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EDITORIALMusings
R I K  F A R R O W

Rik is the editor of ;login:.  
rik@usenix.org A lthough ;login: no longer has theme issues, this issue is loaded with 

articles about security. Sitting in lofty isolation, I thought I would 
muse this time about the three problems we have with computer 

security: hardware, software, and people. I don’t think I’ve left anything out.

Hardware
Most of the computers that people use (as opposed to simpler IoT devices) have hardware 
designs roughly like early timesharing mainframes. For the purposes of security, our com-
puters have two relevant features: memory management and privileged modes. Memory man-
agement was designed to keep processes from interfering with each other and the operating 
system. You really don’t want someone else who is logged into another terminal (a device 
capable of displaying 24 lines of 80 characters each, a keyboard, and a serial interface maxing 
out at 19,200 baud [1]) writing into your process’s memory, and especially not the operating 
system’s memory. Note that terminals on early systems were often Teletype Model 33 ASRs, 
capable of uppercase only but also allowed input or output via a paper tape reader/puncher 
[2]. Teletypes used Baudot, just five bits per character, with a maximum rate of 10 characters 
per second. I actually used Teletypes on a Multics system in 1969.

Memory management on mainframes in the 1970s didn’t always work well. In 1979, I crashed 
a mainframe, using a DECwriter 300, a much nicer and quieter terminal, while taking an 
operating systems course. I made a mistake entering a substitute command and only noticed 
when the command was taking forever to complete. I had created an infinite loop, essentially 
replacing each character with two copies of itself. What clued me in to what I had done was 
when other people in the terminal room started getting up and leaving, knowing it would take 
at least 20 minutes to reboot the mainframe.

In our “modern” systems, memory management works very well at protecting processes from 
one another, and events like the one I just described won’t happen. This is where privilege 
mode [3] comes in. Because the operating system needs to be capable of doing things that 
normal processes cannot, the CPU switches into privilege mode when executing operating 
system code. While in privilege mode, the executing software can read or write anywhere 
in memory. Needless to say, this has made writing kernel exploits extremely popular. And 
as kernels are the largest single images with the most complex code (think multiple threads, 
locking, and device drivers) you generally run, there are lots of vulnerabilities to be found.

You might be wondering why we rely on such ancient mechanisms as the hardware basis for 
our security. Think of these mechanisms as being like internal combustion engines: they’ve 
been around a long time and have gotten fantastically more efficient. There are other reasons 
for using these mechanisms: they are familiar to both CPU designers and programmers (see 
People, below).

There was an alternative design, a mainframe built in the mid-to-late ’60s: the GE 645 (later 
Honeywell). The GE 645 had segment registers, essentially hardware used to add an offset 
to each memory address. Unlike memory management, segment registers as used in this 
design weren’t limited to large page sizes, so it was possible to have programs that could treat 
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different areas of memory as if they were different physical 
compartments, and limit access to those compartments. Please 
read my interview with Peter G. Neumann in this issue for more 
on segmentation.

Intel’s flagship CPUs in the later ’80s also used segment regis-
ters as a method for extending memory from 64K to 640K. Later 
incarnations of segment registers in Intel CPUs were more flex-
ible and used in early hypervisors.

What’s neat about being able to segment memory is that it 
becomes possible to protect regions within the kernel by making 
them read-only, and control access to other kernel regions. Cur-
rently, our operating systems are write-anywhere, leaving them 
ripe for exploitation. User-level programs can also use segments, 
so they can have code within a single process that operates with 
different sets of privileges. I suggest reading about CHERI [4], 
an example of a modern design that has segment registers as a 
key feature.

Software
At the time I am writing, Equifax has been hacked, and all of 
the data needed to steal 143 million US identities has been 
downloaded. Equifax has blamed the Apache Struts software 
for the exploit, even though they allegedly failed to install the 
update that would have prevented the attack. Obviously, even if 
Equifax’s hardware had hardware features only available in the 
future, a Web script that allows customers making credit queries 
to access their database would still allow this attack. After all, 
requesting credit queries needs to work in this application.

Of course, attacks like this succeed because the software actu-
ally supports doing things, like downloading 143 million credit 
reports, through mistakes in design.

I’ve selected many papers about how to improve software design, 
the most recent appearing in the Fall 2017 issue [5]. Essentially, 
using carefully designed parsers as well as protocols that allow 
simple parsers (no looping or recursion allowed) would elimi-
nate attacks like this. The parsers pass safe arguments to other 
routines for execution instead of any old thing that a clever 
attacker can slip through. There are companies that focus on 
reverse engineering input parsers, so they can report the exploit-
able weaknesses in the code they are processing (Veracode, for 
example), so making money honestly from coding mistakes in 
parsers is already a successful business [6].

People
Last but not least on the list of why our systems are insecure are 
people: the people who manage the systems and the people who 
program their software.

If I had been working as the CSO of a large financial company 
whose main business had to do with identity records, I would 
have insisted on having simple parsers, but also a gateway, a type 
of application firewall, that would limit access to the database 
to the expected queries, and rate limit the number of responses 
permitted.

Of course, I’ve left out an important aspect in my imaginary sce-
nario: other people. Those other people might be programmers 
who don’t understand what I have in mind, those topics having 
not been covered in any course. The programming of safe pars-
ers is actually not something most people can do properly, which 
is why there are tools for doing this [5].

Other people who would balk at adding what would, in hindsight, 
turn out to be saving-the-business-important security would 
be managers and C-level executives, who would point out that 
adding security would “cost money” and “take time.” Well, those 
people do need to balance risk against potential income, even 
though ignoring security has caused companies to go out of 
business.

The Lineup
We start off this issue with four articles about pretty basic 
stuff that people commonly get wrong. First up is Pearce et al., 
who examine the prevalence of DNS spoofing. They carefully 
designed a way to test whether DNS resolvers were lying, and 
found that a significant number of countries, most often but not 
always repressive regimes, did falsify results of DNS queries.

Next up, Chung et al. look at just how well people are doing at 
DNSSEC, the protocol for providing cryptographic proof that 
DNS queries return accurate results. The answer is: not well 
at all. Only a tiny fraction of domains use DNSSEC, and a very 
small fraction of that fraction have done it correctly. Part of 
the reason for this problem is design (DNSSEC is complicated, 
although just reading their article did more to help me under-
stand DNSSEC than anything else I’ve read). There are other 
problems, like registrars that either do not accept the hashes 
(“DS” records) required to prove the correctness of their regis-
tered, second-level domains, or do so insecurely. To top that off, 
few resolvers actually check the correctness of the DNSSEC 
records they have downloaded.

Mayer and the team at SBA Research examine another mainstay 
of Internet security: HTTPS. They set up a user study where they 
asked more senior college students who allegedly could perform 
system administration to set up HTTPS securely. Hint: the vast 
majority of people are better off using https://letsencrypt.org/.

The last article in this series, where the ability of people to 
behave securely is in question, is about checking password 
strength. Melicher et al. developed a neural network small 
enough to download as part of a Web page, and proved their tool 
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(https://github.com/cupslab/password_meter) works much 
better than the current crop of tools, which reward people for 
capitalizing the first letter and ending their password with “!”.

Bano, Al-Bassam, and Danezis volunteered an article about 
fixing the Bitcoin blockchain. The Bitcoin blockchain can only 
handle a few transactions per second and takes at least 10 min-
utes before those transactions can be committed. Talk about a 
failing database, even if it uses strong public key encryption for 
security. Bano and his co-authors explain several alternative 
methods for increasing the performance of blockchains.

I decided to interview Peter G. Neumann for this issue. He was 
part of the design team for Multics, worked on several design 
papers for better security, and is part of the CHERI team for 
improving hardware security. Peter is fun to listen to, a great 
storyteller, and someone who has been involved in some amazing 
work.

Gu and co-authors from the EECS Department at the Univer-
sity of Michigan provide the lone Systems article in this issue. 
Their modification-free solution for memory disaggregation, 
INFINISWAP, takes advantage of RDMA to share unused 
memory in a cluster of systems as faster swap devices. Using 
the combination of a daemon and a kernel module that presents 
a block device interface, INFINISWAP improves performance 
over swap on hard drives for paging while still providing reli-
ability, a pretty cool idea.

In the SRE and Sysadmin section, John Looney writes about 
psychological safety for SRE teams. Using his experience as 
part of a specialized team that studied SRE teams, John makes 
great use of examples of how not to support team members, then 
shows how things could have been done better.

Vladimir Legeza wanted to write about the difference between 
system administration and SRE. Through the use of examples, 
Vladimir lays out what he considers key differences between 
how the two groups work and what sysadmins could learn from 
the SRE way of doing things.

Kurt Lidl shares his knowledge of Docker. I liked this article a lot 
for the level of useful detail provided, as well as for the compari-
sons to other mechanisms for isolation of groups of processes.

David Beazley has written his final column for ;login:. Appropri-
ately, he wrote about exiting gracefully (in Python, although the 
double meaning is obvious). We will miss David for his careful 
and thorough explanations of Python.

David Blank-Edelman writes about Perl-without-Perl. While this 
might sound strange, there are a lot of times when you want a tool 
or script that processes a Perl script, perhaps just for extracting 
some portion of the script, without involving execution of the 
script. David covers a module and other tools for doing this.

Chris (Mac) McEniry explains how to use Hashicorp’s Vault, a 
Go library used for storing secrets, such as the passphrases used 
to decrypt private TLS keys. Mac also includes the use of dep, a 
tool for managing Go dependencies.

Dave Josephsen describes how he used tcpdump to monitor 
network traffic of images his company is running in Amazon’s 
cloud. Anyone who needs an effective way of monitoring network 
traffic when the network is run and controlled by someone else 
needs to read Dave’s column.

Dan Geer writes an essay about Data with a capital D. Dan 
ruminates about the importance of the “Big Data” we collect, and 
explains the two things we should consider whenever we decide 
to collect data.

Robert Ferrell has written his humor column this time about 
third-party loss of personal data and risk mismanagement.

We have three book reviews this time, one by ;login:’s Managing 
Editor, Michele Nelson, and two by Mark Lamourine.

Conclusion
I know that I have written about the failure of people in the past. 
I also know that it’s just not a good idea to expect most people to 
write software or manage systems securely when even experts 
do these tasks poorly. Computing is complex, abstract in many 
ways (how often have you looked at a heap?), and generally the 
people responsible for the software and hardware that becomes 
the most popular (think C) are geniuses or work with geniuses. 
Expecting the bulk of humanity to reach this level is simply 
unreasonable. Geniuses, by definition, represent a tiny fraction 
of the population.

Services like Let’s Encrypt go a long way toward removing the 
requirement that everyone who wants to use HTTPS needs to 
be an expert or a genius. We need to extend this type of service 
to include programming languages, system management, and 
improved hardware-based security if we ever expect to have 
even moderately secure systems and a reliable Internet.
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Despite the pervasive and continually evolving nature of Internet cen-
sorship, measurements remain comparatively sparse. Understanding 
the scope, scale, and evolution of Internet censorship requires global 

measurements, performed at regular intervals. We developed Iris, a scalable, 
accurate, and ethical method to continually measure global manipulation of 
DNS resolutions. Iris reveals widespread DNS manipulation of many domain 
names across numerous countries worldwide.

Anecdotes and reports indicate that Internet censorship is widespread, affecting at least 60 
countries [5]. Despite pervasive Internet censorship, empirical Internet measurements reveal-
ing the scope of that censorship remain sparse. A more complete understanding of Internet 
censorship around the world requires diverse measurements from a wide range of geographic 
regions and ISPs, not only across countries but also within regions of a single country.

Unfortunately, most mechanisms for measuring Internet censorship rely on volunteers who 
run measurement software deployed on their own Internet-connected devices (e.g., laptops, 
phones, tablets) [9, 10]. Because these tools rely on individuals performing actions, their scale 
and diversity are fundamentally limited.

Although recent work has developed techniques to continuously measure widespread 
manipulation at the transport [4, 7] and HTTP [1] layers, a significant gap remains in under-
standing global information control via manipulation of the Internet’s Domain Name System 
(DNS). Towards this goal, we developed and deploy Iris [8], a method and system to ethically 
detect, measure, and characterize the manipulation of DNS responses within countries 
across the entire world—without involving users or volunteers.

Iris aims to provide sound assessments of potential DNS manipulation indicative of an 
intent to restrict user access to content. To achieve high detection accuracy, we rely on a set 
of metrics that we base on the underlying properties of DNS domains, resolutions, and infra-
structure. Using our implementation of Iris, we performed a global measurement study that 
highlights the heterogeneity of DNS manipulation across resolvers, domains, and countries—
and even within a country.

One significant design challenge concerns ethics. In contrast to systems that explicitly 
involve volunteers in collecting measurements, methods that perform censorship measure-
ment without volunteers raise the issue of user risk. To this end, Iris ensures that, to the 
extent possible, we only involve Internet infrastructure (e.g., within Internet service provid-
ers or cloud hosting providers) in an attempt to minimize the risk to individual users.

How and What to Measure?
Detecting DNS manipulation is conceptually simple: perform DNS queries through geo-
graphically distributed DNS resolvers and analyze the results for “incorrect” responses that 
indicate manipulation of the answers. Despite this apparent simplicity, realizing a system 
to scalably collect DNS data and analyze it for manipulation poses significant technical and 
ethical challenges. Technically, how do we acquire or find global vantage points? Once we 
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have them, what DNS names should we measure? Ethically, how do we conduct wide-ranging 
third-party measurements without implicating innocent citizens? What steps should we 
take to ensure that Iris does not induce undue load on the DNS resolution infrastructure?

Finding Vantage Points
To obtain a wide range of measurement vantage points, we leverage open DNS resolvers 
deployed around the world; such resolvers will resolve queries for any client.

Measurement using open DNS resolvers entails complex ethical considerations. Given 
their prevalence and global diversity, open resolvers offer a compelling resource, providing 
researchers with extensive volume and reach. Unfortunately, open resolvers also pose risks 
not only to the Internet but to individual users. For example, resolvers may operate in an open 
fashion as a result of configuration errors; they frequently operate on end-user devices such 
as home routers [6]. Using these devices for measurement can impose monetary costs and, 
if the measurement involves sensitive content or hosts, can also expose their owners to harm.

Due to these ethical considerations, we restrict the set of open resolvers that we use to a 
small subset of resolvers for which we have high confidence they are part of the Internet 
infrastructure, as opposed to attributable to particular individuals. Figure 1 illustrates the 
process by which Iris finds safe open DNS resolvers.

Conceptually, the process of finding infrastructure resolvers has two steps: (1) scanning the 
Internet for open DNS resolvers and (2) pruning the list of open DNS resolvers that we iden-
tify to limit the resolvers to a set that we can plausibly attribute to Internet infrastructure.

Step 1: Scanning the Internet’s IPv4 space for open DNS resolvers. Scanning the IPv4 
address space provides a global perspective on open resolvers. To do so, we developed an 
open-source module for the ZMap network scanner [3] to enable Internet-wide DNS resolu-
tions. This module queries port 53 of all IPv4 addresses with a recursive DNS A record query. 
We use a purpose-registered domain name we control for these queries to ensure there is a 
known correct answer. From these scans, we conclude that all IP addresses that return the 
correct answer to this query are open resolvers.

Step 2: Identifying infrastructure resolvers. We prune the set of all open DNS resolvers 
on the Internet to include only those resolvers that appear to function as authoritative nam-
eservers for some DNS domain. Iris uses the ZDNS tool to perform reverse DNS PTR lookups 
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Figure 1: Overview of Iris’s DNS resolver identification and selection pipeline
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for all open resolvers and retains only the resolvers that have a 
valid PTR record beginning with the subdomain ns[0-9]+ or 
nameserver[0-9]*. This filtering step reduces the number of 
usable open resolvers from millions to thousands; fortunately, 
even the remaining set of resolvers suffices to provide broad 
country- and network-level coverage.

Because we conduct our measurements using resolvers we do not 
control, we cannot differentiate between countrywide or state-
mandated censorship and localized manipulation at individual 
resolvers (e.g., captive portals or malware [6]). To mitigate this 
uncertainty, we aggregate our measurements to ISP or country 
granularity.

Ethical Reasoning
Our primary ethical concern is minimizing the risks associ-
ated with issuing DNS queries via open resolvers for potentially 
censored or manipulated domains, as these DNS queries could 
implicate innocent users. A second concern is the query load that 
Iris induces on authoritative nameservers. With these concerns 
in mind, we use the ethical guidelines of the Belmont Report and 
Menlo Report to frame our discussion. One important ethical 
principle is respect for persons; essentially, an experiment should 
respect the rights of humans as autonomous decision-makers. In 
lieu of attempting to obtain informed consent, we draw upon the 
principle of beneficence, which weighs the benefits of conducting 
an experiment against the risks associated with the experiment. 
We note that the benefit of issuing DNS queries through tens of 
millions of resolvers has rapidly diminishing returns, and that 
using only open resolvers that we can determine are unlikely to 
correspond to individual users greatly reduces the risk to any 
individual without dramatically reducing the benefits of our 
experiment.

An additional guideline concerns respect for law and public inter-
est, which essentially extends the principle of beneficence to all 
relevant stakeholders, not only the experiment participants. To 

abide by this principle, we rate-limit our queries for each domain 
to ensure that the owners of the domains do not face significant 
expenses as a result of the queries that we issue.

Which DNS Domains to Query
Iris queries a list of sensitive URLs published by Citizen Lab, 
known as the Citizen Lab Block List (CLBL). This list of URLs 
is compiled by experts based on known censorship around the 
world, labeled by category. We distill the URLs down to domain 
names and use this list as the basis of our data set. We then 
supplement the list by adding additional domain names selected 
at random from the Alexa Top 10,000. These additional domain 
names help address geographic or content biases in the CLBL 
while maintaining a manageable total number of queries.

Iris: Systematic Detection of DNS Manipulation
We describe Iris’s process for issuing queries for the domains to 
the set of usable open resolvers. Figure 2 provides an overview 
of the process. Iris resolves each DNS domain using the global 
vantage points afforded by the open DNS resolvers; annotates 
the responses with information from both auxiliary data sets as 
well as additional active probing; and uses consistency and inde-
pendent verifiability metrics to identify manipulated responses. 
A more in-depth treatment of this topic appeared at USENIX 
Security 2017 [8].

Collecting Annotated DNS Responses

Performing Global DNS Resolutions 
Iris takes as input a list of suitable open DNS resolvers as well as 
the combined CLBL and Alexa domain names. We also include 
three DNS domains under our control to allow us to compute 
consistency metrics. Querying tens of thousands of domains 
across tens of thousands of resolvers required the development 
of a new DNS query tool, because no existing DNS measurement 
tool supported this scale. We implemented this aspect of Iris 

Figure 2: Overview of DNS resolution, annotation, filtering, and classification. Iris takes as input a set of domains and DNS resolvers and outputs results 
indicating manipulated DNS responses.
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in 649 lines of Go. The tool takes as input a set of domains and 
resolvers and coordinates randomized querying of each domain 
across each resolver. To prevent overloading resolvers and 
domains, we randomize domain order and maintain strict upper 
bounds on how fast Iris queries individual resolvers.

Annotating DNS Responses with Auxiliary Information 
Our analysis ultimately relies on characterizing both the consis-
tency and the independent verifiability of the DNS responses that 
we receive. To enable this classification, we first must gather 
additional details about the IP addresses returned in each of the 
DNS responses. Iris annotates each IP address returned in the 
set of DNS responses with additional information about geoloca-
tion, autonomous system (AS), port 80 HTTP responses, and 
port 443 HTTPS X.509 certificates. We rely on Censys [2] for 
daily snapshots of this auxiliary information, and further anno-
tate IP addresses with AS and geolocation information from the 
MaxMind service, as applicable.

Additional PTR and TLS Scanning 
For each IP address, we perform a DNS PTR lookup to facilitate 
additional consistency checks. Complicating inference further, 
a single IP address might host multiple Web sites via HTTP or 
HTTPS (virtual hosting). To mitigate this effect, we perform 
an active HTTPS connection to each returned IP address using 
the Server Name Indication (SNI) to specify the name originally 
queried.

Identifying DNS Manipulation
To determine whether a DNS response is manipulated, Iris relies 
on two metrics: consistency and independent verifiability. 

Unmanipulated access to a domain should manifest some degree 
of consistency, even when accessed from varying global vantage 
points. The consistency may take the form of network properties, 
infrastructure attributes, or content. We leverage these attri-
butes, both in relation to control data as well as across the data 
set itself, to classify DNS responses.

Our consistency metric relies on access to a set of geographi-
cally diverse resolvers that we control and are presumably not 
subject to manipulation. These control resolvers return a set 
of answers that we can presume are correct and thus can use 
to identify consistency across a range of IP address properties. 
Geographic diversity helps ensure that area-specific deploy-
ments do not cause false positives. We also use control domains 
to test whether a resolver reliably returns unmanipulated results 
for non-sensitive content (e.g., not a captive portal).

For each domain name measured, we create a set of consistency 
metrics by taking the union of each metric across all of our con-
trol resolvers. For example, we consider an answer consistent if 
the IP address matches at least one seen by any of our controls.

In addition to consistency metrics, we also define a set of metrics 
based on HTTPS certificate infrastructure that we can indepen-
dently verify using external data sources. This data is collected 
both from both auxiliary annotations and active HTTPS SNI 
scans.

We say that a response is correct if it satisfies any consistency 
or independent verifiability metric; otherwise, we classify the 
response as manipulated. 

Global Measurement Study
Using Iris, we performed an end-to-end global measurement 
study of DNS manipulation during January 2017. Here we 
describe the basic composition and statistics of this measure-
ment study.

Resolvers 
We initially identified a large pool of open DNS resolvers through 
an Internet-wide ZMap scan using a custom DNS measurement 
extension to ZMap that we developed. In total, 4.2 million open 
resolvers responded with a correct answer to our scan queries. 
This number excludes 670K resolvers that replied with correctly 
formed DNS responses but with either a missing or an incorrect 
answer for the scan’s query domain.

The degree to which we can investigate DNS manipulation 
across various countries depends on the geographic distribution 
of the selected DNS resolvers. By geolocating this initial set of 
resolvers, we observed that the pool spanned 232 countries and 
dependent territories, with a median of 659 resolvers per coun-
try. Abiding by our ethical considerations reduced this set to 
6,564 infrastructure resolvers in 157 countries, with a median of 
six resolvers per country. Finally, we removed unstable or other-
wise errant resolvers, further reducing the set of usable resolvers 
to 6,020 in 151 countries, again with a median of six resolvers 
in each. While our final set of resolvers is a small fraction of all 
open DNS resolvers, it still suffices to provide a global perspec-
tive on DNS manipulation.

Domains 
We began with the CLBL, consisting of 1,376 sensitive domains. 
We augmented this list with 1,000 domains randomly selected 
from the Alexa Top 10,000, as well as the three control domains 
that we manage that we do not expect to be manipulated. Due to 
overlap between the two domain sets, our combined data set con-
sisted of 2,330 domains. We excluded 27 problematic domains 
(e.g., domains that had expired or had broken authoritative name 
servers) that we identified through our data collection process, 
resulting in a final set of 2,303 domains.
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Total Queries 
We issued 14.5 million DNS A record queries during a two-day 
period in January 2017. After removing problematic resolv-
ers, domains, and failed queries, the data set had 13.6M DNS 
responses. Applying our consistency and independent verifi-
ability metrics, we identified 42K manipulated responses (0.3% 
of all responses) for 1,408 domains, spanning 58 countries (and 
dependent territories).

Manipulation by Country
Previous work has observed that some countries deploy nation-
wide DNS censorship technology; therefore, we expect to see 
groups of resolvers in the same countries, where each group of 
resolvers manipulates similar sets of domains. Table 1 shows 
the median percentage of manipulated responses per resolver, 
aggregated across resolvers in the top censored country.

Which Countries Experience the Most DNS 
Manipulation? 
Resolvers in Iran exhibited the highest degree of manipulation, 
with a median of 6.02% manipulated responses per Iranian 
resolver; China follows with a median value of 5.22%. The relative 
rankings of countries depend on the domains in our input data set.

For example, if sites censored in Iran and China are overrep-
resented in the CLBL, the overall rankings will skew towards 
those countries. Creating an unbiased globally representative set 
of test domains remains an open research problem.

Are There Outliers within Countries? 
Yes. Each country shown in Table 1 had at least one resolver that 
did not manipulate any domains. This effect likely results from 
IP address geolocation inaccuracies. For example, resolvers in 
Hong Kong (which are not subject to Chinese Internet censor-
ship) were incorrectly labeled by MaxMind as Chinese. Addi-
tionally, for countries that rely on individual ISPs to implement 
government censorship, the actual manifestation of manipula-
tion can vary across ISPs within the country. Localized manipu-
lation by resolver operators in countries with few resolvers can 
also influence these results. Similarly, most countries had at 
least one resolver that showed DNS manipulation significantly 
greater than the median. This again points to localized manipu-
lation, such as corporate networks deploying firewall products 
that block content unrelated to state-mandated censorship.

Consistency within Countries
Figure 3 shows the DNS manipulation of each domain by the 
fraction of resolvers within a country, for the 10 countries with 
the greatest (normalized) level of manipulation. Each point 
represents a domain; the vertical axis represents the fraction of 
resolvers in that country that manipulated it. Shading shows the 
density of points for that part of the distribution. We only plot 
domains that experience blocking by at least one resolver within 
a given country.

Figure 3: The fraction of resolvers within a country that manipulate each domain
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Heterogeneity across a country suggests that different ISPs may 
implement filtering with different block lists; it might also indi-
cate variability of blocking policies across geographic regions 
within a country.

Is There Heterogeneity Within Countries? 
Yes. For example, one group of domains was manipulated by 
about 80% of resolvers in Iran, and another group was manipu-
lated by fewer than 10% of resolvers. Similarly, one set of 
domains in China experienced manipulation by approximately 
80% of resolvers, and another set experienced manipulation only 
about half of the time.

Is There Non-Determinism in Censorship? 
Yes. Effects that appear as smearing across the vertical axis, 
such as for Iran and China, denote instances where individual 
domains were not manipulated by an identical set of resolvers 
but rather by an almost identical set. These phenomena can arise 
as the result of censorship systems using DNS injection, where 
a race condition exists between the injected and the original 
responses. It can also occur if systems under load fail open, or if 
the censor operates its manipulations in a probabilistic manner.

Is There Geolocation Inaccuracy? 
Yes. Upper bounds on the proportion of resolvers within a coun-
try performing manipulation suggest IP geolocation errors are 
common. For example, no domain in China experienced manipu-
lation across more than approximately 85% of resolvers. This 
is also supported by the frequency of outliers within countries 
performing no manipulation, as discussed earlier.

Manipulation by Domain
Table 2 highlights which specific domains experienced manipu-
lation in numerous countries, ranked by the number of countries.

Which Domains Are Most Frequently Manipulated? 
The two most manipulated domains were both gambling Web 
sites, each experiencing censorship across 19 different coun-
tries. DNS resolutions for pornographic Web sites were similarly 
manipulated, accounting for the next three most commonly 
affected domains. Peer-to-peer file sharing sites were also com-
monly targeted, particularly The Pirate Bay.

Are Commonly Measured Sites Manipulated by the 
Most Countries? 
No. Sites such as The Tor Project, Citizen Lab, Google, and Twit-
ter are common censorship measurement targets. Yet our results 
show these sites experienced manipulation by significantly 
fewer countries than others (bottom half of Table 2). The Tor 
Project DNS domain, manipulated by 12 countries, was the most 
widely interfered with among anonymity and censorship tools; 
Citizen Lab experienced manipulation by four countries. Such 
disparity points to the need for a diverse domain data set.

Country Number 
Resolvers

Median 
Manipulation

Iran 122 6.02%

China 62 5.22%

Indonesia 80 0.63%

Greece 26 0.28%

Mongolia 6 0.17%

Iraq 7 0.09%

Bermuda 2 0.04%

Kazakhstan 14 0.04%

Belarus 18 0.04%

Table 1: Top countries by median percent of manipulated responses per 
resolver

Rank Domain Name Category Countries

1 www.*pokerstars.com Gambling 19

2 betway.com Gambling 19

3 pornhub.com Pornography 19

4 youporn.com Pornography 19

5 xvideos.com Pornography 19

6 thepiratebay.org P2P sharing 18

7 thepiratebay.se P2P sharing 18

8 xhamster.com Pornography 18

9 www.*partypoker.com Gambling 17

10 beeg.com Pornography 17

80 torproject.org Anon. & cen. 12

181 twitter.com Twitter 9

250 www.*youtube.com Google 8

495 www.*citizenlab.org Freedom expr. 4

606 www.google.com Google 3

1086 google.com Google 1

Table 2: Domain names manipulated in the most countries, ordered by 
number of countries with manipulated responses 

http://www.*pokerstars.com
http://www.*partypoker.com
http://www.*youtube.com
http://www.*citizenlab.org
http://www.google.com
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Manipulation by Category
Table 3 shows the prevalence of manipulation by CLBL catego-
ries. We consider a category as manipulated within a country if 
any resolver within that country manipulated a domain of that 
category. 

Which Types of Domains Are Most Frequently 
Manipulated? 
Domains in the Alexa Top 10K experienced the most manipula-
tion; these domains did not appear in the CLBL, which high-
lights the importance of measuring both curated lists from 
domain experts as well as broad samples of popular Web sites. 
Although no single domain experienced manipulation in more 
than 19 countries, several categories experienced manipulation 
in more than 30 countries, indicating that while broad catego-
ries appear to be commonly targeted, the specific domains vary 
country to country.

Are Commonly Measured Sites in the Most Frequently 
Manipulated Categories? 
No. As was the case with domain ranking, common platforms 
such as Google, Facebook, and Twitter witnessed manipulation 
across significantly fewer countries than other categories.

Are the Top Manipulated Sites from the Top 
Manipulated Categories? 
No. While eight of the top 10 most frequently manipulated 
sites were in the Gambling and Pornography categories, those 
categories ranked 5th and 6th overall when aggregated. This dif-
ference highlights the need for measurement studies to consider 
multiple aggregation metrics when reporting ranked censorship 
results.

Conclusion
Internet censorship is widespread, dynamic, and continually 
evolving; understanding the nature of censorship thus requires 
techniques to perform continuous, large-scale measurements.

Iris supports regular, continuous measurement of DNS manipu-
lation, ultimately facilitating global tracking of DNS-based 
censorship as it evolves over time. Our first large-scale mea-
surement study using Iris highlights the heterogeneity of DNS 
manipulation across countries, resolvers, and domains, and 
demonstrates the potential of operationalizing such measure-
ments for longitudinal analysis.
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Rank Domain Category Countries

1 Alexa Top 10K 36

2 Freedom of expr. 35

3 P2P file sharing 34

4 Human rights 31

5 Gambling 29

6 Pornography 29

7 Alcohol and drugs 28

8 Anon. & censor. 24

9 Hate speech 22

            10          Multimedia sharing                         21

20 Google (All) 16

34 Facebook (All) 10

38 Twitter (All) 9 

Table 3: Top 10 domain categories, ordered by number of countries with 
manipulated answers
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An End-to-End View of DNSSEC Ecosystem 
Management
T A E J O O N G  C H U N G ,  R O L A N D  V A N  R I J S W I J K - D E I J ,  B A L A K R I S H N A N  C H A N D R A S E K A R A N , 
D A V I D  C H O F F N E S ,  D A V E  L E V I N ,  B R U C E  M .  M A G G S ,  A L A N  M I S L O V E ,  A N D  C H R I S T O  W I L S O N

The Domain Name System (DNS) provides name resolution for the 
Internet, and DNS’s Security Extensions (DNSSEC) allow clients and 
resolvers to verify that DNS responses have not been forged. DNSSEC 

can operate securely only if each of its principals performs its management 
tasks correctly: authoritative name servers must generate and publish their 
keys and signatures, domains that support DNSSEC must be signed with 
their parent’s keys, and resolvers must actually validate the chain of signa-
tures. We perform the first large-scale measurement study into how well 
DNSSEC’s PKI is managed, studying the behavior of domain operators, reg-
istrars, and resolvers. Our investigation reveals pervasive mismanagement 
of the DNSSEC infrastructure: only 1% of the .com, .org, and .net domains 
attempt to deploy DNSSEC; many popular registrars that support DNSSEC 
fail to publish all relevant records required for validation; and only 12% of 
resolvers that request DNSSEC records actually attempt to validate them.

The Domain Name System (DNS) is the Internet’s equivalent of the “yellow pages”: it trans-
lates human-readable domain names to machine-friendly Internet Protocol (IP) addresses. 
Unfortunately, the original DNS protocol did not include any security mechanisms. This lack 
of security allows an adversary to forge DNS records, and such attacks can have significant 
effects on end users, who may end up unknowingly communicating with malicious servers.

To address these problems, the DNS Security Extensions (DNSSEC) were introduced nearly 
two decades ago. At its core, DNSSEC is a hierarchical public key infrastructure (PKI) that 
largely mirrors the DNS hierarchy and is rooted at the DNS root zone. To enable DNSSEC, 
the owner of a domain signs its DNS records (using its private key) and publishes the sig-
natures along with its public key; this public key is then signed by its parent domain, and so 
on up to the DNS root zone, resulting in a chain of trust. As of early 2017, more than 90% of 
top-level domains (TLDs), such as .com, and 47% of country-code TLDs (ccTLDs), such as 
.nl, are DNSSEC-enabled [4, 8]. DNS resolvers that perform recursive DNS lookups on behalf 
of end users validate DNSSEC signatures in order to ensure that the response to a query 
they handle is authentic and was not modified in flight. These so-called validating resolv-
ers perform signature verification along the chain of trust, from the signature on the record 
that was requested all the way to the top of the PKI at the root of the DNS. But like any PKI, 
DNSSEC can only function correctly when all principals—every signatory from root to leaf 
and the resolver validating the signatures—fulfill their respective responsibilities. Unfortu-
nately, DNSSEC is complex, creating many opportunities for mismanagement. 

On the authoritative server side, a single error such as a weak key or an expired signature can 
weaken or completely compromise the integrity of a large number of domains. On the resolver 
side, mismanaged or buggy DNS resolvers can obviate all server-side efforts by simply failing 
to catch invalid or missing signatures. 
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In this article, we present a comprehensive study of the entire DNSSEC ecosystem—encom-
passing signers, authoritative name servers, registrars, and validating DNS resolvers—to 
understand how DNSSEC is (mis)managed today. To study server-side behavior, our work 
relies on 21 months of daily snapshots of DNSSEC records for all signed .com, .net, and .org 
second-level domains. To study resolver-side behavior, we purchased domains from the most 
popular 20 registrars (responsible for 54.3% of all .com, .net, and .org domains), as well as 
the 10 registrars that operate the most domains with “DNSKEY”s (covering 84.6% of such 
domains in .com, .net, and .org). To study client-side behavior, we leverage the Luminati 
HTTP proxy service, which allows us to perform repeated, controlled tests from 403,355 end 
hosts and their 59,513 distinct DNS resolvers around the world.

Our analysis reveals troubling, persistent mismanagement in the DNSSEC PKI:

◆◆ First, we find that nearly one-third of DNSSEC-enabled domains produce records that 
cannot be validated due to missing or incorrect records. The vast majority of these missing 
records are due to registrars that host many domains but fail to publish the correct records 
for domains they manage.

◆◆ Second, we find that registrar support for DNSSEC varies widely. Among the top 20 reg-
istrars, only three support DNSSEC when the registrar runs the authoritative DNS server 
(referred to as being the DNS operator); only one does so by default, and then only for some 
of its more expensive plans. Moreover, not all of the registrars we study support DNSSEC 
when the domain owner is the DNS operator. Of those that do, many require cumbersome 
and insecure steps for domain owners to deploy DNSSEC, such as requiring that domain 
information be sent over insecure email channels.

◆◆ Third, we find that although 58% of observed resolvers request DNSSEC records during 
their queries, only 12% of them actually validate the records. This means that the majority 
of resolvers pay the overhead to download DNS records for DNSSEC, while not reaping the 
security benefits.

In summary, our results paint a distressing picture of widespread mismanagement of keys 
and DNSSEC records that violate best practices in some cases and completely defeat the 
security guarantees of DNSSEC in others. On a more positive note, our findings demonstrate 
several areas of improvement where management of the DNSSEC PKI can be automated and 
audited. To this end, we have publicly released all of our analysis code and data (where pos-
sible) to the research community at https://securepki.org, thereby allowing other researchers 
and administrators to reproduce and extend our work.

Background 
DNS 
The Domain Name System (DNS) is based on records that map domain names (e.g., “example.
com”) to Internet Protocol (IP) addresses (e.g., “10.0.0.1”). DNS is a distributed system, and there 
are three primary kinds of organizations involved in the domain name registration process:

◆◆ Registries are organizations that manage top-level domains (TLDs). They maintain their 
TLD zone file (the list of all registered names in that TLD). For example, Verisign serves as 
the registry for .com.

◆◆ Registrars are organizations that sell domains to the public. Because they are accredited by 
ICANN, they can directly access the registry, which enables them to process new registrations.

◆◆ DNS operators are organizations that run authoritative DNS servers. Each domain has a 
DNS operator; the most common cases are (1) the domain owner asks their registrar to run 
the authoritative DNS server (registrar DNS operator), or (2) the domain owner runs their 
own authoritative DNS server (owner DNS operator).
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Whenever a registrar sells a domain name, it must insert an “NS” (name server) record for 
the new domain into the registry’s TLD zone file; the “NS” record contains the identity of the 
authoritative DNS server (i.e., the DNS operator).

DNSSEC
Unfortunately, the original DNS protocol did not include authenticity mechanisms, allowing 
an adversary to forge DNS responses. The DNS Security Extensions (DNSSEC) are designed 
to address this vulnerability. DNSSEC provides integrity for DNS records using three pri-
mary record types:

◆◆ “DNSKEY” records are public keys used to validate DNS records in DNSSEC.

◆◆ “RRSIG” (Resource Record Signature) records are cryptographic signatures of other re-
cords. Each RRSIG is created using the private key that matches a DNSKEY; all records need 
to carry signatures to ensure that they are not forged.

◆◆ “DS” (Delegation Signer) records are essentially hashes of DNSKEYs. These records must be 
uploaded to the parent zone, where they are signed by the parent’s DNSKEY.

Resolvers 
Most Internet hosts are configured to use a local DNS resolver, which looks up domain names 
for them. The resolver iteratively determines the authoritative DNS server for a domain, 
obtains the requested record, and forwards it back to the requesting host. If the resolver sup-
ports DNSSEC, it will also fetch all DNSSEC records (DNSKEYs and RRSIGs) and validate 
them. Finally, the resolver returns the (validated) record back to the requesting host.

A resolver indicates that it would like to receive DNSSEC records by setting the 
“DO”(DNSSEC OK) bit in its DNS requests. Then the responding authoritative DNS server 
will include the RRSIGs corresponding to the record type of the request in its response. Once 
it receives the RRSIGs, the resolver can then fetch the necessary DNSKEYs and DS records 
to validate the response.

Validating a DNSSEC Record 
All DNSSEC-aware resolvers must be provided with the root zone’s key. There is a logical 
chain of DNSKEYs, starting from the root zone’s key through the desired zone’s DNSKEY 
record. Once a domain’s DNSKEY has been authenticated, the record in question can be vali-
dated using this key and the record’s RRSIG. Figure 1 shows example records and how they 
are related.
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Figure 1: Overview of DNSSEC records necessary to validate example.com’s “A” record. Each RRSIG is the 
signature of a record set (dashed lines) verified with a DNSKEY (thinner solid lines). Each DS record is the 
hash of a child zone’s KSK, or key-signing key (thicker solid lines).
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Uploading DS Records 
If a DNS operator wishes to support DNSSEC, a DS record for 
the domain must be uploaded to the registry (along with the NS 
record) in order to establish a chain of trust. However, only regis-
trars can upload DS records to the registry. Thus, if the domain’s 
DNS operator is the registrar, the operator can simply upload 
the DS record by directly accessing the registry. Unfortunately, 
if the domain’s DNS operator is the owner, the situation is more 
complicated since the registrar does not know the DS record. 
To this end, a registrar may provide customers with a Web-
based interface to submit DS records, or may allow customers to 
transmit DS records via an out-of-band mechanism such as by 
email or telephone. Moreover, if a registrar does not support any 
methods for customers to upload DS records, the domain cannot 
support DNSSEC since it will have a broken chain of trust due to 
the missing DS record.

Authoritative Name Servers 
We begin our analysis of the DNSSEC PKI by focusing on the 
deployment and management of DNSSEC records by domains 
and how this has changed over time.

Data Sets 
This section describes a large-scale, longitudinal, and detailed 
study of DNSSEC adoption and deployment at authoritative 
name servers. To this end, we use data from OpenINTEL [7, 9] 
concerning domains listed in zone files for the .com, .net, and 
.org TLDs; together, these contain approximately 150M domains 
and cover 64% of the Alexa Top-1M (and 75% of the Alexa 
Top-1K sites). OpenINTEL collects daily snapshots of key DNS 
records for all of these 150M domains. For this study, we used 
the NS, DS, SOA, DNSKEY, and RRSIG records that Open-
INTEL collected for .com, .net, and .org domains. These daily 
snapshots span 21 months (between March 1, 2015 and Decem-
ber 31, 2016).

DNSSEC Prevalence
We begin by examining how support for DNSSEC has evolved 
over time. Specifically, we focus on the number of second-level 
domains (e.g., amazon.com) that publish at least one DNSKEY 
record; we refer to these as signed domains. Note that having 
a DNSKEY record published does not by itself imply that the 
domain has correctly deployed DNSSEC; there could be other 
missing records or invalid signatures; rather, this indicates that 
the domain attempted to deploy DNSSEC.

Figure 2 plots the fraction of .com, .net, and .org second-level 
domains that publish at least one DNSKEY record. One key 
observation is that DNSSEC deployment is rare: between 0.6% 
(.com) and 1.0% (.org) of domains have DNSKEY records pub-
lished in our latest snapshot. The fraction of domains that have 
DNSKEYs is, however, steadily growing. Because the trends of 
deployment and growth for each TLD are similar, for the remain-
der of this section, we combine the TLDs into a single data set; 
breakdowns into different TLDs are available in our recent 
paper [2].

Incorrect Records
Next, we study whether the DS records and RRSIGs published 
by signed domains are correct: the DS record should match the 
hash of the DNSKEY, and the RRSIGs should not be expired 
and should validate against the DNSKEYs. Figure 3 presents 
the results. We find that the results are largely positive. Almost 
99.9% of signed domains have DS records that match their 
DNSKEY. (The spike that occurred in August 2016 was caused 
by domains hosted by one authoritative name server, transip.
net. This name server suddenly changed DNSKEYs for over 400 
domains without switching the DS record, and the problem was 
corrected the following day.) Similarly, we find that over 99.5% 
of signed domains have correct RRSIGs and that the majority of 
the incorrect RRSIGs are due to signature expirations (RRSIGs, 
unlike DS records, have an expiry timestamp built in).

Figure 2: The percentage of all .com, .org, and .net second-level domains 
that have a DNSKEY record. Between 0.75% and 1.0% of all domains 
publish a DNSKEY record in our latest snapshot. 

Figure 3: The percent of signed domains for which the RRSIG signatures 
or DS records are invalid
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Missing Records 
We now examine whether signed domains are publishing all 
necessary DNSSEC records. Recall that properly deploying 
DNSSEC for a domain means that it must have a DS record in 
the parent zone, DNSKEY records, and RRSIG records for every 
published record type.

Figure 4 shows the percentage of domains that have DNSKEYs 
but are missing DS or RRSIG records. We can immediately 
observe that while a surprisingly low fraction of signed domains 
are missing RRSIGs (2%, on average), between 28%–32% of 
signed domains do not have a DS record, meaning they cannot be 
validated.

Recall that, unlike other DNSSEC record types, DS records are 
published in the parent zone (e.g., .com), along with the domain’s 
NS record. Thus, correctly installing a DS record often requires 
use of an out-of-band channel, where the administrator contacts 
its registrar and requests that the registrar adds a DS record. 
To shed light on why so many domains fail to deploy DS records, 
we group domains by authoritative name servers (i.e., the DNS 
operator) to see if certain DNS operators are behind the failures. 
Table 1 shows the results for the 15 most common domains listed 
in NS records for authoritative name servers, which cover 83% of 
the signed domains we study. We find a highly skewed distribu-
tion, with most of the name servers publishing DS records for 
almost all signed domains, but with four failing to upload a DS 
record for nearly all of their domains. For example, Loopia (a 
Swedish hosting provider) is authoritative for more than 131,000 
domains that publish DNSKEYs, but only one of these domains 
actually uploads a DS record, which is invalid.

Registrars
Having observed that DNSSEC is supported by only 1% of .com, 
.net, and .org domains, and that over 30% of those domains 
that try to support DNSSEC fail to do so correctly, we now turn 
to examine the role that registrars play. To do so, we register 
domains ourselves and attempt to deploy DNSSEC, both with 
the registrar as the DNS operator and with ourselves as the DNS 
operator. We focus on the 31 most popular DNS operators across 

our data sets, which collectively cover 54.3% of .com, .org, and .net 
domains in the TLD zone files. Table 2 summarizes the results of 
this experiment. We make a number of observations below.

Registrar as DNS Operator
We first focus on what happens when we use the registrar as the 
DNS operator for our domain. Surprisingly, only three registrars 
(GoDaddy, NameCheap, and OVH) out of the 20 we studied sup-
port DNSSEC at all when they are the DNS operator. This situa-
tion is unfortunate because these cases present an easy path to 
DNSSEC deployment, since the registrar has full control over 
the domain and could create DNSKEYs, RRSIGs, and upload DS 
records all on its own. Even more alarming, the three registrars 
that do support DNSSEC when they are the DNS operator only 
do so for some of their DNS plans, and only NameCheap enables 
DNSSEC by default. The other two registrars that support DNS-
SEC also have different policies: GoDaddy provides DNSSEC 
as a premium package (at a cost of $35 per year), while OVH 
provides DNSSEC for free but only if the customer explicitly opts 
in. From our December 31, 2016 snapshot, we observe that 25.9% 
of domains from OVH, 0.59% of domains from NameCheap, and 
0.02% of domains from GoDaddy deploy DNSSEC, suggesting 
that the low DNSSEC adoption rates may be heavily influenced 
by default options and cost.

Name Servers Signed w/DS Ratio

*.ovh.net 316,960 315,204 99.45%

*.loppia.se 131,726            1   0.00%

*.hyp.net   94,084  93,946 99.85%

*.transip.net   91,103  91,009 99.90%

*.domainmonster.com   60,425           4   0.01%

*.anycast.me   52,381  51,403 98.13%

*.transip.nl   47,007  46,971 99.92%

*.binero.se   44,650  17,099 38.30%

*.ns.cloudflare.com 28,938 17,483 60.42%

*.is.nl 15,738         11   0.07%

*.pcextreme.nl  14,967 14,801 98.89%

*.webhostingserver.nl 14,806 10,655 71.96%

*.registrar-servers.com 13,115 11,463 87.40%

*.nl 12,738 12,674 99.50%

*.citynetwork.se 11,660         13   0.11%

Table 1: Table showing the 15 most popular common domains listed in 
NS records for authoritative name servers, the total number of signed 
domains, and the number of domains with a DS record for our latest snap-
shot (December 31, 2016). The shaded rows represent registrars that fail 
to publish DS records for nearly all of their domains.

Figure 4: The percentage of signed domains that fail to publish a DS 
record in the parent zone and RRSIG for SOA and DNSKEY
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Owner as DNS operator
Next, we explore how registrars support DNSSEC if the owner 
acts as the DNS operator (e.g., by hosting their own name server). 
We find that only 10 of the 20 registrars support DNSSEC for 
such domains.

Interestingly, only three of the 10 registrars present a DS upload 
menu on their Web interface when a user switches to an external 
name server; others use mechanisms such as support tickets or 
require emails to allow customers to provide DS records. Using 
email is particularly distressing, since communicating DS 
records over email opens up security vulnerabilities due to the 
insecurity of email communication.

DS Record Validation
We now turn our attention to see whether these registrars 
validate submitted DS records. While registrars are not required 
to validate DS records, they are best positioned to help their 
customers deploy DNSSEC. We first checked whether the regis-
trars validate the uploaded DS record to ensure it is the hash of 

the domain’s DNSKEY; only two registrars correctly validated 
the DS record before accepting it. The remaining registrars 
all allowed us to publish arbitrary data as DS records. We then 
tested whether the registrars that require emailed DS records 
would accept an updated DS record without confirming the 
update. We found that two of the three registrars that require 
emailed DS records did not attempt to verify the email, mean-
ing an attacker who wished to take control of a victim domain 
could do so by forging an email to these registrars. We have 
contacted these two registrars to inform them of this security 
vulnerability.

DNS Resolvers 
Even if domains properly manage their DNSSEC records, end 
hosts do not enjoy the benefits of DNSSEC unless their DNS 
resolver requests and validates these records properly. We now 
examine the DNSSEC behavior of resolvers.

Table 2: Table showing the results of our study of registering domains using the 20 registrars among the top 29 DNS operators. The other nine DNS opera-
tors are parking services or malware domains. Only three of the 20 support DNSSEC for domains they manage, and only one of them provides DNSSEC by 
default for these domains (NameCheap only supports DNSSEC by default for certain plans, hence the △s [6]). Only 11 of the registrars support DNSSEC for 
external name servers, eight providing Web-based forms for uploading DS records, and three requiring emails with DS records; only two of these actually 
validate the provided DS records. Of the three that require emails, two of them do not verify the validity of the incoming email (hence the △s).
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Methodology
A challenge when studying the behavior of resolvers is that 
most will respond only to local clients (i.e., most are not open 
resolvers). To address this limitation, we use the Luminati proxy 
network [1] to issue DNS requests. Luminati is composed of 
nodes that act as HTTP proxies, which allow us to (1) select the 
country where the node (managed by Luminati) is located and 
(2) route HTTP traffic via the node. The node then makes a DNS 
request for the domain we specify, makes the HTTP request, and 
returns the response back via the Luminati proxy network.

For this section, we only focus on (1) nodes that are configured 
with a single resolver and (2) resolvers that we were able to mea-
sure with at least 10 different nodes; this represents total 7,599 
resolvers covering 328,666 total nodes in 3,582 autonomous 
systems (ASes).  See [1, 2] for more details on this service and the 
methodology we used for this measurement.

Domain Configuration
For these experiments, we built an authoritative DNS server 
and Web server for a testbed domain under our control. Our 
testbed domain (a second-level domain) fully supports DNSSEC 
functionality with a chain of trust by uploading its DS record to 
the .com zone.

One of our goals is to examine whether DNSSEC resolvers 
properly validate DNSSEC records. To do so, we configured our 
DNS server with 10 different subdomains, each of which simulates 
a different kind of DNSSEC misconfiguration, along with a single 
valid zone. These misconfigurations include missing, incorrect, 
and expired RRSIGs, missing DNSKEYs, incorrect DS records, etc.

Results
Of the 7,599 resolvers we examined, we found that 4,427 (58.3%) 
of them send requests with the DO bit set, suggesting that a 
majority of resolvers support DNSSEC. We refer to this set of 
resolvers that request DNSSEC records as DNSSEC-aware 
resolvers. Setting the DO bit by itself, however, does not indicate 
that the resolvers actually validate the DNSSEC responses they 
receive. To test for proper validation, we look at whether each 
HTTP request made via a node was successful; because all but 
one of our DNSSEC records are misconfigured, we would expect 
all of our HTTP requests (except for those to a single valid 
domain) to fail validation.

Incorrectly Validating Resolvers
We found that 3,635 of the DNSSEC-aware resolvers (82.1%) from 
301 ASes consistently fail to validate the DNSSEC responses, 
even though they issue the DNS requests with the DO bit set; these 
resolvers cover 149,373 (78.0%) of the nodes with DNSSEC-aware 

resolvers. This is especially surprising, as these resolvers all pay 
the overhead for DNSSEC responses but do not bother to reap 
DNSSEC’s benefits by validating the results they receive.

Table 3 shows the top 15 ASes where we observe resolvers that 
set the bit but do not validate DNSSEC responses; we can imme-
diately observe that these networks include large, popular ISPs 
in the U.S., the U.K., Canada, and Germany.

Correctly Validating Resolvers
Only 543 of the DNSSEC-aware resolvers (12.2%) from 129 
ASes consistently correctly validate DNSSEC responses; these 
resolvers cover 31,811 (16.6%) of the nodes covered by DNSSEC-
aware resolvers. We found surprisingly few large ASes that 
validate DNSSEC responses; the largest ones include Comcast 
(U.S.), Orange (Poland), Bahnhof Internet AB (Sweden), Free 
SAS (France), and EarthLink (Iraq). Interestingly, we found that 
all validating resolvers successfully validate all misconfigured 
scenarios; we did not find any resolvers that failed some of our 
misconfiguration tests but passed others. This is in contrast to 
client behavior for other PKIs, such as the Web [5], where brows-
ers pass different subsets of validation tests.

Country Hosting ISP Resolvers Nodes

Indonesia PT Telekomunikasi 1,319   2,695

U.S. Level 3 Communications    522 79,303

U.S. Time Warner Cable Internet    148   1,133

Germany Deutsche Telekom AG    104   2,682

Canada Bell Canada      89   1,120

U.K. TalkTalk Communications      76      878

U.K. Sky UK Limited      74   1,535

U.S. Frontier Communications      63      241

China China Telecom      56      344

Canada
Rogers Cable 
Communications

     49   1,250

Spain Telefonica de Espana      48   1,982

U.S. Charter Communications      46      355

Austria Liberty Global Operations      40 10,554

U.S. SoftLayer Technologies      37   2,559

Czech Avast Software s.r.o.      33   2,731

Table 3: The top 15 ISPs in terms of the number of DNS resolvers that do 
not validate our DNSSEC response. Level 3 (shaded) has 522 resolvers 
that do not validate the DNSSEC response, while six do (not shown).
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Conclusion 
Taken together, our results indicate there are a number of steps 
that the various DNS entities can take to spur greater adoption of 
DNSSEC.

◆◆ First, DNS resolver software should enable DNSSEC validation 
by default; many popular implementations request DNSSEC 
records by default, but then completely ignore them.

◆◆ Second, registrars should allow all customers to enable DNS-
SEC if they wish, and should move towards a standard of 
DNSSEC-by-default; today, only one registrar among the top 20 
has this policy. 

◆◆ Third, registries should support the “CDS” and “CDNSKEY” 
proposals [10], which allow domain owners to directly com-
municate DS records to the registry; unfortunately, we know of 
very few registries that support CDS and CDNSKEY today.

◆◆ Fourth, until CDS and CDNSKEY are fully supported, regis-
trars should work to make the process of uploading DS records 
easier and more secure.

We also encourage interested readers to read our recent papers 
on DNSSEC [2, 3], which collectively explore this topic in greater 
detail.

References
[1] T. Chung, D. Choffnes, and A. Mislove, “Tunneling for Trans-
parency: A Large-Scale Analysis of End-to-End Violations in 
the Internet,” IMC, 2016: https://mislove.org/publications 
/Luminati-IMC.pdf.

[2] T. Chung, R. van Rijswijk-Deij, B. Chandrasekaran, D. 
Choffnes, D. Levin, B. M. Maggs, A. Mislove, and C. Wilson, 
“A Longitudinal, End-to-End View of the DNSSEC Ecosys-
tem,” in Proceedings of the 26th USENIX Security Symposium 
(Security ’17): https://www.usenix.org/system/files/conference 
/usenixsecurity17/sec17-chung.pdf.

[3] T. Chung, R. van Rijswijk-Deij, D. Choffnes, A. Mislove, C. 
Wilson, D. Levin, and B. M. Maggs, “Understanding the Role 
of Registrars in DNSSEC Deployment,” IMC, 2017.

[4] ICANN TLD DNSSEC Report: http://stats.research.icann 
.org/dns/tld_report.

[5] Y. Liu, W. Tome, L. Zhang, D. Choffnes, D. Levin, B. M. 
Maggs, A. Mislove, A. Schulman, and C. Wilson, “An End-
to-End Measurement of Certificate Revocation in the Web’s 
PKI,” IMC, 2015: https://www.cs.umd.edu/~dml/papers 
/revocations_imc15.pdf.

[6] Name servers and TLDs supported/unsupported by DNS-
SEC: http://bit.ly/2fbNjAp.

[7] OpenINTEL: https://www.openintel.nl/.

[8] State of DNSSEC Deployment 2016: http://bit.ly/2ye4vfX.

[9] R. van Rijswijk-Deij, M. Jonker, A. Sperotto, and A. Pras, “A 
High-Performance, Scalable Infrastructure for Large-Scale 
Active DNS Measurements,” IEEE Journal on Selected Areas 
in Communications, vol. 34, no. 6, 2016.

[10] P. Wouters and O. Gudmundsson, “Managing DS Records 
from the Parent via CDS/CDNSKEY,” RFC 8078, IETF, 2017: 
https://datatracker.ietf.org/doc/rfc8078/.

https://mislove.org/publications/Luminati-IMC.pdf
https://mislove.org/publications/Luminati-IMC.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-chung.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-chung.pdf
http://stats.research.icann.org/dns/tld_report
http://stats.research.icann.org/dns/tld_report
https://www.cs.umd.edu/~dml/papers/revocations_imc15.pdf
https://www.cs.umd.edu/~dml/papers/revocations_imc15.pdf
http://bit.ly/2fbNjAp
https://www.openintel.nl/
http://bit.ly/2ye4vfX
https://datatracker.ietf.org/doc/rfc8078/


22   WI N T ER 20 17  VO L .  42 ,  N O.  4  www.usenix.org

SECURITY

Securing the Internet, One HTTP 200 OK  
at a Time
W I L F R I E D  M A Y E R ,  K A T H A R I N A  K R O M B H O L Z ,  M A R T I N  S C H M I E D E C K E R ,  
A N D  E D G A R  W E I P P L

HTTPS is the most commonly used cryptographic protocol on the 
Internet. It protects communication content and provides endpoint 
authenticity at scale. However, deploying HTTPS in a truly secure 

fashion can be a challenging task even for experienced admins. To explore 
why this is the case and how these challenges can be fixed in order to support 
an even wider adoption, we conducted a user study, which was presented at 
USENIX Security 2017.

Targeting the Long Tail 
Nowadays, major online services provide TLS encrypted communication. But is the Web 
site of your local sushi restaurant secured with HTTPS? Because even your local sushi place 
needs HTTPS! We need HTTPS as the new standard in the Internet for all Web sites and 
to finally deprecate unencrypted HTTP. But often the opposite is stated. Even at USENIX 
Security, somebody in the audience questioned the need for HTTPS for small businesses 
or static content. The answer was simple: more confidentiality, authenticity, and integrity 
make the Web a more secure place. We know that the upgrade to HTTPS is a way, and a quite 
promising way, to improve the security of the entire Internet. This improvement is strongly 
needed, so let’s upgrade to HTTPS.

Shifting to HTTPS is not just the problem of single service providers, and the process of 
enabling it is not just a problem of some individuals. It is an enormous challenge for all of 
us. Developers, administrators, and security researchers are working on it, and the situ-
ation is improving steadily. We see progress, as Felt et al. showed in their recent work [1]. 
The  number of HTTPS page loads is rising and is now exceeding 50% of strict page loads 
in Firefox telemetry, and there are similar results with Google Chrome statistics. But their 
work also identifies weak spots. HTTPS usage on Android devices, the deployments in east-
ern Asia, and the long tail of Web sites are lagging behind. With our study [2], we focus on 
this long tail of Web sites that are not supporting HTTPS in contrast to major service provid-
ers. These companies—ranging from medium enterprises to your local sushi restaurant—do 
not have highly specialized security experts in charge, actively checking their Web sites for 
improvements. Normal IT departments, single administrators, and “IT guys” are solving 
problems here. 

And as we already speculate from anecdotes and personal experience, it is not easy to deploy 
HTTPS in a secure yet compatible fashion. You probably remember your first time, and 
maybe your last time, setting up HTTPS. Even after initial deployment, the sheer complex-
ity of keeping it secure can overburden experienced admins. Back in 2015, Yan Zhu created a 
video of knowledgeable members of EFF, who had never set up HTTPS before, being unable 
to deploy it within a limited amount of time [3].

Enough anecdotes and speculations. We decided to conduct a user study to analyze these 
problems. We did this without automated tooling provided by Let’s Encrypt and chose the 
traditional approach of using a non-automated CA to issue certificates.
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User Study 
For the user study, we conducted a series of lab experiments with 
28 participants. We recruited students with expert knowledge 
in the field of security and privacy-enhancing protocols at our 
university who fulfilled the criteria to potentially work as an 
administrator or were actually working as administrators. The 
participants were invited to the lab where they were briefed 
about the purpose of our study. They assumed the role of admin-
istrator of an SME who is in charge of securing the communica-
tion to an Apache Web server with HTTPS in order to pass a 
security audit. 

We prepared and implemented a fictive Certificate Authority 
(CA) in order to facilitate the process of getting a valid certifi-
cate and to remove any bias introduced by the procedures from a 
certain CA. The fictive CA was available through a simple Web 
interface and required the submission of a valid CSR (certificate 
signing request) for issuing a valid certificate. The user inter-
face was very simplistic, and the browser on the local machine 
already trusted our CA. We opted for this study setting because 
we wanted to focus solely on the actual deployment process 
instead of on the interaction with a CA. There was no existing 
TLS configuration on the system—hence the participants had 
to start a new configuration from scratch. We chose Apache for 
our experimental setup because Apache maintains a clear lead 
regarding in-usage share statistics. 

We instructed the participants to make the configuration as 
secure as possible, whereas the assignment did not contain any 
specific security requirements. In order to collect data, we used 
a think-aloud protocol. While the participants were working on 
the task, they articulated their thoughts while an experimenter 
seated next to them observed their work and took notes. We 
refrained from video recording due to the results from our pre-test 
during which we filmed the sessions and noticed a severe impact 
on the participants’ behavior. The participants from the pre-
study also explicitly reported that they perceived the cameras as 
disruptive and distracting, even though the cameras were placed 
in a discreet way. In addition to the notes from the observation, we 
captured the bash and browser history and the final configura-
tion files. After completing the task, the participants were asked 
to fill out a short questionnaire with closed- and open-ended 
questions that covered basic demographics, previous security 
experience in industry, and reflections on the experiment.

As a result, we had a collection of both qualitative and quantita-
tive data that was further used for analysis. For a qualitative 
analysis of the observation protocols, we performed a series of 
iterative coding which is often used in usable security research 
to develop models and theories from qualitative data. To evaluate 
the (mostly) quantitative data acquired via the bash/browser 
history and Apache log files, we applied metrics and measures to 
evaluate the quality of the resulting configuration.

Results 
For the security evaluation, we based our evaluation criteria on 
Qualys’ SSL Test [4]. We consider this rating scheme a useful 
benchmark to assess the quality of a TLS configuration based on 
the state-of-the-art recommendations from various RFCs and 
with respect to the most recently discovered vulnerabilities and 
attacks in the protocol. 

The rating of the evaluation criteria is expressed with grades 
from A to F and composed out of three independent values: 
protocol support (30%), key exchange (30%), and cipher strength 
(40%). Some properties, e.g., support for the RC4 cipher, cap the 
overall grade. Only four participants managed to deploy an A 
grade TLS configuration. B was the most commonly awarded 
grade (15 out of 28). Four participants did not manage to deploy a 
valid TLS configuration in the given time. 

Our qualitative analysis of the think-aloud protocols from our 
lab study yielded a process model for a successful TLS configu-
ration. All participants who managed to deploy a valid configu-
ration in the given time can be mapped to the stages presented in 
this model. The four participants who did not manage to deploy 
TLS in the given time significantly deviate from this model. 

We divide the steps from our model into two phases, a setup 
phase and a hardening phase. The setup phase refers to a set of 
tasks to get a basic TLS configuration, i.e., the service is reach-
able via HTTPS if requested. The hardening phase comprises all 
necessary tasks to get a configuration that is widely considered 
secure with respect to the metrics defined by the Qualys SSL 
Server Rating Guide [5]. Participants who achieved at least a 
basic configuration successfully completed all steps of the setup 
phase, while better-graded configurations completed some 
steps from the hardening phase as well. We identified iterative 
(tool-supported) security testing as a key element for a success-
ful hardening phase since the participants relied on external 
sources to evaluate the quality of their configuration.

Usability Challenges 
With these results, we identified several usability challenges:

◆◆ First, searching for information and finding the right workflow. 
Our participants visited a high number of Web sites and used 
multiple sources of information. The average number of visited 
Web sites was 60, and the most visited pages were the Ubuntu 
wiki and the official Apache documentation. We found that the 
participants jumped between sources that were not compatible 
to each other and could not assess the correctness of the used 
sources. This included outdated recommendations as well as 
incomplete tutorials that only covered, for example, the setup 
phase.
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◆◆ Second, creating a Certificate Signing Request (CSR). The 
creation of a key pair and the CSR is part of the setup phase. We 
found that many participants had problems understanding the 
concept and struggled manually creating the CSR correctly on 
the first try.

◆◆ Third, choosing the appropriate ciphersuites. Ciphersuites 
define the underlying cryptographic primitives used. A sane 
configuration defines a limited set of ciphersuites with strong 
authentication and encryption. This is enabled via one specific 
Apache directive, “SSLCipherSuite,” with the correct values. 
However, a deep understanding of the underlying algorithms is 
necessary in order to make an informed decision. All partici-
pants trusted online sources because of their missing knowl-
edge, which implies that the quality of these sources is crucial.

◆◆ Fourth, strict HTTPS. After finishing a valid HTTPS configura-
tion, most participants tried to enforce HTTPS via redirects 
and HTTP Strict Transport Security (HSTS) as the first step of 
the hardening phase. Most participants were initially confused 
with the default HTTP response when they entered the URL 
without protocol prefix. They spent a significant amount of 
time configuring this step correctly.

◆◆ Fifth, multiple configuration files. All but six participants 
struggled with the configuration file structure, regardless of 
their experience with Apache. Several participants did not un-
derstand how to enable the SSL module or where to configure 
the entry “SSLEngineOn.”

◆◆ Last, finding the right balance between security and compat-
ibility. In our scenario we didn’t specify which level of security 
the participants should deploy but stated they should make it 

as secure as possible. About 15 of the participants expressed 
concerns regarding compatibility when configuring SSL/TLS 
versions, but the majority opted for the more secure options.

Our results reveal that these usability challenges are a serious 
issue to work on, and that they are the main reason for weak con-
figurations. Our results also show that there is a high demand 
for improved tool support of the configuration process and more 
secure default configurations. This would prevent administra-
tors from dealing with mechanisms they cannot fully under-
stand. Fortunately, there are already tools out there. The impact 
of these tools ranges from generating sane configurations, to 
comprehensively changing the TLS ecosystem as a whole. We 
discuss four tools that are all tackling these usability challenges.

Tool Support 
One of the projects with the biggest impact on the TLS eco-
system, especially the long tail, is Let’s Encrypt (letsencrypt.
org), “a free, automated, and open Certificate Authority.” While 
the cost-free issuance of certificates takes away any economic 
reason to not implement HTTPS, and the open design facilitates 
transparency and continuous monitoring, the automated fashion 
of Let’s Encrypt highly improves the usability of certificate 
issuance. This corresponds to the setup phase (the first column 
in the image) of our identified TLS deployment process model. 
All setup phase steps are replaced with a single tool-supported 
step. The certificate issuance is completely automated with the 
ACME protocol, so no further manual input is needed and the 
major Web server software, e.g., Apache, is also integrated. Let’s 
Encrypt changed the TLS ecosystem significantly, with now 
more than 100 million certificates issued.

Figure 1: Schematic representation of a successful workflow
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Conclusion 
Administrators of the long tail of the Internet should some-
times also be seen as users. Some configuration tasks still 
require a deeper understanding of security mechanisms or even 
underlying cryptographic methods. If we want these security 
mechanisms to work, we also have to support administrators in 
enabling them. With this in mind, we should all work on shift-
ing the ecosystem, until even the long tail supports HTTPS so 
that we can finally move on to the Internet where HTTPS is the 
norm. 

Tool support for the second phase—the hardening phase—is also 
quickly improving. For choosing the appropriate ciphersuites 
and associated compatibility issues, Mozilla published their 
Mozilla SSL Configuration Generator [6]. With selected server 
software and a chosen compatibility mode, the tool generates 
a valid and sane configuration. This can easily be copied and 
pasted into the correct server configuration file. Complicated 
decisions are replaced with few more easily understandable 
options. The compatibility level has three profiles: old, interme-
diate, and modern. The tool shows the oldest compatible clients 
upon selection and also adds correct HSTS headers to the con-
figuration. So it also unburdens the use of HSTS.

Further tool support exists for testing the deployed security 
configuration. For publicly reachable domains this enables itera-
tive configuration with repeated security testing until a specific 
grade is reached. The most established testing tool is the Qualys 
SSL Server Test, the same tool we graded the participants’ 
configurations. With Hardenize (hardenize.com) this concept is 
widened to DNS, email, and application security.

In our study, we addressed the ecological validity of our results 
by conducting additional expert interviews with experienced 
security consultants. One expert mentioned the Web server 
software Caddy (caddyserver.com). It comes with a secure TLS 
default configuration and automatically uses Let’s Encrypt to 
retrieve certificates. Initially delivering HTTPS with your soft-
ware is a good example of the paradigm of secure defaults. We 
have to shift this paradigm to other major Web server software.

This tool support, although not yet fully integrated, provides 
important assistance for administrators, but there is still a lot of 
work to do to shift the Internet to HTTPS.

Outlook 
As mentioned, the Firefox telemetry data showed that more 
than 50% of Web pages are loaded over HTTPS. This is an 
enormous success, and the overall trend is definitely pointing in 
the right direction. We see a lot of effort to shift the ecosystem 
towards HTTPS. With TLSv1.3, not only the security but also 
the performance of TLS is increased, making HTTPS even more 
attractive. We see more and more hosting platforms switch-
ing to HTTPS for their customers, which is increasing HTTPS 
usage for the long tail at scale. New upcoming standards, like the 
ACMEv2 standard [7] are improving the automation of certifi-
cate issuance. And the future support of wildcard certificates 
with Let’s Encrypt [8] will form the ecosystem even more.
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In this article, we discuss how we use neural networks to accurately mea-
sure password strength, and how we use this capability to build effec-
tive password meters. First, we show how neural networks can be used 

to guess passwords and how we leveraged this method to build a password 
guesser to better model guessing attacks. We report our measurements of the 
effectiveness of neural networks at guessing passwords, demonstrating that 
they outperform other popular methods of modeling adversarial password 
guessing. We then show how we developed a password guesser that can be 
compressed so that it is practical for client-side use inside a Web page [1]. 
Finally, we describe how we designed and built a password meter, based on 
neural networks, that gives more accurate and helpful guidance to users for 
creating passwords that are resistant to guessing attacks [2].

Passwords are the most common authentication mechanism in use today. We all use pass-
words every day and will likely continue to do so for the foreseeable future. Unfortunately, 
human-chosen passwords often follow predictable patterns. For example: exclamation 
points are at the end; capital letters are at the beginning of passwords; dictionary words, 
well-known phrases, keyboard patterns, and names of people and places are all common. 
Such predictable patterns allow attackers to break into accounts by guessing passwords.

Guessing attacks can take the form of online attacks in which attackers make guesses while 
trying to log in to a live system. Online attacks are sometimes defended against by limit-
ing the rate at which attackers may make guesses against the system. In contrast, in offline 
guessing attacks, attackers can make large numbers of guesses without limits. This com-
monly happens when a database of hashed passwords is stolen, an event that occurs with 
disappointing regularity. Attackers guess candidate passwords and compare them against 
hashed passwords in the database, limited only by the amount of computer resources they 
have. The widespread incidence of password reuse makes such attacks more dangerous 
because attackers who crack a user’s password that was leaked from a stolen database may 
use that cracked password—or common variations of the password—to guess the creden-
tials for that user’s other accounts. A common and effective defense against both online and 
offline guessing attacks is to urge users to create less predictable passwords that are more 
resistant to guessing.

To understand how to guide users to make less guessable passwords, our research group 
has studied methods for modeling how attackers guess passwords. Previous approaches 
for modeling password-guessing attacks include statistical approaches, and tools used in 
adversarial password cracking. Statistical methods, such as Markov models and probabi-
listic context-free grammars, work by deriving statistical properties from lists of training 
passwords. Adversarial password cracking tools, such as John the Ripper and Hashcat, are 
typically used in practice for their ability to crack hashed passwords quickly; often they are 
configured by experts to craft special password cracking rules for specific password sets. 
Prior work from our group has studied these approaches and shown how the combination 
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of multiple automated approaches approximates the ability of professional human experts to 
guess passwords [3]. However, modeling a guessing attack in which attackers can make large 
numbers of guesses often requires servers with tens of CPU cores and with gigabytes of disk 
space for storing models of password guessing. Such models are not practical for giving real-
time feedback to users during password creation; users can’t download gigabytes of data or 
wait days or weeks to get feedback for creating a password.

Due to the challenges of accurately modeling password attacks, most password meters are 
unable to provide data-driven, principled feedback to users during password creation. Meters 
will typically calculate some combination of a variety of heuristics—such as the number 
of special characters used or the length of the password—which often has little correlation 
to the resistance of passwords to guessing attacks [4]. When faced with such meters, users 
often make predictable modifications in order to satisfy the meter’s strength estimate, such 
as adding an exclamation point to the end of their password. However, because attackers are 
also aware of the predictable patterns in password construction, such modifications do little 
to improve the password’s resistance to guessing. In addition, meters are often incapable of 
providing positive advice or giving users suggestions about how to make passwords better, 
instead rating a password as simply “weak” or “fair.”

Designing a Neural Network Guesser
Neural networks are a machine-learning technique that is particularly adept at fuzzy classifi-
cation problems and problems dealing with computer processing of natural language. The 
intuition for our approach was that, because the task of guessing passwords in an adversarial 
attack is conceptually related to generating natural language, neural networks would be well 
suited to our goal of modeling guessing attacks. Recently, the machine-learning community 
has showed how to use neural networks to generate text, which our approach leverages [5]. 
 Generating a password with a neural network involves repeatedly predicting the next 
character of a password to build up the password one character at a time. This process can  
be extended to generate large numbers of probable passwords. During training, the neural 
network is taught to predict the next character when given a real password fragment. The 
neural network can then learn to recognize high-level patterns that often arise in password 
construction, such as keyboard patterns or exclamation points at the end of a password.

We tried many different variations and tunings for training our neural network guesser. 
When training neural networks, there is a large design space of different parameters and 
design decisions to explore for better performance. We experimented with a wide range 
of different parameters including: the number of parameters in the model; the method of 
representing password characters; different recurrent neural-network architectures; using 
different types of training data; and using a technique called transference learning, which 
specializes neural network predictions for different situations. At the end of these experi-
ments, we had a neural-network training methodology that we found was most accurate for 
our application of guessing passwords. Additionally, we used a technique of modeling pass-
word guessing to arbitrarily high numbers of guesses by employing Monte Carlo  methods [6], 
allowing us to accurately model password guessability against nation-states or other 
extremely powerful adversaries who have huge resources for cracking passwords.

When designing our neural-network guessing method, we tested it against the best tunings 
of other methods for guessing passwords. In addition, during development of our neural-
network guesser, we comprehensively tested various different versions of the neural-network 
guesser against each other to find the best method. We measured the performance of our 
guessing approaches both on real passwords collected in recent password leaks and on pass-
words we have collected in our research studies, allowing us to compare the performance of 
guessing methods in a wide variety of password policies and situations. To train our guessing 
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methods in our experiments, we required large numbers of real 
passwords, which we obtained from leaked password lists. In 
total, our data set of passwords contained over 100 million pass-
words from more than 20 password leaks. This huge amount of 
data on real-world passwords allows machine-learning tech-
niques to infer deep insights into password construction and to 
have the predictive power to model common password patterns.

We found that the neural networks guessed passwords more 
accurately than any other individual method. However, while 
our best-performing neural networks often performed close to 
an optimal guessing strategy, the combination of all methods 
including neural networks (MinGuess in Figure 1) performed 
better than just neural networks alone, showing that a combina-
tion of many models is still better than any individual method. 
Nonetheless, if one is limited to only one method for estimat-
ing password strength, neural networks are the most accurate. 
Figure 1 shows a selection of some of our results on guessing 
accuracy for different conditions; the neural network approach 
guesses a larger proportion of passwords over the same number 
of guesses than other methods. This finding holds to various 
degrees across all of our test sets, although we find that neural 
networks are particularly accurate when guessing passwords 
made under the more exotic, stronger password policies, which 
are becoming increasingly common as password guessing abili-
ties increase.

Designing a Client-Side Strength Estimator
Besides increasing the accuracy of existing password strength 
models, we also strove to develop more practical models. Previ-
ous methods for modeling adversarial password cracking require 
large amounts of disk space or bandwidth—hundreds of mega-
bytes or gigabytes—and take hours or days to calculate measures 
of password strength. In contrast, to give real-time feedback 
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to users during password creation, models must be smaller to 
download and give quick results. For this application, we wanted 
a model that was less than one megabyte to download, which is 
roughly half the size of an average Web page. Additionally, in the 
context of real-time feedback, a model must calculate a measure-
ment of password strength within a fraction of a second— ideally 
below the threshold of human recognition, which is roughly 100 ms. 
In addition to these properties, the measurement should be accu-
rate, and the model should run inside of a Web browser, which 
means that JavaScript is the most viable execution platform.

Given the challenges of implementing accurate password-strength 
measurement on resource-constrained clients, it might be 
tempting to use a system architecture where the password model 
is stored on a server and only measurement results are com-
municated to the client. However, in many situations, the user’s 
password should never be sent to the server for security reasons, 
for example, in the case of device encryption software, keys that 
protect cryptographic credentials, or the master password for a 
password manager. Even in cases where the user’s password is 
eventually sent to an external server, using a remote password-
strength measurement mechanism may allow powerful side 
channels based on keyboard timing, message size, and caching 
[7]. For these reasons, we preferred architectures where pass-
word modeling and strength estimation are done entirely on the 
client side. This design decision has the added benefit of being 
easier for Web administrators to deploy.

To summarize our technical approach to meeting these goals:  
we started by training a neural network with fewer parameters—
the features of the model that define how to predict the next 
character. Using this less complex model made the network 
smaller, but did not sacrifice much accuracy compared to our 
best- performing network. Then we reduced the precision of the 
already shrunken neural network’s parameters, again trading off 

(a) Guessing passwords that must be more than 
eight characters

(b) Guessing passwords that are required to be 
more than eight characters long and have a mix 
of character classes

(c) Guessing passwords that are required to be 
more than 12 characters long and have a mix of 
character classes

Figure 1: Comparison of the ability of different password methods to guess passwords. The x-axis of each graph shows the number of guesses made in log 
scale. The y-axis shows the percent of passwords guessed. Higher lines on the graph represent more accurate guessing. “Neural” shows the performance 
of our neural-network approach; “Markov” the Markov model approach; “PCFG” probabilistic context-free grammars; “JTR” John the Ripper; “Hashcat” 
shows the performance of Hashcat; and “MinGuess” shows a combination of all approaches, where a password receives the minimum guess number from 
all approaches. Each graph shows passwords created under a different policy—requiring a different minimum length and different mix of character classes 
(uppercase and lowercase characters, digits, and symbols). 
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situation—for example, notifying users that using capital letters 
at the beginning of the password is a common pattern and does 
not meaningfully improve the strength of their password.

We developed a password meter that achieves these goals. Our 
meter combines the accuracy of our neural-network strength 
measurement with a series of data-driven heuristics that provide 
human-understandable feedback about the user’s password. 
Figure 2 shows an example of our meter in action. Our meter 
uses the neural network to control the bar that shows how strong 
the user’s password is, while data-driven heuristics addition-
ally give the user specific feedback about how to improve their 
password. The meter can also provide a concrete suggestion for 
how to change the password so that it will be stronger. It does 
so by creating several candidate suggestions that are similar to 
the user’s chosen password and then using the neural network 
to gauge their strength. Only those candidate passwords that are 
judged stronger by the network are shown to the user.

We tested whether the meter helps users to create stronger 
passwords. We recruited participants to create a password for a 
hypothetical high-value online account in a variety of different 
conditions—some participants used our meter during password 
creation, some used modified versions of our meter, and some 
did not have the benefit of any meter. Similar methodology has 
been used in prior work by our group for measuring the impact of 
a variety of different conditions on the security and usability of 
human-chosen passwords [8, 9]. 

We found that participants who used the meter created pass-
words that were 44% more resistant to guessing attacks than 
those who did not. Interestingly, we also found that partici-
pants who saw the human-readable suggestions produced even 
stronger passwords than those who only saw the measurement 
of strength. This implies that not only does providing real-time 

space for some accuracy. Finally, we used standard lossless com-
pression methods to further shrink the size of the model, even-
tually reaching a model size of 850 KB. To make our network 
produce low-latency results, we pre-computed an approximate 
mapping for estimating the strength of the password, which was 
sent to the client along with the network. In addition, we cached 
specific intermediate computations, so that the common case, in 
which a character is added to the end of the password, is quicker 
because the strength estimator only needs to update its previous 
computation. We were able to get the average response time to be 
17 ms for this common case. Some of our optimizations sacri-
ficed accuracy for the sake of quicker results or a smaller model; 
we empirically measured the impact that such optimizations 
introduced and found the error rate to be small enough to be 
acceptable for our purposes. In addition, we tuned the network 
so that it was much more likely that we would make safe errors—
underestimating a password’s strength—than unsafe errors.

We compared the accuracy of our client-side strength estimation 
based on neural networks to existing password meters: “zxcvbn” 
and Yahoo’s password meter. zxcvbn, in particular, measures 
password strength using a number of highly tuned heuristics for 
password strength. We found our method of measuring pass-
word strength to be more accurate—correlating more highly 
with password strength measured by simulating a guessing 
attack—than either meter, having between 39% and 83% fewer 
unsafe errors, depending on the meter and the password policy. 
At the same time, our strength measurement also had fewer safe 
errors. In addition, our more principled method of simulating 
adversarial guessing entirely on the client-side has the benefit 
that it can be easily reconfigured—by re-training the neural 
network—for new password policies or new situations. We know 
that certain password sets often have special patterns that are 
unique to that set: for example, passwords for a sports Web site 
may contain more sports terminology than other password sets. 
Our method would be able to be easily retargeted to learn such 
patterns.

Design of a Password Meter
While the development of an accurate client-side strength- 
estimation tool is necessary for a password meter, it is not 
sufficient. There is a gap between a practical measurement of 
strength and providing effective real-time feedback about how 
to make a better password. We wanted to bridge this gap. Our 
main goal was to give human-understandable feedback about 
password creation; our neural-network strength estimation by 
itself can tell the user that a password is weak or strong, but it 
cannot say how to improve the password to be more resistant to 
guessing. To accomplish this, we aimed to give two types of sug-
gestions: first, we wanted to be able to provide concrete sugges-
tions for specific passwords that are stronger; second, we wanted 
to provide users with high-level guidance specific to their exact 

Figure 2: Screenshot of our password meter’s interface. The bar shows 
the strength estimate of the user’s password. The popup dialog shows 
specific password feedback based on the user’s password.
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strength estimates help users make stronger passwords, but also 
that providing actionable suggestions about what users should 
do provides additional benefit.

Conclusion
We showed how neural networks can be used to guess passwords 
and that they can do so more accurately than other methods for 
adversarial password guessing. We also showed how leverag-
ing neural networks can lead to more practical estimations of 
password strength on resource-constrained client machines in 
real time. Finally, we built and tested a password meter, based on 
neural networks, that gives human-understandable feedback and 
guides users to make better passwords. We have released our 
meter as open source software (at https://github.com/cupslab 
/neural_network_cracking and https://github.com/cupslab 
/password_meter) and invite people to use it.
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Bitcoin has become centralized and slow due to the inherent limita-
tions of its blockchain. A number of alternative blockchain designs 
have been proposed to address these issues. Off-chain solutions allow 

for small and frequent transactions to take place over low-tier blockchain 
instances, parallel to and backed by the main blockchain. On-chain solutions 
directly modify the blockchain design to support high performance. We focus 
on the latter and summarize and discuss recent approaches to on-chain scal-
ing of blockchains.

Despite being founded on the ideals of openness and freedom of information, the Internet has 
become increasingly centralized, enabling a small number of big players to control who can 
access information. A number of proposals have emerged to counterbalance this trend such 
that information storage and processing is not concentrated in any single entity. Of these, 
blockchains are particularly promising, capturing the attention of popular media, research, 
and policy communities alike.

A blockchain is an immutable and decentralized database that facilitates transparent and 
auditable management of data. It first gained traction as the underlying technology of Bitcoin 
[8] proposed in 2009, but it has since independently evolved thanks to its properties of resil-
iency, integrity, and transparency. Yet Bitcoin suffers from scalability issues that impede its 
wider adoption. Over the past year, major divisions have emerged in the Bitcoin community 
over how Bitcoin should scale, as blocks of transactions have reached capacity, resulting in 
transaction fees skyrocketing. At the core of the debate is a simple tradeoff between scalabil-
ity and centralization: the bigger the blockchain, the fewer devices will have the capacity to 
store and audit the full blockchain, leading to the network becoming more centralized.

Some argue for using the Bitcoin blockchain as a settlement network for large transactions 
only—with smaller transactions being handled by payment hubs off the blockchain (off-
chain scaling), while others argue for increasing the capacity of the blockchain itself for all 
types of transactions (on-chain scaling). As a result of the fallout, proponents of on-chain 
scaling recently forked the Bitcoin blockchain to create their own network called Bitcoin 
Cash. In this article, we provide an overview of key themes and options for on-chain scaling 
of blockchains.

Functional Components of a Blockchain
A blockchain serves as a decentralized database—or a distributed ledger—representing a 
consensus of synchronized, distributed, and replicated data (called blocks, representing sets 
of transactions). It is internally implemented as a linked list in which pointers to previous 
blocks have been replaced with cryptographic hash pointers (Figure 1). A pointer is simply 
the hash of some information (e.g., the previous block in this case) and serves to identify 
the information, as well as to verify its integrity. Each block in the blockchain contains a 
hash of the previous block and information specific to the current block. The resulting hash 
chain ensures each block implicitly verifies integrity of the entire blockchain before it. Thus, 
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a blockchain acts as a tamper-evident log where data can be 
appended to the end of the log, and tampering with previous 
data in the log is detectable. A blockchain has two key functional 
components: transaction validation and extending the blockchain, 
which we discuss individually.

Transaction Validation
A transaction specifies some transformation on the state of the 
ledger. These transactions, subject to passing validity and verifi-
cation checks, are included in a candidate block (a set of transac-
tions) to be appended to the blockchain. As a concrete example, 
we describe a typical (simplified) Bitcoin transaction involving 
transfer of money from payer(s) to payee(s). The payers and 
payees are identified by their public keys, and the payer digitally 
signs the transaction, involving value they control encoded in 
previous blocks of the blockchain. Nodes in the Bitcoin network 
must perform a set of checks before accepting a transaction 
as valid according to the rules of the network. First, they must 
check that the transaction is well-formed. Second, they must 
verify that the payer is authorized to conduct this transaction by 
checking that its digital signature corresponds to the public key 
of the payer. Third, the nodes must verify that the sum of outputs 
is lower than the sum of inputs—payers cannot pay out more 
than they own, but a transaction fee can be included in the pay-
ment. Finally, nodes must ensure that none of the inputs is being 
double-spent. This can be verified by traversing back in the 
blockchain to when the input value was created, and then tra-
versing forward all the way to the current transaction—ensuring 
along the way that the input has not been previously spent.

Extending the Blockchain
In reality, transaction outputs (e.g., X bitcoins) have no physical 
existence: the fact that Bob owns a transaction output cor-
responds to the fact that a majority of the nodes believe this to 
be the case. Agreement between nodes on how to extend the 
blockchain is reached through a collaborative process called 
consensus.

Consensus. The problem of consensus in the presence of faulty 
or malicious nodes has seen extensive study in the distributed 
systems community, long before it was revisited in the context 

of blockchains. In a network with n honest nodes that each 
receive input values and share them with rest of the network, 
the consensus protocol enables agreement between all n honest 
nodes on the set of input values generated by honest nodes. In the 
Bitcoin context, where nodes broadcast transactions as part of 
a peer-to-peer (p2p) network, nodes need to reach consensus on 
exactly which transactions took place and in what order—that is, 
the nodes must agree on the state of the blockchain.

Forks. Consensus is challenging because nodes might have dif-
ferent views of the blockchain ( forks) due to latency in propa-
gation of transactions over the p2p network, nodes randomly 
failing, and malicious nodes trying to suppress valid transac-
tions and push invalid transactions to the blockchain. Forks defy 
consensus, so a mechanism is needed to resolve conflicts and get 
a majority of the nodes to agree on the state of the blockchain.

Leader. Consensus protocols typically rely on a leader. The 
leader is responsible for coordinating with other nodes to reach 
consensus, and for appending a final, committed value to the 
blockchain. The leader is usually effective only for a period of 
time called an epoch, after which or upon a fault, a new leader 
is elected. A crucial property of a leader is that it should behave 
honestly. This is important because even though a blockchain 
is tamper-evident by design, appending bad blocks to the 
blockchain will likely result in forks leading to wasted system 
resources in getting nodes to re-converge to a previous valid 
blockchain view. Honest leader behavior is usually enforced via 
incentivization and auditability.

Figure 2 shows visual representations of some of these concepts, 
which are later used to explain various design themes.

Bitcoin and Its Scalability Issues
The advent of Bitcoin in 2009 sparked interest in blockchains, 
the technology that lies at its foundation. Being the predecessor 
of the myriad blockchain variations that subsequently emerged, 
it is useful to understand the blockchain scalability problem in 
the context of Bitcoin.

The Bitcoin Blockchain. Bitcoin is a p2p network where any 
node can join and become part of the network. If a node receives 

Figure 2: Legend used in the figuresFigure 1: A blockchain is implemented as a linked list of hash pointers.
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a new block, it broadcasts it to rest of the network (Figure 3). 
While all nodes listen to and broadcast blocks, only leader nodes 
can append information to the blockchain. To stop dishonest 
leaders from bringing the system to a stall—for example, by 
creating frequent forks—the leader for each epoch is chosen ran-
domly via proof-of-work. This involves solving a hash puzzle—
also called mining, which is why Bitcoin leaders are referred to 
as miners. If a miner gets lucky by finding a solution to the hash 
puzzle, it proposes the next block to append to the blockchain. 
To incentivize miners to solve hash puzzles and propose next 
blocks, successful miners are rewarded by allowing them to pay 
some amount to themselves (a block reward, which diminishes 
over time) or by keeping some part of the transaction output 
amount as the transaction fee.

Blockchain Scalability. Two metrics are directly related to 
blockchain scalability: transaction throughput (the maximum 
rate at which the blockchain can process transactions) and 
latency (time to confirm that a transaction has been included 
in the blockchain). While previous work has identified addi-
tional metrics [4], throughput and latency are bottleneck issues 
and more challenging to address from a research perspective. 
Bitcoin’s transaction throughput is a function of its block size 
and inter-block interval. With its current block size of 1 MB 
and 10 minute inter-block interval, the maximum throughput is 
capped at about seven transactions per second; and a client that 
creates a transaction has to wait for at least 10 minutes on aver-
age to be sure that the transaction is included in the blockchain. 
In contrast, mainstream payment-processing companies like 
Visa confirm transactions within a few seconds and have a high 
throughput of up to 24,000 transactions per second [9]. 

Current research is focused on developing solutions to signifi-
cantly improve blockchain performance while retaining its 
decentralized nature. Reparametrization of Bitcoin’s block size 
and inter-block interval can improve performance to a lim-
ited extent—estimated by a recent study [4] at 27 transactions 
per second and 12 seconds, respectively. However, significant 
improvement in performance requires fundamental redesign of 
the blockchain paradigm.

Redesigning Blockchains for Scalability
We now take a look at key design schemes that have been devel-
oped to improve blockchain scalability. Our scope is restricted 
to approaches targeting the blockchain core design (on-chain 
solutions) rather than techniques that delegate trust to parallel 
off-path blockchain instances such as sidechains [1] (off-chain 
solutions). The list of themes and example systems is not meant 
to be comprehensive but, rather, indicative of some major ways 
in which this subject has been approached, and to provide a high-
level roadmap for future research efforts. Figure 2 shows the 
basic building blocks of the design themes that we discuss in the 
following sections.

Multiple Blocks per Leader
Bitcoin-NG [5] shares Bitcoin’s trust model but decouples leader 
election (performed randomly and infrequently via proof-of-
work) from transaction serialization (Figure 4). However, unlike 
Bitcoin where the leader can only propose one block to append 
to the blockchain, Bitcoin-NG divides time into epochs, and 
a leader can unilaterally append multiple transactions to the 
blockchain for the duration of its epoch, which ends when a new 
leader is elected. There are two kind of blocks in Bitcoin-NG: 
keyblocks and microblocks. Keyblocks contain a solution to the 
puzzle and are used for leader election. Keyblocks contain a 
public key that is used to sign subsequent microblocks generated 
by the leader. Every block contains a reference to the previous 
microblock and keyblock. A fee is distributed between the cur-
rent leader (40%) and the next leader (60%). 

Similar to Bitcoin, forks are resolved by extending the longest 
branch aggregated over all keyblocks. Note that microblocks do 
not contribute to the length of a branch since these do not con-
tain proof-of-work. To penalize a leader that creates forks in the 
generated microblocks, a subsequent leader can insert a special 
poison transaction after its keyblock that contains the header 
of the first block in the pruned branch as a proof-of-fraud. This 
invalidates the malicious leader’s reward, a fraction of which is 
paid to the reporting leader. Forks can also occur when a new 
leader has been elected but the previous leader has not yet heard 

Figure 3: The Bitcoin blockchain model Figure 4: Multiple blocks per leader Figure 5: Collective leaders
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about it and continues to generate microblocks. However, such 
forks are resolved as soon as the announcement of the new leader 
election reaches all the nodes.

Collective Leaders
This scheme employs multiple leaders to collectively and quickly 
decide if a block should be added to the blockchain (Figure 5). 
ByzCoin [6] replaces Bitcoin’s probabilistic transaction con-
sistency guarantees with strong consistency by extending 
Bitcoin-NG (see preceding section) to achieve high transaction 
throughput. This has the advantage that a transaction submitted 
by a client will be added to the blockchain, and the blockchain 
remains fork-free since all leaders instantly agree on block valid-
ity. ByzCoin modifies how Bitcoin-NG generates keyblocks: a 
group of leaders, rather than a single leader, generates a keyblock 
followed by microblocks. The leader group is dynamically formed 
by a window of recent miners. Each miner has voting power 
proportional to the number of mining blocks it has in the current 
window, which is its hash power. When a new miner solves the 
puzzle, it becomes a member of the current leader group, which 
moves one step forward, ejecting the oldest miner. ByzCoin uses 
the same incentive model as Bitcoin, but the remuneration is 
shared between members of the leader group in proportion to 
their shares.

The leader group is organized into a communication tree where 
the most recent miner (the leader) is at the root. The leader runs 
a modified version of the Practical Byzantine Fault Tolerance 
(PBFT) protocol [3] with linear messaging complexity to gener-
ate a collective signature that proves that at least two-thirds of 
the consensus group members witnessed and attested the micro-
block. A node in the network can verify in O(1) that a microb-
lock has been validated by the consensus group. This design 
addresses a limitation of Bitcoin-NG where a malicious leader 
can create microblock forks: in ByzCoin this would require a 
two-thirds majority of leader group members to be malicious. 
Moreover, Bitcoin-NG suffers from a race condition where an old 
leader who has not yet heard about the new leader may continue 
to incorrectly mine on top of older microblocks. In ByzCoin, 
leader group members ensure that a new leader builds on top of 
the most recent microblock.

Parallel Blockchain Extension

As shown in Figure 6, in this approach multiple leaders extend 
in parallel different parts of the blockchain (e.g., represented as a 
graph of transactions). Bitcoin has a linear process of extending 
the blockchain: miners try to solve the puzzle, and the one that 
finds a solution appends the next block. The framework pro-
posed by Boyen, Carr, and Haines [2] parallelizes this process by 
forgoing the concepts of “blocks” and “chain” in favor of a graph 
of cross-verifying transactions. Each transaction validates two 

previous transactions (its parents) and contains some payload 
(e.g., cryptocurrency) and proof-of-work.

A transaction can be potentially validated by multiple children 
nodes. Additionally, each transaction also carries a reward to 
be collected by the transaction that validates it. The value of the 
reward decreases as more nodes directly or indirectly validate 
it, so new nodes have more incentive to validate recent transac-
tions. The system has been shown to converge, meaning that 
at some point there is a transaction that connects to (and thus 
implicitly verifies) all transactions before it. As a result of this 
graph structure, miners can extend different branches of the 
transactions graph in parallel. Normal (non-miner) nodes in the 
system verify transactions as they receive them. In addition to 
standard checks on the correctness of proof-of-work and struc-
tural validity of the transaction and its parents, the node also 
checks that the transaction is not a double-spend by accepting as 
valid the well-formed transaction that has the largest amount of 
work attached to it.

Sharding Transactions
Elastico [7] partitions nodes into groups called committees, and 
each committee manages a subset (shard) of transactions. In 
Figure 7, the top shard handles the first 10 transactions, while 
the bottom shard handles the next 10. Within a committee, 
nodes run a Byzantine consensus protocol (e.g., PBFT) to agree 
on a block of transactions. If the block has been signed by enough 
nodes, the committee sends it to a final committee. The final 
committee collates sets of transactions received from com-
mittees into a final block, runs a Byzantine consensus protocol 
between its members to get agreement on extending the block-
chain, and broadcasts the appended block to other committees. 

Figure 6: Parallel blockchain extension
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The system operates in epochs: the assignment of nodes to com-
mittees is valid only for duration of the epoch. At the end of the 
epoch, the nodes solve a puzzle seeded by a random string gener-
ated by the current final committee, and sends the solution to its 
next final committee. As a result, in each epoch a node is paired 
with different nodes in a committee and manages a different set 
of transactions. The number of committees scales linearly to 
the amount of computational power available in the system, but 
the number of nodes within a committee is fixed. Consequently, 
as more nodes join the network, the transaction throughput 
increases without adding to latency, since messages needed for 
consensus are decoupled from computation and broadcast of the 
final block to be added to the blockchain.

Conclusion
We framed the blockchain scalability problem and presented 
an overview of key approaches for on-chain scalability of 
blockchains. This revealed design patterns that can be used 
to compose scalable blockchains. Indeed, some patterns have 
already been used in this way: ByzCoin builds collective leader-
ship on top of Bitcoin-NG’s multiple-blocks-per-leader design as 
discussed. Collective leadership is a useful primitive to enforce 
honest behavior (and to avoid forks) by spreading out account-
ability and stakes across multiple leaders. Sharding speeds 
up transaction throughput by partly delegating consensus to 
smaller groups where classical BFT protocols can be effectively 
run, and making a leader group (that potentially also runs a BFT 
consensus protocol among leaders) responsible for extending 
the blockchain. It might be possible to replace consensus in the 
leader group with collective leadership, which has lower mes-

saging complexity than the original PBFT protocol and a higher 
degree of trust. The idea of parallel blockchain extension can be 
combined with sharding such that the blockchain exists as par-
tially connected trees on separate shards. Blocks that are part 
of separate trees are connected only when there is a transaction 
that consumes blocks managed by different shards.

Mining centralization is a well-known problem in Bitcoin: 
the biggest miners have built up a large advantage in how the 
blockchain grows. Systems like Bitcoin-NG and ByzCoin that 
inherit Bitcoin’s mining-based consensus suffer from the same 
problem of centralization and favoring the biggest miners. 
Broadly, there has been a shift from Bitcoin’s slow mining-based 
leader election to novel compositions or variations of classical 
consensus protocols. The latter cannot be directly employed in 
blockchains as these were originally written for a LAN setting, 
and their throughput decreases with the number of nodes. It will 
be interesting to see what new designs emerge and how existing 
consensus protocols are repurposed to operate in a decentral-
ized WAN setting and in various threat models. This research 
direction revitalizes the field of Byzantine consensus and has 
the potential to make it relevant to widely deployed peer-to-peer 
systems.
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An Interview with Peter G. Neumann
R I K  F A R R O W

I first encountered Peter G. Neumann at the PC party for Security in 
Washington, DC, back around 2000. Peter was playing a grand piano and 
leading a group in singing songs from Gilbert and Sullivan, Tom Lehrer, 

and more. I later learned that Peter can play many more instruments.

Peter and I met for lunch in 2007 in Palo Alto, not far from where he works at what used to 
be Stanford Research Institute and is now SRI International. I was going to speak at Apple 
and Google over the following week about the failure of current measures that were supposed 
to be making our systems more secure. Peter encouraged me, then regaled me with stories 
about the Multics design.

Peter has been involved in security since 1965, starting with his work on the Multics file 
system and overall Multics development, continuing with a provably secure operating sys-
tem (PSOS). His current project involves the CHERI (Capability Hardware Enhanced RISC 
Instructions) hardware-software system co-design [1]).

Rik Farrow: Part of what got me thinking about you was your story about part of the design of 
the Multics file system: getting a small group of people in a room with whiteboards and com-
ing up with a design.

Peter G. Neumann: The first real get-together of the Multics team (MIT, Bell Labs, and 
GE-then-Honeywell) took place at an AT&T training center in Hopewell, NJ, the week of 
Memorial Day 1965. Fernando Corbató (Corby, who led the CTSS effort), Bob Daley (who 
created the CTSS file system), Stan Dunten (who had done the CTSS I/O), Jerry Saltzer 
(just about to complete his PhD thesis, “Traffic Control in a Multiplexed Computer System,” 
1966), and—inspirationally—Ted Glaser from MIT (co-designer with John Couleur of the 
really innovative hardware; former NSA, later head of the CS Department at Case Western) 
and his dog, and Vic Vyssotsky, Joe Ossanna, and me from Bell Labs (BTL). We discussed the 
emerging independently protectable segmentation hardware architecture, the desiderata for 
the operating system (segment descriptors, paging, and the file system), and planning for the 
five Fall Joint Computer Conference papers for Las Vegas in 1965. Bob Fano and Bell Labs 
VP Ed David (later Nixon’s Science Advisor) were assigned the introductory paper, and Bob 
Daley and I the file system design—which largely emerged over the summer. The papers are 
all on multicians.org, maintained by Tom Van Vleck.

Ted was blind since age 12 but the most far-sighted person I have ever known. His impact on 
Multics was holistic and enormous. The first day of our week was in fact Memorial Day, and 
we had to find a local restaurant that was open for lunch. The only one we could find would 
not allow Ted’s wonderful German Shepherd into the restaurant, but we finally talked them 
into setting up tables outside.

RF: What happened with Multics? I know Multics has continued to be used from visiting the 
multicians.org site, but my recollection is that the project fell apart because of disagreements 
between the various parties.
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PGN: Bell Labs dropped out of the Multics development in 1969, 
when AT&T upper management realized that its declared intent 
that Multics would replace all computers at Murray Hill, Holm-
del, Whippany, and Indian Hill could not be fulfilled on time.

Ken Thompson had joined BTL in 1967, and immediately 
observed that the symbolic name scheme (with dynamic linking 
to descriptor entries) for the file system that Bob Daley and I had 
designed would be great for input-output, which triggered a very 
nice redesign of the original Multics I/O system. As a result of 
Bell Labs bailing on Multics, Ken found a PDP-7 that no one was 
using. I remember one day when Ken came in at noon for lunch 
with Joe Ossanna and me, and said that he had just written a 
thousand-line one-user OS kernel, and I suggested he should use 
all of his Multics experience on multiuser multiprogramming 
to extend his kernel. The next day he came in with another 1000 
lines. That then led to Unics (the castrated one-user Multics, so-
called due to Brian Kernighan) later becoming UNIX (probably 
as a result of AT&T lawyers).

Multics development and maintenance continued for many 
years after that at MIT and at the Honeywell CISL office nearby 
in Cambridge. Charley Clingen headed the Honeywell Multics 
group, and Tom Van Vleck was heavily involved in Multics from 
1966 at MIT and later moved over to Honeywell. The last Multics 
installation, a five-processor multiprocessor configuration, ran 
until 2000.

In the early 1970s there was even an effort that retrofitted 
multilevel security into Multics, which required a little jig-
gling of ring 0 and ring 1. I was a distant advisor to that (from 
SRI), although the heavy lifting was done by Jerry Saltzer, Mike 
Schroeder, and Rich Feiertag, with help from Roger Schell and 
Paul Karger.

The Multics hardware-software effort was seminal in pioneer-
ing Jack Dennis’s notion of segmentation, with hardware-
supported paging, dynamic linking, a hierarchical file system, 
ring structures (control hierarchies), solving the buffer overflow 
problem, execute-only code, pure procedure sharing, innova-
tive file backup, and lots more. The buffer overflow problem was 
solved by making everything outside of the active stack frame 
not executable, and enforcing that in hardware.

RF: Can you tell us about your work on Provably Secure Operat-
ing System for the NSA?

PGN: Multics had a considerable influence on SRI’s Provably 
Secure Operating System (PSOS [2]), for which the security-rel-
evant hardware and software functionality was formally speci-
fied in a common language that we created (SpecIAL), primarily 
by Larry Robinson and Karl Levitt. The PSOS architecture is an 
early example of a hierarchically designed hardware-software 
system, in which each successive layer could depend only on 

lower layers (somewhat akin to Dijkstra’s THE system [3]), but 
where the hardware enabled an operation at an OS or application 
layer to be executed efficiently as a single instruction after the 
descriptor table and page tables were in place. I worked on PSOS 
from 1973 until 1980 under a contract from the NSA. Three more 
years of that project supported the Goguen-Meseguer work on 
noninterference and early work on SRI’s PVS formal verification 
system.

In turn, Multics and PSOS had significant influence on the 
CHERI that we are currently developing. In addition, the 
CHERI hardware supports some of the security concepts from 
the more recent Capsicum operating system [4])—notably, its 
hybrid architecture and the ability to enforce least privilege and 
compartmentalization.

RF: I’ve been reading the PSOS retrospective paper [2] and am a 
bit confused about what a capability is. PSOS capabilities appear 
associated with unique user IDs with a set of access rights. 
These can be copied, with restrictions, and appear to be created 
with hardware monotonicity that would ensure that rights could 
never increase.

I think I am confused because I associate capabilities with both 
an application and a user ID, so that a user ID doesn’t have the 
same set of capabilities for all applications she may run. Perhaps 
you could explain?

PGN: You are indeed confused, perhaps because each capability 
system—in the past, present, and the future—tends to be slightly 
if not fundamentally different. PSOS capabilities were different 
from others because the ID of the capability was unique for the 
lifetime of that processor, and could be stored in a Multics-like 
directory for access via a symbolic name. There was no user 
ID associated, because capabilities could be shared—subject to 
the propagation limits. This was appropriate for the researchy 
hardware-software spec, as it was conceptually simple but not 
very practical.

CHERI capabilities [1] are more local in nature rather than 
global potentially for every user and every process. They are fat 
pointers, which include bounds and permissions, along with a 
nonforgeable tag to ensure nonforgeability of the capabilities. 
One common thread between PSOS and CHERI is that both 
have object-oriented capabilities with either default types (for 
virtual memory) or user-defined types (for objects).

The huge difference is that CHERI solves the legacy compatibil-
ity problem and allows crapware to coexist safely with very trust-
worthy operating systems, applications, compilers, and so on.

RF: The fat pointers that I know about are part of the D language 
extensions to C [5] and include a range with every pointer to 
prevent buffer overflow attacks. Can you tell me how pointers in 
CHERI are different?
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PGN: Conventional fat pointers are typically virtual addresses 
that have been extended with additional metadata such as 
bounds and permissions. CHERI’s fat-pointer capabilities add 
notions of sealing and unsealing (for strongly typed object capa-
bilities), provenance (ensuring that new capabilities are properly 
derived from other legitimate capabilities), and monotonicity.

RF: In the PSOS paper, you describe the system as hierarchically 
layered, but also write that such multi-layer designs aren’t found 
in contemporary systems. Could you explain the importance of 
layering and perhaps why it’s not found in systems today?

PGN: Layered assurance is premised on formal analyses that can 
be built up layer by layer. Dijkstra’s THE system [3] had informal 
proofs that there could be no deadlocks between layers, because 
the locking strategy at each layer involved purely hierarchical 
dependencies. Years later I asked Nico Habermann [6] about 
that. He said they had actually discovered a hitherto undetected 
deadlock within a single layer, but never any that involved mul-
tiple layers.

The Multics ring structure enabled up to eight rings, although 
rings 0, 1, 2 were the primary ones that were used by the system 
itself with ring 4 used by user software. Outer rings were left for 
applications. Nothing that happened in ring 1 could ever clobber 
ring 0, ring 2 could never clobber lower rings, and so on. Many 
systems have a layered structure, but typically it is only kernel 
and user—that is, only two layers. CHERI could implement many 
layers easily using the capability mechanism, either implicitly or 
explicitly.

PSOS had 17 layers in the conceptual architecture. Layer zero 
had two instructions out of which everything else was built in 
initialization—creating a new capability with desired privileges 
and creating a copy of an existing capability with at most the 
same privileges. That’s CHERI’s monotonicity property (which 
includes privileges and bounds that may never increase). The low-
est 7 PSOS layers were intended to be implemented in hardware.

The Multics ring property is conceptually similar to the Biba 
multilevel integrity dependence property—that each layer (or 
in Biba’s case, integrity level) must depend only on itself and 
on lower layers, at least in principle. There are of course some 
trusted exceptions involving calling into a lower ring—and then 
returning without acquiring any lower-layer privileges. CHERI 
explicitly introduces the principle of intentionality to counter 
the fact that calling something else must not allow the something 
else to confer properties elsewhere or usurp privileges it does not 
have. This addresses so-called confused-deputy attacks.

As you can see, this all fits together—from Multics to PSOS and 
Capsicum to CHERI, with deep awareness from my Cambridge 
colleagues on all of the other attempts at past and contempora-
neous capability-based systems, and proactively trying to avoid 

the pitfalls of the past while adopting other ideas that might 
work in this context (such as capabilities that act as fat pointers). 
Robert Watson in particular has an absolutely uncanny under-
standing of all of this, and someone without whom we could have 
never gotten this far so quickly in developing CHERI.

RF: This is making sense to me. I didn’t realize that the lower 
seven layers of PSOS were supposed to be done in hardware.

I’m glad you brought up rings, as people widely misunderstand 
them today. I did want to mention that virtualization actu-
ally has meant the creation of more rings, such as “ring -1” for 
hypervisors.

What I was wondering is whether CHERI provides a model for 
capabilities that would be useful for people to learn about today? 
I haven’t finished reading the technical report yet, but it seems 
like capabilities are a bit like container technology, in that capa-
bilities are used to control access to various namespaces, very 
much like Linux containers.

How closely does CHERI mimic the systems that Multics ran 
on? I realize that both the GE 645 and CHERI make use of seg-
ment registers as hardware support for isolation. That seems 
different from the capabilities discussed in Capsicum.

PGN: PSOS used ideas from Multics. CHERI used ideas both 
from Multics and from PSOS and Capsicum. But Capsicum is 
software only and relies on potentially untrustworthy hardware. 
We rectified that in CHERI, which adopted the hybrid model of 
Capsicum, but designed hardware that would greatly enhance 
the trustworthiness of operating systems and applications. 
It also advances operating systems beyond Capsicum. Try to 
understand the CHERI papers [7] as new stuff, although each 
paper states how we differ from the past. The tech report will 
help a lot. The report is long but well structured. It includes a 
chronological history of how we got to where we are, as well as 
how it relates to other efforts. All of this should be extraordi-
narily valuable for learning about the security pitfalls that can 
be overcome through enlightened hardware and total-system 
architecture.

RF: Does CHERI provide the same or better support in hardware 
than did systems running Multics? Does CHERI’s hardware 
support extend beyond segment registers, for hardware that 
provides real isolation for different capabilities? Those are ques-
tions I’d like you to answer.

PGN: The Multics hardware was designed by John Couleur and 
Ted Glaser. John was a pure hardware person. Ted was someone 
who got John to build independently protectable segmentation 
into the hardware, with a deep understanding of how the operat-
ing system and compilers might exploit it for paging and shared 
pure procedure, as well as for security, reliability, robustness, 
resilience, and more.
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The CHERI hardware ISA began with an open-source MIPS 
64-bit ISA formal spec (developed by Cambridge), and added 
capability instructions and capability registers. It represents a 
complete clean-slate hardware-software co-design. CHERI has 
proceeded iteratively, with a few very minor but useful additions 
or refinements of particular instructions over the past seven 
years because of better understanding of the operating-system 
and compiler needs.

CHERI can do anything Multics could do—segmentation, pag-
ing, dynamic linking, ring-structured software—and much more 
(high-assurance fine-grained access controls, fine- and coarse-
grained compartmentalization, e.g., within a given application 
or within an OS, and among all of the different applications, 
virtual partitions and more). We believe that we will soon have 
some viable approaches to the active device input-output direct 
memory access problems. The Multics General Input/Output 
Controller (GIOC) had that problem in spades, because the GIOC 
needed absolute memory addresses, bypassing all segmentation, 
paging, and memory protection. CHERI hopes to extend the 
reach of the capability-based protection to I/O and embedded 
active devices and microcontrollers.

A big difference between Multics and CHERI development is 
that the Honeywell 645 was pretty much frozen early in the 
hardware design. Getting the operating-system dynamic linking 
to work with the hardware took several iterations, and might 
have been abetted by hardware improvements that were not 
available. On the other hand, the CHERI ISA has been fluid 
and able to respond to the needs of software and compilers, as 
we increasingly learned how to take advantage of the CHERI 
capability architecture—which is somewhat different from most 
of the predecessor capability systems. Various instructions were 
added along the way to simplify software development. CHERI 
also adopted the PSOS idea of capabilities for typed objects in 
hardware (noted above), which was not possible in Multics.

There is considerable detail that we have glossed over, and other 
efforts such as microkernel operating systems, application trust-
worthiness, and the use of formal methods to ensure that the 
hardware ISA satisfies the required trustworthiness properties 
and principles. In addition to [1], see [8] and [9].
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ter to local applications. However, existing proposals call for new 
architectures and/or new programming models, making them 

infeasible. We have developed a practical memory disaggregation solution, 
Infiniswap, which is a remote memory paging system for clusters with low-
latency, kernel-bypass networks such as RDMA. Infiniswap opportunisti-
cally harvests and transparently exposes unused memory across the cluster 
to unmodified applications by dividing the swap space of each machine into 
many chunks and distributing them to unused memory of many remote 
machines. For scalability, it leverages the power of many choices to perform 
decentralized memory chunk placements and evictions. Applications using 
Infiniswap receive large performance boosts when their working sets are 
larger than their physical memory allocations. 

Motivation
Modern operating systems (OSes) provide each application with a virtual memory address 
space that is much larger than its physical memory allocation. Whenever an application 
addresses a virtual address whose corresponding virtual page does not reside in the physical 
memory, a page fault is raised. If there is not enough space in the physical memory for that 
virtual page, the virtual memory manager (VMM) may need to page out one or more in-mem-
ory pages to a block device, which is known as the swap space. Subsequently, the VMM brings 
the missing page into the physical memory from the swap space; this is known as paging in.

Performance Degradation from Paging
Due to the limited performance of traditional swap spaces—typically, rotational hard disks—
paging in and out can significantly affect application performance. To illustrate this issue, 
we select four memory-intensive applications: (1) a standard TPC-C benchmark running on 
the VoltDB in-memory database; (2) two Facebook-like workloads running on the Mem-
cached key-value store; (3) the TunkRank algorithm running on PowerGraph with a Twitter 
data set; and (4) GraphX running the PageRank algorithm in Apache Spark using the same 
Twitter data set.

We run each application in its own container with different memory constraints. x% in the 
X-axes of Figure 1 refers to a run inside a container that can hold at most x% of the applica-
tion’s working set in memory, and ×< 100 forces paging in from/out to the machine’s swap 
space.

Figure 1 shows significant, non-linear impact on application performance due to paging. For 
example, a 25% reduction of memory results in a 5.5× and 2.1× throughput loss for VoltDB 
and Memcached, respectively; PowerGraph and GraphX worsen marginally. However, 
another 25% reduction makes VoltDB, Memcached, PowerGraph, and GraphX up to 24×, 17×, 
8×, and 23× worse, respectively. These gigantic performance degradations reflect the poten-
tial benefits that an efficient memory disaggregation system can deliver.
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Characteristics of Memory Imbalance
Memory utilization is imbalanced across machines in a cluster. Although some machines 
are under heavy memory pressure, others in the same cluster can still have unused memory. 
Causes of imbalance include placement and scheduling constraints [3, 4] and resource frag-
mentation during packing [8]. To understand the presence of memory imbalance in clusters 
and corresponding opportunities, we analyzed traces from two production clusters: (1) a 
3000-machine data analytics cluster (Facebook) and (2) a 12,500-machine cluster (Google) 
running a mix of diverse short- and long-running applications. 

Presence of Imbalance. We measured memory utilization imbalance by calculating the 
99th-percentile to the median usage ratio over 10-second intervals (Figure 2). With a perfect 
balance, these values would be 1. However, we found this ratio to be 2.40 in Facebook and 
3.35 in Google more than half the time; meaning, most of the time, more than half of the clus-
ter aggregate memory remains unutilized.

Temporal Variabilities. Although skewed, memory utilizations remained stable over short 
intervals, which is useful for predictable decision-making when selecting remote machines. 
We observed that average memory utilizations of a machine remained stable for smaller 
durations with very high probabilities. For the most unpredictable machine in the Facebook 
cluster, the probabilities that its current memory utilization from any instant will not change 
by more than 10% for the next 10, 20, and 40 seconds were 0.74, 0.58, and 0.42, respectively. 
For Google, the corresponding numbers were 0.97, 0.94, and 0.89, respectively.

The presence of memory imbalance and its temporal variabilities suggest opportunities for 
harvesting unused memory across a cluster by memory disaggregation.

Infiniswap Overview
Infiniswap is a decentralized memory disaggregation solution for clusters with low-latency, 
kernel-bypass networks such as RDMA. The main goal of it is to efficiently expose all of a 
cluster’s memory to user applications. To avoid modifying existing applications or OSes, 
Infiniswap provides remote memory to local applications through the already-existing pag-
ing mechanism.

Infiniswap has two primary components—Infiniswap block device and Infiniswap  daemon—
that are present in every machine and work together without any central coordination 
(Figure 3).
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Figure 1: For modern in-memory applications, a decrease in the percentage of the working set that fits in memory often results in a disproportionately larger 
loss of performance. This effect is further amplified for tail latencies. All plots show single-machine performance and the median value of five runs. Lower 
is better for the latency-related plots (lines), and the opposite holds for the ones (bars). Note the logarithmic Y-axes in the throughout-related latency/
completion time plots.
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The Infiniswap block device exposes a conventional block device 
I/O interface to the virtual memory manager (VMM), which 
treats it as a fixed-size swap partition. The entire storage space 
of this device is logically partitioned into fixed-size chunks 
(“ChunkSize”). A chunk represents a contiguous region, and it 
is the unit of remote mapping and load balancing in Infiniswap. 
Chunks from the same block device can be mapped to multiple 
remote machines’ memory for load balancing. The VMM stores 
and retrieves data from the Infiniswap block device at page 
granularity. All pages belonging to the same chunk are mapped 
to the same remote machine. On the Infiniswap daemon side, a 
chunk is a physical memory region of ChunkSize that is mapped 
to and used by an Infiniswap block device as remote memory.

Infiniswap consults the status of remote memory mapping to 
handle paging requests. If a chunk is mapped to remote memory, 
Infiniswap synchronously writes a page-out request for that 
chunk to remote memory using RDMA WRITE, while writing it 
asynchronously to the local disk. If it is not mapped, Infiniswap 
synchronously writes the page only to the local disk. For page-in 
requests, Infiniswap reads data from the appropriate source; it 
uses RDMA READ for remote memory. 

The Infiniswap daemon only participates in control plane activi-
ties. It (1) responds to chunk-mapping requests from Infiniswap 
block devices; (2) pre-allocates its local memory when possible 
to minimize time overheads in chunk-mapping initialization; 
and (3) proactively evicts chunks, when necessary, to ensure 
minimal impact on local applications. All control plane commu-
nications take place using RDMA SEND/RECV.

Scalability. Infiniswap leverages the well-known power of 
choices techniques [6, 7] during both chunk placement and 
eviction. The reliance on decentralized techniques makes 
Infiniswap more scalable by avoiding the need for constant coor-
dination, while still achieving low-latency mapping and eviction.

Fault Tolerance. With the decentralized approach, Infiniswap 
does not have a single point of failure. It considers unreach-
ability of remote daemons (e.g., due to machine failures, daemon 
process crashes, etc.) as the primary failure scenario. If a remote 
daemon becomes unreachable, the Infiniswap block device relies 
on the remaining remote memory and the local backup disk. If 
the local disk also fails, Infiniswap provides the same failure 
semantic as of today.

Efficient Memory Disaggregation via Infiniswap 
Block Device
An Infiniswap block device logically divides its entire storage 
space into multiple chunks of fixed size (ChunkSize). Using a 
fixed size throughout the cluster simplifies chunk placement and 
eviction algorithms and their analyses. 

Figure 3: Infiniswap architecture. Each machine loads a block device as a 
kernel module (set as swap device) and runs an Infiniswap daemon. The 
block device divides its storage space into chunks and transparently maps 
them across many machines’ remote memory; paging happens at page 
granularity via RDMA.

Figure 4: Infiniswap block device uses power of two choices to select 
machines with the most available memory. It prefers machines without 
any of its chunks over those that have chunks. In this way, its chunks can 
be distributed across as many machines as possible.

Figure 2: Imbalance in 10s-averaged memory usage in two large produc-
tion clusters at Facebook and Google
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Remote Chunk Placement
Each chunk starts in the unmapped state. Infiniswap monitors 
the paging activity rates of each chunk using an exponentially 
weighted moving average (EWMA). When the paging activ-
ity of an unmapped chunk crosses the HotChunk threshold, 
Infiniswap attempts to map that chunk to a remote machine’s 
memory.

The chunk placement algorithm has the following goals. First, 
it should distribute chunks from the same block device across 
as many remote machines as possible in order to minimize 
the impacts of future evictions from (or failures of) remote 
machines. Second, it attempts to balance memory utilization 
across all the machines to minimize the probability of future 
evictions. Finally, it must be decentralized to provide low-latency 
mapping without central coordination.

Instead of randomly selecting an Infiniswap daemon without 
central coordination, we leverage the power of two choices [6] to 
minimize memory imbalance across machines (Figure 4). First, 
Infiniswap divides all the machines (M) into two sets: those 
that already have any chunk of this block device (Mold) and those 
that do not (Mnew).  Next, it contacts two Infiniswap daemons 
and selects the one with the lowest memory usage. It first selects 
from Mnew and then, if necessary, from Mold. The two-step combi-
nation distributes chunks across many machines while decreas-
ing load imbalance in a decentralized manner. 

Handling Chunk Evictions and Remote Failures
Upon receiving an eviction message from the Infiniswap dae-
mon, the Infiniswap block device marks the chunk as unmapped. 
All future requests of the unmapped chunk will go to disk. The 
Infiniswap block device cannot send the eviction response back 
to the Infiniswap daemon until all the in-flight requests of that 
chunk are completed. The workflow of handling remote failures 

is similar to that of chunk eviction: mark the affected chunk(s) 
as unmapped, and forward future requests to disk.

Transparent Remote Memory Reclamation via 
Infiniswap Daemon
The core functionality of each Infiniswap daemon is to claim 
memory on behalf of remote block devices as well as reclaiming 
them on behalf of the applications on its host.

Memory Management
The Infiniswap daemon periodically monitors the total memory 
usage of everything else running on its host. In order to be 
transparent to applications on the same machine, it focuses 
on maintaining a “HeadRoom” amount of free memory in the 
machine by controlling its own total memory allocation. The 
optimal value of “HeadRoom” should be dynamically determined 
based on the amount of memory and the applications running in 
each machine. Our current implementation does not include this 
optimization and uses 8-GB “HeadRoom” by default on 64-GB 
machines.

When the amount of free memory grows above “HeadRoom,” 
the Infiniswap daemon proactively allocates chunks of size 
ChunkSize and marks them as unmapped. Proactive alloca-
tion of chunks makes the initialization process faster when 
an Infiniswap block device attempts to map to that chunk; the 
chunk is marked mapped at that point.

When free memory shrinks below “HeadRoom,” the Infiniswap 
daemon proactively releases chunks in two stages. It starts 
by releasing unmapped chunks. Then, if necessary, it evicts E 
mapped chunks.

Decentralized Chunk Eviction
To minimize the performance impact on the Infiniswap block 
devices that are remotely mapped, the Infiniswap daemon 
should select the least-active mapped chunks for eviction. 
The key challenge arises from the one-sided RDMA (READ/

WRITE) operations used in the data plane of Infiniswap. While 
this avoids CPU involvements, it also prevents the Infiniswap 

Figure 5: The Infiniswap daemon periodically monitors available free 
memory to pre-allocate chunks and to perform fast evictions. Each ma-
chine runs one daemon.

Figure 6: The Infiniswap daemon employs batch eviction (i.e., contact-
ing E´ more chunks to evict E chunks) for fast eviction of E lightly active 
chunks.
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 daemon from gathering any paging activities of the mapped 
chunks without first communicating with the corresponding 
block devices.

Consider a scenario where a daemon needs to release E mapped 
chunks. At one extreme, the solution is to collect global knowl-
edge by contacting all related block devices to determine the 
least-used E chunks. This is prohibitive when E is significantly 
smaller than the total number of mapped chunks. Having a 
centralized controller would not have helped either, because this 
would require all Infiniswap block devices to frequently report 
their chunk activities.

At the other extreme, one can randomly pick one chunk at a time 
without any communication. However, in this case, the likeli-
hood of evicting a busy chunk is very high. Consider a parameter 
pb ∈ [0, 1], and assume that a chunk is busy (i.e., it is experienc-
ing paging activities beyond a fixed threshold) with probability 
pb. The probability of finding E lightly active chunks would be (1 
− pb )

E. As the cluster becomes busier (pb increases), this probabil-
ity plummets (Figure 7).

Batch Eviction. Instead of randomly evicting chunks without 
any communication, we perform bounded communication to 
leverage generalized power of choices [7].

For E chunks to evict, the Infiniswap daemon considers E + E’ 
chunks, where E’ ≤ E. Upon communicating with the Infiniswap 
block devices of those E + E’ chunks, it evicts E least-active ones. 
The probability of finding E lightly active chunks in this case is 

Figure 7 plots the effectiveness of batch eviction for different 
values of E’ for E = 10. Even for moderate cluster load, the prob-
ability of evicting lightly active chunks is significantly higher 
using batch eviction.

Implementation
We have implemented Infiniswap as a loadable kernel module 
for Linux 3.13.0 and beyond in about 3500 lines of C code. Our 
block device implementation is based on nbdX [1], a network 
block device over Accelio framework, developed by Mellanox. 
Infiniswap daemons are implemented and run as userspace pro-
grams. More implementation details can be found in our NSDI 
paper [5].

Evaluation
We evaluated Infiniswap on a 32-machine, 56 Gbps Infiniband 
cluster on CloudLab [2] and highlight two key results as follows:

• In comparison to traditional swap spaces such as rotational 
disks, Infiniswap improves throughputs of unmodified VoltDB, 
Memcached, PowerGraph, GraphX, and Apache Spark from 4× 
to up to 15.4× and tail latencies by up to 61×.

• Infiniswap benefits hold in a distributed setting. It increases 
cluster memory utilization by 1.47× using a small amount of 
network bandwidth.

The rest of this section describes how Infiniswap performs in a 
cluster with many applications. Details about our experimental 
setup, workload configurations, and more evaluation results can 
be found in our NSDI paper [5].

Cluster-Wide Performance
Methodology
We used the same application-workload combinations in Figure 
1 to create about 90 containers. Each combination has an equal 
number of containers. About 50% of them had no memory 
constraint, close to 30% used the 75% memory constraint, and 
the rest used the 50% memory constraint. They were placed 
randomly across 32 machines to create a memory imbalance 
scenario similar to those shown in Figure 2. 

Figure 7: Analytical eviction performance for evicting E(= 10) chunks 
for varying values of E .́ Random refers to evicting E chunks one by one 
uniformly randomly.

Figure 8: Using Infiniswap, memory utilization increases and memory 
imbalance decreases significantly. Error bars show the maximum and the 
minimum utilization across machines.
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Cluster Memory Utilization
Infiniswap improves total cluster memory utilization by 1.47× 
by increasing it to 60% on average from 40.8% (Figure 8). 
Moreover, Infiniswap significantly decreases memory imbal-
ance: the maximum-to-median utilization ratio decreased from 
2.36× to 1.60×, and the maximum-to-minimum utilization ratio 
decreased from 22.5× to 2.7×. 

Application-Level Performance
We observe that Infiniswap holds its benefits in the presence 
of cluster dynamics of many applications (Figure 9). Although 
improvements are sometimes lower than those observed in con-
trolled single-instance scenarios [5], Infiniswap still provides 
3×–6× improvements over disk for the 50% memory constraint.

Ongoing Efforts
We are actively extending Infiniswap in two directions:

Fault Tolerance
Infiniswap can tolerate the failures of remote machines with its 
backup disk. However, backing up data on hard disk becomes the 
performance bottleneck of the entire system when many swap 
bursts come together. We are considering trying to achieve the 
fault tolerance feature by distributing data to multiple remote 
machines using erasure coding.

Performance Isolation 
Infiniswap provides remote memory to all the applications 
running on the machine. As such, it cannot distinguish between 
pages from specific applications. Swap requests originating from 
different applications share the same resources in Infiniswap, 
such as dispatch buffers in Infiniswap and cache on RDMA 
NICs. Consequently, Infiniswap cannot guarantee performance 
isolation among multiple applications on the same host.

Conclusion
Infiniswap is a pragmatic solution for memory disaggregation 
without requiring any modifications to applications, OSes, or 
hardware. It bypasses CPU through one-sided RDMA operations 
in the data plane for performance, and it uses scalable, decen-
tralized remote memory placement and eviction schemes in the 
control plane for fault tolerance and scalability. We have demon-
strated Infiniswap’s advantages in substantially improving the 
performance of multiple popular memory-intensive applications. 
Infiniswap also increases the overall memory utilization of a 
cluster, and its benefits hold at scale.

The source code of Infiniswap and more information are avail-
able at https://infiniswap.github.io/infiniswap/.
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W hen I worked for Google as a Site Reliability Engineer, I was lucky 
enough to travel around the world with a group called “Team 
Development.” Our mission was to design and deliver team-

building courses to teams who wanted to work better together. Our work 
was based on research later published as Project Aristotle [1]. It found that 
the primary indicator of a successful team wasn’t tenure, seniority, or salary 
levels but psychological safety.

Think of a team you work with closely. How strongly do you agree with these five statements? 

1. If I take a chance and screw up, it will be held against me.

2. Our team has a strong sense of culture that can be hard for new people to join.

3. My team is slow to offer help to people who are struggling.

4. Using my unique skills and talents comes second to the objectives of the team.

5. It’s uncomfortable to have open, honest conversations about our team’s sensitive issues.

Teams that score high on questions like these can be deemed to be “unsafe.” Unsafe to inno-
vate, unsafe to resolve conflict, unsafe to admit they need help. Unsafe teams can deliver for 
short periods of time, provided they can focus on goals and ignore interpersonal problems. 
Eventually, unsafe teams will underperform or shatter because they resist change. 

Let me highlight the impact an unsafe team can have on an individual, through the eyes of an 
imaginary, capable, and enthusiastic new college graduate. 

This imaginary graduate, I’ll call her Karen, read about a low-level locking optimization for dis-
tributed databases and realized it applied to the service her team was on-call for. Test results 
showed a 15% CPU saving! She excitedly rolled it out to production. Changes to the database 
configuration file didn’t go through the usual code-review process, and, unfortunately, it 
caused the database to hard-lock-up. There was a brief but total Web site outage. Thankfully, 
her more experienced colleagues spotted the problem and rolled back the change inside of 10 
minutes. Being professionals, the incident was discussed at the weekly “post mortem” meeting.

1. “If I take a chance, and screw up, it’ll be held against me.”

At the meeting, the engineering director asserted that causing downtime by chasing small 
optimizations was unacceptable. Karen was described as “irresponsible” in front of the team. 
The team suggested ways to ensure it wouldn’t happen again. Unlike Karen, the director 
soon forgot about this interaction. 

Karen would never try to innovate without explicit permission again.

2. “Our team has a strong sense of culture, and it’s hard for new people to join.”

The impact on Karen was magnified because no one stood up for her. No one pointed out the 
lack of code reviews on the database configuration. No one highlighted the difference between 
one irresponsible act and labeling someone “irresponsible.” The team was proud of their sys-
tem’s reliability, so defending their reputation was more important than defending a new hire.
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Karen learned that her team and manager didn’t have her back.

3. “My team is slow to offer help to people who are struggling.”

Karen was new to being on-call for a “production” system, so had 
no formal training in incident management, production hygiene, 
or troubleshooting distributed systems. Her team was mostly 
made up of people with decades of experience, who never needed 
training or new-hire documentation. There were no signals that 
it was OK for a new graduate to spend time learning these skills.

Karen was terrified of being left with the pager. She didn’t under-
stand how she passed the hiring process, and frequently wondered 
why she hadn’t been fired yet. We call this Imposter Syndrome [2].

4. “Using my unique skills and talents comes second to the goals of 
the team.”

Karen’s background was in algorithms, data structures, and dis-
tributed computing. She realized the existing system had design 
flaws and could never handle load spikes. The team had always 
blamed the customers for going over their contracted rates, 
which is like blaming weathermen for rain during an Irish barbe-
cue. Strong operations teams need a mix of people from  different 
backgrounds. It’s not always clear whether a problem will require 
understanding a database schema, Ruby debugging, C++ perfor-
mance understanding, product knowledge, or people skills. 

Karen proposed a new design, based on technology she’d used 
during her internship. Her coworkers were unfamiliar with the 
new technology and considered it too risky. Karen dropped her 
proposal without discussion. She wanted to write code and build 
systems, not have pointless arguments.

5. “It’s uncomfortable to have open, honest conversations about 
our team’s sensitive issues.”

When a large customer traffic spike caused the product to be 
unavailable for a number of hours, the CEO demanded a meet-
ing with the operations team. Many details were discussed, and 
Karen explained that the existing design meant it could never 
deal with such spikes and mentioned her design. Her director 
reminded her that her design had already been turned down 
at an Engineering Review and promised the CEO they could 
improve the existing design.

Karen discussed the meeting with one of her teammates after-
wards. She expressed dismay that the director couldn’t see that 
his design was the root-cause of their problems. The teammate 
shrugged and pointed out that the team had delivered a really 
good service for the last five years and had no interest in arguing 
about alternate designs with the director.

Karen left work early to look for a new job. The company didn’t 
miss her when she left. After all, she was “reckless, whiny and 
had a problem with authority.” They didn’t reflect on the design 

that would have saved the company from repeated outages that 
caused a customer exodus.

How to Build Psychological Safety into Your Own 
Team
What is special about Operations that drives away so many 
promising engineers and suffers others to achieve less than their 
potential?

We know that success requires a strong sense of culture, shared 
understandings and common values. We have to balance that 
respect for our culture with an openness to change it as needed. 
A team—initially happy to work from home—needs to co-locate 
if they take on interns. Teams—proud that every engineer is 
on-call for their service—may need to professionalize around a 
smaller team of operations-focused engineers as the potential 
production impact of an outage grows.

We need to be thoughtful about how we balance work people love 
with work the company needs to get done. Good managers are 
proactive about transferring out an engineer who is a poor fit for 
their team’s workload. Great managers expand their team’s remit 
to make better use of the engineers they have, so they feel their 
skills and talents are valued. Engineers whose skills go unused 
grow frustrated. Engineers ill-equipped to succeed at assigned 
work will feel set up to fail.

Make Respect Part of Your Team’s Culture
It’s hard to give 100% if you spend mental energy pretending 
to be someone else. We need to make sure people can be them-
selves by ensuring we say something when we witness disre-
spect. David Morrison (Australia’s Chief of the Army) captured 
this sentiment perfectly in his “the standard you walk past is 
the standard you accept” [3] speech. Being thoughtless about 
people’s feelings and experiences can shut them down. Some 
examples where I’ve personally intervened:

◆◆ Someone welcomes a new female project manager to the team, 
assumes they aren’t technical, and uses baby words to explain 
a service. I highlight the new PM has a PhD in CS. No harm 
was intended, and the speaker was mortified that their good-
humored introduction was inappropriate.

◆◆ In a conversation about people’s previous positions, someone 
mentioned they worked for a no-longer-successful company, 
and a teammate mocked them for being “brave enough” to 
admit it. I pointed out that mocking people is unprofessional 
and unwelcome, and everyone present understood a “line” that 
hadn’t been visible previously.

◆◆ A quiet, bright engineer consistently gets talked over by 
extroverts in meetings. I point out to the “loud” people that we 
were missing an important viewpoint by not ensuring everyone 
speaks up. Everyone becomes more self-aware.
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It’s essential to challenge lack of respect immediately, politely, 
and in front of everyone who heard the disrespect. It would have 
been wonderful had someone reminded Karen’s director, in front 
of the group, that Karen wasn’t irresponsible, the outage wasn’t a 
big deal, and the team should improve their test coverage.

Make Space for People to Take Chances
Some companies talk of 20% time. Intercom, where I work, has 
“buffer” weeks, in between some of our six-week sprints [4]. Peo-
ple often take that chance to scratch an itch that was bothering 
them, without impacting the external commitments the team 
has made. Creating an expectation that everyone on the team 
has permission to innovate, and encouraging the whole team to 
go off-piste at the same time, sends a powerful message. 

Be careful that “innovation time” isn’t the only time people should 
take chances. I’ve worked with one company in the car industry 
that considers “innovation time” to be 2:30 p.m. on Tuesdays!

Imagine how grateful Karen would have been had a senior engi-
neer at the Engineering Review offered to work on her design 
with her so that it was more acceptable to the team. Improve 
people’s ideas rather than discounting them.

Make It Obvious When Your Team Is Doing Well
One engineer describes his experience of on-call as “being like 
the maintenance crew at the fairground. No one notices our 
work, until there is a horrible accident.” Make sure people notice 
when your team is succeeding. 

I love how my team writes goals on Post-It notes at our daily 
standups and weekly goal meetings. These visible marks of suc-
cess can be cheered as they are moved to the “done” pile. But we 
can also celebrate glorious failure. 

Many years ago, when I was running one of Google’s storage 
SRE teams, we were halfway through a three-year project to 
replace the old Google File System. Through a confluence of bad 
batteries, firmware bugs, poor tooling, untested software, an 
aggressive rollout schedule, and two power cuts, we lost a whole 
storage cell for a number of hours. Though all services would 
have had storage in other availability zones, the team spent three 
long days and three long nights rebuilding the cluster. Once it 
was done, they—and I—were dejected. Demoralized. Defeated. 
An amazing manager (who happened to be visiting our office) 
 realized I was down, and pointed out that we’d just learned more 
about our new storage stack in those three days than we had in the 
previous three months. He reckoned a celebration was in order.

I bought some cheap sparkling wine from the local supermarket 
and, with another manager, took over a big conference room for a 
few hours. Each time someone wrote something they learned on 
the whiteboard, we toasted them. The team that left that room 
was utterly different from the one that entered it. 

I’m sure Karen would have loved appreciation for her uncovering 
the team’s weak non-code test coverage and their undocumented 
love of uptime-above-all-else.

Make Your Communication Clear and Your 
Expectations Explicit
Rather than yelling at an engineering team each time they have 
an outage, help them build tools to measure what an outage is, 
a Service Level Objective that shows how they are doing, and a 
culture that means they use the space between their objective 
and reality to choose to do the most impactful work.

When discussing failures, people need to feel safe to share all rel-
evant information, with the understanding that they will be judged 
not on how they fail, but how their handling of failures improved 
the team, their product, and the organization as a whole. Teams 
with operational responsibilities need to come together and discuss 
outages and process failures. It’s essential to approach these as fun 
learning opportunities, not root-cause-obsessed witch-hunts.

I’ve seen a team paralyzed, trying to decide whether to ship an 
efficiency win that would increase end-user latency by 20%. A 
short conversation with the product team resulted in updates to 
the SLO, detailing “estimated customer attrition due to different 
latency levels,” and the impact that would have on the company’s 
bottom line. Anyone on the team could see in seconds that low-
latency was far more important than hardware costs and instead 
drastically over-provisioned.

If you expect someone to do something for you, ask for a specific 
commitment—“When might this be done?”—rather than assum-
ing everyone agrees on its urgency. Trust can be destroyed by 
missed commitments.

Karen would have enjoyed a manager who told her in advance 
that the team considered reliability sacred and asked her to work 
on reliability improvements rather than optimizations.

Make Your Team Feel Safe
If you are inspired to make your team feel more psychologically 
safe, there are a few things you can do today:

1. Give your team a short survey (like the questions listed above), 
and share the results with your team.

2. Discuss what “safety” means to your team; see if they’ll share 
when they felt “unsafe.”

3. Build a culture of respect and clear communication, starting 
with your actions. 

Treat psychological safety as a key business metric, as impor-
tant as revenue, cost of sales, or uptime. This will feed into your 
team’s effectiveness, productivity, staff retention, and any other 
business metric you value.
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Why Are Operations Teams More Likely to Feel 
Unsafe than Other Engineering Teams?
We Love Interrupts and Information
Humans suck at multitasking. Trying to do multiple things at 
once either doubles the time the task takes or doubles the mis-
takes [5]. A team that’s expected to make progress with project 
work while being expected to be available for interrupt work 
(tickets, on-call, walkups) is destined to fail. And yet, operations 
attracts people who like being distracted by novel events. Do one 
thing at a time. Timebox inbound communications as well as 
interrupt time.

Operations teams are expected to manage risk and uncertainty 
for their organization. We build philosophies for reasoning about 
risk and strategies for coping with bad outcomes, defense in 
depth, playbooks, incident management, escalation policies, etc. 
When humans are exposed to uncertainty, the resultant “infor-
mation gap” results in a hunger for information, often exagger-
ated past the point of utility [6]. This can lead to information 
overload in the shape of ludicrously ornate and hard to under-
stand dashboards, torrents of email, alerts, and automatically 
filed bugs. We all know engineers who have hundreds of bugs 
assigned to them, which they cannot possibly ever fix, but refuse 
to mark them “Won’t Fix.” Another pathology is subscribing to 
developer mailing lists to be aware of every change being made 
to the system. Our love of novelty blinds us to the lack of value in 
information we cannot act on.

Admit that most information is not actionable, and be brutal 
with your bugs, your mail filters, and your open chat apps.

On-Call and Operations
The stress of on-call is what drives people away from opera-
tions roles. Curiously, 24/7 shifts are not the problem. The real 
problem is small on-call rotations that result in long, frequent 
shifts. The more time people spend on-call, the more likely they 
are to suffer from depression and anxiety [7]. The expectation of 
having to act is more stressful than acting itself [8]. It’s one thing 
to accept that on-call is part of a job. It’s another to tell your five-
year-old daughter you can’t bring her to the playground.

We can mitigate this stress by ensuring on-call rotations of no 
fewer than six people, with time-in-lieu for those with signifi-
cant expectations around response times, or personal life cur-
tailment. Compensate based on time expecting work, not time 
doing work. Incident management training or frequent “Wheel of 
Misfortune” drills can also reduce stress, by increasing people’s 
confidence. Ensure on-call engineers prioritize finding someone 
to fix a problem when multiple incidents happen concurrently [9]. 

Cognitive Overload
Operations teams support software written by much larger 
teams. I know a team of 65 SREs that supports software written 
by 3,500 software engineers. Teams faced with supporting soft-
ware written in multiple languages, with different underlying 
technologies and frameworks spend a huge amount of time try-
ing to understand the system and so have less time to improve it.

To reduce complexity, software engineers deploy more and more 
abstractions. Abstractions can be like quicksand. ORM (object-
relational mapping) [10] is a wonderful example of a tool that 
can make a developer’s life easy by reducing the amount of time 
thinking about database schemas. By obviating the need for 
developers to understand the underlying schema, developers no 
longer consider how ORM changes impact production perfor-
mance. Operations now need to understand the ORM layer and 
why it impacts the database. 

Monolithic designs are often easier to develop and extend than 
microservices. There can be valid business reasons to avoid 
duplication of sensitive or complex code. However, because they 
attract heterogeneous traffic classes and costs, they are a night-
mare for operations teams to troubleshoot or capacity plan. 

Everyone understands that onboarding of new, evolving soft-
ware strains an operations team. We ignore the burden of 
mature “stable” services. There is rarely any glamorous work to 
be done on such services, but the team still needs to understand 
it. Mature services can silently swamp an operations team.

Ensure teams document the impact of cognitive load on develop-
ment velocity. It has a direct and serious impact on the reliability 
of the software, the morale and well-being of the operations 
team, and the long-term success of the organization.

Imaginary Expectations
Good operations teams take pride in their work. When there is 
ambiguity around expectations of a service, we will err on the 
side of caution and do more work than needed. Do we consider 
all of our services to be equally important? Are there some we 
can drop to “best effort”? Do we really have to fix all bugs logged 
against our team, or can we say, “Sorry, that’s not our team’s 
focus”? Are our SLAs worded well enough that the entire team 
knows where their effort is best directed on any given day? Do 
we start our team meeting with the team’s most important top-
ics, or do we blindly follow process?

Ensure there are no magic numbers in your alerts and SLAs; if 
your team is being held to account for something, ensure there is 
a good reason that everyone understands.
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Operations Teams Are Bad at Estimating Their Level 
of Psychological Safety
Lastly, I’ll leave you with a thought: people who are good at opera-
tions are bad at recognizing psychologically unsafe situations. We 
consider occasionally stressful on-call “normal” and don’t feel 
it getting worse until we burn out. The curiosity that allows us 
to be creative drives us to information overload. Despite being 
realistic about how terrible everything is, we stay strongly opti-
mistic that the systems, software, and people we work with will 
get better.

I’ve given surveys to deeply troubled teams where every response 
seemed to indicate everything was wonderful. I’d love to hear 
from people who have experience uncovering such cognitive dis-
sonance in engineers.
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V L A D I M I R  L E G E Z A

“If you cannot measure it, you cannot improve it.”

—William Thomson, Lord Kelvin

Site Reliability Engineering is a set of practices that allow a variety of 
companies to run and support systems at large scale efficiently and 
cost-effectively. The key difference that distinguishes sysadmins from 

SREs is the single property: the point of observation. There is only one funda-
mental principle that can drive you to this relatively new field and lead you 
to understand all these practices, origins, adaptations, and further improve-
ment ideas that finally will increase your users’ and customers’ loyalty and 
satisfaction.

Instead of jumping directly into the definition of principles, let’s figure it out ourselves 
through the following examples.

Let’s say a manager asked you to create a small new service: “A sort of a simplified Web 
crawler. It has to receive a base URL, download its content, find and return a list of all URLs 
retrieved from that page with the status whether it is valid and accessible or not.” This task 
is more or less straightforward. An average software developer can immediately begin the 
implementation using not more than a hundred lines of high-level code. 

An experienced sysadmin given the same task will, with high probability, try to understand 
the technical aspects of the project. For instance, she may ask questions like, “Does the proj-
ect have an SLA?” and dig deeper: “What load should we expect, and what kind of outages do 
we need to survive?” At that point, prerequisites might be as simple as, “The load will be no 
more than 10 requests per second, and we expect that responses will take no longer than 10 
seconds for a single URL request.”

Now let’s invite an SRE to the conversation. One of his first questions would be something 
like, “Who are our customers? And why is getting the response in 10 seconds important for 
them?” Despite the fact that these questions came primarily from the business perspective 
and did not clarify any technical details, the information they reveal may change the game 
dramatically. What if this service is for an “information retrieval” development team whose 
purpose is to address the necessity of the search engine results page’s content validation, to 
make sure that the new index serves only live links? And what if we download a page with a 
million links on it? 

Now we can see the conflict between the priorities in the SLA and those of the service’s pur-
poses. The SLA stated that the response time is crucial, but the service is intended to verify 
data, with accuracy as the most vital aspect of the service for the end user. We therefore need 
to adjust project requirements to meet business necessities. There are lots of ways to solve 
this difficulty: wait until all million links are checked, check only the first hundred links, 
or architect our service so that it can handle a large number of URLs in a reasonable time. 
The last solution is highly unlikely, and the SLA should therefore be modified to reflect real 
demands.
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What we’ve just done is to raise the discussion to a new level—
the business level. We started with the customer and worked 
backward. We understood the service’s use cases, identified its 
key aspects, and established and adjusted the SLA. Only now can 
we begin to architect the solution. This is the exact meaning of 
the first of Amazon’s leadership principles: “Customer Obses-
sion—Leaders start with the customer and work backwards” 
(https://www.amazon.jobs/principles). Absolutely the same idea 
appears in the first of Google’s “Ten Things” philosophy: “Focus 
on the user and all else will follow” (https://www.google.com 
/intl/en/about/philosophy.html).

At this point, I want to present a short, three-character termi-
nology clarification to avoid confusion or uncertainty:

SLI: Service Level Indicator is a single, measurable metric 
related to service behavior that is carefully chosen with a deep 
understanding of its value’s meaning. Every possible value 
should be clearly defined as “good” or “bad.” Also, all barrier val-
ues that turn “good” to “bad” and vice versa should be precisely 
specified. It can be measured on its own terms and conditions 
and may have more than one axis of measurement. However, the 
rule of thumb is that every indicator must be meaningful. 

Example SLI: 99% of all requests per one calendar year should be 
served in 200 ms.

SLA: Service Level Agreement is a set of SLIs that defines the 
overall behavior of what users should expect from the service. 
A good SLA represents not only a list of guarantees but also 
contains all possible limitations and actions that may take place 
in specific circumstances: for instance, graceful degradation in 
a case of primary datacenter outage, or what happens if a certain 
limit is exhausted.

SLO: Service Level Objective is absolutely the same set of SLIs 
that an SLA has but is much less strict and usually raises the bar 
of the existing SLA. The SLO is not what we have to have, but 
what we want to have. 

Example: For an SLA, a single SLI might be defined as “99% 
of all requests should be served in 200 ms,” and in the SLO the 
same indicator may look like “99.9% of all requests should be 
served in 200 ms.”

For further details, please refer to Google’s Site Reliability Engi-
neering (https://landing.google.com/sre/book/chapters/service 
-level-objectives.html).

The principle that the user’s perspective is fundamental is very 
powerful and leads us to the understanding of vital service 
aspects. Knowing what is valuable for the customer provides a 
precise set of expectations that have to be finally reflected in the 
SLA. And by being carefully crafted, the SLA may shed light on 
many dark corners of a project, predicting and preventing dif-
ficulties and obstacles.

But first, the SLA is designated as a reference point to under-
stand how well a service is performing. There might be hundreds 
of metrics that reflect a service’s state, but not all of them are 
appropriate for an SLA. Although the number of SLIs tends to 
be as minimal as possible, the final list of SLIs should cover all 
major user necessities. 

Only two relatively simple questions should be answered posi-
tively to indicate that an investigated metric is a good candidate 
to be chosen, or otherwise, should definitely not be.

◆◆ Is this metric visible to the user?

◆◆ Is this metric important enough to the user (and from his/
her perspective as a service customer) that it needs to be at a 
certain level or inside a particular range?

Internal SLAs
What if the service is not an end-customer-facing one. Should 
this service have its own SLA too? To clarify the “Yes” answer, 
let’s step back a little bit from the technical terminology; we will 
see that the SLA itself is nothing but a list of criteria of what you 
can expect from the service, that is, a simple list of expectations.

When you are thinking of a new service to be used in your 
project, one of the first questions you want answered is, will this 
service meet your expectations or not? It does not matter what 
kind of service it is: it might be an external ticket-based authen-
tication system, local corporate storage, or a cross datacenter 
distributed message-passing bus. But to figure out whether you 
can you use it or not, you should know what this service promises 
you and what limitations are applied. Hence, every producer-
consumer relationship is built on certain expectations, and, 
hence, every service should provide a list of guarantees for all 
valuable expectations regardless of whether the service is an 
internal or external one.

To support this statement let’s consider a message distribution 
service that consists of four main components: 

◆◆ “Data receiver”: accepting and registering messages 

◆◆ “Data transformer”: adjusting message content with data from 
separate external sources 

◆◆ “Distributor”: delivering messages to multiple endpoints 

◆◆ “Consumer”: receiving data from the endpoint over a “pub-
lisher–subscriber” model

At the moment, this system is working fine: no errors, no alarms. 

One day, one of the top project managers comes to us and poses 
the following: “One of the projects we are working on now uses 
the ‘message distribution service.’ From time to time, we will 
need to send a huge amount of data in a short time period. Can 
we handle this? Or what should we have in order to use this 
service?”

https://www.amazon.jobs/principles
https://www.google.com/intl/en/about/philosophy.html
https://www.google.com/intl/en/about/philosophy.html
https://landing.google.com/sre/book/chapters/service-level-objectives.html
https://landing.google.com/sre/book/chapters/service-level-objectives.html
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Let’s work this out gradually. Having actual numbers for the 
data amount is handy. Let’s say it will be three times more than 
the maximum known peak-time value. However, this will not 
provide us with a clear understanding of whether we will be 
able to handle this traffic or not. The reason is simple: even if we 
know how much data is managed by the service right now during 
peak times, we would still need to know the break point where 
we reach the service’s capacity limit to be able to compare it with 
the forecast. 

Our message distribution service has several components. As we 
are aware, the slowest component is the one that dictates overall 
service capacity: the “strength of the chain is determined by the 
weakest link.” So now we have to spend some time to establish a 
performance-testing environment and identify breakpoints for 
every component separately and determine which component is 
the bottleneck. 

So far, we have data that will tell us about traffic-handling 
possibilities. And if it is fine, we are ready to go on to announce 
that no changes are required. Of course, businesspeople may ask 
another question: “Why are we over-scaled that heavily?” but 
that is a different story, and hopefully it is not the case. 

Our calculation reveals that we can deal only with half of 
expected growth. And we now need to at least double through-
put. The deeper we dig, the more complicated planning becomes. 
Even if we assume that all the components can scale linearly 
(and in real life, we have to prove this assumption), we are unable 
to compare performance directly without accounting for one 
more shared restriction: the delivery time.

Our goal is to pass a number of messages throughout the service 
from the entry point to the final consumer, and transfer it in a 
reasonable amount of time. 

First of all, we have to provide an actual value for the “reason-
able time” metric overall and for every individual component. 
Only then can we measure the size of an input that the appli-
cation is able to receive, process, and guarantee to pass as 
an output inside that “reasonable time.” This will lower the 
throughput even further. However, the positive outcome is that 
we can now predict the output and compare performance across 
components.

Time constraints are nothing but SLIs, and the maximum num-
ber of messages is the variable that has to be adjusted to process 
messages during spikes and not break the time limits defined in 
this indicator. One interesting property of an SLI is that it only 
rarely changes.

So far, we know:

◆◆ Where the bottleneck is. And we can predict where the bottle-
neck will relocate from where it is now (literally this means 
that now we know the next slowest component, the next after 
that one, and so on). 

◆◆ Expectations for every component (number of messages that 
can be processed by a single application instance and the 
expected amount of time that message can spend inside this 
component). 

◆◆ Our capacity and how much capacity is actually in use. We are 
also able to predict capacity drops in case of a variety of outages 
and make resource reservations accordingly.

And this is still not the end of the story! 

External Dependencies
As you remember, the “data transformation” component has 
some external dependencies. The “external” means that we are 
only consumers and cannot control its behavior. The question is, 
“What capacity can these external services provide and how will 
their limitations affect our component’s performance and scal-
ability?” We want to know what we may expect, and, technically, 
we are asking for an SLA. Once we get it, we will finally have all 
we need to figure out what should be adjusted and where and how.

But this real-world scenario gets even more complicated. There 
may be many types of messages with different priorities and 
time restraints. It would be tough to say what we should do if the 
load will grow for only one data type and other types will still be 
definitely affected. However, by applying the “divide and con-
quer” principle, we declare specific criteria for every type indi-
vidually; then it will be clearly noticeable what data may have 
experienced stagnation and how this issue should be addressed.

A short example: due to high load spikes in high-priority mes-
sages, other message deliveries will be slowed down from a 
few seconds to several minutes. The key question then is, “Are 
several minutes’ delay acceptable or not?” If we know exact bar-
rier values and can quickly identify “good” and “bad” values, then 
there will be no problem taking the right action. Otherwise, we 
will fall into a state of not knowing and can only guess what to do 
or whether we should do anything at all.

As you can see, SREs mostly focus on service efficiency and 
quality. Architecture and what stands behind is secondary, 
at least until a service delivers results according to a user’s 
expectations.
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Nontechnical Solutions
Technical solutions are not the limit of SLA potential, and SLAs 
will give you a hand in other fields as well. The SLA determines, 
for instance, the right time to hand a new service over to the 
SRE team to support something as simple as, “If a product meets 
expectations (i.e., does not violate an SLA), then the product is 
ready; otherwise, it is not.”

All new software projects will have some prerequisites long 
before they pass architecture review and a couple of proof-of-
concept models have been built. When it is believed that an 
application is ready to be officially launched and begin serving 
live production traffic, all SLIs become live, and both objectives 
and agreements start to count. This is the measure’s starting 
point. Because the SLA defines statements over time (the fre-
quently used period is one calendar year), the project should last 
in this state a significant portion of this time (several months 
or a quarter) to collect enough datapoints that confirm that the 
service is stable enough and that there are no agreement viola-
tion risks.

Conclusion
The SRE philosophy differs from that of the sysadmin just by the 
point of view. SRE philosophy was developed based on a simple, 
data-driven principle: look at the problem from the user and 
business perspectives, where “user” means “to take care of prod-
uct quality,” “business” equals “managing product cases and effi-
ciency,” and “data-driven” signifies “not allowing assumptions.” 
Identify, measure, and compare all that is important. Everything 
else is the result of this. 

If all this sounds very difficult and complicated, start with these 
steps:

◆◆ Divide large services into a set of smaller ones (treat each com-
ponent as an individual service).

◆◆ Identify service relationships and dependencies.

◆◆ Establish an SLO for each service first and maintain it.

◆◆ Reassign SLOs to SLAs where required.

Now, as an SRE, you can control systems more accurately and 
can precisely know when, what, and how much you should scale 
up. You can do this by efficiently identifying bottlenecks and 
relocating them from one service to another in a controlled man-
ner. By fine-tuning every part of system capacity to the optimal 
amount, you will lower costs and raise the bar for an overall posi-
tive customer experience.
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Docker, from Docker Inc., is a popular containerization software sys-
tem for building, deploying, and running Linux applications. Docker 
containers offer a relatively low overhead mechanism for running 

multiple Linux applications where the different applications are isolated 
from each other. Docker offers a high-level interface to configure, build, 
store, and fetch Docker images. This article contains a brief review of popu-
lar virtualization technologies, an example of Docker’s facilities for building 
containers, and a brief discussion of Docker’s future evolution.

Overview of Virtualization Techniques
There are many different virtualization techniques available across the operating systems 
in use today. The most basic virtualization is the concept of a software process. This is the 
traditional virtualization that UNIX and many other operating systems have provided to 
different processes from early on: each user process has an independent, protected-access 
memory map provided through the virtual memory system of the kernel. Other more compre-
hensive virtualization techniques—such as software, hypervisor-based, hypervisor-based 
with hardware acceleration, and containerized applications—will be reviewed.

Software Virtualization/Emulation
Software-based, complete machine emulators, such as QEMU and SIMH, can emulate prac-
tically any CPU and machine architecture on the hosting machine. These types of emulators 
are generally fairly slow but offer complete independence between the emulated hardware 
and the hosting machine. The emulation software provides an instruction-by-instruction 
emulation of the target machine and provides a software implementation of the hardware 
devices of the target machine. For example, disk drives on the target are often emulated with 
plain files on the hosting machine. Even machines that no longer have operating hardware, 
such as the Honeywell DPS8M, can be emulated. In this case, the emulation is of sufficient 
fidelity to allow the historically significant Multics operating system to run on the emulated 
machine with no software changes. Another significant example of this type of emulator was 
the Connectix Virtual PC software, which could emulate a complete x86 computer, hosted 
on a PowerPC-based Mac computer. The Connectix company was purchased by Microsoft, 
however, and the software is no longer available.

Hypervisor-Based Virtualization
At the opposite end of the virtualization spectrum are hypervisor-based implementations. 
A hypervisor-based virtualization generally runs at a significant percentage of the native 
speed of the hosting machine. Only a small set of hypervisor-mediated system functions 
execute in the hypervisor, and the rest of the user code runs in the virtualized machine at 
native speeds. This type of virtualization is considered fairly “heavyweight” in that each 
virtualized machine has its own copy of whatever operating system is being run (Figure 1). 
One area of performance issues with this scheme is that the virtualized operating system 
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also has to maintain its own set of memory protections for its 
own use. Hardware support for this type of operation, sometimes 
called “nested page tables,” greatly enhances the operation of 
guest operating systems under the hypervisor.

There are many hypervisor-based virtualization platforms 
available, including:

◆◆ bhyve on FreeBSD

◆◆ KVM on Linux

◆◆ xhyve on Mac OS X

◆◆ Hyper-V on Microsoft Windows

◆◆ ESXi and vSphere from VMware

◆◆ Xen on multiple operating systems 

◆◆ Several hardware architectures

Containerized Virtualization
Containers are lightweight virtualization schemes where 
processes have some sort of partitioning and isolation between 
different administrative groups on the same host. The different 
partitions all share a single kernel application binary interface 
(ABI) running against a single kernel instance. Often, but not 
always, each process running in a container can be seen on the 
hosting server. This type of virtualization is generally called 
“container computing” and offers a middle ground between the 
level of isolation from hypervisors and the “shared everything” 
from a standard UNIX environment.

Containerization is the fundamental idea behind the following 
facilities:

◆◆ Jail system on FreeBSD

◆◆ Control Groups on Linux

◆◆ Containers on Nexenta OS

◆◆ Containers on Solaris

Hybrid Virtualization Techniques
There are other hybrid virtualization techniques, such as run-
ning a combination of hypervisor virtual machines and then 
hosting various containerized applications on those virtual 
machines. This hybrid approach is how Docker is implemented 
on non-Linux machines such as the Mac OS version of Docker, 
which is built on top of the Mac OS xhyve virtualized machine. 
In a similar fashion, the Windows implementation of Docker 
uses the Hyper-V hypervisor to create a virtual machine run-
ning Linux, which is then used to execute the system calls from 
the Docker containers.

Linux Control Groups and Docker
The Linux kernel has a relatively new capability that makes 
Docker possible: Control Groups (aka “cgroups”). This is the 
fundamental technology that allows for the isolation of various 
user processes in one control group from affecting and directly 
interacting with a different control group.

In a traditional UNIX environment, there is a single hierarchy 
of user processes. The init process (pid 1) is the root of that 
hierarchy, and all processes can trace their ancestry back to that 
initial process. The cgroups facility in the Linux kernel allows 
for instantiating new hierarchies of processes that are contained 
entirely in the new hierarchy and can only interact with other 
processes in that hierarchy.

The cgroups facility can do more than just create new process 
hierarchies; it can set up resource limits (e.g., memory and 
network bandwidth) and attach these limits to the process 
hierarchies that are created. While management of the low-level 
cgroups mechanism via provided system utilities is possible, it 
is rather tedious. Docker provides a more convenient interface 
for controlling the cgroups mechanism at runtime, along with 
an easy-to-use system for building the static environments that 
will be executed later.

Docker uses cgroups, along with other Linux kernel facilities, 
such as iptables, for networking configuration and control and 
for a union file system (UnionFS) for isolating the container 
from the file systems of the hosting machine. There is also a 
mechanism available to allow explicit sharing of directories 
between the host machine and the Docker containers. The 
UnionFS that Docker implements is layered on top of a Docker 
storage driver. The storage drivers that are available depend on 
the particular Linux system that is running Docker and provide 
varying degrees of performance and stability.

Figure 1: Xen architecture
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Docker Terminology and Software Architecture
An image is what Docker calls the containerized file system that 
has been created and loaded with the software layers that are 
needed for a particular application. When an image needs to run, 
a copy-on-write snapshot of the image is created, and that copy-
on-write file system is called the container.

The process that starts a container is then placed into a new 
cgroup hierarchy. Any new processes spawned by the initial 
process in a Docker container will not be able to influence 
any processes outside of the running container, because all 
other processes will belong to different cgroups. This isolation 
prevents any interaction or interference between two or more 
Docker containers running on the same physical host.

A modern Docker installation typically has at least two long-
running daemons, dockerd and docker-containerd. There is 
a single user command, docker, that takes multiple command 
keywords. This is similar to how many complex systems are 
controlled through a single dispatch command (e.g., git, hg, and 
rndc). The docker command communicates through a UNIX 
domain socket to the dockerd process. The dockerd process 
communicates with the docker-containerd process to specify 
the management of the containers on a system. There are other 
container software shims that are started for each container. 
The runC container runtime system initializes and starts the 
container, and then hands the file descriptors for stdin/stdout/

stderr over to containerd-shim, which acts as a proxy of sorts 
between the running container and docker-containerd 
 (Figure 2). This intermediate process is required so that a 
restart of the dockerd process, and therefore, the restart of 
docker-containerd, can allow the new docker-containerd 
daemon to reattach to the containerd-shim for each currently 
running container.

Docker Images Explained
A Docker image is a virtual file system, packaged as a series of 
layers. Each layer in the file system is stacked on top of the layers 
underneath it. The ultimate view of the file system is the union 
of the file systems that make up a Docker image. The layers in 
the image are built from the commands in a Dockerfile.

Dockerfile as a Recipe
The Dockerfile is a simple text file, holding one or more com-
mands, and any comments that the user has placed in the file. 
When Docker builds an image, it runs each of the commands 
found in the file in the order they are encountered. In this man-
ner, the docker build procedure is just like following a step-by-
step recipe for preparing a meal. Each of the commands in the 
Dockerfile will generate a new layer in the resulting image. By 
convention, the Docker commands are written in uppercase to 
help differentiate them from user-specified commands. If any of 
the commands that are executed fail (that is, has a non-zero exit 
code), the building of the image stops immediately, and the image 
build is marked as a failure. For efficiency reasons, it is desirable 
to keep each layer in the Dockerfile as small as possible. This 
means that cleaning up after any commands that create large 
amounts of metadata, such as yum update, should be done as 
part of the same command that generated the metadata.

This example Dockerfile will create an image with six layers. 
Some of those layers, which are identical to the prior layer, will 
be automatically discarded during the build process.

An image for running Apache

FROM centos:7

MAINTAINER Ms. Nobody <nobody@example.com>

RUN yum -y --setopt=tsflags=nodocs update && \

     yum -y --setopt=tsflags=nodocs install httpd && \

     yum clean all

VOLUME [“/var/www/html”, “/var/log/httpd”]

EXPOSE 80

CMD [“/usr/sbin/apachectl”, “-DFOREGROUND”]

The first command, FROM centos:7, which creates the first layer 
in the image, specifies that the base image for CentOS 7 should 
be pulled from the central Docker repository into the local 
machine’s cache of file-system layers. This layer is the bottom 
layer in the image. The FROM command must be the first com-
mand in a Dockerfile and initializes a new build.

The second command, MAINTAINER ..., sets a special label in the 
metadata for the image. This label is used to identify the creator 
of the image. There is also a LABEL command that could be used 
instead to set an arbitrary number of labels on an image. The 
labels can be used by the end user for any purpose.

The third command, RUN yum -y update ..., updates any out-
of-date software packages that were included in the base image. 
The next part of the command, yum -y install httpd, installs 
the Apache httpd package. The final part of the command, yum 

clean, expunges all the package/repository metadata maintained 
by the yum package management system to minimize the size 
of the generated layer. For the same reason, the yum command, 
using the nodocs flag, is instructed to ignore any documentation 
during the upgrade and installation of packages. The arguments 

Figure 2: Docker process relationships
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to the RUN command are executed by a shell process, so the 
complexity of the generated layer in the constructed image can 
be quite elaborate.

The fourth command, VOLUME [ ... ], marks a list of directories 
to be used as external mountpoints in the UnionFS file system. 
During container execution, these mountpoints will have exter-
nal file systems mounted at these locations. The UnionFS layer 
should not attempt to capture that activity to the copy-on-write 
file system. This is one method for how a container can persist 
data outside of the copy-on-write image from which the con-
tainer is executing.

The fifth command, EXPOSE 80, provides information that will 
be used when a container is started from this image. A port on 
the hosting machine can be mapped to the specified TCP port 
number of the container at runtime. Or, by specifying a different 
networking option at runtime, the port of the container can be 
made accessible to other containers running on the same host.

Finally, the sixth command, CMD ..., specifies the default com-
mand to be executed when a container is started from this image. 
In this case, it starts the Apache Web server in the foreground. 
When the Apache Web server process exits, the container will 
be automatically stopped. It is often useful to create a small 
wrapper script around a daemon that is started inside a Docker 
container in order to restart the daemon if it stops running. By 
automatically restarting the daemon, the Docker container can 
continue to run without needing to be restarted.

Now that the purpose for each of the lines is known, building an 
image is straightforward. Note that some of the output from the 
build process has been removed and lines wrapped to improve 
readability. The image is created by running the command 
docker build directory, where directory is the path to the direc-
tory holding the Dockerfile.

docker build -t centos-apache-testimage .

Sending build context to Docker daemon  2.048kB

Step 1/6 : FROM centos:7

 ---> 3bee3060bfc8

Step 2/6 : MAINTAINER Ms. Nobody <nobody@example.com>

 ---> Using cache

 ---> 7f88dbad6a42

Step 3/6 : RUN yum -y --setopt=tsflags=nodocs update && 

           yum -y --setopt=tsflags=nodocs install httpd &&

           yum clean all

 ---> Using cache

 ---> f50595808f75

Step 4/6 : VOLUME [“/var/www/html”, “/var/log/httpd”]

 ---> Running in bce2b6331fc8

 ---> 51b4c07c8eba

Removing intermediate container bce2b6331fc8

Step 5/6 : EXPOSE 80

 ---> Running in 073e6fac8709

 ---> 5bf7cadf8102

Removing intermediate container 073e6fac8709

Step 6/6 : CMD /usr/sbin/apachectl -DFOREGROUND

 ---> Running in e5a44065f0d7

 ---> 4d119d3a4776

Removing intermediate container e5a44065f0d7

Successfully built 4d119d3a4776

Successfully tagged centos-apache-testimage:latest

Docker Image Inspection
It is instructive to look at some of the metadata about that image, 
via the docker inspect command. Not all the metadata is shown 
in this output, just some of the more interesting pieces.

docker inspect centos-apache-testimage:latest

[

    {

        “Id”: “sha256:db9314a42feb [...]”,

        “RepoTags”: [

            “centos-apache-testimage:latest”

        ],

        “ContainerConfig”: {

            “ExposedPorts”: {

                “80/tcp”: {}

            },

            “Env”: [

                “PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:”

            ],

            “Cmd”: [

                “/bin/sh”,

                “-c”,

                “#(nop) “,

                “CMD [\”/usr/sbin/apachectl\” \”-DFOREGROUND\”]”

            ],

            “Volumes”: {

                “[“/var/www/html”,”: {},

                “”/var/log/httpd”]”: {}

            }

        },

        “DockerVersion”: “17.06.0-ce”,

        “Author”: “Ms. Nobody <nobody@example.com>”,

        “Architecture”: “amd64”,

        “Os”: “linux”,

        “Size”: 275797466,

        “GraphDriver”: {

            “Data”: null,

            “Name”: “aufs”

        },

        “RootFS”: {

            “Type”: “layers”,

            “Layers”: [
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                “sha256:dc1e2dcd [...]”,

                “sha256:41fc3fb9 [...]”

            ]

        }

    }

]

The ContainerConfig section has the complete environment 
specified for the processes in any containers that are started 
from this image. The Architecture and Os settings show that the 
containers support the Linux syscall interface, for the amd64 
(aka x86 64) machine type. The Docker image for this article 
was created on a Macintosh computer, running macOS Sierra 
10.12.5, but any containers will be executed with a Linux/amd64 
runtime environment.

This image could be moved to any host capable of running 
Linux/amd64 Docker images. The portability of images is one of 
the principal advantages of Docker—ease of building and deploy-
ing across many different hosts without having to worry about 
shared library conflicts or corrupting configurations of already 
installed components. Docker supports the image registries 
where images may be stored and retrieved. A private Docker 
registry can be created that allows users to centrally store their 
customized images. Once the image is stored in the registry, a 
single command can retrieve the image to a host, and a second 
command can start a container from that image.

Running a Container
It is easy to create a running container from the example image:

docker run --rm -d -p 8080:80 \

    -v $(pwd)/htdocs:/var/www/html \

    -v $(pwd)/logs:/var/log/httpd \

    centos-apache-testimage:latest

This command starts the container, telling Docker to throw 
away the copy-on-write file system (--rm) when the container 
exits. The command runs the container in the background (-d) 
and port-maps  localhost:8080 to the container’s TCP port 80 
(-p 8080:80). The command also performs volume mounts 
of $(pwd)/htdocs to the DocumentRoot of the Web server (-v 
$(pwd)/htdocs:/var/www/html), and mounts $(pwd)/logs to 
hold the log files from the Web server running in the container 
(-v $(pwd)/logs:/var/log/httpd). Finally, the name of the image 
to be used as the initial file system for the container is listed.

Looking at Running Containers
Once a container has been started, it will run until the initial 
process that started the container exits. The user who started 
the container, or the system administrator, can stop the con-
tainer via the docker stop command. This sends a SIGTERM to 
the initial process in the container, and then a SIGKILL after 
a grace period, if the container has not stopped. This is very 

similar in intent to running the shutdown command on a UNIX 
host. The docker kill command just sends a SIGKILL to the root 
process in the container.

The docker ps command gives the list of running containers. 
The docker rm command can be used to remove the copy-on-
write file system of a stopped container.

Looking at Images on the Machine
The docker images command will show the list of images cur-
rently available on the host.

The docker rmi command can be used to remove a reference to 
an image, freeing the storage associated with that image when 
the reference count drops to zero. Note that shared layers in the 
image may also be used by other images, so there often isn’t a 
one-to-one correspondence between the amount of space listed 
as in use for the image and the amount of disk space used by 
the image. Many of the issues with double-counting of storage 
blocks that occur with file system snapshots are also evident 
with the docker-containerd storage of images.

Other Docker Commands
There are other Docker commands available that can be used 
for launching containers automatically and maintaining a set of 
containers that must run together to accomplish a given task. It is 
beyond the scope of this article to fully example the complete set of 
commands available inside of Docker. More advanced orchestration 
of multiple containers running across multiple hosts is possible via 
the Docker Swarm support in recent versions of Docker.

Comparison with FreeBSD Jails
Docker containers are similar to FreeBSD jails in terms of 
what virtualization is provided and how machine resources 
are shared. Both offer compartmentalized processes running 
against a single kernel image on the hosting machine (Figure 3). 
Docker offers an easy-to-use command line interface for creating, 
deploying, running, and updating images. Little setup and configu-
ration are required on the hosting machine, other than the basic 
Docker Engine installation. FreeBSD jails have a considerably sim-
pler interface to running and stopping jails. The base FreeBSD 
system offers essentially no high-level support for the building 
and installation of jails into a directory. There are several add-on 
FreeBSD ports (e.g., ezjail, qjail, and qjail4) that attempt to make 
jail usage less cumbersome, to varying degrees of success.

One significant advantage that Docker has over jails is the 
concept of spawning a per-instance copy-on-write file system 
for each container that is started. This is fundamental to the 
deployment and reusability of Docker images, whereas each 
FreeBSD jail typically runs in a persistent file system tree. Some 
of the add-on jail management systems use ZFS’s snapshot and 
promote features to create a clone of a prototype file system 
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for a newly instantiated jail, but that clone still persists the file 
hierarchy across multiple restarts of the jail.

With Docker containers, the Docker infrastructure takes care of 
mounting various directories when the container is started, whereas 
mounting of any directories, even including the crucial devfs /dev 

mount, must be handled explicitly for each FreeBSD jail.

For instance, running the example Docker container for Apache, 
there are several mountpoints active:

df

File system 1K-blocks Used Available Use% Mounted on

none  61890340 863500 57859916 2% /

tmpfs 1023384 0 1023384 0% /dev

tmpfs 1023384 0 1023384 0% /sys/fs/cgroup

/dev/sda2 61890340 863500 57859916 2% /etc/hosts

shm 65536 0 65536 0% /dev/shm

osxfs 976426656 624064128 352106528 64% /var/www/html

tmpfs 1023384  0 1023384 0% /sys/firmware

The Docker system manufactured the required mounts automati-
cally, with the exception of the /var/www/html mount, which was 
specified on the command line when the container was started.

The security benefits of Docker vs. jails are roughly equivalent. 
The security features of Docker are typically modified through 
command-line flags, while the security features for jails are either 
globally specified via sysctl settings or have per-jail configura-
tion settings in the /etc/jail.conf file. Jails, when operated with the 
VIMAGE networking option, have a per-instance network stack. 
This implies that each jail could have different packet filtering 
in place. All the running containers on a Linux-based host share 
a single iptables-based packet filter configuration.

The control aspects of Docker vs. jails are quite different. Docker 
has many commands and options to allow almost all configura-
tions to happen on the command line. FreeBSD jails rely heavily 
on the contents of the /etc/jail.conf file to specify which jails are 
to be run and how they are to be configured. Docker internalizes 
much of the configuration that is the metadata for a given Docker 

image. By attaching this metadata to the image, the deployment 
to a new host is significantly eased. FreeBSD jails have no such 
metadata directly attached to each jail.

In a related area, some of the FreeBSD ports for helping to man-
age bhyve virtualized host instances, such as iohyve, offer some 
of the same type of configuration help. These systems use ZFS 
properties to attach the metadata about a virtualized machine to 
a ZFS file system or ZFS zvol, which represents the file system 
for the virtualized machine. Several of the earliest versions 
of these management tools just used well-known names for the 
parameters that were to be controlled: hostname, number of CPUs, 
amount of memory, and so forth. None offered a generic, extensible 
tag:value configuration file that could be attached to a ZFS file sys-
tem, although this might have changed since the earliest attempts 
at supporting virtual machine metadata in this manner.

Future Directions for Docker
The Docker system is undergoing fairly rapid evolution. There is 
a consortium of companies that have formed the Open Con-
tainer Initiative (OCI). Significant members of the OCI include 
Amazon, AT&T, Cisco, Docker Inc., Facebook, Google, IBM, 
Microsoft, Oracle, Red Hat, and VMware. OCI is attempting to 
standardize both a container runtime system (“runtime-spec”) 
and an image specification (“image-spec”). As a starting point 
for the standardization process, Docker Inc. donated their con-
tainer specification, and their runtime system (runC) to OCI. 
Some of the members of OCI have vested interests in supporting 
more than just a Linux syscall ABI container, and the specifica-
tions are clear in the need to support multiple ABIs, as well as 
multiple operating systems hosting the container runtime. A 
recent development in the standardization process is Oracle’s 
release of an open-source implementation of the oci-runtime 
called Railcar, which is written in Rust.

Docker on FreeBSD
Examining the current state of the Docker system, it seems that 
there are no insurmountable technical impediments to mak-
ing the Docker system run natively on FreeBSD. The future of 
Docker and the support for different ABIs across containers 
implies that supporting a native FreeBSD kernel ABI for the 
containers would be possible. Obviously, this makes deploy-
ment using Docker less of a Linux/amd64 monoculture. Cur-
rently, Docker is effectively only running the Linux ABI on 
amd64 hardware. The Docker community, through the OCI, has 
already tentatively agreed to a multi-architecture system where 
both Linux and Windows will be supported as first-class ABI 
environments across multiple hardware platforms. This cross-
system support is already available in a limited fashion for the 
Linux ABI on IBM’s Z-System hardware, and nascent support 
for the arm64 architecture is available as well. It should be pos-
sible to extend this multi-ABI future to include FreeBSD.

Figure 3: Jail architecture
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It’s with some regret that this is the final installment of my regular Python 

column. I suppose that I should offer some final words of wisdom, a his-
torical retrospective, or maybe even a forward-looking “Python of the 

future” vision—however, I’m simply not that clever. Truth be told, I’m simply 
stretched a bit thin these days and think it would be a good time to step aside 
to make room for a fresh new voice and insights. So, in the spirit of leaving on 
a useful note, I thought I’d end on a practical trifle of a matter of some impor-
tance—the problem of getting a Python program to quit. 

Bailing Out
Suppose your program has reached the final limit of what it can tolerate and you want it to 
die. To make it happen, raise a SystemExit exception and be done with it. For example:

raise SystemExit(1)

It is standard practice to include some kind of numeric exit code, which indicates success 
(zero) or failure (non-zero) back to the process that launched Python. Alternatively, you can 
include a diagnostic message. 

raise SystemExit(‘Goodbye cruel world’)

When you give a message, it is printed to sys.stderr and Python exits with a status code of 
1. Problem solved—your program gracefully cleans up after itself and quits. Of course, that’s 
naturally not the end of the story or else this would be a pretty short article. Let’s continue. 

Catching Exceptions
The SystemExit exception is not grouped with other exceptions. For example, it’s somewhat 
common to encounter code that catches all errors like this: 

try:

    something_complicated()

except Exception as e:

    print(“It didn’t work. Reason: %s”, e)

This code will catch most errors, but not SystemExit. If you wanted to catch that, you’d have 
to add an extra clause for it. For example, 

try:

    something_complicated()

except Exception as e:

    print(“It didn’t work. Reason: %s”, e)

except SystemExit as e:

    print(“I see you’re going away”)

    raise

In practice, it’s rarely the case that you would ever catch SystemExit yourself. Even if you did, 
the most sensible action is perhaps to simply log the event and re-raise the exception as shown. 
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(4th Edition, Addison-Wesley, 
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A common confusion is that sometimes programmers catch Sys-

temExit by accident by writing sloppy exception handling code: 

try:

    something_complicated()

except:

    print(“It didn’t work.”)

This actually catches all possible errors, including SystemExit. 
However, this behavior is often unexpected and a potential 
source of obscure bugs. It’s usually best to catch just the excep-
tions you need as opposed to casting such a wide net. 

Keeping the Interpreter Alive
For the purpose of debugging, sometimes it’s nice to keep the 
interpreter alive so that you can go poking around. Use python 

-i for that. It works even in programs that intentionally raise 
a SystemExit exception. You might see a message printed, but 
otherwise, you’ll be dropped into the interactive Python shell 
afterwards. From there, you can mess around. For example: 

% python3 -i spam.py

Traceback (most recent call last):

  File “spam.py”, line 5, in 

    spam()

  File “spam.py”, line 3, in spam

    raise SystemExit(“I’m dead”)

SystemExit: I’m dead

>>> 

Cleanup Actions
Sometimes you might want extra actions to take place upon 
program termination. For this, you can use the atexit module [1]. 
For example: 

import atexit

def goodbye():

    print(“So long and thanks for all of the fish”)

atexit.register(goodbye)

atexit allows you to register an arbitrary number of zero-argu-
ment functions that get fired upon termination of the Python 
interpreter. The functions execute in reverse order of registra-
tion. If you need to carry extra information, it is standard prac-
tice to use a lambda or functools.partial to do it. For example: 

def spam(name):

    atexit.register(lambda: print(‘Goodbye’, name))

    ...

If needed, you can also unregister a previously registered func-
tion using atexit.unregister(). 

Cleanup with Context Managers
On the subject of cleanup, when working with objects, it’s usually 
best to make use of context managers and Python’s with state-
ment. For example, suppose you had some object that involved 
closing a resource such as a file or connection. A good way to clean 
it up is to give it __enter__() and __exit__() methods like this: 

class Spam(object):

    def __init__(self):

        self.resource = SomeResource()

        ...

    def __enter__(self):

        return self

    def __exit__(self, *args):

         # Cleanup

        self.resource.close()

With this object, you can now write code like this: 

with Spam() as s:

    ...

     # Use s

    ...

 # Resources released here

When control-flow leaves the indented block, the __exit__() 
method will run. This happens regardless of what happens in the 
block—including SystemExit. 

The __del__ Puzzle
Sometimes user-defined classes will define a __del__() method 
for the purposes of cleanup. For example: 

 # spam.py

import datetime

class Spam(object):

    def __del__(self):

       print(“%s destroyed at %s” % (self, datetime.datetime.now()))

__del__() is a particularly troublesome method to be defining 
in general. The main problem is that you simply don’t know when 
it’s actually going to fire. This is especially true on program 
exit. When Python shuts down, all active objects get garbage 
collected—this includes functions, classes, and modules. In the 
above example, it’s entirely possible you could get a warning 
message like this printed to standard error: 

Exception AttributeError: “’NoneType’ object has no attribute 

‘datetime’” in <bound method Spam.__del__ of <spam.Spam 

object at 0x1007d9f90>> ignored 

What’s happened here is that the datetime module reference 
has already been garbage-collected and is no longer defined in 
global scope. The __del__() method blows up because datetime 
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is gone. This sort of thing can often be fixed by playing weird 
games with default arguments. For example: 

 # spam.py

import datetime

class Spam(object):

    def __del__(self, now=datetime.datetime.now):

        print(“%s destroyed at %s” % (self, now()))

Ugh. Explaining something like that to your coworkers is going 
to be hard and even then, it’s no guarantee that it’s going to work 
(what if the now() function itself needs other functionality that’s 
already been garbage-collected?). The bottom line is don’t rely on 
__del__() to perform cleanup actions properly when it comes to 
program exit. You’re better off considering a context manager or 
a more explicit approach. 

Threads
Program exit becomes much more interesting when you start 
programming with threads [2]. Consider the following code: 

import threading

import time

def countdown(n):

    while n > 0:

        print(‘T-minus’, n)

        time.sleep(5)

        n -= 1

threading.Thread(target=countdown, args=(5,)).start()

raise SystemExit(“Goodbye”)

If you run this, program termination is delayed until the thread 
runs to completion. In fact, if you had a lot of threads, program 
exit won’t occur until all of them terminate. 

This situation is made even more unfortunate given that there 
is no mechanism for terminating or signaling a thread once 
started. Your only sane recourse is to build in some kind of peri-
odic polling or check. 

import threading

import time

main_thread = threading.current_thread()

def countdown(n):

    while n > 0 and main_thread.is_alive():

        print(‘T-minus’, n)

        time.sleep(5)

        n -= 1

threading.Thread(target=countdown, args=(5,)).start()

raise SystemExit(‘Goodbye cruel world’)

Alternatively, you could create the thread as “daemonic” like this: 

import threading

import time

def countdown(n):

    while n > 0:

        print(‘T-minus’, n)

        time.sleep(5)

        n -= 1

threading.Thread(target=countdown, args=(5,), daemon=True).

start()

raise SystemExit(“Goodbye”)

Daemonic threads are killed immediately once the main thread 
exits. This is not without its own set of concerns, however. 
Daemonic threads killed in this way do not exit gracefully. For 
example, they don’t garbage-collect remaining objects (they don’t 
execute __del__() methods), and they don’t run the __exit__() 
method of context managers. So if you were expecting some kind 
of graceful cleanup from this, don’t. 

Curiously, functions registered with atexit will still run upon 
termination of a threaded program—even if registered by dae-
monic threads. So you could write code like this: 

import threading

import time

import atexit

def countdown(n):

    onexit = lambda: print(‘Thread dead. Final value’, n)

    atexit.register(onexit)

    while n > 0:

        print(‘T-minus’, n)

        time.sleep(5)

        n -= 1

    atexit.unregister(onexit)

threading.Thread(target=countdown, args=(5,), daemon=True).

start()

time.sleep(12)

raise SystemExit(‘Goodbye cruel world’)

When you run this, you’ll see a message about a final value of 3. 

Keyboard Interrupts and Signals
One especially nasty problem with program termination is the 
handling of keyboard interrupts (Control-C) and signals [3]. 
These events often ultimately result in program termination, 
but unlike a typical SystemExit exception, they occur asynchro-
nously. This means that they could potentially occur on any 
statement in your program. 

Perhaps the most important thing to note about signals is that 
they are only handled by Python’s main execution thread. There 
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are situations where it is impossible to receive signals and it 
will appear as if it is impossible to kill your program. The most 
common scenario is if the main program gets tied up on a lock or 
becomes busy with some CPU-intensive task. Here is a simple 
example you can try: 

>>> ’a’ in range(1000000000)    # Use xrange on Python2

<Ctrl-C>

In this example, you’ll find that the code becomes totally unre-
sponsive to the keyboard interrupt until the operation completes. 
Under the covers the interpreter is tied up with a big calcula-
tion taking place in C. There’s just no opportunity for it to be 
interrupted. 

More diabolical situations can arise with combinations of lock-
ing and signal handling. Consider this interesting bit of code 
involving the logging module: 

import logging

import time

import signal

log = logging.getLogger(__name__)

def goodbye(signo, frame):

    log.debug(‘Goodbye’)

    raise SystemExit()

def spin():

    while True:

        log.debug(‘Hey %f’ % time.time())

signal.signal(signal.SIGINT, goodbye)

logging.basicConfig(level=logging.DEBUG)

spin()

In this code, a constant stream of log messages is quickly emit-
ted until terminated by a Control-C (SIGINT). It might look 
innocent enough and it might even seem to work when you try it. 
However, there are hidden dangers. It turns out that the logging 
module internally uses thread locks. If you run this program 
repeatedly, killing it with Control-C, you might find that just 
every so often, instead of dying, the whole program freezes. 
What happened? The main program was in the middle of logging 
a message with the lock held when a signal arrived. The signal 
handler then tried to log a message, but is now deadlocked due to 
the logging lock being in use. Your only recourse here—open up 
another terminal and kill Python using kill -9. 

Some general advice concerning threads, signals, and program 
exit. If you want your program to terminate, a sensible strategy is 
often one that keeps the main-thread free for nothing other than 
signal handling. Use it to catch keyboard interrupts and other 
signals and have it arrange to have the rest of the program exit 

in the most graceful manner that you can devise. This is only a 
simple template: 

import threading

import time

terminated = False

def countdown(n):

    while n > 0 and not terminated:

        print(‘T-minus’, n)

        time.sleep(5)

        n -= 1

threading.Thread(target=countdown, args=(5,)).start()

 # Main-thread. Spin and wait for termination

try:

    while True:

       time.sleep(1)

finally:

    terminated = True

There are many variations on this theme, but if you’ve got a very 
complicated application and it involves concurrency, direct-
ing all asynchronous signals and/or the keyboard interrupt to a 
single well-defined place is probably a good strategy. 

The Nuclear Option
Finally, if all else fails, there is always os._exit(). For example: 

import os; os._exit(1)

This is a direct line to the underlying exit() system call. It will 
terminate Python immediately, with no cleanup of any kind. As a 
general rule, though, you’d probably want to avoid this except as 
a last resort. 

Final Words
As noted, this is my last installment of the regular Python col-
umn. I’d just like to thank Rik Farrow and everyone else at USE-
NIX for their support over the last six years and hope that you’ve 
enjoyed it. I intend to stay active in the Python community, so 
say hello if you ever see me at a conference, or if you happen to 
be in the Chicago area, please feel free to look me up. Until then, 
happy Python hacking! 
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Practical Perl Tools
Perl without Perl

D A V I D  N .  B L A N K - E D E L M A N

It’s not exactly a Zen koan, but it will have to do for this issue’s column. 
Today we’re going to talk about how a method for parsing Perl without 
using the actual Perl interpreter can offer a whole host of benefits. This 

idea may be somewhat surprising because Perl has a reputation (perhaps 
deserved) as being a language where “the only thing which can parse Perl 
(the language) is perl (the binary).” For some detailed examples of this criti-
cism, see one of the well-known essays at http://www.perlmonks.org/index 
.pl?node_id=44722, which is where that quote came from, originally attrib-
uted to Tom Christiansen. 

Part of the problem is that there are some ambiguities in the language that only resolve 
themselves definitively during runtime. This reality harshed many the mellow of aspiring 
tool creators until at some point someone asked the question, “Could we write something 
that could parse enough Perl to be useful? Maybe we won’t get 100% correct behavior, but 
how good does it have to be to let us get real work done?” Turns out, we can actually get 
really, really close. The leap in thinking that made this possible was a small shift in mindset: 
instead of thinking of the program/file as code that is executed, we can think of it as a static 
document we can parse. This lets us get close enough that very useful tools can be created, 
and that’s what this column will focus on. 

PPI
The heart of all of this work is the PPI module and the small ecosystem that surrounds it. PPI 
is a Perl module (so perhaps the title isn’t entirely accurate) that knows how to parse existing 
Perl code. Even though this module is at the center of everything we’re going to talk about 
today, we’re going to do almost nothing with it directly. Directly using PPI is easy (excerpted 
from the docs):

 use PPI;

  

 # Create a new empty document

 my $Document = PPI::Document->new;

  

 # Load a Document from a file

 $Document = PPI::Document->new(‘Module.pm’);

  

 # Does it contain any POD?

 if ( $Document->find_any(‘PPI::Token::Pod’) ) {

     print “Module contains POD\n”;

 }

  

 # Remove all that nasty documentation

 $Document->prune(‘PPI::Token::Pod’);

 $Document->prune(‘PPI::Token::Comment’);
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 # Save the file

 $Document->save(‘Module.pm.stripped’);

Basically, you create the object that will represent the Perl docu-
ment and then tell PPI to parse the file (or a chunk of Perl code in 
a string, not shown here). In the code above we tell PPI to find or 
remove different Perl structures from the parsed info and write 
this document back out to disk. This is pretty simple, so what can 
we build on this model?

Make It Pretty
One thing we can do once we “understand” the Perl document 
that has been parsed is to output the document in a way that 
improves its readability. One example of this is PPI::Prettify. 

PPI::Prettify bootstraps on the work done by Google to pro-
duce a syntax highlighting tool that would make it easy to 
embed readable code in a Web page. This is the same software 
that Stack Overflow uses for its code examples. Their package, 
 prettify.js (https://code.google.com/archive/p/google-code-
prettify/), consists of a JavaScript module to do the highlight-
ing and accompanying CSS that lets you “theme” the results. 
PPI::Prettify lets you skip the JavaScript part and just make use 
of the CSS themes that work with prettify.js (plus the highlight-
ing is allegedly more accurate). 

Using the module is basically a single call:

 use File::Slurp;

 use PPI::Prettify ‘prettify’;

 my $document = read_file( $ARGV[0] );

 print prettify( { code => $document } );

Here you see me using File::Slurp to pull an entire file into 
memory because PPI::Prettify expects to have code fed to it via 
a scalar. 

The output looks a little like this:

 <pre class=”prettyprint”><span class=”kwd”>use</span 

><span class=”pln”> </span><span class=”pln”>WebService 

::Spotify</span><span class=”pun”>;</span><span class=”pln”>

 </span><span class=”pln”>

 ...

which is only “pretty” when displayed in an HTML document 
that references the right prettify.js CSS file for those classes. 

Count It
Another helpful class of things built on top of PPI are the mod-
ules that can give us some stats about our code. For example, the 
Perl::Metrics::Simple package comes with a countperl utility, 
which gives the following output:

$ countperl spotify2.pl 

Perl files found: 1

Counts

--------

total code lines: 14

lines of non-sub code: 8

packages found: 0

subs/methods: 1

Subroutine/Method Size

-----------------------------

min: 6

max: 6

mean: 6.00

std. deviation: 0.00

median: 6.00

McCabe Complexity

----------------------

Code not in any subroutine

min: 5

max: 5

mean: 5.00

std. deviation: 0.00

median: 5.00

Subroutines/Methods

min: 2

max: 2

mean: 2.00

std. deviation: 0.00

median: 2.00

List of subroutines, with most complex at top

------------------------------------------------------

complexity sub  path size

 5 {code not in named subroutines} ./spotify2.pl  8

 2 print_artists ./spotify2.pl  6

If you really get into this sort of static analysis, there are more 
complex modules like Perl::Metrics and Code::Statistics you 
may want to explore.

Find It
A perhaps more exciting consequence of being able to parse Perl 
from Perl is the ability to create utilities that can selectively 
operate on source files based on the semantics of the code they 
contain. For example, we can now write programs that only work 
on Perl files that contain documentation (or better yet, are miss-
ing documentation). We can search for text just in the comments 
of the code (looking at only real comments vs. a crude guess that 
looks at strings that start with a #). We can look for code that has 
“barewords” in it, and so on. PPI opens this all up for us.
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Two easy ways to get into this are using the Find::File::Rule:PPI 
module and utilities like App::Grepl. Let’s look at both.

We’ve talked about the Find::File::Rule family before in this 
column (I’m very fond of it), but let’s do a quick review anyway. 
Find::File::Rule is a module family meant to extend the func-
tionality of the Find::File module that ships with Perl and also 
make it easier to use. Instead of writing a special subroutine 
whose job it is to determine whether an object found when tra-
versing a directory tree is of interest, you write code that looks 
more like this (from the doc):

# find all the subdirectories of a given directory

my @subdirs = File::Find::Rule->directory->in( $directory );

and

# find all the .pm files in @INC

my @files = File::Find::Rule->file()

 ->name( ‘*.pm’ )

 ->in( @INC );

Basically, you string together a bunch of methods that express 
rules for determining the files or directory names of interest. 
I find it easiest to read the code backwards—in the last code 
sample, it says to look in the directories listed in the @INC array. 
In those directories, collect the names of all of the files and 
directories that have a name ending in .pm. Of these, return 
those that are files.

Find::File::Rule:PPI adds a ppi_find any method that lets you 
specify the same sort of selectors we saw at the very beginning of 
the column. So, for instance, if we wanted a list of all of the Perl 
files in a directory (and its subdirectories) that have embedded 
POD documentation, we could write:

use File::Find::Rule;

use File::Find::Rule::PPI;

my @podfiles =

  File::Find::Rule

   -> file()

   -> name(‘*.pm’)

   -> ppi_find_any(‘PPI::Token::Pod’)

   -> in(‘.’);

print join(“\n”, @podfiles), “\n”;

App::Grepl takes this a little further in that you can search for 
text (à la grep) in specific Perl structures. For example, you could 
look for the string “USENIX” in just the POD part of files with 
code like this:

use App::Grepl;

my $grepl = App::Grepl->new( {

    dir      => “.”,

    look_for => [ ‘pod’ ],

    pattern  => ‘USENIX’

} );

$grepl->search;

or from the command line:

 grepl --dir . --pattern ‘USENIX’ --search pod

There are modules that can do less general scanning as well. For 
example, App::ScanPrereqs offers a nice CLI that can show all of 
the prerequisites for the code in a directory:

$ scan-prereqs .

+-------------------------------------------+-------------+

| module | version |

+-------------------------------------------+-------------+

| blib | 1.01 |

| ExtUtils::MakeMaker  | 0 |

| File::Find | 0 |

| File::Spec | 0 |

| Filename::Backup | 0 |

| IO::Handle | 0 |

| IPC::Open3 | 0 |

| Log::ger | 0 |

| Module::CoreList | 0 |

| Perinci::CmdLine::Any | 0 |

| perl | 5.010001 |

| Perl::PrereqScanner | 0 |

| Perl::PrereqScanner::Lite | 0 |

| Perl::PrereqScanner::NotQuiteLite | 0 |

| Pod::Coverage::TrustPod | 0 |

| strict | 0 |

| Test::More | 0 |

| Test::Pod | 1.41 |

| Test::Pod::Coverage | 1.08 |

| warnings | 0 |

+-------------------------------------------+-------------+

It’s a little meta, but that’s what the module reports for itself 
when I run the scanner. 

A similar tool comes from the Perl::MinimumVersion module 
which can output information like:
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  -------------------------------------------------------------------------  

| file | explicit | syntax | external |

| ----------------------------------------------------------------------- |

| Makefile.PL | v5.10.1 | v5.10.0 | n/a |

| bin/scan-prereqs | v5.101 | v5.6.0 | n/a |

| lib/App/ScanPrereqs.pm | v5.10.1 | v5.10.0 | n/a |

| t/00-compile.t | v5.6.0 | v5.6.0 | n/a |

| t/author-pod-coverage.t | ~  | ~ | n/a |

| t/author-pod-syntax.t | ~ | v5.6.0 | n/a |

| t/release-rinci.t | ~ | ~ | n/a |

| ----------------------------------------------------------------------- |

| Minimum explicit version : v5.10.1  |

| Minimum syntax version : v5.10.0 |

| Minimum version of perl : v5.10.1 |

  ------------------------------------------------------------------------  

If you want to go one step fancier, there’s the App::PrereqGrapher 
module which makes pretty pictures like the one in Figure 1.

Make Your Code Better
Okay, the last set of PPI-powered modules to cover: those that 
help us write better code. Examples of this are the several mod-
ules like Log::Report::Extract::PerlPPI that make it easier to 
find, extract, and replace translatable strings in the code (e.g., 
error messages) for when you need to write code that will work in 
several languages. 

Even more fun is software like Code::DRY, which calls itself “Cut-
and-Paste-Detector for Perl code” and says, “The module’s main 
purpose is to report repeated text fragments (typically Perl code) 
that could be considered for isolation and/or abstraction in order 
to reduce multiple copies of the same code (aka cut and paste 
code).” This can produce reports like (from the doc):

1 duplicate(s) found with a length of 8 (>= 2 lines) and 78 bytes

     reduced to complete lines:

1.  File: t/00_lowlevel.t in lines 57..64 (offsets 1467..1544)

2.  File: t/00_lowlevel.t in lines 74..81 (offsets 1865..1942)

===================

...<duplicated content>

===================

As a last and perhaps most useful module to visit, we return to 
something we’ve seen in past columns: Perl::Critic. Perl::Critic 
attempts to “critique Perl source code for best-practices.” I think 
its doc says it best:

Perl::Critic is an extensible framework for creating 
and applying coding standards to Perl source 
code. Essentially, it is a static source code analysis 
engine. Perl::Critic is distributed with a number of 
Perl::Critic::Policy modules that attempt to enforce 
various coding guidelines. Most Policy modules are 
based on Damian Conway’s book Perl Best Practices. 
However, Perl::Critic is not limited to PBP and will 
even support Policies that contradict Conway. You can 
enable, disable, and customize those Policies through 
the Perl::Critic interface. You can also create new 
Policy modules that suit your own tastes.

When I write code, I tend to use a few tools to improve it, even 
as I’m writing. First, there’s the internal checks of use strict. 
Then there is perltidy (which doesn’t use PPI because it existed 
a couple of years before PPI came into being, but there are bug 
reports that suggest it should) for aligning and generally pretty 
printing the code. And finally, there’s perlcritic, the command 
line tool that calls Perl::Critic on the code to look for best prac-
tices being violated by the code. For example, here’s a run on the 
CSS::Tiny module file:

$ perlcritic Tiny.pm 

Bareword file handle opened at line 27, column 2.  See pages 

   202,204 of PBP.  (Severity: 5)

Don’t modify $_ in list functions at line 53, column 16.  See 

   page 114 of PBP.  (Severity: 5)

Expression form of “eval” at line 69, column 19.  See page 

   161 of PBP.  (Severity: 5)

Expression form of “eval” at line 69, column 46.  See page 

   161 of PBP.  (Severity: 5)

Bareword file handle opened at line 90, column 2.  See pages 

   202,204 of PBP.  (Severity: 5)

Not everything it complains about is crucial to change, but it 
does occasionally point out flaws in the code that can and should 
be easily remedied. 

With this tip, I’ll say take care, and I’ll see you next time.

Figure 1: Output from App::PrereqGrapher
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C H R I S  “ M A C ”  M C E N I R Y

In the Fall 2017 issue, we examined using Go to set up TLS encryption 
between our gls service and gls client. To recap, Go has three strong 
libraries which we used: the crypto/x509 library and the crypto/rsa 

libraries provided us with a means of generating the certificate, and the 
crypto/tls library provided us with a way of wrapping the gls communica-
tions with encryption.

In this issue, we’re going to look to another tool to handle our certificate and key generation: 
HashiCorp’s Vault (https://www.vaultproject.io/).

Vault, which is written in Go, has a Go client library for it. Not surprisingly, this library is not 
in the standard Go library. This will give us a chance to get a taste of the new Golang depen-
dency management tool: dep (https://github.com/golang/dep).

We’re going to use the existing code from last issue’s article, but we’ve added a new file:  
certs/generate_certs_vault.go to do our certificate generation. You can get this code from 
https://github.com/cmceniry/login-glss, or by running: 

    shell$ go get -u github.com/cmceniry/login-glss

Using an External Secret Store
Organizations are under increasing pressure from regulatory entities to ensure proper han-
dling of secrets. They need to be able to demonstrate a proper chain of custody and limited 
exposure of those secrets. They need to be able to show when a secret was accessed and by 
whom.

This ends up involving a significant amount of overhead and having a large impact on code 
and configuration processes. The secret cannot be kept with other configuration data, even 
though it is critical to the application or service being able to run.

What are some of these secrets? A few examples are:

◆◆ Passwords for service accounts to access databases

◆◆ Salts or shared secrets for message hashing and signatures

◆◆ Shared secrets for encryption channels

◆◆ TLS keys or the passphrases to TLS keys

Imagine having to go to every location where an application is running and manually putting 
a password or passphrase in place. The application code and the rest of its configuration are 
already there, but you still can’t start the application without having these secrets. Even in 
a well-run organization, this can cause critical delays to service delivery or restoration. And 
that this is not well auditable is just as bad. You have to rely on people filling out sign in/sign 
out forms for retrieving the password or passphrase.

Chris “Mac” McEniry is a 
practicing sysadmin responsible 
for running a large e-commerce 
and gaming service. He’s been 
working and developing in 

an operational capacity for 15 years. In his 
free time, he builds tools and thinks about 
efficiency. cmceniry@mit.edu

https://www.vaultproject.io/
https://github.com/golang/dep
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github.com/cmceniry/login-glss
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Vault makes it easier and faster to handle the secret and to keep 
that handling auditable. It is a network service that can share or 
issue secrets. The application or application server authenticates 
itself to Vault and receives an access token in response. The 
application then uses this token to retrieve any secrets it needs. 
Vault is maintaining the audit log for when that secret was cre-
ated, modified, or retrieved.

Vault is designed to have multiple pluggable back ends. A back 
end handles a particular type of secret—such as a generic or 
database password. In the case of the database password, Vault 
can perform an action to create the credentials on the fly when 
it is asked for the password. This allows limited-use passwords 
and other precautions to reduce risk.

We’re going to use Vault to generate our keys and certificates 
using the Vault Go library. But before we do that, we need to set 
up Vault and prepare it to be a certificate authority.

Getting Started: Vault
To get set up with Vault for this exercise, we’re going to:

◆◆ Install Vault

◆◆ Start the Vault server

◆◆ Set our authentication credentials for Vault

◆◆ Configure Vault with our certificate authority back end

◆◆ Have Vault generate a key and certificate for our certificate 
authority

◆◆ Configure a role to use our certificate authority

Vault is a combined network server and client in one binary. You 
can download the binary for several platforms from the project’s 
Web site: https://www.vaultproject.io/downloads.html.

To keep this article brief, we’re going to cut a few corners when 
starting the server—namely, start it in dev mode. This leaves out 
the certificates for encrypting the communication with vault, 
and shortcuts the authentication phase by using a predefined 
token available in dev mode. Vault will keep everything in 
memory so this is definitely not a permanent installation. In a 
production deployment, you would want to examine both of these 
areas more closely.

Start vault with the -dev and -dev-root-token-id=mytoken and 
send it to the background.

    shell$ ./vault server -dev -dev-root-token-id=mytoken &

    [1] 13625

    shell$ ==> Vault server configuration:

 Cgo: disabled

 Cluster Address: https://127.0.0.1:8201

 Listener 1: tcp (addr: “127.0.0.1:8200”, cluster address:

“127.0.0.1:8201”, tls: “disabled”)

 Log Level: info

 Mlock: supported: false, enabled: false

 Redirect Address: http://127.0.0.1:8200

 Storage: inmem

 Version: Vault v0.8.3

 Version Sha: 6b29fb2b7f70ed538ee2b3c057335d706b6d4e36

==> WARNING: Dev mode is enabled!

Next, we’ll want to set up a few environment variables. VAULT_

ADDR sets the connection point for Vault. VAULT_TOKEN sets the 
authentication token to use.

    shell$ export VAULT_ADDR=http://127.0.0.1:8200

    shell$ export VAULT_TOKEN=mytoken

Now we can set up the back end in Vault. In this case, we’re going 
to use the pki back end, which will be our certificate authority. 
We want to make it available inside of Vault at a known location—
we’ll use myca. Back ends are set up with the mount command.

    shell$ ./vault mount -path=myca pki

    2017/09/23 21:22:55.762379 [INFO ] core: successful mount: 

path=myca/ type=pki

    Successfully mounted ‘pki’ at ‘myca’!

Now we need to have Vault generate the key and certificate for 
our certificate authority. Vault uses a generic interface to the 
back ends—namely, you can perform write (Create/Update), read 
(Read), and delete (Delete) operations on paths inside of Vault. 
When a back end is mounted, it exposes child paths underneath 
the mount path. You can perform CRUD operations on these child 
paths as appropriate for the back end. The paths and their usages 
for the pki back end can be found at https://www.Vaultproject.io 
/api/secret/pki/index.html. We’re going to start by issuing a write 
to the path for “Generate Root.” For this path, we have to specify 
the common name that will be stamped on the CA’s certificate.

    shell$ ./vault write myca/root/generate/internal common_

name=”My CA”

    Key             Value

   —         -----

    certificate     -----BEGIN CERTIFICATE-----

    ...

    -----END CERTIFICATE-----

    expiration      1508992653

    issuing_ca      -----BEGIN CERTIFICATE-----

    ...

    -----END CERTIFICATE-----

    serial_number   54:64:79:74:5c:b8:a1:6a:66:0c:88:6e:eb:bb: 

40:1e:46:4b:d4:43

https://www.vaultproject.io/downloads.html
https://127.0.0.1:8201
http://127.0.0.1:8200
http://127.0.0.1:8200
https://www.Vaultproject.io/api/secret/pki/index.html
https://www.Vaultproject.io/api/secret/pki/index.html
b8:a1:6a:66:0c:88:6e:eb:bb:40:1e:46:4b:d4:43
b8:a1:6a:66:0c:88:6e:eb:bb:40:1e:46:4b:d4:43
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Vault responds with a generic response as well—key-value pairs. 
For this path, it responds with the CA’s certificate, its expiration 
date represented in UNIX Epoch time, and the serial number. 
The certificate shows up twice—once as itself and once as its 
own issuing_ca. The second time has more to do with the struc-
ture of Vault’s internal code for generating certificates—this will 
show up later as well. To mirror the last issue, replace the certs/
CA.crt file with the certificate PEM block from above.

The last piece of setup in the Vault is that we need to configure 
roles inside of our myca path. These roles are both specific to the 
pki back end and specific to this instance of it. They represent 
the options for what configurations—namely, the common name, 
and type—can be put on to the issued certificates. Since we’re 
already using the powerful root token, we’re going to generate 
powerful roles which can mint certificates with any name, but 
we’ll keep separate roles for generating server certificates and 
client certificates.

    shell$ ./vault write myca/roles/powerserver allow_any 

_name=true \

        enforce_hostnames=false \

        server_flag=true \

        client_flag=false

    Success! Data written to: myca/roles/powerserver

    shell$ ./vault write myca/roles/powerclient allow_any 

_name=true \

        enforce_hostnames=false \

        server_flag=false \

        client_flag=true

    Success! Data written to: myca/roles/powerclient

Getting Started: Vault Client Library
To get ready to use the client, we’re going to:

◆◆ Add a reference client to our project code

◆◆ Initialize dep and let it pull down our code dependencies

dep looks at your code to decide what it needs to pull in. To start 
to use dep, we’re going to add the Vault client as an import in 
certs/generate_certs_vault.go. Since the package name api is 
a bit too generic, we’re going to specify that the qualified identi-
fier of the package name is going to be vaultapi.

    import (

        vaultapi “github.com/hashicorp/vault/api”

Now we let dep do the hard part. For demonstration purposes, 
I’m using the verbose flag; otherwise, dep is very quiet.

    shell$ dep init -v

    Root project is “github.com/cmceniry/login-glss”

     3 transitively valid internal packages

     2 external packages imported from 2 projects

    (0)   ✓ select (root)

    (1) ? attempt github.com/kelseyhightower/gls with 1 pkgs; 1 

versions to try

    (1)     try github.com/kelseyhightower/gls@master

    (1) ✓ select github.com/kelseyhightower/gls@master w/1 pkgs

    (2) ? attempt github.com/hashicorp/vault with 1 pkgs; 76 

versions to try

    (2)     try github.com/hashicorp/vault@v0.8.3

    ...

      Locking in master (42a06e0) for direct dep github.com 

/kelseyhightower/gls

    ...

      Locking in v0.8.3 (6b29fb2) for direct dep github.com 

/hashicorp/vault

      Locking in master (68e816d) for transitive dep github.com 

/hashicorp/hcl

What is init doing?

From our project, it starts by examining every .go file and look-
ing at their import statements. From that it starts to build out 
a list of dependencies and pulls those in. It then does this same 
examination of the dependencies’ import statements and iterates. 
When it looks at a dependency, it looks for any versioning infor-
mation that that dependency may give—this usually shows up as 
semantic versioning (v$major.$minor.$patch)-based Git tags.

dep creates a Gopkg.toml file if one does not already exist. 
The toml file is used to specify any version constraints on the 
dependencies. After dep has collected all of the dependency 
and version information, and any constraints from the toml 
file, it attempts to solve finding the appropriate version of every 
dependency.

Once solved, dep creates a Gopkg.lock file, and pulls down any 
missing dependencies. The lock file is the version informa-
tion which dep has picked for the current dependency solution. 
dep uses the vendor pattern for storing dependencies. When it 
pulls down a dependency, it stores that dependency in the vendor 
directory of this project. This allows the build to be specific to this 
particular project and not conflate items in the src directory of 
your $GOPATH. That way, if you are working with multiple projects 
that have conflicting dependencies, you can keep those separate 
rather than rebuilding your $GOPATH/src all of the time.

After init is done, it’s good to take a look at what it has gathered. 
The status subcommand provides the current dependency solu-
tion and also takes a look at the upstream repositories to provide 
the latest version information.

github.com/hashicorp/vault/api
github.com/cmceniry/login-glss
github.com/kelseyhightower/gls
github.com/kelseyhightower/gls@master
github.com/kelseyhightower/gls@master
github.com/hashicorp/vault
github.com/hashicorp/vault@v0.8.3
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While we won’t need it in this exercise, you can always re-solve 
and bring your dependencies up-to-date with dep ensure.

Now that we have our dependencies, we can build out certificate 
generator.

Generating Keys and Certificates with the  
Vault API
To start off, our main program needs to set up our Vault con-
nection. The Vault API does this in two parts—initializing the 
configuration and using that configuration to create a client 
struct. As with working with the command-line client, we need 
to explicitly set the Vault address as appropriate.

    config := vaultapi.DefaultConfig()

    config.Address = “http://127.0.0.1:8200”

    c, err := vaultapi.NewClient(config)

Unlike before, where we set the authentication token as part of 
our environment, the token is set on the client.

    c.SetToken(“mytoken”)

Now we can ask Vault to issue a key and certificate. We’re going 
to start with the glssd server certificate.

First, we call Logical() to indicate that we’re going to be access-
ing a Vault back end. If we wanted to perform administrative 
functions, such as mount, to Vault instead of data functions, we 
can use the Sys() function to get access there.

As with the command line interface, the Write call used a generic 
interaction with Vault. In the logical subsystem, we call a similar 
Write to the myca/issue/powerserver endpoint to have Vault 
issue us a key and certificate. In addition to the path, we have to 
supply some data—common_name and ttl for the expiration to 
use. How this data is transmitted is where the generic interac-

tion comes into play. The Write call of the Vault 
API has the same signature regardless of what 
back end is in use. To allow for different back-end 
forms, it has to rely on loose type checking—the 
kind you find with the empty interface. And to 
allow for multiple data parameters, requests to 
Write take data in the form of a map where the 
map key is the data name as a string, and the map 
element is the data value as an empty interface.

    s, err := c.Logical().Write(

      “myca/issue/powerserver”,  

      map[string]interface{}{

        “common_name”: “localhost”,

        “ttl”:         “1h”,

    })

Vault responds with a Secret struct. There are several parts to it, 
but the part we care about is in the Data field. Much in the same 
way that the input data was in the generic map[string]inter-

face{}, the Data field is also a map[string]interface{}. We can 
access the returned keys and assert their type to what we know 
they are. In particular, for the pki back end’s issue commands, 
we get back the private_key key and the certificate. We take 
these and assert them to strings. Strings easily cast to byte slices 
which are what the ioutil.WriteFile func needs to save them out 
to disk.

    ioutil.WriteFile(

      “certs/server.key”,

      []byte(s.Data[“private_key”].(string)),

      0444,

    )

    ioutil.WriteFile(

      “certs/server.crt”,

      []byte(s.Data[“certificate”].(string)),

      0444,

    )

Next we do the same actions for the client certificate. This time, 
we also have to use a different role because that is the role we used 
which will issue certificates with the client usage set on them.

    s, err = c.Logical().Write(

      “myca/issue/powerclient”,

      map[string]interface{}{

        “common_name”: “glss Client A”,

        “ttl”:         “1h”,

      },

    )

    ...

    shell$ dep status | cut -b1-80

    PROJECT  CONSTRAINT VERSION REVISION LATE

    github.com/fatih/structs * v1.0 a720dfa a720

    github.com/golang/snappy *  branch master 553a641 553a

    github.com/hashicorp/errwrap * branch master 7554cd9 7554

    github.com/hashicorp/go-cleanhttp * branch master 3573b8b 3573

    github.com/hashicorp/go-multierror * branch master 83588e7 8358

    github.com/hashicorp/go-rootcerts * branch master 6bb64b3 6bb6

    github.com/hashicorp/hcl * branch master 68e816d 68e8

    github.com/hashicorp/vault ^0.8.3 v0.8.3 6b29fb2 6b29

    github.com/kelseyhightower/gls branch master branch master 42a06e0 42a0

    github.com/mitchellh/go-homedir * branch master b8bc1bf b8bc

    github.com/mitchellh/mapstructure * branch master d0303fe d030

    github.com/sethgrid/pester * branch master 0af5bab 0af5

    golang.org/x/net  * branch master 0744d00 0744

    golang.org/x/text  * branch master 1cbadb4 1cba

http://127.0.0.1:8200
github.com/fatih/structs
github.com/golang/snappy
github.com/hashicorp/errwrap
github.com/hashicorp/go-cleanhttp
github.com/hashicorp/go-multierror
github.com/hashicorp/go-rootcerts
github.com/hashicorp/hcl
github.com/hashicorp/vault
github.com/kelseyhightower/gls
github.com/mitchellh/go-homedir
github.com/mitchellh/mapstructure
github.com/sethgrid/pester
golang.org/x/net
golang.org/x/text
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    ioutil.WriteFile(

      “certs/client.key”,

      []byte(s.Data[“private_key”].(string)),

      0444,

    )

    ioutil.WriteFile(

      “certs/client.crt”,

      []byte(s.Data[“certificate”].(string)),

      0444,

    )

A word of warning: we’re being fast and loose with the conver-
sion from the empty interface of the response to something we 
can write to a file. This means that any issues that crop up here 
will result in Go panics. It would be advisable to add conversion 
error checking to this code before building off of it. Or you could 
use the github.com/mitchellh/mapstructure library, which 
provides a way to convert loose data into structs much like you 
would with the encoding/json and encoding/xml libraries.

With that complete, we can run it to generate the new keys and 
certificates:

    shell$ go run certs/generate_certs_vault.go

    Success!

Since we have a drop in replacement for the generate_certs.
go method, we can run the same commands as we did  last 
issue, and verify that we’re still working with the Vault-issued 
certificates:

    shell$ ./glssd &

    [1] 32659

    shell$ 2017/09/23 23:15:31 Starting glsd..

    shell$ ./glss .

    2017/09/23 23:15:34 user=”glss Client A” connect

    drwxr-xr-x  442 Sep 23 22:39 .

    drwxr-xr-x  510 Sep 23 23:14 .git

    -rw-r--r-  42  Sep 23 22:39 .gitignore

    -rw-r--r- 2776 Sep 23 22:08 Gopkg.lock

    -rw-r--r- 687 Sep 23 22:08 Gopkg.toml

    ....

Application Changes When Using an External 
Secret Store
To extend the example here, instead of doing a drop-in replace-
ment for the key and certificate generator, you can imagine that 
the glssd program itself would contact Vault and get a new key 
and certificate every time it started up. This is interesting for 
several reasons:

◆◆ We know when a specific certificate was issued to a specific 
client and can track and audit that.

◆◆ We can set the certificate lifetimes relatively low, increase key 
rotation, and decrease the impact timeframe of a leaked key.

◆◆ We can apply deployment automation to our environment 
without having to worry about dirtying our source control 
systems with keys.

Some of the above is very much dependent on the way the appli-
cation authenticates to the Vault system, but that will have to 
wait for a future article. Regardless, the benefits are intriguing.

I hope this article has convinced you that it is relatively straight-
forward to retrieve items from external secret stores. I hope you 
take the time to see what they can do for you to help improve the 
overall security stance in your code and at your organization.

github.com/mitchellh/mapstructure
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A little while ago, at my day job, we had a catastrophic DNS outage [1]. 
DNS (he explained, captain-obviously) is a rather essential bedfel-
low of SMTP. I’m not understating the relationship because I want 

to. Honestly, it’s sort of impossible to overstate it, or even do justice to how 
intertwined the protocols really are.

For every SMTP conversation you initiate, you make at least twice the number of DNS 
queries (and usually, given MX round-robin load balancing, DKIM txt records, and failure-
induced retransmission, way more). In fact, every time you push that send button to ACK a 
calendar reply or send a one-liner to thank someone, you’re putting more DNS bytes on the 
wire than you are SMTP.

As an email service provider, sometimes it seems like our REAL job is to run DNS at scale. I 
know, bum-ba-bum at scale, those two cheap little words that make every story interesting. 
You process ACH payment transactions? Okay, that’s cool I guess. Oh, you process ACH pay-
ment transactions at scale? Why didn’t you say so? Any banal undertaking is keynote-worthy 
if you do it eleventy-billion times a day.

SaaS email service providers, as we are at my day job, carry out SMTP conversations at scale 
at the behest of our customers. All those password reset emails and coupon mailers add up 
evidently, and the rub, of course, is you can’t speak SMTP at scale without first speaking 
DNS at scale. It’s a very strange business model if you think about it. Step one, implement 
DynDNS. Step two, layer your actual product on top of it.

As a result, we have a somewhat complicated relationship with AWS in the context of DNS, 
as you can probably imagine. We often assist them in locating the real-world limitations of 
this or that service with our perfectly rational, real-world traffic patterns. They often strug-
gle to define the word “abuse” in such a way that doesn’t encompass our perfectly rational 
real-world traffic patterns. We are not unlike a consultant in these respects. An extremely 
diligent, successful, and annoying consultant.

Were you to ask AWS, I suspect they might tell you that the phrase “perfectly rational” as 
applied to real-world DNS traffic from a non-DNS provider is subject to interpretation. Of 
course, they’re wrong in our case (with startling regularity), but one does have to respect how 
predictably on-message they are. For our part, we continue to assure them that gigabyte-
sized bursts atop our already absurd cardinality of DNS traffic is a metric of nothing but 
success for us both, but convincing them of that fact has admittedly been an uphill walk.

We are, however, blessed with a large and seasoned reliability engineering team at Spark-
Post, so when this latest DNS snafu occurred, there were plenty of eyes and hands at work to 
mitigate the problem with various temporary nefarious kludges (you know how it is), all of 
which left me free to poke around what the Internet kids refer to as WTAF.
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Now, you’re probably thinking to yourself, ah-hah, this is the 
point in the story where the auspicious (and ruggedly handsome) 
author of ;login: magazine’s column on systems monitoring turns 
to the highly advanced monitoring platform du jour and, via some 
arcane means involving machine learning, expertly extracts from 
it the root cause of the problem, but alas, no.

I pretty much just launched tcpdump.

Yup, good-ole tcpdump, from the ’90s. I wanted to see what was 
going on on the wire, and, predictably, what was going on was 
metric tons of DNS transmission failure, but I did learn a few 
important things:

◆◆ The outage was affecting all types of traffic (not just DNS).

◆◆ The overwhelming amount of traffic on the wire was outbound 
DNS traffic to the Internet root NS servers.

◆◆ Very little of our outbound DNS traffic was being returned. In 
fact, we were getting one response for about every 17 queries, 
but we were getting a few responses.

Having been throttled in pretty much every way possible, I 
thought this looked very much like some sort of throttling, so I 
wrote this small shell script to broaden my sample set and verify 
my initial observations.

#!/bin/sh

L=’<local IP of the machine>’

P=$(tcpdump -c 5000 -vvv -s 0 -l -n)

echo

echo -n “outbound:”

echo “${P}” | grep “${L}.>” | wc -l

echo -n “inbound:”

echo “${P}” | grep “> ${L}” | wc -l

echo -n “top-ten dst”

echo “${P}” | grep ‘> ..domain’ | cut -d\ -f7 | sort | uniq -c | 

sort -n | tail -n10 | sort -nr

It uses tcpdump to sample 5000 packets, measuring the ratio of 
inbound to outbound packets while dumping a list of the top-10 
destination IP addresses. In the grand old days of actual comput-
ers in actual nearby closets, this would have been unnecessary, 
but I’m sure you’ve noticed, as I have, just how much of con-
temporary SRE work consists of convincing upstream service 
providers not only that a problem exists but that it is, in fact, 
their problem. In this regard, my low-tech shell script was highly 
successful, and AWS ran off with the baton, only to return some 
time later to inform us that we’d discovered a new limit in their 
infrastructure, namely conntrack memory allocations in the 
VGWs (virtual gateways).

I’ll admit, it felt just a tiny bit troglodyte to have, in that time of 
crisis, turned to tcpdump, but I happen to know that I’m in fine 
company, because not just one but TWO talks at Monitorama 
this year had favorable things to say about our loyal old packet-
inspecting friend.

Julia Evans’ talk [2], entitled “Linux Debugging Tools You’ll 
Love,” seemed custom-curated to preach to my personal choir, 
but really it’s Douglas Creager’s presentation [3] I’d like to talk to 
you about.

How shall I phrase this diplomatically? Google builds zany stuff. 
That’s the word. Zany. I feel like that’s an arguably uncontrover-
sial, if not objective, observation that we can both agree upon 
in 2017, and I’m not judging. I sincerely feel like there’s nothing 
wrong with their particular brand of zaniness, I mean…it’s just 
what they do, and they’re very good at it, and it seems to make 
them happy.

Every time I see a speaker from Google giving a talk on a subject 
I’ve never heard of, I scooch down in my seat a little bit to get 
comfortable, close my laptop lid, and expectantly fold my hands 
together in preparation for whatever zany systems engineer-
ing antics they’ve gotten up to this time. I know I’m not alone in 
this. They made a distributed file system over HTTP with 64 
MB chunks? Huh. They’ve overloaded cgroups into a deployment 
strategy? Cool. They built a compressionless metrics database 
because they have an infinitely large MapReduce cluster lying 
around? Okay.

Anyway, my point is, I admit to being a little surprised by 
Doug’s Monitorama talk, wherein he outlines one methodology 
employed by the “Internetto” team at Google to monitor the edge 
of Google’s network. In that capacity, they’ve employed visu-
alizations and other analysis tools on good-ole humble libpcap 
packet captures.

I won’t spoil the talk for you, but Doug is a proponent of con-
tinuously capturing and evaluating TCP headers as a means 
of monitoring application performance health. In other words, 
Doug thinks we should all be running tcpdump on every public-
facing machine, all the live-long day (though, I suspect he might 
not phrase it that way). To that end, Google is evidently using 
service-based libpcap to capture every header of every packet in 
every end-user interaction on the wire.

Rather than taking a flow-based approach where the sum of all 
traffic is sampled at a switch, Google runs local pcaps, and RPC 
ships the data upstream to be centrally processed (no doubt via 
MapReduce). They extract throughput and latency numbers and 
do some simple arithmetic, eventually reducing each connection 
to a JSON blob describing that interaction, complete with Bool-
ean flags like BufferBloat:true to indicate common performance 
problems detected on the wire.
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It’s an excellent talk which, obviously, should have been called 
“Tcpdump at Scale,” but otherwise was perfect in every way, and 
if you only have time to see one talk from Monitorama this year, 
it would be my pick. I’m obviously biased, but I love the approach 
and sincerely hope it catches on among all sorts of service pro-
viders, CDNs, and, especially, IaaS shops that don’t have any idea 
what is transpiring on their networks. Just imagine your cloud 
provider notifying you of wire latency for once (or at least believ-
ing you when you report it to them?).

Take it easy.
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This issue I will talk about Data, not data, that is to say about capital-D 
Data as the raw material for the world we are now creating. We’ll 
return to working with a small-d data set next time.

I was trained first as an electrical engineer and then as a biostatistician. From engineering, 
beyond all else the fundamental lesson is that getting the problem statement right is what 
determines the future, that if you don’t get it right then you end up solving a problem you don’t 
have. From biostatistics, beyond all else the fundamental lesson is that all data has bias: the 
question is whether you can correct for it, and that correcting for data bias in an imperfect 
world will itself be imperfect. Combining the two, engineering and biostatistics, one is left 
with two steering questions: where do you actually want to go and what failure modes can 
you tolerate?

For some time, security training has been both necessary and widely available. The curve of 
its sophistication and value has been generally upward. We have better tools, we have better 
understood practices, and we have more and better colleagues. That’s the plus side. But I’m 
interested in the ratio of skill to challenge, and as far as I can estimate, we are expanding the 
society-wide attack surface faster than we are expanding our collection of tools, practices, 
and colleagues. If your country is growing more and more food, that’s great. If your popula-
tion is growing faster than your improvements in food production can keep up, that’s bad. As 
with most decision-making under uncertainty, statistics have a role, particularly ratio statis-
tics that magnify trends so that the latency of feedback from policy changes is more quickly 
clear. Yet statistics require data.

That cybersecurity is hard will come as no surprise, and it has been four years now since 
the U.S. National Academy of Sciences concluded that cybersecurity should be seen as an 
occupation and not a profession because the rate of change is too great to enable profession-
alization [8]. That rate of change is why cybersecurity is perhaps the most intellectually 
demanding occupation on the planet, and it may well be that the hybrid vigor of retreading 
other professions, other skill sets for cybersecurity practice has been and remains crucial to 
cybersecurity outcomes rather than a random bit of historical trivia.

Winston Churchill said, “The further back I look, the further forward I can see.” Churchill 
was arguing for looking back centuries so as to discern the patterns of human affairs, to find 
commonalities within the dynamics of competition at whatever scale fit the age in which 
those competitions occurred so as to see forward and win the then current competition. But 
should we measure time in constant units—a day, a week, a month, a year—or should it be 
something akin to a log scale denoted not by the rate at which the seconds pass on a constant 
clock but by the number of events that have passed? Does a rapid rate of change mean we only 
have to look back a littler bit in chronologic time but further back in ever-denser event logs? 
Or must we look back further still both in time and event counts if we are to damp out the 
noise of the present?

For Good Measure
Letting Go of the Steering Wheel
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When I look back to earlier stages of my own career, the principal 
difficulty of any particular stage has oscillated between getting 
the problem statement right and picking the failure mode that is 
tolerable given what data was available on which to make a deci-
sion. I don’t think that has changed. As of today, data acquisition 
wouldn’t seem to be the problem insofar as instrumentation is 
cheap and mostly reliable. But data has to be collected with an 
hypothesis in mind, or, as Charles Darwin said, “All observa-
tion must be for or against some view if it is to be of any service.” 
That brings us back to the problem statement, that is to say what 
problem are you trying to solve and, therefore, what data do you 
need to collect to have it be of any service?

To repeat, you need to know something about what problem 
you are trying to solve and what data would help you make the 
decisions that solve that problem. Over a small number of years, 
the term “data science” has become commonplace. It seems 
first to have been used over 50 years ago, but the current usage 
stems most directly from a 1997 lecture by Jeff Wu with the 
title “[Does] Statistics=Data Science?” [5]. Wu characterized 
statistical work as a trilogy of data collection, data modeling, 
and decision-making. In his lecture’s conclusion, he initiated 
the modern usage of the term “data science” and advocated that 
statistics be renamed data science and statisticians be renamed 
data scientists. Those semantics seem to add little clarity to 
what the collection, modeling, and use of data provide, but argu-
ment over terminology is a hallmark of how a science develops.

But Darwin’s remark that all observation must be for or against 
some view is not quite right, at least not quite right for us here. 
It is not so simple as Wu’s data collection, data modeling, and 
decision-making, either. When you collect data and with it build 
a model, your goal, your problem statement, matters. If your 
purpose in building a model is to come to a definitive conclusion 
about causality, about how nature works, then you are saying 
that the inputs to your model and the coefficients that calibrate 
their influence within your model are what matters in the final 
analysis. Parsimony in the sense of Occam’s Razor is your judge, 
or, as Antoine de Saint-Exupéry put it, “You know you have 
achieved perfection in design, not when you have nothing more 
to add, but when you have nothing more to take away.” So it is 
when you are chasing causality.

By contrast, when your purpose in building a model is to enable 
control of some process or other, then you will not mind if your 
input variables are correlated or redundant—their correlation 
and their redundancy are not an issue if your goal is to direct 
action rather than to explain causality.

In some circumstances you can do both, that is you can both 
explain causality and enable control. In those situations, it is 
your model’s ability to predict that both satisfies the reader that 

you have captured a causal relationship and that operationalizes 
the model’s predictions irrespective of any underlying truths [7].  
A goal of understanding causality in its full elegance leads to 
F=ma or E=mc2. A goal of control leads to econometric models 
with thousands of input variables each of whose individual con-
tribution is neither clear nor relevant.

Consider anomaly detection and its role in current cybersecurity 
products. Anomaly detection presumes something about distri-
butions of detectible events, namely that within a selected inter-
val anything outside some bounding box is worth investigation. 
It is not concerned with causality; it is concerned with control 
irrespective of causality. This is a coherent strategy, though with 
side effects.

Or consider “Big Data” and deep learning. Even if Moore’s Law 
remains forever valid, there will never be enough computing, and 
hence data-driven algorithms must favor efficiency above all 
else as data volume grows. Yet the more efficient the algorithm, 
the less interrogatable it is, that is to say that the more optimized 
the algorithm is, the harder it is to know what the algorithm is 
really doing. That was the exact theme of a workshop held in 
New York by Morgan Stanley and the Santa Fe Institute three 
Octobers ago titled, “Are Optimality and Efficiency the Enemies 
of Robustness and Resilience?”

The more desirable some particular automation is judged to be, 
the more data it is given. The more data it is given, the more its 
data utilization efficiency matters. The more its data utilization 
efficiency matters, the more its algorithms will evolve to opaque 
operation. Above some threshold of dependence on such an 
algorithm in practice, there can be no going back. As such, pre-
serving algorithm interrogatability despite efficiency-seeking, 
self-driven evolution is the pinnacle research-grade problem that 
is now on the table, and I mean for all of cybersecurity. If science 
does not pick up this challenge, then Larry Lessig’s characteriza-
tion of code as law is fulfilled. A couple of other law professors 
have seized on that very idea and suggested that price-fixing 
collusion among robots will be harder to detect than collusion 
among people [12].

The point is this: if we choose control as the purpose of our 
efforts, then we will have to let causality become harder to see 
because our models will submerge any causal relationships in 
a thicket of confounding. If, instead, we focus on causality, the 
very things that we need to measure become harder to get if, for 
no other reason, our sentient opponents will make it so. I’m for 
measurement as decision support, i.e., I am in the control camp, 
not the causality camp. At the same time, I very much do demand 
that I be able to ask some algorithm, “Why did you do that?” and 
get a meaningful answer. Overall, having both control and inter-
rogatability is a difficult problem to say the least.
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And that may be the most important thing I have to say here, that 
the real problem statement is not about cybersecurity per se but 
about the side effects of our pursuit of it. Some years ago, in a 
lecture at Harvard’s Kennedy School of Government, the speaker 
listed the Four Verities of Government as:

◆◆ Most exciting issues are not important.

◆◆ Most important issues are not exciting.

◆◆ Not every problem has a good solution.

◆◆ Every solution has side effects.

I think that those are the verities of cybersecurity, too. The din 
of press coverage of cybersecurity is only about the exciting fail-
ures, not the important successes nor that even more important 
trendline for the ratio of skill to challenge. Perhaps this simply 
reinforces Donald Knuth’s remark that “Premature optimiza-
tion is the root of all evil.” Perhaps it is simply that evolution in 
our digital world follows the same patterns as evolution in the 
natural world.

If that is so, then what we see in Nature is what we should expect 
to see in cybersecurity. Well, in Nature there are two alternative 
games for survival, r-selection and K-selection [2]. R-selected 
species produce many offspring, each of whom has a relatively 
low probability of surviving to adulthood, while K-selected spe-
cies are strong competitors in crowded niches. K-selected spe-
cies invest more heavily in much fewer offspring, each of whom 
has a relatively high probability of surviving to adulthood. If we 
change the term from “produce many offspring” to “re-image 
frequently” you now have precisely the world of VMs. Or, to be 
more current still, you have the kind of components in a DevOps 
setting where it is arguable whether moving target defense or 
minimizing new product introduction latency is the paramount 
goal or value.

Stephen Jay Gould’s idea of punctuated equilibrium [4] as the 
fundamental cadence of evolution has a hold on me. In his 
formulation, long periods of stasis are the norm. In computing, 
we would call that “legacy.” I trace the birth of the cybersecu-
rity industry to Microsoft’s introduction of a TCP/IP stack as a 
freebie in the Windows 95 platform, thereby taking an operating 
system designed for a single owner/operator on a private net, if 
any, and connecting it to a world where every sociopath is your 
next door neighbor. That event was the birth of our industry, 
though the fact was unnoticed at the time.

The second of these punctuations occurred around a decade 
ago when our principal opponents changed over from adventur-
ers and braggarts to professionals. From there on, mercenaries, 
some armed with zero-days, dominated. The defense response 
has been varied, but the rise of bug-bounty programs and soft-
ware analysis companies are the most obvious. An Internet of 
Things (IoT) with a compound annual growth rate of 35% will be 
like anabolic steroids for at least those two.

In August 2016, we passed a third such punctuation. The DARPA 
Cyber Grand Challenge [1] showed that what has heretofore 
required human experts will shortly come within the ken of fully 
automatic programs, or, shall we say, algorithms that are today 
at the upper level of skill, with intelligence, per se, soon to follow. 
As with both of the previous two punctuations, the effects of 
the third will reverberate for the indefinite future. I have long 
argued that all security technologies are dual use, and the day 
after the Cyber Grand Challenge, Mike Walker, its DARPA pro-
gram manager, said as much: “I cannot change the reality that all 
security tools are dual-use.”

And everywhere the talk is about “Big Data” and how much bet-
ter an instrumented society will be. The cumulative sum of the 
curves for computing, storage, and bandwidth is this: in 1986 you 
could fill the world’s total storage using the world’s total band-
width in two days. Today, it would probably take nine months of 
the world’s total bandwidth to fill the world’s total storage [6], 
but because of replication, synchronization, and sensor-driven 
autonomy, it is no longer really possible to know how much data 
there is. Decision-making that depends or depended on knowing 
how much data there is is over.

In other words, whatever the future holds, it is clear that it will 
be data rich and that the tools acting on it will be dual use. The 
classic triad of cybersecurity has long been confidentiality, 
integrity, and availability, and we have heretofore prioritized 
confidentiality, especially in the military sector. That will not be 
the case going forward, and not just because the rising genera-
tions have a relaxed complacency about the tradeoffs in infor-
mation sharing between what it enables and what it disables. In 
the civilian sector, integrity will supplant confidentiality as the 
pinnacle goal of cybersecurity. In the military sector, weapons 
against data integrity already far surpass weapons against data 
confidentiality.

This trend—the eclipse of confidentiality by integrity and avail-
ability—is solidly entrenched now. Already algorithms learn 
rather than being taught. What they learn depends on how their 
learning is scored. This is behavioral reinforcement of a form 
that would be entirely familiar to B. F. Skinner—you don’t teach 
the subject the desired behavior, you reward the subject for 
exhibiting the desired behavior. You don’t look into the mind of 
the human subject nor into the structure of the self-modifying 
algorithm, you just look at the objective reality of behavior 
itself. This is not so much our creation of an intelligence but an 
unforced assumption that an intelligence will appear if given 
enough training sets.

But because of how that kind of learning works, it can be fooled 
by data as easily as it can be enriched by it. In a 2013 paper, Sze-
gedy et al. found that
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[D]eep neural networks learn input-output mappings 
that are fairly discontinuous to a significant extent. 
We can cause the network to misclassify an image by 
applying a certain imperceptible perturbation, which 
is found by maximizing the network’s prediction 
error. In addition, the specific nature of these 
perturbations is not a random artifact of learning: the 
same perturbation can cause a different network, that 
was trained on a different subset of the dataset, to 
misclassify the same input [10].

Not even a year ago, researchers in France and Switzerland 
found that

Given a state-of-the-art deep neural network classifier, 
we show the existence of a universal (image-agnostic) 
and very small perturbation vector that causes natural 
images to be misclassified with high probability. 
We propose a systematic algorithm for computing 
universal perturbations, and show that state-of-the-
art deep neural networks are highly vulnerable to 
such perturbations, albeit being quasi-imperceptible 
to the human eye. We further empirically analyze 
these universal perturbations and show, in particular, 
that they generalize very well across neural networks. 
The surprising existence of universal perturbations 
reveals important geometric correlations among the 
high-dimensional decision boundary of classifiers. It 
further outlines potential security breaches with the 
existence of single directions in the input space that 
adversaries can possibly exploit to break a classifier on 
most natural images [11].

Note to reader: look up “adversarial perturbations.”

So why am I making a point about image classification by deep 
neural networks? Because it raises the fundamental question: 
given data richness and self-modifying algorithms becoming 
ever more prevalent in the cybersecurity regime, is keeping a 
human in the loop a liability or a failsafe? I’ve already written 
that the central requirement for security is keeping a human in 
the loop, that of interrogatability. But there are others, not the 
least of which is reaction time.

Nevertheless, as data volume grows it creates a challenge far 
beyond the parlor exercise of how long would it take to fill all the 
world’s storage with all the world’s bandwidth, yet it is band-
width itself that is a limiting coefficient. It is safe to predict that 
the F-35 will be the last manned fighter plane; drone fleets make 
more sense going forward. Those drone fleets require ever more 
massive compute power handling, ever more massive data flows. 
Lt. Colonel Rhett Hierlmeier heads up the training center for 
the F-35. He believes that what is today a training simulator will 
tomorrow be a control point, not a simulator. Popular Science’s 

interview with him includes this telling snippet: “Standing 
outside the cockpit, he peers into the darkened dome, and says 
he believes we will one day fight our enemies from inside one 
of these things. When I ask what that will take, he says flatly, 
‘Bandwidth’” [9]. Just that point about bandwidth is why “engi-
neers are focused on things like improving artificial intelligence 
so planes can act with more autonomy, thus cutting down on 
communication bandwidth.”

And the same thing will apply in our field. My estimate is that 
the Internet of Things has a 35% compound annual growth 
rate. If I am approximately correct, then IoT growth is already 
outdistancing the growth rate for installed bandwidth, and for 
us as much as for fighter pilots the pressure for autonomy is and 
will be driven by the data-sensing capacity of a rapidly increas-
ing installed base.

Let me therefore suggest that when sentience is available, 
automation will increase risk, whereas when sentience is not 
available, automation can reduce risk. Note that parsing, that 
replacing available sentience with something that is not sentient 
will increase risk but that substituting automation for whatever 
you have absent sentience can make things better. It won’t do so 
necessarily, but it can.

As a child of the hillbilly South, I have nothing against automat-
ing away drudgery; a 110-year-old woman interviewed for the 
book Supercentenarians was asked what was the most impor-
tant invention during her lifetime. Her answer was the washing 
machine. But with the spread of computers, we have tended to 
use automation as soon as it is cheaper than human labor. No 
single replacement of labor by automation matters, but the sum 
of it does. Yet as we sit here today, the equation of automation 
is not that of eliminating drudgery but eliminating the need for 
sentience. Is there enough available sentience to indict cyber-
security automation as risk creating or, alternately, is there far 
too little sentience that is up to the task at hand and therefore 
automation is essential and risk reducing?

The embedded systems space has long since made the attack 
surface of the non-embedded space trivial by comparison. It was 
two years ago when the count of networked devices exceeded 
the count of human beings [3]. Qualcomm’s Swarm Lab at UC 
Berkeley predicts 1000 radios per human by 2025, while Pete 
Diamandis’ Abundance calls for 45x1012 networked sensors by 
2035. These kinds of scale cannot be supervised, they can only 
be deployed and left to free-run. If any of this free-running is 
self-modifying, the concept of attack surface is just plain over 
as is the concept of trustworthy computing, at least as those are 
presently understood. This will echo John McAfee’s April 2017 
interview in Newsweek: “Any logical structure that humans can 
conceive will be susceptible to hacking, and the more complex 
the structure, the more certain that it can be hacked.”



86   WI N T ER 20 17  VO L .  42 ,  N O.  4  www.usenix.org

COLUMNS
For Good Measure: Letting Go of the Steering Wheel

So the situation with data in cybersecurity is richly complex. 
We need ever more of it if we are to capture increasingly subtle 
attack vectors, and especially so if we want autonomous, 
learning-capable algorithms that need to be faster than we are or 
which don’t have the bandwidth to tell us what they are seeing. 
Yet the more important the decision to be made, the more vital it 
is to keep a human in the loop.

That is a tall problem statement, and to go with it we need to 
carefully consider what the tolerable failure modes are. Do we 
want to trust no sensor data that can’t be corroborated? Do we 
want to accept algorithms as better managers than we are even 
when we can’t tell how it is that they do what they do? Do we 
want to keep humans in the loop and, if so, how do we protect 
their legal culpability when it can be shown that some algorithm 
would not have made mistakes as costly as the ones the human 
made?

I urge you to take in data that you have some feel for, that is to say 
for which you have at least some calibrated understanding such 
that your presence in the loop is prima facie meaningful. If you 
are designing algorithms, work hard on making them interrogat-
able. If you are of necessity relying on self-modifying algorithms, 
let Santayana remind you that “Skepticism is the chastity of the 
intellect.” Remember that all data has bias and that that, too, is 
in the equation for what failure modes you can tolerate.
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/dev/random
Cloudbursting, or Risk Mismanagement

R O B E R T  G .  F E R R E L L

A s I write this, my area is still recovering from Hurricane Harvey, 
while Floridians are sloshing their way out from under Irma. People 
who choose to live in places like this are perfectly well aware that 

sooner or later we’re going to get smacked by a tropical weather system, how-
ever. It’s a risk we all accept and manage—with varying degrees of skill. 

I built my former career on risk and the mitigation thereof. Well, at least the second half 
of it or so. Before that I was an analytical chemist, colon cancer researcher (which largely 
entailed cleaning up radioactive rat poop), percussionist, professional grad school dropout 
(three different programs), and probably some other stuff I don’t remember. But (as I expect 
it will say on my epitaph), I digress. (Sorry for all the asides: I had some parentheses in stock 
that had reached their “use-by” date. Waste not, want not.)

We all take risks. Heck, just by reading my column you’re risking long-term neocortical dam-
age. If you don’t work from home (or, if your house is as cluttered as mine, even then), you’re 
taking a substantial risk just traveling to your place of employment. Yes, really. Have you 
seen the way some of those people out there drive? The other day I spotted a doofus sitting 
in the driver’s seat of a big truck while yakking on the cell phone and apparently watching 
a DVD on the little screen perched on his dashboard. (I hesitate to say he was “driving” the 
truck, because I don’t think that’s an accurate assessment.) Maybe it was a defensive driving 
video, I don’t know. Regardless, it did not appear that keeping his vehicle between the lines, 
or even on the asphalt, was high on his priority list. I just pulled over to a rest area for a few 
minutes to give him time to have his accident without me. Not that you could really call it an 
“accident”: more like a “grossly negligent.”

Horrifyingly bad drivers illustrate the category of existential risk we can’t realistically 
avoid. Another member of this set is what I refer to as a “cloudburst,” or loss of personal 
data entrusted to some third party without the owner’s explicit awareness. No matter how 
diligently you ensure that your connection to a first-line merchant or financial provider is 
protected by SSL/TLS/whatever with valid certificates, you have zero control or even in 
most cases cognizance of what happens to that precious information once you’ve transferred 
it thusly. It is now completely at the mercy of any thief who manages to defeat the safeguards 
of nebulous third parties. It’s somewhat like carrying your cash to the bank in an armored 
car only to have them store it in the lobby, “protected” by cardboard boxes marked Please Do 
Not Steal.

If you decide to go that extra diligence mile and track your data beyond the first step, good 
luck. Most institutions are extremely reticent when it comes to sharing details of their pro-
cessing chain, for “security” reasons. That is, they don’t want you to know that there really 
isn’t much of that going on. “That’s not something you should worry your pretty little head 
about,” they’ll say condescendingly, “We’ve got it under control,” and give you a big thumbs 
up. The next week you receive an email informing you that your account was one of 200 mil-
lion compromised—and here’s a year of free credit monitoring, not that it will do you much 
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good. I think I’ve had free credit monitoring for almost a decade 
now because of these little serial overlapping “security inci-
dents,” and all I’ve gotten out of it were a long string of warnings 
and vague reassurances.

The “cancel every credit instrument and change all 85 of your 
online passwords” circus is getting to be far too routine for my 
taste. Some of my credit cards are on their fourth or fifth itera-
tion, all because various financial processing entities along the 
path of ignominy couldn’t keep their security diapers pinned.

What is the fundamental malfunction with these firms/agen-
cies? Why are they taking so many liberties with our precious 
data? I don’t know: hubris, maybe, or perhaps our old scabrous 
nemeses ignorance and indolence. Whatever the case, compro-
mise is the new norm. A foreign government lacking even the 
pretense of having my best interests at heart, for example, now 
possesses the volumes of incredibly intrusive information I 
supplied to get the security clearance I held in my former career. 
The irony of a government that can’t keep its own barn door shut 
questioning me at length about my ability to preserve secrets 
would be laughable if it weren’t so egregious. At least when I 
got read onto a SAP (Special Access Program), I didn’t turn 
around and store the relevant info on Dropbox with the password 
“Unc73$4M,” ’leet-speak for Uncle Sam.

So, what can we, as information technology professionals, do 
about this—apart from posing largely rhetorical questions? 
While constantly increasing both encryption key lengths and the 
complexity of passwords may give senior management, stock-
holders, and legislators a warm fuzzy, the real answer lies in edu-
cating the people along that data processing path. Technology, 
regardless of how well designed or robustly implemented, cannot 
take the place of human security awareness. These protocols and 
hardware devices and algorithms are only as effective as the peo-
ple who deploy them. It is evident that if we don’t change the way 
rank and file employees think about and implement data security, 
any reasonable expectation of identity fidelity is but a fool’s dream. 
No matter how sharp your plow or powerful your oxen, the fur-
rows you dig will not yield any crops if the soil itself is poor. 

(Mmm. Pre-industrial agriculture analogies always make me 
hungry. Fortunately, I keep a pot of gruel going next to my com-
puter for such contingencies.)

The state of Illinois is reportedly working on employing block-
chains to provide a “sovereign digital identity.” I applaud this 
effort and any others that help us move away from static identi-
fiers like Social Security numbers that, once compromised, 
become liabilities rather than authenticators. They are, in effect, 
lifelong passwords you can’t (easily) change.

If you are one of those third-party data-manglers, my sugges-
tion for storage of personally identifying information is to use a 
randomized multicontainer approach. With SSNs, for example, 
you could split the numbers into chunks of two digits and then 
randomly store each chunk in one of five containers. You could 
use the same algorithm with name or other data fields, actually, 
except that the string length would be variable. Unique identi-
fiers would therefore be serial numbers containing the location 
and position within the string (and in some cases, length) of each 
chunk. You’d have to map the positional data for name and SSN 
in a relational database of some kind, of course, but your network 
folks already more or less do that with NAT, so that will be famil-
iar ground. You could even craft said UIDs in the same format as 
SSNs, to confuse thieves into thinking they’ve stolen the data, 
rather than the pointer.

Or you could just stop opening attachments and using Pirate Bay 
torrents at work. I don’t want to suggest anything too outlandish 
and ridiculous, however. Even humorists have their limits.
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Gnuplot in Action: Understanding Data with Graphs 
(Second Edition) 
Phillipp K. Janert
Manning Publications Co., 2016, 372 pages
ISBN 978-1-63343-018-1

Reviewed by Mark Lamourine

Gnuplot has always been a chicken/egg tool for me. There are 
times when I have data series I’d like to plot, but I’m not fluent 
enough with Gnuplot to produce something useful quickly. With-
out interesting (read: urgent) data, I have more pressing things 
to do than to learn a new tool. When I saw that there was a new 
edition of Gnuplot in Action I thought it was time to try again.

Gnuplot is unrelated to the GNU project, but it adheres strongly 
to the UNIX ideal to do one thing well. It takes primarily flat text 
files and produces only 2D x-y plots of the data. It is designed 
to allow interactive operation and very simple batch scripted 
“programs.”

Janert writes with the same philosophy, taking advantage of the 
interactive nature of Gnuplot to get the reader started producing 
plots immediately. By the end of the fourth chapter, I had every-
thing I needed to create clean, simple two-variable plots that 
would easily serve the uses I have had in the past. The only thing 
I wish were offered earlier in the book is date and timestamp 
parsing. That had to wait for Chapter 8.

Gnuplot does have a number of shortcomings that result from 
this philosophical simplicity. All variables are global. The con-
trol structures and function definition syntax are rudimentary. 
The functionality that a user of modern scripting environments 
might expect (locally scoped variables?) just doesn’t exist or 
is simulated with what can charitably be called hacks. Janert 
doesn’t shy away from these limitations but, rather, explains the 
reasoning that has led to them and then shows how to make the 
most of what is there.

In the latter half of the book, Janert deals with scripting, stream-
ing data, and even animation. These aren’t things I ever expect to 
do with Gnuplot, but it’s interesting to know that you can. In all 
of these areas his writing is to the point and clear. The next time 
I have a data series I need to visualize, I know now that I’ll be 
able to get some quick clean plots.

Grokking Algorithms: An Illustrated Guide for 
Programmers and Other Curious People
Aditya Y. Bhargava
Manning Publications Co., 2016, 238 pages
ISBN 978-1-61729-223-1

Reviewed by Mark Lamourine

Grokking Algorithms is a breezy, comfortable introduction to 
computer algorithms. I was originally attracted to it because of 
the grok in the title, a term coined by Robert Heinlein in Stranger 
in a Strange Land and adopted by the computer community by 
the 1980s to mean to understand deeply. While I’ve heard and 
used the term, I’ve never before seen it in the title of a book and 
wondered whether any book could aspire to help someone grok 
anything. I was also intrigued by the subtitle, An Illustrated 
Guide for Programmers and Other Curious People. Are there non-
programmers who are curious about algorithms, and how would 
one approach algorithms with them?

Bhargava is both the writer and illustrator. He writes and uses 
his drawings to clarify the text. His drawings feature a pen-and-
ink style that is much softer than the typical spare computer-
generated graphics so common today. This, along with his 
inclusive narrative style, gives his book a living-room feel that is 
in sharp contrast to most technical writing being done.

This isn’t an academic tome—though it might be used as a high-
school or freshman college intro to algorithms course—and 
Bhargava isn’t a theorist; he’s an artist by training and a practi-
cal coder by profession. His goal is to give the reader a sense of 
how algorithms are created and how they work. He offers one of 
the better explanations of Big O notation that I’ve seen. He also 
makes a point that I think is often missed, that two algorithms of 
the same order can still have very different efficiency if the cost 
of a single cycle is higher than the other.

There are algorithms here that didn’t exist or were not in com-
mon use when I studied. Bhargava devotes a chapter each to 
“Dynamic Programming” and “Greedy Algorithms,” and applies 
the K-Nearest Neighbors algorithm to a simple OCR problem. In 
the closing chapter, he just mentions 10 more algorithms, talking 
about what they are used for and why they are important. These 
include a one-page exposition of tree algorithms, a few pages on 
MapReduce, and a page each on SHA hashing, Diffie-Hellman 
key exchange, and linear programming.
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Even where Bhargava goes into more depth about how specific 
algorithms work, he’s not all that concerned with implementa-
tion details. It’s especially true when he talks about hash tables 
and sorts. He does go into enough detail to help the reader 
understand when and how to use a hash table, but he explains, 
correctly, that most modern languages have some hash table 
feature, and that most coders will never have to implement a 
hash table.

Reading Grokking Algorithms won’t make you a programmer, 
but I really like it as an introduction for someone who is curi-
ous about why and how people solve problems with software. 
I do think the motivated reader will go away with a deeper 
understanding of how computers are used to ask and answer 
questions.

For Fun and Profit: A History of the Free and Open 
Source Software Revolution
Christopher Tozzi
The MIT Press, 2017, 324 pages
ISBN 978-0-262-03647-4

Reviewed by Michele Nelson

I volunteered to read and review Christopher Tozzi’s For Fun 
and Profit because of my interest in the history of computing and 
how the tools I use today came to be. It turns out that I have lived 
through a revolution without even realizing it.

In his lengthy introduction, Tozzi, an Assistant Professor of His-
tory at Howard University, offers the theory that what he refers 
to as the free and open source software (FOSS) revolution that 
began in the 1980s has much in common with the French Revo-
lution of 1789. The French Revolution sought to achieve liberty, 
fraternity, and equality. The FOSS revolution sought to restore 
software freedom. Both changed the world.

I always thought that “free software” referred to any software 
you don’t have to pay to use, and that “open source” meant 
software you don’t have to pay to use that also has the source 
code available at no cost. According to Tozzi, however, FOSS 
is not so easy to define. He feels that both “free software” and 
“open source” are ambiguous terms. After much discussion in 
the introduction, he defines “free software,” for the purposes 
of this book, as software “whose programmers or users call it 
such because its source code can be studied and modified freely 
by people who use the software, whether or not the source code 
costs money.” He uses the term “open source” to refer to software 
“whose creators and users preferred that term over ‘free soft-
ware.’” That still seems a bit ambiguous to me.

The book is divided into six chapters, tracing the FOSS revolu-
tion from its beginnings to its current status. Tozzi begins with 

a discussion of the origins of hacker culture, defining the word 
“hacker” as “the class of programmers who espouse the hacker 
ethic” and devoting several pages to the definition of the “hacker 
ethic.” He goes on to tell the story of the birth of the BSD and 
GNU operating systems, devotes a chapter to “The Story of 
Linux,” and also covers Richard Stallman’s GNU Project and the 
Free Software Foundation in detail. His story continues with the 
“moderate phase” of the revolution—Linux and GNU distributions, 
office apps, email, and Web—Apache, Samba, MySQL, and PHP.

The chapter titled “The FOSS Revolutionary Wars” was the 
most interesting to me. According to the author, there were 
two wars being fought: one inside the FOSS community—“The 
FOSS Civil War”—and another that pitted the FOSS community 
against proprietary software companies, chiefly Microsoft.

Tozzi describes the battle within the FOSS community as a fight 
over what “free software” and “open source” actually meant. He 
concludes that this battle was not won by either side and is still 
a contentious issue for some. At the same time as this conflict 
was causing a rift in the community, there were external threats 
that required them to band together despite their disagreements. 
As Tozzi explains it, proprietary software companies, especially 
Microsoft, were getting increasingly nervous as FOSS products 
began to be accepted, even endorsed, in the business world. 
When Netscape released the Mozilla browser as an open source 
product in 1998, Microsoft went on the offensive. The story of 
that battle, involving leaked internal Microsoft documents, 
lawsuits and countersuits, and a report from an outfit called the 
Alexis de Tocqueville Institution contending that Linus Tor-
valds “must have plagiarized much of the Linux source code” 
from Andrew Tanenbaum’s Minix operating system, is one of the 
best parts of this book. 

In the final chapter, Tozzi describes how FOSS has evolved since 
the early 2000s, looking at some key developments: the endorse-
ment of FOSS by many large companies, including Microsoft; 
the Android mobile OS; Ubuntu/Linux; and cloud and embedded 
computing. This chapter also includes a discussion of the “free 
culture” movement, citing Creative Commons and Wikipedia as 
two examples of projects that have “extended FOSS principles 
into new territory.” He ends with a discussion of diversity, or 
rather the lack of it, in the software industry as a whole and in 
the FOSS community in particular.

In For Fun and Profit, Christopher Tozzi relates the history of 
the FOSS revolution from the origins of hacker culture through 
the end of the revolutionary wars to the present. Some of the 
chapter introductions are rather tedious, and the writing could 
be livelier, but overall, I found this to be an interesting read that I 
will no doubt revisit.
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tion’s quarterly magazine, featuring techni-
cal articles, system administration articles, 
tips and techniques, practical columns on 
such topics as security, Perl, networks and 
operating systems, and book reviews

Access to ;login: online from December 
1997 to the current issue: www.usenix.org/
publications/login/

Discounts on registration fees for all 
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Association, its bylaws, and election of its 
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2018 Election for the USENIX 
Board of Directors
by Casey Henderson, USENIX Executive Director

The biennial election for officers and 
directors of the Association will be held 
in the spring of 2018. A report from the 
 Nominating Committee is now available  
on the  USENIX Web site at www.usenix.org/ 
board/elections18. USENIX members will 
also receive notification of this report via 
email.

Nominations from the membership are open 
until January 2, 2018. To nominate an indi-
vidual, send a written statement of nomina-
tion signed by at least five members in good 
standing, or five separately signed nomina-
tions for the same person, to the Executive 
Director at the Association offices, to be re-
ceived by noon PST, January 2, 2018. Please 
prepare a plain-text Candidate’s Statement 
and send both the statement and a 600 dpi 
photograph to production@usenix.org, to be 
included on the ballots.

In early February 2018, ballots will be 
mailed to all members in good standing. 
Ballots must be received in the USENIX 
offices by March 30, 2018. The results of the 
election will be announced on the USENIX 
Web site by April 11 and will be published in 
the Summer 2018 issue of ;login:.

The Board consists of eight directors, four 
of whom are “at large.” The others are the 
president, vice president, secretary, and 
treasurer. The balloting is preferential: 
those candidates with the largest numbers 
of votes are elected. Ties in elections for 
directors shall result in run-off elections, 
the results of which shall be determined by 
a majority of the votes cast. Newly elected 
directors will take office at the conclusion 
of the first regularly scheduled meeting 
following the election, or on July 1, 2018, 
whichever is earlier.

http://www.usenix.org/board/elections18
http://www.usenix.org/board/elections18
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26th USENIX Security Symposium 
(USENIX Security ’17)
Engin Kirda and Thomas Ristenpart  

2017 USENIX Summit on Hot Topics in 
Security (HotSec ’17)
David Brumley and Parisa Tabriz  

2017 USENIX Workshop on Advances in 
Security Education (ASE ’17)
Mark Gondree and Ashley Podhradsky 

10th USENIX Workshop on Cyber Security 
Experimentation and Test (CSET ’17)
José M. Fernandez and Mathias Payer 

11th USENIX Workshop on Offensive 
Technologies (WOOT ’17)
William Enck and Collin Mulliner 

7th USENIX Workshop on Free and Open 
Communications on the Internet (FOCI ’17)
Jon Penney and Nicholas Weaver 

SREcon17 Europe/Middle East/Africa
Avishai Ish-Shalom and Laura Nolan 

31st Large Installation System 
Administration Conference (LISA17)
Caskey Dickson and Connie-Lynne Villani  

Other Chairs and Major 
 Contributors
FAST ’17
Work-in-Progress/Posters Co-Chairs: Irfan 
Ahmad and Theodore Wong 

Tutorial Coordinators: John Strunk and Eno 
Thereska 

NSDI ’17
Poster Session Co-Chairs: Anirudh Badam 
and Mosharaf Chowdhury  

SOUPS 2017
Invited Talks Chair: Robert Biddle 

Lightning Talks and Demos Chair: Heather 
Crawford and Elizabeth Stobert 

Karat Award Chair: Dave Crocker

Posters Co-Chairs: Michelle Mazurek and 
Kent Seamons 

Tutorials and Workshops Co-Chairs: Adam 
Aviv and Florian Schaub  

Publicity Chair: Patrick Gage Kelley 

USENIX Security ’17
Invited Talks Committee: Michael Bailey, 
David Molnar, and Franziska Roesner 

Poster Session Chair: Nick Nikiforakis 

Test of Time Awards Committee: Matt Blaze, 
Dan Boneh, Kevin Fu, and David Wagner 

Thanks to Our Volunteers
by Casey Henderson, USENIX Executive Director

As many of our members know, USENIX’s 
success is attributable to a large number of 
volunteers who lend their expertise and sup-
port for our conferences, publications, good 
works, and member services. They work 
closely with our staff in bringing you the 
best in the fields of systems research and 
system administration. Many of you have 
participated on program committees, steer-
ing committees, and subcommittees, as well 
as contributing to this magazine. The entire 
USENIX staff and I are most grateful to you 
all. Below, I would like to make special men-
tion of some people who made particularly 
significant contributions in 2017.

Program Chairs
Enigma 2017
David Brumley and Parisa Tabriz 

15th USENIX Conference on File and 
Storage Technologies (FAST ’17)
Geoff Kuenning and Carl Waldspurger

2017 USENIX Research in Linux File and 
Storage Technologies Summit (Linux 
FAST Summit ’17)
Christoph Hellwig and Ric Wheeler

SREcon17 Americas
Kurt Andersen and Liz Fong-Jones

14th USENIX Symposium on Networked 
Systems Design and Implementation 
(NSDI ’17)
Aditya Akella and Jon Howell

SREcon17 Asia/Australia 
Tammy Butow and Jun Liu

2017 USENIX Annual Technical 
Conference (USENIX ATC ’17)
Dilma Da Silva and Bryan Ford

9th USENIX Workshop on Hot Topics in 
Storage and File Systems (HotStorage ’17)
Marcos Aguilera and Angela Demke Brown

9th USENIX Workshop on Hot Topics in 
Cloud Computing (HotCloud ’17)
Eyal de Lara and Swaminathan 
Sundararaman 

Thirteenth Symposium on Usable Privacy 
and Security (SOUPS 2017)
Sonia Chiasson and Matthew Smith;  
Mary Ellen Zurko (General Chair)

Lightning Talks Co-Chairs: Kevin Butler 
and Deian Stefan 

Enigma Interviews
Seth Rosenblatt and Sean Sposito

LISA17
Invited Talks Co-Chairs: Pat Cable and Alice 
Goldfuss 

Tutorial Co-Chairs: Mike Ciavarella and 
Courtney Eckhardt  

LISA Lab Coordinators: Branson Matheson 
and Brett Thorson 

Storage Pavilion and Data Storage Day 
at LISA17
Organizer: Jacob Farmer of Cambridge 
Computer

USENIX Board of Directors
Cat Allman, Michael Bailey, David Blank-
Edelman, Angela Demke Brown, Daniel V. 
Klein, Kurt Opsahl, Carolyn Rowland, and 
Hakim Weatherspoon

Audit Committee 
Eric Allman, John Arrasjid, and Niels 
Provos

HotCRP Submissions and Reviewing 
System
Eddie Kohler
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USENIX ASSOCIATION

Statements of Activities
Years Ended December 31, 2016 and 2015

2016 2015

REVENUES
Conference and workshop revenue $ 4,857,484 $ 3,679,420
Membership dues 257,295 262,877
Event services and projects 4,750 618,774
Product sales 7,067 6,215
LISA SIG dues and other 7,946 40,482
General sponsorship 60,000 90,000

Total revenues 5,194,542 4,697,768

EXPENSES
Program services

Conferences and workshops 4,537,398 3,366,015
Projects, programs and membership 377,969 763,900
LISA SIG - 3,889

Total program services 4,915,367 4,133,804

Management and general 621,006 595,237
Fundraising 84,715 188,236

Total expenses 5,621,088 4,917,277

CHANGE IN NET ASSETS FROM OPERATIONS (426,546) (219,509)

OTHER INCOME (EXPENSES)
Donations 23,660 26,754
Investment income (loss) 432,343 (30,042)
Investment fees (45,897) (49,532)
Other income 150 1,426

Total other income (expenses) 410,256 (51,394)

Change in net assets (16,290) (270,903)

NET ASSETS - unrestricted

Beginning of year 5,424,885 5,695,788

End of year $ 5,408,595 $ 5,424,885

See notes to financial statements.

4

USENIX ASSOCIATION

Statements of Financial Position
December 31, 2016 and 2015

2016 2015
ASSETS

Current assets
Cash and equivalents $ 742,910 $ 431,293
Accounts receivable 94,535 355,919
Prepaid expenses 215,002 130,826
Investments 5,803,274 5,416,766

Total current assets 6,855,721 6,334,804

Property and equipment, net 137,795 234,343

Total assets $ 6,993,516 $ 6,569,147

LIABILITIES AND NET ASSETS

Current liabilities
Accounts payable and accrued expenses $ 744,335 $ 77,703
Accrued compensation 59,811 62,459
Deferred revenue 443,275 516,600

Total current liabilities 1,247,421 656,762

Deferred revenue, net of current portion 337,500 487,500

Total liabilities 1,584,921 1,144,262

Net assets - unrestricted
Undesignated net assets (deficit) (394,679) 8,119
Board designated 5,803,274 5,416,766

Total net assets 5,408,595 5,424,885

Total liabilities and net assets $ 6,993,516 $ 6,569,147

See notes to financial statements.

3

The following information is provided as the annual report of 
the USENIX Association’s finances. The accompanying state-
ments have been prepared by Bong Hillberg Lewis Fischesser 
LLP, CPAs, in accordance with Statements on Standards for 
Accounting and Review Services issued by the American 
Institute of Certified Public Accountants. The 2016 financial 
statements were also audited by Bong Hillberg Lewis Fischesser 
LLP. Accompanying the statements are charts that illustrate 
the breakdown of the following: operating expenses, program 
expenses, and general and administrative expenses. The Asso-
ciation’s operating expenses consist of its program; management 
and general; and fundraising expenses, as illustrated in Chart 1. 

These operating expenses include the general and administra-
tive expenses allocated across all of the Association’s activi-
ties. Chart 2 shows USENIX’s program expenses, a subset of its 
operating expenses. The individual portions shown represent 
expenses for conferences and workshops; membership (including 
;login: magazine); and project, program, and good works. Chart 3 
shows the details of what comprises USENIX’s general, admin-
istrative, and management expenses. The Association’s complete 
financial statements for the fiscal year ended December 31, 2016, 
are available on request. 

Casey Henderson, Executive Director
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Projects, Programs,
Good Works

3%

Conferences &
Workshops 92%

Membership
(including ;login:)

5%

Management
& General

Expenses 11% 

Fundraising
Expenses 2%

Program
Expenses 87%

O�ce
Expenses

3%
Bank & Online

Merchant 
Fees 3%Telephone &

Connectivity
3%Other

Operating
Expenses

4%

Insurance
6%

Board of
Directors Expenses

6%

System Management & 
Computer Exp

17%

Accounting & Legal 19%

Depreciation & 
Amortization 25%

Occupancy
14%

Chart 1: USENIX 2016 Operating Expenses

Chart 2: USENIX 2016 Program Expenses

Chart 3: USENIX 2016 General and  
Administrative Expenses



Writing for ;login:
We are looking for people with personal experience and ex
pertise who want to share their knowledge by writing.  USENIX 
supports many conferences and workshops, and articles about 
topics related to any of these subject areas (system administra
tion, programming, SRE, file systems, storage, networking, dis
tributed systems, operating systems, and security) are welcome. 
We will also publish opinion articles that are relevant to the 
computer sciences research community, as well as the system 
adminstrator and SRE communities.

Writing is not easy for most of us. Having your writing rejected, 
for any reason, is no fun at all. The way to get your articles pub
lished in ;login:, with the least effort on your part and on the part 
of the staff of ;login:, is to submit a proposal to login@usenix.org.

PROPOSALS
In the world of publishing, writing a proposal is nothing new.  
If you plan on writing a book, you need to write one chapter,  
a proposed table of contents, and the proposal itself and 
send the package to a book publisher. Writing the entire  
book first is asking for rejection, unless you are a wellknown, 
popular writer.

;login: proposals are not like paper submission abstracts. We 
are not asking you to write a draft of the article as the proposal, 
but instead to describe the article you wish to write. There are 
some elements that you will want to include in any proposal:

• What’s the topic of the article?

•  What type of article is it (case study, tutorial, editorial,  
article based on published paper, etc.)?

•  Who is the intended audience (syadmins, programmers, 
security wonks, network admins, etc.)?

• Why does this article need to be read?

•  What, if any, nontext elements (illustrations, code, 
diagrams, etc.) will be included?

• What is the approximate length of the article?

Start out by answering each of those six questions. In answering 
the question about length, the limit for articles is about 3,000 
words, and we avoid publishing articles longer than six pages. 
We suggest that you try to keep your article between two and 
five pages, as this matches the attention span of many people.

The answer to the question about why the article needs to be 
read is the place to wax enthusiastic. We do not want marketing, 
but your most eloquent explanation of why this article is impor
tant to the readership of ;login:, which is also the membership  
of USENIX.

UNACCEPTABLE ARTICLES
;login: will not publish certain articles. These include but are not 
limited to:

•  Previously published articles. A piece that has appeared on 
your own Web server but has not been posted to USENET 
or slashdot is not considered to have been published.

•  Marketing pieces of any type. We don’t accept articles 
about products. “Marketing” does not include being 
enthusiastic about a new tool or software that you can 
download for free, and you are encouraged to write case 
studies of hardware or software that you helped install  
and configure, as long as you are not affiliated with or  
paid by the company you are writing about.

• Personal attacks

FORMAT
The initial reading of your article will be done by people using 
UNIX systems. Later phases involve Macs, but please send us 
text/plain formatted documents for the proposal. Send pro
posals to login@usenix.org.

The final version can be text/plain, text/html, text/markdown, 
LaTeX, or Microsoft Word/Libre Office. Illustrations should 
be EPS if possible. Raster formats (TIFF, PNG, or JPG) are also 
 acceptable and should be a minimum of 1,200 pixels wide.

DEADLINES
For our publishing deadlines, including the time you can expect 
to be asked to read proofs of your article, see the online sched
ule at www.usenix.org/publications/login/publication_schedule.

COPYRIGHT
You own the copyright to your work and grant USENIX first pub
lication rights. USENIX owns the copyright on the collection that 
is each issue of ;login:. You have control over who may reprint 
your text; financial negotiations are a private  matter between 
you and any reprinter.

http://www.usenix.org/publications/login/publication_schedule




A USENIX CONFERENCE
SECURITY AND PRIVACY IDEAS THAT MATTER

J A N  1 6 –1 8 ,  2 0 1 8
SA N TA CL A R A ,  C A ,  USA

enigma.usenix.org
The full program and registration are available now.

PROGR AM CO-CHAIRS

Franziska Roesner, 
University of Washington

Bryan Payne, 
Netflix

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
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