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EDITORIALMusings
R I K  F A R R O W

Rik is the editor of ;login:.  
rik@usenix.org I’ve sometimes been asked why computers are still so insecure, so emi-

nently hackable. Didn’t Bill Gates once shut down development at Micro-
soft so they could improve the security of Windows decades ago? While 

not quite decades ago, Gates really did shut down Windows development in 
2002 and sent 7,000 systems programmers to special security training with 
the goal of “Trustworthy Computing.”

It didn’t work. While some things got better, and the rampage of worms slowed down, admin-
istrators and users continued to have to install patches frequently. In 2003, Patch Tuesday 
became a regular feature, followed by Exploit Wednesday for those who had ignored the rou-
tine of installing patches on the second Tuesday of the month.

Part of Microsoft’s problem was a matter of programming culture, with a focus on new 
 features. Exchange server, the email server product, actually had a good record for security, 
while the IIS web server certainly did not. Two distinct groups, with a different culture, 
worked on these products, resulting in very different security outcomes.

But the problem of insecurity is not unique to Microsoft. Sun Microsystems started deliver-
ing insecure workstations in the early 1980s, and continued to do so through the ’90s. Sun 
employees announced at USENIX Security that they had a program for securing SunOS, but 
it was for internal use only. Dan Farmer, Brad Powell, and Matt Archibald released Titan 
for Solaris in 1998 as a public solution to tightening and securing Solaris. Linux was having 
severe issues with security at the end of the ’90s but quickly improved over the next couple of 
years. But today, people build malware specifically for Linux, as Linux servers and desktops 
have become important targets for invading networks.

So far, all I’ve done is write about how the struggle to defend software against exploits has 
been a failure, but not why. The answer lies partially in the nature of software and largely 
because of our hardware designs.

First, programming is hard. I am constantly amazed at people announcing that they intend to 
turn everyone into a programmer. Perhaps these well-meaning projects can turn some people 
into middling programmers, but not ones who will be writing the next generation of services. I 
have had the misfortune of consulting in IT shops and have seen the carnage firsthand. On the 
plus side, when I turned out a handful of lines of shell script that did what they had failed to do 
in weeks, it made me look like a wizard. I have said this before: most programmers, by defini-
tion, have an average skill level, and half are below average. This is hard to remember when 
you work in Silicon Valley or at a top-ten university and all of your coworkers are geniuses.

Second, our computer systems were not designed for security. They were designed to be flex-
ible. There are hardware security mechanisms that are important to security, such as the so-
called rings, with the lowest numbered ring having the most access to hardware, and higher 
rings being reserved for “untrusted” code. Yet the largest and most complex programs run on 
most systems are the operating systems, and these run at the innermost ring. That makes the 
operating system the most important target for any attacker.

Microsoft has taken advantage of the ring added to support virtualization, called ADM-V or 
Intel VT, in Windows 10. They load kernel modules using Virtual Secure Mode, where the 
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operating system and critical system modules get executed in 
virtual containers. This beats the pants off the Linux model, 
where the kernel resides in a single address space, but still hasn’t 
prevented  bootkits from being installed in Windows 10 systems. 
This is supposed to be prevented by UEFI, but this can be worked 
around using firmware rootkits and on many motherboards 
because of the wrong settings being used.

Memory management is the next level of protection, but it 
was designed to protect programs running in one process from 
programs running in another process. Through abuse of the 
operating system, usually after an exploit, memory management 
can be bypassed.

Intel has introduced another level of protection, although this 
one is largely unused today. MPK (memory protection keys) 
allows programmers to split a single process’s memory space into 
16 different regions with the same protection provided by page 
tables [2]. Sixteen regions doesn’t sound like a lot, but as a method 
for isolating threads, or portions of a program involved in parsing 
input, MPK could help. 

The CHERI researchers have taken a slightly different tack by 
creating CPU designs with segment registers. MULTICS used 
segment registers to separate portions of programs, with a seg-
ment having a base address and a range, and accesses outside of 
this base and range being prohibited. CHERI represents another 
great idea, one that’s been in development over a decade, making 
segments associated with capabilities, and one quite unlikely to 
be adopted by most programmers.

I guess I should mention enclaves, the tiny, encrypted execution 
domains, so I can also mention Meltdown, Spectre, and Load 
Value Injection [1]. Enclaves will not be of use to most program-
mers, and transient execution flaws have painted targets on them 
already.

Software
That leaves us with software. Software can either make comput-
ers more secure or less secure, and our favorite languages make 
our systems less secure.

.cfi_startproc
pushq   %rax
.cfi_def_cfa_offset 16
movslq  %edi, %rax
leaq    _ZN5hello4main17hd078db076938ab99E(%rip), %rdi
movq    %rsi, (%rsp)
movq    %rax, %rsi
movq    (%rsp), %rdx
callq   _ZN3std2rt10lang_start17he5a718dea3bb834eE
popq    %rcx
.cfi_def_cfa_offset 8
retq

Listing 1: Some assembler

Listing 1 depicts the main() function for a “Hello World!” pro-
gram. Compilers produce assembler as an intermediate format, 
and that’s what appears in Listing 1. You can learn to program 
in assembler, but you have to handle things that compilers make 
easy to do, like choosing the register to use (anything beginning 
with %), managing the stack, managing memory. Each CPU archi-
tecture has a different set of registers and assembly instructions, 
although assemblers themselves, like as, work the same. You still 
have comments, but assembler is hard to read and is not portable 
between CPU architectures.

That’s why the geniuses who created UNIX created the C lan-
guage: they needed a language that made porting an operating 
system easier. They also wanted something that would be fast 
and that provides little in the way of handholding. If you don’t 
know better, you can easily make “fatal” mistakes, like using a 
pointer after the memory it points to has been freed or writing 
into memory beyond the end of an array. On the other hand, you 
can treat pointers as function entry points and perform arith-
metic on pointers, very handy things to have when writing an 
oper ating system—especially one that runs on hardware with 
32K words of RAM.

C is my favorite language, but it is a language without seatbelts, 
airbags, or even bumpers. C, and its younger cousin C++, assume 
that you know what you are doing and you never make a mistake. 
The first of these points is rarely true, and the second is never 
true—even the best programmers make mistakes.

There are safer languages to use, ones with safety features. Gen-
erally, these languages remove access to pointers and provide 
strong types. Go and Rust are examples of safer languages, with 
Rust being designed particularly for safety. Go is not as fast as C 
or C++, but perhaps a 10–15% penalty for a lot of execution safety 
is worthwhile. Rust, meanwhile is nearly as fast as C, and perhaps 
will be when LLVM can produce code as performant as GCC.

Safer languages leverage hardware support for security by mak-
ing it much more difficult to write programs that are terribly 
insecure. I think this is a very good idea, especially if we are going 
to teach everyone to program.

The Lineup
We start out this issue with an opinion piece by Michael Mattioli, 
who feels that tools like Zoom, Meet, Teams, and so on are miss-
ing something important. 

Next, I picked two papers from USENIX Security ’20 that were 
clearly written and included points that I felt were especially 
worth sharing. There were another half-dozen papers that I 
really liked, but those either weren’t as well written, had deep 
dives into statistics, or were too narrow for the wide audience 
represented by the USENIX membership.
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Votipka et al. examine programmer mistakes, but not just any 
type of errors. They used the Build It, Break It, Fix It (BIBIFI) 
program as their data source. BIBIFI challenges  programmers 
who have had training or work experience to write three, non-
trivial programs with some security requirements, share the 
sources to these programs with other teams, and then analyze 
the programs and the faults found by the teams. What they found 
was distressing to me and is part of the reason why security is so 
hard to get right.

Garfinkel et al. have written a tool, RLBox, that makes sand-
boxing libraries easier. Most programs incorporate libraries, 
and many of these libraries process input that may come from 
attackers, such as image or video decoders. RLBox simplifies the 
process of sandboxing these libraries. The authors worked with 
Mozilla to sandbox several key libraries, and their tool will work 
for other programs as well.

Huang et al. volunteered to write about their research project, 
Senx, an automatic program repair tool. The authors argue that 
waiting for security patches to appear often takes much too long, 
and with access to source code and an example of an attack, Senx 
can create patches for three different types of vulnerabilities.

I interviewed Sergey Bratus. There were several papers at 
USENIX Security ’20 that appeared to be directly related to 
Language Security principles, or LangSec. Bratus has written for 
;login: before, has been running a workshop on LangSec for years, 
and seemed to me to be the perfect person to explain LangSec 
principles. And this worked, as LangSec seems much clearer to 
me now and is important if we are ever going to be able to write 
secure software.

The USENIX Annual Technical Conference also happened this 
summer, and I chose two papers and one talk as the basis for 
articles. Shahrad et al. explain a key feature of running cloud 
functions: deciding how long a function should be kept warm, 
that is, ready to run. They provide examples taken from Azure 
and a new scheme that improves performance and efficiency.

Raghavan et al. discuss Posh, a distributed shell. To me, Posh is a 
great example in the tradition of USENIX ATC, an improvement 
on the shell that works by moving execution closer to the sources 
of data, when that data is available over NFS. Posh can also add 
parallelism to shell scripts without rewriting the scripts.

I interviewed Margo Seltzer, who gave an afternoon keynote at 
USENIX ATC ’20. Seltzer encouraged her audience to explore 
beyond the safe confines of their personal specialties and con-
sider “fringe” ideas. Seltzer provides several examples of doing 
this in her own highly successful career.

Torres and Colish cover capacity planning for SREs. They divide 
capacity planning into two areas: resource provisioning and 
capacity planning to safeguard the future potential of a service. 

The authors cover redundancy for reliability and how this must 
include back-end services as well.

Adam McKaig explains why he thinks that it’s important for 
SREs to understand algorithms and data structures. McKaig 
takes us through three examples of a service that initially is 
performing well, uncovering the reasons why the service starts 
failing SLOs, and explaining the solutions that he and the teams 
he worked with came up with for repairing the service.

Laura Nolan has written a book review of Alex Hidalgo’s recently 
published book about SLOs. Nolan explains why she  considers 
Hidalgo’s book one of the most important for SREs. Hidalgo 
wrote an article for ;login: in the Summer 2020 issue, so you can 
also sample his writing there.

Cory Lueninghoener shows us how to create different aspects of 
containers from the command line. While you may be more likely 
to use a tool like Docker for this, you will gain understanding of 
what Docker is doing by trying Lueninghoener’s examples.

Dave Josephsen continues his exploration of eBPF, this time 
focusing on histograms as a clever technique for displaying 
potential performance issues. Josephsen dives into how to select 
bin sizes for histograms and exactly why histograms are so good 
at unveiling problems that would be buried in data otherwise.

Simson Garfinkel covers the history and uses of cryptographic 
hashes. While the use of hashes has become commonplace in 
programming, cryptographic hashes provide the foundation for 
assuring the authenticity of code or messages, timestamps for 
documents, and in forensics.

Terence Kelly demonstrates a technique for storing graphs as 
compressed sparse row format. First, Kelly shows the most com-
monly used ways of storing graphs, explains why these methods 
waste memory, and then details how to use the compressed 
sparse row format and when other formats will work better.

Dan Geer, along with coworkers John Speed Meyers and Bentz 
Tozer, has researched software supply chain insecurity. They 
have collected data about how often attackers have modified the 
source code for open source libraries as well as how often this 
has resulted in successful attacks, work that I believe is really 
important so long as we continue to include other people’s code, 
via libraries, in our own programs.

Robert Ferrell distracts us with his views on social media 
influencers. Ferrell deletes himself from this clan, while ponder-
ing on the usefulness of content that is itself nothing more than 
advertising.

Mark Lamourine has reviewed three books this time, Effective 
Python, Dependency Injections, Practices, and Patterns, and 
Building Secure and Reliable Systems. I reviewed a book about 
rootkits for Windows.
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Most of us have little to no influence on hardware design. To 
be honest, most of us won’t have the type of ideas necessary to 
even get the CPU industry to move at all toward better security. 
Personally, I’d like to see designs that support message passing 
without involving context switches, as that would allow our serv-
ers to appear more like clouds than 1970s mainframes.

We do have choices we can make about the programming 
languages we use. Well, some of us do, while those working at 
corporations often have that decision made by someone far off  
in the top of the management hierarchy, based on the latest buzz. 
For those who have choices, I recommend languages like Rust 
that emphasize both security and performance. For a different 
way of looking at things, I found this article at Northeastern an 
interesting way to view programming languages [3]. Hopefully, 
someone will keep this page up-to-date so we don’t have to rely on 
sites like TIOBE.

And as for making systems more secure, we do need to stop hand-
ing out assault rifles like C++ and get more people to use inher-
ently safer programming languages like Rust or Go. Python has 
its faults, like the lack of strong types and being single threaded 
like JavaScript, but it doesn’t have pointers and the types of 
memory issues that C and C++ have had for decades. Decisions 
at institutions of higher education do have an influence over the 
future security, or insecurity, of computers.

Remember Listing 1, the assembly language example? That 
was helloworld.rs, the Rust version, but you can hardly tell by 
looking at the intermediate assembly code. All programming 
languages wind up as machine code, and while that may sound 
like all languages are equal, they are not. Some languages take 
advantage of advances in compiler designs so they make it much 
easier to write secure code. You can choose the 1970s model with 
some upgrades, or learn something new that can help make the 
world a safer place.

The Future of ;login:
This issue marks the end of print ;login:. You can read about why 
this is happening and learn more about how the digital version  
of ;login: will work in USENIX Notes, beginning on page 95. 

Some people have found the reference to “peer-reviewed” in this 
description a bit confusing, thinking that the digital version of 
;login: will be like a journal. That’s not true. The peer-review has 
long been a part of editing ;login:, and consisted of PC members 
who accepted the papers that many articles are based upon. For 
the rest, I was the “peer,” with responsibility for  accepting arti-
cles only from subject matter experts. I did rely on other experts 
in areas where I was unfamiliar with the authors. The digital 
version will expand the number of peers, so I will no longer be 
responsible for culling out articles that should not be published 
in ;login:.

Another advantage of a digital ;login: will be shorter elapsed 
time between submitting an article and its appearance online. 
Printing ;login: takes a long time—just dealing with the print-
ing process itself took almost three weeks. While I might see a 
draft, get a final version, format it and turn it in in just one week, 
the process that includes copy editing and typesetting takes a 
great deal longer. Michele Nelson, the Managing Editor, received 
articles from me and sheparded them through this long process.

I think we will miss our copy editors, Steve Gilmartin and Amber 
Ankerholz. Good copy editors improve your writing, often taking 
something not written that well and turning it into something 
that makes you start believing you really can write well. The 
copy editor must improve your written English without distort-
ing your meaning, and Steve did a great job. Amber’s task was to 
approve Steve’s edits from a technical standpoint. That process, 
and proofreading, added three weeks to the process. Typesetting, 
expertly done by Linda Davis, added yet another week. When you 
add all of this up, and start from the point when I ask authors to 
write or get a proposal, the process can take over four months. I 
don’t even want to think about how long your ;login: magazine sat 
in a pile before you started reading it….

The digital ;login: will be open access. Laura Nolan has  written 
about the value of open access in this issue. All articles will 
be open access when posted, as opposed to members-only for 
one year. Only USENIX members will be able to comment on 
articles, something we hope will lead to discussion about articles 
and feedback to authors. With print ;login:, about the only time 
authors get feedback is during in-person conferences, and from 
personal experience I can tell you that even that is rare. I hope the 
ability to respond to articles results in useful feedback, or at least 
acknowledgement that someone has read and appreciates the 
work someone put into an article.

We—that is the committee composed of three board members, 
Laura Nolan, Arvind Krishnamurthy, and Cat Allman, along 
with Casey Henderson—came up with several other ideas to 
celebrate this, the final print issue. I was assigned to interview 
two early USENIX members. Clem Cole has the honor of being 
 USENIX member number seven, and I interviewed him first. 
Kirk McKusick represents, at least for me, the Berkeley side of 
UNIX and makes up the second interview. They both partici-
pated in the story of how USENIX helped Rick Adams start 
UUNET in the late 80s, as did Deborah Scherrer (the Board VP), 
Steve Johnson (Treasurer), and Rick Adams. Adams recom-
mended reading Peter Salus’ (Executive Director) article [4]. 
Adams also deserves thanks for donating UUNET stock from 
his fledgling company that later became the foundation for the 
endowment that is keeping USENIX alive during COVID-19.



6  WI N T ER 2020  VO L .  45 ,  N O.  4  www.usenix.org

EDITORIAL
Musings

Finally, Laura Nolan, Arvind Krishnamurthy and I picked out 
our favorite articles from ;login: issues starting with 2005. I 
learned that my ability to edit ;login: has improved over the years. 
I had started to edit special security-focused issues of ;login: in 
1998, but to my eyes, the first five years of being the regular edi-
tor, starting in 2005, seem pretty rough.

You might be wondering what I plan to do with all the time I will 
have because I will be sharing the editorial responsiblities. I plan 
on writing some science fiction, and hope to have at least one 
short story up at https:/rikfarrow.com/fiction/ by the time this 
issue appears. I’ve started at least five stories, and have one close 
to completion—about computers and future myths, of course.
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The 2020 COVID-19 pandemic has forced hundreds of millions of people 
to use video conferencing tools to continue learning, educating, con-
ducting business transactions and providing health care. These tools 

are poor conduits for true human-to-human communication. Posture, tone of 
voice, use of physical space, facial expressions, gestures, and more are all lost 
when communicating through these tools as we know them today. To replicate 
the in-person experiences we’ve all come to know, these tools need to evolve 
from what is possible today with simple sound and some pixels.

Zoom, Meet, Teams, Skype, Webex, FaceTime—take your pick. Whichever you choose, they 
all boil down to nothing more than one or two audio channels and a few hundred thousand 
pixels. That’s all you get. Since March of 2020, the COVID-19 pandemic has forced hundreds 
of millions of people to communicate with each other using myriad video conferencing tools. 
Human-to-human communication is much more than just hearing what we say and seeing 
some pixels arranged to represent faces. These tools were designed in a world much different 
from the one we live in now. Don’t get me wrong; they’ve been crucial in the continuity of health 
care, education, and business over the last few months. I am not trying to diminish or downplay 
their importance; quite the opposite. Because they are so important, they need to evolve in 
order to become more effective vehicles for human-to-human communication.

Health Care
There’s a reason why bedside manner is so strongly emphasized in training health care 
professionals. Intimate conversations with patients transpire: conversations about their 
health, well-being—their literal lives. These conversations require connection and engagement. 
Patients need to establish trust with their physician or nurse [6]. They want to be certain that 
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they are receiving nothing less than the absolute best care to be 
offered. Simple things like sitting down or standing up to have 
these conversations can make a world of  difference [8].

When explaining a course of treatment, the tone in a physician’s 
voice can convey confidence or doubt. A patient’s nonverbal 
reactions (e.g., facial expressions, posture) to information give the 
physician more clarity on how the information is received than the 
patient’s verbal response. These aren’t things that can be effec-
tively conveyed with the digital tools we have today.

Education
Students, instructors, and parents all agree that remote learning 
is nowhere near as engaging as in-person instruction. Instruc-
tors cannot accurately determine how their material is being 
received. Do the students react by sitting up or slouching? Are 
they responding confidently or insecurely in their answers? 
Are they even paying attention? A Dallas middle-school Span-
ish teacher struggles to find ways to read her students’ body 
language: “In the classroom, I can look around and see body lan-
guage and know when some of my students not fluent in Spanish 
need me to switch to English. I can’t do that online. We need the 
interaction with the kids, face-to-face” [3]. Students face similar 
challenges with parents claiming that remote instruction “lacks 
substance” and with some parents even considering having their 
children repeat this past year’s coursework [4]. Even video games 
are more engaging; the physical feedback (haptics) and input 
(buttons, joysticks, etc.) using a controller provide an entirely 
different sensory experience. Video games stimulate three of the 
five human senses (sight, sound, and touch), whereas modern 
video conferencing tools only provide interfaces for two (sight 
and sound).

Businesses
Know Who You’re Dealing With
It’s commonplace for high-stakes business interactions to take 
place in-person. In a study by Great Business Schools, 82% of 
people say that in-person meetings are essential for important 
contracts [7]. Any decision involving large sums of money, con-
tracts, careers, and anything in between can be devastating if 
made incorrectly. Negotiations typically take place in-person so 
that each party has an opportunity to better understand the other 
prior to transacting. Use of body language and the physical space 
in the meeting place are key [5]. Lack of eye contact could suggest 
deceit. Folding one’s arms could suggest defensiveness. Short 
and curt answers could be indicative of disinterest. Sitting down 
suggests one is confident and relaxed, whereas pacing around the 
room suggests one is anxious. When deciding whether or not to 
close on a new home, extend an employment offer, or enter into a 
contract, it’s fair to want as much information as possible to truly 
assess the situation before making a final, binding decision. 

Build Relationships
Arguably the most important component of a business transac-
tion is not just the transaction itself but the long-term relation-
ships that are formed between parties. The same study by Great 
Business Schools also reported that 85% of people found that 
in-person meetings built strong, more meaningful business 
relationships. Meaningful relationships require connection and 
engagement on a human level—a difficult task if relying solely 
on an audio device’s representation of someone’s voice and a 
display’s representation of someone’s face. Also consider the level 
of effort it takes to communicate with someone via video confer-
encing (rather low) as opposed to an in-person meeting (poten-
tially rather high depending on various factors). “Going the extra 
mile” (quite literally, in some cases) helps establish a foundation 
of trust between parties and suggests that the relationship is of 
high importance [1]. 

Conclusion
We’ve all been making do with what we have in this time of crisis. 
The current situation is far from ideal. We’ve been using tools 
that were designed as a convenience or a luxury, but it’s clear now 
that they need to be classified as a necessity.

What separates video conferencing from a phone call? A few 
hundred thousand pixels and, if you’re lucky, slightly higher fidel-
ity audio—nothing more. Video conferencing excels in situations 
where the human aspect of communication is not critical, such as 
brief conversations and informal discussions. These tools need 
to make the generational leap that provides more natural human-
to-human communication. 

Of course, the concept of going to a physical location to learn, 
conduct business transactions, or consult with a physician may 
already seem archaic. Just ask the hundreds of millions of people 
who used to cram themselves into a bus or a train (or a combina-
tion of the two) for hours each day. In a study performed by Morn-
ing Consult, 32% of adults in the United States would prefer to 
never commute again and work remotely every day, and only 24% 
would want to continue to commute every day [2]. 

It’s time to move on, but the tools we have are holding us back. 
The tone or volume of someone’s voice, whether or not they make 
eye contact, use facial expressions, posture, etc. all need to be 
accurately conveyed through digital means in order to reproduce 
the in-person experiences we’ve all come to know. What is the 
underlying technology that will help us get there? How does this 
new level of communication affect how we will approach privacy 
and security? These are some of the questions we, as engineers, 
need to ask ourselves. No one has all the answers right now. Who 
knows—years from now, when we get there, we may not even 
refer to it as “video conferencing” anymore.
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D A N I E L  V O T I P K A ,  K E L S E Y  R .  F U L T O N ,  J A M E S  P A R K E R ,  M A T T H E W  H O U , 
M I C H E L L E  L .  M A Z U R E K ,  A N D  M I C H A E L  H I C K S

Secure software development is a challenging task requiring consid-
eration of many possible threats and mitigations. We reviewed code 
submitted by 94 teams in a secure-programming contest designed to 

mimic real-world constraints—correctness, performance, and security. We 
found that the competitors, many of whom were experienced programmers 
and had just completed a 24-week cybersecurity course sequence with spe-
cific instruction on secure coding and cryptography, still introduced several 
vulnerabilities (182 across all teams), mostly due to misunderstandings of 
security concepts. We explain our methodology, discuss trends in the types 
of vulnerabilities introduced, and offer suggestions for avoiding the kinds of 
problems we encountered.

Developing secure software remains challenging, as evidenced by the numerous vulnerabili-
ties still regularly discovered in production code [6]. There are many approaches that could 
be—and often have been—taken to improve this situation: building and deploying more auto-
mated tools for vulnerability discovery, expanding security education, or improving secure 
development processes.

But which of these interventions should we prioritize? While all are potentially helpful, we 
must carefully consider which provide the best return on investment, maximizing security 
while minimizing time, effort, and other resources, all of which are in short supply as devel-
opers are pressured to produce more new services and features.

A key part of this consideration is to understand the kinds and frequency of vulnerabilities 
that occur, and why developers introduce them, so that the root causes can be addressed. To 
this end, we performed a systematic, in-depth examination using best practices developed for 
qualitative assessments of vulnerabilities present in 94 project submissions by teams made 
up mostly of experienced programmers—many of whom had just completed a four-course 
program on secure development—to the Build It, Break It, Fix It (BIBIFI) secure-coding 
competition series [8, 10]. Our six-month examination considered each project’s code and 
866 total exploit submissions, corresponding to 182 unique security vulnerabilities associ-
ated with those projects.

Our findings suggest rethinking strategies to prevent and detect vulnerabilities, with more 
emphasis on conceptual difficulties rather than mistakes. This article provides an overview 
of our work. A more in-depth discussion of the methods followed, survey of related literature, 
and description of results can be found in our recent USENIX Security paper [10].

Build It, Break It, Fix It: A Happy Medium to Study
Our work to examine vulnerabilities introduced by software developers complements many 
prior efforts. Some researchers have performed large-scale analyses of open-source code 
and CVE reports, categorizing vulnerabilities found in production code [2, 3]; others have 
explored specific possible sources of error using controlled experiments with small, security-
focused tasks [1, 7]. These field measures and lab studies represent two ends of a method-
ological spectrum. Field measures provide strong ecological validity, reflecting real-world 
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contexts, but provide no control over conditions like developer motivation and functionality 
being implemented that can affect results. In contrast, lab studies provide high levels of con-
trol but only limited ecological validity.

We attempt to balance ecological validity and experimental control by studying vulnerabilities 
in the context of BIBIFI competition projects. A BIBIFI competition has three phases. In the 
build it phase, teams are given just under two weeks to build a project that (securely) meets 
a given specification. Team scores depend on the project’s correctness and efficiency, based 
on provided test cases. Submitted projects may be written in any programming language and 
can use any open-source libraries, as long as they can be built on a standard Ubuntu Linux 
VM. In the break it phase, teams receive access to their competitors’ source code in order to 
search for vulnerabilities. Teams can submit test cases, known as breaks, to demonstrate 
exploitation. Successful breaks add to the exploiting team’s break-it score, while reducing the 
victim’s build-it score. The final fix-it phase allows teams to fix identified vulnerabilities in 
order to gain back a portion of their lost build-it points.

BIBIFI data therefore strikes a unique balance between ecological validity and control. Many 
implementations of the same functionality, created under similar circumstances, provide 
more confidence than field data does to help us understand what happened and why. On the 
other hand, teams had weeks (rather than hours) to develop their projects, could use their 
choice of languages and libraries, and were incentivized to consider constraints like perfor-
mance and functionality as well as security, creating more ecological validity than many lab 
studies. While we know BIBIFI does not provide a perfect view into the development process 
(see our original paper [10] for a detailed discussion of limitations), it provides a new and 
valuable vantage point for examining the vulnerability landscape and informing future work.

The Competition’s Projects
We analyzed projects from four BIBIFI competitions, covering three different programming 
problems: secure log, secure communication, and multiuser database. Each problem specifica-
tion required the teams to consider different security challenges and attacker models.

Secure log (SL). This problem requires teams to implement two programs: one to securely 
append records to a log, and one to query the log’s contents. Teams must protect against a 
malicious adversary with access to the log and the ability to modify it. The adversary does 
not have access to the keys used to create the log. Teams are expected (but not told explicitly) 
to utilize cryptographic functions to encrypt the log and protect its integrity.

Secure communication (SC). This problem requires teams to create client/server  programs 
representing a bank and an ATM. The ATM initiates transactions, including account  creation, 
deposits, and withdrawals.

Teams must protect bank data integrity and confidentiality against an adversary acting 
as a man-in-the-middle (MITM), with the ability to read and manipulate communications 
between the client and server. Once again, build teams were expected to use cryptographic 
functions and to consider challenges such as replay attacks and side-channels.

Multiuser database (MD). This problem requires teams to create a server that maintains a 
secure key-value store. Clients submit scripts written in a domain-specific language. A script 
authenticates with the server and then submits a series of commands to read and write data 
stored there. Data is protected by role-based access control policies customizable by the data 
owner, who may (transitively) delegate access control decisions to other principals.

The problem assumes that an attacker can submit commands to the server but not snoop on 
communications.
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Vulnerabilities: Type and Prevalence
We manually analyzed 94 (out of 142) BIBIFI projects and 866 
exploit submissions against them, ultimately identifying 182 
unique vulnerabilities (some of which had not been identified 
during the contests). We grouped these vulnerabilities according 
to three main types: no implementation, misunderstanding, and 
mistake. Table 1 shows how many vulnerabilities, from how many 
projects, we identified for each type. This section describes each 
type, with examples.

No Implementation
The first step in building a secure system is to attempt to imple-
ment necessary security mechanisms. Unfortunately, half of 
all teams introduced a no implementation vulnerability, failing 
in this first step for at least one required security mechanism. 
This is presumably because they did not realize the security 
mechanism was needed. We further divided no implementation 
vulnerabilities based on how obvious the need was, depending on 
whether it was directly mentioned in the problem specification or 
just implied. For example, in the secure log problem, where teams 
were asked to ensure an attacker with read/write file access 
could not read or make changes to a confidential log, we consid-
ered it obvious that encryption was needed to provide confidenti-
ality, but unintuitive that a Message Authentication Code (MAC) 
should be used as an integrity check.

Unintuitive security requirements are commonly skipped. 
Of the no implementation vulnerabilities, we found that teams 
were much more likely to skip unintuitive security requirements 
(45% of projects) than their intuitive counterparts (16% of proj-
ects). This indicates that developers do attempt to provide secu-
rity—at least when incentivized to do so—but struggle to consider 
all the unintuitive ways an adversary could attack a system. 
Therefore, they regularly leave out some necessary controls.

Misunderstandings
After realizing a security mechanism should be implemented, 
teams then needed to make sure they implemented it correctly. 
We found that most teams failed at this point in the secure devel-
opment process, most commonly due to a conceptual misunder-
standing (56% of projects). We sub-typed these as either bad 
choice or conceptual error. 

A bad choice occurs when a team decides to use a known-insecure 
algorithm or library—likely because they did not realize its inher-
ent flaw (12% of vulnerabilities). In another secure log problem 
example, one team realized they needed to encrypt their log, but 
chose to simply XOR key-length chunks of the log with the user-
provided key to generate the final encrypted version of the log. 
This method of encryption is inherently insecure, as the attacker 
can simply extract two key-length chunks of the ciphertext, XOR 
them together, and produce the key, allowing them to decrypt the 
entire log easily.

Assuming a team did choose a secure algorithm or library, next 
they had to know how to use it properly. We observed several 
cases where teams introduced vulnerabilities by not using the 
algorithm or library as intended, owing to a conceptual mis-
understanding (27% of vulnerabilities). We classified these as 
conceptual error vulnerabilities. For example, one team made the 
reasonable choice to use AES encryption but used a fixed value 
for its initialization vector (IV); see code in Listing 1. A fixed IV, 
rather than a random one, allows an attacker to break the encryp-
tion and read the secret log.

1  def fillercrypter (sharedkey, text):
2      ...
3      encryption_suite = AES.new (sharedkey,
4       AES.MODE_CBC, ’This is an IV456’)
5.     ...

Listing 1: One team generated a conceptual error vulnerability by using a 
hardcoded IV.

Type Sub-Type Projects (94) Vulnerabilities (182)

No implementation Intuitive 
Unintuitive

15 (16%) 
42 (45%)

23 (13%) 
49 (27%)

Total 47 (50%) 72 (40%)

Misunderstanding Bad choice 
Conceptual error

20 (21%) 
41 (44%)

22 (12%) 
49 (27%)

Total 53 (56%) 71 (39%)

Mistake — 20 (21%) 39 (21%)

Table 1: Number of vulnerabilities for each type and the number of projects each vulnerability was introduced in. Note, because projects can have multiple 
vulnerabilities, the total number of projects introducing a vulnerability for each type may not be the sum of sub-type project counts.
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1  self.db = self.sql.connect(filename, timeout=30)
2  self.db.execute('pragma key="' + token + '";')
3  self.db.execute('PRAGMA kdf_iter='
4    + str(Utils.KDF_ITER) + ';')
5  self.db.execute('PRAGMA cipher_use_MAC=OFF;')
6 ...

Listing 2: Another team disabled the automatic MAC in SQLCipher library.

In another interesting example, one team simply disabled pro-
tections provided transparently by their chosen library. They 
initially made a secure choice by using the SQLCipher library, 
which provides encryption and integrity checks in the back-
ground without developer effort, but then explicitly disabled the 
library’s MAC protection; see line 5 in Listing 2.

Teams often used the right security primitives but did not 
know how to use them correctly. Among the misunderstanding 
vulnerabilities, we found that conceptual error vulnerabilities 
(44% of projects) were significantly more likely to occur than 
bad choice vulnerabilities (21% of projects). This indicates that if 
developers know what security controls to implement, they are 
often able to identify (or are guided to) the correct primitives to 
use. However, they do not always conform to the assumptions of 
“normal use” made by library developers.

Mistakes
Finally, some teams chose the correct algorithm or library, and 
appeared to understand how to correctly use it, but made a simple 
mistake that led to a vulnerability (21% of vulnerabilities). For 
example, some teams did not properly handle errors, leaving the 
program in an observably bad state. Other mistakes led to logi-
cally incorrect execution behaviors. Such mistakes were often 
related to control flow logic or missed steps in an algorithm. For 
example, if a team correctly encrypted their log, but accidentally 
wrote the plaintext log to file instead of the ciphertext, this would 
be a mistake.

Complexity breeds mistakes. We found that the frequency of 
mistakes was affected by complexity, within both the problem 
itself and also the approach taken by the team. First, we found 
that teams were 6.68× more likely to introduce mistakes in the 
multiuser database than in the secure communication problem. 
This likely reflects the fact that the multiuser database problem 
was the most complex, requiring teams to write a command 
parser, handle network communication, and implement nine 
different access control checks. Similarly, teams were only 0.06× 
as likely to make a mistake in the comparatively simple secure log 
problem compared to the secure communication problem.

Additionally, choosing not to reimplement security-relevant 
code multiple times was associated with only 0.36× as many 
mistakes, suggesting that violating the “Economy of Mechanism” 
principle [9] by adding unnecessary complexity leads to mistakes. 

As an example of this effect, one team implemented their access 
control checks four times throughout the project. Unfortunately, 
when they realized the implementation was incorrect, they only 
updated it in one place.

Exploit Difficulty
In addition to examining vulnerability types and their frequency, 
we also assessed how difficult it would be for an attacker to find 
and exploit the vulnerability. Even if a vulnerability was quite 
common, if it was very difficult to identify, requiring esoteric 
knowledge or practically impossible to exploit, its resolution 
might be lower priority than a less common but more exploitable 
vulnerability.

We considered three metrics of difficulty: our qualitative assess-
ment of the difficulty of finding the vulnerability (discovery 
difficulty); our qualitative assessment of the difficulty of exploit-
ing the vulnerability (exploit difficulty); and whether a competi-
tor team actually found and exploited the vulnerability (actual 
exploitation). For convenience of analysis, we binned discovery 
difficulty into easy (execution) and hard (source, deep insight). 
We similarly binned exploit difficulty into easy (single-step, few 
steps) and hard (many steps, deterministic or probabilistic). Fig-
ure 1 shows the number of vulnerabilities for each type with each 
bar divided by exploit difficulty and bars grouped by discovery 
difficulty.

Misunderstandings are rated as hard to find, while no 
implementations are rated as easy to find. Identifying 
misunderstanding vulnerabilities often required the attacker to 
determine the developer’s exact approach and have a good under-
standing of the algorithms, data structures, or libraries they 
used. As such, we rated misunderstanding vulnerabilities as hard 
to find significantly more often than other vulnerability types.

Unsurprisingly, a majority of no implementation vulnerabili-
ties were considered easy to find. For example, in the secure 
log problem, an auditor could simply check whether encryption 
and an integrity check were used. If not, then the project can be 
exploited.

Easy to find doesn’t mean easy to exploit. Interestingly, we 
did not observe a significant difference in actual exploitation 
between misunderstandings and no implementations. Some 
misunderstandings were rated as difficult to find, while others 
were rated as difficult to exploit. In one team’s use of homemade 
encryption, the vulnerability took some time to find, because 
the implementation code was difficult to read. However, once an 
attacker realized the team had essentially reimplemented the 
Wired Equivalent Protocol (WEP), a simple check of Wikipedia 
revealed the exploit. Conversely, seeing that a non-random IV 
was used for encryption is easy, but successful exploitation of 
this flaw can require significant time and effort.
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As a no implementation example, one secure log team did not use 
a MAC to detect modifications to their encrypted files. This mis-
take is very simple to identify, but it was not exploited by any of 
the BIBIFI teams. This is likely because the team stored log data 
in a JSON blob before encrypting, meaning that any modifica-
tions to the encrypted text must maintain the JSON structure 
after decryption to succeed. This attack could require a large 
number of tests to find a suitable modification.

Mistakes are rated as easy to find and exploit. We rated all 
mistakes as easy to exploit. This is significantly different from 
both no implementation and misunderstanding vulnerabilities, 
which were rated as easy to exploit less frequently. Similarly, 
mistakes were actually exploited during the Break It phase 
significantly more often than other vulnerability types. In fact, 
only one mistake was not actually exploited by any team. These 
results suggest that although mistakes were least common, any 
that do find their way into production code are likely to be found 
and exploited. Fortunately, our results also suggest that code 
review may be sufficient to find many of these vulnerabilities. 
We note that this assumes that the source is available, which may 
not be the case when a developer relies on third-party software.

Discussion and Recommendations
So what do these results mean for improving secure  development? 
We believe they add weight to existing recommendations and 
suggest prioritizations of possible solutions.

Get the help of a security expert. In some large organizations, 
developers working with cryptography and other security-
specific features might be required to use security-expert-
determined tools and patterns or have a security expert perform 
a review. Our results reaffirm this practice, when possible, as 
participants were most likely to struggle with security concepts 
avoidable through expert review.

Security education. Better education should help developers 
better help themselves. However, across all vulnerability types, 
we observed no difference in vulnerabilities introduced related 
to prior security training or years of prior development experi-
ence. It therefore seems that increased development experience 
and  (traditional) security training have, at most, a small impact.

Further, many of the BIBIFI teams had previously completed 
a four-course cybersecurity training during which all needed 
security controls were discussed, but a majority of these teams 
nevertheless botched unintuitive requirements. Were the top-
ics not driven home sufficiently? An environment like BIBIFI, 
where developers practice implementing security concepts and 
receive feedback regarding mistakes, could help. Future work 
should consider how well competitors from one contest do in 
follow-on contests.

API design. Our results support the basic idea that security con-
trols are best applied transparently, e.g., using simple APIs [4]. 
However, while many teams used APIs that provide security 
(e.g., encryption) transparently, they were still frequently 
misused (e.g., failing to initialize using a unique IV or failing to 
employ stream-based operation to avoid replay attacks). It may be 
beneficial to organize solutions around general use cases, so that 
developers only need to know the use case and not the security 
requirements.

API documentation. API usage problems could be a matter of 
documentation, as suggested by prior work [1, 7]. For example, 
two teams used TLS socket libraries but did not enable client-
side authentication, necessary for the problem. This failure 
appears to have occurred because client-side authentication is 
disabled by default, but this fact is not mentioned in the docu-
mentation [11, 12]. Defaults within an API should be safe and 
without ambiguity [4]. Returning to the example from List-
ing 2, the team disabled the automatic integrity checks of the 
 SQLCipher library. Their commit message stated, “Improve 
 performance by disabling per-page MAC protection.” We know 
this change was made to improve performance, but it is possible 
they assumed they were only disabling the “per-page” integrity 
check while a full database check remained. The documenta-
tion is unclear about this (https://www.zetetic.net/sqlcipher 
/sqlcipher-api/#cipher_use_MAC).

Vulnerability analysis tools. There is significant interest 
in automating security vulnerability discovery (or preventing 
vulnerability introduction) through the use of code analysis 
tools. Such tools may have found some of the vulnerabilities we 
examined in our study. For example, static analyses, symbolic 
executors, fuzzers, and dynamic analyses could have uncovered 
vulnerabilities relating to memory corruption, improper param-
eter use (like a fixed IV), and missing error checks. However, 

Figure 1: Number of vulnerabilities introduced for each type divided by 
discovery difficulty and exploit difficulty

https://www.zetetic.net/sqlcipher/sqlcipher-api/#cipher_use_MAC
https://www.zetetic.net/sqlcipher/sqlcipher-api/#cipher_use_MAC
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they would not have applied to the majority of vulnerabilities we 
saw, which were often design-level, conceptual issues.

How could automation be used to address security requirements 
at design time? More research is needed, but one possible direc-
tion forward is to consider analysis development in tandem with 
improvements to API design. One example is Google’s efforts to 
restrict the ways developers can potentially introduce certain 
vulnerabilities (e.g., XSS, SQL-injection) through API design, 
limiting the required complexity of vulnerability discovery 
analysis [5].

Conclusion
Secure software development is challenging, with many pro-
posed remediations and improvements. To know which interven-
tions are likely to have the most impact requires understanding 
which security errors programmers tend to make and why. In 
our review of 94 submissions to a secure-programming contest, 
each implementing one of three non-trivial, security-relevant 
programming problems, we found implementation mistakes 
were comparatively less common than failures in security under-
standing. Our results have implications for improving secure-
programming APIs, API documentation, vulnerability-finding 
tools, and security education.
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Firefox currently ships with a variety of third-party and in-house 
libraries running sandboxed using a new framework called RLBox. 
We explore how RLBox uses the C++ type system to simplify retro-

fitting sandboxing in existing code bases, and consider how better tooling 
and architecture support can enable a future where library sandboxing is a 
standard part of how we secure applications.

Users expect featureful software, and features, it hardly needs saying, come from code. The 
more features, the more code to implement them. And the more code, the more bugs—the 
more security bugs, in particular.

Whether it’s the latest code rushed out before a marketing deadline, old code that hasn’t been 
touched since the developer who wrote it retired, or a specialized module you licensed, attack-
ers will scour them for bugs to use for exploiting your software and targeting your users.

The problem is especially acute with third-party open source libraries. You might care about 
one aspect of what the library does, but you ship the whole library, and bugs in any part of it 
can create security problems in your product. That is, unless you fork the library to remove 
the extraneous code, but who wants to maintain a fork forever? Worse, hackers who find a bug 
in a popular library can try to deploy it against every product that embeds the library—includ-
ing yours.

Computer scientists have been thinking about software insecurity for 50 years, and they 
have come up with approaches to mitigate it. Rewrite your program (or parts of it) in a safer 
language! Refuse to ship new features and keep your program small! Formally verify the cor-
rectness of your software! “Privilege separate” your system by re-architecting it into multiple 
mutually distrusting processes! It’s fair to say that none of these approaches has solved the 
problem. Insecure software is all around.

We believe that there is a practical path to improving software security. You can take soft-
ware modules, including third-party libraries, and sandbox them to constrain what they 
can do—with low programmer effort, reasonable runtime overhead, and without wholesale 
rewriting or re-architecting—without even creating new OS processes. The sandboxed 
module will still have bugs, but those bugs will not (in most cases; see below) create security 
vulnerabilities in the enclosing program.

Consider an image decoding library like libjpeg. With sandboxing, we can restrict this 
library so it has access to the image it decodes and the bitmap it produces, and that’s it. Or 
consider a spell-checking library like Hunspell. With sandboxing, we can restrict this library 
to just its dictionary and the text it checks. The application benefits from the library’s fea-
tures but doesn’t inherit its security flaws.

Over the past two years we have worked with a team at Mozilla to build a tool, called RLBox, 
to support sandboxing and to migrate Firefox to a model where many third-party libraries 
run sandboxed. This new approach is now shipping in Firefox. Our experience suggests that 
once there is sufficient tooling support, then engineers can easily sandbox libraries, and they 
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become increasingly comfortable with and excited by the opportunities this offers. For example, 
while the initial target of our sandboxing collaboration was a third-party font-shaping library, 
Graphite, now Firefox developers and security engineers are using RLBox to sandbox both 
third-party libraries and legacy Mozilla code in domains like media decoding, spell check-
ing, and even speech synthesis.

We believe that the opportunities extend far beyond Firefox. After all, secure messaging apps 
(e.g., Signal, WhatsApp, and iMessage), servers and runtimes (e.g., Apache and Node.js), and 
enterprise tools (e.g., Zoom, Slack, and VS Code) also rely on third-party libraries for various 
tasks—from media rendering, to parsing network protocols like HTTP, image processing (e.g., 
to blur faces), spell checking, and automated text completion. With RLBox, these systems’ 
developers are empowered to sandbox modules and limit the damage their bugs can cause.

Recent advances in compilers and processor architectures have made efficient in-process 
isolation increasingly practical. As it turns out, though, preventing a module from reading or 
writing memory outside its data region isn’t enough. Our initial efforts in manually sand-
boxing Firefox libraries are a case in point. Firefox had been written under the assumption 
that the libraries were trustworthy. Even when isolated, they could return data values that 
would cause the (unsandboxed) Firefox code to take unsafe actions, a scenario that security 
researchers describe as a confused deputy attack. We tried to add code to manually check 
return values for consistency, but repeatedly found that we had missed cases and left open 
avenues for attack.

That’s where RLBox comes in. Using the C++ type system, RLBox automatically generates 
the boilerplate code required for sandbox interaction, and identifies all places where the 
programmer will have to add data-checking code. With RLBox, programmers have a frame-
work that makes it easy to sandbox libraries (1) securely, ensuring the interface between the 
untrusted library and the application code is correct, and (2) with minimal engineering effort, 
so that the cost of migrating libraries and applications to sandboxing is not prohibitive.

In the rest of this article we describe the experience that led to RLBox, how RLBox works, 
how it leverages the C++ type system to make sandboxing practical, and how our type-driven 
approach can be used in other domains (e.g., trusted execution environments). Then we outline 
how this approach can translate to languages other than C/C++. Finally, we end with a vision 
of what software development could look like with broader first-class support for sandboxing.

Before closing, we should note that sandboxing is not a panacea. Some components must be 
correct, not just isolated, for the system as a whole to be secure. The JavaScript just-in-time 
compilers used by Web browsers are a notorious example. With RLBox, you can sandbox 
everything else, and focus developer time on getting these few critical modules right.

The Road to RLBox: Library Sandboxing in Firefox
Firefox, like other browsers, relies on dozens of third-party libraries to decode audio, images, 
fonts, and other content. These libraries have been a significant source of vulnerabilities in 
the browser (e.g., most of the vulnerabilities found by recent work using symbolic execution 
were in third-party libraries [2]). With collaborators at Mozilla, we sought to minimize the 
damage due to vulnerabilities in libraries by retrofitting Firefox to sandbox these libraries.

When we began this project roughly two years ago, we thought the hardest part would be 
adapting Google’s Native Client (NaCl), a software-based isolation (SFI) toolkit, to sandbox 
libraries. NaCl is designed for sandboxing programs, not libraries. This turned out to be the 
easy part. Since then, WebAssembly (Wasm) toolkits—in particular the Lucet Wasm com-
piler—have made this even easier [5].

In fact, the hardest part was the last mile, retrofitting Firefox to account for the now-
untrusted libraries. Firefox was written assuming libraries are trusted. To add sandbox-
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ing, we had to change its threat model to assume sandboxed 
libraries are untrusted, and harden the browser-library interface. 
Hardening this interface in turn required sanitizing data and 
regulating control flow between sandboxed libraries and the 
browser, thus ensuring that malicious libraries could not break 
out of their sandbox.

Our first attempt at sandboxing libraries in Firefox involved 
manually hardening the library-application interface—this did 
not go well.

Security challenges. To see how things can go wrong, let’s 
consider updating the fill_input_buffer JPEG decoder func-
tion. libjpeg calls this function whenever it needs more bytes 
from Firefox. As seen on line 16 of Listing 1, Firefox also saves 
the unused input bytes held by libjpeg to an internal back buffer, 
which it sends to libjpeg along with the new input bytes.

 1: void fill_input_buffer (j_decompress_ptr jd) {
 2:   struct jpeg_source_mgr* src = jd->src;
 3:   nsJPEGDecoder* decoder = jd->client_data;
 4:   ...
 5:   src->next_input_byte = new_buffer;
 6:   ...
 7:   if (/* buffer is too small */) {
 8:     JOCTET* buf = (JOCTET*) realloc(...);
 9:     if (!buf) {
10:       decoder->mInfo.err->msg_code = JERR_OUT_OF_MEMORY;
11:       ...
12:     }
13:     ...
14:   }
15:   ...
16:   memmove(decoder->mBackBuffer + decoder->mBackBufferLen,
17:       src->next_input_byte, src->bytes_in_buffer);
18:   ...
19: }

Listing 1

When sandboxing libjpeg, we need to make the following 
changes:

 3 Sanitize jd , otherwise the read of jd->src on line 2 could 
 become a read gadget.
 3 Sanitize src , otherwise the write to src->next_input_byte 
on line 5 becomes a write gadget and the memmove() on line 16 
becomes an arbitrary read gadget.
 3 Sanitize jd->client_data on line 3 to ensure it points to a valid 
Firefox nsJPEGDecoder object; otherwise invoking a virtual 
method on it will hijack control flow.
 3 Sanitize the nested pointer mInfo.err on line 10 prior to de-
referencing, else it becomes a write gadget.
 3 Sanitize the pointer decoder->mBackBuffer + decoder 
->mBackBufferLen used on the destination address to  
memmove() on line 16 to prevent overflows of the unused byte 
buffer.

 3 Adjust pointer representations for mInfo.err and decoder 
->mBackBuffer—both NaCl and Wasm have different pointer 
representations and we must translate (swizzle) these pointers 
accordingly.
 3 Ensure that multiple threads can’t invoke the callback on the 
same image; otherwise we have a data race that results in a use-
after-free vulnerability on line 8.

If we miss any of these checks—and these are only a limited 
sample of the kind of checks required [4]—an attacker could 
potentially bypass our sandbox through a confused deputy 
attack. Adding these checks to the hundreds of Firefox functions 
that use libjpeg was tedious. Worse, we frequently found checks 
we had overlooked.

Engineering effort. The upfront engineering effort of modi-
fying the browser this way was huge. Beyond adding security 
checks, we also had to retrofit all library calls, adjust data 
structures to account for machine model (ABI) differences 
between the application and sandbox (a common issue with SFI 
toolchains), marshal data to and from the sandbox, etc. Only 
then could we run tests to ensure our retrofitting didn’t break 
the application. Finally, since Firefox runs on many platforms—
including platforms not yet supported by SFI toolkits like NaCl 
and Wasm—we had to do this alongside the existing code that 
uses the library unsandboxed, using the C preprocessor to select 
between the old code and the new code. The patches to do all this 
became so complicated and unwieldy that we couldn’t imagine 
anybody maintaining our code, so we abandoned this manual 
approach, built RLBox, and started anew.

The RLBox Framework
RLBox is a C++ library designed to make it easier for developers 
to securely retrofit library sandboxing in existing applications. 
It does this by making data and control flow at the application-
sandbox boundary explicit—using types—and by providing APIs 
to both mediate these flows and enforce security checks across 
the trust boundary.

RLBox mediates data flow using tainted types—it uses type 
wrappers to demarcate data originating from the sandbox, and 
ensure that application code cannot use this data unsafely. For 
example, while application code can add two tainted<int>s (to 
produce another tainted<int>), it cannot branch on such values 
or use them as indexes into an array. Instead, the application 
must validate tainted values before it can use them.

RLBox mediates control f low with explicit APIs for control 
transfers. Calls into the sandbox must use sandbox_invoke 
(sbx_fn, args...). Callbacks into the application can only use 
 functions registered with the sandbox_callback(app_fn) API. 
These APIs also impose a strict data flow discipline by forcing 
all sandbox function return values, and callback arguments, to 
be tainted.
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As we show next, this tainted-type-driven approach addresses 
both the security and engineering challenges we outline above. 

Using Tainted Types to Eliminate Confused Deputy 
Attacks
RLBox eliminates confused deputy attacks by turning unsafe 
control- and data-flows into type errors and, where possible, 
by performing automatic security checks. Concretely, RLBox 
automatically sanitizes sandbox-supplied (tainted) pointers to 
ensure they point to sandbox memory, swizzles pointers that 
cross the trust boundary, and statically identifies locations 
where tainted data must be validated before use.

Consider, for example, the JPEG decoder callback from before. 
RLBox type errors would guide us to (1) mark values from the 
sandbox as tainted (e.g., the jd argument and src variable on line 
2, Listing 2) and (2) copy and verify (otherwise tainted) values we 
need to use (e.g., jd->client_data on line 3, Listing 2). 

 1: void fill_input_buffer (rlbox_sandbox& sandbox, 
 tainted<j_decompress_ptr> jd) {
 2:   tainted<jpeg_source_mgr*> src = jd->src;
 3:   nsJPEGDecoder* decoder = 
 jd->client_data.copy_and_verify(...);
 4:   ...
 5:   src->next_input_byte = new_buffer;
 6:   ...
 7:   if (/* buffer is too small */) {
 8:     JOCTET* buf = (JOCTET*) realloc(...);
 9:     if (!buf) {
10:       decoder->mInfo.err->msg_code = JERR_OUT_OF_MEMORY;
11:       ...
12:     }
13:     ...
14:   }
15:   ...
16:   size_t nr = src->bytes_in_buffer.copy_and_verify(...));
17:   memmove(decoder->mBackBuffer + decoder->mBackBufferLen,
18:       src->next_input_byte.copy_and_verify(...), nr);
19:   ...
20: }

Listing 2

In Listing 2, we need to write validators as C++ lambdas to the 
copy_and_verify method used on lines 3, 16, and 18. As we 
describe in [4], validators fall into one of two categories: pre-
serving application invariants (e.g., memory safety) or enforcing 
library invariants. On line 3, for example, we must ensure that 
decoder points to a valid nsJPEGDecoder object not used by a con-
current thread, while on line 16 we need to ensure that copying nr 
bytes won’t read past the mBackBuffer bounds.

We must get validators right—a bug in a validator is often a 
security bug. In practice, though, validators are rare and short. 
The six libraries we sandboxed in [4] required 2–14 validators 
each, and these validators averaged only 2–4 lines of code. Most 

importantly, by making these validators explicit, RLBox makes 
code reviews easier: security engineers only need to review these 
validators.

What’s missing in Listing 2 is almost as important: we don’t write 
any security checks on lines 2, 5, and 10, for example. Instead, 
RLBox uses runtime checks to automatically swizzle and sani-
tize the src, src->next_input_byte, and decoder->mInfo.err 
pointers to point to sandbox memory. 

Using Tainted Types to Minimize Engineering Effort
Manually migrating an application to use library sandboxing is 
labor intensive and demands a great deal of specific knowledge 
about the isolation mechanism. RLBox abstracts away many 
of these specifics, making migration relatively simple and 
mechanical.

Incremental migration. While RLBox automates many tasks, 
we still need to change application code to use RLBox. In par-
ticular, we need to add a trust boundary at the library interface 
by turning all control transfers (i.e., library function calls and 
callbacks) into RLBox calls, and we need to write validators to 
sanitize data from the library, as we saw above. Making these 
changes all at once is frustrating, error-prone—overlooking a 
single change might suddenly result in crashes or more subtle 
malfunctions—and hard to debug.

RLBox addresses these challenges with incremental migration, 
allowing developers to modify application code to use the RLBox 
API one line at a time. A full migration involves multiple steps 
and is explained further in our paper [4]. However, the key idea 
is that RLBox provides escape hatches which let developers tem-
porarily disable some checks while migrating their application 
code. Thus, at each step, the application can be compiled, run, 
and tested.

RLBox provides two escape hatches:

1. The UNSAFE_unverified API allows developers to tempo-
rarily remove the tainted type wrapper (e.g., to run and test their 
code). As the application is ported, calls to UNSAFE_unverified 
APIs are removed or replaced with validator functions that cor-
rectly sanitize tainted data.

2. The RLBox noop sandbox provides a pass-through sandbox 
that redirects function calls back to the unsandboxed version of 
the library, while still wrapping data as if it were received from 
a sandboxed library. This allows developers to use the RLBox 
APIs and test data validation separately from the actual isolation 
mechanism.

Compile-time type errors guide the developer by pointing to the 
next required code change—e.g., data that needs to be validated 
before use, or control transfer code that needs to change to use the 
RLBox APIs. By the end of the process, the application is still fully 
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functional, all the escape hatches have been removed, and the appli- 
cation-library interface has fully migrated to using tainted types.

We found that incremental migration greatly simplified the code 
review process. In Firefox, we could commit and get reviews for 
partial migrations to the RLBox API, since the Firefox browser 
continued to build and run as before. Additionally, we could 
explicitly include security reviews when writing the data valida-
tors for tainted data.

Beyond migration, we also found the noop sandbox to be useful 
for selectively enabling library sandboxing in conditional builds. 
For example, while Firefox on Linux and OS X uses Wasm for 
isolation, the Lucet Wasm compiler’s support for Windows is 
incomplete and thus Firefox uses the noop sandbox on Windows 
builds; once Windows support is complete, a single line change 
will allow us to take advantage of the sandbox. This is useful 
beyond Firefox too: developers of the Tor Browser (a downstream 
project of Firefox for anonymous web browsing) are interested 
in sandboxing more libraries than mainline Firefox, since Tor 
users typically have a higher security-performance threshold. 
Using the noop sandbox will allow Tor developers to contribute 
upstream changes to sandbox libraries in mainline Firefox, using 
the noop sandbox to avoid noticeable overhead. Tor developers 
can then selectively enable additional sandboxing (again) with a 
one-line change, rather than having to maintain a major fork.

ABI translations. Isolation mechanisms can have different 
machine models and ABIs from the rest of the application. For 
example, Wasm uses a 32-bit machine model meaning that 
pointers, ints, and longs are 32 bits. However, this is a different 
machine model from that used by the host application. Handling 
such differences manually is laborious and error-prone.

Consider line 10 from the previous fill_input_buffer example 
in Listing 2:

// mInfo is an object of type jpeg_decompress_struct
decoder->mInfo.err->msg_code = JERR_OUT_OF_MEMORY;

If we port this manually, the resulting code would be:

auto err_field = adjust_for_abi_get_minfo_field(decoder
 ->minfo, "err");
auto err_field_swizzled = adjust_for_abi_convert_pointer
 (err_field);
auto msg_field = adjust_for_abi_get_err_field
 (*err_field_swizzled, "msg_code");
assert(in_sandbox_memory(msg_field)); 
 // Ensure pointer is in sandbox memory
auto msg_field_swizzled = adjust_for_abi_convert_pointer
 (msg_field); // Assign the value
*msg_field_swizzled = adjust_for_abi(JERR_OUT_OF_MEMORY);

In contrast, RLBox requires no changes other than marking 
mInfo as tainted. RLBox automatically transforms pointers, and 
accounts for the difference in the size of long and pointers:

// mInfo is an object of type tainted<jpeg_decompress_struct>
decoder->mInfo.err->msg_code = JERR_OUT_OF_MEMORY;

RLBox is able to abstract and automatically reconcile ABI differ-
ences since all control and data flow goes through its APIs and 
tainted types.

Using Tainted Types Outside of Library Sandboxing
The security challenges we face when sandboxing libraries are 
not unique to library sandboxing. Developers have to handle 
untrusted data and control flow in many other domains—and  
our tainted-type approach can help. We give three examples:

TEE runtimes. Applications running in trusted execution 
environments (TEEs), like Intel’s SGX and ARM’s TrustZone, 
interface with untrusted code by design—TEEs even consider the 
OS untrusted. Getting this code right is hard. And, indeed, TEE 
runtimes contain similar bugs: Van Bulck et al. [1], for example, 
found that most frameworks, across several TEEs, were vulner-
able to bugs RLBox addresses by construction.

OS kernels. Operating system kernels handle untrusted data 
from userspace. Bugfinding tools—from MECA at the start of the 
century [10] to Sys this year [2]—have found many vulnerabilities 
in kernels due to unchecked (or improperly checked) userspace 
data (notably, pointers). Frameworks like RLBox could automati-
cally identify where userspace data needs to be checked and even 
perform certain checks automatically (e.g., much like we ensure 
that sandbox pointers point to sandbox memory, we can ensure 
that userspace pointers point to userspace memory). Indeed, 
Johnson and Wagner’s bugfinding tool [3] even used type infer-
ence to find such kernel bugs.

Browser IPC layers. Modern browser architectures privilege 
separate different parts of the browser into sandboxed pro-
cesses. Almost all separate the renderer parts—the portion of 
the browser that handles untrusted user content from HTML 
parsing, to JavaScript execution, to image decoding and render-
ing—from the chrome parts—the trusted portion of the browser 
that can access the file system, network, etc.—and restrict com-
munication to a well-typed inter-process communication (IPC) 
layer. Like OS kernels, the browser chrome must validate all 
values coming from untrusted renderer processes; like kernels, 
browsers have been exploited because of unchecked (and improp-
erly checked) untrusted data. Here, again, tainted types can 
help—and as a step in this direction, Mozilla started integrating 
tainted types into the Firefox IPC layer, as part of the IPDL (IPC 
protocol definition language) used to generate boilerplate code 
for sending and receiving well-typed IPC messages [7].

This list is by no means exhaustive; others have similarly 
observed that tainting can be used to catch and prevent bugs 
when handling untrusted data (e.g., see [9]).
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Beyond RLBox
We have thus far discussed RLBox in its current form—a frame-
work that uses the C++ type system, template  metaprogramming, 
and SFI toolkits like Wasm to securely sandbox libraries typi-
cally written in C. In the future, we hope to see extensions to 
other languages, support for sandboxing libraries written in 
arbitrary languages, and the adoption of processor features that 
can further lower in-process sandboxing overheads.

Beyond C++
We implemented RLBox in C++ because Firefox is  predominantly 
written in C++. To extend RLBox to other languages, we need to 
understand how to implement RLBox’s tainted type system.

Our C++ implementation uses templates to implement the 
generic tainted<T> type and takes advantage of function and 
operator overloading to make most of the tainted type interface 
transparent. For example, RLBox overloads pointer dereferenc-
ing—the -> and * operators—to allow dereferencing tainted<T*> 
values safely by automatically sanitizing the underlying pointer 
to point to sandbox memory (line 10 in Listing 2). We also use 
template metaprogramming to enforce a custom type discipline.

Many languages have features that are expressive enough to 
implement our tainted type system directly or as part of the 
 language toolchain, for example, with compiler plugins.

Statically typed languages. RLBox is a natural fit for lan-
guages that already enforce type safety statically. Statically 
typed languages typically offer some form of generics or tem-
plates that can be used to implement tainted types. Many also 
allow function and operator overloading which, like C++, would 
allow us to provide safe operations on tainted types while pre-
serving the original syntax of the language.

Rust is a particularly compelling language. First, Rust’s raison 
d’être is safety—indeed, the language is used in many settings 
where assurance is paramount—and RLBox can complement 
Rust’s safety by, for example, making it easy for Rust program-
mers to safely integrate C/C++ code into their projects, which 
today is considered unsafe. Second, Rust’s macro system and 
support for generics and operator overloading via traits allows 
tainted types to be implemented directly in the language. Finally, 
Rust’s affine types can even simplify certain RLBox validators, 
like the validators used to prevent time-of-check to time-of-use 
and double fetch attacks [4].

Dynamically typed languages. In dynamically typed lan-
guages like JavaScript and Python, we can enforce tainted types 
dynamically. This, of course, makes the incremental porting loop 
longer since type errors will only manifest at runtime. Luckily, 
many dynamically typed languages have typed extensions to pre-
cisely address this limitation. For example, TypeScript and Flow 
extend JavaScript with static type annotations.

Compiler plugins and toolkits. For languages not f lexible 
enough to implement the RLBox tainted type system statically, 
we envision implementing the type system as part of language 
toolchains. For example, for C, we can implement RLBox as a 
Clang plugin (both to enforce the type system and to gener-
ate runtime checks). Alternatively, we can implement tainted 
types as part of interface description language (IDL) compilers. 
As mentioned above, for example, the Mozilla security team is 
integrating tainted types into the Firefox IPDL inter-process 
communication protocol IDL [7].

Beyond Software-Based Isolation
We designed RLBox to make it easy for developers to plug in 
different isolation mechanisms. This makes it easy to migrate 
code (e.g., by using the noop sandbox), as we have described. It 
also allows developers to use different isolation mechanisms that 
have different tradeoffs. For example, while in production we use 
Wasm for isolation, in [4] we evaluate two other isolation mecha-
nisms: NaCl and traditional process-based isolation. These 
isolation mechanisms have different tradeoffs. Process isolation 
is simple but scales poorly—protection boundary crossing costs 
become prohibitive as the number of sandboxes exceed the num-
ber of available cores. Wasm and NaCl, on the other hand, scale to 
a large number of sandboxes and have cheap boundary crossings, 
but they impose an overhead on the sandboxed code.

At present, Wasm toolchains offer a practical and portable path 
to isolation. But this software-based isolation approach will 
inevitably be slower than running native code.

Hardware support for in-process isolation can offer solutions 
that are simple and more performant. Today, for example, Intel’s 
Memory Protection Key (MPK) features incur roughly 1% over-
head when used for in-process isolation [8], but this doesn’t scale 
beyond 16 sandboxes. In the future, the CHERI capability-based 
system will similarly make in-process isolation—and memory 
safety more generally—cheap on ARM processors [6]. By making 
it easy to use these features transparently (e.g., for CHERI it can 
automatically adjust for ABI differences introduced by capabili-
ties), RLBox could lower the barrier to adopting new hardware 
isolation features—and, we hope, this will encourage new hard-
ware design for in-process isolation.

Bringing Sandboxing to the Developer Ecosystem
While RLBox has been a boon for our work in Firefox, it’s just a 
starting point. Our hope is that library sandboxing will become  
a first-class activity in future development environments, 
and that RLBox’s capabilities will ultimately be subsumed by 
standard parts of tomorrow’s languages, toolchains, and package 
managers. We believe in many cases such support could allow  
the use of sandboxed libraries with a level of ease comparable to 
the use of unsandboxed libraries today. 
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FFIs and native code. Many popular safe languages such as 
Python, Ruby, and JavaScript make extensive use of native 
(typically C) code in their standard libraries and package eco-
systems via foreign function interfaces (FFIs). Unfortunately, 
bugs in native code can completely break all high-level safety 
guarantees. Extending FFI interfaces and interface generation 
tools with first-class support for sandboxing native code is very 
natural—both because the FFI boundary is explicit and because 
developers are used to writing code that spans trust boundaries.

Package managers. In the ecology of package ecosystems there 
is constant competition between package authors to provide the 
best package for a given task. Security is among the ways that 
package authors have recently started differentiating their pack-
age from others. We have seen this clearly in the Rust ecosystem, 
where the presence (or absence) of unsafe code is one way that 
packages are compared. 

Sandboxing is another way that package authors can provide 
differentiated value, by integrating sandboxing support into 
their library. This could look like authors distributing their 
packages with most or all of the work required to sandbox that 
package done upfront by the package author. Developers could 
then choose whether or not to enable sandboxing with minimal 
additional fanfare. 

To facilitate this, the package author could specify a system level 
sandboxing policy (e.g., as a manifest file requesting access to 
parts of the file system or network), and developers could then 

choose if and how to grant these privileges when importing a 
package. Much of the work of writing validators for tainted types 
could also be mitigated by distributing validators as part of a 
sandboxed library. We even envision an ecosystem of sandbox 
interface declarations for existing packages, much like Type-
Script type declarations for JavaScript packages, which will 
allow to developers to pull sandboxed interfaces much like they 
consume type declarations today.

Conclusion
Decades of attempts to detect and mitigate software vulnerabili-
ties have yielded lackluster results. Even browsers, some of the 
most heavily targeted and scrutinized software, seem to provide 
an inexhaustible stream of exploitable vulnerabilities. In-process 
sandboxing can offer developers and security engineers another 
choice—moving code, especially legacy and third-party code, out 
of their trusted computing base by sandboxing it, thus mitigating 
the impact of a compromise.

We developed RLBox to make sandboxing practical. It is cur-
rently being used to sandbox third-party and in-house libraries 
in Firefox, and we hope that other C++ projects will choose to 
adopt it. Looking further, we hope to collaborate with developers 
of programming languages (and their toolchains and standard 
libraries), package managers, and processor architects to provide 
first-class support for in-process sandboxing. Small changes to 
make in-process sandboxing first-class can result in huge bene-
fits for developers and security engineers.
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Using Safety Properties to Generate 
Vulnerability Patches
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A utomatic Program Repair (APR) methods attempt to fix vulner-
abilities in programs comprehensively and without introducing new 
defects. Senx uses novel safety properties to generate patches, and 

it succeeds in generating patches for 32 of 42 real-world vulnerabilities. We 
explain how Senx works, compare it to other APR methods, and demonstrate 
why Senx is better at repairing source code.

Fixing security vulnerabilities in a timely manner is critical to protect users from attacks 
that exploit vulnerabilities. Unfortunately, a recent study shows that the average time to 
release software patches for vulnerabilities is 52 days, and the bottleneck lies in creating 
software patches [1]. 

Automatic Program Repair (APR) tools aim to automatically provide patches that fix vulner-
abilities. Most of them rely on a set of positive/negative example inputs to produce a patch 
that makes the vulnerable program behave correctly according to these example inputs [4, 6, 7]. 
The patched program must pass the positive example inputs but raise errors on the negative 
example inputs. But obtaining a complete set of example inputs is often difficult, and the 
patched program may behave incorrectly on other inputs, or the vulnerability may still be 
exploited by other inputs [8]. We refer to this traditional method as “example-based.”

We propose a different approach called “property-based” APR that relies on vulnerability-
specific, program-independent, human-specified safety properties. A safety property speci-
fies the condition on which a type of vulnerability cannot be triggered. For example, a safety 
property for buffer overflow vulnerabilities can be that a program should never have access 
beyond the bounds of a buffer. 

Our property-based approach has three major advantages: 1) a small set of safety properties 
can be defined once and applied on numerous programs without the need to specify anything 
pertaining to each of the programs; 2) the properties are precise and complete by nature so 
they work for all possible inputs; 3) it leverages a specific vulnerability’s context to generate a 
customized and efficient patch for the vulnerability, as opposed to the nonspecific and often 
inefficient patches generated by previous methods [5].

Property-based APR faces several outstanding challenges. First, it must identify the correct 
property to enforce for a given vulnerability because the properties are vulnerability-specific. 
Second, our goal is to generate source code patches that can be easily adopted by developers; 
as a result, the safety properties must be expressed using program entities such as variables. 
Third, the generated patches should affect program execution if and only if a safety property 
is violated. Finally, the generated patches should incur minimum performance overhead.

To address these challenges, we have designed Senx to automatically generate source code 
patches for security vulnerabilities using safety properties. We demonstrate the effectiveness 
of Senx using three important classes of vulnerabilities: buffer overflows, bad casts, and inte-
ger overflows. Our evaluation demonstrates that Senx is able to produce correct patches for 
over 76% of the vulnerabilities. And we believe that, in principle, Senx can generate patches 
for any class of vulnerabilities for which a safety property can be specified.
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Example-Based versus Property-Based
We now discuss the limitations of state-of-the-art APR tools. We use the program in Listing 1 
as the target program, which is adopted from a real-world buffer overflow vulnerability CVE-
2012-0947 in a popular media stream processing library. The program takes a string and its 
length as input, and outputs the reversed string. It outputs “” if an error occurs. Similar to the 
real vulnerability, two functions are used, one to allocate the output buffer, and the other to 
process the input string.

The buffer overflow happens when the size, specified from the command line, is smaller than the 
actual length of the input string. To fix the buffer overflow, a check can be added to ensure that the 
actual length of the string is smaller than the allocated size of the buffer into which it is copied. 
Note that the buffer size is only known to main; so the check should be added at line 19 to compare 
size against strlen(argv[2]). While a human developer can easily add this check, which indeed 
was in the official patch for the vulnerability, it presents challenges for state-of-the-art APR tools. 

 1 char* rev(const char *inp, char *out) {
 2    // reverse a string
 3    //  inp is the input string
 4    //  out is an output buffer
 5    if (inp != NULL) {
 6        int i, len = strlen(inp);
 7        // Failed to check if (len + 1 <= size_of_out)
 8        for (i = 0; i < len; i ++)
 9            out[i] = inp[len - i]; 
10        out[i] = '\0';
11        return out;
12    }  else
13        return "###";
14 }
15
16 void main(int argc, char *argv[]) {
17    int size = atoi(argv[1]) + 1;
18    char *out = (char *)malloc(size); 
19    // patch: if (strlen(argv[2]) + 1 > size) exit(1);
20    printf("%s\n", rev(argv[2], out));
21 }

Listing 1: A program that reverses an input string. It contains a buffer overflow in function rev.

Example-based approaches. Many APR tools rely on example inputs to fix vulnerabilities. 
For example, SemFix and Angelix use test inputs to find path constraints needed to gener-
ate fixes [4, 6]. Table 1 presents typical test inputs needed to use such tools to fix the buffer 
overflow for our example in Listing 1.

This approach has two drawbacks. First, the generated path constraints are often based on 
the concrete values used in the test inputs instead of the relationships between program vari-
ables. Given the test inputs in Table 1, SemFix and Angelix would wrongly infer that the value 
of argv[1] is not correlated with whether tests are positive or negative, based on the fact that it 
has the same values in both positive and negative test inputs.
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Type argv[1] argv[2] Output Expected output
P 1 A A A

P 2 AB BA BA

N 1 ABC CBA ###

N 2 ABC CBA ###

Table 1: Test inputs and outputs for the program in Listing 1. Type “P” test inputs are positive test inputs, 
while type “N” test inputs are negative test inputs.
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Second, the approach is highly sensitive to the completeness of 
test inputs. Because the length of the input string is smaller than 
3 for positive tests whereas the length is not smaller than 3 for 
negative tests, SemFix and Angelix would incorrectly derive that 
strlen(argv[2]) < 3 needs to be added to the program to fix the 
buffer overflow. The incorrect patch is generated due to the miss-
ing of a positive test input with strlen(argv[2]) > 2) in the test 
suite. This illustrates that example-based tools can easily fail 
when tests are missing in the test suite, which is notoriously hard 
to make complete.

Property-based approaches. AutoPaG creates patches using 
a predicate similar to a safety property [3]. But it handles only 
one vulnerability type, buffer overflows, so it cannot generate a 
correct patch if the vulnerability is of any other type. Moreover, 
it would fail to produce a patch if the safety property needs to 
be enforced in a location other than the function in which the 
vulnerability occurs. As in our example, the patch should be 
placed in the main function, but the buffer overflow occurs in 
the rev function. Lastly, the patch it generates can incur high 
performance overhead because it would add the patch to check 
the buffer size inside the for loop on line 8 due to the fact that the 
buffer overflow occurs within the loop.

Safety Properties
To generate a patch that fixes a vulnerability, Senx requires an 
input to trigger the vulnerability. The input can be a proof-of-
concept exploit or an input generated by a fuzzer. With this input, 
Senx generates a patch that will enforce the safety property 
violated by the vulnerability.

A Senx patch can have one of two forms: 1) a check-and-error 
patch that inserts a check to detect if a safety property no longer 
holds and raises an error to direct program execution away from 
the path where the vulnerability resides; 2) a repair patch that 
modifies existing code to prevent a safety property from being 
violated.

Each safety property corresponds to a particular vulnerability 
class and is an abstract Boolean expression that will be mapped 
to concrete variables in a program. We describe below the three 
types of safety properties that Senx currently supports.

Sequential buffer overflows. A sequential buffer overf low 
occurs when a sequence of memory accesses traversing a buffer 
crosses from a memory location inside the buffer to a memory 
location outside of the buffer. The Senx safety property for buffer 
overflows defines two abstract objects: a memory access and a 
buffer. The term buffer refers to any bounded memory region, 
which may include structs, objects, or arrays. The term memory 
access corresponds to an array access or pointer dereference 
occurring inside a loop. This safety property covers both the case 
when the memory access exceeds the upper range of the buffer 

and the case when the memory access falls below the lower range 
(sometimes called a buffer underflow). 

Bad casts. A harmful memory access can result from an offset 
from a base pointer beyond the upper bound of the buffer the base 
pointer is pointing to. This type of vulnerability may occur for 
several reasons, but it commonly occurs when a pointer is cast to 
a type that is incompatible with the object the pointer points to. 
The safety property for bad casts can prevent both bad casts for 
simple structs and objects, as well as nested structs and objects.

Integer overflows. An integer overflow takes place when a vari-
able is assigned a value larger or smaller than what can be repre-
sented by the type of the variable. An integer overflow can lead 
to a vulnerability when the result of the overflow is then used in 
operations such as allocating a buffer, producing a buffer that is 
far smaller than expected. Consequently, the safety property for 
integer overflows checks that value used in certain operations is 
not the result of an integer overflow.

For our prototype, we have started with these three vulnerability 
classes. Nonetheless, they represent a good percentage of CVE 
vulnerabilities. Based on our informal analysis of the vulner-
abilities published in CVE Details in 2018, the most popular 
vulnerability categories are denial of service, code execution, 
and overflow. By examining 100 randomly chosen CVE reports 
for each of the three vulnerability categories, we find that 
25% of CVE vulnerabilities are buffer overflows, bad casts, or 
integer overflows. We believe the principles behind Senx can be 
extended to other vulnerability classes, and we plan to do so as 
our future work.

Senx
Senx aims to generate source code patches that can be easily 
verified and adopted by developers. As shown in Figure 1, Senx 
generates patches in four major steps: vulnerability identifica-
tion, predicate generation, patch placement, and patch synthesis.

Vulnerability Identification
In vulnerability identification, Senx runs a program with an 
input that can trigger a vulnerability and outputs the violated 

Figure 1: Workflow of Senx: each rounded rectangle represents a step in 
Senx’s patch generation; each rectangle with vertical bars represents a 
component of Senx.
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safety property, the vulnerability point (the program location 
where the safety property is violated), and the source code 
expressions for the execution trace. Senx runs the program using 
concolic execution to generate the execution trace corresponding 
to the vulnerability-triggering input. Senx records the execution 
trace as source code expressions, which conform to the syntax 
of the programming language of the target program, for synthe-
sizing a source code patch. To support complex data types such 
as nested C/C++ structs, references to structs, and arrays with 
pointers, Senx records the relationships between data objects and 
the way data objects are referenced. This way Senx can recover 
the full expression for a data object such as foo→f.bar[10].

Predicate Generation
During predicate generation, Senx takes the violated safety 
property, which also implies the type of the vulnerability, and the 
source code expressions generated by vulnerability identifica-
tion, and outputs a predicate required to prevent the violation 
of the safety property. Senx maps the violated safety property 
to concrete expressions over variables, constants, and function 
calls in the form of the source code of the program.

For buffer overflows, Senx aims to insert the patch before the 
loop where a set of sequential memory accesses occurred; so it 
needs to extract expressions that represent the memory access 
range for the memory accesses. Senx uses two complementary 
loop analysis techniques: access range analysis and loop clon-
ing. Both of them take a function F in the target program and 
an instruction inst that performs the faulty access in the buffer 
overflow, and output the symbolic memory access range of inst.

Access range analysis. Senx computes the access range of 
canonicalized loops. It relies on LLVM’s built-in loop canonical-
ization functionality to convert the loop into a standard form. It 
starts with the innermost loop and iterates to the outermost loop, 
and accumulates increments and decrements on the loop induc-
tion variables.

For each loop, Senx retrieves the loop iterator variable and its 
bounds and the list of induction variables of the loop and their 
update, the fixed amount that an induction variable is increased 
or decreased by on each loop iteration. We use the loop in bar of 
Listing 2 to illustrate how access range analysis can be applied  
to nested loops.

 1 char *foo_malloc(x,y) {
 2   return (char *)malloc(x * y + 1);
 3 }
 4
 5 int foo(char *input) {
 6+  if ((double)(cols+1)*(size/cols)+1 > 
 7+        rows * (cols+1) + 1)
 8+     return -1; 
 9   char *output=foo_malloc(rows,cols+1);
10   if (!output)

11      return -1;
12   bar(p, size, cols, output);
13   return 0;
14 }
15
16 void bar(char *src,int size,int cols,char *dest) {
17   char *p=dest;char *q=src;
18   while (q < src+size)  {
19      for (unsigned j=0;j<cols;j++)
20         *(p++) = *(q++);
21      *(p++) = ‘\n’;
22   }
23   *p = ‘\0’;
24 }

Listing 2: A buffer overflow in CVE-2012-0947 with a patch, lines prefixed 
with “+”

In this example, Senx identifies j as the loop iterator variable, 
whose bounds are 0 and cols; it also identifies j, p, and q as induc-
tion variables, each of which has an update of 1 for the innermost 
for loop. Senx then symbolically accumulates the update to each 
induction variable based on the number of loop iterations, which 
is cols. Similarly, Senx finds q as the loop iterator variable, with 
src as its lower bound and src+size as its upper bound, and q and 
p as induction variables, whose accumulated update is size and 
(cols+1)(size/cols)+1, respectively, for the while loop enclosing 
the inner for loop.

Following the analysis of all the loops enclosing inst, Senx per-
forms reaching definition dataflow analysis to find the definition 
that reaches the beginning of the outermost loop for the pointer 
ptr used by inst. In this example, we have ptr=p whose initial 
value is dest before the while loop. By adding the initial value 
dest to the accumulated update of p, we will have dest+(cols+1)
(size/cols)+1. Therefore Senx decides the access range as 
[dest,dest+(cols+1)(size/cols)+1].

Loop cloning. Senx cannot apply access range analysis to loops 
that LLVM cannot canonicalize. Instead it uses loop cloning 
for these loops. At a high level, loop cloning creates new code to 
compute the number of loop iterations. Senx produces the new 
code from a clone of the code of the loop in the target program, but 
removes the code that causes side effects. The new code is used 
by the generated patch to return the access range. Details on loop 
cloning can be found in [2].

Function calls. For certain cases, Senx can extract expressions 
containing function calls. Senx needs to ensure that the gener-
ated predicate does not call functions that have side effects. 
We define three types of side effect: 1) a change to the memory 
accessible outside of a function; 2) an invocation of a system call 
that has external impact; 3) an invocation of a function that has 
any side effect. 

Senx uses a flow-sensitive, context-insensitive intraprocedural 
static analysis to identify the list of functions that do not have 
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any side effect. Senx initializes the list with functions on a 
whitelist and then adds each function that has no side effect to 
the list by analyzing every function of a target program.

Patch Placement
In patch placement, Senx uses the vulnerability point found in 
vulnerability identification and the predicate generated in predi-
cate generation to find a program location to insert the patch. 
The patch location must be a point where all necessary variables 
in the predicate are in the scope. If variables in the predicate 
are from different scopes, Senx uses expression translation to 
translate the predicate into a new one formed from variables in a 
common scope. For check-and-error patches, Senx also requires 
the scope to have some error handling code to call. It uses Talos 
[1] to find a suitable error handling code.

Expression translation. Senx must produce a patch predicate 
that can be evaluated in a single function scope, because Senx 
generates source code patches. In some cases, a target program 
computes the buffer allocation size in one function scope but the 
memory access range in a different function scope. As a result, 
the expression representing the allocation size and the expres-
sion representing the memory access range are not valid in a 
single function scope. 

To solve this problem, expression translation translates an 
expression from the scope of a source function to an equivalent 
expression in the scope of a destination function, without the 
need to add new function parameters and call arguments. This 
process is called converging the predicate. Expression transla-
tion exploits the equivalence between the arguments that are 
passed to a function by the caller and the function parameters 
that receive the values of the arguments. 

We use the code in Listing 2 to illustrate how it works. To trans-
late the buffer size involved in the buffer overflow, Senx starts 
with the buffer size expression xy+1 in the scope of foo_malloc 
and for x substitutes rows and for y substitutes cols+1 based on 
the call arguments at line 9. Hence xy+1 becomes rows(cols+1)+1 
in the scope of foo.

Effectiveness of Senx
We evaluate the effectiveness of Senx and the quality of its 
generated patches using 42 real-world buffer overflow, bad cast, 
and integer overflow vulnerabilities that are from 11 mature and 
popular applications. For each vulnerability, we run the corre-
sponding application under Senx with a vulnerability-triggering 
input. We manually examine the correctness of the generated 
patch if Senx generates a patch. Otherwise, we examine what 
caused Senx to abort patch generation. The list of the vulnerabili-
ties and our detailed evaluation are presented in [2].

For the 42 vulnerabilities, Senx generates 32 patches, all of which 
are correct according to our criteria. Senx applies access range 
analysis and loop cloning roughly equally for the 13 patched 
buffer overf lows. Senx is unable to apply loop cloning mainly 
because the loops involve calls to functions that have side effects 
that Senx cannot remove. Senx must use expression translation 
to generate 23.8% of the patches because the patches need to 
be placed in a function different from where the vulnerability 
occurs. The dominant cause for Senx to abort patch generation is 
that Senx cannot converge all variables in the patch predicate to 
a common function scope.

Comparison with other work. We compare the effectiveness 
of Senx against SemFix [6] and Angelix [4]. Due to the consider-
able effort required to run SemFix and Angelix, we made the 
comparison on only two vulnerabilities. Senx generates correct 
patches for both vulnerabilities, while SemFix and Angelix are 
unable to generate patches either because they cannot find an 
existing program construct to change in order to pass both posi-
tive test inputs and negative test inputs or because they cannot 
create a guard statement to prevent the vulnerabilities from 
being triggered.

Conclusion
Automatic patch generation is a promising solution to rapidly 
resolve software defects. However, the vast majority of these 
tools are not well-suited to address software vulnerabilities 
since they rely on test cases to generate correct patches, whereas 
it is difficult to have complete test cases for any moderately large 
target programs. To address software vulnerabilities, we built 
Senx, a system that uses human-specified safety properties to 
automatically generate patches. Senx uses three novel program 
analysis techniques: access range analysis, loop cloning, and 
expression translation. Evaluation shows that Senx generates 
patches correctly for 76% of the 42 real-world vulnerabilities.
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Interview with Sergey Bratus
R I K  F A R R O W

I first met Sergey Bratus during the USENIX Security Symposium in 2011. 
Sergey caught up to me in a stairwell at the Sir Francis Drake Hotel in 
San Francisco and started to make a pitch about something I had never 

heard of before. LangSec, short for Language Security, is a different way of 
thinking about both how to program more securely and why software gets 
exploited.

I found myself immediately intrigued, and Sergey has co-authored several articles and papers 
related to LangSec over the years. He also co-founded a LangSec workshop with Meredith 
Patterson, co-located with IEEE Security and Privacy (“Oakland”) [1]. When I was study-
ing papers at USENIX Security ’20, I noticed several that appeared to have strong tie-ins to 
LangSec and decided to invite Sergey for an interview.

Rik Farrow: Software gets hacked when presented with input that manipulates the software 
in unexpected ways. I recall from early LangSec articles that any input parser that is more 
complex than a pushdown automaton will be vulnerable to this type of hacking. Do I have this 
right, and why are more complex parsers vulnerable?

Sergey Bratus: The programmer who sits down to write a parser faces a task quite unlike any 
other engineering task. All other kinds of engineers design for some well-defined operating 
environment conditions: this much wind speed for a bridge, this much current for an elec-
tric circuit, this expected temperature interval for a chip, etc. Within these conditions, the 
design must behave predictably: safety comes from predictability. By contrast, input-taking 
 software, i.e., its parser, is supposed to withstand any inputs at all, an operating environment 
that cannot be easily searched or simulated. Yet, as with any other engineering, safety only 
comes from predictability.

Thus safety of a parser critically depends on the ability of the programmer to correctly pre-
dict the parser’s behavior on all possible inputs. This is really hard, because reasoning about 
program behaviors in general is hard (or even algorithmically impossible) and is only feasible 
when the programmer walks a fairly narrow path, by correctly implementing automata that 
we can reason about and assuming no more about the inputs than these automata (if correctly 
implemented) can check.

Pushdown automata and their corresponding context-free languages are one particular sweet 
spot of predictability for which we have the mathematical and computing means of auto-
mated reasoning. This sweet spot is really something of a mathematical miracle, given how 
hard the general problem is.

In a word, every parser implemented on a general-purpose ISA wants to be a virtual machine 
on its inputs that matches the computing power of that ISA. Restraining it from being that 
machine for the attacker is what LangSec is about; it is surprising and fascinating that it is 
possible and practical to do so.

Sergey Bratus is a Research 
 Associate Professor of Com-
puter Science at Dartmouth 
College. He helped co-found the 
LangSec movement and is in-

terested in understanding and mitigating unin-
tended computation. He sees state-of-the-art 
hacking as a distinct research and engineering 
discipline that, although not yet recognized as 
such, harbors deep insights into the nature of 
computing. sergey@cs.dartmouth.edu

Rik is the editor of ;login:.  
rik@usenix.org

Disclaimer: The views presented in this interview 
are the author’s personal views and do not neces-
sarily represent the views of the U.S. Federal 
Government or its components, which partially 
funded some of the research presented at the 
LangSec workshop.
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Various caveats apply, which LangSec aims to address in ways 
practical for a programmer who is not looking to be a mathemati-
cian or formal language theorist. However, the thing that makes 
it at all possible is the language-based approach, which gives 
us just the predictability, that is, safety, properties that we can 
check for and that aren’t hard to express and understand.

Surprisingly, as the recent workshop’s morning keynote [1] David 
Walker argued, this is also true for predicting behaviors of not 
just parsers but also networks. So the surprising effectiveness 
of using language-based models of computing system behaviors 
extends beyond what we normally think of as parsers.

RF: Programmers often build parsers according to their reading 
of a protocol specification. An infamous example of this going 
wrong was Heartbleed, where the TLS protocol included two 
different length values, and a popular implementation checked 
one while using the other. At USENIX Security, the “Composi-
tion Kills” paper [2] examines how the intersection of three email 
sender authentication protocols—SPF, DKIM, and DMARC—
actually fail to authenticate the sender. Are protocols part of the 
problem that LangSec addresses?

SB: Yes. From its inception [17], LangSec has been calling atten-
tion not only to unintended behaviors of inputs on parsers, but also 
to security consequences of parser differentials, that is, divergent 
interpretations of the same messages by different parsers.

To have any predictability in a distributed system—which is 
really just a fancy name for a system with more than one com-
ponent—it is natural to implicitly assume that all of its parsers 
interpret messages passed between the components in the same 
way. Whenever this assumption, made explicitly or implicitly, is 
violated, vulnerability likely ensues.

Vulnerabilities with the root cause in parser differentials have 
been in the news lately. The HTTP Desync vulnerabilities [3] 
such as the F5 Big-IP vulnerability [4], the “Psychic Paper” 
vulnerability in MacOS [5], and a vulnerability in GitLab [6] all 
involve parser differentials. Major past examples include several 
Android Master Key vulnerabilities [7], a timeless classic.

LangSec’s perspective on the insecurity potential of parser 
differentials has been getting some notice. Another notable, 
recently published academic paper [8] discusses parsing of 
standard protocols and refers to LangSec. Dave Aitel drew atten-
tion to the LangSec nature of this growing vulnerability class on 
his DailyDave mailing list (https://seclists.org/dailydave/2020 
/q3/9). To quote Dave:

Ten years ago a lot of the security community had a 
discussion about “LangSec”…which turns out to have 
been entirely correct in retrospect….

Most people look at HTTP Desync as simply using 
Content-Length confusion—figuring out ways to make 
one request look like it’s not the same length, and using 
that for SSRF or XSS or various other attacks. But ANY 
DIFFERENCE IN THE PARSERS leads to critical level 
attacks.

The surface of LangSec analysis in distributed systems has only 
been scratched, so there are likely many more major vulnerabili-
ties waiting to be discovered. 

RF: LangSec seems to be heading in the direction of language-
based designs, that is, requiring language to provide security 
assurances. Java was supposed to do this, but there are many 
Java exploits. Some exist because there are extensions to Java 
written in unsafe languages, like C. But I believe that people 
have exploited Java via the bytecode itself. 

SB: LangSec targets the root causes of insecurity on a differ-
ent level than efforts aimed at general-purpose programming 
languages.

Java and other memory-safe languages target the ability of the 
programmer to unwittingly (or deliberately) create memory 
corruption or (non-corrupting) type confusion. For Java and 
JavaScript, this ability was largely taken away from the devel-
oper, which is a net positive, but not a panacea.

The problem of unexpected and unchecked input remains. Now 
these inputs are stored in memory-safe ways, but they are still 
not what the processing code expects, and they are still acted on. 
There is a lot of room in a general-purpose language to go wrong 
when acting on data that’s not what the programmer expects. For 
programs such as web apps that produce outputs and issue com-
mands, this problem will manifest as either the outputs or the 
commands not being as expected. 

LangSec, by contrast, aims to offer general solutions that focus 
first and foremost on data languages, also called data formats.

Without a clear understanding of input and output data lan-
guages involved in a task, the programming language is only 
exchanging one bug class for another. For example, Java and 
JavaScript made memory corruption harder, although, as you 
note, not impossible. Still, regular programmers cannot acciden-
tally corrupt memory with their code alone: it has to come from 
flaws in the language runtime implementation or, more typically, 
from their interactions. However, complexities of data languages 
and their transformations immediately manifested themselves 
in XSS, command execution bugs, parser differentials, etc., mak-
ing notionally memory-safe web apps notoriously vulnerable to 
an array of attacks much less sophisticated than memory corrup-
tion exploits.

https://seclists.org/dailydave/2020/q3/9
https://seclists.org/dailydave/2020/q3/9
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Note that outputs and the code that creates them (“unparsers”) 
are as important as the inputs and their handling code: see, for 
example, [9] and the first workshop paper [1].

My understanding is that Google and Facebook had to integrate 
intricate type systems with their web development tool chains to 
just keep a lid on this problem, and their solutions are specialized 
to their respective processes.

LangSec absolutely takes to heart the dictum of functional 
programming: “Make illegal state unrepresentable.” This dictum 
calls on a language designer or an API architect to construct the 
language or the API so as to make it impossible for the program-
mer to create illegal state—at least not without the compiler 
complaining very loudly. However, properly implementing this 
dictum wherever inputs or outputs are involved requires under-
standing what are the legal and illegal states of input, and the 
same for output. It requires LangSec.

RF: When I interviewed Natalie Silvanovich [10], she seemed 
to conf late the use of dynamic languages (those that handle 
memory allocation and freeing dynamically, like Rust and Go) 
as part of LangSec. What do you think?

SB: I’d like to start by saying that LangSec greatly benefited from 
interest and feedback from extraordinary vulnerability research-
ers, who were, in fact, among the first to grasp its practical value. 
For example, the closing keynote of the first LangSec workshop 
was by Felix “FX” Lindner, an early supporter of LangSec. This 
makes perfect sense, because leading vulnerability researchers 
see general patterns of software weaknesses, of input-driven 
exploitation, and of how its non-systematic mitigations fail. 
LangSec offered a unified and actionable way of explaining these 
patterns, and top vulnerability researchers were among the first 
to appreciate it.

In your interview, Natalie’s take on the nature and scope of 
 LangSec is spot-on:

[LangSec] views the root cause of security issues to be 
that most protocols and other input formats are poorly 
defined and often have many undefined states, and the 
programming languages that process them also support 
a huge amount of undefined behavior. [LangSec] thinks 
all software should abstract out all input processing 
code, and design and implement it in a way that is 
verifiable, and has no undefined states or behavior.

As I mentioned earlier, and as Natalie notes, the common idea of 
managed-memory languages is to make illegal memory states 
impossible for the programmer to unwittingly create while 
writing regular code. Notably, LangSec aims further than basic 
memory corruption. Indeed, there are numerous examples of 
memory-safe software with deep flaws due to ad hoc handling  
of its input and output languages.

However, Natalie raised another important point in that inter-
view: there are and will be bugs in programming languages and 
environments intended to be memory-safe or otherwise offer 
safety assurances. In this year’s LangSec workshop’s amazing 
invited talk, Natalie connected this insight with specific features 
of JavaScript that have been causing huge headaches world-
wide, given how JavaScript has been “eating the Internet”—and 
pinpointed the ways out. See her slides at [1] for the discussion 
of these troublesome features. Natalie has a wonderful intuition 
here, which is entirely LangSec but takes us beyond file and mes-
sage formats.

I would describe it as follows: Natalie sees data structures allo - 
cated in memory as data languages, with the runtime memory 
management code servicing these structures as parsers. Pro - 
gramming language feature choices made by JavaScript or Go 
about what kinds of objects and how their relationships are 
representable in the language force the implementations of these 
languages to handle ever more complex data languages of bytes 
in memory: for example, on the heap. Consequently, unnecessary 
complexity of these features causes the same devastating effects 
as unnecessary format complexity does on the software that 
processes the formats.

Any piece of the language’s native runtime, including the memory 
manager and garbage collector, parses memory bytes all the time 
and often must decide if a chunk it parses is valid or not before it 
acts. Moreover, advanced memory management means that mul-
tiple actors read and write memory concurrently, and their pars-
ing actions must all be synchronized, or else corruption occurs. 
There is a rich literature of hacker research here, including many 
nifty attacks on browsers and OS kernels. This area is waiting to 
be explored from the LangSec perspective, and Natalie’s invited 
talk pointed out a very rich example. 

RF: You’ve mentioned that language-based approaches could 
turn out to be amazingly productive in understanding routing. 
Can you explain how LangSec intersects with network routing?

SB: Routing and other network-processing tasks must process 
streams of packets or, at a higher level, events. These packets or 
events change the internal state of the receiving program. Essen-
tially, just like a parser, a network stack or function performs 
input-driven computation. Many questions about routing come 
down to modeling and understanding this computation, and 
assuring that it is safe—that is, behaves predictably for all inputs 
it might receive.

With modern verification tools we can try to prove that a distrib-
uted system has some desired behavioral properties. But which 
properties and models are tractable to explore?



32  WI N T ER 2020  VO L .  45 ,  N O.  4  www.usenix.org

SECURITY
Interview with Sergey Bratus

It turns out that thinking about sequences of networking events 
as a data language that drives language-processing tasks is sur-
prisingly productive for reasoning about and verifying network 
router behaviors. Not only that, but understanding the routers’ 
many configuration options as dialects of a common language 
was also an efficient way of organizing and searching the space 
of diverse configurations. The latter is arguably less surprising, 
because human designers of these spaces, as all humans, are 
creatures of language and tend to implicitly impose language-
based ordering on complex spaces.

This was the subject of this year’s workshop’s morning keynote 
by Princeton’s David Walker [1]. Of course, as the original Lang-
Sec paper [11] points out, treating observable system and network 
events as streams processed by input-driven automata predates 
LangSec. For example, Fred Schneider used this approach to 
characterize classes of enforceable security policies [12] and cited 
Lamport’s prior work. However, it’s still fascinating that formal 
language-based approaches are so productive far beyond parsing.

RF: Forms of distributed computing, such as cloud functions, 
are growing in popularity today. Cloud functions use RPCs and 
queues to communicate, and that seems to me to be an opportu-
nity to either make things better by observing LangSec or much 
worse through the use of ambiguous protocols. Would you com-
ment on that?

SB: This is very much the case: there is both the opportunity and 
the danger.

The danger is already manifesting itself in the surge of high-
impact parser differential bugs. Recall Dave Aitel’s quote above. 
Note that we don’t yet have effective ways of fuzzing for parser 
differentials. So we are in a much worse position with respect 
to parser differential bugs than we are with regard to memory 
corruption bugs, where coverage-driven fuzzing in combination 
with various sanitizers have gotten really good.

There is also the opportunity. Exposing interfaces without the 
false comfort of keeping them “private” and only receiving well-
formed data or only data from one particular writer applies evo-
lutionary pressure towards properly defining these interfaces. 
LangSec is there as a natural match for this problem.

The story of the Amazon API Mandate as told by Steve Yegge [13] 
is the story of such evolutionary pressure creating a qualitatively 
better platform. From the LangSec perspective, this story is not 
surprising—it is an iconic story of the correct intuition.

RPC messages are explicitly data languages, and open cloud envi-
ronments will exert pressure to validate RPC messages before 
acting on them. However, it is important to get the design of these 
data languages right, so that validating these inputs doesn’t grow 
into intractable problems we encounter with legacy formats.

As cloud systems grow rapidly, so could their technical debt. 
For example, for many application protocols, their expressions 
in Protocol Buffers happen to be the closest they ever got to a 
mechanized specification. However, these specifications them-
selves may be ambiguous and vulnerable to parser differentials. 
Critiques such as [14] strongly urge caution.

These problems are going to be very important as we move to 
serverless styles of programming (AWS Lambda and Fargate, 
Azure Functions, etc.). They will take a while to explore and 
understand, just like understanding the significance of parser 
differentials took almost a decade, but to avoid accumulating 
insurmountable amounts of technical debt, we should start now.

RF: The Rust programming language claims to offer unprec-
edented security assurances in systems programming. Rust’s 
secret weapon appears to be lightweight memory safety through 
compiler-imposed isolation, instead of having to rely on much 
more expensive safety solutions such as separating memory 
contexts with x86 hardware privilege rings or automatic memory 
management. Will LangSec remain relevant if Rust becomes the 
choice of systems programmers?

SB: The point of all programming language safety features, be it 
Java-like automatic memory management or Rust’s type system 
that enforces a discipline on pointers, is to avoid unintended 
state and, as a result of that state, unintended execution from 
that state onward. The difference between the languages and 
approaches is what kind of unintended state is being prevented 
and how this is done.

Historically, it was very easy for a programmer to unwittingly 
create unintended state. Classic ISAs use contents of memory  
or registers as addresses to access memory “randomly,” i.e., in 
arbitrary order and without checking what, if anything, was pre-
viously stored in that memory and when or how it got there.  
C/C++ exposed this indirect memory addressing through point-
ers, which could point practically anywhere and allowed nearly 
arbitrary arithmetic to be applied to them. Reasoning about 
code—for example, what the code would do on all inputs hitting a 
module’s boundary—in the presence of arbitrary pointers is very 
hard (see Hind’s 2001 survey [15]). The power of arbitrary indi-
rect memory references is so great that it’s possible to (re)compile 
any program into just x86 MOV instructions and a single JMP or 
an equivalent way of looping backwards [16], which is, of course, 
really bad news for program analysis.

Java approached this problem by abstracting away almost all 
indirect memory references, to heavily restrict what memory 
addresses the CPU might access on behalf of the program 
(notionally mediated by the JVM, but also observed by JIT-ed 
code). To do so, it took memory management away from the 
programmer, which made it less desirable for OS programming, 
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where managing memory is a significant part of the task, and a 
single automated way of doing it just does not fit all needs. Rust, 
via its type system, controls pointers in a different way, but for 
the same purpose: restrict where and when indirect memory 
references can point so that they become tractable, unlike C’s 
pointers or assembly’s indirect MOVs [16].

In each case, the language makes memory-corrupting references 
hard or impossible for the programmer to create in ordinary 
code. However, as we’ve seen with web programming, memory 
safety alone does not preclude abuse of complex interfaces, and 
can actually make exploiting these interfaces easier, because the 
attacker doesn’t need to worry about crashing the system with a 
poorly crafted input. We often forget that memory safety without 
a clear understanding of what inputs and outputs are legal works 
both ways and can easily favor the attacker.

There is definitely a LangSec perspective on this: IPCs are data lan-
guages, and whatever Rust or any other compiler can do is all done 
for the purpose of consuming these languages safely and not letting 
them drive unintended computation in a module or microservice.

So the question is, once again: regardless of whatever kinds of 
checks can be done, what constitutes expected and valid IPC 
messages that, once validated, will cause only predictable system 
behaviors and no other “weird” behaviors? Can these expectations 
be precisely and unambiguously formulated and checked with 
tractable code, which could itself be checked for correctness?

Without a clear LangSec model of the inputs, validating IPC 
messages becomes an ill-defined game of guessing which kinds 
of memory corruption or command injection to mitigate, for 
example, by making the hardware explicitly protect some address 
ranges from access by all code except specially designated code 
parts (e.g., via x86 ring contexts). But what happens in other 
ranges and contexts? How can one guarantee that corruption 
spreading there would not trick a legitimately placed privileged 
(“ringed”) deputy into corrupting the protected region by pass-
ing it some unexpected inputs? This is a really hard question 
to answer, and it needs higher-level models of intended input-
driven behaviors.

So compilers and build environments in general should abso-
lutely be doing more work to make sure only intended state 
occurs, and it’s a great thing that they do.

LangSec, for its part, helps formulate what is and can be the 
intended, tractably checkable state when dealing with inputs, 
and helps system, protocol, and application designers avoid 
situations where ensuring predictability of input-handling code 
becomes unsolvable. So LangSec has a lot of work to do and many 
programming fields to help secure.
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Function as a Service (FaaS) has gained tremendous popularity as a 
way to deploy computations to serverless back ends in the cloud. We 
performed the first characterization of an entire production FaaS 

environment (Azure Functions) [1]. Our characterization revealed many 
unique aspects of serverless workloads compared to traditional cloud applica-
tions. Using this deep understanding, we designed a new dynamic resource 
management policy to improve the performance and reduce the memory foot-
print of serverless workloads. This new policy is now deployed in production, 
and our characterization data traces are publicly released for researchers. 

Serverless characterization studies before our work can be classified into two main catego-
ries: those probing public serverless offerings externally and those looking at ways developers 
use FaaS offerings by investigating public repositories. These two classes of studies provide 
valuable information; external probing allows comparing the performance and availability 
of various FaaS providers using a set of benchmarks, and looking at public FaaS repositories 
allows finding popular programming trends. However, neither of them can offer insights 
on the aggregate workload seen by a provider. Only when the entire workload is known can 
one answer questions such as “How often do functions get invoked? ” “How long do functions 
execute for? ” or “How much memory do serverless functions require? ” Answers to such basic 
questions have major implications for designing various components of serverless systems—
from schedulers to virtualization environments to underlying hardware architectures. 

We conducted the first detailed characterization of an entire production FaaS workload at a 
large cloud provider. To do so, we collected data on all function invocations across Microsoft 
Azure’s entire infrastructure between July 15 and July 28, 2019. We invite the reader to read 
our recent USENIX ATC paper for methodology details and full characterization data [1]. 
The sanitized traces from a subset of our characterization data are also available publicly at 
https://github.com/Azure/AzurePublicDataset. In what follows, we summarize some of our 
characterization insights.

Composition of Applications
In Azure Functions, functions are grouped into applications. The application concept helps 
organize the software, and the application is the unit of scheduling and resource allocation. 
As shown in Figure 1, 54% of the applications have only one function, and 95% of the appli-
cations have at most 10 functions. The other two curves show the fraction of invocations 
and functions corresponding to applications with up to a certain number of functions. For 
example, we see that 50% of the invocations come from applications with at most three func-
tions, and 50% of the functions are part of applications with at most six functions.

Composition of Triggers
Functions can be invoked in response to several event types, called triggers. Figure 2 shows the 
fraction of all functions and invocations per type of trigger. HTTP is the most popular in both 
dimensions. Event triggers correspond to only 2.2% of the functions, but they correspond to 
24.7% of the invocations due to their automated, and very high, invocation rates. Queue trig-
gers also have proportionally more invocations than functions (33.5% vs. 15.2%). 
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The opposite happens with timer triggers. There are many functions triggered by timers 
(15.6%), but they correspond to only 2% of the invocations, due to their relatively low firing 
rate: 95% of the timer-triggered functions in our data set were triggered at most once per 
minute, on average.

Invocation Patterns
We observed that applications are invoked very differently. The number of invocations per 
day varies by over eight orders of magnitude for different applications. Another  observation 
with strong implications for resource allocation is that the vast majority of applications and 
functions are invoked, on average, very infrequently: on average, 45% of the applications are 
invoked once per hour or less frequently, and 81% of the applications are invoked once per 
minute or less. The other side of this skewness was revealed to us by finding that the top 18.6% 
most popular applications represent 99.6% of all function invocations. Thus, keeping the appli-
cations that receive infrequent invocations resident in memory at all times is expensive. 

Function Execution Times
An advantage of the serverless model is that users pay only for their execution time. Figure 3 
shows the distribution of average, minimum, and maximum execution times of all  function 
executions on July 15, 2019, which is similar to other days. We observed that 50% of the 
functions execute for less than 1 sec on average, and 96% of functions take less than 60 sec on 
average. These short executions in FaaS are unlike virtual machines (VMs). For example, a 
prior study reported that 63% of all VM allocations on Azure last longer than 15 minutes [2].
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Figure 1: Distribution of function counts per application 

Figure 2: Functions and invocations per trigger type
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FaaS applications experience cold starts. A cold start invocation 
occurs when a function is triggered, but its application is not yet 
loaded in memory. When this happens, the platform instantiates 
a worker for the application, loads all the required runtime and 
libraries, and calls the function. While Figure 3 does not include 
cold starts, we observed that the execution times from our char-
acterization are the same order of magnitude as the cold start 
times reported for major providers [3]. Therefore, optimizing cold 
starts becomes extremely important for the overall performance 
of a FaaS offering. This can be done either by reducing the cold 
start latency [4, 5] or by eliminating cold starts. We took the 
second approach in designing our policy, which we describe later 
in the article.

Memory Usage
The memory demand of applications on the same day (July 15, 
2019) is shown in Figure 4. Looking at the distribution of the 
maximum allocated memory, 90% of the applications never con-
sume more than 400 MB, and 50% of the applications allocate at 
most 170 MB. We found no strong correlation between invocation 
frequency and memory allocation or between memory allocation 
and function execution times.

Designing a New Adaptive Resource Management 
Policy 
One of our primary goals in understanding workload character-
istics was to design better resource management policies. This is 
because the state-of-the-art in serverless resource  management 
was too simplistic, where each application was kept in memory 
after function execution for a fixed amount of time. This keep-
alive window is 10 minutes for AWS Lambda and IBM Cloud 
Functions, and was 20 minutes for Azure Functions. Such a 
policy is too rigid for the wide range of serverless applications. 
Developers usually circumvent this by creating regular artificial 
invocations to make sure their applications remain warm in 
memory. A smart dynamic policy can eliminate such a burden. 
Additionally, adapting to applications’ invocation patterns would 
mean resources are not kept unused just to keep function images 
warm without executing them. 

There are a few challenges in designing such a policy. As we 
showed earlier in this article, invocation frequency and pattern 
vary substantially across applications. A one-size-fits-all fixed 
policy is certain to be a poor choice for many applications. Adapt-
ing the policy to each application means tracking each applica-
tion individually, and thus the cost to track the information for 
each application should be small. Finally, since function execu-
tions can be very short (i.e., more than 50% of executions take 
less than one second), running the policy and updating its state 
need to be fast. This is especially critical considering providers 
charge users only during their function execution times (e.g., 
based on CPU, memory). For instance, we cannot take 100 ms to 
update a policy prediction model for each 10 ms-long execution.

We propose a hybrid histogram policy that addresses all the 
above challenges. It identifies each application’s invocation pat-
tern, removes/unloads the application right after each function 
execution ends, reloads/pre-warms the application right before 
a potential next invocation, and keeps it alive for a period. The 
policy does so by capturing the history and predicting next idle 
times (ITs), defined as the time between the end of a function’s 
execution and its next invocation. Three main components of the 
hybrid histogram policy include: (1) a range-limited histogram 
for capturing each application’s ITs; (2) a standard keep-alive 
approach for when the histogram is not representative, i.e., there 
are too few ITs or the IT behavior is changing (again, note that this 
differs from a fixed keep-alive policy); and (3) a time-series fore-
cast component for when the histogram does not capture most ITs.

Compared to fixed keep-alive policies, hybrid histogram policies 
are closer to optimal. As seen in Figure 5, hybrid policies deliver 
a significant reduction of unused memory time, while consider-
ably improving the cold start percentage for applications. For 
instance, a hybrid policy with a four-hour histogram can deliver 
a 2.5× lower 3rd-quartile cold start percentage and 1.5× less 
memory time wastage compared to a fixed 10-minute keep-alive 
policy. Note that there is a tradeoff between cold starts and wasted 
memory time for both policy families, but hybrid substantially 
dominates all fixed policies. 

Figure 3: Distribution of function execution times Figure 4: Distribution of allocated memory per application
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The range-limited histogram at the core of the hybrid histogram 
policy is a lightweight data structure. We use it with a minute-
long resolution, which means capturing a four-hour histogram 
requires an array of length 240. The other two components of 
the hybrid histogram policy complement it to boost performance 
while maintaining low overhead. Here, we describe some of our 
design choices and their implications for the policy: 

 3 Pre-warming to curtail keep-alive values while maintain-
ing low cold starts: One can eliminate cold starts by just set-
ting the right keep-alive values, but this approach is too costly. 
Pre-warming allowed us to reduce memory wastage by about 
34% compared to using just keep-alives, with a minor cold start 
increase. 
 3 Ignoring outlier ITs to deflate keep-alive values: To exclude 
outliers of the IT distribution captured by the histogram, we use 
the 5th- and 99th-percentiles as head and tail cutoffs, respec-
tively. This approach avoided the inflation of keep-alive values 
and resulted in a ~15% reduction in memory time wastage with a 
negligible impact of cold start performance of applications.
 3 Checking the histogram representativeness to not use it 
prematurely: The histogram might not be representative of 
an application’s behavior when it has not observed enough ITs 
for the application or when the application is transitioning to a 
different IT regime. We decide whether a histogram is repre-
sentative by computing the coefficient of variation (CV) of its 
bin counts and comparing it to a threshold (CV=2). This simple 
approach improved the 3rd-quartile application cold starts by 
nearly 49% with only a 3% increase in memory time wastage.
 3 Using time-series forecast to eliminate cold starts of infre-
quent applications: Using time-series forecast for infrequent 
applications reduced the percentage of applications that experi-

ence 100% cold starts by about 50%, i.e., from 10.5% to 5.2% of 
all applications. A significant portion of these applications have 
only one invocation during the entire week, and no predictive 
model can help them. Excluding these applications, the same re-
duction becomes 75%, i.e., from 6.9% to 1.7% of all applications.

We implemented our policy in Apache OpenWhisk [6], which is 
the open-source FaaS platform powering IBM’s Cloud Functions. 
We refer the reader to our paper for implementation details [1]. 
We ran two experiments with 68 randomly selected mid-range 
popularity applications from our workload on our 19-VM Open-
Whisk deployment: one experiment with the default 10-minute 
fixed keep-alive policy of OpenWhisk and another with our 
hybrid policy and a four-hour histogram range. Each experiment 
ran for eight hours with a total of 12,383 function invocations. 
We used FaaSProfiler [7] to automate trace replay and result 
analysis.

Figure 6 compares the cold start distribution of keep-alive and 
hybrid policies from the simulations (left) and the OpenWhisk 
prototype (right). As seen, the significant cold start reductions 
follow similar trends. On average and across the 18 invoker VMs, 
the hybrid policy reduced memory consumption of worker con-
tainers by 15.6%, which was also consistent with our simulation 
results. Moreover, hybrid policy reduced the average and 99-per-
centile function execution time 32.5% and 82.4%, respectively, 
due to a secondary effect in OpenWhisk, where the language 
runtime bootstrap time is eliminated for warm containers. The 
price for all of these is an additional 835.7μs latency on average, 
which is negligible compared to the existing latency of Open-
Whisk components: the (in-memory) language runtime initia-
tion takes O(10 ms) and the container initiation takes O(100 ms) 
for cold containers [7].

After getting promising results from simulations as well as the 
prototype implementation, we implemented our policy in Azure 
Functions for HTTP-triggered applications. Its main elements 
have rolled out to production. We used asynchronous updates 
from the workers to the Azure Functions controller to populate 
histograms. We keep the histogram in memory and do hourly 
backups to the database. We start a new histogram per day in 
the database so that we can track changes in an application’s 
invocation pattern and remove histograms older than two weeks. 
When an application changes state from executing to idle, we use 
the aggregated histogram to compute its pre-warm interval and 
schedule an event for that time (minus 90 seconds). Pre-warming 
loads function dependencies and performs JIT where applicable. 
Each worker maintains the keep-alive duration separately, 
depending on how long it has been idle. We make all policy 
decisions asynchronously, off the critical path, to minimize the 
latency impact on the invocation.

Figure 5: Tradeoff between cold starts and wasted memory time for the 
fixed keep-alive policy and our hybrid policy
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Conclusion
We characterized the entire production FaaS workload of Azure 
Functions, which unearthed several key observations for cold 
start and resource management. Based on them, we proposed a 
practical policy for reducing the number of cold starts at a low 

resource cost. The main elements of this policy have rolled out 
to production. We also released sanitized traces from a subset 
of our characterization data that is first of its kind. These traces 
will help researchers design future serverless systems based on 
realistic workloads and enable new research angles.
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Running I/O-intensive shell pipelines over the network requires 
transferring huge amounts of data but relatively little computation. 
We present Posh, a shell framework that accelerates unmodified 

shell workflows over networked storage by offloading computation to proxy 
servers closer to the data. Posh provides speedups ranging from 1.6× to 15× 
compared to bash over NFS for a wide range of applications.

The UNIX shell is a linchpin in computing systems and workflows. Developers use shell tools 
not only for data processing with core utilities such as sort, head, cat, and grep, but also for 
programs such as Git, ImageMagick, and FFmpeg. The UNIX shell was designed in a time 
dominated by local and then LAN storage when file access was limited by disk access times, 
so networked storage was an acceptable tradeoff. Today, solid-state disks have reduced 
access times by orders of magnitudes, while networked attached storage remains popular.

Running I/O-intensive shell pipelines over networked storage incurs high overheads. Con-
sider generating a tar archive on NFS. The tar utility copies the source files and adds a small 
amount of metadata: the server reads blocks and sends them over a network to a client, which 
shifts their offsets and sends them back. NFS mitigates this problem by offering compound 
operations and server-side support for primitive commands such as cp, but even something 
as simple as tar requires large network transfers.
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Figure 1: Users can type in unmodified shell workflows to Posh’s shell prompt. Posh will transparently 
schedule and execute individual commands on remote proxy servers closer to the remote data but ensure 
the entire workflow retains local execution semantics.
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The underlying performance problem of using the shell with remote data is locality: because 
the shell executes locally, it must move large amounts of data to and from remote servers. 
Data movement is usually the most expensive (time and energy) part of a computation, and 
shell workloads are no exception. Near-data processing [1] is not a new paradigm: systems 
such as Spark [2], Active-Disks [3], and stored procedures in databases all move computation 
closer to the data. However, these systems require applications to use their APIs: they can 
supplement but not replace shell pipelines. 

To address the shell performance problem of data locality, this article presents Posh, the 
“Process Off load Shell,” a system that off loads portions of unmodified shell workf lows to 
proxy servers closer to the data. A proxy server can run on the actual remote file server 
storing the data, or on a different node that is much closer to the data (e.g., within the same 
datacenter) than the client. Posh identifies parts of shell pipelines that can be safely offloaded 
to a proxy server and selects which candidates run on a proxy in order to minimize data move-
ment. It then distributes computation across an underlying runtime while maintaining the 
exact output semantics expected by a local program. Figure 1 shows running a workflow via 
Posh. The user enters the unmodified workflow at the shell prompt and the output appears at 
the client’s shell as normal, but Posh offloads some of the commands.

Posh is available at https://github.com/deeptir18/posh. This article will cover examples of 
shell workflows where Posh can be useful, a brief overview of the core ideas behind Posh, and 
how to get started with the system. For a detailed discussion of the research ideas behind 
Posh, we refer the reader to our USENIX ATC ’20 paper [4].

Examples of Posh
Posh is useful for shell workflows that are I/O bound, have smaller output than input size, are 
metadata heavy (make many file-system stat() requests), or are parallelizable. In this sec-
tion, we will discuss examples of shell workflows that incur large overheads over networked 
storage and show that Posh accelerates them to achieve near-local execution time. Figures 
2–4 illustrate the execution time of running each of these applications with an NFS mount 
configured with either sync and async, and with Posh, over two network settings: one where 
the client is in the same GCP region as the storage server (“cloud”) and one where the client is 
in a university network outside the datacenter (“university”). Posh can offload computation 
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Figures 2 and 3: End-to-end latency of Posh on two applications, compared to NFS sync, NFS async, and 
local execution time for two networks, one where the client is in a university network and one where the 
client is in the same GCP region as the storage server. The Posh proxy runs directly on the NFS server. Posh 
provides between 1.6–12.7× speedups in the university-to-cloud network compared to NFS.
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to a proxy server directly running at the NFS servers. Figures 
3 and 4 additionally include a baseline that demonstrates local 
execution time, where the data is stored on a local SSD. Com-
pared to bash over NFS, Posh sees a 1.6–12.7× speedup in the 
execution time of these applications.

For each of these applications, the shell workflow (the bash script) 
itself is completely unmodified; the workload is just run within a 
Posh shell environment. Posh can accelerate these workflows 
because the shell knows metadata about the commonly used 
shell commands within these workflows, which we will discuss 
in the next section. We describe each workflow in turn.

Distributed Log Analysis (Figure 2)
This application is based on a workflow where system adminis-
trators run analysis on 80 GB of input logs split across five differ-
ent storage servers, to search for an IP address within these logs. 
The workflow runs cat over all of the files and filters for a par-
ticular IP with grep and then writes the final results, only about 
0.8 KB of data, back to a file stored locally at the client. Posh 
splits the computation across the five machines and aggregates 
the output in the correct order. By offloading and parallelizing, 
Posh improves the runtime by 12.7× in the university-to-cloud 
setting and by 2× in the cloud-to-cloud setting.

Ray-Tracing Log Analysis (Figure 3)
This workflow analyzes the logs of a massively distributed 
research ray-tracing (computer graphics) system [5] to track a 
ray (a simulated ray of light) through the workers it traversed. 

The analysis first cleans and aggregates each worker’s log, 6 GB 
in total, into one 4 GB file. It then runs sed to search for the path 
of a single ray (e.g., a straggler) across all the workers and stores 
the output on a file at the client:

cat logs/1.INFO | grep "\[RAY\]" | head -n1 | cut -c 7- > \
   logs/rays.csv
cat logs/*.INFO | grep "\[RAY\]" | grep -v pathID | \
   cut -c 7- >> logs/rays.csv
cat logs/rays.csv | sed -n '/^590432,/p' > local/output.log

The output of sed is much smaller than the 10 GB of data pro-
cessed. This application is a best-case workload for Posh: it is I/O 
bound and can be parallelized, and the output is a tiny fraction 
of the data it reads. Posh achieves an 8× improvement on the 
university-to-cloud network and no improvement on the cloud-
to-cloud network: Posh offloads all the computation and only 
needs to stream the output of sed back to the client. However, 
the data movement overhead only matters in the university-to-
cloud setting, where the network connection is slower.

Git Workflow (Figure 4)
This application imitates a developer’s git workflow over the 
Chromium repository. After rolling back the repository by 20 
commits and saving each commit’s patch, the workload suc-
cessively applies each patch and runs three git commands: git 
status, git add and git commit -m. Figure 4 shows the latency 
of each command for each of the 20 commits. These commands 
are extremely metadata-heavy: commands like status and add 
check the status of every file in the repository to see if it has been 

Figure 4: Average latency of 20 git status, git add, and git commit commands run on Chromium repo, of Posh compared to NFS and local execution, 
for a client in the same cloud datacenter as the storage server. Posh provides up to 10–15× speedups by preventing round trips for file system metadata calls.
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modified. When run over a networked file system, this incurs 
many round trips. In the cloud-to-cloud setting, this causes Posh 
to achieve 10–15× improvement over NFS. Running git status 
took up to two hours in the university-to-cloud setting, so we 
omitted this network for this application.

To enable Posh’s acceleration of a shell workload, the user must 
provide metadata about the individual shell commands the work-
flow uses. This metadata, called annotations, allows Posh to 
determine which files these commands access, so it can further 
schedule the workflow across the underlying runtime. The next 
section will discuss annotations in more detail.

Transparently Offloading Shell Computation: 
Annotations
Annotations summarize information to Posh about individual 
shell commands, such as tar, cat, or grep. Posh’s key insight is 
that many shell workflows only read and write to files specified 
in their command-line invocation, so Posh can deduce which 
files a workflow accesses by understanding which arguments 
correspond to files. Annotations contain a list of possible argu-
ments and whether they correspond to files, so Posh can under-
stand which files an arbitrary invocation of a command would 
access. Additionally, annotations contain information relevant  
to scheduling the workflow.

Consider a simple pipeline: 

cat A B C D | grep "foo" | tee local_file.txt

Posh could try to offload any of the three commands: cat, grep, 
or tee. Posh must understand which files (if any) each command 
accesses and where these files live, so Posh must determine 
which arguments to the three commands represent file paths. 

However, outside of the program, all of these arguments are 
seen as generic strings. For example, consider the following four 
commands:

cat A B C D | grep "foo"
tar -cvf output.tar.gz input/
tar -xvf input.tar.gz
git status

The cat command takes in four input files, while the argument to 
grep is a string. The second command, tar -cvf, takes an output 
file argument preceded by -f, followed by an input file argument 
not preceded by a short option. The third command, also tar, 
takes an input file argument preceded by -f and implicitly takes 
its output argument as the current directory. Finally, git also 
implicitly relies on the current directory as a dependency.

Secondly, in order to produce an execution schedule that reduces 
data movement, Posh must understand the relationship between 
the inputs and outputs of a command. In the cat | grep example, 
if the argument to cat is a remote file, to minimize data move-
ment, Posh can offload both cat and grep since grep filters its 
input. Finally, for applications like the distributed log analysis 
application discussed previously, where the input files for a 
command live on different mounts, Posh needs to know how to 
safely parallelize the command in order to be able to offload it 
at all. However, parallelization is not safe for all commands: wc, 
for example, “reduces” the input, as opposed to commands like 
cat or grep, which merely map over the input. Posh’s annotations 
summarize file dependencies, data movement semantics, and 
parallelization semantics for commonly used commands.

Figure 5 shows examples of annotations, for cat, grep, and tar. 
Most of the information in the annotations summarize the 
semantics for the arguments for each command, or  information 

Figure 5: Example annotations for cat, grep, and tar. Most of the information in the annotations tells Posh information about the possible arguments for 
each command and their syntax. They contain type assignments for each argument, which tell Posh how the argument will be used as well as other informa-
tion used for scheduling and automatic parallelization. tar requires more than one annotation because tar -x and tar -c invocations have conflicting 
type semantics: -f is an input_file in one case and an output_file in the other.

http://output.tar.gz
http://input.tar.gz
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that is summarized in the documentation pages for these com-
mands. Moreover, they contain a type assignment for each 
argument: input_file, output_file, or string. For cat, the 
splittable keyword indicates to Posh that cat can be split in 
a data parallel way across its arguments, as long as the outputs 
are stitched together in the correct order. For grep, the split-
table_across_input keyword indicates that grep can be paral-
lelized across its standard input. As mentioned before, the -f 
argument indicates an input_file for a tar -x invocation but an 
output_file for a tar -c invocation. To resolve this, Posh allows 
multiple annotations per command, per type of invocation, and 
tries each until it finds an annotation that matches the current 
command invocation.

We envision that developers can share annotations for popular 
commands, so users do not necessarily need to write their own 
annotations. These annotations are inspired by recent proposals 
to annotate library function calls for automatic pipelining and 
parallelization [6]. Please see our research paper [4] for a more 
detailed overview of the Posh annotation interface.

Distributed Scheduling and Execution
This section briefly explains how Posh uses the annotations to 
schedule and execute shell workflows, summarized in Figure 6. 
The Posh parser turns each pipeline (each line of a shell work-
flow, potentially consisting of several commands combined by 
pipes and redirects) into a directed acyclic graph (DAG). This 
graph represents the input-output relationship between com-
mands, the standard I/O streams (stdin, stdout, and stderr), and 
redirection targets. Posh then parses each individual command 
and its arguments using the corresponding annotation and 
completes the DAG by including additional input and output 
dependencies of the pipeline. The parser finally runs a greedy 
scheduling algorithm on the DAG and assigns an execution 
location to each command in the pipeline. In order to do this, the 
parser requires extra configuration information that specifies a 
mapping between each mounted client directory and the address 
for a machine running a proxy server for the corresponding 
directory. Our research paper [4] contains more details on the 
scheduling algorithm.

Getting Started with Posh
This section details the steps to running and using Posh.

0. Running the Posh servers 
The administrator who controls the proxy server must run the 
Posh server binary, which allows it to receive requests to offload 
computation on behalf of a single remote file-system mount. 
The proxy server just needs read and write access to this folder; 
it need not run at the storage server itself. Invoking the server, 
shown below, requires specifying the absolute path for the mount 
being accessed and a temporary directory for writing the output 
of intermediate computation.

admin@~$ $POSH_SRC/target/release/server --folder /mnt/logs \
  --tmpfile /tmp/posh

1. Posh client configuration 
The client needs to provide a file that contains annotations for 
any commands the client wants to accelerate. It must also have 
a list of proxy servers associated with client file-system mounts. 
The configuration file, shown below, maps IP addresses to the 
corresponding mount, written as an absolute path.

mounts:
      "255.255.255.0": "/home/user/remote_mount1"
      "255.255.255.1": "/home/user/remote_mount2"

2. Running the client shell 
Posh provides two client binaries: one that provides a shell prompt 
and one that runs scripts by running each line in the script. To run 
the binary that provides a shell prompt, the client can run:

deeptir@~$ $POSH_SRC/target/release/shell-client \
  --annotations_file <annotations_file> --mount_file \
  <config_file>
posh>>>$ <ENTER COMMANDS>

Figure 6: In Posh’s main workflow, a shell command is passed to the 
parser, which uses the annotations to generate and schedule a DAG repre-
sentation of the command. The DAG includes which machine—A, B, or C 
(client) here—to run each command on. The execution engine finally runs 
the resulting DAG.
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3. Running applications 
After running the shell, users can run unmodified shell work-
flows as normal. For example, the user could type in the fol-
lowing workflow from the distributed log analysis example 
discussed previously:

posh>>> $ cat mount0/logs/*.csv mount1/logs/*.csv \
   mount2/logs/*.csv mount3/logs/*.csv mount4/logs/*.csv \
   | grep '128.151.150' > $LOCAL_FILE

Conclusion and Next Steps
We have described Posh, a framework that transparently distrib-
utes I/O-heavy shell computation that operates on remote data, 
by pushing computation to run closer to the data. Posh uses 
annotations, a model of shell programs, to automatically infer 
what files an arbitrary command line will read and write to in 
order to schedule computation across proxy servers. Posh and its 
annotations provide a model of commands that enable rewir-
ing their dependencies to direct output over the network rather 
than to a UNIX pipe while retaining local execution semantics. 
While Posh currently uses this model to transparently schedule 
and offload commands across proxy servers to push code closer 
to the data, it could in the future provide more optimal schedul-
ing or even failure recovery. Consider programs that access files 
from two different locations that cannot be parallelized, such as 
comm. Instead of running them at the client, Posh could run them 
on one of the servers but stream or transfer the necessary inputs 
beforehand. To provide failure recovery semantics, Posh could 
rewrite workflows to write to temporary locations and only write 
to the final location when the entire operation is successful. For 
more information on this project, including our research paper, 
the code, and quick-start guides, please visit our GitHub page, 
https://github.com/deeptir18/posh.
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Interview with Margo Seltzer
R I K  F A R R O W

I first noticed Margo Seltzer because she had brought her baby to a  USENIX 
conference in the late ’90s. That was unusual, as I had seen few parents 
with their children at conferences. Later on, I got to know Margo  better 

when she was on the USENIX Board and I was routinely attending board 
meetings.

What prompted me to ask someone as busy as Margo for an interview was her keynote 
address at the 2020 USENIX Annual Technical Conference entitled “The Fine Line between 
Bold and Fringe Lunatic” [1]. I recommend watching Margo’s talk, but the gist is simply this: 
you are likely to have a more interesting career if you are willing to take risks. That’s not what 
Margo actually says, just my own interpretation. She wants researchers to broaden the sub-
ject areas they keep abreast of as well as to consider researching at the frontier of knowledge.

Rik Farrow: You became a faculty member at Harvard, working in CS. Was that at all unusual?

Margo Seltzer: I think what was unusual was that I turned down a position at MIT (arguably 
ranked #1) for Harvard (pretty much unranked except in theory where we had Turing award 
winners).

RF: I don’t understand why ranking is important. Could you explain what the ranking means 
to someone taking an academic position for those of us who won’t have that experience?

MS: Ranking’s importance varies by who you ask.

There has been a lot of data analysis about the network formed by studying the migration of 
PhD students to faculty positions. New faculty typically have degrees from institutions from 
rankings higher than the ranking of the school in which they are teaching. So if you want to 
teach at a top N school; you’d better get a degree from a top (N-1) school. And if you want your 
students to get jobs at a top N school, then you want to be teaching at a top-1 school (or at least 
one of the “big 5”).

Unfortunately, rankings are a fuzzy metric—I advise undergrads going to grad school to place 
far more emphasis on the person/group with whom they will work than the ranking of the 
school, but students don’t always listen. And students from undergraduate institutions without 
a lot of advising don’t have much to go on other than the rankings: they don’t know the faculty.

So the ranking of the university at which you take a faculty position is directly correlated with 
the quality of students you get and the likelihood of placing them at other top institutions.

Thus—turning down MIT (arguably #1) for Harvard (top N > 20 and probably closer to 30–40 
then) was shocking to most. I was definitely called an idiot by some.

Harvard, in particular, had a dismal reputation for granting tenure. There had been a famous 
case in 1983 where a person widely regarded as a superstar in his community was denied 
tenure by Harvard. So when I got there (1993), Harvard had not tenured anyone in computer 
science since 1981. My colleague, Stuart Shieber, broke that curse by getting tenure in 1996. 
Then Mike Smith and I both got tenure in 2000. Since then, Harvard has done very well by 
hiring strong people and making sure they get tenure.
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RF: You begin your talk [1] by demonstrating how computer sci-
ence has been partitioned over the years, beginning with the split 
between hardware and software, then software splitting into 
operating systems and programming languages, and so on. You 
encourage people to cross the many boundaries that exist today, 
and I do sometimes see that happening, for example, with file 
systems using key-value stores for metadata. Do you have other 
examples?

MS: The crossover between file systems and databases has grown 
a fair bit over the past 30 years, but it takes a lot of pushing:

Journaling (logging) was developed in the database commu-
nity to provide transaction support in the ’70s. It wasn’t fully 
embraced by the file-system community until the ’90s or later.  
At this point, it’s fairly standard.

Transactions are another concept with a history in databases—
we now see transactions in hardware (i.e., transactional mem-
ory) and every once in a while in file systems.

Program analysis (e.g., static analysis, symbolic execution) grew 
out of the programming languages community, but it has been 
and is being adopted in systems for bug finding.

The emergence of persistent memory (e.g., Intel Optane) brings 
together work from systems (virtual memory and single level 
store), databases (persistent objects), and file systems (persis-
tent files).

So these things happen, but a lot of the time the researchers 
themselves don’t think to look at work of other communities and 
will re-invent the wheel instead of borrowing it and making it 
work better.

RF: I agree that not looking at what has been done in other com-
munities really slows down research and innovation in CS. But 
isn’t there an issue with the amount of research, just in the small 
niches that we have today, being too overwhelming for most 
graduate students to cover? 

MS: It is impossible to keep up with all the work being done in a 
single field, so how can one hope to know what’s happening in 
other fields? In machine learning alone, something like 100 new 
papers show up on arXiv every day. So what is an overworked 
graduate student to do?

It’s not necessary to read every paper published to know what’s 
happening in a field. The key is really an openness to what’s 
happening in other areas, a curiosity, and a willingness to do 
the hard work of trying to understand work from a different 
community when it’s appropriate. One of the first things I do 
is encourage new graduate students to subscribe to The Morn-
ing Paper—https://blog.acolyer.org/. My understanding is that 
Adrian Colyer, the author, is not really a computer scientist, but 
every week he sits down and reads about three computer science 

papers and writes up great blog posts about them. And he moves 
from area to area, reading whatever is recent or what is particu-
larly interesting to him. I love his posts—I have a mailbox full of 
ones I’ve not yet had time to read.

Just reading Adrian’s blog posts will give a student a broad intro-
duction to a lot of areas. But even that isn’t enough.

You have to be willing to talk to other people—not just the people 
in your lab but people in other labs. Go to weekly grad student 
social events and really try to understand what people are work-
ing on. Here is the secret: you are going to have to be willing to 
ask naive questions. I call them stupid questions, but they aren’t 
really stupid, they are mostly just the questions that someone 
unfamiliar with an area will ask. And even more important (and 
possibly scarier), you have to be willing to say, “Um, I didn’t really 
understand that, can we go even more slowly?” I collaborate with 
many folks who are way more mathematically sophisticated 
than I am, and I tend to ask (a lot), “Could you explain that to 
me in small words?” To be honest, it took me a long time to get 
over the knee-jerk reaction of just nodding and pretending that I 
understood what was going on when I was lost, but I learn a ton 
more when I’m willing to take that risk. And who better to take 
that risk with than your peers? And you never know, you might 
find an area that intrigues you, a topic of mutual interest, or just 
something new and interesting.

The key is not to be an expert in everything but to have a vague 
sense of what people are working on in other fields, so that when 
the opportunity arises, you can draw ideas from disparate areas 
and know what the areas are and perhaps even with whom to con-
sult (that fellow student you were chatting with just the other day).

Super secret #2: being able to talk to people in other areas will 
be your single greatest superpower on the interview trail, where 
you’re expected to be able to have intelligent conversations with 
people from different areas.

Fun story: In my interview that wasn’t really an interview (or 
perhaps it was the non-interview that really was an interview) 
at Harvard, I was taken to lunch by two theoreticians—one Tur-
ing Award winner and one future Turing Award winner. They 
peppered me with questions to the point that I was still work-
ing on my salad when they got to dessert! But clearly something 
worked—shortly after I arrived, one of them dropped by my office 
to ask for my “expertise” on a topic…I was floored. What on earth 
did I have to offer a world-renowned theoretician? Well, he had 
some interesting ideas about applying his latest work to storage, 
and well, he figured that perhaps there might be people who knew 
more about storage than he did. It was a good lesson for me—no 
one is above asking questions, and no one should limit them-
selves to a small box, even if they are the absolute best in that box!
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RF: Provenance is the first of the fringe lunatic ideas you cover in 
your USENIX ATC ’20 keynote. The quest for provenance began 
early in this century, largely as a way to be able to recreate data 
based on its provenance: what had happened to that data since 
it was created. I recall thinking at the time that this seemed like 
a reasonable thing to do, but later wondered if having to maintain 
orders of magnitude more data as provenance really made sense. 
The story you told about provenance includes different groups 
taking different approaches, along with attempts to unify some 
elements. Were you surprised at where researchers had taken the 
original idea after almost 15 years had passed?

MS: Yes and no.

Around 2014, I “gave up” on provenance—I felt that the com-
munity was focused so much on provenance collection that they 
were not giving ample thought to motivating users to collect 
provenance. I was frustrated and basically went in other direc-
tions—then, almost immediately, I got two provenance propos-
als funded with collaborators. In one, we focused on use from 
the beginning—in the other, I forgot my own lesson for several 
years and only rediscovered it a few years later, fortunately with 
enough time to change course.

That said, all those are in the higher levels of the stack.

I am actually thrilled that the systems community has embraced 
provenance and is thinking hard about how to use it: security, 
information flow, reproducibility, etc. I always felt that system 
level provenance was the glue that could hold lots of things 
together, and these folks are making it work.

So am I surprised: 1) No—I don’t think any of the things people 
are doing would have surprised me in 2006. 2) Yes—it seemed 
like the field wasn’t going anywhere, but it still is!

RF: The other example in your keynote had to do with program 
synthesis, although to me it sounded much more ambitious than 
merely being able to generate a program. The DARPA BRASS 
[Building Resource Adaptive Software Systems] program 
was really about extracting intent from systems so that when 
circumstances changed, the system could adapt to the change 
and still succeed in accomplishing the intent of the system. You 
were among the “fringe lunatics” (your words) who took that to 
mean making the operating system adapt to new hardware by 
synthesizing operating systems from machine descriptions. That 
sounds like a ridiculously tall feat to accomplish, but a very good 
example for your theme. Could you tell us how that worked out?

MS: We didn’t synthesize a complete system, but we’ve synthesized 
several parts of the Barrelfish operating system [2] and nearly an 
entire port of our OS/161 educational operating system [3]—and 
we’ve done this for about four different processors!
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A s an SRE, you’re responsible for determining the initial resource 
requirements of your service and ensuring your service behaves 
reasonably even in the face of unexpected demand. Capacity manage-

ment is the process of ensuring you have the appropriate amount of resources 
for your service to be scalable, efficient, and reliable. User-facing and com-
pany internal services must accommodate both expected and unexpected 
growth. We define utilization as the percentage of a resource that is being 
used. It’s difficult to determine initial resource utilization and predict future 
needs. We present ways to estimate utilization and identify blind spots, and 
we discuss the benefits of building in redundancy to avoid failures. You’ll 
use this information to design your architecture such that increasing the 
resource allocation for each component of the service effectively increases 
the capacity of the entire service linearly. 

Principles of Capacity Management
A service, in the context of this article, is defined as the set of all of the binaries (service stack) 
that provides a set of functions.

Successful capacity management entails allocating resources from two complex points of 
view: resource provisioning, which provides the initial capacity to run the service now, and 
capacity planning, which safeguards the reliability of the service into the future.

At its core, capacity management must follow three basic principles in order to keep a service 
scalable, usable, and manageable:

 3 Services must use their resources efficiently. Large services that require a considerable 
amount of resources are expensive to deploy and maintain. 
 3 Services must run reliably. Limiting resource capacity to improve service efficiency can 
put the service at risk of malfunctioning and suffering user-facing outages. There is a tradeoff 
between service efficiency and reliability.
 3 Service growth must be anticipated. Adding resources to a service can take a long time 
and has real world limitations around deployment. This may involve buying and deploying 
new equipment or building new datacenters. It may also require increasing capacity for other 
software systems and infrastructure that are dependencies of the service.

Complexities of Capacity Management 
A large service is a complex living organism whose behavior is unexpected at times. You need 
to consider several areas when making engineering decisions that could potentially alter the 
service’s scope:

Service performance. Understand how different components of the service perform 
under load.

Service failure modes. Consider the known failure modes and how the service behaves 
when subjected to them. Also, consider how the service might behave when subjected to 
unknown failure modes. Be prepared by generating a list of possible bottlenecks and service 
dependencies you may encounter.
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Demand. Determine the expected user count and traffic, where 
the user base is located, and the usage patterns. 

Organic growth. Estimate how demand may grow over time.

Inorganic growth. Keep in mind the long-term resource impact 
of adding new features or of the service becoming more success-
ful than expected.  

Scaling. Understand how the service scales when increasing 
resource allocations.

Market analysis. Estimate how market changes affect your 
ability to acquire additional resources. Research new technolo-
gies that can improve the performance, reliability, or efficiency of 
the service and the cost of implementing them. Investigate how 
quickly you can adopt new technologies, such as replacing HDDs 
with SSDs.

The goal of capacity management is controlling uncertainty. In 
the midst of the unknown, the service must be available now and 
continue to run in the future. A challenging but rewarding and 
delicate balance of tradeoffs is in play: efficiency vs. reliability, 
accuracy vs. complexity, and effort vs. benefit. 

Use data to drive capacity decisions. You’ll still make unavoidable 
mistakes, and you’ll have fires to put out, often in creative ways. 
But the end result is a reliable business-critical service.

Resource provisioning addresses the tactical question, “How do 
I keep the service running right now?” while capacity planning 
addresses the strategic question, “How do I keep the service run-
ning for the foreseeable future?” 

The following sections discuss these topics in detail.

Resource Provisioning
Our discussions focus on a serving system, that is, a service that 
responds to user requests by looking up some data. However, you 
can apply these principles equally to a data storage service, data 
transformation service, and most other things you can do with a 
computer.

Resource provisioning involves figuring out the target  utilization 
of resources a service needs and allocating those resources. Target 
utilization is defined as the highest possible utilization for a spe-
cific resource class that allows the service to function reliably. A 
resource class refers to a specific type of computing asset. CPU, 
RAM, storage, etc. are resource classes.

To provision resources for your service, use demand signals as 
inputs and create the production layout with concrete resource 
allocations as output, as shown in Figure 1. Services often use 
several resource classes.

The Impact of Resource Shortages
A shortage of resources can make the service fail differently, 
depending on the resource class.

When resources become a bottleneck in the service’s  critical 
path, users experience increased latency. In a worst-case sce-
nario, the bottleneck causes requests to backlog, resulting in 
ever-increasing latency and, eventually, the timeout of queued 
requests. Without a mitigation plan in place, the service fails to 
process requests and suffers an outage. The outage continues 
until the incoming traffic drops off, allowing the service to catch 
up, or until the service is restarted. 

Resources that are often in the critical path include:
 3 Processing power
 3 Network
 3 Storage throughput

When resources become a bottleneck in the non-critical path, the 
service suffers delays in some of its non-time critical functions, 
such as maintenance or asynchronous processing. If these tasks 
are delayed long enough, they could impact service performance, 
features, data integrity, and even cause an outage in extreme 
cases.

When a service runs out of storage, writes fail. Even certain 
reads may fail if they are dependent on writes: for example, if the 
service or storage solution stores Paxos state to do consistent 
reads, or if the storage solution keeps track of all accessed data 
and the time it was accessed.

When other resources such as memory or network sockets are 
low, a service may crash, restart, or hang. A service with low 
resources may start to thrash from garbage-collection or misbe-
have in other ways. These failures decrease the service’s capacity 
and can trigger cascading failure scenarios requiring human 
interaction to resolve.

For mitigation strategies, see the Decrease the Impact of Outages 
section below.

Figure 1: Demand signals and resource allocations of a resource provision-
ing solution
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Estimating Utilization
Because of their different nature, resource usage and target utili-
zation are different for every service and for each resource class. 
In order to estimate the target utilization for a specific service, 
each of the following aspects need to be considered.

Peak Usage
A service’s peak usage is simply the highest usage rate over a 
given time period and depends on the nature of the service and 
the user base. The early hours of a business-related service may 
drive the weekday peaks. Social-related services peak late in the 
afternoon, at night, during weekends, or coinciding with social 
events such as concerts, sporting events, etc. When an unex-
pected event happens, usage can drop or soar. A global service’s 
user base is spread across different countries and time zones, 
forming a more complex daily traffic pattern.  

Assuming non-constant load, resource utilization shouldn’t 
surpass 100% of the service’s allocated resources during peak 
traffic. By not using all of its resources, the service has sufficient 
capacity to serve the peak and is not overprovisioned in any 
wasteful way.

Maximum Peak Utilization
Even at peak, it’s a bad idea to run the service at 100%  utilization. 
Some software, languages, or platforms will misbehave or garbage-
collection thrash before CPU use even reaches 100%. A service 
will crash with an out of memory (OOM) error if a component 
reaches 100% memory utilization.

Fine-tuning your monitoring sufficiently to capture the precise 
resource utilization in small enough time frames (microseconds 
or even seconds) is tedious. Thus, it’s difficult to determine the 
resource usage peak for low-latency applications.

Redundancy
Issues with rollouts, hardware, software, or even planned main-
tenance can cause the components of a service to fail or restart. 
This can result in a failure as small as a single binary instance 
crashing or as large as the whole service going offline. 

Redundancy is a system design principle that includes duplicated 
components that are active only when they replace other compo-
nents that failed. The degree of redundancy is denoted by N+x, 
where N is the total number of active components, and x is the 
number of backup components. Thus, N+3 indicates that three 
system components can fail because there are three duplicated 
components to replace them. Meanwhile, the service remains 
completely functional, regardless of the total number of compo-
nents (N).

Redundancy can be applied within regions or across regions. A 
region is an independent failure domain located in a physical site 
different from other regions so that network issues or natural 
disasters do not impact more than one region at the same time.

Redundancy within Regions

Redundancy within a region is fairly trivial to achieve.

Within a region, you want to provide protection against failed 
binaries or physical machines. Typically, you can simply add 
extra instances of the service binaries running per region, with a 
load-balancing solution to redirect traffic if binaries or machines 
are down. The required extent of redundancy is tied to the infra-
structure’s service level agreement (SLA). Specifically, the SLA 
accounts for the total number of machines that can be in a failed 
state simultaneously and the speed in which new instances of 
binaries can be restarted on new machines.

Understand that redundancy within the region won’t protect 
your service at all from failures that take out the whole region 
(power, network, natural disaster, etc.).

Redundancy acRoss Regions

Redundancy across regions is far more complex.

Across regions, you’ll need protection from total region outages. 
By deploying replicas, or full copies of the service stack in several 
regions, you can implement redundancy across regions to accom-
modate your service’s load at peak. Note, each replica must have 
enough capacity to serve all of the expected load when any num-
ber of replicas are down based on your declared redundancy. As 
stated above, regardless of the number of replicas (N), the degree 
of regional redundancy of the service is defined as follows:

 3 N+0: when the service is up and running, but cannot tolerate 
any region going down
 3 N+1: when the service can withstand a single region going down 
 3 N+2: when it can still serve with two regions down
 3 etc.

While some of this redundancy involves capacity, it’s also about 
the service architecture itself. For example, consistent storage 
services often require that a majority of replicas are up and run-
ning to ensure that writes aren’t rolled back.

Provisioning a service for N+2 has a positive effect on reliability: 
maintenance can be planned for an entire region at once, but 
lowers redundancy to N+1 during the maintenance. The service 
can still tolerate an unplanned incident in another region. This 
lowers the redundancy to N+0, but does not cause an outage. Note 
that failing over to another region may have effects on visible 
latency.

With N+0 redundancy and no tolerance for further failure, your 
priority is to mitigate or resolve the unplanned incident as fast as 
possible. One option is to complete or revert the planned mainte-
nance work to bring the service back to N+1. Otherwise, any other 
region suffering an incident could cause a user-facing outage.
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the cost of Redundancy

The more regions a service operates in, the lower the cost of run-
ning any level of redundancy. Consider the service described in 
Figure 2. It needs to run with N+2 redundancy. In the first setup, 
it is running three replicas (N=3), and in the second setup, it is 
running five (N=5). Both configurations have two spare replicas 
(+2) and thus can withstand two replicas failing. 

Next, examine the five-replica setup. Its replicas are smaller in 
size, and even when two replicas fail and both spare replicas are 
in use, there are still three active replicas to share the load. This 
results in the five-replica N+2 setup costing 56.6% of the three-
replica service using the same degree of redundancy. See the 
calculations provided in Figure 2.

homogeneous and heteRogeneous seRvices

It’s easier to implement redundancy for services with homoge-
neously sized replicas than those services with heterogeneously 
sized replicas.

Your service must be provisioned to handle failures in the largest 
region. If regions have different capacities (i.e., heterogeneous), 
the capacities needed to withstand the unavailability of the other 
largest regions are different in each region. The result is that 
your smaller regions require more resources, and your overall 
required resources to serve the same load are higher.

Replicated and distRibuted tRaffic

Provisioning for redundancy also depends on the characteristics 
of the service’s traffic.

Stateless services, such as web servers that handle user requests, 
receive traffic that is distributed among replicas. Requests that 
read from storage services can also be distributed across replicas 

in different regions. Provisioning these for N+1 or N+2 is trivial 
and follows the logic from the previous example.

Services that handle requests replicated across regions, such as 
writes, behave differently. Each write to an entity needs to be 
eventually written to every single replica to keep your service’s 
data consistent across replicas. 

When a replica becomes unavailable, replicated write requests 
do not cause additional load to the replicas that remain up. 
However, there is a cost incurred when the unavailable replica 
comes back online. This replica needs to catch up with outstand-
ing writes that were missed during its downtime. This operation 
increases its load. The replicas that remain running provide the 
data needed to sync the recovering replica, increasing the load on 
all replicas during recovery. Ideally, this is capped to avoid hurt-
ing low-latency traffic across the entire set of replicas.

Each service and each component can receive a different pro-
portion of replicated and distributed traffic, which need to be 
factored in when resource provisioning.

Latency-Insensitive Processes
A service typically has latency-insensitive processes such 
as batch jobs, asynchronous requests, maintenance, and 
experiments.

However, these processes put additional strain on the service 
while it handles the production load, which is latency-sensitive. 
The service thus requires additional resources to accommodate a 
higher peak, increasing its cost.

Figure 2: Example comparison of the cost of resource provisioning a service with three and five replicas

Expected load: 100 requests per second (rps) 

Running N+2 on 3 replicas 
2 replicas can go down (N+2) 
3 - 2 = 1 replicas stay up to serve 100 rps 
Each replica is provisioned to serve 100 rps/ 1 replica = 100 rps/replica 
Total capacity provisioned for is 100 rps/replica x 3 replicas = 300 rps 
At level flight, the maximum utilization for N+2 is 100 rps / 300 rps = 33% 

Running N+2 on 5 replicas 
2 replicas can go down (N+2) 
5 - 2 = 3 replicas stay up to serve 100 rps 
Each replica is provisioned to serve 100 rps / 3 replicas = 34 rps/replica  
Total capacity provisioned for is 34 rps/replica x 5 replicas = 170 rps 
At level flight, the maximum utilization for N+2 is 100 rps / 170 rps = 59%
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You can minimize the extra cost of latency-insensitive requests 
by assigning them lower priorities or by scheduling them during 
low-load periods in order to decrease the overall peak. Note, 
both of these solutions need to be properly tested and carefully 
deployed to prevent service interruptions.

Additional Resources for the Unknown
The last aspect to consider is the unknown factor. There are many 
good reasons to throw in additional resources when provisioning 
a service: for example, the performance regression of an under-
lying library supported by another team or when implementing a 
team-external requirement such as encrypting all RPCs.

Spare capacity can keep the service performing as expected, in 
regards to latency and errors, if anything goes wrong. However, 
keep in mind that this decision can be expensive, so make sure 
that the tradeoff in reliability, predictability, and scaling is worth 
the cost.

Capacity Planning
While resource provisioning refers to the process of determining 
the correct amount of resources to keep your service running 
right now, capacity planning entails forecasting demand to guar-
antee resource supply in the future. 

Overview of Capacity Planning
Like resource provisioning, capacity planning is an attempt to 
determine the amount of each computing asset (resource class) 
you need to sustain the service. However, it involves making 
those determinations at multiple points in time: for example, 
your resource needs in three months, six months, or a year. 

For an existing service, capacity planning uses historic demand 
to forecast growth to build on top of resource provisioning for 
your service’s maximum peak utilization, redundancy require-
ments, latency-insensitive processes, and the unknown factor. 
Generally, you’ll want to add to this forecast any planned new 
consumers of your resources, including new services, marketing 
campaigns, new features, etc.  

You’ll need different amounts of each individual resource class 
for each component in your service. Take RAM, for example. 
A web server may need a lot of RAM, whereas a proxy server 
may need very little. To determine the various values of a single 
resource when you are planning for future capacity, take into 
account the following:

 3 The number of different components (database, proxy, applica-
tion) in your service
 3 The number of instances of each component (1 database,  
2 proxy, 2 application)
 3 The regions your service runs in (i.e., across-region N+1 or N+2)
 3 The number of data points you need for your forecast 

While this is a simple example of a complex formula, a single 
resource class like RAM may require you to think in terms of the 
following:

(# of different components) × (# of instances of each compo-
nent) × (# of regions) × (# of datapoints) × (other contributing 
factors)

As you can see, when you consider all resource classes for all 
server types in all regions and add in redundancy, the number of 
capacity values that you must determine grows exponentially.

Forecasting Resources
Capacity planning is an extremely complex process as there 
are myriad factors at play, and each can change independently. 
Expanding on the high level overview above, consider the follow-
ing when forecasting:

Resource Classes by Component
In addition to determining the total number of components, you 
must also consider the various resource classes that each one 
utilizes: RAM, CPU, storage, network, etc. One component may 
use one set of resource classes, and others may have a very dif-
ferent set. If your service consists of many components, the set of 
resource classes that you must track quickly increases.

Multiple Regions
If you are required to run in many regions around the world, you 
can imagine how forecasting a single resource class such as CPU 
for various machines (web, database server, application, proxy, 
etc.) is made even more difficult. Add in all of the other resources 
classes for all machines, redundancy across all regions over a 
given period of time (six months or a year from now) to start your 
planning.

Service Demand
Demand depends on the success and adoption rate of the new 
service and is only known after the service is launched. You 
must update forecasts over time and correct long-term predic-
tions. Understand you are preparing for a sudden unplanned 
load increase that can cause an outage if ignored.

Other unexpected events like natural disasters, network 
interrupts, or power outages can drastically alter your traffic 
patterns. Even planned situations such as social events or the 
beginning or end of holidays can affect your service in unex-
pected ways. It’s challenging to extrapolate the changing impact 
of such events year to year as new features are launched or the 
user base varies.  

Changes in user distribution in different time zones also have 
service implications. Traffic may appear more or less spread out 
across the day, unexpectedly raising and lowering peak demand.
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Growth
Growth depends on the success of your service. It may take 
some time (and marketing campaigns) for users to learn about 
your service and take interest, and the interest may grow slowly 
or sharply over time. Other services on the Internet can have a 
dependency on yours, and their success or failure can directly 
affect your service. A successful external service can increase 
traffic to you, and vice versa. 

There may be social, economic, political, or other factors that 
may increase or decrease your user traffic. You have to determine 
your growth rate and take this into account for your capacity 
planning sessions.  

Forecasting Example
To illustrate the multitude of potential separate resource class 
values you, as the service owner, must try to predict correctly, 
let’s use a very simple example:

Resource Classes for a Two-Component Service
Suppose you have a small service such as a social media applica-
tion. It consists of two machines, a web server and a database. 
The web server uses CPU and RAM, and the database uses CPU, 
RAM, HDD storage, HDD throughput, and SSD storage. This is a 
total of six unique resource class values to define. Note, this is far 
short of a complete set of values in a real-world application.

By having three replicas, you now have 18 values to define. If you 
are forecasting quarterly for 12 months, that number jumps to 72 
(four quarters per year × 18).

Trends That Impact Your Service
You’ve learned that your social media service is affected by 
seasonal trends. You have an increase in traffic at the beginning 
of the holiday season (Nov–Dec), another during spring break, 
and one more at the start of summer. Your forecasting cannot 
be just a linear increase in resources, you must account for the 
spikes during peak times of the year. 

You may also experience similar trends with peaks during 
the month for batch-processing tasks such as data cleanup or 
database compaction. The load may be different each month, or 
even each week, further complicating your ability to estimate 
resource utilization accurately. 

Best Practices
We present several best practices for capacity management to 
help you anticipate common problems and pitfalls.

Load Testing
Run a small replica of the service at target utilization and above, 
and exercise failover, cache failures, rollouts, etc. Assess how 
the service reacts to and recovers from overload, and  empirically 

validate that the resource allocation is adequate to serve a 
defined load. Be careful when extrapolating estimates from your 
data. If a binary instance allocated with one CPU can serve 100 
requests per second, it’s generally OK to assume that two binary 
instances, each with one CPU, can serve 200 requests per second 
in total. It is not OK to assume that a binary instance with two 
CPUs allocated can serve 200 requests per second. There may be 
bottlenecks other than processing power.  

Holistically Evaluate the Capacity 
While you should add extra capacity for the unknown, avoid 
stacking too many resources and inadvertently overprovision-
ing the service. However, provide enough spare resources so the 
service can withstand issues. This can buy some extra time to 
secure resources in case the service is more successful than was 
expected and was provisioned for.

Decrease the Impact of Outages
It’s possible to prepare the service so that outages have a lower 
impact when it runs out of resources. Suggested preventative 
measures include:

 3 Graceful degradation. The service disables some non-critical 
features to relieve resource usage when it’s overwhelmed.
 3 Denial-of-Service (DoS) attack protection. Provided in case 
the increased traffic comes from an ill-intentioned party.
 3 Effective timeouts. Requests eventually time out, and the 
service drops the requests without wasting further resources on 
them.
 3 Load shedding. The service quickly rejects requests when it’s 
overwhelmed, allowing a routing layer above to retry the re-
quests or make them fail fast. This avoids the issues of a service 
falling behind and wasting efforts on requests that are going to 
time out anyway.

Quota Management and Throttling
Deploying a quota system helps limit the throughput between 
your service and the back end, providing isolation from other ser-
vices using that same back end. Whenever a service sends more 
requests than expected and reaches the quota limit, the back end 
throttles the services rather than overloading itself and impact-
ing other services using that back end.

Monitoring 
The relevant metrics gathered from monitoring your service 
provide data to guide resource provisioning and capacity plan-
ning decisions. Using our sample service above as a model, the 
following are very useful:

Load metrics
 3 Incoming requests per second
 3 Latency-insensitive load
 3 Number of active users
 3 Number of total users
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Resource metrics
 3 Resource allocations
 3 Actual resource usage
 3 Quota usage
 3 How many requests are throttled 

Performance metrics
 3 Latency 
 3 Errors 

High-level health metrics (that can help filter out other tainted 
metrics data)
 3 When the service was impacted by an outage
 3 When the service was undergoing maintenance

Alerting 
Use alerts for resource provisioning and capacity planning 
to prevent outages. Some examples of useful alerts are those 
that trigger when the service is not at the intended redundancy 
level and is therefore underprovisioned, alerts that indicate the 
service lacks future resources according to forecasts, current 
performance issues, etc.

Resource Pooling 
Pooling is the grouping of resources so that several services 
share them rather than providing separate allocations per ser-
vice. Pooling is often used to decrease planning complexity and 
to reduce resource fragmentation, hence, improving the effi-
ciency of a service. When you implement this strategy, planning 
for large services is still detailed and precise. However, small 
services use a pool of resources that is provisioned for as a single 
entity, approximately and conservatively. This decreases the 
effort on capacity planning at the expense of isolation.

General SRE Best Practices
Follow the basic SRE principles that you would for any service. 
For example, store the capacity state as a configuration in a ver-
sion control system and require peer reviews for any changes. 
Automate enforcement, roll out all changes gradually, constantly 
monitor your service, and be ready to roll back if needed.

In the event of a failure or other issue, exercise blameless post-
mortems to honestly learn from the mistakes, and commit to 
improving the system to avoid repeating them. 

Evaluating a Service for Capacity
When evaluating capacity for a new or existing service, we 
recommend determining its resource requirements by following 
these steps:

1. Estimate the resources needed to serve the expected load. Use 
the template in Table 1 and fill it in with the expected service 
demand for the different resource classes.

2. Calculate and factor in the target utilization of the different 
components of the service. You may need to perform load test-
ing to assess:

 3 Peak usage
 3 Maximum peak utilization
 3 Redundancy
 3 Latency-insensitive processes
 3 Spare resources for the unknowns 

3. Consider aspects such as:
 3 Priority
 3 Region
 3 Service components
 3 Specific points in time and time into the future (monthly, 
quarterly, for six months, a year, etc.)

4. Perform forecasting, considering whether you need to plan for 
capacity per:

 3 Priority
 3 Region
 3 Service components
 3 Number of points in time per year

Hardware Specs

Processors CPU type and count (cores)

Graphics Processing Units GPU type and count

Storage HDD (hard drives) and SSD 
(solid state disk):

• Amount of storage (TB)
• Bandwidth
• IOPS

Network Intra datacenter, inter datacenter, 
ISP access:

• Latencies
• Bandwidth

Back Ends Services and capacity needed

Other AI accelerators, other special 
hardware

Table 1: Resource assessment template
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5. Continue to learn about capacity management: 
 3 Watch the video  “Complexities of Capacity Management 
for Distributed Services” for an extended tech talk on the 
topic [1].
 3 Read the ;login: article “Capacity Planning” [2].
 3 Review the “Software Engineering in SRE,” “Managing 
Critical State,” and “Reliable Product Launches at Scale” 
chapters of Google’s Site Reliability Engineering [3].

Conclusion
In this article we discussed the components and complexities 
of capacity management. We separated the topic into two parts: 
resource provisioning, which addresses the tactical question, 
“How do I keep the service running right now?” and capacity 
planning, which addresses the strategic question, “How do I keep 
the service running for the foreseeable future?” Answering these 
questions is not a trivial task, and each requires reviewing differ-
ent aspects of your service. 

When provisioning resources, examine the various demand sig-
nals (input) and their effect on the resource allocations (output). 
It helps to understand the expected peak demands the service 
may face and the amount of redundancy you’re required to build 
into it. Have you considered the impact of resource shortages and 
vendor supply?

Capacity planning forces you to attempt to predict what the ser-
vice and, more importantly, its load look like in the ever-changing 
future. You have to fully understand your service to do this—for 
example, you need to identify the peak cycles and when they 
occur, determine the number of locations you must run in and the 
varying capabilities of each, and anticipate the natural, social, 
and even legal events that might impact your service. When it’s 
time to add more capacity, do you have the approvals or funds to 
accommodate the growth?  

While the many best practices we presented are all important, 
following solid SRE tenets helps simplify capacity management: 
perform proper load testing, implement extensive monitoring and 
alerting, use source control systems, understand the strengths 
and weaknesses of your service, develop a capacity plan, and be 
prepared to anticipate growth and scale when needed.
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The Case for CS Knowledge in SRE
A D A M  M C K A I G

During my career as an SRE, I’ve become convinced that knowledge of 
traditional computer science topics like data structures and algo-
rithms are, while not essential to hacking together something that 

kind of works, an essential part of building reliable and scalable systems. 
This wasn’t always my position on the matter; as a self-taught programmer, 
I got a long way without a clue about the fundamentals, believing that my 
own empirical approach was superior and that the world would catch up soon 
enough. In this article, I’ll share a few of the more interesting problems that 
changed my attitude, how they were diagnosed, and how they were solved 
with better data structures and/or algorithms.

Most systems start life as an idea and are hacked together at first. The priority is to get 
something into production as soon as possible and iterate on it without worrying about 
what comes next. There’s nothing wrong with that, but it doesn’t work for long, and the next 
phase—productionization, that is, scalability, reliability, and so on—necessitates an almost 
totally different approach and skill set. It’s also the most interesting part.

The main difference between the pre- and post-productionization phase is that the imple-
mentation details don’t matter during the former, so long as it works. Linear, log-linear, even 
quadratic algorithms are blazing fast on modern hardware while n is small, and RAM is as 
good as unlimited. But however much one is willing to spend on cloud bills, once n starts get-
ting large in any dimension, consistent high performance can only be achieved by carefully 
choosing and implementing the appropriate data structures and algorithms to avoid having to 
compromise on features. Ideally, one would be able to predict the growth of every dimension 
of n and design accordingly in advance, but in practice it’s usually done reactively, when some 
subsystem is approaching its performance limits.

It’s highly instructive to implement every detail oneself, but rarely is it necessary in practice; 
even the most esoteric data structures and algorithms are readily available as packages for 
most languages. Much more important is to develop an intuition for their performance char-
acteristics and to be able to spot those same characteristics in production workloads.

Practical Examples
These are real examples of things going wrong at scale. I’ve redacted sensitive details and 
condensed them for brevity, but these are issues encountered in production at large compa-
nies you’ve probably heard of.

Fixing an Assumption
My team was supporting an old C++ service, part of a messaging system, which was having 
trouble sustaining its required write throughput. The service was consuming create/update/
delete events from a message bus, and providing an API to view the most recent messages 
sent or received by a given user. It had worked fine for a long time, but it couldn’t keep up as 
the rate of events increased, and users were complaining that the API was serving stale data 
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during peak hours. This service was running on a single big 
machine, so the most obvious solution was to shard the service 
and run it on many machines. But that would take time, and we 
wanted to improve the situation sooner.

We improved things a bit by providing a lot more CPU and looked 
into the implementation. What we found was unremarkable: a big 
std::map (an ordered tree) holding the latest messages, keyed by 
the user ID and timestamp. Writes would either insert a record, 
or fetch a record, patch it, and replace it. Reads would find all 
messages with a matching user ID and return them, which was 
efficient because they were adjacent and already sorted. Old 
records were garbage collected in a background thread by peri-
odically walking the entire tree.

Ordered trees are a great default for mixed workloads, that is, 
workloads which have a similar proportion of reads and writes. 
But when we looked at the data from production, we saw that 
the rate of reads was actually remarkably low compared to the 
writes, which accounted for the vast majority of work. These 
writes weren’t slow, but they weren’t fast enough to keep up 
with the desired volume. We also saw that our read latency was 
consistently far below the threshold at which we would be paged 
about it. So we investigated how we might speed up writes, know-
ing that we were able and willing to sacrifice some read perfor-
mance to do so.

It was simple for us to swap out the map with an LSM (log- 
structured merge) tree, a data structure which resembles an 
ordered tree but offers far more scalable inserts at the cost of 
slower and less predictable reads, using an existing open source 
package. We dark-launched this change into production and 
observed, as we’d hoped, a tremendous improvement in through-
put with only a modest regression in read latency. I don’t recall 
anyone ever complaining about the latter.

This incident taught me that although most systems rightly 
expect mixed workloads and so optimize for that, that isn’t 
always the reality in production, and making concessions on one 
side can yield big improvements on the other.

Consider Non-Requirements
Here’s a totally different example. Much later, at a different 
company, I was supporting a distributed key-value datastore 
(of sorts) written in Go. The overall workload was fairly mixed: 
lots of writes and lots of reads. The system stored highly denor-
malized event data and was primarily used to answer arbitrary 
questions like, “What are the most-viewed widgets by users who 
looked at this widget this week?” in real-ish time.

One subsystem was causing trouble: the directory service, which 
basically kept track of which data were on which storage node, 
and how CPU-loaded each was, so that the query nodes could fan 
out incoming reads to the right places. This subsystem was read-

heavy, and the load varied throughout the day as end users came 
and went. The rate of writes was more consistent, since it was 
simply proportional to the number of storage nodes, which peri-
odically announced the ranges of keys they had and their overall 
CPU load. Both would change regularly as data was rebalanced 
by a separate subsystem.

The problem we were seeing here was that many directory reads 
were too slow during peak hours. Up to about the 90th percentile 
was fine, but above that, performance varied wildly. We were able 
to improve things by horizontally scaling (roughly doubling) the 
number of directory nodes, thereby reducing the rate of reads 
that each had to handle, but this caused two more problems: uti-
lization of these nodes was now low enough that well-intentioned 
cost-saving alerts were going off, which needed silencing; and 
this increased load on the storage nodes, because they needed to 
send twice as many announcements! Clearly this was a tempo-
rary mitigation, so we looked into improving the read throughput.

The implementation was (roughly) an augmented interval tree, 
storing ranges of keys mapped back to the storage node they 
could be found on, and a map of nodes to their last-reported 
CPU load. Writes would update both of these: key ranges would 
be inserted into the tree, and the load would be updated. Reads 
would read from both: the tree would be queried for nodes con-
taining matching keys or key ranges (of which there could be 
many), and the load of each node looked up from the map.

The bottleneck here was of course the tree, because there wasn’t 
much else to the system. Profiling indicated that reads were too 
often being blocked by writes, which had to lock the tree while 
they were mutating it.

Given the requirements, and without fundamentally changing 
how the system worked, we couldn’t think of an obviously better 
implementation. We started designing a sharded directory ser-
vice, making it a nested distributed system of sorts, but so many 
tricky edge-cases came up that we shelved it until it was really 
necessary—which in the end it never was. The solution presented 
itself when we went back and reconsidered the requirements.

We needed to maintain an up-to-date map of keys to nodes, 
which was small enough to fit on one node, fast to query, and fast 
enough to write that it didn’t interfere with the reads. But it didn’t 
need to be completely up-to-date: this was an OLAP system, 
not OLTP, and the map was always a bit stale because storage 
nodes only reported periodically. Could we put a cache in front 
of the tree, to speed up some reads in exchange for making the 
data slightly more stale? We couldn’t think of a cache key which 
would actually be effective, since the keyspace was so large, but 
someone suggested: how about we cache the whole tree? We have 
plenty of spare RAM.
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The resulting implementation was simple and effective: rather 
than one tree, we stored three. One was used to serve reads; one 
was updated as writes arrived. To update the read tree, the write 
tree was locked and copied to a third location, and only then were 
incoming reads briefly blocked as a pointer was swapped to point 
to the new read tree. This frequency was tunable, and in practice 
even doing so once a second was enough to virtually eliminate 
the variance in read throughput.

I think about this incident often when considering  requirements 
and am reminded to carefully consider non-requirements, too. 
Here, freshness and low memory usage were non- requirements. 
The older implementation was simple but much slower than 
necessary because it fulfilled requirements which were 
unnecessary.

Undoing Lock Contention
Here’s another example. More recently, I was supporting a disk-
based time-series database, written in C++. This system had a 
mixed read/write workload, which is typical for time-series sys-
tems. The writes were small, usually containing a single point for 
a lot of metrics, and there were a lot of them. The reads were far 
fewer, but far larger, often fetching data for a single metric across 
a wide range of time.

My team was being paged because the error budget of our query 
availability was being depleted—slowly, but fast enough that we 
would run out by the end of the month if we did nothing. We could 
correlate the start of the problem with an organic increase in 
traffic, so we assumed that the problem would remain until we 
solved it—or until our customers got fed up and the traffic went 
away. We mitigated the problem by throwing extra capacity at it, 
but decided to investigate further.

We determined that a small fraction of the synthetic queries 
issued by our probers were taking so long to complete that they 
were timing out. They seemed to occur randomly (in both time 
and space) but, curiously, appeared to be correlated with small 
spikes in the fraction of all queries timing out. The problem was 
rare enough that we didn’t have any relevant traces available, so 
we increased the fraction of traces until we caught a few of them. 
The same pattern presented in all of them: the query appeared to 
be fanning out to a few storage nodes, as expected, and returning 
quickly from all but one of them, which timed out.

We examined various metrics emitted by the node where the 
timeout occurred, around the time it did. RPC server latency 
was typical at the 90th percentile, but it spiked around the 98th 
for less than a minute, then went back to normal. CPU load was 
normal. Memory usage was up by a small amount. IOPS was as 

expected. None of these things seemed to be the cause, so we 
looked into the implementation. What causes random latency 
spikes when not under any kind of load?

The nodes in question had two jobs: store incoming data and 
make it available for querying. The implementation was roughly 
as follows: each unique time series was stored as a buffer of 
(timestamp, value) pairs. To quickly look up these series, a cen-
tral metadata object served as an index, holding nested maps of 
field names and values, which in turn held pointers to the buffers. 
This was a big object, and it was protected by one big lock.

Writes and queries were able to scan for matching series while 
holding a reader lock, meaning that many such scans could occur 
at once, and the object would not change under them. Upon find-
ing the pointers to the relevant series, points were appended or 
fetched from the vectors, which were protected by another read/
write lock. But there was a special behavior for writes contain-
ing new series. Those were not present in the metadata object, 
and the buffers didn’t exist. So before inserting the points, the 
implementation took an exclusive (writer) lock, allocated the new 
buffers for each new series, and inserted the relevant elements to 
the metadata object.

Experts speculated that the cause of those read latency spikes 
was likely to be lock contention on this metadata object. This was 
confirmed with instrumentation and profiling.

Unlike in my previous example, these nodes were resource-
constrained, and these metadata objects already accounted for 
a significant fraction of the total RAM usage. We couldn’t trade 
space for speed. We needed to make the writers hold the locks for 
less time.

We accomplished this by replacing the global metadata lock with 
narrow locks on the individual nested objects within it. When a 
write included previously unseen series, it would lock only the 
relevant map while inserting. This went all three levels deep 
(metric names, field names, and field values), resulting in many 
small locks instead of one large one. Writes might need to acquire 
multiple nested locks, but each was brief, and blocked only a frac-
tion of reads rather than all of them. The new implementation 
was far more complex and idiosyncratic than the original, and 
it was right that it was put off. But when the time came, it was 
very satisfying to see it replaced with something so much more 
performant. 

This project taught me that as throughput increases, so too does 
the importance of careful locking. Even very brief pauses can 
have a large impact if they’re blocking many requests.
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Conclusion
These experiences, and others, have changed my approach to 
growing and maintaining software. I’m writing about them 
because I wish that I’d become convinced sooner that this fun-
damental knowledge was important and worth studying, and 
perhaps concrete examples would have helped.

Finally, some unsolicited advice: Next time you’re faced with a 
persistent performance or reliability problem, by all means do 
what is necessary to mitigate the problem first, but consider, 
then, identifying the underlying bottleneck. Are the performance 
characteristics of your data structures misaligned with the 
shape of your actual workload? Has some value of n become too 
large to ignore? These problems can be solved, and we must not 
be afraid to do so.
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Implementing Service Level Objectives 
by Alex Hidalgo

L A U R A  N O L A N

In the past two years, Service Level Objectives (SLOs) have become 
almost synonymous with Site Reliability Engineering (SRE). SLOs are 
a reliability target—a threshold of availability and correctness that the 

users of a service should be satisfied with and that the service ought to be able 
to meet under normal circumstances.

Site Reliability Engineering [1], published in 2016, set out SLOs as a foundational topic: 
“It’s impossible to manage a service correctly, let alone well, without understanding which 
behaviors really matter for that service and how to measure and evaluate those behaviors.” 
The Site Reliability Workbook [2] upped the ante in 2018, saying, “[SREs’] day-to-day tasks 
and projects are driven by SLOs: ensuring that SLOs are defended in the short term and that 
they can be maintained in the medium to long term. One could even claim that without SLOs, 
there is no need for SREs.” 

SLOs appear to be simple—we just need to choose how many nines we want—and SLO adop-
tion has often been held up as the first step on any organization’s path towards adopting SRE 
practices. There is a school of thought that sees SRE as a cookie-cutter approach that can be 
generically applied to any service: just define your SLOs, configure your error-budget-based 
alerting, build a release pipeline with canarying and rollback, automate away the bulk of your 
repetitive work, adopt the Incident Management System, and do blameless postmortems and 
voila—your service will be reliable. Now, these are all worthwhile practices for sure, but are 
they enough? I believe not. They will get you part of the way there, and it’s a good roadmap for 
productionizing a greenfield project. However, any sizable real-world system will have its 
own challenges, rough edges, and sharp corners. You need depth and a lot of context to run 
systems well, not just a cookie-cutter shallow SRE process. If you want to be an SRE for a 
database tier, you will need to learn a lot about databases in general and your database in par-
ticular to do it well. If you are SRE for Java-based services, you need to understand the JVM 
as well as your services’ design, and so on.

Because context is so important, I personally believe that setting up a structured weekly 
production meeting with comprehensive notes and solid tracking of action items is actually a 
better first starting point than SLOs with a team new to SRE—you use it immediately to build 
shared context on services and identify burning fires and pain points that can be mitigated 
quickly. This shared context becomes a useful foundation for defining SLOs. But deep service 
expertise is not generic—it’s qualitative, not quantitative, and it takes time to build. It’s not as 
easy to write an article or a book chapter about it. You can’t create a platform to sell Context-
as-a-Service, there are no clever-sounding acronyms, and there are no graphs for executives. 
In short, it isn’t going to help you sell anything or get you promoted (not directly, anyway).

As SREs go, therefore, I’m something of an SLO skeptic. However, even I concede that though 
SLOs may not be a silver bullet, they are nonetheless useful, and stable SRE teams ought to 
ensure that their services have appropriate SLOs. SLOs do have a lot of benefits: they can pro-
vide an explicit “contract” of sorts between services provided by different teams, helping create 
clarity about expected reliability and customer needs. SLOs can help you set alerting thresholds 
and feed into decision making about priorities (without being the sole input to that process). 
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Nines Are Not Enough
It’s been encouraging to see the conversation around SLOs gain 
nuance and depth in the past year, compared to the fairly basic 
treatments in the original 2016 Site Reliability Engineering [1] 
and the 2018 Site Reliability Workbook [2]. Mogul and Wilkes’ 
HotOS 2019 “Nines Are Not Enough” paper [3] is required read-
ing for anyone interested in the topic—it includes an analysis of 
some of the real-world complexities and tradeoffs of providing 
SLOs, including the role of customer behavior; no system can 
defend an SLO when arbitrary behaviors are allowed. Narayan 
Desai’s talk on SLOs, “The Map Is Not the Territory” [4], dis-
cusses a different set of difficulties, particularly around how the 
aggregation process can mask significant customer pain, espe-
cially for low-QPS services or unevenly distributed errors that 
affect some customers much more than others. Finally, August 
2020 saw the release of an entire book [5] dedicated to SLOs: 
Alex Hidalgo’s Implementing Service Level Objectives.

Hidalgo introduces the core concepts—SLOs, service level 
indicators (SLIs), and error budgets—in a similar way to the 
SRE book [1] and SRE workbook [2] but spends time considering 
SLOs for significantly more “shapes” of services: not only simple 
RPC or HTTP services, but also datastores, compute platforms, 
pipelines, and batch jobs. Data reliability gets an entire chapter, 
written by Polina Giralt and Blake Bisset, which proposes 13 prop-
erties of data, such as freshness, accuracy, and completeness, 
along with discussions on how to measure these. This chapter is 
particularly welcome: many of us are running either datastores 
or pipelines or both. The properties of data- intensive systems 
are both more complicated than those of the simple request-
processing systems normally used to illustrate SLOs, as well as 
usually more difficult to measure.  

Chapter 4, “Choosing Good SLOs,” is the foundation for the whole 
book. Again, it covers a lot of the same ground as the SRE book 
and SRE Workbook, but with some valuable additions. There is 
a particularly good discussion of the organization and opera-
tional problem that arises from having too many SLOs—resist 
the temptation to think that every important metric should have 
an SLO associated with it. The discussion on SLO composition, 
meaning how to think about your services’ reliability in rela-
tion to that of the services you depend on, is valuable and doesn’t 
shy away from detail. Toby Burress and Jaime Woo’s chapter 
on probability and statistics develops this further, alternat-
ing between theory of probability and statistics and concrete 
applications to difficult SLI calculations (such as infrequent 
batch jobs, requests that can be retried), and latency in queueing 
systems.

Burress and Woo’s chapter and the “Architecting for Reliability” 
chapter by Salim Virji are very useful treatments of the math 
involved in building (or modifying) services to meet a desired SLO. 

Hidalgo places a lot of emphasis on getting SLIs right, which 
is very worthwhile because this is often much more difficult 
in practice than the introductory examples from the SRE book 
suggests. There is significant material on the details of comput-
ing SLIs, including fairly well-known best practices such as 
use of percentiles rather than means and how to deal with time 
windows, as well as less well-known practical problems such as 
infrequent events and noisy or low-quality data. This is built on 
later by Ben Sigelman’s chapter on measuring SLIs and SLOs, 
which discusses the tradeoffs involved in computing SLIs from 
time-series databases and structured event databases (or logs) 
and distributed traces. Sigelman’s chapter usefully points out 
a number of traps for the unwary, such as relying on metrics 
reported by potentially malfunctioning services as opposed to 
other systems’ view of those services.  

Niall Murphy’s chapter on SLO-based alerting rounds out the 
section of the book that is focused on the technical details of 
implementing SLOs. I particularly like that this section pres-
ents a progressive set of steps for improving your alerting in a 
brownfield situation. There is a valuable discussion of how to set 
up separate long-duration and short-duration alert thresholds 
to detect both major short term-problems and significant but 
slower-burning issues that are consuming your error budget at a 
higher than anticipated rate. This valuable alerting pattern is not 
used widely enough, but it is an excellent mechanism for catching 
serious but not immediately catastrophic problems without caus-
ing excessive pager noise.  

The “Worked Example” chapter puts together a set of SLOs for 
several user-facing and internal systems with a variety of archi-
tectures and requirements. The author does a consistently good 
job of putting the end-user experience front and center here and 
relating it to the SLOs and SLIs proposed. However, most of the 
systems and SLOs proposed are fairly simple, and this chapter 
could do more to reinforce Giralt and Bisset’s chapter on data 
systems, or Murphy’s chapter on alerting.  

The book closes with a series of less technical chapters on the 
theme of building an SLO culture, discussing topics like setting 
up SLOs in organizations new to the concept, how your SLOs 
may evolve as your service changes over time, how to make your 
SLOs discoverable to other teams, and how to advocate for SLOs. 
The final chapter (on SLO reporting) contains a fairly lengthy 
polemic on why SLO reporting is superior to reporting based on 
Mean Time To Recovery (and similar metrics)—Hidalgo is right 
to say that these kinds of measurements are subjective and not 
generally meaningful because incidents are so different from 
each other.  
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Any engineer who works day-to-day with reliability, metrics, 
monitoring, and alerting ought to have a copy of this book. Even 
those who don’t necessarily want to see how deep the SLO cul-
ture-change rabbit hole goes will gain much from the technical 
chapters, which can inform your monitoring and alerting strate-
gies and even the tradeoffs made in your system architecture. 
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C O R Y  L U E N I N G H O E N E R

Have you ever opened your refrigerator to get a tasty snack and caught 
sight of that one container in the back, the one that is unmarked but 
you know has been there since sometime last June? And as you close 

the door, you kind of wonder if it just moved a little? Have you ever felt the 
same way about Linux containers running on your servers? What exactly is  
in there? And how did they get there in the first place?

Containers on Linux have been the new hotness for some time now, which I suppose makes 
them pretty hot indeed. But despite the ubiquity of containers today, a lot of us still only inter-
act with them by running docker run. Not one to take a whale for its word, I think it’s worth 
looking more deeply at what’s really going on. While there’s only room to scratch the surface, 
over the next several pages I’m going to take a look at what Linux containers are made of, how 
to create a super-simple container using a few command line tools, and how to use those same 
tools to understand what Docker is doing under the covers.

But first, some caveats. Mentioning “Linux containers” can cause strong reactions among 
some people, so I want to state upfront this isn’t going to be a column about the security 
implications of containers, how various operating systems provided the same functionality 
earlier (or better), what the exact definition of a “container” is, or anything else like that. This 
is just a quick look at (spoiler!) how Linux namespaces are used to provide container func-
tionality. There are some simplifications in here for the sake of brevity and clarity, so forgive 
me if I leave out your favorite details about Linux containers. If you want a real deep dive into 
everything here, take a look at the references at the end of this column.

It’s All Part of the Process
Back in the age of dinosaurs, when operating systems textbooks were written, you may recall 
learning that a process is the embodiment of a program running on a UNIX-like system. It 
contains the program code itself, as well as its active memory, a pointer to what instruction 
is currently running, and various other bookkeeping data structures. A booted system starts 
out with a single process running, process ID (PID) 1, and all other processes on the system 
can trace their lineage through a series of fork() and exec() system calls back to that initial 
process. All running processes are given a unique PID number, and, by default, all processes 
exist in a global shared namespace that lets them see information about all other processes 
currently running on the system. On a UNIX-like system, much of the information about 
running processes is presented to users in the /proc file system. There, the information is 
organized by directories named after processes’ numeric IDs.

What if, instead of process information existing in a global namespace, processes could 
have their own independent views of what /proc looked like? In this scenario, after a process 
forks, the parent process would be told that its child got an incrementally higher PID, while the 
child process would be told that it is PID 1: the first process on a fresh system. Everything 
else would be shared between these processes—the kernel, file systems, users—but the new 
process would be in a new process namespace and have a new, empty view of what other pro-
cesses exist on the system.
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[root@localhost ~]ls -l /proc/$$/ns
total 0
lrwxrwxrwx. 1 root root 0 Aug 24 03:40 cgroup -> 
  'cgroup:[4026531835]'
lrwxrwxrwx. 1 root root 0 Aug 24 03:40 ipc -> 
  'ipc:[4026531839]'
lrwxrwxrwx. 1 root root 0 Aug 24 03:40 mnt -> 
  'mnt:[4026531840]'
lrwxrwxrwx. 1 root root 0 Aug 24 03:40 net -> 
  'net:[4026531992]'
lrwxrwxrwx. 1 root root 0 Aug 24 03:40 pid -> 
  'pid:[4026531836]'
lrwxrwxrwx. 1 root root 0 Aug 24 03:40 pid_for_children -> 
  'pid:[4026531836]'
lrwxrwxrwx. 1 root root 0 Aug 24 03:40 user -> 
  'user:[4026531837]'
lrwxrwxrwx. 1 root root 0 Aug 24 03:40 uts -> 
  'uts:[4026531838]'

The numbers that the links point to are unique identifiers for 
each of the namespaces on the system, and any processes that 
share those numbers also share that particular namespace.

A program can use the clone() system call function with appro-
priate flags to create a copy of itself in a new namespace, ready to 
be replaced with a call to exec(). Meanwhile, an existing process 
can use the unshare() call to create and join private, non-shared 
namespaces or setns() to join existing namespaces. Each of these 
functions accepts a set of f lags that specify what new name-
spaces to create.

Alternatively, the unshare and nsenter command line tools, pro-
vided by the util-linux package, can be used to create processes 
that are in new namespaces or members of existing namespaces 
from the command line. These tools provide command-line options 
to control which namespaces are created or joined.

Let’s Get Our Hands Dirty
Let’s take a look at namespaces on a real system. Using the 
unshare command line tool, it is easy to create a new process 
with one or more namespaces that are unique from its parent. 
We’ll start by creating a new shell that’s in a new PID namespace, 
but shares its other namespaces with its parent. With that new 
shell created, we can look at what processes are visible both 
inside and outside this miniature “container” and how to add 
more processes to it.

You can follow along on your own system: all of these examples 
were run on a CentOS 8 virtual machine booted up using Vagrant 
and VirtualBox, and for clarity each line of the shell session has 
been prefixed with [o], for outside of the new namespace, or [i], 
for inside the new namespace.

First, we’ll use unshare to create a new shell in a new PID 
namespace.

Can You Guess My Namespace?
This world exists, and it has existed since 2007 when kernel 
version 2.6.24 introduced PID namespaces. Similar to how 
variable namespacing in a programming language can keep 
variables in one function hidden from variables in another 
function, namespaces in the Linux kernel can create private 
views of kernel data for different processes. When a process 
creates and joins a new PID namespace, the kernel tells it that it 
is PID 1 and the only process running on the system. All descen-
dants of this new PID 1 will be put in the same PID namespace, 
and their view of the running system will be limited to the 
contents of their namespace.

There are two important things to note about this functionality: 
one is that PID namespaces are created in a hierarchy, much like 
the way that processes are created. This means that processes 
higher up in the namespace hierarchy can see all of the processes 
in PID namespaces that exist below them, while processes in leaf 
namespaces can only see processes that are members of their 
own PID namespace. The other is that multiple PID namespaces 
can exist at the same time, meaning a system can have many 
processes running on it that all believe they are PID 1.

But That’s Not All
PID namespaces aren’t the only namespaces that can be  created, 
and they weren’t even the first ones to be included in the Linux 
kernel. That distinction belongs to mount namespaces, which 
appeared in Linux 2.4.19 in 2002. Today there are eight name-
spaces available, and they all have the same goal: give processes 
a private view of certain system resources. Along with the PID 
namespace that we’ve already seen, this includes hostname 
and network information (UTS and Network namespaces), file 
systems (Mount namespace), system users (User namespace), 
and time, resource, and IPC objects (Time, Cgroup, and IPC 
namespaces).

In its simplest form, a Linux container is nothing more than pro-
cesses in one or more private namespaces. But looking at the list 
of available namespaces, you can start to imagine how you could 
use them to turn simple processes into something that looks like 
an entirely new computer without relying on starting up a virtual 
machine.

Where Does It Come From?
Like many kernel internals related to processes, the bookkeeping 
that makes namespaces work is exposed to userspace in /proc. 
Any process running on a modern Linux kernel has a /proc/
[PID]/ns directory associated with it, and the namespaces that 
that process belongs to are presented as symbolic links within 
that directory. For example, to look at the namespaces that your 
current shell belong to, you can do the following:
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[o] [root@localhost ~]unshare --fork --pid --mount-proc  
  /bin/bash
[i] [root@localhost ~]#

At this point, the unshare command has started a new copy 
of bash with a new PID namespace. Both the old shell and the 
new shell have the same prompt, so it’s kind of anticlimactic. 
But recall that in the previous section we saw that the list of 
namespaces a process belongs to is exposed in /proc/<PID>/ns.  
If you compare the new shell’s namespaces against the shell in 
the previous section, you can see that the new shell is indeed in a 
new PID namespace:

[i] [root@localhost ~]ls -l /proc/$$/ns
[i] total 0
[i] lrwxrwxrwx. 1 root root 0 Aug 24 03:42 cgroup -> 
  'cgroup:[4026531835]'
[i] lrwxrwxrwx. 1 root root 0 Aug 24 03:42 ipc -> 
  'ipc:[4026531839]'
[i] lrwxrwxrwx. 1 root root 0 Aug 24 03:42 mnt -> 
  'mnt:[4026532155]'
[i] lrwxrwxrwx. 1 root root 0 Aug 24 03:42 net -> 
  'net:[4026531992]'
[i] lrwxrwxrwx. 1 root root 0 Aug 24 03:42 pid -> 
  'pid:[4026532156]'
[i] lrwxrwxrwx. 1 root root 0 Aug 24 03:42 pid_for_children 
  -> 'pid:[4026532156]'
[i] lrwxrwxrwx. 1 root root 0 Aug 24 03:42 user -> 
  'user:[4026531837]'
[i] lrwxrwxrwx. 1 root root 0 Aug 24 03:42 uts -> 
  'uts:[4026531838]'

Looking closely, you’ll notice that the new shell is also a member 
of a new Mount namespace. The unshare man page explains why 
in its PID namespace section:

“It also implies creating a new mount namespace since the  
/proc mount would otherwise mess up existing programs on  
the system.”

So we gained two namespaces for the price of one.

Since this new shell is a member of a new PID namespace, the 
only processes it knows about are itself, which it sees as PID 1, 
and its descendants. We can see this by running the ps command:

[i] [root@localhost ~]ps -ef
[i] UID          PID    PPID  C STIME TTY          TIME  
  CMD
[i] root           1       0  0 03:41 pts/0    00:00:00  
  /  bin/bash
[i] root          18       1  0 03:44 pts/0    00:00:00  
  ps -ef

Meanwhile, this same process is visible from the system’s default 
namespaces with a different PID number. It just takes some 
sleuthing to find it. Starting up another login shell on the system, 
we can find the namespaced process by looking for the original 
unshare process and examining its only child. Here we find that 

the parent namespace identifies our namespaced shell as PID 
33783:

[o] [root@localhost ~]ps -ef
[o] UID          PID    PPID  C STIME TTY          TIME  
  CMD
    ...
[o] root       33782    5283  0 03:41 pts/0    00:00:00 
  unshare --fork --pid --mount
[o] root       33783   33782  0 03:41 pts/0    00:00:00 
  /bin/bash
    ...

After one process creates a new namespace, other processes can 
join it. Having found our new container process from outside of 
its PID namespace, we can also start a new shell within its new 
PID namespace. With the original namespaced bash process still 
running via unshare, we can use the nsenter command to join it 
by targeting its external process ID:

[o] [root@localhost ~]nsenter --all --target 33783 /bin/bash
[i] [root@localhost /]ps -ef
[i] UID          PID    PPID  C STIME TTY          TIME 
  CMD
[i] root           1       0  0 03:41 pts/0    00:00:00  
  /bin/bash
[i] root          19       0  0 03:47 pts/1    00:00:00 
  /bin/bash
[i] root          34      19  0 03:47 pts/1    00:00:00 
  ps -ef

Let’s review what all we just did: starting with a fresh virtual 
machine, we created a new process in a new PID namespace, 
confirmed that it appeared as PID 1, and started another new 
process inside that same namespace. Now, let’s take it a step 
further.

Let’s Build a Simple Container
Let’s get one step closer to a full Docker-style container by build-
ing a new operating system image and starting  processes using 
it. CentOS includes the debootstrap package, which can be used 
to install a full Ubuntu system inside of a single directory tree 
on a CentOS system. We can use that tool to create an Ubuntu 
file-system image in /root/ubuntu-bionic, and then use unshare 
along with chroot to create a shell with new Mount and PID 
namespaces in use. Once that shell is running, it will look exactly 
like it is running on an Ubuntu system. This can all be done from 
within a clean CentOS 8 install in a virtual machine.

[o] [root@localhost ~]yum install epel-release
    <output trimmed>
[o] [root@localhost ~]yum install debootstrap
    <output trimmed>
[o] [root@localhost ~]mkdir ubuntu-bionic
[o] [root@localhost ~]debootstrap --arch=amd64 bionic 
  /root/ubuntu-bionic/ http://mirrors.vcea.wsu.edu/ubuntu/
    <output trimmed>
[o] I: Base system installed successfully.
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[o] [root@localhost ~]unshare --fork --pid --mount-proc 
  --mount chroot /root/ubuntu-bionic /bin/bash
[i] root@localhost:/mount -t proc proc /proc
[i] root@localhost:/mount -t sysfs sysfs /sys
[i] root@localhost:/ps -ef
[i] UID          PID    PPID  C STIME TTY          TIME  
  CMD
[i] root           1       0  0 03:54 ?        00:00:00 
  /bin/bash
[i] root          13       1  0 03:54 ?        00:00:00 
  ps -ef
[i] root@localhost:/head -2 /etc/os-release 
[i] NAME="Ubuntu"
[i] VERSION="18.04 LTS (Bionic Beaver)"

This still doesn’t fully replicate the full containerization pro-
vided by tools like Docker, but we’ve started to get close. In the 
last several sections, we’ve essentially run docker build (using 
debootstrap), docker run (using unshare), and docker exec 
(using nsenter). As homework, you can expand this work by com-
bining this same set of commands with other namespaces, giving 
you the ability to change the hostname, assign private network 
interfaces, and more.

Now, let’s try the same tricks with a real Docker container.

What Was That about Docker?
Way back in the first paragraph of this column, I asserted that 
many people’s main interface to containers is docker run. Since 
then, we’ve learned that containers are just processes with 
unique namespace configurations that give them the ability to 
see different root file systems, different process trees, and the 
like. When Docker starts a container, it uses the exact same 
kernel mechanisms we just looked at to get the job done. That 
means that you can use these same tools to interact with Docker 
containers, but without the Docker commands. As an example, 
let’s use nsenter to replicate the base functionality provided by 
docker exec. As with the earlier examples, everything here was 
done within a CentOS 8 virtual machine built using Vagrant and 
VirtualBox.

To start, we’ll fire up a simple Docker container and start a sleep 
inside it so that the process is easy to find:

[o] [root@localhost ~]docker run -it ubuntu bash
[i] root@94802998616b:/sleep 300

We can find this same process from outside of the container, just 
like we did before:

[o] [root@localhost ~]ps -ef | grep sleep
[o] root       52039   51999  0 04:00 pts/0    00:00:00 
  sleep 300

Using the nsenter command, we can start a new shell that joins 
all of the same processes that the sleep command is a member of:

[o] [root@localhost ~]nsenter --all --target 52039 /bin/bash
[o] root@94802998616b:/ps -ef
[o] UID          PID    PPID  C STIME TTY          TIME  
  CMD
[o] root           1       0  0 03:59 pts/0    00:00:00  
  bash
[o] root           8       1  0 04:00 pts/0    00:00:00 
  sleep 300
[o] root           9       0  0 04:01 ?        00:00:00 
  /bin/bash
[o] root          12       9  0 04:01 ?        00:00:00 
  ps -ef
[o] root@94802998616b:/

The new shell is now a member of the Docker container, complete 
with the container’s hostname (94802998616b) and the only four 
processes it knows about (two instances of bash, plus sleep and 
ps processes). We’ve just replicated the base functionality of 
docker exec with standard Linux utilities.

Conclusion
Building containers by hand is more of an interesting trick than 
something that’s useful in production, but knowing what’s going 
on underneath Docker, Buildah, Podman, and other container 
tools gives you greater insight into how to tune, debug, and work 
with those tools. By understanding the underlying technology 
and how to access it with lower-level tools, you have a better 
overall view of how your system works and how to keep it run-
ning optimally.
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A rgus Panoptes was the all-seeing primordial giant and slayer of the 
mother of all monsters, Echidna, in Greek mythology. In some tell-
ings he has 100 eyes, some combination of which are always open, 

though the Renaissance painters (perhaps to save on paint?) always depict 
him with just the two.

Whether he was a many-eyed giant or merely a very astute, tall man, his powers of observa-
tion were so legendary that Hera herself entrusted to Argus the task of guarding the promis-
cuous nymph Io (inexplicably disguised as a cow) in order to keep her away from Zeus, Hera’s 
unfaithful husband and king of the gods.

Setting aside for a moment the questionable rational of hiring a P.I. to track your cheating 
husband’s lover rather than the man himself, Argus proved to be so effective at this task, 
watching Io day and night, and never once letting her out of his sight for a microsecond, that 
Zeus eventually had him murdered in order to reunite with his mistress.

I guess the all-seeing Argus didn’t see that comin’. 

That it’s often possible to see everything and yet still fail to comprehend is, I think, one of 
several invaluable lesson Argus Panoptes gave his life to teach us. Every bit as true today as it 
was in the golden age.

Let’s say for example you have a spreadsheet of latency times and other metrics from a front-
end web server. With five minutes’ worth of samples, you can scroll around and probably 
tease out some patterns. But with a full day of data, things become vastly more opaque. Ironi-
cally, the more you see, the less you begin to comprehend. 

In my last column, we talked about the various data structures eBPF uses to pass data from 
protected kernel space into userspace where we can get our hands on it, and we discovered 
that our sample BCC tool, biolatency, was using a built-in histogram data-structure to 
summarize data in kernel space. In this issue, as promised, we’re going to talk a little about 
histogram theory and how histograms enable us to make sense of massive amounts of data, 
thereby achieving comprehension rather than mere observation.

As I’m sure you probably already know, a histogram is a visual representation of a pile of data. 
Instead of plotting each value in the set, we depict a series of buckets or “bins” which are sized 
to indicate how many measurements in the sample set fell within the bounds of each bucket. 
Figure 1 is your obligatory example histogram of 500 measurements, ranging in value from 
0 to 100. As you see, it looks like a bar graph, except rather than representing a single metric, 
each bar represents the magnitude of measurements whose value fell between the bar before 
it, and the bar after it. 

Histograms are pretty great because we can depict what the overall data set looks like inde-
pendent of its size. It doesn’t matter if the set contains five minutes of data, or five days, we 
can use the same amount of pixel-space to represent it. Further, histograms are far more 
representative of the distribution than any combination of statistical reference metrics like 
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average, min/max, sum, and p-values, and because they amount 
to a struct of counters, histograms are super cheap to compute 
and store.

A histogram’s “resolution” is said to vary with its bin-width. You 
can’t accurately represent the value 2.63 if you have bins spaced 
at integer intervals, for example. That 2.63 would resolve to a “3” 
if our bucket-widths were integer-spaced. So it’s important to put 
some thought into how best to situate the width and total number 
of bins for a given data set. Obviously, the bin-width decreases 
(resolution improves) as the total number of bins increases. 
There are, as you can probably imagine, quite a few strategies to 
find the optimal total value of bins, or k value, for a given data set. 

One of the most basic and popular ways of computing the optimal 
number of bins for a given distribution is the “powers of two” rule, 
which says the optimal number of bins is the square root of the 
total number of samples in the set, or for a group of samples s:

k = √s

This is the formula used internally by Excel histograms and many 
other simple implementations when we want to provide a cheap, 
hands-off way of choosing a bin-number. With the powers of two 
formula, you’d wind up with 16 buckets for a data set with 256 
samples in it, for example. There are various takes on this, like 
Sturges’ formula, which uses the base-2 logarithm of the max 
value in the data set. 

k = ⌈log2 n⌉ + 1

There is no universally correct number of bins, and every algo-
rithm carries tradeoffs. Sturges, for example, gives poor results 
for data sets where n<30 but works well on sets with a large range. 
It’s no accident, however, that we’ve immediately wandered into 
the land of squares and base-2 logarithms. As it turns out, base-2 
logarithms and histograms share something of a magic relation-
ship in computerland, where the underlying representation of 
basically everything is a binary number. 

So far, we’ve been talking about histograms whose bins are all 
the same width, aka “Linear Histograms.” But there’s no particu-
lar reason that this should be true. It’s absolutely possible to vary 
the bin-widths within a set number of bins. 

In fact, if we were to vary our histogram bin-widths along log2 
boundaries instead of making them all the same width, each 
boundary between our bins would represent an order of mag-
nitude increase in the sample set. Another way to state that is: 
every bucket would represent a consecutive bit in a binary 
number. Therefore, a base-2 “log linear histogram” can use  
64 bins to represent a 64-bit int, which is a very large set  
[0 - 18,446,744,073,709,551,615]. 

Again, these buckets are not the same size. Instead, they become 
exponentially fatter at each boundary. The first bin represents 
the numbers between 0 and 1. The second, 2 and 4, the next 8 
and 16 and so on. Now consider this structure in the context of 
kernel-based metrics like the disk I/O latency we are trying to 
measure with biolatency, and I think you’ll realize that this sort 
of structure is kind of ideal for our problem domain. Our disk I/O 
is going to usually be great, somewhere on the order of tens of 
milliseconds, where a powers-of-two histogram’s resolution is 
going to be very good. Then we’re going to have a small number of 
outliers on the order of seconds, or possibly tens-of-seconds. 

Most in-kernel latency metrics distribute like this: a vast number 
of very small-value measurements and then a rare smattering of 
exponentially larger outliers. Many network metrics fit this pat-
tern even more, with normal measurements near 0 and outliers 
in the billions. The pattern is so pervasive, that BPF has a helper 
function, called bpf_log2l(), which returns the base-2 log of a 
given measurement, so you can convert any measured value to 
log2 scale in-kernel before passing it into the histogram.

Wait what? Convert the value? I thought we were talking about 
bin boundaries, not modifying the value of our measurements, 
Dave. 

Well, we are. But you’ll remember that both the probe code itself 
as well as the histogram storage struct are in-kernel. The histo-
gram implementation [1] is a bare-bones linear histogram, with a 
statically configured number of same-sized bins. There is no way 
to create variable-sized bins. But we can simulate the same effect 
by creating a 64-bucket in-kernel linear histogram and convert-
ing (compressing) our measurements to log2 scale values before 
storing them. 

Remember, we’re not storing the actual values, we’re merely 
incrementing counters within buckets that roughly align to our 
values. So if we compress the scale of our values to log2, we are 
effectively creating log2 indexes; we can come back at print-time 
in userspace and recompute the indexes using the in-kernel 

Figure 1: Obligatory example histogram of 500 measurements, ranging 
from 0 to 100
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bucket values as a base-2 exponent, and all the counts will neatly 
line up with the correct magnitude. 

Taking a look at biolatency’s storage code [2], we see that every 
time biolatency commits a value to the data-structure, it uses the 
bpf_log2l() helper function. This is somewhat obfuscated by the 
find/replace pattern in the Python BCC tools, but the invocation 
to create the HISTOGRAM looks like this:

BPF_HISTOGRAM(dist);

It’s possible to pass in a bin number and a data-structure to 
represent the index values, but the log-linear use case is so per-
vasive in BCC that the defaults are aligned to our use case, and 
the above invocation will create a 64-bin, int-indexed histogram 
called “dist”. We write to it like so: 

dist.increment(bpf_log2l(delta));

Where “delta” is a u64 representing the difference in nano-
seconds between the blk_account_io_start and blk_account_
io_done kprobes firing. The kernel will use the delta value to  
find or create the appropriate bucket and add a +1 to it.

At the end of script-execution, when the userspace side of bio-
latency catches a Ctl-C, it grabs the histogram from kernel-
space [3] using get_table(), the same function we used to grab 
structs from userspace in my previous article. Python BCC has a 
print-function that knows how to re-compute the indexes of log-
linear histograms for us, so all we need to do is pass the dict [4] 
into the print_log2_hist() function, passing along the appropri-
ate labels to make the resulting graph more human readable. 

References
[1] https://github.com/torvalds/linux/blob/master 
/Documentation/trace/histogram.rst.

[2] https://github.com/iovisor/bcc/blob/master/tools 
/biolatency.py#L127.

[3] https://github.com/iovisor/bcc/blob/master/tools 
/biolatency.py#L198. 

[4] https://github.com/iovisor/bcc/blob/master/tools 
/biolatency.py#L210.

I sometimes wonder what Argus Panoptes would make of the 
modern world. Thinking about him as a sort of spherical-cow 
of observation, the hypothetically perfect monitoring machine. 
Would he be blinded by the abundance of spread-spectrum data 
being flung in every direction about our heads? Would he be mes-
merized to the point of paralysis at the sight of a computer, with 
its unending infinitesimal internal machinations? 

Personally, I vastly prefer to work with instrumentation systems 
like eBPF, which reward system-knowledge and rely on an inter-
rogative question/answer relationship between operator and 
machine, over the packaged measure everything monitoring sys-
tems of the world. I think this is probably true of most engineers. 
Certainly the ancient Greeks agree, who valued as priceless the 
oracles, while relegating the spherical-cow of observation to, 
well, cow-watching. I think that puts us in pretty good company.

Take it easy.
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Cryptographic hash functions are one of the building blocks of modern 
computing systems. Although they were originally developed for sign-
ing digital signatures with public key cryptography, they have found 

uses in digital forensics, digital timestamping, and cryptocurrency schemes 
like Bitcoin. 

Cryptographic hash functions like MD5, SHA-1, and BLAKE3 are widely used and appreci-
ated by programmers, end users, and even lawyers! Nevertheless, I’ll start off this column 
with a basic description of what hash functions are and the hash functions that are used 
today. Then I’ll delve back to the first references to them that I’ve been able to find and give 
a bit of their history. I’ll briefly touch on their uses in cryptography and then discuss how they 
also found use in digital forensics. I’ll end with a puzzle from Stuart Haber, one of the co-inven-
tors of the blockchain concept. Unless otherwise noted, all of the timing runs were performed 
on my Mac mini (vintage 2018) with a six-core Intel Core i5 processor running at 3 GHz. The 
hashing was done with OpenSSL 1.1.1d, compiled September 10, 2019, that ships with the 
Anaconda Python distribution. 

Hash Functions
Hash functions take a sequence of bytes of any length and crunch it down to a block of seem-
ingly random bits and a constant length. This block is typically called the hash, taken from 
the popular dish that involves chopping up food and then cooking it together.

Hash functions are widely used in computer science—they are the basis of the Python 
dictionary, for example. The basic idea of hashing was invented by IBM scientist Peter Luhn 
back in the 1950s as a technique to help speed up searching for words in text [1].

Cryptographic hash functions are fundamentally different from the hash functions that 
Luhn developed. For starters, their output is much larger. Python’s hash function takes a 
string and returns an int—that is, 32 or 64 bits—which then becomes an index into an array 
(modulo the size of the array). Cryptographic hash functions return more than a hundred 
bits, each (ideally) with an equal and independent probability of being a 0 or a 1, which is then 
used as a kind of placeholder for the object itself. Writing in RFC 1186 back in 1990 about 
his MD4 algorithm, Ron Rivest stated: “The algorithm takes as input an input message of 
arbitrary length and produces as output a 128-bit ‘fingerprint’ or ‘message digest’ of the input. 
It is conjectured that it is computationally infeasible to produce two messages having the same 
message digest, or to produce any message having a given prespecified target message digest.” 

The field of cryptographic hash functions has evolved considerably since 1990. Today we say 
that these functions should have several properties. First, it should be computationally infeasi-
ble to find a sequence of bytes that has a specific hash, called pre-image resistance. It should also 
be infeasible to find a second sequence m2 that has the same hash as a first sequence m1, called 
second pre-image resistance, or to find any two objects that have the same hash, called collision 
resistance. Finally, the output of the hash function should be indistinguishable from a random 
number generator. That is, there should be no way to predict the output of the hash from its input 
other than by running the actual hash function. This is called pseudo-randomness. 
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Cryptographic hash functions were first described in detail by 
Ralph Merkle in his 1979 PhD thesis [2], published just a few 
years after Diffie and Hellman introduced the world to public key 
cryptography and Rivest, Shamir, and Adleman disclosed the 
public key system that has memorialized their initials. Merkle 
called the functions “one-way hash functions,” because it was 
easy to take a message and find its corresponding hash, but 
“effectively impossible”—or at least “computationally infeasi-
ble”— to take a hash and find a corresponding message. The RSA 
cryptosystem can’t sign a number larger than the product of the 
prime numbers p and q—which today is typically a few thousand 
bits. Given a one-way hash, Merkle wrote, the newfangled digital 
signature schemes could be used to sign a message of any length: 
simply hash the message first, then sign the hash. 

The idea of hashing a message and then signing the hash is stan-
dard operating procedure, but back in 1979 this was brand new 
stuff. What I find so enchanting about Merkle’s PhD thesis is the 
combination of wonder, excitement, and amazement it conveys. 
Merkle’s words help me to understand what it was like to live in a 
world where public key cryptography was new and nobody really 
knew how to use it or even quite what to do with it. 

Today we know lots of things that you can do with hash func-
tions—even without public key technology. In his PhD thesis, 
Merkle shows how it’s possible to create digital signatures with 
just a one-way hash function. We now call these Merkle signa-
tures. The critical insight is that you can take a secret message 
(call it M0) and hash it (call that H0). If you hand-deliver H0 
to a friend today, you can send an authenticated message to your 
friend at some point in the future by sending M0. Your friend can 
verify the authenticity of M0 by hashing it and producing H0. In 
his thesis, Merkle credits this original idea to Leslie Lamport, 
as described in Diffie and Hellman’s original “New Directions” 
[3] article, although Merkle notes that the scheme is much more 
efficient using cryptographic hash functions.

Of course, just being able to send a 0 by itself is not useful. So 
instead of giving your friend just H0, you give the friend H0 and 
H1 (which is the hash of M1). Now you can send one bit of authen-
ticated information—either a zero or a one—by choosing to reveal 
either M0 or M1. Give your friend 256 different H0s and 256 dif-
ferent H1s, and you can now send 256 bits of digitally signed data. 
The disadvantage of this scheme is that each signature block can 
only be used once, so it’s not tremendously efficient (although 
there are ways around this problem as well). The advantage of 
Merkle signatures is that they are very fast to compute, and it is 
widely thought that they are resistant to cracking by quantum 
computers, should such machines ever become practical.

If you want to sign 10 documents at the same time, you can 
compute the hash of each document (call that DH0 through DH9), 
then concatenate all of these hashes together, hash the resulting 

block (call that DHH), and sign that. You can prove the signature 
of any document by giving someone that document, the hashes 
for the other nine documents, and the signature for DHH: the 
verifier recomputes the missing document hash, uses DH0 
through DH9 to compute DHH, and verifies that. This approach 
and the corresponding data structure, when extended to multiple 
levels, is now called a Merkle Tree. 

The Rise and Fall of Many Hash Functions
The first widely used cryptographic hash function was MD2, 
developed by Rivest for use in an early secure email system. The 
source code for MD2, dated October 1, 1988, appears in RFC 1115, 
one of the early RFCs describing a system for sending encrypted 
messages over the Internet. This system was never widely adopted, 
but its ideas and data formats were quite influential.

Although no practical attack on MD2 was ever published, 
researchers started publishing theoretical attacks against it in 
2004. Support for MD2 was removed from the popular OpenSSL 
cryptographic toolkit in 2009. But the real problem with MD2 
wasn’t its security but its speed: MD2 is an extraordinarily slow 
algorithm. Even on my 2018 Mac mini, Rivest’s 1988 code takes 
43 seconds to hash 256 MiB of data. Imagine how slowly it ran 
back in 1988!

Rivest went back to the drawing board. MD3 didn’t make it 
out the door, but MD4 was released and appears in RFC 1186 
(October 1990). Flaws were soon discovered in MD4 and it was 
not widely used. In 1991, Rivest invented MD5; the algorithm 
was published by the Internet Engineering Task Force (IETF) 
in April 1992 as RFC 1321. 

MD5 is more than a hundred times faster than MD2; on my Mac 
mini, OpenSSL’s MD5 implementation hashes that same 256 
MiB file in just 0.37 seconds. Like MD2, MD5 also produces a 
128-bit hash.

MD5 is still in use today, but it should no longer be used because 
it is now relatively straightforward to generate two blocks of 
data that have the same MD5 hash. That is, MD5 no longer has 
collision resistance. The first MD5 collision was demonstrated 
back in 2004; the Wikipedia article on MD5 has a nice write-up 
about how to create two documents that have an MD5 collision.

On the other hand, there is still no publicly known attack on MD5 
that will let you find a block of data with a specific MD5 hash—
that is, it still is publicly considered to have pre-image resistance. 
Nevertheless, MD5 is not to be trusted. For example, Amazon’s 
Simple Storage Service (S3) still uses the MD5 algorithm for the 
“ETag” value that lets users check the integrity of uploaded files. 
The idea is that your software can compute the MD5 of a file, 
upload the file to S3, and then check the file’s ETag to see if the 
value is the same. Although this works in practice, if you happen 
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to upload two files that have the same MD5, Amazon will happily 
give them both the same ETag. 

In digital forensics, it’s common to use file hashes to search a 
computer for files of interest, a broad term that includes stolen 
corporate documents, child sexual abuse materials, and other 
kinds of documents sought by investigators. Typically, an orga-
nization looking for materials will distribute a list of hashes for 
such files to investigators in the field. The investigators then run 
a program that hashes every file on a suspect’s laptop and sees 
if any of those files has a hash that matches the list. If there’s a 
match, then the suspect presumably has the file of interest. MD5 
is still used in this application: after a collision is found, the 
investigator then looks at the matching file to see if it is in fact 
the file being sought.

Nevertheless, even in these applications, I try to avoid using 
MD5. That’s because there are many articles on the Internet 
telling people not to use MD5 because it is not secure. I just don’t 
think that it’s a good use of one’s time to argue that it’s acceptable 
to use MD5 for some applications but not others. 

Another hash function that is in wide use is SHA-1, the Secure 
Hash Algorithm, adopted by the National Institute of Standards 
and Technology in 1995. SHA-1 produces a 160-bit hash. Even 
though concerns about SHA-1 were raised within a few years of 
its being published, the National Institute of Standards and 
Technology (NIST) didn’t formally recommend that we stop using 
SHA-1 until 2006. Eleven years later, Google published two PDFs 
that had identical SHA-1 hash values but render differently [4]. 
The two files are each 422,435 bytes long and differ in 62 bytes. 
They also look visually similar, except that one has a blue banner 
across the top while the other has a red banner.

As Andrew Tannenbaum once said, the nice thing about stan-
dards is that there are so many of them to choose from. Realizing 
that SHA-1 was likely to be compromised, in 2001 NIST revised 
the Secure Hash standard to allow for more rounds of computa-
tion and longer hash values, also called residues. Collectively 
called SHA-2, these revised algorithms include SHA-256, SHA-
384, and SHA-512. In 2006 NIST initiated a competition for a 
new Secure Hash Algorithm. Nine years later NIST declared that 
an algorithm called Keccak would be adopted as SHA-3. This 
new algorithm is based on a fundamentally new mathematical 
approach called a sponge construction, in which input data are 
absorbed and then the hashed value is squeezed out. For details 
about these algorithms, as well as the multiple controversies 
surrounding their adoption, I refer you to the Wikipedia pages for 
SHA-1, SHA-2 and SHA-3. 

It used to be the case that MD5 was dramatically faster than 
SHA-1, which was faster than SHA-256 (the 256-bit version of 
SHA-1), which was faster than SHA-512. That’s no longer the 
case, in part due to better implementations and in part due to the 

fact that we’re now running on 64-bit processors. In Table 1, I 
present the times to hash a 1 GiB file with several of the algo-
rithms I mentioned above. 

Hashing in Digital Forensics
Beyond searching for contraband, over the past three decades, 
digital forensics researchers have developed approaches to use 
cryptographic hashes for authenticating evidence, searching 
for file fragments, and even gauging file similarity. We can now 
even search a hard drive for contraband data in less time than it 
takes to read the hard drive’s contents! These more sophisticated 
approaches have yet to be widely adopted, showing the difficulty 
of moving techniques from the lab to the field.

There are many definitions of digital forensics, but most of them 
link it to the recovery and analysis of digital information. Digital 
forensics techniques have many uses, including data recovery, 
event reconstruction, malware analysis, and even analyzing 
systems for the leakage of personal information. One of the 
best-known uses of digital forensics, though, is taking data from 
devices that were used by criminals and using that data as evi-
dence in a court of law.

One of the early uses of cryptographic hash functions in digital 
forensics was to certify that the copy of a hard drive made by an 
investigator had not been changed after it was acquired. Foren-
sics software would make a copy of the hard drive, called a disk 
image, and then compute the cryptographic hash of the disk 
image. The investigator would then write this hash in ink into 
their investigator’s notebook. Although the computer scientist in 
me wishes that the early programs would have then signed this 
hash with a private key, this pen-and-paper record provided suf-
ficient validation for US courts. 

The fact that you could make two, five, or even 50 disk images 
of the same hard drive and they would all have the same hash 
engendered a lot of confidence in this basic digital forensics tech-
nique: a hashed disk image became the gold standard of digital 
evidence preservation and created the assumption that the data 
in the disk image was unchanged since the disk was seized from 
the suspect. Of course, this assumption was wrong: a crooked 
officer could easily have planted the incriminating evidence on 

Bits 128 160 256 384 512

Family

MD5 1.45

SHA-1 1.03

SHA-2 2.18 1.48 1.48

SHA-3 2.65 3.45 4.90

Table 1: Time in seconds to hash 1 GiB using OpenSSL 1.1.1d on the author’s 
2018 Mac mini
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the hard drive before it was imaged. Such malfeasance is rare, 
fortunately, and there are other forensic techniques that can both 
detect and defend against such behavior. 

These days, hashes are still used to establish that data taken 
from a digital device hasn’t been altered since it was originally 
captured. However, the ability to repeatedly reimage a device and 
consistently get the same hash is quickly fading. When a modern 
operating system deletes a file, it can tell a solid state drive (SSD) 
to proactively erase the associated flash storage pages using the 
ATA TRIM command (called UNMAP in the SCSI command 
set). The drive doesn’t immediately erase the page, but it may do 
so in the future. If the disk is imaged before the pages are erased, 
the disk image will contain the blocks’ now-deleted data. But if 
the disk is left turned on, it may eventually erase these blocks. 
If you image the SSD a second time, then the blocks that were 
erased will now read as zeros, and the second image will have 
a different hash than the first. It is also increasingly difficult to 
get a “disk image” of a cell phone, as the data on many cell phones 
is accessed through an API, rather than by mounting the cell 
phone’s internal storage. Such file collections are sometimes 
called “logical images.”

If you use a hash that is 160 bits long, you can split it into six num-
bers of 25 bits each (throw out the remaining 10). If you have an 
array of 225 bits, you can store information relating to that hash by 
setting the six indices to a 1. Although this is not an effective way 
to uniquely store the original 160 bits, it has several advantages, 
especially for digital forensics. If you assemble a list of file hashes 
for a million stolen documents and store them all in a single 4 MiB 
Bloom filter, only six million bits (at max) in that Bloom filter will 
be set. Not only will the Bloom filter be much smaller than the list 
of a million hashes (which would take up 20MiB, instead of 4MiB) 
and is much more compressible, it’s also significantly faster to 
search.  Of course, when searching a Bloom filter there is always 
the risk of a false positive—some other document might have a 
hash that, when chopped into four parts, just happens to match 
four other partial hashes. This kind of false positive can be an 
advantage, though, if the files that you are hashing are highly 
confidential: if the criminal who stole some of your confidential 
documents manages to steal your Bloom filter, that person won’t 
be able to reverse engineer the Bloom filter and have it spill the 
hashes of all the documents that you consider sensitive. In either 
event, the Bloom filter’s false positive rate can be tuned as needed 
for the specific application.

My colleague Vassil Roussev spent several years working with 
hashes and Bloom filters and developed a metric for determining 
how similar two files are. The metric works by scanning files for 
what Roussev called “statistically improbable features” and then 
hashing a window of 64-bytes and storing the hash in a Bloom 
filter. When a certain fraction of bits in the Bloom filter fill up, 
Roussev’s algorithm starts on the next filter. With this system, 

the similarity of two files is proportional to the number of bits 
that are set in common in the filters. One of the neat things about 
this system is that you can compare Bloom filters for a small file 
and a very large file and find out if the small file resides inside the 
larger file. This even works if the larger “file” is an image from a 
multi-terabyte-sized disk array [6].

Roussev’s similarity digest overcomes a fundamental problem of 
using cryptographic hashes to find files of interest. By design, if 
you change just one bit of a file, the file ends up with a completely 
different cryptographic hash. Such changes can be made inten-
tionally to thwart investigators. The similarity digest doesn’t 
suffer from this problem.

In my own work, I found that a 4 KiB of data extracted from 
most video files and JPEGs tends to be highly identifying, even 
possibly unique. So my system chopped sensitive files into 4 
KiB chunks, hashed them, and stored the hashes in a high- 
performance database we built called hashdb. You can then 
search a TB-sized drive to see if it holds any of the videos in your 
collection by randomly sampling a small fraction of the drive’s 
sectors, hashing them, and looking up the hashes in the database. 
In theory, this would let us probabilistically search a TB-sized 
drive for the presence of a sensitive video in just a few minutes 
[7]. In practice, we found it too difficult to obtain sector hashes  
of sensitive files due to organizational and administrative issues, 
so we never deployed this technology. 

Digital Timestamping 
One use of cryptographic hashes that was pioneered in the 1990s 
and is coming back into vogue is to use them as the basis of a 
digital timestamping service. 

The roots of using hashes for timestamping go back to 1989, 
when a researcher at MIT accused Thereza Imanishi-Kari of 
 scientific fraud and misconduct. One of the key allegations was 
the data in laboratory notebooks had been fraudulently altered. 
Both the US Congress and the US Department of Health and 
Human Services (HHS) opened investigations. The US Secret 
Service raided Dr. Imanishi-Kari’s lab and seized her notebooks. 
Although the HHS Office of Research Integrity (ORI) concluded 
that fraud had taken place, that finding was overturned on June 
21, 1996, by the HHS Research Integrity Adjudications Panel, 
which found that ORI “did not prove its charges by a preponder-
ance of the evidence” (a relatively low legal standard).

Stuart Haber and Scott Stornetta were cryptographers at Bell-
core (Bell Communications Research). They wanted some way 
that cryptography could protect organizations from the allega-
tions that were flying around MIT of notebook alterations. 

For those who have never worked in the physical sciences, let 
me assure you that physical laboratory notebooks can be seri-
ous stuff. Research organizations might distribute individually 
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serialized notebooks to their scientists, who are expected to date 
and sign each page. Mistakes are supposed to be crossed out 
with a single line, so that the erroneous entry can still be read. 
Corrections must also be dated and signed. One reason for such 
procedures is to establish clear evidence regarding the date that 
something that is discovered or invented, which might one day be 
a key fact in patent litigation. Such procedures are also designed 
to protect against fraud. 

Electronic laboratory notebooks would seem to offer none of 
the protections of physical notebooks, since digital data can be 
changed without a trace. One obvious approach is to hash a docu-
ment with a timestamp and sign the result with a secret key. The 
problem with this approach is the holder of the secret key—call it 
the timestamping agency (TSA)—must be trusted not to write a 
fraudulent signature. 

Haber and Stornetta came up with an approach that eliminated 
the need to trust the timestamping agency. In their first pat-
ent (US 5,136,634, filed August 4, 1992), the TSA maintains a 
special hash called the catenate value. When a new document 
is to be timestamped, the TSA creates a receipt by hashing the 
document’s hash with the current date. The TSA then takes this 
receipt and hashes it with the previous catenate value to cre-
ate the next concatenate value. All of the hashes, with all the 
timestamps, thus make up a hash chain. The system that they 
ultimately developed, described in US Patent 5,781,629 (filed 
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W elcome to the second installment of Programming Workbench. 
Today’s topic is compressed sparse row (CSR) format, a compact 
and efficient way to represent graphs in memory. As usual, all 

example code is available in machine-readable form [6].

Graphs provide a generic abstraction that finds numerous applications for modeling connect-
edness and ordering in computing systems. Undirected graphs, for example, can represent 
communications links among computers; directed graphs can encode dependencies or prece-
dence constraints in software compilation, software package installation, and job scheduling 
problems. Top computer science textbooks emphasize two ways of representing graphs in 
memory: adjacency matrices and adjacency lists [1, 8]. Today we’ll consider other options that 
offer different tradeoffs and sometimes provide significant advantages. In particular we’ll 
see that compressed sparse row (CSR) format—a compact and memory-hierarchy-friendly 
graph representation—is sometimes the format of choice. Understanding CSR in detail 
rounds out a programmer’s education and informs the buy-or-build decisions that routinely 
confront practitioners.

We’ll begin in the next section by reviewing ways of representing graphs, including CSR. 
Then we’ll walk through a working C11 program that converts an edge list representation of 
a graph into CSR format. Finally we’ll conclude by suggesting extensions and exercises to 
help better understand the tradeoffs surrounding CSR. For brevity, we’ll restrict attention to 
unweighted directed graphs, but we thereby lose little generality: an undirected edge can be 
represented by two directed edges in opposite directions, and adding edge weights to a CSR 
representation is easy.

Graph Representations
Figure 1(a) shows a directed graph that we’ll use as a running example. We follow the conven-
tion that vertexIDs range from 1 to V inclusive, where V is the total number of vertices. The 
example graph contains V=9 vertices and E=9 directed edges. For example, there’s a directed 
edge from vertex 2 to vertex 1, shown as an arrow near the top of Figure 1(a). Vertices 5 and 9 
have in-degree zero and out-degree zero, i.e., they have neither incoming nor outgoing edges. 
Zero-degree vertices arise naturally in applications; for example, they may represent soft-
ware packages with no dependencies or compute jobs with no precedence constraints.

Rather than treating zero-degree vertices as special cases, removing them and/or handling 
them “out of band,” we’ll take the simpler approach of representing them straightforwardly. 
Self edges, i.e., edges that point from a vertex to itself, do not appear in our example, but they 
pose no special difficulties for the graph representations discussed below. We omit self edges 
for brevity; they arise relatively infrequently in applications of practical interest.

In many practical applications, a graph is given as a file that essentially contains an edge list 
of “from”/“to” vertexID pairs, possibly mummified in a more elaborate format such as XML 
or JSON. Figure 1(b) shows an edge list representation of our example graph. The first line 
in the list, “2 1,” represents the directed edge from vertex 2 to vertex 1. Zero-degree vertices, 
such as 5 and 9 in our example, don’t appear in an edge list, so metadata accompanying the 
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edge list must ensure that zero-degree vertices don’t go missing: 
Thanks to our vertexID convention, simply knowing V ensures 
that we don’t overlook zero-degree vertices. For clarity, Figure 1(b)  
shows a sorted edge list, but edge lists seldom arrive sorted in 
practical applications.

Figure 1(c) depicts a standard textbook adjacency matrix rep-
resentation of our example graph. A directed edge from vertex 
i to vertex j appears as a “1” at row i, column j of the adjacency 
matrix; all other matrix entries are zero (not shown for clarity). 
An adjacency matrix is efficient for some operations, such as 
testing in constant time whether an edge connects a given pair of 
vertices. The major downside of adjacency matrix representation 
is that it requires O(V2) bits even for sparse graphs in which most 
vertex pairs are not connected by an edge. Sparse graphs arise 
frequently in practice, and for large sparse graphs an adjacency 
matrix wastes too much memory on zero entries.

The representation that most textbooks recommend for sparse 
graphs uses adjacency lists, shown in Figure 1(d). On the left is 
an array of pointers indexed by “from” vertexID; each pointer is 
the head of a singly linked list of “to” vertexIDs. Adjacency lists 
are f lexible—it’s easy to add or delete vertices—and they are 

indeed more compact than adjacency matrices for sparse graphs. 
However they entail unfortunate time and space overheads of 
their own: space overheads include the “next” pointer in every 
list node; list nodes will also carry allocator overheads if a 
general-purpose allocator like malloc() creates them. We suffer 
time overheads when we traverse an adjacency list because we 
must chase pointers across the address space, creating  random 
memory accesses that today’s computers penalize heavily 
compared with sequential accesses. If we transform an unsorted 
edge list representation into dynamically allocated adjacency 
lists in the straightforward way, the list nodes for each adjacency 
list will be scattered across the heap, exacerbating the pointer-
chasing problem.

Using C++ Standard Template Library <vector>s instead of 
linked lists might seem like one way to reduce the overheads of 
adjacency lists. Figure 1(e) shows the resulting adjacency vec-
tors representation. As with adjacency lists, an array indexed 
by “from” vertexID contains entry points to <vector>s of “to” 
vertexIDs. The dashed oval at the bottom of Figure 1(e) encloses 
the <vector> of vertexIDs adjacent to vertex 8. A <vector> is 
typically implemented as a two-part structure consisting of a 

Figure 1: Textbook representations of running example, a directed graph with nine vertices and nine edges. The C++ STL <vector> depicted within the 
dashed oval in Figure 1(e) is a two-part data structure: a partially filled data array, on the right, located via the header on the left, which contains the capacity 
of the data array, the number of positions in the array occupied by user data (which may be less than the capacity, as shown here), and a pointer to the data 
array itself. The header of the <vector> enclosed by the dashed oval indicates that the data array can hold two integers but is currently holding only one. 
This <vector> represents the adjacencies of vertex 8, and the lone integer contained in the data array corresponds to the directed edge from vertex 8 to 
vertex 4, i.e., the last line of the edge list in Figure 1(b).
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header containing the number of allocated entries, the number of 
occupied entries, and a pointer to an array of the entries them-
selves [10]. If we read a graph given as an edge list into adjacency 
<vector>s in the straightforward way, each <vector> grows 
as vertexIDs are added to it. Implementations typically double 
allocated capacity each time a <vector> fills up as it grows. The 
result is that up to roughly half of the allocated capacity of each 
vector can be unused; this waste may erode the benefits of reduc-
ing pointer and allocator overheads compared with adjacency 
lists. On the positive side, <vector>s reduce the time overhead 
of chasing pointers because they store adjacent vertexIDs in 
compact arrays. 

The representations shown in Figure 1 don’t exhaust all of the 
possibilities. For example, we sometimes need fast access to 
the incoming as well as the outgoing edges of a vertex, which is 
easy to arrange by associating a second adjacency list with each 
vertex. And nothing prevents us from using both an adjacency 
matrix and adjacency lists or <vector>s simultaneously, if we 
have sufficient memory. Using both representations yields the 
strengths of both: constant-time queries to test the existence of 
an edge between a given pair of vertices, and efficient access to 
the adjacent vertices of a given vertex.

Compressed Sparse Row Format
CSR originated in high-performance scientific computing as a 
way to represent sparse matrices, whose rows contain mostly 
zeros. The basic idea is to pack the column indices of non-zero 
entries into a dense array. CSR is more compact and is laid out 
more contiguously in memory than adjacency lists and adjacency 
<vector>s, eliminating nearly all space overheads and reducing 
random memory accesses compared with these other formats. 
The price we pay for CSR’s advantages is reduced flexibility: add-
ing new edges to a graph in CSR format is inefficient, so CSR is 
suitable for graphs whose structure is fixed and given all at once. 
CSR also carries a cognitive overhead: it’s trickier than the other 

formats we’ve reviewed, and it uses arrays in FORTRANesque 
ways seldom seen in systems-y C/C++ code or in mainstream 
Java code. We’ll walk through it slowly.

Figure 2 depicts the CSR representation of our example graph. 
First we’ll consider the specifics of how CSR encodes a hand-
ful of the example graph’s structural features, and then we’ll 
describe CSR in more general terms. Like the textbook sparse-
graph representations discussed earlier, CSR facilitates finding 
the adjacencies of a given vertex, i.e., the vertices at the “to” ends 
of edges emanating out of a given “from” vertex. CSR finds adja-
cencies using two layers of array indexing.

The CSR depicted in Figure 2 contains V, E, and two arrays of 
integers, N and F. Notice that F presents horizontally the same 
sequence of “to” vertexIDs that appear vertically in the right-
hand column of the sorted edge list of Figure 1(b). Given a “from” 
vertexID, we find all corresponding “to” vertexIDs by indexing 
into F via N. We’ll walk through the process of finding the adja-
cencies of the first three vertices in our example graph to gain 
intuition for how CSR encodes graph structure.

The out-degree of vertex 1 is encoded as the difference between 
N[1] and N[2]. Since N[1] equals N[2]—both are zero—the out-
degree of vertex 1 is zero, so there are no adjacent vertices to be 
found. The out-degree of vertex 2 is N[2] subtracted from N[3], 
which is 3. The IDs of the three vertices adjacent to vertex 2 are 
in array F starting at position N[2], i.e., at F[0], as indicated by 
the dotted arrow in Figure 2 from N[2] to F[0]. The out-degree of 
vertex 3 is the difference between N[3] and N[4], which is three; 
the IDs of the three vertices adjacent to vertex 3 begin at position 
N[3] in F, i.e., at F[3], as shown by a second dotted arrow in Figure 
2. The figure contains a dotted arrow for every vertex with out-
degree greater than zero; the arrowheads partition F into four 
sub-arrays of adjacencies.

In general, the out-degree of any vertex a is N[a+1] minus N[a]. 
The IDs of the vertices adjacent to a are located in array F start-
ing at F[N[a]] and continuing through F[N[a+1]-1] inclusive. 
In other words, the entries of N, indexed by “from” vertexID, 
“point to” contiguous regions of F containing the adjacent “to” 
vertexIDs. Array F contains E entries, one for each edge. Array 
N contains V+2 entries: N[0] is unused and N[V+1] contains E. 
The total amount of memory required for CSR format is almost 
exactly equal to sizeof(int) multiplied by (V+E), so it’s easy to 
determine if available memory is adequate based on a graph’s size 
parameters.

If E exceeds INT_MAX, a larger integer type, e.g., int64_t, must be 
used for the elements of N, because the entries of N refer to posi-
tions in E-long array F and the last entry of N contains E. Simi-
larly, F must use a sufficiently large type to represent vertexIDs 
up to V. Moreover it’s actually best to choose a type for vertexIDs 

Figure 2: Compressed sparse row (CSR) representation of example graph. 
The vertices adjacent to vertex a are stored in positions N[a] through 
N[a+1]-1 of array F. For example, consider vertex 2 from Figure 1(a): 
directed edges extend from vertex 2 to vertices 1, 6, and 8. N[2] is zero, 
so the adjacencies of vertex 2 start at F[0]; N[2+1]-1 is 2, so they extend 
through F[2]. F[0] through F[2] contain the expected vertexIDs: 1, 6,  
and 8.
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such that V is strictly less than the MAX of the type, because V+1 is 
used as an index into N. Unsigned integer types may be used for 
arrays N and F, though signed integer types might be preferable, 
e.g., if we want to catch signed overflow errors at runtime with a 
compiler flag like GCC’s -ftrapv.

CSR offers different tradeoffs than alternative formats. On the 
positive side, it eliminates memory allocation overheads almost 
completely. Furthermore, while array N contains the moral equiv-
alent of pointers, they can be smaller than conventional pointers 
(32 vs. 64 bits), depending on the size of E and the relative sizes 
of ints and ordinary C pointers. The IDs of vertices adjacent to a 
given vertex are contiguous in F, so visiting all adjacent vertices 
involves zooming through an array, which is much faster on 
modern computers than chasing pointers down an adjacency list. 
While adding a new edge to a CSR representation isn’t efficient—
it would require insertion into the middle of F, which would take 
O(E) time on conventional memory [3]—deleting an edge is quick 
and easy: to delete an edge, simply set its entry in F to zero, which 
is not a valid vertexID, and ignore zero entries in F.

CSR isn’t magic. When applied to the kinds of graphs that arise 
naturally in practical applications, many important graph algo-
rithms, including traversal algorithms such as breadth-first 
search and depth-first search, must inevitably perform random 
memory accesses. CSR can’t eliminate random memory accesses 
that are inherent to the computational task at hand; it can merely 
avoid introducing additional random accesses that arise as side 
effects of the format.

The Code
The C11 program listed in this section, “el2csr.c,” converts an 
edge list representation of an unweighted directed graph to CSR 
format; the source code is available at [6]. We’ll discuss every-
thing substantive, skipping boilerplate like #includes. The pur-
pose of the example code is to illustrate CSR format, so it avoids 
niceties for brevity and clarity.

The macros below handle error checking. BAIL() prints an error 
message prefixed by the file name and line number where it is 
called then exit()s. CAL() calls calloc() and bails if allocation 
fails.

#define ERRSTR strerror(errno)
#define                           S1(s) #s
#define                     S2(s) S1(s)
#define COORDS __FILE__ ":" S2(__LINE__) ": "
#define BAIL(...)                           \
  do { fprintf(stderr, COORDS __VA_ARGS__); \
       exit(EXIT_FAILURE); } while (0)
#define CAL(p, n, s)                                      \
  do { if (NULL == ((p) = (int *)calloc((n), (s))))       \
         BAIL("calloc(%lu, %lu): %s\n", (n), (s), ERRSTR);\
     } while (0)

Readers may recall from the previous Programming  Workbench 
column a function-like macro called “DIE()” that differs from 
BAIL() above but serves a similar purpose. The contrast between 
the two stems from differences in how they are used and from 
differences in the programs they inhabit. DIE() is used exclu-
sively to handle failed library calls, and thus it is adequate for 
DIE() to report only the name of the failed call via perror(). By 
contrast, BAIL() is sometimes used to check user input, so it 
supports flexible printf()-like formatting of more informative 
diagnostics, such as the input line number where a parse error 
occurs. DIE() is used in multithreaded code where failed library 
calls may arise from Heisenbugs, so it aborts with a core dump to 
facilitate debugging. BAIL() serves a simple single-threaded pro-
gram and is used in situations where a core dump would not be 
very helpful, so it merely calls exit(). DIE() expands to an expres-
sion because it is used in contexts that demand expressions, but 
BAIL()’s simpler role allows it to expand into a statement block, 
which is easier to understand.

The following struct will eventually contain a CSR representa-
tion of a graph. The roles of V, E, N, and F are as described in the 
previous section.

static struct {
  int V,  // max vertexID; valid vertexIDs are [1..V]
      E,  // total number of edges
     *N,  // indexed by "from" ID; outdeg(v) == N[1+v]-N[v]
     *F;  // "to" vertexIDs accessed via N[]
} CSR;

For brevity we consider only unweighted graphs, but it’s easy 
to handle edge weights: add to the struct CSR above an E-long 
dynamically allocated array of weights—one weight for every 
edge in array F. Note that such edge weights can be updated effi-
ciently; they need not be completely static.

One way to understand CSR format is to study the function 
below, which prints a text representation of the graph in the 
struct above. The outer for loop iterates over all vertexIDs 
a. The inner for loop iterates over all vertexIDs b such that a 
directed edge exists from a to b. Pointers begin and end delimit 
the part of array F containing a’s adjacent vertexIDs.

static void print_adjacencies(void) {
  printf("per-vertex adjacencies:\n");
  for (int a = 1; a <= CSR.V; a++) {
    int *begin = CSR.F + CSR.N[  a],
        *end   = CSR.F + CSR.N[1+a];
    printf("%d:", a);
    for (int *b = begin; b < end; b++)
      printf(" %d", *b);
    printf("\n");
  }
}
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Our struct CSR contains ordinary int variables, which are 32 
bits long on many computers. In practice we may encounter 
graphs with many billions of vertices and edges, so when the user 
enters graph size parameters V and E on our program’s command 
line, we verify that they both fit in an int—with room to spare, 
because we index into array N using values up to V+1. Function 
s2i() below performs string-to-int conversions carefully and 
gripes if it encounters weirdness of any kind. The C11 static_
assert feature confirms at compile time our assumption that the 
largest integer type is larger than an int.

static_assert(sizeof(intmax_t) > sizeof(int), "int sizes");
static int s2i(const char *s) {
  char *p;  intmax_t r;
  errno = 0;
  r = strtoimax(s, &p, 10);
  if (0 != errno || '\0' != *p || 0 >= r || INT_MAX <= r)
    BAIL("s2i(\"%s\") -> %" PRIdMAX ", errno => %s\n",
         s, r, ERRSTR);
  return (int)r;
}

The main() function begins by declaring a few variables and 
checking user-supplied command-line arguments, then open-
ing the file containing the edge list representation of the input 
graph. Reading V from the command line, as opposed to inferring 
it from the largest vertexID on the edge list, accommodates zero-
degree vertices with IDs greater than any on the edge list, like 
vertex 9 in our example graph.

int main(int argc, char *argv[]) {
  int a, b, line = 0, t = 0;
  FILE *fp;

  if (4 != argc)
    BAIL("usage:  %s  V  E  edgelistfile\n", argv[0]);
  CSR.V = s2i(argv[1]);
  CSR.E = s2i(argv[2]);
  if (NULL == (fp = fopen(argv[3], "r")))
    BAIL("fopen(\"%s\"): %s\n", argv[3], ERRSTR);

Next, we allocate memory for the N and F arrays using the CAL() 
macro, which calls calloc(). As explained above, array N is of size 
V+2 because it is indexed with integers up to V+1.

  CAL(CSR.N, 2 + (size_t)CSR.V, sizeof *CSR.N);
  CAL(CSR.F,     (size_t)CSR.E, sizeof *CSR.F);

We make two passes over the input file to construct CSR format. 
The first pass, below, verifies the sanity of each vertexID pair 
and stores the out-degree of each vertex in array N; later N will be 
altered to play its role in CSR format as described in the previous 
section. We check for flagrant parse errors and verify that the E 
given on the command line matches the length of the input file.

  while (2 == fscanf(fp, "%d %d\n", &a, &b)) {
    line++;
    if (0 >= a || a > CSR.V || 0 >= b || b > CSR.V)
      BAIL("%d:  bad vertexID:  %d %d\n", line, a, b);

    if (a == b)
      fprintf(stderr, "%d:  warning:  self edge\n", line);
    CSR.N[a]++;
  }
  if (! feof(fp))
    BAIL("parse error after %d lines: %s\n", line, ERRSTR);
  if (line != CSR.E)
    BAIL("%d input lines != %d edges\n", line, CSR.E);

The standard fscanf() function used above silently performs 
incorrect conversions if the input vertexIDs are too large. For 
example, on my system fscanf() happily converts 4,294,967,299 
to 3 without complaint. Performing conversions more carefully, 
e.g., with the s2i() function that we saw earlier, would substan-
tially increase the overhead of parsing the input. Instead we 
warn users that it’s their responsibility to ensure that vertexIDs 
on the input edge list must not exceed the V argument supplied on 
the command line, which is checked carefully by s2i().

This next bit of code updates the contents of array N to contain 
cumulative out-degrees. After the code below executes, N[a] con-
tains the sum of the out-degrees of vertices 1 through a inclusive. 
N[V+1] contains the sum over all vertices of their out-degrees, i.e., 
the number of edges E. 

  for (a = 1; a <= CSR.V; a++) {
    t += CSR.N[a];
    CSR.N[a] = t;
  }
  CSR.N[a] = t;
  assert(CSR.N[1 + CSR.V] == CSR.E);

We’re still not done with array N, because at this point each entry 
N[a] is too large by the out-degree of vertex a. Our second and 
final pass over the input fixes the problem. The second pass adds 
edges to F while walking the moral-equivalent-of-pointers in N 
back to their final correct CSR values.

  rewind(fp);
  while (2 == fscanf(fp, "%d %d\n", &a, &b))
    CSR.F[--CSR.N[a]] = b;  // add directed edge a -> b

  if (0 != fclose(fp))
    BAIL("fclose(): %s\n", ERRSTR);

Sorting the outgoing edges of each vertex isn’t strictly necessary, 
but we’ll do it anyway because it makes it easy to detect duplicate 
edges. Furthermore it allows us to perform a binary search on 
each vertex’s adjacencies in O(log D) time, where D is the average 
out-degree. Would it be easier to sort the input edge list rather 
than sorting the adjacencies of each vertex? That might be con-
ceptually simpler and easier to implement, but it would be asymp-
totically less efficient: sorting the edge list with a general method 
such as qsort() would would require O(E log E) time, whereas 
sorting the adjacencies of each vertex requires O(V D log D) time; 
the latter is typically smaller. The integer comparison function 
below, icmp(), seems prone to overflow in the subtraction opera-
tion—consider INT_MAX minus negative one—but overflow can’t 
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happen in our program because all of the integers being sorted 
are non-negative.

static int icmp(const void *a, const void *b) {
  return *(const int *)a - *(const int *)b;
}
...
  for (a = 1; a <= CSR.V; a++)
    qsort(CSR.F + CSR.N[a],
          (size_t)(CSR.N[1+a] - CSR.N[a]),
          sizeof *CSR.F, icmp);

Now that we’ve constructed CSR format, we dump it for inspec-
tion and then print per-vertex adjacencies using the function we 
defined earlier:

  printf("dump CSR format:\n"
         "V = %d    E = %d\n"
         "N: ", CSR.V, CSR.E);
  for (a = 0; a <= 1 + CSR.V; a++)
    printf(" %d", CSR.N[a]);
  printf("\n"
         "F: ");
  for (a = 0; a < CSR.E; a++)
    printf(" %d", CSR.F[a]);
  printf("\n");

  print_adjacencies();

Our final chore before terminating is to deallocate arrays N and F:

  free(CSR.N);
  free(CSR.F);

  return 0;
}

Running el2csr on our example graph yields the expected results:

% ./el2csr 9 9 example_graph.txt
dump CSR format:
V = 9    E = 9
N:  0 0 0 3 6 6 6 6 8 9 9
F:  1 6 8 1 6 7 2 4 4
per-vertex adjacencies:
1:
2: 1 6 8
3: 1 6 7
4:
5:
6:
7: 2 4
8: 4
9:

The example code tarball contains a random graph generator and 
a test script in addition to el2csr.c. The test script compiles the 
random graph generator and compiles el2csr in a special test 
mode that dumps an edge list representation of the input graph to 
a file. The test script then feeds many random graphs to el2csr 
and verifies that in each case the edge list regurgitated by el2csr 
is byte-for-byte identical to the sorted input file.

Persistence
Converting an edge list to CSR format takes time—parsing 
textual input can be orders of magnitude slower than running a 
graph analysis algorithm—and it would be wasteful to perform 
the conversion more often than necessary. It’s usually best to 
store the binary CSR representation of the graph in a file for 
future use. One way would be to write() variables V and E and 
arrays N and F to a file. An easier and more elegant approach is to 
employ “the persistent memory style of programming” [4, 5]: lay 
out the data structures in a file-backed memory mapping using 
msync() to persist the data after constructing a CSR representa-
tion and later using mmap() to load the file containing CSR back 
into memory as needed. This is convenient and is often the most 
efficient way to handle graphs in practical applications, because 
after the initial conversion to CSR format no further parsing 
or serializing is ever needed. The CSR file is in the compact 
in-memory format used by subsequent analyses, which access 
the data via LOAD instructions after mmap()-ing the file into 
memory.

Other Implementations
The Boost Graph Library [9] offers C++ implementations of many 
graph algorithms, and it supports several graph formats includ-
ing adjacency lists and CSR. BGL emphasizes generic program-
ming and is written in a different style from my example code; 
comparing the two may lead the reader to additional insights. 
Galois is a platform for parallel computation that includes 
substantial support for graphs [2]. Distributed/scale-out graph 
analysis platforms were blooming like mushrooms in the research 
community several years ago; many were so grotesquely ineffi-
cient that they are of tragicomic interest only [7].

Going Further
Extending my example code can be an informative exercise. 
You can avoid the time overhead of parsing the input edge list 
on the second pass by converting it to a temporary binary edge 
list on the first pass. Adding support for weighted edges is easy. 
To appreciate the benefits of CSR format over adjacency lists or 
adjacency <vector>s, compare their memory footprints on real or 
randomly generated graphs. Similarly, compare the runtimes of 
standard graph algorithms on the different formats.

Random graph generators are often used for testing and per-
formance benchmarking because they make it easy to sweep 
key graph parameters such as size, average degree, and density. 
Storing large random graphs in short-lived files can be slow, 
awkward, and cluttery, but an easy trick avoids the need to cre-
ate files, even when their consumer must make multiple passes 
over each: run multiple instances of the random graph generator 
as background jobs that spit identical byte streams into named 
pipes, one pipe for every pass needed by the consumer. For 
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example, if the el2csr program listed above is the consumer, it 
would be modified to read two identical byte streams from two 
named pipes supplied on the command line—an easy exercise. 
This approach preserves a clean separation of responsibilities 
between graph generator and graph consumer while avoiding the 
fuss of large temporary files.

Conclusion
Compressed sparse row is typically the best format for sparse 
graphs, provided that new edges aren’t added and relatively few 
edges are deleted. CSR is compact, avoiding the memory waste of 
adjacency lists and <vector>s, and its memory footprint can be 
calculated directly from V and E. CSR is furthermore contiguous 
in memory, eliminating the time overhead of pointer chasing. It’s 
easy to persist CSR in memory-mapped files, and CSR is conve-
nient once you become accustomed to it. The two-pass construc-
tion approach implemented above is asymptotically faster than 
sorting an edge list.

Graphs are essentially simple, and coding graph algorithms can 
be positively pleasant. The next time you’re faced with a problem 
involving graphs, consider solving it by writing your own code 
instead of using someone else’s software; the result might well 
be superior overall. Please share your experiences and feedback 
with me!
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“Without data, you’re just another person with an opinion.”

—W. Edwards Deming

It is tempting to tune out the cyberattack news cycle, dismissing the 
seemingly random assortment of reported attacks as nothing more 
than chance encounters of lucky defenders with unlucky attackers. It 

is easy to see the noise. It takes more effort—what amounts to digital wad-
ing—to find the signal, especially when dealing with public reporting on 
cyber attacks, but wade we did to assess the extent of software supply chain 
attacks. These attacks prey on the trust that makes code reuse possible and 
that produces the modern software cornucopia enjoyed by software develop-
ers and consumers alike.

We read of the event-stream attack [1] where an individual with malicious intent took over 
a popular JavaScript library and slipped code that steals cryptocurrency wallet credentials 
into a dependency of the associated npm package; ShadowHammer [2] in which a  back-doored 
update utility with a legitimate certificate was distributed through official channels; and 
of barrages of typosquatting attacks on package registries [3] such as npm, RubyGems, and 
PyPI. Learning about these incidents led us to collect and review reports of software sup-
ply chain attacks in order to better understand the characteristics of these incidents and 
trends. While doing so, we also noticed the emergence of more systematic research. There’s 
been measurement of the susceptibility of package manager users to typosquatting [4], the 
creation of a sophisticated malware detection pipeline for package managers [5], the building 
of a package manager download client that protects users from malware [6], and other efforts 
to gather and classify reports of software supply chain compromises [7–9].

We collected our data set in order to answer basic questions about software supply chain 
attacks such as: How frequent are known instances of attacks? What is the relative occur-
rence of different attack types? What is the length of time from initial deployment of such 
attacks to public discovery? However, while attempting to obtain these quantitative metrics, 
we were also faced with more fundamental, qualitative questions, like: What is (and is not) 
considered a software supply chain attack? What are the definitions of different attack types? 
How should attack impact be defined and measured? We report on how we built this data set, 
answer the quantitative questions that we set out to understand, and then, based on these 
findings, offer some thoughts on how to use data to combat software supply chain attacks.

Software Supply Chain Compromises: Data Set and Analysis
We built a data set based on public reporting of software supply chain security compromises, 
which is available at https://github.com/IQTLabs/software-supply-chain-compromises. 
This data set defines software supply chain attacks as attacks that intentionally insert mali-
cious functionality into build, source, or publishing infrastructure or into software compo-
nents with the goal of propagating that malicious functionality through existing distribution 
methods. Exploiting a vulnerability found within a software’s supply chain was insufficient 
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to merit inclusion. We attempted to count three different units 
of software supply chain security compromise: attacks, reports, 
and incidents. An “attack” is a distinct action to compromise a 
software supply chain, e.g., deliberate introduction of a vulner-
ability into source code. A “report” is a public disclosure of one 
or more software supply chain attacks, e.g., a blog post from a 
security researcher who has identified the existence of an attack 
in an open source library. An “incident” is a single instance of 
an attack reaching a target, e.g., the download of a compromised 
application from a download server. In effect, we hoped to use 
“incident” as a measurement of the impact of an “attack.”

Figure 1 describes the trend of reports and attacks by the year 
in which the report or attack was announced, a decision that 
reflects the limited data available about the starting date of many 
of these attacks. The number of reports and attacks has been 
increasing over time; though included here, years before 2010 
include only a count of one in 2003 and one in 2008. Because 
reporting can be delayed, 2020 and, perhaps, 2019 may be under-
counted as yet. (The lines are power-law fits; the exponent is 1.2 
for count of reports and 2.5 for count of attacks.)

Table 1 groups these reports and attacks into major and minor 
categories based on the actions of the attacker, not the perspec-
tive of the victim. These categories were inf luenced by the 
work of the “in-toto” project [7] but were adapted and extended 
organically while collecting this data set and do not represent 

any established classification scheme. The development of a 
standard taxonomy in the future would be beneficial. 

Table 1 tentatively suggests that there is an inverse  relationship 
between the estimated level of effort required to execute an 
attack type and the frequency of reported attacks of that type. 
For example, 41 percent of attacks in our data set are classified 
as typosquatting, which merely requires the attacker to create 
an account on a package registry, identify unclaimed package 
names that are plausible misspellings of legitimate packages, 
and publish the malicious package under those names. On the 
other end of the spectrum, a build system compromise is one of 
the least common attack types in our data set, perhaps because 
it involves several challenging steps, including obtaining access 
to a target’s build environment and introducing a compromised 
component into the build process without being detected. As 
we discuss below, while the success of an attack is difficult to 
objectively define and measure, it seems possible that the effort 
required to successfully deploy an attack is directly proportional 
to the number of incidents, with typosquatting attacks affecting 
fewer individuals than a build system compromise like Shadow-
Hammer. This indicates that increasing the level of effort 
required to successfully deploy attacks on software registries 
could significantly reduce the quantity of reported software 
 supply chain attacks.

Figure 1: The number of reports and attacks by year reported
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Data on incidents is not consistently available, and metrics are 
not consistent across attack types, making quantitative analysis 
across this data set infeasible. For example, download metrics 
were sometimes available for a malicious package accessible 
on a software registry, but the number of victims and number 
of times the package was executed after download are gener-
ally unknown. In other cases, a lower bound on the number of 
compromised applications has been reported, but the extent of 
propagation is unknown. However, the limited data that is avail-
able indicates the potential for widespread impact. In the case 
of the event-stream attack, there were over 7 million package 
downloads reported for the 53 days it was available on npm, and 
some unknown number of those downloads were of the compro-
mised version, rather than older, non-malicious versions. For 
ShadowHammer, Kaspersky, which identified and reported the 
attack, stated that the attack affected over 57,000 of their users 
and estimated that the attack was distributed to over 1 million 
people. In the case of the typosquatting attacks identified by 
Perica and Zekić, the one package where information is reported 
was downloaded over 1700 times over nearly two years. While 
details are limited, it is clear that the potential force multiplica-
tion caused by the propagation of an attack through existing 
software delivery methods is highly appealing to attackers.

Another way to measure the success of a software supply chain 
compromise is the length of time it is active. Known as “dwell 
time,” it is the number of days a threat remains undetected 
within a given environment; if the detection date is not available, 
we use the public announcement date. Figure 2 displays the dis-
tribution of dwell time for all reports with available data (n=59). 

Defending the Supply Chain
Our analysis of known software supply chain attacks indicates 
that weaknesses in the software supply chain are numerous 
and are being appropriated by cybercriminals with increasing 
frequency. Per the usual, attacks as yet unknown are surely pres-
ent, so you should assume that we are undercounting.  Counting 

is hard. The spike in attacks in 2016 includes two special cases: 
a research project where a student intentionally uploaded 214 
typosquatting packages to various software registries to mea-
sure download frequency, and the intentional deletion of 273 
npm packages by a developer who was angry that npm took a 
package namespace away from him and wanted to wreak havoc. 
Earlier this year, ReversingLabs found 700+ malicious packages 
in RubyGems, while Duo found 500+ malicious Chrome exten-
sions, both evidently the first time anyone had looked into such 
unknown unknowns. Counting is hard. 

We believe there exist at least three major obstacles that prevent 
software developers, security teams, and software users from 
adequately protecting the software supply chain and from shield-
ing themselves or their organization from such attacks.

First, there is a striking absence of data collection and analysis 
that would help identify and assess risks associated with these 
attacks, especially those involving open source software. This 
absence is surprising given the inherently public nature of open 
source software development and the ubiquity of open source 
dependencies within modern software applications. In other 
words, much of the data needed to identify potential and actual 
risks associated with a software component is hosted on publicly 
accessible development platforms like GitHub and is thus avail-
able to any interested party. Unfortunately, much of this infor-
mation is not analyzed, allowing attackers to hide in plain sight.

To identify attacks, defenders will need to cull and analyze 
software development-related data. To start, a software bill 
of material that describes all dependencies of an application 
provides transparency and allows for investigation of direct and 
indirect dependencies. Other rich data sources are open source 
code repositories and package registries, which contain infor-
mation about developer turnover, code commits, and version 
releases stored in these repositories. Defenders can also expose 
inconsistencies between independent data sources,  verifying, 
for instance, the relationships between source code stored in 

Figure 2: Distribution of dwell time in days for reports; dwell time for 12 reports was zero days; the median=34.

Major Type Build, Source, and Publishing Infrastructure Software Registry

Minor Type Build System 
Compromise

Firmware 
Implant

Source Code 
System 

Compromise

Publishing: 
Certificate 

Attack

Publishing: 
Delivery 
System 

Compromise

Account 
Takeover

Dependency 
Compromise

Malicious 
Package Typosquatting

Count 11:13 7:32 9:39 6:18 29:35 11:14 12:333 51:1,373 15:1,247

Table 1: Count of Reports:Attacks by major and minor categories. (Note: Both reports and attacks can be assigned to multiple categories.)
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a repository and a released library or executable stored in a 
package registry. Countermeasures will also likely require an 
understanding of the individuals and organizations that directly 
or indirectly contribute to the development and distribution of 
software, especially the individuals or organizations that can 
publish changes. Importantly, defenders will need this informa-
tion for all dependencies of a distributed software application, 
whether those dependencies are part of the build process, release 
process, or are included at runtime. As always, the wellspring of 
risk is dependence, and risk, unlike benefit, is transitive.

Second, existing application security products are unable to 
identify the distinctive characteristics of software supply chain 
attacks. Moreover, there has been limited adoption of what tools 
and processes do exist in order to prevent instances of  supply 
chain attacks within released software. These issues force 
software developers and users to trust—but not verify—vendors 
and their products, rendering judgments about product software 
supply chain quality impossible and compelling acceptance of 
unknown risks within critical software.

These deficiencies should be a rallying cry for those who want to 
develop and build a new class of application security products, 
tools designed to uncover instances of software supply chain 
attacks. Existing application security tools are designed to 
identify defects in source code or executables and determine the 
conditions under which those defects are exploitable. These tools 
will not, however, identify a well-written software supply chain 
compromise. These attacks arise from the existence of unde-
sired functionality with respect to the intended purpose of the 
software. This new breed of application security products will 
need context and an understanding of the expected use case of 
the application, concepts lacking in current application security 
products. This will not be easy.

Third, reducing the software supply chain attack surface also 
requires adopting existing technologies and processes that pro-
vide the information needed to verify the origin and content of 
source code and binaries, eliminating or mitigating many of the 
risks of compromise. One practical step is using digital signa-
tures and certificates to verify file integrity. Employing repro-
ducible builds and publishing relevant metadata to an immutable 
distributed ledger can also allow consumers to independently 
verify the integrity of a software component. Best of breed tools 
for network and endpoint protection should also be deployed 
within the development, publication, and operational environ-
ment to limit opportunities for compromise pre-commit.

Ultimately, securing the software supply chain of any prod-
uct requires continuous assessment of components, vendors, 
and operational environments in addition to orchestration and 
analysis of relevant data. These processes, to be successful, 
require significant investment in automation and collaboration 

between all participants in the software supply chain. Nothing 
less is needed if sharing common software dependencies is to 
be a strength, the topic of this column two issues ago [10], rather 
than the liability it appears to be today.
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Discontent Creator

R O B E R T  G .  F E R R E L L

Some enterprising individual on a business-oriented social media site 
recently tried to flatter me (at least, I’m presuming he meant it that 
way) into accepting him as a connection by labeling me “a fellow influ-

encer and content creator.” The naturally curious sort that I am, I decided I 
should probably try to understand what it was he was calling me by conduct-
ing a little online research. The Internet being a fractal rabbit hole that leads 
to an infinity of equally fractal rabbit holes, I got a little distracted. After six 
or seven hours I eventually ran across this definition for influencer: “a person 
with the ability to influence potential buyers of a product or service by pro-
moting or recommending the items on social media.”

Now, were I indeed any variety of influencer, my novels would doubtless occupy  positions 
much higher on the bestseller list than they currently enjoy. My sales rankings are so 
abysmally low, in fact, that they very nearly wrap back around to the top like a pinball score. 
Regular readers of this column will also have a pretty clear idea what I think of social media. 
Associating me with a commercial product there would be a disastrous mistake on anyone’s 
part, as I am at best a “dissuader” and at worst, “anathema.” 

I’m trying to remember the last time I influenced anyone to purchase something. My wife 
buys things at the store because I ask her to, but I don’t think that really counts. This paucity 
of persuasive acumen is partly due to the fact that the majority of my friends are too old to be 
influenced by me or much of anyone else. By the time you get to my age, you like what you like 
and don’t what you don’t, regardless of what other people say. Besides, my idea of a ringing 
endorsement goes something like this: “I bought this three-horsepower slip-clutched double 
overhead cam citrus peeler yesterday and it hasn’t fallen apart yet. Sweet.” I don’t habitually 
rate purchases, but if I did it would be with little crescent wrenches, not stars.

It’s been my observation that facts and even basic grammatical awareness are largely regarded 
as irrelevant in the headlong rush to online influence. The medium is no longer merely the 
message; it now constitutes the whole enchilada. What is being said is far less crucial to mod-
ern audiences than how it is being said. Presentation has superseded rhetoric, form obliter-
ated function. Communication itself has been wholly subsumed by advertising. Clarity and 
meaning are outmoded concepts.

Even the label “content creator” is spurious. We’re all content creators, although most of us 
create content that doesn’t need to exist in this or any other universe. There is nothing inher-
ently salutary in creating content unless that content has value in and of itself. I, for example, 
allow every new kitten who comes to live in my house to flounce across my keyboard and 
thus construct a “short story.” I suppose that makes my cats content creators, too. Content 
 creators, I might add, who haven’t the slightest interest in generating followers or accumulat-
ing likes, unless by “likes” one means petting and/or treats.

Robert G. Ferrell, author of The 
Tol Chronicles, spends most of 
his time writing humor, fantasy, 
and science fiction.  
rgferrell@gmail.com
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Most of the content I see created in the IT realm is commend-
ably utilitarian, which means someone, somewhere, probably 
has an actual use for it, even if it’s only to give the folks in the C 
suite something to chew on while they’re packing their golden 
parachutes. This stands in stark contrast to the bulk of what 
“influencers” produce, which resembles transcripts of conversa-
tions overheard in a high school hallway accompanied by way 
too many photos of the originator and is more closely related to 
secretion than creation. There has never before been a genera-
tion so fascinated with their own visages. I’m not really a fan of 
reflective surfaces around my house in general, much less selfies. 
Most pictures I’ve seen of myself are disturbing in good light, 
terrifying in bad.

Before the age of social media, writers often wrote stories. Some 
of these stories were factual, some f lowed from a practiced 
imagination. While not every story rose to the level of high art, 
referring to them simply as “content” is akin to calling works of 
portraiture “pigment.” Highways have no intrinsic worth until 
they enable vehicles containing people or goods to travel from 
place to place, just as content means nothing unless it conveys 
something significant to the reader other than self-referential 
metaphor. “Yo dawgs, check out my new cowboy boot b-ball 
kicks!!!!” is not what I’m talking about here. 

The chief problem I see with content creation for its own sake is 
that it muddies an already densely opaque pool of verbiage. These 
people seem to be paid by the word, as well, which means they 
often take two paragraphs to say what could have been expressed 
in a single sentence. That really does no one any favors, especially 
in our era of breathtakingly short attention spans. The more fluff 
there is to wade through, the less likely the waders are to chance 
upon something they actually would benefit from reading. It’s no 
wonder misinformation is rampant. The signal-to-noise ratio of 
the Internet has never been very high, but lately it seems to have 
plummeted off a precipice. Searching for reliable information 
online is like trying to find one specific pebble in a gravel parking 
lot, while a hundred “helpful” people crowd around, all pointing 
in different directions, shouting at you that they know exactly 
where it is.

My conclusions, then, are that “content creator” seems to be 
another name for “one who writes filler,” and an “influencer” is 
what we of my generation called a “corporate shill.” You may 
argue that this column demonstrates that I myself thereby meet 
the content creator definition, but I must respectfully dispute 
this assertion. What I create is quite clearly discontent, although 
with this being a pandemic-bedeviled election year, that market is 
already seemingly saturated. I have faith in the near- bottomless 
hunger of the public for toxic disillusionment, though. It certainly 
keeps Hollywood humming along.
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Effective Python: 90 Specific Ways to Write Better 
Python, 2nd Edition
Brett Slatkin
Pearson Education Inc., 2020, 444 pages
ISBN 978-0-13-485398-7

Reviewed by Mark Lamourine

In Effective Python, Slatkin offers a rather different twist on the 
cookbook format for programming references. In the conven-
tional form, each chapter opens with a problem or a question. The 
body of the chapter then consists of a solution with some exposi-
tion. The premise is that the reader is learning the language 
features and capabilities. The recipes provide language-specific 
ways to achieve what are normally common goals.

Slatkin’s approach is more of a catalog of best practices for the 
Python coder. The book is subtitled “90 Specific Ways to Write 
Better Python.” Each of the 90 small “items” referred to in the 
subtitle opens with a recommendation. For example, Item 9: 
“Avoid else Blocks After for and while Loops.” The main body  
of the item is a presentation of an argument for the recommenda-
tion. The arguments range from readability and performance to 
avoidance of common coding errors. Slatkin’s arguments tend 
to follow a pattern. First he shows how the feature or construct 
is used commonly. He talks about why the typical usage makes 
sense at first and then how it can lead to problems. Only then 
does he offer his alternative, using new code fragments and 
explaining how the new code’s behavior addresses the problems 
cited. Each item ends with a summary bullet list of things to 
remember.

The items are grouped into chapters thematically. Most are 
related to language features like lists, functions, or classes. The 
opening and closing chapters are more about idiom, style, and 
human behavior and are entitled, respectively, “Pythonic Think-
ing” and “Collaboration.”

These two chapters directly express a thematic undercurrent 
that runs throughout the book: coding is a human endeavor and a 
craft and in every instance involves the judgment of the devel-
oper. Despite his recommendations favoring specific behaviors 
and constructs over others, Slatkin always appreciates why the 
common usage is common. His recommendations are always 
presented in a way that is meant to be persuasive rather than 
strident or proscriptive. 

I started using Python with version 1.5, and version 2.x has been 
a staple for me since it was released in 2000. For me, version 3 
was always “someday.” I’m embarrassed to realize it’s been 12 
years. With the sunsetting of version 2 in January 2020 [1], it has 
become important not just to learn the differences, but to commit 
to version 3. The second edition of Effective Python treats only 
version 3, with none of the back references or porting comments 
that have been common for a decade.

There have been a couple of changes that I didn’t really inter-
nalize. One was the introduction of the bytes and str types 
for representing strings. I understand the difference between 
ASCII byte strings and UTF-8, but the treatment in Python and 
the idiomatic usage have never become second nature. Slatkin 
addresses this as Item 3 in the first section. He shows how to 
recognize them and how to convert between them. More impor-
tantly he indicates when to convert between them and when to 
leave them alone.

I had been in the habit of using the print() function in Python 
2 from the __future__ module and the str.format() method 
instead of the formatting operator (%) for a long time. I was 
surprised to learn that there is a new string formatting method 
introduced in version 3.6 called Literal String Interpolation, or 
f-strings, for the prefix used to indicate one in the code. These 
work more like Jinja2 templating, where you use the name of 
the variable inline to resolve and replace the value in the string. 
What I really like about this item is the way Slatkin demonstrates 
the earlier methods, showing how it is easy to make errors with 
them. Finally, he demonstrates f-strings in a way that highlights 
how they resolve the problems.

Don’t be fooled by my initial examples. Effective Python addresses 
some rather deep theoretical constructs as well. It has a fantastic 
treatment of generators, not just what they are and how to use 
them, but how they work and why to use them. Hint: avoid large 
in-memory arrays of computable values. Slatkin’s treatments 
of metaclasses and concurrency also brought me some “aha!” 
moments. The references in these cases are provided for anyone 
who is learning about these topics for the first time and that’s a 
good thing.

The only real quirk I noted with Slatkin’s style is that it really 
requires you to properly read the text. In many reference works, 
once you’re familiar with the topic you can skim to find just the 
bit of code you need. While none of the items here are particularly 
long or deep, the teaching style requires the reader to follow the 
narrative. I don’t think that this is a problem, but it was an adjust-
ment I had to make to get the most out of what I was reading.
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Normally, I would encourage new coders to set something like 
this book aside until they had some experience and context to 
bring to it. In the case of Effective Python, I would consider sug-
gesting they get it, skim the first few sections, and then set it 
aside. It will be there when they begin to ask the questions it tries 
to answer. It’s a book I expect to return to.

Dependency Injection Principles, Practices, and 
Patterns
Steven van Deursen and Mark Seemann
Manning Publications, 2019, 522 pages
ISBN 978-1-61729-473-0

Reviewed by Mark Lamourine

I remember my confusion the first time I heard the term depen-
dency injection (DI). I’d seen it used in some Ruby code with unit 
and functional tests, but I didn’t know it had a name and didn’t 
understand the formal basis for it. Since then I’ve spent signifi-
cant time failing to create testable or f lexible code using DI. 
Understanding DI has been on my back burner, and when I saw 
this book I had to see what DI is about.

“Principles, Practices and Patterns” is actually a pretty good 
description of the book. The authors are clearly fans of Martin 
Fowler, Robert Martin, and the Design Patterns [2] “Gang of 
Four.” They make explicit reference to several design patterns 
that are extensively used to implement DI constructs. They 
also make good use of proper UML diagrams to illustrate object 
dependency relationships and life cycle. While prior knowledge 
of design patterns and UML isn’t required, it will definitely help 
a reader understand the theory and the assertions the authors 
make about the structure of software and the effect that has on 
testability and maintainability.

At the end of Chapter 1 I found a paragraph that is easy to miss 
but critical to understanding this book. The goal of the authors 
is to help readers implement code designed with loose coupling. 
That is, code that depends on interface and API definitions of 
the code it uses rather than on the specific implementation. The 
authors’ core assertion is that loose coupling is a generally desir-
able trait of well-designed systems. Dependency injection is just 
the technique they are offering to enable loose coupling. It is easy 
to lose track of that emphasis when trying to absorb the some-
what dense concepts that follow.

One thing becomes evident during the first three chapters: 
loosely coupled code looks more complex than tightly coupled 
code, at least at first look. In Chapters two and three, the authors 
show a simple three-layer application with a database, a user 
interface, and some business logic sandwiched in between. They 
do a good job of showing the options and decisions that lead 
to tightly coupled code. The design decisions are primarily a 

function of the desire for initial simplicity. They are natural and 
straightforward, based on the intent of the application.

In the following chapter the authors re-implement the appli-
cation with a design in which the components are carefully 
decoupled. Each of the interacting classes defines an interface 
rather than just providing a function or method for callers. The 
design is significantly larger, increasing from four classes to nine 
and with three interfaces. The chapter is also twice as long. That 
extra text is used to explain the different considerations that are 
needed to design decoupled code. It takes a deliberate approach 
and the development of a set of habits to view a problem this way.

The second section is where the theory gets deep. These chapters 
present the DI design patterns and set of anti-patterns, conclud-
ing with a chapter on DI code smells. The final two sections show 
how to implement applications with DI, first directly and then 
using a kind of DI factory called a DI Container. These take 
 existing classes and reflect them to create a new class that allows 
DI. The examples given are specific to .Net, though the illustra-
tion is useful.

I was a little concerned when I realized that the examples and 
code samples are written in C# and make use of .Net libraries. 
My worries were unfounded. The C# code will be clearly under-
stood by anyone familiar with C++ or Java, and the .Net library 
references are reminiscent of Java APIs. The examples have the 
camelcase verbosity one would expect from those languages as 
well, but it doesn’t interfere with clarity. Very few of the code frag-
ments are longer than a single page, and the typeset annotations 
are well placed and clearly associated with the lines they describe.

Dependency Injection Principles, Practices, and Patterns provides 
a lot to chew on, and it’s going to take me a while to properly con-
sume and digest it. I have several web projects going where I hope 
to make use of it.

Building Secure and Reliable Systems
Heather Adkins, Betsy Beyer, Paul Blankinship, Piotr 
Lewandowski, Ana Oprea, and Adam Stubblefield
Google LLC and O’Reilly Media Inc., 2020, 557 pages
ISBN 978-1-492-08312-2

Reviewed by Mark Lamourine

When Google publishes a guide for infrastructure, you can be 
sure that it’s worth reading. The real question is: is it something 
you can use? Google works on a scale that few other  companies 
can. As a purely practical matter, few companies have the 
resources or the strictest requirements for efficiency that 
characterize the handful of truly colossal Internet companies. 
I picked up Building Secure and Reliable Systems with a bit of 
skepticism.
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I was also concerned with the size of the book. At over 500 pages 
it’s still not the largest infrastructure book I’ve read. I wanted to 
see how the authors managed the challenge of providing a useful 
level of information in a manageable amount of space.

This is the third book in a series Google has published on the 
topic of site reliability engineering (SRE) [3]. This is Google’s 
refinement of the system administration model that has been 
called DevOps. The first defines and describes the philosophy of 
the SRE model and the role that the SRE plays in an operational 
organization. The second is a “workbook” for SREs, describing 
how they go about their job. This third volume provides a set of 
best practices both for the enterprise and for the service groups. 
It puts the SRE into the context of a complete organization in a 
way that can be appreciated both by the SREs and by their man-
agement and business peers.

Where the earlier volumes focused on workers and their tasks, 
this one illuminates the factors to consider in design and imple-
mentation of computer systems. The chapters alternate between 
discussion of a single desirable aspect of a system and case stud-
ies to give concrete examples.

Those design aspects are not things that are usually put high on 
the system requirements list: understandability, resilience, and 
recovery. The only element specifically for security is least privi-
lege. The authors recognize that encryption and user authentica-
tion get a lot of attention. Defense in depth requires more care 
and thought. Security vulnerabilities will always be present, but 
exploits can often be neutralized by limiting what an attacker 
can access.

Each of these chapters really just provides additional incentive to 
follow ordinary design best practices. These discussions provide 
weight to arguments against cutting corners in design and imple-
mentation, and they provide rationale for better decisions than 
are often made.

The implementation section addresses considerations for reli-
ability during the realization of the design, with chapters on 
writing, testing, and deploying the code and on surveying and 
debugging systems. In these chapters, the real nature of the 
writing comes through. This is a volume of collected wisdom:  
it’s a series of thoughts and reminders—remembering to stop 
and think when things go wrong, for example, and to pair work 
where one is typing and the other is a scribe, both to avoid losing 
information and for mentoring.

The final couple of chapters talk about what I think has become 
the most critical aspect of software development and system 
administration: culture. There can be a lot of focus on techni-
cal stars in hiring and team formation. What experience has 
shown me is that people want to do good work and to learn and 
challenge themselves. The most common frustration is poor 

team  empowerment and communication. All of the preceding 
chapters are nullified if the developers and admins aren’t given 
the freedom and incentives to collectively evaluate and then act 
on their decisions.

Each of the chapters is nicely self-contained. The writing is 
clean, almost sanitary. This reflects the Google aesthetic of 
minimal bling, flash, and distraction. The authors provide 
frequent cross references, and each chapter concludes with a 
summary and a list of references. The spare nature of the writing 
style makes for a surprisingly readable text. 

Except for a few details and discovery of a small set of obscure 
but useful tools, I didn’t learn a lot that was new. For the devel-
oper or sysadmin, this book is a good complete compendium of 
the highest level considerations for system design. For project 
management, it is a window into the kinds of things the team 
should be discussing and resolving throughout a project. I didn’t 
see anything here that made me think “you can only do that if 
you’re Google.” I’ll keep Building Secure and Reliable Systems 
handy for when I need to champion more thoughtful, purposeful 
design and operational behaviors. “See, this is how Google does it.”

Rootkits and Bootkits: Reversing Modern Malware 
and Next Generation Threats
Alex Matrosov, Eugene Rodionov, and Sergey Bratus
NoStarch Press, 2019, 448 Pages
ISBN-13: 978-1-59327-716-1

Reviewed by Rik Farrow

I chose this book to review after listening to an invited talk at 
WOOT ’20 by the main author, Alex Matrosov, and because 
 Sergey Bratus is also an author. I would ordinarily have steered 
clear of books primarily about Windows, but once you get past 
Part 1, about rootkits, you find yourself in territory relevant to 
Linux systems. The authors cover information relevant to any-
one running software on Intel or AMD chipsets.

The book is well written and organized, and it includes example 
code (all Windows) and dumps from malware and firmware 
samples. I had little trouble reading the book, although I did want 
a glossary of abbreviations handy after a while, as there are loads 
of obscure TLAs.

The authors start out by describing TDL3 and Festi rootkits. 
These are “old,” designed for 32-bit versions of Windows that 
have long been out-of-date but likely still run. Most of the tech-
niques used—plugins to extend the malware, using a rolling XOR 
as “encryption,” changing registry keys—seem familiar. What 
makes Festi interesting is the malware designers’ knowledge 
of kernel internals. They hook both file and network drives very 
deep in the software stack, making them difficult to discover 
through Host Intrusion Prevention System (HIPS) products, as 
these tools also install hooks at the same layer.
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I really hadn’t been paying much attention to Windows malware 
over the last decade, and the focus of this book is on two specific 
areas that cover some of the most sophisticated attacks possible. 
I enjoyed reading the book and learning about the malware, even 
if it was not particularly relevant to me, as “I don’t do Windows.” 
Still, there’s more than enough here that’s relevant to Linux 
users, as malware writers are now turning their attention to 
Linux servers.

References
[1] https://www.python.org/doc/sunset-python-2.

[2] E. Gemma, R. Helm, R. Johnson, and J. Vlissides, Design 
Patterns: Elements of Reusable Object-Oriented Software 
(Addison-Wesley Professional, 1994).

[3] https://landing.google.com/sre/books/.

As security in Windows improves, malware writers have shifted 
their focus to bootkits, methods of infecting the kernel during 
the boot process. Here again you will find information relevant 
to any operating system that relies on x86 chipsets. The authors 
cover the boot process and provide analyses of bootkit samples, 
as well as the arms race in bootkits that leads to UEFI Boot. 
UEFI is supposed to provide secure boot, with checks of the 
authenticity of code, but in many cases vendors have not properly 
implemented the standard.

Chapters 15 and 17 demonstrate the use of a tool, called Chipsec, 
that allows you to probe your firmware settings. The tool works 
for Windows, Linux, and macOS, and you can find the tool on 
GitHub at https://github.com/chipsec/chipsec. With the tool, you 
could see if your firmware is write-protected and whether SPI 
flash memory protections also have been enabled. The authors 
have tested a number of motherboards, and many of them have 
either not enabled or included firmware protections, making the 
system more susceptible to bootkit malware.

https://www.python.org/doc/sunset-python-2
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www.usenix.org/soups2021

Winter paper submission deadline: Thursday, February 4, 2021

The 30th USENIX Security Symposium will bring together researchers, practitioners, system 
administrators, system programmers, and others to share and explore the latest advances in the 
security and privacy of computer systems and networks.

AUGUST 11–13, 2021 | VANCOUVER, B.C., CANADA

https://www.usenix.org/sec21
https://www.usenix.org/soups2021
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Interview with Clem 
Cole
Rik Farrow

Clem Cole is an old school hacker 
and “Open Sourcerer” with more 

than 45 years of free and open source system 
development experience. Clem has held practically 
every position in the computer field from operator, 
programmer, and designer to VP of Engineering, 
CTO, and startup founder. He first encountered 
the early editions of UNIX in the 1970s while at 
Carnegie Mellon University, later doing his graduate 
work at the University of California, Berkeley. He 
has been designing and developing operating 
systems and technical computing systems ever 
since, currently leading an international team of 
engineers. He helped to write one of the original 
TCP/IP implementations in the late 1970s, and is 
known as one the authors of the precursor to IM, 
the UNIX talk program, as well as other more 
humorous and notorious hacks. He is honored to 
be a past President of the USENIX Association and 
the 2016 winner of the Linus Pauling Prize for 
Science.  clem@ccc.com

I first met Clem Cole at a USENIX confer-
ence, probably in the 90s, but I had encoun-
tered him via a paper he helped with in 1985. 
Ted Kowalski had written fsck, bringing 
together ideas from three previously exist-
ing UNIX programs, ncheck, icheck, and 
dcheck, and experience using earlier IBM 
programs, Scavenger and Vulture [1], for 
recovering after disk crashes. 

I had also heard that Clem had a long history 
with USENIX, and decided to interview him 
for this, the final print issue. I had learned 
by reading early issues of UNIX Notes and 
;login: that USENIX conferences were how 
UNIX users exchanged information in the 
early days, and it occurred to me that Clem 
was a participant I could ask about this.

Rik Farrow: When did you begin working 
with UNIX? I encountered UNIX in the 
early 80s, while working for companies in 
the Bay Area.

;login: Enters a New Phase  
of Its Evolution
Cat Allman, Rik Farrow, Casey Henderson 
Arvind Krishnamurthy, and Laura Nolan

For over 20 years, ;login: has been a print 
magazine with a digital version; in the two 
decades previous, it was USENIX’s news-
letter, UNIX News. Since its inception 45 
years ago, it has served as a medium through 
which the USENIX community learns about 
useful tools, research, and events from one 
another. Beginning in 2021, ;login: will 
no longer be the formally published print 
magazine as we’ve known it most recently, 
but rather reimagined as a digital publica-
tion with increased opportunities for inter-
activity among authors and readers.

Since USENIX became an open access pub-
lisher of papers in 2008, ;login: has remained 
our only content behind a membership 
pay wall. In keeping with our commitment 
to open access, all ;login: content will be 
open to everyone when we make this change. 
However, only USENIX members at the 
sustainer level or higher, as well as student 
members, will have exclusive access to the 
interactivity options. Rik Farrow, the cur-
rent editor of the magazine, will continue 
to provide leadership for the overall content 
offered in ;login:, which will be released via 
our website on a regular basis throughout 
the year.

As we plan to launch this new format, we are 
forming an editorial committee of vol un teers 
from throughout the USENIX community to 
curate content. This new model will increase 
opportunities for the community to contrib-
ute to ;login: and engage with its content. In 
addition to written articles, we are open to 
other ideas of what you might want to 
experience. We welcome your comments 
and suggestions: login-comm@usenix.org.
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Clem Cole: By the 80s UNIX was even cooler than when I first 
encountered it. I started using UNIX with Fifth Edition version  
in 1976 while at Carnegie Mellon (CMU).

Truth is, my first experience with UNIX and C in particular, com-
ing from the IBM 360 and DEC PDP-10, found me skeptical. But I 
had been schooled in the CMU gospel of using systems program 
languages (BLISS in this case) so I had already started to transi-
tion from 360 assembler.

What made UNIX/C really cool was that as much as I liked the 
stuff we had on the PDP-10s (like the XGP—the predecessor to the 
laser printer) BLISS on the PDP-11 required cross compiling. C was 
self-contained. The documentation for C was almost non-existent, 
with the exception of Dennis Ritchie’s paper in V5 and V6 in the 
c directory in /usr/doc. The code from the compiler was not great 
compared to BLISS, but it was “good enough.” 

And we had our own PDP-11 in the CMU Electrical Engineering 
Digital Lab and we did not have to share  it with many other folks.

Ted had a xeroxographic copy of the Lions book [2] and I made my 
own copy. Then Ted came back with proofs for Kernighan and 
Ritchie [3] in a binder and I read those two documents that spring 
and things about UNIX started to click. Pretty soon I started to see 
that I could get most anything I had been able to do on the PDP-10s 
and the 360 on the PDP-11 and I only shared it with a few other 
people. That was way cool.

And then one day we had a disk crash on a machine in CMU’s 
BioMed Department. I got a call from the guys that ran it, and they 
wanted to try to use the EE system to try to fix the disk. Ted and I 
both had used a disk reconstruction program on the IBM and Ted 
had been an IBM MTS hacker at the University of Michigan before 
he came to CMU. I remember spending a number of hours with 
ncheck/icheck/dcheck and grumbling to Ted as we were working 
with their disk. 

It turns that out Ted had started a new program but it was not 
complete. Now he had a mission. By the way, the original name of 
the fsck program used a different second letter.

The other thing I saw around then was a copy of some of the origi-
nal issues of UNIX News that Columbia University was printing 
up. I don’t remember who had them, but I think it was someone 
else with a connection to Harvard or maybe Columbia. I got on the 
mailing list somehow and started eating it up.

As an undergrad I could not travel, but when I first started to work 
for Tektronix in 1979, I went to my first USENIX conference 
(I want to say Toronto, but I could be wrong). An early winter one 
was Boulder where USENIX had rented a movie theater, the same 
theater that was featuring the new movie, Black Hole. What I do re-
member the most of that conference is that’s where Tom Truscott 

regaled us on his homemade 
autodialer they built so they 
could run UUCP.

Originally, we came to those 
meetings representing our 
orgs—universities or com- 
merical entities. You were 
supposed to have the sig- 
nature page of your AT&T 
UNIX license to join. I don’t 
remember when the first 
personal memberships were 
offered, but I was the  seventh 
person to join USENIX.

So back to your question. 
In those days DEC did not 
support UNIX, so we had a “we all are in this together” attitude. 
Everything was “open source” because we all had licenses. I think 
the thing that is lost today is that it was the cost of the hardware 
that was the limit to being part of the “UNIX club,” not the cost of 
the UNIX software sources. 

RF: That’s interesting, since AT&T raising the license fee for the 
source for System V Release 4 (SVR4) was the main reason for 
the UNIX wars [4] that began in the late 80s.

CC: Actually, that’s not quite true. The UNIX wars had started long 
before then. The 1988 SVR4 release and the raising of the license 
redistribution fee in particular was the source of the “fair and 
stable license terms” of Open Software Foundation (OSF) verses 
UNIX International (UI). You have to understand that each time 
AT&T had released a commercial redistribution license  (starting 
with V7) the fees had gone up. The vendors had been having a knock-
down, drag-out war for 5–10 years by 1988. UI vs. OSF was just the 
final battle.

The problem for the vendors was they treated UNIX like they owned 
their OSs and made them private with lots of local hacks to create 
vendor lock-in for their customers. The UNIX wars were really based 
on who got to decide what the definition of UNIX was going to be.

AT&T thought they got to say it because they owned the intel-
lectual property. But the Berkeley Software Distribution (BSD) 
version had the greatest mind share as it included TCP/IP sup-
port. DEC, Apollo, HP, Masscomp, Sun, IBM and others had their 
customers running some version of UNIX on their hardware. And 
independent software vendors were annoyed because life had not 
gotten better—hence the 1985 /usr/group UNIX Standard that 
would later beget the IEEE POSIX work.

RF: How large were those early USENIX conferences? Dozens of 
people, hundreds of people? I’ve heard that by the late 80s there 
could be thousands of people attending.

Vol. 1, No. 1 of UNIX News, July 30, 1975. 
The circulation was 37.
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CC: When they were at Harvard, Columbia, etc.—that is, the time of 
UNIX News—a conference fit into a classroom. By the time of Boul-
der it was probably about 100–150—about half a movie theatre full.

By the late 80s (when the final phase of the UNIX wars started) 
the San Francisco conference and I think  the 10th USENIX 
conference in Portland were over a thousand. I think the peak 
was probably two or three thousand. 

After Portland (summer 1985), USENIX started to fork into smaller 
dedicated conferences targeting subtopics and trying to keep it to 
be about 150–200 per conference.

RF: So what was it like at Boulder? Most of us know what modern 
USENIX conferences are like, with most having a focus on paper 
delivery, and some on talks.

CC: Remember there were no papers or proceedings in those days. 
Just talks. No PowerPoint either. Just overhead slides. And people 
came with prepared talks and signed up to give them. Nothing was 
preplanned.

It was also the first time I met Bill Joy. He had already started 
to build a cult around him. He talked about UCB Pascal and was 
very interesting. I also met Dennis Ritchie and Steve Bourne for 
the first time and was awed at how down to earth they were. They 
asked me questions and wanted my opinion.  That was so cool. It 
was really a collegial setting. We were all sharing our experiences.

I think that’s also where I met Bruce Borden for the first time. He 
had written the first parts of  mh and he gave a talk about it. I wanted 
to try it immediately after I got back. As I said, Truscott talked about 
his fake autodialer and I remember being so impressed with it.

Boulder was sort of the start of Usenet. Truscott described the 
three schools connected using UUCP in North Carolina in his talk. 
Brian E Redman—the “ber” of “Honey-Dan-Ber” UUCP—said he 
would like to be able to call him from the systems in BTL in Whip-
pany, NJ, named after the Marx brothers. Dennis Ritchie offered 
up the Bell Labs research system in Murray Hill.

At Tektronix, we were working with the University of California, 
Berkeley (UCB) on things like Spice, so I had talked my boss into 
letting me buy an autodialer to call ucbvax. So when I got back 
we joined up, and UCB was talking to research. Within a year 
Armando Stettner added decvax and ihnp4 was added during the 
same time frame.

The fact is Bell Telephone Labs (BTL) had a large internal UUCP-
based network before Usenet (which was smaller), but once research 
and ihnp4 joined that changed the dynamic. Also, BTL was not on 
the ARPANET which a couple of the Usenet sites sort of were. 
Funny thing, forwarding from the ARPANET was discouraged 
originally. But at some point, the DARPA folks realized “Metcalf’s 
Law” [5], that joining two networks make each a lot more valuable. 

RF: Gaining membership in the early Internet/ARPANET was 
extremely weird from my perspective. 

CC: When the ARPANet and the early Internet were set up, the 
US government paid for everything. To join, you had to be a DoD 
contractor and had to be sponsored.  I read that in 1975 dollars, the 
cost per host was $250K a year and that also explains why some of 
the choices were made. A site on the network, like MIT and CMU, 
were not going to put their connection at risk. 

Part of the problem was that many universities wanted to be part 
of the ARPANET but could not be as they were not doing ARPA 
work. Sometime early in the Reagan administration, the US 
government wanted to get out of funding the networking experi-
ment they had started. Originally, CS-NET was set up by the NSF 
and contracted to BBN, so any research group could get a connec-
tion, but you had to pay for it and your leased telco connections.  
In fact, to help keep costs down, CS-NET set up a UUCP-like 
system, called “Phone-Net.”

Within a a year or so, CS-NET was allowed to connect commercial 
sites too. That’s how Masscomp got its connection to BBN and 
became part of the emerging Internet for $50K a year. Rick Adams 
had forked out UUNET and they too joined CS-NET and became 
the “offical” (recognized) UUCP/ARPANET bridge. 

Finally, we started to get regional networks competing with CS-
NET because the telco costs could be kept in check better and the 
era of the ISP appeared. The other change was that telco costs had 
to drop. That $50K/year Masscomp connection was a 56Kbit/ 
second leased line from Westford, Massachusetts to Cambridge— 
a distance of about 30 miles. A T1 (1.44Mbit/sec) connection was 
closer to $50K/month.

So for a long time, the bulk of the email and netnews traffic was 
UUCP over dial-up. 

The good news is that the telcos did start to figure out how to build 
cheaper digital circuits. And, once “cheap enough” connections 
arose, the need for UUCP and dial-up started to fade.

RF: I remember using ihnp4 as a mail forwarder, but not many 
people today are going to recognize that hop. Was ihnp4 in the 
Chicago area?

CC: Indian Hill New Products System 4, or ihnp4 was in subur-
ban Chicago. The three big national sites for Usenet were decvax, 
ihnp4 and ucbvax. There was a study done by someone at BTL 
that concluded that for every call ihnp4 underwrote, it generated 
between 10 and 20 downstream calls and that was good for AT&T 
so they continued to underwrite it. At its peak, decvax had a half to 
three-quarters of a million dollar phone bill. That was the trigger 
for USENIX to start to look for an alternative. Rick Adams, work-
ing for the USGS and running the site named seismo, proposed the 
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Interview with Kirk McKusick
Rik Farrow

Dr. Marshall Kirk McKusick writes books and articles, 
teaches classes on UNIX- and BSD-related subjects, and 
provides expert-witness testimony on software patent, trade 

secret, and copyright issues particularly those related to operating systems 
and filesystems. He has been a developer and commiter to the FreeBSD 
Project since its founding in 1993. While at the University of California, 
Berkeley, he implemented the 4.2BSD fast filesystem and was the Research 
Computer Scientist at the Berkeley Computer Systems Research Group 
(CSRG) overseeing the development and release of 4.3BSD and 4.4BSD. 
He earned his undergraduate degree in electrical engineering from Cornell 
University and did his graduate work at the University of California, Berkeley, 
where he received master’s degrees in computer science and business 
administration and a doctoral degree in computer science. He has twice 
been president of the board of the USENIX Association, is currently a board 
member and treasurer of the FreeBSD Foundation, a senior member of the 
IEEE, and a member of the USENIX Association, ACM, and AAAS.

In his spare time, he enjoys swimming, scuba diving, and wine collecting. 
The wine is stored in a specially constructed wine cellar (accessible from 
the Web at http://www.mckusick.com/~mckusick/) in the basement of 
the house that he shares with Eric Allman, his partner of 40-and-some-odd 
years and husband since 2013. mckusick@mckusick.com

I first met Kirk McKusick at a USENIX conference in the 1990s. 
By that point I was working with Dan Klein and others on the tuto-
rial committee and listened to portions of all tutorials given during 
LISA conferences, so I might have met Kirk that way. Later, Kirk 
and I would sometimes meet during FAST workshops. 
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UUNET site, which USENIX helped fund [6]. UUNET become a 
commercial entity the following year.

RF: UUCP mail forwarding over IP is a big topic. I interviewed 
Mary Ann Horton [7], who had worked for BTL as well as doing a 
lot with Usenet. She explained things like the maps people were 
distributing at USENIX conferences and a separate tool to help 
people forward UUCP mail. Peter Salus’ article [6] also explains 
her role in the maps project, and more details about the founding  
of UUNET.

CC: The printed maps were given away at conferences, but the tool 
was used to try to shorten paths for email and net news traffic. 
Remember, until IP where you have flat address space, UUCP was 
purely store and forward and at the complete message level. IP is 
store and forward at the packet level and the other difference is 
that the “store” time was in minutes to hours for UUCP, as opposed 
to microseconds for IP.

RF: What role did you experience USENIX meetings playing in 
getting an effective email network started?

CC: Well, it really was a confluence of time and events. Because 
of USENIX we were meeting. Most people could not be part of the 
ARPANET for reasons I’ve already covered. Because Version 7 
UNIX included UUCP, everyone now had a way to send intersite 
email if you had at least a Version 7 UNIX box, a modem and a 
friend with an auto-dialer. Remember that self-dialing modems 
didn’t exist yet and to dial out to another site required a DN11 and  
a Bell model 801 ACU—automatic calling unit—Truscott’s trick 
not withstanding. 

The USENIX meetings had been around for 8–10 years before 
Usenet comes into play. But it was already clear before what we 
now call the Internet replaced ARPANET, that people wanted/
needed email—that Usenet was organically born.  

Again, it was need and timing more than anything else that helped 
get UUNET started, plus the wild growth of the Internet we saw in 
the 90s.

RF: How did your involvement with USENIX change over the years?

CC: USENIX has a special place in my heart. Without a doubt it 
helped my career. When I first started coming I was in the audi-
ence soaking things in, then I transitioned to someone writing 
and presenting papers. Next I was asked to be on program com-
mittees and eventually chair a few conferences. I was nominated 
and elected to the Board and eventually became president. I still 
participate as I can and I would consider working on the Board 
again as well as other projects that folks consider.
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Once when we were sitting together during paper presentations, 
someone presented a method of speeding up fsck on Linux ext 
filesystems by caching the results of intermediate phases. Feeling 
 a bit mischievious, I mentioned to Kirk that this sounded like an 
improvement that belonged in the Fast File System (FFS), some-
thing Kirk had written, taught, and still supported in BSD. Kirk 
replied that this should be easy, as policy and implementation were 
kept separate in BSD, unlike in Linux. By the next morning, he had 
created a new version of fsck.

Rik Farrow: When did you first encounter UNIX?

Kirk McKusick: I encountered UNIX for the first time while at the 
University of Delaware in 1976. Later that year, I was a  graduate 
student at the University of California, Berkeley (UCB), and 
started the month after Ken Thompson ended his sabbatical, in 
August of 1976. Thompson had helped install UNIX Version 6 on 
a PDP 11 there, working with Chuck Haley and Bill Joy, two other 
UCB graduate students. They also worked on a version of Pas-
cal Thompson had written, and demand for that lead to the first 
Berkeley Software Distribution in 1977 [1].

RF: When and why was the Computer Science Research Group 
(CSRG) started?

KM: Professor Bob Fabry, with help from Bill Joy, had been work-
ing on getting a research grant from DARPA and needed a project 
name, so he decided to call the project the Computer Systems 
Research Group (CSRG). That was in June of 1980.

RF: You are best known as the author of the Fast File System, today 
known as the UNIX File System [2]. How did that come about?

KM: The filesystem developed for the early UNIX versions had ter-
rible performance, getting throughput of only 2% of the bandwidth 
of current disks. Doubling of block size, to 1024 bytes, managed to 
raise the throughput to 4%, so this area seemed like fertile ground 
for research. I was working for the university, but part time, as full 
time work would have required the university to provide benefits 
as well—still an issue today. My advisor’s research grant had ended 
during the summer, and I asked Bill Joy, who I used to share an of-
fice with, if he could give me a project to work on.
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;login: and Open Access
Laura Nolan

As a USENIX volunteer for the past several years, 
one of the things I value most about USENIX is the 
association’s unequivocal support for open access—

the distribution of research online free of cost or other access 
barriers. Paywalled content restricts the spread of ideas and 
knowledge, and it reduces the impact of the work that researchers 
and writers do.

USENIX’s support for open access has been a long-held stance. In 
our announcement of our move to open access in March 2008 we 
said that “we hope to set the standard for open access to informa-
tion, an essential part of our mission.” We do set that standard by 
making open access as straightforward as it can be: all USENIX 
authors and speakers retain copyright of their work, and all pro-
ceedings and recordings are freely published online—no money,  
or even a registration process, is needed to view any USENIX  
open access content.

USENIX became open access for all conference proceedings in 
2008, followed by recordings of talks in 2010. Since 2010, ;login: 
has been the sole exception to our open access philosophy, with 
access to each edition of the digital version of the magazine re-
stricted to USENIX members for the first year after publication.

Joy had started work on a filesystem prototype, but had only writ-
ten the superblock and cylinder group structures so far. He handed 
the project off to me, and I finished the rest as a userspace file system.

Joy convinced me to drop the prototype into the kernel, and that 
took me months, as there are concurrency and race conditions as 
well as other things, like cache invalidation, to handle. Then Joy 
convinced me to store my own home directory on the new file-
system, to show that I believed in my work. I realized that there 
was no way to do backups, so I wrote dump to backup and restore 
to recover from backups. 

I also got tired of running icheck, dcheck, and ncheck, the first 
three passes you’d see with fsck, so I got fsck running. All this  
was a sidetrack on my way to getting my PhD.

Later on, Joy funded my trip to a Boston USENIX conference with 
DARPA money. I created a couple of hand-written slides, and Joy 
took them to get typed up. There were about 1200 attendees when I 
went to speak, but the slides Joy had provided were nothing like the 
ones I had written. When I told people that, they laughed, and the 
presentation went well.

The FFS could get around 40% of the bandwidth of disks, 10x the 
performance of the older filesystem. I learned from this experience 
that you should pick problems where there is a lot of fertile ground.
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Our Favorite ;login: Articles, 2005–2019
Rik Farrow, Laura Nolan, and Arvind Krishnamurthy

When we learned that print ;login: was to end with this, the 
Winter 2020 issue, several of us decided that we would pick out 
some of our favorite articles published during the previous 15 
years. To help divide the work of skimming through the 90 issues 
published during the period, we each focused on a four- or six-year 
set of issues.

Of course, you probably have your own favorites. One problem 
with printed magazines is that feedback is rare, other than the 
occasional email or comment made to the editor during a confer-
ence. Some of Rik’s favorites are based on data collected from Web 
server log files. The new, digital format will provide more opportu-
nities for engagement, with the ability to add comments to articles.
We hope you enjoy this walk through ;login:’s rich recent past and 
look forward to introducing you to new articles that continue this 
tradition in its new medium.

Rik Farrow: 2005–2010
Although I had the ability to use the log analyses I had 
collected during these years, I’ve included articles 
that were not just popular over time, but also some 
that I particularly liked. In a way, this was a difficult 

task for me, because most articles were published because I liked 
the topic and felt that the authors involved could write well. Also, 
at least one article in each issue was designated as open, mean-
ing that those articles, typically the first article after “Musings,” 
had an advantage over other articles that wouldn’t be available for 
download by non-members for another year. For these reasons, I 
didn’t adhere to the rankings found in the log analysis obsessively, 
and included other articles.

2005
I started working as editor this year, 
and I will confess that as I worked 
through this six-year  period, the ar-
ticles did get better over time. Editing 
;login: really was a learning experience 
for me.

I had been surprised at some of the 
things that appeared high in the log 
analysis when I first started. ;login: 

included a column on C# by Glen McCluskey, and his most popular 
column was about serialization in C# [1]. Another column, this one 
by Adam Turoff, explained date and time formatting in Perl [2]. 
Ceph was introduced this year as well, with an article by the 
authors [3].

2006
Steve Johnson, past USENIX Board President, and author of yacc, 
lint, and the Portable C compiler while at Bell Labs, wrote one of 
my favorites, an article about how hardware affects performance. 
Steve demonstrated how the stride affects performance when 
processing large arrays of 64 bit values [4].

Rob Thomas and Jerry Martin of Team Cymru wrote about their 
very practical research into the underground economy. They 
joined dozens of underground sites, learning about just how much a 
stolen credit card or bank account is worth on the black market [5].

2007
Simson Garfinkel needed to analyze vast quantities of data col-
lected from hard drives, and working with Amazon saved him 
thousands of dollars in hardware costs. Simson explained how 
he used S3 and EC2, sharing his experiences with what were new 
services at the time [6]. There were also two articles about Xen, the 
hypervisor technology used at Amazon, in this issue.

Sam Stover, Dave Dittrich, John Hernandez, and Sven Dietrich 
installed malware on Windows systems so they could analyze the 
Storm and Nugache trojans. What made these trojans different 
was that they used P2P communication instead of IRC for com-
mand and control [7].

2008
Edward Walker wondered if Amazon’s cloud could take the place 
of large clusters for scientific computing, and discovered that 
there are definitely differences between a cluster you control and 
configure and the cloud [8]. There was also an article about Solaris 
virtualization options in this issue.

David N. Blank-Edelman wrote one of his most popular Perl col-
umns, where he used the open source Timeline tool and some Perl 
modules to convert crontab files into Gantt charts [9].

;login: is changing after this issue. From the start of 2021 it will 
no longer be a print magazine. But ;login: will still be here, just in 
a different form—and this transition also brings the opportunity 
to resolve this final anomaly in USENIX’s commitment to open 
access. All new ;login: content will be available to all immediately 
after publication.

;login: is an old friend now and part of me is sad to see this chapter 
of its history end. However, as a regular contributor to ;login:, I 
welcome the opportunity to share the content I create more widely. 
I believe that ;login: is a very special part of USENIX—it spans the 
divide between research and industry, and it truly is a reflection of 
the best of all that we are. Making ;login: freely accessible to all 
will make it even more meaningful.
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2009
Alva L. Couch wrote “Is It Easy Being Green?”, an article about the 
two different types of green, ecology and money [10].

As a nice example of the variety of work found in ;login:, Rudi Van 
Drunen had a popular article about hardware. Rudi wrote about 
digital and analog signals, how they work and how analog gets 
converted into digital signals: [11].

2010
Konstantin Shvachko, one of the authors of HDFS, penned an arti-
cle about the limitations of HDFS, due to its design: [12]. The same 
issue had another Ceph article, pointing out Ceph’s scalability.

Andrew Tanenbaum, Raja Appuswamy, Herbert Bos, Lorenzo 
 Cavallaro, Cristiano Giuffrida, Tomáš Hrubý, Jorrit Herder, Erik 
van der Kouwe, and David van Moolenbroek published an update 
on Minix3 [13]. There had been two other Minix3 articles published 
in ;login: during the decade. This article focused on the ability to 
restart portions of the kernel, a topic of the first paper at OSDI ’20.

Laura Nolan: 2011–2015
The time period that I reviewed for this piece is also 
when I first started to attend USENIX events and 
to read ;login:. Rereading the editions from these 
years made me incredibly nostalgic (and not only for 

in-person conferences!). It was very difficult to choose only one 
article for each year, to the extent that I gave up and quite frankly, 
just cheated.

2011
;login: has a very strong track record on 
security. The article I’ve chosen to rep - 
resent 2011 is Sergey Bratus, Michael E. 
Locasto, Meredith L. Patterson, Len 
Sassaman, and Anna Shubina on 
“Exploit Programming: From Buffer 
Overflows to ‘Weird Machines’ and 
Theory of Computation” [14]. This 
article was dedicated to the memory  

of one of the authors, Len Sassaman, who had passed away earlier 
that year. It’s a very thoughtful piece that characterises well-
known security exploits (such as printf-family string format 
vulnerabilities) as a form of “weird instruction,” and casts security  
as a problem of computability: what execution paths can our 
programs be trusted not to take, under any circumstances?

2012
My favourite article from 2012 is an example of cascading failure 
writ small: “Understanding TCP Incast and Its Implications for 
Big Data Workloads” by Yanpei Chan, Rean Griffith, David Zats, 
Anthony D. Joseph, and Randy H. Katz [15], which provides a 

systems model that explains pathological network throughput 
problems seen in early big-data systems. It’s also a research and 
industry collaboration, which is apt for an association that spans 
industry and academia.

2013
;login: has had a variety of wonderful regular columnists, but none 
can top James Mickens for sheer entertainment value. His 2013 
column “The Saddest Moment” [16] combines savage satire of 
papers and presentations about Byzantine fault tolerance with 
 effortless education on the topic. 

2014
2014 was a tough year to pick one favourite, because this year 
included both Brendan Gregg’s debugging mystery “The Case of 
the Clumsy Kernel” [17], as well as “Analysis of HDFS under 
HBase: A Facebook Messages Case Study” by Tyler Harter, Dhruba 
Borthakur, Siying Dong, Amitanand Aiyer, Liyin Tang, Andrea C. 
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau [18], which 
demonstrates how “mechanical sympathy” between workloads 
and the infrastructure they run on is critical at scale, but can easily 
get lost with layered abstractions.

However, for sheer controversy, the article of the year has to be 
Todd Underwood’s “The Death of System Administration” [19], 
based on his LISA keynote in 2013. Underwood proposes a future 
where operations engineers with software sensibilities (or vice- 
versa) working with better platforms will supersede manual 
systems administration work. We may not be sitting on the couch 
sipping bourbon and eating bon-bons quite yet, but I think Under-
wood is fundamentally correct about the direction we’re traveling in.

2015
My 2015 pick (albeit with an off-by-one error) is a brace of articles 
about bugs. Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna 
Rodrigues, Xu Zhao, Yongle Zhang, Pranay U. Jain, and Michael 
Stumm’s article “Simple Testing Can Prevent Most Critical 
Failures: An Analysis of Production Failures in Distributed Data-
Intensive Systems” [20] highlights how basic attention to error-
handling code can increase the reliability of production systems. 

“What Bugs Live in the Cloud?: A Study of Issues in Scalable 
Distributed Systems” by Haryadi S. Gunawi, Thanh Do, Agung 
Laksono, Mingzhe Hao, Tanakorn Leesatapornwongsa, Jeffrey F. 
Lukman, and Riza O. Suminto [21] analyses three types of trouble-
some bugs found in distributed systems such as Hadoop, HDFS, 
HBase, Cassandra, ZooKeeper, and Flume. The analysis of the 
varieties of  “SPoF bugs” that can crash entire systems that are 
 intended to be redundant should be required reading for all soft-
ware engineers and SREs.
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Arvind Krishnamurthy: 2016–2019
I focused on articles published over the last few years 
and what struck me was the rich diversity of the 
articles. ;login: has routinely included articles from 
both academia and industry, often provided tutorials 

on recent developments in software engineering, and discussed 
emerging trends in the computing industry.

2016
My favorite article from 2016 is “Pivot Tracing: Dynamic Causal 
Monitoring for Distributed Systems” by Jonathan Mace, Ryan 
Roelke, and Rodrigo Fonseca [22]. Debugging distributed systems 
using logs is a difficult task, as what is recorded on logs is defined a 
priori and since it is hard to correlate log entries across a distrib-
uted system. Pivot tracing provides a novel approach that com-
bines dynamic instrumentation with causal tracing and is thus 
suitable for production systems.

2017
My 2017 pick is an article describing an industry system that is in 
widespread use. Daniel Firestone describes a cloud-scale program-
mable virtual switch in “VFP: A Virtual Switch Platform for Host 
SDN in the Public Cloud” [23]. The article describes how Microsoft 
Azure enforces SDN policies across its large datacenters using the 
virtual switch. In addition to laying out the motivation for building 
the system, the article describes the design constraints that are 
unique to a public cloud. 

2018
For 2018, I picked a practitioner’s guide 
to working with XDP, a new program-
mable layer in the kernel network stack. 
In the article, “XDP-Programmable 
Data Path in the Linux Kernel” [24], 
Diptanu Gon Choudhury provides back-
ground information on Berkeley Packet 
Filter, a core kernel technology intro-
duced almost two decades ago, and how 

it has been recently extended to provide a power  programmable 
layer inside the kernel that is intended to close the performance 
gap with respect to kernel-bypass solutions.

2019
My favorite article from 2019 is “Noria: A New Take on Fast Web 
Application Backends” by Jon Gjengset, Malte Schwarzkopf, 
Jonathan Behrens, Lara Timbó Araújo, Martin Ek, Eddie Kohler, 
M. Frans Kaashoek, and Robert Morris [25]. This article describes 
a system that addresses performance problems faced by many 
web application backends. It outlines a system design that doesn’t 
neatly fit into traditional categories, such as databases or stream-
ing engines, but rather creates a bridge across these  technologies.
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Attackers and 
Defenders 
Finally Agree

01.
“Amazing product, 
developed by some of the 
most seasoned pros in the 
industry.”

04.
“The concept and use of 
Canarytokens has made me 
very hesitant to use 
credentials gained during 
an engagement. If the aim 
is to reduce the time taken 
for attackers, Canarytokens
work well.”

02.
“Great products that work, 
easy and quick to install 
and provide real value.”

05.
“Their on-prem canary is 
one of the only things that 
caught me right away 
in post-exploitation without 
my knowing I was burned. 
Solid concept and 
product.”

03.
“We 🖤🖤 our canaries.”

06.
“Don’t think just get them.”

https://canary.tools/love

https://canary.tools/love
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