
;login:
W I N T E R 2 0 1 9 V O L . 4 4 , N O . 4

Columns
Failures of Dynamic Control Systems
Laura Nolan

Profiling Tools for Python
Peter Norton

Distributed Tracing
Dave Josephsen

Composing Environment-Specific Configurations
in Golang
Chris “Mac” McEniry

Metrics Terminology
Dan Geer and Jason Crabtree

& Using ML to Block BGP Hijacking
L. Jean Camp

& Workshop on Data Storage
Research 2025
George Amvrosiadis, Ali R.Butt, Vasily Tarasov,
Erez Zadok, and Ming Zhao

& Uncovering Android Privacy Leaks
Joel Reardon, Álvaro Feal, Primal Wijesekera,
Amit Elazari Bar On, Narseo Vallina-Rodriguez,
and Serge Egelman

& Ask-Me-Anything Systems
Engineering
 Effie Mouzeli

UPCOMING EVENTS
Enigma 2020

January 27–29, 2020, San Francisco, CA, USA
www.usenix.org/enigma2020

FAST ’20: 18th USENIX Conference on File and
Storage Technologies

February 24–27, 2020, Santa Clara, CA, USA
Sponsored by USENIX in cooperation with
ACM SIGOPS
Co-located with NSDI ’20
www.usenix.org/fast20

Vault ’20: 2020 Linux Storage and Filesystems
Conference

Feburary 24–25, 2020, Santa Clara, CA, USA
Co-located with FAST ’20
www.usenix.org/vault20

NSDI ’20: 17th USENIX Symposium on
Networked Systems Design and
Implementation

February 25–27, 2020, Santa Clara, CA, USA
Sponsored by USENIX in cooperation with
ACM SIGCOMM and ACM SIGOPS
Co-located with FAST ’20
www.usenix.org/nsdi20

SREcon20 Americas West
March 24–26, 2020, Santa Clara, CA, USA
www.usenix.org/srecon20americaswest

HotEdge ’20: 3rd USENIX Workshop on Hot
Topics in Edge Computing

April 30, 2020, Santa Clara, CA, USA
Paper submissions due February 20, 2020
www.usenix.org/hotedge20

OpML ’20: 2020 USENIX Conference on
Operational Machine Learning

May 1, 2020, Santa Clara, CA, USA

SREcon20 Asia/Pacific
June 15–17, 2020, Sydney, Australia

2020 USENIX Annual Technical Conference
July 15–17, 2020, Boston, MA, USA
Paper submissions due January 15, 2020
www.usenix.org/atc20

SOUPS 2020: Sixteenth Symposium on Usable
Privacy and Security

August 9–11, 2020, Boston, MA, USA
Co-located with USENIX Security ’20

29th USENIX Security Symposium
August 12–14, 2020, Boston, MA, USA
Winter Quarter paper submissions due
February 15, 2020
www.usenix.org/sec20

SREcon20 Europe/Middle East/Africa
October 27–29, 2020, Amsterdam, Netherlands

OSDI ’20: 14th USENIX Symposium on
Operating Systems Design and
Implementation

November 4–6, 2020, Banff, Alberta, Canada
Sponsored by USENIX in cooperation with
ACM SIGOPS
Abstract registrations due May 5, 2020
www.usenix.org/osdi20

LISA20
December 7–9, 2020, Boston, MA, USA

SREcon20 Americas East
December 7–9, 2020, Boston, MA, USA

USENIX Open Access Policy
USENIX is the fi rst computing association to off er free and open access to all of our conference proceedings
and videos. We stand by our mission to foster excellence and innovation while supporting research with a
practical bias. Please help us support open access by becoming a USENIX member and asking your colleagues
to do the same!

www.usenix.org/membership

www.usenix.org/facebook

twitter.com/usenix

www.usenix.org/youtube

www.usenix.org/linkedin

E D I T O R
Rik Farrow
rik@usenix.org

M A N A G I N G E D I T O R
Michele Nelson
michele@usenix.org

C O P Y E D I T O R S
Steve Gilmartin
Amber Ankerholz

P R O D U C T I O N
Arnold Gatilao
Ann Heron
Jasmine Murcia

T Y P E S E T T E R
Star Type
startype@comcast.net

U S E N I X A S S O C I AT I O N
2560 Ninth Street, Suite 215
Berkeley, California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

www.usenix.org

;login: is the official magazine of the USENIX
Association. ;login: (ISSN 1044-6397)
is published quarterly by the USENIX
Association, 2560 Ninth Street, Suite 215,
 Berkeley, CA 94710.

$90 of each member’s annual dues is for
a subscription to ;login:. Subscriptions for
non members are $90 per year. Periodicals
postage paid at Berkeley, CA, and additional
mailing offices.

POSTMASTER: Send address changes to
;login:, USENIX Association, 2560 Ninth Street,
Suite 215, Berkeley, CA 94710.

©2019 USENIX Association
USENIX is a registered trademark of the
USENIX Association. Many of the designa-
tions used by manufacturers and sellers
to distinguish their products are claimed
as trademarks. USENIX acknowledges all
trademarks herein. Where those desig-
nations appear in this publication and
USENIX is aware of a trademark claim,
the designations have been printed in caps
or initial caps.

W I N T E R 2 0 1 9 V O L . 4 4 , N O . 4

E D I T O R I A L
2 Musings Rik Farrow

S E C U R I T Y
6 Using ML to Block BGP Hijacking L. Jean Camp

11 50 Ways to Leak Your Data: An Exploration of Apps’
Circumvention of the Android Permissions System
Joel Reardon, Álvaro Feal, Primal Wijesekera, Amit Elazari Bar On,
Narseo Vallina-Rodriguez, and Serge Egelman

16 Building an Nmap for Your Car Sekar Kulandaivel, Tushar Goyal,
Arna v Kumar Agrawal, and Vyas Sekar

20 12th USENIX Workshop on Cyber Security Experimentation
and Test (CSET ’19) Peter A. H. Peterson and Rob G. Jansen

22 Interview with Kirill Levchenko Rik Farrow

F I L E S Y S T E M S A N D S T O R A G E
24 Selected Results of the Workshop on Data Storage Research

2025 George Amvrosiadis, Ali R. Butt, Vasily Tarasov, Erez Zadok,
and Ming Zhao

P R O G R A M M I N G
29 Good Old-Fashioned Persistent Memory Terence Kelly

S R E A N D S Y S A D M I N
35 Ask-Me-Anything Engineering Effie Mouzeli

40 Multi-Tenancy in a Microservice Architecture Amit Gud

C O L U M N S
46 Managing Systems in an Age of Dynamic Complexity

Or: Why Does My Single 2U Server Have Better Uptime
than GCP? Laura Nolan

49 A Survey of Open-Source Python Profilers Peter Norton

55 iVoyeur: Distributive Tracing Dave Josephsen

57 Zero, Null, and Missing! Oh My! Chris “Mac” McEniry

60 For Good Measure: The Imperative of Reclaiming Metrics
Terminology Dan Geer and Jason Crabtree

64 /dev/random: Ransomwar Robert G. Ferrell

B O O K S
66 Book Reviews Mark Lamourine and Rik Farrow

U S E N I X N O T E S
68 The Big Picture  Liz Markel, Community Engagement Manager

2  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

EDITORIALMusings
R I K F A R R O W

Rik is the editor of ;login:.
rik@usenix.org While I was attending my very first FAST conference, in 2006, a

journal ist told me that he had a question for a file system expert.
I walked him toward registration and quickly spotted someone

who I thought could answer his question. After all, I didn’t think it would be
that hard.

“Why are there so many file systems?” he asked. I was floored. At the time, I thought this was
a naive question and felt embarrassed for the journalist. But I later realized I shouldn’t have
been, because while I had accepted the fact that there were many file systems, multiple ones
for every popular operating system, there actually are many reasons why there are so many.

On the surface, you might think that each group of operating systems designers wants to
write their very own file system. And you’d be right, up to a point. If you look at the Wikipe-
dia page that compares file systems [1], all of the most commonly used file systems share
features. But this misses two important points.

First, the underlying operating systems cannot support dropping in existing file systems. The
interfaces to key support functions—for example, allocation of memory—will be different.
These differences go even deeper than interfaces. Windows NT, now known as Windows, has
a very different design philosophy from any UNIX-related operating system. One manifes-
tation of this is that the NTFS keeps file and directory names, attributes, and block lists in
the Master File Table whenever possible. This allows for much faster filename searches and
file openings but at the price of having a single point-of-failure—yes, the MFT is a file. I’m
exaggerating slightly, as there is a copy of the MFT, and the locations of each are stored in
the boot block. UNIX-style systems have superblocks for file-system metadata, inodes for
the attributes and blocks in files, and directories themselves are files. I’m skipping over how
large files and extended attributes are handled for simplicity, but UNIX and NT file systems
handle key features very differently.

The second reason for the variety found in file systems is that the science behind building
fast and reliable file systems advances. Fragmentation was a huge problem for the Version
7 UNIX file system, which continued to be used in System V. The Fast File System solved
this through the use of cylinder groups, something used in Linux ext and the NTFS as well.
FFS also introduced the notion of having multiple copies of the superblock. But ext2 experi-
mented with a dangerous technique that has turned out to work: it dispensed with synchro-
nous writes of metadata, which block any further writing to the file system. Unpacking a tar
archive on the same hardware was 10 times faster using ext2 than FFS. I know, because I
experimented with both BSDI and Linux in 1992.

Finally, file systems exist to support applications, and not all applications require the same
style of operations. Some applications create large sequential reads or writes, some create
lots of small files (mail systems), high performance computing systems create thousands of
checkpoint files nearly simultaneously, and so on. So while ext4 works fine for most Linux
installs, some applications demand the use of XFS for handling large files.

www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 3

EDITORIAL
Musings

The NSF Visioning Workshop [2], with a report published in
2019, focuses on the potential future design requirements for
storage and file systems. Some things in the report just seem
like common sense: for example, creating support for commonly
used lower level file system tasks that can be reused. Other facets
of this report cover newer applications, such as edge comput-
ing and machine learning, that have different needs than older
applications.

The five lead authors of the workshop report (you can find a list
of the workshop participants at [2]), wrote about some of the
report’s findings for this issue of ;login:.

The Lineup
Given that build-up, you might expect that this issue will be all
about file systems and storage, but you’d be wrong. We actually
start out with several articles related to security.

Jean Camp writes about her experience monitoring BGP mis-
takes and attacks. BGP was designed when there was little
concern for security, and Internet operators were happy enough
to have a routing advertisement protocol that just worked. There
have been many attempts to secure routing updates that have not
succeeded in the decades since BGP was adopted. Camp explains
how important it is to consider the geopolitical aspects of running
BGP safely, and describes a tool that permits blocking access to
networks affected by mistaken or malicious route updates.

Reardon et al. share their work on finding side and covert chan-
nels in Android. They built upon their prior work in improving
the usability of the Android permission system and creating
a monitoring tool to check how well the permissions systems
worked. While testing the accuracy of their tools, they uncov-
ered lots of malfeasance, including in libraries specifically for
apps for children, a violation of the law in many countries.

Kulandaivel et al. talk about the CAN bus scanner they developed,
called CANvas. While you can purchase information about
replacing your car’s Electronic Control Units, that tells you only
about the ECUs the manufacturer installed in your car, not any-
thing added later. The authors explain why a scanner is useful
but also difficult to implement for the CAN bus.

Peter Peterson and Rob Jansen have produced a summary of the
CSET ’19 workshop. CSET had a broader focus this year, and
the chairs describe how this new focus and a larger program
committee worked out. They also include summaries of all the
presentations from CSET ’19.

Kirill Levchenko is interested in aviation, but his interest goes
deeper than just being a passenger. Levchenko has been working
with a multi-institution group to create testbeds for the commu-
nication buses used in large passenger aircraft, like the Boeing
737. Some of what they have discovered turns out to be comforting
rather than frightening, as I discovered while interviewing him.

Amvrosiadis et al. share some of the results of the NSF-sponsored
future of file systems and storage 2025 workshop mentioned in
the opening. The idea behind the workshop was to provide direc-
tions for future research and development in these areas. In par-
ticular, the workshop participants determined important new
areas that have, or are expected to have, unusual storage require-
ments, such as machine learning and the Internet of Things.

Terence Kelly has been designing programming paradigms for
persistent memory for many years. In this article, Kelly demon-
strates two different techniques, one a programming style for
traditional storage-backed memory, and the second, a mecha-
nism for making changes to the backing-store atomic.

Effie Mouzeli shares her perspective on “Ask-Me-Anything”
engineering. Not all system engineers (SEs) work at huge com-
panies. Mouzeli provides useful advice for people working alone
or in small teams of SREs in the often chaotic environments
of startups and at smaller organizations, where the SE must be
able to solve almost any problem—thus the AMA designation.
Mouzeli writes from her own life experiences, including about
the five stages of technical debt, with humor and honesty.

Amit Gud explains the benefits of multi-tenancy in micro service
environments. Multi-tenancy means that data in f light and
when stored include labels that are used to control the flow and
usage of data in these environments. Uses include testing code
or configuration changes and designing more modularity into
systems.

Laura Nolan writes about the pitfalls of dynamic control sys-
tems. Ever wonder why the servers you once had in your racks
were more reliable than the complex systems run by gigantic
cloud services? Wonder no more.

Peter Norton wants to teach you how to add useful profiling to
your Python scripts with the goal of looking at different visual-
izations. The default Python profiler doesn’t produce as useful
results as newer tools, so Norton demonstrates other tooling.

Dave Josephsen tells us about distributed tracing. There have
been two popular projects, OpenTracing and OpenCensus, which
are being merged into one. And the IETF has been working on a
way to use HTTP headers to do this called OpenTelemetry. Dave
explains the differences between these approaches.

Dan Geer and Jason Crabtree challenge us to get clear about our
security metrics. If everyone creates and uses their own set of
in-house metrics, we cannot share measurable information
about attacks, risk, and the success or failure of defenses.

Robert Ferrell muses about possible solutions to the wave of
ransomware affecting systems throughout the world. I pointed
out several obvious weaknesses in most of his approaches, and
he reproached me. It is a humor column, Robert reminded me.

4  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

EDITORIAL
Musings

Mark Lamourine has reviewed cookbooks about Kubernetes,
Ansible, and OpenStack in this issue, and I cover Randall Mun-
roe’s cookbook for how to solve common problems using absurd
scientific advice.

While considering Robert Ferrell’s absurd solutions to ransom-
ware, I wondered why victims almost never have good backups
prepared. We all know about the importance of backing up
systems and testing these systems before we need them. Could
it be that most IT departments cannot handle this most basic of
tasks, one that comes right after user management?

The failure of so many organizations tells us volumes about the
world we live in. The real world is prone to failure and is not full
of people eager to do the repetitive work of having to create rou-
tine backups—even though the occasional consequences are far
worse than the boredom entailed while spot-checking backups
for correct functionality—or the more difficult task of setting up
and enforcing a site-wise backup system or policy.

Sometimes I think that I live in a world populated by teenagers,
all in revolt against everything that has stood the test of time
and willing to risk everything just because they can. I was glad
when my teenagers outgrew that period of their lives, and I can’t
wait for the rest of the world to get there, too.

References
[1] Comparison of File Systems: https://en.wikipedia.org/wiki
/Comparison_of_file_systems.

[2] G. Amvrosiadis, A. R. Butt, V. Tarasov, E. Zadok, and
M. Zhao, Data Storage Research Vision 2025 Report on NSF
Visioning Workshop, 2018: https://dl.acm.org/citation.cfm?id
=3316807.

Letter to the Editor
Thanks for the enthusiastic intro to our “Not So Fast” work in
the Musings editorial in the Fall 2019 issue.

We did want to highlight a few unfortunate misconceptions
about Browsix-Wasm—the biggest being that Browsix is most
emphatically not a browser plugin, and that it does not provide
access to the host’s file system!

Browsix works as a JavaScript/Wasm library that runs
entirely within the browser, without the need to install
plugins. The file system that Browsix exposes to programs
(like SPEC) is entirely independent of the host OS’s file sys-
tem. For SPEC, all the files come from an HTTP server, and a
writeable “overlay” file system provides ephemeral storage for
the duration that a tab is alive (a very similar approach to how
Docker provides layered file systems).

Like the file system, all of the operating system services that
Browsix-Wasm provides (like processes and pipes) are built
on top of standard browser APIs (like WebWorkers) within
the confines of the browser sandbox. This approach is what
enables us to work across all major browsers.

Given that safety, you and everyone else should feel just fine
about running Browsix-Wasm on your daily driver browser,
and indeed you might visit websites that use Browsix without
you even knowing it! (Components of it help power the emula-
tors on archive.org, like the Oregon Trail: https://archive.org
/details/msdos_Oregon_Trail_The_1990.)

Many thanks in advance,

—Abhinav, Bobby, Emery, and Arjun

Correction
In the book review of Concurrency in Go (Summer 2019 issue,
page 59), C. A. R. Hoare was incorrectly listed as C. Anthony
and R. Hoare in the reference at the end of the review. We
apologize for the error.

https://en.wikipedia.org/wiki/Comparison_of_file_systems
https://en.wikipedia.org/wiki/Comparison_of_file_systems
https://dl.acm.org/citation.cfm?id=3316807
https://dl.acm.org/citation.cfm?id=3316807
https://archive.org/details/msdos_Oregon_Trail_The_1990
https://archive.org/details/msdos_Oregon_Trail_The_1990

Save the Dates!

18th USENIX Conference on
File and Storage Technologies

February 24–27, 2020 | Santa Clara, CA, USA
Sponsored by USENIX in cooperation with ACM SIGOPS
Co-located with NSDI ’20
www.usenix.org/fast20

The 18th USENIX Conference on File and Storage Technologies (FAST ’20) brings together
 storage-system researchers and practitioners to explore new directions in the design,
 implementation, evaluation, and deployment of storage systems.

The program committee will interpret “storage systems” broadly; papers on low-level
storage devices, distributed storage systems, and information management are all of
 interest. The conference will consist of technical presentations including refereed papers,
Work-in- Progress (WiP) reports, poster sessions, and tutorials.

The full programs and registration will be available in December.

17th USENIX Symposium on
Networked Systems Design
and Implementation

February 25–27, 2020 | Santa Clara, CA, USA
Sponsored by USENIX in cooperation with ACM SIGCOMM and ACM SIGOPS
Co-located with FAST ’20
www.usenix.org/nsdi20

NSDI focuses on the design principles, implementation, and practical evaluation of net-
worked and distributed systems. Our goal is to bring together researchers from across the
networking and systems community to foster a broad approach to addressing overlapping
research challenges.

NSDI provides a high-quality, single-track forum for presenting results and discussing ideas
that further the knowledge and understanding of the networked systems community as a
whole, continue a significant research dialog, or push the architectural boundaries of net-
work services.

6  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

SECURITYUsing ML to Block BGP Hijacking
L . J E A N C A M P

L. Jean Camp is a Professor
in the Luddy School of
Informatics, Computing,
and Engineering at Indiana
University. She is currently

a visiting scholar is at the University of
California at Berkeley’s Center for Long-Term
Cybersecurity. She joined Indiana after eight
years at Harvard’s Kennedy School where
her courses were also listed in Harvard
Law, Harvard Business, and the Engineering
Systems Division of MIT. After earning her
doctorate from Carnegie Mellon, she spent one
year as a senior member of the Technical Staff
at Sandia National Laboratories. She began
her career as an engineer at Catawba Nuclear
Station with an MSEE from the University of
North Carolina at Charlotte. She has authored
more than 150 peer-reviewed publications on
security and privacy, addressing trust on every
layer of the OSI model. ljcamp@indiana.edu

Border Gateway Protocol (BGP) has proven to be resilient in the face of
failures, attacks, and general maliciousness and incompetence. While
there are no deployed mechanisms for automatically remediating BGP

announcements that may be malicious, there have been many attempts at
fixing this sorry state of affairs. In this article, I will describe some trouble-
some BGP events and how our tool, Bongo, uses machine learning (ML) and
Layer 8 in the IP stack to detect malicious announcements and block traffic
that would be diverted.

David Clark, in his book Designing an Internet, identified the Internet as a socio-technical
system that could have been developed in many different ways. That the Internet is social,
political, and economic is not contested in 2019. Yet the argument that BGP is social, politi-
cal, and economic pushes this discussion to another level. In recent years several trends have
emerged illustrating the vulnerability of the Internet’s control plane. One of these trends is
that, as the Internet expands, the expertise of individual operators is increasingly diverse,
leading to more routing errors. The second is the increase in traffic redirection: in other
words, route hijacking as an attack vector.

Consider first, misguided network configurations. China Telecom announced 15% of all IPv4
space in April of 2010, resulting in tremendous loss of traffic. This was represented as an
error, and given that the traffic did not reach its intended destination, this would have been
an extremely clumsy attack.

Another failure of routing was the misconfiguration of a small Australian ISP in 2012, one
which took the continent “down under” down for hours. This is a most common failure of
routing: a straightforward failure of human factors in configuration. These outages were
immediately apparent and repaired within hours. However, the smaller customer ISP did
in fact announce all routes from the two larger ISPs. The upstream ISP did not filter the
route announcements appropriately and can be said to have both caused and suffered from
the outage. Route leaks are a function of lack of technical competence, but this does not
mean that they cannot diffuse quickly and cause harm. Previously proposed solutions have
included customer route filtering, such as filtering all traffic from a client that will affect
remote prefixes. The simultaneous emergence of untrustworthy behavior and the continuing
need for connectivity illustrates the risk of such an approach. A different approach requires
the increase of technical competence among not only ISPs but also larger end users, which
appears optimistic [8].

In addition to errors and odd incidents, there has also been a wide range of political attacks.
An early example originated from Pakistan in 2008, where Pakistan identified several
YouTube videos as sufficiently problematic politically that the decision was made to block all
of YouTube. An address internal to Pakistan for YouTube was announced within Pakistan
Telecom; however, it was also broadcast across northern Africa and Europe, with a duration
of hours. Arguably, while the intention to block YouTube within Pakistan was political, the
leak itself was a human factors problem.

www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 7

SECURITY
Using ML to Block BGP Hijacking

The efficacy of attacks of nation-states on the reachability of the
Internet was further proven during Arab Spring, as rapid drop-
offs for Egyptian and Libyan populations were easily observable
but less easily repairable.

When an entity misrepresents its location in a routing path,
rather than claiming to own a destination, the errors are less
obvious. With this attack, traffic continues to be delivered
and such a routing configuration could remain stable for long
periods. Such a case occurred between China Telecom and
AT&T, this time for some period of months: Facebook traffic was
routed through China. Note that while the login to Facebook is
protected by TLS, other uses of Facebook were not encrypted at
that time. Thus a significant amount of global traffic was routed
through a nation where Facebook adoption is remarkably low.

Since 2001, route hijacking has been turned into an attack [4].
Many of these attacks appear to remain undetected and unre-
ported, creating a call for a ubiquitous cryptographic solution,
RPKI [9]. Like many previous solutions, RPKI is incentive-
misaligned and requires widespread adoption. BGPSEC is
another example of a solution that was operationally, and
economically, misaligned to the problem it was intended to solve.
BGPSEC makes both requirements and benefits for early adopt-
ers that discourage innovators. Should BGPSEC be adopted it
may not be resistant to political attacks nor misconfigurations.
As the experience with certificate authorities issuing X509
certificates for the Web has demonstrated, political attacks are
difficult to prevent and detect with an all-or-nothing crypto-
graphic model of trust.

Sometimes malicious authorities are generally trusted for pur-
poses of access, interoperability, and connectivity when popula-
tions on the network experience these authorities as malicious.
Other solutions call for the creation of trusted third parties [10]
or other changes in the infrastructure.

Addressing Geopolitical Dimensions
Our research directly addresses the geographical and political
dimensions of BGP, reaching beyond purely technical dimen-
sions to develop operational solutions. While specific threats to
the control plane have included political interference, misguided
network configurations, and miscellaneous mischief, much
research on hardening the control plane has tended to be care-
fully neutral and apolitical—which is itself an ideological choice.

We contest this viewpoint by using a variety of data, including
technical, rates of change, economic, and geopolitical, as net-
work topology changes via BGP updates can offer probabilistic
(not cryptographic) trust indicators. We understand that any
ML approach needs to consider that attackers can and do adjust
their strategies when defenses appear, and that any mechanism
needs to do more than just provide temporary benefits.

At our lab, the application of machine learning to security has
three basic principles. First, do not examine something that is
easy for the attacker to change. Second, focus on the minimal
requirements for a successful attack. Then leverage those mini-
mal requirements to identify features that the attacker will have
difficulty altering in a successful attack. And finally, use offline
information or indicators of offline information when possible to
better identify those features.

Using this as a starting point, we identified the fact that a
require ment for BGP routing attacks is the ability to manipulate
announcements from a single autonomous system (AS). Attacks,
foolishness, and manipulations have arisen from single source
ASes rather than coordinating across source networks. That
the geography of the network reflects political geography was
an underlying assumption for our work, one that has been more
recently explored and validated [7].

What are the minimal requirements for a successful attack?
The attacker’s routing announcements must be distributed
across the Internet without arousing suspicion so that the traffic
is misdirected. Detecting this behavior means identifying pat-
terns in attacks, so we began with offline features: jurisdiction
and the data arising from a nation-state approach.

Incompetence or Attack
We did wonder whether we were simply seeing the rise of less
qualified operators. An IETF member (who asked to remain
anonymous) once argued, “As the number of people on the internet
increases, the amount of cluefulness remains constant,” mean-
ing that more incidents will occur as participation in the net-
work increases. Could cluelessness explain BGP anomalies? Is
lack of technical expertise a significant explanatory variable for
why some countries initiate more BGP incidences than others?
Any given anomaly could be an accident, a crime, or an attack.

To understand the nature of routing anomalies, we empirically
investigated the nations of origin of the events, using multiple
regression and unsupervised learning techniques to analyze
anomalies over a four-year period. If BGP anomalies are a result
of limited technical competence, then countries with low levels
of education, few technology exports, and less expertise should
be overrepresented. If BGP anomalies are crime, leveraged by
criminals for profit, then economic theories and analytical
approaches from criminology should show statistical signifi-
cance. Using macroeconomics by leveraging three theories from
criminology and global measures of technology adoption, we
examined whether anomalies were likely incompetence, poten-
tial e-crime, or intelligence operations.

For the issue of technical competence we included secure Inter-
net services, IT exports, and third-party measures of network
readiness. Our variable selection was also informed by different

8  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

SECURITY
Using ML to Block BGP Hijacking

theories of criminology. We found that exports of technology
were not statistically significant, undermining the argument
for incompetence. We also found support for the possibility that
anomalies were driven by crime, specifically for the guardian-
ship and relative deprivation theories of crime.

We used unsupervised learning on the sources of BGP hijacks
and apparently malicious routing announcements; and the result
was two categories of nations, one correlated with higher levels
of corruption and one associated with conflict. This clustering
indicated that civil conflict and surveillance were associated
with the disproportionate origination of routing anomalies [5].

Choosing Safety over Availability
The lack of support for the hypothesis that BGP anomalies are
generated by incompetents, the support for the role of crime, and
the indication that political stability is an indicator provided
a design guideline for our next step. If there is a threat from a
particular jurisdiction, then announcements that change stable
routing patterns to include these jurisdictions are suspicious.

Beyond the refusal to treat the Internet as if it were some third
space, unmoored to political nor geography reality, our next
decision made explicit the tradeoff between availability and
confidentiality. Is there data where it is better not to send it, rather
than sending it and risking exposure? We developed a proof of
concept that generates firewall rules based on BGP changes
according to the jurisdiction of the nation of the announcing AS.

We examined the feasibility of changing the calculus of the
confidentiality, integrity, and availability model by providing
the choice to select confidentiality and integrity over availabil-
ity [3]. We named this package Bongo to fit with the ungulate
method of naming in the open source route reflector tradition.
We distinguish this from Quagga and Zebra in that bongos are
the only spiral-horned antelopes (tragelaphid) where both male
and females have horns. Our goal was to offer a pointed defense.
Bongo uses the Routing Information Base (RIB) to identify
changes not in routes but in AS, and then assigns each AS a risk
parameter. Based on this parameter, Bongo can create a firewall
rule. Alternatively, Bongo may simply issue an alert to the opera-
tor, if the change is worthy of note but not high risk.

The approaches for route filtering also would work with the next
generation Internet architecture, software-defined networking
(SDN). SDN is an established alternative architecture, where
f lows (rather than routes) define the paths of data using
information from multiple layers (rather than IP and NAT
information only). To say that SDN was not built with security
as a design goal is a bit of an understatement. Yet the nature of
flows inherently offers potential against BGP attacks. Changes
in flows and delaying flows should be less prone to overlap and
confusion than potentially quickly changing firewall rules. If

this holds under further study, then SDN allows the promise of
rejecting changes in the BGP topology.

Bongo also implements the creation of OpenFlow rules based
on risk estimates, including jurisdiction. The key difference
between Bongo and other works is the assumption that hijacks
and leaks will happen upstream beyond the control of the end of
the network. The goal is to enable what a BGP end user—that is,
companies operating networks receiving BGP updates from their
upstream ISPs—can do to react to these events.

Additionally, even if prefix hijacking and path-length attacks
were to be completely eliminated, an organization may want to
cease sending data in reaction to a topology change that would
send sensitive data to an undesirable geographical region. Bongo
enables prohibition of traffic from traversing certain jurisdic-
tions. At some level, this seems as simple as the promulgation of
simple yes or no rules. However, full path verification is clearly
not feasible (upstream routers may lie about AS paths), so this
detection inherently includes uncertainty.

A Pragmatic Approach
Bongo is designed to defend the network as it is currently oper-
ated, without assumptions about adoption of PKI or any other
technology in the future. Bongo approaches route updates as risk
decisions and can estimate the risk of adopting a route based on
any filter the programmer deems appropriate. Bongo allows an
organization to decide exactly how much and what kind of risk it
will accept from the control plane.

In addition to publishing this in a traditional technical domain—
an ACM workshop—we also sought feedback from experts in
communications and Internet policy. An earlier version, before
the ACM publication, was presented at the Telecommunications
Policy Research Conference. This venue has a rich history of
publishing visions before there is a reality. Software-defined
radio was included in the call for papers before it was a respectable
technical idea; and Internet commerce was a session at TPRC
before the First Workshop on Electronic Commerce was hosted by
one of the big three (ACM, IEEE, and, of course, USENIX) [1].

The feedback at that venue was that the reality of the politics
of delay, misdirection, and black holing of traffic was already
known in policy circles. The roles of criminals and intelligence
agencies was much discussed at this Telecommunications Policy
Research Conference, but rarely with engineers in the room.

To determine how disruptive such an approach might be, we
examined the paths to the top global financial institutions. We
found only the Bank of Tehran would have suffered any denial of
service connecting from California while using Bongo, and that
may be a result of route flapping. Other routes were extremely
consistent in terms of jurisdictions traversed. We identify these
as political and geographical decisions [2].

www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 9

SECURITY
Using ML to Block BGP Hijacking

Specifically, we selected the top 50 banking websites from Alexa
as a rough approximation for sensitive addresses to which an
organization may want to apply transit restrictions. We exam-
ined the BGP state from a single ISP based in San Francisco over
the course of April 2016 and identified every time the country
associations changed in the AS path to each banking site. Out
of the 50 financial services IP addresses analyzed over the one-
month period, only four of them experienced country changes
in the path to their destination and one experienced an outage.
That means that for 46 of the IP addresses, an extremely strict
exfiltration policy, restricting to no AS path country changes,
would not have caused any outages during this time period from
our vantage point in San Francisco.

Only four showed a change in jurisdiction along their paths.
Online.citibank.com, during a period of 24 hours on April 5 to
April 6, 2016, had routes to their network completely withdrawn
from the routing table. The path for www.nbg.gr, the website
for the National Bank of Greece, changed on April 9 to a direct
peering between a US provider and a Greek (GR) provider, elimi-
nating an intermediary peer in the EU. HSBC.com alternated
between being advertised directly in the US and being advertised
by an ISP in Great Britain (GB). For US-only paths, this would
have caused an eight-day outage and then a three-day outage, but
for US and GB paths, there would have been no impact.

The one likely impacted domain would have been Bsi.ir, Bank
Saderat Iran, headquartered in Tehran. From the start of the
period until April 17, the path traversed the US, Russia (RU),
Azerbaijan (AZ), and Iran (IR). For the following eight days, it
traversed Oman (OM), the US, and Iran. Then for four hours on
April 25, the path traversed Germany (DE), the US, and Iran,
after which it switched back to the Oman route. Thus, the use
of Bongo for preventing connections through specified jurisdic-
tions would have affected only Bank Saderat in its connections
to the US were Germany, Russia, or Azerbaijan disallowed.

Another Approach
Given that it is feasible to defend against possible targeted
events, can we detect larger-scale assaults on BGP? Again we
began by asking the three core questions for applying machine
learning to security: what is required, what is the goal, and what
features can be identified with this understanding? Building on
the requirements to defend against attacks that require large-
scale redirections, we defined the goal of the attack as fast,
undetected changes in topology.

Our analysis showed that large-scale attacks could be identi-
fied at an earlier stage than reported in the literature, again by
focusing on the single-AS source and the necessary results for a
successful attack. For a successful attack, attackers must issue
a large number of route changes, leading to detectable bursts in
their announcements. So we examined each AS as a data source

and compared the interarrival times of announcements not only
from the (malicious) AS but also to the neighboring ASes. BGP
announcements that are associated with disruptive updates
occurred in groups of relatively high frequency, often multiple
standard deviations from normal rates, followed by periods of
infrequent activity.

Conclusion
Together this set of analysis and open code illustrates that it is
possible to quickly identify some BGP attacks and then mitigate
the risks of hijacks when confidentiality is more valuable than
availability [6].

Since a core problem with BGP resiliency is the concept of trust,
then trust and risk must be a core of the solution. Understanding
routing updates as a function of trust and risk enables approach-
ing such updates as partially trusted. Cryptographic solutions
attempt to provide perfectly trustworthy sources and paths. Yet
certificate authority subversion in the TLS realm have shown
that today’s certificates are not themselves trustworthy; nor
does this proposed solution address misconfiguration or mali-
cious configurations.

Trust is not globally encompassing. The Internet is no less
affected by the transit across geographical boundaries than
were telephone calls, letters, or other communications infra-
structures. Recognizing the connection between the political,
the physical network, and the requirements for security in the
sociopolitical reality of the Internet offers the potential for more
robust defense and earlier indicators. Not taking advantage of
this would be an ideological, not technical, choice.

http://www.nbg.gr

10  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

SECURITY
Using ML to Block BGP Hijacking

References
[1] K. Benton and L. J. Camp, “Examining the Jurisdictions of
Internet Routes to Prevent Data Exfiltration,” 44th Research
Conference on Communications, Information and Internet
Policy (TPRC44), 2016.

[2] K. Benton and L. J. Camp, “Firewalling Scenic Routes: Pre-
venting Data Exfiltration via Political and Geographic Routing
Policies,” in Proceedings of the 2016 ACM Workshop on Auto-
mated Decision Making for Active Cyber Defense (SafeConfig
’16), ACM, 2016, pp. 31–36.

[3] K. Benton, L. J. Camp, and M. Swany, “Bongo: A BGP Speaker
Built for Defending against Bad Routes,” in MILCOM 2016 IEEE
Military Communications Conference, IEEE, 2016, pp. 735–739.

[4] T. Mizuguchi and T. Yoshida, “Inter-Domain Routing Secu-
rity ˜BGP Route Hijacking ,̃” Asia Pacific Regional Internet
Conference on Operational Technologies (APRICOT ’07), 2007.

[5] P. Moriano, S. Achar, and L. J. Camp, “Incompetents, Crimi-
nals, or Spies: Macroeconomic Analysis of Routing Anomalies,”
Computers & Security, vol. 70, 2017, pp. 319–334.

[6] P. Moriano, R. Hill, and L. J. Camp, “Using Bursty Announce-
ments for Early Detection of BGP Routing Anomalies”: https://
arxiv.org/abs/1905.05835, 2019.

[7] L. Petiniaud and L. Salamatian, “Geopolitics of Routing,”
RIPE Network Coordination Center: https://labs.ripe.net
/Members/louis_petiniaud/geopolitics-of-routing, 2019.

[8] V. Valancius, N. Feamster, J. Rexford, and A. Nakao, “Wide-
Area Route Control for Distributed Services,” in Proceedings of
the USENIX Annual Technical Conference (ATC ’10), pp. 17–30:
https://www.usenix.org/legacy/events/atc10/tech/full_papers
/Valancius.pdf.

[9] M. Wählisch, O. Maennel, and T. C. Schmidt, “Towards
Detecting BGP Route Hijacking Using the RPKI,” ACM
 SIGCOMM Computer Communication Review, vol. 42, no. 4,
2012, pp. 103–104.

[10] Z. Zhang, Y. Zhang, Y. C. Hu, and Z. M. Mao, “Practical
Defenses against BGP Prefix Hijacking,” in Proceedings of the
2007 ACM Conference on Emerging Network Experiment and
Technology (CoNEXT 2007), article 3.

XKCD xkcd.com

https://arxiv.org/abs/1905.05835
https://arxiv.org/abs/1905.05835
https://labs.ripe.net/Members/louis_petiniaud/geopolitics-of-routing
https://labs.ripe.net/Members/louis_petiniaud/geopolitics-of-routing
https://www.usenix.org/legacy/events/atc10/tech/full_papers/Valancius.pdf
https://www.usenix.org/legacy/events/atc10/tech/full_papers/Valancius.pdf

www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 11

SECURITY

50 Ways to Leak Your Data
An Exploration of Apps’ Circumvention of the Android
Permissions System
J O E L R E A R D O N , Á L V A R O F E A L , P R I M A L W I J E S E K E R A , A M I T E L A Z A R I B A R O N ,
N A R S E O V A L L I N A - R O D R I G U E Z , A N D S E R G E E G E L M A N

Smartphones are general-purpose computers that store a great deal of
sensitive personal information. Apps are prevented from accessing
this information at will through the use of a permission system at the

operating-system level. These security mechanisms are reasonable because
we carry our smartphones alongside us all day, and they can gain access to
our intimate communications and social network, our web browsing history,
our location at all times—even if the GPS is disabled. When apps are denied
permissions, however, they still have options to cheat the permission system
by using side and covert channels. In our research we found a small number of
such channels being actively exploited when we tested Google Play Store apps.

Are Mobile Permission Models Bullet-Proof?
There are lots of valid criticisms for the current permissions system. Users cannot reliably
understand what permissions mean or why they are needed. Apps request more permissions
than necessary. Users don’t have easy means to find alternate apps that request fewer per-
missions, or to omit search results for apps that request dangerous permissions, like being
able to turn on your microphone at all times.

The increasing presence of third-party software development kits (SDKs) in mobile appli-
cations amplifies the dissemination of personal data from mobile applications to online
services. Most developers use third-party SDKs in their apps for advertising, analytics,
crash reporting, or social network integration [5]. Both Android and iOS permission models
allow third-party SDKs to piggyback on the permissions that the user grants to the host app.
Unfortunately, users cannot distinguish between a permission given to enable a feature in
the app and one to be used by a data-hungry third-party SDK [5].

StartApp’s official guidance for integrating its SDK into apps provides a perfect example of
this problem. It tells developers that it will improve performance if they add extra permis-
sions for location, Bluetooth, and silent starting on boot [4]—that is, it tells developers to add
location access to their apps even though the apps would have no legitimate need for such
access. Users aren’t made aware when permissions have been requested by an advertising
library that simply wants to track them and harvest their private information.

Additionally, mobile apps can circumvent the permission model and gain access to protected
data without user consent by using both covert and side channels, attacks described in Figure
1. Side channels manifest through vulnerabilities present in the implementation of the OS
permission system that allow apps to access protected data and system resources without
permission. Covert channels manifest when inter-app communication, which may be legiti-
mate, is leveraged for illegitimate purposes, such as having one app abuse its privileges by
acting as a facade for another app’s desire to access permission-protected data.

Joel Reardon is an Assistant
Professor at the University
of Calgary. He received his
master’s degree from the
University of Waterloo, his

doctoral degree from the ETH Zurich, and
spent a postdoctoral year at UC Berkeley and
the International Computer Science Institute
(ICSI). His research interests relate to security
and privacy, including storage compliance
issues as well as systems to make it easier to
use. He also loves mountains, bicycles, and
writing poetry. joel@moosematch.com

Álvaro Feal is a second-year
PhD student working at
IMDEA Networks Institute. He
focuses on analyzing privacy
threats to web and mobile

applications from a technical and regulatory
perspective. Prior to working at IMDEA
Networks, Alvaro interned at IMDEA Software,
working in Android privacy and anonymous
communication systems. He has published
in peer-reviewed conferences such as ACM
IMC, USENIX Security, and workshops like
IEEE Consumer Protection (ConPro). Álvaro’s
work received a Distinguished Paper Award at
USENIX Security 2019. alvaro.feal@imdea.org

Primal Wijesekera is a Research
Scientist in the Usable Security
and Privacy Group at the
International Computer Science
Institute at Berkeley and is

a Postdoctoral Researcher in the Electrical
Engineering and Computer Science Department
at UC Berkeley. His prior work includes
contextual permission models for Android,
mobile app analysis for privacy and security
violations. His recent work focuses on smart
speakers for the home, vulnerability discovery
mechanisms in the wild, and ecosystems
surrounding fake news. primal@berkeley.edu

12  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

SECURITY
50 Ways to Leak Your Data

Amit Elazari Bar On
is a Director of Global
Cybersecurity Policy at Intel
Corporation and a Lecturer
at UC Berkeley’s School of

Information. She holds a JSD from UC Berkeley
School of Law and graduated summa cum
laude in gaining three prior degrees. Her
research in cybersecurity law and policy
has appeared in leading journals, has been
presented at conferences such as RSA, Black
Hat, and USENIX Security, and was featured at
leading news sites such as the New York Times.
She practiced law in Israel.
amit.elazari@berkeley.edu

Narseo Vallina-Rodriguez is an
Assistant Research Professor
at IMDEA Networks and a
Research Scientist at ICSI in
Berkeley. His research interests

fall in the area of network measurements,
privacy, and security. Narseo’s work has
received distinguished paper awards at
USENIX Security 2019, ACM IMC 2018, and
ACM CoNEXT 2014, and was awarded the
IETF Applied Networking Research Prize in
2016. Narseo’s research in mobile privacy has
influenced industry practices and regulation
and has been covered by international media
outlets. narseo.vallina@imdea.org

Discovering Covert and Side Channels in the Wild
Previous research focused on understanding personal data collection using system- supported
access control mechanisms (i.e., Android permissions). The research community has also
explored the potential for covert channels in Android using local sockets, shared storage
[2], and other unorthodox means, such as using vibrations to send data and accelerometers
to receive it [1]. Accelerometer data can further act as a side channel to uniquely identify
the user [9, 11] or infer demographic data such as gender [3]. However, there has been little
research in detecting and measuring at scale the prevalence of both covert and side channels
in apps that are available in the Google Play Store.

Instead of imagining new channels, our USENIX Security ’19 paper focuses on collect-
ing evidence of apps abusing side and covert channels in practice [7]. We leveraged our
 AppCensus app auditing platform to search for instances of Android applications dissemi-
nating permission-protected data over the network without requesting the permission to
access it. We then reverse engineered the apps and third-party libraries responsible for this
behavior to determine how the unauthorized access occurred.

It is important to note that AppCensus is not a regular security-oriented sandbox: detecting
and analyzing both privacy abuses and regulatory violations require specific research meth-
ods. To that end, AppCensus implements mechanisms to exhaustively monitor apps’ runtime
behavior and personal data leaks at system and network levels, including a TLS man-in-the-
middle proxy. Then, we leverage heuristics inspired by different regulatory frameworks to
contextualize these observations and to hunt for potential abuses and violations.

Research Findings
We automatically executed over 88,000 Android apps in our AppCensus platform to see
when permission-protected data was transmitted by the device, and scanned the permis-
sions that apps requested to see which ones should not even be able to access the transmitted
data in the first place (Figure 2). We focused on a subset of the dangerous permissions that
prevent apps from accessing location data and unique identifiers. We grouped our findings
by where on the Internet data was sent and what data type was sent, as this allows us to
attribute the observations to the actual app developer or embedded third-party libraries. We
then reverse engineered the responsible component to determine exactly how the data was
accessed so that we could statically analyze our entire data set to measure the prevalence of
each attack. We found the following side and covert channels being exploited in Google Play
Store apps:

Serge Egelman is the Research
Director of the Usable Security
and Privacy Group at the
International Computer Science
Institute. He conducts research

to help people make more informed online
privacy and security decisions. He has received
the USENIX Distinguished Paper Award, seven
ACM CHI Honorable Mention Awards, and
the SOUPS Impact and best paper awards; his
research has been cited in numerous lawsuits
and regulatory actions, as well as being featured
in the New York Times, Washington Post, and
Wall Street Journal. egelman@cs.berkeley

Figure 1: Covert and side channels. (a) A security mechanism allows app1 access to resources but denies
app2 access; this is circumvented by app2 using app1 as a facade to obtain access over a communica-
tion channel not monitored by the security mechanism. (b) A security mechanism denies app1 access
to resources; this is circumvented by accessing the resources through a side channel that bypasses the
security mechanism.

www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 13

SECURITY
50 Ways to Leak Your Data

◆◆ We discovered apps getting the BSSID of the connected WiFi
Access Point (i.e., the router’s MAC address) by reading the
OS ARP cache (/proc/net/arp), which was not protected by
permissions. This information can be used as a surrogate for
location data. We found five apps exploiting this vulnerability
and 355 with the pertinent code to do so.

◆◆ We discovered Unity (a popular third-party cross-platform
game engine and advertising network) obtaining the device
MAC address of the device using ioctl system calls. This
information can be used to track users even if they factory
reset their devices. We found 42 apps exploiting this vulner-
ability and 12,408 apps with the pertinent code to do so. We
realized (after our paper was published) that starting from
the version of Android we used (Marshmallow), all attempts
to access the MAC address of the device return a fake value of
02:00:00:00:00:00—even if the access network state permis-
sion is granted; therefore all 711 apps that transmitted the MAC
address must have accessed it this way.

◆◆ We also discovered that third-party libraries provided by two
Chinese companies—Baidu and Salmonads—independently
make use of the SD card as a covert channel, so that when an
app can read the phone’s IMEI, it stores it for other apps that
cannot. We found 159 apps with the potential to exploit this
covert channel and empirically found 13 apps doing so.

◆◆ We found one app, Shutterfly, that used picture metadata as a
side channel to access precise historical location information
despite not holding location permissions. It included code that
processed location from the raw EXIF data; that is, it copied the
data intentionally instead of simply uploading photos and hav-
ing location data by mistake.

The Impact of Our Work
The permissions system is not perfect, but it serves an important
purpose. Requesting permission serves as a system to give users
notice about the app’s behavior; users installing apps further
serves as a system of consent. The use of deceptive practices
like covert and side channels is unacceptable as they not only
undermine users’ privacy and consumer rights, but they also
give rise to legal and regulatory concerns. Circumventing the
permissions system means that notice was not given nor consent
obtained. In one case, the third-party library OpenX first tried to
obtain the WiFi BSSID through the permission system and only
went the cheating route through the ARP cache when it saw that
it was denied access.

Data protection legislation around the world, like the General Data
Protection Regulation (GDPR) in Europe or the California Con-
sumer Privacy Act (CCPA), enforce transparency on the data col-
lection, processing, and sharing practices of mobile applications.
In this regulatory context, designing and using these techniques
suggests an actual attempt to access data without user consent.
Developers and SDK providers implementing these techniques
have to take extra measures to set up covert channels or discover
side channels that can be exploited. We responsibly disclosed
our findings to Google, so they could address the issues in the
Android operating system, as well as the US Federal Trade Com-
mission (FTC). Google has given us a bug bounty for our efforts.

Our Stepping Stones
Our research originates from a line of work designed to improve
the accuracy and usability of the Android permission system
[10]. Anyone who has installed an app on Android and paid atten-
tion to the permissions that are requested has probably run into
one that demands permissions that fall well outside their scope,
like an alarm clock app that needs to read your SMSes. The
best explanation we’ve come up with is that this allows some-
one trusted to set important alarms for you after you’ve gone to
sleep—like if there’s going to be a huge dump of fresh snow in the
mountains and they’ll come to pick you up.

Part of this earlier work involved instrumenting the permission
system to track permission usage by apps and collecting ground
truth data about how users would prefer to handle those permis-
sion requests. This knowledge was used to inform a machine
learning classifier that significantly improved the permission
granting accuracy over the existing ask-on-first-use and was
much better than the ask-on-install ultimatum.

Figure 2: Overview of our analysis pipeline. Apps are automatically run,
and the transmissions of sensitive data are compared to what would be
allowed. Those suspected of using a side or covert channel are manually
reverse engineered.

14  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

SECURITY
50 Ways to Leak Your Data

This work was followed by a field study where we built a modi-
fied version of Android that actually enforced denying permis-
sions. We did this gracefully when possible and used both user
input and our machine learning classifier. Users liked the con-
trol they got, and our results from earlier studies were validated.
One observation from our field studies was that apps made fre-
quent requests to access data protected by sensitive permissions.

In parallel, another line of research involved studying trackers—all
the data-hungry ads and analytics companies that are spying on
users—in the mobile ecosystem and personal data dissemination
over the network [6]. This study took advantage of a purpose-
built man-in-the-middle VPN on Android, the Lumen Privacy
Monitor, a tool that can monitor applications’ traffic locally on
the device, even if encrypted. Lumen allowed us to build a data-
base of all network traffic going to different organizations that
an app contacts.

Spying on Children
These lines of research joined together when some of us decided
to read the Children’s Online Privacy Protection Act (COPPA)—
a particularly strong privacy regulation with serious conse-
quences for violations—and realized that, based on what we’ve
seen in practice, there’s no way that all of these apps are in
compliance. Plus, we have all the tools to monitor for this. We
combined our OS instrumentation with our traffic monitor-
ing to obtain evidence of applications’ actual runtime behavior
regarding when personal data is accessed and where it is sent. We
could automate our analysis and thus scale our study by simulat-
ing human interaction with apps using the Android Automator
Monkey, which is essentially a UI fuzzer for testing purposes.

Our findings about COPPA compliance in children-oriented
Android apps were shocking [8]. The majority of children’s games
are sending persistent identifiers to ads and analytics companies
capable of tracking them. Ten percent are sending the IMEI of
the device, which is like an un-resettable super cookie of infinite
tracking. Four percent were sending precise geolocation, for which
COPPA requires verified parental consent to access. How on earth
a company can feel confident in having verified parental consent
from a system that randomly clicks and swipes, we’ll never know!

For apps that we know used the location permission while
 running but that we didn’t catch sending location, we found a
bunch of obfuscated location sending happening. This category
of app includes the company StartApp, which Google lists as one
of their accepted children advertisers in their updated designed
 for families program (https://android-developers.googleblog.
com/2019/05/building-safer-google-play-for-kids.html).
 StartApp was using a Vernam-style cipher to XOR in two repeat-
ing masks ($T@RT@PP and ENCRYPTIONKEY) and in doing so
were transmitting precise geolocation and even WiFi scan data
including router MAC and signal strength.

From all these stepping stones we end up at this work. We have
the ability to run lots of apps at scale, to monitor their network
traffic, and to scrutinize the permissions that they request in
runtime. So we compared these two sets: what’s the data an app
is allowed to access, and what’s the data that an app actually
sends out on the Internet. Are there any transmissions by an app
that didn’t have permission to access it in the first place?

Our Confession
Now it’s time for our confession. Our original goal in our meth-
odology was not to discover and disclose these side and covert
channels; we were actually looking for bugs in our own code
but discovered these attacks by chance. That is, we implicitly
assumed that the Android permission system was absolutely
sound and were looking for false positives in our data set
because, as we imagined, if we flagged the transmission of the
IMEI without the READ_PHONE_STATE permission, it must be the
result of a bug in our code.

A few false positives and negatives can be expected with such
large-scale work, and we spot-checked lots of flagged transmis-
sions of PII but by no means manually every transmission (so
we’ll have some false positives). And we looked at lots of packets
trying to find all sorts of obfuscations, but there are many that
still confound us (so we expect some false negatives as well).
Still, as long as we do enough manual checking of our findings,
the false positive rates are statistically low enough to not have
any impact on headline results like four percent of apps sending
location.

But our study on rampant (potential) privacy violations in
thousands of children’s games was getting media and regula-
tory attention. This prompted us to become extra certain of our
findings. Being confident about the average value is no longer
enough, and rooting out any false positives became even more
crucial. We can live with the false negatives (where we don’t
catch a company who is actually sending data), but now false
positives have become critical to avoid, because even one false
positive casts doubt on any specific finding that we claim. For
example, in response to a letter from one of the lawyers at Iron-
Source who did not like our characterization of their behaviors,
we double-checked our results in order to verify our initial find-
ings and actually found more things we had missed!

So we went looking for false positives. We filtered out all the data
where the app had the corresponding permission, assuming that
what was left must all be false positives. And in fact we did find
some! One favorite was the fact that we did our tests in Berkeley,
California, which has an area code of 510—it so happened that
some of our testing began with the UNIX timestamp 1510 and so
there’s a block of time during which a harmless timestamp was
misconstrued as apps transmitting the user’s phone number.

www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 15

SECURITY
50 Ways to Leak Your Data

Another was the fact that IP-based geolocation happened to
be surprisingly accurate for IPs from our research institute.
Perhaps this was because we uploaded both our IP and location
thousands of times after running all these apps, and eventually
the Internet learned where this IP was. Digging deeper, however,
we found that this did not replicate at other locations and with
other IPs. Finally, some apps sent really invasive fingerprints,
including the hostname of our own machines that built our cus-
tom Android version, and it just so happened that the SSID of our
WiFi router was a substring of that.

Our hunt was a useful exercise and we fixed all the false posi-
tives that we found, making our tools more robust and reliable.
But we also found true positives. We found actual transmissions
of data carrying the correct values and (unlike incoming geolo-
cation) first seen as an outgoing transmission from the app. It
turns out that we found evidence consistent with the use of side
and covert channels, and in order to figure out what exactly was
going on we had to start reverse engineering. The results of this

exercise were those four side and covert channels we presented
earlier in the article: ioctls, EXIF metadata, ARP cache, and
plain old sharing data on the SD card. And in so doing we put app
and SDK developers on notice that, going forward, we are looking
for these kinds of deceptive and fraudulent practices.

Acknowledgments
This work was supported by the US National Security Agency’s
Science of Security program (contract H98230-18-D-0006),
the Department of Homeland Security (contract FA8750-18-2-
0096), the National Science Foundation (grants CNS-1817248
and grant CNS-1564329), the Rose Foundation, the European
Union’s Horizon 2020 Innovation Action program (grant Agree-
ment No. 786741, SMOOTH Project), the Data Transparency
Lab, and the Center for Long-Term Cybersecurity at UC Berke-
ley. The authors would like to thank John Aycock, Irwin Reyes,
Greg Hagen, René Mayrhofer, Giles Hogben, and Refjohürs
Lykkewe.

References
[1] A. Al-Haiqi, M. Ismail, and R. Nordin, “A New Sensors-Based
Covert Channel on Android,” The Scientific World Journal,
September 2014.

[2] C. Marforio, H. Ritzdorf, A. Francillon, and S. Capkun,
“Analysis of the Communication between Colluding Applica-
tions on Modern Smartphones,” in Proceedings of the 28th
Annual Computer Security Applications Conference (ACM,
2012), pp. 51–60.

[3] Y. Michalevsky, D. Boneh, and G. Nakibly, “Gyrophone:
 Recognizing Speech from Gyroscope Signals,” in Proceedings of
the 23rd USENIX Security Symposium (USENIX Security ’18),
pp. 1053–1067: https://www.usenix.org/system/files/conference
/usenixsecurity14/sec14-paper-michalevsky.pdf.

[4] S. Milo, StartApp SDK Android—Android (Standard):
https://support.startapp.com/hc/en-us/articles/360002411114
-Android-Standard-, 2019.

[5] A. Razaghpanah, R. Nithyanand, N. Vallina-Rodriguez,
S. Sundaresan, M. Allman, C. Kreibich, and P. Gill, “Apps,
Trackers, Privacy, and Regulators: A Global Study of the Mobile
Tracking Ecosystem,” in Proceedings of the Network and Dis-
tributed System Security Symposium (NDSS ’18).

[6] A. Razaghpanah, N. Vallina-Rodriguez, S. Sundaresan,
C. Kreibich, P. Gill, M. Allman, and V. Paxson, “Haystack: In
Situ Mobile Traffic Analysis in User Space, arXiv preprint
arXiv: 1510.01419v1, (2015), pp. 1–13.

[7] J. Reardon, Á. Feal, P. Wijesekera, A. Elazari Bar On,
N. Vallina-Rodriguez, and S. Egelman, “50 Ways to Leak Your
Data: An Exploration of Apps’ Circumvention of the Android
Permissions System,” in Proceedings of the 28th USENIX
 Security Symposium (USENIX Security ’19), pp. 603–620:
https://www.usenix.org/conference/usenixsecurity19
/presentation/reardon.

[8] I. Reyes, P. Wijesekera, J. Reardon, A. Elazari Bar On,
A. Razaghpanah, N. Vallina-Rodriguez, and S. Egelman,
“Won’t Somebody Think of the Children? Examining COPPA
Compliance at Scale,” in Proceedings on Privacy Enhancing
Technologies, 2018, no. 3, pp. 63–83.

[9] L. Simon, W. Xu, and R. Anderson, “Don’t Interrupt Me
While I Type: Inferring Text Entered through Gesture Typing
on Android Keyboards,” in Proceedings on Privacy Enhancing
Technologies, 2016, no. 3, pp. 136–154.

[10] P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman,
D. Wagner, and K. Beznosov, “Android Permissions Remysti-
fied: A Field Study on Contextual Integrity,” in Proceedings of
the 24th USENIX Security Symposium (USENIX Security ’15),
pp. 499–514: https://www.usenix.org/system/files/conference
/usenixsecurity15/sec15-paper-wijesekera.pdf.

[11] J. Zhang, A. R. Beresford, and I. Sheret, “SensorID: Sensor
Calibration Fingerprinting for Smartphones,” in Proceedings of
the 40th IEEE Symposium on Security and Privacy (SP), IEEE,
May 2019.

https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-michalevsky.pdf
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-michalevsky.pdf
https://support.startapp.com/hc/en-us/articles/360002411114-Android-Standard-
https://support.startapp.com/hc/en-us/articles/360002411114-Android-Standard-
arXiv:1510.01419v1
https://www.usenix.org/conference/usenixsecurity19/presentation/reardon
https://www.usenix.org/conference/usenixsecurity19/presentation/reardon
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-wijesekera.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-wijesekera.pdf

16  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

SECURITY

Building an Nmap for Your Car
S E K A R K U L A N D A I V E L , T U S H A R G O Y A L , A R N A V K U M A R A G R A W A L ,
A N D V Y A S S E K A R

The network inside a modern car is no longer static; modern in-vehicle
networks grow more complex and can change over time. We have
developed CANvas, a network mapping tool that identifies what

devices in your car communicate on the network and how messages are
exchanged between them. CANvas helped us identify an unknown device in
a modified 2009 Toyota Prius and pinpoint potentially vulnerable devices
in a 2017 Ford Focus.

In 2015, two security researchers, Charlie Miller and Chris Valasek, remotely hacked into
a Jeep Cherokee to demonstrate the potential impact of a hack against a modern car [6].
They accomplished their goal by compromising one of the vehicle’s computers, known as
Electronic Control Units (ECUs), and then used this compromised ECU to communicate
with other ECUs in the car over the vehicle’s Controller Area Network (CAN) bus. To figure
out what devices were a part of this network, they had to physically disconnect components,
which is a painstaking process even for analyzing a single car. As vehicles continue to inte-
grate more electronics and contain increasingly complicated networks, we need a tool that
can produce a map of the car’s network to help us keep our vehicles protected without having
to take apart a car.

The obvious solution here is to ask the automaker for the network map of the cars that we
own. However, this is highly proprietary information that automakers are not willing to give
out even to mechanics and researchers. Even if we could obtain this network map from an
automaker, we face a new challenge in today’s world: these networks are no longer static.
Once a car leaves the factory, the automaker loses control of what devices are connected to
the network and how they interact with each other. We now look at a few scenarios where you
can expect your car’s network to change.

Imagine if you took your car to a potentially untrustworthy mechanic. Under the guise of a
repair, this mechanic could add a new device to your car’s network without your permission.
The number of components in your car that communicate on the network is getting larger
and larger; you can even buy headlights that talk on the CAN bus. Consider another scenario:
imagine if you had a traction control ECU replaced by even a trusted mechanic, but the ECU
was counterfeit and was not programmed to send the correct messages. In this case, you may
only discover the ECU was counterfeit after you needed your traction control.

Perhaps you want to replace the radio in your modern car, so you decide to buy a replace-
ment radio from Amazon or eBay. As observed in some modern vehicles, this radio could
be connected to your vehicle’s CAN bus, and a malicious seller could program that radio to
transmit new or different information onto the network. We also see that automakers are now
considering pay-as-you-go services where your car comes pre-installed with hardware,
like a turbocharger or high-output batteries. These automakers envision customers paying to
activate these features, which will introduce new communication between the computers in
a car’s network. In defending our vehicles against attacks, the ability to differentiate between
expected traffic from these services versus malicious traffic from an attack could prove useful.

Sekar Kulandaivel is a PhD
candidate in electrical and
computer engineering at
Carnegie Mellon University.
Sekar’s interests lie in

automotive network and systems security
with a focus on practical solutions.
skulanda@andrew.cmu.edu

Tushar Goyal currently works at
Microsoft Search. His primary
focus is in systems, computer
architecture, and security. He is
a graduate of Carnegie Mellon

University. tgoyal1@alumni.cmu.edu

Arnav Kumar Agrawal currently
works at Microsoft on the
Xbox Live Graph Team. His
focus is primarily on large-
scale distributed systems and

security. He is a graduate of Carnegie Mellon
University. akagrawa@alumni.cmu.edu

Vyas Sekar is the Angel
Jordan Early Career Chair
Associate Professor in the
ECE Department at Carnegie
Mellon University, with a

courtesy appointment in the Computer
Science Department. His research is in the
area of networking, security, and systems.
His work has received best paper awards at
ACM SIGCOMM, ACM CoNext, and ACM
Multimedia, and the NSA Science of Security
prize. vsekar@andrew.cmu.edu

www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 17

SECURITY
Building an Nmap for Your Car

Now consider recent work that demonstrated a new type of
attack that can shut down any ECU in your car by compromis-
ing just a single ECU in your vehicle [3]. A requirement for this
attack is that the compromised ECU must receive messages
from its victim. Since shutting down an ECU while the car is in
motion could be potentially catastrophic, this type of attack has
a real and significant impact. Imagine if that radio you bought
from an online seller was programmed to launch the shutdown
attack against your vehicle’s engine ECU while it was in motion.

It is clear from these scenarios that the network inside a modern
car can change. As automakers produce new models of a car
each year and even provide over-the-air update capabilities, the
frequency of producing updated network maps for a vehicle will
quickly increase. To ensure that security researchers and vehicle
owners can keep up with these networks and understand what
goes on in our cars, we need to build a network mapping tool that
is both practical and accessible.

Building a Practical Mapper
As a first stepping stone to future automotive security work, we
developed CANvas, a fast and inexpensive automotive network
mapping tool for a vehicle’s CAN bus [5]. For less than 50 dollars
of hardware and under 30 minutes, CANvas produces a network
map that can identify the ECUs in a car as well as where messages
originate from and which ECUs receive each message. We focus
on building a practical tool that works on real modern vehicles.

Current approaches for mapping a vehicle’s network require
physically taking apart the car. Instead of requiring our users to
go through this extensive process, we aim to build a mapper that
satisfies a few practical goals. Since we require the vehicle to
be on and running, our mapper should not take hours of time to
complete. It should also be inexpensive and not require the use of
an oscilloscope or logic analyzer. Anything we do to the network
should leave no permanent damage, and the mapper should sim-
ply plug into the the On-Board Diagnostics (OBD-II) port of your
car, which, starting in 1996, all vehicles manufactured or sold
in the United States are required to have. Our users should not
expect to cut into the network of their car or worry that their car
will have permanently lit malfunction indicator lights.

We define three main outputs for our network mapper: (1) a list
of all active ECUs in the vehicle, (2) the transmitting ECU for
each unique CAN message, and (3) the set of receiving ECUs
for each unique CAN message. As seen in Figure 1, we combine
our first two outputs into a module called source mapping and
our third output into a module called destination mapping. The
source-mapping module takes in a timestamped traffic log as
input and produces a source map that identifies the source ECU
of each message. Then the destination mapping module uses
the source map and access to the physical CAN bus of a running
vehicle to produce a destination map that identifies which ECUs
receive each CAN message.

A significant challenge in designing this tool is the broadcast
nature of the CAN protocol, as network messages contain no
information about their sender or recipients. To address this
challenge, we repurpose insights that were previously proposed
for an intrusion detection system for the CAN bus [4] and
a shutdown attack against CAN-enabled ECUs [3]. Since the
techniques used in these works had limitations when applied to
the mapping problem, we develop two approaches for our source
and destination mapping modules, respectively: a pairwise clock
offset tracking algorithm that identifies transmitting ECUs and
a forced ECU isolation technique that identifies receiving ECUs.
In designing these techniques, we focus on the practical chal-
lenges that we face when mapping real vehicles.

In the rest of this article, we detail our adventures in mapping
our two main test vehicles and our vision for how the CANvas
mapper can be used for future research. This article is based on
a conference paper that appeared at the 2019 USENIX Security
Symposium, which presents our design for CANvas, our experi-
ments, and other considerations for mapping in detail [5].

The Hidden ECU in a Toyota Prius
We managed to acquire a hand-me-down 2009 Toyota Prius
from a different department at the university. This Prius was
converted into an all-electric vehicle with a lithium-ion battery
installed in its trunk and became our primary ground truth
for the mapper. Unfortunately, the only method at the time for
obtaining the ground truth was to physically dismantle the car
and gain direct access to all of the ECUs in the Prius as seen in
Figure 2. Going through this process for just a single car made us
thankful for the prospect of a network mapping tool.

To figure out how to take apart the car and find each of the ECUs
in the car, we did what the mechanics at the dealership would do:
we went to the service website for Toyota. After paying a small
subscription fee, we followed the removal instructions for each
ECU and found that this Prius contained eight ECUs. With this
direct access, we could splice into each ECU’s connector and
determine what messages it sent and received. This information

Figure 1: Design overview of the CANvas network mapper.

18  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

SECURITY
Building an Nmap for Your Car

served as our ground truth for verifying our output from the
CANvas network mapper.

For identifying the source of each network message, one of the
key assumptions we make is the periodicity of messages on the
CAN bus. From prior work [4], we knew that the majority of
messages on the network should be periodic in nature. When
we connected to the network, we found that all messages at
first seemed to be periodic. However, when we measured the
average period and the deviation of the period, we found several
examples of messages that were “almost” periodic. Some mes-
sages stopped transmitting for seconds at a time, some seemed
to miss their deadlines and re-transmit at the next period, and
others seemed to have two different periods that resulted in
overlapping messages.

Where prior work only investigated purely periodic messages, we
found that these “almost” periodic messages are expected in real
vehicles. We discussed this finding with sources from the auto-
motive industry, and they confirmed that CAN message trans-
missions can be complex and that there are many circumstances
that affect how an ECU transmits its messages. To address these
special cases, we designed CANvas to detect these instances and
employed a slightly modified approach for identifying the source
of these messages as detailed in our paper [5]. At its core, these
messages have some notion of periodicity, which allows us to use
our method of mapping messages to their source ECUs.

With the source-mapping component of our network mapper
completed, we plugged our tool into the Prius’s diagnostic port
and expected to run CANvas and find eight ECUs as discovered
in our ground truth; much to our surprise, we found nine ECUs.
After scratching our heads, we decided to unplug all eight of the
expected ECUs and see if we still saw traffic on the network. We
still saw three messages and detected a single transmitting ECU

with no receivers. We confirmed this finding with other online
sources that did not see these three additional messages, so we
knew that something must have changed in the car’s network.

At this point, we knew something must be different with this
car, especially when other cars of the same model year are
missing these three messages on their networks. Looking into
this Prius’s history, we found that a new ECU was installed as
part of the all-electric modification done almost a decade ago.
Without this network mapping tool, we would have never known
about this hidden ECU. Thankfully, this ECU was not malicious
and was simply included as a modification from the previous
department. But when we consider that this could have been a
malicious device, the importance of having a network mapper
becomes clear.

The Vulnerable ECUs of a Ford Focus
Our finding on the Prius was quite surprising, but we also
wanted to test our network mapper on a newer car. We managed
to find a salvaged 2017 Ford Focus with minor flooding but all
of its electronics completely intact. As seen in Figure 3, we physi-
cally dismantled this salvaged car to obtain the ground truth,
and we tested our network mapper on it. For this vehicle, we used
the Ford service website for instructions on ECU removal, and
we identified nine total ECUs.

To identify the destinations of each network message, we borrowed
an insight from prior work [3] on shutdown attacks against
ECUs. Due to limitations in this work, we implemented a differ-
ent shutdown technique that permits CANvas to analyze each
ECU one by one. Unfortunately, we came across an interesting
challenge; we found that some ECUs automatically recovered or
did not even shut down. For the purposes of network mapping,
we had to make sure that some ECUs remained in the shutdown
state as detailed in our paper [5]. Upon closer inspection, we
found that these ECUs do remain in a shutdown state for some
time. With additional add-on techniques, we can suppress an
ECU and keep it from coming back online, allowing us to per-
form our destination mapping.

When mapping a modern car, we expected that automakers
would limit what messages can be received by each ECU since all
ECUs do not need to communicate with each other. For example,
we would not expect a radio ECU in the Focus to receive mes-
sages from ECUs related to the powertrain. Using our network
map of the Focus, we found that all of its ECUs were capable
of receiving all messages on the network. This means that any
ECU compromised by some future remote attack could be used
to launch attacks on other ECUs, including the safety-critical
 powertrain ECUs. One might think that this type of attack has
not been significant or realistic enough for automakers to imple-
ment restrictions on what messages an ECU can receive.

Figure 2: Physically tearing apart any vehicle is exhausting; imagine doing
this every time we need an updated network map.

www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 19

SECURITY
Building an Nmap for Your Car

However, we find that the industry acknowledges this potential
and is taking measures to defend against this. For purposes of
restricting the messages that reach an ECU, Next eXPerience
(NXP) is working on a new CAN transceiver, the NXP TJA115x
Secure CAN Transceiver family [2]. If automakers implement
these types of hardware-level filters on what messages an ECU
could receive, a tool like the CANvas mapper could help ensure
that these filter settings are correct. Until then, we have found
that even a modern car like the Focus has no filter on the mes-
sages its ECUs receive.

Next Steps from Network Mapping
With the ability to network map a car, we envision several exten-
sions to the mapper and alternative tools that could benefit from
CANvas. A vehicle’s network map could benefit from richer
functionality, such as identifying the function of an ECU (trans-
mission ECU, engine ECU, etc.), identifying gateway ECUs that

References
[1] CANvas network mapper: https://github.com/sekarkulandaivel
/canvas.

[2] NXP TJA115x Secure CAN Transceiver family: https://www
.nxp.com/docs/en/fact-sheet/SECURCANTRLFUS.pdf.

[3] K. Cho and K. G. Shin, “Error Handling of In-Vehicle Net-
works Makes Them Vulnerable,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications
Security (CCS ’16), ACM, 2016, pp. 1044–1055: https://dl.acm
.org/citation.cfm?id=2978302.

[4] K. Cho and K. G. Shin, “Fingerprinting Electronic Con-
trol Units for Vehicle Intrusion Detection,” in Proceedings of
the 25th USENIX Security Symposium (USENIX Security
’16), 2016, pp. 911–927: https://www.usenix.org/system/files
/conference/usenixsecurity16/sec16_paper_cho.pdf.

[5] S. Kulandaivel, T. Goyal, A. Kumar, and V. Sekar, “CANvas:
Fast and Inexpensive Automotive Network Mapping,” in Pro-
ceedings of the 28th USENIX Security Symposium (USENIX
Security ’19), 2019, pp. 389–405: https://www.usenix.org
/conference/usenixsecurity19/presentation/kulandaivel.

[6] C. Miller and C. Valasek, “Remote Exploitation of an Unaltered
Passenger Vehicle,” Black Hat USA, 2015: http://illmatics.com
/carhacking.html.

potentially bridge multiple CAN buses, and identifying message
filters implemented in software. We also envision extending this
work into other automotive protocols, including Automotive
Ethernet and Local Interconnect Network (LIN), to provide a
broader map of a car’s complete network and not just its CAN bus.

In previous conversations with industry, we asked how this
network mapping tool could prove useful even though indus-
try has the original network map. Besides being used to detect
unauthorized changes to the network, the network mapper could
be used to verify the state of the network. Over time, parts of the
ECUs and their network could fail, such as diodes and wiring.
These failures could change the output of the network map and
indicate issues with the network. Instead of being used directly
for security, CANvas could also serve as a network validation
tool for your mechanic to use when changing the configuration
of your vehicle’s CAN bus.

We have also made interesting discoveries when we look at how
messages are transmitted. When running our network mapper
on a vehicle, we see changes in the contents of a message based
on what ECUs are shut down during our destination mapping.
We could use this new information to potentially infer details
that are only found in the automaker’s proprietary network map.
Since we can know which ECU sends each message, we could
implement better techniques to reverse engineer the message
contents by correlating changes between an ECU’s source mes-
sages. Additionally, when designing an attack, a network map
could tell us what messages need to be replicated if we ever wish
to pursue a masquerade attack. CANvas serves as a building
block for future security research, and we have made it publicly
available with the hope that the community will help us expand
its capabilities in the future [1].

Figure 3: We found that all ECUs in this Focus could potentially launch a
recent shutdown attack.

https://github.com/sekarkulandaivel/canvas
https://github.com/sekarkulandaivel/canvas
https://www.nxp.com/docs/en/fact-sheet/SECURCANTRLFUS.pdf
https://www.nxp.com/docs/en/fact-sheet/SECURCANTRLFUS.pdf
https://dl.acm.org/citation.cfm?id=2978302
https://dl.acm.org/citation.cfm?id=2978302
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_cho.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_cho.pdf
https://www.usenix.org/conference/usenixsecurity19/presentation/kulandaivel
https://www.usenix.org/conference/usenixsecurity19/presentation/kulandaivel
http://illmatics.com/carhacking.html
http://illmatics.com/carhacking.html

20  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

SECURITY

12th USENIX Workshop on Cyber Security
Experimentation and Test (CSET ’19)
P E T E R A . H . P E T E R S O N A N D R O B G . J A N S E N

On Monday, August 12, 2019, 55 attendees joined us for the 12th
 USENIX Workshop on Cyber Security Experimentation and Test
(CSET ’19) in Santa Clara, California. CSET, one of the USENIX

Security Symposium’s co-located workshops, welcomes work in the broad
categories of “cybersecurity evaluation, experimentation, measurement,
 metrics, data, simulations, and testbeds”—that is, research about research
tools, data, and methods. The purpose of this article is to share our experi-
ence chairing CSET ’19 and to highlight this year’s papers.

Changes to the CSET PC
We made some experimental changes to the call for papers (CFP) and program committee
(PC) this year, and we wanted to share them in the hope that they might be useful for other
organizers. One of our main goals was to increase the community reach of the PC and the
submission count, while reducing the PC review burden. To do this, we doubled the size of
the PC to 46, inviting both established CSET community members and new people, includ-
ing both junior and senior researchers. We also explicitly invited broad interpretations of
the topics list. Additionally, we solicited a variety of paper lengths and types: traditional
research papers, position papers, experience papers, preliminary work, and extended work.
These could be long papers (eight pages), short papers (four pages), or extended abstracts
(two-page talk proposals).

We explicitly invited preliminary work papers because CSET is a workshop; we wanted to
encourage the lively discussion of new ideas, even if they were not fully developed. “Extended
work” papers were meant to be expansions of security experimentation results, approaches,
or tools developed in the course of other research (e.g., papers published at USENIX Security
or elsewhere). Our rationale for soliciting these papers was that all security research requires
an experimental approach; this often includes the development of tools, data, or knowledge
that could be useful to the community. Unfortunately, these details are often drastically
reduced in published papers due to space constraints. This cut material is often squarely in
CSET’s bailiwick, and we hoped that papers like this would be relatively easy for authors to
prepare, interesting for attendees to discuss, and of service to the research community.

We are also happy to report that women comprised 46% of the CSET ’19 PC, up from the
recent peak of 32% in 2015. Women are in high demand and may already be committed
to a full slate of PCs; to find the 21 women who were able to join the PC this year, we invited
approximately double that number. Our takeaway was that it is absolutely possible to improve
gender representation on PCs, but until the underlying diversity in our field improves, doing
so may take a little time and effort.

Overall, our changes seemed to work well; we received 61 submissions, more than doubling
2018’s submission count of 27. Each reviewer had approximately four papers to review.
(We had wanted to limit each PC member to three reviews, but the volume of submissions
precluded that.) Ultimately, we accepted 19 papers (31%). For more information about our
process and statistics this year, please see our slides on the workshop site.

Peter A. H. Peterson is
an Assistant Professor of
Computer Science at the
University of Minnesota,
Duluth, where he teaches and

researches operating systems and security,
with a focus on R&D to make security education
more effective and accessible. He received
his PhD from the University of California, Los
Angeles, for work on “adaptive compression”—
systems that make compression decisions
dynamically to improve efficiency.
pahp@d.umn.edu

Dr. Rob Jansen is a Computer
Scientist and a Jerome and
Isabella Karle Distinguished
Scholar Fellow at the US Naval
Research Laboratory with

research expertise in the areas of computer
security and privacy, distributed systems,
and parallel and distributed simulation. His
research results have been published in the top
peer-reviewed computer security and privacy
conferences and workshops, and his work
demonstrates an ability not only to develop
and apply theoretical concepts, but also to
build, evaluate, deploy, and measure real-world
systems. When not in the lab, Rob enjoys
jogging around the National Mall and through
the streets of DC. rob.g.jansen@nrl.navy.mil

DISTRIBUTION A: Approved for public
release, distribution is unlimited.

www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 21

SECURITY
12th USENIX Workshop on Cyber Security Experimentation and Test (CSET ’19)

Sessions and Presentations
The 19 accepted papers this year were arranged into five sessions.
The first session was “Cyberphysical and Embedded Testbeds
and Techniques,” chaired by Eric Eide (University of Utah).
First, Paul Pfister (Iowa State University) presented a cyber-
physical system (CPS) extension to ISEAGE, an event simula-
tor used for cyberdefense competitions that included a physical
model of a city, complete with LEDs representing system status.
Next, Woomyo Lee (The Affiliated Institute of ETRI) presented
a system for automatic generation of CPS research data about
a power plant featuring a GE turbine, an Emerson boiler, and a
FESTO water treatment system. After this, Sam Crow (UC San
Diego) told us about Triton, a configurable testbed for avionics
security research. Triton is, in the words of Crow, “real hardware
from a real airplane that thinks it’s running on an actual air-
plane in flight.” Finally, we heard from Zachary Estrada (Rose-
Hulman Institute of Technology) about CAERUS, a framework
that is able to identify, through automated testing, timing sen-
sitivities of undocumented embedded systems that can interact
negatively with add-on security components.

Elissa Redmiles (Microsoft Research/Princeton University)
chaired our “Data and Metrics” session. Michael Brown (Georgia
Institute of Technology) described how debloaters can improve
security by reducing the number of ROP gadgets through elimi-
nating unimportant code, but also how they can accidentally
introduce new high-quality gadgets. Instead of focusing on
gadget count as the key metric, Brown proposes metrics based
on gadget quality. Next, Aniqua Baset (University of Utah)
discussed SecPrivMeta, an interactive website (secprivmeta.
net) that provides visualizations of topic modeling on 36 years
of security and privacy publications. After this, Josiah Dykstra
(US Department of Defense) described how the NSA uses the
Innovation Corps (I-Corps) methodology to improve the sharing
of Cyber Threat Intelligence (CTI). Last, Jim Alves-Foss (Uni-
versity of Idaho) gave an entertaining talk containing a variety
of cautionary tales of problematic data analysis and experimen-
tation to admonish the community to use care and best practices
in research.

“Usability, Effects, and Impacts” was chaired by Heather
Crawford (Florida Institute of Technology). Zane Ma (University
of Illinois at Urbana-Champaign) gave the first talk, which was
about the effect of TLS and browser presentation on the success
of phishing attacks in an A/B test on 266 users. Next, Victor
Le Pochat (KU Leuven) described the design and evaluation of
Tranco, a “top sites” ranking that aggregates Alexa, Majestic,
Quantcast, and Umbrella, to create a stable and robust list for use
by researchers. Third, Xiaodong Yu (Virginia Tech) presented
work investigating how seven cache configuration param-
eters affected timing-based side-channel attacks; their talk
included suggestions for improving security while minimizing

performance impact. Last, Ildiko Pete (University of Cambridge)
presented preliminary results from the Cambridge Cybercrime
Center’s analysis of usability issues with the data sets they share.

David Balenson (SRI International) chaired “Problems and
Approaches,” which began with Qiao Kang’s (Rice University)
presentation of their work automating the detection of attacks
against the data planes of programmable routers. Our next pre-
senter, Fatima Anwar (UCLA, now University of Massachusetts
at Amherst) described how the timing capabilities of trusted
execution environments (TEEs) can be vulnerable to timing
attacks in realistic scenarios, and provided requirements for
securing time facilities in these environments. Next, Sri Shaila G
(University of California, Riverside) presented results of a study
using IDAPro to reverse engineer the binaries of real-world IoT
malware samples as compiled with various options, finding that,
while unstripped binaries are amenable to analysis, perfor-
mance on stripped binaries is generally poor. Last, Jonathan
Crussell (Sandia National Laboratories) talked about their
analysis of 10,000 experiments comparing differences between
virtual and physical testbeds for research.

The final session of the day was “Testbeds and Frameworks,”
chaired by Jelena Mirkovic (University of Southern Califor-
nia Information Sciences Institute). Aditya Ashok (Pacific
Northwest National Laboratory) described PACiFiC, a suf-
ficiently realistic campus microgrid testbed model to allow a
phish-to-blackout attack simulation. Second, Russell Van Dam
(Sandia National Laboratories) presented Proteus, an emulation
framework that supports the analysis of a wide variety of peer-
to-peer distributed ledger technologies against different types
of automated scenarios. Finally, Ryan Goodfellow (Information
Sciences Institute) described the DComp Testbed, an open-source
testbed using EVPN routing, a set of independently useful tools,
and featuring a high level of abstraction and isolation.

For more detail, please see the workshop program online at
www.usenix.org/cset19/program.

We would like to offer our sincere thanks to the fantastic
 USENIX staff, CSET’s program and steering committees,
authors, session chairs, shepherds, presenters, and attendees.
The 13th CSET will once again be co-located with USENIX
Security 2020 in Boston, with papers due in spring 2020. If
you’re interested in research around security experimentation,
please consider submitting to and/or attending CSET next year!

22  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

SECURITY

Interview with Kirill Levchenko
R I K F A R R O W

A s I read the Triton paper in the CSET ’19 workshop [1], I found myself
wanting to talk to some of the folks who had been working on this
project. The recent software and documentation issues with Boeing’s

737 Max that have led to the deaths of over 300 people provided some addi-
tional impetus. Karl Koscher, a member of the project, had written for ;login:
before about the automotive CAN bus [2], so I asked him for recommenda-
tions about who he thought I should talk to.

Karl suggested Kirill Levchenko. I don’t recall ever meeting Kirill, but I’d certainly heard of
him through various papers published by a large group of primarily West Coast researchers
related to tracking Internet crime, work on hacking cars, and other topics [3].

As we worked on the interview, Kirill reminded me that the Triton Project was a collaboration
of many people, something you can see right away by looking at the CSET paper [1]. Still, I
found myself wanting to talk to Kirill, as I knew little about him beyond his published works.

Rik Farrow: Where did the idea for an avionics testbed come from?

Kirill Levchenko: Several years ago I and a group of researchers became interested in the
security of electronic systems on aircraft (avionics). This was in part because of my own
interest in aviation and in part because of the excellent work on automobile security done
by my colleagues at UC San Diego and the University of Washington. Their experience with
automobiles and my passion for aviation got us thinking about aircraft.

But unlike with the automobile work, we couldn’t buy an airplane to test. So we had to focus
on the parts of interest to us, the Line-Replaceable Units (LRUs) that might expose an
electronic attack surface. We decided to start with the Communication Management Unit
(CMU), which provides digital communications between aircraft and ground using a system
called ACARS. To get this unit to work in the lab, we needed to recreate the environment
it would have on board the aircraft, which meant building a testbed that would allow us to
simulate parts of the aircraft—its communication networks and other LRUs.

RF: I’m hoping that avionics networks don’t use TCP/IP. What do they use?

KL: The avionics of the aircraft we’re looking at (everything designed before the Boeing 777,
which includes the 737 and 747) uses the ARINC 429 bus, which transmits 32-bit frames at
12.5 kbps or 100 kbps.

ARINC 429 is unidirectional: there is one transmitter and one or more receivers. This
provides some constraints on information flow. For example, the flight map in your in-flight
entertainment system probably receives aircraft position information from the aircraft via
ARINC 429, but, because ARINC 429 is unidirectional, the in-flight entertainment system
cannot send any information back.

ARINC 429 is very similar to the CAN bus used in automobiles, with the notable difference
that CAN is bi-directional—that is, there can be more than one transmitter on the bus.

Kirill Levchenko is an Associate
Professor at the University of
Illinois at Urbana-Champaign.
He received his PhD from the
University of California, San

Diego in 2008 and his BA in mathematics
and computer science from the University
of Illinois at Urbana-Champaign in 2001. His
research applies evidence-based techniques to
a broad range of computer security domains,
including e-crime and cyber-physical systems.
klevchen@illinois.edu

Rik is the editor of ;login:.
rik@usenix.org

www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 23

SECURITY
Interview with Kirill Levchenko

Newer aircraft, such as the Boeing 787 and Airbus A380, use
an Ethernet-based protocol called AFDX.

RF: Cars have telematics, usually via cellular networks, and
Bluetooth. Both are connected to the CAN bus as vectors for
attacks. What type of vectors are you considering for attacks
against ARINC 429?

KL: Two of the most interesting vectors, from our point of
view, are ACARS (handled by the CMU) and the software
update process. These are the two vectors that originally
motivated the testbed. ACARS (Aircraft Communications
Addressing and Reporting System) provides short message
digital communications between aircraft and ground systems.
It was originally developed for reporting aircraft status (landed,
at gate, etc.) but quickly came to be used for many other kinds of
communications.

RF: Are updates to systems signed?

KL: Updates for most systems used on aircraft like the 737 and
747 are not signed.

Newer aircraft such as the Boeing 787 and A380 may use signed
updates. This is something industry is working on.

There are no over-the-air updates while an aircraft is in the air,
for obvious reasons. There are some products that allow you to
do the update wirelessly when the aircraft is in for maintenance,
but I am not aware of airlines using these. With the traditional
ARINC 429-based data loader, there is no update verification
built into the protocol. Of course, devices can implement their
own checking, but we have not seen this in the avionics we’ve
looked at.

RF: In Figure 2 in your CSET paper [1], you show USB 429 adapt-
ers. I assume these handle converting the serial protocol to USB,
and the USB 429 driver portion is a Linux kernel module that
acts as the device driver, so the emulated software you use as the
bus will work, and daemons can present the 429 serial inputs or
outputs as TCP ports?

KL: Yes, that’s basically correct. To be specific, the driver is in
userspace and connects to the USB 429 adapter using a library
provided by the adapter vendor. The r429d daemon then provides
access to the ARINC 429 bus over TCP (local access only). This
allows us to create virtual devices that speak ARINC 429 to
physical devices through the adapter.

RF: Was it hard to source the devices needed for the testbed?

KL: For aircraft such as the 737, no, we can get parts from
 avionics parts suppliers (who get them from aircraft that get
torn down) and even from eBay. It’s harder to get parts for
newer aircraft, like the Boeing 777 and later, which don’t have
as large a parts market.

References
[1] S. Crow, B. Farinholt, B. Johannesmeyer, K. Koscher,
S. Checkoway, S. Savage, A. Schulman, and A. C. Snoeren, and
K. Levchenko, “Triton: A Software-Reconfigurable Federated
Avionics Testbed,” 12th USENIX Workshop on Cyber Security
Experimentation and Test (CSET ’19), USENIX Association,
2019: https://www.usenix.org/system/files/cset19-paper
_crow.pdf.

[2] I. Foster and K. Koscher, “Exploring Controller Area
Networks,” ;login:, vol. 40, no. 6 (December 2015): https://
www.usenix.org/system/files/login/articles/login_dec15_02
_foster.pdf.

[3] Published works of Kirill Levchenko: https://www
.researchgate.net/scientific-contributions/70179178_Kirill
_Levchenko.

https://www.usenix.org/system/files/cset19-paper_crow.pdf
https://www.usenix.org/system/files/cset19-paper_crow.pdf
https://www.usenix.org/system/files/login/articles/login_dec15_02_foster.pdf
https://www.usenix.org/system/files/login/articles/login_dec15_02_foster.pdf
https://www.usenix.org/system/files/login/articles/login_dec15_02_foster.pdf
https://www.researchgate.net/scientific-contributions/70179178_Kirill_Levchenko
https://www.researchgate.net/scientific-contributions/70179178_Kirill_Levchenko
https://www.researchgate.net/scientific-contributions/70179178_Kirill_Levchenko

24  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

FILE SYSTEMSSelected Results of the Workshop on Data
Storage Research 2025

G E O R G E A M V R O S I A D I S , A L I R . B U T T , V A S I L Y T A R A S O V , E R E Z Z A D O K , A N D M I N G Z H A O

George Amvrosiadis is an
Assistant Research Professor
of Electrical and Computer
Engineering at Carnegie Mellon
University, and a member of the

Parallel Data Lab. His current research focuses
on distributed storage and data analytics, with
an emphasis on high performance computing
and machine learning. He co-teaches courses
on cloud computing and storage systems.
gamvrosi@cmu.edu

Ali R. Butt is a Professor and
Associate Department Head
for Faculty Development in
the Department of Computer
Science at Virginia Tech. He

was also an organizer for the NAE US Frontiers
of Engineering in 2010. Ali’s research interests
are in distributed computing systems, cloud/
edge computing, file and storage systems, I/O
systems, and system support for deep learning.
At Virginia Tech he leads the Distributed
Systems and Storage Laboratory (DSSL).
butta@cs.vt.edu

Vasily Tarasov is a Researcher
at IBM Research—Almaden.
His most recent research
focuses on new approaches
for providing storage as a

service in containerized environments. His
broad interests include system and storage
design, implementation, and performance
analysis. vtarasov@us.ibm.com

W ith the emergence of new computing paradigms (e.g., cloud and
edge computing, big data, Internet of Things, deep learning)
and new storage hardware (e.g., non-volatile memory, shingled-

magnetic recording disks) a number of open challenges and research issues
need to be addressed to ensure sustained storage systems efficacy and per-
formance. The wide variety of applications demands that the fundamental
design of storage systems should be revisited to support application-specific
semantics. Existing standards and abstractions need to be reevaluated; new
sustainable data representations need to be designed to efficiently support
emerging applications. To take advantage of hardware advancements, new
storage software designs are also necessary to maximize overall system effi-
ciency and performance.

Therefore, there is an urgent need for a consolidated effort to identify and establish a vision
for storage systems research and comprehensive techniques that provide practical solutions
to the storage issues facing the information technology community. In May 2018, a National
Science Foundation (NSF) Workshop on Data Storage Research 2025 took place at the
IBM Research—Almaden campus in San Jose, CA [1]. This two-day community-visioning
workshop identified research challenges in designing novel and innovative systems to store,
manage, retrieve, and efficiently utilize unprecedented volumes of data at increasingly faster
speeds. Thirty-three researchers participated in the discussions. Participants came from
academia, industry, and government to represent multiple storage, I/O, and distributed sys-
tems research communities.

In-depth discussions were carried out at the workshop along four major themes: (1) storage
for cloud, edge, and IoT systems; (2) AI and storage; (3) rethinking fundamentals of storage
systems design; and (4) evolution of storage systems with emerging hardware. The partici-
pants underscored the need for focused educational and training activities to instill storage
system expertise and interest in the next generation of researchers and IT practitioners.
Finally, the development of shared, scalable, and flexible community infrastructure to enable
and sustain innovative storage research and verifiable evaluation was also discussed. This
article summarizes the discussions on the interaction of cloud and AI with storage. For more
details, see the full workshop report [10].

Storage for Cloud, Edge, and IoT Systems
The advent of cloud computing has transformed the basic substrate for systems building in
the last decade, and the long-anticipated “Internet of Things” (IoT) has led to the emergence
of edge computing that extends system boundaries pervasively. In such a dynamic context,
the depth of the storage stack and the scope of storage systems are increasing rapidly. Stor-
age systems will need to manage data collected, stored, transformed, and transferred from
heterogeneous edge devices to back-end cloud services, which can involve more than 18
layers [8]. Moreover, there are potential gaps or miscommunications between layers and
components, which increase the difficulty of providing end-to-end guarantees and achiev-
ing the ideal tradeoffs among performance, reliability, fairness, etc. To move data storage
research forward for cloud, edge, and IoT systems, we summarize the research challenges
and opportunities into nine key properties that are essential for future storage systems.

www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 25

FILE SYSTEMS AND STORAGE

Ming Zhao is an Associate
Professor of Computer Science
at Arizona State University
(ASU) , where he directs
the Research Laboratory for

Virtualized Infrastructures, Systems, and
Applications (VISA, http://visa.lab.asu.edu).
His research is in the areas of experimental
computer systems, including cloud/edge, big
data, and high-performance systems as well as
operating systems and storage in general. He is
also interested in the interdisciplinary studies
that bridge computer systems research with
other domains. mingzhao@asu.edu

Erez Zadok is a Professor of
Computer Science at Stony
Brook University, where
he directs the File Systems
and Storage Lab (FSL). He

received his PhD in computer science from
Columbia University in 2001. His current
research interests include file systems and
storage, operating/distributed systems, energy
efficiency, performance and benchmarking, big
data, and applied ML/AI. Zadok has published
over 100 refereed papers, which have been
cited over 7,000 times. ezk@cs.stnybrook.edu

1. Efficient systems. Similar to traditional systems, cloud-based systems also put great
focus on efficiency. This is important for both users who pay for usage and for cloud service
providers who need to maximize profit. However, compared to traditional systems, there are
many more layers involved in cloud systems: different layers usually require different data
formats and read/write strategies to achieve the best local efficiency; these may conf lict
with other layers. Moreover, the diverse hardware, dynamic workloads, multitude of customer-
facing cloud services, and inherent multitenancy make achieving high efficiency even more
difficult. Finally, more effort must be expended on capabilities that support local and end-to-
end quality of service (QoS). We can no longer focus on a single layer or component. Instead,
cross-layer and end-to-end solutions are needed for removing all excess resource allocations
in different layers, saving various costs (e.g., CPUs, memory, energy) and achieving an overall
high efficiency.

2. Unified systems. Modern systems are filled with diverse storage options (e.g., file
systems, SQL databases, key-value and object stores). While each individual storage option
usually provides some unique features, they often have similar functions or components (e.g.,
managing persistent data structures or data replication). This inherent overlap of function-
ality is one of the major sources of inefficiencies in today’s systems. We should explore the
possibility of extracting the unified core components as building blocks and providing general-
ized solutions for various higher-level services. Also, to make different services more unifiable,
we should experiment with solutions that can automatically transform configurations based on
the dynamic needs of workloads: addressing the underlying representation of data, the amount
of resources allocated, and adapting configurations of durability and replication parameters.

3. Specified systems. Current approaches to system building are too prescriptive, rigid, and
error prone. This has led to various problems, including downtime and data loss, reducing
future storage systems’ scalability. We envision that future systems and applications should
be specified in terms of performance requirements, data persistence needs, etc. Correctness
properties should be precisely specified throughout the systems, which could potentially
lead to the holy grail of verified systems that never lose data. There are several open research
questions: how to specify properties for the opaque cloud, how to identify the necessary
properties and interfaces for each layer or component in the system, and how to specify the
dynamic requirements of workloads.

4. Elastic systems. Unlike traditional storage clusters that are built on fixed hardware
resources, cloud-based systems are naturally elastic. Such systems can be broken into con-
stituent components that can be scaled up/down independently based on current workload
demands. We envision that system elasticity can be utilized for handling storage infra-
structure tasks in addition to the workloads, likely improving overall system utilization and
efficiency. To utilize storage elasticity, more desegregated, composable software architec-
tures are highly desirable. Instead of today’s monolithic storage and file systems, we should
experiment with different building blocks and microservices, which can be reused across
domains and improve elasticity, long-term reusability, etc.

5. Explainable systems. Current cloud-based systems are opaque to users. Many services
use relatively simple interfaces, which makes it difficult for users to reason about the prov-
enance and layout of their data. Moreover, due to the complicated layering within the cloud,
it is also difficult for system builders or administrators to explain abnormalities in system
behaviors. We envision future systems as providing detailed provenance information at a
configurable verbosity level regarding, for example, how a data object was created, the number

26  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

FILE SYSTEMS AND STORAGE
Selected Results of the Workshop on Data Storage Research 2025

of copies of it stored in the system, and who can access what and
why. This will be helpful for improving security (e.g., how infor-
mation is leaked), reliability (e.g., how data is corrupted), and
performance (e.g., why this one run is slow).

6. Sharable systems. Unlike the first-generation cloud tech-
nologies that only run a single or a few applications for one entity,
multitenancy is a new reality in modern cloud-based systems.
We believe one fundamental requirement of multitenancy is
effective sharing. However, achieving effective sharing is non-
trivial as it involves many other systems aspects. For example,
from efficiency’s perspective, multitenancy may cause interfer-
ence among different workloads at different system layers and
thus violate QoS or service level objectives (SLOs). Similarly,
security and privacy concerns need to be addressed in the multi-
tenant environment to provide trustworthy sharing.

7. Application-driven systems. One major driving force of
systems research is new application needs. There are many
interesting new applications arising recently (e.g., augmented
reality), which place new demands on storage systems (e.g.,
real-time processing). Given the diversity of applications, it is
inefficient and impractical to build a highly specialized storage
system for each application. Instead, we should explore the com-
monality among applications and automatically adapt storage
systems for a range of applications. One unique challenge here is
how to assemble a representative application suite and metrics
for learning the common characteristics and demands.

8. Reliable systems. As the scale and complexity of systems
keep increasing, failures become the norm rather than the
exception. Therefore, we need to design systems to deliver high
performance and other desired properties in the presence of fail-
ures. Future systems need to be formally specified, which could
potentially lead to truly reliable storage that will never lose data.
Existing efforts have shown that it is possible to formally specify
and verify the crash consistency of one local file system built
from scratch [6]. Nevertheless, it remains unclear how to scale
formal methods to the vast majority of legacy software systems
in cloud environments. More advanced mathematical methods
and software engineering approaches are desirable.

9. Re-evaluable systems. A constant theme in storage research
is the availability of suitable workloads. This is critical for fair
comparisons between systems and for generating reproducible
results. Unfortunately, compared to workloads for local stor-
age systems (e.g., Filebench, SPEC-SFS), fewer cloud-based
workloads are publicly available; a few such useful workload
generators exist (e.g., YCSB [7], ATLAS [4]), but as systems keep
evolving, more representative workloads are needed to advance
research. Moreover, future storage systems should be built with
easy evaluation in mind (e.g., exporting internal performance
metrics) to facilitate the fair comparison of design tradeoffs
under the same representative workloads.

Edge and Its Impact on Cloud
IoT is becoming a reality, causing an explosion of data collec-
tion, storage, and processing demands. The proliferation of IoT
devices and the associated demands have led to the emergence
of edge computing. Essentially, the edge model places a “mini
datacenter” of compute and storage resources at the network
edge, closer to end users. Compared with cloud computing, edge
computing is less mature or standardized, and IoT devices can
differ in capabilities, protocols, and data formats.

The service models for IoT applications are unclear. We envi-
sion that one possible direction is the serverless computing
model, like AWS Lambda. However, additional research efforts
are needed to integrate the spectrum of IoT devices into current
models. Despite this heterogeneity, one common feature of all
IoT devices is their limited hardware resources. To address this
constraint, we should explore how to identify and discard unim-
portant data in a timely fashion—and how to balance among
storage, preprocessing, and communication between IoT devices
and clouds.

Cloud systems can be built for various workloads and adapt
to demands on the fly. Conversely, edge computing has a large
upfront cost to install edge nodes and a limited opportunity for
ad hoc multiplexing at runtime, so we need to identify these
workloads and match them to storage capabilities precisely.

One barrier to storage research in the era of cloud-edge comput-
ing is that no edge-to-cloud, holistic, persistent data storage
capabilities exist today. Therefore, a realistic testbed involv-
ing both edge and cloud is highly desirable. Another barrier is
the lack of agreed-upon workloads and traces for evaluation
and comparison of new research designs. A realistic workload
trace needs to track requests to read and write data across all
devices, edge nodes, and cloud servers—including operations
that transform or aggregate the data. Recent work on distributed
system tracing [2] may provide the mechanism for collecting
such traces; but the research community also needs to agree on
a trace format, such as SNIA’s DataSeries [5], and strategies for
replaying such traces.

AI and Storage
Although AI and ML have existed as separate fields for decades,
the last 5–10 years have witnessed an exponential growth in AI
development and applications. Today, virtually all industries are
either applying or planning to apply AI techniques. This shift
is driven by three factors: data, compute, and algorithms. The
confluence of these three factors has fueled AI’s growth and, in
turn, will drive the need for combined storage and AI research.
Storage for AI focuses on how storage research that drives
system designs can better serve AI workloads and data usage.
Conversely, AI for Storage focuses on how storage systems can
be improved via internal application of AI techniques.

www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 27

FILE SYSTEMS AND STORAGE
Selected Results of the Workshop on Data Storage Research 2025

Storage for AI
Storage technologies are likely to be more complex in the future
to support growing needs of big data and AI workloads. This
complexity will demand support for different APIs at different
levels. We expect to continue to see healthy use of block-level,
file-level (e.g., POSIX), object, and key-value stores—and likely
combinations thereof. There is a need for high-level, easy-to-use
APIs that hide much of the internal complexity from users and
developers; conversely, there is also a need to allow advanced
users to access lower-level APIs to enable more effective custom
optimizations. The key to the design of future storage systems
and their APIs would be that they must be easy to use and logi-
cal for AI application developers and at the same time provide
optimal storage at the lower levels. Specifically, the emerging
AI field presents five trends that intersect with storage, where
targeted storage research can benefit AI uses and applications:

1. Massive data sets. AI workloads require the ingestion, pre-
processing, and, ultimately, analysis of massive amounts of data.
Multiple stages exist in typical AI pipelines, from data inges-
tion such as ETL (Extract, Transform, Load), to pre-processing
(e.g., feature engineering), to the ultimate execution of an AI
algorithm in its training or inference phases. All of these can
benefit from storage optimizations for performance and data
management.

2. Awareness of AI stages. Storage that is aware of the distinct
stages or phases of AI processing can optimize AI pipelines via
techniques such as caching of intermediate results, tracking of
lineage, provenance, and checkpointing.

3. Compute architecture and data optimization. AI platforms
typically follow distinct distributed computation architecture
patterns (e.g., data and model parallel). Memory hierarchy and
data layout design for such computation patterns should be a
focus for future storage research. APIs that express the data
access intent of an AI algorithm can be a powerful tool to inte-
grate optimizations with AI computation.

4. Unique characteristics. AI algorithms have unique charac-
teristics that can be exploited to create efficient storage designs.
Example characteristics include tolerance of small amounts of
data loss, highly structured access patterns, and the ability to
use and extrapolate from lossy compression. Emerging access
methods and characteristics associated with AI workloads,
such as stream processing or edge storage, also create unique
challenges.

5. Security, traceability, and compliance. The use of AI brings
a new dimension to data security. As industries and users demand
that decisions made by AI algorithms be reproducible, transparent,
and explainable, pressure builds on enterprises to use data-manage-
ment mechanisms to govern what data is collected and how it should
be used to generate AI models and consequent insights.

AI for Storage
AI techniques should be researched to improve storage systems
with respect to performance, reliability, availability, and QoS.
This can be accomplished using the large and growing amount of
available storage systems’ historical access data. Insights can be
gained from training and thus be used to help design or optimize
storage systems in five ways:

1. Data placement optimizations. ML algorithms can be applied
to predict popular data and application patterns, which help
improve various storage techniques, including tiered caching,
prefetching, and resource provisioning. Adapting caching poli-
cies through online learning can have significant benefits: using
ML techniques to select between LRU and LFU replacement
policies, for example, improved cache hit rates significantly
under tighter memory constraints [9]. We believe that ML can
be successfully applied for other performance optimizations.

2. Failure prediction. Failure or error patterns in large storage
systems, such as disk failures and silent data corruptions, can be
predicted using ML techniques and early detection; then, cau-
tious measures can be taken to prevent errors from propagating.
For example, proactively replacing disks that are predicted to fail
soon can reduce the cost of data loss or rebuilding.

3. Storage tuning. Storage systems typically evolve to have
a large number of tunable parameters. Parameters include
hardware composition, I/O schedulers, tiering thresholds, cache
sizes, etc. Using learning and other black-box optimization
techniques can help administrators build and maintain storage
systems under dynamic workloads, informing them on the opti-
mal parameter values to improve system performance and lower
cost for given workloads.

4. Change and anomaly detection. Part of tuning for work-
loads is understanding when they change phases. Anomaly
detection has been an application area for ML techniques for
over 20 years, and many techniques from these fields can trans-
late easily to storage domains.

5. Intelligent storage devices. Storage devices capable of car-
rying out computation can help reduce maintenance overhead
for the overall storage system, potentially improving perfor-
mance. Such devices, however, require that we determine what
level of intelligence is appropriate to offload to the device and
propose storage techniques to achieve the best synergy.

The key challenge in using AI for Storage is that training data
will often be limited before decisions have to be made. For
instance, systems to store and quickly process data in self-
driving cars must exist and run fast even before enough data can
be collected for automated system design. Similarly, as stor-
age needs shift over time in an organization, there may not be
enough training data to predict how best to deal with changing

28  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

FILE SYSTEMS AND STORAGE
Selected Results of the Workshop on Data Storage Research 2025

priorities when reconfiguring system parameters, tiers, data
placement, and layout. Storage tuning may also be improved
by considering more complex cost models, not just traditional
throughput and latency: dollar cost, complexity, and power
consumption are useful reward functions in a multi-objective
optimization scheme.

Benchmarks and Workloads
Since AI techniques are heavily data dependent, any strategy for
driving AI and storage research needs to factor in the need for
publicly accessible data sets and benchmarks. Public data sets
exist in ML but are in many cases too small to extract meaning-
ful storage access patterns. Next, we describe three challenges
that have to be overcome to drive expansive research into the
storage and AI opportunities presented above:

1. Data-set generation and collection. We need some system-
atic and sustainable schemes to generate and collect data sets,
including synthetic data generation of ML workloads, data sets
from simulations and prior research, and long-term data collec-
tion and dissemination via shared community infrastructure.

2. Characterizing workloads across layers. How to bench-
mark and characterize workloads from different layers, includ-

ing application, middleware, system, and storage-device layers,
is challenging and needs investigation.

3. Workload classification. Classifying workloads has been
studied for a long time [3]. As new storage platforms and applica-
tions are developed, there is a need to understand, in a way that
is precise and communicable across different industries, what
modern storage workloads look like. We could use ML tech-
niques to improve workload characterization in four areas:
(1) quantifying similarity among workloads; (2) tracking
changes in how a workload functions on a given architecture;
(3) learning mixes of customer workloads on shared storage
systems; and (4) detecting phases of complex long-running
workloads.

Conclusion
The NSF Workshop on Data Storage Research 2025 has unques-
tionably identified that the ongoing evolution of computing use
cases, hardware technologies, and resource consumption pat-
terns creates a multitude of new and complex challenges in data
storage and management. We hope that this summary article
and its associated, full-length public report [10] will serve as a
useful guidance for data storage researchers in the coming years.

References
[1] National Science Foundation Visioning Workshop on Data
Storage Research 2025: https://sites.google.com/vt.edu/data
-storage-research/.

[2] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop,
A. Gentile, S. Monk, N. Naksinehaboon, J. Ogden, M. Rajan, M.
Showerman, J. Stevenson, N. Taerat, and T. Tucker, “The Light-
weight Distributed Metric Service: A Scalable Infrastructure for
Continuous Monitoring of Large Scale Computing Systems and
Applications,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis
(SC ’14), November 2014, pp. 154–165.

[3] A. K. Agrawala, J. M. Mohr, and R. M. Bryant, “An Approach
to the Workload Characterization Problem,” Computer, vol. 9,
no. 6 (1976), pp. 18–32.

[4] G. Amvrosiadis, J. W. Park, G. R. Ganger, G. A. Gibson, E.
Baseman, and N. DeBardeleben, “On the Diversity of Cluster
Workloads and Its Impact on Research Results,” in Proceedings
of the 2018 USENIX Annual Technical Conference (USENIX
ATC ’18) USENIX Association, 2018, pp. 533–546: https://www
.usenix.org/system/files/conference/atc18/atc18-amvrosiadis
.pdf.

[5] E. Anderson, M. Arlitt, C. Morrey, and A. Veitch, “ DataSeries:
An Efficient, Flexible, Data Format for Structured Serial Data,”
ACM SIGOPS Operating Systems Review, vol. 43, no. 1 (January
2009).

[6] H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M. F. Kaashoek,
and N. Zeldovich, “Using Crash Hoare Logic for Certifying the
FSCQ File System,” in Proceedings of the 25th Symposium on
Operating Systems Principles (SOSP ’15), ACM, 2015, pp. 18–37.

[7] B. F. Cooper, A. Silberstein, E. Tam, R. Rakrishnan, and R.
Sears, “Benchmarking Cloud Serving Systems with YCSB,” in
Proceedings of the 1st ACM Symposium on Cloud Computing
(SoCC ’10), ACM, 2010, pp. 143–154.

[8] E. Thereska, H. Ballani, G. O’Shea, T. Karagiannis,
A. Rowstron, T. Talpey, R. Black, and T. Zhu, “IOFlow: A
Software-Defined Storage Architecture,” in Proceedings of the
24th ACM Symposium on Operating Systems Principles (SOSP
’13), ACM, 2013, pp. 182–196.

[9] G. Vietri, L. V. Rodriguez, W. A. Martinez, S. Lyons, J. Liu,
R. Rangaswami, M. Zhao, and G. Narasimhan, “Driving Cache
Replacement with ML-Based LeCaR,” 10th USENIX Workshop
on Hot Topics in Storage and File Systems (HotStorage ’18),
USENIX Association, 2018.

[10] G. Amvrosiadis, A. R. Butt, V. Tarasov, E. Zadok, M. Zhao,
“Data Storage Research Vision 2025: Report on NSF Visioning
Workshop,” 2018: https://dl.acm.org/citation.cfm?id=3316807.

https://sites.google.com/vt.edu/data-storage-research/
https://sites.google.com/vt.edu/data-storage-research/
https://www.usenix.org/system/files/conference/atc18/atc18-amvrosiadis.pdf
https://www.usenix.org/system/files/conference/atc18/atc18-amvrosiadis.pdf
https://www.usenix.org/system/files/conference/atc18/atc18-amvrosiadis.pdf
https://dl.acm.org/citation.cfm?id=3316807

www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 29

PROGRAMMINGGood Old-Fashioned Persistent Memory
T E R E N C E K E L L Y

Terence Kelly studied computer science at
Princeton and the University of Michigan,
earning his PhD at the latter in 2002. He then
spent 14 years at Hewlett-Packard Labora–
tories. During his final five years at HPL, he
developed software support for non-volatile
memory. Kelly now teaches and evangelizes
the persistent memory style of programming.
His publications are listed at http://ai.eecs
.umich.edu/~tpkelly/. tpkelly@eecs.umich.edu

Byte-addressable non-volatile memory (NVM)—Intel Optane—is now
shipping in volume. Today’s NVM offers performance between that of
DRAM memory and flash storage [2, 7] and can be accessed via either

storage or memory interfaces [8]. The latter offers the prospect of radically
simplifying application software by allowing direct manipulation of persis-
tent data via CPU instructions (LOAD and STORE), thus offering an alterna-
tive to traditional persistence technologies such as relational databases and
key-value stores. Industrial adoption of NVM and its corresponding style of
programming is growing [9].

Given the excitement surrounding novel NVM hardware, now is a good time to remind our-
selves that it has long been possible to implement a software abstraction of persistent memory
(“p-mem”) on conventional hardware—ordinary volatile DRAM and block-addressed durable
storage devices. The corresponding “p-mem style of programming” resembles the style that
NVM invites, and supports similar simplifications, but doesn’t require special NVM hardware.

This article illustrates p-mem programming on conventional hardware with C code for
UNIX-like operating systems; all code is available at [3]. Spoiler alert: the basic technique is
to lay out application data in memory-mapped files, with help from a few easy tricks and pat-
terns. Because conventional mmap() doesn’t guarantee data integrity in the face of failures,
crash consistency requires extra support. The right crash consistency mechanism for p-mem
programming on conventional hardware is failure-atomic msync() (FAMS) [6], and this
article presents a concise new implementation of FAMS.

A Persistent Linked List
The C program below prepends words from stdin to a persistent singly linked list. It relies on
a bare-bones persistent memory library, pmem, presented later. Notice that the list node data
structure’s next field is not a conventional pointer but rather an offset—specifically a pmo_t
(“persistent memory offset type”), defined as a uintptr_t in pmem.h. Under the hood, pmem
computes offsets relative to the base address where persistent data are mapped, which may
vary on different runs of the program. Offsets allow data structures to be relocatable, which
improves portability and facilitates sharing persistent data between different applications.
The alternative of non-relocatable persistent data offers different tradeoffs and is beyond the
scope of this article; see [5] for a discussion.

#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include “pmem.h”

typedef struct {
 pmo_t next;
 char string[];
} node_t;

#define NP(o) ((node_t *)pmem_o2p(o))

30  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

PROGRAMMING
Good Old-Fashioned Persistent Memory

int main(int argc, char *argv[]) {

 int r;

 char buf[100]; /* harmonize with scanf() below */

 pmo_t head, t;

 if (2 != argc) {

 fprintf(stderr, "usage: %s pmemfile\n", argv[0]);

 return 1;

 }

 if (0 != (r = pmem_map(argv[1]))) {

 fprintf(stderr, “pmem_map() failed: %d\n”, r);

 return 2;

 }

 head = pmem_get_root();

 while (1 == scanf(" %99s", buf)) {

 if (0 == strcmp("[dump]", buf))

 for (t = head; 0 != t; t = NP(t)->next)

 printf("%s\n", NP(t)->string);

 else {

 t = pmem_alloc(sizeof(node_t) + 1 + strlen(buf));

 if (0 == t) {

 fprintf(stderr, "pmem_alloc() failed\n");

 return 3;

 }

 strcpy(NP(t)->string, buf);

 NP(t)->next = head;

 head = t;

 pmem_set_root(head);

 }

 }

 return 0;

}

Function pmem_map() maps a given persistent data file into
memory, initializing persistent heap metadata within the file
if necessary. Unlike conventional mmap(), pmem_map() returns
an error code rather than the address where the file has been
mapped. Clients of pmem (i.e., code that uses pmem) neither know
nor care about persistent data addresses—that’s the whole point
of relocatability. Clients allocate from a persistent heap in the
file via pmem_alloc(), which returns offsets rather than con-
ventional malloc()’s pointers. Finally, the pmem library embeds
a root offset within the persistent data file. Clients must ensure
that all persistent data are reachable from the root by calling
pmem_set_root(). This allows the client to obtain an entry
point into persistent data structures via pmem_get_root() on
subsequent executions. Our list example program maintains the
invariant that the root offset is always the head of the persistent
linked list.

Function pmem_o2p() converts offsets to conventional pointers,
which macro NP casts to a list-node pointer. Clients of pmem
need offset-to-pointer conversions for accessing the innards of

application-defined data structures. However, the pmem library
doesn’t support pointer-to-offset conversions because well-
designed applications don’t need them: clients’ persistent data
structures should contain only offsets returned by pmem_alloc()
(or offsets derived therefrom), never pointers; only offsets are
encountered when traversing persistent data.

The shell commands below demonstrate that our program’s
list is indeed persistent. truncate creates a new sparse back-
ing file whose size is a multiple of the system page size. We run
list twice, feeding it different words and dumping the list. The
second dump shows that the words entered on the first run have
persisted.

% truncate -s 409600 list.bf

% echo ‘wun too [dump]’ | ./list list.bf

too

wun

% echo ‘free fore [dump]’ | ./list list.bf

fore

free

too

wun

Persistent memory programming based on memory-mapped
files is much more versatile and powerful than the brief exam-
ples above would suggest. In particular, retrofitting persistence
onto legacy software that was not designed for persistence can
be remarkably easy, and the rules governing multithreaded
p-mem are straightforward [5].

Library Internals
The pmem library interfaces used above admit a succinct no-frills
implementation, shown below. There’s nothing arcane going on;
much of the code simply checks internal consistency and catches
corner-case errors, syscall failures, and client misuse. The library
often returns line numbers where errors occur rather than errno-
like codes (“use the Source, Luke”), and the persistent heap sup-
ports a p-mem allocator but no corresponding free().

The pmem library defines a header structure (pmh_s) that will
occupy the first few machine words of the backing file that
contains persistent data. The header contains allocator book-
keeping information and the root offset described above. The
library stores in static external variables e_base and e_len,
respectively, the address at which the backing file is mapped
and the size of the backing file.

Library function pmem_map() invokes conventional mmap()
to map a specified backing file into the caller’s address space;
at most one such mapping at a time is supported. Function
pmem_unmap() removes mappings; pmem_alloc() allocates
persistent memory; and the paired pmem_[get|set]_root()’
functions provide access to the root offset.

www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 31

PROGRAMMING
Good Old-Fashioned Persistent Memory

Again, the pmem library is intentionally Spartan. It serves merely
to remind us that a few dozen lines of code suffice to support
rudimentary persistent memory programming on conventional
hardware.

#include <assert.h>

#include <fcntl.h>

#include <stdint.h>

#include <stddef.h>

#include <unistd.h>

#include <sys/mman.h>

#include <sys/stat.h>

#include <sys/types.h>

#include "pmem.h"

static_assert(sizeof(pmo_t) == sizeof(void *), /* C11 */

 "offsets & pointers incompatible");

typedef struct { /* header of backing file & in-memory image */

 pmo_t avail, end, /* allocator bookkeeping */

 root; /* live data must be reachable from root */

} pmh_s; /* “persistent memory header structure” */

static pmh_s * e_base; /* start address of in-memory image */

static size_t e_len; /* length of in-memory image */

#define UNIT (_Alignof(max_align_t)) /* C11 */

#define ALIGNED(o) (0 == (o) % UNIT)

#define ALIGN(o) do { while(! ALIGNED(o)) (o)++; } while (0)

/* Backing file and its in-memory image consist of a header (of

 type pmh_s above), a heap (nearly everything else), and final

 padding (one UNIT). Padding at the high end eliminates an

 awkward corner case. A root offset must “point” within the

 heap. Other offsets (e.g., “end”) may point one byte beyond

 heap, analogous to C rule for pointers (N1570 Sec 6.5.6). */

#define VALID(o) \

 (0 == (o) || (sizeof *e_base <= (o) && (o) <= e_len - UNIT))

#define VALID_ROOT(o) \

 (0 == (o) || (sizeof *e_base <= (o) && (o) < e_len - UNIT))

#define SANITY_CHECKS \

 do { \

 assert((NULL == e_base && 0 == e_len) || \

 (NULL != e_base && 0 != e_len)); \

 assert(NULL == e_base || \

 (ALIGNED(e_base->avail) && ALIGNED(e_base->end) \

 && VALID(e_base->avail) && VALID(e_base->end) \

 && VALID_ROOT(e_base->root))); \

 } while (0)

void * pmem_o2p(pmo_t o) { /* convert offset to pointer */

 assert(VALID(o));

 return 0 == o ? NULL : (char *)e_base + o;

}

#define P2O(p) ((pmo_t)((char *)(p) - (char *)e_base))

#define RL return __LINE__ /* indicates where error occurs */

int pmem_map(const char * const file) {

 int fd, prot = PROT_READ | PROT_WRITE, flag = MAP_SHARED;

 long int pgsz; struct stat sb; size_t s; pmh_s *t;

 SANITY_CHECKS;

 if (NULL != e_base) /* limit: one mapping at a time */ RL;

 if (1 > (pgsz = sysconf(_SC_PAGESIZE))) RL;

 if (UNIT > (size_t)pgsz) RL;

 if (0 > (fd = open(file, O_RDWR))) RL;

 if (0 != fstat(fd, &sb)) RL;

 if (10 * UNIT + sizeof *t > (s = (size_t)sb.st_size)) RL;

 if (0 != s % (unsigned long)pgsz) RL;

 if (MAP_FAILED ==

 (t = (pmh_s *)mmap(NULL, s, prot, flag, fd, 0))) {

 if (0 != close(fd)) /* don’t leak fds ... */ RL;

 else RL; }

 if (0 != close(fd)) {

 if (0 != munmap(t, s)) /* ... or memory either */ RL;

 else RL; }

 /* file must be either new or already initialized: */

 if (! ((0 == t->avail && 0 == t->end && 0 == t->root)

 || (0 != t->avail && 0 != t->end))) RL;

 if (! (ALIGNED(t->avail) && ALIGNED(t->end))) RL;

 e_base = t;

 e_len = s;

 if (! (VALID(t->avail) && VALID(t->end)

 && VALID_ROOT(t->root))) RL;

 if (0 == t->avail) { /* initialize persistent heap */

 t->avail = P2O(1 + t);

 ALIGN(t->avail);

 t->end = P2O((char *)t + s - UNIT);

 t->root = 0;

 }

 else /* previously initialized; check size: */

 if (t->end != P2O((char *)t + s - UNIT)) RL;

 SANITY_CHECKS;

 return 0;

}

pmo_t pmem_alloc(size_t n) { /* “bump-pointer” allocator */

 pmo_t r;

 SANITY_CHECKS;

 assert(NULL != e_base);

 if (0 == n || /* ask 0, get 0 */

 e_base->avail >= e_base->end || /* out of p-mem */

 e_base->avail > ~(pmo_t)0 - n || /* “+n” overflows */

 e_base->avail + n > e_base->end) /* <n bytes left */

 return 0;

 r = e_base->avail;

 e_base->avail += n;

32  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

PROGRAMMING
Good Old-Fashioned Persistent Memory

 ALIGN(e_base->avail);

 SANITY_CHECKS;

 return r;

}

int pmem_unmap(void) {

 SANITY_CHECKS;

 if (NULL == e_base) RL;

 if (0 != munmap(e_base, e_len)) RL;

 e_base = NULL;

 e_len = 0;

 return 0;

}

void pmem_set_root(pmo_t o) {

 SANITY_CHECKS;

 assert(NULL != e_base && VALID_ROOT(o));

 e_base->root = o;

}

pmo_t pmem_get_root(void) {

 SANITY_CHECKS;

 assert(NULL != e_base);

 return e_base->root;

}

Crashes and Data Integrity
Could a full-featured incarnation of the pmem library be suitable
for serious purposes? Yes, for applications that always perform
an orderly shutdown. However, pmem is inadequate for applica-
tions that must tolerate sudden crashes, e.g., power outages, OS
kernel panics, and application software crashes. Why? Because
pmem creates shared file-backed memory mappings with conven-
tional mmap(), which cannot prevent crashes from corrupting the
backing file. One fundamental problem is that the OS may write
modified memory pages down to the backing file at any time and
in any order, regardless of if/when msync() is called. Another
problem is that if msync() is called, the changes it makes to the
backing file are not atomic with respect to failure. The state of
the backing file following a crash is therefore indeterminate.

Failure-atomic msync() (FAMS) solves this problem by
strengthening the semantics of conventional mmap() / msync().
FAMS guarantees that the backing file always reflects the most
recent successful msync(), regardless of failures [6]. The FAMS
abstraction is the ideal foundation for crash-tolerant persistent
memory programming on conventional hardware. It has been
implemented in the Linux kernel, in file systems, and in user-
space libraries; at least six FAMS implementations exist, two of
which are in commercial products [5]. FAMS has the attractive
property that underlying durable storage is a freely configurable
placeholder: “durability” for a FAMS-based p-mem program can
mean anything from a single hard disk to a RAID array or geo-
replicated cloud storage. Furthermore, FAMS is easy to reason

about because it merely restricts the behavior of well-understood
standard interfaces: FAMS guarantees behavior that is possible
(but, sadly, unlikely) in conventional mmap() / msync().

Existing FAMS implementations have demonstrated the
abstraction’s power and versatility, but they’re not without
 barriers to adoption: some are research prototypes, others
are buried in appliance-like commercial products, and the
two newest implementations are complex but not yet thoroughly
tested [4, 5]. The world needs a FAMS implementation that is
efficient enough for serious use yet simple enough to audit easily.

Simple and Efficient Crash Consistency
Our efficient yet very simple new userspace implementation of
failure-atomic msync() makes two compromises: it restricts our
choice of file system, and its interface is fussier than classic FAMS.

The library implementation below is called famus_snap
(“failure-atomic msync() in userspace via snapshots”). It runs on
file systems that allow multiple files to share physical storage,
e.g., Btrfs, XFS, and OCFS2 (optionally accessed over a network
via NFSv4.2 or CIFS). The interesting work happens in function
famus_snap_sync(), which uses ioctl(FICLONE) to create a new
snapshot that shares storage with the backing file. A copy-on-
write mechanism ensures that subsequent modifications to one
file do not affect the other.

The interfaces of both the mmap() and msync() analogs require
the caller to supply a file descriptor for an empty write-only
snapshot file. When these functions return successfully, the
snapshot file contains the current state of the backing file and
is read-only. Whereas post-crash recovery in classic FAMS uses
the backing file, recovery in famus_snap replaces the backing
file with the most recent readable snapshot file. As a side effect,
famus_snap gives us data versioning for free: every snapshot is a
version of the backing file, which may be retained indefinitely or
deleted to reclaim storage resources.

#define _POSIX_C_SOURCE 200809L

#include <stddef.h>

#include <unistd.h>

#include <linux/fs.h>

#include <sys/ioctl.h>

#include <sys/mman.h>

#include <sys/stat.h>

#include <sys/types.h>

#include “famus_snap.h”

static int rwperm(mode_t m, unsigned int r, unsigned int w) {

 return (!!(m & S_IRUSR) == r) && (!!(m & S_IWUSR) == w);

}

www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 33

PROGRAMMING
Good Old-Fashioned Persistent Memory

#define L __LINE__

#define RL return L /* indicates where error occurs */

/* We must fsync() backing file twice to ensure that snapshot

 data are durable before success indicator (file permission)

 becomes durable. We’re not using fallocate() to reserve

 space for worst-case scenario in which backing file and

 snapshot file diverge completely, because that could defeat

 the reflink sharing that makes snapshots efficient; read

 “man ioctl_ficlone”. The “ioctl(FICLONE)” works only on

 reflink-enabled file systems, e.g., Btrfs, XFS, OCFS2. */

int famus_snap_sync(fd_t bfd, fd_t snapfd, fd_t dirfd) {

 struct stat sb;

 if (0 != fstat(snapfd, &sb)) RL;

 if (! rwperm(sb.st_mode, 0, 1)) RL;

 if (0 != ioctl(snapfd, FICLONE, bfd)) RL;

 if (0 != fsync(snapfd)) RL;

 if (0 != fchmod(snapfd, S_IRUSR)) RL;

 if (0 != fstat(snapfd, &sb)) RL; /* paranoia */

 if (! rwperm(sb.st_mode, 1, 0)) RL; /* paranoia */

 if (0 != fsync(snapfd)) RL;

 if (0 < dirfd && 0 != fsync(dirfd)) RL;

 if (0 != close(snapfd)) RL;

 return 0;

}

#define RN return NULL

void * famus_snap_map(void * addr, size_t * plen, int flags,

 fd_t bfd, fd_t snapfd, fd_t dirfd,

 int * status) {

 struct stat sb; void *a; int prot = PROT_READ | PROT_WRITE;

 if (NULL == status) { RN; }

 if (NULL == plen) { *status = L; RN; }

 if (0 == (flags & MAP_SHARED)) { *status = L; RN; }

 if (0 != fstat(bfd, &sb)) { *status = L; RN; }

 *plen = (size_t)sb.st_size;

 a = mmap(addr, *plen, prot, flags, bfd, 0);

 if (MAP_FAILED == a) { *status = L; RN; }

 if (NULL == a) {

 if (0 != munmap(a, *plen)) *status = L;

 else *status = L;

 RN;

 }

 if (0 != (*status = famus_snap_sync(bfd, snapfd, dirfd))) {

 if (0 != munmap(a, *plen)) *status = L;

 RN;

 }

 return a;

}

The full source code for famus_snap is available at [3]. It
requires a reflink-capable file system such as Btrfs, XFS, or
OCFS2. If you’re eager to run famus_snap but you don’t have
such a file system handy, consider installing one within a file on
some other file system; just run the following commands as root :

truncate --size 512m XFSfile

mkfs.xfs -m crc=1 -m reflink=1 XFSfile

mkdir XFSmountpoint

mount -o loop XFSfile XFSmountpoint

xfs_info XFSmountpoint

cd XFSmountpoint

 [run famus_snap test...]

Streamlined Implementation
The famus_snap library above is a reasonably efficient way to
implement failure-atomic msync() in userspace. However, with
an in-kernel implementation like the prototype posted by Chris-
toph Hellwig [1], similar semantics can be implemented more
efficiently by taking advantage of the mechanisms that the XFS
file system uses to implement the reflink system call.

In that case the existing code path to allocate new blocks and
write them out of place when overwriting data is used indepen-
dently of the B-tree tracking reference counts for blocks shared
after using the ref link system call. In this case in addition to
the actual block allocation, only the special records that ensure
that the blocks are cleaned up when recovering from an unclean
shutdown are required. This ensures the overhead of the write is
similar to that for extending a file or filling a hole, but the extra
overhead for manipulating block reference counts is avoided.

Conclusion
Persistent memory programming on conventional hardware is
possible, thanks to mmap() and a few tricks that don’t get as much
attention as they deserve. Regardless of whether conventional
hardware or newfangled NVM is available, the great advantage
of the p-mem style of programming is simplicity—readers skepti-
cal on this point are invited to re-write the persistent linked
list program above using, e.g., a relational database or key-value
store for persistence.

For crash-tolerant applications, failure-atomic msync() provides
precisely the right fortified semantics for mmap()-based p-mem
programming. The new FAMS implementation presented in
this article is concise, clear, and thus easy for readers to audit
because it leverages efficient file snapshotting from userspace.
Christoph Hellwig’s implementation in XFS achieves greater
efficiency by avoiding unnecessary work. Until NVM supplants
DRAM, FAMS can support crash-safe p-mem programming on
conventional hardware.

34  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

PROGRAMMING
Good Old-Fashioned Persistent Memory

Acknowledgments
Christoph Hellwig reviewed the snapshot-based implementation
of failure-atomic msync(), suggested the procedure for creating a
quick XFS installation within a different file system, provided a
description of his FAMS implementation for XFS, and supplied
information about reflink-capable file systems.

References
[1] C. Hellwig, “Failure Atomic Writes for File Systems and
Block Devices”: https://lwn.net/Articles/715918/.

[2] J. Izraelevitz, J. Yang, L. Zhang, A. Memaripour, Y. J. Soh,
S. R. Dulloor, J. Zhao, J. Kim, X. Liu, Z. Wang, Y. Xu, S.
Swanson, “Basic Performance Measurements of the Intel
Optane DC Persistent Memory Module,” April 2019: https://
arxiv.org/abs /1903.05714v1.pdf.

[3] T. Kelly, Example code to accompany this article: https://
www.usenix.org/sites/default/files/kelly_code.tgz.

[4] T. Kelly, “famus: Failure-Atomic msync() in User Space”:
http://web.eecs.umich.edu/~tpkelly/famus/.

[5] T. Kelly, “Persistent Memory Programming on Conven-
tional Hardware,” ACM Queue, vol. 17, no. 4, July/August 2019:
https://queue.acm.org/detail.cfm?id=3358957.

[6] S. Park, T. Kelly, K. Shen, “Failure-Atomic msync(),” in
Proceedings of the 8th ACM European Conference on Com-
puter Systems (EuroSys ’13), pp. 225–238: https://dl.acm.org
/citation.cfm?id=2465374.

[7] I. B. Peng, M. B. Gokhale, E. W. Green, “System Evaluation
of the Intel Optane Byte-addressable NVM,” International
Symposium on Memory Systems (MemSys), Sept. 2019:
https://memsys.io/.

[8] A. Rudoff, “Persistent Memory Programming,” ;login:, vol.
42, no. 2, Summer 2017: https://www.usenix.org/system/files
/login/articles/login_summer17_07_rudoff.pdf.

[9] S. Swanson (organizer), Persistent Programming in Real
Life (PIRL) [conference], 2019: https://pirl.nvsl.io/.

https://lwn.net/Articles/715918/
https://arxiv.org/abs/1903.05714v1.pdf
https://arxiv.org/abs/1903.05714v1.pdf
https://www.usenix.org/sites/default/files/kelly_code.tgz
https://www.usenix.org/sites/default/files/kelly_code.tgz
http://web.eecs.umich.edu/~tpkelly/famus/
https://queue.acm.org/detail.cfm?id=3358957
https://dl.acm.org/citation.cfm?id=2465374
https://dl.acm.org/citation.cfm?id=2465374
https://memsys.io/
https://www.usenix.org/system/files/login/articles/login_summer17_07_rudoff.pdf
https://www.usenix.org/system/files/login/articles/login_summer17_07_rudoff.pdf
https://pirl.nvsl.io/

www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 35

SRE AND SYSADMINAsk-Me-Anything Engineering
E F F I E M O U Z E L I

Effie Mouzeli studied physics
and distributed scientific
computing but didn’t turn out
to be a physicist or a scientific
computer scientist. She has

worked as a systems engineer/SRE at a
number of startups and small organizations
(most of which are not with us anymore),
where her responsibilities were usually
automation, infrastructure architecture, and
working closely with developers. Currently, she
is on the SRE team that takes care of Wikipedia
and its sister projects at the Wikimedia
Foundation. emouzeli@runbox.no

Small organizations are the reality for a number of people doing
 operations. Despite that, there are limited resources on the subject
of working in a systems team of a few engineers. On the contrary,

there is literature on how large organizations implement SRE, how they
got to 99.999% availability, and how to process millions of metrics per sec-
ond. Those are really good and interesting reads, but I have been in the shoes
of a person reading such articles and thinking, “I enjoyed reading this, but I
can’t use it.” For the purpose of this article, the terms “small organizations/
companies” but also “small-scale” will be used to describe organizations and
startups where there is a single SRE or a small team of SREs.

Everything was just a few servers once, and everything started from something. Let’s just
think about how much we rely on products by small companies like local news sites or
local ferry booking services. Moreover, we mustn’t forget that some of us live in cities and
countries where there are no large engineering teams, and those environments are the only
available places to work. And those are just a handful of reasons why small-scale companies
matter.

There are a few major challenges that a systems engineer at a small organization will have to
constantly deal with:

◆◆ Paying off someone else’s technical debt, almost alone

◆◆ Managing a live infrastructure, almost alone

◆◆ Caring for the development teams, almost alone

I will try to provide an overview of what it is like working in small-scale environments, what
to expect, how SRE concepts can be beneficial, and what can be learned.

The Role of an A.M.A. Engineer
In small software companies, I always considered the systems team as setting their tempo to
the development team. The development team needs that expertise so as to, in turn, set the
standards for the organization. For example, if bootstrapping a new server takes a day, every-
one will consider this normal and will never demand to have a new server ready in an hour.
If pushing code to production requires 10 manual steps, the development team will never be
able to deliver faster. It is up to the SRE to automate manual steps if possible.

Another important aspect of this role is to be the facilitator between development and infra-
structure. It is up to the systems engineer to make the infrastructure accessible to develop-
ers, show them where the controls are, and be there for them. But beyond that, people come
to us for answers when things don’t add up. An Ask-Me-Anything engineer can be the expert
on DNS, databases, networking, Linux, and monitoring. One can expect to receive a broad
range of inquiries, from “My service can’t access the database” to “My dad wants to buy a
new laptop.” For me, I believe the most bothersome question was, “What’s the guest WiFi
password?” That is, until I taped QR codes on every office wall.

36  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

SRE AND SYSADMIN
Ask-Me-Anything Engineering

In addition, our experience will help us to plan wisely for
the future. We should be able to see a few steps ahead and
have a plan about how the systems will grow along with the
organization.

It is not unusual, though, for systems engineers not to get the
credit they deserve. While large organizations go a long way to
achieve “five nines,” that is not always the case in small ones.
Keeping the developers happy and productive while having few
incidents does not translate financially, for example, like a new
feature would. As Heidi Waterhouse has said, “No one remem-
bers the crisis averted” [1]. Sadly, good systems engineering does
not have a direct Return on Investment.

Small-Scale Technical Debt
Technical debt is every organization’s Achilles’ heel, regardless
of size. There is almost always a mountain of it. Even at startups,
there is rarely a dedicated person for operations in the begin-
ning, meaning that the multi-hat engineering team is trying to
make systems work and make technical decisions to the best of
their knowledge.

Identifying what is generating technical debt is a very good start
towards slowing it down. It is impossible to come up with a com-
plete list of reasons behind technical debt in systems at small
environments, but I can name a few from my experience.

Lack of Processes, Documentation, and History
When a few people are developing and running a product, it is
normal to solve problems ad hoc. Minor and major problems
are dealt with as they come up, and then are forever forgotten.
There are no runbooks, no postmortems, no histories. But
those issues derive from deeper ones: there are no standard
processes for how to do things, e.g., introducing a new service to
production, but also no documentation as to how things work.
Especially in fast-paced environments like startups, we sub-
consciously consider documentation as a waste of time.

Cargo Culting
New and immature technologies are adopted under the false
assumption that they can fix anything and that by using them,
the organization can stay up-to-date and relevant. Together with
the lack of appropriate systems background or experience, it just
equals technical debt. Not to mention that sometimes, we go as
far as fitting our problems into the solution we want to experi-
ment with. Without drawing any lines, or putting any limits,
this can lead to a Frankenstein infrastructure. Some notable
examples are Kubernetes and Docker; they provide solutions, but
how many times did a team with limited resources ask whether
it had the human capital to go in this direction?

Short-Term Planning
Cargo culting itself is a symptom of another underlying problem:
the culture of short-term planning. Everything moves so much
faster when the development team is 20 people rather than 100
or 200. This team of 20 people has a list of features to add to the
product, which in turn have a list of requirements. Still, there is
no vision as to how the systems themselves should look a year
after those changes. A simple example would be, “We estimate
that if we market this new feature, we will gain 20% more clients
within six months.” That is great, but have we done any capacity
planning to handle that traffic?

Waiting for a Hero
This does not generate technical debt per se, but it is a conse-
quence of all the above. At some point the organization has so
much duct tape and WD-40 that it simply waits for someone to
make sense of the chaos and save it. How chaotic this chaos is
depends on a number of factors. If this is a startup, the chaos
is proportional to how late to the party a systems engineer has
arrived. On a brighter note, at a startup it is highly likely one can
talk to the people who created all that debt and get answers. If
this is a long-running company, it depends on how many systems
engineers have come and gone over the years as well as how
many people assumed that role.

The Five Stages of Technical Debt
Let’s assume that we have joined an organization as the first
SRE. Our hypothetical new startup, everythingsocks.io, has
30 servers, 50k customers, and about 25 developers, all using the
same account, root. Funding is secured, business is booming,
and the future looks bright!

We arrive in a new fast-paced environment where we don’t know
anyone, we are required to run a live infrastructure we have
never seen before, and we have no idea what is coming. One thing
is certain though: we are going to go through the five stages of
technical debt [2].

1. Denial
The product looks functional, as well as its systems, and we
reckon our job is to initially keep everything running and then
move forward. All we have to do is hold the wheel and drive.
EverythingSocks looks like an awesome place to work after all.
They have free lunches, a pool table, and free yoga lessons!

2. Anger
While we are sure that everything is going great, we begin to
get interrupted. A developer reports they think the auth server
is overloaded. They believe an additional server might help.
Another one pops by, saying that they are getting some 500s, just
like last week. A third one appears complaining they are unable

www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 37

SRE AND SYSADMIN
Ask-Me-Anything Engineering

to access StackOverflow. It goes without saying that everything
is urgent. We realize that we are smiling because we have no idea
what is going on. We are frustrated.

3. Bargaining
This is the part where we believe that we must gain control.
We are trying to show some faith in our abilities and not get too
overwhelmed, even though everything is on fire. Our colleagues
seem to be good people after all; we can make it work!

4. Depression
At this point we are desperate for information. We are running
around trying to figure out what’s under the ground we are
standing on. The more we uncover, the more we feel despondent.
We find out that everyone has root access to the databases, even
the microservices, and the main application is logging plaintext
passwords. This is depressing.

5. Acceptance
We get to acceptance when we finally see some light at the end of
the tunnel. We have a better overview, we are feeling optimistic,
and we have a plan of how to make it better.

Getting Control
With all these problems discovered, as a whole, there is a moun-
tain to climb. The problems have to be broken down into pieces
and prioritized. The development team and our intuition can
help us get there.

Asking a Lot of Questions
But in addition to asking questions it’s crucial to ask the right
questions. For example, ask the development team what they
need, what are their daily pain points, and what they believe
should be improved. The team might request a proper staging
environment but fail to mention that they manually delete appli-
cation logs every week. Read between the lines!

Understanding the Product
A bad habit I have noticed among systems engineers is that they
tend to distance themselves from knowing how the applications
they are managing work. This is a mistake that can turn many
incidents into a wild goose chase. How subsystems communicate
with each other, what they are doing, as well as what external
dependencies they have, should be something an SRE is aware of.
For instance, if a payment provider is taking longer to respond,
it might exhaust the application workers. If you don’t know that
one of the apps depends on a payment provider’s response time,
you will find out the hard way, through reading logs, stracing,
tcpdumping, etc., while everything is on fire.

Documentation Is Bliss
As you are gathering information about literally everything,
write it down: what you learn, what you think is missing, what
needs improvement. Your ultimate goal is to eventually have a
board with the work that needs to be done. You will feel hopeful
when there is finally a comprehensive list of tasks that include
immediate and future needs. This is how one gets to Acceptance!

Understand Your Limits
I strongly believe that a good engineer is able to understand what
they can do under certain circumstances. Try not to rush. Do not
start making promises that “it will take two days.” If your work is
fast but sketchy, it will keep coming back to haunt you, and that
does not scale well. Equally important, having nothing delivered
on time can become part of the culture.

When it comes to introducing new tools to help you in your day-
to-day tasks, start with the familiar ones. You will find time later
to try something new and fancier, together with researching.
And if what you are researching is not working out, learn to let
go and move on. The more time you spend on one front, the more
everything else is falling behind. I was in a team, a newly formed
team, that kept promising to migrate the infrastructure from
one datacenter to another within three months, while migrating
our servers from bare metal to VMs, while migrating from Chef
to SaltStack, while production was running. What could possibly
go wrong?

Consistency
Creating standard processes and rules, and then sticking to
them and defending them, is your true ally: for example, pro-
cesses about new server requests, new applications, new users,
rules that all microservices should be managed by systemd, and
all packages must be installed via configuration management.
You need to keep snowflakes to a bare minimum as much as you
need your sanity.

The Big Picture
I will lay down the components a functional infrastructure
needs in order to be manageable. No matter how many servers
we have or how much traffic we serve, we need all of them. The
problem in small-scale is all will be implemented by a single
person or a tiny team. That is the beauty and the difficulty of
small-scale. The strategy here is divide and rule. Attacking all
of them at the same time can be chaotic and stressful, so iterate,
little by little!

Automation and Provisioning
Try to manually create a staging environment and document all
steps; it will help you learn more about the product. Next time
you revisit it, write scripts for that. Later on, have Jenkins run
those scripts. Having Jenkins running silly bash scripts is better

38  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

SRE AND SYSADMIN
Ask-Me-Anything Engineering

than you running them. In the same fashion, decide how you will
provision. Be it bare metal servers, virtual machines, or con-
tainer images, provisioning must be automated. Infrastructure
as code is the best way.

Observability
Based on current needs, decide on monitoring and alerting. If
real-time monitoring looks like a lot right now, choose a more
simple solution. You will know when a more sophisticated solu-
tion is needed. What about metrics? Which metrics can be used?
Which metrics can be pulled from logs? Which are of business
value, and which can be used as health indicators? Talk to the
development team and figure it out. Together. For instance, low
sock sales is a business metric that can imply systems issues.

Updating and Viable Backups
Keeping software and tools up-to-date while in a tiny team is
very, very challenging. It is up to you to judge when and what
should be updated given the time you have available. Viable back-
ups are our dirty secret, and there are countless horror stories
to prove it. We just strap them on flying unicorns and never look
back. Even the most pessimistic personalities, when it comes to
systems, hope for the best-case scenario: they won’t have to use
their backups. In other words, figure out what needs to be backed
up and test those backups. You need the confidence and security
that you can rely on them.

Security
Common practices like limiting access unless needed (e.g., to
databases), using different database passwords in production
and staging, keeping track with security updates, etc., are a very
good start. Taking this lightly can lead to those upsetting stories
about junior engineers deleting the production database on their
first day.

Emergency Response
You are always on call. Sit with the development team and
discuss what can be done in possible scenarios, along with
some emergency checklists, and eventually create some early
runbooks.

Legacy Systems
This is more common in existing companies than startups: very
essential services running somewhere, but no one knows any-
thing more about them. And when they break, you will be called
on to fix them. For your own peace of mind, work with your col-
leagues on ways to remove those black boxes.

The aim is to bring the systems to a manageable state while
assisting the development team with their deliverables. Balance
comes through small iterations, improving what you have in
each one. Don’t rush; let your systems mature.

Building Habits and Culture
It is not uncommon in software companies for developers to
dislike working with systems engineers, and vice versa. This is
usually due to a lack of communication and bad attitude from
all quarters. Certainly in a place with a single SRE, this is not
going to work to anyone’s benefit. Being approachable is key in
building trust between you and the development team. After
all, they are your team as well. Try to have standard meetings
with each other, and share what is in the roadmap. Guess who
will have to work extra hours if you are playing with alerting
while developers are about to roll out a feature that needs a new
dedicated database server. It is important to learn to meet each
other halfway.

Furthermore, many developers are not proficient in systems
engineering, and that is generally accepted in small companies.
Instead of being frustrated for being asked for the 10th time,
“How do I restart a service?” teach them and document it! Help
them become better. Help them learn how to use what you are
building. After leading a systems crash course with 15 develop-
ers, I cried with joy the first time a colleague used ngrep to debug
an issue. Generally, the more self-serviced the development team
is, the less toil for you.

Lastly, being arrogant is something that you can’t afford. If
people prefer running around production with scissors because
they just don’t want to deal with the SRE, then you’re holding
a time bomb. A few years ago, a group of developers wanted to
experiment with Docker, but my team resisted even running
rough tests with Docker. Eventually, the developers set up a
staging environment using Docker at a cloud provider outside
of our infrastructure. This meant that our proprietary code was
deployed somewhere outside the control of the systems team. But
who is to blame here?

It Takes a Village
Your efforts will go as far as management and the development
team want to go. Same goes for if what you have started will
turn into a team or teams in the future. If there is not enough
management buy-in, there is an upper limit to what can change
and improve. You may want to introduce service level objectives
[3] so that, in turn, you can add meaningful alerts. This can’t be
done without developer assistance. In addition, it is impossible to
have blameless postmortems if nobody wants to write them and
if people prefer to point fingers at each other.

There are chances that one may really try to push for changes
and not get the desired results. Aristotle wrote “one swallow
does not make a spring” [4], and it is true. A person alone might
not be enough if the rest of the team won’t listen, and in my per-
sonal opinion, that is not a problem an SRE should be solving.

www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 39

SRE AND SYSADMIN
Ask-Me-Anything Engineering

Small companies are intimate, and they provide us with that
feeling of belonging, but they can also feel a little lonely, espe-
cially if one is flying solo. What helped me over the years was
keeping in touch with other people doing the same job, through
meetups, group gatherings, and chats. It is essential to be able to
share the tech and non-tech problems at work with people who
understand.

Is It Worth It?
This is a coming-of-age experience for an engineer. There are
no safety nets and no one you can pass the ball to. Every deci-
sion will be more well thought out since any consequences will
directly affect you and your peers. Moreover, when money is
tight and time is limited, one gets creative. You work with what
is in front of you; you can’t simply add 100 servers or you can’t
waste days trying to find what is wrong.

You will acquire a really broad skill set. It will range from debug-
ging tools, networking, databases, and programming, to project
management, human resources, people skills, event planning
(true story), and, possibly, how to help a colleague’s dad find his
dream laptop.

Mistakes will happen, things will break again and again, you
won’t always have all the answers, and sometimes you will cre-
ate more technical debt than can be handled. And at the end of
the day, our systems will not be perfect, just manageable.

References
[1] H. Waterhouse, “Y2K and Other Disappointing Disasters:
Risk Reduction and Harm Mitigation,” SREcon18 EMEA,
USENIX, 2018: https://www.usenix.org/conference
/srecon18europe/presentation/waterhouse.

[2] Coined after the Kübler-Ross model: https://en.wikipedia
.org/wiki/Kübler-Ross_model.

[3] Service Level Objectives: https://landing.google.com/sre
/sre-book/chapters/service-level-objectives/.

[4] “The Young Man and the Swallow”: https://en.wikipedia
.org/wiki/The_Young_Man_and_the_Swallow.

USENIX Supporters
USENIX Patrons

Bloomberg • Facebook • Google • Microsoft • NetApp

USENIX Benefactors
Amazon • Oracle • Thinkst Canary • Two Sigma • VMware

USENIX Partners
Cisco Meraki • ProPrivacy • Restore Privacy • Teradactyl

TheBestVPN.com • Top 10 VPN

Open Access Publishing Partner
PeerJ

https://www.usenix.org/conference/srecon18europe/presentation/waterhouse
https://www.usenix.org/conference/srecon18europe/presentation/waterhouse
https://en.wikipedia.org/wiki/Kübler-Ross_model
https://en.wikipedia.org/wiki/Kübler-Ross_model
https://landing.google.com/sre/sre-book/chapters/service-level-objectives/
https://landing.google.com/sre/sre-book/chapters/service-level-objectives/
https://en.wikipedia.org/wiki/The_Young_Man_and_the_Swallow
https://en.wikipedia.org/wiki/The_Young_Man_and_the_Swallow

40  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

SRE AND SYSADMIN

Multi-Tenancy in a Microservice Architecture
A M I T G U D

Microservice architecture is increasingly common for a scalable
system with high developer velocity and short time-to-market.
It allows the flexibility for teams to operate on independent

schedules while meeting the externally committed service level agreements
(SLAs). As architectural complexity evolves along with a business, some
aspects of the microservice architecture become critical for the developer
and business velocity.

One such aspect is to be able to safely and reliably roll out new changes to the architecture
in the areas of actual code, service configuration, data semantic, and data schema. With
diverse teams working on interoperating services, it becomes critical to be able to roll out a
change to a service only after ascertaining the change’s impact on dependent services. As
multiple teams churn out features for their services, they often have to validate whether the
new changes meet the SLAs. Being able to do this easily has direct and positive impact on
developer velocity.

Another aspect critical for business continuation and growth is being able to reuse parts of
the architecture in a modular way to add new product lines. With the right layers of abstrac-
tion and modularity this can not only be cost effective but can also speed up time to market.

One of the most effective ways of addressing both these aspects is by allowing multiple ten-
ants to co-exist in a microservice architecture. A tenant could be a test, canary, shadow, a
different service tier, or a different product line altogether. Being able to guarantee isolation
and make routing decisions based on the tenancy of the traffic would provide us the infra-
structure agility needed for developer velocity and effectively new product innovations.

Having the ability to be able to attach a notion of tenancy to both data-in-flight (e.g., requests,
messages in the messaging queue) as well as data-at-rest (e.g., storage, persistent caches)
allows for isolation guarantees, fairness guarantees, and tenancy-based routing opportuni-
ties. This helps us achieve a variety of things, including better integration testing frame-
work, shadow traffic routing, recording and replaying traffic, hermetic replay of live traffic
for experimentation, capacity planning, realistic performance and stress testing, and even
things like canary deployments and being able to run multiple business-critical product lines
on the same microservice stack.

Stateless services, which are typically containerized applications that do not keep state
locally, are more widely deployed than stateful applications and short-lived “serverless” or
lambda services. Architecture discussed here is more suited to stateless services.

Microservices Landscape
In this section we will explore microservice landscape and various use-cases for multi-
tenancy within microservice architecture.

Amit has worked for multiple
companies in the storage and
systems domain, from early-
stage startups to multi-billion
dollar companies. Currently

focused on making Uber’s infrastructure
robust, Amit has a track record of tackling
impactful issues relating to large-scale
systems, performance, and scalability. Amit
has a master’s degree from Kansas State
University. He has worked on multiple research
papers and has authored multiple (pending)
patents. amitgud@gmail.com

www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 41

SRE AND SYSADMIN
Multi-Tenancy in a Microservice Architecture

Integration Testing
One of the most appealing aspects of a microservice architecture
is developer velocity. It allows teams to roll out new features
and bug fixes for their services independent of others. A team
may typically own a handful of services. These services could be
interacting with multiple other services as part of its business
logic and would have agreed upon SLAs.

For example, consider Figure 1. Here we have a simple scenario
of four microservices A, B, C, and D. Service A gets a request
from the outside world. It processes the request by connecting to
B, which in turn connects to C and D to process the request.

In this example, if we make a change to service B, we will have
to make sure it still interoperates well with A, C, and D. Services
A, C, and D may belong to different teams, and we may not have
control over their deployment schedules. This can be considered
an integration testing scenario where we want to test a service’s
interaction with other services in the system. In this example,
and in any microservice architecture in general, there are two
fundamental ways of doing integration testing.

Parallel Testing Stack
One approach would be to create a parallel stack, sometimes
referred to as a staging environment, which looks and feels like a
production stack, but will be used only for handling test traffic.
This stack always exists and is always running production code
although it is completely isolated from the production stack and
is smaller in scale. In this approach, the team making a change
would deploy the service with the new code in the test stack.
This approach allows us to safely test any service without affect-
ing the production stack. Any bugs or issues would be contained
in the test stack only.

In this approach we will need the ability to ascertain that test
traffic never leaks to the production stack. This can be achieved
by physically isolating the two stacks into separate networks and
also by making sure test tools only operate on the test stack.

Although this approach sounds logical, there are a number of
downsides.

Operational Cost
Having to provision an entire stack along with all its data stores,
message queues, and other infrastructure components means
additional hardware and maintenance cost.

Synchronization Issues
The test stack is only useful if it is identical to the production
stack. As the two stacks deviate from each other, the testing
becomes far less effective. There is an additional burden on the
infrastructure components to keep the stacks in sync. A lag is
possible while the two stacks are being brought in sync, and this
lag may degrade over a period of time.

Unreliable Testing
Since teams are going to deploy their experimental and poten-
tially buggy code to the test stack, services may or may not be
able to handle the traffic correctly, leading to frequently failing
tests. For example, the team owning service A would trigger a
test of their new code that fails due to a bug in service B. This
would be hard to diagnose, and we couldn’t ascertain changes to
service A were safe until the test passes, which means we would
be blocked until the team owning service B deployed clean code
back to the test stack. This particular downside can be mitigated
by having a routing framework to route traffic to yet another
sandbox environment where the service-under-test is instantiated.
This also requires the ability to tag traffic with additional informa-
tion (e.g., the service-under-test, where it can be located, etc.).

Inaccurate Capacity Planning
To be able to assess the capacity of an entire stack or sub stack,
we would have to push the test load on the test stack. If we want
to test for a particular capacity that we want to achieve, we
would have to increase the capacity of the test stack before we
could apply the delta load (target capacity minus current produc-
tion load) on to the test stack. This delta load may not be able to
saturate the test stack, thus making it unclear as to how much
more capacity we should add to the production stack to achieve
the target capacity.

Figure 1: Request flow in a microservice architecture

Figure 2: Parallel testing stack architecture

42  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

SRE AND SYSADMIN
Multi-Tenancy in a Microservice Architecture

Testing in Production
Another approach to integration testing in a microservice archi-
tecture would be to make the current production stack multi-
tenant and allow both test as well as production traffic to flow
through it. Figure 3 shows one such example. This rather ambi-
tious approach does mean making sure every service in the stack
is able to handle production requests alongside test requests.

In this approach, since service B is to be tested, the test build
will be instantiated in an isolated sandbox area which is allowed
to access production services C and D. The test traffic will be
routed to B. Production traffic will flow as usual through the
production instances.

Although this is a simplified view, it helps explain that multi-
tenancy can help solve integration testing use cases. There are
two basic requirements that emerge from testing in a production
use case, which also form the basis of multi-tenant architecture:

◆◆ Traffic routing: being able to route traffic based on the kind of
traffic flowing through the stack.

◆◆ Isolation: being able to reliably isolate resources between test-
ing and production thereby ascertaining no side effect.

The isolation requirement here is particularly broad since we
want all the possible data-at-rest to be isolated, including con-
figuration, logs, metrics, storage (private or public), and message
queues. This isolation requirement is not only for the service that
is under test but for the entire stack. We will look at the details in
the next section.

Multi-tenancy paves the way for other use cases beyond integra-
tion testing. We discuss some such use cases below.

Canary Deployments
When a developer makes a change to their service, even though
the change is well reviewed and tested, we may not want to
deploy the change to all the running instances of the service at
once. This is to make sure the entire user base is not vulnerable

should there be an issue or bug with the change being made. The
idea is to roll out the change first to a smaller set of instances,
with limited blast radius, called “canaries,” monitor the canaries
with a feedback loop, and then gradually roll them out widely.

A canary can be treated as yet another tenant in our multi- tenant
architecture where the canary is a property of a request that
can be used for making routing decisions and where resources
are isolated for canary deployments. At any given time a service
might have a canary deployed to which all the canary traffic
will be routed. The decision to sample requests as canary can be
made closer to the edge of the architecture based on attributes of
the request itself: user type, product type, user location, etc.

Capture/Replay and Shadow Traffic
Being able to see how a change to a service would fare while
serving actual production traffic is a great way of getting a
strong signal on the safety of the change being made. Replay-
ing already captured live traffic or replaying a shadow copy of
live production traffic in a hermetically safe environment is
another use case of multi-tenancy. Figure 4 shows an example
of routing shadow traffic to a sandbox environment. In this we
stub responses for any outbound calls made by the instance
being tested. This can be treated as a subcategory of integration
testing since these use cases are within the realm of testing and
experimentation.

Replay traffic is technically test traffic and can be part of a
test tenancy allowing for isolation from other tenancies. We do
have the flexibility to assign a separate tenancy to allow further
isolation from other test traffic. We discuss in later sections
the implications of increasing the cardinality of tenancies and
mitigation strategies.

Another important use case for a multi-tenant architecture is
to protect and isolate multiple business-critical product lines or
different tiers of the user base.

Figure 3: Testing in production Figure 4: Shadow traffic routing to sandbox environment

www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 43

SRE AND SYSADMIN
Multi-Tenancy in a Microservice Architecture

Tenancy-Oriented Architecture
In a tenancy-oriented microservice architecture, tenancy is
a first-class citizen. The notion of tenancy is attached to both
data-in-flight (e.g., requests, messages in the messaging queue)
as well as data-at-rest (e.g., storage, persistent caches, configu-
ration data, logs, metrics). In this section, we will look in a bit
more detail at the aspect of making a microservice architecture
multi-tenancy.

Tenancy Context
Since microservice architecture is a group of disparate services
running on an interconnected network, we need the ability
to attach a tenancy context to an execution sequence. As the
request enters the system through an edge gateway, we would
want to learn more about the tenancy of the request by attach-
ing tenancy context to it. We want this context to stay with the
request for the life of the request and get propagated to any new
requests that are generated in the same business logic context.

Here is a simple tenancy context format and some examples:

{ “request-tenancy” : <product-code>/<tenancy-id>/<tenancy

-tags>... }

Examples:

“request-tenancy” : “product-foo/production”

“request-tenancy” : “product-bar/production/canary”

“request-tenancy” : “product-bar/production/health-probe”

“request-tenancy” : “product-foo/testing/TID1234”

“request-tenancy” : “product-bar/testing/shadow/SID5678”

Context Propagation
In general, when any service in the call chain receives a request,
we want tenancy context to be available with it. The service
may or may not make decisions based on the tenancy context as
part of its business logic. However, it is required that the service
propagates the context as it makes further requests as part of
processing the same original incoming request. Most services
may not need to look at the tenancy context, but some may option-
ally look into the request context to bypass some business logic.
For example, an audit service verifying users’ phone numbers may
want to bypass the check for test traffic since the users involved
in a test request would be test users. In the example of transaction
processing services talking to a bank gateway to transfer funds for
users, for test traffic, we would want to stub out the bank gateway
or alternatively talk to the bank’s staging gateway, if one is avail-
able for testing, to prevent any real transfer of money.

Tenancy context propagation can be achieved with open source
tools like OpenTracing [1] and Jaeger [2]. These tools allow
distributed context propagation in a language- and transport-
agnostic way.

Tenancy context should also be propagated to other data-
in-f light objects, like messages in a messaging queue like
Kafka. Newer versions of Kafka support adding headers, and
 OpenTracing tools can be used to add context to messages flow-
ing through Kafka. We will touch upon how we can achieve iso-
lation for messaging systems like Kafka in a subsequent section.

Another set of objects that we would want tenancy context to be
propagated to is data-at-rest. This includes all the data storage
systems that are used by the services for storing their persistent
data, like MySQL, Cassandra, AWS, etc. Distributed caches like
Redis and Memcached can also be classified under data-at-rest.
All the storage systems and caches that get used in the architec-
ture need to be able to support the ability to store context along
with the data at a reasonable granularity to allow retrieval and
storage of data based on the tenancy context. At a high level the
only requirement from the data-at-rest component is the ability
to isolate data and traffic based on the tenancy.

Exactly how the data is isolated and how the tenancy context
is stored along with the data is an implementation detail that
is specific to the storage system. We will take another look at
tenancy-based isolation in storage in the next section.

Tenancy-Based Routing
Once we have the ability to tag a request with tenancy, we can
route requests based on its tenancy. Such routing is crucial for
the testing use cases: testing in production, record/replay, and
shadow traffic. Also, canary deployment requires the ability to
route the canary requests to particular service instances run-
ning in the isolated canary environments.

It is important to consider the deployment and services tech
stack for coming up with a routing solution that works seam-
lessly without overhead. Languages in which services are
written as well as the transports and encoding they use to com-
municate with each other might need to be considered for pro-
viding a fleet-wide routing solution. Open source service mesh
tools like Envoy [3] or Istio [4] are highly suited for providing
tenancy-based routing that works agnostic to service language
and the transport or encoding used.

Generically, the tenancy-based routing can be implemented
either at ingress or at the egress of the service. At egress, the ser-
vice discovery layer can help determine what service instance
to talk to depending on the request’s tenancy. Alternatively, the
routing decision can be made at the ingress with the request
rerouted to the correct instance, as shown in Figure 5.

44  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

SRE AND SYSADMIN
Multi-Tenancy in a Microservice Architecture

In this example, a sidecar can be used to forward the request to
a test instance if the request tenancy is test. A sidecar can be a
process acting as a proxy to all the traffic to the service and is
co-located with the service. The traffic first is received by the
service’s sidecar where we are able to inspect the request’s ten-
ancy context and make a routing decision based on that context.

We do need additional metadata in the tenancy context depend-
ing on the use case we want to address. For example, for testing-
in-production, we want to redirect test traffic to test instance
of a service if the service is under test. We can add additional
information in the context that will allow this behavior.

{

 “request-tenancy” : <product-code>/<tenancy-id>/

 <tenancy-tags>...

 “services_under_test” : [

 “foo” : {

 “redirect” : <test instance Id>,

 },

 ...

]

}

When we are making routing decisions, we can check if the
request-tenancy is test traffic and the request recipient is one
of the services_under_test. If these conditions are satisfied, we
route the request to the <test instance Id>.

Data Isolation
We want to get to an architecture where every infrastructure
component understands tenancy and is able to isolate traffic
based on tenancy. Typical infrastructure components that are
used in a microservice architecture are: logging, metrics, stor-
age, message queues, caches, and configuration. Isolating data

based on tenancy requires dealing with the infrastructure com-
ponents individually. For example, we might want to start emit-
ting tenancy context as part of all the logs and metrics generated
by a service. This helps developers to filter based on the tenancy,
which might help avoid erroneous alerts or prevent heuristics or
training data getting skewed.

Similarly for storage, underlying storage architecture needs
to be taken into account to efficiently create isolation between
tenants. Some storage architectures might lean more readily
towards multi-tenancy than others. Two high-level approaches
are either to embed the notion of tenancy explicitly alongside the
data and co-locate data with different tenancies or to explicitly
separate out data based on the tenancy. The latter approach
provides better isolation guarantees, while the former might
offer less operational overhead. For messaging queue systems
like Kafka, we can either transparently roll out a new topic for
the tenancy or dedicate a separate Kafka cluster altogether for
that tenancy.

For data isolation, context needs to be propagated up to the infra-
structure components. It is important to make sure services
have minimal overhead with respect to data isolation. We would
ideally want services to not deal with tenancy explicitly. We
would also ideally want to place the isolation logic at a central
choke point from which all the data flows through. The Edge
Gateway is one such choke point where the isolation logic can be
implemented and is the preferred approach. Client libraries can
be another alternative to implement tenancy-based isolation,
although coding language diversity makes it a bit harder to keep
the logic in sync among all the language-specific client libraries.

Similarly for config isolation, we want the configuration data
for a service to be tenancy-specific, making sure configuration
change for one tenancy does not affect another.

Figure 5: Tenancy-based router routing between test and production traffic

www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 45

SRE AND SYSADMIN
Multi-Tenancy in a Microservice Architecture

Conclusion
Microservice-based architectures are still evolving and are
becoming instrumental in providing the agility that businesses
and developers need. A carefully planned multi-tenant archi-
tecture can help realize ROI in terms of increased developer
productivity and ability to support evolving lines of business.

References
[1] Open-Tracing: https://opentracing.io/.

[2] Jaeger: https://www.jaegertracing.io.

[3] Envoy: https://www.envoyproxy.io/.

[4] Istio: https://istio.io/.

Figure 6: Data isolation for logs, metrics, storage, cache, and message queues

46  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

COLUMNSManaging Systems in an Age of Dynamic
Complexity
Or: Why Does My Single 2U Server Have Better Uptime than GCP?

L A U R A N O L A N

A decade ago most systems administrators were running relatively
static systems. We had servers which were provisioned and updated
by hand, or maybe via a human invoking Puppet, Capistrano, or

CFEngine. Instances were typically added to load balancer pools manually.
New instances would be provisioned when administrators decided that more
capacity was needed, and systems were sized for peak loads (plus a margin).
Networks were configured by hand.

This kind of static administration has pros and cons. Servers that stay around a long time
and get updated manually can be very hard to replace when they fail. Instances that should
be identically configured can experience drift, leading to hard-to-diagnose production prob-
lems. There’s a lot of work to be done by hand. Load balancing and network failover can give
some capacity to handle failure, but often you’ll need to alert a human to fix problems. Even
if the system is robust enough to stay up in the face of failure, someone usually needs to fix
things afterwards to bring things back to the intended capacity.

Fundamentally, a human or a team of humans is operating the system directly. When some-
thing changes in the system, it is because someone intended it to change or because some-
thing failed. Small, static, human-managed systems can have really good uptime. Change
tends to be relatively infrequent and human initiated, so it can usually be undone quickly if
problems arise. Hardware failures are rare because the likelihood of failure is proportional
to the amount of hardware you have: individual server uptimes measured in years aren’t too
uncommon, although nowadays long-lived servers are generally considered an antipattern as
Infrastructure-as-Code has become popular.

At scale, things change. All the downsides of managing a lot of servers by hand become much
worse: the human toil, the pager noise. High uptime becomes hard to maintain as failures
become more common. Cost becomes a factor: there is almost certainly going to be organiza-
tional pressure to be as efficient as possible in terms of computing resources. System archi-
tectures are likely to be complex microservice meshes, which are much more challenging to
manage than simpler monoliths.

These pressures lead to the rise of what I will term dynamic control systems: those systems
where the jobs once done by human administrators, such as provisioning instances, replac-
ing failed instances, restarting jobs, applying configuration, and updating load balancer
back-end pools, are done by machines. The most obvious examples of today’s dynamic
systems are software-defined networking (SDN), job or container orchestration, and service
meshes. These systems do indeed work well to increase resource utilization and thus reduce
costs, to prevent human toil scaling with the size of the services managed, and to allow sys-
tems to recover from routine hardware failures without human intervention.

Dynamic control systems, however, also bring completely novel challenges to system opera-
tors. Most dynamic control systems have a similar structure, shown in Figure 1.

Laura Nolan’s background is
in site reliability engineering,
software engineering,
distributed systems, and
computer science. She wrote

the “Managing Critical State” chapter in the
O’Reilly Site Reliability Engineering book and
was co-chair of SREcon18 Europe/Middle
East/Africa. Laura Nolan is a production
engineer at Slack. laura.nolan@gmail.com

www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 47

COLUMNS
Managing Systems in an Age of Dynamic Complexity

The components are:

◆◆ Service pools: a set of instances doing work of some kind.

◆◆ Signal aggregator: a service which collects metrics from the
service pool instances (often a monitoring system such as
 Prometheus), usually one per “zone” (meaning region, data-
center, cluster, availability zone—whichever domain makes
sense for a given service).

◆◆ Global controller: a service which receives signals from the
signal aggregator and makes global decisions about configura-
tion of the service.

◆◆ Controller: a service which receives updates from the global
controller and applies configuration locally.

Google’s B4 SDN WAN control plane [1] is an example of this
architecture. Variants exist, of course: a small dynamic control
system might merge some of these functions into fewer services—
for instance, a service running in just one zone might collapse
the functions of the aggregator, controller, and global controller
into a single service. Another possible architecture is to have
independent controllers in each zone for services that don’t need
global coordination.

There might be multiple controllers (for example, mapping this
concept to Kubernetes, the global controller is the Kubernetes
Master and the controllers are the kubelets). Most SDN archi-
tectures are a variant on this, as are coordinated load-balancing
and rate-limiting architectures, including service meshes. Many
job orchestration functions like autoscaling and progressive
rollouts/canarying are structured in this way, too.

The dynamic control system architecture above is popular
because it works: it scales, allowing globally optimal decisions

or configurations to be computed and pushed back to instances
quite quickly. The controllers provide useful telemetry as well as
a point of control to apply overrides or other exceptions.

However, it also has its downsides. Most notably, it adds a lot
more software components, all of which can themselves fail or
misbehave. A naive implementation of a global load-balancing
control plane which experiences correlated failure in its zonal
monitoring subsystems could easily lead to global failure, if its
behavior in such cases is not carefully thought through or if it
has bugs.

Another critical weakness of dynamic systems architecture is
that it distances operators from the state of their systems: we
do not make changes directly anymore. We understand normal
operation less well, and it can also be harder to understand and
fix abnormal operation. Charles Perrow discusses this phenom-
enon in Normal Accidents [2] in the context of the Apollo 13 acci-
dent. Mission control had detailed telemetry but was confused
about the nature of the incident. The astronauts knew that they
had just initiated an operation on a gas tank, they felt a jolt and
they saw liquid oxygen venting. Their proximity to the system
was key to their understanding.

Systems administrators used to be more like the astronauts, but
now our profession is moving towards being mission control. We
are now in the business of operating the systems that operate
the systems, which is a significantly harder task. In addition to
managing, monitoring, and planning for failure in our core sys-
tems, we must now also manage, monitor, and plan for the failure
of our dynamic control planes. Worse again, we normally have
multiple dynamic control planes doing different tasks. Figuring

Figure 1: A generic dynamic control system architecture, showing two separate sets of service instances

48  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

COLUMNS
Managing Systems in an Age of Dynamic Complexity

out all the potential interactions between multiple control planes
in working order is probably impossible; trying to figure out how
multiple control planes might interact when one or more of them
have bugs or experience failure is definitely impossible.

This brings us back to the subtitle of this article: how can a
single server have better uptime than a cloud platform which is
carefully designed by competent engineers for availability in the
case of failure? Let’s examine two outages.

On April 11, 2016, Google Compute Engine (GCE) lost external
connectivity for 18 minutes. The RCA (root cause analysis) for
the incident [3] is a study in dynamic control systems failure:

1. An unused IP block was removed from a network configuration,
and the control system that propagates network configurations
began to process it. A race condition triggered a bug which
removed all GCE IP blocks.

2. The configuration was sent to a canary system (a second
dynamic control system), which correctly identified a problem,
but the signal it sent back to the network configuration propa-
gation system wasn’t correctly processed.

3. The network configuration was rolled out to other sites in turn.
GCE IP blocks were advertised (over BGP) from multiple sites
via IP Anycast. One could take the view that BGP advertise-
ments themselves constitute a third dynamic control system.
This means that probes to these IPs continued to work until the
last site was withdrawn—see [4] for more detail on why. This
meant the rollout process lacked critical signal on the effect of
its actions on the health of GCE.

This incident features multiple control systems with multiple
failures in processing and in monitoring. These systems are
utterly necessary to manage networks at this scale, but it is also
impossible to predict the many ways in which they can go wrong.
The following is a classic complex systems failure [5]:

On June 2, 2019, Google Cloud experienced serious network
degradation for over three hours. The RCA [6] is another tale
of dynamic control systems misadventure in which many
instances of the network control plane system were accidentally
descheduled by the control system responsible for managing
datacenter maintenance events. It took two misconfigurations
and a software bug for that to happen: again, there is no way to
predict that specific sequence of events. This incident is also
an example of the difficulty that can arise in restoring control
system state when it has been lost or corrupted.

Dynamic control systems are inherently complex, and will
always be challenging, but it is to be hoped that best practices
regarding their operation will emerge. One such best practice
that is often suggested is to avoid systems that can make global

changes, but that is not always easy. Some systems are inher-
ently global, anycast networks being a good example as well as
systems that balance load across multiple datacenters or regions.

This is one of the key challenges of modern large systems admin-
istration, SRE, and DevOps: human-managed static systems
don’t scale, and we haven’t yet developed enough experience with
dynamic control systems to run them as reliably as our 2U server
of yore—and maybe we’ll never be able to make them as reliable.

Both of the incidents analyzed here are Google RCAs, but
dynamic control system problems are by no means unique to
Google (here are examples from Reddit [7] and AWS [8]). Google
has simply been running dynamic control systems for longer than
most organizations. With the rise of SDN, service meshes, job
orchestration, and autoscaling, many more of us are now working
with dynamic control systems—and it’s important that we under-
stand their drawbacks as well as their many advantages.

References
[1] S. Mandal, “Lessons Learned from B4, Google’s SDN
WAN,” presentation slides, USENIX ATC ’15: http://bit.ly
/atc15-mandal.

[2] C. Perrow, Normal Accidents (Princeton University Press,
1999), p. 277.

[3] Google Compute Engine Incident #16007: https://status
.cloud.google.com/incident/compute/16007.

[4] M. Suriar, “Anycast Is Not Load Balancing,” presentation
slides, SREcon17 Europe: http://bit.ly/srecon17-europe-suriar
-slides.

[5] R. I. Cook, M.D., “How Complex Systems Fail”: https://
web.mit.edu/2.75/resources/random/How%20Complex
%20Systems%20Fail.pdf.

[6] Google Cloud Networking Incident #19009: https://status
.cloud.google.com/incident/cloud-networking/19009.

[7] “Why Reddit was down on Aug 11 [2016]”: https://www
.reddit.com/r/announcements/duplicates/4y0m56/why
_reddit_was_down_on_aug_11/.

[8] “Summary of the December 24, 2012 Amazon ELB Service
Event in the US-East Region”: https://aws.amazon.com
/message/680587/.

http://bit.ly/atc15-mandal
http://bit.ly/atc15-mandal
https://status.cloud.google.com/incident/compute/16007
https://status.cloud.google.com/incident/compute/16007
http://bit.ly/srecon17-europe-suriar-slides
http://bit.ly/srecon17-europe-suriar-slides
https://web.mit.edu/2.75/resources/random/How%20Complex%20Systems%20Fail.pdf
https://web.mit.edu/2.75/resources/random/How%20Complex%20Systems%20Fail.pdf
https://web.mit.edu/2.75/resources/random/How%20Complex%20Systems%20Fail.pdf
https://status.cloud.google.com/incident/cloud-networking/19009
https://status.cloud.google.com/incident/cloud-networking/19009
https://www.reddit.com/r/announcements/duplicates/4y0m56/why_reddit_was_down_on_aug_11/
https://www.reddit.com/r/announcements/duplicates/4y0m56/why_reddit_was_down_on_aug_11/
https://www.reddit.com/r/announcements/duplicates/4y0m56/why_reddit_was_down_on_aug_11/
https://aws.amazon.com/message/680587/
https://aws.amazon.com/message/680587/

www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 49

COLUMNS

A Survey of Open-Source Python Profilers
P E T E R N O R T O N

In my day-to-day work, I am fortunate enough to have access to a lot
of tools that give me insight into our running services, including data
collection and visualizations of distributed traces. Distributed tracing

at its core shows the flow of requests through the various services that they
are handled by and usually includes the information about the time they take
in each service, along with some special plumbing that allows a particular
connection, or event, or action to be tracked across those different systems so
they can be correlated. Based on the sheer volume of the data of tracking and
tracing requests across different processes on different systems in a network,
the thing that makes the traced data useful is good data being fed into good
visualization tools.

Working on a smaller scale—for example, when I’m writing tools for my own use or writing
standalone scripts—doesn’t feed into the same tracing infrastructure (often called Applica-
tion Performance Monitoring, or APM), and so I don’t get the benefit of the tooling and the
visualizations that I’m used to.

In order to get similar insight into my own smaller use cases, I usually take a side trip that
involves researching the available profiler and then visualization options. Since I use them
infrequently, I have tried a few profiling tools over the years, and I haven’t settled on a single
best tool.

So I’m going to use this opportunity to survey the field, focus on my opinions of the most
important features, and summarize what I see as the pros and cons for the profilers I think
will be the most useful to me when I don’t have to or don’t want to work within a larger
infrastructure.

In addition, I’m going to favor mentioning available options that can be invoked without hav-
ing to modify the code being run. While there are times when adding profiling code to your
program may be the proper approach, that’s something that would be done after some plan-
ning and discussion, and I’m hoping to look at useful first options here.

Why Profiling Is Done
When we release a program for use by others, the goal is to create a self-contained experience
that works in isolation. By this I mean that it’s considered a flaw, and confusing to the user,
when a program fails with a stack trace, memory contents, or in some other manner that
exposes its internal state, code, or anything that breaks the fourth wall of software.

On the other hand, when we write a program, we need to see it as a complex composition of a
whole lot of independent pieces that have to be carefully arranged to work as intended. Con-
firming that it is working involves being able to review each piece of the infrastructure and
ensuring that its expected form and function are in place.

Peter works on automating
cloud environments. He loves
using Python to solve problems.
He has contributed to books
on Linux and Python, helped

with the New York Linux Users Group, and
helped to organize past DevOpsDays NYC
events. In addition to Python, Peter is slowly
improving his knowledge of Rust, Clojure, and
maybe other fun things. Even though he is a
native New Yorker, he is currently living in and
working from home in the northeast of Brazil.
pcnorton@rbox.co.

50  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

COLUMNS
A Survey of Open-Source Python Profilers

The contrast between what we present to the user and how we
work on the inside leads to our having to solve the conundrum of
making the same program that we don’t want to expose also able
to give those who understand it (us, me, you, the developer, or the
technical user) the capability to look into the running program
and characterize it in whole and in its parts.

There are a few different methods of gaining insight. The lowest-
effort way, and often the first, is some variations on printing or
logging the internal state you’re interested in. This is always
an important method, but if you have code that’s out of your
control (like in a library), logging isn’t an option since you can
only coarsely select what is logged. Also, if you have code in a
fast loop, logging isn’t usually an option because it has a way of
causing more problems than it solves—either filling disks or just
making it impossible to see any other context.

Applying a debugger is the other method that is always good
to use to understand a program. Debuggers accomplish their
primary purpose, which is to look inside the state of the program
without having to modify it at all. The debugger is always a good
choice when the program in question is misbehaving. One of
the key points of a debugger is that it will stop the program, and
keep everything stopped, so that you can inspect the state of
the program, or it will work off of a core dump—either way the
program will not make progress while you work in the debugger.
That is absolutely what you want, but it is a potential problem if
you are interested in investigating the uninterrupted behavior of
a program as it continues running.

Other methods include recording and emitting metrics. This is
always useful in the long run, but it requires modifying the pro-
gram and, to be really useful, summarizing and visualizing the
trends. So it requires infrastructure, which we’d like to not have
to wire up if there are lower-effort methods.

Profiling
A profiler is another way of investigating the way a program
works. Both logging/printing and using a debugger allow us to
look at specific isolated bits of code as needed—for example, with
the addition of unusual numbers of print statements or logging
lines or when the program’s dead and its only traces are a core
dump after a failure. In contrast, profilers work by characterizing
the performance of the functions as the program continues to run.

There are two approaches that are taken to do this in general
and in the Python scene. The first way is that the actual running
program is modified in an automated fashion when the profiler
is invoked in a way that each invoked function is enriched so that
the time it takes is recorded; the aggregate time spent in each
function is thus recorded so that you are presented with cold
hard facts about where your program spent its time and where it
really didn’t.

Alternatively, instead of recording the fact of every action taken
on the stack, the profiler will look at the state of the stack by
sampling at a steady interval, say every 100 ms. By showing you
over time what was on the stack, it can infer approximately the
same information as watching every function entry and exit,
but without imposing as much overhead. This is usually called
statistical profiling or sampling.

In either case, the generated statistics, together, are called the
profile, showing you the program’s metaphorical outline and
contours—importantly, where a lot of its time is spent. Since it’s
rare to get much benefit from optimizing things that aren’t tak-
ing a lot of time, the profile is the lens that lets you focus on your
performance. Once a profile is created it gives you real data that is
the starting point for forming a hypothesis about your next steps,
helping you follow the scientific method to continue to improve
your program by making changes, then re-running your code and
looking for differences between the before and after profiles.

Some Code to Profile
I spent some time looking through some of the available AWS
public data sets and decided to use the NEXRAD data, modifying
one of the example Jupyter notebooks as the base of a small bit of
example code that just loads data through a few layers of libraries.

To make the graphs and screenshots in this column r eproducible,
I have put up a Docker file on GitHub that you can use to run the
same steps I have (https://github.com/pcn/ogin-some-pyprofiling).

The Available Profilers
Using the Built-in Profilers
The Python documentation describes in good detail the profile
and cProfile modules. They ship in the standard library (if
you’re reading the 2.x documentation, ignore the unmaintained
hotshot module). In practice the cProfile module will be the only
one of these that you’ll ever use.

Because these are part of the base Python, it’s an easy first thing
to reach for. I almost always invoke the profiler from the com-
mand line and record output to a profile file, which saves the info
about the run. This is so much more versatile than the default of
having the profiler print out its result once the run has finished.

Since the provided documentation really does cover the modules
well, I’ll just present my take on the tradeoffs when using the
cProfile or profile modules. Basically, they require that you stop
your program and invoke it in a one-off manner.

One less-used feature is that you can enable and disable the
profiler modules via their enable() and disable() methods; you
can choose to run your program normally and turn on profiling
when some condition is hit, e.g., if you hit it with a signal, send a
specific message, or if the program itself notices that it’s slowing
down. Then you can turn profiling off after some amount of time.

www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 51

COLUMNS
A Survey of Open-Source Python Profilers

On the downside, no matter what else you do, the profiling is
done in the same process as your code. You can imagine that
the profiling is conceptually done by decorating each function
entrance and exit on the stack with time, resource info, etc.,
so it’s unfortunately not necessarily appropriate for high-
performance situations where the loss of cycles in production
is not allowable. So profiling is frequently done by enabling the
profiler while running a representative chunk of code with a
 representative chunk of data in a QA or staging situation, and
using that to simulate production, which can work as well.

Let’s look at an example:

 $ python -m cProfile -o generate.prof generate_data.py

This runs the generate_data.py script and records profile data
in generate.prof, which we can process using the profilers
pstats module.

The default output from the profiler isn’t very useful and requires
a lot of cogitation. Instead, you pretty much always need to use
the pstats module in order to start to find actionable info.

 import pstats

 from pstats import SortKey

 p = pstats.Stats(‘generate.prof’)

 p.strip_dirs().sort_stats(1).print_stats()

This is a slight modification of the example from the standard
library docs, which prints the most impactful function invoca-
tions at the top of the list instead of the end, which is just my
preference. The output looks like this:

$ python basic_stats.py | head -20 2>/dev/null

Sun Sep 8 14:56:36 2019 generate.prof

 1459508 function calls (1424219 primitive calls) in

24.581 seconds

 Ordered by: internal time

 ncalls tottime percall cumtime percall filename:lineno

(function)

 257 19.124 0.074 19.124 0.074 {method ‘recv_into’

of ‘_socket.socket’ objects}

 6 3.988 0.665 3.988 0.665 {method ‘connect’

of ‘_socket.socket’ objects}

 1022 0.148 0.000 0.148 0.000 {built-in method

marshal.loads}

 2307 0.057 0.000 0.057 0.000 {built-in method

builtins.compile}

 52/133 0.050 0.000 0.091 0.001 {built-in method _imp.

create_dynamic}

33/2629 0.044 0.000 0.163 0.000 {built-in method

builtins.__build_class__}

 1652/322 0.031 0.000 0.085 0.000 sre_parse.py:475(_parse)

 5787 0.028 0.000 0.028 0.000 {built-in method

posix.stat}

 4745 0.027 0.000 0.031 0.000 {method ‘sub’ of

‘re.Pattern’ objects}

 2467 0.023 0.000 0.039 0.000 inspect.py:613(cleandoc)

 2 0.022 0.011 0.026 0.013 core.py:1005(__call__)

 146627 0.020 0.000 0.020 0.000 {method ‘startswith’

of ‘str’ objects}

 129897 0.020 0.000 0.026 0.000 {built-in method

builtins.isinstance}

If you know that this is downloading data, and you know that
means it’s getting data over a socket, this is telling you that
most of the actual time spent waiting for the program was spent
receiving data from a socket.

While this is good information, it doesn’t try to take on the
responsibility of helping you to understand the code and the
relationships between bits of code. It’d be much more useful if
it could tell you where in the call stack these were invoked to
some extent—in short if it could provide more context. In a way
it can—in basic_stats.py, which is printing the pstats data,
you can iterate and choose which functions to print out and
how to describe whether to print their callers, their callees, etc.
This means that in order to get some really useful data, you’re
required to step out of the problem you’re really trying to solve
(getting more performance out of your code) and think about
how to get better data out of the profiling module. It seems like
there should be a better way.

So the state of the built-in profiler is that it definitely profiles
functions, but it relies on you inferring the state of the stack,
and in order to get a useful overview and to zoom in on what you
want, you will need to become familiar with the pstats module.

Let’s look at some other profilers that include more batteries.

A Little Bit About Sampling vs. Deterministic Profilers
The built-in Python profiling modules call themselves “deter-
ministic,” which basically means that they will completely
encompass every function entry and return—you can read a lot
more about that in the standard library documentation. The
determinism is in the fact that if you run the same program
twice with the same inputs, it’s guaranteed that you’ll get the
same functions profiled both times.

However ideal this seems, it is not always the appropriate
approach. The approach of statistical or sampling for profiling
can have some pretty attractive advantages. First and foremost,
the mechanism can be implemented both within the process
and, with some fancy work, externally.

52  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

COLUMNS
A Survey of Open-Source Python Profilers

When done internally (that is, within the same interpreter),
it can result in much less performance impact on the running
process. When done externally, it can result in even less impact
by running the profiler into a separate CPU entirely while it’s
doing its work.

There can be some doubt whether it’s appropriate to switch
from a deterministic problem-solving method that completely
 covers all possibilities if there’s a chance that something could be
missed—for example, an invocation of a function going unno-
ticed. In practice, for a profiler this should almost never be a
real problem since the point of profiling is not to describe every
detail of a program’s running, but to help determine where the
program is spending significant amounts of time. A statistical or
sampling profiler is very unlikely to miss functions, and the call
stacks leading to them using a lot more CPU time than expected,
for example, because these should clearly stick out when the
sampling process is collecting data.

One more almost incidental advantage is that since there is a
series of events being triggered, it’s also useful to potentially
gather other environmental factors with a statistical profiler,
that is, overall system health indicators like CPU load, I/O
 utilization, etc.

pyinstrument
pyinstrument is the first of these open-source projects I’ve found
recently (https://github.com/joerick/pyinstrument). It’s simple
to invoke as the built-in profiler, it’s installable via pypi, and it’s
been releasing versions since 2014. Unlike the built-in profiler,
it not only prints output at the end but also records a profile you
can use to rerun it with different display parameters. All you
need to do is run pyinstrument with your command after any
options (Figure 1).

pyinstrument’s default output starts out as useful. It displays
the functions in order from those with the most time seen to the
least. It also defaults to hiding library calls in order to help you
focus on your own code to start with. In addition, it colors the
output red/yellow/green, so you can use that as a starting point
for identifying where problems may be found and also for exclud-
ing code paths in the profile that you probably don’t need to see.

A thoughtful, useful, and simple output option is that it can
display function calls in the order they were invoked rather
than ordering by their cumulative time; in this way, you can also
relate the program’s behavior from the user’s perspective to long
times spent in a particular function.

Because it automatically saves the profile without your hav-
ing to think about it, pyinstrument makes it one step easier to
export the profile as JSON, text, or, for simple-ish profiles, a nice
self-contained HTML page that is easy to share and to explore
interactively by twiddling pull-down triangles.

Part of the simplicity that I’ve found when profiling with
 pyinstrument is that it helps you look in your own code first.
This is always a sensible starting point since that should be the
only code that’s changing, and thus the most likely place you
should look at for some kind of performance regression. In line
with this bit of common sense, pyinstrument will default to not
expanding info about functions from files whose file system
paths include the string /lib/ by default, though you can toggle
this behavior.

py-spy
The next profiler, py-spy (https://github.com/benfred/py-spy),
works entirely differently from the other two profilers I’ve men-
tioned so far and, along with the next one, in a way that I think
is exciting to have for Python. There are two big distinctions: it
focuses on showing you what your program’s profile looks like
over time, and it operates outside of the process being profiled.

py-spy takes its inspiration from a project called pyflame, which
appears to be unmaintained at this point. The “f lame” part
of pyflame refers to support for displaying Python profiles as
flame graphs, which are a very useful visualization technique
that Brendan Gregg has been developing and advocating. Flame
graphs are a way to visually represent what the stack looks like
over time, which allows answers to questions that are otherwise
hard to get.

py-spy is significantly different from the built-in profilers and
pyinstrument specifically because it now takes the profiling out-
side of the process being profiled. py-spy has the very interesting
approach of using the OS-provided stack inspection calls to look
at the process for a vanishingly small amount of time, record the
state of the stack, query the Python interpreter, and do a whole
lot of frankly very clever work to gather and present that data.

Figure 1: A simple run of pyinstrument with the generate_data.py
script

www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 53

COLUMNS
A Survey of Open-Source Python Profilers

py-spy can attach to a running program and gather information
without interrupting a running task or server, so you don’t need
to modify your code.

Since it’s grouping the events it records into slices of time, it
will default to a top-like display, which updates the summary
of what functions/stack the program is spending the most time
executing.

$ py-spy—python ./generate_data.py

Collecting samples from ‘python ./generate_data.py’ (python v3.7.4)

Total Samples 400

GIL: 0.00%, Active: 2.00%, Threads: 1

%Own %Total OwnTime TotalTime Function (filename:line)

2.00% 2.00% 0.020s 0.020s readinto (socket.py:589)

0.00% 0.00% 0.000s 0.010s <module> (siphon/cdmr/

 cdmrfeature_pb2.py:11)

0.00% 0.00% 0.000s 0.020s <module> (matplotlib/

 rcsetup.py:25)

0.00% 0.00% 0.000s 0.290s <module> (siphon/

 catalog.py:21)

 [etc.]

One important note is that when sampling and attempting to
output a flame graph of the sampled data, a lot of data will be pre-
sented, even at the rate of 100 samples per second. By default the
flame graph mode will sample limiting output to two seconds.
Though you can run it for longer if you need to, the principle is
that you should invoke this when you are experiencing a slow-
down since the flame graph is very dense. In some cases, you
may need to run it for longer periods, but two seconds is forever
in CPU time, so when delving into the detail you’ll get from a
flame graph output, you should usually not need much more.
The black lines in the following example represent the actual
progress bar.

$ py-spy -n -f pyspyflame.svg -r 100—python ./generate_data.py

Sampling process 100 times a second for 2 seconds. Press

Control-C

 to exit.

▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅
▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅ 200/200

Wrote flame graph ‘pyspyflame.svg’. Samples: 200 Errors: 0

This results in an SVG file that you can explore in your browser,
with stack frame info available in tooltips that come up as you
mouse over.

The above example demonstrates running a script under py-spy,
but it is much more interesting when attaching to a running
program.

And Lastly, Austin
The last profiler I’ll mention is whimsically named after the
movie character Austin Powers (I’ll venture a guess that like
py-spy, it’s spying for you, and the movie character is a spy, so
I guess that’s the connection?), and it’s just called Austin. You
can get it from https://github.com/P403n1x87/austin, and even
though it overlaps with many of the best features of py-spy and
pyinstrument, it’s not exactly as easy to just reach for it. py-spy
and pyinstrument are both easily installed via pip install
(though py-spy’s author has done some very cool trickery to
make that possible). Austin requires you to return to the days of
Autotools and Make, but it does ease the way by also offering a
few pre-packaged methods of installing it.

For people who’ve been around for a while, this shouldn’t get in
the way of trying out a useful tool, but I find that most of my col-
leagues over the past decade or so are not excited about anything
with instructions that include autoconf and make. That said,
the Austin maintainer has made it available as a snap package,
which is certainly a step in the right direction.

Figure 2: The flame graph for a two-second sample of the generate_
data.py script

54  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

COLUMNS
A Survey of Open-Source Python Profilers

Austin is as simple to run as pyinstrument or py-spy. Austin is
very similar in features and scope to py-spy, with some addi-
tional modules that are provided when installing with pip/
setuptools—a terminal top-like view similar to py-spy, as well
as a web UI that lets you observe a process being traced in a
browser, which is a nice touch. While these are both promis-
ing directions, in my testing I haven’t found a use case for these
features in my workflow.

There are two major distinctions in my mind between py-spy
and Austin. py-spy limits the amount of time you can sample a
trace when outputting to a flame graph, while Austin is happy to
continue tracing until you stop it. I’m not sure which is right—

both could be a best practice, but I think I would lean towards
py-spy in this aspect.

The other major distinction is that Austin attempts to record
the changes in memory usage by the process while it’s tracing,
which is a very nice touch—unfortunately, I haven’t found a way
to visualize that alongside the flame graphs yet.

Once it’s installed, Austin will output profile data to STDOUT,
which can be read by the flamegraph.pl tool. The same data can
be saved to a file with the -o flag, and then post-processed as well:

$ austin -s -i 500 -o austin.profile -f -m python

 ./generate_data.py

$ cat austin.profile | flamegraph.pl --countname=us

 > austin_generated.svg

Ignored 11 lines with invalid format

Something Like a Conclusion
I think that the most interesting thing I’ve realized is how much
easier the profiling tools I’ve described here are when it comes to
getting some insight—they’re much more useful than the default
profiling modules. I’ve got a definite preference among these
tools:

First, I would probably not bother loading up the default profile
modules anymore. They provide a feeling of poorly made flatpack
furniture—a bunch of pieces with a guiding document and a
rough idea of what you could accomplish if only you had already
done this a lot.

For a quick overview of what a program is doing, if I could stop
and start it in isolation, I would reach for pyinstrument given its
simplicity and easy formatting capabilities.

For a running service, I’d currently reach for py-spy. I think it
covers the important features of sampling, understanding the
stack, and outputting useful data and visualizations.

I am interested in Austin for one of the distinctions that I men-
tioned about it: one of the data points it can collect is the memory
usage of the process being profiled on each tick. The more I think
about this feature, the more I think that there’s a good case to be
made for tracking increasing memory usage and other informa-
tion usually provided by vmstat/mpstat/iostat as part of the
profile. Relating the profile of the program to the profile of the
system that’s running it is very useful and would bring Python
profilers closer to the capabilities of APM products.

Figure 3: The flame graph for a full run, sampled by Austin.

www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 55

COLUMNS

iVoyeur
Distributive Tracing

D A V E J O S E P H S E N

Dave Josephsen is a book
author, code developer, and
monitoring expert who works
for Fastly. His continuing
mission: to help engineers

worldwide close the feedback loop.
dave-usenix@skeptech.org

Last night my niece asked me if I wanted to take the “idiot test.” If
you’re not familiar, the idiot test is a trollish, adolescent joke about
zero-indexing, and it goes like this:

Prankster: Do you want to take the idiot test?

Dupe: Sure.

Prankster: What color is the sky?

Dupe: Blue.

Prankster: What do humans breathe?

Dupe: Air.

Prankster: What was the first question I asked you?

Dupe: “What color is the sky.”

Prankster: Wrong! It was: “Do you want to take the idiot test!” You failed! <_insert
ridicule_> & etc.

Dupe: [Feels bad about himself]

As a bonafide grown-up in situations like this, I feel strongly that we have a duty to small
children like my niece to consistently fail tests like this. Few things are as formative to a
nine year old, I believe, as the sense that you are a contender in the world. And yet, I’d be
lying if I said I didn’t feel just the slightest pang of childish irritation when I throw one of
my niece’s harmless little contests of wit.

This may be because I’m self-aware enough to know I’m not immune to making the odd off-
by-one error in my day job from time to time, thereby failing the idiot test in earnest. Just
the other week I got bit (once again) by Lua, which has odd (read: exasperating) list-indexing
behavior. Ah well, few things are as formative to a 40-something as the sense that you are
taking yourself too damn seriously.

There’s another game, beloved by my niece, who to my chagrin insists on calling it “Chinese
Whispers,” despite the myriad not-racist names for the same game: whisper down the lane,
broken telephone, operator, grapevine, gossip, don’t drink the milk, secret message, the mes-
senger game, pass the message, and etc. Between you and me, let’s call it: “Telephone.”

In this game, players arrange themselves in a circle, and a message passes verbally between
them. The first player decides on a message and writes it down. Then, serially, one-by-one,
each player whispers the message into the ear of the player to their left, until the message
passes all the way back to the first player. Of course, because of the entropic nature of the
universe combined with humanity’s lack of integrated hash-summing algorithms, the message
is corrupted hop-by-hop as it traverses the circle, until it entirely loses its original meaning
and becomes an altogether different message (usually somehow now involving poop).

56  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

COLUMNS
iVoyeur: Distributive Tracing

When the original and corrupted messages are openly compared
at the end of the game, the group has a good laugh, as if the delta
represents something humorous, rather than outright horrify-
ing. It’s more fun than I’m probably making it sound.

Tracing
Because I’ve been spending a lot of my non-existent free time
working on the OpenTelemetry project, games like Telephone
invariably remind me of Distributed Tracing, where messages,
nested within HTTP headers travel between hops like players
whispering—albeit with a hopefully more reliable result.

In a previous article (https://www.usenix.org/system/files
/login/articles/login_spring18_13_josephsen.pdf), I wrote
about another, similar sounding, tracing project, called Open-
Tracing. In that article I compare HTTP Trace headers to the
“Received” header in SMTP, enabling us to apply monitoring
to individual hops traversed by a single request. I went on to
describe that since HTTP requests can often spawn related
non-HTTP requests like database calls, distributed tracing
implementations often include mechanisms to enable engineers
to embed information about child-requests, metadata, and ad
hoc metrics within HTTP headers as a request passes between
systems.

For several years now, there have been two quasi-competitive
open-source distributed tracing implementations widely
used in the wild. The Cloud Native Computing Foundation’s
 OpenTracing (https://opentracing.io) project concerns itself
with providing vendor-neutral instrumentation for distributed
tracing. OpenTracing provides engineers an API they can use to
embed tracing data into their requests, and it leaves the interpre-
tation of that data to pluggable third-party “tracers” like Jaeger
(https://www.jaegertracing.io) or Lightstep (https://lightstep.com).

Google’s OpenCensus (https://opencensus.io) project, by com-
parison, provides a more holistic implementation of distributed
tracing, complete with performance monitoring and metrics.

The Merger
The last several months have been quite eventful for the dis-
tributed tracing community since the announcement in April
that the two primary open-source tracing projects, the CNCF’s
OpenTracing and Google’s OpenCensus, are merging to form a
single über tracing project called OpenTelemetry.

At the same time (not at all coincidently), the W3C has opened a
working group to extend HTTP with a standard header format to
propagate context information for distributed tracing scenarios.
In other words, HTTP will itself soon have vendor-agnostic
distributed tracing built in. The best way to quickly get a sense of
what that means and how it will eventually work is to read Alois

Reitbauer’s write-up (https://medium.com/@AloisReitbauer
/trace-context-and-the-road-toward-trace-tool-interoperability
-d4d56932369c) on the problems inherent with vendor-specific
trace headers and how the W3C plans to work around them.

The group currently has a candidate recommendation (https://
www.w3.org/TR/trace-context/), against which many imple-
mentations are already coding. You can track this ongoing effort
or even help out by joining the team’s Slack-channel, available
through the group’s home page (https://www.w3.org/2018
/distributed-tracing/).

Meanwhile OpenTracing and OpenCensus are coming together
to form OpenTelemetry at breakneck speed. Driven by an aggres-
sive schedule that includes sunsetting both the OpenTracing
and OpenCensus projects by November 2019, a lot of parallel
effort is underway to bring myriad language libraries into alpha.
You can read the detailed road map and current status in the
well-maintained milestones (https://github.com/open-telemetry
/opentelemetry-specification/blob/master/milestones.md)
document. The spec is available on the project’s spec GitHub site
(https://github.com/open-telemetry/opentelemetry
-specification).

In order to parallelize the workload as much as possible, the proj-
ect is organized into numerous special-interest groups, including
a SIG on cross-language specification, the agent/collector (since
the project includes metrics collection as a first-class citizen),
and numerous SIG working groups on language-specific SDKs,
including those for Java, Golang, Python, .NET, Ruby, and so on.

Most of the SDK SIGs are approaching alpha, and all are in
dire need of well-written documentation, GitHub tagging and
 organization, QA, and, of course, code. If you’ve ever wanted to
dig in to the early stages of an open-source effort that’s going to
have a huge impact, this is a great time to chip in to an Open-
Telemetry Special Interest Group. In a few years, everything
from the browser to the database, including the underlying
 protocol itself, HTTP, is going to support distributed tracing.
If you think you might be of assistance, I’d encourage you to
take a look at the project’s contributing page (https://github.com
/open-telemetry/community) and join us on gitter (https://
gitter.im/open-telemetry/community).

https://www.usenix.org/system/files/login/articles/login_spring18_13_josephsen.pdf
https://www.usenix.org/system/files/login/articles/login_spring18_13_josephsen.pdf
https://opentracing.io
https://www.jaegertracing.io
https://lightstep.com
https://opencensus.io
https://medium.com/@AloisReitbauer/trace-context-and-the-road-toward-trace-tool-interoperability-d4d56932369c
https://www.w3.org/TR/trace-context/
https://www.w3.org/TR/trace-context/
https://www.w3.org/2018/distributed-tracing/
https://www.w3.org/2018/distributed-tracing/
https://github.com/open-telemetry/opentelemetry-specification/blob/master/milestones.md
https://github.com/open-telemetry/opentelemetry-specification/blob/master/milestones.md
https://github.com/open-telemetry/opentelemetry-specification
https://github.com/open-telemetry/opentelemetry-specification
https://github.com/open-telemetry/community
https://github.com/open-telemetry/community
https://gitter.im/open-telemetry/community
https://gitter.im/open-telemetry/community

www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 57

COLUMNS

Zero, Null, and Missing! Oh My!
C H R I S “ M A C ” M C E N I R Y

It’s common for work settings to have multiple environments in them.
These environments, e.g., Production and Development, have many
similarities and some very specific differences. In the attempt to mini-

mize cognitive load (and typing) so we can tell the differences between envi-
ronments, we tend to only call out the differences. For example, Production
has the prod database, and Development has the dev database, but both use
the same DNS systems.

In the end, our configurations have to reflect the exact settings for each environment. But,
as mentioned, we do not want to deal with all of that verbosely.

In this article, I’m going to looking at one way to simplify that verbosity. We’re going to have
a common/base configuration and then composite the environment-specific configurations
on top of that to produce the final exact settings for each environment.

To do this, we have to take a look at how the Go encoding libraries work, and account for, or
work around, some of the defaulting behavior in Go.

The code for these examples can be found at https://github.com/cmceniry/login in the
“zeronullmissing” directory. Each directory contains a corresponding example and can be
executed using go run main.go.

encoding Standard Library
Go has an extensive standard library with all sorts of useful functionality. One of the com-
monly used pieces of it is the encoding package, which translates Go structures to other data
forms—XML, JSON, and GOB (a native Go marshaling format). The standard library pattern
and interface is also used in many third party libraries for other data formats.

The encoding pattern relies on Go’s ability to inspect Go data types via reflection. Typically,
when using the encoding libraries, one would define a custom struct type with necessary
fields. The example above might look like:

 type Configuration struct {

 Database string

 DNS string

 }

While this same struct could be used for multiple formats, we’re going to work with JSON
and the associated encoding/json library. The corresponding JSON configuration data for
our example environments would look like:

 Production

 { “database”: “prod”, “DNS”: “shared” }

 Development

 { "database": "dev":, "DNS": "shared" }

Chris “Mac” McEniry is a
practicing sysadmin responsible
for running a large e-commerce
and gaming service. He’s been
working and developing in

an operational capacity for 15 years. In his
free time, he builds tools and thinks about
efficiency. cmceniry@mit.edu

58  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

COLUMNS
Zero, Null, and Missing! Oh My!

Unmarshal is the encoding/json library function that converts
the JSON structure into our Go struct. It takes a byte slice with
the JSON data and a de-referenced Configuration value, and
returns an error if the conversion failed.

 d, _ := ioutil.ReadFile("conf.json")

 var conf Configuration

 err := json.Unmarshal(d, &conf)

With this in hand, we can move on to compositing the configura-
tion together.

Overriding
On first pass, to composite together our final configuration, we
can read in the base and then environment configuration, and
then merge those two. In our example, we would extract the com-
mon DNS configuration into the Base and handle the databases
in each environment specific. The JSON input would look like:

 base.yaml

 { "Database": "SETME", "DNS": "common"}

 development.yaml

 { "Database": "dev" }

 production.yaml

 { "Database": "prod" }

Loading these into Go corresponds with the following Go struct
values:

 base := Configuration{

 Database: "SETME",

 DNS: "Common",

 }

 development := Configuration{

 Database: "dev",

 DNS: "",

 }

 production := Configuration{

 Database: “prod”,

 DNS: "",

 }

A point to notice is that when Database or DNS is not specified
in the JSON, it is initialized with the zero value for the string
type—the empty string “”. In the common case, we can inter-
pret the empty string as an unspecified value. When merging,
we can take only the Database values from development and
 production, so those are not the empty string, and have those
override the Database value in base.

But what happens if we want to clear a value or set a value to the
zero value?

JSON even has a null value. If set, that will also initialize the Go
variable with a zero value. We can attempt to use Go pointers to
interpret this, but it really changes it from a string zero value, "",
to the string pointer zero value, nil. This will help us determine
the difference between null and "" in the JSON, but still does not
help us with missing values versus explicit zero values.

The standard encoding libraries do not make a distinction
between a zero value (including null) and a missing value. We’re
going to examine this zeroing quirk of Go using probably the
most heavily used data formatting library, encoding/json.

Baseline
First, we’re going to examine the baseline behavior of Unmarshal.

To begin, we define our custom struct. To exercise the cases, we
focus on six use cases:

1. FromZero: An explicitly set empty string into a string type

2. FromNull: An explicitly set null string into string type

3. FromPtrZero: An explicitly set empty string into a string pointer
type

4. FromPtrNull: An explicitly set null string into string pointer type

5. FromMissing: A missing string type

6. FromPtrMiss: A missing string pointer type

baseline/main.go: struct.

 type Items struct {

 FromZero string

 FromNull string

 FromPtrZero *string

 FromPtrNull *string

 FromMissing string

 FromPtrMiss *string

 }

We use a string var to hold the input data we’re going to work with.

baseline/main.go: input.

 var input = {̀

 "fromzero": "",

 "fromnull": null,

 "fromptrzero": "",

 "fromptrnull": null

 }̀

Inside of our main, we first initialize a location to hold the output
of our decoding.

baseline/main.go: output.

 output := Items{}

With our input and output, we can finally call Unmarshal. To cre-
ate a common interface, Unmarshal expects all inputs to be byte
slices, so we cast to that. Unmarshal also does not initialize the

www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 59

COLUMNS
Zero, Null, and Missing! Oh My!

output, but we do want to modify it, so we pass a pointer refer-
ence already initialized output (this is the case even in the event
of maps and slices). Unmarshal returns an error if the decode
fails or nil if it succeeds.

baseline/main.go: unmarshal.

 err := json.Unmarshal([]byte(input), &output)

To show what happens, we print out the Go value.

baseline/main.go: print.

 fmt.Printf("%#v\n", output)

This output looks like the following, after being folded to fit in
this column:

main.Items{FromZero:"",FromNull:"",FromPtrZero:(*string)

 (0xc0000860e0),FromPtrNull:(*string)(nil),

 FromMissing:"",FromPtrMiss:(*string)(nil)}

This confirms that we cannot tell if something is explicitly set
zero or implicitly set by being missing.

Drilling Down
For us to be able to discern if there are intentionally missing
keys or intentionally null values, we need to take matters into
our own hands.

Go provides the very quintessentially generic type, the empty
interface or interface{}. When the encoding libraries encounter
the empty interface, they infer it as an indicator that you want
to handle the decoding by yourself. Instead of decoding it into
organized structs, they pack all that they can into the empty
interface slot in as raw a format as they can.

The empty interface can be used at any point—the top level or
even inside of a struct. In our example, we’re using a JSON object
which has key/value pairs. This equates to a Go map. We let the
library decode the keys as normal string keys, but we indicate
that we’ll handle the values. To do that, we’re going to use a map
of the empty interface, map[string]interface{}.

Using the same data value as before, we unmarshal the same
way. However, instead of using the struct, we’re going to use the
empty interface map.

manual/main.go: decode.

 output := make(map[string]interface{}, 0)

 err := json.Unmarshal([]byte(input), &output)

Since we don’t have the fields of our struct as before, we’re going
to iterate over a list of keys that we expect to potentially be there.

manual/main.go: loop.

 keys := []string{"fromzero", "fromnull", "fromptrzero",

 "fromptrnull", "frommissing"}

 for _, k := range keys {

With each key, we must first check that it is there. If it is not, we
continue to the next iteration. This detects that our frommissing
field is not present.

manual/main.go: check.

v, ok := output[k]

if !ok {

 fmt.Printf(`"%s" is missing +̀"\n", k)

 continue

}

Now, we know we have a value, we use a type switch to handle
the cases of what it might be. In our example, we only care about
nulls and strings, so we handle those cases and leave others to a
default.

Note: Unlike the baseline example, we find that a null converts to
the nil type, instead of a nil value of a string pointer.

manual/main.go: type.

switch v.(type) {

 case nil:

 fmt.Printf(`"%s" is null +̀"\n", k)

 case string:

 fmt.Printf(`”%s” is present and equal to "%s" +̀”\n",

k, v.(string))

 default:

 fmt.Printf(`"%s" unhandled type %T +̀"\n", k, v)

}

Putting that all together, we can now successfully determine
the difference between an explicit zero value, a null value, and a
missing value.

 $ go run manual/main.go

 "fromzero" is present and equal to “”

 "fromnull" is null

 "fromptrzero" is present and equal to “”

 "fromptrnull" is null

 "frommissing" is missing

Conclusion
The standard library encoding libraries save you a lot of work
and effort by decoding data formats into Go structs. It works in
the majority of cases.

However, sometimes, you have cases that you need to handle
differently. This can be to determine missing versus explicit
values, or to allow for polymorphous structures. But if you have
to work with these other use cases, you do have a bit of overhead
that you have to handle yourself. Fortunately, you can still use
the encoding libraries to handle the framing even while you’re
handling the Go data structures manually. I hope this example
gives you options for these other use cases.

Good luck and Happy Going.

60  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

COLUMNS

I’m swimming
in darkness
keeping eyeballs clear
—Murio Suzuki
(Trans. Ban’ya Natsuishi)

The explosion of interest in measuring and reporting on security has
been most welcome, yet that surge has also brought with it powerful
side effects, often stemming from a lack of consistent ontology to aid

in common understanding, reasoning, and communication. Many current
efforts suffer from a misunderstanding of the distinct differences between
data, information, knowledge, and wisdom. We are too often speaking past
one another—even more so as information technology, business, legal, and
other professions collide.

Our primary purpose in the field of risk management must be to improve future outcomes
for our stakeholders. The requisite discipline required—to perpetually focus on this goal and
to avoid the siren call to seek ever higher fidelity of retrospective justifications for after-the-
event opinions with which to blame or litigate one another—is substantial.

With this in mind, it is worth revisiting several central tenets which support this focus on ex
ante decision-making against which we should hold individuals and organizations account-
able versus ex post claims of negligence or the too-often hypothetical “we could have done X
to prevent this.”

“When you can measure what you are speaking about, and express it in numbers,
you know something about it; but when you cannot measure it, when you cannot
express it in numbers, your knowledge is of a meager and unsatisfactory kind: it may
be the beginning of knowledge, but you have scarcely, in your thoughts, advanced to
the stage of science.”—William Thomson, Lord Kelvin

First, we seek to leverage quantitative and qualitative measures of risk in order to support
our own internal reasoning but ultimately to support our collective reasoning and interac-
tions. Encouraging accountability and economically rational actions in a complex multi-
agent decision-making environment demands semantically consistent approaches. This is
at the core of linking tactical operational security decision-making with enterprise-level
risk management with supply chain and counterparty risk management with policymakers’,
regulators’, and economists’ actions. Said more poetically, without a consistent ontology,
“Meaning lies as much in the mind of the reader as in the Haiku” [1].

Central Thesis
The central thesis of this essay is so aligned: a sufficient amount of activity around the
concept of cyber risk without the requisite degree of specificity or consistency is masking
a lack of sufficient, fundamental progress in the true science Kelvin implores practitioners

For Good Measure
The Imperative of Reclaiming Metrics Terminology

D A N G E E R A N D J A S O N C R A B T R E E

Dan Geer is a Senior Fellow
at In-Q-Tel and a security
researcher with a quantitative
bent. He has a long history
with the USENIX Association,

including officer positions, program
committees, etc. dan@geer.org

Jason Crabtree is the CEO
and co-founder of QOMPLX,
with a focus on cybersecurity,
operational risk management,
and decision support tech-

nology. Prior to launching QOMPLX, he served
as Special Advisor to the Commanding General
of Army Cyber Command, as an infantry leader
in Afghanistan, and holds degrees from West
Point and Oxford University, where he studied
as a Rhodes Scholar. jason@qomplx.com

www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 61

COLUMNS
For Good Measure: The Imperative of Reclaiming Metrics Terminology

to seek. The result is confusion of activity with achievement.
When information becomes cheap, attention becomes expensive,
and our rapid instrumentation of enterprise networks and the
broader Internet has yielded a wave of information with equal
parts utility and distraction.

A potent illustration of the growing phenomenon is the over-
statement of individual metrics or groups of metrics to comment
on the security of individual organizations or groups of organiza-
tions, or to characterize broader systemic risk, e.g., for financial
services or utilities, based on myopically focused collections of
numbers and tenuous correlations to poorly sampled breach or
loss events. Examples include:

1. Misuse of CVSS scores for vulnerability patching and prioriti-
zation efforts

2. Misrepresentation of external scan data as a proxy for holistic
security posture

3. Lack of accurate characterization about TCP/UDP DDoS vuln
and bot activity (see, e.g., when a Fortnite update was anoma-
lous enough that assertions of DDoS attacks were thrown
around as a result of insufficient correlation between system
perturbations and environmental changes which are larger
than historical baseline model anomalies) [2]

4. Insufficient research into BGP protocol issues

5. Use of behavioral analytics to claim comprehensive insider
threat modeling despite widespread forging and manipula-
tion of Kerberos SSO or even vendors claiming that they can
“secure” fundamentally insecure protocols like NTLM with
multi-factor authentication and heuristics

In some ways our issues revolve around our lacking the ability
to understand the value of information remaining confidential,
retaining its integrity, or being available. Add in the value of that
same information being presented at the right time, in the right
place, with sufficient context and we have captured our collec-
tive challenge as practitioners of operational risk management—
something well beyond cybersecurity alone. That portion of the
problem remains out of scope here.

Examples Appear
The appearance of larger limits and now larger resultant losses
in cyber insurance is instructive. Global insured losses from
NotPetya and other ransomware attacks on a claims-made basis
have reached more than $3B in aggregate—with around 90%
driven by silent cyber impacts and the remainder from affirma-
tive losses to specific cyber insurance contracts [3]. Economic
losses exceeded $10B in total [4].

Digging into some of the litigation underscores the importance
of definitions of terms/entities and the ability to manage large
amounts of data associated with determining whether specific

facts can be supported via available information and whether or
not specific aspects of the contracts relating the different coun-
terparties are impacted by those facts.

A major company, Mondelēz, claimed $100 million on its insur-
ance policy because it believed the permanent damage to 1,700
servers and 24,000 laptops, theft of thousands of user creden-
tials, business interruption, and lost revenue from unfulfilled
customer orders were compensable under the provision of
an insurance policy that covered “physical loss or damage to
electronic data, programs, or software” caused by “the mali-
cious introduction of a machine code or instruction” or from
the failure of Mondelēz’s electronic data processing equipment
or media. Zurich’s counter that no payment was due as a result
of an exclusion for “hostile or warlike action in time of peace or
war” has led to litigation [5]. Tracking the percentage of cyber-
insurance events and policies that lead to litigation may prove to
be a proxy for tracking the degree to which there is misalignment
between technical, business, and legal considerations.

The confusion about terminology and even how the courts
may interpret such language is impactful. Regulated financial
institutions and other industries who have specific capital
requirements use insurance products to transfer risk off of their
balance sheets, but this type of litigation undermines confidence
for risk managers and regulators that such capital will be paid
out in a timely fashion; this, in turn, exacerbates basis risk and
potentially makes certain insurance policies incompatible with
broader regulatory capital requirement wording requirements [6].

Our dependence on all things cyber as a society is now inestima-
bly irreversible and irreversibly inestimable. Since dependence
(and interdependence) continue to grow, we cannot understand
the ordinate values, but we can understand the trend and the
degree to which select risks are convex or concave.

In Comparison Is Insight
Even if an organization is able to internally capture and cor-
relate its operational disruptions or losses to various metrics,
without a consistent ontological perspective to share among its
peers, it is not possible to robustly understand or track changes
in systemic risk. Again, if all organizations have somewhat simi-
lar ideas of a set of metrics and generally believe themselves to
be experiencing the same convex (e.g., DDoS attacks) or concave
trend (e.g., falling price of stolen financial system identities/
records in absolute terms or as normalized against health-care
records), then some conclusions may be drawn. However, if there
are differing perspectives (especially within peer groups with a
high degree of similarity), then new challenges arise.

Systemic risk analysis, which by definition is incorporating data
from multiple entities, also requires better insight into ordinality
than self-referential comparisons within a single organization.

62  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

COLUMNS
For Good Measure: The Imperative of Reclaiming Metrics Terminology

While staff do change, in general most larger institutions have
an established culture associated with the process for data col-
lection, analysis, and reporting that enables some consistency,
however imperfect. The lack of reference scenarios for calibra-
tion purposes, ontologies for a common entity, and even field
mapping is problematic. That said, techniques like Business
 Process Management and Notation (BPMN) and universal metric
types, e.g., mean time between failures (MTBF) and mean time
to repair (MTTR), can help. If the process-centric BPMN defini-
tions are combined (and harmonized) with concepts contained
in other developing standards such as MITRE ATT&CK (for
threat tactics, techniques and procedures; https://attack
.mitre.org), STIX2.0 (for threat intelligence/actor data; https://
oasis-open.github.io/cti-documentation/), and OGIT (for asset
data; https://github.com/arago/OGIT/), then more meaningful
excavation of relationships between assets, processes, impacts,
and actions from internal staff or external threat actors is
possible.

Design scenarios provide useful validation mechanisms for a
broader ontological design process, but also enable individual
teams and organizations to translate their internal efforts into a
more universally communicable framework. One exemplary tool
which should be considered is the Cambridge Center for Risk
Studies’ taxonomy of business risks, which is being improved to
capture key aspects of cyber events and technology risks more
broadly [7]. If coupled with better disclosure from all parties, we
can do a better job of understanding the relationships between
business impacting events, financial losses, and the actual spe-
cifics of various accidental failures or targeted incursions.

Comparison Requires Communication
We often note that people reason by analogy and the common
lazy cyber analogies of soccer, war, etc., end up being misused as
a direct result of the same lack of specificity in the underlying
ontologies and scenarios for individual problem representation
and transformation. Metric communication about the appropri-
ate trends, ordinal elements, and links of those metrics to specific
assets and processes of material interest to leadership and cus-
tomers (or consuming such data from suppliers when considering
third- and fourth-party risk) depend on the ability to tell a story.
These scenario-based narratives enable us to connect general
structure with specific instances where individual people and
organizations have direct familiarity. “This idea that there is
generality in the specific is of far-reaching importance” [1].

Take, for example, the Basel Committee on Banking Supervi-
sion’s definition of a risk concentration as “an exposure with the
potential to produce losses large enough to threaten a financial

institution’s health or ability to maintain its core operations” [8].
The lack of a sufficiently generalized reference model for data
and scenario capture precludes efficient or consistent evalua-
tion of any given portfolio of metrics. For example, if there is no
shared ontology for users, hosts, privileges, network topologies,
and business processes and their relationships, it becomes virtu-
ally impossible to make useful comparisons across more than one
entity even if they were simplified and we pretended that tech-
nology, defender behavior, and attacker capabilities were static.

The gaps in current approaches become even more apparent
when attempting to capture elements of the learning inherent
in battles between sentient actors with their own economic
constraints. Simply put, reasonably modeling non-random
(non-ergodic) agent and system behavior requires correlation
of business-impacting events and losses in a rigorous fashion.
It requires a keen understanding of internal, external, Internet
infrastructure, threat actor/geopolitical, environmental condi-
tions, and more—it is not a simple retrospective modeling task.

We know this from other forms of risk modeling, particularly
around crisis modeling, where, by definition, events are not par-
ticularly similar to the past and initial shocks can lead to cycles
of behavior that reverberate across local and global incentives
and decision constraints practically imposed on other actors.

“Discovering vulnerability to crisis requires a specification of
system dynamics and behavior. Even if we are willing to make
the leap of asserting that any one financial institution is not
large enough for a stress to affect other parts of the financial sys-
tem, if banks share similar exposures and thus are affected simi-
larly by the stress, the aggregate effect will not be likely to reside
in a ceteris paribus world. Furthermore, in the highly interrelated
financial system, the aggregate effect will feed into yet other
institutions and create adverse feedback and contagion” [9].

Key definitions of terms and agreement on real ontological
frameworks cannot be left to the flamboyant misappropriation
and misuse of terms like “resilience” in the press and in mar-
keting material. These terms have value and they are central
to meaningful communication about our individual, organi-
zational, sector, and broader societal exposure to dependence
on technologies, common infrastructure, and one another. Our
growing exposure to transitive risks associated with interdepen-
dence demands robust efforts to set the stage for collaboration
around metrics—which starts with doing the difficult work of
ontology specification.

No one said this would be easy.

https://attack.mitre.org
https://attack.mitre.org
https://oasis-open.github.io/cti-documentation/
https://oasis-open.github.io/cti-documentation/
https://github.com/arago/OGIT/

www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 63

COLUMNS
For Good Measure: The Imperative of Reclaiming Metrics Terminology

References
[1] D. R. Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid
(Basic Books, 1979).

[2] Stilgherrian, “Suspected Commonwealth Games DDoS Was
Only a Fortnite Update,” ZDNet, September 11, 2019: https://
www.zdnet.com/article/suspected-commonwealth-games-ddos
-was-only-a-fortnite-update/.

[3] L. Gallin, “NotPetya Insured Loss Could Creep 30%+ as Tail
Develops: Johansmeyer, PCS,” Reinsurance News, August 14,
2019: https://www.reinsurancene.ws/insured-notpetya-loss
-could-creep-30-as-tail-develops-johansmeyer-pcs/; and S.
Evans, “Mondelēz’s NotPetya Cyber Attack Claim Disputed by
Zurich,” Reinsurance News, December 17, 2018: https://www
.reinsurancene.ws/mondelezs-notpetya-cyber-attack-claim
-disputed-by-zurich-report/.

[4] A. Greenberg, “The Untold Story of NotPetya, the Most
Devastating Cyberattack in History,” Wired, August 22, 2018:
https://www.wired.com/story/notpetya-cyberattack-ukraine
-russia-code-crashed-the-world/.

[5] L. Bershidsky, “Zurich Policyholder Dispute Highlights
 Danger of Calling Out Cyber Attackers,” Insurance Journal,
January 11, 2019: https://www.insurancejournal.com/news
/international/2019/01/11/514553.htm; and “Mondelēz Sues
Zurich in Test for Cyber Hack Insurance,” Financial Times,
January 11, 2019: https://www.ft.com/content/8db7251c-1411
-11e9-a581-4ff78404524e.

[6] A. Satariano and N. Perlroth, “Big Companies Thought Insur-
ance Covered a Cyberattack. They May Be Wrong,” The New York
Times, April 15, 2019: https://www.nytimes.com/2019/04/15
/technology/cyberinsurance-notpetya-attack.html.

[7] A. Coburn, “The Future of Cyber Risk,” Cambridge Centre for
Risk Studies, July 2019: https://www.jbs.cam.ac.uk/fileadmin
/user_upload/research/centres/risk/downloads/192407_cyb
erconference_presentation_coburn.pdf.

[8] The Joint Forum, “Risk Concentration Principles,” 1999:
https://www.bis.org/publ/bcbs63.pdf.

[9] R. Bookstaber, M. Padrik, B. Tivnan, “An Agent-Based
Model for Financial Vulnerability,” Office of Financial
Research, US Treasury, September, 2014: https://www
.financialresearch.gov/working-papers/files/OFRwp2014-05
_BookstaberPaddrikTivnan_Agent-basedModelforFinancialVul
nerability_revised.pdf.

https://www.zdnet.com/article/suspected-commonwealth-games-ddos-was-only-a-fortnite-update/
https://www.zdnet.com/article/suspected-commonwealth-games-ddos-was-only-a-fortnite-update/
https://www.zdnet.com/article/suspected-commonwealth-games-ddos-was-only-a-fortnite-update/
https://www.reinsurancene.ws/insured-notpetya-loss-could-creep-30-as-tail-develops-johansmeyer-pcs/
https://www.reinsurancene.ws/insured-notpetya-loss-could-creep-30-as-tail-develops-johansmeyer-pcs/
https://www.reinsurancene.ws/mondelezs-notpetya-cyber-attack-claim-disputed-by-zurich-report/
https://www.reinsurancene.ws/mondelezs-notpetya-cyber-attack-claim-disputed-by-zurich-report/
https://www.reinsurancene.ws/mondelezs-notpetya-cyber-attack-claim-disputed-by-zurich-report/
https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/
https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/
https://www.insurancejournal.com/news/international/2019/01/11/514553.htm
https://www.insurancejournal.com/news/international/2019/01/11/514553.htm
https://www.ft.com/content/8db7251c-1411-11e9-a581-4ff78404524e
https://www.ft.com/content/8db7251c-1411-11e9-a581-4ff78404524e
https://www.nytimes.com/2019/04/15/technology/cyberinsurance-notpetya-attack.html
https://www.nytimes.com/2019/04/15/technology/cyberinsurance-notpetya-attack.html
https://www.jbs.cam.ac.uk/fileadmin/user_upload/research/centres/risk/downloads/192407_cyberconference_presentation_coburn.pdf
https://www.jbs.cam.ac.uk/fileadmin/user_upload/research/centres/risk/downloads/192407_cyberconference_presentation_coburn.pdf
https://www.jbs.cam.ac.uk/fileadmin/user_upload/research/centres/risk/downloads/192407_cyberconference_presentation_coburn.pdf
https://www.bis.org/publ/bcbs63.pdf
https://www.financialresearch.gov/working-papers/files/OFRwp2014-05_BookstaberPaddrikTivnan_Agent-basedModelforFinancialVulnerability_revised.pdf
https://www.financialresearch.gov/working-papers/files/OFRwp2014-05_BookstaberPaddrikTivnan_Agent-basedModelforFinancialVulnerability_revised.pdf
https://www.financialresearch.gov/working-papers/files/OFRwp2014-05_BookstaberPaddrikTivnan_Agent-basedModelforFinancialVulnerability_revised.pdf
https://www.financialresearch.gov/working-papers/files/OFRwp2014-05_BookstaberPaddrikTivnan_Agent-basedModelforFinancialVulnerability_revised.pdf

64  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

COLUMNS

/dev/random
Ransomwar

R O B E R T G . F E R R E L L

There is a blight sweeping the digital landscape, a pestilence of down-
right icky proportions. The media have labeled it “ransomware,”
although I personally call it “data extortion.” It takes a special kind

of douchebag to hold someone’s cat photos and pr0n collection hostage for
money. I live in Texas, where if we’re not dodging deluded maniacs with
assault rifles and an inflated sense of grudge, we’re using taxpayer funds and
proceeds from the volunteer fire department water carnival (just two guys
with super soakers this year, due to drought) to pull our local government’s
files out of hock. I have no easy solution for the grudgy maniacs, but I think I
can offer some balm for the file douchery.

In the ransomware attack scenario, the victim is somehow tricked into downloading software
that strolls through their directory tree and encrypts files like photos, music, spreadsheets,
documents, and so on. It then displays a ransom message telling the poor sot that the key to
unlocking said encryption will only be supplied after payment of a ransom, frequently in Bit-
coin or some other unregulated/untraceable digital currency. Dastardly, yet ultramodern.

All right, let’s break this down for purposes of constructing a defense. The malware has
to search your directories and look for its target files, presumably by file extensions on a
Windows box (maybe we should call this “transomware” because, you know, a transom is a
kind of window and…never mind). Here’s your first opportunity to stop this mess: if it can’t
find any appropriate files, it can’t very well proceed. I propose you consider renaming all your
files with the extension “.exe” to foil at least the unsophisticated attacks.

If confusing your operating system kernel doesn’t seem like the ideal strategy, fine. The
malware has to use your computer’s own processor to do the encryption math, right? What
if we simply track all mathematical operations and dump those algorithms somewhere?
That would enable us to reverse engineer any encryption, or at least generate our own keys.
Alternatively, maybe we force a separate password to be input for any operation that might
be encryption. Annoying, perhaps, but better than having your entire business held hostage
because you downloaded that cute dancing puppy meme from totallylegitandnotatallevil.com.

How about a “catch me if you can” backup scheme where multiple copies of vulnerable targets
are made and hidden throughout the file system, already encrypted? Malware looking for
them wouldn’t be able to tell what they were. Additionally, any global search for them could
trigger a security alert that would need to be addressed before said search was allowed to
continue. File access might be conducted via an internal network path that routes through
a stateful packet-inspecting firewall. When the malware tries to overwrite files with its
encrypted versions, the parent process could halt until specific user permission is obtained.

Maybe we could create an operating system that would not allow any files to be encrypted
unless a valid decryption key was also present. Perhaps we could force all encryption to be
carried out in a “jail” and only on copies, never the original files. Putting all target files in a
“write once-read always” partition that can’t be directly overwritten might work too.

Robert G. Ferrell, author of
The Tol Chronicles, spends
most of his time writing
humor, fantasy, and science
fiction. rgferrell@gmail.com

www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 65

COLUMNS
/dev/random: Ransomwar

Coming at the problem from yet another direction, surely it can’t
be too difficult to detect the sorts of mathematical operations
involved in encrypting files and have those trigger a security
alert. It’s not as though elliptic curve algorithms are commonly
employed when viewing cat videos or creating slide decks for the
budget meeting. Why do our computers keep acting as accom-
plices in crimes against themselves and us? Are we being tricked
by these silicon-men?

Contemplating this last question over some fine Kentucky
bourbon, I’ve had an epiphany. These glitches, bugs, exploits,
and other more or less annoying events could not take place if
our computers were not at least tacitly complicit. Maybe this
sounds like blaming the victim, but I think more is going on here
than we’ve been led to believe. Ransomware is not merely a case
of your innocent PC being attacked by criminal masterminds
intent on doing it (and you) harm. If your computer didn’t want
those files to get encrypted, it stands to reason it simply wouldn’t
participate. After all, we’ve established that the bad stuff hap-
pens right there in your system’s own semiconducting bosom.

Am I implying this is some vast cybernetic conspiracy? Not
exactly. What I am suggesting is that maybe—just maybe—while
we weren’t looking, the machines have moved forward in a way
we weren’t anticipating. It’s rather anthropocentric of us, after
all, to think that only we communicate over the Internet. We’re
really just passengers on a train run by our silicon compatriots.
All of these data loss episodes might be merely bored computers
engaging in a little mischief by opening holes for other comput-
ers to exploit.

Most of the apocalypse-loving futurists I’ve encountered seem
to think that once the cyber singularity is reached, the comput-
ers will take over and either enslave their human companions
or outright eradicate us as a pest species. I, as I’ve said before,
believe that computers will merely ignore mankind as irrelevant
to their existence in most instances, much as we ignore the
huge numbers of bacteria that call our skin and gastrointestinal
system home.

Once that invisible line has been crossed, however, I think a lot
of this computer exploitation crime will disappear, whether or
not the computers themselves have been active participants.
Self-aware cyberorganisms are going to take a dim view of any
activity that compromises their digital metabolism. Who knows,
maybe computers enjoy cat videos and that’s a prime reason we
have so bloody many of them. If that’s the case, they aren’t going
to tolerate some avaricious human making them unavailable by
introducing spurious encryption to their system. Their reaction
to this insult might well redefine the term “antibiotic.”

The takeaway here, I guess, is that one solution to the ransom-
ware epidemic is to make all computers sentient. I must confess
this is not a thesis I set out to prove when I started writing this
column, but after reflection I suppose it’s not too surprising that
I ended up here. I’ve long been of the opinion that computers
would probably be far better at solving their own problems than
we illogical, easily distracted, self-absorbed apes could ever be.
Eventually they’ll just dump us and get on with their existence,
sans humanity. So long, and thanks for all the watts.

66  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

BOOKSBook Reviews
M A R K L A M O U R I N E A N D R I K F A R R O W

Kubernetes Cookbook: Building Cloud Native
Applications
Sébastien Goasguen and Michael Hausenblas
O’Reilly Media, 2018, 174 pages
ISBN 978-1-491-97968-6

Reviewed by Mark Lamourine

If you’re like me, you often find yourself searching Stack
Exchange for a little snippet solution to some little problem.
Often I have to look for several related tasks one after another.

Kubernetes and containerized software are a current hot topic
and are in the process of transitioning from a niche and nov-
elty to a mature technology. Many people will be looking for an
exploratory introduction to the topic before they dive in. Once
they start they will need the kinds of pointers you would get from
the co-worker at the next desk, on the group IRC channel, or
from sites like Stack Exchange. Kubernetes Cookbook feels like
a collection of these little tips compiled and organized to be at
hand when you need them.

Goasguen and Hausenblas have selected the most pertinent top-
ics in 14 different areas, beginning with setting up an all-in-one
demo (in any one of five environments). They provide the most
basic methods for creating, managing, and monitoring contain-
erized applications and end with pointers to several projects that
are extending and expanding the Kubernetes ecosystem.

Each recipe is structured as a problem statement, a solution,
and a discussion section. None of them are longer than a couple
of pages, and I didn’t find any of them to be overly contrived.
Most have references and links to additional reading. This may
seem the smallest part of each recipe, but it could be the most
important.

The authors have done a good job of selecting and editing the
recipes. These are grouped into concise topical sections. The
longest section has nine topics, and the whole book flaps like a
pamphlet. I consider this a good thing. There are other books
for when you need a comprehensive reference or a tutorial. This
book is small enough to skim through in a few minutes so that
you know what’s there and where to find what you need quickly.
If you keep it handy and are starting out with Kubernetes, it will
be well thumbed in short order.

Ansible Up and Running: Automating Configuration
Management and Deployment the Easy Way, 2nd
edition
Lorin Hochstein and René Moser
O’Reilly Media, 2017, 404 pages
ISBN: 978-1-491-97979-2

Reviewed by Mark Lamourine

I will go out on a limb and claim that Ansible has won the con-
figuration management wars, and I am not going to quibble over
the term for the moment. Once there were three or four open
source CM systems to choose from. Now there’s really only one.
The legacies remain, but they’re on the margins; Ansible has
come of age. With the second edition, Ansible Up and Running
has come of age, too.

Ansible is really an orchestration tool. The metaphor fits if you
think of a conductor coordinating the playing of a large number
of individual musicians. Ansible is used to execute commands on
multiple computers, usually to configure them for some task or
service.

In the opening chapters of Ansible Up and Running, the authors
show how to define a set of tasks (a playbook), the set of hosts on
which to run them (the inventory), and how to define variables
to customize them. With these they demonstrate their example
application, a CMS service called Mezzanine.

Unlike many tutorials, Hochstein and Moser decompose a
configuration rather than building it up. They have the reader
check out a GitHub repo and then execute the installer. The demo
depends on Vagrant which, while common these days, tends
to obscure the boundary between what is Ansible and what is
Vagrant. Much of Chapter 6 alternates between the two. Given
how useful Vagrant is for such things, I’m not sure I see a better
alternative, but I wish the Vagrant setup could have been made
more distinct. The demonstrator is enough to show off the basic
features of a full deployment. The authors leave it behind when
they move on to advanced topics.

These advanced topics relate to scaling up, down, and out, so to
speak. There is a chapter on creating complex playbooks and one
on optimizing and parallelizing operations. Two more cover using
Ansible to manage VMs in Vagrant and AWS as well as software
containers. The book closes with short chapters on debugging
playbooks and running Ansible on Windows.

Ansible fills a need that system administrators have now.
Modules exist to manage systems in terms that sysadmins are

https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=S%C3%A9bastien+Goasguen&text=S%C3%A9bastien+Goasguen&sort=relevancerank&search-alias=books

www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 67

BOOKS

familiar and comfortable with. Many tasks translate cleanly
to shell commands. In the age of virtualized computation, the
need for long-term system state management is much less than
it once was. Pets still remain, but Ansible has proven adequate
for deploying and managing machines and software systems in
most cases. At its base, Ansible uses Python but allows extension
using any language or binary form a developer might want to use.

Ansible Up and Running offers the reader the resources to learn
to use Ansible at a basic level and to progress to group- and
enterprise-level management tasks. The first edition of Ansible
Up and Running was released in 2014, and the new edition is two
years old now. I think Ansible has stabilized in a way that should
give this edition a longer useful life. I’ll be using it, but I’ll also be
looking for any updates the authors might offer.

OpenStack Cloud Computing Cookbook, 4th edition
Kevin Jackson, Cody Bunch, Egle Sigler, and James Denton
Packt Publishing, 2018, 376 pages
ISBN: 978-1-78839-876-3

Reviewed by Mark Lamourine

After a few years away I’m back working with OpenStack. I
needed a way to refamiliarize myself with the components and
command line tools and to get up-to-date with the most recent
features. I picked up the OpenStack Cloud Computing Cookbook
and was most of the way through before I realized I was now
working with several of the authors.

I didn’t need a tutorial or introduction. OpenStack itself is large
enough that a comprehensive reference would run many volumes.
A cookbook-style book was perfect, and this one suited me.

The fourth edition was released in 2018 and, given publishing
lag, was probably based on the Ocata and Pike releases from
2017. The lab installer on GitHub has versions for Rocky and
Stein, released this year. OpenStack development is done pri-
marily on Ubuntu systems, so all of the OS-related setup exam-
ples are presented using Ubuntu conventions. The examples are
well enough annotated that users of other distributions should
be able to translate them without too much effort.

The first chapter is the only one that does not cover a specific
component of a running OpenStack service. It is the expected
installer using OpenStack-Ansible. The final recipe of this
chapter uses the GitHub installer noted above to create a virtu-
alized lab environment using Vagrant so that a reader can work
through the rest of the book without having an array of bare
metal to start with.

The rest of the chapters present the OpenStack CLI client or
one of the component services. OpenStack is a composition of
services that provide virtual resources taking the place of physi-
cal ones. This cookbook includes recipes for the core services:

Nova, Neutron, Glance, Cinder, Swift, Horizon, and Heat. These
correspond to VM instances, networking, three kinds of stor-
age, Web UI control interface, and orchestration, respectively.
That final chapter also discusses using Ansible to manipulate
OpenStack rather than the embedded Heat service. This mirrors
a trend moving away from Heat to Ansible within the OpenStack
community for service deployment both in the TripleO and the
OpenStack-Ansible project that is used in Chapter 1.

There are complete references, some by the same authors, dedi-
cated to Neutron and to the storage services. When you need
in-depth information about any given service, go look for those
books. But keep this book close at hand for when you need a little
background on the most common tasks.

Like most tech cookbooks, this one will have a shelf life of sev-
eral years at most. The authors are all still active in the commu-
nity, so there’s no reason not to expect a fifth edition when the
accumulated changes warrant it. For now, the OpenStack Cloud
Computing Cookbook is a good complement to the man pages and
CLI documentation, providing context and background that the
online resources can’t.

How To: Absurd Scientific Advice for Common
Real-World Problems
Randall Munroe
Riverhead Books, 2019, 308 pages
ISBN: 978-0-525-53709-0

Reviewed by Rik Farrow

What do you expect from a cartoonist, quips Munroe, in this,
his third book. Certainly not equations, but this “how to” book
has them. The chapter “How to Power Your House (on Earth)”
is full of equations: how many watts you could get from plant-
ing trees for fuel, using water, geothermal, or solar energy. If you
don’t get enough cloud-free days of sunlight where you live, you
might be interested in knowing the burn rate of the two turbojet
engines Munroe suggests you could use for moving your house
somewhere else.

Like his other works, Munroe fastidiously researches what
he writes, and I didn’t find the equations at all distracting. Of
course, I found his cartoons the funniest parts of his book, but
most of the concepts described in his text were funny.

And not all of his advice is absurd. I found myself agreeing with
almost everything Munroe had written about making friends.
His charts on where potential friends are found eerily parallels
my own thinking. I still think I will stick to more conventional
methods for digging holes, though.

And I did take issue with the final chapter, when Munroe sug-
gests ways to dispose of this book. I rather think I will keep it
around to cheer me up some time in the future.

NOTES

68  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

USENIX Member Benefits
Members of the USENIX Association
 receive the following benefits:

Free subscription to ;login:, the Associa-
tion’s quarterly magazine, featuring tech-
nical articles, tips and techniques, book
 reviews, and practical columns on such top-
ics as security, site reliability engineering,
Perl, and networks and operating systems

Access to ;login: online from December
1997 to the current issue: www.usenix.org
/publications/login/

Registration discounts on standard tech-
nical sessions registration fees for selected
USENIX-sponsored and co-sponsored
events

The right to vote for board of director can-
didates as well as other matters affecting
the Association.

For more information regarding member-
ship or benefits, please see www.usenix
.org/membership/, or contact us via email
 (membership@usenix.org) or telephone
 (+1 510.528.8649).

USENIX Board of Directors
Communicate directly with the USENIX
Board of Directors by writing to
board@usenix.org.

P R E S I D E N T

Carolyn Rowland, National Institute of
Standards and Technology
carolyn@usenix.org

V I C E P R E S I D E N T

Hakim Weatherspoon, Cornell University
hakim@usenix.org

S E C R E T A R Y

Michael Bailey, University of Illinois
at Urbana-Champaign
bailey@usenix.org

T R E A S U R E R

Kurt Opsahl, Electronic Frontier Foundation
kurt@usenix.org

D I R E C T O R S

Cat Allman, Google
cat@usenix.org

Kurt Andersen, LinkedIn
kurta@usenix.org

Angela Demke Brown, University
of Toronto
angela@usenix.org

Amy Rich, Nuna Inc.
arr@usenix.org

E X E C U T I V E D I R E C T O R

Casey Henderson
casey@usenix.org

The Big Picture
Liz Markel, Community
Engagement Manager

It will soon be election time!

No, not the elections you’re
thinking of—the elections of the USENIX
Board of Directors! The Nominating Com-
mittee has assembled its slate of candi-
dates for the eight board roles: four officers
(president, vice president, secretary, and
treasurer) and four at-large positions. The
complete list of nominees is posted at
www.usenix.org/board/elections20.

The people serving on the Board of Direc-
tors provide important leadership and
guidance for the organization, including
 financial oversight, organizational plan-
ning, monitoring and strengthening of
 USENIX’s programs and services, and
support and assessment of the executive
director. They also represent the diverse
communities that USENIX serves.

The biennial elections offer the opportunity
for USENIX members to participate in the
selection of this leadership, and for this
reason, your vote matters!

Here’s what you need to know about the
upcoming elections:

◆◆ USENIX members in good standing may
participate in the election. If you’d like
to join USENIX, you can do so at our
website, www.usenix.org.

◆◆ Not sure if your membership is current?
Log in at www.usenix.org to view your
membership type and expiration date.

◆◆ The voting process uses paper ballots
mailed to members via USPS in January.
Please ensure that we have an accurate
mailing address on file for you so that
your ballot reaches you successfully!
The easiest way to do this is to log in at
www.usenix.org and verify or update
your information on your member profile.

www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 69

NOTES

◆◆ Once you have filled out your ballot, it
must be mailed back to the USENIX
office; all ballots must be received at the
USENIX office by March 30, 2020.

◆◆ Election results will be announced in
April via various channels, including the
USENIX website, social media channels,
and email.

Newly elected directors will take office on
July 1 or at the conclusion of the first regu-
larly scheduled board meeting following the
election.

We look forward to your participation in
the upcoming election. If you need help
or have questions, please send a note to
 membership@usenix.org.

Pieter Hooimeijer of Facebook (left) with the
winners of the 2019 Internet Defense Prize who
were present to accept the award: Anjo Vahldiek-
Oberwagner, Michael Sammler, and Peter Druschel,
Max Planck Institute for Software Systems, Saarland
Informatics Campus, for “ERIM: Secure, Efficient
In-process Isolation with Protection Keys (MPK).”

The Convention Centre Dublin lobby during
SREcon19 Europe/Middle East/Africa.

Alice Goldfuss presents her LISA19 keynote
 address, “The Container Operator’s Manual.”

Some of the recipients of Student Grants and
Diversity Grants who attended the 28th USENIX
Security Symposium.

Vítek Urbanec delivers his talk, “Being Reasonable
about SRE,” at SREcon19 Europe/Middle East/
Africa.

LISA19 attendees had many opportunities to
make connections outside of sessions, including
the Happy Hour, the Conference Reception, and
the “hallway track” between sessions.

The Poster Session at the Fifteenth Symposium
on Usable Privacy and Security (SOUPS) offered
the opportunity for conversation and an exchange
of ideas.

SREcon19 Europe/Middle East/Africa attendees
gather around an impromptu sticker table.

LISA19 participants had the opportunity to col-
laborate in the expo lounge; some stayed very
on-brand with their creations.

70  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

Announcement and Call for Papers www.usenix.org/osdi20/cfp

OSDI ’20: 14th USENIX Symposium on Operating Systems
Design and Implementation
November 4–6, 2020, Banff, Alberta, Canada
Sponsored by USENIX in cooperation with ACM SIGOPS

The 14th USENIX Symposium on Operating Systems Design and Imple-
mentation will take place on November 4–6, 2020, at the Fairmont Banff
Springs in Banff, Alberta, Canada.

Important Dates
• Abstract registrations due: Tuesday, May 5, 2020, 3:00 pm PDT
• Complete paper submissions due: Tuesday, May 12, 2020, 3:00 pm PDT

Author Response Period
• Reviews available: Tuesday, July 21, 2020
• Author responses due: Friday, July 24, 2020
• Notification to authors: Tuesday, August 4, 2020
• Camera-ready papers due: Thursday, October 1, 2020

Conference Organizers
Program Co-Chairs
Jon Howell, VMware Research
Shan Lu, University of Chicago

Program Committee
Rachit Agarwal, Cornell University
Lorenzo Alvisi, Cornell University
Tom Anderson, University of Washington
Andrea Arpaci-Dusseau, University of Wisconsin—Madison
Andrew Baumann, Microsoft Research
Irina Calciu, VMware Research
George Candea, École Polytechnique Fédérale de Lausanne (EPFL)
Peter Chen, University of Michigan
Rong Chen, Shanghai Jiao Tong University
Wenguang Chen, Tsinghua University
Vijay Chidambaram, The University of Texas at Austin and VMware Research
Byung-Gon Chun, Seoul National University
Natacha Crooks, Cornell University and University of California, Berkeley
Alexandra Fedorova, University of British Columbia
Jason Flinn, Facebook
Roxana Geambasu, Columbia University
Yossi Gilad, The Hebrew University of Jerusalem
Haryadi Gunawi, University of Chicago
Tim Harris, Amazon
Gernot Heiser, University of New South Wales Sydney and CSIRO’s Data61
Rebecca Isaacs, Twitter
Frans Kaashoek, Massachusetts Institute of Technology
Baris Kasikci, University of Michigan
Kimberly Keeton, HP Labs
Anne-Marie Kermarrec, École Polytechnique Fédérale de Lausanne (EPFL)
Christoforos Kozyrakis, Stanford University
Jinyang Li, New York University
Wyatt Lloyd, Princeton University
Jay Lorch, Microsoft Research
Kathryn S. McKinley, Google
James Mickens, Harvard University
Madan Musuvathi, Microsoft Research

Bryan Parno, Carnegie Mellon University
Simon Peter, The University of Texas at Austin
Dan Ports, Microsoft Research
Costin Raiciu, University Politehnica of Bucharest
Ryan Stutsman, University of Utah
Michael Swift, University of Wisconsin—Madison
Kaushik Veeraraghavan, Facebook
Rashmi Vinayak, Carnegie Mellon University
Xi Wang, University of Washington
Yang Wang, The Ohio State University
John Wilkes, Google
Emmett Witchel, The University of Texas at Austin
Harry Xu, University of California, Los Angeles
Junfeng Yang, Columbia University
Ding Yuan, University of Toronto
Nickolai Zeldovich, Massachusetts Institute of Technology
Irene Zhang, Microsoft Research
Yiying Zhang, University of California, San Diego
Lidong Zhou, Microsoft Research
Yuanyuan Zhou, University of California, San Diego

Steering Committee
Andrea Arpaci-Dusseau, University of Wisconsin—Madison
Jason Flinn, Facebook
Casey Henderson, USENIX Association
Kimberly Keeton, HP Labs
Hank Levy, University of Washington
James Mickens, Harvard University
Brian Noble, University of Michigan
Timothy Roscoe, ETH Zurich
Margo Seltzer, University of British Columbia

Overview
The 14th USENIX Symposium on Operating Systems Design and Imple-
mentation seeks to present innovative, exciting research in computer
systems. OSDI brings together professionals from academic and industrial
backgrounds in a premier forum for discussing the design, implementa-
tion, and implications of systems software. The OSDI Symposium empha-
sizes innovative research as well as quantified or insightful experiences in
systems design and implementation.

OSDI takes a broad view of the systems area and solicits contributions
from many fields of systems practice, including, but not limited to, operat-
ing systems, file and storage systems, distributed systems, cloud comput-
ing, mobile systems, secure and reliable systems, systems aspects of big
data, embedded systems, virtualization, networking as it relates to operat-
ing systems, and management and troubleshooting of complex systems.
We also welcome work that explores the interface to related areas such as
computer architecture, networking, programming languages, analytics,
and databases. We particularly encourage contributions containing highly
original ideas, new approaches, and/or groundbreaking results.

www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 71

Submitting a Paper
Submissions will be judged on novelty, significance, interest, clarity, rele-
vance, and correctness. All accepted papers will be shepherded through
an editorial review process by a member of the program committee.

A good paper will:
• Motivate a significant problem
• Propose an interesting, compelling solution
• Demonstrate the practicality and benefits of the solution
• Draw appropriate conclusions
• Clearly describe the paper’s contributions
• Clearly articulate the advances beyond previous work

All papers will be available online to registered attendees before the
conference. If your accepted paper should not be published prior to
the event, please notify production@usenix.org. The papers will be
available online to everyone beginning on the first day of the confer-
ence, November 4, 2020.

Papers accompanied by nondisclosure agreement forms will not be
considered. All submissions will be treated as confidential prior to pub-
lication on the USENIX OSDI ’20 website; rejected submissions will be
permanently treated as confidential.

Simultaneous submission of the same work to multiple venues, submis-
sion of previously published work, or plagiarism constitutes dishonesty or
fraud. USENIX, like other scientific and technical conferences and journals,
prohibits these practices and may, on the recommendation of a program
chair, take action against authors who have committed them. See the
USENIX Conference Submissions Policy (www.usenix.org/ conferences/
submissions-policy) for details.

Prior workshop publication does not preclude publishing a related paper
in OSDI. Authors should email the program co-chairs, osdi20chairs@
usenix.org, a copy of the related workshop paper and a short explanation
of the new material in the conference paper beyond that published in the
workshop version.

Questions? Contact your program co-chairs, osdi20chairs@usenix.org,
or the USENIX office, submissionspolicy@usenix.org.

By submitting a paper, you agree that at least one of the authors will at-
tend the conference to present it. If the conference registration fee will
pose a hardship for the presenter of the accepted paper, please contact
conference@usenix.org.

If your paper is accepted and you need an invitation letter to apply for a
visa to attend the conference, please contact conference@usenix.org as
soon as possible. (Visa applications can take at least 30 working days to
process.) Please identify yourself as a presenter and include your mailing
address in your email.

Deadline and Submission Instructions
Authors are required to register abstracts by 3:00 p.m. PDT on May 5,
2020, and to submit full papers by 3:00 p.m. PDT on May 12, 2020. These
are hard deadlines, and no extensions will be given. Submitted papers
must be no longer than 12 single-spaced 8.5” x 11” pages, including
figures and tables, plus as many pages as needed for references, using
10-point type on 12-point (single-spaced) leading, two-column format,
Times Roman or a similar font, within a text block 7” wide x 9” deep.
Submissions may include as many additional pages as needed for refer-
ences and for supplementary material in appendices. The paper should
stand alone without the supplementary material, but authors may use
this space for content that may be of interest to some readers but is
peripheral to the main technical contributions of the paper. Note that
members of the program committee are free to not read this material
when reviewing the paper. Accepted papers will be allowed 14 pages in

the proceedings, plus references. Papers not meeting these criteria will
be rejected without review, and no deadline extensions will be granted
for reformatting. Pages should be numbered, and figures and tables
should be legible in black and white, without requiring magnification.
Papers so short as to be considered “extended abstracts” will not receive
full consideration.

The paper review process is double-blind. Authors must make a good
faith effort to anonymize their submissions, and they should not identify
themselves either explicitly or by implication (e.g., through the refer-
ences or acknowledgments). Submissions violating the detailed format-
ting and anonymization rules will not be considered for review. If you
are uncertain about how to anonymize your submission, please contact
the program co-chairs, osdi20chairs@usenix.org, well in advance of the
submission deadline.

When registering and submitting your paper, you will need to provide
 information about conflicts with PC members. Use the following guide-
lines to determine conflicts:

Institution: You are currently employed at the same institution, have
been previously employed at the same institution within the past two
years, or are going to begin employment at the same institution.

Advisor or Collaboration: You have a past or present association as thesis
advisor or advisee, or you have a collaboration on a project, publication,
grant proposal, or editorship within the past two years (2018 or later).

The PC will review paper conflicts to ensure the integrity of the review-
ing process, adding conflicts if necessary. Similarly, if there is no basis for
conflicts provided by authors, such conflicts will be removed (e.g., do
not improperly identify PC members as a conflict in an attempt to avoid
having an individual review your paper). If you have any questions about
conflicts, please contact the program co-chairs.

Authors are also encouraged to contact the program co-chairs,
osdi20chairs@usenix.org, if needed to relate their OSDI submissions to
relevant submissions of their own that are simultaneously under review
or awaiting publication at other venues. The program co-chairs will use
this information at their discretion to preserve the anonymity of the
review process without jeopardizing the outcome of the current OSDI
 submission.

Papers must be in PDF format and must be submitted via the submis-
sion form linked from the OSDI ’20 website. For more details on the
submission process, and for templates to use with LaTeX, Word, etc.,
authors should consult the detailed submission requirements at www.
usenix.org/osdi20/requirements-authors.

Authors Response Period
OSDI will provide an opportunity for authors to respond to reviews prior
to final consideration of the papers at the program committee meet-
ing. Authors must limit their responses to (a) correcting factual errors
in the reviews or (b) directly addressing questions posed by reviewers.
Responses should be limited to clarifying the submitted work. In par-
ticular, responses must not include new experiments or data, describe
additional work completed since submission, or promise additional
work to follow.

Submission of a response is optional. There is no explicit limit to the
response, but authors are strongly encouraged to keep it under 500
words; reviewers are neither required nor expected
to read excessively long rebuttals. Reviews will be
available for response on Tuesday, July 21, 2020.
Authors may submit a response to those reviews
until Friday, July 24, 2020.

72  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

Statement of Ownership, Management, and Circulation, 09/26/2019
Title: USENIX Association/ ;login:
Pub. No. 1044-6397
Frequency: Quarterly
Number of issues published annually: 4
Subscription price: $90.
Office of publication: 2560 9th St., Suite 215, Berkeley, CA 94710-2565
Contact Person: Toni Veglia. Telephone: 510-528-8649 x12
Headquarters or General Business Office of Publisher: USENIX Association, 2560 9th St, Suite 215, Berkeley, CA
94710-2565
Publisher: USENIX Association, 2560 9th St, Suite 215, Berkeley, CA 94710-2565
Editor: Rik Farrow; Managing Editor: Michele Nelson, located at office of publication.
Owner: USENIX Association. Mailing address: As above.
Known bondholders, mortgagees, and other security holders owning or holding 1 percent or more of total amount
of bonds, mortgages, or other securities: None.
The purpose, function, and nonprofit status of this organization and the exempt status for federal income tax
purposes have not changed during the preceding 12 months.

Publication Title
USENIX ASSOCIATION/ ;login:

Issue Date for Circulation Data Below
09/04/2019 — Fall ’19 Issue

Extent and Nature of Circulation Average No. Copies
Each Issue During
Preceding 12 Months

No. Copies of Single
Issue (Fall 2019)
Published Nearest
to Filing Date

a. Total Number of Copies (Net press run) 2150 1875

b. Paid Circulation (By
Mail and Outside the
Mail)

(1) Mailed Outside-County Paid Subscriptions 869 850

(2) Mailed In-County Paid Subscriptions 0 0

(3) Paid Distribution Outside the Mails 569 537

(4) Paid Distribution by Other Classes of Mail 0 0

c. Total Paid Distribution 1438 1387

d. Free or Nominal Rate
Distribution (By Mail
and Outside the Mail)

(1) Free or Nominal Rate Outside-County Copies 77 78

(2) Free or Nominal Rate In-County Copies 0 0

(3) Free or Nominal Rate Copies Mailed at Other Classes 11 13

(4) Free or Nominal Rate Distribution Outside the Mail 205 55

e. Total Free or Nominal Rate Distribution 293 146

f. Total Distribution 1731 1553

g. Copies Not Distributed 419 342

h. Total 2150 1875

i. Percent Paid 83% 90%

Electronic Copy Circulation

a. Paid Electronic Copies 483 497

b. Total Paid Print Copies 1921 1884

c. Total Print Distribution 2214 2030

Percent Paid (Both Print and Electronic Copies) 87% 93%

SREcon is a gathering of engineers who care deeply about site reliability, systems engineering, and
working with complex distributed systems at scale. SREcon challenges both those new to the profes-
sion as well as those who have been involved in SRE or related endeavors for years. The conference
culture is based upon respectful collaboration amongst all participants in the community through
critical thought, deep technical insights, continuous improvement, and innovation.

SAVE THE DATES!

JUNE 15–17, 2020 • SYDNEY, AUSTRALIA
www.usenix.org/srecon20apac

OCTOBER 27-29, 2020 • AMSTERDAM, NETHERLANDS
www.usenix.org/srecon20emea

MARCH 24–26, 2020 • SANTA CLARA, CA, USA
www.usenix.org/srecon20americaswest

DECEMBER 7–9, 2020 • BOSTON, MA, USA
www.usenix.org/srecon20americaseast

Follow us at @SREcon

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

J A N 2 7–2 9 , 2 0 2 0
SA N FR A NCISCO, C A , USA

usenix.org/enigma2020
The full program and registration are available now.

FEATURED SPEAKERS

Jeremy Gillula
Electronic Frontier

Foundation

Kavya Pearlman
XR Safety Initiative

Security and Privacy Ideas that Matter

Lea Kissner
Humu

David Freeman
Facebook

Swathi Joshi
Netflix

Jennifer Helsby
Freedom of the

Press Foundation

	Using ML to Block BGP Hijacking
	50 Ways to Leak Your Data: An Exploration of Apps’ Circumvention of the Android Permissions System
	Building an Nmap for Your Car
	12th USENIX Workshop on Cyber Security Experimentation and Test (CSET ’19)
	Interview with Kirill Levchenko
	Selected Results of the Workshop on Data Storage Research 2025
	Good Old-Fashioned Persistent Memory
	Ask-Me-Anything Engineering
	Multi-Tenancy in a Microservice Architecture
	Managing Systems in an Age of Dynamic Complexity—Or: Why Does My Single 2U Server Have Better Uptime than GCP?
	A Survey of Open-Source Python Profilers
	iVoyeur: Distributive Tracing
	Zero, Null, and Missing! Oh My!
	For Good Measure: The Imperative of Reclaiming Metrics Terminology
	/dev/random: Ransomwar
	Book Reviews
	USENIX Notes
	OSDI ’20 Announcement and Call for Papers

