
;login:
W I N T E R 2 0 2 0 V O L . 4 5 , N O . 4

Columns
Review of Alex Hidalgo’s Book about SLOs
Laura Nolan

Understanding Linux Containers
Corey Lueninghoener

BPF and Histograms
Dave Josephsen

Cryptographic Hash Functions
Simson L. Garfinkel

Software Supply Chain Security
Dan Geer, Bentz Tozer, and John Speed Meyers

Final Print Issue Specials
Favorite Articles
Rik Farrow, Laura Nolan, and Arvind Krishnamurthy

Interview with USENIX Member #7
Rik Farrow

Interview with Kirk McKusick
Rik Farrow

Open Access
Laura Nolan

& Characterizations of Cloud Functions
Workloads
Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri,
Gohar Chaudhry, and Ricardo Bianchini

& RLBox: Simplifying In-Process
Sandboxing
Tal Garfinkel, Shravan Narayan, Craig Disselkoen,
Hovav Shacham, and Deian Stefan

& BIBIFI Contests: Motivated
Developers Still Make Security
Mistakes
Daniel Votipka, Kelsey R. Fulton, James Parker,
Matthew Hou, Michelle L. Mazurek, and
Michael Hicks

& SRE Best Practices for Capacity
Management
Luis Quesada Torres and Doug Colish

Thanks to our USENIX Supporters!
USENIX appreciates the financial assistance our Supporters provide to subsidize our day-to-day
operations and to continue our non-profit mission. Our supporters help ensure:

• Free and open access to technical information
• Student Grants and Diversity Grants to participate in USENIX conferences
• The nexus between academic research and industry practice
• Diversity and representation in the technical workplace

We need you now more than ever! Contact us at sponsorship@usenix.org.

We offer our heartfelt appreciation to the following sponsors and champions of conference
diversity, open access, and our SREcon communities via their sponsorship of multiple conferences:

Ethyca

Goldman Sachs

Equinix Metal

LinkedIn

Microsoft Azure

Salesforce

More information at www.usenix.org/supporters

USENIX PATRONS

USENIX PARTNERS

USENIX BENEFACTORS

https://www.usenix.org/supporters
mailto:sponsorship@usenix.org

E D I T O R
Rik Farrow

M A N A G I N G E D I T O R
Michele Nelson

C O P Y E D I T O R S
Steve Gilmartin
Amber Ankerholz

P R O D U C T I O N
Arnold Gatilao
Ann Heron
Jasmine Murcia
Olivia Vernetti

T Y P E S E T T E R
Linda Davis

U S E N I X A S S O C I AT I O N
2560 Ninth Street, Suite 215
Berkeley, California 94710, USA
Phone: +1 510.528.8649
login@usenix.org

www.usenix.org

POSTMASTER: Send address changes to
;login:, USENIX Association, 2560 Ninth Street,
Suite 215, Berkeley, CA 94710, USA.

©2020 USENIX Association
USENIX is a registered trademark of the
USENIX Association. Many of the designa-
tions used by manufacturers and sellers
to distinguish their products are claimed
as trademarks. USENIX acknowledges all
trademarks herein. Where those desig na tions
appear in this publication and USENIX is
aware of a trademark claim, the designations
have been printed in caps or initial caps.

Cover Image by BUMIPUTRA, distributed
by Pixabay.

W I N T E R 2 0 2 0 V O L . 4 5 , N O . 4

E D I T O R I A L
2 Musings Rik Farrow

O P I N I O N
6 Video Conferencing Must Evolve Michael Mattioli

S E C U R I T Y
9 Build It, Break It, Fix It Contests: Motivated Developers Still

Make Security Mistakes Daniel Votipka, Kelsey R. Fulton, James Parker,
Matthew Hou, Michelle L. Mazurek, and Michael Hicks

15 The Road to Less Trusted Code: Lowering the Barrier to
In-Process Sandboxing  Tal Garfinkel, Shravan Narayan, Craig Disselkoen,
Hovav Shacham, and Deian Stefan

23 Using Safety Properties to Generate Vulnerability Patches
Zhen Huang, David Lie, Gang Tan, and Trent Jaeger

29 Interview with Sergey Bratus Rik Farrow

S Y S T E M S
35 Characterization and Optimization of the Serverless Workload

at a Large Cloud Provider Mohammad Shahrad, Rodrigo Fonseca,
Íñigo Goiri, Gohar Chaudhry, and Ricardo Bianchini

40 Posh: A Data-Aware Shell Deepti Raghavan, Sadjad Fouladi,
Philip Levis, and Matei Zaharia

46 Interview with Margo Seltzer Rik Farrow

S R E
49 SRE Best Practices for Capacity Management Luis Quesada Torres

and Doug Colish
57 The Case for CS Knowledge in SRE Adam McKaig

C O L U M N S
61 Book Review: Implementing Service Level Objectives

by Alex Hidalgo Laura Nolan
64 Systems Notebook: What’s in That Container? Cory Lueninghoener
68 iVoyeur: BPF and Histograms Dave Josephsen
71 SIGINFO: The Tricky Cryptographic Hash Function

Simson L. Garfinkel
76 Programming Workbench: Compressed Sparse Row Format for

Representing Graphs Terence Kelly
83 For Good Measure—Counting Broken Links: A Quant’s View

of Software Supply Chain Security 
Dan Geer, Bentz Tozer, and John Speed Meyers

87 /dev/random: Discontent Creator Robert G. Ferrell

B O O K S
89 Book Reviews Mark Lamourine and Rik Farrow

U S E N I X N O T E S
95 ;login: Enters a New Phase of Its Evolution  Cat Allman, Rik Farrow,

Casey Henderson, Arvind Krishnamurthy, and Laura Nolan
95 Interview with Clem Cole Rik Farrow
98 Interview with Kirk McKusick Rik Farrow
99 ;login: and Open Access Laura Nolan
100 Our Favorite ;login: Articles, 2005-2019

Rik Farrow, Laura Nolan, and Arvind Krishnamurthy

mailto:login@usenix.org
http://www.usenix.org

2 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

EDITORIALMusings
R I K F A R R O W

Rik is the editor of ;login:.
rik@usenix.org I’ve sometimes been asked why computers are still so insecure, so emi-

nently hackable. Didn’t Bill Gates once shut down development at Micro-
soft so they could improve the security of Windows decades ago? While

not quite decades ago, Gates really did shut down Windows development in
2002 and sent 7,000 systems programmers to special security training with
the goal of “Trustworthy Computing.”

It didn’t work. While some things got better, and the rampage of worms slowed down, admin-
istrators and users continued to have to install patches frequently. In 2003, Patch Tuesday
became a regular feature, followed by Exploit Wednesday for those who had ignored the rou-
tine of installing patches on the second Tuesday of the month.

Part of Microsoft’s problem was a matter of programming culture, with a focus on new
 features. Exchange server, the email server product, actually had a good record for security,
while the IIS web server certainly did not. Two distinct groups, with a different culture,
worked on these products, resulting in very different security outcomes.

But the problem of insecurity is not unique to Microsoft. Sun Microsystems started deliver-
ing insecure workstations in the early 1980s, and continued to do so through the ’90s. Sun
employees announced at USENIX Security that they had a program for securing SunOS, but
it was for internal use only. Dan Farmer, Brad Powell, and Matt Archibald released Titan
for Solaris in 1998 as a public solution to tightening and securing Solaris. Linux was having
severe issues with security at the end of the ’90s but quickly improved over the next couple of
years. But today, people build malware specifically for Linux, as Linux servers and desktops
have become important targets for invading networks.

So far, all I’ve done is write about how the struggle to defend software against exploits has
been a failure, but not why. The answer lies partially in the nature of software and largely
because of our hardware designs.

First, programming is hard. I am constantly amazed at people announcing that they intend to
turn everyone into a programmer. Perhaps these well-meaning projects can turn some people
into middling programmers, but not ones who will be writing the next generation of services. I
have had the misfortune of consulting in IT shops and have seen the carnage firsthand. On the
plus side, when I turned out a handful of lines of shell script that did what they had failed to do
in weeks, it made me look like a wizard. I have said this before: most programmers, by defini-
tion, have an average skill level, and half are below average. This is hard to remember when
you work in Silicon Valley or at a top-ten university and all of your coworkers are geniuses.

Second, our computer systems were not designed for security. They were designed to be flex-
ible. There are hardware security mechanisms that are important to security, such as the so-
called rings, with the lowest numbered ring having the most access to hardware, and higher
rings being reserved for “untrusted” code. Yet the largest and most complex programs run on
most systems are the operating systems, and these run at the innermost ring. That makes the
operating system the most important target for any attacker.

Microsoft has taken advantage of the ring added to support virtualization, called ADM-V or
Intel VT, in Windows 10. They load kernel modules using Virtual Secure Mode, where the

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 3

EDITORIAL
Musings

operating system and critical system modules get executed in
virtual containers. This beats the pants off the Linux model,
where the kernel resides in a single address space, but still hasn’t
prevented bootkits from being installed in Windows 10 systems.
This is supposed to be prevented by UEFI, but this can be worked
around using firmware rootkits and on many motherboards
because of the wrong settings being used.

Memory management is the next level of protection, but it
was designed to protect programs running in one process from
programs running in another process. Through abuse of the
operating system, usually after an exploit, memory management
can be bypassed.

Intel has introduced another level of protection, although this
one is largely unused today. MPK (memory protection keys)
allows programmers to split a single process’s memory space into
16 different regions with the same protection provided by page
tables [2]. Sixteen regions doesn’t sound like a lot, but as a method
for isolating threads, or portions of a program involved in parsing
input, MPK could help.

The CHERI researchers have taken a slightly different tack by
creating CPU designs with segment registers. MULTICS used
segment registers to separate portions of programs, with a seg-
ment having a base address and a range, and accesses outside of
this base and range being prohibited. CHERI represents another
great idea, one that’s been in development over a decade, making
segments associated with capabilities, and one quite unlikely to
be adopted by most programmers.

I guess I should mention enclaves, the tiny, encrypted execution
domains, so I can also mention Meltdown, Spectre, and Load
Value Injection [1]. Enclaves will not be of use to most program-
mers, and transient execution flaws have painted targets on them
already.

Software
That leaves us with software. Software can either make comput-
ers more secure or less secure, and our favorite languages make
our systems less secure.

.cfi_startproc
pushq %rax
.cfi_def_cfa_offset 16
movslq %edi, %rax
leaq _ZN5hello4main17hd078db076938ab99E(%rip), %rdi
movq %rsi, (%rsp)
movq %rax, %rsi
movq (%rsp), %rdx
callq _ZN3std2rt10lang_start17he5a718dea3bb834eE
popq %rcx
.cfi_def_cfa_offset 8
retq

Listing 1: Some assembler

Listing 1 depicts the main() function for a “Hello World!” pro-
gram. Compilers produce assembler as an intermediate format,
and that’s what appears in Listing 1. You can learn to program
in assembler, but you have to handle things that compilers make
easy to do, like choosing the register to use (anything beginning
with %), managing the stack, managing memory. Each CPU archi-
tecture has a different set of registers and assembly instructions,
although assemblers themselves, like as, work the same. You still
have comments, but assembler is hard to read and is not portable
between CPU architectures.

That’s why the geniuses who created UNIX created the C lan-
guage: they needed a language that made porting an operating
system easier. They also wanted something that would be fast
and that provides little in the way of handholding. If you don’t
know better, you can easily make “fatal” mistakes, like using a
pointer after the memory it points to has been freed or writing
into memory beyond the end of an array. On the other hand, you
can treat pointers as function entry points and perform arith-
metic on pointers, very handy things to have when writing an
oper ating system—especially one that runs on hardware with
32K words of RAM.

C is my favorite language, but it is a language without seatbelts,
airbags, or even bumpers. C, and its younger cousin C++, assume
that you know what you are doing and you never make a mistake.
The first of these points is rarely true, and the second is never
true—even the best programmers make mistakes.

There are safer languages to use, ones with safety features. Gen-
erally, these languages remove access to pointers and provide
strong types. Go and Rust are examples of safer languages, with
Rust being designed particularly for safety. Go is not as fast as C
or C++, but perhaps a 10–15% penalty for a lot of execution safety
is worthwhile. Rust, meanwhile is nearly as fast as C, and perhaps
will be when LLVM can produce code as performant as GCC.

Safer languages leverage hardware support for security by mak-
ing it much more difficult to write programs that are terribly
insecure. I think this is a very good idea, especially if we are going
to teach everyone to program.

The Lineup
We start out this issue with an opinion piece by Michael Mattioli,
who feels that tools like Zoom, Meet, Teams, and so on are miss-
ing something important.

Next, I picked two papers from USENIX Security ’20 that were
clearly written and included points that I felt were especially
worth sharing. There were another half-dozen papers that I
really liked, but those either weren’t as well written, had deep
dives into statistics, or were too narrow for the wide audience
represented by the USENIX membership.

4 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

EDITORIAL
Musings

Votipka et al. examine programmer mistakes, but not just any
type of errors. They used the Build It, Break It, Fix It (BIBIFI)
program as their data source. BIBIFI challenges programmers
who have had training or work experience to write three, non-
trivial programs with some security requirements, share the
sources to these programs with other teams, and then analyze
the programs and the faults found by the teams. What they found
was distressing to me and is part of the reason why security is so
hard to get right.

Garfinkel et al. have written a tool, RLBox, that makes sand-
boxing libraries easier. Most programs incorporate libraries,
and many of these libraries process input that may come from
attackers, such as image or video decoders. RLBox simplifies the
process of sandboxing these libraries. The authors worked with
Mozilla to sandbox several key libraries, and their tool will work
for other programs as well.

Huang et al. volunteered to write about their research project,
Senx, an automatic program repair tool. The authors argue that
waiting for security patches to appear often takes much too long,
and with access to source code and an example of an attack, Senx
can create patches for three different types of vulnerabilities.

I interviewed Sergey Bratus. There were several papers at
USENIX Security ’20 that appeared to be directly related to
Language Security principles, or LangSec. Bratus has written for
;login: before, has been running a workshop on LangSec for years,
and seemed to me to be the perfect person to explain LangSec
principles. And this worked, as LangSec seems much clearer to
me now and is important if we are ever going to be able to write
secure software.

The USENIX Annual Technical Conference also happened this
summer, and I chose two papers and one talk as the basis for
articles. Shahrad et al. explain a key feature of running cloud
functions: deciding how long a function should be kept warm,
that is, ready to run. They provide examples taken from Azure
and a new scheme that improves performance and efficiency.

Raghavan et al. discuss Posh, a distributed shell. To me, Posh is a
great example in the tradition of USENIX ATC, an improvement
on the shell that works by moving execution closer to the sources
of data, when that data is available over NFS. Posh can also add
parallelism to shell scripts without rewriting the scripts.

I interviewed Margo Seltzer, who gave an afternoon keynote at
USENIX ATC ’20. Seltzer encouraged her audience to explore
beyond the safe confines of their personal specialties and con-
sider “fringe” ideas. Seltzer provides several examples of doing
this in her own highly successful career.

Torres and Colish cover capacity planning for SREs. They divide
capacity planning into two areas: resource provisioning and
capacity planning to safeguard the future potential of a service.

The authors cover redundancy for reliability and how this must
include back-end services as well.

Adam McKaig explains why he thinks that it’s important for
SREs to understand algorithms and data structures. McKaig
takes us through three examples of a service that initially is
performing well, uncovering the reasons why the service starts
failing SLOs, and explaining the solutions that he and the teams
he worked with came up with for repairing the service.

Laura Nolan has written a book review of Alex Hidalgo’s recently
published book about SLOs. Nolan explains why she considers
Hidalgo’s book one of the most important for SREs. Hidalgo
wrote an article for ;login: in the Summer 2020 issue, so you can
also sample his writing there.

Cory Lueninghoener shows us how to create different aspects of
containers from the command line. While you may be more likely
to use a tool like Docker for this, you will gain understanding of
what Docker is doing by trying Lueninghoener’s examples.

Dave Josephsen continues his exploration of eBPF, this time
focusing on histograms as a clever technique for displaying
potential performance issues. Josephsen dives into how to select
bin sizes for histograms and exactly why histograms are so good
at unveiling problems that would be buried in data otherwise.

Simson Garfinkel covers the history and uses of cryptographic
hashes. While the use of hashes has become commonplace in
programming, cryptographic hashes provide the foundation for
assuring the authenticity of code or messages, timestamps for
documents, and in forensics.

Terence Kelly demonstrates a technique for storing graphs as
compressed sparse row format. First, Kelly shows the most com-
monly used ways of storing graphs, explains why these methods
waste memory, and then details how to use the compressed
sparse row format and when other formats will work better.

Dan Geer, along with coworkers John Speed Meyers and Bentz
Tozer, has researched software supply chain insecurity. They
have collected data about how often attackers have modified the
source code for open source libraries as well as how often this
has resulted in successful attacks, work that I believe is really
important so long as we continue to include other people’s code,
via libraries, in our own programs.

Robert Ferrell distracts us with his views on social media
influencers. Ferrell deletes himself from this clan, while ponder-
ing on the usefulness of content that is itself nothing more than
advertising.

Mark Lamourine has reviewed three books this time, Effective
Python, Dependency Injections, Practices, and Patterns, and
Building Secure and Reliable Systems. I reviewed a book about
rootkits for Windows.

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 5

EDITORIAL
Musings

Most of us have little to no influence on hardware design. To
be honest, most of us won’t have the type of ideas necessary to
even get the CPU industry to move at all toward better security.
Personally, I’d like to see designs that support message passing
without involving context switches, as that would allow our serv-
ers to appear more like clouds than 1970s mainframes.

We do have choices we can make about the programming
languages we use. Well, some of us do, while those working at
corporations often have that decision made by someone far off
in the top of the management hierarchy, based on the latest buzz.
For those who have choices, I recommend languages like Rust
that emphasize both security and performance. For a different
way of looking at things, I found this article at Northeastern an
interesting way to view programming languages [3]. Hopefully,
someone will keep this page up-to-date so we don’t have to rely on
sites like TIOBE.

And as for making systems more secure, we do need to stop hand-
ing out assault rifles like C++ and get more people to use inher-
ently safer programming languages like Rust or Go. Python has
its faults, like the lack of strong types and being single threaded
like JavaScript, but it doesn’t have pointers and the types of
memory issues that C and C++ have had for decades. Decisions
at institutions of higher education do have an influence over the
future security, or insecurity, of computers.

Remember Listing 1, the assembly language example? That
was helloworld.rs, the Rust version, but you can hardly tell by
looking at the intermediate assembly code. All programming
languages wind up as machine code, and while that may sound
like all languages are equal, they are not. Some languages take
advantage of advances in compiler designs so they make it much
easier to write secure code. You can choose the 1970s model with
some upgrades, or learn something new that can help make the
world a safer place.

The Future of ;login:
This issue marks the end of print ;login:. You can read about why
this is happening and learn more about how the digital version
of ;login: will work in USENIX Notes, beginning on page 95.

Some people have found the reference to “peer-reviewed” in this
description a bit confusing, thinking that the digital version of
;login: will be like a journal. That’s not true. The peer-review has
long been a part of editing ;login:, and consisted of PC members
who accepted the papers that many articles are based upon. For
the rest, I was the “peer,” with responsibility for accepting arti-
cles only from subject matter experts. I did rely on other experts
in areas where I was unfamiliar with the authors. The digital
version will expand the number of peers, so I will no longer be
responsible for culling out articles that should not be published
in ;login:.

Another advantage of a digital ;login: will be shorter elapsed
time between submitting an article and its appearance online.
Printing ;login: takes a long time—just dealing with the print-
ing process itself took almost three weeks. While I might see a
draft, get a final version, format it and turn it in in just one week,
the process that includes copy editing and typesetting takes a
great deal longer. Michele Nelson, the Managing Editor, received
articles from me and sheparded them through this long process.

I think we will miss our copy editors, Steve Gilmartin and Amber
Ankerholz. Good copy editors improve your writing, often taking
something not written that well and turning it into something
that makes you start believing you really can write well. The
copy editor must improve your written English without distort-
ing your meaning, and Steve did a great job. Amber’s task was to
approve Steve’s edits from a technical standpoint. That process,
and proofreading, added three weeks to the process. Typesetting,
expertly done by Linda Davis, added yet another week. When you
add all of this up, and start from the point when I ask authors to
write or get a proposal, the process can take over four months. I
don’t even want to think about how long your ;login: magazine sat
in a pile before you started reading it….

The digital ;login: will be open access. Laura Nolan has written
about the value of open access in this issue. All articles will
be open access when posted, as opposed to members-only for
one year. Only USENIX members will be able to comment on
articles, something we hope will lead to discussion about articles
and feedback to authors. With print ;login:, about the only time
authors get feedback is during in-person conferences, and from
personal experience I can tell you that even that is rare. I hope the
ability to respond to articles results in useful feedback, or at least
acknowledgement that someone has read and appreciates the
work someone put into an article.

We—that is the committee composed of three board members,
Laura Nolan, Arvind Krishnamurthy, and Cat Allman, along
with Casey Henderson—came up with several other ideas to
celebrate this, the final print issue. I was assigned to interview
two early USENIX members. Clem Cole has the honor of being
 USENIX member number seven, and I interviewed him first.
Kirk McKusick represents, at least for me, the Berkeley side of
UNIX and makes up the second interview. They both partici-
pated in the story of how USENIX helped Rick Adams start
UUNET in the late 80s, as did Deborah Scherrer (the Board VP),
Steve Johnson (Treasurer), and Rick Adams. Adams recom-
mended reading Peter Salus’ (Executive Director) article [4].
Adams also deserves thanks for donating UUNET stock from
his fledgling company that later became the foundation for the
endowment that is keeping USENIX alive during COVID-19.

6 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

EDITORIAL
Musings

Finally, Laura Nolan, Arvind Krishnamurthy and I picked out
our favorite articles from ;login: issues starting with 2005. I
learned that my ability to edit ;login: has improved over the years.
I had started to edit special security-focused issues of ;login: in
1998, but to my eyes, the first five years of being the regular edi-
tor, starting in 2005, seem pretty rough.

You might be wondering what I plan to do with all the time I will
have because I will be sharing the editorial responsiblities. I plan
on writing some science fiction, and hope to have at least one
short story up at https:/rikfarrow.com/fiction/ by the time this
issue appears. I’ve started at least five stories, and have one close
to completion—about computers and future myths, of course.

References
[1] D. Goodin, “Intel SGX Is Vulnerable to an Unfixable Flaw
That Can Steal Crypto Keys and More,” Ars Technica, March
10, 2020: https://arstechnica.com/information-technology
/2020/03/hackers-can-steal-secret-data-stored-in-intels
-sgx-secure-enclave/.

[2] Memory Protection Keys: https://www.kernel.org/doc
/html/latest/core-api/protection-keys.html.

[3] B. Eastwood, “The 10 Most Popular Programming Lan-
guages to Learn in 2020,” Northeastern University Graduate
Programs, June 18, 2020: https://www.northeastern.edu
/graduate/blog/most-popular-programming-languages/.

[4] P. Salus, “Distributing the News: UUCP to UUNET,”
;login:, vol. 40, no. 4 (August 2015): https://www.usenix.org
/system/files/login/articles/login_aug15_09_salus.pdf.

The 2020 COVID-19 pandemic has forced hundreds of millions of people
to use video conferencing tools to continue learning, educating, con-
ducting business transactions and providing health care. These tools

are poor conduits for true human-to-human communication. Posture, tone of
voice, use of physical space, facial expressions, gestures, and more are all lost
when communicating through these tools as we know them today. To replicate
the in-person experiences we’ve all come to know, these tools need to evolve
from what is possible today with simple sound and some pixels.

Zoom, Meet, Teams, Skype, Webex, FaceTime—take your pick. Whichever you choose, they
all boil down to nothing more than one or two audio channels and a few hundred thousand
pixels. That’s all you get. Since March of 2020, the COVID-19 pandemic has forced hundreds
of millions of people to communicate with each other using myriad video conferencing tools.
Human-to-human communication is much more than just hearing what we say and seeing
some pixels arranged to represent faces. These tools were designed in a world much different
from the one we live in now. Don’t get me wrong; they’ve been crucial in the continuity of health
care, education, and business over the last few months. I am not trying to diminish or downplay
their importance; quite the opposite. Because they are so important, they need to evolve in
order to become more effective vehicles for human-to-human communication.

Health Care
There’s a reason why bedside manner is so strongly emphasized in training health care
professionals. Intimate conversations with patients transpire: conversations about their
health, well-being—their literal lives. These conversations require connection and engagement.
Patients need to establish trust with their physician or nurse [6]. They want to be certain that

OPINION
Video Conferencing Must Evolve
M I C H A E L M A T T I O L I

Michael leads the Hardware
Engineering team within
Goldman Sachs. He is
responsible for the design
and engineering of the firm’s

digital experiences and technologies. He is
also responsible for the overall strategy and
execution of hardware innovation both within
the firm and within the broader technology
industry. Michael.Mattioli@gs.com

https://arstechnica.com/information-technology/2020/03/hackers-can-steal-secret-data-stored-in-intels-sgx-secure-enclave/
https://arstechnica.com/information-technology/2020/03/hackers-can-steal-secret-data-stored-in-intels-sgx-secure-enclave/
https://arstechnica.com/information-technology/2020/03/hackers-can-steal-secret-data-stored-in-intels-sgx-secure-enclave/
https://www.kernel.org/doc/html/latest/core-api/protection-keys.html
https://www.kernel.org/doc/html/latest/core-api/protection-keys.html
https://www.northeastern.edu/graduate/blog/most-popular-programming-languages/
https://www.northeastern.edu/graduate/blog/most-popular-programming-languages/
https://www.usenix.org/system/files/login/articles/login_aug15_09_salus.pdf
https://www.usenix.org/system/files/login/articles/login_aug15_09_salus.pdf

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 7

OPINION
Video Conferencing Must Evolve

they are receiving nothing less than the absolute best care to be
offered. Simple things like sitting down or standing up to have
these conversations can make a world of difference [8].

When explaining a course of treatment, the tone in a physician’s
voice can convey confidence or doubt. A patient’s nonverbal
reactions (e.g., facial expressions, posture) to information give the
physician more clarity on how the information is received than the
patient’s verbal response. These aren’t things that can be effec-
tively conveyed with the digital tools we have today.

Education
Students, instructors, and parents all agree that remote learning
is nowhere near as engaging as in-person instruction. Instruc-
tors cannot accurately determine how their material is being
received. Do the students react by sitting up or slouching? Are
they responding confidently or insecurely in their answers?
Are they even paying attention? A Dallas middle-school Span-
ish teacher struggles to find ways to read her students’ body
language: “In the classroom, I can look around and see body lan-
guage and know when some of my students not fluent in Spanish
need me to switch to English. I can’t do that online. We need the
interaction with the kids, face-to-face” [3]. Students face similar
challenges with parents claiming that remote instruction “lacks
substance” and with some parents even considering having their
children repeat this past year’s coursework [4]. Even video games
are more engaging; the physical feedback (haptics) and input
(buttons, joysticks, etc.) using a controller provide an entirely
different sensory experience. Video games stimulate three of the
five human senses (sight, sound, and touch), whereas modern
video conferencing tools only provide interfaces for two (sight
and sound).

Businesses
Know Who You’re Dealing With
It’s commonplace for high-stakes business interactions to take
place in-person. In a study by Great Business Schools, 82% of
people say that in-person meetings are essential for important
contracts [7]. Any decision involving large sums of money, con-
tracts, careers, and anything in between can be devastating if
made incorrectly. Negotiations typically take place in-person so
that each party has an opportunity to better understand the other
prior to transacting. Use of body language and the physical space
in the meeting place are key [5]. Lack of eye contact could suggest
deceit. Folding one’s arms could suggest defensiveness. Short
and curt answers could be indicative of disinterest. Sitting down
suggests one is confident and relaxed, whereas pacing around the
room suggests one is anxious. When deciding whether or not to
close on a new home, extend an employment offer, or enter into a
contract, it’s fair to want as much information as possible to truly
assess the situation before making a final, binding decision.

Build Relationships
Arguably the most important component of a business transac-
tion is not just the transaction itself but the long-term relation-
ships that are formed between parties. The same study by Great
Business Schools also reported that 85% of people found that
in-person meetings built strong, more meaningful business
relationships. Meaningful relationships require connection and
engagement on a human level—a difficult task if relying solely
on an audio device’s representation of someone’s voice and a
display’s representation of someone’s face. Also consider the level
of effort it takes to communicate with someone via video confer-
encing (rather low) as opposed to an in-person meeting (poten-
tially rather high depending on various factors). “Going the extra
mile” (quite literally, in some cases) helps establish a foundation
of trust between parties and suggests that the relationship is of
high importance [1].

Conclusion
We’ve all been making do with what we have in this time of crisis.
The current situation is far from ideal. We’ve been using tools
that were designed as a convenience or a luxury, but it’s clear now
that they need to be classified as a necessity.

What separates video conferencing from a phone call? A few
hundred thousand pixels and, if you’re lucky, slightly higher fidel-
ity audio—nothing more. Video conferencing excels in situations
where the human aspect of communication is not critical, such as
brief conversations and informal discussions. These tools need
to make the generational leap that provides more natural human-
to-human communication.

Of course, the concept of going to a physical location to learn,
conduct business transactions, or consult with a physician may
already seem archaic. Just ask the hundreds of millions of people
who used to cram themselves into a bus or a train (or a combina-
tion of the two) for hours each day. In a study performed by Morn-
ing Consult, 32% of adults in the United States would prefer to
never commute again and work remotely every day, and only 24%
would want to continue to commute every day [2].

It’s time to move on, but the tools we have are holding us back.
The tone or volume of someone’s voice, whether or not they make
eye contact, use facial expressions, posture, etc. all need to be
accurately conveyed through digital means in order to reproduce
the in-person experiences we’ve all come to know. What is the
underlying technology that will help us get there? How does this
new level of communication affect how we will approach privacy
and security? These are some of the questions we, as engineers,
need to ask ourselves. No one has all the answers right now. Who
knows—years from now, when we get there, we may not even
refer to it as “video conferencing” anymore.

8 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

OPINION
Video Conferencing Must Evolve

References
[1] Ashton College, “The Importance of Face-to-Face Com -
munication”: https://www.ashtoncollege.ca/the-importance-of
-face-to-face-communication/.

[2] Morning Consult, “The Future of Work—How the Pandemic
Has Altered Expectations of Remote Work,” June 2020: https://
go.morningconsult.com/rs/850-TAA-511/images/Remote
%20Work%20Report%20-%20Morning%20Consult%20-%20
Final.pdf.

[3] T. D. Hobbs, and L. Hawkins, “The Results Are in for Remote
Learning: It Didn’t Work,” Wall Street Journal, June 5, 2020:
https://www.wsj.com/articles/schools-coronavirus-remote
-learning-lockdown-tech-11591375078.

[4] L. Brody, “Struggling with Remote Learning, Some Families
Cut Class,” Wall Street Journal, May 1, 2020: https://www.wsj
.com/articles/struggling-with-remote-learning-some-families
-cut-class-11588334403.

[5] Benchmark Meetings, “5 Reasons Virtual Meetings Can’t
Replace Face-to-Face Meetings,” April 2019: https://www
.benchmarkmeetings.com/face-to-face-meeting-advantages/.

[6] UCLA David Geffen School of Medicine, “The Importance of
Bedside Manner to Trust and Patient Engagement,” July 2016:
https://medschool.ucla.edu/body.cfm?id=1158&action=detail
&ref=699.

[7] Great Business Schools, “Face Squared—The Numbers
Behind Face to Face Networking,” January 2014: https://www
.greatbusinessschools.org/networking/.

[8] St. George’s University, “Developing Good Bedside Manner:
9 Tips for Doctors,” January 2019: https://www.sgu.edu/blog
/medical/how-to-develop-good-bedside-manner/.

19th USENIX Conference on
File and Storage Technologies
FEBRUARY 23–25, 2021 | VIRTUAL EVENT

The 19th USENIX Conference on File and Storage Technologies (FAST ’21) brings together storage-
system researchers and practitioners to explore new directions in the design, implementation,
evaluation, and deployment of storage systems.

www.usenix.org/fast21

PROGRAM CO-CHAIRS

Marcos K. Aguilera
VMware Research

Gala Yadgar
Technion—Israel

Institute of Technology

https://www.ashtoncollege.ca/the-importance-of-face-to-face-communication/
https://www.ashtoncollege.ca/the-importance-of-face-to-face-communication/
https://go.morningconsult.com/rs/850-TAA-511/images/Remote%20Work%20Report%20-%20Morning%20Consult%20-%20Final.pdf
https://go.morningconsult.com/rs/850-TAA-511/images/Remote%20Work%20Report%20-%20Morning%20Consult%20-%20Final.pdf
https://go.morningconsult.com/rs/850-TAA-511/images/Remote%20Work%20Report%20-%20Morning%20Consult%20-%20Final.pdf
https://go.morningconsult.com/rs/850-TAA-511/images/Remote%20Work%20Report%20-%20Morning%20Consult%20-%20Final.pdf
https://www.wsj.com/articles/schools-coronavirus-remote-learning-lockdown-tech-11591375078
https://www.wsj.com/articles/schools-coronavirus-remote-learning-lockdown-tech-11591375078
https://www.wsj.com/articles/struggling-with-remote-learning-some-families-cut-class-11588334403
https://www.wsj.com/articles/struggling-with-remote-learning-some-families-cut-class-11588334403
https://www.wsj.com/articles/struggling-with-remote-learning-some-families-cut-class-11588334403
https://www.benchmarkmeetings.com/face-to-face-meeting-advantages/
https://www.benchmarkmeetings.com/face-to-face-meeting-advantages/
https://medschool.ucla.edu/body.cfm?id=1158&action=detail&ref=699
https://medschool.ucla.edu/body.cfm?id=1158&action=detail&ref=699
https://www.greatbusinessschools.org/networking/
https://www.greatbusinessschools.org/networking/
https://www.sgu.edu/blog/medical/how-to-develop-good-bedside-manner/
https://www.sgu.edu/blog/medical/how-to-develop-good-bedside-manner/
https://www.usenix.org/fast21

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 9

SECURITYBuild It, Break It, Fix It Contests
Motivated Developers Still Make Security Mistakes

D A N I E L V O T I P K A , K E L S E Y R . F U L T O N , J A M E S P A R K E R , M A T T H E W H O U ,
M I C H E L L E L . M A Z U R E K , A N D M I C H A E L H I C K S

Secure software development is a challenging task requiring consid-
eration of many possible threats and mitigations. We reviewed code
submitted by 94 teams in a secure-programming contest designed to

mimic real-world constraints—correctness, performance, and security. We
found that the competitors, many of whom were experienced programmers
and had just completed a 24-week cybersecurity course sequence with spe-
cific instruction on secure coding and cryptography, still introduced several
vulnerabilities (182 across all teams), mostly due to misunderstandings of
security concepts. We explain our methodology, discuss trends in the types
of vulnerabilities introduced, and offer suggestions for avoiding the kinds of
problems we encountered.

Developing secure software remains challenging, as evidenced by the numerous vulnerabili-
ties still regularly discovered in production code [6]. There are many approaches that could
be—and often have been—taken to improve this situation: building and deploying more auto-
mated tools for vulnerability discovery, expanding security education, or improving secure
development processes.

But which of these interventions should we prioritize? While all are potentially helpful, we
must carefully consider which provide the best return on investment, maximizing security
while minimizing time, effort, and other resources, all of which are in short supply as devel-
opers are pressured to produce more new services and features.

A key part of this consideration is to understand the kinds and frequency of vulnerabilities
that occur, and why developers introduce them, so that the root causes can be addressed. To
this end, we performed a systematic, in-depth examination using best practices developed for
qualitative assessments of vulnerabilities present in 94 project submissions by teams made
up mostly of experienced programmers—many of whom had just completed a four-course
program on secure development—to the Build It, Break It, Fix It (BIBIFI) secure-coding
competition series [8, 10]. Our six-month examination considered each project’s code and
866 total exploit submissions, corresponding to 182 unique security vulnerabilities associ-
ated with those projects.

Our findings suggest rethinking strategies to prevent and detect vulnerabilities, with more
emphasis on conceptual difficulties rather than mistakes. This article provides an overview
of our work. A more in-depth discussion of the methods followed, survey of related literature,
and description of results can be found in our recent USENIX Security paper [10].

Build It, Break It, Fix It: A Happy Medium to Study
Our work to examine vulnerabilities introduced by software developers complements many
prior efforts. Some researchers have performed large-scale analyses of open-source code
and CVE reports, categorizing vulnerabilities found in production code [2, 3]; others have
explored specific possible sources of error using controlled experiments with small, security-
focused tasks [1, 7]. These field measures and lab studies represent two ends of a method-
ological spectrum. Field measures provide strong ecological validity, reflecting real-world

Daniel Votipka is a computer
science PhD candidate at the
University of Maryland. His
research focuses on information
security, with an emphasis

on the human factors affecting security
professionals. His most recent work focuses
on understanding the processes and mental
models of software vulnerability discovery
to provide research-based improvements for
education and automation to help develop and
leverage human expertise.
dvotipka@cs.umd.edu

Kelsey Fulton is a computer
science PhD student at the
University of Maryland. Her
research explores the human
factors of information security,

with a focus on software developers and
security professionals. Her most recent work
centers on the barriers to adoption of secure
programming languages in order to provide an
empirical foundation for the future design of
secure languages, APIs, and tools.
kfulton@cs.umd.edu

James Parker is a Software
Research Engineer at Galois.
James earned his PhD in
2020 and was advised by
Michael Hicks. His research

spans verifying information flow control
mechanisms, guaranteeing correctness of
distributed systems, and studying secure
development practices. jprider@cs.umd.edu

10 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

SECURITY
Build It, Break It, Fix It Contests: Motivated Developers Still Make Security Mistakes

contexts, but provide no control over conditions like developer motivation and functionality
being implemented that can affect results. In contrast, lab studies provide high levels of con-
trol but only limited ecological validity.

We attempt to balance ecological validity and experimental control by studying vulnerabilities
in the context of BIBIFI competition projects. A BIBIFI competition has three phases. In the
build it phase, teams are given just under two weeks to build a project that (securely) meets
a given specification. Team scores depend on the project’s correctness and efficiency, based
on provided test cases. Submitted projects may be written in any programming language and
can use any open-source libraries, as long as they can be built on a standard Ubuntu Linux
VM. In the break it phase, teams receive access to their competitors’ source code in order to
search for vulnerabilities. Teams can submit test cases, known as breaks, to demonstrate
exploitation. Successful breaks add to the exploiting team’s break-it score, while reducing the
victim’s build-it score. The final fix-it phase allows teams to fix identified vulnerabilities in
order to gain back a portion of their lost build-it points.

BIBIFI data therefore strikes a unique balance between ecological validity and control. Many
implementations of the same functionality, created under similar circumstances, provide
more confidence than field data does to help us understand what happened and why. On the
other hand, teams had weeks (rather than hours) to develop their projects, could use their
choice of languages and libraries, and were incentivized to consider constraints like perfor-
mance and functionality as well as security, creating more ecological validity than many lab
studies. While we know BIBIFI does not provide a perfect view into the development process
(see our original paper [10] for a detailed discussion of limitations), it provides a new and
valuable vantage point for examining the vulnerability landscape and informing future work.

The Competition’s Projects
We analyzed projects from four BIBIFI competitions, covering three different programming
problems: secure log, secure communication, and multiuser database. Each problem specifica-
tion required the teams to consider different security challenges and attacker models.

Secure log (SL). This problem requires teams to implement two programs: one to securely
append records to a log, and one to query the log’s contents. Teams must protect against a
malicious adversary with access to the log and the ability to modify it. The adversary does
not have access to the keys used to create the log. Teams are expected (but not told explicitly)
to utilize cryptographic functions to encrypt the log and protect its integrity.

Secure communication (SC). This problem requires teams to create client/server programs
representing a bank and an ATM. The ATM initiates transactions, including account creation,
deposits, and withdrawals.

Teams must protect bank data integrity and confidentiality against an adversary acting
as a man-in-the-middle (MITM), with the ability to read and manipulate communications
between the client and server. Once again, build teams were expected to use cryptographic
functions and to consider challenges such as replay attacks and side-channels.

Multiuser database (MD). This problem requires teams to create a server that maintains a
secure key-value store. Clients submit scripts written in a domain-specific language. A script
authenticates with the server and then submits a series of commands to read and write data
stored there. Data is protected by role-based access control policies customizable by the data
owner, who may (transitively) delegate access control decisions to other principals.

The problem assumes that an attacker can submit commands to the server but not snoop on
communications.

Matthew Hou is a first year
computer science graduate
student at the University of
Maryland and is expecting to
complete his master’s degree

next May. He recently graduated with honors
from the University of Maryland with a BSc
in computer science. His focus is on machine
learning and artificial intelligence, leveraging
cybersecurity principles. mhou1@cs.umd.edu

Michelle L. Mazurek is an
Associate Professor in the
Computer Science Department
at the University of Maryland.
Her research explores human

aspects of information security and privacy,
with a recent focus on improving security tools
and processes for professionals, including
software developers, network administrators,
and reverse engineers. She also investigates
how and why end users learn and adopt
security and privacy behaviors, and she
develops tools to increase transparency in
online tracking and inferencing.
mmazurek@cs.umd.edu

Michael Hicks is a Professor
in the Computer Science
Department at the University
of Maryland. His research
explores ways to make software

more secure. He has a particular interest in
securing low-level systems software, with a
nearly 20-year stretch of work that started
with the Cyclone safe C-like programming
language (a significant influence on today’s
Rust programming language) and now
involves contributions to Checked C, a safe-C
extension based on clang/LLVM. He is also
exploring synergies between cryptography
and programming languages; techniques for
better random (fuzz) testing and probabilistic
reasoning; and high-assurance tools and
languages for quantum computing. He blogs
at https://www.pl-enthusiast.net/.
mwh@cs.umd.edu

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 11

SECURITY
Build It, Break It, Fix It Contests: Motivated Developers Still Make Security Mistakes

Vulnerabilities: Type and Prevalence
We manually analyzed 94 (out of 142) BIBIFI projects and 866
exploit submissions against them, ultimately identifying 182
unique vulnerabilities (some of which had not been identified
during the contests). We grouped these vulnerabilities according
to three main types: no implementation, misunderstanding, and
mistake. Table 1 shows how many vulnerabilities, from how many
projects, we identified for each type. This section describes each
type, with examples.

No Implementation
The first step in building a secure system is to attempt to imple-
ment necessary security mechanisms. Unfortunately, half of
all teams introduced a no implementation vulnerability, failing
in this first step for at least one required security mechanism.
This is presumably because they did not realize the security
mechanism was needed. We further divided no implementation
vulnerabilities based on how obvious the need was, depending on
whether it was directly mentioned in the problem specification or
just implied. For example, in the secure log problem, where teams
were asked to ensure an attacker with read/write file access
could not read or make changes to a confidential log, we consid-
ered it obvious that encryption was needed to provide confidenti-
ality, but unintuitive that a Message Authentication Code (MAC)
should be used as an integrity check.

Unintuitive security requirements are commonly skipped.
Of the no implementation vulnerabilities, we found that teams
were much more likely to skip unintuitive security requirements
(45% of projects) than their intuitive counterparts (16% of proj-
ects). This indicates that developers do attempt to provide secu-
rity—at least when incentivized to do so—but struggle to consider
all the unintuitive ways an adversary could attack a system.
Therefore, they regularly leave out some necessary controls.

Misunderstandings
After realizing a security mechanism should be implemented,
teams then needed to make sure they implemented it correctly.
We found that most teams failed at this point in the secure devel-
opment process, most commonly due to a conceptual misunder-
standing (56% of projects). We sub-typed these as either bad
choice or conceptual error.

A bad choice occurs when a team decides to use a known-insecure
algorithm or library—likely because they did not realize its inher-
ent flaw (12% of vulnerabilities). In another secure log problem
example, one team realized they needed to encrypt their log, but
chose to simply XOR key-length chunks of the log with the user-
provided key to generate the final encrypted version of the log.
This method of encryption is inherently insecure, as the attacker
can simply extract two key-length chunks of the ciphertext, XOR
them together, and produce the key, allowing them to decrypt the
entire log easily.

Assuming a team did choose a secure algorithm or library, next
they had to know how to use it properly. We observed several
cases where teams introduced vulnerabilities by not using the
algorithm or library as intended, owing to a conceptual mis-
understanding (27% of vulnerabilities). We classified these as
conceptual error vulnerabilities. For example, one team made the
reasonable choice to use AES encryption but used a fixed value
for its initialization vector (IV); see code in Listing 1. A fixed IV,
rather than a random one, allows an attacker to break the encryp-
tion and read the secret log.

1 def fillercrypter (sharedkey, text):
2 ...
3 encryption_suite = AES.new (sharedkey,
4 AES.MODE_CBC, ’This is an IV456’)
5. ...

Listing 1: One team generated a conceptual error vulnerability by using a
hardcoded IV.

Type Sub-Type Projects (94) Vulnerabilities (182)

No implementation Intuitive
Unintuitive

15 (16%)
42 (45%)

23 (13%)
49 (27%)

Total 47 (50%) 72 (40%)

Misunderstanding Bad choice
Conceptual error

20 (21%)
41 (44%)

22 (12%)
49 (27%)

Total 53 (56%) 71 (39%)

Mistake — 20 (21%) 39 (21%)

Table 1: Number of vulnerabilities for each type and the number of projects each vulnerability was introduced in. Note, because projects can have multiple
vulnerabilities, the total number of projects introducing a vulnerability for each type may not be the sum of sub-type project counts.

12 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

SECURITY
Build It, Break It, Fix It Contests: Motivated Developers Still Make Security Mistakes

1 self.db = self.sql.connect(filename, timeout=30)
2 self.db.execute('pragma key="' + token + '";')
3 self.db.execute('PRAGMA kdf_iter='
4 + str(Utils.KDF_ITER) + ';')
5 self.db.execute('PRAGMA cipher_use_MAC=OFF;')
6 ...

Listing 2: Another team disabled the automatic MAC in SQLCipher library.

In another interesting example, one team simply disabled pro-
tections provided transparently by their chosen library. They
initially made a secure choice by using the SQLCipher library,
which provides encryption and integrity checks in the back-
ground without developer effort, but then explicitly disabled the
library’s MAC protection; see line 5 in Listing 2.

Teams often used the right security primitives but did not
know how to use them correctly. Among the misunderstanding
vulnerabilities, we found that conceptual error vulnerabilities
(44% of projects) were significantly more likely to occur than
bad choice vulnerabilities (21% of projects). This indicates that if
developers know what security controls to implement, they are
often able to identify (or are guided to) the correct primitives to
use. However, they do not always conform to the assumptions of
“normal use” made by library developers.

Mistakes
Finally, some teams chose the correct algorithm or library, and
appeared to understand how to correctly use it, but made a simple
mistake that led to a vulnerability (21% of vulnerabilities). For
example, some teams did not properly handle errors, leaving the
program in an observably bad state. Other mistakes led to logi-
cally incorrect execution behaviors. Such mistakes were often
related to control flow logic or missed steps in an algorithm. For
example, if a team correctly encrypted their log, but accidentally
wrote the plaintext log to file instead of the ciphertext, this would
be a mistake.

Complexity breeds mistakes. We found that the frequency of
mistakes was affected by complexity, within both the problem
itself and also the approach taken by the team. First, we found
that teams were 6.68× more likely to introduce mistakes in the
multiuser database than in the secure communication problem.
This likely reflects the fact that the multiuser database problem
was the most complex, requiring teams to write a command
parser, handle network communication, and implement nine
different access control checks. Similarly, teams were only 0.06×
as likely to make a mistake in the comparatively simple secure log
problem compared to the secure communication problem.

Additionally, choosing not to reimplement security-relevant
code multiple times was associated with only 0.36× as many
mistakes, suggesting that violating the “Economy of Mechanism”
principle [9] by adding unnecessary complexity leads to mistakes.

As an example of this effect, one team implemented their access
control checks four times throughout the project. Unfortunately,
when they realized the implementation was incorrect, they only
updated it in one place.

Exploit Difficulty
In addition to examining vulnerability types and their frequency,
we also assessed how difficult it would be for an attacker to find
and exploit the vulnerability. Even if a vulnerability was quite
common, if it was very difficult to identify, requiring esoteric
knowledge or practically impossible to exploit, its resolution
might be lower priority than a less common but more exploitable
vulnerability.

We considered three metrics of difficulty: our qualitative assess-
ment of the difficulty of finding the vulnerability (discovery
difficulty); our qualitative assessment of the difficulty of exploit-
ing the vulnerability (exploit difficulty); and whether a competi-
tor team actually found and exploited the vulnerability (actual
exploitation). For convenience of analysis, we binned discovery
difficulty into easy (execution) and hard (source, deep insight).
We similarly binned exploit difficulty into easy (single-step, few
steps) and hard (many steps, deterministic or probabilistic). Fig-
ure 1 shows the number of vulnerabilities for each type with each
bar divided by exploit difficulty and bars grouped by discovery
difficulty.

Misunderstandings are rated as hard to find, while no
implementations are rated as easy to find. Identifying
misunderstanding vulnerabilities often required the attacker to
determine the developer’s exact approach and have a good under-
standing of the algorithms, data structures, or libraries they
used. As such, we rated misunderstanding vulnerabilities as hard
to find significantly more often than other vulnerability types.

Unsurprisingly, a majority of no implementation vulnerabili-
ties were considered easy to find. For example, in the secure
log problem, an auditor could simply check whether encryption
and an integrity check were used. If not, then the project can be
exploited.

Easy to find doesn’t mean easy to exploit. Interestingly, we
did not observe a significant difference in actual exploitation
between misunderstandings and no implementations. Some
misunderstandings were rated as difficult to find, while others
were rated as difficult to exploit. In one team’s use of homemade
encryption, the vulnerability took some time to find, because
the implementation code was difficult to read. However, once an
attacker realized the team had essentially reimplemented the
Wired Equivalent Protocol (WEP), a simple check of Wikipedia
revealed the exploit. Conversely, seeing that a non-random IV
was used for encryption is easy, but successful exploitation of
this flaw can require significant time and effort.

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 13

SECURITY
Build It, Break It, Fix It Contests: Motivated Developers Still Make Security Mistakes

As a no implementation example, one secure log team did not use
a MAC to detect modifications to their encrypted files. This mis-
take is very simple to identify, but it was not exploited by any of
the BIBIFI teams. This is likely because the team stored log data
in a JSON blob before encrypting, meaning that any modifica-
tions to the encrypted text must maintain the JSON structure
after decryption to succeed. This attack could require a large
number of tests to find a suitable modification.

Mistakes are rated as easy to find and exploit. We rated all
mistakes as easy to exploit. This is significantly different from
both no implementation and misunderstanding vulnerabilities,
which were rated as easy to exploit less frequently. Similarly,
mistakes were actually exploited during the Break It phase
significantly more often than other vulnerability types. In fact,
only one mistake was not actually exploited by any team. These
results suggest that although mistakes were least common, any
that do find their way into production code are likely to be found
and exploited. Fortunately, our results also suggest that code
review may be sufficient to find many of these vulnerabilities.
We note that this assumes that the source is available, which may
not be the case when a developer relies on third-party software.

Discussion and Recommendations
So what do these results mean for improving secure development?
We believe they add weight to existing recommendations and
suggest prioritizations of possible solutions.

Get the help of a security expert. In some large organizations,
developers working with cryptography and other security-
specific features might be required to use security-expert-
determined tools and patterns or have a security expert perform
a review. Our results reaffirm this practice, when possible, as
participants were most likely to struggle with security concepts
avoidable through expert review.

Security education. Better education should help developers
better help themselves. However, across all vulnerability types,
we observed no difference in vulnerabilities introduced related
to prior security training or years of prior development experi-
ence. It therefore seems that increased development experience
and (traditional) security training have, at most, a small impact.

Further, many of the BIBIFI teams had previously completed
a four-course cybersecurity training during which all needed
security controls were discussed, but a majority of these teams
nevertheless botched unintuitive requirements. Were the top-
ics not driven home sufficiently? An environment like BIBIFI,
where developers practice implementing security concepts and
receive feedback regarding mistakes, could help. Future work
should consider how well competitors from one contest do in
follow-on contests.

API design. Our results support the basic idea that security con-
trols are best applied transparently, e.g., using simple APIs [4].
However, while many teams used APIs that provide security
(e.g., encryption) transparently, they were still frequently
misused (e.g., failing to initialize using a unique IV or failing to
employ stream-based operation to avoid replay attacks). It may be
beneficial to organize solutions around general use cases, so that
developers only need to know the use case and not the security
requirements.

API documentation. API usage problems could be a matter of
documentation, as suggested by prior work [1, 7]. For example,
two teams used TLS socket libraries but did not enable client-
side authentication, necessary for the problem. This failure
appears to have occurred because client-side authentication is
disabled by default, but this fact is not mentioned in the docu-
mentation [11, 12]. Defaults within an API should be safe and
without ambiguity [4]. Returning to the example from List-
ing 2, the team disabled the automatic integrity checks of the
 SQLCipher library. Their commit message stated, “Improve
 performance by disabling per-page MAC protection.” We know
this change was made to improve performance, but it is possible
they assumed they were only disabling the “per-page” integrity
check while a full database check remained. The documenta-
tion is unclear about this (https://www.zetetic.net/sqlcipher
/sqlcipher-api/#cipher_use_MAC).

Vulnerability analysis tools. There is significant interest
in automating security vulnerability discovery (or preventing
vulnerability introduction) through the use of code analysis
tools. Such tools may have found some of the vulnerabilities we
examined in our study. For example, static analyses, symbolic
executors, fuzzers, and dynamic analyses could have uncovered
vulnerabilities relating to memory corruption, improper param-
eter use (like a fixed IV), and missing error checks. However,

Figure 1: Number of vulnerabilities introduced for each type divided by
discovery difficulty and exploit difficulty

https://www.zetetic.net/sqlcipher/sqlcipher-api/#cipher_use_MAC
https://www.zetetic.net/sqlcipher/sqlcipher-api/#cipher_use_MAC

14 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

SECURITY
Build It, Break It, Fix It Contests: Motivated Developers Still Make Security Mistakes

they would not have applied to the majority of vulnerabilities we
saw, which were often design-level, conceptual issues.

How could automation be used to address security requirements
at design time? More research is needed, but one possible direc-
tion forward is to consider analysis development in tandem with
improvements to API design. One example is Google’s efforts to
restrict the ways developers can potentially introduce certain
vulnerabilities (e.g., XSS, SQL-injection) through API design,
limiting the required complexity of vulnerability discovery
analysis [5].

Conclusion
Secure software development is challenging, with many pro-
posed remediations and improvements. To know which interven-
tions are likely to have the most impact requires understanding
which security errors programmers tend to make and why. In
our review of 94 submissions to a secure-programming contest,
each implementing one of three non-trivial, security-relevant
programming problems, we found implementation mistakes
were comparatively less common than failures in security under-
standing. Our results have implications for improving secure-
programming APIs, API documentation, vulnerability-finding
tools, and security education.

References
[1] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L.
Mazurek, and C. Stransky, “Comparing the Usability of Cryp-
tographic APIs,” in Proceedings of the IEEE Symposium on
Security and Privacy (2017), pp. 154–171.

[2] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An
Empirical Study of Cryptographic Misuse in Android Applica-
tions,” in Proceedings of the ACM Conference on Computer and
Communications Security (2013), pp. 73–84.

[3] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and V.
Shmatikov, “The Most Dangerous Code in the World: Validat-
ing SSL Certificates in Non-Browser Software,” in Proceed-
ings of the ACM Conference on Computer and Communications
Security (2012), pp. 38–49.

[4] M. Green and M. Smith, “Developers Are Not the Enemy!:
The Need for Usable Security APIs,” IEEE Security & Privacy,
vol. 14, no. 5 (Sept.–Oct. 2016), pp. 40–46.

[5] C. Kern, “Preventing Security Bugs through Software
Design,” 24th USENIX Security Symposium: https://www
.usenix.org/conference/usenixsecurity15/symposium-program
/presentation/kern.

[6] D. R. Kuhn, M. S. Raunak, and R. Kacker, “An Analysis of
Vulnerability Trends, 2008–2016,” in Proceedings of the 2017
IEEE International Conference on Software Quality, Reliability
and Security Companion, pp. 587–588.

[7] A. Naiakshina, A. Danilova, C. Tiefenau, M. Herzog, S.
Dechand, and M. Smith, “Why Do Developers Get Password
Storage Wrong?: A Qualitative Usability Study,” in Proceed-
ings of the ACM Conference on Computer and Communications
Security (2017), pp. 311–328.

[8] A. Ruef, M. Hicks, J. Parker, D. Levin, M. L. Mazurek, and P.
Mardziel, “Build It, Break It, Fix It: Contesting Secure Develop-
ment,” in Proceedings of the ACM Conference on Computer and
Communications Security (2016), pp. 690–703.

[9] J. H. Saltzer and M. D. Schroeder, “The Protection of Infor-
mation in Computer Systems,” in Proceedings of the Symposium
on Operating System Principles (ACM, 1975), pp. 1278–1308..

[10] D. Votipka, K. R. Fulton, J. Parker, M. Hou, M. L. Mazurek,
and M. Hicks, “Understanding Security Mistakes Developers
Make: Qualitative Analysis from Build It, Break It, Fix It,” in
Proceedings of the 29th USENIX Security Symposium (USENIX
Security ’20), pp. 109–126.

[11] TLS socket documentation: https://golang.org/pkg/crypto
/tls/#Listen and https://www.openssl.org/docs/manmaster
/man3/SSL_new.html.

[12] SQLCipher documentation: https://www.zetetic.net
/sqlcipher/sqlcipher-api/#cipher_use_MAC.

https://www.usenix.org/conference/usenixsecurity15/symposium-program/presentation/kern
https://www.usenix.org/conference/usenixsecurity15/symposium-program/presentation/kern
https://www.usenix.org/conference/usenixsecurity15/symposium-program/presentation/kern
https://golang.org/pkg/crypto/tls/#Listen
https://golang.org/pkg/crypto/tls/#Listen
https://www.openssl.org/docs/manmaster/man3/SSL_new.html
https://www.openssl.org/docs/manmaster/man3/SSL_new.html
https://www.zetetic.net/sqlcipher/sqlcipher-api/#cipher_use_MAC
https://www.zetetic.net/sqlcipher/sqlcipher-api/#cipher_use_MAC

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 15

SECURITY

The Road to Less Trusted Code
Lowering the Barrier to In-Process Sandboxing

T A L G A R F I N K E L , S H R A V A N N A R A Y A N , C R A I G D I S S E L K O E N , H O V A V S H A C H A M ,
A N D D E I A N S T E F A N

Firefox currently ships with a variety of third-party and in-house
libraries running sandboxed using a new framework called RLBox.
We explore how RLBox uses the C++ type system to simplify retro-

fitting sandboxing in existing code bases, and consider how better tooling
and architecture support can enable a future where library sandboxing is a
standard part of how we secure applications.

Users expect featureful software, and features, it hardly needs saying, come from code. The
more features, the more code to implement them. And the more code, the more bugs—the
more security bugs, in particular.

Whether it’s the latest code rushed out before a marketing deadline, old code that hasn’t been
touched since the developer who wrote it retired, or a specialized module you licensed, attack-
ers will scour them for bugs to use for exploiting your software and targeting your users.

The problem is especially acute with third-party open source libraries. You might care about
one aspect of what the library does, but you ship the whole library, and bugs in any part of it
can create security problems in your product. That is, unless you fork the library to remove
the extraneous code, but who wants to maintain a fork forever? Worse, hackers who find a bug
in a popular library can try to deploy it against every product that embeds the library—includ-
ing yours.

Computer scientists have been thinking about software insecurity for 50 years, and they
have come up with approaches to mitigate it. Rewrite your program (or parts of it) in a safer
language! Refuse to ship new features and keep your program small! Formally verify the cor-
rectness of your software! “Privilege separate” your system by re-architecting it into multiple
mutually distrusting processes! It’s fair to say that none of these approaches has solved the
problem. Insecure software is all around.

We believe that there is a practical path to improving software security. You can take soft-
ware modules, including third-party libraries, and sandbox them to constrain what they
can do—with low programmer effort, reasonable runtime overhead, and without wholesale
rewriting or re-architecting—without even creating new OS processes. The sandboxed
module will still have bugs, but those bugs will not (in most cases; see below) create security
vulnerabilities in the enclosing program.

Consider an image decoding library like libjpeg. With sandboxing, we can restrict this
library so it has access to the image it decodes and the bitmap it produces, and that’s it. Or
consider a spell-checking library like Hunspell. With sandboxing, we can restrict this library
to just its dictionary and the text it checks. The application benefits from the library’s fea-
tures but doesn’t inherit its security flaws.

Over the past two years we have worked with a team at Mozilla to build a tool, called RLBox,
to support sandboxing and to migrate Firefox to a model where many third-party libraries
run sandboxed. This new approach is now shipping in Firefox. Our experience suggests that
once there is sufficient tooling support, then engineers can easily sandbox libraries, and they

Tal Garfinkel is an independent
researcher and consultant
whose work focuses on the
intersection of systems and
security. He received his PhD

from Stanford University in 2010 and is a
co-founder of the USENIX Workshop on
Offensive Technology. talg@cs.stanford.edu

Shravan Narayan is a fifth-year
PhD student at UC San Diego
working with Deian Stefan. His
research focuses on in-process
sandboxing, WebAssembly,

browser security, and verified programming.
He is the maintainer of the RLBox sandboxing
framework. srn002@cs.ucsd.edu

Craig Disselkoen is a fifth-year
PhD student at UC San Diego
under Deian Stefan and Dean
Tullsen. His research focuses
on securing software through

automatic vulnerability finding, program
transformations, and secure runtimes. He is
the author of the Haybale symbolic execution
engine, written in Rust. cdisselk@cs.ucsd.edu

Hovav Shacham is a Professor
of Computer Science at the
University of Texas at Austin.
His research interests are in
applied cryptography, systems

security, privacy-enhancing technologies,
and technology policy. His work has been
recognized with three “test of time” awards,
including one at ACM CCS 2017 for his
2007 paper that introduced return-oriented
programming.  hovav@cs.utexas.edu

16 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

SECURITY
The Road to Less Trusted Code: Lowering the Barrier to In-Process Sandboxing

become increasingly comfortable with and excited by the opportunities this offers. For example,
while the initial target of our sandboxing collaboration was a third-party font-shaping library,
Graphite, now Firefox developers and security engineers are using RLBox to sandbox both
third-party libraries and legacy Mozilla code in domains like media decoding, spell check-
ing, and even speech synthesis.

We believe that the opportunities extend far beyond Firefox. After all, secure messaging apps
(e.g., Signal, WhatsApp, and iMessage), servers and runtimes (e.g., Apache and Node.js), and
enterprise tools (e.g., Zoom, Slack, and VS Code) also rely on third-party libraries for various
tasks—from media rendering, to parsing network protocols like HTTP, image processing (e.g.,
to blur faces), spell checking, and automated text completion. With RLBox, these systems’
developers are empowered to sandbox modules and limit the damage their bugs can cause.

Recent advances in compilers and processor architectures have made efficient in-process
isolation increasingly practical. As it turns out, though, preventing a module from reading or
writing memory outside its data region isn’t enough. Our initial efforts in manually sand-
boxing Firefox libraries are a case in point. Firefox had been written under the assumption
that the libraries were trustworthy. Even when isolated, they could return data values that
would cause the (unsandboxed) Firefox code to take unsafe actions, a scenario that security
researchers describe as a confused deputy attack. We tried to add code to manually check
return values for consistency, but repeatedly found that we had missed cases and left open
avenues for attack.

That’s where RLBox comes in. Using the C++ type system, RLBox automatically generates
the boilerplate code required for sandbox interaction, and identifies all places where the
programmer will have to add data-checking code. With RLBox, programmers have a frame-
work that makes it easy to sandbox libraries (1) securely, ensuring the interface between the
untrusted library and the application code is correct, and (2) with minimal engineering effort,
so that the cost of migrating libraries and applications to sandboxing is not prohibitive.

In the rest of this article we describe the experience that led to RLBox, how RLBox works,
how it leverages the C++ type system to make sandboxing practical, and how our type-driven
approach can be used in other domains (e.g., trusted execution environments). Then we outline
how this approach can translate to languages other than C/C++. Finally, we end with a vision
of what software development could look like with broader first-class support for sandboxing.

Before closing, we should note that sandboxing is not a panacea. Some components must be
correct, not just isolated, for the system as a whole to be secure. The JavaScript just-in-time
compilers used by Web browsers are a notorious example. With RLBox, you can sandbox
everything else, and focus developer time on getting these few critical modules right.

The Road to RLBox: Library Sandboxing in Firefox
Firefox, like other browsers, relies on dozens of third-party libraries to decode audio, images,
fonts, and other content. These libraries have been a significant source of vulnerabilities in
the browser (e.g., most of the vulnerabilities found by recent work using symbolic execution
were in third-party libraries [2]). With collaborators at Mozilla, we sought to minimize the
damage due to vulnerabilities in libraries by retrofitting Firefox to sandbox these libraries.

When we began this project roughly two years ago, we thought the hardest part would be
adapting Google’s Native Client (NaCl), a software-based isolation (SFI) toolkit, to sandbox
libraries. NaCl is designed for sandboxing programs, not libraries. This turned out to be the
easy part. Since then, WebAssembly (Wasm) toolkits—in particular the Lucet Wasm com-
piler—have made this even easier [5].

In fact, the hardest part was the last mile, retrofitting Firefox to account for the now-
untrusted libraries. Firefox was written assuming libraries are trusted. To add sandbox-

Deian Stefan is an Assistant
Professor of CSE at UC San
Diego, where he co-leads the
Security and Programming
Systems groups. He received

his PhD from Stanford University in 2016.
Deian was a cofounder of Intrinsic, a web
security start-up (acquired by VMware). His
current research lies at the intersection of
secure systems, programming languages, and
verification. deian@cs.ucsd.edu

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 17

SECURITY
The Road to Less Trusted Code: Lowering the Barrier to In-Process Sandboxing

ing, we had to change its threat model to assume sandboxed
libraries are untrusted, and harden the browser-library interface.
Hardening this interface in turn required sanitizing data and
regulating control flow between sandboxed libraries and the
browser, thus ensuring that malicious libraries could not break
out of their sandbox.

Our first attempt at sandboxing libraries in Firefox involved
manually hardening the library-application interface—this did
not go well.

Security challenges. To see how things can go wrong, let’s
consider updating the fill_input_buffer JPEG decoder func-
tion. libjpeg calls this function whenever it needs more bytes
from Firefox. As seen on line 16 of Listing 1, Firefox also saves
the unused input bytes held by libjpeg to an internal back buffer,
which it sends to libjpeg along with the new input bytes.

 1: void fill_input_buffer (j_decompress_ptr jd) {
 2: struct jpeg_source_mgr* src = jd->src;
 3: nsJPEGDecoder* decoder = jd->client_data;
 4: ...
 5: src->next_input_byte = new_buffer;
 6: ...
 7: if (/* buffer is too small */) {
 8: JOCTET* buf = (JOCTET*) realloc(...);
 9: if (!buf) {
10: decoder->mInfo.err->msg_code = JERR_OUT_OF_MEMORY;
11: ...
12: }
13: ...
14: }
15: ...
16: memmove(decoder->mBackBuffer + decoder->mBackBufferLen,
17: src->next_input_byte, src->bytes_in_buffer);
18: ...
19: }

Listing 1

When sandboxing libjpeg, we need to make the following
changes:

 3 Sanitize jd , otherwise the read of jd->src on line 2 could
 become a read gadget.
 3 Sanitize src , otherwise the write to src->next_input_byte
on line 5 becomes a write gadget and the memmove() on line 16
becomes an arbitrary read gadget.
 3 Sanitize jd->client_data on line 3 to ensure it points to a valid
Firefox nsJPEGDecoder object; otherwise invoking a virtual
method on it will hijack control flow.
 3 Sanitize the nested pointer mInfo.err on line 10 prior to de-
referencing, else it becomes a write gadget.
 3 Sanitize the pointer decoder->mBackBuffer + decoder
->mBackBufferLen used on the destination address to
memmove() on line 16 to prevent overflows of the unused byte
buffer.

 3 Adjust pointer representations for mInfo.err and decoder
->mBackBuffer—both NaCl and Wasm have different pointer
representations and we must translate (swizzle) these pointers
accordingly.
 3 Ensure that multiple threads can’t invoke the callback on the
same image; otherwise we have a data race that results in a use-
after-free vulnerability on line 8.

If we miss any of these checks—and these are only a limited
sample of the kind of checks required [4]—an attacker could
potentially bypass our sandbox through a confused deputy
attack. Adding these checks to the hundreds of Firefox functions
that use libjpeg was tedious. Worse, we frequently found checks
we had overlooked.

Engineering effort. The upfront engineering effort of modi-
fying the browser this way was huge. Beyond adding security
checks, we also had to retrofit all library calls, adjust data
structures to account for machine model (ABI) differences
between the application and sandbox (a common issue with SFI
toolchains), marshal data to and from the sandbox, etc. Only
then could we run tests to ensure our retrofitting didn’t break
the application. Finally, since Firefox runs on many platforms—
including platforms not yet supported by SFI toolkits like NaCl
and Wasm—we had to do this alongside the existing code that
uses the library unsandboxed, using the C preprocessor to select
between the old code and the new code. The patches to do all this
became so complicated and unwieldy that we couldn’t imagine
anybody maintaining our code, so we abandoned this manual
approach, built RLBox, and started anew.

The RLBox Framework
RLBox is a C++ library designed to make it easier for developers
to securely retrofit library sandboxing in existing applications.
It does this by making data and control flow at the application-
sandbox boundary explicit—using types—and by providing APIs
to both mediate these flows and enforce security checks across
the trust boundary.

RLBox mediates data flow using tainted types—it uses type
wrappers to demarcate data originating from the sandbox, and
ensure that application code cannot use this data unsafely. For
example, while application code can add two tainted<int>s (to
produce another tainted<int>), it cannot branch on such values
or use them as indexes into an array. Instead, the application
must validate tainted values before it can use them.

RLBox mediates control f low with explicit APIs for control
transfers. Calls into the sandbox must use sandbox_invoke
(sbx_fn, args...). Callbacks into the application can only use
 functions registered with the sandbox_callback(app_fn) API.
These APIs also impose a strict data flow discipline by forcing
all sandbox function return values, and callback arguments, to
be tainted.

18 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

SECURITY
The Road to Less Trusted Code: Lowering the Barrier to In-Process Sandboxing

As we show next, this tainted-type-driven approach addresses
both the security and engineering challenges we outline above.

Using Tainted Types to Eliminate Confused Deputy
Attacks
RLBox eliminates confused deputy attacks by turning unsafe
control- and data-flows into type errors and, where possible,
by performing automatic security checks. Concretely, RLBox
automatically sanitizes sandbox-supplied (tainted) pointers to
ensure they point to sandbox memory, swizzles pointers that
cross the trust boundary, and statically identifies locations
where tainted data must be validated before use.

Consider, for example, the JPEG decoder callback from before.
RLBox type errors would guide us to (1) mark values from the
sandbox as tainted (e.g., the jd argument and src variable on line
2, Listing 2) and (2) copy and verify (otherwise tainted) values we
need to use (e.g., jd->client_data on line 3, Listing 2).

 1: void fill_input_buffer (rlbox_sandbox& sandbox,
 tainted<j_decompress_ptr> jd) {
 2: tainted<jpeg_source_mgr*> src = jd->src;
 3: nsJPEGDecoder* decoder =
 jd->client_data.copy_and_verify(...);
 4: ...
 5: src->next_input_byte = new_buffer;
 6: ...
 7: if (/* buffer is too small */) {
 8: JOCTET* buf = (JOCTET*) realloc(...);
 9: if (!buf) {
10: decoder->mInfo.err->msg_code = JERR_OUT_OF_MEMORY;
11: ...
12: }
13: ...
14: }
15: ...
16: size_t nr = src->bytes_in_buffer.copy_and_verify(...));
17: memmove(decoder->mBackBuffer + decoder->mBackBufferLen,
18: src->next_input_byte.copy_and_verify(...), nr);
19: ...
20: }

Listing 2

In Listing 2, we need to write validators as C++ lambdas to the
copy_and_verify method used on lines 3, 16, and 18. As we
describe in [4], validators fall into one of two categories: pre-
serving application invariants (e.g., memory safety) or enforcing
library invariants. On line 3, for example, we must ensure that
decoder points to a valid nsJPEGDecoder object not used by a con-
current thread, while on line 16 we need to ensure that copying nr
bytes won’t read past the mBackBuffer bounds.

We must get validators right—a bug in a validator is often a
security bug. In practice, though, validators are rare and short.
The six libraries we sandboxed in [4] required 2–14 validators
each, and these validators averaged only 2–4 lines of code. Most

importantly, by making these validators explicit, RLBox makes
code reviews easier: security engineers only need to review these
validators.

What’s missing in Listing 2 is almost as important: we don’t write
any security checks on lines 2, 5, and 10, for example. Instead,
RLBox uses runtime checks to automatically swizzle and sani-
tize the src, src->next_input_byte, and decoder->mInfo.err
pointers to point to sandbox memory.

Using Tainted Types to Minimize Engineering Effort
Manually migrating an application to use library sandboxing is
labor intensive and demands a great deal of specific knowledge
about the isolation mechanism. RLBox abstracts away many
of these specifics, making migration relatively simple and
mechanical.

Incremental migration. While RLBox automates many tasks,
we still need to change application code to use RLBox. In par-
ticular, we need to add a trust boundary at the library interface
by turning all control transfers (i.e., library function calls and
callbacks) into RLBox calls, and we need to write validators to
sanitize data from the library, as we saw above. Making these
changes all at once is frustrating, error-prone—overlooking a
single change might suddenly result in crashes or more subtle
malfunctions—and hard to debug.

RLBox addresses these challenges with incremental migration,
allowing developers to modify application code to use the RLBox
API one line at a time. A full migration involves multiple steps
and is explained further in our paper [4]. However, the key idea
is that RLBox provides escape hatches which let developers tem-
porarily disable some checks while migrating their application
code. Thus, at each step, the application can be compiled, run,
and tested.

RLBox provides two escape hatches:

1. The UNSAFE_unverified API allows developers to tempo-
rarily remove the tainted type wrapper (e.g., to run and test their
code). As the application is ported, calls to UNSAFE_unverified
APIs are removed or replaced with validator functions that cor-
rectly sanitize tainted data.

2. The RLBox noop sandbox provides a pass-through sandbox
that redirects function calls back to the unsandboxed version of
the library, while still wrapping data as if it were received from
a sandboxed library. This allows developers to use the RLBox
APIs and test data validation separately from the actual isolation
mechanism.

Compile-time type errors guide the developer by pointing to the
next required code change—e.g., data that needs to be validated
before use, or control transfer code that needs to change to use the
RLBox APIs. By the end of the process, the application is still fully

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 19

SECURITY
The Road to Less Trusted Code: Lowering the Barrier to In-Process Sandboxing

functional, all the escape hatches have been removed, and the appli-
cation-library interface has fully migrated to using tainted types.

We found that incremental migration greatly simplified the code
review process. In Firefox, we could commit and get reviews for
partial migrations to the RLBox API, since the Firefox browser
continued to build and run as before. Additionally, we could
explicitly include security reviews when writing the data valida-
tors for tainted data.

Beyond migration, we also found the noop sandbox to be useful
for selectively enabling library sandboxing in conditional builds.
For example, while Firefox on Linux and OS X uses Wasm for
isolation, the Lucet Wasm compiler’s support for Windows is
incomplete and thus Firefox uses the noop sandbox on Windows
builds; once Windows support is complete, a single line change
will allow us to take advantage of the sandbox. This is useful
beyond Firefox too: developers of the Tor Browser (a downstream
project of Firefox for anonymous web browsing) are interested
in sandboxing more libraries than mainline Firefox, since Tor
users typically have a higher security-performance threshold.
Using the noop sandbox will allow Tor developers to contribute
upstream changes to sandbox libraries in mainline Firefox, using
the noop sandbox to avoid noticeable overhead. Tor developers
can then selectively enable additional sandboxing (again) with a
one-line change, rather than having to maintain a major fork.

ABI translations. Isolation mechanisms can have different
machine models and ABIs from the rest of the application. For
example, Wasm uses a 32-bit machine model meaning that
pointers, ints, and longs are 32 bits. However, this is a different
machine model from that used by the host application. Handling
such differences manually is laborious and error-prone.

Consider line 10 from the previous fill_input_buffer example
in Listing 2:

// mInfo is an object of type jpeg_decompress_struct
decoder->mInfo.err->msg_code = JERR_OUT_OF_MEMORY;

If we port this manually, the resulting code would be:

auto err_field = adjust_for_abi_get_minfo_field(decoder
 ->minfo, "err");
auto err_field_swizzled = adjust_for_abi_convert_pointer
 (err_field);
auto msg_field = adjust_for_abi_get_err_field
 (*err_field_swizzled, "msg_code");
assert(in_sandbox_memory(msg_field));
 // Ensure pointer is in sandbox memory
auto msg_field_swizzled = adjust_for_abi_convert_pointer
 (msg_field); // Assign the value
*msg_field_swizzled = adjust_for_abi(JERR_OUT_OF_MEMORY);

In contrast, RLBox requires no changes other than marking
mInfo as tainted. RLBox automatically transforms pointers, and
accounts for the difference in the size of long and pointers:

// mInfo is an object of type tainted<jpeg_decompress_struct>
decoder->mInfo.err->msg_code = JERR_OUT_OF_MEMORY;

RLBox is able to abstract and automatically reconcile ABI differ-
ences since all control and data flow goes through its APIs and
tainted types.

Using Tainted Types Outside of Library Sandboxing
The security challenges we face when sandboxing libraries are
not unique to library sandboxing. Developers have to handle
untrusted data and control flow in many other domains—and
our tainted-type approach can help. We give three examples:

TEE runtimes. Applications running in trusted execution
environments (TEEs), like Intel’s SGX and ARM’s TrustZone,
interface with untrusted code by design—TEEs even consider the
OS untrusted. Getting this code right is hard. And, indeed, TEE
runtimes contain similar bugs: Van Bulck et al. [1], for example,
found that most frameworks, across several TEEs, were vulner-
able to bugs RLBox addresses by construction.

OS kernels. Operating system kernels handle untrusted data
from userspace. Bugfinding tools—from MECA at the start of the
century [10] to Sys this year [2]—have found many vulnerabilities
in kernels due to unchecked (or improperly checked) userspace
data (notably, pointers). Frameworks like RLBox could automati-
cally identify where userspace data needs to be checked and even
perform certain checks automatically (e.g., much like we ensure
that sandbox pointers point to sandbox memory, we can ensure
that userspace pointers point to userspace memory). Indeed,
Johnson and Wagner’s bugfinding tool [3] even used type infer-
ence to find such kernel bugs.

Browser IPC layers. Modern browser architectures privilege
separate different parts of the browser into sandboxed pro-
cesses. Almost all separate the renderer parts—the portion of
the browser that handles untrusted user content from HTML
parsing, to JavaScript execution, to image decoding and render-
ing—from the chrome parts—the trusted portion of the browser
that can access the file system, network, etc.—and restrict com-
munication to a well-typed inter-process communication (IPC)
layer. Like OS kernels, the browser chrome must validate all
values coming from untrusted renderer processes; like kernels,
browsers have been exploited because of unchecked (and improp-
erly checked) untrusted data. Here, again, tainted types can
help—and as a step in this direction, Mozilla started integrating
tainted types into the Firefox IPC layer, as part of the IPDL (IPC
protocol definition language) used to generate boilerplate code
for sending and receiving well-typed IPC messages [7].

This list is by no means exhaustive; others have similarly
observed that tainting can be used to catch and prevent bugs
when handling untrusted data (e.g., see [9]).

20 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

SECURITY
The Road to Less Trusted Code: Lowering the Barrier to In-Process Sandboxing

Beyond RLBox
We have thus far discussed RLBox in its current form—a frame-
work that uses the C++ type system, template metaprogramming,
and SFI toolkits like Wasm to securely sandbox libraries typi-
cally written in C. In the future, we hope to see extensions to
other languages, support for sandboxing libraries written in
arbitrary languages, and the adoption of processor features that
can further lower in-process sandboxing overheads.

Beyond C++
We implemented RLBox in C++ because Firefox is predominantly
written in C++. To extend RLBox to other languages, we need to
understand how to implement RLBox’s tainted type system.

Our C++ implementation uses templates to implement the
generic tainted<T> type and takes advantage of function and
operator overloading to make most of the tainted type interface
transparent. For example, RLBox overloads pointer dereferenc-
ing—the -> and * operators—to allow dereferencing tainted<T*>
values safely by automatically sanitizing the underlying pointer
to point to sandbox memory (line 10 in Listing 2). We also use
template metaprogramming to enforce a custom type discipline.

Many languages have features that are expressive enough to
implement our tainted type system directly or as part of the
 language toolchain, for example, with compiler plugins.

Statically typed languages. RLBox is a natural fit for lan-
guages that already enforce type safety statically. Statically
typed languages typically offer some form of generics or tem-
plates that can be used to implement tainted types. Many also
allow function and operator overloading which, like C++, would
allow us to provide safe operations on tainted types while pre-
serving the original syntax of the language.

Rust is a particularly compelling language. First, Rust’s raison
d’être is safety—indeed, the language is used in many settings
where assurance is paramount—and RLBox can complement
Rust’s safety by, for example, making it easy for Rust program-
mers to safely integrate C/C++ code into their projects, which
today is considered unsafe. Second, Rust’s macro system and
support for generics and operator overloading via traits allows
tainted types to be implemented directly in the language. Finally,
Rust’s affine types can even simplify certain RLBox validators,
like the validators used to prevent time-of-check to time-of-use
and double fetch attacks [4].

Dynamically typed languages. In dynamically typed lan-
guages like JavaScript and Python, we can enforce tainted types
dynamically. This, of course, makes the incremental porting loop
longer since type errors will only manifest at runtime. Luckily,
many dynamically typed languages have typed extensions to pre-
cisely address this limitation. For example, TypeScript and Flow
extend JavaScript with static type annotations.

Compiler plugins and toolkits. For languages not f lexible
enough to implement the RLBox tainted type system statically,
we envision implementing the type system as part of language
toolchains. For example, for C, we can implement RLBox as a
Clang plugin (both to enforce the type system and to gener-
ate runtime checks). Alternatively, we can implement tainted
types as part of interface description language (IDL) compilers.
As mentioned above, for example, the Mozilla security team is
integrating tainted types into the Firefox IPDL inter-process
communication protocol IDL [7].

Beyond Software-Based Isolation
We designed RLBox to make it easy for developers to plug in
different isolation mechanisms. This makes it easy to migrate
code (e.g., by using the noop sandbox), as we have described. It
also allows developers to use different isolation mechanisms that
have different tradeoffs. For example, while in production we use
Wasm for isolation, in [4] we evaluate two other isolation mecha-
nisms: NaCl and traditional process-based isolation. These
isolation mechanisms have different tradeoffs. Process isolation
is simple but scales poorly—protection boundary crossing costs
become prohibitive as the number of sandboxes exceed the num-
ber of available cores. Wasm and NaCl, on the other hand, scale to
a large number of sandboxes and have cheap boundary crossings,
but they impose an overhead on the sandboxed code.

At present, Wasm toolchains offer a practical and portable path
to isolation. But this software-based isolation approach will
inevitably be slower than running native code.

Hardware support for in-process isolation can offer solutions
that are simple and more performant. Today, for example, Intel’s
Memory Protection Key (MPK) features incur roughly 1% over-
head when used for in-process isolation [8], but this doesn’t scale
beyond 16 sandboxes. In the future, the CHERI capability-based
system will similarly make in-process isolation—and memory
safety more generally—cheap on ARM processors [6]. By making
it easy to use these features transparently (e.g., for CHERI it can
automatically adjust for ABI differences introduced by capabili-
ties), RLBox could lower the barrier to adopting new hardware
isolation features—and, we hope, this will encourage new hard-
ware design for in-process isolation.

Bringing Sandboxing to the Developer Ecosystem
While RLBox has been a boon for our work in Firefox, it’s just a
starting point. Our hope is that library sandboxing will become
a first-class activity in future development environments,
and that RLBox’s capabilities will ultimately be subsumed by
standard parts of tomorrow’s languages, toolchains, and package
managers. We believe in many cases such support could allow
the use of sandboxed libraries with a level of ease comparable to
the use of unsandboxed libraries today.

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 21

SECURITY
The Road to Less Trusted Code: Lowering the Barrier to In-Process Sandboxing

FFIs and native code. Many popular safe languages such as
Python, Ruby, and JavaScript make extensive use of native
(typically C) code in their standard libraries and package eco-
systems via foreign function interfaces (FFIs). Unfortunately,
bugs in native code can completely break all high-level safety
guarantees. Extending FFI interfaces and interface generation
tools with first-class support for sandboxing native code is very
natural—both because the FFI boundary is explicit and because
developers are used to writing code that spans trust boundaries.

Package managers. In the ecology of package ecosystems there
is constant competition between package authors to provide the
best package for a given task. Security is among the ways that
package authors have recently started differentiating their pack-
age from others. We have seen this clearly in the Rust ecosystem,
where the presence (or absence) of unsafe code is one way that
packages are compared.

Sandboxing is another way that package authors can provide
differentiated value, by integrating sandboxing support into
their library. This could look like authors distributing their
packages with most or all of the work required to sandbox that
package done upfront by the package author. Developers could
then choose whether or not to enable sandboxing with minimal
additional fanfare.

To facilitate this, the package author could specify a system level
sandboxing policy (e.g., as a manifest file requesting access to
parts of the file system or network), and developers could then

choose if and how to grant these privileges when importing a
package. Much of the work of writing validators for tainted types
could also be mitigated by distributing validators as part of a
sandboxed library. We even envision an ecosystem of sandbox
interface declarations for existing packages, much like Type-
Script type declarations for JavaScript packages, which will
allow to developers to pull sandboxed interfaces much like they
consume type declarations today.

Conclusion
Decades of attempts to detect and mitigate software vulnerabili-
ties have yielded lackluster results. Even browsers, some of the
most heavily targeted and scrutinized software, seem to provide
an inexhaustible stream of exploitable vulnerabilities. In-process
sandboxing can offer developers and security engineers another
choice—moving code, especially legacy and third-party code, out
of their trusted computing base by sandboxing it, thus mitigating
the impact of a compromise.

We developed RLBox to make sandboxing practical. It is cur-
rently being used to sandbox third-party and in-house libraries
in Firefox, and we hope that other C++ projects will choose to
adopt it. Looking further, we hope to collaborate with developers
of programming languages (and their toolchains and standard
libraries), package managers, and processor architects to provide
first-class support for in-process sandboxing. Small changes to
make in-process sandboxing first-class can result in huge bene-
fits for developers and security engineers.

22 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

SECURITY
The Road to Less Trusted Code: Lowering the Barrier to In-Process Sandboxing

References
[1] J. Van Bulck, D. Oswald, E. Marin, A. Aldoseri, F. D. Garcia,
and F. Piessens, “A Tale of Two Worlds: Assessing the Vulner-
ability of Enclave Shielding Runtimes,” in Proceedings of the
ACM SIGSAC Conference on Computer and Communications
Security (CCS ‘19), pp. 1741–1758: https://people.cs.kuleuven
.be/~jo.vanbulck/ccs19-tale.pdf.

[2] F. Brown, D. Stefan, and D. Engler, “Sys: A Static/Symbolic
Tool for Finding Good Bugs in Good (Browser) Code,” in Pro-
ceedings of the 29th USENIX Security Symposium (USENIX
Security ’20), pp. 199–216: https://www.usenix.org/conference
/usenixsecurity20/presentation/brown.

[3] R. Johnson and D. Wagner, “Finding User/Kernel Pointer
Bugs with Type Inference,” in Proceedings of the 13th USENIX
Security Symposium (USENIX Security ’04): https://www
.usenix.org/event/sec04/tech/full_papers/johnson/johnson
_html/.

[4] S. Narayan, C. Disselkoen, T. Garfinkel, N. Froyd, E. Rahm,
S. Lerner, H. Shacham, and D. Stefan, “Retrofitting Fine Grain
Isolation in the Firefox Renderer,” in Proceedings of the 29th
USENIX Security Symposium (USENIX Security ’20), pp. 699–
716: https://www.usenix.org/conference/usenixsecurity20
/presentation/narayan.

[5] S. Narayan, T. Garfinkel, S. Lerner, H. Shacham, and D.
Stefan, “Gobi: WebAssembly as a Practical Path to Library
Sandboxing,” arXiv, December 4, 2019: https://arxiv.org/abs
/1912.02285.

[6] R. Grisenthwaite, “A Safer Digital Future, by Design,” ARM
Blueprint, October 18, 2019: https://www.arm.com/blogs
/blueprint/digital-security-by-design.

[7] T. Ritter, “Support Tainting Data Received from IPC,”
Mozilla Bug 1610005, January 2020: https://bugzilla.mozilla
.org/show_bug.cgi?id=1610005.

[8] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M.
Sammler, P. Druschel, and D. Garg, “ERIM: Secure, Efficient
In-Process Isolation with Protection Keys (MPK),” in Proceed-
ings of the 28th USENIX Security Symposium (USENIX
Security ’19), pp. 1221–1238: https://www.usenix.org
/conference/usenixsecurity19/presentation/vahldiek
-oberwagner.

[9] W. Xu, S. Bhatkar, and R. Sekar, “Taint-Enhanced Policy
Enforcement: A Practical Approach to Defeat a Wide Range of
Attacks,” in Proceedings of the 15th USENIX Security Sympo-
sium (USENIX Security ’06), pp. 121–136: https://www.usenix
.org/legacy/event/sec06/tech/full_papers/xu/xu_html/.

[10] J. Yang, T. Kremenek, Y. Xie, and D. Engler, “MECA: An
Exten sible, Expressive System and Language for Statically
Checking Security Properties,” in Proceedings of the 10th ACM
Conference on Computer and Communications Security (CCS
’03), pp. 321–334: https://web.stanford.edu/~engler/ccs03
-meca.pdf.

https://people.cs.kuleuven.be/~jo.vanbulck/ccs19-tale.pdf
https://people.cs.kuleuven.be/~jo.vanbulck/ccs19-tale.pdf
https://www.usenix.org/conference/usenixsecurity20/presentation/brown
https://www.usenix.org/conference/usenixsecurity20/presentation/brown
https://www.usenix.org/event/sec04/tech/full_papers/johnson/johnson_html/
https://www.usenix.org/event/sec04/tech/full_papers/johnson/johnson_html/
https://www.usenix.org/event/sec04/tech/full_papers/johnson/johnson_html/
https://www.usenix.org/conference/usenixsecurity20/presentation/narayan
https://www.usenix.org/conference/usenixsecurity20/presentation/narayan
https://arxiv.org/abs/1912.02285
https://arxiv.org/abs/1912.02285
https://www.arm.com/blogs/blueprint/digital-security-by-design
https://www.arm.com/blogs/blueprint/digital-security-by-design
https://bugzilla.mozilla.org/show_bug.cgi?id=1610005
https://bugzilla.mozilla.org/show_bug.cgi?id=1610005
https://www.usenix.org/conference/usenixsecurity19/presentation/vahldiek-oberwagner
https://www.usenix.org/conference/usenixsecurity19/presentation/vahldiek-oberwagner
https://www.usenix.org/conference/usenixsecurity19/presentation/vahldiek-oberwagner
https://www.usenix.org/legacy/event/sec06/tech/full_papers/xu/xu_html/
https://www.usenix.org/legacy/event/sec06/tech/full_papers/xu/xu_html/
https://web.stanford.edu/~engler/ccs03-meca.pdf
https://web.stanford.edu/~engler/ccs03-meca.pdf

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 23

SECURITY

Using Safety Properties to Generate
Vulnerability Patches
Z H E N H U A N G , D A V I D L I E , G A N G T A N , A N D T R E N T J A E G E R

A utomatic Program Repair (APR) methods attempt to fix vulner-
abilities in programs comprehensively and without introducing new
defects. Senx uses novel safety properties to generate patches, and

it succeeds in generating patches for 32 of 42 real-world vulnerabilities. We
explain how Senx works, compare it to other APR methods, and demonstrate
why Senx is better at repairing source code.

Fixing security vulnerabilities in a timely manner is critical to protect users from attacks
that exploit vulnerabilities. Unfortunately, a recent study shows that the average time to
release software patches for vulnerabilities is 52 days, and the bottleneck lies in creating
software patches [1].

Automatic Program Repair (APR) tools aim to automatically provide patches that fix vulner-
abilities. Most of them rely on a set of positive/negative example inputs to produce a patch
that makes the vulnerable program behave correctly according to these example inputs [4, 6, 7].
The patched program must pass the positive example inputs but raise errors on the negative
example inputs. But obtaining a complete set of example inputs is often difficult, and the
patched program may behave incorrectly on other inputs, or the vulnerability may still be
exploited by other inputs [8]. We refer to this traditional method as “example-based.”

We propose a different approach called “property-based” APR that relies on vulnerability-
specific, program-independent, human-specified safety properties. A safety property speci-
fies the condition on which a type of vulnerability cannot be triggered. For example, a safety
property for buffer overflow vulnerabilities can be that a program should never have access
beyond the bounds of a buffer.

Our property-based approach has three major advantages: 1) a small set of safety properties
can be defined once and applied on numerous programs without the need to specify anything
pertaining to each of the programs; 2) the properties are precise and complete by nature so
they work for all possible inputs; 3) it leverages a specific vulnerability’s context to generate a
customized and efficient patch for the vulnerability, as opposed to the nonspecific and often
inefficient patches generated by previous methods [5].

Property-based APR faces several outstanding challenges. First, it must identify the correct
property to enforce for a given vulnerability because the properties are vulnerability-specific.
Second, our goal is to generate source code patches that can be easily adopted by developers;
as a result, the safety properties must be expressed using program entities such as variables.
Third, the generated patches should affect program execution if and only if a safety property
is violated. Finally, the generated patches should incur minimum performance overhead.

To address these challenges, we have designed Senx to automatically generate source code
patches for security vulnerabilities using safety properties. We demonstrate the effectiveness
of Senx using three important classes of vulnerabilities: buffer overflows, bad casts, and inte-
ger overflows. Our evaluation demonstrates that Senx is able to produce correct patches for
over 76% of the vulnerabilities. And we believe that, in principle, Senx can generate patches
for any class of vulnerabilities for which a safety property can be specified.

Zhen Huang is an Assistant
Professor in the School
of Computing at DePaul
University. He earned his BASc
from Wuhan University and his

MS and PhD from the University of Toronto.
He works on computer systems with an
emphasis on software security. 
zhen.huang@depaul.edu

David Lie received his BASc
from the University of Toronto
in 1998, and his MS and PhD
from Stanford University in
2001 and 2004, respectively.

He is currently a Professor in the Department
of Electrical and Computer Engineering at
the University of Toronto. He also holds
appointments in the Department of Computer
Science, the Faculty of Law, and is a research
lead with the Schwartz Riesman Institute for
Technology and Society. He was the recipient
of a best paper award at SOSP for this work.
David is also a recipient of the MRI Early
Researcher Award and the Connaught Global
Challenge Award. David has served on various
program committees including OSDI, USENIX
Security, IEEE Security & Privacy, NDSS, and
CCS. Currently, his interests are focused on
securing mobile platforms, cloud computing
security, and bridging the divide between
technology and policy. lie@eecg.toronto.edu

24 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

SECURITY
Using Safety Properties to Generate Vulnerability Patches

Example-Based versus Property-Based
We now discuss the limitations of state-of-the-art APR tools. We use the program in Listing 1
as the target program, which is adopted from a real-world buffer overflow vulnerability CVE-
2012-0947 in a popular media stream processing library. The program takes a string and its
length as input, and outputs the reversed string. It outputs “” if an error occurs. Similar to the
real vulnerability, two functions are used, one to allocate the output buffer, and the other to
process the input string.

The buffer overflow happens when the size, specified from the command line, is smaller than the
actual length of the input string. To fix the buffer overflow, a check can be added to ensure that the
actual length of the string is smaller than the allocated size of the buffer into which it is copied.
Note that the buffer size is only known to main; so the check should be added at line 19 to compare
size against strlen(argv[2]). While a human developer can easily add this check, which indeed
was in the official patch for the vulnerability, it presents challenges for state-of-the-art APR tools.

 1 char* rev(const char *inp, char *out) {
 2 // reverse a string
 3 // inp is the input string
 4 // out is an output buffer
 5 if (inp != NULL) {
 6 int i, len = strlen(inp);
 7 // Failed to check if (len + 1 <= size_of_out)
 8 for (i = 0; i < len; i ++)
 9 out[i] = inp[len - i];
10 out[i] = '\0';
11 return out;
12 } else
13 return "###";
14 }
15
16 void main(int argc, char *argv[]) {
17 int size = atoi(argv[1]) + 1;
18 char *out = (char *)malloc(size);
19 // patch: if (strlen(argv[2]) + 1 > size) exit(1);
20 printf("%s\n", rev(argv[2], out));
21 }

Listing 1: A program that reverses an input string. It contains a buffer overflow in function rev.

Example-based approaches. Many APR tools rely on example inputs to fix vulnerabilities.
For example, SemFix and Angelix use test inputs to find path constraints needed to gener-
ate fixes [4, 6]. Table 1 presents typical test inputs needed to use such tools to fix the buffer
overflow for our example in Listing 1.

This approach has two drawbacks. First, the generated path constraints are often based on
the concrete values used in the test inputs instead of the relationships between program vari-
ables. Given the test inputs in Table 1, SemFix and Angelix would wrongly infer that the value
of argv[1] is not correlated with whether tests are positive or negative, based on the fact that it
has the same values in both positive and negative test inputs.

Dr. Tan is a Professor in
the Computer Science and
Engineering Department at
Pennsylvania State University.
He obtained his BE in computer

science from Tsinghua University and his PhD
in computer science from Princeton University.
His research interests are computer security,
formal methods, and programming languages.
He currently serves on the DARPA ISAT study
group. He has also received multiple awards,
including a James F. Will Career Development
Professorship from 2016 to 2019, an NSF
CAREER Award, two Google Research
Awards, a Distinguished Reviewer Award at
the 2018 IEEE Symposium on Security and
Privacy, a Ruth and Joel Spira Excellence in
Teaching Award at Penn State, and some
best paper awards at academic conferences.
gtan@cse.psu.edu

Trent Jaeger is a Professor in
the Computer Science and
Engineering Department at
Pennsylvania State University.
Trent’s primary research

interests are systems and software security.
He has published over 150 research papers
and the book Operating Systems Security, which
has been taught in universities worldwide.
Trent has made significant contributions to
the Linux community, including mandatory
access control, integrity measurement,
process tracing, and namespace services.
Trent currently serves the computer security
research community on the Executive
Committee of ACM SIGSAC as Past Chair,
as Steering Committee Chair of NDSS, on
editorial boards of Communications of the
ACM and IEEE Security & Privacy, and on the
Academic Advisory Board of the UK’s Cyber
Body of Knowledge project.
tjaeger@cse.psu.edu

Type argv[1] argv[2] Output Expected output
P 1 A A A

P 2 AB BA BA

N 1 ABC CBA ###

N 2 ABC CBA ###

Table 1: Test inputs and outputs for the program in Listing 1. Type “P” test inputs are positive test inputs,
while type “N” test inputs are negative test inputs.

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 25

SECURITY
Using Safety Properties to Generate Vulnerability Patches

Second, the approach is highly sensitive to the completeness of
test inputs. Because the length of the input string is smaller than
3 for positive tests whereas the length is not smaller than 3 for
negative tests, SemFix and Angelix would incorrectly derive that
strlen(argv[2]) < 3 needs to be added to the program to fix the
buffer overflow. The incorrect patch is generated due to the miss-
ing of a positive test input with strlen(argv[2]) > 2) in the test
suite. This illustrates that example-based tools can easily fail
when tests are missing in the test suite, which is notoriously hard
to make complete.

Property-based approaches. AutoPaG creates patches using
a predicate similar to a safety property [3]. But it handles only
one vulnerability type, buffer overflows, so it cannot generate a
correct patch if the vulnerability is of any other type. Moreover,
it would fail to produce a patch if the safety property needs to
be enforced in a location other than the function in which the
vulnerability occurs. As in our example, the patch should be
placed in the main function, but the buffer overflow occurs in
the rev function. Lastly, the patch it generates can incur high
performance overhead because it would add the patch to check
the buffer size inside the for loop on line 8 due to the fact that the
buffer overflow occurs within the loop.

Safety Properties
To generate a patch that fixes a vulnerability, Senx requires an
input to trigger the vulnerability. The input can be a proof-of-
concept exploit or an input generated by a fuzzer. With this input,
Senx generates a patch that will enforce the safety property
violated by the vulnerability.

A Senx patch can have one of two forms: 1) a check-and-error
patch that inserts a check to detect if a safety property no longer
holds and raises an error to direct program execution away from
the path where the vulnerability resides; 2) a repair patch that
modifies existing code to prevent a safety property from being
violated.

Each safety property corresponds to a particular vulnerability
class and is an abstract Boolean expression that will be mapped
to concrete variables in a program. We describe below the three
types of safety properties that Senx currently supports.

Sequential buffer overflows. A sequential buffer overf low
occurs when a sequence of memory accesses traversing a buffer
crosses from a memory location inside the buffer to a memory
location outside of the buffer. The Senx safety property for buffer
overflows defines two abstract objects: a memory access and a
buffer. The term buffer refers to any bounded memory region,
which may include structs, objects, or arrays. The term memory
access corresponds to an array access or pointer dereference
occurring inside a loop. This safety property covers both the case
when the memory access exceeds the upper range of the buffer

and the case when the memory access falls below the lower range
(sometimes called a buffer underflow).

Bad casts. A harmful memory access can result from an offset
from a base pointer beyond the upper bound of the buffer the base
pointer is pointing to. This type of vulnerability may occur for
several reasons, but it commonly occurs when a pointer is cast to
a type that is incompatible with the object the pointer points to.
The safety property for bad casts can prevent both bad casts for
simple structs and objects, as well as nested structs and objects.

Integer overflows. An integer overflow takes place when a vari-
able is assigned a value larger or smaller than what can be repre-
sented by the type of the variable. An integer overflow can lead
to a vulnerability when the result of the overflow is then used in
operations such as allocating a buffer, producing a buffer that is
far smaller than expected. Consequently, the safety property for
integer overflows checks that value used in certain operations is
not the result of an integer overflow.

For our prototype, we have started with these three vulnerability
classes. Nonetheless, they represent a good percentage of CVE
vulnerabilities. Based on our informal analysis of the vulner-
abilities published in CVE Details in 2018, the most popular
vulnerability categories are denial of service, code execution,
and overflow. By examining 100 randomly chosen CVE reports
for each of the three vulnerability categories, we find that
25% of CVE vulnerabilities are buffer overflows, bad casts, or
integer overflows. We believe the principles behind Senx can be
extended to other vulnerability classes, and we plan to do so as
our future work.

Senx
Senx aims to generate source code patches that can be easily
verified and adopted by developers. As shown in Figure 1, Senx
generates patches in four major steps: vulnerability identifica-
tion, predicate generation, patch placement, and patch synthesis.

Vulnerability Identification
In vulnerability identification, Senx runs a program with an
input that can trigger a vulnerability and outputs the violated

Figure 1: Workflow of Senx: each rounded rectangle represents a step in
Senx’s patch generation; each rectangle with vertical bars represents a
component of Senx.

26 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

SECURITY
Using Safety Properties to Generate Vulnerability Patches

safety property, the vulnerability point (the program location
where the safety property is violated), and the source code
expressions for the execution trace. Senx runs the program using
concolic execution to generate the execution trace corresponding
to the vulnerability-triggering input. Senx records the execution
trace as source code expressions, which conform to the syntax
of the programming language of the target program, for synthe-
sizing a source code patch. To support complex data types such
as nested C/C++ structs, references to structs, and arrays with
pointers, Senx records the relationships between data objects and
the way data objects are referenced. This way Senx can recover
the full expression for a data object such as foo→f.bar[10].

Predicate Generation
During predicate generation, Senx takes the violated safety
property, which also implies the type of the vulnerability, and the
source code expressions generated by vulnerability identifica-
tion, and outputs a predicate required to prevent the violation
of the safety property. Senx maps the violated safety property
to concrete expressions over variables, constants, and function
calls in the form of the source code of the program.

For buffer overflows, Senx aims to insert the patch before the
loop where a set of sequential memory accesses occurred; so it
needs to extract expressions that represent the memory access
range for the memory accesses. Senx uses two complementary
loop analysis techniques: access range analysis and loop clon-
ing. Both of them take a function F in the target program and
an instruction inst that performs the faulty access in the buffer
overflow, and output the symbolic memory access range of inst.

Access range analysis. Senx computes the access range of
canonicalized loops. It relies on LLVM’s built-in loop canonical-
ization functionality to convert the loop into a standard form. It
starts with the innermost loop and iterates to the outermost loop,
and accumulates increments and decrements on the loop induc-
tion variables.

For each loop, Senx retrieves the loop iterator variable and its
bounds and the list of induction variables of the loop and their
update, the fixed amount that an induction variable is increased
or decreased by on each loop iteration. We use the loop in bar of
Listing 2 to illustrate how access range analysis can be applied
to nested loops.

 1 char *foo_malloc(x,y) {
 2 return (char *)malloc(x * y + 1);
 3 }
 4
 5 int foo(char *input) {
 6+ if ((double)(cols+1)*(size/cols)+1 >
 7+ rows * (cols+1) + 1)
 8+ return -1;
 9 char *output=foo_malloc(rows,cols+1);
10 if (!output)

11 return -1;
12 bar(p, size, cols, output);
13 return 0;
14 }
15
16 void bar(char *src,int size,int cols,char *dest) {
17 char *p=dest;char *q=src;
18 while (q < src+size) {
19 for (unsigned j=0;j<cols;j++)
20 *(p++) = *(q++);
21 *(p++) = ‘\n’;
22 }
23 *p = ‘\0’;
24 }

Listing 2: A buffer overflow in CVE-2012-0947 with a patch, lines prefixed
with “+”

In this example, Senx identifies j as the loop iterator variable,
whose bounds are 0 and cols; it also identifies j, p, and q as induc-
tion variables, each of which has an update of 1 for the innermost
for loop. Senx then symbolically accumulates the update to each
induction variable based on the number of loop iterations, which
is cols. Similarly, Senx finds q as the loop iterator variable, with
src as its lower bound and src+size as its upper bound, and q and
p as induction variables, whose accumulated update is size and
(cols+1)(size/cols)+1, respectively, for the while loop enclosing
the inner for loop.

Following the analysis of all the loops enclosing inst, Senx per-
forms reaching definition dataflow analysis to find the definition
that reaches the beginning of the outermost loop for the pointer
ptr used by inst. In this example, we have ptr=p whose initial
value is dest before the while loop. By adding the initial value
dest to the accumulated update of p, we will have dest+(cols+1)
(size/cols)+1. Therefore Senx decides the access range as
[dest,dest+(cols+1)(size/cols)+1].

Loop cloning. Senx cannot apply access range analysis to loops
that LLVM cannot canonicalize. Instead it uses loop cloning
for these loops. At a high level, loop cloning creates new code to
compute the number of loop iterations. Senx produces the new
code from a clone of the code of the loop in the target program, but
removes the code that causes side effects. The new code is used
by the generated patch to return the access range. Details on loop
cloning can be found in [2].

Function calls. For certain cases, Senx can extract expressions
containing function calls. Senx needs to ensure that the gener-
ated predicate does not call functions that have side effects.
We define three types of side effect: 1) a change to the memory
accessible outside of a function; 2) an invocation of a system call
that has external impact; 3) an invocation of a function that has
any side effect.

Senx uses a flow-sensitive, context-insensitive intraprocedural
static analysis to identify the list of functions that do not have

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 27

SECURITY
Using Safety Properties to Generate Vulnerability Patches

any side effect. Senx initializes the list with functions on a
whitelist and then adds each function that has no side effect to
the list by analyzing every function of a target program.

Patch Placement
In patch placement, Senx uses the vulnerability point found in
vulnerability identification and the predicate generated in predi-
cate generation to find a program location to insert the patch.
The patch location must be a point where all necessary variables
in the predicate are in the scope. If variables in the predicate
are from different scopes, Senx uses expression translation to
translate the predicate into a new one formed from variables in a
common scope. For check-and-error patches, Senx also requires
the scope to have some error handling code to call. It uses Talos
[1] to find a suitable error handling code.

Expression translation. Senx must produce a patch predicate
that can be evaluated in a single function scope, because Senx
generates source code patches. In some cases, a target program
computes the buffer allocation size in one function scope but the
memory access range in a different function scope. As a result,
the expression representing the allocation size and the expres-
sion representing the memory access range are not valid in a
single function scope.

To solve this problem, expression translation translates an
expression from the scope of a source function to an equivalent
expression in the scope of a destination function, without the
need to add new function parameters and call arguments. This
process is called converging the predicate. Expression transla-
tion exploits the equivalence between the arguments that are
passed to a function by the caller and the function parameters
that receive the values of the arguments.

We use the code in Listing 2 to illustrate how it works. To trans-
late the buffer size involved in the buffer overflow, Senx starts
with the buffer size expression xy+1 in the scope of foo_malloc
and for x substitutes rows and for y substitutes cols+1 based on
the call arguments at line 9. Hence xy+1 becomes rows(cols+1)+1
in the scope of foo.

Effectiveness of Senx
We evaluate the effectiveness of Senx and the quality of its
generated patches using 42 real-world buffer overflow, bad cast,
and integer overflow vulnerabilities that are from 11 mature and
popular applications. For each vulnerability, we run the corre-
sponding application under Senx with a vulnerability-triggering
input. We manually examine the correctness of the generated
patch if Senx generates a patch. Otherwise, we examine what
caused Senx to abort patch generation. The list of the vulnerabili-
ties and our detailed evaluation are presented in [2].

For the 42 vulnerabilities, Senx generates 32 patches, all of which
are correct according to our criteria. Senx applies access range
analysis and loop cloning roughly equally for the 13 patched
buffer overf lows. Senx is unable to apply loop cloning mainly
because the loops involve calls to functions that have side effects
that Senx cannot remove. Senx must use expression translation
to generate 23.8% of the patches because the patches need to
be placed in a function different from where the vulnerability
occurs. The dominant cause for Senx to abort patch generation is
that Senx cannot converge all variables in the patch predicate to
a common function scope.

Comparison with other work. We compare the effectiveness
of Senx against SemFix [6] and Angelix [4]. Due to the consider-
able effort required to run SemFix and Angelix, we made the
comparison on only two vulnerabilities. Senx generates correct
patches for both vulnerabilities, while SemFix and Angelix are
unable to generate patches either because they cannot find an
existing program construct to change in order to pass both posi-
tive test inputs and negative test inputs or because they cannot
create a guard statement to prevent the vulnerabilities from
being triggered.

Conclusion
Automatic patch generation is a promising solution to rapidly
resolve software defects. However, the vast majority of these
tools are not well-suited to address software vulnerabilities
since they rely on test cases to generate correct patches, whereas
it is difficult to have complete test cases for any moderately large
target programs. To address software vulnerabilities, we built
Senx, a system that uses human-specified safety properties to
automatically generate patches. Senx uses three novel program
analysis techniques: access range analysis, loop cloning, and
expression translation. Evaluation shows that Senx generates
patches correctly for 76% of the 42 real-world vulnerabilities.

Acknowledgments
This research was supported in part by an NSERC Discovery
Grant (RGPIN 2018-05931) and a Canada Research Chair
(950-228402).

28 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

SECURITY
Using Safety Properties to Generate Vulnerability Patches

References
[1] Z. Huang, M. D’Angelo, D. Miyani, and D. Lie, “Talos: Neu-
tralizing Vulnerabilities with Security Workarounds for Rapid
Response,” in Proceedings of the 2016 IEEE Symposium on
Security and Privacy, pp. 618–635.

[2] Z. Huang, D. Lie, G. Tan, and T. Jaeger, “Using Safety Proper-
ties to Generate Vulnerability Patches,” in Proceedings of the
2019 IEEE Symposium on Security and Privacy, pp. 539–554.

[3] Z. Lin, X. Jiang, D. Xu, B. Mao, and L. Xie, “AutoPaG:
Towards Automated Software Patch Generation with Source
Code Root Cause Identification and Repair,” in Proceedings of
the 2nd ACM Symposium on Information, Computer and Com-
munications Security (ASIACCS ’07), pp. 329–340.

[4] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable
Multiline Program Patch Synthesis via Symbolic Analysis,” in
Proceedings of the 38th International Conference on Software
Engineering (ICSE ’16), pp. 691–701.

[5] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic,
“Softbound: Highly Compatible and Complete Spatial Memory
Safety for C,” in Proceedings of the 30th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation
(PLDI ’09), pp. 245–258.

[6] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra,
“SemFix: Program Repair via Semantic Analysis,” in Proceed-
ings of the 2013 International Conference on Software Engineer-
ing (ICSE ’13), pp. 772–781.

[7] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J.
Bachrach, M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou,
G. Sullivan, W.F. Wong, Y. Zibin, M. D. Ernst, and M. Rinard,
“Automatically Patching Errors in Deployed Software,” in
Proceedings of the 22nd ACM Symposium on Operating Systems
Principles (SOSP ’09), pp. 87–102.

[8] Z. Qi, F. Long, S. Achour, and M. Rinard, “An Analysis of
Patch Plausibility and Correctness for Generate-and-Validate
Patch Generation Systems,” in Proceedings of the 2015 Inter-
national Symposium on Software Testing and Analysis (ISSTA
2015), pp. 24–36.

XKCD xkcd.com

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 29

SECURITY

Interview with Sergey Bratus
R I K F A R R O W

I first met Sergey Bratus during the USENIX Security Symposium in 2011.
Sergey caught up to me in a stairwell at the Sir Francis Drake Hotel in
San Francisco and started to make a pitch about something I had never

heard of before. LangSec, short for Language Security, is a different way of
thinking about both how to program more securely and why software gets
exploited.

I found myself immediately intrigued, and Sergey has co-authored several articles and papers
related to LangSec over the years. He also co-founded a LangSec workshop with Meredith
Patterson, co-located with IEEE Security and Privacy (“Oakland”) [1]. When I was study-
ing papers at USENIX Security ’20, I noticed several that appeared to have strong tie-ins to
LangSec and decided to invite Sergey for an interview.

Rik Farrow: Software gets hacked when presented with input that manipulates the software
in unexpected ways. I recall from early LangSec articles that any input parser that is more
complex than a pushdown automaton will be vulnerable to this type of hacking. Do I have this
right, and why are more complex parsers vulnerable?

Sergey Bratus: The programmer who sits down to write a parser faces a task quite unlike any
other engineering task. All other kinds of engineers design for some well-defined operating
environment conditions: this much wind speed for a bridge, this much current for an elec-
tric circuit, this expected temperature interval for a chip, etc. Within these conditions, the
design must behave predictably: safety comes from predictability. By contrast, input-taking
 software, i.e., its parser, is supposed to withstand any inputs at all, an operating environment
that cannot be easily searched or simulated. Yet, as with any other engineering, safety only
comes from predictability.

Thus safety of a parser critically depends on the ability of the programmer to correctly pre-
dict the parser’s behavior on all possible inputs. This is really hard, because reasoning about
program behaviors in general is hard (or even algorithmically impossible) and is only feasible
when the programmer walks a fairly narrow path, by correctly implementing automata that
we can reason about and assuming no more about the inputs than these automata (if correctly
implemented) can check.

Pushdown automata and their corresponding context-free languages are one particular sweet
spot of predictability for which we have the mathematical and computing means of auto-
mated reasoning. This sweet spot is really something of a mathematical miracle, given how
hard the general problem is.

In a word, every parser implemented on a general-purpose ISA wants to be a virtual machine
on its inputs that matches the computing power of that ISA. Restraining it from being that
machine for the attacker is what LangSec is about; it is surprising and fascinating that it is
possible and practical to do so.

Sergey Bratus is a Research
 Associate Professor of Com-
puter Science at Dartmouth
College. He helped co-found the
LangSec movement and is in-

terested in understanding and mitigating unin-
tended computation. He sees state-of-the-art
hacking as a distinct research and engineering
discipline that, although not yet recognized as
such, harbors deep insights into the nature of
computing. sergey@cs.dartmouth.edu

Rik is the editor of ;login:.
rik@usenix.org

Disclaimer: The views presented in this interview
are the author’s personal views and do not neces-
sarily represent the views of the U.S. Federal
Government or its components, which partially
funded some of the research presented at the
LangSec workshop.

30 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

SECURITY
Interview with Sergey Bratus

Various caveats apply, which LangSec aims to address in ways
practical for a programmer who is not looking to be a mathemati-
cian or formal language theorist. However, the thing that makes
it at all possible is the language-based approach, which gives
us just the predictability, that is, safety, properties that we can
check for and that aren’t hard to express and understand.

Surprisingly, as the recent workshop’s morning keynote [1] David
Walker argued, this is also true for predicting behaviors of not
just parsers but also networks. So the surprising effectiveness
of using language-based models of computing system behaviors
extends beyond what we normally think of as parsers.

RF: Programmers often build parsers according to their reading
of a protocol specification. An infamous example of this going
wrong was Heartbleed, where the TLS protocol included two
different length values, and a popular implementation checked
one while using the other. At USENIX Security, the “Composi-
tion Kills” paper [2] examines how the intersection of three email
sender authentication protocols—SPF, DKIM, and DMARC—
actually fail to authenticate the sender. Are protocols part of the
problem that LangSec addresses?

SB: Yes. From its inception [17], LangSec has been calling atten-
tion not only to unintended behaviors of inputs on parsers, but also
to security consequences of parser differentials, that is, divergent
interpretations of the same messages by different parsers.

To have any predictability in a distributed system—which is
really just a fancy name for a system with more than one com-
ponent—it is natural to implicitly assume that all of its parsers
interpret messages passed between the components in the same
way. Whenever this assumption, made explicitly or implicitly, is
violated, vulnerability likely ensues.

Vulnerabilities with the root cause in parser differentials have
been in the news lately. The HTTP Desync vulnerabilities [3]
such as the F5 Big-IP vulnerability [4], the “Psychic Paper”
vulnerability in MacOS [5], and a vulnerability in GitLab [6] all
involve parser differentials. Major past examples include several
Android Master Key vulnerabilities [7], a timeless classic.

LangSec’s perspective on the insecurity potential of parser
differentials has been getting some notice. Another notable,
recently published academic paper [8] discusses parsing of
standard protocols and refers to LangSec. Dave Aitel drew atten-
tion to the LangSec nature of this growing vulnerability class on
his DailyDave mailing list (https://seclists.org/dailydave/2020
/q3/9). To quote Dave:

Ten years ago a lot of the security community had a
discussion about “LangSec”…which turns out to have
been entirely correct in retrospect….

Most people look at HTTP Desync as simply using
Content-Length confusion—figuring out ways to make
one request look like it’s not the same length, and using
that for SSRF or XSS or various other attacks. But ANY
DIFFERENCE IN THE PARSERS leads to critical level
attacks.

The surface of LangSec analysis in distributed systems has only
been scratched, so there are likely many more major vulnerabili-
ties waiting to be discovered.

RF: LangSec seems to be heading in the direction of language-
based designs, that is, requiring language to provide security
assurances. Java was supposed to do this, but there are many
Java exploits. Some exist because there are extensions to Java
written in unsafe languages, like C. But I believe that people
have exploited Java via the bytecode itself.

SB: LangSec targets the root causes of insecurity on a differ-
ent level than efforts aimed at general-purpose programming
languages.

Java and other memory-safe languages target the ability of the
programmer to unwittingly (or deliberately) create memory
corruption or (non-corrupting) type confusion. For Java and
JavaScript, this ability was largely taken away from the devel-
oper, which is a net positive, but not a panacea.

The problem of unexpected and unchecked input remains. Now
these inputs are stored in memory-safe ways, but they are still
not what the processing code expects, and they are still acted on.
There is a lot of room in a general-purpose language to go wrong
when acting on data that’s not what the programmer expects. For
programs such as web apps that produce outputs and issue com-
mands, this problem will manifest as either the outputs or the
commands not being as expected.

LangSec, by contrast, aims to offer general solutions that focus
first and foremost on data languages, also called data formats.

Without a clear understanding of input and output data lan-
guages involved in a task, the programming language is only
exchanging one bug class for another. For example, Java and
JavaScript made memory corruption harder, although, as you
note, not impossible. Still, regular programmers cannot acciden-
tally corrupt memory with their code alone: it has to come from
flaws in the language runtime implementation or, more typically,
from their interactions. However, complexities of data languages
and their transformations immediately manifested themselves
in XSS, command execution bugs, parser differentials, etc., mak-
ing notionally memory-safe web apps notoriously vulnerable to
an array of attacks much less sophisticated than memory corrup-
tion exploits.

https://seclists.org/dailydave/2020/q3/9
https://seclists.org/dailydave/2020/q3/9

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 31

SECURITY
Interview with Sergey Bratus

Note that outputs and the code that creates them (“unparsers”)
are as important as the inputs and their handling code: see, for
example, [9] and the first workshop paper [1].

My understanding is that Google and Facebook had to integrate
intricate type systems with their web development tool chains to
just keep a lid on this problem, and their solutions are specialized
to their respective processes.

LangSec absolutely takes to heart the dictum of functional
programming: “Make illegal state unrepresentable.” This dictum
calls on a language designer or an API architect to construct the
language or the API so as to make it impossible for the program-
mer to create illegal state—at least not without the compiler
complaining very loudly. However, properly implementing this
dictum wherever inputs or outputs are involved requires under-
standing what are the legal and illegal states of input, and the
same for output. It requires LangSec.

RF: When I interviewed Natalie Silvanovich [10], she seemed
to conf late the use of dynamic languages (those that handle
memory allocation and freeing dynamically, like Rust and Go)
as part of LangSec. What do you think?

SB: I’d like to start by saying that LangSec greatly benefited from
interest and feedback from extraordinary vulnerability research-
ers, who were, in fact, among the first to grasp its practical value.
For example, the closing keynote of the first LangSec workshop
was by Felix “FX” Lindner, an early supporter of LangSec. This
makes perfect sense, because leading vulnerability researchers
see general patterns of software weaknesses, of input-driven
exploitation, and of how its non-systematic mitigations fail.
LangSec offered a unified and actionable way of explaining these
patterns, and top vulnerability researchers were among the first
to appreciate it.

In your interview, Natalie’s take on the nature and scope of
 LangSec is spot-on:

[LangSec] views the root cause of security issues to be
that most protocols and other input formats are poorly
defined and often have many undefined states, and the
programming languages that process them also support
a huge amount of undefined behavior. [LangSec] thinks
all software should abstract out all input processing
code, and design and implement it in a way that is
verifiable, and has no undefined states or behavior.

As I mentioned earlier, and as Natalie notes, the common idea of
managed-memory languages is to make illegal memory states
impossible for the programmer to unwittingly create while
writing regular code. Notably, LangSec aims further than basic
memory corruption. Indeed, there are numerous examples of
memory-safe software with deep flaws due to ad hoc handling
of its input and output languages.

However, Natalie raised another important point in that inter-
view: there are and will be bugs in programming languages and
environments intended to be memory-safe or otherwise offer
safety assurances. In this year’s LangSec workshop’s amazing
invited talk, Natalie connected this insight with specific features
of JavaScript that have been causing huge headaches world-
wide, given how JavaScript has been “eating the Internet”—and
pinpointed the ways out. See her slides at [1] for the discussion
of these troublesome features. Natalie has a wonderful intuition
here, which is entirely LangSec but takes us beyond file and mes-
sage formats.

I would describe it as follows: Natalie sees data structures allo -
cated in memory as data languages, with the runtime memory
management code servicing these structures as parsers. Pro -
gramming language feature choices made by JavaScript or Go
about what kinds of objects and how their relationships are
representable in the language force the implementations of these
languages to handle ever more complex data languages of bytes
in memory: for example, on the heap. Consequently, unnecessary
complexity of these features causes the same devastating effects
as unnecessary format complexity does on the software that
processes the formats.

Any piece of the language’s native runtime, including the memory
manager and garbage collector, parses memory bytes all the time
and often must decide if a chunk it parses is valid or not before it
acts. Moreover, advanced memory management means that mul-
tiple actors read and write memory concurrently, and their pars-
ing actions must all be synchronized, or else corruption occurs.
There is a rich literature of hacker research here, including many
nifty attacks on browsers and OS kernels. This area is waiting to
be explored from the LangSec perspective, and Natalie’s invited
talk pointed out a very rich example.

RF: You’ve mentioned that language-based approaches could
turn out to be amazingly productive in understanding routing.
Can you explain how LangSec intersects with network routing?

SB: Routing and other network-processing tasks must process
streams of packets or, at a higher level, events. These packets or
events change the internal state of the receiving program. Essen-
tially, just like a parser, a network stack or function performs
input-driven computation. Many questions about routing come
down to modeling and understanding this computation, and
assuring that it is safe—that is, behaves predictably for all inputs
it might receive.

With modern verification tools we can try to prove that a distrib-
uted system has some desired behavioral properties. But which
properties and models are tractable to explore?

32 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

SECURITY
Interview with Sergey Bratus

It turns out that thinking about sequences of networking events
as a data language that drives language-processing tasks is sur-
prisingly productive for reasoning about and verifying network
router behaviors. Not only that, but understanding the routers’
many configuration options as dialects of a common language
was also an efficient way of organizing and searching the space
of diverse configurations. The latter is arguably less surprising,
because human designers of these spaces, as all humans, are
creatures of language and tend to implicitly impose language-
based ordering on complex spaces.

This was the subject of this year’s workshop’s morning keynote
by Princeton’s David Walker [1]. Of course, as the original Lang-
Sec paper [11] points out, treating observable system and network
events as streams processed by input-driven automata predates
LangSec. For example, Fred Schneider used this approach to
characterize classes of enforceable security policies [12] and cited
Lamport’s prior work. However, it’s still fascinating that formal
language-based approaches are so productive far beyond parsing.

RF: Forms of distributed computing, such as cloud functions,
are growing in popularity today. Cloud functions use RPCs and
queues to communicate, and that seems to me to be an opportu-
nity to either make things better by observing LangSec or much
worse through the use of ambiguous protocols. Would you com-
ment on that?

SB: This is very much the case: there is both the opportunity and
the danger.

The danger is already manifesting itself in the surge of high-
impact parser differential bugs. Recall Dave Aitel’s quote above.
Note that we don’t yet have effective ways of fuzzing for parser
differentials. So we are in a much worse position with respect
to parser differential bugs than we are with regard to memory
corruption bugs, where coverage-driven fuzzing in combination
with various sanitizers have gotten really good.

There is also the opportunity. Exposing interfaces without the
false comfort of keeping them “private” and only receiving well-
formed data or only data from one particular writer applies evo-
lutionary pressure towards properly defining these interfaces.
LangSec is there as a natural match for this problem.

The story of the Amazon API Mandate as told by Steve Yegge [13]
is the story of such evolutionary pressure creating a qualitatively
better platform. From the LangSec perspective, this story is not
surprising—it is an iconic story of the correct intuition.

RPC messages are explicitly data languages, and open cloud envi-
ronments will exert pressure to validate RPC messages before
acting on them. However, it is important to get the design of these
data languages right, so that validating these inputs doesn’t grow
into intractable problems we encounter with legacy formats.

As cloud systems grow rapidly, so could their technical debt.
For example, for many application protocols, their expressions
in Protocol Buffers happen to be the closest they ever got to a
mechanized specification. However, these specifications them-
selves may be ambiguous and vulnerable to parser differentials.
Critiques such as [14] strongly urge caution.

These problems are going to be very important as we move to
serverless styles of programming (AWS Lambda and Fargate,
Azure Functions, etc.). They will take a while to explore and
understand, just like understanding the significance of parser
differentials took almost a decade, but to avoid accumulating
insurmountable amounts of technical debt, we should start now.

RF: The Rust programming language claims to offer unprec-
edented security assurances in systems programming. Rust’s
secret weapon appears to be lightweight memory safety through
compiler-imposed isolation, instead of having to rely on much
more expensive safety solutions such as separating memory
contexts with x86 hardware privilege rings or automatic memory
management. Will LangSec remain relevant if Rust becomes the
choice of systems programmers?

SB: The point of all programming language safety features, be it
Java-like automatic memory management or Rust’s type system
that enforces a discipline on pointers, is to avoid unintended
state and, as a result of that state, unintended execution from
that state onward. The difference between the languages and
approaches is what kind of unintended state is being prevented
and how this is done.

Historically, it was very easy for a programmer to unwittingly
create unintended state. Classic ISAs use contents of memory
or registers as addresses to access memory “randomly,” i.e., in
arbitrary order and without checking what, if anything, was pre-
viously stored in that memory and when or how it got there.
C/C++ exposed this indirect memory addressing through point-
ers, which could point practically anywhere and allowed nearly
arbitrary arithmetic to be applied to them. Reasoning about
code—for example, what the code would do on all inputs hitting a
module’s boundary—in the presence of arbitrary pointers is very
hard (see Hind’s 2001 survey [15]). The power of arbitrary indi-
rect memory references is so great that it’s possible to (re)compile
any program into just x86 MOV instructions and a single JMP or
an equivalent way of looping backwards [16], which is, of course,
really bad news for program analysis.

Java approached this problem by abstracting away almost all
indirect memory references, to heavily restrict what memory
addresses the CPU might access on behalf of the program
(notionally mediated by the JVM, but also observed by JIT-ed
code). To do so, it took memory management away from the
programmer, which made it less desirable for OS programming,

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 33

SECURITY
Interview with Sergey Bratus

where managing memory is a significant part of the task, and a
single automated way of doing it just does not fit all needs. Rust,
via its type system, controls pointers in a different way, but for
the same purpose: restrict where and when indirect memory
references can point so that they become tractable, unlike C’s
pointers or assembly’s indirect MOVs [16].

In each case, the language makes memory-corrupting references
hard or impossible for the programmer to create in ordinary
code. However, as we’ve seen with web programming, memory
safety alone does not preclude abuse of complex interfaces, and
can actually make exploiting these interfaces easier, because the
attacker doesn’t need to worry about crashing the system with a
poorly crafted input. We often forget that memory safety without
a clear understanding of what inputs and outputs are legal works
both ways and can easily favor the attacker.

There is definitely a LangSec perspective on this: IPCs are data lan-
guages, and whatever Rust or any other compiler can do is all done
for the purpose of consuming these languages safely and not letting
them drive unintended computation in a module or microservice.

So the question is, once again: regardless of whatever kinds of
checks can be done, what constitutes expected and valid IPC
messages that, once validated, will cause only predictable system
behaviors and no other “weird” behaviors? Can these expectations
be precisely and unambiguously formulated and checked with
tractable code, which could itself be checked for correctness?

Without a clear LangSec model of the inputs, validating IPC
messages becomes an ill-defined game of guessing which kinds
of memory corruption or command injection to mitigate, for
example, by making the hardware explicitly protect some address
ranges from access by all code except specially designated code
parts (e.g., via x86 ring contexts). But what happens in other
ranges and contexts? How can one guarantee that corruption
spreading there would not trick a legitimately placed privileged
(“ringed”) deputy into corrupting the protected region by pass-
ing it some unexpected inputs? This is a really hard question
to answer, and it needs higher-level models of intended input-
driven behaviors.

So compilers and build environments in general should abso-
lutely be doing more work to make sure only intended state
occurs, and it’s a great thing that they do.

LangSec, for its part, helps formulate what is and can be the
intended, tractably checkable state when dealing with inputs,
and helps system, protocol, and application designers avoid
situations where ensuring predictability of input-handling code
becomes unsolvable. So LangSec has a lot of work to do and many
programming fields to help secure.

34 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

SECURITY
Interview with Sergey Bratus

References
[1] The Sixth Workshop on Language-Theoretic Security
(LangSec), at IEEE Security & Privacy (May 2020): http://
spw20.langsec.org/workshop-program.html.

[2] J. Chen, V. Paxson, J. Jiang, “Composition Kills: A Case
Study of Email Send Authentication,” 29th USENIX Security
Symposium (Security ’20):https://www.usenix.org/conference
/usenixsecurity20/presentation/chen-jianjun.

[3] HTTP Desync attacks: https://portswigger.net/research
/http-desync-attacks-request-smuggling-reborn.

[4] F5 vulnerability: https://research.nccgroup.com/2020/07
/12/understanding-the-root-cause-of-f5-networks-k52145254
-tmui-rce-vulnerability-cve-2020-5902/.

[5] “Psychic Paper” vulnerability: https://siguza.github.io
/psychicpaper/.

[6] GitLab vulnerability: https://about.gitlab.com/blog/2020/03
/30/how-to-exploit-parser-differentials/.

[7] Android Master Key vulnerabilities: http://www.saurik.com
/id/17, http://www.saurik.com/id/18, and http://www.saurik
.com/id/19.

[8] S. McQuistin, V. Band, D. Jacob, and C. Perkins, “Parsing
Protocol Standards to Parse Standard Protocols,” in Proceed-
ings of the Applied Networking Research Workshop (ANRW ’20),
pp. 25–31.

[9] L. Hermerschmidt, S. Kugelmann, and B. Rumpe, “Towards
More Security in Data Exchange: Defining Unparsers with
Context-Sensitive Encoders for Context-Free Grammars,” in
2015 IEEE CS Security and Privacy Workshops: pp. 134–141:
http://spw15.langsec.org/papers.html#unparse.

[10] N. Silvanovich and R. Farrow, “Interview with Natalie
Silvanovich,” ;login:, vol. 43. no. 2 (Summer 2020): https://www
.usenix.org/publications/login/summer2020/farrow-0.

[11] L. Sassaman, M. L. Patterson, S. Bratus, and M. E. Locasto,
“Security Applications of Formal Language Theory,” IEEE
 Systems Journal, vol. 7, no. 3 (September 2013), pp. 489–500.

[12] F. B. Schneider, “Enforceable Security Policies,” ACM
Transactions on Information and System Security, vol. 3, no. 1
(February 2000), pp. 30–50: https://www.cs.cornell.edu/fbs
/publications/EnfSecPols.pdf.

[13] S. Yegge, “Stevey’s Google Platforms Rant,” October 2011:
https://gist.github.com/chitchcock/1281611.

[14] S. Maguire, “Protobuffers Are Wrong,” Reasonably Poly-
morphic blog, October 10, 2018: https://reasonablypolymorphic
.com/blog/protos-are-wrong/index.html.

[15] M. Hind, “Pointer Analysis: Haven’t We Solved This Prob-
lem Yet?” in Proceedings of the 2001 ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engi-
neering (PASTE ’01), pp. 54–61: https://courses.cs.washington
.edu/courses/cse501/15sp/papers/hind.pdf.

[16] C. Domas, MOVfuscator: https://github.com/xoreaxeaxeax
/movfuscator.

[17] D. Kaminsky, M.L. Patterson, and L. Sassaman, “PKI Layer
Cake: New Collision Attacks Against the Global X.509 Onfra-
structure,” in Proceedings of the 14th International Conference
on Financial Cryptography and Data Security (FC 2010), pp.
289–303: https://www.esat.kuleuven.be/cosic/publications
/article-1432.pdf.

http://spw20.langsec.org/workshop-program.html
http://spw20.langsec.org/workshop-program.html
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-jianjun
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-jianjun
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://research.nccgroup.com/2020/07/12/understanding-the-root-cause-of-f5-networks-k52145254-tmui-rce-vulnerability-cve-2020-5902/
https://research.nccgroup.com/2020/07/12/understanding-the-root-cause-of-f5-networks-k52145254-tmui-rce-vulnerability-cve-2020-5902/
https://research.nccgroup.com/2020/07/12/understanding-the-root-cause-of-f5-networks-k52145254-tmui-rce-vulnerability-cve-2020-5902/
https://siguza.github.io/psychicpaper/
https://siguza.github.io/psychicpaper/
https://about.gitlab.com/blog/2020/03/30/how-to-exploit-parser-differentials/
https://about.gitlab.com/blog/2020/03/30/how-to-exploit-parser-differentials/
http://www.saurik.com/id/17
http://www.saurik.com/id/17
http://www.saurik.com/id/18
http://www.saurik.com/id/19
http://www.saurik.com/id/19
http://spw15.langsec.org/papers.html#unparse
https://www.usenix.org/publications/login/summer2020/farrow-0
https://www.usenix.org/publications/login/summer2020/farrow-0
https://www.cs.cornell.edu/fbs/publications/EnfSecPols.pdf
https://www.cs.cornell.edu/fbs/publications/EnfSecPols.pdf
https://gist.github.com/chitchcock/1281611
https://reasonablypolymorphic.com/blog/protos-are-wrong/index.html
https://reasonablypolymorphic.com/blog/protos-are-wrong/index.html
https://courses.cs.washington.edu/courses/cse501/15sp/papers/hind.pdf
https://courses.cs.washington.edu/courses/cse501/15sp/papers/hind.pdf
https://github.com/xoreaxeaxeax/movfuscator
https://github.com/xoreaxeaxeax/movfuscator
https://www.esat.kuleuven.be/cosic/publications/article-1432.pdf
https://www.esat.kuleuven.be/cosic/publications/article-1432.pdf

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 35

SYSTEMSCharacterization and Optimization of the
Serverless Workload at a Large Cloud Provider
M O H A M M A D S H A H R A D , R O D R I G O F O N S E C A , Í Ñ I G O G O I R I ,
G O H A R C H A U D H R Y , A N D R I C A R D O B I A N C H I N I

Mohammad Shahrad is a
Computer Science Lecturer at
Princeton University and an
incoming Assistant Professor
of Electrical and Computer

Engineering at the University of British
Columbia. He received his PhD from Princeton
University and his BSc from Sharif University
of Technology. Dr. Shahrad’s research aims
to improve the efficiency of cloud computing
systems through better resource management
and enhanced system/architecture
integration. mshahrad@ece.ubc.ca

Rodrigo Fonseca is a Principal
Researcher at Microsoft
Research and an Associate
Professor at Brown University’s
CS Department. He is

broadly interested in distributed systems,
networking, and operating systems, and his
current research involves ways to make cloud
computing easier and more applicable for
users and more efficient for providers. He
holds a PhD from UC Berkeley, a MSc and BSc
from Federal University of Minas Gerais, and
is the recipient of an NSF CAREER award, an
NSDI Test of Time Award, and a 2015 SOSP
Best Paper Award. rfonseca@cs.brown.edu

Function as a Service (FaaS) has gained tremendous popularity as a
way to deploy computations to serverless back ends in the cloud. We
performed the first characterization of an entire production FaaS

environment (Azure Functions) [1]. Our characterization revealed many
unique aspects of serverless workloads compared to traditional cloud applica-
tions. Using this deep understanding, we designed a new dynamic resource
management policy to improve the performance and reduce the memory foot-
print of serverless workloads. This new policy is now deployed in production,
and our characterization data traces are publicly released for researchers.

Serverless characterization studies before our work can be classified into two main catego-
ries: those probing public serverless offerings externally and those looking at ways developers
use FaaS offerings by investigating public repositories. These two classes of studies provide
valuable information; external probing allows comparing the performance and availability
of various FaaS providers using a set of benchmarks, and looking at public FaaS repositories
allows finding popular programming trends. However, neither of them can offer insights
on the aggregate workload seen by a provider. Only when the entire workload is known can
one answer questions such as “How often do functions get invoked? ” “How long do functions
execute for? ” or “How much memory do serverless functions require? ” Answers to such basic
questions have major implications for designing various components of serverless systems—
from schedulers to virtualization environments to underlying hardware architectures.

We conducted the first detailed characterization of an entire production FaaS workload at a
large cloud provider. To do so, we collected data on all function invocations across Microsoft
Azure’s entire infrastructure between July 15 and July 28, 2019. We invite the reader to read
our recent USENIX ATC paper for methodology details and full characterization data [1].
The sanitized traces from a subset of our characterization data are also available publicly at
https://github.com/Azure/AzurePublicDataset. In what follows, we summarize some of our
characterization insights.

Composition of Applications
In Azure Functions, functions are grouped into applications. The application concept helps
organize the software, and the application is the unit of scheduling and resource allocation.
As shown in Figure 1, 54% of the applications have only one function, and 95% of the appli-
cations have at most 10 functions. The other two curves show the fraction of invocations
and functions corresponding to applications with up to a certain number of functions. For
example, we see that 50% of the invocations come from applications with at most three func-
tions, and 50% of the functions are part of applications with at most six functions.

Composition of Triggers
Functions can be invoked in response to several event types, called triggers. Figure 2 shows the
fraction of all functions and invocations per type of trigger. HTTP is the most popular in both
dimensions. Event triggers correspond to only 2.2% of the functions, but they correspond to
24.7% of the invocations due to their automated, and very high, invocation rates. Queue trig-
gers also have proportionally more invocations than functions (33.5% vs. 15.2%).

Íñigo Goiri is a Research
Software Developer at
Microsoft Research. His
current research focuses on
the efficiency of large scale

distributed systems. He holds a PhD from the
University Politecnica de Catalunya (UPC).
inigog@microsoft.com

36 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

SYSTEMS
Characterization and Optimization of the Serverless Workload at a Large Cloud Provider

The opposite happens with timer triggers. There are many functions triggered by timers
(15.6%), but they correspond to only 2% of the invocations, due to their relatively low firing
rate: 95% of the timer-triggered functions in our data set were triggered at most once per
minute, on average.

Invocation Patterns
We observed that applications are invoked very differently. The number of invocations per
day varies by over eight orders of magnitude for different applications. Another observation
with strong implications for resource allocation is that the vast majority of applications and
functions are invoked, on average, very infrequently: on average, 45% of the applications are
invoked once per hour or less frequently, and 81% of the applications are invoked once per
minute or less. The other side of this skewness was revealed to us by finding that the top 18.6%
most popular applications represent 99.6% of all function invocations. Thus, keeping the appli-
cations that receive infrequent invocations resident in memory at all times is expensive.

Function Execution Times
An advantage of the serverless model is that users pay only for their execution time. Figure 3
shows the distribution of average, minimum, and maximum execution times of all function
executions on July 15, 2019, which is similar to other days. We observed that 50% of the
functions execute for less than 1 sec on average, and 96% of functions take less than 60 sec on
average. These short executions in FaaS are unlike virtual machines (VMs). For example, a
prior study reported that 63% of all VM allocations on Azure last longer than 15 minutes [2].

Gohar Irfan Chaudhry is a
Research Software Engineer
at Microsoft Research. He is
part of the Systems Research
Group and is currently working

on improving efficiency of serverless
infrastructure. Gohar.Irfan@microsoft.com

Ricardo Bianchini received his
PhD in computer science from
the University of Rochester.
He is currently a Distinguished
Engineer at Microsoft, where he

leads efforts to improve the efficiency of the
company’s online services and datacenters.
He also manages the Systems Research Group
at Microsoft Research in Redmond. His main
research interests include cloud computing,
datacenter efficiency, and leveraging machine
learning to improve systems. He is an
ACM Fellow and an IEEE Fellow. ricardob@
microsoft.com

Figure 1: Distribution of function counts per application

Figure 2: Functions and invocations per trigger type

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 37

SYSTEMS
Characterization and Optimization of the Serverless Workload at a Large Cloud Provider

FaaS applications experience cold starts. A cold start invocation
occurs when a function is triggered, but its application is not yet
loaded in memory. When this happens, the platform instantiates
a worker for the application, loads all the required runtime and
libraries, and calls the function. While Figure 3 does not include
cold starts, we observed that the execution times from our char-
acterization are the same order of magnitude as the cold start
times reported for major providers [3]. Therefore, optimizing cold
starts becomes extremely important for the overall performance
of a FaaS offering. This can be done either by reducing the cold
start latency [4, 5] or by eliminating cold starts. We took the
second approach in designing our policy, which we describe later
in the article.

Memory Usage
The memory demand of applications on the same day (July 15,
2019) is shown in Figure 4. Looking at the distribution of the
maximum allocated memory, 90% of the applications never con-
sume more than 400 MB, and 50% of the applications allocate at
most 170 MB. We found no strong correlation between invocation
frequency and memory allocation or between memory allocation
and function execution times.

Designing a New Adaptive Resource Management
Policy
One of our primary goals in understanding workload character-
istics was to design better resource management policies. This is
because the state-of-the-art in serverless resource management
was too simplistic, where each application was kept in memory
after function execution for a fixed amount of time. This keep-
alive window is 10 minutes for AWS Lambda and IBM Cloud
Functions, and was 20 minutes for Azure Functions. Such a
policy is too rigid for the wide range of serverless applications.
Developers usually circumvent this by creating regular artificial
invocations to make sure their applications remain warm in
memory. A smart dynamic policy can eliminate such a burden.
Additionally, adapting to applications’ invocation patterns would
mean resources are not kept unused just to keep function images
warm without executing them.

There are a few challenges in designing such a policy. As we
showed earlier in this article, invocation frequency and pattern
vary substantially across applications. A one-size-fits-all fixed
policy is certain to be a poor choice for many applications. Adapt-
ing the policy to each application means tracking each applica-
tion individually, and thus the cost to track the information for
each application should be small. Finally, since function execu-
tions can be very short (i.e., more than 50% of executions take
less than one second), running the policy and updating its state
need to be fast. This is especially critical considering providers
charge users only during their function execution times (e.g.,
based on CPU, memory). For instance, we cannot take 100 ms to
update a policy prediction model for each 10 ms-long execution.

We propose a hybrid histogram policy that addresses all the
above challenges. It identifies each application’s invocation pat-
tern, removes/unloads the application right after each function
execution ends, reloads/pre-warms the application right before
a potential next invocation, and keeps it alive for a period. The
policy does so by capturing the history and predicting next idle
times (ITs), defined as the time between the end of a function’s
execution and its next invocation. Three main components of the
hybrid histogram policy include: (1) a range-limited histogram
for capturing each application’s ITs; (2) a standard keep-alive
approach for when the histogram is not representative, i.e., there
are too few ITs or the IT behavior is changing (again, note that this
differs from a fixed keep-alive policy); and (3) a time-series fore-
cast component for when the histogram does not capture most ITs.

Compared to fixed keep-alive policies, hybrid histogram policies
are closer to optimal. As seen in Figure 5, hybrid policies deliver
a significant reduction of unused memory time, while consider-
ably improving the cold start percentage for applications. For
instance, a hybrid policy with a four-hour histogram can deliver
a 2.5× lower 3rd-quartile cold start percentage and 1.5× less
memory time wastage compared to a fixed 10-minute keep-alive
policy. Note that there is a tradeoff between cold starts and wasted
memory time for both policy families, but hybrid substantially
dominates all fixed policies.

Figure 3: Distribution of function execution times Figure 4: Distribution of allocated memory per application

38 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

SYSTEMS
Characterization and Optimization of the Serverless Workload at a Large Cloud Provider

The range-limited histogram at the core of the hybrid histogram
policy is a lightweight data structure. We use it with a minute-
long resolution, which means capturing a four-hour histogram
requires an array of length 240. The other two components of
the hybrid histogram policy complement it to boost performance
while maintaining low overhead. Here, we describe some of our
design choices and their implications for the policy:

 3 Pre-warming to curtail keep-alive values while maintain-
ing low cold starts: One can eliminate cold starts by just set-
ting the right keep-alive values, but this approach is too costly.
Pre-warming allowed us to reduce memory wastage by about
34% compared to using just keep-alives, with a minor cold start
increase.
 3 Ignoring outlier ITs to deflate keep-alive values: To exclude
outliers of the IT distribution captured by the histogram, we use
the 5th- and 99th-percentiles as head and tail cutoffs, respec-
tively. This approach avoided the inflation of keep-alive values
and resulted in a ~15% reduction in memory time wastage with a
negligible impact of cold start performance of applications.
 3 Checking the histogram representativeness to not use it
prematurely: The histogram might not be representative of
an application’s behavior when it has not observed enough ITs
for the application or when the application is transitioning to a
different IT regime. We decide whether a histogram is repre-
sentative by computing the coefficient of variation (CV) of its
bin counts and comparing it to a threshold (CV=2). This simple
approach improved the 3rd-quartile application cold starts by
nearly 49% with only a 3% increase in memory time wastage.
 3 Using time-series forecast to eliminate cold starts of infre-
quent applications: Using time-series forecast for infrequent
applications reduced the percentage of applications that experi-

ence 100% cold starts by about 50%, i.e., from 10.5% to 5.2% of
all applications. A significant portion of these applications have
only one invocation during the entire week, and no predictive
model can help them. Excluding these applications, the same re-
duction becomes 75%, i.e., from 6.9% to 1.7% of all applications.

We implemented our policy in Apache OpenWhisk [6], which is
the open-source FaaS platform powering IBM’s Cloud Functions.
We refer the reader to our paper for implementation details [1].
We ran two experiments with 68 randomly selected mid-range
popularity applications from our workload on our 19-VM Open-
Whisk deployment: one experiment with the default 10-minute
fixed keep-alive policy of OpenWhisk and another with our
hybrid policy and a four-hour histogram range. Each experiment
ran for eight hours with a total of 12,383 function invocations.
We used FaaSProfiler [7] to automate trace replay and result
analysis.

Figure 6 compares the cold start distribution of keep-alive and
hybrid policies from the simulations (left) and the OpenWhisk
prototype (right). As seen, the significant cold start reductions
follow similar trends. On average and across the 18 invoker VMs,
the hybrid policy reduced memory consumption of worker con-
tainers by 15.6%, which was also consistent with our simulation
results. Moreover, hybrid policy reduced the average and 99-per-
centile function execution time 32.5% and 82.4%, respectively,
due to a secondary effect in OpenWhisk, where the language
runtime bootstrap time is eliminated for warm containers. The
price for all of these is an additional 835.7μs latency on average,
which is negligible compared to the existing latency of Open-
Whisk components: the (in-memory) language runtime initia-
tion takes O(10 ms) and the container initiation takes O(100 ms)
for cold containers [7].

After getting promising results from simulations as well as the
prototype implementation, we implemented our policy in Azure
Functions for HTTP-triggered applications. Its main elements
have rolled out to production. We used asynchronous updates
from the workers to the Azure Functions controller to populate
histograms. We keep the histogram in memory and do hourly
backups to the database. We start a new histogram per day in
the database so that we can track changes in an application’s
invocation pattern and remove histograms older than two weeks.
When an application changes state from executing to idle, we use
the aggregated histogram to compute its pre-warm interval and
schedule an event for that time (minus 90 seconds). Pre-warming
loads function dependencies and performs JIT where applicable.
Each worker maintains the keep-alive duration separately,
depending on how long it has been idle. We make all policy
decisions asynchronously, off the critical path, to minimize the
latency impact on the invocation.

Figure 5: Tradeoff between cold starts and wasted memory time for the
fixed keep-alive policy and our hybrid policy

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 39

SYSTEMS
Characterization and Optimization of the Serverless Workload at a Large Cloud Provider

Conclusion
We characterized the entire production FaaS workload of Azure
Functions, which unearthed several key observations for cold
start and resource management. Based on them, we proposed a
practical policy for reducing the number of cold starts at a low

resource cost. The main elements of this policy have rolled out
to production. We also released sanitized traces from a subset
of our characterization data that is first of its kind. These traces
will help researchers design future serverless systems based on
realistic workloads and enable new research angles.

References
[1] M. Shahrad, R. Fonseca, Í. Goiri, G. Chaudhry, P. Batum,
J. Cooke, E. Laureano, C. Tresness, M. Russinovich, and R.
Bianchini, “Serverless in the Wild: Characterizing and Opti-
mizing the Serverless Workload at a Large Cloud Provider,”
in Proceedings of the 2020 USENIX Annual Technical Confer-
ence (USENIX ATC ’20), pp. 205–218: https://www.usenix.org
/system/files/atc20-shahrad.pdf.

[2] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura,
and R. Bianchini, “Resource Central: Understanding and
Predicting Workloads for Improved Resource Management in
Large Cloud Platforms,” in Proceedings of the 26th Symposium on
Operating Systems Principles (SOSP ’17), pp. 153–167.

[3] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift,
“Peeking Behind the Curtains of Serverless Platforms,” in
Proceedings of the 2018 USENIX Annual Technical Confer-
ence (USENIX ATC ’18), pp. 133–145: https://www.usenix.org
/system/files/conference/atc18/atc18-wang-liang.pdf.

[4] E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “SOCK: Rapid
Task Provisioning with Serverless-Optimized Containers,” in
Proceedings of the 2018 USENIX Annual Technical Conference
(USENIX ATC ’18), pp. 55–70: https://www.usenix.org/system
/files/conference/atc18/atc18-oakes.pdf.

[5] K. Wang, R. Ho, and P. Wu, “Replayable Execution Optimized
for Page Sharing for a Managed Runtime Environment,” in Pro-
ceedings of the 14th EuroSys Conference 2019, pp. 1–16.

[6] Apache OpenWhisk, Open Source Serverless Cloud Platform:
https://openwhisk.apache.org/.

[7] M. Shahrad, J. Balkind, and D. Wentzlaff, “Architectural
Implications of Function-as-a-Service Computing,” in Proceed-
ings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO ’19), pp. 1063–1075.

Figure 6: Cold start behavior of fixed keep-alive and hybrid policies in (a) simulation results and (b) experimental results from our OpenWhisk implementation

https://www.usenix.org/system/files/atc20-shahrad.pdf
https://www.usenix.org/system/files/atc20-shahrad.pdf
https://www.usenix.org/system/files/conference/atc18/atc18-wang-liang.pdf
https://www.usenix.org/system/files/conference/atc18/atc18-wang-liang.pdf
https://www.usenix.org/system/files/conference/atc18/atc18-oakes.pdf
https://www.usenix.org/system/files/conference/atc18/atc18-oakes.pdf
https://openwhisk.apache.org/

40 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

SYSTEMS

Posh: A Data-Aware Shell
D E E P T I R A G H A V A N , S A D J A D F O U L A D I , P H I L I P L E V I S , A N D M A T E I Z A H A R I A

Running I/O-intensive shell pipelines over the network requires
transferring huge amounts of data but relatively little computation.
We present Posh, a shell framework that accelerates unmodified

shell workflows over networked storage by offloading computation to proxy
servers closer to the data. Posh provides speedups ranging from 1.6× to 15×
compared to bash over NFS for a wide range of applications.

The UNIX shell is a linchpin in computing systems and workflows. Developers use shell tools
not only for data processing with core utilities such as sort, head, cat, and grep, but also for
programs such as Git, ImageMagick, and FFmpeg. The UNIX shell was designed in a time
dominated by local and then LAN storage when file access was limited by disk access times,
so networked storage was an acceptable tradeoff. Today, solid-state disks have reduced
access times by orders of magnitudes, while networked attached storage remains popular.

Running I/O-intensive shell pipelines over networked storage incurs high overheads. Con-
sider generating a tar archive on NFS. The tar utility copies the source files and adds a small
amount of metadata: the server reads blocks and sends them over a network to a client, which
shifts their offsets and sends them back. NFS mitigates this problem by offering compound
operations and server-side support for primitive commands such as cp, but even something
as simple as tar requires large network transfers.

Deepti Raghavan is a PhD
candidate in computer science
at Stanford University, advised
by Phil Levis and Matei Zaharia.
She focuses on topics in

networking and distributed systems. She is
interested in optimizing data processing for
networked applications.
deeptir@cs.stanford.edu

Philip Alexander Levis is
an Associate Professor
of Computer Science and
Electrical Engineering at
Stanford University, where he

heads the Stanford Information Networks
Group (SING) and co-directs Lab64,
Stanford’s electrical engineering maker
space. He has a self-destructive aversion to
low-hanging fruit and a deep appreciation for
excellent engineering. pal@cs.stanford.edu

Sadjad Fouladi is a PhD
candidate in computer science
at Stanford University, working
with Keith Winstein on topics in
networking, video systems, and

distributed computing. His current projects
include general-purpose lambda computing
and massively parallel ray-tracing systems.
sadjad@cs.stanford.edu

Figure 1: Users can type in unmodified shell workflows to Posh’s shell prompt. Posh will transparently
schedule and execute individual commands on remote proxy servers closer to the remote data but ensure
the entire workflow retains local execution semantics.

mailto:deeptir@cs.stanford.edu
mailto:pal@cs.stanford.edu
mailto:sadjad@cs.stanford.edu

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 41

SYSTEMS
Posh: A Data-Aware Shell

The underlying performance problem of using the shell with remote data is locality: because
the shell executes locally, it must move large amounts of data to and from remote servers.
Data movement is usually the most expensive (time and energy) part of a computation, and
shell workloads are no exception. Near-data processing [1] is not a new paradigm: systems
such as Spark [2], Active-Disks [3], and stored procedures in databases all move computation
closer to the data. However, these systems require applications to use their APIs: they can
supplement but not replace shell pipelines.

To address the shell performance problem of data locality, this article presents Posh, the
“Process Off load Shell,” a system that off loads portions of unmodified shell workf lows to
proxy servers closer to the data. A proxy server can run on the actual remote file server
storing the data, or on a different node that is much closer to the data (e.g., within the same
datacenter) than the client. Posh identifies parts of shell pipelines that can be safely offloaded
to a proxy server and selects which candidates run on a proxy in order to minimize data move-
ment. It then distributes computation across an underlying runtime while maintaining the
exact output semantics expected by a local program. Figure 1 shows running a workflow via
Posh. The user enters the unmodified workflow at the shell prompt and the output appears at
the client’s shell as normal, but Posh offloads some of the commands.

Posh is available at https://github.com/deeptir18/posh. This article will cover examples of
shell workflows where Posh can be useful, a brief overview of the core ideas behind Posh, and
how to get started with the system. For a detailed discussion of the research ideas behind
Posh, we refer the reader to our USENIX ATC ’20 paper [4].

Examples of Posh
Posh is useful for shell workflows that are I/O bound, have smaller output than input size, are
metadata heavy (make many file-system stat() requests), or are parallelizable. In this sec-
tion, we will discuss examples of shell workflows that incur large overheads over networked
storage and show that Posh accelerates them to achieve near-local execution time. Figures
2–4 illustrate the execution time of running each of these applications with an NFS mount
configured with either sync and async, and with Posh, over two network settings: one where
the client is in the same GCP region as the storage server (“cloud”) and one where the client is
in a university network outside the datacenter (“university”). Posh can offload computation

Matei Zaharia is an Assistant
Professor of Computer
Science at Stanford and Chief
Technologist at Databricks.
He started the Apache Spark

project during his PhD at UC Berkeley and has
worked on other widely used data analytics
and AI software, including MLflow and Delta
Lake. At Stanford, he is co-PI of the DAWN
lab working on infrastructure for machine
learning. Matei’s research was recognized
through the 2014 ACM Doctoral Dissertation
Award, an NSF CAREER Award, and the US
PECASE award. matei@cs.stanford.edu

Figures 2 and 3: End-to-end latency of Posh on two applications, compared to NFS sync, NFS async, and
local execution time for two networks, one where the client is in a university network and one where the
client is in the same GCP region as the storage server. The Posh proxy runs directly on the NFS server. Posh
provides between 1.6–12.7× speedups in the university-to-cloud network compared to NFS.

https://github.com/deeptir18/posh
mailto:matei@cs.stanford.edu

42 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

SYSTEMS
Posh: A Data-Aware Shell

to a proxy server directly running at the NFS servers. Figures
3 and 4 additionally include a baseline that demonstrates local
execution time, where the data is stored on a local SSD. Com-
pared to bash over NFS, Posh sees a 1.6–12.7× speedup in the
execution time of these applications.

For each of these applications, the shell workflow (the bash script)
itself is completely unmodified; the workload is just run within a
Posh shell environment. Posh can accelerate these workflows
because the shell knows metadata about the commonly used
shell commands within these workflows, which we will discuss
in the next section. We describe each workflow in turn.

Distributed Log Analysis (Figure 2)
This application is based on a workflow where system adminis-
trators run analysis on 80 GB of input logs split across five differ-
ent storage servers, to search for an IP address within these logs.
The workflow runs cat over all of the files and filters for a par-
ticular IP with grep and then writes the final results, only about
0.8 KB of data, back to a file stored locally at the client. Posh
splits the computation across the five machines and aggregates
the output in the correct order. By offloading and parallelizing,
Posh improves the runtime by 12.7× in the university-to-cloud
setting and by 2× in the cloud-to-cloud setting.

Ray-Tracing Log Analysis (Figure 3)
This workflow analyzes the logs of a massively distributed
research ray-tracing (computer graphics) system [5] to track a
ray (a simulated ray of light) through the workers it traversed.

The analysis first cleans and aggregates each worker’s log, 6 GB
in total, into one 4 GB file. It then runs sed to search for the path
of a single ray (e.g., a straggler) across all the workers and stores
the output on a file at the client:

cat logs/1.INFO | grep "\[RAY\]" | head -n1 | cut -c 7- > \
 logs/rays.csv
cat logs/*.INFO | grep "\[RAY\]" | grep -v pathID | \
 cut -c 7- >> logs/rays.csv
cat logs/rays.csv | sed -n '/^590432,/p' > local/output.log

The output of sed is much smaller than the 10 GB of data pro-
cessed. This application is a best-case workload for Posh: it is I/O
bound and can be parallelized, and the output is a tiny fraction
of the data it reads. Posh achieves an 8× improvement on the
university-to-cloud network and no improvement on the cloud-
to-cloud network: Posh offloads all the computation and only
needs to stream the output of sed back to the client. However,
the data movement overhead only matters in the university-to-
cloud setting, where the network connection is slower.

Git Workflow (Figure 4)
This application imitates a developer’s git workflow over the
Chromium repository. After rolling back the repository by 20
commits and saving each commit’s patch, the workload suc-
cessively applies each patch and runs three git commands: git
status, git add and git commit -m. Figure 4 shows the latency
of each command for each of the 20 commits. These commands
are extremely metadata-heavy: commands like status and add
check the status of every file in the repository to see if it has been

Figure 4: Average latency of 20 git status, git add, and git commit commands run on Chromium repo, of Posh compared to NFS and local execution,
for a client in the same cloud datacenter as the storage server. Posh provides up to 10–15× speedups by preventing round trips for file system metadata calls.

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 43

SYSTEMS
Posh: A Data-Aware Shell

modified. When run over a networked file system, this incurs
many round trips. In the cloud-to-cloud setting, this causes Posh
to achieve 10–15× improvement over NFS. Running git status
took up to two hours in the university-to-cloud setting, so we
omitted this network for this application.

To enable Posh’s acceleration of a shell workload, the user must
provide metadata about the individual shell commands the work-
flow uses. This metadata, called annotations, allows Posh to
determine which files these commands access, so it can further
schedule the workflow across the underlying runtime. The next
section will discuss annotations in more detail.

Transparently Offloading Shell Computation:
Annotations
Annotations summarize information to Posh about individual
shell commands, such as tar, cat, or grep. Posh’s key insight is
that many shell workflows only read and write to files specified
in their command-line invocation, so Posh can deduce which
files a workflow accesses by understanding which arguments
correspond to files. Annotations contain a list of possible argu-
ments and whether they correspond to files, so Posh can under-
stand which files an arbitrary invocation of a command would
access. Additionally, annotations contain information relevant
to scheduling the workflow.

Consider a simple pipeline:

cat A B C D | grep "foo" | tee local_file.txt

Posh could try to offload any of the three commands: cat, grep,
or tee. Posh must understand which files (if any) each command
accesses and where these files live, so Posh must determine
which arguments to the three commands represent file paths.

However, outside of the program, all of these arguments are
seen as generic strings. For example, consider the following four
commands:

cat A B C D | grep "foo"
tar -cvf output.tar.gz input/
tar -xvf input.tar.gz
git status

The cat command takes in four input files, while the argument to
grep is a string. The second command, tar -cvf, takes an output
file argument preceded by -f, followed by an input file argument
not preceded by a short option. The third command, also tar,
takes an input file argument preceded by -f and implicitly takes
its output argument as the current directory. Finally, git also
implicitly relies on the current directory as a dependency.

Secondly, in order to produce an execution schedule that reduces
data movement, Posh must understand the relationship between
the inputs and outputs of a command. In the cat | grep example,
if the argument to cat is a remote file, to minimize data move-
ment, Posh can offload both cat and grep since grep filters its
input. Finally, for applications like the distributed log analysis
application discussed previously, where the input files for a
command live on different mounts, Posh needs to know how to
safely parallelize the command in order to be able to offload it
at all. However, parallelization is not safe for all commands: wc,
for example, “reduces” the input, as opposed to commands like
cat or grep, which merely map over the input. Posh’s annotations
summarize file dependencies, data movement semantics, and
parallelization semantics for commonly used commands.

Figure 5 shows examples of annotations, for cat, grep, and tar.
Most of the information in the annotations summarize the
semantics for the arguments for each command, or information

Figure 5: Example annotations for cat, grep, and tar. Most of the information in the annotations tells Posh information about the possible arguments for
each command and their syntax. They contain type assignments for each argument, which tell Posh how the argument will be used as well as other informa-
tion used for scheduling and automatic parallelization. tar requires more than one annotation because tar -x and tar -c invocations have conflicting
type semantics: -f is an input_file in one case and an output_file in the other.

http://output.tar.gz
http://input.tar.gz

44 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

SYSTEMS
Posh: A Data-Aware Shell

that is summarized in the documentation pages for these com-
mands. Moreover, they contain a type assignment for each
argument: input_file, output_file, or string. For cat, the
splittable keyword indicates to Posh that cat can be split in
a data parallel way across its arguments, as long as the outputs
are stitched together in the correct order. For grep, the split-
table_across_input keyword indicates that grep can be paral-
lelized across its standard input. As mentioned before, the -f
argument indicates an input_file for a tar -x invocation but an
output_file for a tar -c invocation. To resolve this, Posh allows
multiple annotations per command, per type of invocation, and
tries each until it finds an annotation that matches the current
command invocation.

We envision that developers can share annotations for popular
commands, so users do not necessarily need to write their own
annotations. These annotations are inspired by recent proposals
to annotate library function calls for automatic pipelining and
parallelization [6]. Please see our research paper [4] for a more
detailed overview of the Posh annotation interface.

Distributed Scheduling and Execution
This section briefly explains how Posh uses the annotations to
schedule and execute shell workflows, summarized in Figure 6.
The Posh parser turns each pipeline (each line of a shell work-
flow, potentially consisting of several commands combined by
pipes and redirects) into a directed acyclic graph (DAG). This
graph represents the input-output relationship between com-
mands, the standard I/O streams (stdin, stdout, and stderr), and
redirection targets. Posh then parses each individual command
and its arguments using the corresponding annotation and
completes the DAG by including additional input and output
dependencies of the pipeline. The parser finally runs a greedy
scheduling algorithm on the DAG and assigns an execution
location to each command in the pipeline. In order to do this, the
parser requires extra configuration information that specifies a
mapping between each mounted client directory and the address
for a machine running a proxy server for the corresponding
directory. Our research paper [4] contains more details on the
scheduling algorithm.

Getting Started with Posh
This section details the steps to running and using Posh.

0. Running the Posh servers
The administrator who controls the proxy server must run the
Posh server binary, which allows it to receive requests to offload
computation on behalf of a single remote file-system mount.
The proxy server just needs read and write access to this folder;
it need not run at the storage server itself. Invoking the server,
shown below, requires specifying the absolute path for the mount
being accessed and a temporary directory for writing the output
of intermediate computation.

admin@~$ $POSH_SRC/target/release/server --folder /mnt/logs \
 --tmpfile /tmp/posh

1. Posh client configuration
The client needs to provide a file that contains annotations for
any commands the client wants to accelerate. It must also have
a list of proxy servers associated with client file-system mounts.
The configuration file, shown below, maps IP addresses to the
corresponding mount, written as an absolute path.

mounts:
 "255.255.255.0": "/home/user/remote_mount1"
 "255.255.255.1": "/home/user/remote_mount2"

2. Running the client shell
Posh provides two client binaries: one that provides a shell prompt
and one that runs scripts by running each line in the script. To run
the binary that provides a shell prompt, the client can run:

deeptir@~$ $POSH_SRC/target/release/shell-client \
 --annotations_file <annotations_file> --mount_file \
 <config_file>
posh>>>$ <ENTER COMMANDS>

Figure 6: In Posh’s main workflow, a shell command is passed to the
parser, which uses the annotations to generate and schedule a DAG repre-
sentation of the command. The DAG includes which machine—A, B, or C
(client) here—to run each command on. The execution engine finally runs
the resulting DAG.

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 45

SYSTEMS
Posh: A Data-Aware Shell

3. Running applications
After running the shell, users can run unmodified shell work-
flows as normal. For example, the user could type in the fol-
lowing workflow from the distributed log analysis example
discussed previously:

posh>>> $ cat mount0/logs/*.csv mount1/logs/*.csv \
 mount2/logs/*.csv mount3/logs/*.csv mount4/logs/*.csv \
 | grep '128.151.150' > $LOCAL_FILE

Conclusion and Next Steps
We have described Posh, a framework that transparently distrib-
utes I/O-heavy shell computation that operates on remote data,
by pushing computation to run closer to the data. Posh uses
annotations, a model of shell programs, to automatically infer
what files an arbitrary command line will read and write to in
order to schedule computation across proxy servers. Posh and its
annotations provide a model of commands that enable rewir-
ing their dependencies to direct output over the network rather
than to a UNIX pipe while retaining local execution semantics.
While Posh currently uses this model to transparently schedule
and offload commands across proxy servers to push code closer
to the data, it could in the future provide more optimal schedul-
ing or even failure recovery. Consider programs that access files
from two different locations that cannot be parallelized, such as
comm. Instead of running them at the client, Posh could run them
on one of the servers but stream or transfer the necessary inputs
beforehand. To provide failure recovery semantics, Posh could
rewrite workflows to write to temporary locations and only write
to the final location when the entire operation is successful. For
more information on this project, including our research paper,
the code, and quick-start guides, please visit our GitHub page,
https://github.com/deeptir18/posh.

Acknowledgments
We thank our ATC shepherd, Mahadev Satyanarayanan, and the
anonymous ATC reviewers for their invaluable feedback. We are
grateful to Shoumik Palkar, Deepak Narayanan, Riad Wahby,
Keith Winstein, Liz Izhikevich, Akshay Narayan, and members
of the Stanford Future Data and SING Research groups for their
comments on various versions of this work. This research was
supported in part by affiliate members and other supporters of
the Stanford DAWN project—Ant Financial, Facebook, Google,
Infosys, NEC, and VMware, as well as the NSF under CAREER
grant CNS-1651570 and Graduate Research Fellowship grant
DGE-1656518. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science
Foundation.

References
[1] A. Barbalace, A. Iliopoulos, H. Rauchfuss, and G. Brasche,
“It’s Time to Think about an Operating System for Near Data
Processing Architectures” in Proceedings of the 16th Workshop
on Hot Topics in Operating Systems (HotOS ’17), pp. 56–61.

[2] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M.
McCauley, M. J. Franklin, S. Shenker, and I. Stoica, “Resil-
ient Distributed Datasets: A Fault-Tolerant Abstraction
for In-Memory Cluster Computing,” in Proceedings of the
9th USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’12), pp. 15–28.

[3] A. Acharya, M. Uysal, and J. Saltz, “Active Disks: Pro-
gramming Model, Algorithms, and Evaluation,” in Proceed-
ings of the 8th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS ’98), pp. 81–91.

[4] D. Raghavan, S. Fouladi, P. Levis, and M. Zaharia, “POSH:
A Data-Aware Shell,” in Proceedings of the 2020 USENIX
Annual Technical Conference (USENIX ATC ’20), pp. 617–631.

[5] S. Fouladi, F. Romero, D. Iter, Q. Li, S. Chatterjee, C.
Kozyrakis, M. Zaharia, and K. Winstein, “Outsourcing
Everyday Jobs to Thousands of Cloud Functions with gg,”
;login:, vol. 44, no. 3 (Fall 2019), pp. 5–11.

[6] S. Palkar and M. Zaharia, “Optimizing Data-Intensive
Computations in Existing Libraries with Split Annotations,”
in Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP ’19), pp. 291–305.

https://github.com/deeptir18/posh

46 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

SYSTEMS

Interview with Margo Seltzer
R I K F A R R O W

I first noticed Margo Seltzer because she had brought her baby to a USENIX
conference in the late ’90s. That was unusual, as I had seen few parents
with their children at conferences. Later on, I got to know Margo better

when she was on the USENIX Board and I was routinely attending board
meetings.

What prompted me to ask someone as busy as Margo for an interview was her keynote
address at the 2020 USENIX Annual Technical Conference entitled “The Fine Line between
Bold and Fringe Lunatic” [1]. I recommend watching Margo’s talk, but the gist is simply this:
you are likely to have a more interesting career if you are willing to take risks. That’s not what
Margo actually says, just my own interpretation. She wants researchers to broaden the sub-
ject areas they keep abreast of as well as to consider researching at the frontier of knowledge.

Rik Farrow: You became a faculty member at Harvard, working in CS. Was that at all unusual?

Margo Seltzer: I think what was unusual was that I turned down a position at MIT (arguably
ranked #1) for Harvard (pretty much unranked except in theory where we had Turing award
winners).

RF: I don’t understand why ranking is important. Could you explain what the ranking means
to someone taking an academic position for those of us who won’t have that experience?

MS: Ranking’s importance varies by who you ask.

There has been a lot of data analysis about the network formed by studying the migration of
PhD students to faculty positions. New faculty typically have degrees from institutions from
rankings higher than the ranking of the school in which they are teaching. So if you want to
teach at a top N school; you’d better get a degree from a top (N-1) school. And if you want your
students to get jobs at a top N school, then you want to be teaching at a top-1 school (or at least
one of the “big 5”).

Unfortunately, rankings are a fuzzy metric—I advise undergrads going to grad school to place
far more emphasis on the person/group with whom they will work than the ranking of the
school, but students don’t always listen. And students from undergraduate institutions without
a lot of advising don’t have much to go on other than the rankings: they don’t know the faculty.

So the ranking of the university at which you take a faculty position is directly correlated with
the quality of students you get and the likelihood of placing them at other top institutions.

Thus—turning down MIT (arguably #1) for Harvard (top N > 20 and probably closer to 30–40
then) was shocking to most. I was definitely called an idiot by some.

Harvard, in particular, had a dismal reputation for granting tenure. There had been a famous
case in 1983 where a person widely regarded as a superstar in his community was denied
tenure by Harvard. So when I got there (1993), Harvard had not tenured anyone in computer
science since 1981. My colleague, Stuart Shieber, broke that curse by getting tenure in 1996.
Then Mike Smith and I both got tenure in 2000. Since then, Harvard has done very well by
hiring strong people and making sure they get tenure.

Margo Seltzer is Canada 150
Research Chair in Computer
Systems and the Cheriton
Family Chair in Computer
Science at the University

of British Columbia. Dr. Seltzer was also a
co-founder and CTO of Sleepycat Software,
the makers of Berkeley DB. Her research
interests are in systems, construed broadly:
provenance systems, file systems, databases,
transaction processing systems, storage
and analysis of graph-structured data,
synthesizing system software, discrete
optimization, and applying technology to
problems in healthcare. She serves on the
Computer Science and Telecommunications
Board (CSTB) of the (US) National Academies
and the Advisory Council for the Canadian
COVID-19 contact tracing app. She is a past
President of the USENIX Association and
served as the USENIX representative to the
Computing Research Association Board of
Directors. She is a member of the National
Academy of Engineering, a Sloan Foundation
Fellow in Computer Science, an ACM Fellow,
and a Bunting Fellow. She is recognized as
an outstanding teacher and mentor, having
received the Phi Beta Kappa teaching award in
1996, the Abramson Teaching Award in 1999,
the Capers and Marion McDonald Award
for Excellence in Mentoring and Advising in
2010, and the CRA-E Undergraduate Research
Mentoring Award in 2017. Professor Seltzer
received an AB degree in applied mathematics
from Harvard/Radcliffe College and a PhD
in computer science from the University of
California, Berkeley.

Rik is the editor of ;login:.
rik@usenix.org

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 47

SYSTEMS
Interview with Margo Seltzer

RF: You begin your talk [1] by demonstrating how computer sci-
ence has been partitioned over the years, beginning with the split
between hardware and software, then software splitting into
operating systems and programming languages, and so on. You
encourage people to cross the many boundaries that exist today,
and I do sometimes see that happening, for example, with file
systems using key-value stores for metadata. Do you have other
examples?

MS: The crossover between file systems and databases has grown
a fair bit over the past 30 years, but it takes a lot of pushing:

Journaling (logging) was developed in the database commu-
nity to provide transaction support in the ’70s. It wasn’t fully
embraced by the file-system community until the ’90s or later.
At this point, it’s fairly standard.

Transactions are another concept with a history in databases—
we now see transactions in hardware (i.e., transactional mem-
ory) and every once in a while in file systems.

Program analysis (e.g., static analysis, symbolic execution) grew
out of the programming languages community, but it has been
and is being adopted in systems for bug finding.

The emergence of persistent memory (e.g., Intel Optane) brings
together work from systems (virtual memory and single level
store), databases (persistent objects), and file systems (persis-
tent files).

So these things happen, but a lot of the time the researchers
themselves don’t think to look at work of other communities and
will re-invent the wheel instead of borrowing it and making it
work better.

RF: I agree that not looking at what has been done in other com-
munities really slows down research and innovation in CS. But
isn’t there an issue with the amount of research, just in the small
niches that we have today, being too overwhelming for most
graduate students to cover?

MS: It is impossible to keep up with all the work being done in a
single field, so how can one hope to know what’s happening in
other fields? In machine learning alone, something like 100 new
papers show up on arXiv every day. So what is an overworked
graduate student to do?

It’s not necessary to read every paper published to know what’s
happening in a field. The key is really an openness to what’s
happening in other areas, a curiosity, and a willingness to do
the hard work of trying to understand work from a different
community when it’s appropriate. One of the first things I do
is encourage new graduate students to subscribe to The Morn-
ing Paper—https://blog.acolyer.org/. My understanding is that
Adrian Colyer, the author, is not really a computer scientist, but
every week he sits down and reads about three computer science

papers and writes up great blog posts about them. And he moves
from area to area, reading whatever is recent or what is particu-
larly interesting to him. I love his posts—I have a mailbox full of
ones I’ve not yet had time to read.

Just reading Adrian’s blog posts will give a student a broad intro-
duction to a lot of areas. But even that isn’t enough.

You have to be willing to talk to other people—not just the people
in your lab but people in other labs. Go to weekly grad student
social events and really try to understand what people are work-
ing on. Here is the secret: you are going to have to be willing to
ask naive questions. I call them stupid questions, but they aren’t
really stupid, they are mostly just the questions that someone
unfamiliar with an area will ask. And even more important (and
possibly scarier), you have to be willing to say, “Um, I didn’t really
understand that, can we go even more slowly?” I collaborate with
many folks who are way more mathematically sophisticated
than I am, and I tend to ask (a lot), “Could you explain that to
me in small words?” To be honest, it took me a long time to get
over the knee-jerk reaction of just nodding and pretending that I
understood what was going on when I was lost, but I learn a ton
more when I’m willing to take that risk. And who better to take
that risk with than your peers? And you never know, you might
find an area that intrigues you, a topic of mutual interest, or just
something new and interesting.

The key is not to be an expert in everything but to have a vague
sense of what people are working on in other fields, so that when
the opportunity arises, you can draw ideas from disparate areas
and know what the areas are and perhaps even with whom to con-
sult (that fellow student you were chatting with just the other day).

Super secret #2: being able to talk to people in other areas will
be your single greatest superpower on the interview trail, where
you’re expected to be able to have intelligent conversations with
people from different areas.

Fun story: In my interview that wasn’t really an interview (or
perhaps it was the non-interview that really was an interview)
at Harvard, I was taken to lunch by two theoreticians—one Tur-
ing Award winner and one future Turing Award winner. They
peppered me with questions to the point that I was still work-
ing on my salad when they got to dessert! But clearly something
worked—shortly after I arrived, one of them dropped by my office
to ask for my “expertise” on a topic…I was floored. What on earth
did I have to offer a world-renowned theoretician? Well, he had
some interesting ideas about applying his latest work to storage,
and well, he figured that perhaps there might be people who knew
more about storage than he did. It was a good lesson for me—no
one is above asking questions, and no one should limit them-
selves to a small box, even if they are the absolute best in that box!

48 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

SYSTEMS
Interview with Margo Seltzer

RF: Provenance is the first of the fringe lunatic ideas you cover in
your USENIX ATC ’20 keynote. The quest for provenance began
early in this century, largely as a way to be able to recreate data
based on its provenance: what had happened to that data since
it was created. I recall thinking at the time that this seemed like
a reasonable thing to do, but later wondered if having to maintain
orders of magnitude more data as provenance really made sense.
The story you told about provenance includes different groups
taking different approaches, along with attempts to unify some
elements. Were you surprised at where researchers had taken the
original idea after almost 15 years had passed?

MS: Yes and no.

Around 2014, I “gave up” on provenance—I felt that the com-
munity was focused so much on provenance collection that they
were not giving ample thought to motivating users to collect
provenance. I was frustrated and basically went in other direc-
tions—then, almost immediately, I got two provenance propos-
als funded with collaborators. In one, we focused on use from
the beginning—in the other, I forgot my own lesson for several
years and only rediscovered it a few years later, fortunately with
enough time to change course.

That said, all those are in the higher levels of the stack.

I am actually thrilled that the systems community has embraced
provenance and is thinking hard about how to use it: security,
information flow, reproducibility, etc. I always felt that system
level provenance was the glue that could hold lots of things
together, and these folks are making it work.

So am I surprised: 1) No—I don’t think any of the things people
are doing would have surprised me in 2006. 2) Yes—it seemed
like the field wasn’t going anywhere, but it still is!

RF: The other example in your keynote had to do with program
synthesis, although to me it sounded much more ambitious than
merely being able to generate a program. The DARPA BRASS
[Building Resource Adaptive Software Systems] program
was really about extracting intent from systems so that when
circumstances changed, the system could adapt to the change
and still succeed in accomplishing the intent of the system. You
were among the “fringe lunatics” (your words) who took that to
mean making the operating system adapt to new hardware by
synthesizing operating systems from machine descriptions. That
sounds like a ridiculously tall feat to accomplish, but a very good
example for your theme. Could you tell us how that worked out?

MS: We didn’t synthesize a complete system, but we’ve synthesized
several parts of the Barrelfish operating system [2] and nearly an
entire port of our OS/161 educational operating system [3]—and
we’ve done this for about four different processors!

References
[1] M. Seltzer, “The Fine Line between Bold and Fringe
 Lunatic,” 2020 USENIX Annual Technical Conference
 (USENIX ATC ’20): https://www.usenix.org/conference
/atc20/presentation/keynote-seltzer.

[2] The Barrelfish Operating System: http://www.barrelfish
.org/index.html.

[3] D. A. Holland, A. T. Lim, M. I. Seltzer, “A New Instructional
Operating System,” in Proceedings of the 2002 SIGCSE Con-
ference (February 2002), pp. 111–115: https://www.seltzer
.com/assets/publications/A-New-Instructional-Operating
-System.pdf.

https://www.usenix.org/conference/atc20/presentation/keynote-seltzer
https://www.usenix.org/conference/atc20/presentation/keynote-seltzer
http://www.barrelfish.org/index.html
http://www.barrelfish.org/index.html
https://www.seltzer

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 49

SRESRE Best Practices for Capacity Management
L U I S Q U E S A D A T O R R E S A N D D O U G C O L I S H

Luis Quesada Torres is a
Site Reliability Engineer and
Manager at Google, where he is
responsible for keeping Google
Cloud’s Artificial Intelligence

products running reliably and efficiently. In
his spare time, Luis jumps from hobby to
hobby: he composes and produces music
across multiple genres, he skateboards, and
he speaks Spanish, English, German, Swiss
German, and Esperanto. Soon Japanese as
well. luis@google.com

Doug Colish is a Technical
Writer at Google in NYC
supporting Site Reliability
Engineering (SRE) teams. He
contributed to several chapters

of Google’s “Building Secure and Reliable
Systems” book. Doug has over three decades
of system engineering experience specializing
in UNIX and security. His hobbies include
detailing and modifying cars, attending
concerts, and watching and discussing great
movies. dcolish@google.com

A s an SRE, you’re responsible for determining the initial resource
requirements of your service and ensuring your service behaves
reasonably even in the face of unexpected demand. Capacity manage-

ment is the process of ensuring you have the appropriate amount of resources
for your service to be scalable, efficient, and reliable. User-facing and com-
pany internal services must accommodate both expected and unexpected
growth. We define utilization as the percentage of a resource that is being
used. It’s difficult to determine initial resource utilization and predict future
needs. We present ways to estimate utilization and identify blind spots, and
we discuss the benefits of building in redundancy to avoid failures. You’ll
use this information to design your architecture such that increasing the
resource allocation for each component of the service effectively increases
the capacity of the entire service linearly.

Principles of Capacity Management
A service, in the context of this article, is defined as the set of all of the binaries (service stack)
that provides a set of functions.

Successful capacity management entails allocating resources from two complex points of
view: resource provisioning, which provides the initial capacity to run the service now, and
capacity planning, which safeguards the reliability of the service into the future.

At its core, capacity management must follow three basic principles in order to keep a service
scalable, usable, and manageable:

 3 Services must use their resources efficiently. Large services that require a considerable
amount of resources are expensive to deploy and maintain.
 3 Services must run reliably. Limiting resource capacity to improve service efficiency can
put the service at risk of malfunctioning and suffering user-facing outages. There is a tradeoff
between service efficiency and reliability.
 3 Service growth must be anticipated. Adding resources to a service can take a long time
and has real world limitations around deployment. This may involve buying and deploying
new equipment or building new datacenters. It may also require increasing capacity for other
software systems and infrastructure that are dependencies of the service.

Complexities of Capacity Management
A large service is a complex living organism whose behavior is unexpected at times. You need
to consider several areas when making engineering decisions that could potentially alter the
service’s scope:

Service performance. Understand how different components of the service perform
under load.

Service failure modes. Consider the known failure modes and how the service behaves
when subjected to them. Also, consider how the service might behave when subjected to
unknown failure modes. Be prepared by generating a list of possible bottlenecks and service
dependencies you may encounter.

50 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

SRE
SRE Best Practices for Capacity Management

Demand. Determine the expected user count and traffic, where
the user base is located, and the usage patterns.

Organic growth. Estimate how demand may grow over time.

Inorganic growth. Keep in mind the long-term resource impact
of adding new features or of the service becoming more success-
ful than expected.

Scaling. Understand how the service scales when increasing
resource allocations.

Market analysis. Estimate how market changes affect your
ability to acquire additional resources. Research new technolo-
gies that can improve the performance, reliability, or efficiency of
the service and the cost of implementing them. Investigate how
quickly you can adopt new technologies, such as replacing HDDs
with SSDs.

The goal of capacity management is controlling uncertainty. In
the midst of the unknown, the service must be available now and
continue to run in the future. A challenging but rewarding and
delicate balance of tradeoffs is in play: efficiency vs. reliability,
accuracy vs. complexity, and effort vs. benefit.

Use data to drive capacity decisions. You’ll still make unavoidable
mistakes, and you’ll have fires to put out, often in creative ways.
But the end result is a reliable business-critical service.

Resource provisioning addresses the tactical question, “How do
I keep the service running right now?” while capacity planning
addresses the strategic question, “How do I keep the service run-
ning for the foreseeable future?”

The following sections discuss these topics in detail.

Resource Provisioning
Our discussions focus on a serving system, that is, a service that
responds to user requests by looking up some data. However, you
can apply these principles equally to a data storage service, data
transformation service, and most other things you can do with a
computer.

Resource provisioning involves figuring out the target utilization
of resources a service needs and allocating those resources. Target
utilization is defined as the highest possible utilization for a spe-
cific resource class that allows the service to function reliably. A
resource class refers to a specific type of computing asset. CPU,
RAM, storage, etc. are resource classes.

To provision resources for your service, use demand signals as
inputs and create the production layout with concrete resource
allocations as output, as shown in Figure 1. Services often use
several resource classes.

The Impact of Resource Shortages
A shortage of resources can make the service fail differently,
depending on the resource class.

When resources become a bottleneck in the service’s critical
path, users experience increased latency. In a worst-case sce-
nario, the bottleneck causes requests to backlog, resulting in
ever-increasing latency and, eventually, the timeout of queued
requests. Without a mitigation plan in place, the service fails to
process requests and suffers an outage. The outage continues
until the incoming traffic drops off, allowing the service to catch
up, or until the service is restarted.

Resources that are often in the critical path include:
 3 Processing power
 3 Network
 3 Storage throughput

When resources become a bottleneck in the non-critical path, the
service suffers delays in some of its non-time critical functions,
such as maintenance or asynchronous processing. If these tasks
are delayed long enough, they could impact service performance,
features, data integrity, and even cause an outage in extreme
cases.

When a service runs out of storage, writes fail. Even certain
reads may fail if they are dependent on writes: for example, if the
service or storage solution stores Paxos state to do consistent
reads, or if the storage solution keeps track of all accessed data
and the time it was accessed.

When other resources such as memory or network sockets are
low, a service may crash, restart, or hang. A service with low
resources may start to thrash from garbage-collection or misbe-
have in other ways. These failures decrease the service’s capacity
and can trigger cascading failure scenarios requiring human
interaction to resolve.

For mitigation strategies, see the Decrease the Impact of Outages
section below.

Figure 1: Demand signals and resource allocations of a resource provision-
ing solution

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 51

SRE
SRE Best Practices for Capacity Management

Estimating Utilization
Because of their different nature, resource usage and target utili-
zation are different for every service and for each resource class.
In order to estimate the target utilization for a specific service,
each of the following aspects need to be considered.

Peak Usage
A service’s peak usage is simply the highest usage rate over a
given time period and depends on the nature of the service and
the user base. The early hours of a business-related service may
drive the weekday peaks. Social-related services peak late in the
afternoon, at night, during weekends, or coinciding with social
events such as concerts, sporting events, etc. When an unex-
pected event happens, usage can drop or soar. A global service’s
user base is spread across different countries and time zones,
forming a more complex daily traffic pattern.

Assuming non-constant load, resource utilization shouldn’t
surpass 100% of the service’s allocated resources during peak
traffic. By not using all of its resources, the service has sufficient
capacity to serve the peak and is not overprovisioned in any
wasteful way.

Maximum Peak Utilization
Even at peak, it’s a bad idea to run the service at 100% utilization.
Some software, languages, or platforms will misbehave or garbage-
collection thrash before CPU use even reaches 100%. A service
will crash with an out of memory (OOM) error if a component
reaches 100% memory utilization.

Fine-tuning your monitoring sufficiently to capture the precise
resource utilization in small enough time frames (microseconds
or even seconds) is tedious. Thus, it’s difficult to determine the
resource usage peak for low-latency applications.

Redundancy
Issues with rollouts, hardware, software, or even planned main-
tenance can cause the components of a service to fail or restart.
This can result in a failure as small as a single binary instance
crashing or as large as the whole service going offline.

Redundancy is a system design principle that includes duplicated
components that are active only when they replace other compo-
nents that failed. The degree of redundancy is denoted by N+x,
where N is the total number of active components, and x is the
number of backup components. Thus, N+3 indicates that three
system components can fail because there are three duplicated
components to replace them. Meanwhile, the service remains
completely functional, regardless of the total number of compo-
nents (N).

Redundancy can be applied within regions or across regions. A
region is an independent failure domain located in a physical site
different from other regions so that network issues or natural
disasters do not impact more than one region at the same time.

Redundancy within Regions

Redundancy within a region is fairly trivial to achieve.

Within a region, you want to provide protection against failed
binaries or physical machines. Typically, you can simply add
extra instances of the service binaries running per region, with a
load-balancing solution to redirect traffic if binaries or machines
are down. The required extent of redundancy is tied to the infra-
structure’s service level agreement (SLA). Specifically, the SLA
accounts for the total number of machines that can be in a failed
state simultaneously and the speed in which new instances of
binaries can be restarted on new machines.

Understand that redundancy within the region won’t protect
your service at all from failures that take out the whole region
(power, network, natural disaster, etc.).

Redundancy acRoss Regions

Redundancy across regions is far more complex.

Across regions, you’ll need protection from total region outages.
By deploying replicas, or full copies of the service stack in several
regions, you can implement redundancy across regions to accom-
modate your service’s load at peak. Note, each replica must have
enough capacity to serve all of the expected load when any num-
ber of replicas are down based on your declared redundancy. As
stated above, regardless of the number of replicas (N), the degree
of regional redundancy of the service is defined as follows:

 3 N+0: when the service is up and running, but cannot tolerate
any region going down
 3 N+1: when the service can withstand a single region going down
 3 N+2: when it can still serve with two regions down
 3 etc.

While some of this redundancy involves capacity, it’s also about
the service architecture itself. For example, consistent storage
services often require that a majority of replicas are up and run-
ning to ensure that writes aren’t rolled back.

Provisioning a service for N+2 has a positive effect on reliability:
maintenance can be planned for an entire region at once, but
lowers redundancy to N+1 during the maintenance. The service
can still tolerate an unplanned incident in another region. This
lowers the redundancy to N+0, but does not cause an outage. Note
that failing over to another region may have effects on visible
latency.

With N+0 redundancy and no tolerance for further failure, your
priority is to mitigate or resolve the unplanned incident as fast as
possible. One option is to complete or revert the planned mainte-
nance work to bring the service back to N+1. Otherwise, any other
region suffering an incident could cause a user-facing outage.

52 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

SRE
SRE Best Practices for Capacity Management

the cost of Redundancy

The more regions a service operates in, the lower the cost of run-
ning any level of redundancy. Consider the service described in
Figure 2. It needs to run with N+2 redundancy. In the first setup,
it is running three replicas (N=3), and in the second setup, it is
running five (N=5). Both configurations have two spare replicas
(+2) and thus can withstand two replicas failing.

Next, examine the five-replica setup. Its replicas are smaller in
size, and even when two replicas fail and both spare replicas are
in use, there are still three active replicas to share the load. This
results in the five-replica N+2 setup costing 56.6% of the three-
replica service using the same degree of redundancy. See the
calculations provided in Figure 2.

homogeneous and heteRogeneous seRvices

It’s easier to implement redundancy for services with homoge-
neously sized replicas than those services with heterogeneously
sized replicas.

Your service must be provisioned to handle failures in the largest
region. If regions have different capacities (i.e., heterogeneous),
the capacities needed to withstand the unavailability of the other
largest regions are different in each region. The result is that
your smaller regions require more resources, and your overall
required resources to serve the same load are higher.

Replicated and distRibuted tRaffic

Provisioning for redundancy also depends on the characteristics
of the service’s traffic.

Stateless services, such as web servers that handle user requests,
receive traffic that is distributed among replicas. Requests that
read from storage services can also be distributed across replicas

in different regions. Provisioning these for N+1 or N+2 is trivial
and follows the logic from the previous example.

Services that handle requests replicated across regions, such as
writes, behave differently. Each write to an entity needs to be
eventually written to every single replica to keep your service’s
data consistent across replicas.

When a replica becomes unavailable, replicated write requests
do not cause additional load to the replicas that remain up.
However, there is a cost incurred when the unavailable replica
comes back online. This replica needs to catch up with outstand-
ing writes that were missed during its downtime. This operation
increases its load. The replicas that remain running provide the
data needed to sync the recovering replica, increasing the load on
all replicas during recovery. Ideally, this is capped to avoid hurt-
ing low-latency traffic across the entire set of replicas.

Each service and each component can receive a different pro-
portion of replicated and distributed traffic, which need to be
factored in when resource provisioning.

Latency-Insensitive Processes
A service typically has latency-insensitive processes such
as batch jobs, asynchronous requests, maintenance, and
experiments.

However, these processes put additional strain on the service
while it handles the production load, which is latency-sensitive.
The service thus requires additional resources to accommodate a
higher peak, increasing its cost.

Figure 2: Example comparison of the cost of resource provisioning a service with three and five replicas

Expected load: 100 requests per second (rps)

Running N+2 on 3 replicas
2 replicas can go down (N+2)
3 - 2 = 1 replicas stay up to serve 100 rps
Each replica is provisioned to serve 100 rps/ 1 replica = 100 rps/replica
Total capacity provisioned for is 100 rps/replica x 3 replicas = 300 rps
At level flight, the maximum utilization for N+2 is 100 rps / 300 rps = 33%

Running N+2 on 5 replicas
2 replicas can go down (N+2)
5 - 2 = 3 replicas stay up to serve 100 rps
Each replica is provisioned to serve 100 rps / 3 replicas = 34 rps/replica
Total capacity provisioned for is 34 rps/replica x 5 replicas = 170 rps
At level flight, the maximum utilization for N+2 is 100 rps / 170 rps = 59%

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 53

SRE
SRE Best Practices for Capacity Management

You can minimize the extra cost of latency-insensitive requests
by assigning them lower priorities or by scheduling them during
low-load periods in order to decrease the overall peak. Note,
both of these solutions need to be properly tested and carefully
deployed to prevent service interruptions.

Additional Resources for the Unknown
The last aspect to consider is the unknown factor. There are many
good reasons to throw in additional resources when provisioning
a service: for example, the performance regression of an under-
lying library supported by another team or when implementing a
team-external requirement such as encrypting all RPCs.

Spare capacity can keep the service performing as expected, in
regards to latency and errors, if anything goes wrong. However,
keep in mind that this decision can be expensive, so make sure
that the tradeoff in reliability, predictability, and scaling is worth
the cost.

Capacity Planning
While resource provisioning refers to the process of determining
the correct amount of resources to keep your service running
right now, capacity planning entails forecasting demand to guar-
antee resource supply in the future.

Overview of Capacity Planning
Like resource provisioning, capacity planning is an attempt to
determine the amount of each computing asset (resource class)
you need to sustain the service. However, it involves making
those determinations at multiple points in time: for example,
your resource needs in three months, six months, or a year.

For an existing service, capacity planning uses historic demand
to forecast growth to build on top of resource provisioning for
your service’s maximum peak utilization, redundancy require-
ments, latency-insensitive processes, and the unknown factor.
Generally, you’ll want to add to this forecast any planned new
consumers of your resources, including new services, marketing
campaigns, new features, etc.

You’ll need different amounts of each individual resource class
for each component in your service. Take RAM, for example.
A web server may need a lot of RAM, whereas a proxy server
may need very little. To determine the various values of a single
resource when you are planning for future capacity, take into
account the following:

 3 The number of different components (database, proxy, applica-
tion) in your service
 3 The number of instances of each component (1 database,
2 proxy, 2 application)
 3 The regions your service runs in (i.e., across-region N+1 or N+2)
 3 The number of data points you need for your forecast

While this is a simple example of a complex formula, a single
resource class like RAM may require you to think in terms of the
following:

(# of different components) × (# of instances of each compo-
nent) × (# of regions) × (# of datapoints) × (other contributing
factors)

As you can see, when you consider all resource classes for all
server types in all regions and add in redundancy, the number of
capacity values that you must determine grows exponentially.

Forecasting Resources
Capacity planning is an extremely complex process as there
are myriad factors at play, and each can change independently.
Expanding on the high level overview above, consider the follow-
ing when forecasting:

Resource Classes by Component
In addition to determining the total number of components, you
must also consider the various resource classes that each one
utilizes: RAM, CPU, storage, network, etc. One component may
use one set of resource classes, and others may have a very dif-
ferent set. If your service consists of many components, the set of
resource classes that you must track quickly increases.

Multiple Regions
If you are required to run in many regions around the world, you
can imagine how forecasting a single resource class such as CPU
for various machines (web, database server, application, proxy,
etc.) is made even more difficult. Add in all of the other resources
classes for all machines, redundancy across all regions over a
given period of time (six months or a year from now) to start your
planning.

Service Demand
Demand depends on the success and adoption rate of the new
service and is only known after the service is launched. You
must update forecasts over time and correct long-term predic-
tions. Understand you are preparing for a sudden unplanned
load increase that can cause an outage if ignored.

Other unexpected events like natural disasters, network
interrupts, or power outages can drastically alter your traffic
patterns. Even planned situations such as social events or the
beginning or end of holidays can affect your service in unex-
pected ways. It’s challenging to extrapolate the changing impact
of such events year to year as new features are launched or the
user base varies.

Changes in user distribution in different time zones also have
service implications. Traffic may appear more or less spread out
across the day, unexpectedly raising and lowering peak demand.

54 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

SRE
SRE Best Practices for Capacity Management

Growth
Growth depends on the success of your service. It may take
some time (and marketing campaigns) for users to learn about
your service and take interest, and the interest may grow slowly
or sharply over time. Other services on the Internet can have a
dependency on yours, and their success or failure can directly
affect your service. A successful external service can increase
traffic to you, and vice versa.

There may be social, economic, political, or other factors that
may increase or decrease your user traffic. You have to determine
your growth rate and take this into account for your capacity
planning sessions.

Forecasting Example
To illustrate the multitude of potential separate resource class
values you, as the service owner, must try to predict correctly,
let’s use a very simple example:

Resource Classes for a Two-Component Service
Suppose you have a small service such as a social media applica-
tion. It consists of two machines, a web server and a database.
The web server uses CPU and RAM, and the database uses CPU,
RAM, HDD storage, HDD throughput, and SSD storage. This is a
total of six unique resource class values to define. Note, this is far
short of a complete set of values in a real-world application.

By having three replicas, you now have 18 values to define. If you
are forecasting quarterly for 12 months, that number jumps to 72
(four quarters per year × 18).

Trends That Impact Your Service
You’ve learned that your social media service is affected by
seasonal trends. You have an increase in traffic at the beginning
of the holiday season (Nov–Dec), another during spring break,
and one more at the start of summer. Your forecasting cannot
be just a linear increase in resources, you must account for the
spikes during peak times of the year.

You may also experience similar trends with peaks during
the month for batch-processing tasks such as data cleanup or
database compaction. The load may be different each month, or
even each week, further complicating your ability to estimate
resource utilization accurately.

Best Practices
We present several best practices for capacity management to
help you anticipate common problems and pitfalls.

Load Testing
Run a small replica of the service at target utilization and above,
and exercise failover, cache failures, rollouts, etc. Assess how
the service reacts to and recovers from overload, and empirically

validate that the resource allocation is adequate to serve a
defined load. Be careful when extrapolating estimates from your
data. If a binary instance allocated with one CPU can serve 100
requests per second, it’s generally OK to assume that two binary
instances, each with one CPU, can serve 200 requests per second
in total. It is not OK to assume that a binary instance with two
CPUs allocated can serve 200 requests per second. There may be
bottlenecks other than processing power.

Holistically Evaluate the Capacity
While you should add extra capacity for the unknown, avoid
stacking too many resources and inadvertently overprovision-
ing the service. However, provide enough spare resources so the
service can withstand issues. This can buy some extra time to
secure resources in case the service is more successful than was
expected and was provisioned for.

Decrease the Impact of Outages
It’s possible to prepare the service so that outages have a lower
impact when it runs out of resources. Suggested preventative
measures include:

 3 Graceful degradation. The service disables some non-critical
features to relieve resource usage when it’s overwhelmed.
 3 Denial-of-Service (DoS) attack protection. Provided in case
the increased traffic comes from an ill-intentioned party.
 3 Effective timeouts. Requests eventually time out, and the
service drops the requests without wasting further resources on
them.
 3 Load shedding. The service quickly rejects requests when it’s
overwhelmed, allowing a routing layer above to retry the re-
quests or make them fail fast. This avoids the issues of a service
falling behind and wasting efforts on requests that are going to
time out anyway.

Quota Management and Throttling
Deploying a quota system helps limit the throughput between
your service and the back end, providing isolation from other ser-
vices using that same back end. Whenever a service sends more
requests than expected and reaches the quota limit, the back end
throttles the services rather than overloading itself and impact-
ing other services using that back end.

Monitoring
The relevant metrics gathered from monitoring your service
provide data to guide resource provisioning and capacity plan-
ning decisions. Using our sample service above as a model, the
following are very useful:

Load metrics
 3 Incoming requests per second
 3 Latency-insensitive load
 3 Number of active users
 3 Number of total users

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 55

SRE
SRE Best Practices for Capacity Management

Resource metrics
 3 Resource allocations
 3 Actual resource usage
 3 Quota usage
 3 How many requests are throttled

Performance metrics
 3 Latency
 3 Errors

High-level health metrics (that can help filter out other tainted
metrics data)
 3 When the service was impacted by an outage
 3 When the service was undergoing maintenance

Alerting
Use alerts for resource provisioning and capacity planning
to prevent outages. Some examples of useful alerts are those
that trigger when the service is not at the intended redundancy
level and is therefore underprovisioned, alerts that indicate the
service lacks future resources according to forecasts, current
performance issues, etc.

Resource Pooling
Pooling is the grouping of resources so that several services
share them rather than providing separate allocations per ser-
vice. Pooling is often used to decrease planning complexity and
to reduce resource fragmentation, hence, improving the effi-
ciency of a service. When you implement this strategy, planning
for large services is still detailed and precise. However, small
services use a pool of resources that is provisioned for as a single
entity, approximately and conservatively. This decreases the
effort on capacity planning at the expense of isolation.

General SRE Best Practices
Follow the basic SRE principles that you would for any service.
For example, store the capacity state as a configuration in a ver-
sion control system and require peer reviews for any changes.
Automate enforcement, roll out all changes gradually, constantly
monitor your service, and be ready to roll back if needed.

In the event of a failure or other issue, exercise blameless post-
mortems to honestly learn from the mistakes, and commit to
improving the system to avoid repeating them.

Evaluating a Service for Capacity
When evaluating capacity for a new or existing service, we
recommend determining its resource requirements by following
these steps:

1. Estimate the resources needed to serve the expected load. Use
the template in Table 1 and fill it in with the expected service
demand for the different resource classes.

2. Calculate and factor in the target utilization of the different
components of the service. You may need to perform load test-
ing to assess:

 3 Peak usage
 3 Maximum peak utilization
 3 Redundancy
 3 Latency-insensitive processes
 3 Spare resources for the unknowns

3. Consider aspects such as:
 3 Priority
 3 Region
 3 Service components
 3 Specific points in time and time into the future (monthly,
quarterly, for six months, a year, etc.)

4. Perform forecasting, considering whether you need to plan for
capacity per:

 3 Priority
 3 Region
 3 Service components
 3 Number of points in time per year

Hardware Specs

Processors CPU type and count (cores)

Graphics Processing Units GPU type and count

Storage HDD (hard drives) and SSD
(solid state disk):

• Amount of storage (TB)
• Bandwidth
• IOPS

Network Intra datacenter, inter datacenter,
ISP access:

• Latencies
• Bandwidth

Back Ends Services and capacity needed

Other AI accelerators, other special
hardware

Table 1: Resource assessment template

56 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

SRE
SRE Best Practices for Capacity Management

5. Continue to learn about capacity management:
 3 Watch the video “Complexities of Capacity Management
for Distributed Services” for an extended tech talk on the
topic [1].
 3 Read the ;login: article “Capacity Planning” [2].
 3 Review the “Software Engineering in SRE,” “Managing
Critical State,” and “Reliable Product Launches at Scale”
chapters of Google’s Site Reliability Engineering [3].

Conclusion
In this article we discussed the components and complexities
of capacity management. We separated the topic into two parts:
resource provisioning, which addresses the tactical question,
“How do I keep the service running right now?” and capacity
planning, which addresses the strategic question, “How do I keep
the service running for the foreseeable future?” Answering these
questions is not a trivial task, and each requires reviewing differ-
ent aspects of your service.

When provisioning resources, examine the various demand sig-
nals (input) and their effect on the resource allocations (output).
It helps to understand the expected peak demands the service
may face and the amount of redundancy you’re required to build
into it. Have you considered the impact of resource shortages and
vendor supply?

Capacity planning forces you to attempt to predict what the ser-
vice and, more importantly, its load look like in the ever-changing
future. You have to fully understand your service to do this—for
example, you need to identify the peak cycles and when they
occur, determine the number of locations you must run in and the
varying capabilities of each, and anticipate the natural, social,
and even legal events that might impact your service. When it’s
time to add more capacity, do you have the approvals or funds to
accommodate the growth?

While the many best practices we presented are all important,
following solid SRE tenets helps simplify capacity management:
perform proper load testing, implement extensive monitoring and
alerting, use source control systems, understand the strengths
and weaknesses of your service, develop a capacity plan, and be
prepared to anticipate growth and scale when needed.

References
[1] L. Quesada Torres, “Complexities of Capacity Management
for Distributed Services,” Google Tech Talk: https://www
.youtube.com/watch?v=pOo0oKNM9I8.

[2] D. Hixson and K. Guliani, “Capacity Planning,” ;login:,
vol. 40, no. 1 (February 2015): https://www.usenix.org/system
/files/login/articles/login_feb15_07_hixson.pdf.

[3] B. Beyer, C. Jones, N. R. Murphy, and J. Petoff, eds., Site
Reliability Engineering, Chapters 18, 23, and 27: https://
landing.google.com/sre/sre-book/toc/index.html.

Acknowledgments
The authors are grateful for the suggestions from JC van Winkel,
Michal Kottman, Grant Bachman, Todd Underwood, Betsy Beyer,
and Salim Virji.

https://www.youtube.com/watch?v=pOo0oKNM9I8
https://www.youtube.com/watch?v=pOo0oKNM9I8
https://www.usenix.org/system/files/login/articles/login_feb15_07_hixson.pdf
https://www.usenix.org/system/files/login/articles/login_feb15_07_hixson.pdf
https://landing.google.com
https://landing.google.com

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 57

SRE

The Case for CS Knowledge in SRE
A D A M M C K A I G

During my career as an SRE, I’ve become convinced that knowledge of
traditional computer science topics like data structures and algo-
rithms are, while not essential to hacking together something that

kind of works, an essential part of building reliable and scalable systems.
This wasn’t always my position on the matter; as a self-taught programmer,
I got a long way without a clue about the fundamentals, believing that my
own empirical approach was superior and that the world would catch up soon
enough. In this article, I’ll share a few of the more interesting problems that
changed my attitude, how they were diagnosed, and how they were solved
with better data structures and/or algorithms.

Most systems start life as an idea and are hacked together at first. The priority is to get
something into production as soon as possible and iterate on it without worrying about
what comes next. There’s nothing wrong with that, but it doesn’t work for long, and the next
phase—productionization, that is, scalability, reliability, and so on—necessitates an almost
totally different approach and skill set. It’s also the most interesting part.

The main difference between the pre- and post-productionization phase is that the imple-
mentation details don’t matter during the former, so long as it works. Linear, log-linear, even
quadratic algorithms are blazing fast on modern hardware while n is small, and RAM is as
good as unlimited. But however much one is willing to spend on cloud bills, once n starts get-
ting large in any dimension, consistent high performance can only be achieved by carefully
choosing and implementing the appropriate data structures and algorithms to avoid having to
compromise on features. Ideally, one would be able to predict the growth of every dimension
of n and design accordingly in advance, but in practice it’s usually done reactively, when some
subsystem is approaching its performance limits.

It’s highly instructive to implement every detail oneself, but rarely is it necessary in practice;
even the most esoteric data structures and algorithms are readily available as packages for
most languages. Much more important is to develop an intuition for their performance char-
acteristics and to be able to spot those same characteristics in production workloads.

Practical Examples
These are real examples of things going wrong at scale. I’ve redacted sensitive details and
condensed them for brevity, but these are issues encountered in production at large compa-
nies you’ve probably heard of.

Fixing an Assumption
My team was supporting an old C++ service, part of a messaging system, which was having
trouble sustaining its required write throughput. The service was consuming create/update/
delete events from a message bus, and providing an API to view the most recent messages
sent or received by a given user. It had worked fine for a long time, but it couldn’t keep up as
the rate of events increased, and users were complaining that the API was serving stale data

Adam McKaig is a staff Site
Reliability Engineer at Datadog
in New York, where he looks
after a metrics system.
Previously he has built things at

Google, the New York Times, Bloomberg, and
UNICEF. His favorite language is C++, which
probably says it all. adam.mckaig@gmail.com

58 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

SRE
The Case for CS Knowledge in SRE

during peak hours. This service was running on a single big
machine, so the most obvious solution was to shard the service
and run it on many machines. But that would take time, and we
wanted to improve the situation sooner.

We improved things a bit by providing a lot more CPU and looked
into the implementation. What we found was unremarkable: a big
std::map (an ordered tree) holding the latest messages, keyed by
the user ID and timestamp. Writes would either insert a record,
or fetch a record, patch it, and replace it. Reads would find all
messages with a matching user ID and return them, which was
efficient because they were adjacent and already sorted. Old
records were garbage collected in a background thread by peri-
odically walking the entire tree.

Ordered trees are a great default for mixed workloads, that is,
workloads which have a similar proportion of reads and writes.
But when we looked at the data from production, we saw that
the rate of reads was actually remarkably low compared to the
writes, which accounted for the vast majority of work. These
writes weren’t slow, but they weren’t fast enough to keep up
with the desired volume. We also saw that our read latency was
consistently far below the threshold at which we would be paged
about it. So we investigated how we might speed up writes, know-
ing that we were able and willing to sacrifice some read perfor-
mance to do so.

It was simple for us to swap out the map with an LSM (log-
structured merge) tree, a data structure which resembles an
ordered tree but offers far more scalable inserts at the cost of
slower and less predictable reads, using an existing open source
package. We dark-launched this change into production and
observed, as we’d hoped, a tremendous improvement in through-
put with only a modest regression in read latency. I don’t recall
anyone ever complaining about the latter.

This incident taught me that although most systems rightly
expect mixed workloads and so optimize for that, that isn’t
always the reality in production, and making concessions on one
side can yield big improvements on the other.

Consider Non-Requirements
Here’s a totally different example. Much later, at a different
company, I was supporting a distributed key-value datastore
(of sorts) written in Go. The overall workload was fairly mixed:
lots of writes and lots of reads. The system stored highly denor-
malized event data and was primarily used to answer arbitrary
questions like, “What are the most-viewed widgets by users who
looked at this widget this week?” in real-ish time.

One subsystem was causing trouble: the directory service, which
basically kept track of which data were on which storage node,
and how CPU-loaded each was, so that the query nodes could fan
out incoming reads to the right places. This subsystem was read-

heavy, and the load varied throughout the day as end users came
and went. The rate of writes was more consistent, since it was
simply proportional to the number of storage nodes, which peri-
odically announced the ranges of keys they had and their overall
CPU load. Both would change regularly as data was rebalanced
by a separate subsystem.

The problem we were seeing here was that many directory reads
were too slow during peak hours. Up to about the 90th percentile
was fine, but above that, performance varied wildly. We were able
to improve things by horizontally scaling (roughly doubling) the
number of directory nodes, thereby reducing the rate of reads
that each had to handle, but this caused two more problems: uti-
lization of these nodes was now low enough that well-intentioned
cost-saving alerts were going off, which needed silencing; and
this increased load on the storage nodes, because they needed to
send twice as many announcements! Clearly this was a tempo-
rary mitigation, so we looked into improving the read throughput.

The implementation was (roughly) an augmented interval tree,
storing ranges of keys mapped back to the storage node they
could be found on, and a map of nodes to their last-reported
CPU load. Writes would update both of these: key ranges would
be inserted into the tree, and the load would be updated. Reads
would read from both: the tree would be queried for nodes con-
taining matching keys or key ranges (of which there could be
many), and the load of each node looked up from the map.

The bottleneck here was of course the tree, because there wasn’t
much else to the system. Profiling indicated that reads were too
often being blocked by writes, which had to lock the tree while
they were mutating it.

Given the requirements, and without fundamentally changing
how the system worked, we couldn’t think of an obviously better
implementation. We started designing a sharded directory ser-
vice, making it a nested distributed system of sorts, but so many
tricky edge-cases came up that we shelved it until it was really
necessary—which in the end it never was. The solution presented
itself when we went back and reconsidered the requirements.

We needed to maintain an up-to-date map of keys to nodes,
which was small enough to fit on one node, fast to query, and fast
enough to write that it didn’t interfere with the reads. But it didn’t
need to be completely up-to-date: this was an OLAP system,
not OLTP, and the map was always a bit stale because storage
nodes only reported periodically. Could we put a cache in front
of the tree, to speed up some reads in exchange for making the
data slightly more stale? We couldn’t think of a cache key which
would actually be effective, since the keyspace was so large, but
someone suggested: how about we cache the whole tree? We have
plenty of spare RAM.

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 59

SRE
The Case for CS Knowledge in SRE

The resulting implementation was simple and effective: rather
than one tree, we stored three. One was used to serve reads; one
was updated as writes arrived. To update the read tree, the write
tree was locked and copied to a third location, and only then were
incoming reads briefly blocked as a pointer was swapped to point
to the new read tree. This frequency was tunable, and in practice
even doing so once a second was enough to virtually eliminate
the variance in read throughput.

I think about this incident often when considering requirements
and am reminded to carefully consider non-requirements, too.
Here, freshness and low memory usage were non- requirements.
The older implementation was simple but much slower than
necessary because it fulfilled requirements which were
unnecessary.

Undoing Lock Contention
Here’s another example. More recently, I was supporting a disk-
based time-series database, written in C++. This system had a
mixed read/write workload, which is typical for time-series sys-
tems. The writes were small, usually containing a single point for
a lot of metrics, and there were a lot of them. The reads were far
fewer, but far larger, often fetching data for a single metric across
a wide range of time.

My team was being paged because the error budget of our query
availability was being depleted—slowly, but fast enough that we
would run out by the end of the month if we did nothing. We could
correlate the start of the problem with an organic increase in
traffic, so we assumed that the problem would remain until we
solved it—or until our customers got fed up and the traffic went
away. We mitigated the problem by throwing extra capacity at it,
but decided to investigate further.

We determined that a small fraction of the synthetic queries
issued by our probers were taking so long to complete that they
were timing out. They seemed to occur randomly (in both time
and space) but, curiously, appeared to be correlated with small
spikes in the fraction of all queries timing out. The problem was
rare enough that we didn’t have any relevant traces available, so
we increased the fraction of traces until we caught a few of them.
The same pattern presented in all of them: the query appeared to
be fanning out to a few storage nodes, as expected, and returning
quickly from all but one of them, which timed out.

We examined various metrics emitted by the node where the
timeout occurred, around the time it did. RPC server latency
was typical at the 90th percentile, but it spiked around the 98th
for less than a minute, then went back to normal. CPU load was
normal. Memory usage was up by a small amount. IOPS was as

expected. None of these things seemed to be the cause, so we
looked into the implementation. What causes random latency
spikes when not under any kind of load?

The nodes in question had two jobs: store incoming data and
make it available for querying. The implementation was roughly
as follows: each unique time series was stored as a buffer of
(timestamp, value) pairs. To quickly look up these series, a cen-
tral metadata object served as an index, holding nested maps of
field names and values, which in turn held pointers to the buffers.
This was a big object, and it was protected by one big lock.

Writes and queries were able to scan for matching series while
holding a reader lock, meaning that many such scans could occur
at once, and the object would not change under them. Upon find-
ing the pointers to the relevant series, points were appended or
fetched from the vectors, which were protected by another read/
write lock. But there was a special behavior for writes contain-
ing new series. Those were not present in the metadata object,
and the buffers didn’t exist. So before inserting the points, the
implementation took an exclusive (writer) lock, allocated the new
buffers for each new series, and inserted the relevant elements to
the metadata object.

Experts speculated that the cause of those read latency spikes
was likely to be lock contention on this metadata object. This was
confirmed with instrumentation and profiling.

Unlike in my previous example, these nodes were resource-
constrained, and these metadata objects already accounted for
a significant fraction of the total RAM usage. We couldn’t trade
space for speed. We needed to make the writers hold the locks for
less time.

We accomplished this by replacing the global metadata lock with
narrow locks on the individual nested objects within it. When a
write included previously unseen series, it would lock only the
relevant map while inserting. This went all three levels deep
(metric names, field names, and field values), resulting in many
small locks instead of one large one. Writes might need to acquire
multiple nested locks, but each was brief, and blocked only a frac-
tion of reads rather than all of them. The new implementation
was far more complex and idiosyncratic than the original, and
it was right that it was put off. But when the time came, it was
very satisfying to see it replaced with something so much more
performant.

This project taught me that as throughput increases, so too does
the importance of careful locking. Even very brief pauses can
have a large impact if they’re blocking many requests.

60 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

SRE
The Case for CS Knowledge in SRE

Conclusion
These experiences, and others, have changed my approach to
growing and maintaining software. I’m writing about them
because I wish that I’d become convinced sooner that this fun-
damental knowledge was important and worth studying, and
perhaps concrete examples would have helped.

Finally, some unsolicited advice: Next time you’re faced with a
persistent performance or reliability problem, by all means do
what is necessary to mitigate the problem first, but consider,
then, identifying the underlying bottleneck. Are the performance
characteristics of your data structures misaligned with the
shape of your actual workload? Has some value of n become too
large to ignore? These problems can be solved, and we must not
be afraid to do so.

Save the Dates!

www.usenix.org/osdi21

www.usenix.org/atc21

The 2021 USENIX Annual Technical Conference brings together
leading systems researchers for the presentation of cutting-edge
systems research and the opportunity to gain insight into a wealth
of must-know topics, including virtualization, system and network
management and troubleshooting, cloud and edge computing,
security, privacy, and trust, mobile and wireless, and more.

JULY 14–16, 2021
SANTA CLARA, CA, USA

JULY 14–16, 2021
SANTA CLARA, CA, USA

The 15th USENIX Symposium on Operating Systems Design and
Implementation brings together professionals from academic and
industrial backgrounds in what has become a premier forum for
discussing the design, implementation, and implications of systems
software. The symposium emphasizes innovative research as
well as quantified or insightful experiences in systems design and
implementation.

Co-located with USENIX ATC ’21

Paper submissions due:
Tuesday, January 12, 2021

Co-located with OSDI ’21

PROGRAM CO-CHAIRS

Irina Calciu
VMware Research

Geoff Kuenning
Harvey Mudd College

PROGRAM CO-CHAIRS

Angela Demke Brown
University of Toronto

Jay Lorch
Microsoft Research

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 61

COLUMNSBook Review
Implementing Service Level Objectives
by Alex Hidalgo

L A U R A N O L A N

In the past two years, Service Level Objectives (SLOs) have become
almost synonymous with Site Reliability Engineering (SRE). SLOs are
a reliability target—a threshold of availability and correctness that the

users of a service should be satisfied with and that the service ought to be able
to meet under normal circumstances.

Site Reliability Engineering [1], published in 2016, set out SLOs as a foundational topic:
“It’s impossible to manage a service correctly, let alone well, without understanding which
behaviors really matter for that service and how to measure and evaluate those behaviors.”
The Site Reliability Workbook [2] upped the ante in 2018, saying, “[SREs’] day-to-day tasks
and projects are driven by SLOs: ensuring that SLOs are defended in the short term and that
they can be maintained in the medium to long term. One could even claim that without SLOs,
there is no need for SREs.”

SLOs appear to be simple—we just need to choose how many nines we want—and SLO adop-
tion has often been held up as the first step on any organization’s path towards adopting SRE
practices. There is a school of thought that sees SRE as a cookie-cutter approach that can be
generically applied to any service: just define your SLOs, configure your error-budget-based
alerting, build a release pipeline with canarying and rollback, automate away the bulk of your
repetitive work, adopt the Incident Management System, and do blameless postmortems and
voila—your service will be reliable. Now, these are all worthwhile practices for sure, but are
they enough? I believe not. They will get you part of the way there, and it’s a good roadmap for
productionizing a greenfield project. However, any sizable real-world system will have its
own challenges, rough edges, and sharp corners. You need depth and a lot of context to run
systems well, not just a cookie-cutter shallow SRE process. If you want to be an SRE for a
database tier, you will need to learn a lot about databases in general and your database in par-
ticular to do it well. If you are SRE for Java-based services, you need to understand the JVM
as well as your services’ design, and so on.

Because context is so important, I personally believe that setting up a structured weekly
production meeting with comprehensive notes and solid tracking of action items is actually a
better first starting point than SLOs with a team new to SRE—you use it immediately to build
shared context on services and identify burning fires and pain points that can be mitigated
quickly. This shared context becomes a useful foundation for defining SLOs. But deep service
expertise is not generic—it’s qualitative, not quantitative, and it takes time to build. It’s not as
easy to write an article or a book chapter about it. You can’t create a platform to sell Context-
as-a-Service, there are no clever-sounding acronyms, and there are no graphs for executives.
In short, it isn’t going to help you sell anything or get you promoted (not directly, anyway).

As SREs go, therefore, I’m something of an SLO skeptic. However, even I concede that though
SLOs may not be a silver bullet, they are nonetheless useful, and stable SRE teams ought to
ensure that their services have appropriate SLOs. SLOs do have a lot of benefits: they can pro-
vide an explicit “contract” of sorts between services provided by different teams, helping create
clarity about expected reliability and customer needs. SLOs can help you set alerting thresholds
and feed into decision making about priorities (without being the sole input to that process).

Laura Nolan’s background is
in Site Reliability Engineer ing,
software engineering, distrib-
uted systems, and computer
science, with a career split

roughly evenly between software engineering
and SRE-like roles. She has contributed to a
number of SRE books, including Site Reliability
Engineering, Seeking SRE, and 97 Things Every
SRE Should Know. Outside of work, Laura is a
part-time student of technology ethics at Dub-
lin City University and is an active campaigner
against autonomous weapons. Laura currently
serves on the board of USENIX. 
laura.nolan@gmail.com

62 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

COLUMNS
Book Review: Implementing Service Level Objectives

Nines Are Not Enough
It’s been encouraging to see the conversation around SLOs gain
nuance and depth in the past year, compared to the fairly basic
treatments in the original 2016 Site Reliability Engineering [1]
and the 2018 Site Reliability Workbook [2]. Mogul and Wilkes’
HotOS 2019 “Nines Are Not Enough” paper [3] is required read-
ing for anyone interested in the topic—it includes an analysis of
some of the real-world complexities and tradeoffs of providing
SLOs, including the role of customer behavior; no system can
defend an SLO when arbitrary behaviors are allowed. Narayan
Desai’s talk on SLOs, “The Map Is Not the Territory” [4], dis-
cusses a different set of difficulties, particularly around how the
aggregation process can mask significant customer pain, espe-
cially for low-QPS services or unevenly distributed errors that
affect some customers much more than others. Finally, August
2020 saw the release of an entire book [5] dedicated to SLOs:
Alex Hidalgo’s Implementing Service Level Objectives.

Hidalgo introduces the core concepts—SLOs, service level
indicators (SLIs), and error budgets—in a similar way to the
SRE book [1] and SRE workbook [2] but spends time considering
SLOs for significantly more “shapes” of services: not only simple
RPC or HTTP services, but also datastores, compute platforms,
pipelines, and batch jobs. Data reliability gets an entire chapter,
written by Polina Giralt and Blake Bisset, which proposes 13 prop-
erties of data, such as freshness, accuracy, and completeness,
along with discussions on how to measure these. This chapter is
particularly welcome: many of us are running either datastores
or pipelines or both. The properties of data- intensive systems
are both more complicated than those of the simple request-
processing systems normally used to illustrate SLOs, as well as
usually more difficult to measure.

Chapter 4, “Choosing Good SLOs,” is the foundation for the whole
book. Again, it covers a lot of the same ground as the SRE book
and SRE Workbook, but with some valuable additions. There is
a particularly good discussion of the organization and opera-
tional problem that arises from having too many SLOs—resist
the temptation to think that every important metric should have
an SLO associated with it. The discussion on SLO composition,
meaning how to think about your services’ reliability in rela-
tion to that of the services you depend on, is valuable and doesn’t
shy away from detail. Toby Burress and Jaime Woo’s chapter
on probability and statistics develops this further, alternat-
ing between theory of probability and statistics and concrete
applications to difficult SLI calculations (such as infrequent
batch jobs, requests that can be retried), and latency in queueing
systems.

Burress and Woo’s chapter and the “Architecting for Reliability”
chapter by Salim Virji are very useful treatments of the math
involved in building (or modifying) services to meet a desired SLO.

Hidalgo places a lot of emphasis on getting SLIs right, which
is very worthwhile because this is often much more difficult
in practice than the introductory examples from the SRE book
suggests. There is significant material on the details of comput-
ing SLIs, including fairly well-known best practices such as
use of percentiles rather than means and how to deal with time
windows, as well as less well-known practical problems such as
infrequent events and noisy or low-quality data. This is built on
later by Ben Sigelman’s chapter on measuring SLIs and SLOs,
which discusses the tradeoffs involved in computing SLIs from
time-series databases and structured event databases (or logs)
and distributed traces. Sigelman’s chapter usefully points out
a number of traps for the unwary, such as relying on metrics
reported by potentially malfunctioning services as opposed to
other systems’ view of those services.

Niall Murphy’s chapter on SLO-based alerting rounds out the
section of the book that is focused on the technical details of
implementing SLOs. I particularly like that this section pres-
ents a progressive set of steps for improving your alerting in a
brownfield situation. There is a valuable discussion of how to set
up separate long-duration and short-duration alert thresholds
to detect both major short term-problems and significant but
slower-burning issues that are consuming your error budget at a
higher than anticipated rate. This valuable alerting pattern is not
used widely enough, but it is an excellent mechanism for catching
serious but not immediately catastrophic problems without caus-
ing excessive pager noise.

The “Worked Example” chapter puts together a set of SLOs for
several user-facing and internal systems with a variety of archi-
tectures and requirements. The author does a consistently good
job of putting the end-user experience front and center here and
relating it to the SLOs and SLIs proposed. However, most of the
systems and SLOs proposed are fairly simple, and this chapter
could do more to reinforce Giralt and Bisset’s chapter on data
systems, or Murphy’s chapter on alerting.

The book closes with a series of less technical chapters on the
theme of building an SLO culture, discussing topics like setting
up SLOs in organizations new to the concept, how your SLOs
may evolve as your service changes over time, how to make your
SLOs discoverable to other teams, and how to advocate for SLOs.
The final chapter (on SLO reporting) contains a fairly lengthy
polemic on why SLO reporting is superior to reporting based on
Mean Time To Recovery (and similar metrics)—Hidalgo is right
to say that these kinds of measurements are subjective and not
generally meaningful because incidents are so different from
each other.

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 63

COLUMNS
Book Review: Implementing Service Level Objectives

Any engineer who works day-to-day with reliability, metrics,
monitoring, and alerting ought to have a copy of this book. Even
those who don’t necessarily want to see how deep the SLO cul-
ture-change rabbit hole goes will gain much from the technical
chapters, which can inform your monitoring and alerting strate-
gies and even the tradeoffs made in your system architecture.

References
[1] “Service Level Objectives,” Chapter 4 in B. Beyer, J. Petoff,
N. R. Murphy, and C. Jones, eds., Site Reliability Engineering:
How Google Runs Production Systems (O’Reilly Media, 2016).

[2] “Implementing SLOs,” Chapter 2 in B. Beyer, N. R. Mur-
phy, D. K. Rensin, K. Kawahara, and S. Thorne, eds., Site Reli-
ability Workbook: Practical Ways to Implement SRE (O’Reilly
Media, 2018).

[3] J. C. Mogul and J. Wilkes, “Nines Are Not Enough: Mean-
ingful Metrics for Clouds,” in Proceedings of the Workshop
on Hot Topics in Operating Systems (HotOS ’19), pp. 136–141:
https://dl.acm.org/doi/pdf/10.1145/3317550.3321432.

[4] N. Desai, “The Map Is Not the Territory,” at SRE-
con19 EMEA 2019: https://www.usenix.org/conference
/srecon19emea/presentation/desai.

[5] A. Hidalgo, Implementing Service Level Objectives (O’Reilly
Media, 2020).

https://dl.acm.org/doi/pdf/10.1145/3317550.3321432
https://www.usenix.org/conference/srecon19emea/presentation/desai
https://www.usenix.org/conference/srecon19emea/presentation/desai

64 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

COLUMNS

Systems Notebook
What’s in That Container?

C O R Y L U E N I N G H O E N E R

Have you ever opened your refrigerator to get a tasty snack and caught
sight of that one container in the back, the one that is unmarked but
you know has been there since sometime last June? And as you close

the door, you kind of wonder if it just moved a little? Have you ever felt the
same way about Linux containers running on your servers? What exactly is
in there? And how did they get there in the first place?

Containers on Linux have been the new hotness for some time now, which I suppose makes
them pretty hot indeed. But despite the ubiquity of containers today, a lot of us still only inter-
act with them by running docker run. Not one to take a whale for its word, I think it’s worth
looking more deeply at what’s really going on. While there’s only room to scratch the surface,
over the next several pages I’m going to take a look at what Linux containers are made of, how
to create a super-simple container using a few command line tools, and how to use those same
tools to understand what Docker is doing under the covers.

But first, some caveats. Mentioning “Linux containers” can cause strong reactions among
some people, so I want to state upfront this isn’t going to be a column about the security
implications of containers, how various operating systems provided the same functionality
earlier (or better), what the exact definition of a “container” is, or anything else like that. This
is just a quick look at (spoiler!) how Linux namespaces are used to provide container func-
tionality. There are some simplifications in here for the sake of brevity and clarity, so forgive
me if I leave out your favorite details about Linux containers. If you want a real deep dive into
everything here, take a look at the references at the end of this column.

It’s All Part of the Process
Back in the age of dinosaurs, when operating systems textbooks were written, you may recall
learning that a process is the embodiment of a program running on a UNIX-like system. It
contains the program code itself, as well as its active memory, a pointer to what instruction
is currently running, and various other bookkeeping data structures. A booted system starts
out with a single process running, process ID (PID) 1, and all other processes on the system
can trace their lineage through a series of fork() and exec() system calls back to that initial
process. All running processes are given a unique PID number, and, by default, all processes
exist in a global shared namespace that lets them see information about all other processes
currently running on the system. On a UNIX-like system, much of the information about
running processes is presented to users in the /proc file system. There, the information is
organized by directories named after processes’ numeric IDs.

What if, instead of process information existing in a global namespace, processes could
have their own independent views of what /proc looked like? In this scenario, after a process
forks, the parent process would be told that its child got an incrementally higher PID, while the
child process would be told that it is PID 1: the first process on a fresh system. Everything
else would be shared between these processes—the kernel, file systems, users—but the new
process would be in a new process namespace and have a new, empty view of what other pro-
cesses exist on the system.

Cory Lueninghoener makes
big scientific computers do big
scientific things, mainly looking
at automation, scalability, and
large-scale system design. If

you don’t see him hanging out with the LISA
and SREcon crowd, he’s probably out exploring
the mountains of northern New Mexico.
cluening@gmail.com

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 65

COLUMNS
Systems Notebook: What’s in That Container?

[root@localhost ~]ls -l /proc/$$/ns
total 0
lrwxrwxrwx. 1 root root 0 Aug 24 03:40 cgroup ->
 'cgroup:[4026531835]'
lrwxrwxrwx. 1 root root 0 Aug 24 03:40 ipc ->
 'ipc:[4026531839]'
lrwxrwxrwx. 1 root root 0 Aug 24 03:40 mnt ->
 'mnt:[4026531840]'
lrwxrwxrwx. 1 root root 0 Aug 24 03:40 net ->
 'net:[4026531992]'
lrwxrwxrwx. 1 root root 0 Aug 24 03:40 pid ->
 'pid:[4026531836]'
lrwxrwxrwx. 1 root root 0 Aug 24 03:40 pid_for_children ->
 'pid:[4026531836]'
lrwxrwxrwx. 1 root root 0 Aug 24 03:40 user ->
 'user:[4026531837]'
lrwxrwxrwx. 1 root root 0 Aug 24 03:40 uts ->
 'uts:[4026531838]'

The numbers that the links point to are unique identifiers for
each of the namespaces on the system, and any processes that
share those numbers also share that particular namespace.

A program can use the clone() system call function with appro-
priate flags to create a copy of itself in a new namespace, ready to
be replaced with a call to exec(). Meanwhile, an existing process
can use the unshare() call to create and join private, non-shared
namespaces or setns() to join existing namespaces. Each of these
functions accepts a set of f lags that specify what new name-
spaces to create.

Alternatively, the unshare and nsenter command line tools, pro-
vided by the util-linux package, can be used to create processes
that are in new namespaces or members of existing namespaces
from the command line. These tools provide command-line options
to control which namespaces are created or joined.

Let’s Get Our Hands Dirty
Let’s take a look at namespaces on a real system. Using the
unshare command line tool, it is easy to create a new process
with one or more namespaces that are unique from its parent.
We’ll start by creating a new shell that’s in a new PID namespace,
but shares its other namespaces with its parent. With that new
shell created, we can look at what processes are visible both
inside and outside this miniature “container” and how to add
more processes to it.

You can follow along on your own system: all of these examples
were run on a CentOS 8 virtual machine booted up using Vagrant
and VirtualBox, and for clarity each line of the shell session has
been prefixed with [o], for outside of the new namespace, or [i],
for inside the new namespace.

First, we’ll use unshare to create a new shell in a new PID
namespace.

Can You Guess My Namespace?
This world exists, and it has existed since 2007 when kernel
version 2.6.24 introduced PID namespaces. Similar to how
variable namespacing in a programming language can keep
variables in one function hidden from variables in another
function, namespaces in the Linux kernel can create private
views of kernel data for different processes. When a process
creates and joins a new PID namespace, the kernel tells it that it
is PID 1 and the only process running on the system. All descen-
dants of this new PID 1 will be put in the same PID namespace,
and their view of the running system will be limited to the
contents of their namespace.

There are two important things to note about this functionality:
one is that PID namespaces are created in a hierarchy, much like
the way that processes are created. This means that processes
higher up in the namespace hierarchy can see all of the processes
in PID namespaces that exist below them, while processes in leaf
namespaces can only see processes that are members of their
own PID namespace. The other is that multiple PID namespaces
can exist at the same time, meaning a system can have many
processes running on it that all believe they are PID 1.

But That’s Not All
PID namespaces aren’t the only namespaces that can be created,
and they weren’t even the first ones to be included in the Linux
kernel. That distinction belongs to mount namespaces, which
appeared in Linux 2.4.19 in 2002. Today there are eight name-
spaces available, and they all have the same goal: give processes
a private view of certain system resources. Along with the PID
namespace that we’ve already seen, this includes hostname
and network information (UTS and Network namespaces), file
systems (Mount namespace), system users (User namespace),
and time, resource, and IPC objects (Time, Cgroup, and IPC
namespaces).

In its simplest form, a Linux container is nothing more than pro-
cesses in one or more private namespaces. But looking at the list
of available namespaces, you can start to imagine how you could
use them to turn simple processes into something that looks like
an entirely new computer without relying on starting up a virtual
machine.

Where Does It Come From?
Like many kernel internals related to processes, the bookkeeping
that makes namespaces work is exposed to userspace in /proc.
Any process running on a modern Linux kernel has a /proc/
[PID]/ns directory associated with it, and the namespaces that
that process belongs to are presented as symbolic links within
that directory. For example, to look at the namespaces that your
current shell belong to, you can do the following:

66 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

COLUMNS
Systems Notebook: What’s in That Container?

[o] [root@localhost ~]unshare --fork --pid --mount-proc
 /bin/bash
[i] [root@localhost ~]#

At this point, the unshare command has started a new copy
of bash with a new PID namespace. Both the old shell and the
new shell have the same prompt, so it’s kind of anticlimactic.
But recall that in the previous section we saw that the list of
namespaces a process belongs to is exposed in /proc/<PID>/ns.
If you compare the new shell’s namespaces against the shell in
the previous section, you can see that the new shell is indeed in a
new PID namespace:

[i] [root@localhost ~]ls -l /proc/$$/ns
[i] total 0
[i] lrwxrwxrwx. 1 root root 0 Aug 24 03:42 cgroup ->
 'cgroup:[4026531835]'
[i] lrwxrwxrwx. 1 root root 0 Aug 24 03:42 ipc ->
 'ipc:[4026531839]'
[i] lrwxrwxrwx. 1 root root 0 Aug 24 03:42 mnt ->
 'mnt:[4026532155]'
[i] lrwxrwxrwx. 1 root root 0 Aug 24 03:42 net ->
 'net:[4026531992]'
[i] lrwxrwxrwx. 1 root root 0 Aug 24 03:42 pid ->
 'pid:[4026532156]'
[i] lrwxrwxrwx. 1 root root 0 Aug 24 03:42 pid_for_children
 -> 'pid:[4026532156]'
[i] lrwxrwxrwx. 1 root root 0 Aug 24 03:42 user ->
 'user:[4026531837]'
[i] lrwxrwxrwx. 1 root root 0 Aug 24 03:42 uts ->
 'uts:[4026531838]'

Looking closely, you’ll notice that the new shell is also a member
of a new Mount namespace. The unshare man page explains why
in its PID namespace section:

“It also implies creating a new mount namespace since the
/proc mount would otherwise mess up existing programs on
the system.”

So we gained two namespaces for the price of one.

Since this new shell is a member of a new PID namespace, the
only processes it knows about are itself, which it sees as PID 1,
and its descendants. We can see this by running the ps command:

[i] [root@localhost ~]ps -ef
[i] UID PID PPID C STIME TTY TIME
 CMD
[i] root 1 0 0 03:41 pts/0 00:00:00
 / bin/bash
[i] root 18 1 0 03:44 pts/0 00:00:00
 ps -ef

Meanwhile, this same process is visible from the system’s default
namespaces with a different PID number. It just takes some
sleuthing to find it. Starting up another login shell on the system,
we can find the namespaced process by looking for the original
unshare process and examining its only child. Here we find that

the parent namespace identifies our namespaced shell as PID
33783:

[o] [root@localhost ~]ps -ef
[o] UID PID PPID C STIME TTY TIME
 CMD
 ...
[o] root 33782 5283 0 03:41 pts/0 00:00:00
 unshare --fork --pid --mount
[o] root 33783 33782 0 03:41 pts/0 00:00:00
 /bin/bash
 ...

After one process creates a new namespace, other processes can
join it. Having found our new container process from outside of
its PID namespace, we can also start a new shell within its new
PID namespace. With the original namespaced bash process still
running via unshare, we can use the nsenter command to join it
by targeting its external process ID:

[o] [root@localhost ~]nsenter --all --target 33783 /bin/bash
[i] [root@localhost /]ps -ef
[i] UID PID PPID C STIME TTY TIME
 CMD
[i] root 1 0 0 03:41 pts/0 00:00:00
 /bin/bash
[i] root 19 0 0 03:47 pts/1 00:00:00
 /bin/bash
[i] root 34 19 0 03:47 pts/1 00:00:00
 ps -ef

Let’s review what all we just did: starting with a fresh virtual
machine, we created a new process in a new PID namespace,
confirmed that it appeared as PID 1, and started another new
process inside that same namespace. Now, let’s take it a step
further.

Let’s Build a Simple Container
Let’s get one step closer to a full Docker-style container by build-
ing a new operating system image and starting processes using
it. CentOS includes the debootstrap package, which can be used
to install a full Ubuntu system inside of a single directory tree
on a CentOS system. We can use that tool to create an Ubuntu
file-system image in /root/ubuntu-bionic, and then use unshare
along with chroot to create a shell with new Mount and PID
namespaces in use. Once that shell is running, it will look exactly
like it is running on an Ubuntu system. This can all be done from
within a clean CentOS 8 install in a virtual machine.

[o] [root@localhost ~]yum install epel-release
 <output trimmed>
[o] [root@localhost ~]yum install debootstrap
 <output trimmed>
[o] [root@localhost ~]mkdir ubuntu-bionic
[o] [root@localhost ~]debootstrap --arch=amd64 bionic
 /root/ubuntu-bionic/ http://mirrors.vcea.wsu.edu/ubuntu/
 <output trimmed>
[o] I: Base system installed successfully.

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 67

COLUMNS
Systems Notebook: What’s in That Container?

[o] [root@localhost ~]unshare --fork --pid --mount-proc
 --mount chroot /root/ubuntu-bionic /bin/bash
[i] root@localhost:/mount -t proc proc /proc
[i] root@localhost:/mount -t sysfs sysfs /sys
[i] root@localhost:/ps -ef
[i] UID PID PPID C STIME TTY TIME
 CMD
[i] root 1 0 0 03:54 ? 00:00:00
 /bin/bash
[i] root 13 1 0 03:54 ? 00:00:00
 ps -ef
[i] root@localhost:/head -2 /etc/os-release
[i] NAME="Ubuntu"
[i] VERSION="18.04 LTS (Bionic Beaver)"

This still doesn’t fully replicate the full containerization pro-
vided by tools like Docker, but we’ve started to get close. In the
last several sections, we’ve essentially run docker build (using
debootstrap), docker run (using unshare), and docker exec
(using nsenter). As homework, you can expand this work by com-
bining this same set of commands with other namespaces, giving
you the ability to change the hostname, assign private network
interfaces, and more.

Now, let’s try the same tricks with a real Docker container.

What Was That about Docker?
Way back in the first paragraph of this column, I asserted that
many people’s main interface to containers is docker run. Since
then, we’ve learned that containers are just processes with
unique namespace configurations that give them the ability to
see different root file systems, different process trees, and the
like. When Docker starts a container, it uses the exact same
kernel mechanisms we just looked at to get the job done. That
means that you can use these same tools to interact with Docker
containers, but without the Docker commands. As an example,
let’s use nsenter to replicate the base functionality provided by
docker exec. As with the earlier examples, everything here was
done within a CentOS 8 virtual machine built using Vagrant and
VirtualBox.

To start, we’ll fire up a simple Docker container and start a sleep
inside it so that the process is easy to find:

[o] [root@localhost ~]docker run -it ubuntu bash
[i] root@94802998616b:/sleep 300

We can find this same process from outside of the container, just
like we did before:

[o] [root@localhost ~]ps -ef | grep sleep
[o] root 52039 51999 0 04:00 pts/0 00:00:00
 sleep 300

Using the nsenter command, we can start a new shell that joins
all of the same processes that the sleep command is a member of:

[o] [root@localhost ~]nsenter --all --target 52039 /bin/bash
[o] root@94802998616b:/ps -ef
[o] UID PID PPID C STIME TTY TIME
 CMD
[o] root 1 0 0 03:59 pts/0 00:00:00
 bash
[o] root 8 1 0 04:00 pts/0 00:00:00
 sleep 300
[o] root 9 0 0 04:01 ? 00:00:00
 /bin/bash
[o] root 12 9 0 04:01 ? 00:00:00
 ps -ef
[o] root@94802998616b:/

The new shell is now a member of the Docker container, complete
with the container’s hostname (94802998616b) and the only four
processes it knows about (two instances of bash, plus sleep and
ps processes). We’ve just replicated the base functionality of
docker exec with standard Linux utilities.

Conclusion
Building containers by hand is more of an interesting trick than
something that’s useful in production, but knowing what’s going
on underneath Docker, Buildah, Podman, and other container
tools gives you greater insight into how to tune, debug, and work
with those tools. By understanding the underlying technology
and how to access it with lower-level tools, you have a better
overall view of how your system works and how to keep it run-
ning optimally.

References
If you want to dig deeper into Linux namespaces, here are two
great places to start:

Namespaces(7) Linux manual page: https://man7.org/linux
/man-pages/man7/namespaces.7.html.

M. Kerrisk, “Namespaces in Operation” series, The Linux
Weekly News, January 4, 2013: https://lwn.net/Articles
/531114/.

https://man7.org/linux/man-pages/man7/namespaces.7.html
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://lwn.net/Articles/531114/
https://lwn.net/Articles/531114/

68 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

COLUMNS

iVoyeur
BPF and Histograms

D A V E J O S E P H S E N

Dave Josephsen is a book
author, code developer, and
monitoring expert who works
for Fastly. His continuing
mission: to help engineers

worldwide close the feedback loop. dave-
usenix@skeptech.org

A rgus Panoptes was the all-seeing primordial giant and slayer of the
mother of all monsters, Echidna, in Greek mythology. In some tell-
ings he has 100 eyes, some combination of which are always open,

though the Renaissance painters (perhaps to save on paint?) always depict
him with just the two.

Whether he was a many-eyed giant or merely a very astute, tall man, his powers of observa-
tion were so legendary that Hera herself entrusted to Argus the task of guarding the promis-
cuous nymph Io (inexplicably disguised as a cow) in order to keep her away from Zeus, Hera’s
unfaithful husband and king of the gods.

Setting aside for a moment the questionable rational of hiring a P.I. to track your cheating
husband’s lover rather than the man himself, Argus proved to be so effective at this task,
watching Io day and night, and never once letting her out of his sight for a microsecond, that
Zeus eventually had him murdered in order to reunite with his mistress.

I guess the all-seeing Argus didn’t see that comin’.

That it’s often possible to see everything and yet still fail to comprehend is, I think, one of
several invaluable lesson Argus Panoptes gave his life to teach us. Every bit as true today as it
was in the golden age.

Let’s say for example you have a spreadsheet of latency times and other metrics from a front-
end web server. With five minutes’ worth of samples, you can scroll around and probably
tease out some patterns. But with a full day of data, things become vastly more opaque. Ironi-
cally, the more you see, the less you begin to comprehend.

In my last column, we talked about the various data structures eBPF uses to pass data from
protected kernel space into userspace where we can get our hands on it, and we discovered
that our sample BCC tool, biolatency, was using a built-in histogram data-structure to
summarize data in kernel space. In this issue, as promised, we’re going to talk a little about
histogram theory and how histograms enable us to make sense of massive amounts of data,
thereby achieving comprehension rather than mere observation.

As I’m sure you probably already know, a histogram is a visual representation of a pile of data.
Instead of plotting each value in the set, we depict a series of buckets or “bins” which are sized
to indicate how many measurements in the sample set fell within the bounds of each bucket.
Figure 1 is your obligatory example histogram of 500 measurements, ranging in value from
0 to 100. As you see, it looks like a bar graph, except rather than representing a single metric,
each bar represents the magnitude of measurements whose value fell between the bar before
it, and the bar after it.

Histograms are pretty great because we can depict what the overall data set looks like inde-
pendent of its size. It doesn’t matter if the set contains five minutes of data, or five days, we
can use the same amount of pixel-space to represent it. Further, histograms are far more
representative of the distribution than any combination of statistical reference metrics like

https://www.usenix.org

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 69

COLUMNS
iVoyeur: BPF and Histograms

average, min/max, sum, and p-values, and because they amount
to a struct of counters, histograms are super cheap to compute
and store.

A histogram’s “resolution” is said to vary with its bin-width. You
can’t accurately represent the value 2.63 if you have bins spaced
at integer intervals, for example. That 2.63 would resolve to a “3”
if our bucket-widths were integer-spaced. So it’s important to put
some thought into how best to situate the width and total number
of bins for a given data set. Obviously, the bin-width decreases
(resolution improves) as the total number of bins increases.
There are, as you can probably imagine, quite a few strategies to
find the optimal total value of bins, or k value, for a given data set.

One of the most basic and popular ways of computing the optimal
number of bins for a given distribution is the “powers of two” rule,
which says the optimal number of bins is the square root of the
total number of samples in the set, or for a group of samples s:

k = √s

This is the formula used internally by Excel histograms and many
other simple implementations when we want to provide a cheap,
hands-off way of choosing a bin-number. With the powers of two
formula, you’d wind up with 16 buckets for a data set with 256
samples in it, for example. There are various takes on this, like
Sturges’ formula, which uses the base-2 logarithm of the max
value in the data set.

k = ⌈log2 n⌉ + 1

There is no universally correct number of bins, and every algo-
rithm carries tradeoffs. Sturges, for example, gives poor results
for data sets where n<30 but works well on sets with a large range.
It’s no accident, however, that we’ve immediately wandered into
the land of squares and base-2 logarithms. As it turns out, base-2
logarithms and histograms share something of a magic relation-
ship in computerland, where the underlying representation of
basically everything is a binary number.

So far, we’ve been talking about histograms whose bins are all
the same width, aka “Linear Histograms.” But there’s no particu-
lar reason that this should be true. It’s absolutely possible to vary
the bin-widths within a set number of bins.

In fact, if we were to vary our histogram bin-widths along log2
boundaries instead of making them all the same width, each
boundary between our bins would represent an order of mag-
nitude increase in the sample set. Another way to state that is:
every bucket would represent a consecutive bit in a binary
number. Therefore, a base-2 “log linear histogram” can use
64 bins to represent a 64-bit int, which is a very large set
[0 - 18,446,744,073,709,551,615].

Again, these buckets are not the same size. Instead, they become
exponentially fatter at each boundary. The first bin represents
the numbers between 0 and 1. The second, 2 and 4, the next 8
and 16 and so on. Now consider this structure in the context of
kernel-based metrics like the disk I/O latency we are trying to
measure with biolatency, and I think you’ll realize that this sort
of structure is kind of ideal for our problem domain. Our disk I/O
is going to usually be great, somewhere on the order of tens of
milliseconds, where a powers-of-two histogram’s resolution is
going to be very good. Then we’re going to have a small number of
outliers on the order of seconds, or possibly tens-of-seconds.

Most in-kernel latency metrics distribute like this: a vast number
of very small-value measurements and then a rare smattering of
exponentially larger outliers. Many network metrics fit this pat-
tern even more, with normal measurements near 0 and outliers
in the billions. The pattern is so pervasive, that BPF has a helper
function, called bpf_log2l(), which returns the base-2 log of a
given measurement, so you can convert any measured value to
log2 scale in-kernel before passing it into the histogram.

Wait what? Convert the value? I thought we were talking about
bin boundaries, not modifying the value of our measurements,
Dave.

Well, we are. But you’ll remember that both the probe code itself
as well as the histogram storage struct are in-kernel. The histo-
gram implementation [1] is a bare-bones linear histogram, with a
statically configured number of same-sized bins. There is no way
to create variable-sized bins. But we can simulate the same effect
by creating a 64-bucket in-kernel linear histogram and convert-
ing (compressing) our measurements to log2 scale values before
storing them.

Remember, we’re not storing the actual values, we’re merely
incrementing counters within buckets that roughly align to our
values. So if we compress the scale of our values to log2, we are
effectively creating log2 indexes; we can come back at print-time
in userspace and recompute the indexes using the in-kernel

Figure 1: Obligatory example histogram of 500 measurements, ranging
from 0 to 100

https://www.usenix.org

70 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

COLUMNS
iVoyeur: BPF and Histograms

bucket values as a base-2 exponent, and all the counts will neatly
line up with the correct magnitude.

Taking a look at biolatency’s storage code [2], we see that every
time biolatency commits a value to the data-structure, it uses the
bpf_log2l() helper function. This is somewhat obfuscated by the
find/replace pattern in the Python BCC tools, but the invocation
to create the HISTOGRAM looks like this:

BPF_HISTOGRAM(dist);

It’s possible to pass in a bin number and a data-structure to
represent the index values, but the log-linear use case is so per-
vasive in BCC that the defaults are aligned to our use case, and
the above invocation will create a 64-bin, int-indexed histogram
called “dist”. We write to it like so:

dist.increment(bpf_log2l(delta));

Where “delta” is a u64 representing the difference in nano-
seconds between the blk_account_io_start and blk_account_
io_done kprobes firing. The kernel will use the delta value to
find or create the appropriate bucket and add a +1 to it.

At the end of script-execution, when the userspace side of bio-
latency catches a Ctl-C, it grabs the histogram from kernel-
space [3] using get_table(), the same function we used to grab
structs from userspace in my previous article. Python BCC has a
print-function that knows how to re-compute the indexes of log-
linear histograms for us, so all we need to do is pass the dict [4]
into the print_log2_hist() function, passing along the appropri-
ate labels to make the resulting graph more human readable.

References
[1] https://github.com/torvalds/linux/blob/master
/Documentation/trace/histogram.rst.

[2] https://github.com/iovisor/bcc/blob/master/tools
/biolatency.py#L127.

[3] https://github.com/iovisor/bcc/blob/master/tools
/biolatency.py#L198.

[4] https://github.com/iovisor/bcc/blob/master/tools
/biolatency.py#L210.

I sometimes wonder what Argus Panoptes would make of the
modern world. Thinking about him as a sort of spherical-cow
of observation, the hypothetically perfect monitoring machine.
Would he be blinded by the abundance of spread-spectrum data
being flung in every direction about our heads? Would he be mes-
merized to the point of paralysis at the sight of a computer, with
its unending infinitesimal internal machinations?

Personally, I vastly prefer to work with instrumentation systems
like eBPF, which reward system-knowledge and rely on an inter-
rogative question/answer relationship between operator and
machine, over the packaged measure everything monitoring sys-
tems of the world. I think this is probably true of most engineers.
Certainly the ancient Greeks agree, who valued as priceless the
oracles, while relegating the spherical-cow of observation to,
well, cow-watching. I think that puts us in pretty good company.

Take it easy.

https://www.usenix.org
https://github.com/torvalds/linux/blob/master/Documentation/trace/histogram.rst
https://github.com/torvalds/linux/blob/master/Documentation/trace/histogram.rst
https://github.com/iovisor/bcc/blob/master/tools/biolatency.py#L127
https://github.com/iovisor/bcc/blob/master/tools/biolatency.py#L127
https://github.com/iovisor/bcc/blob/master/tools/biolatency.py#L198
https://github.com/iovisor/bcc/blob/master/tools/biolatency.py#L198
https://github.com/iovisor/bcc/blob/master/tools/biolatency.py#L210
https://github.com/iovisor/bcc/blob/master/tools/biolatency.py#L210

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 71

COLUMNS

SIGINFO
The Tricky Cryptographic Hash Function

S I M S O N L . G A R F I N K E L

Simson L. Garfinkel is a Senior
Computer Scientist at the US
Census Bureau and a researcher
in digital forensics and usability.
He recently published The

Computer Book, a coffee table book about the
history of computing. sigmail@simson.net

Cryptographic hash functions are one of the building blocks of modern
computing systems. Although they were originally developed for sign-
ing digital signatures with public key cryptography, they have found

uses in digital forensics, digital timestamping, and cryptocurrency schemes
like Bitcoin.

Cryptographic hash functions like MD5, SHA-1, and BLAKE3 are widely used and appreci-
ated by programmers, end users, and even lawyers! Nevertheless, I’ll start off this column
with a basic description of what hash functions are and the hash functions that are used
today. Then I’ll delve back to the first references to them that I’ve been able to find and give
a bit of their history. I’ll briefly touch on their uses in cryptography and then discuss how they
also found use in digital forensics. I’ll end with a puzzle from Stuart Haber, one of the co-inven-
tors of the blockchain concept. Unless otherwise noted, all of the timing runs were performed
on my Mac mini (vintage 2018) with a six-core Intel Core i5 processor running at 3 GHz. The
hashing was done with OpenSSL 1.1.1d, compiled September 10, 2019, that ships with the
Anaconda Python distribution.

Hash Functions
Hash functions take a sequence of bytes of any length and crunch it down to a block of seem-
ingly random bits and a constant length. This block is typically called the hash, taken from
the popular dish that involves chopping up food and then cooking it together.

Hash functions are widely used in computer science—they are the basis of the Python
dictionary, for example. The basic idea of hashing was invented by IBM scientist Peter Luhn
back in the 1950s as a technique to help speed up searching for words in text [1].

Cryptographic hash functions are fundamentally different from the hash functions that
Luhn developed. For starters, their output is much larger. Python’s hash function takes a
string and returns an int—that is, 32 or 64 bits—which then becomes an index into an array
(modulo the size of the array). Cryptographic hash functions return more than a hundred
bits, each (ideally) with an equal and independent probability of being a 0 or a 1, which is then
used as a kind of placeholder for the object itself. Writing in RFC 1186 back in 1990 about
his MD4 algorithm, Ron Rivest stated: “The algorithm takes as input an input message of
arbitrary length and produces as output a 128-bit ‘fingerprint’ or ‘message digest’ of the input.
It is conjectured that it is computationally infeasible to produce two messages having the same
message digest, or to produce any message having a given prespecified target message digest.”

The field of cryptographic hash functions has evolved considerably since 1990. Today we say
that these functions should have several properties. First, it should be computationally infeasi-
ble to find a sequence of bytes that has a specific hash, called pre-image resistance. It should also
be infeasible to find a second sequence m2 that has the same hash as a first sequence m1, called
second pre-image resistance, or to find any two objects that have the same hash, called collision
resistance. Finally, the output of the hash function should be indistinguishable from a random
number generator. That is, there should be no way to predict the output of the hash from its input
other than by running the actual hash function. This is called pseudo-randomness.

72 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

COLUMNS
SIGINFO: The Tricky Cryptographic Hash Function

Cryptographic hash functions were first described in detail by
Ralph Merkle in his 1979 PhD thesis [2], published just a few
years after Diffie and Hellman introduced the world to public key
cryptography and Rivest, Shamir, and Adleman disclosed the
public key system that has memorialized their initials. Merkle
called the functions “one-way hash functions,” because it was
easy to take a message and find its corresponding hash, but
“effectively impossible”—or at least “computationally infeasi-
ble”— to take a hash and find a corresponding message. The RSA
cryptosystem can’t sign a number larger than the product of the
prime numbers p and q—which today is typically a few thousand
bits. Given a one-way hash, Merkle wrote, the newfangled digital
signature schemes could be used to sign a message of any length:
simply hash the message first, then sign the hash.

The idea of hashing a message and then signing the hash is stan-
dard operating procedure, but back in 1979 this was brand new
stuff. What I find so enchanting about Merkle’s PhD thesis is the
combination of wonder, excitement, and amazement it conveys.
Merkle’s words help me to understand what it was like to live in a
world where public key cryptography was new and nobody really
knew how to use it or even quite what to do with it.

Today we know lots of things that you can do with hash func-
tions—even without public key technology. In his PhD thesis,
Merkle shows how it’s possible to create digital signatures with
just a one-way hash function. We now call these Merkle signa-
tures. The critical insight is that you can take a secret message
(call it M0) and hash it (call that H0). If you hand-deliver H0
to a friend today, you can send an authenticated message to your
friend at some point in the future by sending M0. Your friend can
verify the authenticity of M0 by hashing it and producing H0. In
his thesis, Merkle credits this original idea to Leslie Lamport,
as described in Diffie and Hellman’s original “New Directions”
[3] article, although Merkle notes that the scheme is much more
efficient using cryptographic hash functions.

Of course, just being able to send a 0 by itself is not useful. So
instead of giving your friend just H0, you give the friend H0 and
H1 (which is the hash of M1). Now you can send one bit of authen-
ticated information—either a zero or a one—by choosing to reveal
either M0 or M1. Give your friend 256 different H0s and 256 dif-
ferent H1s, and you can now send 256 bits of digitally signed data.
The disadvantage of this scheme is that each signature block can
only be used once, so it’s not tremendously efficient (although
there are ways around this problem as well). The advantage of
Merkle signatures is that they are very fast to compute, and it is
widely thought that they are resistant to cracking by quantum
computers, should such machines ever become practical.

If you want to sign 10 documents at the same time, you can
compute the hash of each document (call that DH0 through DH9),
then concatenate all of these hashes together, hash the resulting

block (call that DHH), and sign that. You can prove the signature
of any document by giving someone that document, the hashes
for the other nine documents, and the signature for DHH: the
verifier recomputes the missing document hash, uses DH0
through DH9 to compute DHH, and verifies that. This approach
and the corresponding data structure, when extended to multiple
levels, is now called a Merkle Tree.

The Rise and Fall of Many Hash Functions
The first widely used cryptographic hash function was MD2,
developed by Rivest for use in an early secure email system. The
source code for MD2, dated October 1, 1988, appears in RFC 1115,
one of the early RFCs describing a system for sending encrypted
messages over the Internet. This system was never widely adopted,
but its ideas and data formats were quite influential.

Although no practical attack on MD2 was ever published,
researchers started publishing theoretical attacks against it in
2004. Support for MD2 was removed from the popular OpenSSL
cryptographic toolkit in 2009. But the real problem with MD2
wasn’t its security but its speed: MD2 is an extraordinarily slow
algorithm. Even on my 2018 Mac mini, Rivest’s 1988 code takes
43 seconds to hash 256 MiB of data. Imagine how slowly it ran
back in 1988!

Rivest went back to the drawing board. MD3 didn’t make it
out the door, but MD4 was released and appears in RFC 1186
(October 1990). Flaws were soon discovered in MD4 and it was
not widely used. In 1991, Rivest invented MD5; the algorithm
was published by the Internet Engineering Task Force (IETF)
in April 1992 as RFC 1321.

MD5 is more than a hundred times faster than MD2; on my Mac
mini, OpenSSL’s MD5 implementation hashes that same 256
MiB file in just 0.37 seconds. Like MD2, MD5 also produces a
128-bit hash.

MD5 is still in use today, but it should no longer be used because
it is now relatively straightforward to generate two blocks of
data that have the same MD5 hash. That is, MD5 no longer has
collision resistance. The first MD5 collision was demonstrated
back in 2004; the Wikipedia article on MD5 has a nice write-up
about how to create two documents that have an MD5 collision.

On the other hand, there is still no publicly known attack on MD5
that will let you find a block of data with a specific MD5 hash—
that is, it still is publicly considered to have pre-image resistance.
Nevertheless, MD5 is not to be trusted. For example, Amazon’s
Simple Storage Service (S3) still uses the MD5 algorithm for the
“ETag” value that lets users check the integrity of uploaded files.
The idea is that your software can compute the MD5 of a file,
upload the file to S3, and then check the file’s ETag to see if the
value is the same. Although this works in practice, if you happen

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 73

COLUMNS
SIGINFO: The Tricky Cryptographic Hash Function

to upload two files that have the same MD5, Amazon will happily
give them both the same ETag.

In digital forensics, it’s common to use file hashes to search a
computer for files of interest, a broad term that includes stolen
corporate documents, child sexual abuse materials, and other
kinds of documents sought by investigators. Typically, an orga-
nization looking for materials will distribute a list of hashes for
such files to investigators in the field. The investigators then run
a program that hashes every file on a suspect’s laptop and sees
if any of those files has a hash that matches the list. If there’s a
match, then the suspect presumably has the file of interest. MD5
is still used in this application: after a collision is found, the
investigator then looks at the matching file to see if it is in fact
the file being sought.

Nevertheless, even in these applications, I try to avoid using
MD5. That’s because there are many articles on the Internet
telling people not to use MD5 because it is not secure. I just don’t
think that it’s a good use of one’s time to argue that it’s acceptable
to use MD5 for some applications but not others.

Another hash function that is in wide use is SHA-1, the Secure
Hash Algorithm, adopted by the National Institute of Standards
and Technology in 1995. SHA-1 produces a 160-bit hash. Even
though concerns about SHA-1 were raised within a few years of
its being published, the National Institute of Standards and
Technology (NIST) didn’t formally recommend that we stop using
SHA-1 until 2006. Eleven years later, Google published two PDFs
that had identical SHA-1 hash values but render differently [4].
The two files are each 422,435 bytes long and differ in 62 bytes.
They also look visually similar, except that one has a blue banner
across the top while the other has a red banner.

As Andrew Tannenbaum once said, the nice thing about stan-
dards is that there are so many of them to choose from. Realizing
that SHA-1 was likely to be compromised, in 2001 NIST revised
the Secure Hash standard to allow for more rounds of computa-
tion and longer hash values, also called residues. Collectively
called SHA-2, these revised algorithms include SHA-256, SHA-
384, and SHA-512. In 2006 NIST initiated a competition for a
new Secure Hash Algorithm. Nine years later NIST declared that
an algorithm called Keccak would be adopted as SHA-3. This
new algorithm is based on a fundamentally new mathematical
approach called a sponge construction, in which input data are
absorbed and then the hashed value is squeezed out. For details
about these algorithms, as well as the multiple controversies
surrounding their adoption, I refer you to the Wikipedia pages for
SHA-1, SHA-2 and SHA-3.

It used to be the case that MD5 was dramatically faster than
SHA-1, which was faster than SHA-256 (the 256-bit version of
SHA-1), which was faster than SHA-512. That’s no longer the
case, in part due to better implementations and in part due to the

fact that we’re now running on 64-bit processors. In Table 1, I
present the times to hash a 1 GiB file with several of the algo-
rithms I mentioned above.

Hashing in Digital Forensics
Beyond searching for contraband, over the past three decades,
digital forensics researchers have developed approaches to use
cryptographic hashes for authenticating evidence, searching
for file fragments, and even gauging file similarity. We can now
even search a hard drive for contraband data in less time than it
takes to read the hard drive’s contents! These more sophisticated
approaches have yet to be widely adopted, showing the difficulty
of moving techniques from the lab to the field.

There are many definitions of digital forensics, but most of them
link it to the recovery and analysis of digital information. Digital
forensics techniques have many uses, including data recovery,
event reconstruction, malware analysis, and even analyzing
systems for the leakage of personal information. One of the
best-known uses of digital forensics, though, is taking data from
devices that were used by criminals and using that data as evi-
dence in a court of law.

One of the early uses of cryptographic hash functions in digital
forensics was to certify that the copy of a hard drive made by an
investigator had not been changed after it was acquired. Foren-
sics software would make a copy of the hard drive, called a disk
image, and then compute the cryptographic hash of the disk
image. The investigator would then write this hash in ink into
their investigator’s notebook. Although the computer scientist in
me wishes that the early programs would have then signed this
hash with a private key, this pen-and-paper record provided suf-
ficient validation for US courts.

The fact that you could make two, five, or even 50 disk images
of the same hard drive and they would all have the same hash
engendered a lot of confidence in this basic digital forensics tech-
nique: a hashed disk image became the gold standard of digital
evidence preservation and created the assumption that the data
in the disk image was unchanged since the disk was seized from
the suspect. Of course, this assumption was wrong: a crooked
officer could easily have planted the incriminating evidence on

Bits 128 160 256 384 512

Family

MD5 1.45

SHA-1 1.03

SHA-2 2.18 1.48 1.48

SHA-3 2.65 3.45 4.90

Table 1: Time in seconds to hash 1 GiB using OpenSSL 1.1.1d on the author’s
2018 Mac mini

74 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

COLUMNS
SIGINFO: The Tricky Cryptographic Hash Function

the hard drive before it was imaged. Such malfeasance is rare,
fortunately, and there are other forensic techniques that can both
detect and defend against such behavior.

These days, hashes are still used to establish that data taken
from a digital device hasn’t been altered since it was originally
captured. However, the ability to repeatedly reimage a device and
consistently get the same hash is quickly fading. When a modern
operating system deletes a file, it can tell a solid state drive (SSD)
to proactively erase the associated flash storage pages using the
ATA TRIM command (called UNMAP in the SCSI command
set). The drive doesn’t immediately erase the page, but it may do
so in the future. If the disk is imaged before the pages are erased,
the disk image will contain the blocks’ now-deleted data. But if
the disk is left turned on, it may eventually erase these blocks.
If you image the SSD a second time, then the blocks that were
erased will now read as zeros, and the second image will have
a different hash than the first. It is also increasingly difficult to
get a “disk image” of a cell phone, as the data on many cell phones
is accessed through an API, rather than by mounting the cell
phone’s internal storage. Such file collections are sometimes
called “logical images.”

If you use a hash that is 160 bits long, you can split it into six num-
bers of 25 bits each (throw out the remaining 10). If you have an
array of 225 bits, you can store information relating to that hash by
setting the six indices to a 1. Although this is not an effective way
to uniquely store the original 160 bits, it has several advantages,
especially for digital forensics. If you assemble a list of file hashes
for a million stolen documents and store them all in a single 4 MiB
Bloom filter, only six million bits (at max) in that Bloom filter will
be set. Not only will the Bloom filter be much smaller than the list
of a million hashes (which would take up 20MiB, instead of 4MiB)
and is much more compressible, it’s also significantly faster to
search. Of course, when searching a Bloom filter there is always
the risk of a false positive—some other document might have a
hash that, when chopped into four parts, just happens to match
four other partial hashes. This kind of false positive can be an
advantage, though, if the files that you are hashing are highly
confidential: if the criminal who stole some of your confidential
documents manages to steal your Bloom filter, that person won’t
be able to reverse engineer the Bloom filter and have it spill the
hashes of all the documents that you consider sensitive. In either
event, the Bloom filter’s false positive rate can be tuned as needed
for the specific application.

My colleague Vassil Roussev spent several years working with
hashes and Bloom filters and developed a metric for determining
how similar two files are. The metric works by scanning files for
what Roussev called “statistically improbable features” and then
hashing a window of 64-bytes and storing the hash in a Bloom
filter. When a certain fraction of bits in the Bloom filter fill up,
Roussev’s algorithm starts on the next filter. With this system,

the similarity of two files is proportional to the number of bits
that are set in common in the filters. One of the neat things about
this system is that you can compare Bloom filters for a small file
and a very large file and find out if the small file resides inside the
larger file. This even works if the larger “file” is an image from a
multi-terabyte-sized disk array [6].

Roussev’s similarity digest overcomes a fundamental problem of
using cryptographic hashes to find files of interest. By design, if
you change just one bit of a file, the file ends up with a completely
different cryptographic hash. Such changes can be made inten-
tionally to thwart investigators. The similarity digest doesn’t
suffer from this problem.

In my own work, I found that a 4 KiB of data extracted from
most video files and JPEGs tends to be highly identifying, even
possibly unique. So my system chopped sensitive files into 4
KiB chunks, hashed them, and stored the hashes in a high-
performance database we built called hashdb. You can then
search a TB-sized drive to see if it holds any of the videos in your
collection by randomly sampling a small fraction of the drive’s
sectors, hashing them, and looking up the hashes in the database.
In theory, this would let us probabilistically search a TB-sized
drive for the presence of a sensitive video in just a few minutes
[7]. In practice, we found it too difficult to obtain sector hashes
of sensitive files due to organizational and administrative issues,
so we never deployed this technology.

Digital Timestamping
One use of cryptographic hashes that was pioneered in the 1990s
and is coming back into vogue is to use them as the basis of a
digital timestamping service.

The roots of using hashes for timestamping go back to 1989,
when a researcher at MIT accused Thereza Imanishi-Kari of
 scientific fraud and misconduct. One of the key allegations was
the data in laboratory notebooks had been fraudulently altered.
Both the US Congress and the US Department of Health and
Human Services (HHS) opened investigations. The US Secret
Service raided Dr. Imanishi-Kari’s lab and seized her notebooks.
Although the HHS Office of Research Integrity (ORI) concluded
that fraud had taken place, that finding was overturned on June
21, 1996, by the HHS Research Integrity Adjudications Panel,
which found that ORI “did not prove its charges by a preponder-
ance of the evidence” (a relatively low legal standard).

Stuart Haber and Scott Stornetta were cryptographers at Bell-
core (Bell Communications Research). They wanted some way
that cryptography could protect organizations from the allega-
tions that were flying around MIT of notebook alterations.

For those who have never worked in the physical sciences, let
me assure you that physical laboratory notebooks can be seri-
ous stuff. Research organizations might distribute individually

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 75

COLUMNS
SIGINFO: The Tricky Cryptographic Hash Function

serialized notebooks to their scientists, who are expected to date
and sign each page. Mistakes are supposed to be crossed out
with a single line, so that the erroneous entry can still be read.
Corrections must also be dated and signed. One reason for such
procedures is to establish clear evidence regarding the date that
something that is discovered or invented, which might one day be
a key fact in patent litigation. Such procedures are also designed
to protect against fraud.

Electronic laboratory notebooks would seem to offer none of
the protections of physical notebooks, since digital data can be
changed without a trace. One obvious approach is to hash a docu-
ment with a timestamp and sign the result with a secret key. The
problem with this approach is the holder of the secret key—call it
the timestamping agency (TSA)—must be trusted not to write a
fraudulent signature.

Haber and Stornetta came up with an approach that eliminated
the need to trust the timestamping agency. In their first pat-
ent (US 5,136,634, filed August 4, 1992), the TSA maintains a
special hash called the catenate value. When a new document
is to be timestamped, the TSA creates a receipt by hashing the
document’s hash with the current date. The TSA then takes this
receipt and hashes it with the previous catenate value to cre-
ate the next concatenate value. All of the hashes, with all the
timestamps, thus make up a hash chain. The system that they
ultimately developed, described in US Patent 5,781,629 (filed

References
[1] H. Stevens, “Hans Peter Luhn and the Birth of the Hash-
ing Algorithm,” IEEE Spectrum, January 30, 2018: https://
spectrum.ieee.org/tech-history/silicon-revolution/hans-peter
-luhn-and-the-birth-of-the-hashing-algorithm.

[2] R. S. Merkle, “Secrecy, Authentication and Public Key
Systems,” Technical Report No. 1979-1, Information Systems
Laboratory, Stanford Electronics Laboratories, Department of
Electric Engineering, Stanford University, June 1979: https://
www.merkle.com/papers/Thesis1979.pdf.

[3] W. Diffie and M. Hellman, “New Directions in Cryptogra-
phy,” IEEE Transactions on Information Theory, vol. 22, no. 6
(November 1976), pp. 644–654: https://doi.org/10.1109/TIT
.1976.1055638.

[4] Google’s announcement is at https://security.googleblog
.com/2017/02/announcing-first-sha1-collision.html. You can
download the two PDFs from https://shattered.it, where you
will also find a visualization of the file’s internals and links to
the program that produced the files.

[5] B. H. Bloom, “Space/Time Trade-offs in Hash Coding with
Allowable Errors,” Communications of the ACM, vol. 13, no. 7
(July 1970): pp. 422–426: https://doi.org/10.1145/362686.362692.

[6] V. Roussev, “Managing Terabyte-Scale Investigations with
Similarity Digests,” in G. Peterson and S. Shenoi, eds., Research
Advances in Digital Forensics VIII (Springer, 2012), pp. 19–34:
https://doi.org/10.1007/978-3-642-33962-2_2.

[7] J. Young, K. Foster, S. Garfinkel, and K. Fairbanks, “Distinct
Sector Hashes for Target File Detection,” IEEE Computer, vol.
45, no. 12 (December 2012): pp. 28–35.

[8] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash
System,” 2008.

[9] S. Haber and W. S. Stornetta, “How to Time-stamp a Digital
Document,” Journal of Cryptology, vol. 3, no. 2 (1991), pp. 99–111.

[10] A. Narayanan and J. Clark, “Bitcoin’s Academic Pedigree,”
Communications of the ACM, vol. 60, no. 12 (November 2017),
pp. 36–45: https://doi.org/10.1145/3132259.

February 21, 1997), arranges document hashes into a Merkle
Tree. The two founded a company called Surety, which is still
going strong today.

Satoshi Nakamoto, the pseudonymous author of the original
 Bitcoin paper [8], references Haber and Stornetta’s article [9]
as one of Bitcoin’s inspirations. For a list of other academic
 contributions that ended up in Bitcoin, see Narayanan and
Clark’s article in ACM Queue [10].

Finally, here is the puzzle from Stuart Haber:

Let’s say it is 2020 and you have a document D with a digital
timestamp certificate from 1997. The certificate is based on
MD5, a hash function that was secure then but today suffers
from known collision attacks, although the algorithm is still pre-
image resistant. What do you do? You could certainly timestamp
the document today, but that doesn’t prove that it was around
back in 1997. How do you renew the timestamp in a way that’s
mathematically defensible?

The solution, says Haber, is to timestamp the concatenation of
the 1997 document and its 1997 digital certificate. Because MD5
is still believed to be pre-image resistant, we can’t make a docu-
ment today that has the same MD5 of an arbitrary document from
1997. Timestamping the concatenation today proves to the future
that both exist today, and the certificate from 1997 proves today
that the document must have existed back in 1997.

https://spectrum.ieee.org/tech-history/silicon-revolution/hans-peter-luhn-and-the-birth-of-the-hashing-algorithm
https://spectrum.ieee.org/tech-history/silicon-revolution/hans-peter-luhn-and-the-birth-of-the-hashing-algorithm
https://spectrum.ieee.org/tech-history/silicon-revolution/hans-peter-luhn-and-the-birth-of-the-hashing-algorithm
https://www.merkle.com/papers/Thesis1979.pdf
https://www.merkle.com/papers/Thesis1979.pdf
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html
https://shattered.it
https://doi.org/10.1145/362686.362692
https://doi.org/10.1007/978-3-642-33962-2_2
https://doi.org/10.1145/3132259

76 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

COLUMNS

Programming Workbench
Compressed Sparse Row Format for Representing Graphs

T E R E N C E K E L L Y

Terence Kelly studied computer science at
Princeton and the University of Michigan,
followed by a long stint at Hewlett-Packard
Laboratories. Kelly now writes code and
documentation promoting persistent memory
programming and other programming
techniques. His past publications—some of
tragicomic interest only—are listed at
http://ai.eecs.umich.edu/~tpkelly/papers/.
tpkelly@eecs.umich.edu.

W elcome to the second installment of Programming Workbench.
Today’s topic is compressed sparse row (CSR) format, a compact
and efficient way to represent graphs in memory. As usual, all

example code is available in machine-readable form [6].

Graphs provide a generic abstraction that finds numerous applications for modeling connect-
edness and ordering in computing systems. Undirected graphs, for example, can represent
communications links among computers; directed graphs can encode dependencies or prece-
dence constraints in software compilation, software package installation, and job scheduling
problems. Top computer science textbooks emphasize two ways of representing graphs in
memory: adjacency matrices and adjacency lists [1, 8]. Today we’ll consider other options that
offer different tradeoffs and sometimes provide significant advantages. In particular we’ll
see that compressed sparse row (CSR) format—a compact and memory-hierarchy-friendly
graph representation—is sometimes the format of choice. Understanding CSR in detail
rounds out a programmer’s education and informs the buy-or-build decisions that routinely
confront practitioners.

We’ll begin in the next section by reviewing ways of representing graphs, including CSR.
Then we’ll walk through a working C11 program that converts an edge list representation of
a graph into CSR format. Finally we’ll conclude by suggesting extensions and exercises to
help better understand the tradeoffs surrounding CSR. For brevity, we’ll restrict attention to
unweighted directed graphs, but we thereby lose little generality: an undirected edge can be
represented by two directed edges in opposite directions, and adding edge weights to a CSR
representation is easy.

Graph Representations
Figure 1(a) shows a directed graph that we’ll use as a running example. We follow the conven-
tion that vertexIDs range from 1 to V inclusive, where V is the total number of vertices. The
example graph contains V=9 vertices and E=9 directed edges. For example, there’s a directed
edge from vertex 2 to vertex 1, shown as an arrow near the top of Figure 1(a). Vertices 5 and 9
have in-degree zero and out-degree zero, i.e., they have neither incoming nor outgoing edges.
Zero-degree vertices arise naturally in applications; for example, they may represent soft-
ware packages with no dependencies or compute jobs with no precedence constraints.

Rather than treating zero-degree vertices as special cases, removing them and/or handling
them “out of band,” we’ll take the simpler approach of representing them straightforwardly.
Self edges, i.e., edges that point from a vertex to itself, do not appear in our example, but they
pose no special difficulties for the graph representations discussed below. We omit self edges
for brevity; they arise relatively infrequently in applications of practical interest.

In many practical applications, a graph is given as a file that essentially contains an edge list
of “from”/“to” vertexID pairs, possibly mummified in a more elaborate format such as XML
or JSON. Figure 1(b) shows an edge list representation of our example graph. The first line
in the list, “2 1,” represents the directed edge from vertex 2 to vertex 1. Zero-degree vertices,
such as 5 and 9 in our example, don’t appear in an edge list, so metadata accompanying the

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 77

COLUMNS
Programming Workbench: Compressed Sparse Row Format for Representing Graphs

edge list must ensure that zero-degree vertices don’t go missing:
Thanks to our vertexID convention, simply knowing V ensures
that we don’t overlook zero-degree vertices. For clarity, Figure 1(b)
shows a sorted edge list, but edge lists seldom arrive sorted in
practical applications.

Figure 1(c) depicts a standard textbook adjacency matrix rep-
resentation of our example graph. A directed edge from vertex
i to vertex j appears as a “1” at row i, column j of the adjacency
matrix; all other matrix entries are zero (not shown for clarity).
An adjacency matrix is efficient for some operations, such as
testing in constant time whether an edge connects a given pair of
vertices. The major downside of adjacency matrix representation
is that it requires O(V2) bits even for sparse graphs in which most
vertex pairs are not connected by an edge. Sparse graphs arise
frequently in practice, and for large sparse graphs an adjacency
matrix wastes too much memory on zero entries.

The representation that most textbooks recommend for sparse
graphs uses adjacency lists, shown in Figure 1(d). On the left is
an array of pointers indexed by “from” vertexID; each pointer is
the head of a singly linked list of “to” vertexIDs. Adjacency lists
are f lexible—it’s easy to add or delete vertices—and they are

indeed more compact than adjacency matrices for sparse graphs.
However they entail unfortunate time and space overheads of
their own: space overheads include the “next” pointer in every
list node; list nodes will also carry allocator overheads if a
general-purpose allocator like malloc() creates them. We suffer
time overheads when we traverse an adjacency list because we
must chase pointers across the address space, creating random
memory accesses that today’s computers penalize heavily
compared with sequential accesses. If we transform an unsorted
edge list representation into dynamically allocated adjacency
lists in the straightforward way, the list nodes for each adjacency
list will be scattered across the heap, exacerbating the pointer-
chasing problem.

Using C++ Standard Template Library <vector>s instead of
linked lists might seem like one way to reduce the overheads of
adjacency lists. Figure 1(e) shows the resulting adjacency vec-
tors representation. As with adjacency lists, an array indexed
by “from” vertexID contains entry points to <vector>s of “to”
vertexIDs. The dashed oval at the bottom of Figure 1(e) encloses
the <vector> of vertexIDs adjacent to vertex 8. A <vector> is
typically implemented as a two-part structure consisting of a

Figure 1: Textbook representations of running example, a directed graph with nine vertices and nine edges. The C++ STL <vector> depicted within the
dashed oval in Figure 1(e) is a two-part data structure: a partially filled data array, on the right, located via the header on the left, which contains the capacity
of the data array, the number of positions in the array occupied by user data (which may be less than the capacity, as shown here), and a pointer to the data
array itself. The header of the <vector> enclosed by the dashed oval indicates that the data array can hold two integers but is currently holding only one.
This <vector> represents the adjacencies of vertex 8, and the lone integer contained in the data array corresponds to the directed edge from vertex 8 to
vertex 4, i.e., the last line of the edge list in Figure 1(b).

78 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

COLUMNS
Programming Workbench: Compressed Sparse Row Format for Representing Graphs

header containing the number of allocated entries, the number of
occupied entries, and a pointer to an array of the entries them-
selves [10]. If we read a graph given as an edge list into adjacency
<vector>s in the straightforward way, each <vector> grows
as vertexIDs are added to it. Implementations typically double
allocated capacity each time a <vector> fills up as it grows. The
result is that up to roughly half of the allocated capacity of each
vector can be unused; this waste may erode the benefits of reduc-
ing pointer and allocator overheads compared with adjacency
lists. On the positive side, <vector>s reduce the time overhead
of chasing pointers because they store adjacent vertexIDs in
compact arrays.

The representations shown in Figure 1 don’t exhaust all of the
possibilities. For example, we sometimes need fast access to
the incoming as well as the outgoing edges of a vertex, which is
easy to arrange by associating a second adjacency list with each
vertex. And nothing prevents us from using both an adjacency
matrix and adjacency lists or <vector>s simultaneously, if we
have sufficient memory. Using both representations yields the
strengths of both: constant-time queries to test the existence of
an edge between a given pair of vertices, and efficient access to
the adjacent vertices of a given vertex.

Compressed Sparse Row Format
CSR originated in high-performance scientific computing as a
way to represent sparse matrices, whose rows contain mostly
zeros. The basic idea is to pack the column indices of non-zero
entries into a dense array. CSR is more compact and is laid out
more contiguously in memory than adjacency lists and adjacency
<vector>s, eliminating nearly all space overheads and reducing
random memory accesses compared with these other formats.
The price we pay for CSR’s advantages is reduced flexibility: add-
ing new edges to a graph in CSR format is inefficient, so CSR is
suitable for graphs whose structure is fixed and given all at once.
CSR also carries a cognitive overhead: it’s trickier than the other

formats we’ve reviewed, and it uses arrays in FORTRANesque
ways seldom seen in systems-y C/C++ code or in mainstream
Java code. We’ll walk through it slowly.

Figure 2 depicts the CSR representation of our example graph.
First we’ll consider the specifics of how CSR encodes a hand-
ful of the example graph’s structural features, and then we’ll
describe CSR in more general terms. Like the textbook sparse-
graph representations discussed earlier, CSR facilitates finding
the adjacencies of a given vertex, i.e., the vertices at the “to” ends
of edges emanating out of a given “from” vertex. CSR finds adja-
cencies using two layers of array indexing.

The CSR depicted in Figure 2 contains V, E, and two arrays of
integers, N and F. Notice that F presents horizontally the same
sequence of “to” vertexIDs that appear vertically in the right-
hand column of the sorted edge list of Figure 1(b). Given a “from”
vertexID, we find all corresponding “to” vertexIDs by indexing
into F via N. We’ll walk through the process of finding the adja-
cencies of the first three vertices in our example graph to gain
intuition for how CSR encodes graph structure.

The out-degree of vertex 1 is encoded as the difference between
N[1] and N[2]. Since N[1] equals N[2]—both are zero—the out-
degree of vertex 1 is zero, so there are no adjacent vertices to be
found. The out-degree of vertex 2 is N[2] subtracted from N[3],
which is 3. The IDs of the three vertices adjacent to vertex 2 are
in array F starting at position N[2], i.e., at F[0], as indicated by
the dotted arrow in Figure 2 from N[2] to F[0]. The out-degree of
vertex 3 is the difference between N[3] and N[4], which is three;
the IDs of the three vertices adjacent to vertex 3 begin at position
N[3] in F, i.e., at F[3], as shown by a second dotted arrow in Figure
2. The figure contains a dotted arrow for every vertex with out-
degree greater than zero; the arrowheads partition F into four
sub-arrays of adjacencies.

In general, the out-degree of any vertex a is N[a+1] minus N[a].
The IDs of the vertices adjacent to a are located in array F start-
ing at F[N[a]] and continuing through F[N[a+1]-1] inclusive.
In other words, the entries of N, indexed by “from” vertexID,
“point to” contiguous regions of F containing the adjacent “to”
vertexIDs. Array F contains E entries, one for each edge. Array
N contains V+2 entries: N[0] is unused and N[V+1] contains E.
The total amount of memory required for CSR format is almost
exactly equal to sizeof(int) multiplied by (V+E), so it’s easy to
determine if available memory is adequate based on a graph’s size
parameters.

If E exceeds INT_MAX, a larger integer type, e.g., int64_t, must be
used for the elements of N, because the entries of N refer to posi-
tions in E-long array F and the last entry of N contains E. Simi-
larly, F must use a sufficiently large type to represent vertexIDs
up to V. Moreover it’s actually best to choose a type for vertexIDs

Figure 2: Compressed sparse row (CSR) representation of example graph.
The vertices adjacent to vertex a are stored in positions N[a] through
N[a+1]-1 of array F. For example, consider vertex 2 from Figure 1(a):
directed edges extend from vertex 2 to vertices 1, 6, and 8. N[2] is zero,
so the adjacencies of vertex 2 start at F[0]; N[2+1]-1 is 2, so they extend
through F[2]. F[0] through F[2] contain the expected vertexIDs: 1, 6,
and 8.

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 79

COLUMNS
Programming Workbench: Compressed Sparse Row Format for Representing Graphs

such that V is strictly less than the MAX of the type, because V+1 is
used as an index into N. Unsigned integer types may be used for
arrays N and F, though signed integer types might be preferable,
e.g., if we want to catch signed overflow errors at runtime with a
compiler flag like GCC’s -ftrapv.

CSR offers different tradeoffs than alternative formats. On the
positive side, it eliminates memory allocation overheads almost
completely. Furthermore, while array N contains the moral equiv-
alent of pointers, they can be smaller than conventional pointers
(32 vs. 64 bits), depending on the size of E and the relative sizes
of ints and ordinary C pointers. The IDs of vertices adjacent to a
given vertex are contiguous in F, so visiting all adjacent vertices
involves zooming through an array, which is much faster on
modern computers than chasing pointers down an adjacency list.
While adding a new edge to a CSR representation isn’t efficient—
it would require insertion into the middle of F, which would take
O(E) time on conventional memory [3]—deleting an edge is quick
and easy: to delete an edge, simply set its entry in F to zero, which
is not a valid vertexID, and ignore zero entries in F.

CSR isn’t magic. When applied to the kinds of graphs that arise
naturally in practical applications, many important graph algo-
rithms, including traversal algorithms such as breadth-first
search and depth-first search, must inevitably perform random
memory accesses. CSR can’t eliminate random memory accesses
that are inherent to the computational task at hand; it can merely
avoid introducing additional random accesses that arise as side
effects of the format.

The Code
The C11 program listed in this section, “el2csr.c,” converts an
edge list representation of an unweighted directed graph to CSR
format; the source code is available at [6]. We’ll discuss every-
thing substantive, skipping boilerplate like #includes. The pur-
pose of the example code is to illustrate CSR format, so it avoids
niceties for brevity and clarity.

The macros below handle error checking. BAIL() prints an error
message prefixed by the file name and line number where it is
called then exit()s. CAL() calls calloc() and bails if allocation
fails.

#define ERRSTR strerror(errno)
#define S1(s) #s
#define S2(s) S1(s)
#define COORDS __FILE__ ":" S2(__LINE__) ": "
#define BAIL(...) \
 do { fprintf(stderr, COORDS __VA_ARGS__); \
 exit(EXIT_FAILURE); } while (0)
#define CAL(p, n, s) \
 do { if (NULL == ((p) = (int *)calloc((n), (s)))) \
 BAIL("calloc(%lu, %lu): %s\n", (n), (s), ERRSTR);\
 } while (0)

Readers may recall from the previous Programming Workbench
column a function-like macro called “DIE()” that differs from
BAIL() above but serves a similar purpose. The contrast between
the two stems from differences in how they are used and from
differences in the programs they inhabit. DIE() is used exclu-
sively to handle failed library calls, and thus it is adequate for
DIE() to report only the name of the failed call via perror(). By
contrast, BAIL() is sometimes used to check user input, so it
supports flexible printf()-like formatting of more informative
diagnostics, such as the input line number where a parse error
occurs. DIE() is used in multithreaded code where failed library
calls may arise from Heisenbugs, so it aborts with a core dump to
facilitate debugging. BAIL() serves a simple single-threaded pro-
gram and is used in situations where a core dump would not be
very helpful, so it merely calls exit(). DIE() expands to an expres-
sion because it is used in contexts that demand expressions, but
BAIL()’s simpler role allows it to expand into a statement block,
which is easier to understand.

The following struct will eventually contain a CSR representa-
tion of a graph. The roles of V, E, N, and F are as described in the
previous section.

static struct {
 int V, // max vertexID; valid vertexIDs are [1..V]
 E, // total number of edges
 *N, // indexed by "from" ID; outdeg(v) == N[1+v]-N[v]
 *F; // "to" vertexIDs accessed via N[]
} CSR;

For brevity we consider only unweighted graphs, but it’s easy
to handle edge weights: add to the struct CSR above an E-long
dynamically allocated array of weights—one weight for every
edge in array F. Note that such edge weights can be updated effi-
ciently; they need not be completely static.

One way to understand CSR format is to study the function
below, which prints a text representation of the graph in the
struct above. The outer for loop iterates over all vertexIDs
a. The inner for loop iterates over all vertexIDs b such that a
directed edge exists from a to b. Pointers begin and end delimit
the part of array F containing a’s adjacent vertexIDs.

static void print_adjacencies(void) {
 printf("per-vertex adjacencies:\n");
 for (int a = 1; a <= CSR.V; a++) {
 int *begin = CSR.F + CSR.N[a],
 *end = CSR.F + CSR.N[1+a];
 printf("%d:", a);
 for (int *b = begin; b < end; b++)
 printf(" %d", *b);
 printf("\n");
 }
}

80 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

COLUMNS
Programming Workbench: Compressed Sparse Row Format for Representing Graphs

Our struct CSR contains ordinary int variables, which are 32
bits long on many computers. In practice we may encounter
graphs with many billions of vertices and edges, so when the user
enters graph size parameters V and E on our program’s command
line, we verify that they both fit in an int—with room to spare,
because we index into array N using values up to V+1. Function
s2i() below performs string-to-int conversions carefully and
gripes if it encounters weirdness of any kind. The C11 static_
assert feature confirms at compile time our assumption that the
largest integer type is larger than an int.

static_assert(sizeof(intmax_t) > sizeof(int), "int sizes");
static int s2i(const char *s) {
 char *p; intmax_t r;
 errno = 0;
 r = strtoimax(s, &p, 10);
 if (0 != errno || '\0' != *p || 0 >= r || INT_MAX <= r)
 BAIL("s2i(\"%s\") -> %" PRIdMAX ", errno => %s\n",
 s, r, ERRSTR);
 return (int)r;
}

The main() function begins by declaring a few variables and
checking user-supplied command-line arguments, then open-
ing the file containing the edge list representation of the input
graph. Reading V from the command line, as opposed to inferring
it from the largest vertexID on the edge list, accommodates zero-
degree vertices with IDs greater than any on the edge list, like
vertex 9 in our example graph.

int main(int argc, char *argv[]) {
 int a, b, line = 0, t = 0;
 FILE *fp;

 if (4 != argc)
 BAIL("usage: %s V E edgelistfile\n", argv[0]);
 CSR.V = s2i(argv[1]);
 CSR.E = s2i(argv[2]);
 if (NULL == (fp = fopen(argv[3], "r")))
 BAIL("fopen(\"%s\"): %s\n", argv[3], ERRSTR);

Next, we allocate memory for the N and F arrays using the CAL()
macro, which calls calloc(). As explained above, array N is of size
V+2 because it is indexed with integers up to V+1.

 CAL(CSR.N, 2 + (size_t)CSR.V, sizeof *CSR.N);
 CAL(CSR.F, (size_t)CSR.E, sizeof *CSR.F);

We make two passes over the input file to construct CSR format.
The first pass, below, verifies the sanity of each vertexID pair
and stores the out-degree of each vertex in array N; later N will be
altered to play its role in CSR format as described in the previous
section. We check for flagrant parse errors and verify that the E
given on the command line matches the length of the input file.

 while (2 == fscanf(fp, "%d %d\n", &a, &b)) {
 line++;
 if (0 >= a || a > CSR.V || 0 >= b || b > CSR.V)
 BAIL("%d: bad vertexID: %d %d\n", line, a, b);

 if (a == b)
 fprintf(stderr, "%d: warning: self edge\n", line);
 CSR.N[a]++;
 }
 if (! feof(fp))
 BAIL("parse error after %d lines: %s\n", line, ERRSTR);
 if (line != CSR.E)
 BAIL("%d input lines != %d edges\n", line, CSR.E);

The standard fscanf() function used above silently performs
incorrect conversions if the input vertexIDs are too large. For
example, on my system fscanf() happily converts 4,294,967,299
to 3 without complaint. Performing conversions more carefully,
e.g., with the s2i() function that we saw earlier, would substan-
tially increase the overhead of parsing the input. Instead we
warn users that it’s their responsibility to ensure that vertexIDs
on the input edge list must not exceed the V argument supplied on
the command line, which is checked carefully by s2i().

This next bit of code updates the contents of array N to contain
cumulative out-degrees. After the code below executes, N[a] con-
tains the sum of the out-degrees of vertices 1 through a inclusive.
N[V+1] contains the sum over all vertices of their out-degrees, i.e.,
the number of edges E.

 for (a = 1; a <= CSR.V; a++) {
 t += CSR.N[a];
 CSR.N[a] = t;
 }
 CSR.N[a] = t;
 assert(CSR.N[1 + CSR.V] == CSR.E);

We’re still not done with array N, because at this point each entry
N[a] is too large by the out-degree of vertex a. Our second and
final pass over the input fixes the problem. The second pass adds
edges to F while walking the moral-equivalent-of-pointers in N
back to their final correct CSR values.

 rewind(fp);
 while (2 == fscanf(fp, "%d %d\n", &a, &b))
 CSR.F[--CSR.N[a]] = b; // add directed edge a -> b

 if (0 != fclose(fp))
 BAIL("fclose(): %s\n", ERRSTR);

Sorting the outgoing edges of each vertex isn’t strictly necessary,
but we’ll do it anyway because it makes it easy to detect duplicate
edges. Furthermore it allows us to perform a binary search on
each vertex’s adjacencies in O(log D) time, where D is the average
out-degree. Would it be easier to sort the input edge list rather
than sorting the adjacencies of each vertex? That might be con-
ceptually simpler and easier to implement, but it would be asymp-
totically less efficient: sorting the edge list with a general method
such as qsort() would would require O(E log E) time, whereas
sorting the adjacencies of each vertex requires O(V D log D) time;
the latter is typically smaller. The integer comparison function
below, icmp(), seems prone to overflow in the subtraction opera-
tion—consider INT_MAX minus negative one—but overflow can’t

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 81

COLUMNS
Programming Workbench: Compressed Sparse Row Format for Representing Graphs

happen in our program because all of the integers being sorted
are non-negative.

static int icmp(const void *a, const void *b) {
 return *(const int *)a - *(const int *)b;
}
...
 for (a = 1; a <= CSR.V; a++)
 qsort(CSR.F + CSR.N[a],
 (size_t)(CSR.N[1+a] - CSR.N[a]),
 sizeof *CSR.F, icmp);

Now that we’ve constructed CSR format, we dump it for inspec-
tion and then print per-vertex adjacencies using the function we
defined earlier:

 printf("dump CSR format:\n"
 "V = %d E = %d\n"
 "N: ", CSR.V, CSR.E);
 for (a = 0; a <= 1 + CSR.V; a++)
 printf(" %d", CSR.N[a]);
 printf("\n"
 "F: ");
 for (a = 0; a < CSR.E; a++)
 printf(" %d", CSR.F[a]);
 printf("\n");

 print_adjacencies();

Our final chore before terminating is to deallocate arrays N and F:

 free(CSR.N);
 free(CSR.F);

 return 0;
}

Running el2csr on our example graph yields the expected results:

% ./el2csr 9 9 example_graph.txt
dump CSR format:
V = 9 E = 9
N: 0 0 0 3 6 6 6 6 8 9 9
F: 1 6 8 1 6 7 2 4 4
per-vertex adjacencies:
1:
2: 1 6 8
3: 1 6 7
4:
5:
6:
7: 2 4
8: 4
9:

The example code tarball contains a random graph generator and
a test script in addition to el2csr.c. The test script compiles the
random graph generator and compiles el2csr in a special test
mode that dumps an edge list representation of the input graph to
a file. The test script then feeds many random graphs to el2csr
and verifies that in each case the edge list regurgitated by el2csr
is byte-for-byte identical to the sorted input file.

Persistence
Converting an edge list to CSR format takes time—parsing
textual input can be orders of magnitude slower than running a
graph analysis algorithm—and it would be wasteful to perform
the conversion more often than necessary. It’s usually best to
store the binary CSR representation of the graph in a file for
future use. One way would be to write() variables V and E and
arrays N and F to a file. An easier and more elegant approach is to
employ “the persistent memory style of programming” [4, 5]: lay
out the data structures in a file-backed memory mapping using
msync() to persist the data after constructing a CSR representa-
tion and later using mmap() to load the file containing CSR back
into memory as needed. This is convenient and is often the most
efficient way to handle graphs in practical applications, because
after the initial conversion to CSR format no further parsing
or serializing is ever needed. The CSR file is in the compact
in-memory format used by subsequent analyses, which access
the data via LOAD instructions after mmap()-ing the file into
memory.

Other Implementations
The Boost Graph Library [9] offers C++ implementations of many
graph algorithms, and it supports several graph formats includ-
ing adjacency lists and CSR. BGL emphasizes generic program-
ming and is written in a different style from my example code;
comparing the two may lead the reader to additional insights.
Galois is a platform for parallel computation that includes
substantial support for graphs [2]. Distributed/scale-out graph
analysis platforms were blooming like mushrooms in the research
community several years ago; many were so grotesquely ineffi-
cient that they are of tragicomic interest only [7].

Going Further
Extending my example code can be an informative exercise.
You can avoid the time overhead of parsing the input edge list
on the second pass by converting it to a temporary binary edge
list on the first pass. Adding support for weighted edges is easy.
To appreciate the benefits of CSR format over adjacency lists or
adjacency <vector>s, compare their memory footprints on real or
randomly generated graphs. Similarly, compare the runtimes of
standard graph algorithms on the different formats.

Random graph generators are often used for testing and per-
formance benchmarking because they make it easy to sweep
key graph parameters such as size, average degree, and density.
Storing large random graphs in short-lived files can be slow,
awkward, and cluttery, but an easy trick avoids the need to cre-
ate files, even when their consumer must make multiple passes
over each: run multiple instances of the random graph generator
as background jobs that spit identical byte streams into named
pipes, one pipe for every pass needed by the consumer. For

82 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

COLUMNS
Programming Workbench: Compressed Sparse Row Format for Representing Graphs

References
[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, 3rd edition (MIT Press, 2009).

[2] “Galois”: https://iss.oden.utexas.edu/?p=projects/galois.

[3] T. Kelly, H. Kuno, M. Pickett, H. Boehm, A. Davis, W.
Golab, G. Graefe, S. Harizopoulos, P. Joisha, A. Karp, N.
Muralimanohar, F. Perner, G. Medeiros-Ribeiro, G. Seroussi,
A. Simitsis, R. Tarjan, and S. Williams, “Sidestep: Co-
Designed Shiftable Memory and Software,” HP Labs Tech
Report HPL-2012-235, November 2012: https://www.labs
.hpe.com/techreports/2012/HPL-2012-235.pdf.

[4] T. Kelly, “Persistent Memory Programming on Conven-
tional Hardware,” ACM Queue, vol. 17, no. 4 (July/August
2019): https://queue.acm.org/detail.cfm?id=3358957.

[5] T. Kelly, “Good Old-Fashioned Persistent Memory,”
;login:, vol. 44, no. 4 (Winter 2019): https://www.usenix.org
/publications/login/winter2019/kelly.

[6] T. Kelly, Example code to accompany this article: https://
www.usenix.org/sites/default/files/kelly_csr_code.tar.gz.

[7] F. McSherry, M. Isard, and D. G. Murray, “Scalability! But
at what COST?” 15th USENIX Workshop on Hot Topics in
Operating Systems (HotOS ’15): https://www.usenix.org
/system/files/conference/hotos15/hotos15-paper-mcsherry
.pdf.

[8] R. Sedgewick and K. Wayne, Algorithms, 4th edition
(Addison-Wesley, 2011).

[9] J. G. Siek, L. Q. Lee, and A. Lumsdaine, The Boost Graph
Library: User Guide and Reference Manual (Addison-Wesley,
2002).

[10] B. Stroustrup, The C++ Programming Language, 4th edi-
tion (Addison-Wesley, 2013). See p. 888 for the representation
of <vector>s.

example, if the el2csr program listed above is the consumer, it
would be modified to read two identical byte streams from two
named pipes supplied on the command line—an easy exercise.
This approach preserves a clean separation of responsibilities
between graph generator and graph consumer while avoiding the
fuss of large temporary files.

Conclusion
Compressed sparse row is typically the best format for sparse
graphs, provided that new edges aren’t added and relatively few
edges are deleted. CSR is compact, avoiding the memory waste of
adjacency lists and <vector>s, and its memory footprint can be
calculated directly from V and E. CSR is furthermore contiguous
in memory, eliminating the time overhead of pointer chasing. It’s
easy to persist CSR in memory-mapped files, and CSR is conve-
nient once you become accustomed to it. The two-pass construc-
tion approach implemented above is asymptotically faster than
sorting an edge list.

Graphs are essentially simple, and coding graph algorithms can
be positively pleasant. The next time you’re faced with a problem
involving graphs, consider solving it by writing your own code
instead of using someone else’s software; the result might well
be superior overall. Please share your experiences and feedback
with me!

https://iss.oden.utexas.edu/?p=projects/galois
https://www.labs.hpe.com/techreports/2012/HPL-2012-235.pdf
https://www.labs.hpe.com/techreports/2012/HPL-2012-235.pdf
https://queue.acm.org/detail.cfm?id=3358957
https://www.usenix.org/publications/login/winter2019/kelly
https://www.usenix.org/publications/login/winter2019/kelly
https://www.usenix.org/sites/default/files/kelly_csr_code.tar.gz
https://www.usenix.org/sites/default/files/kelly_csr_code.tar.gz
https://www.usenix.org/system/files/conference/hotos15/hotos15-paper-mcsherry.pdf
https://www.usenix.org/system/files/conference/hotos15/hotos15-paper-mcsherry.pdf
https://www.usenix.org/system/files/conference/hotos15/hotos15-paper-mcsherry.pdf

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 83

COLUMNS

“Without data, you’re just another person with an opinion.”

—W. Edwards Deming

It is tempting to tune out the cyberattack news cycle, dismissing the
seemingly random assortment of reported attacks as nothing more
than chance encounters of lucky defenders with unlucky attackers. It

is easy to see the noise. It takes more effort—what amounts to digital wad-
ing—to find the signal, especially when dealing with public reporting on
cyber attacks, but wade we did to assess the extent of software supply chain
attacks. These attacks prey on the trust that makes code reuse possible and
that produces the modern software cornucopia enjoyed by software develop-
ers and consumers alike.

We read of the event-stream attack [1] where an individual with malicious intent took over
a popular JavaScript library and slipped code that steals cryptocurrency wallet credentials
into a dependency of the associated npm package; ShadowHammer [2] in which a back-doored
update utility with a legitimate certificate was distributed through official channels; and
of barrages of typosquatting attacks on package registries [3] such as npm, RubyGems, and
PyPI. Learning about these incidents led us to collect and review reports of software sup-
ply chain attacks in order to better understand the characteristics of these incidents and
trends. While doing so, we also noticed the emergence of more systematic research. There’s
been measurement of the susceptibility of package manager users to typosquatting [4], the
creation of a sophisticated malware detection pipeline for package managers [5], the building
of a package manager download client that protects users from malware [6], and other efforts
to gather and classify reports of software supply chain compromises [7–9].

We collected our data set in order to answer basic questions about software supply chain
attacks such as: How frequent are known instances of attacks? What is the relative occur-
rence of different attack types? What is the length of time from initial deployment of such
attacks to public discovery? However, while attempting to obtain these quantitative metrics,
we were also faced with more fundamental, qualitative questions, like: What is (and is not)
considered a software supply chain attack? What are the definitions of different attack types?
How should attack impact be defined and measured? We report on how we built this data set,
answer the quantitative questions that we set out to understand, and then, based on these
findings, offer some thoughts on how to use data to combat software supply chain attacks.

Software Supply Chain Compromises: Data Set and Analysis
We built a data set based on public reporting of software supply chain security compromises,
which is available at https://github.com/IQTLabs/software-supply-chain-compromises.
This data set defines software supply chain attacks as attacks that intentionally insert mali-
cious functionality into build, source, or publishing infrastructure or into software compo-
nents with the goal of propagating that malicious functionality through existing distribution
methods. Exploiting a vulnerability found within a software’s supply chain was insufficient

For Good Measure
Counting Broken Links: A Quant’s View of Software Supply
Chain Security

D A N G E E R , B E N T Z T O Z E R , A N D J O H N S P E E D M E Y E R S

Dan Geer is a Senior Fellow
at In-Q-Tel and a security
researcher with a quantitative
bent. He has a long history
with the USENIX Association,

including officer positions, program
committees, etc. dan@geer.org

Bentz Tozer is a Senior Member
of Technical Staff in In-Q-
Tel’s Cyber Practice, where
he identifies and works with
startups with the potential for

high impact on national security. In previous
roles, he has performed security research
and software development with a focus on
IoT devices and embedded systems. He has
a PhD in systems engineering from George
Washington University. btozer@iqt.org

John Speed Meyers is a Data
Scientist in IQT Labs and a
researcher who focuses on
cybersecurity, especially
network traffic analysis and

software supply chain security. He holds a
PhD in policy analysis from the Pardee RAND
Graduate School. He’s ambivalent about
computers. jmeyers@iqt.org

84 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

COLUMNS
For Good Measure—Counting Broken Links: A Quant’s View of Software Supply Chain Security

to merit inclusion. We attempted to count three different units
of software supply chain security compromise: attacks, reports,
and incidents. An “attack” is a distinct action to compromise a
software supply chain, e.g., deliberate introduction of a vulner-
ability into source code. A “report” is a public disclosure of one
or more software supply chain attacks, e.g., a blog post from a
security researcher who has identified the existence of an attack
in an open source library. An “incident” is a single instance of
an attack reaching a target, e.g., the download of a compromised
application from a download server. In effect, we hoped to use
“incident” as a measurement of the impact of an “attack.”

Figure 1 describes the trend of reports and attacks by the year
in which the report or attack was announced, a decision that
reflects the limited data available about the starting date of many
of these attacks. The number of reports and attacks has been
increasing over time; though included here, years before 2010
include only a count of one in 2003 and one in 2008. Because
reporting can be delayed, 2020 and, perhaps, 2019 may be under-
counted as yet. (The lines are power-law fits; the exponent is 1.2
for count of reports and 2.5 for count of attacks.)

Table 1 groups these reports and attacks into major and minor
categories based on the actions of the attacker, not the perspec-
tive of the victim. These categories were inf luenced by the
work of the “in-toto” project [7] but were adapted and extended
organically while collecting this data set and do not represent

any established classification scheme. The development of a
standard taxonomy in the future would be beneficial.

Table 1 tentatively suggests that there is an inverse relationship
between the estimated level of effort required to execute an
attack type and the frequency of reported attacks of that type.
For example, 41 percent of attacks in our data set are classified
as typosquatting, which merely requires the attacker to create
an account on a package registry, identify unclaimed package
names that are plausible misspellings of legitimate packages,
and publish the malicious package under those names. On the
other end of the spectrum, a build system compromise is one of
the least common attack types in our data set, perhaps because
it involves several challenging steps, including obtaining access
to a target’s build environment and introducing a compromised
component into the build process without being detected. As
we discuss below, while the success of an attack is difficult to
objectively define and measure, it seems possible that the effort
required to successfully deploy an attack is directly proportional
to the number of incidents, with typosquatting attacks affecting
fewer individuals than a build system compromise like Shadow-
Hammer. This indicates that increasing the level of effort
required to successfully deploy attacks on software registries
could significantly reduce the quantity of reported software
 supply chain attacks.

Figure 1: The number of reports and attacks by year reported

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 85

COLUMNS
For Good Measure—Counting Broken Links: A Quant’s View of Software Supply Chain Security

Data on incidents is not consistently available, and metrics are
not consistent across attack types, making quantitative analysis
across this data set infeasible. For example, download metrics
were sometimes available for a malicious package accessible
on a software registry, but the number of victims and number
of times the package was executed after download are gener-
ally unknown. In other cases, a lower bound on the number of
compromised applications has been reported, but the extent of
propagation is unknown. However, the limited data that is avail-
able indicates the potential for widespread impact. In the case
of the event-stream attack, there were over 7 million package
downloads reported for the 53 days it was available on npm, and
some unknown number of those downloads were of the compro-
mised version, rather than older, non-malicious versions. For
ShadowHammer, Kaspersky, which identified and reported the
attack, stated that the attack affected over 57,000 of their users
and estimated that the attack was distributed to over 1 million
people. In the case of the typosquatting attacks identified by
Perica and Zekić, the one package where information is reported
was downloaded over 1700 times over nearly two years. While
details are limited, it is clear that the potential force multiplica-
tion caused by the propagation of an attack through existing
software delivery methods is highly appealing to attackers.

Another way to measure the success of a software supply chain
compromise is the length of time it is active. Known as “dwell
time,” it is the number of days a threat remains undetected
within a given environment; if the detection date is not available,
we use the public announcement date. Figure 2 displays the dis-
tribution of dwell time for all reports with available data (n=59).

Defending the Supply Chain
Our analysis of known software supply chain attacks indicates
that weaknesses in the software supply chain are numerous
and are being appropriated by cybercriminals with increasing
frequency. Per the usual, attacks as yet unknown are surely pres-
ent, so you should assume that we are undercounting. Counting

is hard. The spike in attacks in 2016 includes two special cases:
a research project where a student intentionally uploaded 214
typosquatting packages to various software registries to mea-
sure download frequency, and the intentional deletion of 273
npm packages by a developer who was angry that npm took a
package namespace away from him and wanted to wreak havoc.
Earlier this year, ReversingLabs found 700+ malicious packages
in RubyGems, while Duo found 500+ malicious Chrome exten-
sions, both evidently the first time anyone had looked into such
unknown unknowns. Counting is hard.

We believe there exist at least three major obstacles that prevent
software developers, security teams, and software users from
adequately protecting the software supply chain and from shield-
ing themselves or their organization from such attacks.

First, there is a striking absence of data collection and analysis
that would help identify and assess risks associated with these
attacks, especially those involving open source software. This
absence is surprising given the inherently public nature of open
source software development and the ubiquity of open source
dependencies within modern software applications. In other
words, much of the data needed to identify potential and actual
risks associated with a software component is hosted on publicly
accessible development platforms like GitHub and is thus avail-
able to any interested party. Unfortunately, much of this infor-
mation is not analyzed, allowing attackers to hide in plain sight.

To identify attacks, defenders will need to cull and analyze
software development-related data. To start, a software bill
of material that describes all dependencies of an application
provides transparency and allows for investigation of direct and
indirect dependencies. Other rich data sources are open source
code repositories and package registries, which contain infor-
mation about developer turnover, code commits, and version
releases stored in these repositories. Defenders can also expose
inconsistencies between independent data sources, verifying,
for instance, the relationships between source code stored in

Figure 2: Distribution of dwell time in days for reports; dwell time for 12 reports was zero days; the median=34.

Major Type Build, Source, and Publishing Infrastructure Software Registry

Minor Type Build System
Compromise

Firmware
Implant

Source Code
System

Compromise

Publishing:
Certificate

Attack

Publishing:
Delivery
System

Compromise

Account
Takeover

Dependency
Compromise

Malicious
Package Typosquatting

Count 11:13 7:32 9:39 6:18 29:35 11:14 12:333 51:1,373 15:1,247

Table 1: Count of Reports:Attacks by major and minor categories. (Note: Both reports and attacks can be assigned to multiple categories.)

86 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

COLUMNS
For Good Measure—Counting Broken Links: A Quant’s View of Software Supply Chain Security

a repository and a released library or executable stored in a
package registry. Countermeasures will also likely require an
understanding of the individuals and organizations that directly
or indirectly contribute to the development and distribution of
software, especially the individuals or organizations that can
publish changes. Importantly, defenders will need this informa-
tion for all dependencies of a distributed software application,
whether those dependencies are part of the build process, release
process, or are included at runtime. As always, the wellspring of
risk is dependence, and risk, unlike benefit, is transitive.

Second, existing application security products are unable to
identify the distinctive characteristics of software supply chain
attacks. Moreover, there has been limited adoption of what tools
and processes do exist in order to prevent instances of supply
chain attacks within released software. These issues force
software developers and users to trust—but not verify—vendors
and their products, rendering judgments about product software
supply chain quality impossible and compelling acceptance of
unknown risks within critical software.

These deficiencies should be a rallying cry for those who want to
develop and build a new class of application security products,
tools designed to uncover instances of software supply chain
attacks. Existing application security tools are designed to
identify defects in source code or executables and determine the
conditions under which those defects are exploitable. These tools
will not, however, identify a well-written software supply chain
compromise. These attacks arise from the existence of unde-
sired functionality with respect to the intended purpose of the
software. This new breed of application security products will
need context and an understanding of the expected use case of
the application, concepts lacking in current application security
products. This will not be easy.

Third, reducing the software supply chain attack surface also
requires adopting existing technologies and processes that pro-
vide the information needed to verify the origin and content of
source code and binaries, eliminating or mitigating many of the
risks of compromise. One practical step is using digital signa-
tures and certificates to verify file integrity. Employing repro-
ducible builds and publishing relevant metadata to an immutable
distributed ledger can also allow consumers to independently
verify the integrity of a software component. Best of breed tools
for network and endpoint protection should also be deployed
within the development, publication, and operational environ-
ment to limit opportunities for compromise pre-commit.

Ultimately, securing the software supply chain of any prod-
uct requires continuous assessment of components, vendors,
and operational environments in addition to orchestration and
analysis of relevant data. These processes, to be successful,
require significant investment in automation and collaboration

between all participants in the software supply chain. Nothing
less is needed if sharing common software dependencies is to
be a strength, the topic of this column two issues ago [10], rather
than the liability it appears to be today.

References
[1] T. Hunter II, “Compromised npm Package: Event-stream,”
Intrinsic/VMware, November 26, 2018: https://medium.com
/intrinsic/compromised-npm-package-event-stream
-d47d08605502.

[2] “ShadowHammer: Malicious Updates for ASUS Laptops,”
Kaspersky Daily, March 25, 2019: https://www.kaspersky
.com/blog/shadow-hammer-teaser/26149/.

[3] R. Perica and A. Zekić, “Mining for Malicious Ruby Gems,”
ReversingLabs, July 17, 2019: https://blog.reversinglabs.com
/blog/suppy-chain-malware-detecting-malware-in-package
-manager-repositories.

[4] N. P. Tschacher, “Typosquatting in Programming
Lan guage Package Managers,” University of Hamburg,
Bachelor Thesis, 2016: https://incolumitas.com/data
/thesis.pdf.

[5] R. Duan, O. Alrawi, R. P. Kasturi, R. Elder, B. Saltafor-
maggio, and W. Lee, “Measuring and Preventing Supply
Chain Attacks on Package Managers,” arXiv, February 4,
2020: https://arxiv.org/abs/2002.01139.

[6] M. Taylor, R. K. Vaidya, D. Davidson, L. De Carli, and
V. Rastogi, “SpellBound: Defending against Package
 Typo squatting,” arXiv, March 6, 2020: https://arxiv.org/pdf
/2003.03471v1.pdf.

[7] S. Torres, H. Afzali, A. Sirish, and L. Puehringer, “Soft-
ware Supply Chain Compromises,” November 11, 2019:
https://github.com/in-toto/supply-chain-compromises.

[8] M. Ohm, H. Plate, A. Sykosch, and M. Meier, “Backstabber’s
Knife Collection: A Review of Open Source Software Supply
Chain Attacks,” in Proceedings of the 17th Conference on
Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA 2020): https://link.springer.com
/chapter/10.1007/978-3-030-52683-2_2.

[9] T. Herr, J. Lee, W. Loomis, and S. Scott, “Breaking Trust:
Shades of Crisis Across an Insecure Software Supply Chain,”
Atlantic Council, July 6, 2020: https://www.atlanticcouncil.org
/in -depth-research-reports/report/breaking-trust-shades-of
-crisis-across-an-insecure-software-supply-chain/.

[10] D. Geer and G. Sieniawski, “Who Will Pay the Piper for
Open Source Software Maintenance?” ;login:, vol. 45, no. 2
(Summer 2020): https://www.usenix.org/publications/login
/summer2020/geer.

https://medium.com/intrinsic/compromised-npm-package-event-stream-d47d08605502
https://medium.com/intrinsic/compromised-npm-package-event-stream-d47d08605502
https://medium.com/intrinsic/compromised-npm-package-event-stream-d47d08605502
https://www.kaspersky.com/blog/shadow-hammer-teaser/26149/
https://www.kaspersky.com/blog/shadow-hammer-teaser/26149/
https://blog.reversinglabs.com/blog/suppy-chain-malware-detecting-malware-in-package-manager-repositories
https://blog.reversinglabs.com/blog/suppy-chain-malware-detecting-malware-in-package-manager-repositories
https://blog.reversinglabs.com/blog/suppy-chain-malware-detecting-malware-in-package-manager-repositories
https://incolumitas.com/data/thesis.pdf
https://incolumitas.com/data/thesis.pdf
https://arxiv.org/abs/2002.01139
https://arxiv.org/pdf/2003.03471v1.pdf
https://arxiv.org/pdf/2003.03471v1.pdf
https://github.com/in-toto/supply-chain-compromises
https://link.springer.com/chapter/10.1007/978-3-030-52683-2_2
https://link.springer.com/chapter/10.1007/978-3-030-52683-2_2
https://www.atlanticcouncil.org/in-depth-research-reports/report/breaking-trust-shades-of-crisis-across-an-insecure-software-supply-chain/
https://www.atlanticcouncil.org/in-depth-research-reports/report/breaking-trust-shades-of-crisis-across-an-insecure-software-supply-chain/
https://www.atlanticcouncil.org/in-depth-research-reports/report/breaking-trust-shades-of-crisis-across-an-insecure-software-supply-chain/
https://www.usenix.org/publications/login/summer2020/geer
https://www.usenix.org/publications/login/summer2020/geer

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 87

COLUMNS

/dev/random
Discontent Creator

R O B E R T G . F E R R E L L

Some enterprising individual on a business-oriented social media site
recently tried to flatter me (at least, I’m presuming he meant it that
way) into accepting him as a connection by labeling me “a fellow influ-

encer and content creator.” The naturally curious sort that I am, I decided I
should probably try to understand what it was he was calling me by conduct-
ing a little online research. The Internet being a fractal rabbit hole that leads
to an infinity of equally fractal rabbit holes, I got a little distracted. After six
or seven hours I eventually ran across this definition for influencer: “a person
with the ability to influence potential buyers of a product or service by pro-
moting or recommending the items on social media.”

Now, were I indeed any variety of influencer, my novels would doubtless occupy positions
much higher on the bestseller list than they currently enjoy. My sales rankings are so
abysmally low, in fact, that they very nearly wrap back around to the top like a pinball score.
Regular readers of this column will also have a pretty clear idea what I think of social media.
Associating me with a commercial product there would be a disastrous mistake on anyone’s
part, as I am at best a “dissuader” and at worst, “anathema.”

I’m trying to remember the last time I influenced anyone to purchase something. My wife
buys things at the store because I ask her to, but I don’t think that really counts. This paucity
of persuasive acumen is partly due to the fact that the majority of my friends are too old to be
influenced by me or much of anyone else. By the time you get to my age, you like what you like
and don’t what you don’t, regardless of what other people say. Besides, my idea of a ringing
endorsement goes something like this: “I bought this three-horsepower slip-clutched double
overhead cam citrus peeler yesterday and it hasn’t fallen apart yet. Sweet.” I don’t habitually
rate purchases, but if I did it would be with little crescent wrenches, not stars.

It’s been my observation that facts and even basic grammatical awareness are largely regarded
as irrelevant in the headlong rush to online influence. The medium is no longer merely the
message; it now constitutes the whole enchilada. What is being said is far less crucial to mod-
ern audiences than how it is being said. Presentation has superseded rhetoric, form obliter-
ated function. Communication itself has been wholly subsumed by advertising. Clarity and
meaning are outmoded concepts.

Even the label “content creator” is spurious. We’re all content creators, although most of us
create content that doesn’t need to exist in this or any other universe. There is nothing inher-
ently salutary in creating content unless that content has value in and of itself. I, for example,
allow every new kitten who comes to live in my house to flounce across my keyboard and
thus construct a “short story.” I suppose that makes my cats content creators, too. Content
 creators, I might add, who haven’t the slightest interest in generating followers or accumulat-
ing likes, unless by “likes” one means petting and/or treats.

Robert G. Ferrell, author of The
Tol Chronicles, spends most of
his time writing humor, fantasy,
and science fiction. 
rgferrell@gmail.com

88 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

COLUMNS
Discontent Creator

Most of the content I see created in the IT realm is commend-
ably utilitarian, which means someone, somewhere, probably
has an actual use for it, even if it’s only to give the folks in the C
suite something to chew on while they’re packing their golden
parachutes. This stands in stark contrast to the bulk of what
“influencers” produce, which resembles transcripts of conversa-
tions overheard in a high school hallway accompanied by way
too many photos of the originator and is more closely related to
secretion than creation. There has never before been a genera-
tion so fascinated with their own visages. I’m not really a fan of
reflective surfaces around my house in general, much less selfies.
Most pictures I’ve seen of myself are disturbing in good light,
terrifying in bad.

Before the age of social media, writers often wrote stories. Some
of these stories were factual, some f lowed from a practiced
imagination. While not every story rose to the level of high art,
referring to them simply as “content” is akin to calling works of
portraiture “pigment.” Highways have no intrinsic worth until
they enable vehicles containing people or goods to travel from
place to place, just as content means nothing unless it conveys
something significant to the reader other than self-referential
metaphor. “Yo dawgs, check out my new cowboy boot b-ball
kicks!!!!” is not what I’m talking about here.

The chief problem I see with content creation for its own sake is
that it muddies an already densely opaque pool of verbiage. These
people seem to be paid by the word, as well, which means they
often take two paragraphs to say what could have been expressed
in a single sentence. That really does no one any favors, especially
in our era of breathtakingly short attention spans. The more fluff
there is to wade through, the less likely the waders are to chance
upon something they actually would benefit from reading. It’s no
wonder misinformation is rampant. The signal-to-noise ratio of
the Internet has never been very high, but lately it seems to have
plummeted off a precipice. Searching for reliable information
online is like trying to find one specific pebble in a gravel parking
lot, while a hundred “helpful” people crowd around, all pointing
in different directions, shouting at you that they know exactly
where it is.

My conclusions, then, are that “content creator” seems to be
another name for “one who writes filler,” and an “influencer” is
what we of my generation called a “corporate shill.” You may
argue that this column demonstrates that I myself thereby meet
the content creator definition, but I must respectfully dispute
this assertion. What I create is quite clearly discontent, although
with this being a pandemic-bedeviled election year, that market is
already seemingly saturated. I have faith in the near- bottomless
hunger of the public for toxic disillusionment, though. It certainly
keeps Hollywood humming along.

www.usenix.org/nsdi21

18th USENIX Symposium on Networked Systems
Design and Implementation

APRIL 12–14, 2021 | VIRTUAL EVENT
The 18th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’21) focuses on the
design principles, implementation, and practical evaluation of networked and distributed systems. Our goal is to
bring together researchers from across the networking and systems community to foster a broad approach to
addressing overlapping research challenges.

PROGRAM CO-CHAIRS

James Mickens
Harvard University

Renata Teixeira
Netflix

Save the Dates!

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 89

BOOKSBook Reviews
M A R K L A M O U R I N E A N D R I K F A R R O W

Effective Python: 90 Specific Ways to Write Better
Python, 2nd Edition
Brett Slatkin
Pearson Education Inc., 2020, 444 pages
ISBN 978-0-13-485398-7

Reviewed by Mark Lamourine

In Effective Python, Slatkin offers a rather different twist on the
cookbook format for programming references. In the conven-
tional form, each chapter opens with a problem or a question. The
body of the chapter then consists of a solution with some exposi-
tion. The premise is that the reader is learning the language
features and capabilities. The recipes provide language-specific
ways to achieve what are normally common goals.

Slatkin’s approach is more of a catalog of best practices for the
Python coder. The book is subtitled “90 Specific Ways to Write
Better Python.” Each of the 90 small “items” referred to in the
subtitle opens with a recommendation. For example, Item 9:
“Avoid else Blocks After for and while Loops.” The main body
of the item is a presentation of an argument for the recommenda-
tion. The arguments range from readability and performance to
avoidance of common coding errors. Slatkin’s arguments tend
to follow a pattern. First he shows how the feature or construct
is used commonly. He talks about why the typical usage makes
sense at first and then how it can lead to problems. Only then
does he offer his alternative, using new code fragments and
explaining how the new code’s behavior addresses the problems
cited. Each item ends with a summary bullet list of things to
remember.

The items are grouped into chapters thematically. Most are
related to language features like lists, functions, or classes. The
opening and closing chapters are more about idiom, style, and
human behavior and are entitled, respectively, “Pythonic Think-
ing” and “Collaboration.”

These two chapters directly express a thematic undercurrent
that runs throughout the book: coding is a human endeavor and a
craft and in every instance involves the judgment of the devel-
oper. Despite his recommendations favoring specific behaviors
and constructs over others, Slatkin always appreciates why the
common usage is common. His recommendations are always
presented in a way that is meant to be persuasive rather than
strident or proscriptive.

I started using Python with version 1.5, and version 2.x has been
a staple for me since it was released in 2000. For me, version 3
was always “someday.” I’m embarrassed to realize it’s been 12
years. With the sunsetting of version 2 in January 2020 [1], it has
become important not just to learn the differences, but to commit
to version 3. The second edition of Effective Python treats only
version 3, with none of the back references or porting comments
that have been common for a decade.

There have been a couple of changes that I didn’t really inter-
nalize. One was the introduction of the bytes and str types
for representing strings. I understand the difference between
ASCII byte strings and UTF-8, but the treatment in Python and
the idiomatic usage have never become second nature. Slatkin
addresses this as Item 3 in the first section. He shows how to
recognize them and how to convert between them. More impor-
tantly he indicates when to convert between them and when to
leave them alone.

I had been in the habit of using the print() function in Python
2 from the __future__ module and the str.format() method
instead of the formatting operator (%) for a long time. I was
surprised to learn that there is a new string formatting method
introduced in version 3.6 called Literal String Interpolation, or
f-strings, for the prefix used to indicate one in the code. These
work more like Jinja2 templating, where you use the name of
the variable inline to resolve and replace the value in the string.
What I really like about this item is the way Slatkin demonstrates
the earlier methods, showing how it is easy to make errors with
them. Finally, he demonstrates f-strings in a way that highlights
how they resolve the problems.

Don’t be fooled by my initial examples. Effective Python addresses
some rather deep theoretical constructs as well. It has a fantastic
treatment of generators, not just what they are and how to use
them, but how they work and why to use them. Hint: avoid large
in-memory arrays of computable values. Slatkin’s treatments
of metaclasses and concurrency also brought me some “aha!”
moments. The references in these cases are provided for anyone
who is learning about these topics for the first time and that’s a
good thing.

The only real quirk I noted with Slatkin’s style is that it really
requires you to properly read the text. In many reference works,
once you’re familiar with the topic you can skim to find just the
bit of code you need. While none of the items here are particularly
long or deep, the teaching style requires the reader to follow the
narrative. I don’t think that this is a problem, but it was an adjust-
ment I had to make to get the most out of what I was reading.

90 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

BOOKS

Normally, I would encourage new coders to set something like
this book aside until they had some experience and context to
bring to it. In the case of Effective Python, I would consider sug-
gesting they get it, skim the first few sections, and then set it
aside. It will be there when they begin to ask the questions it tries
to answer. It’s a book I expect to return to.

Dependency Injection Principles, Practices, and
Patterns
Steven van Deursen and Mark Seemann
Manning Publications, 2019, 522 pages
ISBN 978-1-61729-473-0

Reviewed by Mark Lamourine

I remember my confusion the first time I heard the term depen-
dency injection (DI). I’d seen it used in some Ruby code with unit
and functional tests, but I didn’t know it had a name and didn’t
understand the formal basis for it. Since then I’ve spent signifi-
cant time failing to create testable or f lexible code using DI.
Understanding DI has been on my back burner, and when I saw
this book I had to see what DI is about.

“Principles, Practices and Patterns” is actually a pretty good
description of the book. The authors are clearly fans of Martin
Fowler, Robert Martin, and the Design Patterns [2] “Gang of
Four.” They make explicit reference to several design patterns
that are extensively used to implement DI constructs. They
also make good use of proper UML diagrams to illustrate object
dependency relationships and life cycle. While prior knowledge
of design patterns and UML isn’t required, it will definitely help
a reader understand the theory and the assertions the authors
make about the structure of software and the effect that has on
testability and maintainability.

At the end of Chapter 1 I found a paragraph that is easy to miss
but critical to understanding this book. The goal of the authors
is to help readers implement code designed with loose coupling.
That is, code that depends on interface and API definitions of
the code it uses rather than on the specific implementation. The
authors’ core assertion is that loose coupling is a generally desir-
able trait of well-designed systems. Dependency injection is just
the technique they are offering to enable loose coupling. It is easy
to lose track of that emphasis when trying to absorb the some-
what dense concepts that follow.

One thing becomes evident during the first three chapters:
loosely coupled code looks more complex than tightly coupled
code, at least at first look. In Chapters two and three, the authors
show a simple three-layer application with a database, a user
interface, and some business logic sandwiched in between. They
do a good job of showing the options and decisions that lead
to tightly coupled code. The design decisions are primarily a

function of the desire for initial simplicity. They are natural and
straightforward, based on the intent of the application.

In the following chapter the authors re-implement the appli-
cation with a design in which the components are carefully
decoupled. Each of the interacting classes defines an interface
rather than just providing a function or method for callers. The
design is significantly larger, increasing from four classes to nine
and with three interfaces. The chapter is also twice as long. That
extra text is used to explain the different considerations that are
needed to design decoupled code. It takes a deliberate approach
and the development of a set of habits to view a problem this way.

The second section is where the theory gets deep. These chapters
present the DI design patterns and set of anti-patterns, conclud-
ing with a chapter on DI code smells. The final two sections show
how to implement applications with DI, first directly and then
using a kind of DI factory called a DI Container. These take
 existing classes and reflect them to create a new class that allows
DI. The examples given are specific to .Net, though the illustra-
tion is useful.

I was a little concerned when I realized that the examples and
code samples are written in C# and make use of .Net libraries.
My worries were unfounded. The C# code will be clearly under-
stood by anyone familiar with C++ or Java, and the .Net library
references are reminiscent of Java APIs. The examples have the
camelcase verbosity one would expect from those languages as
well, but it doesn’t interfere with clarity. Very few of the code frag-
ments are longer than a single page, and the typeset annotations
are well placed and clearly associated with the lines they describe.

Dependency Injection Principles, Practices, and Patterns provides
a lot to chew on, and it’s going to take me a while to properly con-
sume and digest it. I have several web projects going where I hope
to make use of it.

Building Secure and Reliable Systems
Heather Adkins, Betsy Beyer, Paul Blankinship, Piotr
Lewandowski, Ana Oprea, and Adam Stubblefield
Google LLC and O’Reilly Media Inc., 2020, 557 pages
ISBN 978-1-492-08312-2

Reviewed by Mark Lamourine

When Google publishes a guide for infrastructure, you can be
sure that it’s worth reading. The real question is: is it something
you can use? Google works on a scale that few other companies
can. As a purely practical matter, few companies have the
resources or the strictest requirements for efficiency that
characterize the handful of truly colossal Internet companies.
I picked up Building Secure and Reliable Systems with a bit of
skepticism.

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 91

BOOKS

I was also concerned with the size of the book. At over 500 pages
it’s still not the largest infrastructure book I’ve read. I wanted to
see how the authors managed the challenge of providing a useful
level of information in a manageable amount of space.

This is the third book in a series Google has published on the
topic of site reliability engineering (SRE) [3]. This is Google’s
refinement of the system administration model that has been
called DevOps. The first defines and describes the philosophy of
the SRE model and the role that the SRE plays in an operational
organization. The second is a “workbook” for SREs, describing
how they go about their job. This third volume provides a set of
best practices both for the enterprise and for the service groups.
It puts the SRE into the context of a complete organization in a
way that can be appreciated both by the SREs and by their man-
agement and business peers.

Where the earlier volumes focused on workers and their tasks,
this one illuminates the factors to consider in design and imple-
mentation of computer systems. The chapters alternate between
discussion of a single desirable aspect of a system and case stud-
ies to give concrete examples.

Those design aspects are not things that are usually put high on
the system requirements list: understandability, resilience, and
recovery. The only element specifically for security is least privi-
lege. The authors recognize that encryption and user authentica-
tion get a lot of attention. Defense in depth requires more care
and thought. Security vulnerabilities will always be present, but
exploits can often be neutralized by limiting what an attacker
can access.

Each of these chapters really just provides additional incentive to
follow ordinary design best practices. These discussions provide
weight to arguments against cutting corners in design and imple-
mentation, and they provide rationale for better decisions than
are often made.

The implementation section addresses considerations for reli-
ability during the realization of the design, with chapters on
writing, testing, and deploying the code and on surveying and
debugging systems. In these chapters, the real nature of the
writing comes through. This is a volume of collected wisdom:
it’s a series of thoughts and reminders—remembering to stop
and think when things go wrong, for example, and to pair work
where one is typing and the other is a scribe, both to avoid losing
information and for mentoring.

The final couple of chapters talk about what I think has become
the most critical aspect of software development and system
administration: culture. There can be a lot of focus on techni-
cal stars in hiring and team formation. What experience has
shown me is that people want to do good work and to learn and
challenge themselves. The most common frustration is poor

team empowerment and communication. All of the preceding
chapters are nullified if the developers and admins aren’t given
the freedom and incentives to collectively evaluate and then act
on their decisions.

Each of the chapters is nicely self-contained. The writing is
clean, almost sanitary. This reflects the Google aesthetic of
minimal bling, flash, and distraction. The authors provide
frequent cross references, and each chapter concludes with a
summary and a list of references. The spare nature of the writing
style makes for a surprisingly readable text.

Except for a few details and discovery of a small set of obscure
but useful tools, I didn’t learn a lot that was new. For the devel-
oper or sysadmin, this book is a good complete compendium of
the highest level considerations for system design. For project
management, it is a window into the kinds of things the team
should be discussing and resolving throughout a project. I didn’t
see anything here that made me think “you can only do that if
you’re Google.” I’ll keep Building Secure and Reliable Systems
handy for when I need to champion more thoughtful, purposeful
design and operational behaviors. “See, this is how Google does it.”

Rootkits and Bootkits: Reversing Modern Malware
and Next Generation Threats
Alex Matrosov, Eugene Rodionov, and Sergey Bratus
NoStarch Press, 2019, 448 Pages
ISBN-13: 978-1-59327-716-1

Reviewed by Rik Farrow

I chose this book to review after listening to an invited talk at
WOOT ’20 by the main author, Alex Matrosov, and because
 Sergey Bratus is also an author. I would ordinarily have steered
clear of books primarily about Windows, but once you get past
Part 1, about rootkits, you find yourself in territory relevant to
Linux systems. The authors cover information relevant to any-
one running software on Intel or AMD chipsets.

The book is well written and organized, and it includes example
code (all Windows) and dumps from malware and firmware
samples. I had little trouble reading the book, although I did want
a glossary of abbreviations handy after a while, as there are loads
of obscure TLAs.

The authors start out by describing TDL3 and Festi rootkits.
These are “old,” designed for 32-bit versions of Windows that
have long been out-of-date but likely still run. Most of the tech-
niques used—plugins to extend the malware, using a rolling XOR
as “encryption,” changing registry keys—seem familiar. What
makes Festi interesting is the malware designers’ knowledge
of kernel internals. They hook both file and network drives very
deep in the software stack, making them difficult to discover
through Host Intrusion Prevention System (HIPS) products, as
these tools also install hooks at the same layer.

92 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

BOOKS

I really hadn’t been paying much attention to Windows malware
over the last decade, and the focus of this book is on two specific
areas that cover some of the most sophisticated attacks possible.
I enjoyed reading the book and learning about the malware, even
if it was not particularly relevant to me, as “I don’t do Windows.”
Still, there’s more than enough here that’s relevant to Linux
users, as malware writers are now turning their attention to
Linux servers.

References
[1] https://www.python.org/doc/sunset-python-2.

[2] E. Gemma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software
(Addison-Wesley Professional, 1994).

[3] https://landing.google.com/sre/books/.

As security in Windows improves, malware writers have shifted
their focus to bootkits, methods of infecting the kernel during
the boot process. Here again you will find information relevant
to any operating system that relies on x86 chipsets. The authors
cover the boot process and provide analyses of bootkit samples,
as well as the arms race in bootkits that leads to UEFI Boot.
UEFI is supposed to provide secure boot, with checks of the
authenticity of code, but in many cases vendors have not properly
implemented the standard.

Chapters 15 and 17 demonstrate the use of a tool, called Chipsec,
that allows you to probe your firmware settings. The tool works
for Windows, Linux, and macOS, and you can find the tool on
GitHub at https://github.com/chipsec/chipsec. With the tool, you
could see if your firmware is write-protected and whether SPI
flash memory protections also have been enabled. The authors
have tested a number of motherboards, and many of them have
either not enabled or included firmware protections, making the
system more susceptible to bootkit malware.

https://www.python.org/doc/sunset-python-2

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 93

Statement of Ownership, Management, and Circulation, 09/30/2020
Title: USENIX Association/ ;login:
Pub. No. 1044-6397
Frequency: Quarterly
Number of issues published annually: 4
Subscription price: $90.
Office of publication: 2560 9th St., Suite 215, Berkeley, CA 94710-2565
Contact Person: Sara Hernandez. Telephone: 510-528-8649 x100
Headquarters or General Business Office of Publisher: USENIX Association, 2560 9th St, Suite 215, Berkeley, CA
94710-2573
Publisher: USENIX Association, 2560 9th St, Suite 215, Berkeley, CA 94710-2573
Editor: Rik Farrow; Managing Editor: Michele Nelson, located at office of publication.
Owner: USENIX Association. Mailing address: As above.
Known bondholders, mortgagees, and other security holders owning or holding 1 percent or more of total amount
of bonds, mortgages, or other securities: None.
The purpose, function, and nonprofit status of this organization and the exempt status for federal income tax
purposes have not changed during the preceding 12 months.

Publication Title
USENIX ASSOCIATION/ ;login:

Issue Date for Circulation Data Below
09/01/2020 — Fall ’20 Issue

Extent and Nature of Circulation Average No. Copies
Each Issue During
Preceding 12 Months

No. Copies of Single
Issue (Fall 2020)
Published Nearest
to Filing Date

a. Total Number of Copies (Net press run) 1863 1875

b. Paid Circulation (By
Mail and Outside the
Mail)

(1) Mailed Outside-County Paid Subscriptions 805 818

(2) Mailed In-County Paid Subscriptions 0 0

(3) Paid Distribution Outside the Mails 513 529

(4) Paid Distribution by Other Classes of Mail 0 0

c. Total Paid Distribution 1318 1347

d. Free or Nominal Rate
Distribution (By Mail
and Outside the Mail)

(1) Free or Nominal Rate Outside-County Copies 79 79

(2) Free or Nominal Rate In-County Copies 0 0

(3) Free or Nominal Rate Copies Mailed at Other Classes 20 25

(4) Free or Nominal Rate Distribution Outside the Mail 73 30

e. Total Free or Nominal Rate Distribution 172 134

f. Total Distribution 1490 1481

g. Copies Not Distributed 374 394

h. Total 1863 1875

i. Percent Paid 88.46% 90.95%

Electronic Copy Circulation

a. Paid Electronic Copies 410 444

b. Total Paid Print Copies 1729 1791

c. Total Print Distribution 1899 1925

Percent Paid (Both Print and Electronic Copies) 91% 93%

Submit Your Work!

www.usenix.org/sec21

PROGRAM CO-CHAIRS

Michael Bailey
University of Illinois

at Urbana–Champaign

Rachel Greenstadt
New York University

Seventeenth Symposium on
Usable Privacy and Security
Co-located with USENIX Security ’21
August 8–10, 2021 | Vancouver, B.C., Canada
The Seventeenth Symposium on Usable Privacy and Security
(SOUPS 2021) will bring together an interdisciplinary group of
researchers and practitioners in human computer interaction,
security, and privacy. The program will feature technical papers,
including replication papers and systematization of knowledge
papers, workshops and tutorials, a poster session, and lightning
talks.
Mandatory Paper Registration Deadline:
Thursday, February 18, 2021

Symposium Organizers
General Chair

Sonia Chiasson, Carleton University
Technical Papers Co-Chairs

Joe Calandrino, Federal Trade Commission
Manya Sleeper, Google

www.usenix.org/soups2021

Winter paper submission deadline: Thursday, February 4, 2021

The 30th USENIX Security Symposium will bring together researchers, practitioners, system
administrators, system programmers, and others to share and explore the latest advances in the
security and privacy of computer systems and networks.

AUGUST 11–13, 2021 | VANCOUVER, B.C., CANADA

https://www.usenix.org/sec21
https://www.usenix.org/soups2021

NOTES

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 95

USENIX Board of Directors
Communicate directly with the USENIX
Board of Directors by writing to board@
usenix.org.

P R E S I D E N T

Amy Rich, Redox
arr@usenix.org

V I C E P R E S I D E N T
Arvind Krishnamurthy, University
of Washington
arvind@usenix.org

S E C R E T A R Y

Kurt Andersen, LinkedIn
kurta@usenix.org

T R E A S U R E R

Kurt Opsahl, Electronic Frontier Foundation
kurt@usenix.org

D I R E C T O R S

Cat Allman, Google
cat@usenix.org

William Enck, North Carolina State
University
will@usenix.org

Laura Nolan, Slack Technologies
laura@usenix.org

Hakim Weatherspoon, Cornell University
hakim@usenix.org

E X E C U T I V E D I R E C T O R

Casey Henderson
casey@usenix.org

Interview with Clem
Cole
Rik Farrow

Clem Cole is an old school hacker
and “Open Sourcerer” with more

than 45 years of free and open source system
development experience. Clem has held practically
every position in the computer field from operator,
programmer, and designer to VP of Engineering,
CTO, and startup founder. He first encountered
the early editions of UNIX in the 1970s while at
Carnegie Mellon University, later doing his graduate
work at the University of California, Berkeley. He
has been designing and developing operating
systems and technical computing systems ever
since, currently leading an international team of
engineers. He helped to write one of the original
TCP/IP implementations in the late 1970s, and is
known as one the authors of the precursor to IM,
the UNIX talk program, as well as other more
humorous and notorious hacks. He is honored to
be a past President of the USENIX Association and
the 2016 winner of the Linus Pauling Prize for
Science.  clem@ccc.com

I first met Clem Cole at a USENIX confer-
ence, probably in the 90s, but I had encoun-
tered him via a paper he helped with in 1985.
Ted Kowalski had written fsck, bringing
together ideas from three previously exist-
ing UNIX programs, ncheck, icheck, and
dcheck, and experience using earlier IBM
programs, Scavenger and Vulture [1], for
recovering after disk crashes.

I had also heard that Clem had a long history
with USENIX, and decided to interview him
for this, the final print issue. I had learned
by reading early issues of UNIX Notes and
;login: that USENIX conferences were how
UNIX users exchanged information in the
early days, and it occurred to me that Clem
was a participant I could ask about this.

Rik Farrow: When did you begin working
with UNIX? I encountered UNIX in the
early 80s, while working for companies in
the Bay Area.

;login: Enters a New Phase
of Its Evolution
Cat Allman, Rik Farrow, Casey Henderson
Arvind Krishnamurthy, and Laura Nolan

For over 20 years, ;login: has been a print
magazine with a digital version; in the two
decades previous, it was USENIX’s news-
letter, UNIX News. Since its inception 45
years ago, it has served as a medium through
which the USENIX community learns about
useful tools, research, and events from one
another. Beginning in 2021, ;login: will
no longer be the formally published print
magazine as we’ve known it most recently,
but rather reimagined as a digital publica-
tion with increased opportunities for inter-
activity among authors and readers.

Since USENIX became an open access pub-
lisher of papers in 2008, ;login: has remained
our only content behind a membership
pay wall. In keeping with our commitment
to open access, all ;login: content will be
open to everyone when we make this change.
However, only USENIX members at the
sustainer level or higher, as well as student
members, will have exclusive access to the
interactivity options. Rik Farrow, the cur-
rent editor of the magazine, will continue
to provide leadership for the overall content
offered in ;login:, which will be released via
our website on a regular basis throughout
the year.

As we plan to launch this new format, we are
forming an editorial committee of vol un teers
from throughout the USENIX community to
curate content. This new model will increase
opportunities for the community to contrib-
ute to ;login: and engage with its content. In
addition to written articles, we are open to
other ideas of what you might want to
experience. We welcome your comments
and suggestions: login-comm@usenix.org.

96 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

NOTES

Clem Cole: By the 80s UNIX was even cooler than when I first
encountered it. I started using UNIX with Fifth Edition version
in 1976 while at Carnegie Mellon (CMU).

Truth is, my first experience with UNIX and C in particular, com-
ing from the IBM 360 and DEC PDP-10, found me skeptical. But I
had been schooled in the CMU gospel of using systems program
languages (BLISS in this case) so I had already started to transi-
tion from 360 assembler.

What made UNIX/C really cool was that as much as I liked the
stuff we had on the PDP-10s (like the XGP—the predecessor to the
laser printer) BLISS on the PDP-11 required cross compiling. C was
self-contained. The documentation for C was almost non-existent,
with the exception of Dennis Ritchie’s paper in V5 and V6 in the
c directory in /usr/doc. The code from the compiler was not great
compared to BLISS, but it was “good enough.”

And we had our own PDP-11 in the CMU Electrical Engineering
Digital Lab and we did not have to share it with many other folks.

Ted had a xeroxographic copy of the Lions book [2] and I made my
own copy. Then Ted came back with proofs for Kernighan and
Ritchie [3] in a binder and I read those two documents that spring
and things about UNIX started to click. Pretty soon I started to see
that I could get most anything I had been able to do on the PDP-10s
and the 360 on the PDP-11 and I only shared it with a few other
people. That was way cool.

And then one day we had a disk crash on a machine in CMU’s
BioMed Department. I got a call from the guys that ran it, and they
wanted to try to use the EE system to try to fix the disk. Ted and I
both had used a disk reconstruction program on the IBM and Ted
had been an IBM MTS hacker at the University of Michigan before
he came to CMU. I remember spending a number of hours with
ncheck/icheck/dcheck and grumbling to Ted as we were working
with their disk.

It turns that out Ted had started a new program but it was not
complete. Now he had a mission. By the way, the original name of
the fsck program used a different second letter.

The other thing I saw around then was a copy of some of the origi-
nal issues of UNIX News that Columbia University was printing
up. I don’t remember who had them, but I think it was someone
else with a connection to Harvard or maybe Columbia. I got on the
mailing list somehow and started eating it up.

As an undergrad I could not travel, but when I first started to work
for Tektronix in 1979, I went to my first USENIX conference
(I want to say Toronto, but I could be wrong). An early winter one
was Boulder where USENIX had rented a movie theater, the same
theater that was featuring the new movie, Black Hole. What I do re-
member the most of that conference is that’s where Tom Truscott

regaled us on his homemade
autodialer they built so they
could run UUCP.

Originally, we came to those
meetings representing our
orgs—universities or com-
merical entities. You were
supposed to have the sig-
nature page of your AT&T
UNIX license to join. I don’t
remember when the first
personal memberships were
offered, but I was the seventh
person to join USENIX.

So back to your question.
In those days DEC did not
support UNIX, so we had a “we all are in this together” attitude.
Everything was “open source” because we all had licenses. I think
the thing that is lost today is that it was the cost of the hardware
that was the limit to being part of the “UNIX club,” not the cost of
the UNIX software sources.

RF: That’s interesting, since AT&T raising the license fee for the
source for System V Release 4 (SVR4) was the main reason for
the UNIX wars [4] that began in the late 80s.

CC: Actually, that’s not quite true. The UNIX wars had started long
before then. The 1988 SVR4 release and the raising of the license
redistribution fee in particular was the source of the “fair and
stable license terms” of Open Software Foundation (OSF) verses
UNIX International (UI). You have to understand that each time
AT&T had released a commercial redistribution license (starting
with V7) the fees had gone up. The vendors had been having a knock-
down, drag-out war for 5–10 years by 1988. UI vs. OSF was just the
final battle.

The problem for the vendors was they treated UNIX like they owned
their OSs and made them private with lots of local hacks to create
vendor lock-in for their customers. The UNIX wars were really based
on who got to decide what the definition of UNIX was going to be.

AT&T thought they got to say it because they owned the intel-
lectual property. But the Berkeley Software Distribution (BSD)
version had the greatest mind share as it included TCP/IP sup-
port. DEC, Apollo, HP, Masscomp, Sun, IBM and others had their
customers running some version of UNIX on their hardware. And
independent software vendors were annoyed because life had not
gotten better—hence the 1985 /usr/group UNIX Standard that
would later beget the IEEE POSIX work.

RF: How large were those early USENIX conferences? Dozens of
people, hundreds of people? I’ve heard that by the late 80s there
could be thousands of people attending.

Vol. 1, No. 1 of UNIX News, July 30, 1975.
The circulation was 37.

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 97

NOTES

CC: When they were at Harvard, Columbia, etc.—that is, the time of
UNIX News—a conference fit into a classroom. By the time of Boul-
der it was probably about 100–150—about half a movie theatre full.

By the late 80s (when the final phase of the UNIX wars started)
the San Francisco conference and I think the 10th USENIX
conference in Portland were over a thousand. I think the peak
was probably two or three thousand.

After Portland (summer 1985), USENIX started to fork into smaller
dedicated conferences targeting subtopics and trying to keep it to
be about 150–200 per conference.

RF: So what was it like at Boulder? Most of us know what modern
USENIX conferences are like, with most having a focus on paper
delivery, and some on talks.

CC: Remember there were no papers or proceedings in those days.
Just talks. No PowerPoint either. Just overhead slides. And people
came with prepared talks and signed up to give them. Nothing was
preplanned.

It was also the first time I met Bill Joy. He had already started
to build a cult around him. He talked about UCB Pascal and was
very interesting. I also met Dennis Ritchie and Steve Bourne for
the first time and was awed at how down to earth they were. They
asked me questions and wanted my opinion. That was so cool. It
was really a collegial setting. We were all sharing our experiences.

I think that’s also where I met Bruce Borden for the first time. He
had written the first parts of mh and he gave a talk about it. I wanted
to try it immediately after I got back. As I said, Truscott talked about
his fake autodialer and I remember being so impressed with it.

Boulder was sort of the start of Usenet. Truscott described the
three schools connected using UUCP in North Carolina in his talk.
Brian E Redman—the “ber” of “Honey-Dan-Ber” UUCP—said he
would like to be able to call him from the systems in BTL in Whip-
pany, NJ, named after the Marx brothers. Dennis Ritchie offered
up the Bell Labs research system in Murray Hill.

At Tektronix, we were working with the University of California,
Berkeley (UCB) on things like Spice, so I had talked my boss into
letting me buy an autodialer to call ucbvax. So when I got back
we joined up, and UCB was talking to research. Within a year
Armando Stettner added decvax and ihnp4 was added during the
same time frame.

The fact is Bell Telephone Labs (BTL) had a large internal UUCP-
based network before Usenet (which was smaller), but once research
and ihnp4 joined that changed the dynamic. Also, BTL was not on
the ARPANET which a couple of the Usenet sites sort of were.
Funny thing, forwarding from the ARPANET was discouraged
originally. But at some point, the DARPA folks realized “Metcalf’s
Law” [5], that joining two networks make each a lot more valuable.

RF: Gaining membership in the early Internet/ARPANET was
extremely weird from my perspective.

CC: When the ARPANet and the early Internet were set up, the
US government paid for everything. To join, you had to be a DoD
contractor and had to be sponsored. I read that in 1975 dollars, the
cost per host was $250K a year and that also explains why some of
the choices were made. A site on the network, like MIT and CMU,
were not going to put their connection at risk.

Part of the problem was that many universities wanted to be part
of the ARPANET but could not be as they were not doing ARPA
work. Sometime early in the Reagan administration, the US
government wanted to get out of funding the networking experi-
ment they had started. Originally, CS-NET was set up by the NSF
and contracted to BBN, so any research group could get a connec-
tion, but you had to pay for it and your leased telco connections.
In fact, to help keep costs down, CS-NET set up a UUCP-like
system, called “Phone-Net.”

Within a a year or so, CS-NET was allowed to connect commercial
sites too. That’s how Masscomp got its connection to BBN and
became part of the emerging Internet for $50K a year. Rick Adams
had forked out UUNET and they too joined CS-NET and became
the “offical” (recognized) UUCP/ARPANET bridge.

Finally, we started to get regional networks competing with CS-
NET because the telco costs could be kept in check better and the
era of the ISP appeared. The other change was that telco costs had
to drop. That $50K/year Masscomp connection was a 56Kbit/
second leased line from Westford, Massachusetts to Cambridge—
a distance of about 30 miles. A T1 (1.44Mbit/sec) connection was
closer to $50K/month.

So for a long time, the bulk of the email and netnews traffic was
UUCP over dial-up.

The good news is that the telcos did start to figure out how to build
cheaper digital circuits. And, once “cheap enough” connections
arose, the need for UUCP and dial-up started to fade.

RF: I remember using ihnp4 as a mail forwarder, but not many
people today are going to recognize that hop. Was ihnp4 in the
Chicago area?

CC: Indian Hill New Products System 4, or ihnp4 was in subur-
ban Chicago. The three big national sites for Usenet were decvax,
ihnp4 and ucbvax. There was a study done by someone at BTL
that concluded that for every call ihnp4 underwrote, it generated
between 10 and 20 downstream calls and that was good for AT&T
so they continued to underwrite it. At its peak, decvax had a half to
three-quarters of a million dollar phone bill. That was the trigger
for USENIX to start to look for an alternative. Rick Adams, work-
ing for the USGS and running the site named seismo, proposed the

98 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

NOTES

Interview with Kirk McKusick
Rik Farrow

Dr. Marshall Kirk McKusick writes books and articles,
teaches classes on UNIX- and BSD-related subjects, and
provides expert-witness testimony on software patent, trade

secret, and copyright issues particularly those related to operating systems
and filesystems. He has been a developer and commiter to the FreeBSD
Project since its founding in 1993. While at the University of California,
Berkeley, he implemented the 4.2BSD fast filesystem and was the Research
Computer Scientist at the Berkeley Computer Systems Research Group
(CSRG) overseeing the development and release of 4.3BSD and 4.4BSD.
He earned his undergraduate degree in electrical engineering from Cornell
University and did his graduate work at the University of California, Berkeley,
where he received master’s degrees in computer science and business
administration and a doctoral degree in computer science. He has twice
been president of the board of the USENIX Association, is currently a board
member and treasurer of the FreeBSD Foundation, a senior member of the
IEEE, and a member of the USENIX Association, ACM, and AAAS.

In his spare time, he enjoys swimming, scuba diving, and wine collecting.
The wine is stored in a specially constructed wine cellar (accessible from
the Web at http://www.mckusick.com/~mckusick/) in the basement of
the house that he shares with Eric Allman, his partner of 40-and-some-odd
years and husband since 2013. mckusick@mckusick.com

I first met Kirk McKusick at a USENIX conference in the 1990s.
By that point I was working with Dan Klein and others on the tuto-
rial committee and listened to portions of all tutorials given during
LISA conferences, so I might have met Kirk that way. Later, Kirk
and I would sometimes meet during FAST workshops.

References
[1] Clem Cole’s post about the origins of fsck: https://minnie
.tuhs.org/pipermail/tuhs/2017-May/011467.html.

[2] J. Lions, “Commentary on UNIX 6th Edition, with Source
Code”: https://www.amazon.com/Lions-Commentary-Unix
-John/dp/1573980137.

[3] B. Kernighan and D. Ritchie, “The C Programming Lan-
guage”: https://en.wikipedia.org/wiki/The_C_Programming
_Language#History.

[4] “The UNIX Wars”: https://en.wikipedia.org/wiki/Unix
_wars.

[5] Metcalf’s Law: https://en.wikipedia.org/wiki/Metcalfe
%27s_law.

[6] P. Salus, “Distributing the News: UUCP to UUNET,” ;login:,
vol. 40, no. 4 (August 2015): https://www.usenix.org/system
/files/login/articles/login_aug15_09_salus.pdf.

[7] R. Farrow, “Interview with Mary Ann Horton,” ;login:, vol.
45, no. 1 (Spring 2020): https://www.usenix.org/publications
/login/mar20/horton

UUNET site, which USENIX helped fund [6]. UUNET become a
commercial entity the following year.

RF: UUCP mail forwarding over IP is a big topic. I interviewed
Mary Ann Horton [7], who had worked for BTL as well as doing a
lot with Usenet. She explained things like the maps people were
distributing at USENIX conferences and a separate tool to help
people forward UUCP mail. Peter Salus’ article [6] also explains
her role in the maps project, and more details about the founding
of UUNET.

CC: The printed maps were given away at conferences, but the tool
was used to try to shorten paths for email and net news traffic.
Remember, until IP where you have flat address space, UUCP was
purely store and forward and at the complete message level. IP is
store and forward at the packet level and the other difference is
that the “store” time was in minutes to hours for UUCP, as opposed
to microseconds for IP.

RF: What role did you experience USENIX meetings playing in
getting an effective email network started?

CC: Well, it really was a confluence of time and events. Because
of USENIX we were meeting. Most people could not be part of the
ARPANET for reasons I’ve already covered. Because Version 7
UNIX included UUCP, everyone now had a way to send intersite
email if you had at least a Version 7 UNIX box, a modem and a
friend with an auto-dialer. Remember that self-dialing modems
didn’t exist yet and to dial out to another site required a DN11 and
a Bell model 801 ACU—automatic calling unit—Truscott’s trick
not withstanding.

The USENIX meetings had been around for 8–10 years before
Usenet comes into play. But it was already clear before what we
now call the Internet replaced ARPANET, that people wanted/
needed email—that Usenet was organically born.

Again, it was need and timing more than anything else that helped
get UUNET started, plus the wild growth of the Internet we saw in
the 90s.

RF: How did your involvement with USENIX change over the years?

CC: USENIX has a special place in my heart. Without a doubt it
helped my career. When I first started coming I was in the audi-
ence soaking things in, then I transitioned to someone writing
and presenting papers. Next I was asked to be on program com-
mittees and eventually chair a few conferences. I was nominated
and elected to the Board and eventually became president. I still
participate as I can and I would consider working on the Board
again as well as other projects that folks consider.

https://minnie.tuhs.org/pipermail/tuhs/2017-May/011467.html
https://minnie.tuhs.org/pipermail/tuhs/2017-May/011467.html
https://www.amazon.com/Lions-Commentary-Unix-John/dp/1573980137
https://www.amazon.com/Lions-Commentary-Unix-John/dp/1573980137
https://en.wikipedia.org/wiki/The_C_Programming_Language#History
https://en.wikipedia.org/wiki/The_C_Programming_Language#History
https://en.wikipedia.org/wiki/Unix_wars
https://en.wikipedia.org/wiki/Unix_wars
https://en.wikipedia.org/wiki/Metcalfe%27s_law
https://en.wikipedia.org/wiki/Metcalfe%27s_law
https://www.usenix.org/system/files/login/articles/login_aug15_09_salus.pdf
https://www.usenix.org/system/files/login/articles/login_aug15_09_salus.pdf
https://www.usenix.org/publications/login/mar20/horton
https://www.usenix.org/publications/login/mar20/horton

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 99

NOTES

Once when we were sitting together during paper presentations,
someone presented a method of speeding up fsck on Linux ext
filesystems by caching the results of intermediate phases. Feeling
 a bit mischievious, I mentioned to Kirk that this sounded like an
improvement that belonged in the Fast File System (FFS), some-
thing Kirk had written, taught, and still supported in BSD. Kirk
replied that this should be easy, as policy and implementation were
kept separate in BSD, unlike in Linux. By the next morning, he had
created a new version of fsck.

Rik Farrow: When did you first encounter UNIX?

Kirk McKusick: I encountered UNIX for the first time while at the
University of Delaware in 1976. Later that year, I was a graduate
student at the University of California, Berkeley (UCB), and
started the month after Ken Thompson ended his sabbatical, in
August of 1976. Thompson had helped install UNIX Version 6 on
a PDP 11 there, working with Chuck Haley and Bill Joy, two other
UCB graduate students. They also worked on a version of Pas-
cal Thompson had written, and demand for that lead to the first
Berkeley Software Distribution in 1977 [1].

RF: When and why was the Computer Science Research Group
(CSRG) started?

KM: Professor Bob Fabry, with help from Bill Joy, had been work-
ing on getting a research grant from DARPA and needed a project
name, so he decided to call the project the Computer Systems
Research Group (CSRG). That was in June of 1980.

RF: You are best known as the author of the Fast File System, today
known as the UNIX File System [2]. How did that come about?

KM: The filesystem developed for the early UNIX versions had ter-
rible performance, getting throughput of only 2% of the bandwidth
of current disks. Doubling of block size, to 1024 bytes, managed to
raise the throughput to 4%, so this area seemed like fertile ground
for research. I was working for the university, but part time, as full
time work would have required the university to provide benefits
as well—still an issue today. My advisor’s research grant had ended
during the summer, and I asked Bill Joy, who I used to share an of-
fice with, if he could give me a project to work on.

References
[1] S. Pate, UNIX Filesystems: Evolution, Design, and Imple-
mentation, (Wiley, 2003): https://www.oreilly.com/library
/view/unix-filesystems-evolution/9780471456759/chap01
-sec008.html

[2] K. McKusick, “A Brief History of the BSD Fast File System,”
;login:, vol. 32, no. 3 (June 2007): https://www.usenix.org
/system/files/login/articles/584-mckusick.pdf

;login: and Open Access
Laura Nolan

As a USENIX volunteer for the past several years,
one of the things I value most about USENIX is the
association’s unequivocal support for open access—

the distribution of research online free of cost or other access
barriers. Paywalled content restricts the spread of ideas and
knowledge, and it reduces the impact of the work that researchers
and writers do.

USENIX’s support for open access has been a long-held stance. In
our announcement of our move to open access in March 2008 we
said that “we hope to set the standard for open access to informa-
tion, an essential part of our mission.” We do set that standard by
making open access as straightforward as it can be: all USENIX
authors and speakers retain copyright of their work, and all pro-
ceedings and recordings are freely published online—no money,
or even a registration process, is needed to view any USENIX
open access content.

USENIX became open access for all conference proceedings in
2008, followed by recordings of talks in 2010. Since 2010, ;login:
has been the sole exception to our open access philosophy, with
access to each edition of the digital version of the magazine re-
stricted to USENIX members for the first year after publication.

Joy had started work on a filesystem prototype, but had only writ-
ten the superblock and cylinder group structures so far. He handed
the project off to me, and I finished the rest as a userspace file system.

Joy convinced me to drop the prototype into the kernel, and that
took me months, as there are concurrency and race conditions as
well as other things, like cache invalidation, to handle. Then Joy
convinced me to store my own home directory on the new file-
system, to show that I believed in my work. I realized that there
was no way to do backups, so I wrote dump to backup and restore
to recover from backups.

I also got tired of running icheck, dcheck, and ncheck, the first
three passes you’d see with fsck, so I got fsck running. All this
was a sidetrack on my way to getting my PhD.

Later on, Joy funded my trip to a Boston USENIX conference with
DARPA money. I created a couple of hand-written slides, and Joy
took them to get typed up. There were about 1200 attendees when I
went to speak, but the slides Joy had provided were nothing like the
ones I had written. When I told people that, they laughed, and the
presentation went well.

The FFS could get around 40% of the bandwidth of disks, 10x the
performance of the older filesystem. I learned from this experience
that you should pick problems where there is a lot of fertile ground.

https://www.oreilly.com/library/view/unix-filesystems-evolution/9780471456759/chap01-sec008.html
https://www.oreilly.com/library/view/unix-filesystems-evolution/9780471456759/chap01-sec008.html
https://www.oreilly.com/library/view/unix-filesystems-evolution/9780471456759/chap01-sec008.html
https://www.usenix.org/system/files/login/articles/584-mckusick.pdf
https://www.usenix.org/system/files/login/articles/584-mckusick.pdf

100 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

NOTES

Our Favorite ;login: Articles, 2005–2019
Rik Farrow, Laura Nolan, and Arvind Krishnamurthy

When we learned that print ;login: was to end with this, the
Winter 2020 issue, several of us decided that we would pick out
some of our favorite articles published during the previous 15
years. To help divide the work of skimming through the 90 issues
published during the period, we each focused on a four- or six-year
set of issues.

Of course, you probably have your own favorites. One problem
with printed magazines is that feedback is rare, other than the
occasional email or comment made to the editor during a confer-
ence. Some of Rik’s favorites are based on data collected from Web
server log files. The new, digital format will provide more opportu-
nities for engagement, with the ability to add comments to articles.
We hope you enjoy this walk through ;login:’s rich recent past and
look forward to introducing you to new articles that continue this
tradition in its new medium.

Rik Farrow: 2005–2010
Although I had the ability to use the log analyses I had
collected during these years, I’ve included articles
that were not just popular over time, but also some
that I particularly liked. In a way, this was a difficult

task for me, because most articles were published because I liked
the topic and felt that the authors involved could write well. Also,
at least one article in each issue was designated as open, mean-
ing that those articles, typically the first article after “Musings,”
had an advantage over other articles that wouldn’t be available for
download by non-members for another year. For these reasons, I
didn’t adhere to the rankings found in the log analysis obsessively,
and included other articles.

2005
I started working as editor this year,
and I will confess that as I worked
through this six-year period, the ar-
ticles did get better over time. Editing
;login: really was a learning experience
for me.

I had been surprised at some of the
things that appeared high in the log
analysis when I first started. ;login:

included a column on C# by Glen McCluskey, and his most popular
column was about serialization in C# [1]. Another column, this one
by Adam Turoff, explained date and time formatting in Perl [2].
Ceph was introduced this year as well, with an article by the
authors [3].

2006
Steve Johnson, past USENIX Board President, and author of yacc,
lint, and the Portable C compiler while at Bell Labs, wrote one of
my favorites, an article about how hardware affects performance.
Steve demonstrated how the stride affects performance when
processing large arrays of 64 bit values [4].

Rob Thomas and Jerry Martin of Team Cymru wrote about their
very practical research into the underground economy. They
joined dozens of underground sites, learning about just how much a
stolen credit card or bank account is worth on the black market [5].

2007
Simson Garfinkel needed to analyze vast quantities of data col-
lected from hard drives, and working with Amazon saved him
thousands of dollars in hardware costs. Simson explained how
he used S3 and EC2, sharing his experiences with what were new
services at the time [6]. There were also two articles about Xen, the
hypervisor technology used at Amazon, in this issue.

Sam Stover, Dave Dittrich, John Hernandez, and Sven Dietrich
installed malware on Windows systems so they could analyze the
Storm and Nugache trojans. What made these trojans different
was that they used P2P communication instead of IRC for com-
mand and control [7].

2008
Edward Walker wondered if Amazon’s cloud could take the place
of large clusters for scientific computing, and discovered that
there are definitely differences between a cluster you control and
configure and the cloud [8]. There was also an article about Solaris
virtualization options in this issue.

David N. Blank-Edelman wrote one of his most popular Perl col-
umns, where he used the open source Timeline tool and some Perl
modules to convert crontab files into Gantt charts [9].

;login: is changing after this issue. From the start of 2021 it will
no longer be a print magazine. But ;login: will still be here, just in
a different form—and this transition also brings the opportunity
to resolve this final anomaly in USENIX’s commitment to open
access. All new ;login: content will be available to all immediately
after publication.

;login: is an old friend now and part of me is sad to see this chapter
of its history end. However, as a regular contributor to ;login:, I
welcome the opportunity to share the content I create more widely.
I believe that ;login: is a very special part of USENIX—it spans the
divide between research and industry, and it truly is a reflection of
the best of all that we are. Making ;login: freely accessible to all
will make it even more meaningful.

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 101

NOTES

2009
Alva L. Couch wrote “Is It Easy Being Green?”, an article about the
two different types of green, ecology and money [10].

As a nice example of the variety of work found in ;login:, Rudi Van
Drunen had a popular article about hardware. Rudi wrote about
digital and analog signals, how they work and how analog gets
converted into digital signals: [11].

2010
Konstantin Shvachko, one of the authors of HDFS, penned an arti-
cle about the limitations of HDFS, due to its design: [12]. The same
issue had another Ceph article, pointing out Ceph’s scalability.

Andrew Tanenbaum, Raja Appuswamy, Herbert Bos, Lorenzo
 Cavallaro, Cristiano Giuffrida, Tomáš Hrubý, Jorrit Herder, Erik
van der Kouwe, and David van Moolenbroek published an update
on Minix3 [13]. There had been two other Minix3 articles published
in ;login: during the decade. This article focused on the ability to
restart portions of the kernel, a topic of the first paper at OSDI ’20.

Laura Nolan: 2011–2015
The time period that I reviewed for this piece is also
when I first started to attend USENIX events and
to read ;login:. Rereading the editions from these
years made me incredibly nostalgic (and not only for

in-person conferences!). It was very difficult to choose only one
article for each year, to the extent that I gave up and quite frankly,
just cheated.

2011
;login: has a very strong track record on
security. The article I’ve chosen to rep -
resent 2011 is Sergey Bratus, Michael E.
Locasto, Meredith L. Patterson, Len
Sassaman, and Anna Shubina on
“Exploit Programming: From Buffer
Overflows to ‘Weird Machines’ and
Theory of Computation” [14]. This
article was dedicated to the memory

of one of the authors, Len Sassaman, who had passed away earlier
that year. It’s a very thoughtful piece that characterises well-
known security exploits (such as printf-family string format
vulnerabilities) as a form of “weird instruction,” and casts security
as a problem of computability: what execution paths can our
programs be trusted not to take, under any circumstances?

2012
My favourite article from 2012 is an example of cascading failure
writ small: “Understanding TCP Incast and Its Implications for
Big Data Workloads” by Yanpei Chan, Rean Griffith, David Zats,
Anthony D. Joseph, and Randy H. Katz [15], which provides a

systems model that explains pathological network throughput
problems seen in early big-data systems. It’s also a research and
industry collaboration, which is apt for an association that spans
industry and academia.

2013
;login: has had a variety of wonderful regular columnists, but none
can top James Mickens for sheer entertainment value. His 2013
column “The Saddest Moment” [16] combines savage satire of
papers and presentations about Byzantine fault tolerance with
 effortless education on the topic.

2014
2014 was a tough year to pick one favourite, because this year
included both Brendan Gregg’s debugging mystery “The Case of
the Clumsy Kernel” [17], as well as “Analysis of HDFS under
HBase: A Facebook Messages Case Study” by Tyler Harter, Dhruba
Borthakur, Siying Dong, Amitanand Aiyer, Liyin Tang, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau [18], which
demonstrates how “mechanical sympathy” between workloads
and the infrastructure they run on is critical at scale, but can easily
get lost with layered abstractions.

However, for sheer controversy, the article of the year has to be
Todd Underwood’s “The Death of System Administration” [19],
based on his LISA keynote in 2013. Underwood proposes a future
where operations engineers with software sensibilities (or vice-
versa) working with better platforms will supersede manual
systems administration work. We may not be sitting on the couch
sipping bourbon and eating bon-bons quite yet, but I think Under-
wood is fundamentally correct about the direction we’re traveling in.

2015
My 2015 pick (albeit with an off-by-one error) is a brace of articles
about bugs. Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna
Rodrigues, Xu Zhao, Yongle Zhang, Pranay U. Jain, and Michael
Stumm’s article “Simple Testing Can Prevent Most Critical
Failures: An Analysis of Production Failures in Distributed Data-
Intensive Systems” [20] highlights how basic attention to error-
handling code can increase the reliability of production systems.

“What Bugs Live in the Cloud?: A Study of Issues in Scalable
Distributed Systems” by Haryadi S. Gunawi, Thanh Do, Agung
Laksono, Mingzhe Hao, Tanakorn Leesatapornwongsa, Jeffrey F.
Lukman, and Riza O. Suminto [21] analyses three types of trouble-
some bugs found in distributed systems such as Hadoop, HDFS,
HBase, Cassandra, ZooKeeper, and Flume. The analysis of the
varieties of “SPoF bugs” that can crash entire systems that are
 intended to be redundant should be required reading for all soft-
ware engineers and SREs.

102 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

NOTES

Arvind Krishnamurthy: 2016–2019
I focused on articles published over the last few years
and what struck me was the rich diversity of the
articles. ;login: has routinely included articles from
both academia and industry, often provided tutorials

on recent developments in software engineering, and discussed
emerging trends in the computing industry.

2016
My favorite article from 2016 is “Pivot Tracing: Dynamic Causal
Monitoring for Distributed Systems” by Jonathan Mace, Ryan
Roelke, and Rodrigo Fonseca [22]. Debugging distributed systems
using logs is a difficult task, as what is recorded on logs is defined a
priori and since it is hard to correlate log entries across a distrib-
uted system. Pivot tracing provides a novel approach that com-
bines dynamic instrumentation with causal tracing and is thus
suitable for production systems.

2017
My 2017 pick is an article describing an industry system that is in
widespread use. Daniel Firestone describes a cloud-scale program-
mable virtual switch in “VFP: A Virtual Switch Platform for Host
SDN in the Public Cloud” [23]. The article describes how Microsoft
Azure enforces SDN policies across its large datacenters using the
virtual switch. In addition to laying out the motivation for building
the system, the article describes the design constraints that are
unique to a public cloud.

2018
For 2018, I picked a practitioner’s guide
to working with XDP, a new program-
mable layer in the kernel network stack.
In the article, “XDP-Programmable
Data Path in the Linux Kernel” [24],
Diptanu Gon Choudhury provides back-
ground information on Berkeley Packet
Filter, a core kernel technology intro-
duced almost two decades ago, and how

it has been recently extended to provide a power programmable
layer inside the kernel that is intended to close the performance
gap with respect to kernel-bypass solutions.

2019
My favorite article from 2019 is “Noria: A New Take on Fast Web
Application Backends” by Jon Gjengset, Malte Schwarzkopf,
Jonathan Behrens, Lara Timbó Araújo, Martin Ek, Eddie Kohler,
M. Frans Kaashoek, and Robert Morris [25]. This article describes
a system that addresses performance problems faced by many
web application backends. It outlines a system design that doesn’t
neatly fit into traditional categories, such as databases or stream-
ing engines, but rather creates a bridge across these technologies.

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 103

NOTES

References
[1] “Working with C# Serialization,” by Glen McCluskey, Febru-
ary, 2005: https://bit.ly/3e5IUf V.

[2] “Date and Time Formatting in Perl,” by Adam Turoff, June,
2005: https://bit.ly/2TGKFqw.

[3] “Ceph as a Scalable Alternative to the Hadoop Distributed
File System,” by Carlos Maltzahn, Esteban Mol Ina-Estolano,
Amandeep Khurana, Alex J. Nelson, Scot T A. Brandt, and Sage
Weil, August, 2010: https://bit.ly/3jItHTg.

[4] “Algorithms for the 21st Century,” by Stephen C. Johnson,
October, 2006: https://bit.ly/3kMIvRS.

[5] “The Underground Economy: Priceless,” by Rob Thomas and
Jerry Martin, December, 2006: https://bit.ly/3jG0hF7.

[6] “Commodity Grid Computing with Amazon’s S3 and EC2,” by
Simson L. Garfinkel, February, 2007: https://bit.ly/2HR2n87.

[7] “Analysis of the Storm and Nugache Trojans: P2P Is Here,” by
Sam Stover, Dave Dittrich, John Hernandez, and Sven Dietrich,
December, 2007: https://bit.ly/35RrNuB.

[8] “Benchmarking Amazon Ec2 for High-Performance Scien-
tific Computing,” by Edward Walker, October, 2008: https://bit.ly
/38hFTbh.

[9] “Practical Perl Tools: Back in Timeline,” by David N. Blank-
Edelman, April, 2008: https://bit.ly/3n1zjKd.

[10] “Is it Easy Being Green?” by Alva L. Crouch, June, 2009:
https://bit.ly/32ltMGw.

[11] “Signals,” by Rudi Van Drunen, June, 2009: https://bit.ly
/36aMim1.

[12] “HDFS Scalability: The Limits to Growth,” by Konstantin V.
Shvachko, April, 2010: https://bit.ly/3exxeCE.

[13] “MINIX 3: Status Report and Current Research.” by Andrew
Tanenbaum, Raja Appuswamy, Herbert Bos, Lorenzo Cavallaro,
Cristiano Giuffrida, Tomáš Hrubý, Jorrit Herder, Erik van der
Kouwe, and David van Moolenbroek, June, 2010: https://bit.ly
/2IvP2T4.

[14] “Exploit Programming: From Buffer Overflows to ‘Weird
Machines’ and Theory of Computation,” by Sergey Bratus,
Michael E. Locasto, Meredith L. Patterson, Len Sassaman, and
Anna Shubina, December, 2011: https://bit.ly/3kkSRr5

[15] “Understanding TCP Incast and Its Implications for Big
Data Workloads,” by Yanpei Chan, Rean Griffith, David Zats,
Anthony D. Joseph, and Randy H. Katz, June, 2012: https://bit.ly
/3pmmE6w.

[16] “The Saddest Moment ,” by James Mickens, May, 2013:
https://bit.ly/2Uft09H.

[17] “The Case of the Clumsy Kernel” by Brendan Gregg, April,
2014: https://bit.ly/3eQiGhD.

[18] “Analysis of HDFS under HBase: A Facebook Messages Case
Study” by Tyler Harter, Dhruba Borthakur, Siying Dong, Amita-
nand Aiyer, Liyin Tang, Andrea C. Arpaci-Dusseau, and Remzi
H. Arpaci-Dusseau, June 2014: https://bit.ly/32B9Csc.

[19]“The Death of System Administration, “ by Todd Underwood,
April, 2014: https://bit.ly/3loTilN.

[20] “Simple Testing Can Prevent Most Critical Failures: An
Analysis of Production Failures in Distributed Data-Intensive
Systems, by Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna
Rodrigues, Xu Zhao, Yongle Zhang, Pranay U. Jain, and Michael
Stumm, February, 2015: https://bit.ly/3kpawy1.

[21] “What Bugs Live in the Cloud?: A Study of Issues in Scalable
Distributed Systems” by Haryadi S. Gunawi, Thanh Do, Agung
Laksono, Mingzhe Hao, Tanakorn Leesatapornwongsa, Jeffrey
F. Lukman, and Riza O. Suminto, August, 2015: https://bit.ly
/38vGjuV

[22] “Pivot Tracing: Dynamic Causal Monitoring for Distributed
Systems” by Jonathan Mace, Ryan Roelke, and Rodrigo Fonsec,
Spring, 2016: https://bit.ly/3eONpf0.

[23] “VFP: A Virtual Switch Platform for Host SDN in the Public
Cloud,” by Daniel Firestone, Fall, 2017: https://bit.ly/2JUdHkB.

[24] “XDP-Programmable Data Path in the Linux Kernel,” by
Diptanu Gon Choudhury, Spring, 2018: https://bit.ly/32DxrPY.

[25] “Noria: A New Take on Fast Web Application Backends,”
“Noria: A New Take on Fast Web Application Backends” by Jon
Gjengset, Malte Schwarzkopf, Jonathan Behrens, Lara Timbó
Araújo, Martin Ek, Eddie Kohler, M. Frans Kaashoek, and Robert
Morris, Spring, 2019: https://bit.ly/38wzVna.

https://bit.ly/3e5IUfV
https://bit.ly/2TGKFqw
https://bit.ly/3jItHTg
https://bit.ly/3kMIvRS
https://bit.ly/3jG0hF7
https://bit.ly/2HR2n87
https://bit.ly/35RrNuB
https://bit.ly/38hFTbh
https://bit.ly/38hFTbh
https://bit.ly/3n1zjKd
https://bit.ly/32ltMGw
https://bit.ly/36aMim1
https://bit.ly/36aMim1
https://bit.ly/3exxeCE
https://bit.ly/2IvP2T4
https://bit.ly/2IvP2T4
https://bit.ly/3kkSRr5
https://bit.ly/3pmmE6w
https://bit.ly/3pmmE6w
https://bit.ly/2Uft09H
https://bit.ly/3eQiGhD
https://bit.ly/32B9Csc
https://bit.ly/3loTilN
https://bit.ly/3kpawy1
https://bit.ly/38vGjuV
https://bit.ly/38vGjuV
https://bit.ly/3eONpf0
https://bit.ly/2JUdHkB
https://bit.ly/32DxrPY
https://bit.ly/38wzVna

Attackers and
Defenders
Finally Agree

01.
“Amazing product,
developed by some of the
most seasoned pros in the
industry.”

04.
“The concept and use of
Canarytokens has made me
very hesitant to use
credentials gained during
an engagement. If the aim
is to reduce the time taken
for attackers, Canarytokens
work well.”

02.
“Great products that work,
easy and quick to install
and provide real value.”

05.
“Their on-prem canary is
one of the only things that
caught me right away
in post-exploitation without
my knowing I was burned.
Solid concept and
product.”

03.
“We 🖤🖤 our canaries.”

06.
“Don’t think just get them.”

https://canary.tools/love

https://canary.tools/love

Andrew File System

AFS the original

"Cloud Storage System"

Aurora System Paper

Presented by Morgan

Stanley at USENIX LISA

Thank you, USENIX.
For over 25 years of supporting

AFS, OpenAFS, and AuriStor.

If it wasn't for USENIX we

wouldn't be here today!

USENIX LISA includes

AFS Workshops

From 2001 to 2004

AuriStor is founded

AuriStor receives DoE

SBIR Grant to extend

upon AFS vision

AuriStor supporting

USENIX today, tomorrow,

and beyond!

AuriStor begins

annual sponsorship

of USENIX LISA

OpenAFS Fund

established by USENIX

to advance OpenAFS

AuriStor becomes a

USENIX Benefactor

https://www.auristor.com/filesystem

Security and Privacy Ideas that Matter

F E B 1 – 3 , 2 0 2 1 | V IRT UA L E V EN T
usenix.org/enigma2021

The full program and registration are available now.

FEATURED SPEAKERS

Carmela Troncoso
Apple

Scott Shapiro,
Yale University

Jack Cable,
Security Researcher and

Student, Stanford University

Kate Starbird,
University of Washington

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

https://www.usenix.org/enigma2021

	Contents
	Musings
	Video Conferencing Must Evolve
	Build It, Break It, Fix It Contests: Motivated Developers Still Make Security Mistakes
	The Road to Less Trusted Code: Lowering the Barrier to In-Process Sandboxing
	Using Safety Properties to Generate Vulnerability Patches
	Interview with Sergey Bratus
	Characterization and Optimization of the Serverless Workload at a Large Cloud Provider
	Posh: A Data-Aware Shell
	Interview with Margo Seltzer
	SRE Best Practices for Capacity Management
	The Case for CS Knowledge in SRE
	Book Review: Implementing Service Level Objectives by Alex Hildago
	Systems Notebook: What’s in That Container?
	iVoyeur: BPF and Histograms
	SIGINFO: The Tricky Cryptographic Hash Function
	Programming Workbench: Compressed Sparse Row Format for Representing Graphs
	For Good Measure—Counting Broken Links: A Quant’s View of Software Supply Chain Security
	/dev/randomDiscontent Creator
	Book Reviews
	Statement of Ownership, Management, and Circulation, 09/30/2020
	USENIX Board of Directors
	;login: Enters a New Phaseof Its Evolution
	Interview with ClemCole
	Interview with Kirk McKusick
	;login: and Open Access
	Our Favorite ;login: Articles, 2005–2019

