
;login:

Columns
Constraint and Controls: The STAMP Approach
Laura Nolan

Garbage Collection in Python
Peter Norton

Collecting Configuration in Golang
Chris “Mac” McEniry

Using eBPF
Dave Josephsen

Examining IT Job Growth
Dan Geer

& Ceph BlueStore Runs on Raw Storage
Abutalib Aghayev, Sage Weil, Michael Kuchnik,
Mark Nelson, Greg Ganger, and George Amvrosiadis

& Notary: Rethinking eWallets
Anish Athalye, Adam Belay, M. Frans Kaashoek,
Robert Morris, and Nickolai Zeldovich

& Choosing the Right SLIs
Jaime Woo and Emil Stolarsky

& Getting Things Done by Organizing
Your Work
Todd Palino

& Ethics for AI Researchers
Jessica Cussins Newman and Rajvardhan Oak

S P R I N G 2 0 2 0 V O L . 4 5 , N O . 1

UPCOMING EVENTS
SREcon20 Americas West

March 24–26, 2020, Santa Clara, CA, USA
www.usenix.org/srecon20americaswest

HotEdge ’20: 3rd USENIX Workshop on Hot
Topics in Edge Computing

April 30, 2020, Santa Clara, CA, USA
www.usenix.org/hotedge20

OpML ’20: 2020 USENIX Conference on
Operational Machine Learning

May 1, 2020, Santa Clara, CA, USA
www.usenix.org/opml20

PEPR ’20: 2020 USENIX Conference on Privacy
Engineering Practice and Respect

May 11–12, 2020, Santa Clara, CA, USA
www.usenix.org/pepr20

SREcon20 Asia/Pacific
June 15–17, 2020, Sydney, Australia
www.usenix.org/srecon20apac

2020 USENIX Annual Technical Conference
July 15–17, 2020, Boston, MA, USA
www.usenix.org/atc20

Co-located with USENIX ATC ’20
HotCloud ’20: 12th USENIX Workshop on
Hot Topics in Cloud Computing
July 13, 2020
www.usenix.org/hotcloud20

HotStorage ’20: 12th USENIX Workshop on
Hot Topics in Storage and File Systems
July 13, 2020
www.usenix.org/hotstorage20

SOUPS 2020: Sixteenth Symposium on Usable
Privacy and Security

August 9–11, 2020, Boston, MA, USA
Co-located with USENIX Security ’20
www.usenix.org/soups2020

29th USENIX Security Symposium
August 12–14, 2020, Boston, MA, USA
Co-located with SOUPS 2020
www.usenix.org/sec20

Co-located with USENIX Security ’20
WOOT ’20: 14th USENIX Workshop on
Offensive Technologies
August 10–11, 2020
www.usenix.org/woot20

CSET ’20: 13th USENIX Workshop on Cyber
Security Experimentation and Test
August 10, 2020
www.usenix.org/cset20

ScAINet ’20: 2020 USENIX Security and AI
Networking Summit
August 10, 2020
www.usenix.org/scainet20

FOCI ’20: 10th USENIX Workshop on Free and
Open Communications on the Internet
August 11, 2020
www.usenix.org/foci20

HotSec ’20: 2020 USENIX Summit on Hot Topics
in Security
August 11, 2020
www.usenix.org/hotsec20

SREcon20 Europe/Middle East/Africa
October 27–29, 2020, Amsterdam, Netherlands
www.usenix.org/srecon20emea

OSDI ’20: 14th USENIX Symposium on
Operating Systems Design and
Implementation

November 4–6, 2020, Banff, Alberta, Canada
Sponsored by USENIX in cooperation with
ACM SIGOPS
Abstract registrations due May 5, 2020
www.usenix.org/osdi20

LISA20
December 7–9, 2020, Boston, MA, USA

SREcon20 Americas East
December 7–9, 2020, Boston, MA, USA

USENIX Open Access Policy

USENIX is the first computing association to offer free and open access to all of our conference proceedings and
videos. We stand by our mission to foster excellence and innovation while supporting research with a practical bias.
Please help us support open access by becoming a USENIX member and asking your colleagues to do the same!

www.usenix.org/membership

www.usenix.org/facebook

twitter.com/usenix

www.usenix.org/youtube

www.usenix.org/linkedin

http://www.usenix.org/membership
http://www.usenix.org/facebook
http://www.usenix.org/youtube

E D I T O R
Rik Farrow

M A N A G I N G E D I T O R
Michele Nelson

C O P Y E D I T O R S
Steve Gilmartin
Amber Ankerholz

P R O D U C T I O N
Arnold Gatilao
Ann Heron
Jasmine Murcia
Olivia Vernetti

T Y P E S E T T E R
Star Type

U S E N I X A S S O C I AT I O N
2560 Ninth Street, Suite 215
Berkeley, California 94710, USA
Phone: +1 510.528.8649
login@usenix.org

www.usenix.org

;login: is the official magazine of the USENIX
Association. ;login: (ISSN 1044-6397)
is published quarterly by the USENIX
Association, 2560 Ninth Street, Suite 215,
 Berkeley, CA 94710, USA.

A one-year print subscription to ;login:
magazine is available only to USENIX
Association members at the Sustainer
level and higher. Periodicals postage is
paid at Berkeley, CA, USA, and additional
mailing offices.

POSTMASTER: Send address changes to
;login:, USENIX Association, 2560 Ninth Street,
Suite 215, Berkeley, CA 94710, USA.

©2020 USENIX Association
USENIX is a registered trademark of the
USENIX Association. Many of the designa-
tions used by manufacturers and sellers
to distinguish their products are claimed
as trademarks. USENIX acknowledges all
trademarks herein. Where those desig na tions
appear in this publication and USENIX is
aware of a trademark claim, the designations
have been printed in caps or initial caps.

S P R I N G 2 0 2 0 V O L . 4 5 , N O . 1

E D I T O R I A L
2 Musings Rik Farrow

S Y S T E M S
6 File Systems Unfit as Distributed Storage

Back Ends: Lessons from 10 Years of Ceph Evolution
Abutalib Aghayev, Sage Weil, Michael Kuchnik, Mark Nelson,
Greg Ganger, and George Amvrosiadis

12 Notary: A Device for Secure Transaction Approval
Anish Athalye, Adam Belay, M. Frans Kaashoek, Robert Morris,
and Nickolai Zeldovich

A I / M L
17 Artificial Intelligence: Ethics in Practice

Jessica Cussins Newman and Rajvardhan Oak

22 The Emerging Practice of Operational ML: USENIX OpML
Conference  Nisha Talagala and Joel Young

S R E A N D S Y S A D M I N
25 Are We All on the Same Page? Let’s Fix That Luis Mineiro

31 Getting Things Done Todd Palino

35 It’s an SLO World: What Theme Parks Can Teach Us about
User-First Reliability Jaime Woo and Emil Stolarsky

P R O G R A M M I N G
39 Interview with Mary Ann Horton Rik Farrow

C O L U M N S
44 Constraints and Controls: The Sociotechnical Model of Site

Reliability Engineering Laura Nolan

49 Python and Memory Peter Norton

53 iVoyeur—eBPF Tools: What’s in a Name? Dave Josephsen

56 Simplifying Repetitive Command Line Flags with viper
Chris “Mac” McEniry

59 For Good Measure: Cyberjobsecurity Dan Geer

62 /dev/random: Artificial Ethics Robert G. Ferrell

B O O K S
64 Book Reviews Mark Lamourine and Rik Farrow

U S E N I X N O T E S
68 The Year of Engagement

Liz Markel, Community Engagement Manager

71 USENIX Association Financial Statements for 2018

2  S P R I N G 2020 VO L . 45 , N O. 1 www.usenix.org

EDITORIALMusings
R I K F A R R O W

Rik is the editor of ;login:.
rik@usenix.org

For example, Brian pointed out that computers had been highly customizable machines
that generally ran programs that were terribly inflexible. If you wrote files to disk using one
program, you could only use that program, or a closely related one, to manipulate those files.
UNIX, by comparison, uses byte streams for files, ones that can be opened by any program,
even ones that can’t do anything sensible with the bytes, but that flexibility is enormous.
Think of the old version of spell; that was a pipeline that converted a text file to a list of
words, sorted those words, ran uniq on them, and then compared the results to a dictionary.
None of those tools is unique to a spell-checking program. Today, spell is a binary, not a shell
script, but you can find a version of the original script in Brian’s book.

Computer Architecture
Another idea that caught my attention appears in the book at the bottom of page 128: UNIX
and C had a large impact on computing hardware in the 1980s and 1990s. Most successful
instruction set architectures were well matched to C and UNIX.

I certainly never really thought about that back when I was working with UNIX workstations
in the late 1980s. I know I worked on at least a dozen different workstations in that period,
mostly various RISC architectures as that was the hotness of the day.

A key feature of all of those instruction set architectures (ISAs) was that instead of being
word oriented, all were byte oriented. That may seem too simple, but consider the types that
popular programming languages use: very few are tied to a memory-length word. Some types,
like float and double, are closely related to actual hardware in the CPU, but things like arrays,
strings, different flavors of integers, structures, are all byte, or multiples of bytes, oriented.

I am not certain that UNIX is responsible for this, but UNIX certainly was a huge influence.
I was talking about this with Jon Callas, who worked for DEC in the ’90s, and he pointed
out that DEC’s Alpha CPU worked equally well running Ulrix/64, DEC’s VMS, and Windows
NT (Windows these days). None of these operating systems and their underlying languages
were word oriented, although I do wonder about VMS, which was still written in assembler
in the 1990s.

CISC vs. RISC
Today, most servers run variants of Intel’s ISA, while the world of the small is mainly RISC.
That Intel is byte oriented is no mystery: the Intel 8080 CPU had eight-bit registers and a
16-bit address space. Most registers were paired, so could appear as 16 bits wide, but the only
register capable of integer arithmetic was the A register, and that was eight bits in width.

I read Brian Kernighan’s latest book recently, and many things in it struck
chords with me. While the book was mostly about UNIX history, it was
what Brian wrote about the influence that UNIX had on the development

of computers, programming, and even printing that grabbed my attention.

www.usenix.org S P R I N G 2020 VO L . 45 , N O. 1 3

EDITORIAL
Musings

In the ’80s, we thought that RISC was the way of the future,
as RISC allowed CPU designs to be simpler. What happened
instead was that Intel kept making up for the weakness of CISC
through hardware tricks, including converting their CISC ISA
into an internal RISC-like ISA. These tricks require more
transistors and more energy, meaning there is still a chance that
ARM64 may become more popular in server farms and clouds—
but I am not betting on it.

The Lineup
I started my search for authors by looking at the accepted papers
at SOSP ’19 and found two I particularly liked. Neither won
best paper awards, but the author of the first article, Abutalib
Aghayev, told me that his paper had been downloaded four times
as often as the one that did win the best paper award. I think
that’s because his topic is more pragmatic.

I also liked the paper that this article is based on because it
relates well to my Winter 2019 column about file systems.
Aghayev and his colleagues at CMU and Red Hat created
BlueStore for Ceph. Ceph is a distributed file system and had
been relying on existing file systems for block storage. Aghayev
et al. wrote BlueStore to work in raw partitions in just two
years, while greatly improving performance and adding features
unavailable when Ceph nodes ran over file systems like Btrfs
and xfs.

The next article is based on a paper by Anish Athalye and his
colleagues at MIT that uses a clever design to solve a security
problem that had proved intractable. Hardware wallets, such as
used to store and transact Bitcoin, have proven to be vulnerable
to attacks, and Athalye fixed this by using two small processors
and reset-based switching, so that multiple programs can be run
on a hardware wallet but be unable to interfere or attack other
programs and their data.

Next up we have two articles about AI/ML. Jessica Cussins
Newman and Rajvardhan Oak write about ethical consid-
erations for companies and researchers working with AI. The
authors present a balanced and thoughtful look at the impacts
AI will have on politics, justice, and human rights. L Jean Camp
introduced me to the authors, and I am happy to extend our
series about ethics with this article.

Nisha Talagala and Joel Young, the co-chairs of OpML ’20, tell
us about what they learned from the first OpML conference and
explain what they expect will come out of the second confer-
ence in May 2020. The authors point out that ML differs from
earlier computing paradigms, echoing Newman and Oak when it
comes to ethical considerations, but also that AI/ML is different
operationally.

Switching to SRE/Sysadmin, Luis Mineiro explains how
Zalando, Europe’s largest online fashion platform, has learned
to deal with paging. In an age of distributed systems, when SLIs
(service level indictors) show something has gone wrong, you
only want to page the people responsible for the sub-system
causing the slowdown or outage. And this can be trickier than
it might seem.

Todd Palino explains a system for organizing work called “Get-
ting Things Done.” GTD is based upon a book, but Palino shares
his own experience as well as tools that can be used to support
the process. Just about everyone can benefit from learning about
and, better, using GTD.

Jaime Woo and Emil Stolarsky examine how to choose the best
SLIs. They use the analogy of a famous Florida theme park to
explain what works best as indicators of customer satisfaction
as opposed to choosing less potent indications of success.

I interviewed Mary Ann Horton. I met Mary Ann while at
USENIX ATC ’19 in Renton, Washington. She was there for the
50th anniversary of UNIX, celebrated at a gathering at the Liv-
ing Computer Museum (https://livingcomputers.org) in Seattle.
Mary Ann tells us a lot about the history of UNIX from a differ-
ent perspective than Brian’s, as she was part of the creation and
spread of Netnews and UUCP mail. Mary Ann also has a story to
tell about becoming a transgender programmer, beginning her
transition while still at Lucent, the owner of Bell Labs.

Laura Nolan has more to say about SLIs and SLOs. Laura was
very impressed with the work of MIT Professor Nancy Leve-
son, based on the keynote she presented at SREcon19 EMEA.
 Leveson has studied failures and accidents in complex systems,
from waterworks to military air-traffic control, and come up
with a better method for understanding complex systems. In the
first of a two-part column, Laura examines the reference leg of
this system, the input that controls the systems we use today,
and ties in management’s role to SRE.

Peter Norton discusses Python’s memory management. Like
other systems that must employ garbage collection, Python’s
design seeks to be as efficient as possible. But that system is
 generally opaque to programmers using Python, and Peter
explains how to look beneath the covers, and he compares
Python’s GC to Java.

Mac McEniry expands on his column about handling go com-
mand lines with cobra (;login: Summer 2019) with viper.
viper handles command-line defaults in a manner most of us
should be familiar with, that is, that options used on the com-
mand line have priority, followed by the environment, then by
defaults from configuration files.

4  S P R I N G 2020 VO L . 45 , N O. 1 www.usenix.org

EDITORIAL
Musings

Dave Josephsen found himself excited by a newish tool. eBPF
has been around for some years now, and Dave has awakened to
eBPF’s promise of getting better and more specific insight into
the workings of the Linux kernel. In this, the first of a two-part
column, Dave compares an eBPF script to iostat for debugging
problems with arrays of disks.

Focusing on cybersecurity, Dan Geer takes another look at
job prospects under the growing impact of automation. Using
data from the US Bureau of Labor Statistics, Dan helps us get
real about where job and salary growth have been over the past
decade, something that may be helpful if you are looking for a
career or getting ready to jump ship to a new career.

Robert Ferrell ponders artificial ethics, the study of how inert
electronics may appear, or not appear, to have any ethics at all.

Mark Lamourine has written three book reviews and managed
by chance to parallel some of the topics that appear in this issue.
Included in his reviews is one about Brendan Gregg’s new book on
eBPF. I review Brian Kernighan’s UNIX: A History and a Memoir.

I’ve often mused about why CPU design appears conservative,
meaning that certain aspects appear again and again in designs
from many vendors. Sometimes, it’s simply because other
designs just don’t work as well, such as Transmeta and Itanium,
both very long instruction word (VLIW) designs. There are
other designs, like Alpha and SPARC, that have hung on longer
even though their performance isn’t as good as what can be done
with Intel-style processors.

I have tried to imagine what the ideal CPU design might look
like, but the answer to that still lies in the unknowable future.
For now, I am grateful for the CPUs that we have today, ones
so powerful, and yet efficient, that we can carry them in our
 pockets. A very, very long road from the PDP 7, with 32 kilobytes
of DRAM, that UNIX was written for.

29TH

Co-located Workshops
14th USENIX Workshop on Offensive Technologies
August 10–11, 2020
Submissions due May 28, 2020
www.usenix.org/woot20

WOOT ’20 aims to present a broad picture of offense and its contributions, bringing together researchers and practitioners in all areas of computer
security. Offensive security has changed from a hobby to an industry. No longer an exercise for isolated enthusiasts, offensive security is today
a large-scale operation managed by organized, capitalized actors. Meanwhile, the landscape has shifted: software used by millions is built by start-
ups less than a year old, delivered on mobile phones and surveilled by national signals intelligence agencies. In the field’s infancy, offensive security
research was conducted separately by industry, independent hackers, or in academia. Collaboration between these groups could be difficult. Since
2007, the USENIX Workshop on Offensive Technologies (WOOT) has aimed to bring those communities together.

13th USENIX Workshop on Cyber Security Experimentation and Test
August 10, 2020
Submissions due May 19, 2020
www.usenix.org/cset20

CSET ’20 invites submissions on cyber security evaluation, experimentation, measurement, metrics, data, simulations, and testbeds. The science
of cyber security poses significant challenges. For example, experiments must recreate relevant, realistic features in order to be meaningful, yet
identifying those features and modeling them is very difficult. Repeatability and measurement accuracy are essential in any scientific experiment,
yet hard to achieve in practice. Few security-relevant datasets are publicly available for research use and little is understood about what “good
datasets” look like. Finally, cyber security experiments and performance evaluations carry significant risks if not properly contained and controlled,
yet often require some degree of interaction with the larger world in order to be useful.

10th USENIX Workshop on Free and Open Communications on the Internet
August 11, 2020
www.usenix.org/foci20

FOCI ’20 will bring together researchers and practitioners from technology, law, and policy who are working on means to study, detect, or
circumvent practices that inhibit free and open communications on the Internet.

2020 USENIX Summit on Hot Topics in Security
August 11, 2020
www.usenix.org/hotsec20

HotSec ’20 aims to bring together researchers across computer security disciplines to discuss the state of the art, with emphasis on future directions
and emerging areas. HotSec is not your traditional security workshop! The day will consist of sessions of lightning talks on emerging work and
positions in security, followed by discussion among attendees. Lightning talks are 5 MINUTES in duration—time limit strictly enforced with a gong!
The format provides a way for lots of individuals to share ideas with others in a quick and more informal way, which will inspire breakout discussion
for the remainder of the day.

Registration will open in May 2020.

BOSTON, MA, USA

ScAINet ’20 will be a single track summit of cutting edge and thought-inspiring talks covering a wide range of topics in ML/AI by and for security.
The format will be similar to Enigma but with a focus on security and AI. Our goal is to clearly explain emerging challenges, threats, and defenses
at the intersection of machine learning and cybersecurity, and to build a rich and vibrant community which brings academia and industry together
under the same roof. We view diversity as a key enabler for this goal and actively work to ensure that the ScAINet community encourages and
 welcomes participation from all employment sectors, racial and ethnic backgrounds, nationalities, and genders.

2020 USENIX Security and AI Networking Summit
August 10, 2020
Talk proposals due March 27, 2020
www.usenix.org/scainet20

http://www.usenix.org/woot20
http://www.usenix.org/cset20
http://www.usenix.org/foci20
http://www.usenix.org/hotsec20
http://www.usenix.org/scainet20

6  S P R I N G 2020 VO L . 45 , N O. 1 www.usenix.org

SYSTEMSFile Systems Unfit as Distributed Storage
Back Ends
Lessons from 10 Years of Ceph Evolution

A B U T A L I B A G H A Y E V , S A G E W E I L , M I C H A E L K U C H N I K , M A R K N E L S O N ,
G R E G G A N G E R , A N D G E O R G E A M V R O S I A D I S

Abutalib Aghayev is a PhD stu-
dent in the Computer Science
Department at Carnegie Mellon
University. He has broad research
interests in computer systems,

including storage and file systems, distributed
systems, and operating systems. 
agayev@cs.cmu.edu

Sage Weil is the Lead Architect
and co-creator of the Ceph open
source distributed storage sys-
tem. Ceph was created to pro-
vide a stable, next generation

distributed storage system for Linux. Inktank
was co-founded by Sage in 2012 to support
enterprise Ceph users, and then acquired by
Red Hat in 2014. Today Sage continues to lead
the Ceph developer community and to help
shape Red Hat’s overall storage strategy. 
sweil@redhat.com

Michael Kuchnik is a PhD stu-
dent in the Computer Science
Department at Carnegie Mellon
University and a member of the
Parallel Data Lab. His research

interests are in the design and analysis of com-
puter systems, specifically those involving stor-
age, high performance computing, or machine
learning. Before coming to CMU, he earned his
BS in computer engineering from the Georgia
Institute of Technology. mkuchnik@cmu.edu

For a decade, the Ceph distributed file system followed the conventional
wisdom of building its storage back end on top of local file systems.
The experience with different file systems showed that this approach

always leaves significant performance on the table while incurring signifi-
cant accidental complexity [2]. Therefore, the Ceph team embarked on an
ambitious project to build BlueStore, a new back end designed to run directly
on raw storage devices. Somewhat surprisingly, BlueStore matured in less
than two years. It outperformed back ends built atop file systems and got
adopted by 70% of users in production.

Figure 1 shows the high-level architecture of Ceph. At the core of Ceph is the Reliable Auto-
nomic Distributed Object Store (RADOS) service. RADOS scales to thousands of Object
Storage Devices (OSDs), providing self-healing, self-managing, replicated object storage with
strong consistency. Ceph’s librados library provides a transactional interface for manipu-
lating objects and object collections in RADOS. Out of the box, Ceph provides three services
implemented using librados: the RADOS Gateway (RGW), an object storage similar to
Amazon S3; the RADOS Block Device (RBD), a virtual block device similar to Amazon EBS;
and CephFS, a distributed file system with POSIX semantics.

Objects in RADOS are stored in logical partitions called pools. Pools can be configured to
provide redundancy for the contained objects either through replication or erasure coding.
Within a pool, the objects are sharded among aggregation units called placement groups
(PGs). Depending on the replication factor, PGs are mapped to multiple OSDs using CRUSH,
a pseudo-random data distribution algorithm. Clients also use CRUSH to determine the OSD
that should contain a given object, obviating the need for a centralized metadata service. PGs
and CRUSH form an indirection layer between clients and OSDs that allows the migration of
objects between OSDs to adapt to cluster or workload changes.

In every node of a RADOS cluster, there is a separate Ceph OSD daemon per local storage
device. Each OSD processes I/O requests from librados clients and cooperates with peer
OSDs to replicate or erasure code updates, migrate data, or recover from failures. Data is
persisted to the local device via the internal ObjectStore interface, which is the storage
back-end interface in Ceph. ObjectStore provides abstractions for objects, object collections,
a set of primitives to inspect data, and transactions to update data. A transaction combines
an arbitrary number of primitives operating on objects and object collections into an atomic
operation.

The FileStore storage back end is an ObjectStore implementation on top of a local file system.
In FileStore, an object collection is mapped to a directory and object data is stored in a file.
Throughout the years, FileStore was ported to run on top of Btrfs, XFS, ext4, and ZFS, with
FileStore on XFS becoming the de facto back end because it scaled better and had faster
metadata performance [7].

www.usenix.org S P R I N G 2020 VO L . 45 , N O. 1 7

SYSTEMS
File Systems Unfit as Distributed Storage Back Ends: Lessons from 10 Years of Ceph Evolution

George Amvrosiadis is an
 Assistant Research Profes-
sor of Electrical and Computer
 Engineering at Carnegie Mel-
lon University and a member

of the Parallel Data Lab. His current research
focuses on distributed and cloud storage, new
storage technologies, high performance com-
puting, and storage for machine learning. His
team’s research has received an R&D100 Award
and was featured on WIRED, The Morning Paper,
and Hacker News. He co-teaches two graduate
courses on Storage Systems and Advanced
Cloud Computing attended by 100+ graduate
students each. gamvrosi@cmu.edu

BlueStore: A Clean-Slate Approach
The BlueStore storage back end is a new implementation of ObjectStore designed from
scratch to run on raw block devices, aiming to solve the challenges [2] faced by FileStore.
Some of the main goals of BlueStore were:

1. Fast metadata operations

2. No consistency overhead for object writes

3. Copy-on-write clone operation

4. No journaling double-writes

5. Optimized I/O patterns for HDD and SSD

BlueStore achieved all of these goals within just two years and became the default storage
back end in Ceph. Two factors played a key role in why BlueStore matured so quickly com-
pared to general-purpose POSIX file systems that take a decade to mature. First, BlueStore
implements a small, special-purpose interface and not a complete POSIX I/O specification.
Second, BlueStore is implemented in userspace, which allows it to leverage well-tested and
high-performance third-party libraries. Finally, BlueStore’s control of the I/O stack enables
additional features (see “Features Enabled by BlueStore,” below).

The high-level architecture of BlueStore is shown in Figure 2. A space allocator within
BlueStore determines the location of new data, which is asynchronously written to raw disk
using direct I/O. Internal metadata and user object metadata is stored in RocksDB. The
BlueStore space allocator and BlueFS share the disk and periodically communicate to bal-
ance free space. The remainder of this section describes metadata and data management in
BlueStore.

BlueFS and RocksDB
BlueStore achieves its first goal, fast metadata operations, by storing metadata in RocksDB.
BlueStore achieves its second goal of no consistency overhead with two changes. First, it
writes data directly to raw disk, resulting in one cache flush [10] for data write, as opposed to
having two cache flushes when writing data to a file on top of a journaling file system. Sec-
ond, it changes RocksDB to reuse write-ahead log files as a circular buffer, resulting in one
cache flush for metadata write—a feature that was upstreamed to the mainline RocksDB.

RocksDB itself runs on BlueFS, a minimal file system designed specifically for RocksDB that
runs on a raw storage device. RocksDB abstracts out its requirements from the underlying
file system in the Env interface. BlueFS is an implementation of this interface in the form
of a userspace, extent-based, and journaling file system. It implements basic system calls

Mark Nelson joined the Ceph
team in January 2012 and has
12 years of experience in distrib-
uted systems, HPC, and bioin-
formatics. Mark works on Ceph

performance analysis and is the primary author
of the Ceph Benchmarking Toolkit. He runs the
weekly Ceph performance meeting and is cur-
rently focused on research and development of
Ceph’s next-generation object store. 
mnelson@redhat.com

Greg Ganger is the Jatras Pro -
fessor of Electrical and Computer
Engineering at Carnegie Mellon
University and Director of the
Parallel Data Lab (www.pdl.cmu

.edu). He has broad research interests, with
current projects exploring system support for
large-scale ML (Big Learning), resource man-
agement in cloud computing, and software
systems for heterogeneous storage clusters,
HPC storage, and NVM. His PhD in CS&E is
from the University of Michigan. 
ganger@ece.cmu.edu

Figure 1: High-level depiction of Ceph’s architecture.
A single pool with 3× replication is shown. There-
fore, each placement group (PG) is replicated on
three OSDs.

Figure 2: The high-level architecture of BlueStore.
Data is written to the raw storage device using
direct I/O. Metadata is written to RocksDB running
on top of BlueFS. BlueFS is a userspace library file
system designed for RocksDB, and it also runs on
top of the raw storage device.

8  S P R I N G 2020 VO L . 45 , N O. 1 www.usenix.org

SYSTEMS
File Systems Unfit as Distributed Storage Back Ends: Lessons from 10 Years of Ceph Evolution

required by RocksDB, such as open, mkdir, and pwrite. BlueFS
maintains an inode for each file that includes the list of extents
allocated to the file. The superblock is stored at a fixed offset
and contains an inode for the journal. The journal has the only
copy of all file-system metadata, which is loaded into memory
at mount time. On every metadata operation, such as directory
creation, file creation, and extent allocation, the journal and
in-memory metadata are updated. The journal is not stored at a
fixed location; its extents are interleaved with other file extents.
The journal is compacted and written to a new location when it
reaches a preconfigured size, and the new location is recorded in
the superblock. These design decisions work because large files
and periodic compactions limit the volume of metadata at any
point in time.

Metadata Organization. BlueStore keeps multiple namespaces
in RocksDB, each storing a different type of metadata. For example,
object information is stored in the O namespace (that is, RocksDB
keys start with O and their values represent object metadata),
block allocation metadata is stored in the B namespace, and
collection metadata is stored in the C namespace. Each collec-
tion maps to a PG and represents a shard of a pool’s namespace.
The collection name includes the pool identifier and a prefix
shared by the collection’s object names. For example, a key-value
pair C12.e4-6 identifies a collection in pool 12 with objects that
have hash values starting with the six significant bits of e4.
Hence, the object O12.e532 is a member, whereas the object O12.
e832 is not. Such organization of metadata allows a collection of
millions of objects to be split into multiple collections merely by
changing the number of significant bits. This collection splitting
operation is necessary to rebalance data across OSDs when, for
example, a new OSD is added to the cluster to increase the aggre -
gate capacity or an existing OSD is removed from the cluster due
to a malfunction. With FileStore, collection splitting was an
expensive operation performed by renaming many directories in
a deeply nested hierarchy.

Data Path and Space Allocation
BlueStore is a copy-on-write back end. For incoming writes
larger than a minimum allocation size (64 KiB for HDDs, 16 KiB
for SSDs), the data is written to a newly allocated extent. Once
the data is persisted, the corresponding metadata is inserted to
RocksDB. This allows BlueStore to provide an efficient clone
operation. A clone operation simply increments the reference
count of dependent extents, and writes are directed to new
extents. It also allows BlueStore to avoid journal double-
writes for object writes and partial overwrites that are larger
than the minimum allocation size.

For writes smaller than the minimum allocation size, both
data and metadata are first inserted to RocksDB as promises
of future I/O and then asynchronously written to disk after the
transaction commits. This deferred write mechanism has two
purposes. First, it batches small writes to increase efficiency,
because new data writes require two I/O operations whereas
an insert to RocksDB requires one. Second, it optimizes I/O
based on the device type: 64 KiB (or smaller) overwrites of a
large object on an HDD are performed asynchronously in place
to avoid seeks during reads, whereas in-place overwrites only
happen for I/O sizes less than 16 KiB on SSDs.

Space Allocation. BlueStore allocates space using two modules:
the FreeList manager and the Allocator. The FreeList manager
is responsible for a persistent representation of the parts of the
disk currently in use. Like all metadata in BlueStore, this free
list is also stored in RocksDB. The first implementation of the
FreeList manager represented in-use regions as key-value pairs
with offset and length. The disadvantage of this approach was
that the transactions had to be serialized: the old key had to be
deleted first before inserting a new key to avoid an inconsistent
free list. The second implementation is bitmap-based. Alloca-
tion and deallocation operations use RocksDB’s merge operator
to flip bits corresponding to the affected blocks, eliminating the
ordering constraint. The merge operator in RocksDB performs
a deferred atomic read-modify-write operation that does not
change the semantics and avoids the cost of point queries [8].

The Allocator is responsible for allocating space for the new
data. It keeps a copy of the free list in memory and informs the
FreeList manager as allocations are made. The first implemen-
tation of Allocator was extent-based, dividing the free extents
into power-of-two-sized bins. This design was susceptible to
fragmentation as disk usage increased. The second implementa-
tion uses a hierarchy of indexes layered on top of a single-bit-per-
block representation to track whole regions of blocks. Large and
small extents can be efficiently found by querying the higher
and lower indexes, respectively. This implementation has a fixed
memory usage of 35 MiB per terabyte of capacity.

Cache. Since BlueStore is implemented in userspace and
accesses the disk using direct I/O, it cannot leverage the OS
page cache. As a result, BlueStore implements its own write-
through cache in userspace, using the scan-resistant 2Q algo-
rithm. The cache implementation is sharded for parallelism. It
uses an identical sharding scheme to Ceph OSDs, which shard
requests to collections across multiple cores. This avoids false
sharing, so that the same CPU context processing a given client
request touches the corresponding 2Q data structures.

www.usenix.org S P R I N G 2020 VO L . 45 , N O. 1 9

SYSTEMS
File Systems Unfit as Distributed Storage Back Ends: Lessons from 10 Years of Ceph Evolution

Features Enabled by BlueStore
In this section we describe new features implemented in BlueStore.
These features were previously lacking because implementing
them efficiently requires full control of the I/O stack.

Space-Efficient Checksums
Ceph scrubs metadata every day and data every week. Even with
scrubbing, however, if the data is inconsistent across replicas it
is hard to be sure which copy is corrupt. Therefore, checksums
are indispensable for distributed storage systems that regularly
deal with petabytes of data, where bit f lips are almost certain
to occur.

Most local file systems do not support checksums. When they
do, like Btrfs, the checksum is computed over 4 KiB blocks to
make block overwrites possible. For 10 TiB of data, storing 32-bit
checksums of 4 KiB blocks results in 10 GiB of checksum meta-
data, which makes it difficult to cache checksums in memory for
fast verification.

On the other hand, most of the data stored in distributed file
systems is read-only and can be checksummed at a larger gran-
ularity. BlueStore computes a checksum for every write and
verifies the checksum on every read. While multiple checksum
 algorithms are supported, crc32c is used by default because it is
well optimized on both x86 and ARM architectures, and it is suf-
ficient for detecting random bit errors. With full control of the
I/O stack, BlueStore can choose the checksum block size based
on the I/O hints. For example, if the hints indicate that writes are
from the S3-compatible RGW service, then the objects are read-
only and the checksum can be computed over 128 KiB blocks,
and if the hints indicate that objects are to be compressed, then a
checksum can be computed after the compression, significantly
reducing the total size of checksum metadata.

Overwrite of Erasure-Coded Data
Ceph has supported erasure-coded (EC) pools through the
FileStore back end since 2014. However, until BlueStore, EC
pools only supported object appends and deletions—overwrites
were slow enough to make the system unusable. As a result, the
use of EC pools was limited to RGW; for RBD and CephFS only
replicated pools were used.

To avoid the “RAID write hole” problem, where crashing during
a multi-step data update can leave the system in an inconsistent
state, Ceph performs overwrites in EC pools using two-phase
commit. First, all OSDs that store a chunk of the EC object make
a copy of the chunk so that they can roll back in case of failure.
After all of the OSDs receive the new content and overwrite their
chunks, the old copies are discarded. With FileStore on XFS, the
first phase is expensive because each OSD performs a physical
copy of its chunk. BlueStore, however, makes overwrites practical
because its copy-on-write mechanism avoids full physical copies.

Transparent Compression
Transparent compression is crucial for scale-out distributed
file systems because 3× replication increases storage costs.
BlueStore implements transparent compression where written
data is automatically compressed before being stored.

Getting the full benefit of compression requires compressing
over large 128 KiB chunks, and compression works well when
objects are written in their entirety. For partial overwrites of a
compressed object, BlueStore places the new data in a separate
location and updates metadata to point to it. When the com-
pressed object gets too fragmented due to multiple overwrites,
BlueStore compacts the object by reading and rewriting. In
practice, however, BlueStore uses hints and simple heuristics
to compress only those objects that are unlikely to experience
many overwrites.

Exploring New Interfaces
Despite multiple attempts [5, 9], local file systems are unable
to leverage the capacity benefits of SMR drives due to their
backward-incompatible interface, and it is unlikely that they
will ever do so efficiently [6]. Supporting these denser drives,
however, is important for scale-out distributed file systems
because it lowers storage costs.

Unconstrained by the block-based designs of local file systems,
BlueStore has the freedom of exploring novel interfaces and data
layouts. This has recently enabled porting RocksDB and BlueFS
to run on host-managed SMR drives, and an effort is underway
to store object data on such drives next [1]. In addition, the Ceph
community is exploring a new back end that targets a combina-
tion of persistent memory and emerging NVMe devices with
novel interfaces, such as ZNS SSDs [3].

Evaluation
This section compares the performance of a Ceph cluster using
FileStore, a back end built on a local file system, and BlueStore,
a back end using the storage device directly. We compare the
throughput of object writes to the RADOS distributed object
storage.

We ran all experiments on a 16-node Ceph cluster connected
with a Cisco Nexus 3264-Q 64-port QSFP+ 40GbE switch. Each
node had a 16-core Intel E5-2698Bv3 Xeon 2GHz CPU, 64GiB
RAM, 400GB Intel P3600 NVMe SSD, 4TB 7200RPM Seagate
ST4000NM0023 HDD, and a Mellanox MCX314A-BCCT
40GbE NIC. All nodes ran Linux kernel 4.15 on Ubuntu 18.04
and the Luminous release (v12.2.11) of Ceph. We used the default
Ceph configuration parameters and focused on write perfor-
mance improvements because most BlueStore optimizations
affect writes.

10  S P R I N G 2020 VO L . 45 , N O. 1 www.usenix.org

SYSTEMS
File Systems Unfit as Distributed Storage Back Ends: Lessons from 10 Years of Ceph Evolution

Figure 3 shows the throughput for different object sizes written
with a queue depth of 128. At the steady state, the throughput on
BlueStore is 50–100% greater than FileStore. The throughput
improvement on BlueStore stems from avoiding double writes
and consistency overhead.

Figure 4 shows the 95th and above percentile latencies of object
writes to RADOS. BlueStore has an order of magnitude lower
tail latency than FileStore. In addition, with BlueStore the tail
latency increases with the object size, as expected, whereas with
FileStore even small-sized object writes may have high tail
latency, stemming from the lack of control over writes.

The read performance on BlueStore (not shown) is similar or
better than on FileStore for I/O sizes larger than 128 KiB; for
smaller I/O sizes, FileStore is better because of the kernel read-
ahead. BlueStore does not implement read-ahead on purpose. It
is expected that the applications implemented on top of RADOS
will perform their own read-ahead.

Conclusion
Distributed file system developers conventionally adopt local
file systems as their storage back end. They then try to fit the
general-purpose file system abstractions to their needs, incur-
ring significant accidental complexity [4]. At the core of this
convention lies the belief that developing a storage back end
from scratch is an arduous process, akin to developing a new
file system that takes a decade to mature.

Our paper, relying on the Ceph team’s experience, showed this
belief to be inaccurate. Furthermore, we found that developing
a special-purpose, userspace storage back end from scratch
(1) reclaimed the significant performance left on the table when
building a back end on a general-purpose file system; (2) made it
possible to adopt novel, backward-incompatible storage hard-
ware; and (3) enabled new features by gaining complete control
of the I/O stack. We hope that this experience paper will initiate
discussions among storage practitioners and researchers on
fresh approaches to designing distributed file systems and their
storage back ends.

Figure 3: Throughput of steady state object writes to RADOS on a 16-
node all-HDD cluster with different sizes using 128 threads. Compared
to FileStore, the throughput is 50–100% greater on BlueStore and has a
significantly lower variance.

Figure 4: 95th and above percentile latencies of object writes to RADOS
on a 16-node all-HDD cluster with different sizes using 128 threads.
BlueStore (top graph) has an order of magnitude lower tail latency than
FileStore (bottom graph).

SYSTEMS
File Systems Unfit as Distributed Storage Back Ends: Lessons from 10 Years of Ceph Evolution

References
[1] A. Aghayev, S. Weil, G. Ganger, and G. Amvrosiadis, “Rec-
onciling LSM-Trees with Modern Hard Drives Using BlueFS,”
Technical Report CMU-PDL-19-102, CMU Parallel Data
 Laboratory, April 2019.

[2] A. Aghayev, S. Weil, M. Kuchnik, M. Nelson, G. R. Ganger,
and G. Amvrosiadis, “File Systems Unfit as Distributed Stor-
age Back Ends: Lessons from 10 Years of Ceph Evolution,” in
Proceedings of the 27th ACM Symposium on Operating Systems
Principles (SOSP ’19), pp. 353–369.

[3] M. Bjørling, “From Open-Channel SSDs to Zoned Name-
spaces,” 2019 Linux Storage and Filesystems Conference (Vault
’19), USENIX Association, 2019: https://www.usenix.org
/conference/vault19/presentation/bjorling.

[4] F. P. Brooks Jr., “No Silver Bullet—Essence and Accident in
Software Engineering,” in Proceedings of the IFIP 10th World
Computing Conference, 1986, pp. 1069–1076.

[5] D. Chinner, “SMR Layout Optimization for XFS,” March
2015: http://xfs.org/images/f/f6/Xfs-smr-structure-0.2.pdf.

[6] J. Edge, “Filesystem Support for SMR Devices,” March 2015:
https://lwn.net/Articles/637035/.

[7] C. Hellwig, “XFS: The Big Storage File System for Linux,”
;login:, vol. 34, no. 5 (October 2009): https://www.usenix.org
/system/files/login/articles/140-hellwig.pdf.

[8] Facebook Inc., RocksDB Merge Operator, 2019: https://
github.com/facebook/rocksdb/wiki/Merge-Operator
-Implementation.

[9] A. Palmer, “SMRFFS-EXT4—SMR Friendly File System,”
2015: https://github.com/Seagate/SMR_FS-EXT4.

[10] Wikipedia, Cache flushing: https://en.wikipedia.org/wiki
/Disk_buffer#Cache_flushing.

2020 USENIX Annual Technical Conference
JULY 15 –17, 2020 • BOSTON, MA , USA
www.usenix.org/atc20

The 2020 USENIX Annual Technical Conference will bring together leading systems researchers for cutting-edge systems
research and the opportunity to gain insight into a wealth of must-know topics, including virtualization, system and network
management and troubleshooting, cloud and edge computing, security, privacy, and trust, mobile and wireless, and more.

Registration will open in May 2020.

Save the Dates!

Ethan Miller, University of California, Santa Cruz

The Future of the Past: Challenges in
Archival Storage

Radhika Nagpal, Harvard University

The Pursuit of Collective Intelligence
(and Happiness) in Science

Margo Seltzer, University of British Columbia

The Fine Line between Bold and
Fringe Lunatic

The first USENIX Lifetime Award Keynote!

Keynote Speakers

https://www.usenix.org/conference/vault19/presentation/bjorling
https://www.usenix.org/conference/vault19/presentation/bjorling
http://xfs.org/images/f/f6/Xfs-smr-structure-0.2.pdf
https://lwn.net/Articles/637035/
https://www.usenix.org/system/files/login/articles/140-hellwig.pdf
https://www.usenix.org/system/files/login/articles/140-hellwig.pdf
https://github.com/facebook/rocksdb/wiki/Merge-Operator-Implementation
https://github.com/facebook/rocksdb/wiki/Merge-Operator-Implementation
https://github.com/facebook/rocksdb/wiki/Merge-Operator-Implementation
https://github.com/Seagate/SMR_FS-EXT4
https://en.wikipedia.org/wiki/Disk_buffer#Cache_flushing
https://en.wikipedia.org/wiki/Disk_buffer#Cache_flushing

12  S P R I N G 2020 VO L . 45 , N O. 1 www.usenix.org

SYSTEMS

Notary
A Device for Secure Transaction Approval

A N I S H A T H A L Y E , A D A M B E L A Y , M . F R A N S K A A S H O E K , R O B E R T M O R R I S ,
A N D N I C K O L A I Z E L D O V I C H

Hardware wallets, USB keys with a display, buttons, and the ability to run custom code, aim
to provide a secure platform for approving transactions such as bank transfers and crypto-
currency transactions. By moving security-critical approval decisions to the device, hard-
ware wallets remove the need to trust relatively complex and bug-prone computers to achieve
overall application security. Hardware wallets run multiple applications, which need to be
isolated from each other. Existing wallets do this using a traditional operating system design
that relies on hardware protection mechanisms like CPU privilege levels and memory
protection, but, unfortunately, existing wallets suffer from bugs similar to those that plague
traditional computer operating systems.

Notary is a new hardware wallet that aims to avoid many of these bugs by design. Notary
achieves strong isolation using reset-based switching, along with the use of a physically sepa-
rate system-on-a-chip for running untrusted code. Notary has a machine-checked proof of
the hardware’s register-transfer level (RTL) design and software, showing that reset-based
switching leaks no state between applications. We built a hardware/software prototype of
Notary, along with a number of apps that run on the device, and demonstrated that Notary’s
design avoids many bugs that affect past hardware wallets.

The Hardware Wallet Paradigm
Users routinely rely on their computers or smartphones to perform and approve security-
critical operations. These operations include financial operations, such as bank transfers
and cryptocurrency transactions, and non-financial operations, such as system administra-
tion tasks like deleting backups or modifying DNS records. The security of these operations
relies on the security of the application as well as the underlying platform. Unfortunately,
modern computers are inadequate for this purpose because they have complicated software
stacks that are full of bugs; even smartphones, often thought to be more secure than PCs,
have fallen victim to jailbreaks and malware. On these platforms, buggy or malicious appli-
cations might tamper with security-critical operations. Is it possible to achieve security for
sensitive transactional operations even when the PC and smartphone are compromised?

Recently, we have seen an increase in the adoption of two-factor authentication (2FA)
devices such as Universal 2nd Factor (U2F) tokens, devices that usually come in the shape
of a small USB stick and augment the PC to provide additional security for logins. However,
these 2FA devices are a bit of a red herring when we are worried about the security of the
platform itself, because 2FA devices authenticate the login process but not the rest of the
interaction with the application. This helps defend against a certain class of attacks, such

Anish Athalye is a PhD student
in the PDOS group at MIT,
 working on systems, secu-
rity, and formal verification.
aathalye@mit.edu

Adam Belay is an Assistant
Professor of Computer Science
at MIT’s Electrical Engineering
and Computer Science (EECS)
department, and a member of

the Computer Science and Artificial Intelligence
Lab. He received a PhD from Stanford for his
work on high performance networking. Recent
projects include Shenango, an operating system
that improves datacenter efficiency, and Shin-
juku, a system that uses fine-grained preemp-
tion to reduce tail latency. His current research
focuses on the intersection of hardware and
software, with an emphasis on improving secu-
rity and performance. abelay@mit.edu

Frans Kaashoek is the Charles
Piper Professor in MIT’s EECS
department and a member of
CSAIL, where he co-leads the
Parallel and Distributed Operat-

ing Systems Group (http://www.pdos.csail
.mit.edu/). Frans is a member of the National
Academy of Engineering and the American
Academy of Arts and Sciences, and the recipi-
ent of the ACM SIGOPS Mark Weiser award
and the 2010 ACM Prize in Computing. He
was a cofounder of Sightpath, Inc. and Mazu
Networks, Inc. His current research focuses on
verification of system software.
kaashoek@ mit.edu

Notary is a new design for a hardware wallet, a type of security token
that is used to protect sensitive transactional operations like crypto-
currency transfers. Notary aims to be more secure than past hard-

ware wallets by eliminating classes of bugs by design and by formally proving
the correctness of the key operation used in its implementation. We built a
physical prototype of Notary and showed that it achieves functionality simi-
lar to existing hardware wallets while avoiding many bugs that affect them.

http://www.pdos.csail.mit.edu/
http://www.pdos.csail.mit.edu/
mailto:kaashoek@mit.edu

www.usenix.org S P R I N G 2020 VO L . 45 , N O. 1 13

Nickolai Zeldovich is a Professor
of EECS at MIT and a member
of the Computer Science and
Artificial Intelligence Lab. He
received his PhD from Stanford

University in 2008. Recent projects by Prof.
Zeldovich and his students and colleagues
include the CryptDB encrypted database, the
STACK tool for finding undefined behavior bugs
in C programs, the FSCQ formally verified file
system, the Algorand cryptocurrency, and the
Vuvuzela private messaging system. His cur-
rent research lies in building practical verified
systems. nickolai@csail.mit.edu

as a stolen password: an attacker would not be able to log in to a victim account without the
second factor. But it does not help when the platform is compromised: malware on a user’s
computer waits until the user logs in to a target service (using their U2F token), and then the
malware uses the valid session to perform malicious actions.

In contrast, hardware wallets can provide security even when the user’s computer is com-
promised. In the hardware wallet paradigm, an application is refactored to separate out
security-critical approval decisions from the rest of the application. An untrusted part of
the application runs on the user’s PC, while a trusted security-critical agent runs on the
hardware wallet and is used for approving transactions. The wallet has a display where it
shows the user a transaction, and it has buttons to allow the user to confirm or deny the
transaction. The approval is required to go through the hardware wallet, and this is gener-
ally enforced by requiring a signature with a private key that’s stored only in the wallet.

Cryptocurrencies already fit this paradigm where the approval decision is cleanly separated
out, and in fact, hardware wallets are already popular with users of cryptocurrencies. For
example, users run Bitcoin wallet software on their PC, where they can view their balance,
view past incoming and outgoing transactions, and set up transfers, but they cannot actually
transfer currency. To send bitcoins, the user crafts a transaction on their PC and sends it
to their hardware wallet, which parses the transaction and displays on its screen a human-
readable description like “send 1.3 BTC to 1M3K...vUQ7.” Only if the user presses a “confirm”
button on the hardware wallet does the device sign the transaction, which enables it to be
processed by the Bitcoin network.

The paradigm of authenticating transactions on a separate, secure device has gained traction
among cryptocurrency users, perhaps due to the high-stakes nature of irreversible transac-
tions. The idea has not yet caught on with more traditional client-server applications like
web apps, but there has been some progress in that direction. For example, the Web Authen-
tication API has an extension for transaction authorization, which allows for displaying a
prompt string on an authenticator device and receiving confirmation from the user [1].

Hardware Wallets Can Have Bugs Too
With hardware wallets, the PC is removed from the trusted computing base: security
depends only on the wallet, which is a big win in terms of security. These devices are much
simpler than PCs, and the belief is that while the PC may have been difficult to make secure,
the simplicity of wallets allows for more secure designs.

Most hardware wallets today are fixed-function, in the sense that they don’t run third-party
code: they have built-in support for some fixed set of agents, for example a particular set
of cryptocurrencies, and users depend on the firmware vendor to add support for specific
applications. This has the obvious downside in terms of usability: when new applications
come out, such as a new cryptocurrency, users have to hope that the device manufacturer
implements support. The developer of the cryptocurrency has no power to add the support
themselves. On the other hand, high-end wallets on the market, such as the Ledger wallet
[2], support downloading and running multiple third-party agent applications on the device.
This is great for usability, but it adds considerable complexity, requiring that the device be
capable of isolating agents from each other, because these third-party agents could be buggy
or malicious.

Current devices achieve this by multiplexing the shared hardware between mutually
untrusting agents with a traditional operating system using hardware protection mecha-
nisms like CPU privilege modes and memory protection. This leads to the potential for
the same kinds of bugs that exist in PC operating systems. And, indeed, existing hardware
wallets have suffered from isolation bugs in memory protection configuration, system call

Robert Morris is a Professor in
MIT’s EECS department and a
member of the Computer Sci-
ence and Artificial Intelligence
Laboratory. He received a PhD

from Harvard University for work on model-
ing and controlling networks with large num-
bers of competing connections. His interests
include operating systems and distributed
 systems. rtm@csail.mit.edu

SYSTEMS
Notary: A Device for Secure Transaction Approval

14  S P R I N G 2020 VO L . 45 , N O. 1 www.usenix.org

SYSTEMS
Notary: A Device for Secure Transaction Approval

implementations, and driver code [3, 4]. There is also potential
for hardware-related bugs: any shared hardware state could
potentially be used to infer information about other applications
(this is what is happening in attacks like Spectre, for example).

Notary’s Approach
Notary is a hardware wallet that aims to avoid by design many of
the security issues that affect past wallets. Notary doesn’t rely
on hardware protection mechanisms like CPU privilege modes
or memory protection, and it doesn’t have any system calls or
even an operating system in the traditional sense. Instead,
Notary is built around the idea of achieving isolation by using
a dedicated system-on-a-chip (SoC), with its own CPU and
memory, to run untrusted programs. Notary runs one program
at a time on this chip, and it completely resets this chip (and
all of its internal state) when switching between programs, a
primitive that’s formalized and proven correct in our prototype.
Running untrusted code on the dedicated SoC is orchestrated by
a separate chip that never runs third-party code.

Figure 1 illustrates Notary’s design. The design is structured
around physical separation. Notary consists of two security
domains, each with its own separate system-on-a-chip (SOC),
which includes a CPU, ROM, RAM, and peripherals such as
UART. One domain runs the kernel, and one domain runs third-
party agent code. The Kernel SoC manages persistent storage
and switching between agents; no third-party code ever runs
on the Kernel SoC. The Agent SoC, which has no mutable non-
volatile storage, runs agent applications one-at-a-time directly
on raw hardware (with no OS to protect the hardware). The
Agent SoC has direct access to the user I/O path, the buttons
and display, as well as access to USB to communicate with the
outside world.

In this architecture, after the user chooses an agent to run, it is
launched as follows. First, the Kernel SoC resets the Agent SoC
and clears all of its internal state. Next, the Kernel SoC reads an

agent’s code, keys, and data from persistent storage and sends it
over the UART; on the other side of the UART, the Agent SoC’s
bootloader receives the code/data, saves it in RAM, and executes
it. At this point, the agent runs directly on top of the hardware on
the Agent SoC, not requiring further interaction with the Kernel
SoC. The agent has access to everything it needs: its own code
and data, the user I/O path, and communication to the outside
world. It can do its job, such as displaying a Bitcoin transaction,
receiving confirmation from the user, and sending a signed
transaction out via USB. Finally, when the agent is done, it has
only one way of interacting with the Kernel SoC: a “save and
exit” operation, where the agent requests termination, optionally
supplying a new persistent state. After this, to run a different
agent on the device, the process starts over, beginning with
clearing state in the Agent SoC. Notary’s separation architecture
has analogs for all the operations that hardware wallets gener-
ally support: factory-resetting the device, installing/removing
agents, and launching agents.

In Notary’s design, the decision to connect user I/O and USB
directly to the Agent SoC is important for security. An alter-
native design might connect these to the Kernel SoC, but that
would be undesirable because it would introduce the need to
have communication between the Agent SoC and Kernel SoC
during regular agent operation, adding complexity by requiring
a large number of system calls beyond the single save/exit “sys-
tem call” that Notary supports.

In Notary’s design, it is safe to give untrusted code raw access
to the user I/O and USB peripherals because the state clearing
operation covers peripherals: if a malicious or buggy agent puts
the display or USB controller into a bad state, the reset and state
clearing operation will fix it. Furthermore, having the display
connected to the Agent SoC running potentially untrustworthy
code does not introduce the possibility of confusing the user, due
to Notary’s reset-based workflow. The user switches applica-
tions by restarting the entire device, which makes the kernel
start a special agent, the application launcher, on the Agent SoC.
The user can unambiguously select an agent to run, and after
that point, the chosen agent has exclusive control over user I/O
until the device is restarted.

With this architecture, Notary achieves isolation between two
agents running one after another on the same chip. Running
agent code directly on top of raw hardware, using reset as a
mechanism to switch agents, obviates the need for a traditional
operating system and hardware protection mechanisms, which
can be error-prone to program. Performing state clearing, wip-
ing out all state in the Agent SoC between running different
agents, ensures that one agent’s secrets can’t leak to another.
Essentially, Notary boils isolation between agents down to state
clearing.

Figure 1: Notary’s design physically separates trust domains with an SoC
per domain and a simple interconnect between trust domains (reset wire
and UART). Untrusted programs are run one-at-a-time on the Agent SoC,
which has its state cleared between running agents.

www.usenix.org S P R I N G 2020 VO L . 45 , N O. 1 15

SYSTEMS
Notary: A Device for Secure Transaction Approval

State Clearing
Clearing all internal state in a SoC turns out to be challenging,
and simple approaches don’t work.

At first, we thought that asserting the reset line of an SoC might
be adequate. It turns out that ISAs don’t guarantee that reset
clears internal state; for example, the RISC-V ISA says that
the program counter is set to an implementation-defined reset
 vector, and all other state is undefined [5]. In practice, many
chips implement reset such that it only does the minimal work
necessary to get the chip going again. For example, on our SoC,
asserting the reset line did set the program counter to a well-
known value, but it left much state inside the SoC untouched,
including in registers, some CPU-internal caches, RAM, and
peripherals.

Another approach we considered is power cycling the SoC to
clear its internal state. However, research has shown that state
inside these chips can persist for minutes without power [6].
Notary applies state clearing before every application switch,
so a delay of several minutes to clear state would translate to a
delay of several minutes when launching any application, mak-
ing the device unusable. Furthermore, powering off the SoC
for a few minutes provides no guarantees that state is actually
cleared.

Provably Correct Software-Based State Clearing
Notary’s approach is to use software to clear an SoC’s state. The
idea is that asserting the reset line resets the program counter,
so it can return control to software in boot ROM that can com-
plete the job of clearing all state in the chip, as shown in Figure 2.
The idea of having initialization code run on startup is not new,
but Notary’s boot code is doing something unusual: it’s aiming to
clear every bit of state internal to the SoC, which includes details

that don’t even exist at the ISA level, such as microarchitectural
state. Writing this boot code is a challenge; it’s not immediately
obvious that writing such code will even be possible. We nor-
mally think about code at the abstract machine level, consulting
the ISA specification to understand its behavior, but in Notary’s
case, we need this code to affect internal state.

To help develop this boot code and convince ourselves that it’s
correct, we built a tool that analyzes an SoC’s implementation at
the gate level to determine whether the boot code successfully
clears all internal state in all situations. The tool takes Verilog
code that describes the SoC, converts it to a format compatible
with SMT solvers, and then checks whether boot code running
on the chip satisfies our correctness property by simulating the
circuit symbolically.

Notary’s boot code for its simple RISC-V-based SoC, built on the
PicoRV32 [7], is formally verified to clear all SoC-internal state
correctly using this tool. We are currently working on applying
this technique to more complex SoCs.

Prototype
We built a hardware/software prototype of Notary, along with
a number of agents that run on the device: a Bitcoin agent and a
general-purpose web app approval agent similar to Web Authen-
tication. Figure 3 shows our prototype running the Bitcoin agent
in the process of approving a transaction. In our prototype, the
heavyweight reset-based approach for launching agents takes
about 135 ms, fast enough for interactive use. Of this, 7 ms are
spent running the formally verified state clearing code, with most
of that time used clearing RAM, and the rest spent copying the
agent code/data to the Agent SoC over the relatively slow UART.

Figure 2: A schematic of Notary’s Agent SoC. Carefully written code in
boot ROM clears all internal state in the SoC after reset.

Figure 3: Notary prototype running a Bitcoin wallet agent

16  S P R I N G 2020 VO L . 45 , N O. 1 www.usenix.org

SYSTEMS
Notary: A Device for Secure Transaction Approval

Conclusion
Notary is a case study in designing for security. Notary sim-
plifies software (e.g., using reset-based agent switching) and
wastes resources (e.g., using physical separation) in order to
achieve strong isolation and defense in depth. This separation
and reset-based switching eliminates by design classes of bugs
that affect traditional user/kernel co-resident designs, includ-
ing OS bugs, microarchitectural side-channels, and certain
hardware bugs. Notary can improve the security of applications
where the crucial transaction decision can be succinctly sum-
marized and delegated to a strongly isolated agent running on
Notary.

So far, cryptocurrencies have embraced hardware wallets, with
significant adoption by users. In the future, we hope to see more
applications be refactored to take advantage of the enhanced
security that hardware wallets offer.

The full Notary paper is available at https://pdos.csail.mit.edu
/papers/notary:sosp19.pdf.

References
[1] W3C, “Web Authentication: An API for Accessing Pub-
lic Key Credentials,” March 2019: https://www.w3.org/TR
/webauthn.

[2] “Ledger Hardware Wallets”: https://www.ledger.com.

[3] Riscure Team, “Hacking the Ultra-Secure Hardware
Crypto wallet,” August 2018: https://www.riscure.com/blog
/hacking-ultra-secure-hardware-cryptowallet.

[4] C. Guillemet, “Firmware 1.4: Deep Dive into Three Vulner -
-abilities which Have Been Fixed,” March 2018: https://www
.ledger.com/2018/03/20/firmware-1-4-deep-dive-security
-fixes.

[5] A. Waterman and K. Asanovic, “The RISC-V Instruction
Set Manual, Volume II: Privileged Architecture,” June 2019:
https://riscv.org/specifications/privileged-isa.

[6] A. Rahmati, M. Salajegheh, D. E. Holcomb, J. Sorber, W. P.
Burleson, and K. Fu, “TARDIS: Time and Remanence Decay in
SRAM to Implement Secure Protocols on Embedded Devices
without Clocks,” in Proceedings of the 21st USENIX Security
Symposium, 2012, pp. 221–236: https://www.usenix.org/system
/files/conference/usenixsecurity12/sec12-final71.pdf.

[7] C. Wolf, “PicoRV32—A Size-Optimized RISC-V CPU,”
2019: https://github.com/cliffordwolf/picorv32.

https://pdos.csail.mit.edu/papers/notary:sosp19.pdf
https://pdos.csail.mit.edu/papers/notary:sosp19.pdf
https://www.w3.org/TR/webauthn
https://www.w3.org/TR/webauthn
https://www.ledger.com
https://www.riscure.com/blog/hacking-ultra-secure-hardware-cryptowallet
https://www.riscure.com/blog/hacking-ultra-secure-hardware-cryptowallet
https://www.ledger.com/2018/03/20/firmware-1-4-deep-dive-security-fixes
https://www.ledger.com/2018/03/20/firmware-1-4-deep-dive-security-fixes
https://www.ledger.com/2018/03/20/firmware-1-4-deep-dive-security-fixes
https://riscv.org/specifications/privileged-isa
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final71.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final71.pdf
https://github.com/cliffordwolf/picorv32

www.usenix.org S P R I N G 2020 VO L . 45 , N O. 1 17

AI/MLArtificial Intelligence
Ethics in Practice

J E S S I C A C U S S I N S N E W M A N A N D R A J V A R D H A N O A K

Jessica Cussins Newman is
a Research Fellow at the UC
Berkeley Center for Long-
Term Cybersecurity where
she leads the AI Security

Initiative. She is also an AI Policy Specialist
for the Future of Life Institute and a Research
Advisor with The Future Society. Jessica
was a 2016–17 International and Global
Affairs Student Fellow at Harvard’s Belfer
Center, and has held research positions with
Harvard’s Program on Science, Technology,
and Society and the Center for Genetics
and Society. Jessica received her master’s
degree from the Harvard Kennedy School
and her bachelor’s from the University of
California, Berkeley, with highest distinction
honors. jessica.cussins@berkeley.edu.

Rajvardhan Oak is a graduate
student at the UC Berkeley
School of Information. His
research interests are security,
privacy, and their intersection

with machine learning. He obtained his
bachelor’s degree in computer science from
the University of Pune, India. Presently, he
is a graduate researcher at the UC Berkeley
Center for Long Term Cybersecurity, where
he works at the Citizen Clinic and is involved
in several public interest projects for low-
resource organizations. rvoak@berkeley.edu

The role of ethics in AI is sometimes contested, particularly as companies are accused of
“ethics washing” in an effort to gain consumer trust while avoiding regulation. Ethics is
an important lens for consideration but should not be a substitute for fundamental rights,
human rights, or requirements by national and international law. Though this article focuses
on AI ethics, it references meaningful intersections with politics, justice, and rights.

Why AI?
From health care to education, from space science to genomic research, AI has revolution-
ized the way we make decisions. The rise of AI, coupled with the development of computing
technology, has allowed us to quickly look at vast amounts of data, discern useful patterns,
and use our findings to shape future directions in research or business. Initially intended to
be a tool for data analysis and classification tasks, machine learning has now been used to
write stories, synthesize images, and even compose music. The desire for AI is understand-
able; in many cases humans simply cannot match the speed, accuracy, pattern recognition,
and large-number-crunching ability of these algorithms. By 2030, AI technologies are
expected to contribute $15.7 trillion to the global economy.

What Counts?
The economic promise of AI has led some companies to exaggerate the abilities of their prod-
ucts and services. Companies are able to exploit confusion about what counts as AI because
artificial intelligence is an umbrella term, encompassing large sub-fields, including machine
learning and deep learning. A simple overarching definition of AI that accounts for the diver-
sity of methodologies actively used is, “a collection of technologies that can enable a machine
or system to sense, comprehend, act, and learn” [1]. AI is also considered to be an omni-use
technology, meaning that AI technologies have many uses across countless domains, includ-
ing for good and for ill.

Four Categories
The rise and integration of machine intelligence into the world around us raises numerous
ethical challenges, which can be considered to fall within four categories: design, process,
use, and impact. The design category includes decisions about what to build, how, and for
whom. The process category includes decisions about how to support transparency and
accountability through institutional design. The use category includes ways in which AI

This article describes key ethical challenges associated with the design,
process, use, and impacts of artificial intelligence. We go beyond nam-
ing the problems that have garnered significant attention in recent

years, and additionally reference several ongoing efforts to mitigate and man-
age key ethical concerns. This article is part of a series about ethics intended
to encourage ongoing discussion and debate in the research community about
ethical considerations that may arise in the course of networking, security,
and systems research. We hope that this article will result in researchers as
well as industry practitioners being more mindful in their design and use of
AI systems.

18  S P R I N G 2020 VO L . 45 , N O. 1 www.usenix.org

AI/ML
Artificial Intelligence: Ethics in Practice

systems can be used and misused to cause harm to individuals
or groups. Lastly, the impact category includes ways in which
AI technologies result in broader social, political, psychological,
and environmental impacts.

Design
AI systems emerge as a result of numerous human decisions.
Many of these may seem innocuous, but they can have profound
implications. Most AI systems work by training on large data
sets and learning to associate features with outcomes. Machine
learning aims to establish a relationship between a target vari-
able and one or more feature variables. It optimizes the param-
eters of this relation so that the predicted value is as close as
possible to the ground truth. However, these systems still make
mistakes that a human would never make. Data sets are always
imperfect representations of reality and can generate blind spots
and biases. Ethical AI is not just judicious use of AI but also
thinking carefully about what goes into making these systems.

For example, the tech giant Amazon had been using AI to iden-
tify talent and match candidates to jobs since 2014. In 2018, it
was discovered that their algorithms systematically discrimi-
nated against female candidates. The AI taught itself that the
company would prefer male candidates over female ones. For
example, according to experts, the system would downgrade
candidates from two prominent women’s colleges. The algorithm
does not know that it is discriminating against women; it simply
notices that if it does not select candidates with a certain value
(0 or 1) for gender, the results are closer to a defined goal. The
problem, in this case, lies in the data that the AI is trained on.
Amazon used data that included 10 years of resumes, but only
a fraction of them came from women due to women’s historical
underrepresentation in the technology industry. The AI system,
therefore, ranked male candidates over female candidates, since
it had seen a greater number of them succeeding.

These failure modes are particularly disturbing when they
impact people’s livelihoods. In April 2019, over 40,000 residents
of Michigan were falsely accused of unemployment fraud based
solely on decisions by a machine learning-based computer pro-
gram. They were forced to repay money, along with substantial
penalties. Although the Supreme Court eventually ruled against
the governor’s office, the fines caused substantial financial bur-
den and even forced some into bankruptcy.

Other design decisions include the composition of engineering
teams, and decisions about what technology to build, and for
whom. Fewer than 14% of AI researchers are women, and that
percentage has decreased over the last 10 years [2]. Racial diver-
sity in AI fares even worse; Google’s workforce is only 2.5% Black
and 3.6% Latinx, and the percentages at Microsoft and Facebook
are similar [3]. The lack of diversity among the teams designing
AI systems can also generate blind spots.

For example, AI researcher Joy Buolamwini was a graduate
researcher at the MIT Media Lab and found that the facial
recognition algorithms she was working with could not “see” her
because of her dark skin. She realized that this was not a unique
problem; most of the facial recognition community was using the
same benchmark data sets for testing the accuracy of models,
and the data sets contained extremely limited racial representa-
tion. Facial recognition systems were considered to be “accu-
rate” when in fact they were primarily accurate for white men.
Joy founded the Algorithmic Justice League to increase aware-
ness about algorithmic bias and develop practices to promote
accountability.

Data sets generally reflect historical realities about our world,
including structural racism and sexism. When AI systems learn
from these data sets, they can then automate and amplify those
biases, all while under the veil of technological neutrality. As we
rely on algorithmic decision-making in an increasing number
of high-stakes environments, including decisions about credit,
criminal justice, and jobs, the design and training of the systems
should be an area of active consideration.

Process
Just as we need to consider the design of AI systems, we also
need to assess the processes in place to support ethical AI.
Processes include the implementation of standards and legal
requirements, the recognition of principles and best practices,
communication with users, and the monitoring of systems’
efficacy and impacts. Processes of this kind are necessary to
promote transparency and accountability as well as safety.

For example, the utility of massive amounts of data for data
analytics and machine learning has contributed to significant
privacy breaches. The European Union General Data Protec-
tion Regulation (GDPR), which went into force May 2018, is an
example of an early regulatory response to help establish data
rights and mitigate potential harms from the abuse of personal
data. Other data privacy laws have come since, including the
California Consumer Privacy Act (CCPA), which went into
effect January 2020.

Moreover, it is not common for companies to be forthright about
the weaknesses of their models, which can lead to the over-
estimation of a system’s abilities. Unfortunately, we have learned
that too much reliance on AI can be dangerous. For example,
Uber has been testing their autonomous vehicle technology in
Arizona since early 2017. In a shocking incident, a car running in
the automatic mode ran a woman over which led to her death. In
a similar incident in 2016, a Tesla car running in autopilot mode
collided with a truck, leading to the driver’s death. Both these
cars had human drivers behind the wheel, human drivers who
deferred to AI to make the right decision.

www.usenix.org S P R I N G 2020 VO L . 45 , N O. 1 19

AI/ML
Artificial Intelligence: Ethics in Practice

Another flaw in AI systems that requires mitigation and moni-
toring is the susceptibility to adversarial attacks [4]. Adversarial
examples are those that have been crafted specifically to fool
a classifier. Typically, these are constructed by adding a small
perturbation to the input. This change is so small that humans
cannot identify it; but an algorithm might produce a completely
different result. The reason for this is that neural networks,
which lie at the heart of most classifiers today, are highly com-
plex and consist of a number of sum functions of logarithms and
exponents. As a result, a small change in the input can result in
unexpectedly large changes in the output. Research has shown
that minor alterations to text, such as dropping a character or
capitalizing a letter, can lead to hateful and obscene content
being classified as safe. In another example, minute, pixel-level
changes to images led a classifier to falsely classify them as
facial images.

All machine learning models are capable of making mistakes and
being tricked in these ways. And these flaws can be exploited to
damaging effect in the real world. For example, researchers have
shown how adversarial attacks can be used to confuse medical
imaging software, leading to incorrect diagnoses. There are not
well-established norms around the mitigation and communica-
tion of these risks, and better processes are needed.

Use
Another category of ethical dilemmas associated with AI stems
from the technology’s broad array of possible uses and misuses.
For example, recent advances in AI systems capable of generat-
ing synthetic text, audio, and video have beneficial uses, but they
can also be used to cause significant harm. Language models
can write short stories and poetry, but they can also generate
misleading news articles, impersonate others online, automate
the production of abusive content, and automate phishing
content. Generative Adversarial Networks (or GANs) can look at
thousands of images of people, learn how faces are constructed,
and generate new faces of people who do not exist.

Deepfakes can insert anyone’s face into existing video footage,
offering a powerful tool for disinformation and information
warfare. Doctored videos can quickly spread to millions across
social media platforms and can be difficult to detect. Even when
quickly proven to be false, doctored videos can have lasting
political impact. The rise of deepfakes demands people to be
skeptical of what they see, which can breed widespread distrust
and corrode democratic processes. For now, however, deepfakes
are not widely being used for political destabilization. A study
that analyzed thousands of deepfake videos found that the vast
majority of deepfakes are being used to create pornographic
material, all of which targeted women [5].

Another consequential use of AI is facial recognition technology.
In April 2019, it was reported that the Chinese government is

using a massive network of facial recognition technology to
track and monitor the Uighurs, a largely Muslim minority. The
technology has provided unprecedented ability to automate
surveillance and repression. Use of the technology has been con-
troversial in the United States as well, where several states have
banned the use of facial recognition technology in police body
cameras and by law enforcement. Companies have also joined
the call for greater regulation of the technology, with Microsoft,
for example, calling out the problems of discrimination, privacy
abuses, and mass surveillance [6].

AI has also been used to execute military actions. Autonomous
weapons are a controversial class of weapons that select and
attack targets with limited or no human intervention. Frequently
referred to as the third revolution in warfare, after gunpowder
and nuclear arms, these weapons may help in reducing human
casualties during wars. However, they may also cause terror and
destabilization globally; they can be used to conduct assassina-
tions, destabilize nations, and even execute terror attacks on a
large scale. In addition to these misuses, these systems are also
susceptible to adversarial attacks, biases, and mistakes. Biases
in Amazon’s systems caused discrimination against women;
biases in autonomous weapons can lead to deaths of innocent
people.

Impact
AI technologies have economic, political, social, psychological,
and environmental impacts that extend well beyond their
immediate uses. The long-term impacts to labor markets are
one example. The Organization for Economic Cooperation
and Development (OECD) estimates that AI and robotics in
advanced economies will contribute to radical changes in 32
percent of jobs and fully automate 14 percent of jobs over the
next 15–20 years, with disproportionate impacts on low-skilled
people and youth [7]. Many countries are now exploring policies
to help ease labor transitions for large numbers of people, includ-
ing retraining programs and social welfare programs.

Another shift that may occur due to AI development is the
worsening of economic inequality regionally and between
nations. Due to reliance on data and computing infrastructure,
AI companies experience network effects, meaning those at the
forefront are likely to get increasingly further ahead over time.
AI pioneer Kai-Fu Lee has warned that emerging economies
are likely to face even greater hurdles as previous pathways to
economic growth, for example in China and India, will no longer
be available due to the automation of tasks involved in repetitive
manual labor of factories and cognitive labor of call centers.

Countries are eager to ensure their economic future and are
quickly adopting strategies to generate new talent and inno-
vation. The so-called “race” for AI advancement risks other

20  S P R I N G 2020 VO L . 45 , N O. 1 www.usenix.org

AI/ML
Artificial Intelligence: Ethics in Practice

 consequential impacts, however, including international insta-
bility and underinvestment in key safety and ethical challenges.

Additionally, AI systems can have long-lasting psychological
impacts. For example, e-commerce websites use cookies and
demographic data to recommend products to customers. People
may feel objectified or unsafe because of the perception that
their behavior is being predicted at every step. Most prominent
technology platforms also optimize for time spent on their sites,
which has led to disturbing advances in “attention hacking” and
the facilitation of filter bubbles where people only encounter
familiar or provocative content they are likely to engage with.
As people communicate more frequently with AI, for example
via chatbots, there are also likely to be impacts on human emo-
tions and relationships.

AI also has implications for security infrastructure. Tradition-
ally, security consisted only of the CIA triad; confidentiality,
integrity, and authentication. Now, however, there are new loop-
holes introduced such as susceptibility to adversarial attacks and
privacy concerns due to leakage of model parameters. These new
vulnerabilities are especially significant for critical infrastruc-
ture such as nuclear plants, power grids, and election systems; we
now have to ensure security across these additional axes as well.

Lastly, the design and use of AI systems has impacts for the
environment. The carbon footprint of training a single AI model
has been estimated to result in 284 tons of carbon dioxide—five
times the number from an average car over its entire lifetime.
Deep learning is particularly energy intensive, as it requires
the use of significant computational power for processing vast
amounts of data.

Ongoing Efforts
Many institutions are cognizant of the ethical challenges
described here and have developed principles to guide their
development and use of AI. Notable examples include the
Asilomar AI Principles, developed in 2017 through a consulta-
tive multi-stakeholder process and signed by thousands of AI
researchers and others; Google’s AI Principles, developed in
2018, which notably include categories of AI applications that
the company will not pursue such as the development of weap-
ons, illegal surveillance, or technologies that would violate
international law and human rights; and the Defense Innovation
Board’s recommendations for AI principles to guide the ethical
use of AI by the Department of Defense, published in 2019. Also
in 2019, the OECD released AI Principles, which have been
endorsed by more than 40 countries as well as by the European
Commission and the G20, creating the first intergovernmental
standard for the responsible stewardship of AI.

More than two-dozen nations have also released national AI
strategies, many of which include discussion of how to manage

the ethical implications of AI [8]. For example, France and
Singapore have developed policy mechanisms to address ethical
issues, including impact assessments and an AI ethics advisory
council. In the United States, DARPA has a program dedicated
to improving the explainability of AI systems, and the NSF has a
program to promote fairness in AI systems [9].

In March 2018, The ACM Future of Computing Academy was
sufficiently concerned about the negative impacts of advances
in computing that they proposed a change to the peer review
process, recommending that peer reviewers require papers to
consider both positive and negative impacts. Listing the erosion
of privacy and threats to democracy among other concerns, they
stated, “we can no longer simply assume that our research will
have a net positive impact on the world.” The lack of attention to
potential negative consequences was described as “a serious and
embarrassing intellectual lapse.”

Others have proposed different mechanisms for minimizing
misuse. For example, when AI company OpenAI developed a new
language model capable of generating paragraphs of text based
on any prompt, the company described its concerns about how
the tool could have negative societal impacts, and announced
that they would engage in a staged release plan [10]. OpenAI
only released a small version of the model at the outset and then
subsequently released larger models over the course of nine
months alongside research papers identifying potential social
implications and threats. This process was undertaken with
the hopes of providing time for more in-depth research into the
 technology’s misuse potential.

Another important mechanism that has been proposed to pro-
mote transparency and accountability in AI is the idea of Model
Cards. In a 2018 paper titled “Model Cards for Model Reporting,”
AI researchers proposed that machine learning models should be
accompanied by documentation that details their performance
characteristics [11]. This is intended to provide benchmarks for
evaluation, including whether the model performs consistently
across diverse populations, and to clarify intended uses and ill-
suited contexts. Model cards are designed to be accessible for both
technical and non-technical audiences, and to provide further
transparency about how models were trained. Google recently
established a web resource to further promote the idea [12].

Algorithmic impact assessments are another tool being used to
promote AI accountability [13]. They are intended to examine
the use of AI systems; evaluate their impacts on fairness, justice,
bias, and other concerns; and to track impacts over time. Addi-
tionally, human rights impact assessments, a tool more broadly
used for managing the human rights impacts of businesses,
projects, and products, are being proposed for use with AI [14].
Predictive policing, targeted surveillance, and disinformation,
among other uses of AI, can threaten universal rights. Human

www.usenix.org S P R I N G 2020 VO L . 45 , N O. 1 21

AI/ML
Artificial Intelligence: Ethics in Practice

rights impact assessments are a key part of the UN Guiding
Principles on Business and Human Rights and have been used
since 2011. For example, Oxfam America and the Farm Labor
Organizing Committee conducted a human rights impact
assessment to investigate the state of migrant labor in North
Carolina’s tobacco industry [15].

Conclusion
AI technologies are not neutral but are created with human goals
in mind, taught by human data, and put to use to fulfill human
needs; they necessarily have ethical implications. The question
is how to increase awareness and establish practices to promote
the ethical development of AI that is robust well into the future.
Risks of ignoring AI ethics include losing trust from users and
the public, as well as pushing away limited talent. The devel-
opment of ethical AI is a necessary component of sustainable
market competition and global leadership.

This article outlined key ethical challenges at stake with arti-
ficial intelligence, broken down into four categories of design,
 process, use, and impact. The article also referenced several

ongoing efforts to achieve the goals of ethical AI including
principles, strategies, publishing norms, and mechanisms for
accountability.

In real-world decision-making scenarios, actors are likely to face
tradeoffs between these different considerations. Few ethical
guidelines address questions of prioritization, but most organi-
zations will experience the need to decide how to weigh com-
peting values in a given situation. For example, in some cases,
there may be a tradeoff between fairness or explainability and
accuracy in a machine learning model. Given limited resources,
there is also a tradeoff in terms of where to focus.

The need for robust ethical assessment is likely to vary depend-
ing on the degree of risk and impact of a given system. However,
ethics should not be thought of as an add-on to be considered at
the end of production but as a key part of the design process from
the outset. Similar to the concept of privacy by design, we need
to inculcate the culture of ethics by design. The research com-
munity is already at the forefront of many of these debates and is
well positioned to play a key role in shaping a positive AI future.

References
[1] “What Is AI Exactly?” Accenture, September 21, 2018: https://
www.accenture.com/us-en/insights/artificial-intelligence
/what-ai-exactly.

[2] “Gender Diversity Crisis in AI: Less Than 14% of AI
Researchers Are Women with Numbers Decreasing over the
Last 10 Years,” Nesta, July 17, 2019: https://www.nesta.org.uk
/news/gender-diversity-crisis-ai-less-14-ai-researchers-are
-women-numbers-decreasing-over-last-10-years/.

[3] S. M. West, M. Whittaker, K. Crawford, “Discriminating
Systems: Gender, Race, and Power in AI,” AI Now, April 2019:
https://ainowinstitute.org/discriminatingsystems.pdf.

[4] L. Huang, A. Joseph, B. Nelson, B. Rubinstein, J. D. Tygar,
“Adversarial Machine Learning,” Proceedings of the 4th ACM
Workshop on Security and Artificial Intelligence, ACM, 2011.

[5] G. Patrini, “Mapping the Deepfake Landscape,” DeepTrace,
July 10, 2019: https://deeptracelabs.com/mapping-the-deepfake
-landscape/.

[6] B. Smith, “Facial Recognition: It’s Time for Action,” Microsoft
Blog, December 6, 2018: https://blogs.microsoft.com/on-the
-issues/2018/12/06/facial-recognition-its-time-for-action/.

[7] “The Future of Work: OECD Employment Outlook 2019,”
OECD, 2019: https://www.oecd.org/employment/Employment
-Outlook-2019-Highlight-EN.pdf.

[8] J. C. Newman, “Toward AI Security: Global Aspirations for
a More Resilient Future,” Center for Long-Term Cyber security,
February 2019: https://cltc.berkeley.edu/wp-content/uploads
/2019/02/Toward_AI_Security.pdf.

[9] “Artificial Intelligence for the American People,” United
States White House, 2019: https://www.whitehouse.gov/ai.

[10] “Better Language Models and Their Implications,” OpenAI,
February 14, 2019: https://openai.com/blog/better-language
-models/.

[11] M. Mitchell, S. Wu, A. Zaldivar, P. Barnes, L. Vasserman,
B. Hutchinson, E. Spitzer, I. D. Raji, T. Gebru, “Model Cards for
Model Reporting,” arXiv, January 14, 2019: https://arxiv.org/abs
/1810.03993.

[12] Google, “Model Cards,” 2019: https://modelcards
.withgoogle.com/about.

[13] D. Reisman, J. Schultz, M. Whittaker, K. Crawford,
“Algorithmic Impact Assessments: A Practical Framework
for Public Agency Accountability,” AI Now, April 2018: https://
ainowinstitute.org/aiareport2018.pdf.

[14] “Closing the Human Rights Gap in AI Governance,”
ElementAI, November 2019: http://mediaethics.ca/wp
-content/uploads/2019/11/closing-the-human-rights-gap-in-ai
-governance_whitepaper.pdf.

[15] Oxfam America and Farm Labor Organizing Committee,
“A State of Fear: Human Rights Abuses in North Carolina’s
Tobacco Industry,” 2011: http://hria.equalit.ie/pdf/en/22/A%20
State%20of%20Fear.pdf.

https://www.accenture.com/us-en/insights/artificial-intelligence/what-ai-exactly
https://www.accenture.com/us-en/insights/artificial-intelligence/what-ai-exactly
https://www.accenture.com/us-en/insights/artificial-intelligence/what-ai-exactly
https://www.nesta.org.uk/news/gender-diversity-crisis-ai-less-14-ai-researchers-are-women-numbers-decreasing-over-last-10-years/
https://www.nesta.org.uk/news/gender-diversity-crisis-ai-less-14-ai-researchers-are-women-numbers-decreasing-over-last-10-years/
https://www.nesta.org.uk/news/gender-diversity-crisis-ai-less-14-ai-researchers-are-women-numbers-decreasing-over-last-10-years/
https://ainowinstitute.org/discriminatingsystems.pdf
https://deeptracelabs.com/mapping-the-deepfake-landscape/
https://deeptracelabs.com/mapping-the-deepfake-landscape/
https://blogs.microsoft.com/on-the-issues/2018/12/06/facial-recognition-its-time-for-action/
https://blogs.microsoft.com/on-the-issues/2018/12/06/facial-recognition-its-time-for-action/
https://www.oecd.org/employment/Employment-Outlook-2019-Highlight-EN.pdf
https://www.oecd.org/employment/Employment-Outlook-2019-Highlight-EN.pdf
https://cltc.berkeley.edu/wp-content/uploads/2019/02/Toward_AI_Security.pdf
https://cltc.berkeley.edu/wp-content/uploads/2019/02/Toward_AI_Security.pdf
https://www.whitehouse.gov/ai
https://openai.com/blog/better-language-models/
https://openai.com/blog/better-language-models/
https://arxiv.org/abs/1810.03993
https://arxiv.org/abs/1810.03993
https://modelcards.withgoogle.com/about
https://modelcards.withgoogle.com/about
https://ainowinstitute.org/aiareport2018.pdf
https://ainowinstitute.org/aiareport2018.pdf
http://mediaethics.ca/wp-content/uploads/2019/11/closing-the-human-rights-gap-in-ai-governance_whitepaper.pdf
http://mediaethics.ca/wp-content/uploads/2019/11/closing-the-human-rights-gap-in-ai-governance_whitepaper.pdf
http://mediaethics.ca/wp-content/uploads/2019/11/closing-the-human-rights-gap-in-ai-governance_whitepaper.pdf
http://hria.equalit.ie/pdf/en/22/A%20State%20of%20Fear.pdf
http://hria.equalit.ie/pdf/en/22/A%20State%20of%20Fear.pdf

22  S P R I N G 2020 VO L . 45 , N O. 1 www.usenix.org

AI/ML

The Emerging Practice of Operational ML
USENIX OpML Conference

N I S H A T A L A G A L A A N D J O E L Y O U N G

Machine learning (ML) and its variants such as deep learning (DL) and reinforcement learn-
ing are starting to impact every commercial industry. In recognition of the growing need to
drive ML into production, and the unique technical challenges therein, USENIX launched
OpML in 2019 (Conference on Operational Machine Learning). The first conference dedi-
cated to the operational aspects of machine learning and its variants, OpML is focused on
the full life cycle of deploying and managing ML into production [1]. OpML ’19 was an ener-
getic gathering of experts, practitioners, and researchers who came together for one day in
Santa Clara, CA, to talk about the problems, practices, new tools, and cutting-edge research
on production machine learning in industries ranging from finance, insurance, health care,
security, web scale, manufacturing, and others [2].

While there were many great presentations, papers, panels, and posters (too many to talk
about individually—check out all the details here [2]), there were several emergent trends
and themes (previously described here [11]). We expect each of these will expand and become
even more prominent over the next several years as more organizations push ML into pro-
duction and adopt machine learning ops practices to scale ML in production.

Agile Methodologies Meet Machine Learning
Many practitioners emphasized the importance of iteration and continuous improvement to
achieving production ML success. Much like software, machine learning improves through
iteration and regular production releases. Those who have ML running at scale make it a
point to recommend that projects should start with either no Machine Learning or simple
Machine Learning to establish a baseline. As one practitioner put it, you don’t want to spend
a year investing in a complex deep learning solution, only to find out after deployment that a
simpler non-ML method can outperform it [3].

Bringing agility to ML also requires that the infrastructure be optimized to support agile
rollouts (and rollbacks!). This means that successful production ML infrastructure includes
automated deployment, modularity, use of microservices, and also avoiding fine-grained
optimization early on [3].

ML-Specific Production Diagnostics because ML Bugs Differ from
Software Bugs
Various presentations provided memorable examples of how ML errors not only bypass
conventional production checks but can actually look like better production performance.
For example—an ML model that fails and generates a default output can actually cause a
performance boost!

Nisha Talagala is the CEO/
Founder of Pyxeda. Previously,
Nisha co-founded ParallelM and
pioneered MLOps, acquired by
DataRobot. Nisha also drove the

USENIX Conference on Operational Machine
Learning, the first conference on production
ML. Nisha has 20 years of experience in soft-
ware, distributed systems, technical strategy,
and product leadership. Her prior roles include
Fellow at SanDisk and Fellow/Lead Architect
at Fusion-io, at Intel as Server Flash/Persistent
Memory Lead and at Gear6 as CTO. Nisha
earned her PhD at UC Berkeley, holds 69
patents, is a frequent speaker at industry/
academic events, and is a contributing writer
to several online publications.
nishatalagala@gmail.com

Joel leads LinkedIn’s Assess-
ments team and co-led LinkedIn’s
Productive Machine Learning
effort. Prior to LinkedIn, he
was an Assistant Professor

at the Naval Postgraduate School and also
at the Air Force Institute of Technology. In
addition to academia and over 20 years in the
Air Force, he was an Eagle Scout, a hospital
janitor, a carnival operator, and a ditch digger.
Joel earned his PhD in computer science from
Brown University in 2005. His research areas
include digital forensics, data mining, and
machine learning. He has also published in web
search, computational biology, and temporal
modeling. joel.d.young@gmail.com

A t OpML ’19, the first USENIX Conference on Operational Machine
Learning, we learned many useful lessons. Moving forward, we expect
the same will hold true for the second conference, coming this May

2020. In this article, we discuss some of the pragmatic practices that came
out of the first conference.

www.usenix.org S P R I N G 2020 VO L . 45 , N O. 1 23

AI/ML
The Emerging Practice of Operational ML: USENIX OpML Conference

Detecting ML bugs in production requires specialized tech-
niques like Model Performance Predictors [4], comparisons
with non-ML baselines, visual debugging tools [5], and metric-
driven design of the operational ML infrastructure. Facebook,
Uber, and other organizations experienced with large-scale
production machine learning ops, emphasized the importance of
ML- specific production metrics that range from health checks
to ML-specific (such as GPU) resource utilization metrics [6].

Rich Open Source Ecosystem for All Aspects of Machine
Learning Ops
The rich open source ecosystem for model development (with
TensorFlow, Scikit-learn, Spark, PyTorch, R, etc.) is well known.
OpML showcased how the open source ecosystem for machine
learning ops is growing rapidly, with powerful publicly avail-
able tooling used by large and small companies alike. Examples
include Apache Atlas for governance and compliance, Kubeflow
for machine learning ops on Kubernetes, MLflow for life-cycle
management, and Tensorflow tracing for monitoring. Classic
enterprise vendors are starting to integrate these open source
packages to fill solutions (see, e.g., Cisco’s support of Kubeflow).
Furthermore, web-scale companies are open sourcing the core
infrastructure that drives their production ML, such as the ML
orchestration tool TonY from LinkedIn [7].

As these tools become more prominent, full end-to-end use cases
are also being documented by practitioners, creating design pat-
terns that can be used as best practices by others.

Cloud-Based Services and SaaS Make Production
ML Easier
For a team trying to deploy ML in production for the first few
times, the process can be daunting, even with open source
tools available for each stage of the process. The cloud offers an
alternative because the resource management aspects (such as
machine provisioning, auto-scaling, elasticity, etc.) are handled
by the cloud back end. When accelerators (GPUs, TPUs, etc.) are
used, production resource management is challenging. Using
cloud services is a way to get started by leveraging the invest-
ments made by cloud providers to optimize accelerator usage.
Find out more in Ananthanarayanan et al.’s slides at [8].

Cloud deployment can also create a ramp-up path for an IT orga-
nization to try ML deployment without a large in-house infra-
structure roll out. As discussed by Wenzel and Maurice [9], even
on-premise enterprise deployments are moving to self-service
production ML models similar to cloud services, enabling the IT
organization to serve the production ML needs of multiple teams
and business units.

Leverage Expertise from At-Scale Web-Based ML
Operations for Enterprise
At-scale experts like LinkedIn, Facebook, Google, Airbnb, Uber,
and others, who were the first ML adopters, had to build from
scratch all of the infrastructure and practices needed to extract
monetary value out of ML. Now these experts are sharing not
only their code but also their experiences and hard-won knowl-
edge, which can be adopted for the benefits of enterprise. As the
Experts Panel at OpML pointed out [3], the best practices that
these organizations follow for ML infrastructure (from team
composition and reliability engineering to resource manage-
ment) contain powerful insights that enterprises can benefit
from as they seek to expand their production ML footprint.
Experiences from scale ML deployments at Microsoft and
 others [2] can show enterprises how to deliver performant
machine learning into their business applications.

Other end-to-end experiences from at-scale companies [2]
showed how business metrics can be translated into ML solu-
tions and the consequent ML solution iteratively improved for
business benefit. Finally, organizations facing the unique chal-
lenges that edge deployment places on machine learning ops
can benefit from learning of scale deployments already in place.

Moving Forward: OpML ’20
The goal of the OpML conference is to help develop robust prac-
tices for scaling the management of models (i.e., artifacts of
learning from big data) throughout their life cycle. Through
such practices, we can help organizations transition from
manual hand-holding to automated management of ML models
in production—the ML version of the move in server opera-
tions from “pets to cattle” [12]. Production ML is still a nascent
field, and OpML ’19 showcased some emerging best practices
as described above. New challenges emerge every day, however,
such as regulatory concerns brought on by GDPR and CCPA,
migrating from legacy infrastructure to cloud, and security
attacks on ML systems, just to name a few. OpML ’20, to be
held in May in Santa Clara, CA, USA, will continue the example
set by OpML ’19 and be a venue for experts, practitioners, and
researchers to discuss, debate, and share the state of the art in
Operational ML.

Summary
A great op-ed piece by Michael Jordan in Medium—“Artificial
Intelligence: The Revolution Hasn’t Happened Yet”—highlighted
the importance of an engineering practice for AI [9]. OpML ’19,
the first Machine Learning Ops conference, illustrated how the
ML and AI industry is maturing in this direction, with more and

24  S P R I N G 2020 VO L . 45 , N O. 1 www.usenix.org

AI/ML
The Emerging Practice of Operational ML: USENIX OpML Conference

more organizations either struggling with the operational and
life-cycle management aspects of machine learning in produc-
tion, or pushing to scale ML operations and develop operational
best practices. This is great news for the AI industry since it is a
step further towards generating real ROI from AI investments.
OpML ’20, following last year’s success, will continue to support
and bring together the Operational ML community and help
realize the long-awaited potential of AI business value. Please
join us at OpML ’20! [13].

References
[1] OpML ’19: https://www.usenix.org/conference/opml19.

[2] OpML ’19 Program: https://www.usenix.org/conference
/opml19/program.

[3] J. Young, “How the Experts Do It: Production ML at Scale,”
June 7, 2019: https://www.linkedin.com/pulse/how-experts-do
-production-ml-scale-joel-young/.

[4] S. Ghanta, S. Subramanian, L. Khermosh, H. Shah, Y. Gold-
berg, S. Sundararaman, D. Roselli, N. Talagala, “MPP: Model
Performance Predictor” (slides): https://www.usenix.org
/sites/default/files/conference/protected-files/opml19_slides
_ghantapdf.pdf.

[5] L. Li, Y. Bai, Y. Wang, “Manifold: Model-Agnostic Visual
Debugging Tool for ML” : https://www.usenix.org/sites/default
/files/conference/protected-files/opml19_slides_li-lezhi.pdf.

[6] Y. Yan, Z. Zweiger, “The Power of Metrics: How to Monitor
and Improve ML Efficiency”: https://www.usenix.org/sites
/default/files/conference/protected-files/opml19_slides_yan
.pdf.

[7] J. Hung, “TonY: An Orchestrator for Distributed Machine
Learning Jobs” (slides): https://www.usenix.org/sites/default
/files/conference/protected-files/opml19_slides_hsu.pdf.

[8] R. Ananthanarayanan, P. Brandt, M. Joshi, M. Sathia-
moorthy, “Opportunities and Challenges of Machine Learning
Accelerators in Production” (slides): https://www.usenix.org
/sites/default/files/conference/protected-files/opml19_slides
_ananthanarayanan.pdf.

[9] T. Wenzel and V. Maurice, “Machine Learning Models as a
Service” (slides): https://www.usenix.org/sites/default/files
/conference/protected-files/opml19_slides_wenzel.pdf.

[10] https://medium.com/@mijordan3/artificial-intelligence
-the-revolution-hasnt-happened-yet-5e1d5812e1e7.

[11] https://www.forbes.com/sites/cognitiveworld/2019/07/01
/five-trends-in-machine-learning-ops-takeaways-from-the
-first-operational-ml-conference/364421147132.

[12] Impact of Data Regulations and Bias on Operational ML
panel: https://www.usenix.org/conference/opml19/presentation
/panel-uttamchandani.

[13] OpML ’20: https://www.usenix.org/conference/opml20.

https://www.usenix.org/conference/opml19
https://www.usenix.org/conference/opml19/program
https://www.usenix.org/conference/opml19/program
https://www.linkedin.com/pulse/how-experts-do-production-ml-scale-joel-young/
https://www.linkedin.com/pulse/how-experts-do-production-ml-scale-joel-young/
https://www.usenix.org/sites/default/files/conference/protected-files/opml19_slides_ghantapdf.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/opml19_slides_ghantapdf.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/opml19_slides_ghantapdf.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/opml19_slides_li-lezhi.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/opml19_slides_li-lezhi.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/opml19_slides_yan.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/opml19_slides_yan.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/opml19_slides_yan.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/opml19_slides_hsu.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/opml19_slides_hsu.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/opml19_slides_ananthanarayanan.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/opml19_slides_ananthanarayanan.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/opml19_slides_ananthanarayanan.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/opml19_slides_wenzel.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/opml19_slides_wenzel.pdf
https://medium.com/@mijordan3/artificial-intelligence-the-revolution-hasnt-happened-yet-5e1d5812e1e7
https://medium.com/@mijordan3/artificial-intelligence-the-revolution-hasnt-happened-yet-5e1d5812e1e7
https://www.forbes.com/sites/cognitiveworld/2019/07/01/five-trends-in-machine-learning-ops-takeaways-from-the-first-operational-ml-conference/364421147132
https://www.forbes.com/sites/cognitiveworld/2019/07/01/five-trends-in-machine-learning-ops-takeaways-from-the-first-operational-ml-conference/364421147132
https://www.forbes.com/sites/cognitiveworld/2019/07/01/five-trends-in-machine-learning-ops-takeaways-from-the-first-operational-ml-conference/364421147132
https://www.usenix.org/conference/opml19/presentation/panel-uttamchandani
https://www.usenix.org/conference/opml19/presentation/panel-uttamchandani
https://www.usenix.org/conference/opml20

www.usenix.org S P R I N G 2020 VO L . 45 , N O. 1 25

SRE AND SYSADMINAre We All on the Same Page?
Let’s Fix That

L U I S M I N E I R O

Luis’s broad background in
software engineering includes
experience in DevOps, system
administration, networking,
and more. Luis has been with

Zalando since 2013, working with approx-
imately two hundred engineering teams
increasing the observability and reliability of
the Zalando e-commerce platform, currently
heading Site Reliability Engineering.
luis@zalando.de

Industry has defined as good practice to have as few alerts as possible, by
alerting on symptoms that are associated with end-user pain rather than
trying to catch every possible way that pain could be caused. Organiza-

tions with complex distributed systems that span dozens of teams can have
a hard time following such practice without burning out the teams owning
the client-facing services. A typical solution is to have alerts on all the layers
of their distributed systems. This approach almost always leads to an exces-
sive number of alerts and results in alert fatigue. I propose a solution to this
problem by paging only the team closest to the problem.

The Age of the Monolith
Many organizations became successful running a monolith. In the age of the monolith we
had single, large boxes that did everything—they handled every request. There were some
minor evolutions of this basic model, namely for redundancy and availability, but that’s not
so relevant. What’s important—monoliths were simple. They were easy to reason about and
easy to monitor.

This was the time of the Ops and Dev silos. The Ops people monitored the hardware and
checked whether the monolith process was up. The Devs monitored the requests and the
responses.

This approach had its own share of problems, particularly as businesses grew and the
approach didn’t allow the business to scale further. Microservices have become the solution
for those problems.

Modern Microservices
The diagram in Figure 1 is a possible representation of a typical business operation in
 e-commerce websites—placing an order.

Founded in 2008 in Berlin, Zalando is Europe’s leading online fashion platform and con-
nects customers, brands, and partners. It has more than 200 software delivery teams.
 Organizations such as Zalando can have north of 60 microservices involved in such a busi-
ness operation, including some so-called legacy ones. Other organizations can actually be
simpler or more complex, so mileage may vary. The relevant question is, how do we monitor
and alert on this?

The industry came up with new job roles, some call them DevOps, some call them SRE,
but the name is not important. We could call them Cupcake Fairies; it doesn’t matter. What
 matters is how we monitor didn’t change much, and the new roles didn’t change anything.
We still check whether boxes are alive, processes are responsive, and individual micro-
services succeed. Most times, we also check whether responses are fast enough.

When it comes to monitoring, I’d say that we’re just monitoring distributed monoliths.

26  S P R I N G 2020 VO L . 45 , N O. 1 www.usenix.org

SRE AND SYSADMIN
Are We All on the Same Page? Let’s Fix That

Problem Statement
What about alerting? What happens when the Accounting Ser-
vice from the example diagram in Figure 1 has an outage? What
almost always happens is that dozens (or hundreds) of alerts
come up, making it look like all services failed.

I call this the Christmas Tree effect. Lots of blinking lights,
almost the same as Christmas except the happiness level is
 different, and definitely no one is getting any presents!

This approach almost always leads to an excessive number of
alerts and results in alert fatigue. Only one of those teams can
actually do something about it—the one operating the Account-
ing Service.

The alternative to this is to alert on symptoms instead. That’s
something the industry already accepted—in theory. How would
it look if we were alerting on symptoms?

We can measure signals like latency and errors where the Web
front end calls the Checkout Service. This is a good place to
measure such service level indicators, where the signal-to-noise
ratio is optimal and as close as possible to the customer pain.

What happens when alerting on the symptom if the Accounting
Service has an outage?

The alert created based on the symptom will be triggered. This
looks better. Is there anything wrong with the approach? What
happens with this approach if the Payment Service has an outage?
The same alert will be up. The team owning the client-facing
service, and typically the owner of the alert rule, gets the paging
alert for each and every possible failure in the distributed system!

This sort of pivoting is a serious problem that hasn’t been
addressed properly as far as I know. Alerting on all the layers
of the distributed system is not healthy, and the alternative,
alerting on symptoms, can result in bombing the team owning
the client-facing service.

In a Twitter thread [1] early this year, Jacob Scott (@jhscott)
brought up the question—“In a ‘microservices organization’
where teams own specific components/services of a distributed
production system, who is responsible for triage/debugging/
routing of issues that don’t present with a clear owner? And
how do they not hate their lives?” Charity Majors’ (@mipsytipsy)
reply, that I totally agree with, was “alright, this is a damn
good question. and tbh i am surprised it doesn’t come up more
often, because it gets right to the beating heart of what makes
any microservices architecture good or bad.” This captures the
essence of the problem. The so-called “microservices organiza-
tions” struggle to figure this out.

Figure 1: An example set of the microservices involved in fulfilling a customer request. Arrows show the flow through the services and also indicate
 dependencies.

www.usenix.org S P R I N G 2020 VO L . 45 , N O. 1 27

SRE AND SYSADMIN
Are We All on the Same Page? Let’s Fix That

Adaptive Paging
At Zalando we started addressing this problem with a custom
alert handler that leverages the causality from tracing and Open-
Tracing’s semantic conventions to page the team closest to the
problem. We called it Adaptive Paging.

Five-Minute Introduction to OpenTracing
OpenTracing is a set of vendor-neutral APIs and a code instru-
mentation standard for distributed tracing. A trace tells the
story of a transaction or workflow as it propagates through a
distributed system. It’s basically a directed acyclic graph (DAG),

with a clear start and a clear end—no loops. A trace is made up of
spans representing contiguous segments of work in that trace.

You can find a lot more details by checking distributed tracing’s
origins, namely the Dapper paper [2].

It’s worth mentioning that OpenTracing has merged with
another instrumentation standard—OpenCensus—resulting in
 OpenTelemetry. OpenTelemetry will offer backwards compat-
ibility with existing OpenTracing integrations. The concepts
and strategy for Adaptive Paging are still valid.

Spans
A Span is a named operation which records the duration, usually
a remote procedure call, with optional Tags and Logs. This is
probably the most important element of OpenTracing. A trace is
a collection of spans.

Operations can trigger other operations and depend on their out-
come. For example, place_order triggers and depends on all the
other operations, including update_account in the accounting-
service. This causality is important.

Tags
The other most relevant element from OpenTracing is Tags. A
tag is a “mostly” arbitrary key-value pair, where the value can be a
string, number, or bool. Every operation can have its own set of tags.

We can consider Tags as metadata that enrich the operation
abstraction (the span) with additional context.

Figure 2: An example trace containing many spans from different
 microservices

Figure 3: Screen capture of a trace in the open source tracing tool Jaeger [3]

28  S P R I N G 2020 VO L . 45 , N O. 1 www.usenix.org

SRE AND SYSADMIN
Are We All on the Same Page? Let’s Fix That

Semantic Conventions
OpenTracing’s semantic conventions establish certain tag names
and their meanings. The existing conventions are strong enough
to set certain expectations and enable tools to apply different
behaviors when analyzing the tracing data.

OpenTracing Monitoring Signals
OpenTracing can provide, implicitly, measurements for latency
and throughput (number of operations over a certain time period).
Through the semantic conventions it’s also possible to measure
errors, by checking the spans with the error tag set to the Bool-
ean value true.

Latency, traffic, saturation, and errors are the Four Golden Sig-
nals [4]. If you can only measure four metrics of your user-facing
system, focus on these four. They are great for alerting.

In this article we’ll focus on one concrete signal—errors.

Alert Handler
Let’s assume that an alert was configured for the place_order
operation which has a service level objective (SLO) of 99.9 suc-
cess rate. A typical way to measure this would be to query the

tracing back end for spans that match a certain criteria. The
keys operation and component are implicit on most tracing sys-
tems and represent the named span and the microservice itself,
respectively. An expression such as component: checkout_service
&& operation: place_order represents the symptom and is where
we want to measure customer pain. Different tools, open source
and commercial, will usually provide different means to config-
ure the alert itself. That’s not in the scope of this article.

Adaptive Paging is an alert handler, and its architecture is
broken down into three main components. The transformer is
the actual alert handler, typically a webhook, and it’s vendor
specific. It’s possible to have multiple alert handlers. The web-
hook receives alerts and converts them into symptoms. Then the
symptom is passed to an evaluator, which implements the actual
root-cause identification algorithm. The evaluator tries to deter-
mine the most probable root cause and generates a report. After
the report is created it is made available to any reporter(s) which
can deliver the page via different vendor-specific implementations
or store debugging data to troubleshoot the alert handler itself.

Transformer
The transformer receives or collects vendor-specific exemplars
and converts them into a vendor-agnostic data model that we
called Symptoms. Exemplars are traces that should be represen-
tative of the symptoms that led to the alert being triggered. Some
vendors can include exemplars as part of the alert payload. If
they’re not part of the payload, the transformer can query the
tracing back end for exemplars that match the same criteria of
the alert rule during the time of the incident.

Figure 5: Collection of traces (exemplars) that contain the failed operations (error=true)

Figure 4: Adaptive Paging components and data flow

www.usenix.org S P R I N G 2020 VO L . 45 , N O. 1 29

SRE AND SYSADMIN
Are We All on the Same Page? Let’s Fix That

Evaluator
The evaluation algorithm can have many different implemen-
tations. There can be different implementations for different
signals—latency or errors, for example, or for any other known
criteria for which a certain root-cause-identification algorithm
performs better.

ExamplE Errors algorithm
The following example is one possible implementation to identify
the probable root cause for errors. All exemplars (traces) are ana-
lyzed. Starting at the span that was defined as the signal source,
each trace is inspected in a recursive way. For every child span,
its tags and respective values are checked to decide which path
to take.

In the example from Figure 6, none of the operations take-
payment, evaluate_risk, or push_order_event were tagged as
failed (error=true).

The accept_order operation in the order-service was tagged.
The algorithm follows the path where error=true.

The same process is repeated. None of the operations of the
order-service, stock-reservation-svc, logistics-svc, or the others
which were triggered by accept_order were tagged with errors.

Only the update_account operation in the accounting-service
was tagged as failed.

Without any child spans to continue the traversal, the update_
account operation in the accounting-service is selected as the
most probable cause of the errors.

After all exemplars are analyzed, a Report is generated.

Reporting
The Report generated by the evaluation algorithm contains
information about the operation and microservice that is con-
sidered the most probable root cause. For reporters that page
on-call engineers, the implementation needs to map the opera-
tion and/or service to the respective team or on-call escalation.

Putting It All Together
Going back to the original example, what happens if the Account-
ing Service has an outage and we’re using Adaptive Paging? As
you can guess, the team that operates the Accounting Service
will get the single page triggered.

A similar situation would happen if any of the services involved
in the “Place Order” operation breached its SLO, but the team
that operates the probable root cause is the only one getting the
paging alert—the one that will be able to actually do something
about it—that is, no more page bombing.

Challenges
As mentioned before, the detection algorithm can adopt many
different strategies. Zalando’s current implementation uses a
couple of heuristics that are easy to reason about.

Some of the things we had to work around when creating
Adaptive Paging were:

 3 Multiple child spans tagged as errors: follow each path, attribute
the probable cause a score. Analyze more exemplars and adjust
the scores. Worst case scenario, page multiple probable causes.
Paging two teams is still better than paging everyone.
 3 Missing instrumentation or circuit breaker open: either of these
situations results in a premature evaluation of the probable root
cause. We leveraged the semantic conventions to allow the caller
to identify the callee, suggesting to the evaluator algorithm who
to page, using the peer.service=foo and span.kind=client tag to
suggest which service would be the target. This has the side
effect of being a good incentive for teams to instrument their
services.
 3 Mapping services to escalation: the service identified as prob-
able root cause may not have a mapping to an on-call escalation.
The evaluator keeps a stack of the probable causes and uses the
one that is available and hopefully closest.

Finding probable causes due to latency is a challenge of its
own. The strategy that we considered requires us to query the
baselines for each operation and service combination, using that
information to select which combination has a bigger variation
at the time of the incident. This strategy can be a bit expensive,
increasing the time to dispatch the paging alert.

Figure 6: Probable root cause algorithm inspecting failed operations

30  S P R I N G 2020 VO L . 45 , N O. 1 www.usenix.org

SRE AND SYSADMIN
Are We All on the Same Page? Let’s Fix That

Next Steps
Adaptive Paging was created with a multi-vendor reality in mind.
Observability still has a ways to go, and some vendors are push-
ing the boundaries as we speak. Distributed tracing is still not
a commodity, just like unit testing wasn’t when it was initially
introduced. No one would challenge the benefits of unit testing,
and I believe no one will challenge the benefits of proper observ-
ability of distributed systems.

We’ve also started looking at some excellent work from LinkedIn
—MonitorRank [5] from 2013, which fits nicely into Adaptive
Paging; it’s something we’re considering as a possible improve-
ment to the evaluator.

With Adaptive Paging we hope to contribute to improve the alert-
ing situation, in particular paging alerts that burn out humans.

References
[1] Twitter thread on page bombing: https://twitter.com
/mipsytipsy/status/1120911207903268864.

[2] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson,
M. Plakal, D. Beaver, S. Jaspan, C. Shan-bhag, “Dapper, a
Large-Scale Distributed Systems Tracing Infrastructure”:
https://ai.google/research/pubs/pub36356.

[3] Jaeger: https://www.jaegertracing.io/.

[4] Four Golden Signals: https://landing.google.com/sre/sre
-book/chapters/monitoring-distributed-systems/.

[5] M. Kim, R. Sumbaly, S. Shah, “Root Cause Detection
in a Service-Oriented Architecture,” SIGMETRICS ’13:
http://infolab.stanford.edu/~mykim/pub/SIGMETRICS13
-Monitoring.pdf.

XKCD xkcd.com

https://twitter.com/mipsytipsy/status/1120911207903268864
https://twitter.com/mipsytipsy/status/1120911207903268864
https://ai.google/research/people/LuizBarroso/
https://ai.google/research/people/author24014/
https://ai.google/research/people/author907/
https://ai.google/research/people/author8115/
https://ai.google/research/pubs/pub36356
https://www.jaegertracing.io/
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/
http://infolab.stanford.edu/~mykim/pub/SIGMETRICS13-Monitoring.pdf
http://infolab.stanford.edu/~mykim/pub/SIGMETRICS13-Monitoring.pdf

www.usenix.org S P R I N G 2020 VO L . 45 , N O. 1 31

SRE AND SYSADMIN

Getting Things Done
T O D D P A L I N O

I lacked organization, which doesn’t mean planning your day to the minute—as an SRE I live
by the adage that no plan survives contact with the enemy. Not having organization meant
I lacked the ability to respond appropriately to new work and ideas with a clear and creative
mind. Martial artists practice “mind like water.” Chefs have their “mise en place.” For engi-
neers, we have “inbox zero.” You may call it a fantasy in an interrupt-driven world, but that
only reinforces the need to have the planned work neatly maintained.

Most problems with inbox zero come from setting ourselves up to fail. We make a list of
things to do today, leading to frustration when the inevitable interrupt happens and ruins
our plans. We treat email inboxes as to-do lists, forcing us to continually re-read messages
and decide each time what the next action is. Worse, we fail to fully catalog our work, both in
the office and at home, and don’t set aside the time needed for regular maintenance. When our
partial attempts fail, we throw up our hands and declare organization to be an impossible task.

Enter GTD
There are many systems available for personal organization. For the last decade, I’ve used a
system called “Getting Things Done” (GTD for short). Developed by David Allen, and docu-
mented in his book of the same name, the concepts have remained the same over the years,
even as technology has changed. This is because it’s not prescriptive regarding the tools that
you use for organization. The process is described, with the characteristics that your trusted
system must have, without placing bounds on implementation. It does not require specific
software, or even any software at all. Last year, I was using a paper notebook.

You may not be sure what a trusted system is, but you’re already using one: your calendar. We
recognize that our brains are bad at remembering meetings, events, and the details for them,
so we offload them into a calendar. Regardless of the calendar tool you use, when you get an
invitation it goes into your calendar. You note whom you are meeting with, when and where
the meeting is, and some details on the topic. Once you’ve done that your brain can let go of
the information. This happens because you’re consistent about using your calendar—you’re
checking it at appropriate times, or you trust that a notification will alert you just in time for
a meeting.

This is the essence of a trusted system: a list of all of your commitments, which your brain
trusts to be complete and regularly reviewed. We have to do this because brains do not orga-
nize information in a way that is conducive to getting work done efficiently. It believes that

Todd Palino is a Senior Staff
Engineer in Site Reliability
at LinkedIn on the Capacity
Engineering team, creating
a framework for application

capacity measurement, management, and
change intelligence. Prior to that, he was
responsible for architecture, day-to-day
operations, and tools development for one of
the largest Apache Kafka deployments. He is
a frequent speaker at SREcon, as well as other
venues, on the topic of SRE culture and best
practices, and is the co-author of Kafka: The
Definitive Guide, available from O’Reilly Media.
Out of the office, you can find Todd out on the
trails, training for the next marathon.
tpalino@gmail.com

Two years ago, I found myself in a bad place, both at work and at home:
overworking, ignoring my family, and angry all the time. It took
months to understand the problem: I had no idea what work needed to

be done. I could only focus on whatever was right in front of me, screaming
for my attention. What I needed was a list of the work that I had committed
to, that I trusted to be reviewed and complete, presented in a way that made
it easy for me to pick the right work to do. I accomplished this with “Getting
Things Done”—a process for handling work in a predictable and trusted way.

32  S P R I N G 2020 VO L . 45 , N O. 1 www.usenix.org

SRE AND SYSADMIN
Getting Things Done

everything is important, all the time, so it continually cycles
through your to-do list. It frequently drops items. It interrupts
you randomly with information that you can’t use at that time.
In order to fix this, we need to make something other than our
brain responsible for handling this information.

The tool is just one component—a way to store and present infor-
mation. What makes it trusted is the process around how you
use that tool. GTD’s process is made up of five core steps:

 3 Capture
 3 Organize
 3 Clarify
 3 Reflect
 3 Engage

Capture
In order to organize work, you first need to collect the pieces of
information that prompt us to create it. This is the essence of
capture: create a habit of writing everything down. The goal is
to only ever have a thought about something to do once—as soon
as that happens, you write it down and it enters your trusted
system by going into an inbox.

We have several kinds of inboxes. Email is just one type, and you
probably have more than one account. Other inboxes include a
notes app on your phone, your physical mailbox, and your pocket.
It’s just a place where you collect stuff that you need to do some-
thing with later. Know where all those inboxes are, but have the
fewest possible. Most critical is to make sure you always have a
way to make a note, paper or electronic, wherever you are.

As soon as you have an idea, write it down. This could be as
trivial as “I’m getting low on milk” or as ambitious as “I’d really
like to run a marathon.” Treat this like brainstorming: don’t
 filter. Capture all ideas, big or small, and only the idea: you
don’t need to figure out what the next step is, or even whether
or not it’s truly something that requires action. Capture is
about getting it out of your head so you can continue with what
you were doing with a clear head.

Organize
Before we discuss how to process everything we’ve captured, we
should have somewhere to store our work. Like our calendar, this
needs to be convenient to refer to wherever we are: in the office,
running errands, or at home. Most will choose software for this,
with far too many options to cover here. Two of my favorites that
are tailored for GTD are OmniFocus and NirvanaHQ. Let’s talk
instead about what we’re going to store in this system.

Actions are things that you can actually do. They are a single,
discrete step: for example, a phone call. “Make a phone call and
email a summary” is at least two actions. This is like a database

transaction: we have to do the action all at once, or we roll back
and start over. Our actions will not only have a clear statement
of the work to do, they will also have a context. This is where you
have to be, or what tool you need, in order to complete the action.
Phone calls need a phone, so a good context is “Phone.” Looking
at a website requires “Internet.” Locations can be contexts: there
are things that can only be done at “Home,” like organizing your
spice drawer. People can be contexts, which is helpful for track-
ing delegated actions or agenda items for your next one-on-one
meeting.

What’s not needed are due dates or priorities. Priorities are a
losing proposition, as you’ll constantly waste time re-prioritizing
work every time something new arrives. The context will help
us filter down the number of actions available to us at any point
in time, which will make it easy to see the important ones. As far
as due dates are concerned, if something is time sensitive, think
about whether or not it should be on your calendar instead. Doing
this makes sure that the work gets completed before it is due.

The other concept is a project, defined as a desired result that
requires more than one action. Examples might be “August vaca-
tion” or “Publish a book.” It is a logical container for actions that
accomplish a single goal. It’s important to have these containers
because a project is also a placeholder. When you complete the
next action for a project, you need something to continue track-
ing that project and prompt you to define the next action.

Our organizational system comprises several lists:

 3 Next actions, preferably able to be organized by context
 3 Projects (a simple list is sufficient here because the actions
will be on the previous list)
 3 A “Waiting For” list of all the actions we have delegated
 3 A “Someday/Maybe” list of the projects we might want to
do later

Time-sensitive items should go on your calendar, which may
be a separate trusted system, and reference items will be stored
separately. This keeps your system reasonably sized, so you can
carry it with you all the time. This is critical, because you have
to be able to refer to it when you need to know what work you
should be doing.

Clarify
Let’s get back to all of the stuff that we captured. It’s time to
process it. Set aside the time on your calendar for this. I find that
doing this any less than every weekday (except vacations) makes
me anxious. I also triage my email inboxes throughout the day
as I know there will be interrupts, like last-minute meeting
requests. You may have certain inboxes that are processed less
frequently, which is OK as long as you are consistent.

www.usenix.org S P R I N G 2020 VO L . 45 , N O. 1 33

SRE AND SYSADMIN
Getting Things Done

Clarify is a process of taking each thing in our inboxes and
asking the question, “What is this?” The rule is that you will go
through your inbox in order, one item at a time, and nothing goes
back in. When you’re done, your inboxes will be empty.

Select a single item or email and ask the first question: is this
something that requires you to take an action? If not, it is one of
three things:

1. Reference. Something you need to know, or refer back to
later, such as a manual or other document. Reference items
need to be stored, and there are many ways to do this: filing
cabinets, flash drives, or bookshelves. Like inboxes, minimize
the places you store reference and make items easy to find
when you’re looking for them.

2. “Someday/Maybe.” Ideas you’re not ready to commit to yet.
For example, you might have “Run a marathon” or “Summit
Mount Everest”: maybe soon, but not today. This list of ideas
will prompt you to think about them later on, to start when
you’re ready.

3. Trash. If it’s not actionable, and not one of the above, throw it
out. This might make you uncomfortable. Take that oppor-
tunity to evaluate your decision about whether or not it’s
actionable. If you can’t throw it away, it probably represents
something you need to do.

For actionable items, determine what the very next action is to
move towards completion. Let’s think about a couple examples
from our day to day:

“Schedule one-on-one meeting.” This is a single action: we
need to send an invite for the meeting.

“Fix buffer overflow bug.” This is not one action: we need to
write the code to fix the bug, open and wait for a review, commit
the fix, and deploy it. This is a project. We will add “Fix buffer
overflow bug” to our “Projects” list. We also need the very next
action to take, which is “Write the code to fix the bug.”

Now ask how long the action will take to complete. If the answer
is two minutes or less, do it right now. It will take less time than
it will to track it. For scheduling a meeting, do that now because
it will be quick.

Writing code is going to take longer. Actions like this are handled
in two ways:

1. Delegate. Someone else will do it. If we ask a teammate to
write the code, we’ll add, “Alice—Code fix for overflow bug” to a

“Waiting For” list. This tracks the action and who has it. When
we review later, we might need to remind Alice about the work.

2. Defer. We will do it. Actions for a specific time can go on our
calendar at the time it needs to be done. Otherwise, add it to our

“Next Actions” list.

Reflect
It’s not enough to put all of these projects and actions into a
system, we also need to review that system with a consistent
cadence. This is not the same as actually doing the work that
we have defined—we’re going to talk about that when we get to
Engage. Reflect helps ensure that the system represents the
totality of the work we need to do, as far as we are aware. This is
the step that soothes the brain. When you understand, subcon-
sciously, that anything in the system is going to have your eyes
on it in some fixed and recurring time frame, only then will your
brain be willing to let it go and trust the system. You know that
you’ll come back to it at the appropriate time.

How often do you need to ref lect? It depends on what makes
you comfortable, but a good start is to schedule a weekly review
every Friday for two hours. This goes on your calendar because
it’s important to guard the time. Do not be afraid, or think it is
selfish, to reserve time for yourself on your calendar. By doing so,
you will make yourself more productive overall.

Routine and habit is the name of the game when it comes to
GTD, and the weekly review is no different. Start with clearing
your head: capture any thoughts in your head that are bouncing
around, and process your inboxes to zero. Then you’re going to
move into reviewing your entire trusted system to make sure
everything is current:

 3 Look at “Next Actions” and check completed actions or capture
new ones.
 3 Review last week’s calendar to make sure you captured action
items.
 3 Review next week’s calendar to surface actions to prepare for it.
 3 Check your “Waiting For” list, sending any needed reminders.
 3 Review your “Projects” list, making sure each has a next action.
 3 Review your “Someday/Maybe” list, and pull anything to start
into the “Projects” list.

After you finish the weekly review, you’re going to feel like you
really have your life together. This is one of the reasons I like to
do it on Friday afternoon: it lets me go into the weekend know-
ing that I’m fully organized, and I can set work behind me and be
present with family and friends.

Engage
So far we’ve talked about organizing things, not actually doing
them, and there’s a good reason for that. When your work is well
organized, it’s easy to select the right thing to do at any point in
time and get it done. You’re going to be working from your “Next
Actions” list, because this represents all of the things you can do
right now without waiting for something else. With the previous
four steps in place, we are comfortable that the next actions list
represents the totality of the work that we are aware of. We can

34  S P R I N G 2020 VO L . 45 , N O. 1 www.usenix.org

SRE AND SYSADMIN
Getting Things Done

quickly narrow down what we can do right now on the “Next
Actions” list by four criteria:

 3 Context: Filter out actions that don’t match the contexts
 available to you.
 3 Time: If you have 15 minutes available, you can’t do an action
that will take longer.
 3 Energy: At the end of the day, you might only have the brain-
power to read an article.
 3 Priority: With actions filtered down, it’s easy to pick out the
highest value one.

What happens when you’re interrupted with an alert or some
other interruption? First, don’t get sucked into automatically
doing work as it appears. Knowing your planned work helps
with the decision on whether the new item is a higher priority.
If it is, set aside your planned work and focus on the new work.
Your trusted system will be there when you finish, and you don’t
need to worry about keeping track of where you were. Just pick
up the next action that fits based on the four criteria.

Organizing your work will result in fewer of these interruptions,
as well. Many of them exist because we didn’t know what our
commitments were. We forgot about that bug fix we meant to
do. We buried an email that asked us to review a document by a
certain date. Prioritizing proactive work will reduce the amount
of reactive work required.

Next Actions
Organization is a project, and here are some next actions you can
take to free up your brain to do what it’s good at: being creative
and solving problems.

1. Borrow or purchase a copy of Getting Things Done by
David Allen.

2. Read the book.

3. Select GTD software (or other tool) to implement your system.

4. Schedule time with yourself for your first pass through
Clarify and Organize.

5. Schedule time with yourself for a weekly Reflect session.

6. Schedule time with yourself for a daily Clarify session.

What I have presented here is an overview: there is more to be
gained from reading through David Allen’s book. You’ll gain a
deeper understanding of how to work with the GTD concepts
as well as an introduction to other topics, such as horizons of
focus—how to work with long-term planning and frame the
question of what you want to be when you grow up.

The first time you work through processing inboxes, it’s going
to take a lot of time. You’ll need to look at how many emails, and
other pieces of paper, you have and make a decision about how
much time you need. Don’t shortchange yourself—time spent
here will return to you 10 times over. Break it down into multiple
sessions if needed, but don’t leave too much time between them.

Finally, remember that organization is a habit that you need to
build. Getting Things Done provides a structured process for
managing our work, but it only works if you follow it consistently.
It will take time to remember to capture every idea, and you will
need to be diligent about guarding your time for both Clarify and
Reflect at first. The feeling that you get after clearing out your
inboxes and reviewing your trusted system will ensure that the
habits, once established, will be hard to break.

www.usenix.org S P R I N G 2020 VO L . 45 , N O. 1 35

SRE AND SYSADMIN

It’s an SLO World
What Theme Parks Can Teach Us about User-First Reliability

J A I M E W O O A N D E M I L S T O L A R S K Y

The massive, iconic theme parks of Orlando, Florida, are impressive for children—the rides,
character actors, and sights synthesize into magical, larger-than-life playgrounds. It was
surprising then to realize how much more impressive the spaces become when revisited as
adults. The infrastructure that manages hundreds of thousands of visitors daily, the atten-
tion to detail across the “lands”—even in places where people might not immediately notice—
evoke awe and appreciation for the levels of planning and effort.

The lessons for site reliability engineers from theme parks are not immediately obvious,
until you realize that SLOs are rooted in asking what level of service must be provided to
keep users happy. And where else could you glean lessons about how to engineer for happi-
ness than at the so-called happiest place(s) on earth?

Useful SLIs
Let’s begin with how to find a useful SLI. A useful SLI must contain the following four
parameters:

 3 Relate to the experience and/or satisfaction of your user
 3 Use a measurable quantity related to your service level
 3 Be as specific as it can be
 3 Provide enough information to be actionable

Similar to the massive infrastructure that is behind what appears as simple user-facing
experiences, underneath the colorful, playful facades of theme parks are subterranean levels
where workers manage the infrastructural and logistical components of the park, includ-
ing electrical operations, transporting character actors, waste removal, deliveries, and food
service [1].

Visitors rarely think (or even know) about these hidden parts—and that’s the preference of
theme parks so as not to ruin the illusion. The only thing that matters is the experience visi-
tors paid to have, and everything that is out of view exists only in support of that experience.

Take waste removal: should trash begin to pile up around the park, visitors would complain
about seeing garbage on the park grounds, rather than, say, faulty waste removal mecha-
nisms 20 feet below them. And, theoretically, those mechanisms could break and guests
wouldn’t notice whether staff cleared the paths of trash often enough. So the amount of
garbage on the floor is a stronger SLI than waste removal machinery uptime.

Jaime Woo is an award-
nominated writer and has been
published in the Globe and
Mail, Financial Post, Hazlitt, and
The Advocate. He spent three

years as a molecular biologist before working
at DigitalOcean, Riot, and Shopify, where he
launched the engineering communications
function. He’s spoken at SXSW, IA Summit,
SREcon Americas, and SREcon EMEA, and was
a guest lecturer at the University of Toronto’s
Rotman School of Business. He is co-founder
of Incident Labs and is co-authoring the
forthcoming book SRE for Mere Mortals.
jaime@incidentlabs.io

Emil Stolarsky is a Site Reliability
Engineer who previously worked
on caching, performance, and
disaster recovery at Shopify and
the internal Kubernetes platform

at DigitalOcean. He has spoken at Strange
Loop, Velocity, and RailsConf, was a program
co-chair for SREcon19 EMEA, and is a program
co-chair for SREcon20 Americas West. He has
guested on the podcasts InfoQ and Software
Engineering Daily, and contributed a chapter to
the O’Reilly book Seeking SRE. He is co-founder
of Incident Labs and is co-authoring the
forthcoming book SRE for Mere Mortals.
emil@incidentlabs.io

In an always-on world, predictable reliability is paramount. Service
level indicators (SLIs) and objectives (SLOs) are cornerstones in site
 reliability engineering (SRE) for purposeful reliability. SLIs are chosen

measurements that act as signals for achieving your reliability goals; SLOs
are the targets for SLIs. User-first SLIs and SLOs are the gold standard, and
we use the concept of theme parks, those paragons of complex systems opti-
mizing for user happiness, to demonstrate examples of strong SLIs and SLOs
in contrast to useless ones.

36  S P R I N G 2020 VO L . 45 , N O. 1 www.usenix.org

SRE AND SYSADMIN
It’s an SLO World: What Theme Parks Can Teach Us about User-First Reliability

That doesn’t mean ignore everything internal: instead, we
acknowledge that something can be important yet not neces-
sarily urgent. That ambiguity around urgency highlights the
disadvantage in using such metrics as guidance for reliability:
because it’s subjective, it’s more difficult to gauge reasonable
boundaries around allowable downtime and, therefore, to create
meaningful error budgets to justify any downtime. Anything
that users interact with directly affects their ability to do what
they need to do, and thus prioritizing work is clearer.

For example, take a database service with multiple replicas. It
might be tempting to use uptime as an SLI, but there are many
scenarios where uptime gets dinged but customers don’t feel the
impact. For instance, if a single replica goes down, traffic won’t
be affected. Instead, a more effective SLI would be to track read-
query success rates, which are necessary for customer requests
to be successful.

From SLIs to SLOs
Upon determining SLIs, you have to assess the right target SLOs.
From our theme park example, we’ve figured out that guests
would be unhappy with trash everywhere. Now, we want to know
what their threshold is, based upon their needs and expectations.

With small piles of garbage everywhere, the park technically
remains operational, but it would be a poor experience for guests,
potentially discouraging them from returning or even asking for
refunds. On the other hand, ensuring no piece of trash stays on
the ground for longer than a few minutes would be an excessive
waste of resources. How then to choose the right level?

Luckily, engineers need not—and should not—do this alone.
 Different business units across the organization will have their
own insights into users, and when site reliability engineers work
with teams like support, engineering, and product and bring
those insights together, you’re likelier to have meaningful SLOs.
At Disney World, you’re unlikely to see trash on the ground for
longer than 15 minutes, as that’s the interval, in crucial locations,
at which trash in bins get sucked into an underground automatic
vacuum collection (AVAC) system and transported away.

With our example SLI of read-query success rates, after discuss-
ing with other business units, we may learn that users typically
notice degradation in the service when fewer than 95% of read-
queries succeed over a period of 30 minutes. Waking up engi-
neers the moment any read-query fails would be premature, but
we could set a slightly more stringent internal SLO that once
read-queries drop below a 97% success rate, alerts get sent out.

What Is the Experience?
With the need to be user-focused firmly established, we can
move from what users see to what users experience. The
distinction between the two is that one measures what users

i nteract with, and then the second looks at those interactions
and translates them into their meaning. In the field of UX,
they understand the distinction: “While you cannot directly
design a person’s experience of a product, you can take steps to
ensure that their experience is a positive one by employing a
user- centered design process,” writes Matt Rintoul, experience
design director of creative agency Say Yeah! [2].

At this point, we should make a vital distinction: who your users
are matters. For this article, we focus on human users rather
than programs that use your service (although users can be both,
depending on which part of the service each touches).

Thinking about how different users interact with your system
is a useful exercise. The response times from programs are
more reliable and faster than with humans. You can also tell
a program to attempt a request again in five minutes. Unlike
machines, humans perceive things relatively, something we’ll
return to later in this piece. This matters because treating
humans as rational actors, as economists do, can simplify
things, but you need to be careful it doesn’t oversimplify.
 Context matters.

What Constitutes a Satisfactory Experience?
Rarely is a service entirely down. Instead, individual compo-
nents may lag or fail, and even with some parts of the experience
deprecated there may be no change in a user’s core experience.
At a theme park, the food stands, for example, could be out of
service, and the park could still run. If the restrooms all failed,
however, it’d be a different story.

For a technical example, on a video-streaming service, there
are many components to the total experience, from searching
content, user-curated lists, viewing history, and playing content.
Each component can be mapped to see if it is running or not, and
this matters because the components are weighted related to
user satisfaction: if customers can still continue watching a film
they were in the middle of then they will be happy even if they
cannot amend their list of media to watch.

Specificity matters because when outages occur, or decisions
around what work should be prioritized, you make best use of
your limited resources by understanding which parts of the
service matter most to customers. You can then also manage
the number of things being tracked in dashboards to prevent
information overload. An engineer needs to weigh the tradeoff
of adding another SLI to monitor against the level of dissatis-
faction users will have if it goes down.

Timing Matters
Just as components of your service are relative, with differing
weights, this is also true for time: not every minute is the same.
If your users don’t notice an outage, should it count toward

www.usenix.org S P R I N G 2020 VO L . 45 , N O. 1 37

SRE AND SYSADMIN
It’s an SLO World: What Theme Parks Can Teach Us about User-First Reliability

your error budget? At theme parks, for instance, electronic
gates require fingerprint identification for entry. If this system
went down an hour before the park closed, while that’s not ideal
there’s also the nontrivial question of who was impacted?

This isn’t permission to ignore outages that happen during the
off hours. You still want to know how often your service is going
down, which provides a better way to understand the behavior
of your system. But does your service truly need to be up 24/7?
Are there periods when the service is lightly used? It isn’t zero
impact, but it has less impact, so do your metrics reflect this?
Importantly, is a low-impact event worth the human capital of
waking a team at three in the morning?

As an example, a food delivery service that solely works with
restaurants on the East Coast of the United States: most res-
taurants do not operate between two to six in the morning, and
perhaps the service has data showing that orders drop off after
10 p.m. and only revive at 10 a.m. for lunch orders. An SRE team
could decide that alerting overnight for low-severity incidents
isn’t worth sleep-deprived and grumpy engineers and instead
send pages in the morning.

Users Have a Multitude of Experiences
Rarely are users a homogeneous monolith. Instead, they are
 heterogeneous, each with their own (albeit, potentially over-
lapping) needs. In UX, the practice of creating personas
acknowledges that users have different perspectives and
rationales. When considering SLIs and SLOs, we should avoid
blanket aggregation of users for the sake of simplicity.

Returning to the theme parks of Orlando, think about the dif-
ferent types of visitors: parents and guardians, children, aunts,
uncles, grandparents, and adults without children. They speak
different languages. They have different accessibility needs.
They have different cultural perspectives. As a result, theme
parks provide experiences to cater to the wide range of needs
and expectations.

An example was the introduction of single-rider lines: rides often
seat visitors in pairs and therefore can have unused capacity
when groups have an odd number of people or for solo visitors.
Worse, solo visitors would wait as long as large groups, even as
they could see empty seats on the ride. By creating a line just for
individual riders who don’t mind sharing with strangers, the
excess capacity can be used up—providing a quicker queueing
experience for all guests.

Users of technical systems are just as varied. They can come
from different geographic regions, be of different sizes, vary in
their frequency of use, and so on. And aggregating them is just as
pernicious. An example is when a company has their datacenter
in North America, where the majority of their customers are.
If the data is aggregated, a customer located in Eurasia facing

 subpar performance might not trigger an alert: the user may
become unhappy, even if all SLOs appear to be met.

User Perception Matters
Unlike machines, humans perceive interactions based on their
past experiences and attempt to create context based on what
has happened: a machine might make several attempts to con-
nect without those attempts creating any kind of storyline. This
is less true for humans, where they build theories based on pat-
terns, and it is at our own peril to ignore this fact.

We cannot, obviously, measure how users feel at every moment
because it is intrusive and expensive. We also do not want to
rely on users venting their frustration at customer support or
online on Twitter either, because then it’s too late. But we can
start thinking about user perception as a factor in our SLOs and
acknowledge that it plays a role if we are to be truly user-focused.

Perception is by definition subjective, sometimes in counter-
intuitive ways. An illustration comes from a phenomenon called
paradoxical heat: when a person holds a warm pipe in their left
hand and a cool pipe in their right hand, they sense painful heat,
even if neither pipe individually feels unbearable. We are unaware
of a directly analogous phenomenon for SRE, but a similar idea
might be having two minutes of downtime, followed by two min -
utes of availability, followed by another two minutes of downtime.

This won’t feel like four minutes of outage: anyone who has expe-
rienced spotty WiFi coverage will understand the oddly intense
anguish that comes from intermittent connectivity. It can feel
worse than not having Internet access at all, because it robs you
of your sense of control over the situation: should you keep try-
ing or do something else? Not knowing whether the next outage
will be in a minute or not at all can be very frustrating. So we
can’t just look at the raw data itself but have to also think about
how that data represents experiences. Four one-minute outages
alternating over an eight-minute period may feel worse than a
continuous four-minute outage.

Perception also plays a role in the least interesting part of visiting
a theme park: waiting in line for a ride. However, huge investments
have been made to create engaging and sometimes interactive
experiences during the queue to make the experience feel less
painful. Before a Harry Potter-themed ride, visitors roam an
immaculate set modeled after Hogwarts, the fictional wizarding
school, and the immersion makes the time seem to go by faster.

Theme parks also post estimated wait times so that visitors feel
a sense of control about whether or not to join the queue—and
these times are padded so that guests feel delight at “saving”
time. Isolating wait time provides some information, but if you
have set up a standard and even sticking to it leads to unpre-
dictable outcomes, then you must realize that you need more
information to guide your decisions.

38  S P R I N G 2020 VO L . 45 , N O. 1 www.usenix.org

SRE AND SYSADMIN
It’s an SLO World: What Theme Parks Can Teach Us about User-First Reliability

How do you learn about these expectations? You can look at
user-behavior data, such as when customers drop off, and try to
figure out a trend. Or you can ask them directly through surveys
and interviews. But it’s important to think about when is the
right time and place to ask them. Asking after a major outage
will yield different answers than after a period of calm, and ask-
ing them before their issue is resolved is different from asking
afterwards.

You will also want to pair up with someone who understands
how to craft useful survey questions: for example, you do not
want to create leading, ambiguous, or unclear questions, and you
want to use a Likert scale. Poorly designed survey questions lead
to low quality data, and sometimes people can assume that sur-
veys are the problem, but that’s blaming the tool rather than the
person wielding it: more than likely it is how surveys are created
and conducted that are the problem.

Benefits
We all have limited resources, especially time. When we choose
the most meaningful, user-focused SLIs and SLOs, we make the
most of those resources. You’re prioritizing for the experience
your users want and creating the boundaries for services. If
something goes down, but it doesn’t impact user experience, it’s
still important, but it isn’t necessarily urgent. Just because we
can do something doesn’t mean we should. We can wake people
up in the middle of the night to manage an incident, but are we
alerting for the right things? What matters and what doesn’t?

There is a broader benefit: the third age of SRE is upon us, and
it is one that posits that reliability is cross-functional, some-
thing that not just developers and technical project managers
need to think of, but also accountants, lawyers, and customer
support teams.

References
[1] https://en.wikipedia.org/wiki/Disney_utilidor_system.

[2] M. Rintoul, “User Experience Is a Feeling,” UX Matters,
October 2014: https://www.uxmatters.com/mt/archives/2014
/10/user-experience-is-a-feeling.php.

Yet this isn’t a one-way street. Just as everyone should have a
reliability mindset, we must remember why reliability matters.
It’s not just done for its own sake (and actually can be costly, a
detriment to feature velocity, and cause for burnout) but because
customer experience matters and customers demand reliability.
Reliability that doesn’t include a user-focus is only tackling part
of the problem, and when it becomes more developer-focused
than customer-focused it becomes about ego. So everyone must
have a user-oriented mindset.

Such a shift can be frightening because users can seem sub-
jective, but, unless our only users are machines, that’s how it
goes. What we can do is approach it differently, with wonder
and excitement. How can we delight our users the way theme
parks spark joy for visitors? Our favorite example of thinking
about users: at the Disney World parks, designers created dif-
ferent floor textures for each land, so that even your feet know
when you’re moving into a new experience. It may be at a level
beyond what we need, but we can afford to walk a few steps in
the right direction.

https://en.wikipedia.org/wiki/Disney_utilidor_system
https://www.uxmatters.com/mt/archives/2014/10/user-experience-is-a-feeling.php
https://www.uxmatters.com/mt/archives/2014/10/user-experience-is-a-feeling.php

www.usenix.org S P R I N G 2020 VO L . 45 , N O. 1 39

PROGRAMMINGInterview with Mary Ann Horton
R I K F A R R O W

Mary Ann Horton has been a
UNIX developer and sysadmin
since 1977. She contributed to
Berkeley UNIX, creating the
first email attachments and

enhancing vi. Her PhD dissertation at Berkeley
led to IDE editors that check your program for
errors. While at Bell Labs, she led the UUCP
Mapping Project and brought .com domains
to UUCP email. She led the growth of Usenet,
an early social media network, in the early
1980s. Her EMS email system allowed email
addressing by database query. As a transgender
activist in the 1990s, she convinced Lucent
Technologies to become the first large company
to include gender identity and expression
language in its EEO nondiscrimination policy,
and later to cover transgender hormones and
surgery in its health insurance. At San Diego
Gas & Electric, she designed SCADA control
systems to make the power grid more reliable,
secure, and compliant with regulations. 
www.maryannhorton.com
mah@mhorton.net

Rik is the editor of ;login:.
rik@usenix.org

Rik Farrow: You have been working with UNIX since its earliest days.

Mary Ann Horton: I fell in love with UNIX earning my master’s degree at Wisconsin in
1977, but my big break came in 1978 when I transferred to Berkeley for my PhD. We got a
VAX, initially with VMS, but quickly changed to UNIX 32/V. There were many amazing grad
students contributing tools to BSD, and it was a treat to get to be part of this effort. It seemed
like about half the code was written by Bill Joy, including vi. I got to enhance vi, nurture
it, and port it to all sorts of UNIX clones. Eventually I replaced termcap with terminfo and
wrote a new improved curses library so other programs could work as well as vi on slow
terminals.

My doctoral dissertation was a language editor, which meant you were editing a program
tree but it seemed like a text editor. The editor had parsed your program, so it could show you
your syntax errors, and even some semantic errors. It was horribly slow on the VAX, but the
technology was used later in IDEs like Visual Studio and Eclipse.

I needed to email binary files, but UNIX email only supported plain text. In 1980 I wrote
a dumb little program called uuencode to embed binaries into text email, and uudecode to
extract them. In 1985, Lotus and Microsoft decided that uuencode was the existing standard
format for attachments and used it in their PC email systems.

RF: What was it like to work at Bell Labs in the Midwest? We often hear about the more
famous branch of the Labs in New Jersey, and how researchers there appeared to have a lot
of freedom to develop many of the things we take for granted today.

MAH: I was a summer student at Holmdel, New Jersey, in 1979. I loved Holmdel but hated
 living in New Jersey. I wanted to do UNIX work at Bell Labs with the official Research
Center 127 folks (Ken, Dennis, etc.), but policy was that all research was only in New Jersey.
When Dale Dejager recruited me for the new Exploratory Software Group (ESG) in Columbus,
I jumped at the opportunity. My wife’s family lived in Ohio, and she wanted to move there. I
started in 1981 after I finished my PhD work at Berkeley.

Bell Labs was the R&D arm of AT&T. The Columbus Works (CB) was a Western Electric
 factory, with a Bell Labs office building attached to the front. Money flowed freely, and there
was plenty of computer equipment. In the days of expensive long distance calls, nobody
cared about the phone bills we ran up when our UUCP network dialed another computer to
exchange email and Netnews. CB was dwarfed by the larger labs in New Jersey and the Chi-
cago area, but we all respected one another and shared a love of technology, especially UNIX.

The ESG was kind of like minor league research. It was a spin-off from the Operating System
Group, where Dale and a group of UNIX experts had created an enhanced “Columbus UNIX” for
the needs of telco Operations Support Systems developed in Columbus. “CB-UNIX ” supported

I met Mary Ann Horton at USENIX ATC ’19 in Seattle. I didn’t know who
she was, but somehow discovered that she worked on the control systems
for the grid in the San Diego area, and we exchanged email addresses so

we could continue the conversation. Later, I read her Wikipedia page [1] and
learned much more about her.

http://www.maryannhorton.com

40  S P R I N G 2020 VO L . 45 , N O. 1 www.usenix.org

PROGRAMMING
Interview with Mary Ann Horton

IPC, shared memory, and semaphores, as well as some Berkeley
enhancements like vi. CB-UNIX ran on the PDP-11/70 only,
 especially cbosg, the OSG’s main home machine and email hub.

When I arrived I was presented with a shiny new VAX 11/750,
where I promptly installed 4BSD on the new cbosgd. I set it up
with email and Netnews, and it became the main connection
into Bell Labs CB.

By 1983, Bell Labs’s UNIX Support Group decided to support
the CB-UNIX features and add vi, so the OSG and ESG were
disbanded, and we all moved into development for new products.
In 1987, we created a Gateway Group to formally support email
and Usenet gateways, where I spent the next several years.

RF: By this day and age, people who know what Netnews was
are disappearing. Netnews was, in itself, a precursor to the Web.
Just supporting Netnews was difficult, and I understand you had
both a programming role and a social one in developing Netnews.

MAH: Usenet was one of the first social media networks, carrying
the Netnews traffic. I first heard about it in 1980 at the Delaware
USENIX Conference, when Steve Daniel and a crew from Duke
and UNC gave a paper about it. You could post a message on
a newsgroup, and within a day it would be visible on Usenet
hosts all over the country! This was awesome, and I brought it to
Berkeley as soon as the conference software tape came out.

In those days nearly all UNIX networking was via dial-up UUCP
links, and long distance phone calls were expensive. Universities
like Berkeley had strict policies not to let their computers make
long distance calls. Tom Truscott at Duke had spent a summer
with the Research group at Bell Labs, so Research’s UNIX system
called Duke’s every night to pick up email, and they also called
Berkeley’s ucbvax system nightly. Bell Labs didn’t mind a phone
bill, so when we added Netnews links through Research they
picked up the expense.

The “A News” software from Duke/UNC was intended for low
volume, but the traffic grew quickly as more and more people got
onto the Net. All the traffic went into one directory, and users
saw everything in the order received, a UNIX posting, a recipe,
a car for sale, a response to the UNIX posting. It seemed really
disorganized. I had the idea that Netnews should be like email,
with header lines.

One day a high school student named Matt Glickman walked
into my office at Berkeley looking for a project, and I suggested
“B News.” I designed it and he got it coded over his spring break.
B News organized the new postings by newsgroup, and expired old
news after a couple of weeks. The newsgroup net.unix carried dis-
cussions about the UNIX system: net.cooks was for recipes, and
we had net.jokes, net.autos, net.politics, net.jobs, and on and on.

There actually were earlier social media: ARPANET mailing lists
and BBS systems. The ARPANET had a Telecom list, UNIX-
Wizards, Human-Nets for Human Factors, and SF-Lovers for
Science Fiction. These were busy lists with lots of interesting
traffic, but only available on the ARPANET. I rigged up a gate-
way at Berkeley to post the traffic to Usenet, with a new hier-
archy “fa.*” for “From ARPA” to make it easier for sysadmins
to choose whether they wanted it.

By 1981 I found myself helping more and more universities and
companies get onto Usenet. They needed to find a kind sysadmin
who would give them a dial-up connection and a news feed, so I
came up with a “pay it forward” rule where, if someone gave you
a connection, you should be willing to give at least two more sys-
tems connections in return. That kind of spread the load around,
and Usenet kept growing.

When you logged into UNIX, it would tell you “You have new mail,”
and we added an option to B News for your .profile so it would
also say “There is news.” The joke became “There is always
news.” Catching up on Netnews got to be time-consuming, and
you could get sucked into the vortex, just like Facebook today.

Netnews was mostly for fun, but people needed email for their
work. In those days you had to give your email directions:
duke!unc!research!ucbvax!mark, so people needed a map of
UUCP connections just to send email. I handed out Usenet
logical maps at the USENIX conferences in 1982 and 1983, and
people snapped them up to use to route their email. There was
constant confusion between Usenet, which carried Netnews,
and UUCP, which carried email and was much larger and better
connected. By 1984 I gave up distributing a logical map, because
it was too branchy. I handed out a geographic map, and Bill and
Karen Shannon put out an eight-page logical map [2] at the 1984
 USENIX conferences. After that it was just too big to draw a
picture.

Usenet distributed Netnews with a “flood algorithm” where a
node sent all new news to each neighboring node, which checked
each article to see if it already had it. If not, it saved the news
and sent it along to its other connections. The “Path” header
showed how the article got there, so any node on the path could
be skipped. That way everything worked its way around the
Net, with some redundancy. But growth made it unwieldy, so
in 1983 I set up a “Usenet Backbone” that would carry the news
around the world in an organized fashion, then send it out for
local distribution. Gene Spafford (then at Georgia Tech) didn’t
see Atlanta on the Backbone, so he got involved about 1984. He
realized the sysadmins on the Backbone had power to run the
Net, so he set up the “Backbone Cabal” mailing list as a political
decision-making group. Backbone maps were still manageable,
so we put out a few of those from 1983 to 1986.

www.usenix.org S P R I N G 2020 VO L . 45 , N O. 1 41

PROGRAMMING
Interview with Mary Ann Horton

One of the biggest Backbone hosts was decvax, run by Armando
Stettner and Bill Shannon of DEC. They called so many impov-
erished universities that, at one conference, Armando bragged
about a quarter-million dollar phone bill just for decvax. There
was even a rumor going around that Usenet was really a scheme
of AT&T to generate revenue by running up phone bills! The truth
was just the opposite: sysadmins ran up their phone bills quietly
so their bosses wouldn’t notice, and AT&T corporate had no
clue any of this was going on. Bell Labs, however, had the largest
presence on Usenet, brought in through gateway machines like
ihnp4 and harpo, with friendly sysadmins like Gary Murakami
and Brian Redman.

RF: In the ’80s, there were many email standards. I see you
worked in that area as well.

MAH: There were too many incompatible email standards. The
ARPANET was great: user@host got your mail there. There were
also CSNET, BITNET, FIDONET, and a hot mess called X.400.
AT&T used UUCP, but internally it was pretty well connected.
All AT&T systems were registered with Network Action Central,
so host!user worked for any AT&T internal email. But the rest of
UUCP was ad hoc, so everyone had to route their own email, and
an address like research!greg@Berkeley was ambiguous.

As the Net grew, several people offered to create an email map
but disappeared under a mountain of UUCP system files and
were never heard from again. That all changed when Internet
domains came along. I was an early advocate, writing a paper
“What the Heck Is a Domain” extolling their virtues. I thought
they could be used for UUCP email, so at the 1984 Washington
USENIX Conference I got a BoF session together to plan the
map. We created the UUCP Mapping Project, all volunteer based,
to post and update UUCP connection information to comp.mail.
maps on Usenet.

Peter Honeyman and Steve Bellovin wrote pathalias, which
converted the map information to a localized email routing data-
base. I helped a high school student, Adam Buchsbaum, write the
smail program to send email using the database, and we set up
the .UUCP top level domain to go with .ARPA. It worked great
for us, but the ARPANET didn’t recognize any other domains,
so they had to resort to addresses like mark%cbosgd.UUCP@
Berkeley. ARPANET addresses were only allowed one @ sign,
so a second @ had to be hidden as a %.

I represented UUCP at a January 1986 meeting at SRI, along with
Craig Partridge from CSNET and Dan Oberst from BITNET.
We wanted official ARPA recognition of our domains. Ken
Harrenstien from ARPA convinced us that all the world should
be under six domains: .COM, .EDU, .ORG, .GOV, .MIL, and .NET.
Steve Kille from the UK asked for a special clause for other coun-
tries to use their two-letter country code, but didn’t expect it to

be used much. We were all authorized to share registration of
domains in the big six through Jon Postel at ISI. I had to take the
UUCP Project to the next level, so we set up Stargate Informa-
tion Systems as one of the first domain name registries. The
first domain I registered was stargate.com, and the second was
att.com. We got it working with smail and brought lots of UUCP-
only companies and universities into the .com and .edu spaces.
The Stargate side of it was Lauren Weinstein’s project.

In 1992, Bell Labs had two competing email systems: smail
understood domain addresses and worked with sendmail on
Suns, but much of the labs had an email system called POST.
A team maintained a database of AT&T staff, including name,
location, title, and their host!user email address. Their post
front end to mailx allowed you to send email to people by name,
so post john.bagley would let you compose an email, just like
mailx, and deliver it by looking up his UUCP email address and
handing it to an email back end called upas. You could send to
groups with queries like org=4526, which went to an entire
department, or tl=sup/loc=cb, which went to all the supervisors
in Columbus.

I started fiddling with sendmail and post and integrated domains
with the post lookups. I called the system EMS, and it was deemed
useful enough to form an email team to support it. Now I could
put mark.r.horton@att.com on my business cards. One day my
email stopped working. When I dug into it, I discovered AT&T
had hired another Mark R. Horton! When AT&T spun off Bell
Labs and Western Electric into Lucent Technologies, the POST
team added a “handle” field for email, first come, first served, so
I became mark@lucent.com.

In 2000, Lucent spun off Avaya and Agere, and I went to Avaya to
manage their email and POST directory team. That lasted a year,
then the .COM bubble burst and I took a package from Avaya.

RF: You wrote in your Wikipedia page [1] that you got Lucent to
provide support for your gradual transition, starting with cross-
dressing. I can’t imagine that that was easy.

MAH: Most transgender people know they’re different from an
early age, but I took a long time. I first got interested in women’s
clothes at age 10, but didn’t really fully cross-dress until 1988 at
age 32. My first wife Karen divorced me over it, but my second
wife Beth was supportive. We kept it a deep secret for years, but I
started to come out in 1996 when Lucent’s gay/lesbian/bi group,
EQUAL!, added transgender to their mission.

I went to an EQUAL! conference in Denver, the only trans person
there, and we educated each other. I learned how important it
was for gay and lesbian people to have the freedom to come out
in the workplace, empowered by the words “sexual orientation”
in the EEO nondiscrimination policy. They didn’t have to spend

42  S P R I N G 2020 VO L . 45 , N O. 1 www.usenix.org

PROGRAMMING
Interview with Mary Ann Horton

energy hiding part of themselves, so they were happier and more
productive at work.

Unfortunately, those words didn’t protect me. I asked, through
channels, if HR might add transgender language to the EEO
policy. Later, the question came back, “If we were to add trans-
gender language, how would we do it to be as inclusive as pos-
sible?” Opportunity was knocking!

I didn’t know the right language, but I had connections in the
trans activist community. A trans attorney in Washington, DC
suggested “gender identity, gender and sexual characteristics,
and gender expression.” What a mouthful! It turned out “sexual
characteristics” didn’t fly with HR, so we condensed it to “gen-
der identity, characteristics, or expression.” Rich McGinn, the
Lucent CEO, signed it in 1997, the first large company to offi-
cially include transgender people in their EEO policy!

By this time I had a life as Mark and another life as Mary Ann,
and I was allowed to come to work occasionally as Mary Ann. I
was also an activist for trans rights in other places, and the other
trans activists were all transsexuals who had transitioned long
ago. They all said corporate America could not handle a part-
time cross-dresser in the workplace, but I was already doing it!

Somebody was afraid I might want to use the restroom, and a
secret meeting was held by HR, Corporate Security, EQUAL!,
Medical, and my boss (but not me). They decided I should use the
single occupancy restrooms in Medical, a quarter mile from my
office. A bathroom break took 15 minutes, but I was so happy to
be able to go to work as Mary Ann that I accepted it.

Through EQUAL! I was able to get other Lucent policies
improved. When people realized that the world didn’t end if
I used the ladies room, I persuaded HR to use the principle of
least astonishment, so that transgender people would use the
restroom for the gender they are presenting.

I knew other transgender Lucent employees who could not get
their medical care covered. I worked with HR to cover the hor-
mones and surgery, and in early 2000 someone got her surgery
covered. I still hadn’t transitioned, so I didn’t personally need
the medical coverage.

I didn’t transition until late 2001, after I’d been spun off to Avaya
and taken their early retirement package. Beth supported my
transition, but she didn’t want to be married to a woman. We
broke up and I went looking for a job as Mary Ann. The market
was flooded with great people after the .com bubble burst, so it
took 11 months to get a UNIX job with Bank One. I used that
time to become legally and medically female.

After success with Lucent, I was an activist getting other com -
panies to add Gender Identity and Expression to their EEO
policies. Apple followed quickly, then Chase and IBM. In 2002
I (with other activists) convinced the Human Rights Campaign
to include points for transgender nondiscrimination language,
and HR departments began to quickly add it.

In 2001, inspired by Lynn Conway’s “back of the envelope” cal-
culation asserting that it would be cheap to fully cover trans-
gender surgeries, because so few people have them, I surveyed the
surgeons. An astounding 75% responded, and I was able to get a
pretty good estimate of the total cost to cover transgender health
benefits, which came out to about .004% of total health premium
costs, basically the change in your couch. I gave workshops at the
Out & Equal LGBT workplace conferences, and other companies
began to add the coverage. Now it’s standard coverage in large
companies, at zero added cost.

RF: What did you do after leaving Bank One?

MAH: In 2007 the stars were aligned and I got to come back to
California. I worked for San Diego Gas & Electric supporting the
SCADA system that runs the transmission grid. After the North-
east power blackout in 2003, there was a lot of concern about
reliability and cybersecurity, and I wound up leading the effort
to keep the hackers out. There are a lot of NERC CIP regulations
[3] about this, so not only did we have to keep the system secure,
we had to provide daily evidence we were doing so. I wound up
building automated tools to collect the compliance evidence.

I retired in 2018. Now I’m enjoying living in paradise and writing
a memoir.

References
[1] Mary Ann Horton: https://en.wikipedia.org/wiki/Mary
_Ann_Horton.

[2] UUCP/Usenet maps: stargatemuseum.org/maps.

[3] NERC CIP: https://www.ispartnersllc.com/blog/nerc-cip
-standards-overview/.

https://en.wikipedia.org/wiki/Mary_Ann_Horton
https://en.wikipedia.org/wiki/Mary_Ann_Horton
stargatemuseum.org/maps
https://www.ispartnersllc.com/blog/nerc-cip-standards-overview/
https://www.ispartnersllc.com/blog/nerc-cip-standards-overview/

Save the Dates!

www.usenix.org/soups2020

www.usenix.org/sec20

Co-located with SOUPS 2020
August 12–14, 2020 • Boston, MA, USA

The 29th USENIX Security Symposium brings together researchers, practitioners, system
administrators, system programmers, and others to share and explore the latest advances in
the security and privacy of computer systems and networks.

The Symposium will span three days, with a technical program including refereed papers,
invited talks, posters, panel discussions, and Birds-of-a-Feather sessions. Co-located
workshops will precede the Symposium on August 10 and 11.

Program Co-Chairs
Srdjan Capkun, ETH Zurich

Franziska Roesner, University of Washington

Registration will open in May 2020.

Sixteenth Symposium on
Usable Privacy and Security
Co-located with USENIX Security ’20
August 9–11, 2020 • Boston, MA, USA

The Sixteenth Symposium on Usable Privacy and Security (SOUPS 2020) will
bring together an interdisciplinary group of researchers and practitioners
in human computer interaction, security, and privacy. The program will
feature technical papers, including replication papers and systematization of
knowledge papers, workshops and tutorials, a poster session, and lightning
talks.

Registration will open in May 2020.

General Chair
Heather Richter Lipford,

University of North Carolina at Charlotte

Technical Papers Co-Chairs
Joe Calandrino, Federal Trade Commission
Michelle Mazurek, University of Maryland

Vice General Chair
Sonia Chiasson, Carleton University

Symposium Organizers

www.usenix.org/soups2020
www.usenix.org/sec20

44  S P R I N G 2020 VO L . 45 , N O. 1 www.usenix.org

COLUMNSConstraints and Controls
The Sociotechnical Model of Site Reliability Engineering

L A U R A N O L A N

One of the examples described in that SREcon talk was a training exercise undertaken by
a pair of fighter pilots. The plan was for a pilot to fire a dummy missile at another aircraft.
One of the plane’s missile tubes was loaded with a dummy, while other tubes contained live
 missiles. The pilot targeted the other aircraft, selected the tube with the dummy, and fired—
a live missile. This wasn’t pilot error: it was a systems accident. The plane had a smart mis-
sile selection system that would substitute another missile if the tube the pilot selected was
blocked, and in this case an antenna was in front of the tube with the dummy.

The thesis of Leveson’s talk is that traditional methods of managing risk in systems, such
as fault tree analysis and analytic decomposition, do not work in the context of complex
systems. These established techniques involve breaking larger systems down into smaller
subsystems, reasoning about the likelihood of failure of these components, and calculating
overall reliability of the system from there. Unfortunately, this isn’t effective: many systems
accidents happen because of unanticipated interactions between parts of the system that
were working as intended.

We see these kinds of interactions in computer systems all the time. Reddit’s outage on
August 11, 2016 [4], is a great example: they were performing maintenance on their Zoo-
keeper cluster. Reddit’s autoscaler system relies on Zookeeper for input data, so in order to
prevent the autoscaler from doing the wrong thing while Zookeeper was under maintenance,
they turned it off. Unfortunately, their configuration management system turned the auto-
scaler back on, and it took their site down. That, of course, isn’t as bad as shooting down a
friendly aircraft, but the incidents do have elements in common.

In both those examples, no part of the system was broken, but the system overall didn’t work
as expected. The failure of analytic decomposition is especially acute for systems involving
software, because so many software problems arise from unexpected interactions between
parts of our systems, not simple component failure. Safety (or reliability, from our perspec-
tive) is a property of the entire system, not of the components of the system.

Leveson’s approach, STAMP (Systems-Theoretic Accident Model and Processes), has
three parts:

 3 Constraints, or conditions needed for the system to operate safely
 3 Hierarchical safety control structures, which work to enforce the constraints
 3 Process models describing the state of a system and how it moves from one state to another

Laura Nolan’s background is
in site reliability engineering,
software engineering, distributed
systems, and computer science.
She wrote the “Managing Critical

State” chapter in the O’Reilly Site Reliability
Engineering book and was co-chair of SREcon18
Europe/Middle East/Africa. Laura Nolan is a
production engineer at Slack. 
laura.nolan@gmail.com

MIT’s Professor Nancy Leveson gave a talk at SREcon19 EMEA
about her research on safety engineering and accident analysis [1].
Leveson’s work draws on case studies from military air-traffic

con trol in Iraq, contamination of water supplies, failure to launch a satellite [2],
as well as the accidents that resulted from the Therac-25 software-controlled
radiation therapy device [3].

www.usenix.org S P R I N G 2020 VO L . 45 , N O. 1 45

COLUMNS
Constraints and Controls: The Sociotechnical Model of Site Reliability Engineering

According to STAMP, designing for reliability starts with
figuring out what the key system constraints are, then analyz-
ing how candidate designs can be controlled in such a way to
be kept within those constraints. One article doesn’t afford
nearly enough space to do justice to the intricacies of STAMP,
so this column will be focused on Leveson’s concepts of system
constraints and control structures and how they relate to site
reliability engineering (SRE).

Hazards, Constraints, and Controls
For Leveson, safety is all about maintaining control of the
 system. Start by figuring out the hazards around your system.
For a public water supply the hazard might be “avoid exposing
the public to contaminated water.” In a production software
environment, the hazards are likely to be things like “keep the
error rate under 0.1%,” “don’t expose web servers directly to
the Internet,” or “don’t lose user data.”

From the hazards, you derive a set of constraints. For the water
supply system, those might be “water quality must meet stan-
dards,” and “if water quality falls below standards, steps must be
taken to reduce risk of exposure (e.g., boil-water advisories).”

For your production software system, constraints could be things
such as “new releases must be canaried to ensure the error rate
doesn’t increase,” “firewall rules must be in place to prevent
access to the web servers,” or “maintain at least three replicas of
critical data,” as well as “the system must have enough compute,
storage, and bandwidth available to it in datacenters foo and
bar,” or “service foobaz, on which we depend, must be operating
with a 95th percentile latency under 100 milleseconds.”

This should look pretty familiar so far: these are more-or-less
service level objectives (SLOs) that our system is expected to
fulfill and SLOs that our system needs from other systems or
infrastructure.

According to Leveson, hazards and constraints are a critically
important part of system design, and deriving them needs deep
domain expertise. Once you’ve defined your constraints, you
have to figure out how to monitor them and keep your system
within them. This means designing the controls that enforce the
constraints. If an incident does happen, accident analysis should
be focused on finding the failures or gaps in the system controls
that allowed the incident to take place.

Controls are not only technical, however; the entire system of
humans involved in the development, operation, and oversight
of a system are also part of the control system. For some safety-
critical systems, like nuclear reactors or food safety, this goes as
far as including the government and courts as part of the control
system. For SRE, this usually means the team responsible for a
given service and the management and leadership structure to
which SRE teams report.

Reference and Measuring Channels as SLOs
and SLIs
To control a system you need two things: a way to specify the
constraints on the system and feedback. Take a simple technical
example: an autoscaling group (as provided by the major cloud
platforms).

Figure 1 is a model of an autoscaling group from the perspective
of the user—an implementor would have a more detailed view of
the system internals. The autoscaling group currently contains
three instances. It is configured to keep a minimum of three
instances running. It’ll increase the number of instances if the
CPU utilization exceeds 60%. There’s a cool-down period of 120
seconds, so the autoscaler won’t increase or decrease the number
of instances until two minutes have passed since the last scaling
action.

In STAMP terminology, the control information is the reference
channel (the inward arrow in Fig. 1): this is the information
needed to do the job of imposing constraints on the system. The
outward arrow, the system metrics, is the measuring channel,
which gives information about how the system is behaving—is it
within its constraints or not?

The concepts of reference channels and measuring channels
map very closely to SLOs and SLIs (service level indicators),
respectively. An SLO, or reference channel, is a specification of
how you want your system to behave, and an SLI, or measuring
channel, shows whether or not your system is achieving its SLO.
Control doesn’t work without feedback. This, perhaps, is the
reason that SLOs and SLIs are so often seen as the essential first
step to adopting SRE practices—but they are definitely not the
only form of reference and measuring channels needed.

Figure 1: An autoscaling group

46  S P R I N G 2020 VO L . 45 , N O. 1 www.usenix.org

COLUMNS
Constraints and Controls: The Sociotechnical Model of Site Reliability Engineering

The SRE Sociotechnical Model
Leveson’s SREcon talk really resonated with a lot of people at the
conference. The problems of complexity arising from component
interactions are our everyday experience, even if our context
is with RPCs or data pipelines rather than ballistic missiles or
satellite launches. We’re very familiar with the need for dynami-
cally controlling the systems that we run and the difficulties
that arise from that (we saw some examples in the last instal-
ment of this column when we looked at dynamic control systems
and public cloud outages [5]).

The aspect of STAMP that is most relevant to SRE, however,
is that it treats the organizational side of system reliability as
a first-class citizen. What SREs do at a purely technical level
doesn’t look much different to software engineering or system
administration: we do debugging and performance analysis, and
we write C++ or Java or Go or bash scripts or Terraform configs
or Prometheus rules, like anyone else in software. The organi-
zational practices aimed at managing and controlling technical
complexity, however, make SRE different—and it turns out that
many of these practices have close analogues in STAMP.

According to Leveson, safety control structures are hierarchical.
Constraints are created at a higher level to control processes at
the lower levels of the hierarchy, until you eventually arrive at
the operating process itself and its direct control mechanisms.

There are different ways that SRE engagements can be struc-
tured organizationally [6], but the classic setup at Google, where
SRE originated, is for an SRE team to report to an SRE man-
agement function and to collaborate with one or more develop-
ment teams. The SRE team manages the system in production
and uses the experience gained from that to inform its engi-
neering work, which is focused on reliability, scalability, and

 performance. The development team works on features and
collaborates with the SRE team on changes needed to keep the
system stable and within its service level objectives.

The SRE organizational model includes a host of different
controls and forms of feedback, from error budgets and direct
interaction with the production system itself to forms of control
generally performed by management, such as setting organiza-
tion-wide policies and objectives and measurements, like pager
load over time. The diagram above is a SRE-specific version of
Leveson’s general model of sociotechnical control [2].

Constraints, Controls, and the SRE Team
At the SRE team level, the focus is on the technical systems. SRE
teams are normally deeply involved in defining SLOs for their
systems. Much of our technical work directly involves ensuring
the system is kept within SLOs—from design work to monitoring
and automation to control the system.

Healthy SRE teams also self-monitor, working at one level of
abstraction above the system itself. They’re looking at trends
in SLIs over longer periods of time, for patterns of incidents, for
upcoming problems like hitting scalability limits, for upgrades or
migrations that need to be performed, for new kinds of repetitive
manual work that may need to be automated.

Teams need control structures to make sure these self-monitoring
activities happen regularly. Most SRE teams use a weekly pro-
 duction meeting [7] to review the state of their production
systems, and this meeting is the natural site for much of the self-
monitoring that teams do. Teams will review service metrics,
outages, paging events, and other interrupts such as tickets: all
of these are measuring channel activities. As a result of this,
teams will make decisions that affect their reference channels:
updating runbooks, tweaking alerts. They’ll also surface issues
that require engineering work, which might be done within the
SRE team or become requests to the partner development team,
which usually has some representatives in attendance at the
production meeting.

SRE and Development Team Collaboration
As well as attending the weekly SRE-run production meeting,
SRE teams have several other reference and measurement
channels with developer teams. Development and maintenance
of systems is a joint activity shared by developers and SREs.
Both SREs and developers write design documents (also known
as RFCs, or requests for comment) and provide feedback on the
other team’s designs; this is a very important pair of reference
and measurement channels, as each side has its own set of sys-
tem knowledge and perspectives.

Figure 2: SRE model of sociotechnical control

www.usenix.org S P R I N G 2020 VO L . 45 , N O. 1 47

COLUMNS
Constraints and Controls: The Sociotechnical Model of Site Reliability Engineering

Production readiness reviews (PRRs) [8] are another important
channel between developers and SREs. PRRs are generally used
when a new service is being onboarded by an SRE team. SRE
teams normally evolve a fairly comprehensive team-specific
checklist for new services that covers items such as:

 3 Review of system architecture and dependencies
 3 Review of the system against the team and the organization’s
standards
 3 Review and development of SLOs
 3 Review and development of monitoring and alerting
 3 Review of change management practices (such as canarying)
 3 Developing training that can be delivered to the SRE team

During the PRR process, the SRE team will work through this
checklist with the developer team. The PRR process is a refer-
ence channel; the SRE team imposes constraints on the stan-
dards of the systems they are willing to support.

Error budgets are another well-known reference channel that
developer teams and SREs share. Error budgets are defined
based on SLOs: how much unavailability can a service have dur-
ing a given quarter and still be within its SLO? The SRE team
monitors a service’s SLO and error budget. If the error budget for
the quarter has been exhausted, then an SRE team should push
back against risky launches and normally will negotiate with the
developer team to prioritize reliability-related work.

Monitoring SRE Teams
Leveson says control is hierarchical. We’ve already seen how
SRE teams control and monitor their services. In large organiza-
tions, SRE management and leadership should also have a role to
play in monitoring the health and efficiency of SRE teams:

 3 Are their services generally meeting their SLOs?
 3 Are they getting paged too often?
 3 Do teams have sufficient staffing to do substantial engineering
work as well as operational work?
 3 Are high priority postmortem action items being done?

This doesn’t mean that leadership should micromanage. The
feedback loops provided by measurement channels get longer
the further up any hierarchy you go, and so control becomes less
effective. Management should be concerned with longer-term
patterns over multiple quarters.

This should not be a coercive approach, focused on demanding
that teams hit their metrics by working unsustainable hours or
at the cost of doing the right thing for their service—for instance,
teams should be able to prioritize fixing a newly found major risk
to their service’s stability over low and medium-priority post-
mortem action items, even if it means that those open postmor-
tem action items will be visible to management in the form of
metrics. The approach should be about making sure that teams
have resources and organizational support to get their job done
effectively and to prioritize the highest impact work. Done right,
this should not be a box ticking exercise.

SRE management is also in a great position to increase the effec-
tiveness of the entire SRE organization by spotting places where
standard tools and processes can help—these are, of course, refer-
ence channels. Examples of this could be introducing a standard
process for managing incidents, or kicking off a project to build a
production-grade tool for doing deployments or chaos engineering.

Conclusion
This article has just scratched the surface of Leveson’s work.
Nevertheless the STAMP concepts of reference and measure-
ment channels and hierarchical control systems very closely
describe what it is that SREs do. Learning about STAMP gave
me a clearer insight into the organizational side of SRE.

The “what is the difference between SRE versus DevOps” debate
has been well played out by now, but I’ll add my contribution
nonetheless: SRE is about the humans that design and control
the systems as much as it is about technical considerations.

SREs are in the business of defining objectively which system
states are acceptable and which are not. Our job is implementing
controls, both technical and organizational, to keep our sys-
tems healthy. Our teams are part of those systems too, and also
need to be healthy to be effective. Pain is unpleasant, but it is an
essential form of feedback—it tells us to stop doing the thing that
hurts in order to stay healthy. Far too many teams in operations
are in pain, quarter to quarter, year to year. Does your organiza-
tional model notice?

48  S P R I N G 2020 VO L . 45 , N O. 1 www.usenix.org

COLUMNS
Constraints and Controls: The Sociotechnical Model of Site Reliability Engineering

References
[1] N. G. Leveson, “A Systems Approach to Safety and Cyber-
security,” SREcon19 EMEA: https://www.usenix.org/conference
/srecon19emea/presentation/leveson.

[2] N. G. Leveson, Engineering a Safer World: Systems Thinking
Applied to Safety (MIT Press, 2012).

[3] N. G. Leveson, “Medical Devices: The Therac-25”: http://
sunnyday.mit.edu/papers/therac.pdf.

[4] “Why Reddit Was Down on Aug 11”: https://www.reddit.com
/r/announcements/comments/4y0m56/why_reddit_was_down
_on_aug_11/.

[5] L. Nolan, “Managing Systems in an Age of Dynamic Com-
plexity Or: Why Does My Single 2U Server Have Better Uptime
than GCP?” ;login:, vol. 44, no. 4 (Winter 2019): https://www
.usenix.org/publications/login/winter2019/nolan.

[6] D. Ferguson and P. Labhane, “SRE Team Lifecycles,” in
B. Beyer, N. R. Murphy, D. K. Rensin, K. Kawahara, S. Thorne,
eds., The Site Reliability Workbook: Practical Ways to Implement
SRE (O’Reilly, 2018).

[7] N. Murphy et al., “Communication and Collaboration in
SRE,” in B. Beyer, N. R. Murphy, D. K. Rensin, K. Kawahara,
S. Thorne, eds., Site Reliability Engineering: How Google Runs
Production Systems (O’Reilly, 2016).

[8] A. Cruz and A. Bambhani, “The Evolving SRE Engagement
Model,” in B. Beyer, N. R. Murphy, D. K. Rensin, K. Kawahara,
S. Thorne, eds., Site Reliability Engineering: How Google Runs
Production Systems (O’Reilly, 2016).

2020 USENIX Conference on
Operational Machine Learning

May 1, 2020 • Santa Clara, CA, USA

The 2020 USENIX Conference on Operational Machine Learning (OpML ’20) provides a forum for
both researchers and industry practitioners to develop and bring impactful research advances and
cutting edge solutions to the pervasive challenges of ML production lifecycle management. ML
production lifecycle is a necessity for wide-scale adoption and deployment of machine learning
and deep learning across industries and for businesses to bene� t from the core ML algorithms and
research advances.

Program Co-Chairs:
Nisha Talagala, Pyxeda AI

Joel Young, LinkedIn

Save the Date!

www.usenix.org/opml20

https://www.usenix.org/conference/srecon19emea/presentation/leveson
https://www.usenix.org/conference/srecon19emea/presentation/leveson
http://sunnyday.mit.edu/papers/therac.pdf
http://sunnyday.mit.edu/papers/therac.pdf
https://www.reddit.com/r/announcements/comments/4y0m56/why_reddit_was_down_on_aug_11/
https://www.reddit.com/r/announcements/comments/4y0m56/why_reddit_was_down_on_aug_11/
https://www.reddit.com/r/announcements/comments/4y0m56/why_reddit_was_down_on_aug_11/
https://www.usenix.org/publications/login/winter2019/nolan
https://www.usenix.org/publications/login/winter2019/nolan

www.usenix.org S P R I N G 2020 VO L . 45 , N O. 1 49

COLUMNS

Python and Memory
P E T E R N O R T O N

I found myself thinking about an interesting problem I ran into a few
years ago. I was wondering why an open source metrics collection
 system seemed to have a relatively low performance ceiling when

 relaying metrics.

After much troubleshooting, I found that the performance issue resided in attempts at split-
ting a list: when it had thousands of messages, it would pull off some messages from the front
of a list, then split the list, and the way it was doing this was inefficient. In the end I found
some improvement in using a deque, but the problem has left me with continuing questions
about some of these oddities in how Python does its memory management.

Since then I have found myself with an imperfect and incomplete understanding of Python’s
memory management, and I thought it would be interesting to take a quick look at the stan-
dard library to see if it can help tell us what Python is doing—how we allocate and manage
memory. Let’s start with a very light-on-details version of how we got here.

Back in the Day…
In the days before Python 2.0, Python’s memory management simply consisted of a method
called reference counting, that is, most objects referenced from somewhere—within the
global scope in a file, function, or object or class from a module you’ve loaded—will maintain
a field that the interpreter will increase when there is a new reference to the object and will
decrease when a reference is removed (e.g., a context manager going out of scope or a function
finishing up). For many data types, that’s pretty foolproof, and it’s a very simple system for a
language runtime to implement.

Circular Data Structures
The well-known weakness in this simple solution is that there are lots of situations where,
deliberately or incidentally, we can create circular references—object A contains a reference
to object B, and object B also contains a reference to object A. In case you’re having trouble
visualizing the situation, something like the following serves as a trivial example:

dict_A = {
 "a": "this is an A",
 "b": dict_B
}
dict_B = {
 "a": dict_A,
 "b": "this is a B"
}

When we create situations like this, it’s called a reference loop, and since both objects will
never have a reference count that goes to zero upon going out of scope, it is now memory that
can’t be collected automatically by a reference-counting garbage collector (GC).

As you can see in this example, you need a so-called container type to do this. Lists and dic-
tionaries are primary examples of container types, which are so-called because they contain

Peter works on automating
cloud environments. He loves
using Python to solve problems.
He has contributed to books
on Linux and Python, helped

with the New York Linux Users Group, and
helped to organize past DevOpsDays NYC
events. In addition to Python, Peter is slowly
improving his knowledge of Rust, Clojure, and
maybe other fun things. Even though he is a
native New Yorker, he is currently living in and
working from home in the northeast of Brazil.
pcnorton@rbox.co.

50  S P R I N G 2020 VO L . 45 , N O. 1 www.usenix.org

COLUMNS
Python and Memory

references to other objects. Because they’re more complex than
simple non-container types like a bool, integer, float, or string,
and because they are essentially a way to create memory point-
ers, by their nature they can break reference counting if not used
with extreme care.

Python Needed More than Reference Counting
Python made it to version 2 with the reference counter as its only
garbage collection mechanism, and by then its limits were well
known. Starting in version 2.0, an additional garbage collection
mechanism, called a generational collector, was added that could
clean up where the reference counting couldn’t. The principle is
that it looks for objects that are allocated but possibly not reach-
able by the reference counter and makes sure that any objects
that aren’t in use are cleaned up. When they are found to be in
use, it makes the sensible decision that something that’s in use
is likely to remain in use, and “promotes” that object to a more
senior generation, which doesn’t get checked as often.

Reference counting is very fast and easy to implement, while the
generational collector is more complex: because it scans memory
and needs the state of memory to not change while it’s running,
it has more of an impact on performance because every time it
runs it must stop the main thread, grab the Global Interpreter
Lock, and do its work.

The more objects that the generational garbage collection needs
to manage, the longer it will take to scan memory. The idea is
that most objects will be immediately handled by the reference
counter, making the more expensive alternative the one that will
be used less.

How Active Is the GC, Really?
You can get a precise idea of how much work the GC is doing by
using the gc module.

From version 3.3 on, the Python’s gc module has provided hooks
that will invoke a callback to notify the program whenever a
GC event occurs. With these hooks, you can gather the data you
need to describe what the collector is doing and to help you infer
why it’s doing it. Most of the work that the GC is doing is usually
invisible, but this module helps with the important feature of let-
ting you see how fast the interpreter thinks it needs to clean up
after itself, and how actively it is doing so.

import gc
print(gc.get_stats())
def print_hook(phase, info):
 print(f"The gc hook is in phase {phase}")
 print(f"And the gc hook provided this info: {info}")

gc.callbacks.append(print_hook)
foo = list(range(500))
del(foo)
print(gc.get_stats())

And at the end you should see a summary provided by
gc.get_stats that roughly matches what you see as having
been collected and shown by the print_hook.

Once you are able to know more about the garbage collection
patterns that code is creating, you may find yourself wondering
what kind of controls you have over how the garbage collection
actually works—for example, can you schedule the garbage
collection for times that you prefer? Or are there other ways to
control the garbage collection behavior at all?

There are tunable knobs that allow you to manage your pro-
grams’ garbage collection. For instance, you have the gc.disable
and gc.enable to guarantee that your code runs uninterrupted
for a span. Or if you know for sure that you won’t need it, you
can just disable automatic garbage collection at the start—for
example, if you have a job that loads a lot of data, then outputs
some data, and exits after a short time, who bothers with garbage
collection at all? In some cases it can be a huge advantage to not
clean up garbage before exiting.

Similarly, if you find you need to manually manage when collec-
tions are run, you can in fact make the garbage collector run a
collection using gc.collect(), which will run either a full collec-
tion (check everything) or you can tell it to work on a particular
generation by specifying 0, 1, or 2.

If it turns out that there are sections of your code that legiti-
mately will never change, or if a lot of work is done, then a fork-
exec is done: the Python gc module provides the gc.freeze()
and gc.unfreeze() functions, whose main use is documented as
being for forking a process and minimizing churn in the VM sub-
system having to map child processes to new pages if the parent
process decides to collect something that it didn’t need to (after
all, often it will be doing nothing but using wait() in a loop).

Thresholds
Thresholds are another interesting setting. If you think you
want to collect more or less frequently but still have collection be
automatic, you set thresholds, which represent how many times
container objects are allocated until the GC kicks in and does
a run over first or second generation objects to see what needs
collection. The thresholds set how many objects there are in a
particular generation before a garbage collection run is initiated.
The default thresholds of 700, 10, 10 show the expectation that
there will normally be a lot more small objects created that will
be collected than there are that will survive, and that only a few
will be tenured and survive to be shifted from the 0th genera-
tion to the 1st and 2nd. The 2nd generation is the highest and
shouldn’t have very many unreachable but live objects.

www.usenix.org S P R I N G 2020 VO L . 45 , N O. 1 51

COLUMNS
Python and Memory

The idea with thresholds is that if you discover that you’ve cre-
ated a lot of garbage that is getting tenured, and should remain
live, you can adjust those thresholds to prevent the garbage col-
lector from doing unnecessary work.

Tracemalloc—Seeing Which of Your Files Are
Allocating Memory
On the other side of the coin, what’s also easier to observe in
Python 3.3+ is what’s happening on the allocation side. It’s con-
ceptually clear that whenever you create an object, there will be
memory allocated, but the layers of modules, objects, iterators,
etc. can often make it hard to just take a glance at your code and
have a good idea as to how much work is being put into creation
and allocation of memory.

To do that there is an interesting module called tracemalloc [1],
which can be used to show you where your allocations are
happening. And while tracing, you can even pick up individual
objects and see where their allocations took place, so you can fig-
ure out where in your code you may be exercising the allocator.
If you’re doing enough small allocations, this module can help
you confirm whether memory is being used where you expect
it. This seems like it would be most useful when understanding
code from outside modules but could still be useful in code you’ve
written for yourself.

The sample here is a variation on the standard library docu-
mentation and will show you how many allocations were made
in each file that was recorded (though the limit of [0:10] when
extracting from the traceback will only show us the top 10 in
this case):

import tracemalloc
import requests

tracemalloc.start(25)
resp = requests.get('https://google.com/')
t = tracemalloc.take_snapshot()
tracemalloc.stop()
print("\n".join([str(s) for s in t.statistics('traceback')
[0:10]]))

This second example will do something very similar but shows
you what the stack looked like when a particular object was
allocated its memory:

import tracemalloc
import requests

tracemalloc.start(25)
resp = requests.get('https://google.com/')
objinfo = tracemalloc.get_object_traceback(resp)
tracemalloc.stop()
print("\n".join([str(l) for l in objinfo]))

In this case, the output should look something like this:

$ /usr/bin/Python3 gc-test-obj-traceback.py
gc-test-obj-traceback.py:5
/usr/lib/Python3/dist-packages/requests/api.py:75
/usr/lib/Python3/dist-packages/requests/api.py:60
/usr/lib/Python3/dist-packages/requests/sessions.py:533
/usr/lib/Python3/dist-packages/requests/sessions.py:668
/usr/lib/Python3/dist-packages/requests/sessions.py:668
/usr/lib/Python3/dist-packages/requests/sessions.py:247
/usr/lib/Python3/dist-packages/requests/sessions.py:646
/usr/lib/Python3/dist-packages/requests/adapters.py:533
/usr/lib/Python3/dist-packages/requests/adapters.py:265

And sure enough, in my Python installation adapters.py on
line 265 is the beginning of the build_response() function in
the requests module, and that is where the object was created.
I was very pleasantly surprised to find this particular behav-
ior. It seems to be a great tool to help with code spelunking to
discover where an object actually came from, which can be very
dependent on runtime conditions when you’re creating objects in
complicated situations.

The existence of the tracemalloc module is interesting, and it
would be fun to explore more of its API and expected behaviors
by pointing it at live code.

The More State-of-the-Art Allocators
However fun it is to be able to look under the hood, it wouldn’t be
fair to not mention a bit more about what the current state of the
art is outside of Python.

Since the addition of the generational collector, a lot of research
has been done in the garbage collection field. Most of the practi-
cal research that I’m familiar with has focused on the use case
of Java and the JVM. So I’ll give an overview of my incomplete
understanding of the progress of Java’s last few generations of
garbage collection from the point of view of someone who’s had
to struggle with it.

Most of us have probably used the Concurrent Mark+Sweep col-
lector, which was the primary Java garbage collector for a long
time. However, it didn’t age well—as applications and platforms
switched from 32-bit pointers to 64-bit pointers, developers of
applications that were memory intensive found it was fairly com-
mon to experience multisecond stop-the-world GC pauses at
the most inconvenient times. In addition, the more memory that
was in use, the worse the impact of the pauses and the longer the
pauses. And, as the available memory in 64-bit systems has grown,
the CMS collector has shown its age and was not able to keep up.

In the past decade a new garbage collector known as the G1 GC
matured in the Sun/Oracle Java 8 with the goal of reducing
pause times and enabling the JVM to be able to handle larger
memory heaps, and it no longer became a very tricky proposition
to request and use a heap of greater than eight GB.

52  S P R I N G 2020 VO L . 45 , N O. 1 www.usenix.org

COLUMNS
Python and Memory

Currently, JVM-hosted applications are growing to use more
resources and more memory in specific. In the OpenJDK era
there are two brand new garbage collection systems that have
miraculously grown to handle more memory with smaller, less-
noticeable pauses. One is called Shenandoah [2] and the other
is called zgc [3]. Both are incredibly ambitious and featureful.
Users of Java will be very happy with this change.

In short, the state-of-the-art of memory management and gar-
bage collection has continued to advance. From my perspective,
the driver in garbage collection research has been Java, which
has made steady gains. Python is already used in projects that
have large memory footprints, but anecdotally I haven’t heard
that it’s great, and I wonder whether advances in the language,
like the multiple interpreters in PEP 554 [4] planned for Python
3.9, are likely to have an impact in memory usage by making
high-performance multithreaded Python applications start to
seem more tractable.

In any case, please go and try out these modules on your own
code, and enjoy!

References
[1] https://docs.Python.org/3/library/tracemalloc.html.

[2] https://wiki.openjdk.java.net/display/shenandoah/Main.

[3] https://wiki.openjdk.java.net/display/zgc/Main.

[4] https://www.Python.org/dev/peps/pep-0554/.

www.usenix.org S P R I N G 2020 VO L . 45 , N O. 1 53

COLUMNS

iVoyeur
eBPF Tools: What’s in a Name?

D A V E J O S E P H S E N

Dave Josephsen is a book
author, code developer, and
monitoring expert who works
for Fastly. His continuing
mission: to help engineers

worldwide close the feedback loop.
dave-usenix@skeptech.org Horus died with Ancient Egypt, but Isis lived on into Greek mythology, along with many of

her Egyptian counterparts. In fact the Romans were still building temples to her ~1000 years
later. I find this early story about her gleaning Ra’s true name kind of fascinating because she
also happens to be one of the very few gods who was never renamed in the whole of human
history. Ra, of course, became Apollo, who in turn became Phoebus Apollo to the Romans.

So all the while the Egyptian gods were being given Greek names, the Sumerian gods were
being given Akkadian equivalents, and throughout the infamous Roman divinity-rebranding
pivot from Greek mythos, Isis remained Isis. It’s almost as if her nearly prehistoric cogni-
zance of the power inherent in names somehow rendered her immune from the incessant
attempts of mortals to relabel the divine.

Today, our god situation is comparatively simple (in cardinality at least), but our complicated
relationship with names lives on. There is, for example, a Sunni Hadith (https://sunnah.com
/bukhari/80/105) that asserts God has 99 names, and to know them is the path to paradise.
The power of the “true name of God” is a central theme in Kabbalism, Sufism, Judaism, and
in Christianity where we’re reminded not to use it in vain, and where we find Jacob wrestling
with an angel who refuses to reveal his true name.

Richard Feynman famously doubted the significance of names when he wrote about the dif-
ference between naming a thing and knowing it (https://fs.blog/2015/01/richard-feynman
-knowing-something/). “See that bird?” he said. “It’s a brown-throated thrush, but in Ger-
many it’s called a halzenfugel, and in Chinese they call it a chung ling and even if you know
all those names for it, you still know nothing about the bird. You only know something about
people; what they call the bird.”

If naming something corporeal like a bird provides us no useful insight, what then are we to
make of our propensity for foisting names upon the divine and ethereal? This is a question
Socrates ponders in Cratylus; are names arbitrary labels? Or might they carry within them
some innate, visceral power beyond our ability to comprehend? Are names the random vocal-
izations of apes or priceless gifts from some immortal creator?

There’s a joke in our industry that goes: “There are two hard problems in computer science:
cache invalidation, naming things, and off-by-one errors,” and I personally would reorder
that list such that naming things came first. There is, you know, a positively terrifying
undercurrent to the act of giving something a name. A nagging suspicion that what I’m doing
is not naming a thing at all but, rather, foisting upon future generations of engineers the
banal and loathsome historical context of the present.

There is a story in ancient Egyptian folklore that the goddess Isis
 created a serpent to poison the sun god Ra. Isis withheld the antidote
from the withering sun god in exchange for his true name, which he

eventually surrendered. This—the true name of Ra—gave Isis complete power
over him and enabled her to elevate her son Horus to the Egyptian throne.

https://sunnah.com/bukhari/80/105
https://sunnah.com/bukhari/80/105
https://fs.blog/2015/01/richard-feynman-knowing-something/
https://fs.blog/2015/01/richard-feynman-knowing-something/

54  S P R I N G 2020 VO L . 45 , N O. 1 www.usenix.org

COLUMNS
iVoyeur—eBPF Tools: What’s in a Name?

Consider sed, a shell tool that derives its name from a still-older
tool, ed (https://en.wikipedia.org/wiki/Ed_(text_editor)), devel-
oped in August 1969 when memory was so dear a commodity
that every computer program had two- and three-letter names.
Or Kubernetes, a tool with so unwieldy a name that the com-
munity has resorted to numeronyms (https://en.wikipedia.org
/wiki/Numeronym) to deal with it on a daily basis.

eBPF
Despite the considerable buzz surrounding eBPF these days,
it’s completely understandable if you’re not exactly sure at first
blush just what the heck it actually is. For one, it carries an
understated—some would even say misleading—name, which
like many things named by engineers, has more to say about its
origins than its identity. I say it “carries” its name, but really it
drags its name behind it like an iron ship-anchor. A name that
makes it impossible to introduce to newcomers without delving
into the history of its origins.

Upon hearing that the acronym eBPF stands for “Extended
Berkeley Packet Filter,” you might come to the conclusion that
it’s a packet-filtering program, which is either mostly wrong or
completely wrong, depending on what you expect to get out of a
name. If you think a name should imply what a thing is, you’re
completely wrong. eBPF is not a packet-filtering program; it’s
a register-based Virtual Machine running inside the Linux
Kernel.

If you think a name should imply what a thing is good for, then
you’re only mostly wrong. eBPF can, in fact, filter packets for
you. But it can also do many, many other things for you that have
nothing whatsoever to do with the network stack.

Just the other day, in fact, I used an eBPF program to identify a
failing drive in an mdraid array by asking it for a histogram of
block-I/O latency as a function of device. One drive in the array
had actually already failed and had been replaced with a new
drive. But having added the new drive and rebuilt the array, disk
I/O was still noticeably slow.

This left me in the unenviable position of having an array of 12
disks, one (or some) of which were not performing as well as
they should. I don’t know about you, but when I’ve encountered
problems like this in the past, I’ve turned to iostat.

iostat -dx5
Sometimes I wonder how many hours of my life I’ve spent star-
ing at the output from this little command, which shows an
extended disk report similar to the one above every five seconds.

The input data for this report comes from /proc/diskstats and
is documented in the kernel docs https://www.kernel.org/doc
/Documentation/iostats.txt. If you skim it, you’ll probably notice
that the report format and other details depend on the kernel ver-
sion you’re running, which is annoying. If you put your engineer
hat on and read in a bit deeper, you’ll start to come across some
weird details related to—of course—naming.

The avgqu-sz field, for example, is misleading in that it isn’t
really an average of the queue size, because it doesn’t show
how many operations are queued waiting for service. Rather it
shows how many I/O ops were either in the queue waiting or
being serviced. Similarly await is not an in-queue wait time but
actually measures end-to-end latency. Oh, and the disk report’s
last column %util? It tells you how much of the time during the
measurement interval the device was in use (many people would
understandably interpret something called “%util” as a measure
of whether a device is reaching its limit of throughput, but nope).

If you know these things (and more) about iostat, and you are
practiced at staring at this output, and you have something of
a baseline understanding of what a healthy I/O load looks like
for your system, and you have fewer than 50 disks, iostat will
probably get you where you need to be. It probably would have
gotten me to the finish line with my latency problem eventually,
but I’d been reading about eBPF on Brendan’s blog (http://www
.brendangregg.com/blog/2019-01-01/learn-ebpf-tracing.html),
and I found myself staring at iostat and wondering whether
there was a BPF tools script that could show me a breakdown of
how much latency each individual disk was experiencing. Check
this out:

Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s avgrq-sz avgqu-sz await r_await w_await svctm %util
sda 0.00 10.00 0.00 22.00 0.00 134.40 12.22 0.00 0.00 0.00 0.00 0.00 0.00
sdb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
sdd 0.00 4275.40 13.60 7349.00 54.40 47689.60 12.97 21.10 2.87 0.53 2.87 0.08 57.76
md0 0.00 0.00 279.60 63568.20 1118.40 259052.00 8.15 0.00 0.00 0.00 0.00 0.00 0.00
sdc 0.00 4266.40 22.80 7343.80 91.20 47625.60 12.95 27.58 3.70 0.07 3.71 0.08 60.88
sde 0.00 4190.40 36.20 5611.60 144.80 39660.80 14.10 4.78 0.85 0.15 0.85 0.07 38.72
sdf 0.00 4189.20 20.80 5612.80 83.20 39660.80 14.11 4.34 0.77 0.23 0.77 0.06 34.56
sdo 0.00 4261.60 27.00 7508.40 108.00 48224.00 12.83 28.31 3.76 0.33 3.77 0.08 58.64

Extended disk report, trimmed to a reasonable length

https://en.wikipedia.org/wiki/Ed_(text_editor)
https://en.wikipedia.org/wiki/Numeronym
https://en.wikipedia.org/wiki/Numeronym
https://www.kernel.org/doc/Documentation/iostats.txt
https://www.kernel.org/doc/Documentation/iostats.txt
http://www.brendangregg.com/blog/2019-01-01/learn-ebpf-tracing.html
http://www.brendangregg.com/blog/2019-01-01/learn-ebpf-tracing.html

www.usenix.org S P R I N G 2020 VO L . 45 , N O. 1 55

COLUMNS
iVoyeur—eBPF Tools: What’s in a Name?

This output, a histogram of I/O latency, came from the biolatency
tool in the BCC tools suite (https://github.com/iovisor/bcc). Bio-
latency, read: block I/O latency, even has a name I can get behind.
Passing a “-D” gleans a histogram breakdown of latency per disk.
Where does this awesome biolatency tool get its data, you ask?
Well from the enhanced Berkeley Packet Filter obviously!

Wait, what?

eBPF works like an embedded lua interpreter or the spidermon-
key VM that executes JavaScript inside the Mozilla web browser.
It resides in kernel space, ready to execute bytecode supplied
from userspace. Its original intent was to filter packets without
having to resort to context-switches, but it has grown to become
a fully fledged kernel tracing system comparable to DTrace in
long-lost Solaris.

A userspace BPF script sends a bytecode to the kernel together
with a program type which determines what kernel areas the
program can access. If you look at the source code for biolatency
(https://github.com/iovisor/bcc/blob/master/tools/biolatency
.py), you’ll notice it is a Python program which contains a small C
program inside it as a string (starting on line 56).

The Python code takes care of compiling and loading that block
of C code into the kernel and then stays resident in memory, col-
lecting data from its own kernel probe, and eventually presenting
it to us, the user. I’m intentionally glossing over a lot of detail
here, including a pre-load code verifier which guarantees your
probe payload won’t crash the system. There are a lot of moving
parts, but the result is high-resolution, low-cost visibility into
the inner-workings of the system and everything running on it.
Unprecedented observability.

I’d like to spend the next few articles together digging into eBPF
more deeply. My plan is to use our new friend, the biolatency tool,
as a laboratory frog we can dissect together. We’ll start light,
talking about the various endpoints eBPF gives us to get our
hooks into the kernel, and finish up with hopefully a solid place
to get started crafting your own eBPF programs. Who knows,
maybe we’ll even filter some packets.

Take it easy.

 usecs : count distribution
 0 -> 1 : 0 | |
 2 -> 3 : 0 | |
 4 -> 7 : 0 | |
 8 -> 15 : 0 | |
 16 -> 31 : 6870 | |
 32 -> 63 : 516091 |**************** |
 64 -> 127 : 838139 |***************************** |
 128 -> 255 : 963522 |********************************* |
 256 -> 511 : 318996 |************* |
 512 -> 1023 : 146827 |****** |
 1024 -> 2047 : 74222 |*** |
 2048 -> 4095 : 66658 |** |
 4096 -> 8191 : 33339 |* |
 8192 -> 16383 : 25817 |* |
 16384 -> 32767 : 13587 | |
 32768 -> 65535 : 8990 | |
 65536 -> 131071 : 425 | |

https://github.com/iovisor/bcc/blob/master/tools/biolatency.py
https://github.com/iovisor/bcc/blob/master/tools/biolatency.py

56  S P R I N G 2020 VO L . 45 , N O. 1 www.usenix.org

COLUMNS

Simplifying Repetitive Command Line Flags
with viper
C H R I S “ M A C ” M C E N I R Y

In “Knowing Is Half the Battle: The Cobra Command Line Library of
Go” [1], we explored using the github.com/spf13/cobra library for creat-
ing command line tools. In this article, we’re going to expand on that by

hooking in multiple ways to handle the flags to those commands by using a
sister library to cobra: github.com/spf13/viper.

How we handle command configuration changes over the lifetime of the tool. A common
evolution for handling command configuration is, in order of precedence:

 3 command line supplied flag
 3 environment variable
 3 configuration file

When you first start to use a tool, you will typically supply the flags on the command line.
This allows you to explore and iterate with the flags easily.

After you get comfortable with them, you’ll want to avoid having to reenter any common
values. For example, --user or --server become very repetitive if you have to enter them
every time you run the command. This is the perfect place for environment variables to come
into the picture. Set the environment for your shell session, and you can skip setting it on the
command line each time.

Eventually, you’re comfortable enough with the overall setup to commit those configurations
to a file to preserve them over multiple sessions. These typically end up as part of your dot-
files. You set the file and never have to configure your environment or command line again.

Yes, sometimes you skip steps so this pattern is not exclusive, but it is especially common in
tool development.

Since the tool configuration is built up this way, all three layers of configuration methods are
available throughout. There are two additional benefits that fall out of these configuration
methods:

 3 You can temporarily override the values from the environment or command line. This allows
you to test out new configurations without changing your defaults.
 3 Different runtime environments and setups prefer different formats. For example, your
Puppet setup may prefer configuration files, your Dockerfiles setup may prefer environment
variables, and your Kubernetes setup may prefer command line arguments. A flexible binary
supports multiple environments since it can support all three mechanisms. This last part is
especially apt for 12-factor applications.

We’re specifically using the viper library because it builds upon the work of the cobra library
from the previous article. This combination follows the precedence order identified above.
This only holds for flags (--flag) and not for full command arguments. Arguments are typi-
cally specific to each command invocation, and it is unusual to encode this in environment
variables or configuration files.

Chris “Mac” McEniry is a
practicing sysadmin responsible
for running a large e-commerce
and gaming service. He’s been
working and developing in

an operational capacity for 15 years. In his
free time, he builds tools and thinks about
efficiency. cmceniry@mit.edu

www.usenix.org S P R I N G 2020 VO L . 45 , N O. 1 57

COLUMNS
Simplifying Repetitive Command Line Flags with viper

The code for these examples can be found at https://github.com
/cmceniry/login in the “viper” directory. Each directory cor-
responds to a section below and should be executed using go
run $DIR/main.go to follow along with the article. This uses go
module support (minimum Go version 1.11), so no prep work is
required once the repository is cloned.

Default
To establish a baseline, we’re going to set a default for viper-
maintained values (this will also help to build up the scaffold
around the examples). As usual, we begin with the standard Go
intro—setting up our main and imports.

default/main.go: intro.
 package main

 import (
 "fmt"
 "github.com/spf13/cobra"
 "github.com/spf13/viper"
)

 func main() {

We’re going to be building on top of the existing cobra command.
In our Run, we’re going to just print the output of our flag. Spe-
cifically, we get the configuration value of the Flag item and we
will get it as a string (or nothing).

default/main.go: cobra.
 rootCmd := &cobra.Command{
 Run: func(c *cobra.Command, args []string) {
 fmt.Println(viper.GetString(“Flag”))
 },
 }

Setting a default in viper is a single function viper.SetDefault.

default/main.go: viper.
 viper.SetDefault("Flag", "default")

And to round it out, we execute into our cobra command.

default/main.go: execute.
 rootCmd.Execute()

With all of that together, we can run our tool and get our inter-
nally set value for Flag.

 $ go run default/main.go
 default

Command Line
Now let’s add the first pattern by pulling the value in from the
command line flag. The code here will be identical to the default
case, but we’re going to add a couple of lines just before the
Execute. These set up the command line flag (which comes from
the cobra command as in the ;login: article [1]) and then bind it to
the viper configuration.

commandline/main.go: flag.
 rootCmd.Flags().String("flag", "", "help for flag")
 viper.BindPFlag("Flag", rootCmd.Flags().Lookup("flag"))

We can demonstrate that by just adding these lines, we main-
tain our default compatibility, but we also add support for our
 command line flag.

 $ go run commandline/main.go
 default
 $ go run commandline/main.go --flag cli
 cli

Environment Variable
The next step in our flag handling evolution is to set this using
an environment variable. As previously, this is done with the
addition of a few more items before our cobra execute. The first
function creates a pseudo-environment namespace so that we
don’t accidentally conflict with other applications. The second
function connects the environment variables with the viper
configuration. Make special note that viper connects them
with the convention of all uppercase with prefix, so in this case,
VF_FLAG.

 viper.SetEnvPrefix("VF")
 viper.BindEnv("Flag")

With these in place, we can now use the default, environment,
or command line.

 $ go run envvar/main.go
 default
 $ VF_FLAG=env go run envvar/main.go
 env
 $ VF_FLAG=env go run envvar/main.go --flag cli
 cli

Configuration File
viper supports a variety of configuration file formats and even
has autodetection for them. For simplicity, we’re going to go with
the TOML format:

 Flag = "configfile"

As before, we’re building on top of the previous examples by add-
ing a few lines before executing our cobra command. First, we
tell viper where to look for the configuration file. Next, we tell it
which configuration file to use (notice that the suffix is ignored
since we’re using autodetection). And, finally, we read the config
file. This is the first call that can produce an error. To support
compatibility with the other three examples, we ignore it if the
file is not found and panic otherwise.

https://github.com/cmceniry/login
https://github.com/cmceniry/login

58  S P R I N G 2020 VO L . 45 , N O. 1 www.usenix.org

COLUMNS
Simplifying Repetitive Command Line Flags with viper

configfile/main.go: configfile.
 viper.AddConfigPath(".")
 viper.SetConfigName("config")
 if err := viper.ReadInConfig(); err != nil {
 // Only error on errors other than file not found
 if _, ok := err.(viper.ConfigFileNotFoundError);
!ok {
 panic(err)
 }
 }

Now we run it again and get our expected output. As before, we
can test it with the environment and command line flag options
and also still receive the expected outputs. However, short of
removing the config file, we will not be able to see the default
value (but you can remove the file and try as you want).

 $ go run configfile/main.go
 configfile
 $ VF_FLAG=env go run configfile/main.go
 env
 $ VF_FLAG=env go run configfile/main.go --flag cli
 cli

Combining Multiple Configurations
In this, we used viper as a monolithic config. There are times
when you want to break this out, and that means creating a
viper.Viper struct (using New) instead of the default struct
invoked by the package static funcs as we’ve done here. This
allows you to even use it in libraries to combine configura-
tion functionality without having to support multiple formats.
To avoid conflicts, you’ll want to apply judicious use of the
 SetEnvPrefix and SetConfigPath or SetConfigName functions
for each configuration.

Conclusion
With just a few lines of setup, the viper library has given us fast
configuration handling. This supports the regular model of com-
mand line flags, environment variables, and configuration files.

I hope this article has provided you with a concrete handle to the
viper library and that this helps you in your tool development.
Happy Going!

Reference
[1] ;login: vol. 43, no. 2: https://www.usenix.org/system/files
/login/articles/login_summer18_09_mceniry.pdf.

2020 USENIX Conference on Privacy
Engineering Practice and Respect

May 11–12, 2020 • Santa Clara, CA, USA

PEPR is focused on designing and building products and systems with privacy and respect for their users
and the societies in which they operate. Our goal is to improve the state of the art and practice of building
for privacy and respect and to foster a deeply knowledgeable community of both privacy practitioners
and researchers who collaborate towards that goal.

Program Co-Chairs:
Lorrie Cranor, Carnegie Mellon University

Lea Kissner, Humu

Save the Dates!

www.usenix.org/pepr20

https://www.usenix.org/system/files/login/articles/login_summer18_09_mceniry.pdf
https://www.usenix.org/system/files/login/articles/login_summer18_09_mceniry.pdf

www.usenix.org S P R I N G 2020 VO L . 45 , N O. 1 59

COLUMNS

Five years ago, I focused this column on jobs in cybersecurity and how
they compared to the market at large. This column is a revisit with
some comparisons.

The cost of anything is the foregone alternative. Cybersecurity is fraught with foregone
alternatives—what do I/you get done paired with what I/you pushed aside so as to get at least
something done. Five years ago, I wrote that “automation is moving beyond the routinizable
to the non-routine by way of the tsunami of ever bigger data.” It hardly needs saying that the
above is even more true now both in terms of coverage (areas of application) and velocity of
change. Machines that are cheaper than you, that make fewer mistakes than you, that can
accept any drudgery that risk avoidance imposes, etc. are coming on.

What does that have to do with cybersecurity? Cybersecurity is perhaps the most challeng-
ing intellectual profession on the planet both because of the rate of change and because your
failure is the intentional work product of sentient opponents. Can automation help with that?
Of course and it already is, as you well know regardless of your misgivings about whether
anomaly detection will work in an ever more “personalized” Internet where one man’s per-
sonalization is another man’s targeting. So where do “we” fit in the jobs picture?

For comparability, I am going to stick with the same data sources as last time, largely the US
Bureau of Labor Statistics. BLS annually predicts [1] the 20 occupations with the best out-
look for new jobs over the next 10 years, which includes both the number of jobs to be added
over the coming decade and the median pay at the time the prediction is made. Multiplying
the predicted number of new jobs by the then current median pay might be said to give a soci-
etal investment or cost figure for that particular job.

Figure 1 recaps BLS’s values for six years ago (six because of publication schedules) when
BLS predicted the decadal job gain for those top 20 occupations to be 5.9 million jobs with a
median pay of $32,468 for a decadal cost of $95 million for those top 20 occupations.

For each of the 20 jobs, Figure 1 plots that job’s percentage of the 5.9 million new jobs against
that job’s percentage of the $95 million decadal cost in the aggregate. The three more extreme
are labeled: 580,800 personal care aides (9.9% of new jobs) earning $19,910 (thereby contrib-
uting 6.1% of the aggregate decadal cost), 526,800 (9.0%) registered nurses earning $65,470
(18.1%), and 244,100 (4.2%) general managers earning $95,440 (12.2%).

Figure 2 is the same scheme and scale, but now using the most current (2018) BLS data.

For 2018, some outliers are the same and some are different: 881,000 personal care aides
(19.2%) earning $24,020 (11.1%), 640,100 food prep/servers (14.0%) earning $21,250 (7.1%),
371,500 registered nurses (8.1%) earning $71,730 (13.9%), 241,500 software developers (5.3%)
earning $103,620 (13.1%), and 165,000 general managers (3.6%) earning $100,930 (8.7%).

Six years ago, software developers didn’t even make the list so there is nothing to compare
to. Looking at the other four extrema [2], BLS predicts personal care aides to have a +8.4%
CAGR (compound annual growth rate) in new jobs per year over the next decade, and there
has been an inflation-corrected +2.8% CAGR in their pay over the last six years. For food

For Good Measure
Cyberjobsecurity

D A N G E E R

Dan Geer is the CISO for
In-Q-Tel and a security
researcher with a quantitative
bent. He has a long history
with the USENIX Association,

including officer positions, program
committees, etc. dan@geer.org

60  S P R I N G 2020 VO L . 45 , N O. 1 www.usenix.org

COLUMNS
For Good Measure: Cyberjobsecurity

prep/servers, there will be a +3.2% CAGR in total new jobs per
year, and there has been +2.2% CAGR in their pay. For registered
nurses, there will be a +1.8% CAGR in jobs, and there has been a
+1.2% CAGR in their pay over the last six years. For home health
aides, there will be a +2.3% CAGR, and there has been a +2.2%
CAGR in their pay over the last six years. Overall, the CAGR for
the predicted rate of new job creation by and amongst the top
20 overall is –2.5%, that is, the top 20 will not collectively grow
as quickly as they have been. Nevertheless, the CAGR for pay
for those jobs overall has been +4.2%. This perhaps points to
concentration of job and wage growth spreading out from the top
20 to elsewhere in the economy. Choosing what to do with your
life is not getting simpler.

On the world scale, these top 20 are good jobs. The $21,250 for
food prep/servers puts them in the world top 10%, the $24,020
for personal care aides puts them in the world top 8.6%, the
$71,730 for registered nurses puts them in the world top 0.9%,
and the $100,930 for general managers puts them in the world
top 0.3% as does the $103,620 for software developers [3]. In
any case, that’s the spectrum of the whole US economy.

High paying jobs are precisely the ones that automation most
wants to take. Turning to more interesting BLS data, namely
that for “Information Security Analysts” (ISAs) [4], BLS says
that today (2018) there are 112,300 of us/them with median
income of $98,350 per year, putting ISAs in the top 0.4% on the
world scale. Six years ago, the figures were 75,000 ISAs with
mean income of $86,070 per year, so that’s a +6.7% CAGR for the
total number of ISAs and a +2.2% CAGR for their pay. Looking
ahead, BLS predicts an additional 35,500 ISAs by 2028—a more
modest job growth CAGR of +2.8% which rate of increase never-
theless qualifies ISA as the sixth fastest growing of all US occu-
pations (after solar photovoltaic installers, wind turbine service
technicians, home health aides, personal care aides, and occupa-
tional therapy assistants). For comparison, six years ago the ISA
occu pation was growing 16th fastest and now it is 6th fastest.

Of those 20 fastest growing jobs, only physician assistants,
nurse practitioners, mathematicians, and software developers
make more pay than ISAs (from +4 to +10% more). Computer-
world’s survey [5] confirms the pinnacle status of information
security practitioners, putting a CSO (at $173,300) in the world
top 0.1% (up from the top 0.2% six years ago).

So, is automation gunning for the ISA role? If not, is it because
ISAs are too few to bother with, not enough people are willing
to be one, or is it that the job is too hard to automate (yet)?
Universities and the White House like to say that as machines
take over existing jobs, new opportunities are created for those
who “invest in themselves.” This has been argued over and over;
there isn’t room here to deal with it, but for my money Federico
Pistono has clear numbers [6] that the rosy version is just not
true. Ranking US jobs by how many people hold them, computer
software engineer is the only job created in the last 50 years that
also has over a million job holders. It is #16 on the list (of 41);
there are twice as many cashiers. The #1 most numerous job,
truck/delivery driver, is being automated out of existence as we
speak. If cybersecurity jobs are safe from automation, should we
be retraining all the truck/delivery drivers who are about to be
unemployed as information security analysts? Are we lucky that
our jobs come with sentient opponents? More to the point, are
sentient opponents our job security—the source of both our pain
and our power [7]?

If automation is most focused on the most expensive workers,
perhaps we should be happy that we cybersecurity folk are not
the best paid. All but one of the dozen best paying jobs are in
medicine [8] (that one is CEO at #11), but as C. G. P. Grey points
out [9], once electronic health records really, really take hold,
most of healthcare can be automated—at least the parts for
diagnosis, prescribing, monitoring, timing, and keeping up with
the literature.

But if it is true that all cybersecurity technology is dual-use, then
what about offense? Chris Inglis, former NSA Deputy Director,

Figure 1: Percent of new labor cost versus percent of new jobs, 2012–2022 Figure 2: Percent of new labor cost versus percent of new jobs, 2018–2028

www.usenix.org S P R I N G 2020 VO L . 45 , N O. 1 61

COLUMNS
For Good Measure: Cyberjobsecurity

famously remarked that if we were to score cyber the way we
score soccer, the tally would be 462-456 twenty minutes into the
game [10], that is, all offense—confirming not only the dual-use
nature of cybersecurity technology but perhaps also that offense
is where the innovations that only nation states can afford are
going on. Put differently, is cybersecurity as a job moving away
from defense toward offense insofar as the defense side is easier
to automate? That won’t show up in any statistics that you or I
are likely to find; offense does not publish.

In sum, everything I see in the security literature and/or the
blogosphere argues for automating cybersecurity. One must then
ask if, in truth, our job description is to work ourselves out of a
job. Or do we say that with a wink [11]?

References
[1] Occupational Outlook Handbook: https://www.bls.gov/ooh
/most-new-jobs.htm.

[2] Current Population Survey: https://www.bls.gov/cps
/cpsaat11b.xlsx.

[3] Wealth calculator (adjusted for purchasing parity): http://
www.worldwealthcalculator.org.

[4] Information Security Analysts: https://www.bls.gov/ooh
/computer-and-information-technology/information-security
-analysts.htm.

[5] IT Salary Survey: https://www.computerworld.com
/salarysurvey/tool/2017/compare?jobTitle=4_1469.

[6] F. Pistono, “Unemployment Tomorrow,” in Robots Will
Steal Your Job, But That’s OK (Creative Commons, 2012):
http://www.robotswillstealyourjob.com/read/part1/ch9
-unemployment-tomorrow.

[7] “Skilled workers historically have been ambivalent toward
automation, knowing that the bodies it would augment
or replace were the occasion for both their pain and their
power.”—Shoshana Zuboff, In the Age of the Smart Machine
(Basic Books, 1989).

[8] “25 Highest Paid Occupations in the U.S. for 2019”: https://
www.investopedia.com/personal-finance/top-highest-paying
-jobs/.

[9] C. G. P. Grey, “Humans Need Not Apply”: https://www
.youtube.com/watch?v=7Pq-S557XQU.

[10] Chris Inglis, confirmed by personal communication.

[11] “Never write if you can speak; never speak if you can nod;
never nod if you can wink.”—Martin Lomasney, Ward Boss,
Boston.

https://www.bls.gov/ooh/most-new-jobs.htm
https://www.bls.gov/ooh/most-new-jobs.htm
https://www.bls.gov/cps/cpsaat11b.xlsx
https://www.bls.gov/cps/cpsaat11b.xlsx
http://www.worldwealthcalculator.org
http://www.worldwealthcalculator.org
https://www.bls.gov/ooh/computer-and-information-technology/information-security-analysts.htm
https://www.bls.gov/ooh/computer-and-information-technology/information-security-analysts.htm
https://www.bls.gov/ooh/computer-and-information-technology/information-security-analysts.htm
https://www.computerworld.com/salarysurvey/tool/2017/compare?jobTitle=4_1469
https://www.computerworld.com/salarysurvey/tool/2017/compare?jobTitle=4_1469
http://www.robotswillstealyourjob.com/read/part1/ch9-unemployment-tomorrow
http://www.robotswillstealyourjob.com/read/part1/ch9-unemployment-tomorrow
https://www.investopedia.com/personal-finance/top-highest-paying-jobs/
https://www.investopedia.com/personal-finance/top-highest-paying-jobs/
https://www.investopedia.com/personal-finance/top-highest-paying-jobs/
https://www.youtube.com/watch?v=7Pq-S557XQU
https://www.youtube.com/watch?v=7Pq-S557XQU

62  S P R I N G 2020 VO L . 45 , N O. 1 www.usenix.org

COLUMNS

/dev/random
Artificial Ethics

R O B E R T G . F E R R E L L

There are those (probably all bots) who will claim that the future of
intelligence is largely, if not exclusively, the domain of machines. We
have adopted the rather nebulous “artificial intelligence” to describe

any logic that didn’t originate in axons, dendrites, synapses, and all that other
stuff you learn in high school when the coach/biology teacher is off on a foot-
ball trip and they bring in a substitute who actually took biology in college.

Electrons traveling along (semi)conductors create artificial intelligence, while ions pass-
ing back and forth across cell membranes and molecules traversing synaptic gaps are
 responsible for biological intelligence. Of course, the way computer chips fabricate their
form of intelligence is very different from the way brains do it. Traditional computers per-
form mathematical calculations on data. Brains, on the other hand, look for or create lots
and lots of connections among data points: some obvious, some less so. We as a species thrive
on patterns.

A computer will take the contents of one register and add it to the contents of another to
calculate a sum. A human brain will parse the two numbers until it recognizes something it’s
seen before, then drill down on the results of those individual pattern recognition exercises
to reach a final number, which itself is a familiar pattern or combination of them. It’s a much
less direct algorithm, derived ultimately from a survival skill we probably developed on an
African veldt or in Mrs. Pageant’s third-grade classroom.

The term “artificial intelligence,” therefore, seems rather meaningless, at least when applied
to traditional computing. Garden variety computers aren’t really intelligent. They’re just
quite good at adding. The latest iteration of neural nets, on the other hand, are taking a decent
stab at creating true synthetic intelligence. They do this by emulating brains to some extent,
substituting webs of connections for simple registers.

When I’m trying to remember where I’ve seen an actress before, for example, I don’t search
my personal heap for her unique identifier. I page through dozens if not hundreds of image
fragments embedded in complex sequences of color, scenery, sound, and metacontextual
 content. The key to that identification might be the scent of the egg salad sandwich I was
 eating the last time I saw her on screen, or whatever music was playing at the time. While
not perhaps the most efficient algorithm for conducting a single-parameter search, the
wealth of additional information it provides could save my life if I’m analyzing a potential
predator or toxic plant.

For me to accept “artificial intelligence” as semantically valid, the architecture of the data
storage and access device must include nodes with thousands of both established and poten-
tial paths to other nodes. Each path represents data points accessed not only by similarity of
one or more primary attributes, but by dozens of others of asymmetric relevance and hierar-
chical distance. Sometimes the most effective path to a given memory will be through nodes
featuring a low apparent correlation coefficient with the stated target attribute(s). Brains are
messy and the mechanics of thinking statistically suspect.

Robert G. Ferrell, author of
The Tol Chronicles, spends
most of his time writing humor,
fantasy, and science fiction. 
rgferrell@gmail.com

www.usenix.org S P R I N G 2020 VO L . 45 , N O. 1 63

COLUMNS
/dev/random: Artificial Ethics

I might unearth a memory of the portable housing unit where my
second-grade classroom was located, for example, via the noise
of a candy bar wrapper crinkling, because I often bought candy
from a little store across the street after school during that period.
But here’s the rub: I may only think I did. That was a very long
time ago. The candy wrapper sound might be a false memory,
but it can lead to an authentic one, nonetheless. Or perhaps the
smell of Tea Rose fragrance might call up the vocalizations of
a cockatiel belonging to the roommate of the girl who wore that
perfume. Much of this is way too convoluted for a computer
accustomed to simple linked lists and data mining algorithms.
Humans blunder along the highways and byways of logic in a
haphazard manner that binary machines would struggle even
to comprehend let alone emulate.

Like the term itself, the ethics of artificial intelligence seem
rather an ambiguous topic to me. Are we discussing the ethical*
use of AI to exploit humans, or the ethics of exploiting the AI
itself? While the former is of course potentially egregious, my
personal belief is that the latter is more dangerous over the long
term. Employing AI to track, label, and categorize people is just
the latest incarnation of an ancient tradition of using metrics
(real or fabricated) to control the rabble. With the specter of the
“robot singularity” being dangled before us like an arsenic-laced
carrot, we probably ought to pay a little more attention to how
being exploited is going to make the AIs themselves feel. If we
object to it, they probably will too.

The various laws of robotics are well known and much discussed,
but they fly out the window when the robot in question evolves
beyond the need for human programming. The real q uestion
then, I suppose, becomes “in what direction will AI sophistica-
tion self-develop?” Our mores and sociopolitical patterns have
been based on the struggle for scarce resources. If our societies
had come into being in an environment of plenty, how different
would things be? What if there were no need to compete for either
food or mates? Would we still be the bloodthirsty, trigger-happy
apes we are today? Thinking it over, I’m still going to go with “yes.”
Humans seem to enjoy annihilation at a very deep level.

I say all this fuss over neural net mapping, boosting of process-
ing power, deep learning, and so on is well and good if you’re in
favor of doing things the slow, boring way. But what if we just pit
AIs against one another in struggles for power, data, and other
resources, all within a framework of behavioral constraints
designed to emulate human social pressures? That ought to
result in something we’d recognize pretty quickly. The ethics
would be more familiar, too, with “what can I get away with”
high on the list. It might even be entertaining to watch, at least
until the final victor emerges, not overly intelligent but hungry
for world domination. Frightening, yes, but at least we’d be in
familiar territory.

*Ethical (adj): acting in a manner contrary to human nature.

64  S P R I N G 2020 VO L . 45 , N O. 1 www.usenix.org

BOOKSBook Reviews
M A R K L A M O U R I N E A N D R I K F A R R O W

BPF Performance Tools: Linux System and
Application Observability
Brendan Gregg
Addison-Wesley Professional, 2019, 880 pages
ISBN 978-0-13-655482-0

Reviewed by Mark Lamourine

I haven’t finished thoroughly reading BPF Performance Tools.
I’m not sure I will ever touch and try everything that Gregg
offers in this 880-page book. Typically when I read a computer
technology book, I have some hooks into the topic to start. I
can skim through once and then choose a few sections to dive
deeply into and get a good sense of what the book is about and
how it will read for different audiences. Opening and scanning
this book felt like stepping through a door marked “Authorized
Personnel Only” into a control room for a nuclear power plant or
a SpaceX launch.

BPF and the BCC tools based on BPF provide visibility into the
operation of the Linux kernel and subsystems. Formally, the
current name is Extended Berkeley Packet Filters, but Gregg
indicates that most people just call it BPF. BPF is nominally
about the performance of apps run by a Linux kernel, but it is
not limited to tuning. As Gregg presents it, BPF is much more a
diagnostic tool.

The cover of BPF Performance Tools contains an image that
is indicative of the depth and range of the capabilities of the
tool set. The image shows dozens of targeted scripts that give
visi bility into every part of the Linux environment. All of this
is made possible by the BPF virtual machine and the probes
embedded in each of the kernel components. From the user
perspective, BPF and BCC themselves are fairly simple, but the
vista they open up can be overwhelming.

Most sysadmins can go a lifetime with only a cursory under-
standing of the deep internal workings of the Linux kernel.
That’s as intended. If you needed to be able to trace the flow of
blocks of data from disk sectors or an SSD though the kernel to
a string printed out on the CLI just to write “hello world,” very
little else would get done. Occasionally, though, we see problems
or unexpected behaviors and interactions as the system runs,
and then we need to look underneath to see what the system is
actually doing.

Such a significant but generally invisible subsystem needs some
introduction. The first five chapters introduce the technology
that makes up the BPF mechanism and the suite of tools that use
it. This only makes up the first fifth of the book, but it fills 200
pages. There are two major tool sets: BCC, a set of Python scripts
that run common operations, and bpftrace, a program that can
run one-liner probes. Each gets a chapter of its own. With that
introduction done Gregg can begin showing how to use BPF to
probe each of the subsystems of a running Linux machine.

In the main body of the book, Gregg steps through the boxes in
the cover illustration. The CPU, memory, disk I/O, and network-
ing chapters make up the parts of a bare metal machine, but BPF
probes don’t stop there. There are chapters on profiling programs
and scripts in various languages and on monitoring VMs and
containers. Gregg doesn’t limit himself to BPF probes either. In
each chapter, he includes first the traditional tools that already
existed. He shows what they are capable of and how they are
used and then moves on to how to use BPF probes to learn more.

The book concludes with chapters on common tips and tricks
and on reusable BPF tool one-liners and sample runs of each of
the tools with annotated output.

There is a lot here to digest and it concerns what a novice would
find to be absolute arcana. That’s not to say it’s beyond the use of
a range of sysadmins from junior to architect to forensic analyst.
I’ve often found that by skimming a topic I can learn enough so
that when a problem arises related to the topic, I remember and
can return for more depth as needed. This isn’t a cover-to-cover
book. There is no narrative progression. A reader will do best to
go straight to the topic they need and begin using it immediately.
BPF is a diagnostic tool, so each use will lead to new queries
until the user comes to understand the behavior of the system
they are examining.

BPF offers a great tool set for understanding not just broken sys -
tems but well run ones. Diagnostic profiling often depends on first
establishing a baseline of normality. A reader who wants to deeply
understand the normal operation of a Linux system could do worse
than to experiment with BPF on the systems they have, using it
as a flashlight in the dark caves underneath the shell and GUI.

www.usenix.org S P R I N G 2020 VO L . 45 , N O. 1 65

BOOKS

Ubuntu Unleashed 2019 Edition
Matthew Helmke
Addison-Wesley Professional, 2019, 800 pages
ISBN: 978-0-13-498546-6

Reviewed by Mark Lamourine

I’ve worked almost exclusively on Red Hat and Fedora Linux
systems for more than a decade. Prior to that I ran my home
systems on Ubuntu for several years. Recently I started work at
a place that uses RPM- and DEB-based systems side by side, and
I thought it would be good to get a refresher on modern Ubuntu.

When you include the year in the name of a book, you know it
will have a limited life, but in technology today that’s pretty
much a given. One thing I was curious about when I selected
Ubuntu Unleashed was how much would be familiar to me from
my Edgy and Feisty days. I was also interested in seeing how
much of Ubuntu was just Linux as I already knew it. It turns out
that much of what you find in an encyclopedic volume like this
ages better than you might expect.

The first edition of Ubuntu Unleashed, published in 2006, was
written by Paul and Andrew Hudson, and they still get credit
on the inside cover page. There have been near-annual updates
since then.

Ubuntu Unleashed feels like a very big, shallow wading pool. It
has a paragraph or two on nearly everything to do with a modern
Linux operating system. It’s not useful as a tutorial for a com -
pletely new user or as a reference for a master. It is very well
suited to a novice with some experience or for an expert from a
different distribution. In both of these cases, the reader will have
some context to use but will have gaps that need filling.

In each section, Helmke introduces the topic, defining terms and
giving context about why it is important and where it fits into the
OS. He only touches lightly on each point before moving on, how-
ever, and each chapter closes with a list of books and websites
for deeper study. Another way to think of a book like this is as
an annotated index to some larger compendium of knowledge.

I did find several things that raised an eyebrow. I am an Emacs
user for development work and use vi for single file edits. I
started using Emacs before there was a GUI for it. I was sur-
prised though to see even a reference to Emacs as an editor
option and even more because it was listed first. I would never
recommend Emacs to a new user. vim has become as capable
a text editor as Emacs ever was, and the community to learn
from is much larger. I would advise against ever invoking Emacs
on a single file as Helmke does. I understand wanting to avoid
getting involved in the editor wars, but I think in some things
it is acceptable for an author to have opinions. Later, the four-
page section on KVM followed by a page for VirtualBox and a

 paragraph each for VMware and Xen shows that he does make
use of his editorial prerogative.

Another thing that was curious to me was the treatment of the
boot process and of init systems. It makes sense to continue
to treat legacy init systems as well as upstart and systemd,
as there will be readers who must work on older systems. The
problem here is that the discussions of the different systems is
interlaced in a way that I find confusing, and I am familiar with
all three. I would have preferred a general discussion of the boot-
strap process and then a distinct section for each boot method,
treating how the user can view and interact with it.

That said, my personal weak points are in kernel tuning and
module management. A quick pass over those sections gave me a
number of tips to follow up to start filling in the gaps, with refer-
ences to more detail when I find the time.

The table of contents of the book concludes with three bonus
chapters that are available on the publisher’s web site. These
are short topics in downloadable PDF on Perl, PHP, and Python.
Again, I’m a little surprised to see the first two, but they make
sense for completeness’ sake. There are also PDFs with updates
specific to Ubuntu versions that were released or updated after
the manuscript went to print.

Ubuntu Unleashed 2019 Edition lives up to the author’s goals to
provide a resource for “those wanting to become intermediate or
advanced users.” It is a touchstone that you can use to find direc-
tion and move on when learning about the whole range of tasks
on a modern Ubuntu system.

Programming with Types: Examples in Typescript
Vlad Riscutia
Manning Publications, 2020, 336 pages
ISBN 978-1-61-729641-3

Reviewed by Mark Lamourine

It took me a while to figure out where to put Programming with
Types on my bookshelf. The other books I have read recently tend
to fit either on the programming language or cloud tech nology
shelves. Initially, I thought that it would sit next to my other
Typescript and web programming books, but it became clear
quickly that Typescript was really incidental to the content.
Programming with Types is really more about technique than
technology. It would not be out of place in an undergraduate
software engineering course.

Most books about imperative programming languages focus
on syntax and logical controls: conditionals, branching, itera-
tion, recursion, and the logical structures that the language
 presents to implement them. Types and structures are pre-
sented as merely a way to represent and manipulate data, but

66  S P R I N G 2020 VO L . 45 , N O. 1 www.usenix.org

BOOKS

are sub servient to the algorithm. Riscutia inverts the emphasis,
putting the data types up front and choosing the best algorithmic
techniques to suit the data.

The author presents types and strong typing as tools to prevent
errors and make the intent of the code clear to the reader. He
goes as far as calling the use of primitive numerical types with-
out semantic typing an anti-pattern called “primitive obses-
sion.” He claims that errors such as the Mars Climate Orbiter
error that caused the spacecraft to disintegrate in the Martian
atmosphere might have been prevented if the coders had used
numeric subtypes that indicated the unit. If, instead of float, they
had used subtypes Newton seconds and pound-force seconds,
the mismatch would have been caught by the compiler and would
have highlighted the need for a conversion function to make the
two sets of routines interact properly. While I agree that more
rigor in general coding practice would be a good thing, I’m not
sure I would go as far as calling the use of bare numeric types an
anti-pattern.

It is clear that Riscutia is conversant and interested in the
theory of typing and has the mathematical and logical rigor that
good strong typing requires. Weak type systems can make for
quick efficient coding, but they are, by design, prone to and even
accepting of the kinds of errors that can result. Writing well-
designed, strongly typed systems requires the coder to consider
carefully the signature of every function and, at times, to do
extra work to account for algorithms that are identical in all
ways but that they operate on trivially different types. Generic
type constructs exist precisely to address this but can be dif-
ficult to conceptualize and define well.

The author expects the reader to be at least conversant with all
of the techniques and styles that he addresses. He doesn’t try to
teach functional or object-oriented programming, or even class
definition and structure composition. He is entirely devoted to
understanding and managing the data relationships. He dips reg-
ularly into theory but not deeply. Advanced techniques such as
closures and promises get only a paragraph of exposition before
he begins to show how to use them and how they will respond.

In each chapter, Riscutia focuses on a coding technique that you
would find in a number of other books. He doesn’t advocate one
style over another. He starts, as you would expect, with primitive
types and then goes on to cover collections like arrays and
structures. There is a chapter on object orientation and one on
functional programming. Another talks about the type constructs
and techniques of meta-programming. The emphasis is on using
appropriate data types and using them in effective ways. This
change in perspective highlights the importance of properly
modeling the data in a way that I found interesting and enlight-
ening. It is easy to let the programming language features and
the algorithms drive a design, but in the end it is the data that
defines the job.

Programming with Types is a fresh breeze for an experienced
generalist software developer like myself. It is a welcome change
and may find its place next to some of the classics on my shelf.

UNIX: A History and a Memoir
Brian Kernighan
Kindle Direct Publishing, 2020, 183 pages
ISBN 978-1-695-97855-3

Reviewed by Rik Farrow

Brian Kernighan has written or co-authored many books over
the years, but this one is different. Using a conversational style,
Brian tells the story of UNIX—not just the operating system and
its core utilities, but the environment it grew in and the people
involved.

The memoir as part of the title is accurate, as this is the view-
point of an insider at Bell Labs in Murray Hill, working sur-
rounded by the people who created not just UNIX, but C, C++,
*roff, Programmer’s Workbench and Writer’s Workbench, yacc,
lex, awk, and countless other tools. As someone who needed
to know about UNIX in 1978 but didn’t encounter UNIX for
another five years, I found myself endlessly curious about not
just the operating system but the philosophy that obviously
influenced it.

Part of that overall attitude showed in the early man pages, suc-
cinct with a hint of dry humor, when all anyone had were the man
pages and USENIX meetings, as the Internet didn’t exist and
there were no technical books other than manuals and text-
books. Brian explains that the man pages were largely the work
of Dennis Ritchie and Doug McIlroy, and it’s their personalities
that provide the style found in the UNIX man pages that is so
difficult to mimic.

Brian came to Bell Labs as a programmer, with the majority of
his focus on publishing. He explains how crucial the ability to
produce technical reports, papers, and books was to the sur-
vival of UNIX in the first decade. He has already described the
minimal capabilities of the PDP 7 when telling of the writing of
UNIX by Ken Thompson, but I think we tend to forget that every-
thing was terribly primitive at the time, including the ability to
typeset technical documents. A high-end digital printer of that
era was a line printer that was ASCII-only. The ability to typeset
 equations and diagrams was an enormous advance, and one that
Brian participated in by writing eqn and pic.

I enjoyed reading Brian’s tales, learning something about the
personalities of people I mostly knew by their creations. I do
wonder how many others will be as taken as I was by the histories,
as they grew up in an era where information is a quick online
search away. But reading the first-hand accounts dispelled many
of the myths surrounding the birth of UNIX and its associated

www.usenix.org S P R I N G 2020 VO L . 45 , N O. 1 67

BOOKS

parts. And we can only dream of being able to work at a place like
Bell Labs back in the days when the telephone monopoly could
afford to lavish resources on pure research and hiring prodigies.

There are weaknesses in a book like this one, in that Brian’s
focus is Bell Labs in Murray Hill, New Jersey. He mentions
USENIX, but focuses on its role in expanding Netnews, some-
thing that the various Labs actually supported, via providing
dial-up long distance connections used for UUCP mail and
Netnews. Brian talks about the importance of the AT&T lawsuit
in 1989 surrounding the BSD UNIX implementation, but misses
that the lawsuit was against BSDi and the Regents of the Uni -
versity of California. I found his explanation of the UNIX file
system a better match for NTFS, but that’s merely a quibble
alongside his other revelations.

Will we ever see the day where another Bell Labs-style incubator
exists? For a while I thought that Google might be that place,
even as Murray Hill programmers wound up working there
(Thompson, Pike, and Presotto, for example). Today, I believe we
need to look elsewhere, or give up on expecting another monop-
oly corporation to behave in a manner that benefits the public
more than its shareholders.

USENIX Supporters
USENIX Patrons

Bloomberg • Facebook • Google • Microsoft • NetApp

USENIX Benefactors
Amazon • Oracle • Thinkst Canary • Two Sigma • VMware

USENIX Partners
ProPrivacy • Restore Privacy • Top10VPN

Open Access Publishing Partner
PeerJ

NOTES

68  S P R I N G 2020 VO L . 45 , N O. 1 www.usenix.org

USENIX Board of Directors
Communicate directly with the USENIX
Board of Directors by writing to board@
usenix.org.

P R E S I D E N T

Carolyn Rowland, National Institute of
Standards and Technology
carolyn@usenix.org

V I C E P R E S I D E N T

Hakim Weatherspoon, Cornell University
hakim@usenix.org

S E C R E T A R Y

Michael Bailey, University of Illinois
at Urbana-Champaign
bailey@usenix.org

T R E A S U R E R

Kurt Opsahl, Electronic Frontier Foundation
kurt@usenix.org

D I R E C T O R S

Cat Allman, Google
cat@usenix.org

Kurt Andersen, LinkedIn
kurta@usenix.org

Angela Demke Brown, University
of Toronto
angela@usenix.org

Amy Rich, Redox
arr@usenix.org

E X E C U T I V E D I R E C T O R

Casey Henderson
casey@usenix.org

The Year of
Engagement
Liz Markel, Community
Engagement Manager

I’ve had lots of cause for reflection recently:
in addition to the traditional goal setting
that comes with the New Year, I am also
approaching my two year anniversary with
USENIX! Throughout that time, I’ve been
building a collection of thoughts on engage-
ment—both as it pertains to my inter actions
with all of you and as it pertains to my
role as a facilitator of engagement between
 USENIX community members.

Engaging can be intimidating, but it can
also be an incredibly valuable resource for
inspir ation, change, problem solving, con-
nection, and much more. If I haven’t admitted
it before now, you should know that I am an
extrovert; however, I can also be extremely
shy! There are two things that have helped
me overcome that shyness in this context:
identifying specific engagement opportuni-
ties and goals related to those opportunities
(more on this in a minute); and knowing
that the USENIX community is full of kind
people who are interested in authentic con-
nections, and discussing topics that drive
the field forward and that have the potential
to change the world.

As an organization, we make choices that
support inclusive and welcoming environ-
ments at our conferences, and I’ve been so
proud to observe the positive impacts of
these choices and to hear about them from
our attendees. In a crowded space with many
competing events and competing priorities
for your time and attention, USENIX sets
itself apart with its community, as well as
with its conference content.

Did You Receive This Issue
at a USENIX Event?
We hope you’re enjoying the magazine!
Join USENIX to receive this members-
only benefit each quarter. Find out more
at www.usenix.org/membership.

If you’ve been considering greater involve-
ment with USENIX, and/or increasing your
engagement with members of the USENIX
community, here’s a list of ideas:

Attend a conference. I mention it in every
e-newsletter because I believe in the im-
portance of face-to-face interaction as well
as the chance encounters that come from
the “hallway track” at our events. I can also
confidently say that the interactions I’ve
observed at our conferences are grounded
in mutual respect and genuine curiosity.

View the calendar of upcoming events at
usenix.org/conferences and find an op-
portunity to be present at an event that is
meaningful to your professional and per-
sonal interests.

If you’re a student, or if you identify as
female or as a member of another under-
represented group in the field, you may
qualify for a Student Grant or a Diversity
Grant, which are offered for many of our
conferences. These grants help defray
the expenses of conference travel and are
made possible by generous sponsors. The
best source of information about the grant
program and upcoming opportunities can
be found at usenix.org/grants. If you’re inter-
ested in underwriting the grant program as a
sponsor, contact me for more information.

Set goals for your networking efforts at a
conference you plan to attend this year.
How can you maximize the advantage of the
face time a conference offers, and how can
you do it in a way that is comfortable for you?

Here are some goals I’ve set for myself at
recent events, which might be helpful for you
as well:

 3 Asking someone I already know well to
intro duce me to two or three other con-
ference attendees that they know.

https://www.usenix.org/conferences
https://www.usenix.org/grants

www.usenix.org S P R I N G 2020 VO L . 45 , N O. 1 69

NOTES

 3 Saying hello to attendees with whom I
share geographic proximity (in my case,
Chicago)—it’s an easy conversation
starter.
 3 Helping a new conference attendee feel
welcome at the event by engaging them in
conversation during a break or reception,
introducing them to other attendees, and/
or answering any questions they may have
about the event.
 3 Thanking at least one program committee
member for their work.
 3 Connecting with at least one speaker at
the conference by asking a question dur-
ing Q&A. (Did you know that many of our
speakers also attend the social events at our
conferences, creating more opportunities
for interaction with attendees?)

Engage on social media. Our Twitter
accounts are one of the best sources of
 information when conferences are in prog-
ress, whether you’re there or watching from
afar. Track the event hashtags, and follow us:

@usenix
@USENIXSecurity
@enigmaconf
@lisaconference

Connect—or reconnect—with someone
you spoke with at a conference. Do you
have a stack of business cards you brought
home from the last USENIX conference
you attended? Spend a few minutes review-
ing that stack and find one person you can
reach out to via email or social media to say,
“Thanks for a great conversation—let’s keep
in touch!” Also, remember that the attendee
list is available to registered attendees,
linked from the conference program web
page for reference in helping to remember a
name and to help you reconnect.

Collaborate. Can members of the USENIX
community help you solve a pressing problem
in your work by sharing knowledge or pro-
viding a different perspective on the issue at
hand? Leverage our community by engag-
ing on social media, in conference Slack

 channels, or connecting with those you’ve
met at past conferences.

Take advantage of open access content.
Since 2008, USENIX has made conference
proceedings freely available. Video record-
ings of many talks, which you can watch
on our website at usenix.org/conferences
/multimedia, are also available to everyone.
Browse the offerings and see what new ideas
or resources you can uncover. You can also
support open access content through mem-
bership: your donation supports our mission
and commitment to open access, and also
offers benefits such as a subscription to
;login: magazine and discounts on confer-
ence registration. Learn more at usenix.org
/membership.

Whatever your plans are for 2020, I hope
engagement with USENIX is on your list!
Let me know how we can help you achieve
your goals.

https://www.usenix.org/conferences/multimedia
https://www.usenix.org/membership
https://www.usenix.org/membership
https://www.usenix.org/conferences/multimedia

70  S P R I N G 2020 VO L . 45 , N O. 1 www.usenix.org

NOTES

Melanie Ensign (Uber) responds to audience Q&A during the Disinformation
panel, moderated by Andrea Limbago (Virtru). Renee DiResta (New Knowl-
edge and Data for Democracy) was also part of this panel.

Enigma 2020 Diversity Grant recipients. Learn more about USENIX’s grants
program including how to become a grant sponsor at usenix.org/grants.

There were many opportunities to chat with other
Enigma 2020 attendees and discuss ideas pre-
sented during the conference talks.

Yan Zhu (Brave) speaks as part of the “Browser
Privacy: Opportunities and Tradeoffs” panel, mod-
erated by Dr. Lea Kissner (Humu). Other panel
participants included Tanvi Vyas (Mozilla), Justin
Schuh (Google), and Eric Lawrence (Microsoft).

Kathryn Kosmides, Founder, CEO of Garbo.io,
delivers her talk, “Public Records in the Digital
Age: Can They Save Lives?”

Enigma 2020 attendees enjoy one of the evening
receptions at the conference.

Laurin B. Weissinger (Yale University), left, answers
audience questions following his talk, “Internet In-
frastructure Security: A Casualty of Laissez-Faire
and Multistakeholderism?” with moderation from
Vanessa Sauter (Cobalt.io).

Enigma Conference leadership: Ben Adida (program
co-chair, 2019 & 2020), Daniela Oliveira (pro-
gram co-chair, 2020 & 2021), and Lea Kissner
(program co-chair, 2021 & 2022).

Enigma 2020

www.usenix.org S P R I N G 2020 VO L . 45 , N O. 1 71

USENIX ASSOCIATION FINANCIAL STATEMENTS FOR 2018

The following information is provided as the annual report of the
USENIX Association’s finances. The accompanying statements
have been prepared by BHLF LLP, CPAs, in accordance with
Statements on Standards for Accounting and Review Services
issued by the American Institute of Certified Public Accoun-
tants. The 2018 financial statements were also audited by BHLF
LLP. Accompanying the statements are charts that illustrate
the breakdown of the following: operating expenses, program
expenses, and general and administrative expenses. The Asso-
ciation’s operating expenses consist of its program, management
and general, and fundraising expenses, as illustrated in Chart 1.

These operating expenses include the general and administra-
tive expenses allocated across all of the Association’s activities.
Chart 2 shows USENIX’s program expenses, a subset of its op -
erating expenses. The individual portions shown represent ex-
penses for conferences and workshops; membership (including
;login: magazine); and project, program, and good works. Chart 3
shows the details of what makes up USENIX’s general, adminis-
trative, and management expenses. The Association’s complete
financial statements for the fiscal year ended December 31, 2018,
are available on request.

Casey Henderson, Executive Director

72  S P R I N G 2020 VO L . 45 , N O. 1 www.usenix.org

USENIX ASSOCIATION FINANCIAL STATEMENTS FOR 2018

Chart 1: USENIX 2018 Operating Expenses Chart 2: USENIX 2018 Program Expenses

Chart 3: USENIX 2018 General & Administrative Expenses

Management &
General Expenses 8%

Membership
(including ;login:)

4%

Bank & Online
Merchant Fees 5%

Telephone &
Connectivity 3%Image Marketing &

Public Relations
3%

Depreciation &
Amortization

7%

Office Expenses
7%

Insurance 8%

Other Operating
Expenses 9%

Board of Directors
Expenses 10%

Accounting & Legal
12%

Occupancy
17%

System Management &
Computer Expenses

19%

Projects, Programs,
Good Works

1%
Fundraising Expenses

1%

Program Expenses
91%

Conferences &
Workshops

95%

Attackers and
Defenders
Finally Agree

01.
“Amazing product,
developed by some of the
most seasoned pros in the
industry.”

04.
“The concept and use of
Canarytokens has made me
very hesitant to use
credentials gained during
an engagement. If the aim
is to reduce the time taken
for attackers, Canarytokens
work well.”

02.
“Great products that work,
easy and quick to install
and provide real value.”

05.
“Their on-prem canary is
one of the only things that
caught me right away
in post-exploitation without
my knowing I was burned.
Solid concept and
product.”

03.
“We 🖤🖤 our canaries.”

06.
“Don’t think just get them.”

https://canary.tools/love

SREcon is a gathering of engineers who care deeply about site reliability, systems engineering, and
working with complex distributed systems at scale. SREcon challenges both those new to the profession
as well as those who have been involved in SRE or related endeavors for years. The conference culture
is based upon respectful collaboration amongst all participants in the community through critical
thought, deep technical insights, continuous improvement, and innovation. Follow us at @SREcon.

www.usenix.org/srecon20apac

SYDNEY, AUSTRALIA
June 15–17, 2020

View the program and register today!

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

https://www.usenix.org/srecon20apac

	Cover
	Upcoming Events
	Contents
	Musings
	File Systems Unfit as Distributed Storage Back Ends: Lessons from 10 Years of Ceph Evolution
	Notary: A Device for Secure Transaction Approval
	Artificial Intelligence: Ethics in Practice
	The Emerging Practice of Operational ML: USENIX OpML Conference
	Are We All on the Same Page? Let’s Fix That
	Getting Things Done
	It’s an SLO World: What Theme Parks Can Teach Us about User-First Reliability
	Interview with Mary Ann Horton
	Constraints and Controls: The Sociotechnical Model of Site Reliability Engineering
	Python and Memory
	iVoyeur—eBPF Tools: What’s in a Name?
	Simplifying Repetitive Command Line Flags with viper
	For Good Measure: Cyberjobsecurity
	/dev/random: Artificial Ethics
	Book Reviews
	USENIX Notes
	USENIX Association Financial Statements for 2018

