000 malware samples comprising over
700 families. After further processing, over 400 templates
were generated. They tested these over labeled connections,
for which they got a detection rate of close to 80% with a very
low false-positive rate but a rather high false-negative rate.
Gregoire mentioned that the high false negatives were due to
some incomplete graphs. The system was then tested with
over 66,000 unknown connections, out of which over 9,000
connections were identified. Among these, over 190 connec-
tions were new and not covered by any network signatures.
Gregoire concluded by saying that they proposed an auto-
matic system to separate C&C traffic from noise traffic.
Their system, which is protocol agnostic, could give more
information to analysts and also uncover new malware fami-
lies that were not present in training.

Rik Farrow was curious why the system picks up families
that were not included in the training set. Gregoire answered
that, on the network side, the C&C may have a completely
different protocol, but that is not the case on the host side.
The botnets use the same system calls, in most cases. Also,
new botnets are usually created by reusing parts of codes
from old botnets. Hence, these behaviors can all be captured
from a given template. Christian Kreibich (ICSI) asked how
these malware samples were executed in a sandbox. Gregoire
answered that the samples were executed using Anubis for
four minutes to make sure that they were establishing the
connections to the C&C server.

Panel

SSL/TLS Certificates: Threat or Menace?
Moderator: Eric Rescorla, Skype

Panelists: Adam Langley, Google; Brian Smith, Mozilla; Stephen Schultze,

Princeton University; Steve Kent, BBN Technologies

Summarized by Nick Jones (najones@cs.princeton.edu)

Each panelist spoke briefly before taking questions from
the audience. Schultze argued that there are many funda-
mental problems with the existing CA model, including that

 94 ;login: VOL. 36, NO. 6

Two observations drove the design of Telex: first, oppres-
sive governments tend to favor IP address blacklists; second,
those governments often do not control all intermediate
routers. The authors propose inserting Telex stations at
intermediate ISPs that are not under censorship. These sta-
tions inspect TLS handshake traffic looking for encrypted
requests that Telex clients have placed in the TLS nonce
field. Upon finding such a request, the station proxies it on
the client’s behalf and injects responses back into the return
traffic.

To a censor shallowly inspecting the client’s traffic, the client
appears to be connecting only to the permitted site, the path
to which contains the Telex station. To the prohibited site,
the client’s request appears to come from the Telex station.
Each client needs Telex client software to run, which would
pose a problem for online-only software distribution, but
Wustrow optimistically described a system of out-of-band
channels (e.g., USB flash drives) through which the software
could be passed. Although Telex is not ready for general use—
the only “permitted” site is currently a single server at Michi-
gan—Wustrow reported that several of the paper’s authors
had been using the system full-time for months. He closed
with several open questions about how to deploy Telex on the
open Internet. Telex software is available at http://telex.cc.

Matthew Green (Johns Hopkins) asked whether the presence
of Telex stations in a country provides incentive for censor-
ing nations to attack it. Wustrow responded that the addi-
tional motivation provided by Telex was minimal and noted
that the US has funded proxy services for oppressed users
since 2003. Zack Weinberg asked how Telex would work
under routing asymmetry, in which traffic follows one path
to a destination and a different path back. Wustrow remarked
that putting Telex stations sufficiently close to a desirable
prohibited site could probably ensure that the station had
access to traffic in both directions; he also suggested that
multiple Telex stations on different paths could communi-
cate out of band.

PIR-Tor: Scalable Anonymous Communication Using
Private Information Retrieval
Prateek Mittal, University of Illinois at Urbana-Champaign; Femi

Olumofin, University of Waterloo; Carmela Troncoso, K.U.Leuven/IBBT;

Nikita Borisov, University of Illinois at Urbana-Champaign; Ian Goldberg,

University of Waterloo

Prateek Mittal described PIR-Tor, a modification of Tor
to improve its scalability. When Tor clients join the onion-
routing network, they contact a Tor directory server and
download a full list of thousands of potential relays through
which the client can route traffic. From the full list, the
client selects only three relays. Clients currently download

have to be addressed. Kent said that solving the technical
problems is a good first step, but not the entire solution.

Another person asked how DANE can be enforced outside the
US. Kent responded that below the DNS root, there are lots
of country TLDs. Thus, if a user goes to a URL containing
a country TLD, then that TLD will be part of the DNSSEC
hierarchy.

Nick Weaver (ICSI) asked about situations in which people
choose not to run SSL. He wanted to know if there were any
ways to enforce integrity over HTTP without encryption.
Langley responded that it is technically possible to do so, but
that industry doesn’t think anyone would use it in practice.

Diana Smetters (Google) asked about building user interfaces
that convey the right security message to users. Specifically,
she asked how users should deal with expired and misconfig-
ured certificates, and how normal users should understand
what those warnings mean. Schultze responded that user
desensitization comes from users seeing too many errors.
He argued that browsers should just fail whenever they see a
misconfigured cert, because that would force site adminis-
trators to be more proactive about fixing these errors. Lang-
ley responded that one of the attractive aspects of DNSSEC is
its hierarchical delegation, which could reduce the number of
errors users see.

One person asked about “trust agility,” specifically regarding
a Firefox plugin where users decide via consensus whether
to trust a certificate. Langley responded that the consensus
model places too much burden on users, and that normal
users shouldn’t be expected to think. Smith responded that
users shouldn’t have to choose which notaries they trust,
because that can devolve into the same problem as choosing
which CAs to trust.

Someone asked about browser warnings, and why the
browser might not warn a user if Bank of America was using
a certificate issued by a Romanian CA. Langley responded
that no matter how big the warning, user design studies show
that users will bypass them.

Privacy- and Freedom-Enhancing Technologies
Summarized by Ben Ransford (ransford@cs.umass.edu)

Telex: Anticensorship in the Network Infrastructure
Eric Wustrow and Scott Wolchok, The University of Michigan; Ian

Goldberg, University of Waterloo; J. Alex Halderman, The University of

Michigan

Eric Wustrow presented Telex, a system designed to cir-
cumvent blacklisting censors by steganographically hiding
requests to prohibited sites in requests to permitted sites.

 ;login: DECEMBER 2011 Conference Reports 95

tolling authority along with zero-knowledge proofs of their
correctness (as in PrETP) and additionally sends a blind
identity-based encryption (IBE) of the commitment’s
opening. In an audit, the tolling authority’s parent
organization sends an IBE request to the driver, who
responds without learning which segments were audited.
Meiklejohn presented performance measurements from an
implementation on both Intel and ARM architectures and
showed that the time required to audit a driver’s activity
scales linearly with the number of segments driven.

Matthew Green asked whether audits could be made faster
by performing encryptions on the car in advance; Meiklejohn
said that it could. Diana Smetters asked how drivers could
be given any confidence about their privacy; Meiklejohn
acknowledged that that was a fundamental question perhaps
more easily addressed in European nations, where citizens
trust their governments to take privacy seriously.

Invited Talk

Pico: No More Passwords!
Frank Stajano, University of Cambridge

Summary by Ed Gould (summary@left.wing.org)

Frank Stajano presented a design for a system that would
eliminate the need for and use of passwords in interactive
authentication protocols. He began by reminding us that, in
the past, passwords worked acceptably well. We had only one
or two to remember, and 8-character passwords were beyond
the scope of brute-force attacks. This is no longer true, and
has not been for quite some time. See http://www.fastword
.me for some related work.

Users have been told that passwords must have many proper-
ties (unguessable, un-brute-forcible, all different, memo-
rizable and memorized), but the intersection of all these
requirements yields the null set. Thus, passwords are both
unusable and insecure—the worst of both worlds.

The goals of Pico, the author’s design for a no-password
system, include

 u no more passwords, pass-phrases, PINs, etc.;
 u scalable to thousands of verifiers;
 u no less secure than passwords;
 u increased usability (no searching or typing, continuous

authentication);
 u increased security (no guessing, phishing, eyelogging,

etc.).

Two non-goals were mentioned as well:

 u zero cost;
 u backwards compatibility.

the full list in order to prevent malicious directory servers
from directing Tor clients to chosen compromised relays.
Mittal cited a study showing that directory-listing traffic
will soon exceed data traffic on Tor. Noticing that clients use
at most 18 middle and exit relays per three hours of Tor use,
the authors developed PIR-Tor, a modification of Tor that
uses private information retrieval (PIR) techniques to allow
clients to fetch a subset of available relays without revealing
to the directory server which ones were fetched. In PIR-Tor,
a client chooses three candidate guard nodes (initial relays)
from the list of directory servers, downloads a small amount
of signed meta-information from each, and performs 18 PIR
queries to choose its relays.

Crucially, none of these relays learns which relays the cli-
ent attempted to select, so a malicious relay cannot simply
give the client a list of servers with which it colludes. Mittal
showed some plots to demonstrate that PIR-Tor exchanges
one to two orders of magnitude less directory data with
directory servers, arguing for its scalability over the current
implementation of Tor.

Matthew Green asked whether PIR-Tor would ever become
part of the Tor codebase, to which Mittal replied that PIR-Tor
is open source. Roger Dingledine expressed a concern that
the authors had not taken all the subtleties of Tor security
into account; Mittal directed him to the paper for more infor-
mation.

The Phantom Tollbooth: Privacy-Preserving Electronic
Toll Collection in the Presence of Driver Collusion
Sarah Meiklejohn, Keaton Mowery, Stephen Checkoway, and Hovav

Shacham, University of California, San Diego

Sarah Meiklejohn presented Milo, a protocol for privacy-
preserving transit payments that, unlike previous systems,
enables fine-grained road pricing without revealing to
drivers the locations at which their presence is recorded.
Meiklejohn gave an overview of previous approaches. In both
vPriv and PrETP, presented at USENIX Security in 2009 and
2010, respectively, drivers upload logs of their driving activity
to a central authority; the tolling authority performs audits
to keep drivers honest. Meiklejohn pointed out a flaw in the
previously proposed approach to auditing, wherein the tolling
authority sends drivers photos of their cars in certain places
and asks them to pay for having been there: drivers can learn
the locations of traffic cameras and cheat en masse to avoid
them.

Milo, the authors’ modified version of PrETP, uses several
cryptographic primitives to maintain driver privacy, driver
honesty, and audit secrecy. A driver records location/
time pairs and forms Pedersen commitments to segment
prices. The driver sends the price commitments to the

 96 ;login: VOL. 36, NO. 6

several attacks on existing differential privacy implementa-
tions (PINQ & Airavat) and presented Fuzz, a new system
that addresses these problems. Many companies would like
to share their potentially useful data without violating the
privacy of the subjects of that data. Anonymizing that data
has been shown to be an insufficient defense in the face of
adversaries with outside information. Differential privacy
solves this problem through a querying mechanism that adds
noise to results and the concept of privacy budgets, a method
of limiting the number of answerable queries.

Although several attacks are detailed in the paper, Haeberlen
focused on one timing attack for the purposes of the presen-
tation. In a properly implemented system where the database
is being remotely accessed, an attacker can only observe the
query’s response, completion time, and her remaining privacy
budget. While existing systems secure the query response, it
is possible for an adversary to design a query that leaks data
through its completion time or privacy budget deduction.

Fuzz is both a programming language and a runtime envi-
ronment that closes all three of these channels. It employs
static program analysis to determine query cost without
relying on the database as an input. Predictable transactions
ensure that all microqueries take the same time to execute.
The runtime environment isolates microqueries, preempts
microqueries to execute timeouts, and returns a default value
in the case that a microquery cannot complete. The overhead
of these defenses is minimal aside from the padding that is
imposed by predictable transactions. With ample knowledge
of the database, this can be parameterized to reduce this
effect. Fuzz is available at http://privacy.cis.upenn.edu/.

Ian Goldberg asked if the system would be susceptible to
network-probe timing attacks. Haeberlen responded that
the computer was fully busy during processing, and that the
machine could be configured to not respond to probes. Ben
Fuller drew attention to the overhead imposed by predictable
transactions in a large enough database; Haeberlen agreed
that the defense comes at a price. Another attendee pointed
out that it is necessary to know the machine’s hardware
configuration to properly set the timeout, and he asked for a
clarification regarding the early termination attack.

Outsourcing the Decryption of ABE Ciphertexts
Matthew Green and Susan Hohenberger, Johns Hopkins University; Brent

Waters, University of Texas at Austin

Matthew Green presented this work on expediting the
decryption of attribute-based encryption (ABE) ciphertexts
through outsourced computation. ABE extends identity-
based encryption by allowing data to be encrypted to a set of
attributes. This is of use in data-sharing environments where

Pico includes a device that is somewhat like a smartphone
(although it may be very much smaller), with a few buttons
and a display. It has a radio communication facility as well
as a camera. It can be shaped like a key fob, a watch, a MP3
player, or jewelry, for example. Importantly, it is a dedicated
device, not something running on a multi-purpose device.

The authentication process using Pico involves the Pico
device capturing a visual image from the verifier app to
which one is authenticating, and a multi-step confirmation
of identity, which is different the first time, when the user
“pairs” with the app. The app is able to repeatedly communi-
cate with Pico to ensure continued authentication.

Mechanisms for disabling the use of a Pico when it’s not in
the possession of its proper owner, as well as mechanisms to
recover from loss or damage to the Pico, were described as
well. Several possible ways to avoid being coerced into using
one’s Pico were described. A method using “Picosiblings” was
described to enable the Pico to operate at all.

Frank pointed out that there are some passwords, e.g., file
decryption keys, that do not fit the user-ID/password model,
and thus are not addressed by Pico. He also mentioned that
optimizing for backwards compatibility may be necessary to
get to a critical mass, and quoted Roger Needham: “Opti-
mization is the process of taking something that works and
replacing it with something that almost works, but costs
less.” You can find the paper related to this talk at http://
www.cl.cam.ac.uk/~fms27/.

Alan Sherman (UMBC) asked if Frank would comment on
the resistance to man-in-the-middle (MITM) attacks. Frank
explained that there is little leverage for a MITM attack after
the initial pairing. If there were a MITM present during
pairing, it might be able to fool Pico. However, it would have
to be present for all future interactions as well, or Pico would
notice its absence. The multi-channel protocol (camera and
radio) makes it harder to do a MITM. If the visual part is
hard to use, it is more vulnerable. Carson Gaspar pointed
out that nested authentication will be critical for things like
command-line administration, allowing for context-valid
credentials.

Applied Cryptography
Summarized by Adam Bates (amb@cs.uoregon.edu)

Differential Privacy Under Fire
Andreas Haeberlen, Benjamin C. Pierce, and Arjun Narayan, University of

Pennsylvania

Andreas Haeberlen presented work on eliminating covert
channels in differential privacy systems. Andreas described

 ;login: DECEMBER 2011 Conference Reports 97

Fairplay, a popular system for secure function evaluation,
is impractical for larger circuits, due to speed and memory
constraints. This work demonstrates significant improve-
ment through pipelining the circuit creation process—gates
are evaluated as they are generated, dramatically improving
memory and time efficiency without sacrificing security
guarantees. The system is evaluated benchmarking the ham-
ming distance, edit distance, and AES performance prob-
lems against previous implementations. Hamming distance
experienced a speed-up of several orders of magnitude, and
an AES s-box was implemented with a 30% improvement in
the number of non-free gates.

Huang concluded that the pipelining technique, along with
circuit-level optimization, allowed for garbled circuits to
scale to large problem size. This framework and Android app
demos are available at MightBeEvil.com. Ian Goldberg com-
mented that he loved this work and hopes to see a trend of
people realizing that garbled circuits can be efficiently imple-
mented. He asked if this work can be applied to multi-party
problems. Huang responded that much of what was learned
in this work can be applied to the multi-party scenario. Diana
Smetters inquired about the slow-down of Huang’s circuits
compared to a native run. Huang replied that it was still
several orders of magnitude slower but that this could be a
worthwhile cost in security-critical situations.

Invited Talk

The Cloud-y Future of Security Technologies
Adam O’Donnell, Co-founder & Director, Cloud Engineering Immunet

No report is available for this session.

4th Workshop on Cyber Security
Experimentation and Test (CSET ’11)

August 8, 2011
San Francisco, CA

Opening Remarks
Sean Peisert and Stephen Schwab, CSET ’11 Program Co-Chairs

Summarized by Sean Peisart (peisart@cs.ucdavis.edu)

The 4th Workshop on Cyber Security Experimentation and
Test (CSET) was held on August 8, 2011. In its first three
years, CSET’s focus was largely on testbeds and experi-
mentation relating to testbeds, reflecting its origins as the
DETER Community Workshop. In its fourth year, the focus
was broadened to equally emphasize the nascent science of
cybersecurity, i.e., measurement, metrics, data, simulations,

records can only be shared with certain groups of people.
ABE requires the creation of a ciphertext policy that can
grow complex based on the number of attributes. However,
ABE’s use on mobile devices is limited, due to the rapid
growth in ciphertext size and decryption time as the size of
the attribute policy increases.

Green presented new versions of Ciphertext-Policy and Key-
Policy ABE that allow for outsourcing this decryption to an
untrusted cloud service, avoiding the need to share a private
key. These new versions introduce a transformation key that
is sent to the cloud to perform partial decryption. The secret
key is still required to recover the plaintext, so the cloud is
not part of the trust model. The performance of this new ABE
allows for practical use scenarios on devices with limited
computational power. Often, decryption of ciphertexts on a
more powerful machine remains an easy task. This new sys-
tem was evaluated in the wild with an Amazon EC2 proxy. In
one test with a complex attribute policy, decryption time was
reduced from 17.3 seconds to less than 1.2 seconds. The par-
tial decryption also reduces the size of the plaintext, reducing
the cost of transmission. Green identified smart cards and
trusted code base reduction as other possible applications of
this new system.

Diana Smetters asked Green to elaborate on the key-sharing
scheme in his model, pointing out that revocation is dif-
ficult. Green explained that every user received their own
transform key and that the cloud proxy can act as a reference
monitor. Bryan Parno asked if this scheme could be thought
of as a regular proxy encryption scheme. Green replied that
they are very similar and that both schemes are selectively
secure.

Faster Secure Two-Party Computation Using Garbled
Circuits
Yan Huang and David Evans, University of Virginia; Jonathan Katz,

University of Maryland; Lior Malka, Intel

Yan Huang presented this work on an efficient garbled circuit
used for two-party environments. Garbled circuits are a
method of making privacy-performing computations; the
circuit generator encodes the plain wire signal of 0’s and 1’s
with data-independent nonces, encrypts a truth table, and
sends it to the circuit evaluator, who can decrypt one and
only one entry in the truth table. The circuit outputs a table of
values, only one of which the circuit evaluator will be able to
decrypt. Traditionally, garbled circuit execution is slow and
scales poorly. Huang presents a new method of garbled circuit
generation that is scalable and faster, as well as a library of
pre-compiled circuits.

 98 ;login: VOL. 36, NO. 6

the confidence of that result is, what relationships exist
between tools and data sets, and more.

A lively discussion ensued, focusing on how to improve
security experimentation. Availability and functionality of
“research code” hinders good experimentation. Roy Maxion
(CMU) suggested adopting “structured abstracts” as used in
medicine, where specific language about methodology and
result are included, allowing papers to be quickly surveyed.
Terry Benzel (ISI) noted that repeatability is often difficult
to achieve, even for the original investigator, because of the
changing software and hardware environment (and sug-
gested use of testbeds to help mitigate this problem). Cynthia
Irvine (NPGS) followed up by pointing out that, often, a
sponsor is looking to solve a problem (not to perform compar-
ative studies). The room generally discussed challenges with
performing comparative studies with older tools and work-
loads in the face of rapidly changing threats. Others voiced a
need for sponsors to prioritize enabling testing by others.

From there, the discussion turned to facilitating comparative
studies, asking whether it would be better to share detectors,
or data sets, as well as the difficulties of doing either, which
range from proprietary concerns to sensitivity of workload
information and more. Killourhy stressed that “what we’re
doing isn’t working,” and that almost anything we could do
would be an improvement, saying that “the problem doesn’t
go away because it is inconvenient.” The room agreed—but no
silver bullet was evident.

No Plan Survives Contact: Experience with Cybercrime
Measurement
Chris Kanich, Neha Chachra, and Damon McCoy, University of California,

San Diego; Chris Grier, University of California, Berkeley; David Wang,

Marti Motoyama, Kirill Levchenko, Stefan Savage, and Geoffrey M.

Voelker, University of California, San Diego

Testbeds enable research that could not easily be performed
in the real world. However, some kinds of research must nec-
essarily be performed in the real world. This talk described
the goals, procedures, and results from some real-world
research involving cybercrime.

Two necessary things for engaging with and observing
cybercriminals are verisimilitude and scale. Verisimilitude
is the quality of being authentic—an important quality when
performing research of this kind. If one is pretending to
be a customer, it is important to appear to be an authentic
customer, regardless of whether you are purchasing end-user
goods offered through spam or purchasing computational
or other resources offered on the underground market. This
can have challenging repercussions; the researchers found

and models, as those subjects will also strongly influence the
theory and practice of experimental security research. Addi-
tionally, the chairs sought to make CSET more of a work-
shop in the traditional sense. Depending on subject matter,
some talks were set up to be highly interactive, 45-minute
discussions between presenter and audience. In some cases,
similarly themed papers were presented in sessions in which
the three talks were presented in 20 minutes each without
questions and then all three papers were discussed for 30
minutes together.

Overall, based on reactions from both presenters and audi-
ence members, the new scope and format for CSET was a
success. Out of 30 submissions, 12 papers were accepted and
were well received by the audience.

Security Experimentation and the Real World
Summarized by Peter A.H. Peterson (pahp@cs.ucla.edu)

Should Security Researchers Experiment More and
Draw More Inferences?
Kevin S. Killourhy and Roy A. Maxion, Carnegie Mellon University

The rhetorical title of this title was answered immediately
by Killourhy with a resounding “Yes!” Explaining, Killourhy
stressed that not all empirical work should be considered
an experiment, per se, and that experimental practice in
security research could be improved. Only 54% of studies in
keystroke dynamics were comparative (evaluating a matrix
of tools and data sets for comparison on the same grounds),
and only 7.5% were inferential (drawing statistical inferences
from data, rather than simply reporting results).

A particularly troubling trend in security is the “one-off”
evaluation, where a new technology is evaluated against a
home-grown dataset. The researcher performs the evalua-
tion, finds a benefit, and declares victory. Unfortunately, in
these cases it is impossible to know how well the technol-
ogy compares to others, because no comparative evaluation
was performed (and often neither the dataset nor the tool is
public). Comparative experiments—standard in other sci-
ences—show the differences between pairs of techniques and
workloads, so as to show their differences.

In addition to comparative studies, Killourhy stressed the
importance of statistical inference for experiments, such
as comparative experiments. Reporting only which tool
performed the best on which data set is not enough, because
“security technologies don’t have an error rate, they have
many error rates, depending on the factors [in the experi-
ment].” In contrast, statistical inference can show not only
which tool is best for which data set, but by how much, what

 ;login: DECEMBER 2011 Conference Reports 99

Experimental Methodology

Summarized by Peter A.H. Peterson (pahp@cs.ucla.edu)

Salting Public Traces with Attack Traffic to Test Flow
Classifiers
Z. Berkay Celik, Jayaram Raghuram, George Kesidis, and David J. Miller,

Pennsylvania State University

George Kesidis argued for greater “statistical hygiene” in
security experimentation. Their work focused on identifying,
discussing, and attempting to mitigate the way in which the
timing characteristics of sample botnet traces used for evalu-
ating flow-classifiers can inadvertently affect the results.

Due to the lack of publicly available traces of attack traf-
fic, many researchers construct synthetic attack traffic as
training and testing targets for their flow classifiers. One
technique is to combine benign background traffic from a
corporate network and traffic from a defanged botnet run-
ning in a testbed. In this way, the background traffic is salted
into the botnet traffic, providing an ostensibly realistic trace.

However, when flow characteristics of the botnet traffic are
statistically distinct from the background traffic, they may
be identified by machine learning algorithms as meaning-
fully identifiable characteristics of botnet traffic, even
though they may be artifacts of the trace synthesis process.
In turn, this can make the flow classifiers appear to be
more successful in evaluations than they may be in real life,
because the synthetic trace can be artificially straightfor-
ward to classify. In the paper, the authors worked to inves-
tigate and overcome these issues, including comparing how
various scenarios and machine-learning algorithms com-
bined to produce various results. Researchers in this area
would do well to consult the paper for more details.

The focus of the talk and discussion was more about these
kinds of issues in general, and expanded beyond the paper
itself into issues of experimentation and statistical forensics.
For example, another classic issue affecting research results
is “double dipping,” such as when training sets (or sets used
to derive ground truth) are used as targets for testing. This is
a specific problem for machine learning, but also affects any
research where the evaluation phase can be unintentionally
(or intentionally) biased toward the solution.

Discussion for this session was combined with the next two
papers.

it necessary to use a native speaker of Russian in order to
navigate the forums and communicate in a natural way. Scale
is another important issue; the underground market is a large
organization, and it is difficult to see the big picture without
a significant and broad effort.

This inspired a long discussion on basically two points. First,
people considered the work from an experimental perspec-
tive, wondering how researchers could best identify how
representative their data was. Geoff Voelker said that when
possible, researchers would try to measure similar things
from various vantage points in order to try to determine how
well the data matched. Related challenges arise due to being
blocked or having data “poisoned” by criminals who “got
wise” to the investigation. Kanich underscored that they try
to be upfront about claims relating to the data and state that
the observations are limited by many practical concerns.

The second major topic was about the ethics of this kind
of research. One participant said, “Your papers are usually
great. How the hell do you get the ethical backing to do this
stuff?” Kanich responded that first, funding did not come
from government sources, and that they tried to consider
whether they truly defrauded the parties involved. They con-
sidered that those parties who purchased goods did not need
to purchase through them, and they did not keep their money.
Furthermore, rather than creating new spam from scratch,
the researchers used “double-agent” machines to modify
instructions for downstream spam bots that would already
have sent spam to potential customers.

A number of people asked about IRB oversight and posited
that IRBs are currently, by and large, medically oriented
and are not sensitive to cybercrime issues. The researchers
described their relationship with IRBs, lawyers, and funding,
and stated again that they take a consequential approach,
asking whether they would do harm in the course of the
research. Additionally, the papers for their major studies
each include a section on the ethics of their methodology and
actions. During this discussion, Doug Maughan (DHS) high-
lighted the forthcoming Menlo Report on ethical principles
for ICT research and suggested that ICT researchers should,
like Dave Dittrich, find their way onto IRBs for the future.

Ultimately, important, timely, and fascinating data resulted
from—and will continue to come from—this ongoing
research. At the same time, the inevitable debates about
representivity, ethics, legality, and funding will continue
alongside them.

 100 ;login: VOL. 36, NO. 6

Netflowize automatically determines where in the experi-
mental topology to place the probes. Where a naive approach
could add too many probes, Netflowize minimizes this.
Netflowize has two modes: “lightweight” mode uses existing
infrastructure to perform monitoring in a transparent way;
“heavyweight” is also transparent, but deploys additional
hardware resources in the experiment to serve as the probes.
This has the benefit of not creating load on experimental
nodes, but requires more hardware.

Netflowize is under active development. Future work
includes better error and redundancy handling, more user-
accessible “knobs,” and efficiency improvements. Other
developments may include extending beyond NetFlow to use
other tools, and more. Brassil pointed the participants to a
URL where prototype code was available (contact him if you
are interested).

Discussion
Following this presentation, the floor was opened to ques-
tions from the workshop participants to the authors of all
three papers.

Stephen Schwab (ISI) asked George Kesidis about best prac-
tices for the application of machine learning in experimenta-
tion. Kesidis responded that you don’t need an expert, but
“good statistical hygiene” is a must. I took that to mean that
new users of ML techniques may not recognize the neces-
sity of separating testing and training sets, even though they
might not make those kind of “double dipping” mistakes in
other experimental areas.

Roy Maxion (CMU) asked all three presenters what they felt
made rigorous experimentation with high-confidence results
hard or easy. Jack Brassil suggested that if our community
(like others) would centralize to common, shared tools, it
would be easier to verify results and insist on more rigor-
ous experimentation. Kesidis suggested that reproducibility
is achievable, but that it is too hard to adequately specify
experimental conditions within the confines of a conference
paper. Kesidis did say that we can point readers to online
resources. Kesidis also said that if you’re doing research,
your goal should be to prove your results and enable them
to be accepted. This might include open sourcing the work
and making sure that others are able to recreate it (subject
to confidentiality concerns, etc.). He said, “It’s not that other
fields are that much better than we are,” but we should still
be doing it.

Jelena Mirkovic (ISI) suggested that recreating experi-
ments isn’t always very straightforward—even if the code is
open source and available. Matthias Wachs suggested that
this could be solved with better communication between

Beyond Simulation: Large-Scale Distributed Emulation
of P2P Protocols
Nathan S. Evans and Christian Grothoff, Technische Universität

München

This paper was presented by Matthias Wachs and Bart Polot.

When test requirements grow larger than even significant
testbeds can handle, researchers often turn to simulation.
However, the fidelity of the simulation can be poor, because
of inadvertent mistakes when the simulation is constructed
from the real-world counterpart. And, in any case, the pro-
cess of building a simulation can have a large cost in terms of
time and human resources.

While simulation allows great scale, it has a high transla-
tion cost. On the other hand, the scale of emulation solutions
may be limited, but allows the experimenter to acquire data
that directly reflects the original implementation of the tool
in question. Accordingly, Wachs and Polot presented the
GNUnet framework, which is a scalable emulation frame-
work for peer-to-peer protocols, capable of accurately sup-
porting many emulated hosts through judicious sharing of
local resources. They described the resource-sharing design
of GNUnet, which includes the use of shared memory and
fast messaging techniques as well as centralized manage-
ment of peers. They also described their experience testing
an 80,000-peer emulation of a Kademlia DHT on a small
cluster as a test case and example of the frameworks.

GNUnet makes some tradeoffs in order to achieve its goals.
For example, it does not support timing control, so it may not
be suitable for latency-sensitive tests. There are also other
characteristics of the design that may affect its suitability for
particular purposes, such as interference from the underly-
ing OS, scheduling, similarity of peers, etc. And, of course,
test code must be written using the GNUnet framework,
which has its own cost. Interested readers should see the
paper or presentation audio for more information.

Automating Network Monitoring on Experimental
Testbeds
Michael Golightly, Princeton University; Jack Brassil, HP Laboratories

Jack Brassil presented this work on Netflowize, a prototype
tool for Emulab-type topologies that is able to automatically
add experiment-wide instrumentation nodes to the topol-
ogy. This ability, along with a set of tools, allows for flexible
monitoring of resource consumption across the test environ-
ment. Netflowize uses existing NetFlow probes and collec-
tors available on Emulab and DETER; while these tools are
available on these testbeds, they are typically used by testbed
operators. Netflowize allows researchers to leverage these
tools in a straightforward and accurate way.

 ;login: DECEMBER 2011 Conference Reports 101

Participants discussed whether incentives such as access to
bleeding-edge detectors would encourage network operators
to participate. In the end, Aviv offered this solution as a place
to start; improvements are welcome.

ExperimenTor: A Testbed for Safe and Realistic Tor
Experimentation
Kevin Bauer, University of Waterloo; Micah Sherr, Georgetown

University; Damon McCoy, University of California, San Diego; Dirk

Grunwald, University of Colorado

Kevin Bauer introduced Tor as being, simultaneously, a
production-quality public service and an ongoing research
project. Tor is a low-latency overlay network on which users
can send and receive TCP traffic anonymously. At the same
time, researchers are constantly modeling, testing, and
improving the network. These two aspects of Tor sometimes
come into conflict, causing researchers to adopt a range of
research methods, with mathematical models at one end and
worrisome use of the production Tor network at the other.
Simulators, like Emulab, and PlanetLab make up the middle
of this range.

A good experimental testbed for Tor research would scale
to Tor-like size, ensure reproducibility, have realistic traffic
properties, and be otherwise ethically sound and easy to use.
With PlanetLab, one quickly runs into scalability and repro-
ducibility issues; resources are limited, and node assign-
ments change from one allocation to the next. With the Tor
network itself, scalability is not a problem but reproducibility
and ethical issues are; Tor users expect privacy—-the very
reason they use Tor.

Bauer explained the design of the ExperimenTor testbed
(http://crysp.uwaterloo.ca/software/exptor). Realistic
routers were modeled using publicly available data. Clients
were modeled by studying aggregate real-world traffic (e.g.,
amount of traffic per service and number of clients per coun-
try). The ModelNet emulation framework was chosen since
many applications can be run unmodified on the testbed just
by linking with the ModelNet libraries. Early experience
with the testbed is promising. An emulator has been deployed
across four institutions and used in two ongoing research
projects: effects of link-based router selection, and a re-
design of Tor’s congestion control.

Discussion focused primarily on two issues: the general util-
ity of the testbed and the reproducibility of Tor research. One
participant noted that this approach seemed like a procedure
for network-based research in general, not just Tor research.
Bauer agreed that the ModelNet emulation framework is very
general, but his present efforts are focused on Tor. Partici-
pants also reacted to the issue of reproducibility with experi-

researchers, and accordingly invited the participants to
email them directly with any questions regarding GNUnet.

Bots and Overlays
Summarized by Kevin Killourhy (ksk@cs.cmu.edu)

Challenges in Experimenting with Botnet Detection
Systems
Adam J. Aviv and Andreas Haeberlen, University of Pennsylvania

Adam Aviv described a hypothetical situation in which a
researcher evaluates a new botnet detector. Ideally, the
researcher conducts a series of representative tests, both
on her own network and also on others’. She compares the
results to prior work, and she makes the detector and data
available so that other researchers can reproduce her results.
A survey of 20 research papers on botnets suggested that this
ideal is often sacrificed to practicalities. Challenges include
establishing ground truth, creating a production-quality
detector, and obtaining permission to deploy it.

Behind these challenges, Aviv said, the big concern is privacy.
His statement prompted a lively discussion about whether
privacy is the biggest problem—compared to lack of ground
truth, standard methodology, and statistical analysis—and
whether those other problems can be solved without tackling
the privacy issue. Aviv explained that if privacy were not
a problem, researchers could share data and do apples-to-
apples comparisons of different detectors. It was suggested
that, if nothing else, privacy is a good excuse for not sharing
data.

Returning to the survey of botnet-research papers, Aviv
showed that the majority of papers used an overlay meth-
odology for their evaluation. For this method, two separate
network traces are needed: botnet traffic from a simulation
or sandbox, and standard traffic from the researchers’ net-
work or another source. Then the two traces are integrated
into a data set for detector evaluation. A participant observed
that one cannot know that the standard traffic is clean (i.e.,
untainted by bot traffic). Aviv agreed and raised a host of
other concerns, including the introduction of artifacts by
overlaying traffic from different networks.

Inspired by how PlanetLab helped distributed-systems
researchers, Aviv asked, “Can we do better together?” To
start the discussion, he sketched out a straw-man solution:
operators of various networks give researchers access to a
box on their network. The boxes would be fed NetFlow data,
and researchers could install their detectors on boxes across
many networks. Detector output would be vetted by the
network operators; when free of sensitive data, the results
would be returned to the researcher for further analysis.

 102 ;login: VOL. 36, NO. 6

Experimental Challenges in Cyber Security: A Story of
Provenance and Lineage for Malware
Tudor Dumitras, Symantec Research Labs; Iulian Neamtiu, University of

California, Riverside

Tudor Dumitras led with an anecdote about what happens
when researchers ignore issues of experimental validity: the
IROP Keyboard,a piece of hardware satirically proposed by
Zeller, Zimmermann, and Bird, does not have the I, R, O, or
P key because studies have shown that most coding errors
involve those keys. More serious issues of validity arise when
tracing the lineage and establishing the provenance of a
malware artifact.

When analyzing malware samples to determine which one
came first and how they evolved, several methodological
questions arise. Is the reconstructed lineage correct (i.e.,
what is ground truth)? What am I really measuring, and are
my data representative? How well does this work now, and,
more important, how well will it work tomorrow? These
questions assess the validity of an experiment. Threats to
validity come in several forms—construct validity, whether
the metrics measure the right concept; internal validity,
whether causal inferences can be drawn; content valid-
ity, whether all data relevant to the concept are used; and
external validity, whether the results generalize beyond the
experiment.

Within the domain of tracing lineage and establishing
provenance of malware artifacts, Dumitras explores these
threats to validity and offers some solutions. For instance,
ground truth is somewhere between hard and impossible
to establish for malware lineages, but the same tools can be
used to reconstruct the lineage of open-source software (e.g.,
the Linux kernel). Dumitras also offered Symantec’s WINE
(Worldwide Intelligence Network Environment) as a helpful
service for promoting experimental validity (http://www
.symantec.com/WINE).

WINE provides researchers with real-world malware data,
gathered as part of Symantec’s own security and anti-virus
efforts. The data enables research on both static and dynamic
properties of malware. Metadata and contextual informa-
tion are provided for the artifacts (e.g., collection times
and infection reports). WINE makes possible reproducible
experiments with representative malware samples. Dumitras
fielded several questions on the logistics of using the service
and whether it might be abused by malware authors or com-
petitors. Users must be on-site at a Symantec Research Lab
and under NDA. Dumitras and his colleagues are exploring
what IRB-related issues arise for researchers using the data.
According to NSF sources, the cost of using this service
could be included in a grant budget.

ments on real networks and other testbeds. One participant
wondered whether results that cannot be reproduced are
worth reporting.

Methodology and Getting Real Data
Summarized by Kevin Killourhy (ksk@cs.cmu.edu)

On the Design and Execution of Cyber-Security User
Studies: Methodology, Challenges, and Lessons Learned
Malek Ben Salem and Salvatore J. Stolfo, Columbia University

Malek Ben Salem explained how work on masquerade detec-
tion has been hindered by a lack of masquerade data. For
instance, she wanted to test the conjecture that an attempt to
steal information often manifests as extensive and abnormal
search behavior. To test such a claim, one needs data not only
from legitimate computer usage but also from attempts to
steal information. Observing attack-like behavior under labo-
ratory conditions can be a challenge, and this talk concerns
her experiences trying to add rigor to the process of gathering
such data.

Ben Salem enumerated steps for designing and conducting a
user study: state a hypothesis, identify experimental vari-
ables, establish a control group, choose a sampling procedure,
and estimate the necessary sample size. She emphasized
the need to control variability and reduce bias among users.
In practice, these steps require some careful thought. For
instance, to ensure that subjects acted as they might if they
were participating in a real attack, she provided them with
scenario narratives. Subjects were told to imagine them-
selves at a co-worker’s unattended computer, trying to find
sensitive financial information.

For discussion, she offered several recommendations and
lessons learned. Get IRB approval early, since the process
can be slow. For data that is released publicly, subjects should
sign waivers regardless of the planned data sanitization;
subjects do not always have the understanding or foresight to
thoroughly sanitize their data. Conduct pilot tests and post-
experiment questionnaires to identify any unforeseen issues
and provide additional insight. As an example, the prelimi-
nary narrative did not provide a name for the imaginary co-
worker. Talking with pilot subjects revealed that they would
have used the name when searching for information, and so a
name was added.

 ;login: DECEMBER 2011 Conference Reports 103

In the seminar, students used LEAP to investigate security/
energy tradeoffs. Instructors presented students with topic
areas; the students organized into groups within each area
and developed research plans. After the first two weeks,
class time was used for group meetings rather than lectures.
Through the projects, the instructors intended to have stu-
dents learn about performance measurement and analysis.

One project measured energy consumption of an AV product
scanning a home directory. Another project compared the
energy consumption of various compression/encryption
schemes, finding that gzip was the most energy efficient.
Peterson observed that the projects and the style of the
course resembled what a student would encounter in grad
school, and that this experience was beneficial for under-
grads.

In retrospect, supporting many different topic areas was a
lot of work for the instructors. Future iterations of the class
might have multiple groups tackle one topic, so groups could
red-team other groups’ plans. Because the quality of the final
reports was uneven, additional coverage of experimental
design and statistical analysis is also planned. Nevertheless,
students got the message that evaluation is tricky. Peterson
encouraged interested instructors to pilot the LEAP technol-
ogy in their own courses.

Experiences in Cyber Security Education: The MIT
Lincoln Laboratory Capture-the-Flag Exercise
Joseph Werther, Michael Zhivich, and Tim Leek, MIT Lincoln Laboratory;

Nickolai Zeldovich, MIT CSAIL

Joseph Werther posed the question: How do we get more
smart students involved in cybersecurity? He described an
effort by MIT Lincoln Laboratory to conduct a capture-the-
flag (CTF) event intended to educate and promote interest in
security; 53 students from six universities participated. The
Wordpress content-management system was chosen as the
target; it is a realistic target, and its extensible nature allows
students to become comfortable with the base system. Addi-
tional components can be tackled incrementally.

The two-day CTF event was preceded by a week of lectures
and laboratory exercises. Underlying the effort was the
belief that education in “offensive security” enables students
to understand the mechanics of a vulnerability and how
a system can be exploited. Werther identified three com-
ponents of learning: reading, building, and experience. All
three were incorporated into the lessons. The five classes
included coverage of Web applications, Wordpress, server
security, and Web-application security. The final class was a
work-through of the Google Gruyere hacking exercises. For
the CTF event, teams had to defend a Wordpress instance

Education
Summarized by Kevin Killourhy (ksk@cs.cmu.edu)

Active Learning with the CyberCIEGE Video Game
Michael Thompson and Dr. Cynthia Irvine, Naval Postgraduate School

Michael Thompson describes CyberCIEGE as a cyber-secu-
rity game for a broad audience. The game enables instructors
to cover a wide variety of security concepts without requir-
ing a lot of prior knowledge of the students. Players are able
explore a scenario, approach it in different ways, and even
fail as part of the learning process. A scenario-definition
language can be used to add new scenarios to the game.
Quantitative assessments can also be included, leading one
participant to wonder if the game might be used to test the
competence of his organization’s IT department.

Scenarios involve a simplified network simulation including
assets, users trying to access the assets, and attackers trying
to compromise them. Players can add computers, routers,
and firewalls to the network. They can change ACLs, apply
patches, and even adjust aspects of physical security. How-
ever, as Thompson explained, students get the experience
of configuring a VPN without first going through a CISCO
training course. As a demonstration, Thompson walked
through one game scenario. The player helps a user access
the Web, installs a network filter, and protects trade secrets
by isolating another computer from the network.

While there have been no formal assessments, game sce-
narios are used in Intro to Computer Security at the Naval
Postgraduate School, and the game is being piloted at other
institutions. Informal feedback suggests that students enjoy
the hands-on aspect of exploring networking concepts
through the game. One of the lessons learned is that different
students approach a scenario in vastly different ways, and
the game must provide a lot of feedback to students as they
explore a scenario.

Investigating Energy and Security Trade-offs in the
Classroom with the Atom LEAP Testbed
Peter A.H. Peterson, Digvijay Singh, William J. Kaiser, and Peter L. Reiher,

University of California, Los Angeles

Peter Peterson presented Atom LEAP, an energy-measure-
ment platform, and described his experience using it in an
undergraduate research seminar. LEAP is open source,
inexpensive, and easy to build. The “energy calipers” provide
overall and component-level energy usage (e.g., CPU, RAM,
and USB) at very fine granularity. User scripts make it easy
to start and stop monitoring.

 104 ;login: VOL. 36, NO. 6

USENIX Workshop on Free and Open Commu-
nications on the Internet (FOCI ’11)

August 8, 2011
San Francisco, CA

[Note: For the remainder of the workshop program, including
full papers and presentation slides, see http://www.usenix.org/
events/foci11/tech/.]

Measuring Censorship
Summarized by Nick Jones (najones@cs.princeton.edu)

Three Researchers, Five Conjectures: An Empirical
Analysis of TOM-Skype Censorship and Surveillance
Jeffrey Knockel, Jedidiah R. Crandall, and Jared Saia, University of New

Mexico

Knockel began by introducing TOM-Skype, a modified ver-
sion of Skype produced by TOM Group in China. When Skype
users in China attempt to download Skype, they are auto-
matically redirected to TOM-Skype. Since TOM-Skype is
interoperable with regular Skype, it uses the Skype network
for all of its communication. Due to this, TOM-Skype per-
forms censorship locally on users’ computers. TOM-Skype
performs this monitoring using keyfiles, which are lists of
encrypted words to monitor for.

In this work, the authors reverse engineered the cryp-
tographic algorithm used to encrypt the keyfiles. They
approached this problem by using known blocked words
in conversation, and monitoring the program’s behavior.
Notably, the latest version of TOM-Skype (5.1) contains two
separate keyfiles. One keyfile triggers a surveillance message
which is sent to TOM Group, while the second keyfile trig-
gers both surveillance and censorship of the user’s conversa-
tion. From this work, the authors propose five conjectures
which they believe are a useful model for studying Internet
censorship: (1) censorship is effective, despite attempts to
evade it; (2) censored memes spread differently from uncen-
sored memes; (3) keyword-based censorship is more effective
when the censored keywords are unknown and online activ-
ity is, or is believed to be, under constant surveillance; (4) the
types of keywords censored in peer-to-peer communications
are fundamentally different from the types of keywords cen-
sored in client-server communications; (5) neologisms are an
effective technique for evading keyword-based censorship,
but censors frequently learn of their existence.

One audience member asked if the authors retained copies of
the sets of blocked keywords that TOM-Skype has used over
time. Knockel said that the keywords were retained, and that
they may analyze the changes in future work.

running in a virtual machine and to attack the other teams’
instances. A team’s score incorporated offensive success,
based on how many other teams’ flags were captured, and
defensive success, based on how few of their own flags were
compromised.

After the exercise, participants filled out a voluntary survey.
While acknowledging that the results were not scientific,
Werther noted that respondents reported increased inter-
est as well as skill in security work. The organizers plan
to conduct more CTF exercises in the future. They hope to
expand to more colleges and to improve the robustness and
extent of their game monitoring. In the meantime, they are
investigating the best way to encourage learning and assess
knowledge-gain.

Discussion Panel
Michael Thompson, Peter A.H. Peterson, and Joseph Werther

The panelists were asked what each of their educational
efforts replaced. Werther noted a dearth of capture-the-flag
exercises, especially with education, not competition, as the
principal goal. Thompson explained that CyberCIEGE is
used in introductory labs but did not know what exercises
they replaced. Peterson explained that, prior to the seminar
using Atom LEAP, no such course was offered.

When asked how they measured their learning objectives,
all three panelists acknowledged that they were reporting
on pilot-stage experiences. They were thinking about how to
improve assessments the next time around. One participant
suggested that they look to the scientific literature on educa-
tion and learning.

The panelists were asked whether their experience showed
that anyone can learn cybersecurity. Thompson answered
that what one needed more than anything was interest.
Without an interest in the subject, learning about cybersecu-
rity would be very difficult. For those with interest, Thomp-
son’s experience suggested that one could improve success
rates by accommodating different learning styles.

In the end, the discussion turned to Star Trek and the
Kobayashi Maru. Should cyber-security education include
an unwinnable scenario? Would facing such a situation be a
valuable lesson to students of security? Perhaps.

 ;login: DECEMBER 2011 Conference Reports 105

agents reported no filtering, with China’s agent node report-
ing 176 censored domains.

In addition to domain blocking, CensMon can detect partial
content censorship, such as news articles which have been
changed by a censor. In their initial study, while 3% of the
URLs tested saw some content changes, no partial content
filtering was detected. Sfakianakis argued that one major
advantage of the CensMon system is that monitoring mul-
tiple streams of information in multiple locations provides an
ability, under certain circumstances, to detect content that
has been modified but not completely blocked.

Audience members asked whether CensMon can handle
dynamic content. Sfakianakis replied that CensMon cur-
rently only handles Web pages that have an “article-like”
format. Can CensMon handle syndicated content such as
newspaper stories? CensMon does not have any special
handling of this type of content. Is it possible to use Tor exit
nodes as CensMon agents? This is technically possible, but
not implemented in the current CensMon software.

Work-in-Progress: Automated Named Entity Extraction
for Tracking Censorship of Current Events
Antonio M. Espinoza and Jedidiah R. Crandall, University of New Mexico

Espinoza presented this study, which analyzes censor-
ship in China by performing named entity extraction on
Chinese-language sources to pick out people, places, and
other relevant terms from news texts. The authors trained
their named entity extractor on the Chinese-language ver-
sion of Wikipedia, using part of Wikipedia as a training set
and part as a test set. The authors then queried Chinese
search engines with phrases extracted from their training
data. They repeated these searches every 12 hours, looking
for changes in the returned results, as well as GET request
censorship. Several sensitive terms were discovered, such as
“nobel prize,” “norway,” and “jasmine flower.”

Espinoza said that the list of censored terms used for GET
request censorship is relatively static and slow-changing. In
the future, the authors hope to improve their named entity
extraction and to support other languages. Additionally, they
would like to add other input sources into their monitoring
study, such as the list of censored words used by TOM-Skype.

One audience member asked about the time frame during
which these experiments were run. Espinoza responded that
they were conducted during a two-month period around the
beginning of 2011. Another question addressed the possi-
bility that the queries might return different results when
executed within China. Espinoza acknowledged this and said
that they have not yet been able to test that, but would like to
do so in future work.

Fine-Grained Censorship Mapping: Information
Sources, Legality, and Ethics
Joss Wright, Oxford Internet Institute; Tulio de Souza, Oxford University

Computing Laboratory; Ian Brown, Oxford Internet Institute

Wright argued that every country engages in censorship at
some level, and that it is useful to examine censorship at a
more fine-grained level than national borders. In this work,
the authors used DNS servers across China to check for
blocked Web site addresses. They tested 278 DNS servers,
and performed a DNS query for each of the top 80 blocked
Web sites. Different servers within China provided different
results for the same blocked Web sites. Some servers listed
the site as non-existent, others returned no results, and some
redirected a user to Beijing before returning no result.

In addition to the censorship study, Wright discussed the
challenges inherent to studying censorship problems. He
talked about the legal and ethical implications of asking end
users to access blocked Web sites, specifically when doing so
may place these users at some risk. He stressed the impor-
tance of getting informed consent from participating users,
and this inspired a discussion about best practices for com-
municating risks to users.

During Q&A, one audience member asked about the differ-
ence between a user requesting access to a Web site and a
user successfully accessing the Web site. Wright responded
that this depends on which country the user resides in, and
that it is necessary to examine the laws of each country.
Another person asked about building censorship detec-
tion tools which incorporate plausible deniability. Wright
responded that the problem has numerous ethical and legal
challenges that must be addressed before we could build such
tools.

CensMon: A Web Censorship Monitor
Andreas Sfakianakis, Elias Athanasopoulos, and Sotiris Ioannidis,

Foundation for Research and Technology, Hellas

Sfakianakis began by discussing the dynamic nature of cen-
sorship and the drawbacks of existing tools for detecting and
reporting censorship. Sfakianakis then introduced CensMon,
a distributed system for detecting censorship at a global level.
CensMon is designed around a central server, which uses
a network of agents to report censorship. CensMon agents
monitor multiple systems including Twitter, Google Alerts,
and Google Trends in order to extract URLs for censor-
ship checking by the agent network. Additionally, CensMon
checks for filtering at different protocol levels, including DNS
filtering, IP blocking, and changes in accessibility to known
censored Web sites. The initial deployment of CensMon was
tested over 14 days with agents in 33 countries: 86% of the

 106 ;login: VOL. 36, NO. 6

that no code is necessary, as all the attacker needs to do is
change the MAC address for the attacking system’s interface.

Fragmentation Considered Vulnerable: Blindly
Intercepting and Discarding Fragments
Yossi Gilad and Amir Herzberg, Bar Ilan University

The researchers took a new look at an old problem. In the
1990s, there were several well-known DoS attacks that relied
on problems with IP fragmentation: Teardrop, Rose, and the
Ping of Death, all based on implementation mistakes. In this
work, the authors rely more on specification issues.

IP fragmentation is best avoided, but still occurs today. With
IPv4, any router can fragment packets, and in IPv6, only the
sending host can fragment packets. ICMP is used to deter-
mine Path MTU to avoid fragmentation, but fragmentation
can still occur with UDP and when packets are tunneled.

The key to their attack is to determine the IP ID. This is
trivial with Windows, which uses a monotonically increas-
ing IP ID. Linux uses a per-destination IP ID, which makes
determining the IP ID more difficult. In their attacks,
they make use of a sandboxed script, PuZo, on the victim’s
network, to watch for fragments that do not show up. The
missing fragments must have had a valid IP ID, and thus are
not directed to PuZo. Their attack requires O(square root of
N) probe packets.

Mike Ryan asked if this attack worked against firewalls, and
the speaker said it does. Someone else pointed out that Linux
can be patched to use randomized IP IDs, and the speaker
replied that this can cause collisions and be as bad as an
attack.

Killing the Myth of Cisco IOS Diversity: Recent Advances
in Reliable Shellcode Design
Ang Cui, Jatin Kataria, and Salvatore J. Stolfo, Columbia University

Ang Cui presented this paper, which describes a very effec-
tive exploitation of Cisco routers. Internet infrastructure
is highly reliant on Cisco routers,and cannot be defended
against attacks like this as the use of a firewall or IDS is, in
many instances, not possible.

Felix Linder (FX) has pointed out that ASLR (address space
layout randomization), as well as the many different ver-
sions of IOS, make successful exploitation of Cisco routers
difficult. The authors estimate that there are over 300,000
binary versions of IOS. Yet IOS is a functional monoculture:
in any router you will see the same behavior when you enter
the enable command. FX created a disassembling shellcode
that relies on finding a known string, then searching for
the address of this string in code, and, finally, replacing the

5th USENIX Workshop on Offensive
Technologies (WOOT ’11)

August 8, 2011
San Francisco, CA

Attacks on Networks and Networking
Equipment
Summarized by Rik Farrow (rik@usenix.org)

Media Access Control Address Spoofing Attacks against
Port Security
Andrew Buhr, Dale Lindskog, Pavol Zavarsky, and Ron Ruhl, Concordia

University College of Alberta

Andrew Buhr explained how enabling port security
increased the chances of success for an attacker when spoof-
ing MAC addresses. Port security means giving a higher
precedence in a switch-based lookup table over non-secure
MAC addresses. In their experimental setup there are three
switches, with two edge switches set up with port security
and a third switch used to connect the edge switches config-
ured without port security. Cisco advises that configuration,
for several reasons.

Andrew described two of the three attacks that appear in
their paper. In each described attack, the attacker is con-
nected to the same switch as one of the victims. The second
victim is connected to the other edge switch. When the
first victim sends an ARP request to the second victim, the
attacker can replay the same ARP reply. Because the second
victim’s reply comes via the relaying switch, the response is
considered non-secure. So the attacker’s spoofed ARP reply
results in associating the second victim’s MAC address with
the attacker’s switch port, allowing the attacker to imperson-
ate the second victim.

Andrew suggested several techniques as defense strate-
gies, with the preferred method being segregating trusted
and non-trusted nodes into their own broadcast domains.
Enabling port security on the interconnecting switch is not
recommended by Cisco, because it disables channel bonding
and dynamic port reconfiguration.

Mike Ryan (ISI) wondered if the second attack would work if
there were two attackers, each connected to a different edge
switch, with a private backchannel. Andrew expected this
attack would work, as long as the attackers could forward
frames quickly enough that there were no retransmissions of
frames. David Brumley asked if the version of IOS made any
difference to the attacks, and Andrew said that it did. David
then asked about availability of code, and Andrew replied

 ;login: DECEMBER 2011 Conference Reports 107

prints, and Ang answered that this can be done automatically
once the binary version is discovered.

SkyNET: A 3G-Enabled Mobile Attack Drone and Stealth
Botmaster
Theodore Reed, Joseph Geis, and Sven Dietrich, Stevens Institute of

Technology

Theodore Reed described, and later demonstrated, the use
of an inexpensive drone to enlist participants in a botnet.
A collection of such drones would be called a SkyNET, but
the authors built only a single drone, using an off-the-shelf
AR.Drone quadracopter platform, a TS-7550 single board
computer with 3G, GPS, and two WiFi cards. The drone is
intended to fly around an area searching for WiFi networks.
Breaking WEP and WPA encryption is offloaded to the cloud
(EC2), and an OpenVPN connection over the GSM link is
used for communication back to the command and control
(C&C) system.

Their demonstration model can fly 2.7 kilometers. Dur-
ing testing in New York City, they found over 1700 access
points near the Empire State Building and another 1100 in a
residential area. Ted commented that “just flying the drone
attracts victims,” who came up to them as they flew the drone
from city parks.

They included a couple of mechanisms to protect against the
accidental loss of the drone, and potentially the information
against the systems it had compromised. The drone includes
a list of pairs of asymmetric keys, and the keys are randomly
assigned to bots with the ID of the keys kept at the C&C sys-
tem. Ted concluded by saying that without any engineering
background, they had built a usable drone for about $600 that
could carry out attacks against WiFi-enabled systems.

David Brumley asked how noisy the drone is. When the
drone was demonstrated, its four rotors were about as noisy
as a vacuum cleaner; as Ted said, its noise detracts from its
“stealthiness.”

Crossing into the Real World: Beyond IP-based
Attacks
Summarized by Karl Koscher (supersat@cs.washington.edu)

Getting the Face Behind the Squares: Reconstructing
Pixelized Video Streams
Ludovico Cavedon, Luca Foschini, and Giovanni Vigna, University of

California, Santa Barbara

Ludovico Cavedon presented this paper, which looks at the
effectiveness of pixelization filters for video. These filters are
often used to obscure private or censored information (e.g.,

instruction that reports the receipt of the correct password
with an instruction that always reports success.

The problem with that attack is that it takes a long time.
IOS includes a watchdog timer, to guard against runaway
processes, with a two-second limit. The two linear searches
through memory used by FX’s exploit often trigger the watch-
dog timer, killing the process.

The authors’ approach relies on a single search of a more
limited amount of memory. Interrupt handlers use the eret
(exception return) instruction, and their shellcode searches
for these instructions and replaces them with hooks into
their own rootkit. As this search and replace occurs quickly
and future execution is distributed across many processes,
because it relies on interrupt handlers, the attack does not get
caught by the watchguard timer.

The first stage rootkit monitors packets punted to IOS—any
that cannot be handled by line cards. If these packets contain
a 32-bit magic number, the next four bytes are used as an
address, the following byte a flag, and the rest of the packet is
loaded into memory as executable code. Using these packets,
a more full-featured rootkit can be loaded into the router’s
memory and controlled using punted packets labeled with
the magic number. But before this can be done, the first stage
rootkit must return the locations of the eret instructions, as
these provide a fingerprint that identifies the specific version
of this binary instance of IOS. The second stage rootkit is
tailored for this binary instance.

Ang described a possible defense against their attack, the
creation of “symbiotes.” The symbiotes run checksums on
the invariant portions of IOS to detect the installation of
rootkits, and this is future research for the authors. A video
(http://www.hacktory.cs.columbia.edu/ios-rootkit/) of a suc-
cessful attack was shown, eliciting applause.

Adam Drew (Qualcomm) asked Ang to explain the principle
behind their proposed defensive software. Ang said that their
defense was designed to work on blackbox systems, like IOS,
where the internal workings are unknown. They can inter-
cept a large number of returns, perform checksumming, and
rely on having enough symbiotes to make it very difficult for
an attacker to disable or avoid them all. Amiz Herzberb (Bar
Ilan University) wondered if increasing the number of IOS
versions might help, but Ang said that their attack relies on a
database of versions, and increasing the version space makes
little difference to their attack. Someone else wondered how
successful the first stage attack needs to be to collect finger-
prints, and Ang answered that that depends on the particular
attack. They used a synthetic attack for their demo. Someone
else asked how they created the final rootkit using the finger-

 108 ;login: VOL. 36, NO. 6

of codes with one error (a substitution or transposition) was
also low (~25% manual, ~50% automatic). Recovery of perfect
key combinations (but not necessarily order) fared signifi-
cantly better, at over 80% right after entry.

Several people asked which would be the safest ATM to
use. A busy one with metal keys. Adam Drew wanted to try
recording ATMs, to see how well this works, but wondered
about the legality.

Packets in Packets: Orson Welles’ In-Band Signaling
Attacks for Modern Radios
Travis Goodspeed, University of Pennsylvania; Sergey Bratus, Ricky

Melgares, Rebecca Shapiro, and Ryan Speers, Dartmouth College

Travis Goodspeed presented a new technique that allows
an attacker to inject an arbitrary layer one packet into many
wireless networks. The attack can be performed on many
digital, unencrypted wireless networks where packet lengths
are variable and an attacker can cause a higher-layer packet
with some arbitrary data to be sent. The idea is simple: if you
embed a layer-one packet (including the preamble, sync, and
other metadata) in a higher-layer packet and the receiving
radio does not detect the outer layer-one packet (e.g., if the
sync is corrupted), that receiving radio will often detect and
decode the inner layer-one packet crafted by the attacker.

Travis pointed out ways the attacker gets more of an advan-
tage. For example, for power management reasons the outer
preamble might be shortened. However, the attacker can
generate a significantly longer preamble, increasing the odds
that a receiver will lock onto the inner packet. In systems
where the sync field is dependent on the recipient, the attack
is always successful. Finally, if one receiver has better recep-
tion than the other, it’s possible to target the receiver with
weaker reception without the other receiver noticing.

One proposed countermeasure is to encrypt all wireless
links, even if they offer no protection against local attackers.
During the Q&A period, Karl Koscher pointed out that using
sync patterns that can’t be generated by normal data would
also be an effective countermeasure. Travis responded that
perhaps having different speeds, such as one and six Mbps,
would allow you to inject into a network of a different fre-
quency. Someone else asked whether the connection remains
misaligned after a successful attack. Travis said no, that the
attack works only on a per-packet basis.

Finally, there was a short discussion of how applicable
this technique is to Ethernet. While packet corruption is
extremely rare over wired Ethernet, Travis hypothesized
that finding a source of noise (such as intentionally inject-
ing collisions on an unswitched network) would allow this
technique to work.

faces and license plate numbers) while remaining somewhat
aesthetically pleasing and keeping the broader image context
intact (as opposed to using a black box, for example). While
it is often assumed that these filters cannot be inverted, this
paper demonstrates that in many cases, close approximations
of the original images can be reconstructed.

The paper makes the following assumptions: first, the image
being pixelized must be approximately fixed (e.g., a license
plate). Second, the pixelized area of the image must be fixed
between frames. Finally, there must be some small motion
between frames of the image.

Since pixelization is a linear operation, a naive approach is to
simply build a system of equations describing the pixelization
and solve it approximately. However, this produces unsatis-
factory results (see figure 4(c) in the paper for an example),
due to quantization error. Instead, the approach presented
uses the maximum a posteriori method, which takes advan-
tage of the fact that the solution is not arbitrary but repre-
sents an actual image.

Ludovico concluded his talk with several impressive demos
of their technique, which are also shown in the paper. He also
discussed issues with real-world video, such as compression
artifacts, image rescaling, and moving subjects.

Heat of the Moment: Characterizing the Efficacy of
Thermal Camera-Based Attacks
Keaton Mowery, Sarah Meiklejohn, and Stefan Savage, University of

California, San Diego

Sarah Meiklejohn presented this paper, which looks at the
effectiveness of using thermal imaging technology to recover
codes entered into code entry devices (e.g., ATM PIN pads).
While previous work demonstrated that this type of attack
was feasible against a particular type of safe, this research
dives deeper and evaluates the effectiveness along four
different axes: different types of material, different types
of people and their code entry techniques, different scales
of attack (e.g., automatically recovering hundreds of PINs
versus manually identifying one), and different degrees of
success (e.g., recovering the code with multiple attempts).

The attack works poorly against metal, which reflects and
dissipates heat rather well. Therefore all of the results
presented were for plastic and rubber keypads only. For their
experiments, they recruited 21 people to enter a total of 27
codes (seven of which had repeated digits). They discovered
a wide variance in the amount of heat transferred by differ-
ent people. In all of their experiments, automated recovery
outperformed manual analysis. Recovery of perfect codes
was rather low (~15% for manual analysis, ~35% for auto-
mated analysis), even immediately after code entry. Recovery

 ;login: DECEMBER 2011 Conference Reports 109

Kanich described the tasks used to determine the vulner-
ability of the Turkers. One asked responders questions about
their antivirus, and for an additional payment to run a Java-
Script program that collected information about their system
and reported it back. Over 80% of the people, spread across
geographical regions, were running a vulnerable configura-
tion. Vulnerability was approximated by the existence of
published CVEs—an actual available exploit was not neces-
sary. Running another task showed that while over 90% of
the respondents had antivirus, only a small fraction of them
had up-to-date signatures.

Kanich then said that Amazon Mechanical Turk allows tasks
to be offered on the basis of geographical regions, which is a
bonus, because compromised systems can be sold for signifi-
cantly varying amounts on pay-per-install programs on the
basis of geographical location of the clients. Any such attack
however, is only successful if there is significant uptake
among users. Kanich noted that they had around 400–500
people attempt their task, most in India and in the US, within
five days.

The questions revolved around whether the pay-per-install
community was honest about paying the rates they adver-
tised, and expressing general incredulity over the high per-
centage of vulnerable systems and the willingness of users
to run untrusted code on their systems. Kanich observed
that most people may believe that they are protected against
any code by their antivirus. In reference to the payments, he
replied that the payment rates corroborated other pay-per-
install research and were within an order of magnitude of
what others had observed.

All Your Droid Are Belong to Us: A Survey of Current
Android Attacks
Timothy Vidas, Daniel Votipka, and Nicolas Christin, Carnegie Mellon

University

Daniel Votipka presented this work, which surveys the
landscape of attacks on Android smartphones and some of
the possible mitigations. The smartphone market has seen
huge growth, and Android, being both open source and the
fastest-growing platform, with approximately 500,000 daily
activations, is an important player in the ecosystem.

Android runs every application in a limited privilege sand-
box, while any requests for elevated privileges have to be
approved by the user. Unfortunately, the permission model
requests can often be confusing to users, who are usually in a
hurry to just accept and get the application running. Further-
more, even in cases where the user does try to limit permis-
sions, it is often hard because of the generality of the request.
Requests often also grant the application more power than
is implied; for instance, allowing an application to receive

Targeting the Cloud and Commodity Computing
Devices
Summarized by Mihir Nanavati (mihirn@cs.ubc.ca)

Energy Attack on Server Systems
Zhenyu Wu, Mengjun Xie, and Haining Wang, The College of William

and Mary

Zhenyu Wu described an attack that forced servers to
perform more expensive computations and consume more
power. Having made the observation that power consumption
was a large percentage of the cost of ownership, he showed
that while recent advances in energy-efficient computing
had led to significant decreases in the idle power consump-
tion of servers, peak load power consumption has remained
more or less unchanged from a few years ago. An attacker
could significantly increase operating costs by getting the
servers to constantly execute at full load.

This attack was simulated against a local MediaWiki server.
Profiling the server showed that less frequent requests were
absent from the object cache and took approximately six
times as much power to satisfy, compared to requests that
could be satisfied from the object cache. By generating such
requests, they were able to force a 6–40% increase in power
consumption. To achieve stealthiness, the requests were
capped at a level that would make them appear to originate
from a human user. The number of malicious requesters were
also limited, so as not to degrade latency significantly.

Adam Drew compared the work to John Cleese’s “How to
Irritate People,” where the attacker is just doing enough dam-
age to be an annoyance, but not enough to severely hamper
operation. He then asked whether the increased load could
lead to greater failure rates for hardware. David Brumley
wondered about the cost compounding, where an increase in
computation increased the heat and cost of cooling required
as well. Wu said that they had started exploring this direc-
tion a bit, but it was still in its early stages.

Putting Out a HIT: Crowdsourcing Malware Installs
Chris Kanich, Stephen Checkoway, and Keaton Mowery, University of

California, San Diego

Chris Kanich presented this analysis of the economics of
attracting and exploiting the systems of Amazon Mechanical
Turk workers. Unlike normal use of Mechanical Turk to solve
problems that are hard for computers to solve, this focuses on
exploiting the systems of the Turkers and monetizing them
in pay-per-install markets. For any monetary benefit, enough
Turker systems would need to be vulnerable to outweigh the
costs of actually running these tasks.

 110 ;login: VOL. 36, NO. 6

Bratus went on to explain the structure of several undocu-
mented or scantily documented header frames, and how
exception handling occurred for these binaries. The C++
exception handler has a “personality routine” that decides
whether there is a handler at a particular level of a stack
frame or whether the stack needs to be further unwound to
catch the exception. Modifying the table the routine uses
allows the backdoor to remain hidden until an exception is
thrown and to return control to any point in the program or
its loaded libraries after that.

Bratus concluded by discussing how this class of attack is
currently difficult to detect but extremely powerful, because
of the inherent power of DWARF bytecode; however, work
is underway to mitigate it. He listed several hacker research
projects, such as ElfSh/ERESI, LOCREATE, and several
grsecurity/PaX-related papers in Phrack, as inspirations.

Rik Farrow asked about the root prompt displayed during the
demo, and Sergey replied that they had the DWARF exploit
execute a SUID shell, as the root prompt appears more inter-
esting. He then said that there are real exploits out there, not
just for C and C++ but also for some Java implementations.

Advances in Low-Level Exploitation
Summarized by Karl Koscher (supersat@cs.washington.edu)

DieHarder: Securing the Heap
Gene Novark and Emery D. Berger, University of Massachusetts Amherst

In this invited talk, Emery D. Berger revisited the DieHarder
memory allocator, originally presented at CCS 2010. He
began by analyzing the various ways modern heap allocators
can be exploited and then described what’s new in DieHarder,
namely, that objects are immediately destroyed when freed,
and that each object is allocated at a highly random location.

The performance of DieHarder was tested and compared
to other allocators under two scenarios: the SPECint2006
benchmark suite, and Firefox loading the Alexa Top 20 Web
sites from a local network cache. For SPECint2006, Die-
Harder was approximately 20% slower than other allocators
due to it breaking TLB locality. However, for the Firefox tests,
the difference between DieHarder and other allocators was
not statistically significant, leading to the conclusion that
DieHarder is a practical solution for Internet-facing applica-
tions such as browsers.

Rik Farrow asked about how DieHarder works, as the
memory allocators he was familiar with used linked lists.
Emery replied that DieHarder uses hashing and bitmaps

SMSes allows it to receive them before the standard messag-
ing application and modify the contents accordingly.

Votipka then discussed how allowing carriers to provide
updates created artificially large exploit windows, with some
phones being patched a full year after the security update
had originally been released by Google. Other attack vectors
include the developer and debugging interface, which could
be used to exploit any phone one has physical access to.

At this juncture, Votipka switched to discussing potential
countermeasures, which range from shortening the exploit
window, to better privilege handling by having hierarchi-
cal permissions or explicit rule checks to flag dangerous
combinations of seemingly innocuous permissions. Another
proposed idea was to have multiple tiers of applications in the
Marketplace, with applications desiring higher permissions
required to undergo verification.

Emery Burger asked if Google had been contacted and, if
so, what their response was. Don said that a meeting was
forthcoming. Adam Drew asked about the usability of some
of these countermeasures. Dan said that while there had
been several studies, it was not something they had explicitly
looked into.

Exploiting the Hard-Working DWARF: Trojan and
Exploit Techniques with No Native Executable Code
James Oakley and Sergey Bratus, Dartmouth College

n Awarded Best Student Paper!

Sergey Bratus accepted the award, saying that James Oakley
had done all the heavy lifting in this work on injecting trojan
logic into binary executables using the DWARF bytecode
interpreter. While DWARF is traditionally associated with
debugging information, it is also used for exception handling,
and every process created from a gcc-compiled binary with
exception handling enabled will load the DWARF bytecode
interpreter at runtime. DWARF bytecode is Turing complete
and can be used as a backdoor into any such binary. This is
particularly dangerous, because antivirus typically overlooks
this type of trojan.

Bratus then described how DWARF bytecode, once the
attacker has managed to sneak it in, can read arbitrary
process memory, can defeat ASLR, can perform arbitrary
computations, and is built to influence the control flow of the
program. Using this, he demonstrated how a simple pro-
gram could be exploited such that all code and data sections
remained identical but resulted in a root shell when it threw
an exception.

 ;login: DECEMBER 2011 Conference Reports 111

Exposing iClass Key Diversification
Flavio D. Garcia, Gerhard de Koning Gans, and Roel Verdult, Radboud

University Nijmegen

n Awarded Best Paper!

Gerhard de Koning Gans presented a paper that looks at the
key diversification scheme built in to the iClass contact-
less smart card system. The key diversification scheme was
known to involve a single DES operation followed by a key
fortification function. Through some amount of reverse
engineering, they determined that the key fortification func-
tion is highly invertible. For a given output of the fortification
function, there are an average of four possible inputs that can
be easily determined. Thus, the diversification scheme offers
little protection over standard DES.

The reverse engineering involved several steps, including
extracting the secret Omnikey reader secure mode key and
emulating an ISO 15693 card with the ISO 14443 protocol.
The main technique used was to emulate cards with slightly
different serial numbers and observe changes in the re-
keying command sent. While they did not have a DES cracker
to verify their results, they were able to use other recently
published techniques to extract the master key from a legiti-
mate reader and found that their attack did indeed find the
master key.

2nd USENIX Workshop on Health Security and
Privacy (HealthSec ’11)

August 9, 2011
San Francisco, CA

Keynote Address
Joy Pritts, Chief Privacy Officer, Office of the National Coordinator for

Health Information Technology

No report is available for this session.

Short Papers
Summarized by Ben Ransford (ransford@cs.umass.edu)

Implantable Medical Device Communication Security:
Pattern vs. Signal Encryption
Fei Hu and Qi Hao, University of Alabama; Marcin Lukowiak, Rochester

Institute of Technology

Fei Hu discussed his group’s “cyber-physical approach” to the
security of implantable medical devices (IMDs). His group
has built body area networks (BANs) based on sensor motes

instead of the more familiar heap allocation techniques.
Mike Ryan asked about the TLB problem and Emery said
that this was specifically an Intel issue. Other architectures
allow software-based TLB control, and if Intel didn’t fill
in the entire TLB, this more flexible approach would help
with DieHarder’s performance. Mike then asked about how
DieHarder leaves traps (“bombs” in the slide) over the entire
address space in OpenBSD. Emery said that Linux does this
as well, by using lots of unmapped pages that act as bombs.

Vulnerability Extrapolation: Assisted Discovery of
Vulnerabilities Using Machine Learning
Fabian Yamaguchi and Felix “FX” Lindner, Recurity Labs GmbH; Konrad

Rieck, Technische Universität Berlin

Fabian Yamaguchi presented this solution to a compelling
problem: given a known vulnerable function, find all other
functions with similar vulnerabilities. Many code bases
repeat the same vulnerability mistakes, making this tech-
nique useful for finding additional vulnerabilities. The basic
intuition is that functions are composed of different usage
patterns, and by comparing the dominant usage patterns, you
can find functions with similar vulnerabilities.

In particular, each function is represented by a sparse vec-
tor whose dimensions map to a particular type or function
name. The value of each of these dimensions is simply a 1
or a 0, depending on whether that type or name is used in
the function, weighted by the identifier’s TFIDF, a standard
weighting term used in information retrieval. Then, principal
component analysis is used to find the dominant usage pat-
terns. Functions can then be represented as a combination of
these dominant usage patterns, and functions with combina-
tions similar to a vulnerable function are likely candidates
for vulnerability exploration.

As a case study, the researchers evaluated their technique on
FFmpeg. They provided their system with a previously iden-
tified vulnerable decoder function and found that the most
similar function (at 96% similarity) was also vulnerable.
Although this second function had been patched as well, they
found that the fifth-most similar function (at 72% similarity)
contained the same vulnerability and was not yet patched.

Someone asked if they had only tried this one example, and
Fabian said they had tried another evaluation on this data
to prove that it works. Nicholas Carlini asked about the level
of dimensionality, and Fabian said that they used 200 for
dimensionality, which seems to work. In his thesis work, he
found that using more produces more similarity.

 112 ;login: VOL. 36, NO. 6

authors told the patients how their mHealth devices worked;
Prasad said they allowed patients to form their own opinions
but were allowed to ask questions. Jim O’Leary asked about
the effect of patient age on perceived privacy risks, consider-
ing that younger people tend to be better connected on online
social networks; Prasad acknowledged that although there
were clear differences between age groups, everyone in the
study seemed to know about social networks.

Persistent Security, Privacy, and Governance for
Healthcare Information
W. Knox Carey, Jarl Nilsson, and Steve Mitchell, Intertrust Technologies

Knox Carey pointed out that healthcare data is not flowing as
easily as it should. Despite technological advances and huge
investments, healthcare systems lack interoperability stan-
dards. Different organizations exhibit mismatching policies
that hinder data sharing; enforcing policies across organiza-
tions is a nightmare. The current situation, Carey said, incen-
tivizes wrong behavior such as data hoarding.

The authors propose a DRM-like approach to healthcare
data, with data being encrypted at the source and persis-
tent policies attached (and governmentally enforced). They
propose associating healthcare data with sets of well-defined
computations that result in different views of patient data
for different interested parties, such as patients, doctors, and
insurance companies.

An audience member likened the authors’ proposal to a
fine-grained informed-consent system, then pointed out
that change in circumstances requires patient consent to
be revisited; would the proposed system offer backward
compatibility? Carey said it would have to. Another audi-
ence member asked how to do key management in the DRM
context. Carey agreed that that was a problem and cited the
additional problem of making a uniform, trustworthy DRM
enforcement environment. He suggested that patients should
hold their own DRM keys somehow. Carey concluded by sum-
marizing some computations that would produce different
views of healthcare data for different observers.

Who Does the Autopsy? Criminal Implications of
Implantable Medical Devices
Marc Goodman, Future Crimes Institute

Marc Goodman, who has worked with the LAPD, Inter-
pol, and FBI, offered a law-enforcement view of medical-
device-related threats on the horizon. He gave examples of
technology being integrated in human bodies and suggested
that people might soon receive elective implantable medi-
cal devices (IMDs). This integration raises questions for
forensics, such as: can medical examiners conduct forensic

and RFID readers. The BANs are structured as peer-to-peer
networks whose trust relationships exhibit a ring structure.
Hu described an assortment of attacks on IMDs and pro-
posed preliminary defenses. He concluded with a description
of “intentional signal entanglement,” a mechanism by which
an external device could destructively interfere with an
IMD’s traffic to hide private data from eavesdroppers.

Raj Rajagopalan asked to what degree intentional signal
entanglement would depend on the signaling protocol the
IMD uses. Hu responded that it was a physical-layer tech-
nique that would work independent of higher-level protocols.

Exposing Privacy Concerns in mHealth Data Sharing
Aarathi Prasad, Jacob Sorber, Timothy Stablein, Denise Anthony, and

David Kotz, Dartmouth College—Institute for Security, Technology, and

Society

Aarathi Prasad presented the preliminary results of a study
on patients’ privacy concerns with respect to data collected
using mobile health (mHealth) devices. They conducted
focus groups with patients of all ages in order to learn what
people saw as the benefits and drawbacks of electronic health
records (EHRs) and mHealth. In the context of a “typical”
mHealth architecture, in which patients upload data to their
EHRs for sharing with caregivers and family, the authors
found that patients wanted the ability to turn mHealth
devices on and off and to control the release of the collected
data. They found that people perceived a variety of privacy
risks, with diet and exercise information considered least
sensitive and social interactions the most sensitive. Some
patients did not understand why data such as heart rate
would be considered sensitive. Patients felt more comfortable
sharing data with caregivers than with their friends, fami-
lies, or insurance companies.

Prasad concluded with several suggestions for mHealth
architects. First, privacy controls should have access logs,
and changes to privacy settings should be logged. Second,
mHealth data should be annotated to aid patient understand-
ing. Third, mHealth devices should have sensible, conserva-
tive default privacy settings, because users are unlikely to
change them. Fourth, mHealth data can be presented and
privacy-controlled in a hierarchical manner that matches
patients’ mental models.

An audience member asked whether the authors studied
the effect of monetary incentives on patients’ willingness
to divulge data; Prasad said they had not. Raj Rajagopalan
noted that privacy decisions can be context-sensitive; Prasad
agreed and noted for an example that patients perceive the
privacy risks of continuous versus periodic monitoring
differently. Another audience member asked whether the

 ;login: DECEMBER 2011 Conference Reports 113

the PCAST report addresses legacy data at all, but that it is
definitely an important problem. Another audience member
asked about defining security metrics and how one can claim
success in solving the problem. Green said that he does not
have the answer, but that an important first step is separat-
ing apparent security from actual security.

Take Two Software Updates and See Me in the Morning:
The Case for Software Security Evaluations of Medical
Devices
Steve Hanna, University of California Berkeley; Rolf Rolles, Unaffiliated;

Andrés Molina-Markham, University of Massachusetts Amherst; Pongsin

Poosankam, University of California Berkeley and Carnegie Mellon

University; Kevin Fu, University of Massachusetts Amherst; Dawn Song,

University of California Berkeley

Steve Hanna presented this work on software security for
software-based medical devices. The researchers chose to
examine the security of automated external defibrillators
(AEDs) because they are widely deployed (an estimated 1.9
million worldwide in 2009) and make heavy use of software.
The researchers reverse-engineered an AED’s firmware, as
well as the associated update and reporting programs, uncov-
ering a variety of vulnerabilities and successfully deploying a
benign worm capable of infecting the tested AED.

The first vulnerability that the researchers identified is a
weak firmware verification system that allowed them to
create malicious firmware for the device. The second vulner-
ability is a buffer overflow in the update program that leads
to arbitrary code execution on the PC running the software.
They also found that the AED’s PC software used hard-
coded plaintext passwords for data upload and stored other
user credentials unprotected on the Windows host. Hanna
outlined a scenario for a malicious worm using these vulner-
abilities. If an attacker is able to compromise a single AED, he
could use the buffer overflow in the update program to gain
arbitrary code execution on the host during the next update.
The compromised host could then infect other AEDs during
the update process.

Finally, Hanna outlined a series of recommendations to
improve the state of medical device software security. He
suggested that machines used for updates be physically
isolated from the network or that updates be run only within
fresh virtual machines. He also suggested that device own-
ers carefully monitor physical access to the devices. Hanna
closed by saying that the researchers had notified both the
FDA and the OEM of the vulnerabilities and advocated con-
tinued use of AEDs based on their life-saving potential and
the low risk of compromise.

analysis of an IMD? The answer, given the current state of
medical exams, is no, meaning that a forensic analysis might
fail to discover an IMD’s role in an event. He further noted
the increasing use of consumer-grade computing devices in
health care. He invited the audience to consider what kinds
of recording and recovery mechanisms IMDs should use to
alleviate the problems he mentioned.

Raj Rajagopalan noted the dearth of standards for forensic
analysis of mainstream computers and asked what hope
there was that the niche of IMDs would be standardized.
Goodman pointed out that computer-forensic standards were
beginning to appear in Europe and suggested that now was
a good time to innovate. Another audience member asked
whether there were standards related to default passwords
on medical equipment. Goodman agreed that there ought to
be standards now in order to set a precedent, since “past is
prologue.”

Long Papers
Summarized by Shane S. Clark (ssclark@cs.umass.edu)

A Research Roadmap for Healthcare IT Security
Inspired by the PCAST Health Information Technology
Report
Matthew D. Green and Aviel D. Rubin, Johns Hopkins University

Matt Green presented this work on the recent report by the
President’s Council of Advisors on Science and Technology
(PCAST) titled “Realizing the Full Potential of Health IT,”
which outlines a vision for the future of electronic medical
records (EMRs). Green noted that deployment of EMRs in
the US is increasing but that the systems are generally not
interoperable and that both sharing and security are at an
early stage. He also noted that there is significant existing
legislation such as the HIPAA, CCR, and HITECH acts, but
that much of the legislation suffers from excessive complex-
ity or underspecification.

Green next listed several open research areas that he feels
must be addressed before a vision like that articulated in the
PCAST report can be realized. The list included managing
user identity, audits and logging, patient interaction with
EMRs, cryptographic access controls, de-identification, and
security metrics. Green contended that all of these areas
require significant new work and that researchers should
seek new results in each area before those outside the aca-
demic community implement poor technical solutions.

During the Q&A, an audience member asked about the prob-
lem of legacy data. Green answered that he does not believe

 114 ;login: VOL. 36, NO. 6

and thinks having dialogues between different sectors (e.g.,
between manufacturers and the FBI) will help manufactur-
ers think about future attack surfaces.

David Kotz (Dartmouth College) asked how difficult it will
be to implement forensic techniques in low-power sensors.
Kevin Fu said the sensors have tight-resource constraints
and that they don’t have enough memory for additional code,
but he is hopeful that in the future sensors will have more
resources to work with. Mark Day pointed out that to bring
ideas into reality we must bring economics into the picture.
Device manufacturers already have many issues to deal with,
but if we can put the security risks and benefits in terms of
economics, then manufacturers will start taking security
issues seriously. To a follow-up question about whether it
might be too much to ask of tiny sensors, Marc Goodman
said that everything does not have to be done on the sensor;
a few things can be offloaded. But he thinks that because of
Moore’s law, sensors will have enough resources for security/
forensics requirements in the near future.

An audience member raised a concern about the four- to
five-year development cycle, and asked if there was any way
to add security easily and quickly. Mark Day said there are
many reasons why it takes so long: proprietary platforms,
need to support legacy systems, long approval process, to
name a few. The same person commented that we have
done it for automobiles—we have added on-board diagnostic
systems and, going forward, we support newer auto models.
Mark Day thinks that it is not an option for medical devices.
Marc Goodman said that the idea of an industry alliance
coming together and forming something like an on-board
diagnostic tool is great, but such a tool will also be quickly
available to an attacker, increasing the attack surface.

An audience member commented that adding IT to hospitals
is hard. Nurses need 50% more time to add data to devices,
and it takes away from their time doing actual health care.
Kevin Fu said that auditing or data logging can be automated
to some extent, and he thinks that an effective and safe
system does not mean that the system is going to be unusable.
Ben Adida asked, if less usable might be better for patient
care, does it mean that less secure might be better for patient
care as well? Nate Paul pointed out that for any solution, you
have to balance different factors—security, privacy, usability,
and cost. Finding the right balance among these factors is the
key. Mark Day thinks that people are trained for patient care,
not for security, and so they do not take security seriously and
they try to circumvent it whenever a system is secure but is a
little hard to use.

Carl Gunter (UIUC) asked the panel for their take on regula-
tions. For example, flights are required to have a black box

Panel

Do Medical Devices Have Significant Forensic Value?
Moderator: Ben Adida

Panelists: Kevin Fu, University of Massachusetts Amherst; Marc

Goodman, FutureCrimes Institute; Nate Paul, University of Tennessee/

Oak Ridge National Laboratory; Mark Day, iRhythm Technologies, Inc.

Summarized by Shrirang Mare (shrirang@cs.dartmouth.edu)

Ben Adida started by asking the panelists about their posi-
tion on the topic. Kevin Fu said that software-controlled
medical devices ought to be trustworthy, more particularly
for forensics; otherwise, how can one tell whether a failure is
accidental or malicious? Mark Day (the industry representa-
tive in the panel) made two points: first, that the industry is
overwhelmed with regulations, budgets, and various other
issues, and among all these issues, it is hard to have state-of-
the-art security in medical devices; second, that the raw data
from medical devices is very sensitive, and people don’t real-
ize that. From raw data from medical devices one can infer
many things about the user. Marc Goodman said that today’s
medical devices are used for health alignments, but increas-
ingly they will be used for enhancements and conveniences.
As the number of medical devices increases, he thinks it
will be even more important that these devices should have
secure logs that will help forensics identify the root cause
of a failure. Nate Paul shared his concerns and experiences
with medical devices that control therapies (e.g., insulin
pumps). He also thinks that it is important to add security to
these devices, and ways to do forensics analysis later on, if
required.

Ben Adida asked Mark Day to elaborate on what kinds of
inferences one can draw from raw data. Mark Day said that
from 14 days of heart rhythm data (gathered using a single
channel ECG at 200 Hz sampling rate), they could identify
different user activities (e.g., brushing teeth, sleeping),
respiratory rate, quality of sleep, whether the user was right-
handed or left-handed, and much more. An audience member
asked what security measures manufacturers have in their
devices. Mark Day said that people in industry try to imple-
ment what security they can (e.g., encryption, checksums),
but they do not have good imaginations for future attack
surfaces. The development cycle for medical devices is four
to five years, and so by the time their devices are out, things
have changed in the real world (i.e., new attacks emerge).
He said that remotely programming a device is possible and
would help a lot, but it has its own risks. He stressed the
point that the people in industry are under enormous pres-
sure—from regulatory bodies, budgets, market—and they
cannot change things easily in their devices. Marc Goodman
commented that he understands the pressure in the industry

 ;login: DECEMBER 2011 Conference Reports 115

identification, and how to convince people that their digital
fingerprint is secure and won’t be used for other purposes.

An audience member asked about issues regarding legacy
systems—what happens when biometric readers change.
Hembroff answered that he knows of seven such fingerprint
readers; some of them have changed since their origin, but
not all of them. Another audience member asked whether
it was necessary for the patient to be there every time, to
which Hembroff answered that the patient needs to be there
the first time her fingerprint is collected. Another question
was how to deal with a patient who lost his finger. Hembroff
answered that the patient would have to re-enroll in the sys-
tem, and hence it is better to use multifactor biometrics.

Context-Aware Anomaly Detection for Electronic
Medical Record Systems
Xiaowei Li, Yuan Xue, You Chen, and Bradley Malin, Vanderbilt

University

Xiaowei Li presented an intrusion detection system for
electronic medical records (EMR) using existing knowledge
and traces from the clinical environment. Context informa-
tion—organizational information, user role, etc.—is extracted
from traces and applied to the model at runtime. In one clini-
cal workflow, for example, you have a physician who needs to
check a patient’s lab test results before prescribing medica-
tions.

The workflow model he presented works in three tiers. In
the first tier, a profile of the user behavior is constructed for
each user or role. Next, the session is decomposed into a set
of record-oriented clinical workflows. The third tier indi-
cates the treatment guideline for the patient, which involves
multiple users and roles.

An audience member asked how an anomaly is usually
detected and what features are used for this detection. Li
replied that normally action sets, action sequences, or other
modeling techniques are used. Another member asked what
would happen if the decisions in the workflow do not happen
in the correct order, as in the example Li presented. Li replied
that such challenges will be handled in the future with some
preprocessing of the data.

Role Prediction Using Electronic Medical Record System
Audits
Wen Zhang, Vanderbilt University; Carl A. Gunter, University of Illinois at

Urbana-Champaign; David Liebovitz, Northwestern University; Jian Tian,

Vanderbilt University; Bradley Malin, Vanderbilt University

Wen Zhang talked about role prediction, which uses audit
logs to predict automatically whether a user is associated
with a role. The group’s work attempts to find a synergy

as a recording device. In medical space we have the FDA
deciding what the scope of regulations should be, but the
regulation spectrum makes it really unclear where things
stand. Marc Goodman pointed out the trend in Europe, where
authorities are looking into black-box technologies in auto-
mobiles, and he thinks there is no reason not to have them in
sensors in future.

Concluding the discussion, all the panelists agreed that
people from different sectors need to talk to each other and
get a better understanding of perspectives and problems of
other groups. Nate Paul mentioned that they had some suc-
cess in their talks with the FDA. He thinks physicians share
the security concerns of medical devices and are interested
in helping security researchers. Mark Day emphasized the
need to understand real-life problems and the importance
(and difficulties) of regulations.

Short Papers
Summarized by Aarathi Prasad (aarathi.prasad@dartmouth.edu)

Providing an Additional Factor for Patient
Identification Based on Digital Fingerprint
Guy C. Hembroff and Xinli Wang, Michigan Technological University;

Sead Muftic, KTH—Royal Institute of Technology

Guy Hembroff conducted a study which involved 13 hospi-
tals, including critical care households at a rural setting and
trauma care facilities associated with a federation. All these
hospitals follow the HL7 versions for Health Information
Exchange (HIE). They have seen some success with PKI.
The hospital security architecture involves patients, medi-
cal staff, physicians, roaming physicians, databases, and ID
management servers and certificate authorities. Sometimes
test results end up with incorrect patient information. Medi-
cal staff get additional rights such as search capabilities,
which they should not get. Patient-matching algorithms
occasionally return duplicate results.

Given the existence of sophisticated fingerprint identifica-
tion algorithms and improved biometric recognition tech-
nology, Hembroff suggests that patient identification can be
based on their fingerprints, which can be indexed as a master
patient identifier. This identifier becomes the biometric part
of the HL7 stream, along with the patient’s photo ID. A record
locator service can then identify the patient based on their
fingerprint and retrieve their health information, based on
the security policy associated with the information. If more
than one record is retrieved, the photo ID will be used to iden-
tify the correct record. Hembroff is concerned about cultural
issues regarding the acceptance of fingerprints as a source of

 116 ;login: VOL. 36, NO. 6

he wants to consider alternative adversary models and audit
mechanisms (which incorporate incentives), test whether
experts can be identified from the logs using machine-learn-
ing techniques, and conduct experimental evaluation of the
approach.

An audience member asked how it is possible to figure out
who the celebrities are, to which Datta answered that their
records are typically marked as celebrity records and audited
separately. Another audience member asked whether logs are
perfect and what would happen if all actions are not captured
in the logs. Datta replied that the auditing is only as good
as the information recorded in the log; he gave an example
of how someone might look up information on a record
and make a phone call, and not alter the data; this action
would not be captured in the logs. Cory Cornelius asked
whether attackers would be able to run this algorithm. Datta
answered that the guarantees of the algorithm hold even
when the attacker runs the algorithm.

Panel

Can We Do Meaningful De-identification of Medical
Data?
Panelists: Arvind Narayanan, Stanford University; Lee Tien, Electronic

Frontier Foundation; Kelly Edwards, University of Washington; Sean

Nolan, Microsoft

Summarized by Aarathi Prasad (aarathi.prasad@dartmouth.edu)

Sean Nolan presented an organizational perspective on the
topic. He said that it is fiction that data is anonymized and
cannot be re-identified. He stated, however, that there is an
increased willingness to disclose identified information to
allow research to happen. The question, he pointed out, is
how we can maximize people’s understanding of doing it
and how to maximize the value of doing it. Kelly Edwards
presented an ethics perspective. She agreed that her goal
was also to protect people while promoting clinical care. She
said that we are caught up in the negative sense of privacy.
The positive sense is that people have the right to choose and
can opt in. She said that people are willing to participate at
a high level, if they perceive benefits in doing so. A trust-
worthy system, in an ethical sense, is based on relationships
and accountability. The question, she pointed out, is how to
launch a public campaign to educate people about what is
happening to their data.

Arvind Narayanan agreed that anonymization is pure fic-
tion. He pointed out that understanding the data flows and
who gets access to the data is very complex, so narrowing
the process to a set of identifiers is not the right approach.
Lee Tien’s focus is on privacy, with an emphasis on health

between the two dominant strategies: role-based access
control (RBAC), and experience-based access management
(EBAM). They used role prediction on the EMR system
deployed at Northwestern Memorial Hospital and found
8095 users, 140 roles, 143 reasons to access records, and 43
services provided at 58 locations. The role predictor accu-
rately predicted the job titles of 51.3% (4152) of the users in
the system.

For better role prediction, Zhang introduced the concept
of role hierarchy. It was observed that prediction accuracy
increases as you go higher up in the hierarchy. But at higher
levels, the number of roles is small and thus the “separation
of duty” will be violated. He also talks about the “role-up”
algorithm which tries to find a balance between prediction
accuracy and role number. It was found that when the algo-
rithm was biased to accuracy and there were a small number
of resulting roles, the accuracy of role prediction was 63%;
when it was biased towards specificity and number of roles
was high, accuracy was 52%.

One audience member asked how many beds were in the hos-
pital. Zhang said that the study involved 8000 users, though
there were not necessarily that many beds. Was “physician”
considered a role? The system deployed at Northwestern
is Cerner, where physician is not a role. It was also pointed
out that roles and privileges are mapped from a physician’s
nature; when a new physician comes in, it is unclear whether
a new role should be assigned.

Audit Mechanisms for Privacy Protection in Healthcare
Environments
Jeremiah Blocki, Nicolas Christin, Anupam Datta, and Arunesh Sinha,

Carnegie Mellon University

Anupam Datta talked about how audit mechanisms are
essential for privacy protection in healthcare environments.
However, the cost of inspections by a human auditor would
be very high if the auditor were to inspect each access to a
patient record to determine whether it was appropriate or
not. Their approach, “regret minimizing audits,” learns from
experience to recommend budget allocations for audits in
every cycle to different types of accesses. For example, if in
a given audit cycle celebrity record violations caused greater
loss to the organization, then the algorithm ensures that
there is a higher probability that the next time the audi-
tor performs an audit, accesses to celebrity records will be
checked more. The algorithm provably converges to the best
fixed strategy (e.g., budget allocation) in hindsight.

He explained that the algorithm doesn’t make any assump-
tions about the adversary’s incentives; the learning is based
on the loss that is incurred during each cycle. As future work,

 ;login: DECEMBER 2011 Conference Reports 117

replied that this solution, though exciting, may not work,
since it is not possible to get aggregated data in all cases.
In order to build this program, synthetic data is required,
which is difficult to generate. There is not enough incentive
for companies to adopt this solution—you will have to charge
the patients to run this program—so this solution will need
fundamental infrastructural changes.

Carl Gunter asked whether the panel could comment about
consent bias—how to measure who opted out or opted in.
Nolan said that we are still trying to comprehend consent.
Edwards talked about exempt research, where it is possible
to do research without requiring the participant’s consent.
Narayanan wondered whether we could work with self-
reported data, but this data might not be useful in all cases,
since the fidelity is questionable.

An audience member pointed out that biologists are required
to publish their data, so that their results can be verified.
Can re-identified data be used for other purposes? Edwards
pointed out that biological data is usually de-identified and
comes with lots of restrictions. Tien was concerned about
how if some (remotely identified) data is released, people
might want access to it, and access cannot be denied. Naray-
anan said that companies also should have a system, similar
to IRBs, when conducting studies to collect data, that could
audit the research.

The final question was about why data gets disclosed and
about differential privacy, which, according to the audi-
ence member, has not been verified with studies other than
those by the authors. Nolan pointed out that data is usually
disclosed so that it can be verified. Maybe there are other
ways to verify data. Narayanan said that in cases of differen-
tial privacy, anonymization comes, not from privacy protec-
tion, but from the noise that is included in the data. This has
been verified in academic settings but has not been adopted
anywhere.

Long Papers
Summarized by Shrirang Mare (shrirang@cs.dartmouth.edu)

Quickshear Defacing for Neuroimages
Nakeisha Schimke and John Hale, University of Tulsa

Nakeisha Schimke presented her work on de-identification
method for neuroimages. The goal of this work is to suffi-
ciently de-identify neuroimages that they cannot be linked
back to an individual, and to do this task efficiently compared
to existing techniques.

In neuroimages, facial features can be used to identify an
individual. There are two existing de-identification meth-

privacy. The big takeaway, according to him, was that no one
knows anything about laws in health privacy, health infor-
mation exchange architectures, etc. So he said it is not right
to put the burden on the doctor to inform the patients where
their data goes.

An audience member asked whether de-identification is
the right way to go. Nolan said the question is what you are
doing the research for—treatment for one person vs. analysis
of 10,000. If the data is identified, you can reach back to the
participants and learn more about them. Edwards said that
providers are more nervous than patients, and no regula-
tions say that identification has to be stripped from clinical
studies. Narayanan replied that there are a variety of context
and threat models. De-identification is useful in case of
celebrity records and with an adversary who does not have
technical expertise. He suggested differential privacy as a
possible option instead of having fully identifiable data and
de-identified data.

Another audience member pointed out that de-identification
doesn’t work as well as people think, especially if there is a
threat from an adversary. He asked what is more important—
privacy protection with de-identification or having the ability
to cure AIDS if we have identifiable data? Nolan said that in
the future we might have sufficient opt-in raw material to
make public health claims. Edwards replied that in the US
people want individual benefits and are willing to be part of
something that might benefit them in the future. They are
willing to contribute if we ask them. Nolan gave the example
of how people donate blood because they know it is safe to do
so. Narayanan argued that it was not clear to him if this could
be scaled to a large population. He wondered if it was possible
to provide incentives, using game theory, so that individuals
could see some benefits of providing their data for research.
Tien said that it is important for participants to know who
is conducting the research. Sean said that a patient might
not want his data to be used for research, when he is going to
the doctor for treatment; the patient has to trust the system
before contributing her data.

Ben Adida pointed out that hospitals were able to find cor-
relations between patients with negative heart rates and a
drug. In such cases it might be good to have identifiable data,
but where do we draw the line? Tien said that when provid-
ing data for research, the patient might not know what utility
there is in his data. According to Edwards, no one can decide
what counts as a benefit for a diverse population; maybe a
educational campaign is the solution.

Another audience member asked whether researchers could
write programs, able to be run by the data holders, in such
a way that the data collected could not be identified. Nolan

 118 ;login: VOL. 36, NO. 6

similar security and privacy problems as a WiFi network.
The privacy-preserving wireless protocols (proposed for
WiFi networks) cannot be used for BAN because of their
large overhead. The proposed adaptive method is designed to
make these privacy-preserving wireless protocols efficient so
that they can be used in the low-power BAN, while preserv-
ing the security and privacy properties of those protocols.

The protocol overhead is typically the header and message
authentication code (MAC). The larger the overhead, the
stronger the security, increasing, for example, the resistance
to forgery attacks. Non-adaptive protocols use a fixed long
MAC for strong security. Mare argued that a user (a user’s
BAN, really) is not always in a hostile environment, so always
using strong security is inefficient. Instead, he suggests
using a small overhead, but increasing the overhead when
an adversary attacks, when the adversary is trying to forge a
message. The condition on “when” to increase the overhead is
critical, and he presented a probabilistic condition to identify
an ongoing attack based on the number of corrupted packets
(i.e., packets that fail MAC verification).

An audience member asked what happens in the case of a
passive attack. Mare said the adaptive protocol does not
change any parameter that would make it easier for a passive
adversary to learn anything about the payload. For example,
changing the MAC size does not help the adversary learn
the contents of an encrypted payload. That is, the proposed
method does not make the adaptive protocol any more
vulnerable to passive attack than the original non-adaptive
protocol.

Controlled Dissemination of Electronic Medical Records
Guido van ’t Noordende, University of Amsterdam, The Netherlands

Building upon a security analysis of the Dutch electronic
patient record system, Guido van ’t Noordende presented
his ideas on how to share electronic medical records. His
approach is decentralized and keeps access to patients’ infor-
mation to a minimum. In this talk, he identified several paths
that can be used to share information between different par-
ties, such as patient, physician, family.

Noordende first described the traditional healthcare model:
a patient visits a doctor (Doc #1). The doctor keeps all the
records of the patient. When the patient visits another doctor
(Doc #2), Doc #2 asks for the patient’s records from Doc #1
(a pull-based model). Alternatively, Doc #1 can also send the
records to Doc #2, if the patient’s visit to Doc #2 is planned (a
push-based model). Noordende thinks that using a controlled
push-based approach with the convenience of a pull-based
model is the right approach to sharing patients’ records. He

ods used to remove these facial features: skull stripping, a
process of segmenting brain and non-brain elements (which
include facial features), and MRI defacing, a process of
removing only the identifying facial features leaving the
brain and surrounding tissues intact. The MRI Defacer
algorithm relies on a manually labeled atlas to identify facial
features. The skull stripping process is not always accurate,
and it is hard to automate. The MRI Defacer process is accu-
rate, but it requires a manually constructed atlas and is also
computationally expensive. Quickshear is an effort to make
the de-identification process better by making it automatic
and computationally inexpensive.

The Quickshear algorithm finds a plane that divides the
volume (i.e., the head in the image) into two parts: one
containing the facial features and the other containing the
entire brain volume. All the voxels of the “face” side are set to
zero, which (apparently) is effective to de-identify the face.
The key is to find the right plane such that the brain volume
is kept intact. The researchers use convex hull algorithms
(Andrew’s monotone chain) to identify the brain mask, and
once the points on the convex hull are identified, the dividing
plane is drawn using the points closest to the forehead. The
researchers compared their method against MRI Defacer,
using 42 images from 21 subjects. They used OpenCV Face
Detector to evaluate how well a method has de-identified an
image. Out of the 42 de-identified images, OpenCV identi-
fied nine MRI Defacer images as faces and about 10 Quicks-
hear images as faces. However, according to the researcher,
Quickshear removes fewer brain voxels, and its running time
was less than MRI Defacer; thus, Quickshear achieves nearly
the same output in terms of preserving the user’s privacy but
is more efficient.

Arvind Narayanan (Stanford) wondered about the possibil-
ity of identifying an image based on geometry of the face; for
example, distance between eyes (eye sockets are present in
Quickshear images). Schimke agreed that it’s a possibility
but pointed out that it is hard to measure the precise distance
between eyes using the eye sockets in the Quickshear images.

Adaptive Security and Privacy for mHealth Sensing
Shrirang Mare and Jacob Sorber, Institute for Security, Technology,

and Society, Dartmouth College; Minho Shin, Myongji University, South

Korea; Cory Cornelius and David Kotz, Institute for Security, Technology,

and Society, Dartmouth College

Shrirang Mare presented his work on an adaptive protocol
for mobile health sensing. People are increasingly using
mobile medical sensors to measure their activity and health
information, and these sensors transmit data to an aggrega-
tor device like a smartphone. Together, the sensors and the
aggregator device form a body area network (BAN). BAN has

 ;login: DECEMBER 2011 Conference Reports 119

cancels its own jamming signal so that it is the only device
that receives the bidirectional communications in the clear.

Andrés Molina-Markham, University of Massachusetts Amherst

Andrés developed a platform for medical applications, called
Moo. It includes an RFID reader that provides energy to
power this device, which has no battery. The microcontroller
can be programmed in C. Moo has an accelerometer and
temperature sensor; external sensors, storage, and harvest-
ers can be added to the device as well.

Kevin Fu, University of Massachusetts Amherst

Kevin Fu talked about the Open Medical Device Research
Laboratory, which helps researchers conduct trustworthy
computing research on IMDs. MIT and Berkeley have already
used IMDs from this library. A student at the University of
Pennsylvania opened up the devices to understand the digital
logic that goes on inside them. The devices are sterilized so
that they are safe for research.

Joseph Ayo Akinyele, Johns Hopkins University

Joseph Ayo Akinyele developed a framework, called Charm,
to help cryptographers who want to apply ideas to medical
applications and to secure health data in the cloud, in mobile
devices, etc. Implementing, measuring, and comparing
crypto methods is difficult, especially since it takes a long
time to write crypto code. The functional library has math
libs at the lowest level and crypto schemes that focus on the
algorithms at the higher level. Charm is implemented in
Python. The alpha version has already been released and has
been used. This version has implementations of attribute-
based encryption, key policies, and ID-based encryption.

Matthew Pagano, Johns Hopkins University

Matthew Pagano’s work is focused on using attribute-based
encryption (ABE) to secure electronic medical records
(EMRs) on mobile devices. It is difficult to get access to
EMRs and other medical data during catastrophes or net-
work outages. Access policies in healthcare can be complex,
and medical systems might not have adequate security
policies. With ABE, EMRs can be encrypted with expres-
sive policies that allow the records to be exported outside the
trust boundary of a medical institute. This provides self-pro-
tecting, offline access control, which is especially vital when
network access is unavailable.

This solution allows patients to access their medical records
and potentially store them on untrusted storage servers.
In this system, the medical institute encrypts a patient’s
records using ABE with a suitable access-control policy.

then presented his architecture model, outlining different
paths to disclosure.

He described five different paths to disclosure for the
patient’s information. The idea is that the data stays in one
place, but the pointer to the data is moved across different
parties in a controlled fashion (i.e., controlled dissemina-
tion). The five different paths to disclosure basically describe
the medium through which the pointer is shared with the
doctors. The five different paths are: professional (secure)
push model (e.g., emails), patient’s mailbox, USB drive,
smartcards, and paper (pointer writing on paper). The idea
is that the patient carries the pointer to the data with him,
and whoever gets the pointer from the patient gets access to
the data. Thus, the patient controls the dissemination of the
information.

An audience member wondered if this model can be extended
to include insurance companies. Noordende said, for simplic-
ity, he did not include insurance companies in his slides, but
it is certainly possible to include them in his model. Another
audience member asked how the patient can get all the active
references (i.e., pointers) that are floating around. Noordende
said the pointers are floating but the data is in one place.
One can have access logs at that place,and can tell who has
accessed your data, and also keep a log of all the pointers.

Rump Session
Summarized by Aarathi Prasad (aarathi.prasad@dartmouth.edu)

Atif Khan, University of Waterloo

Atif Khan’s interests lie in patient consent and consent man-
agement. His goal is to understand what a patient wants out
of the system. Can the patient choose what her data is used
for, whether it is shared with her family physician or with
hospitals in another state? Khan uses semantic Web tech-
nologies to define information using ontologies. The patient
consent rules will be based on these ontologies.

Ben Ransford, University of Massachusetts Amherst

Ben Ransford previewed a SIGCOMM paper he coauthored.
It is well known that certain medical devices are vulnerable
to passive eavesdropping or the issuance of unauthorized
commands. The authors’ methods can protect devices that
are already implanted and cannot easily be replaced. They
developed an auxiliary, wearable device, called an IMD
Shield, that acts as a proxy. The Shield has two antennas: one
that sends a random jamming signal and another that trans-
mits and receives data. The IMD Shield’s jamming reduces
the risk of private data loss and active commands by jam-
ming transmissions to and from the IMD. The IMD Shield

 120 ;login: VOL. 36, NO. 6

know if it is possible to have a common interface between
security and privacy. An audience member asked whether it
is legal to sell data, to which Rajagopalan replied that there is
a 4-billion-dollar industry based on selling medical data.

6th USENIX Workshop on Hot Topics in
Security (HotSec ’11)

August 9, 2011
San Francisco, CA

Welcome
Program Chair: Patrick McDaniel, Pennsylvania State University

Summarized by Rik Farrow (rik@usenix.org)

Patrick McDaniel, the chair of HotSec, explained how he and
the PC had decided to revitalize the workshop. Their accep-
tance rate was 17%, and they included papers that might not
otherwise be accepted—for example, for new ideas that are
not yet well developed. He said that the format would be three
15-minute presentations followed by 45 minutes of discus-
sion. Session chairs had prepared questions to help get the
conversation moving, and he expected the attendees to ask
their own questions as well.

New Age System Security
Summarized by Julie Ard (julieard@gmail.com)

Building Secure Robot Applications
Murph Finnicum and Samuel T. King, University of Illinois

Murph Finnicum described how increasing use of robots
(Roomba, PR2) requires us to consider their unique secu-
rity issues. There are many differences between robots and
computers, including the fact that robots move around and
have inherently probabilistic interactions. The immediate
consequences of bad behavior are also much worse, although
this line is becoming blurred by cyber-physical systems. For
example, improper disclosure of proprietary data or loss of
data can result from bad behavior directed at conventional
information systems, but a robot’s bad behavior could result
in your house being burned down or harm to a human being.

Much of the presentation and discussion revolved around
fundamental differences between robots. They include
probabilistic identification, privacy, and permissions for
applications. Because robots will go out into the world and
interact, you cannot simply write a program identifying what
they can and cannot do. The number of objects, for example,
that a robot could pick up is infinite. Orders will be given by
one human, and interactions would be with other humans—
for example, consider a robot going to get coffee. Facial, voice,

The encrypted records are then stored on a Web server, from
which patients can download their records onto their mobile
devices. After receiving an ABE private key from the medical
institute in an out-of-band channel, patients will be able to
access their records at any time. Patients can also store their
medical data with their PHR providers, either unencrypted,
partially encrypted, or fully encrypted.

Mike Rushanan, Johns Hopkins University

Mike Rushanan is working on creating a trusted comput-
ing base (TCB) for mobile electronic health records (EHR).
Mobile devices could have malware, and it might not be safe
to build mobile health applications that can store EHR. His
approach involves a Java card with attribute-based encryp-
tion (ABE), so that this card will become a trusted ABE
service on the phone. The card can be installed in the phone,
and it can store the patient’s health data on it. They will also
develop a communication protocol for the phone to interact
with the card. Some processing will have to be done in the
cloud, due to the resource limitations on the mobile phone.
ABE can be broken up so that processing can be done away
from the trusted base.

Michael LeMay, University of Illinois

Michael LeMay’s research focuses on providing strong
isolation for medical applications on a mobile platform. He
presented the idea of a dual persona smartphone, which could
be used either by the patient or the physician. However, this
phone could have enterprise data or the user’s personal data.
It is necessary to provide clear isolation of the user’s medical
information on the phone. Existing software solutions have
drawbacks. Protection policies are distributed and access
controls are discretionary. He pointed out that errors can
compromise protection if they are related to memory man-
agement and that VMMs are not enough for isolation. He also
said that resource sharing could lead to vulnerabilities such
as covert channels.

Raj Rajagopalan, HP

Raj Rajagopalan presented a new general notion of privacy. If
you release information, you leak more information than you
want. He said it is better to measure the relative release of
information. He pointed out that a tradeoff should be drawn
between utility (explicit disclosure) and privacy (implicit
disclosure);that way you can reveal data with different levels
of precision. Data exchanges involve a lot of people and
sometimes time is important, so it is better if the data is not
deleted. Rajagopalan wants to know whether it is possible
to provide positive incentives for data holders to obey the
privacy needs of individuals and whether it is possible to
establish joint ownership of medical data. He also wants to

 ;login: DECEMBER 2011 Conference Reports 121

DISTROY: Detecting Integrated Circuit Trojans with
Compressive Measurements
Youngjune L. Gwon, H.T. Kung, and Dario Vlah, Harvard University

Youngjune L. Gwon began with background information on
modern manufacturing methods and third-party involve-
ment making it difficult to determine whether the received
silicon is strictly what was ordered. The authors focused
on power or current side-channel measurement analysis to
detect trojans in integrated circuits (ICs). In particular, they
explored driving the IC to a low-power state so that the tro-
jan’s power signature would be more pronounced. Their goal
is to identify test vectors that will reveal anomalies indica-
tive of trojans.

Compressive sensing is a signal processing technique for
recovering data with the number of measurements propor-
tional to the sparsity of data. However, the reduced measure-
ments tradeoff results in an increase in false positives. One
method of reducing false positives is by testing multiple chips
from the same fabrication process. Additional explorations
will include tradeoffs in the number of test measurements
needed to reduce false positives to an acceptable level. Scal-
ability of test vectors is a necessary factor for application
of this approach. The discussion segued into supply-chain
security, which is a human problem.

Privacy and Anonymity
Summarized by Ryan MacArthur (ryan.macarthur@gmail.com)

Privacy-Preserving Applications on Smartphones
Yan Huang, Peter Chapman, and David Evans, University of Virginia

Peter Chapman covered the important topic of smartphone
applications that actually consider users’ privacy. The phone
that you carry around with you contains very personal infor-
mation, be it contacts, location history, pictures, email, or
banking payment records. Chapman covered an application
that was built to securely “make friends” with neighboring
devices, so-called “mutual contact discovery.” It is known
that trust is an issue, and, given evil devices, we cannot trust
a device with such private data. So the common theme here is
to interact with others and secure our data.

Currently this is achieved through a trusted third party such
as a social media site, bank, or video game producer. The
trusted third party has become the “untrusted” third party,
with cases of major corporations losing massive amounts
of data (e.g., Sony, Citi, Sega). To remove the third party,
Chapman discusses the usefulness of the “garbled circuit
protocol” proposed by Yao in the ’80s. You can think of it as
collective voting, implemented securely in Java. Implementa-
tion problems arise using certain immutable Java classes,

and location-based recognition do not guarantee the param-
eters of an operating environment but provide only probabi-
listic parameters.

Logging provides a necessary infrastructure for accountabil-
ity, but this may violate humans’ privacy. Robots will have a
flawless and complete memory, and one fundamental differ-
ence to bear in mind is that unlike computers, humans don’t
choose where they will interact with robots. A robot could be
required to notify humans when it is recording. However, can
the infrastructure identify whether surrounding humans are
aware that a robot is present and in operation if the robot’s
presence is not obvious? Perhaps humans could identify their
preferences for information sharing, such as “only friends
can know my location.”

Finally, to carry out a task, a robot would have to take actions
on behalf of the user. Permissions would have to involve high-
level constructs, such as moving short distances or within a
specified area. A discussion of robot behavior and morality
followed, based on popular literature and movies, including
Asimov’s “Three Laws” and the concept of surrogates.

Security Fusion: A New Security Architecture for
Resource-Constrained Environments
Suku Nair, Subil Abraham, and Omar Al Ibrahim, Southern Methodist

University

Omar Al Ibrahim conveyed how the concept of “security
fusion” aims to move complexity from the components to
the system level in resource-constrained devices such as
sensor and SCADA systems. These devices are character-
ized by constrained attributes such as gate count, memory,
power consumption, bandwidth, physical size, and process-
ing power. The authors propose exploring how these simple
structures can lead to emergent security.

Traditional security is not possible on these devices, because
the resource constraints may preclude cryptography, energy
is limited, there are numerous devices deployed, nodes can
be easily compromised, and oftentimes they use a wireless
medium.

We were introduced to a “state machine model,” which is
promising and feasible for this application because resource-
constrained devices are less complex than computers. Finite
automata concepts will be explored in future work. Inherent
in this will be a comparison of the growth of software versus
hardware security complexity. The discussion resulted in a
suggestion of considering what an adversary could do given
a certain number of compromised nodes, in addition to the
author’s direction of determining how many nodes need to be
compromised for an adversary to achieve a particular mali-
cious goal.

 122 ;login: VOL. 36, NO. 6

had examined other work, such as fair play, as opposed to the
garbled circuit implementation that they had used. Bill also
wanted to know whether the authors could imagine a library
of best implementations to help other developers solve these
issues. Peter responded that fair play is the most famous of
the garbled circuits, and he suggested checking out the Telex
paper (Wustrow) that was presented on Friday. Patrick
Traynor wondered whether there was a semantic difference
in the results of searches performed this way. Peter said that
there was not and added that their approach to performing
the calculations were orders of magnitude faster. Franzi
Roesner (University of Washington) considered a denial-of-
service attack where the attacker would make lots of trivial
changes to her address book. Peter responded that they could
limit the number of times the protocol could be run with a
particular partner.

Patrick Traynor asked Jessica Staddon whether we aren’t
already warning users of the potential for publicizing their
posts or responses. Jessica replied that privacy policies
are, for the most part, impenetrable. Mike Ryan (USC/
ISI) pointed out that Google+ has summaries of parts of
the EULA in the plainest language, such as “Google will
not resell your pictures.” Perry Metzger (University of Pa)
said that using simply and clearly worded privacy policies
is totally legal and it is just custom to word them in impen-
etrable legalese. John Springer of USC mentioned that Laurie
Kramer at CMU has done a lot of work on copyright, a related
area. Patrick McDaniel wondered about some of the results in
the paper: that over half of the participants didn’t realize that
their posts would become public. Jessica said that a surpris-
ing number of people are not as aware as they should be.
Vern Paxson commented that people don’t value their private
discussions and also pointed out that there is no visibility
for the cost of giving away your privacy. Jessica summarized
by saying we could be doing far more than we are doing now,
particularly in social networks.

The paper on de-anonymizing referees’ reviews generated
discussion among PC members about the culture of review-
ing. Ted Faber asked if the researchers had compared results
from humans to results from their classifier. Mihir Nanavati
said that they hadn’t, as they only read those reviews where
their classifier had failed in an attempt to discover why, and
that algorithmic classifiers work differently from people:
people tend to pick out features that algorithms ignore. Pat-
rick Traynor thought that perhaps he should get his graduate
students to write his reviews, causing Patrick McDaniel to
quip, “They don’t already?” Traynor responded that he isn’t
tenured yet.

and novel optimizations were developed to achieve impres-
sive speedups. The beta version of their application is able to
anonymously find common contacts with a peer, with a per-
formance of 128 contacts in 150 seconds. Future directions
are leveraging the carrier for peer discovery, software-based
attestation, and lower-level (OS) support to handle secure
communications.

Public vs. Publicized: Content Use Trends and Privacy
Expectations
Jessica Staddon and Andrew Swerdlow, Google

For this talk, Jessica described the studies conducted on
users concerning privacy expectations during their normal
interactions with Internet-based services they use on a daily
basis. They apparently took pains to use a diverse pool of
global candidates, creating a diverse human study on current
interest in privacy. There seems to be a common misconcep-
tion as to where users’ data actually goes and how it can be
used. Staddon proposed three major categories to improve
privacy expectations: transparency—in-context awareness
of where data is going; control—data-use settings that users
understand and can find; utility—users being given the data
they need to make informed choices.

Herbert West—Deanonymizer
Mihir Nanavati, Nathan Taylor, William Aiello, and Andrew Warfield,

University of British Columbia

Mihir delivered a comical talk describing efforts toward
identifying authors of critical paper reviews. They collected
reviews from program committees and utilized machine
learning through a naive Bayes classifier utilizing NLTK in
Python. They trained on unigrams, bigrams, and trigrams
scored on an authorial basis using TF-IDF. The results were
very interesting, as they were able to mimic the voice of PC
members. It seems that simple machine classifiers are capa-
ble of identifying supposed anonymous reviews. Someone
suggested that humans are good classifiers; you know whose
paper it is 90% of the time. Ted Faber (USC/ISI) followed
up by asking whether humans really are such good classi-
fiers. Mihir replied that to reduce the set of possible candi-
dates, you should use both computer and human techniques.
Sandy Clarke disagreed with fingerprinting, citing Rachel
Greenstadt’s work at Drexel, where they found that if people
disguised their own styles detection becomes impossible.

Discussions

Summarized by Rik Farrow (rik@usenix.org)

Peter Chapman was questioned about their privacy-preserv-
ing Android app. Bill Aiello (UBC) wanted to know if they

 ;login: DECEMBER 2011 Conference Reports 123

BEEP focuses on preventing XSS by whitelisting scripts.
BLUEPRINT uses its own trusted JavaScript parser and
the blueprint, a security policy. CSP is actually included in
Firefox 4. The authors ported two applications, Bugzilla
and HotCRP, to determine the impact on developers and on
performance. The porting effort was substantial, because
CSP does not support dynamic script generation. The perfor-
mance hit was between 35% and 55%. In conclusion, Wein-
berger suggested that a combination of whitelisting, as found
in BEEP for inline scripts, and CSP might work.

An audience member asked, “Does performance really mat-
ter?” Weinberger’s response was that performance is a big
deal. Rewriting the application is part of the performance
issue.

TouchLogger: Inferring Keystrokes on Touch Screen
from Smartphone Motion
Liang Cai and Hao Chen, University of California, Davis

A novel proof-of-concept keylogger was presented by Hao
Chen. The technique utilizes hardware devices normally
thought of as safe, such as accelerometers and gyroscopes.
Using a custom keyboard, Chen described how they are able
to track which finger is tapping which section of the screen
and were able to recreate entered text. The concept is in its
early stages and was not implemented on a stock touchscreen
keyboard. The hardware utilized by Chen et al. is readily
accessible through JavaScript, which is a non-privileged
interpreter. An audience member suggested discovering the
handedness of the target, then optimizing for the detected
hand. It was also clarified that the test trials had the targets
sitting still with phones in hand, so any movement of the
person holding the phone, such as walking or riding, was
avoided.

Emerging Areas in Security
Summarized by Ryan MacArthur (ryan.macarthur@gmail.com)

On Dynamic Malware Payloads Aimed at Programmable
Logic Controllers
Stephen McLaughlin, Pennsylvania State University

Stephen McLaughlin tackled the tough problem of generating
a process dependency graph for logic variables, with the goal
of exploiting interlocking variables in PLCs. The interlock-
ing variables may represent safety controls, never exceed-
ing, for example, a particular speed in a controlled device.
He reviewed common systems that utilize these controllers.
The Stuxnet sample was explained, as it contained a precom-
piled PLC payload. This indicated that the Stuxnet authors
had a priori knowledge of the system they were attacking.

Information Protection
Summarized by Ryan MacArthur (ryan.macarthur@gmail.com)

Towards Practical Avoidance of Information Leakage in
Enterprise Networks
Jason Croft and Matthew Caesar, University of Illinois at Urbana-

Champaign

Jason Croft points out that we need to differentiate between
sensitive and nonsensitive data, network-wide. Problem-
atically, protecting and configuring data against theft is
challenging, as has been indicated by recent attacks on large
amounts of sensitive data. Better protection is needed. Previ-
ous work (Tightlip) tends to focus on data protection at the
machine level. This limits the functionality of applications
that demand that data be shared, and also incurs high over-
head, as each machine needs to be configured properly.

Croft presented a technique using shadow processes to com-
pare between the original process and one where sensitive
data has been scrubbed. The two processes are synchronized
at system calls, where both receive the same results. When
compared, if the two streams of data match, then it is safe to
share. One problem they encountered is false positives relat-
ing to data that is nonsensitive. The current implementation
achieves a 2x slowdown, where they hook read/write APIs
to compare data. An audience member was concerned with
encrypted data, but since this implementation marks data as
sensitive before encryption, it is not a concern. A majority of
questions hinged on the fact that managing such a system is
an administrative nightmare.

Towards Client-side HTML Security Policies
Joel Weinberger, University of California, Berkeley; Adam Barth, Google;

Dawn Song, University of California, Berkeley

The landscape of local HTML security offerings was detailed
in this talk by Joel Weinberger. A history of attacks was
given, most notably the Samy worm that wreaked havoc on
MySpace. The argument was made that we need to seg-
regate elements of content on Web pages into trusted and
untrusted as a first step. The next step would be to imple-
ment a policy to deal with both types of data. Web application
frameworks like RoR and Django were mentioned as proving
weak amounts of policy relating to trust levels of data. It was
also made clear that sanitization is hard, and we have been
failing to do it properly for a while. It is for these reasons that
explicit policies on how to manage both kinds of data need to
be implemented. Weinberger introduced three off-the-shelf
solutions—BEEP, BLUEPRINT, and Content Security Policy
(CSP)— and listed the pros and cons of each.

 124 ;login: VOL. 36, NO. 6

McLaughlin postulates that writing malware to overcome
the obscurity of process control systems is an engineering
problem.

He has created a system that takes binary code and trans-
lates it into an intermediate language code, and then trans-
lates that even further into Boolean expressions, all with the
intent of inferring device types and interlocking variables.
The goal would be to create an intelligent exploit that would
determine how to manipulate key controls to wreak havoc.

Effective Digital Forensics Research Is Investigator-
Centric
Robert J. Walls, Brian Neil Levine, and Marc Liberatore, University of

Massachusetts Amherst; Clay Shields, Georgetown University

Walls argued that digital forensics lacks a solid scientific
foundation. Without such a foundation, it becomes difficult
to successfully prosecute alleged offenders. Digital forensics
is inherently investigator-centric, and as such the research
should be driven by the investigator, not the prosecutor. The
problem we all seem to face is that forensics and the law are
inseparable, yet the law is always struggling to keep up.

Investigations are about people and their actions, and intent
is left out of the security domain. Walls provided simple
rules, which hold close to Occam’s razor, to follow for creat-
ing new policies around digital forensics. Someone made the
comment that forensics show that a suspect did something
with a computer, but computers do things without the owner
taking action, so it is hard to prove ownership over many low-
level computing functions. One open question was around the
underlying issues in forensics, such as the burden of proof:
how do we support the law?

Linux Magazine

ACADEMY

Online Training at
Linux Magazine Academy

Monitoring with Nagios
Getting your IT under control
the easy way:

❚ Monitoring Windows/Linux/Unix

❚ Web front-end

❚ Structuring the configuration

❚ Monitoring SNMP-components

❚ Nagvis, Grapher V2,

and ND02DB add-ons

More information:
www.academy.linux-magazine.com/usenix

Many practical

examples!

20%

off for USENIX

members

1-1_Anzeige_Nagios_Usenix_Login.indd 1 30.08.2011 13:42:01 Uhr

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

SAVE THE DATE!

Join us in San Jose in February 2012 for the 10th USENIX Conference on
File and Storage Technologies (FAST ’12), as storage system researchers
and practitioners come together to explore new directions in the design,
implementation, evaluation, and deployment of storage systems.

Full program info and registration will be available in December 2011:
www.usenix.org/fast12/login

12
10TH USENIX CONFERENCE
ON FILE AND STORAGE
TECHNOLOGIES

FEB. 14–17, 2012 • SAN JOSE, CA

	usenix_login_dec11_articles
	usenix_login_dec11_reports

