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EDITORIALMusings
R I K  F A R R O W

Rik is the editor of ;login:.  
rik@usenix.org Cost externalization is usually applied to the use of the environment 

as a dumping ground for industrial waste. Instead of having to pay 
for cleaning up sulfur and nitrogen dioxides from burning coal, 

 companies passed those costs along to humans and the world. Turns out,  
open source software has a parallel problem.

Many of you would not have been alive to experience the ’70s, and too young to be bored by  
the ’80s. I’m not referring to the culture wars but rather to the acid rain that was eating holes 
in tree leaves, ruining crops, and hurting wildlife [1]. The yellow smog was particularly bad 
when combined with summer heat and ozone, limiting visibility in big US cities to one hun-
dred meters on some days.

In the 1990s, the US Congress passed laws forcing coal burners to scrub their emissions. That 
made burning coal more expensive, continuing to do so even in 2020, but eventually made the 
air a lot cleaner [2] by removing nearly half of the sulfur and nitrogen dioxides from coal burn-
ing plants’ exhausts.

Moving costs off of your company’s balance sheet appears to be a fine idea, whether you are 
communist or capitalist. You can read a short blog entry about cost externalization [3], but all 
you really need to know is that some companies have artificially lowered their production costs.

I started out by stating that OSS has a similar problem, but I don’t mean air pollution. Many 
companies use OSS without contributing to its maintenance or creation. They have exter-
nalized the costs of programming the software they need to run their businesses to OSS 
 developers—people whom they usually do not pay.

Let’s take a particularly toxic example: the Equifax hack of 2017 [4]. Equifax was using the 
Apache Struts software as part of the web front-end they used to make money. Equifax, like 
the other credit agencies, collected data on individuals and families and sold that to potential 
creditors. In Equifax’s case, attackers took advantage of the Struts framework to invade the 
Equifax network, and stole data for over 147 million people. The vulnerability they used had 
been patched in March, while the hack began in July.

I hope that my comparison appears fair to you—that using OSS without contributing to its 
support is a form of cost externalization. If Equifax had been actively supporting Struts, I 
believe they would also have been very aware of the vulnerability and would have patched it.

Equifax will be fined and forced to “repay” those whose data had been stolen—to the tune of 
hundreds of millions of dollars, maybe [5]. Seems like crime does pay, or perhaps externalizing 
your costs to society works well enough most of the time. 

The Lineup
I was inspired to write about cost externalization after reading Dan Geer and George 
 Sieniawski’s article about paying for the maintenance of OSS. It appears that externalizing 
costs extends to even tiny code snippets, such as the 11 lines of JavaScript that millions  
of programmers had been using.
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But that’s not where we begin in this issue. An award-winning 
paper about the reliability of enterprise SSDs forms the basis 
for the first feature article. Maneas et al. used data provided by 
NetApp to examine four different failure modes seen in SSDs. 
Interestingly, the failures over time of enterprise SSDs are very 
different from those of hard drives.

Jeff LeFevre and Carlos Maltzahn explore a way to leverage 
Ceph, the distributed storage system, to move computation to the 
location of data. SkyhookDM takes advantage of Ceph’s design to 
distribute data across Ceph’s Object Storage Devices so that work, 
such as SQL queries, can be executed on the system where data 
resides instead of having to copy all data to a single server first.

I interviewed Natalie Silvanovich, part of Google’s Project Zero 
team. Natalie, the first woman on the team, talked about the 
techniques she uses while bug-searching, having another woman 
join the team, and things you should know or learn about if you 
want to learn more about finding exploitable bugs.

Dick Sites volunteered to write an article demonstrating some 
uses of his kernel monitoring software, KUtrace. KUtrace 
provides much finer observations of CPU activity while the CPU 
executes kernel code. Sites describes four activities where the 
kernel is wasting a lot of CPU cycles that likely occur commonly 
enough to be serious issues.

Marianne Bellotti writes about how misaligned incentives result 
in bad software design. Most people who have heard of Conway’s 
Law know that it describes how designs mirror organizational 
structures, but Bellotti uncovers a different facet of the law: pro-
grammers are incentivized to stand out, and that often results 
in championing their own additions to code that no one else can 
support.

Alex Hidalgo considers how best to use service level objectives as 
a tool in decision-making. Hidalgo expresses concerns about how 
SLOs are becoming buzzwords, when SLOs and SLIs can be used 
to create more system reliability.

Steve Ross and Todd Underwood take a look at using ML in sup-
port of SRE. Both engineers support ML and have often been 
asked to use ML as part of the support infrastructure. The 
authors explain machine learning and then point out serious 
issues with applying ML to SRE tasks.

Laura Nolan focuses her SRE column on decision-making, mak-
ing that the theme of this issue. Nolan, however, disparages the 
current culture of complacency that encourages ignoring poten-
tial problems until they become crises. Nolan uses the response 
to the coronavirus pandemic in process as I write this as an 
example of the crisis/complacency dynamic.

Dave Josephsen, who lives in self-quarantine by choice, contin-
ues his exploration of BPF scripts. In particular, Dave explains 
the biolatency script and how it integrates with the block I/O 
(the bio) portion of the Linux kernel.

I’ve mentioned Geer and Sieniawski’s column already as having 
inspired my musings about externalization. Their focus is actu-
ally on how widely OSS is used by enterprises while few take 
care to actively support the software they use, as they would with 
commercial software that they pay for.

Mark Lamourine has a container focus this issue, reviewing 
books about Docker, microservices, and containers. Mark joined 
the decision-making crowd with reviews of related books.

Robert G. Ferrell was inspired by the failed foray, related by Ross 
and Underwood, to have ML take over SRE. Robert spins this a 
bit differently, as he instead discusses how humans and AI will 
become competitors.

Peter Norton and Chris McEniry didn’t write for this issue.

In the world we live and work in, market forces are supposed 
to rein in cheaters—those who sell bad products or take advan-
tage of our culture to cut costs. In reality, market forces seem to 
encourage cheating, even when companies that do this get caught 
in the process. Oil companies are still supported by tax breaks, 
while companies like Theranos thrive for a while until the illu-
sion they created via marketing dissipates.

And perhaps we should give Equifax a break. After the attack, 
people feared that identities would be stolen, bank accounts 
drained, and false tax forms filed. Instead, it turns out the Chi-
nese hackers were to blame [6]. So instead of being worried about 
identity theft, we should be worried about Chinese intelligence 
operatives using our personal data to blackmail us. 

Oh, well. I bet the people at Equifax weren’t thinking about 
that when they designed their web front-ends using someone 
else’s code.
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W e present the first large-scale field study of NAND-based SSDs 
deployed in enterprise storage systems. Our study is based on 
field data, collected over 2.5 years, for a sample of almost 1.4 mil-

lion drives from the total SSD population of a major enterprise storage vendor 
(NetApp). The data allows us to study a large number of factors that were not 
included in prior work, such as the effect of firmware versions, the reliability 
of TLC NAND, and correlations between drives within a RAID group. Our 
analysis provides insight into flash reliability, along with a number of practi-
cal implications.

System reliability is arguably one of the most important aspects of a storage system, and, as 
such, a large body of work exists on the topic of storage device reliability. Much of the older 
work is focused on hard disk drives (HDDs) [1, 5–7], but as more data is being stored on solid 
state drives (SSDs), the focus has recently shifted to the reliability of SSDs. In addition to a 
large amount of work on SSDs in lab conditions under controlled experiments, the first field 
studies reporting on SSD reliability in deployed production systems have recently appeared 
[3, 4, 8, 10]. These studies are based on data collected at datacenters at Facebook, Microsoft, 
Google, and Alibaba, where drives are deployed as part of large distributed storage systems. 
However, we observe that there still are a number of critical gaps in the existing literature 
that this work is striving to bridge:

 3 There were no studies that focus on enterprise storage systems. The drives, workloads, and 
reliability mechanisms in these systems can differ significantly from those in cloud datacen-
ters. For example, the drives used in enterprise storage systems include high-end drives, and 
reliability is ensured through (single, double, or triple parity) RAID, instead of replication or 
distributed storage codes.
 3 We also observe that existing studies do not cover some of the most important character-
istics of failures that are required for building realistic failure models, in order to compute 
metrics such as the mean time to data loss. This includes, for example, a breakdown of the 
reasons for drive replacements, including the scope of the underlying problem and the cor-
responding repair action (RAID reconstruction versus draining the drive), and most impor-
tantly, an understanding of the correlations between drive replacements in the same RAID 
group.

In this article, we present some selected findings of our work. For detailed results, please see 
our USENIX FAST ’20 paper [2].

Reasons for Replacements
SSD replacement can be triggered for various reasons, and different subsystems in the  storage 
hierarchy can detect issues that trigger the replacement of drives. For example, issues might 
be reported by the drive itself, the storage layer, or the file system. Table 1 describes the differ-
ent reason types that can trigger a drive replacement, along with their frequency, the recovery 
action taken by the system, and the scope of the problem. We group the  different reason types 
behind SSD replacements into four categories, labeled A to D, based on their severity.
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The most benign category is category D, which relates to replacements that were triggered by 
logic either inside the drive or at higher levels in the system, which predicts future drive fail-
ure, based on, for example, previous errors, timeouts, and a drive’s SMART statistics [9]. The 
most severe category is category A, which comprises those situations where drives become 
completely unresponsive, or where the SCSI layer detects a hardware error (reported by the 
drive) severe enough to trigger immediate replacement and RAID reconstruction of its data.

Category B refers to drive replacements that are taking place when the system suspects the 
drive to have lost a write, e.g., because it did not perform the write at all, wrote it to a wrong 
location, or otherwise corrupted the write. The root cause could be a firmware bug in the 
drive, although other layers in the storage stack could be responsible as well. As there are 
many potential causes, a heuristic is used to decide whether to trigger a replacement or not.

Finally, in category C most of the reasons for replacements are related to commands that 
were aborted or timed out. For instance, a command can be aborted when the host has sent some 
write commands to the device, but the actual data never reached the device due to connection 
issues. Ownership errors are related to the subsystem that keeps track of which node owns a drive; 
if an error occurs during the communication with this subsystem, the drive is marked as failed.

When examining the frequency of each individual type, we observe that SCSI errors are the 
most common type, responsible for ~33% of all replacements and, unfortunately, also one of 
the most severe reason types. On the other hand, drives rarely become completely unrespon-
sive (0.60% of all replacements). Fortunately, one-third of all drive replacements are merely 
preventative (category D), using predictions of future drive failures, and are hence unlikely to 
have severe impact on system reliability. Finally, the two remaining categories (B and C) are 
roughly equally common, and both have the potential of partial data loss if RAID reconstruc-
tion of the affected data should turn out unsuccessful.

Finding 1: One-third of replacements are associated with one of the most severe reason types 
(i.e., SCSI errors); on the other hand, one-third of drive replacements are merely preventative, 
based on predictions.

Category Type Pct. Annual Repl. 
Rate (%)

Recovery 
Action Scope

A
SCSI Error 32.78 0.055 RAID 

Reconstruction
Full

Unresponsive Drive 0.60 0.001

B Lost Writes 13.54 0.023
RAID 
Reconstruction

Partial

C

Aborted Commands 13.56 0.023

RAID 
Reconstruction

Partial
Disk Ownership I/O 
Errors

3.27 0.005

Command Timeouts 1.81 0.003

D

Predictive Failures 12.78 0.021

Disk Copy ZeroThreshold Exceeded 12.73 0.020

Recommended Failures 8.93 0.015

Table 1: Description of reason types that can trigger a drive replacement. Disk copy operations are  performed 
only where possible (e.g., a spare disk must be available).



8   S U M M ER 2020  VO L .  45 ,  N O.  2  www.usenix.org

FILE SYSTEMS AND STORAGE
A Study of SSD Reliability in Large Scale Enterprise Storage Deployments

Factors Impacting Replacement Rates
We evaluate how different factors impact the replacement rates 
of the SSDs in our data set. We make use of the annual replace-
ment rate (ARR) metric, which is commonly used to report 
failure frequency [4, 5, 7] and is defined as follows:

Total failed devices 
 ARR  =  in %

Total device years

Usage and Age
It is well known that usage, and the wear-out of flash cells that 
comes with it, affects the reliability of flash-based SSDs; drives 
are guaranteed to remain functional for only a certain number of 
program/erase (PE) cycles. In our data set, SLC drives have a PE 
cycles limit of 100K, whereas the limit of most cMLC, eMLC, and 
3D-TLC drives is equal to 10K cycles, with the exception of a few 
eMLC drive families with a 30K PE cycles limit.

Each drive reports the number of PE cycles it has experienced 
as a percentage of its PE cycle limit (denoted as rated life used), 
allowing us to study how usage affects replacement rates. Unfor -
tunately, the rated life used is only reported as a truncated 
integer, and a significant fraction of drives report a zero for this 
metric, indicating less than 1% of their rated life has been used. 
Therefore, our first step is a comparison of the ARR of drives that 
report less than 1% versus more than 1% of their rated life used. 
The results for eMLC and 3D-TLC drives are shown in Figure 1, 
which includes both overall replacement rates (“All”) and rates 
broken down by their replacement category (A to D). Throughout 
the article, error bars refer to 95th percentile confidence inter-
vals; we also exclude two outlier models, i.e., I-C and II-C, with 
unusually high replacement rates to not obscure trends except 
for graphs involving individual drive families.

Figure 1 provides evidence for effects of infant mortality. For 
example, eMLC drives, the drives with less than 1% rated life 
used, are more likely (1.25x) to be replaced than those with more 
than 1% of rated life used. When further breaking results down 
by reason category, we find that drives with less usage consis-
tently experience higher replacement rates for all categories.

Making conclusive claims for the 3D-TLC drives is harder due 
to limited data on drives above 1% of rated life used, resulting in 
wide confidence intervals. However, where we have enough data, 
observations are similar to those for eMLC drives, e.g., we see a 
significant drop in lost writes for drives above 1% of rated life used.

We also look at replacement rates as a function of a drive’s age 
measured by its total months in the field. Figure 2 shows the con-
ditional probability of a drive being replaced in a given month of 
its life, i.e., the probability that the drive will fail in month x given 
that it has survived up to the end of month x-1.

We observe an unexpectedly long period of infant mortality with 
a shape that differs from the common “bathtub” model, often 
used in reliability theory. The bathtub model assumes a short 
initial period of high failure rates, which then quickly drops. 
Instead, we observe for both 3D-TLC and eMLC drives, a long 
period (12–15 months) of increasing failure rates, followed by 
a lengthy period (another 6–12 months) of slowly decreasing 
failure rates, before rates finally stabilize. This brings up the 
question of what could be done to reduce these effects. One might 
consider, for example, an extended, more intense burn-in period 
before deployment, where drives are subjected to longer periods 
of high read and write loads. Given the low consumption of PE 
cycles that drives see in the field (99% of drives do not even use 
up 1% of their PE cycle limit), there seems to be room to sacrifice 
some PE cycles in the burn-in process.

Finally, it might be surprising that we do not observe an increase 
in ARR for drives towards the end of their life, but the majority of 
drives, even those deployed for several years, do not experience a 
large number of PE cycles.

Finding 2: We observe a very drawn-out period of infant  mortality, 
which can last more than a year, and see failure rates 2–3x larger 
than later in life.

Flash and Drive Type
The drive models in our study differ in the type of flash they are 
based on, i.e., in how many bits are encoded in a single flash cell. 
For instance, Single-Level Cell (SLC) drives encode only one bit 
per cell, while Multi-Level Cell (MLC) drives encode two bits in 
one cell for higher data density and thus a lower total cost, but 
potentially higher propensity to errors. The most recent genera-
tion of flash in our data set is based on Triple-Level Cell (3D-TLC) 
flash with three bits per cell.

Figure 1: Annual replacement rate per flash type based on the drives’ 
“rated-life-used” percentage
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We turn to Figures 1 and 3 to compare 3D-TLC and eMLC drives, 
which take usage and lithography into account. Figure 1  indicates 
that ARRs for 3D-TLC drives are around 1.5x higher than for 
eMLC drives, when comparing similar levels of usage. Figure 
3 paints a more complex picture. While V2 3D-TLC drives have 
a significantly higher replacement rate than any of the other 
groups, the V3 3D-TLC drives are actually comparable to 2x nm 
eMLC drives, and in fact have lower ARR than the 1x nm eMLC 
drives. So lithography might play a larger role than flash type 
alone; we take a closer look at lithography below.

When we compare the results for the MLC drives in our data 
set against previous work, we observe that Narayanan et al. [4] 
report replacement rates between 0.5–1% for their consumer 
class MLC drives, with the exception of a single enterprise 
class model, whose replacement rate is equal to 0.1%; however, 
the authors in [4] consider only fail-stop failures. In our study, 
we consider different types of failures, and, thus, the reported 
replacement rates would have been even smaller had we consid-
ered only fail-stop failures.

Finding 3: Overall, the highest replacement rates in our study are 
associated with 3D-TLC drives. However, no single flash type has 
noticeably higher replacement rates than the other flash types in 
this work, indicating that other factors (e.g., lithography) can have 
a bigger impact on reliability.

Lithography
Lithography has been shown to be highly correlated with a drive’s 
raw bit error rate (RBER); models with smaller lithography 
report higher RBERs according to a study based on datacenter 
drives [8], but not necessarily higher replacement rates. We 
explore what these trends look like for the drives in enterprise 
storage systems. To separate the effect of lithography from flash 
type, we perform the analysis separately for each flash type.

The bar graph in Figure 3 (right) shows the ARR for eMLC drives 
separated into 2x nm and 1x nm lithographies broken down by 
failure category, also including one bar for replacements of all 

categories. The 1x nm and 2x nm notations denote any lithog-
raphy in the range of 10–19 nm and 20–29 nm, respectively. We 
observe that the higher density 1x nm drives experience almost 
twice the replacement rate of 2x nm drives. Also, replacement 
rates for each of the individual reason types are higher for 1x nm 
drives than for 2x nm, with the only exception of reason category 
A, which corresponds to unresponsive drives.

In contrast to eMLC drives, the 3D-TLC drives see higher replace-
ment rates for the lower density V2 drives, which internally have 
fewer layers than V3. When breaking replacement rates down by 
failure reason, we observe that consistently with the results for 
TLC drives, the only reason code that is not affected by lithogra-
phy is category A, which corresponds to unresponsive drives.

Finding 4: In contrast to previous work, higher density drives do 
not always see higher replacement rates. In fact, we observe that, 
although higher density eMLC drives have higher replacement 
rates, this trend is reversed for 3D-TLC.

Firmware Version
Given that bugs in a drive’s firmware can lead to drive errors or, 
in the worst case, to an unresponsive drive, we are interested to 
see whether different firmware versions are associated with a 
different ARR. Each drive model in our study experiences dif-
ferent firmware versions over time. We name the first firmware 
version of a model FV1, the next one FV2, and so on. An indi-
vidual drive’s firmware might be updated to a new version, but we 
observe that the majority of drives (70%) appear under the same 
firmware version in all data snapshots.

Figure 4 shows the ARR associated with different firmware 
versions for each drive family. Considering that firmware varies 
across drive families and manufacturers, it only makes sense to 
compare the ARR of different firmware versions within the same 
drive family. To avoid other confounding factors, in particular 

Figure 2: Conditional probability of failure based on a drive’s age (number 
of months in the field) for all drive families

Figure 3: Annual replacement rate per flash type and lithography broken 
down by replacement category. The 1x nm and 2x nm notations denote any 
lithography in the range of 10–19 nm and 20–29 nm, respectively.
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age and usage, the graph in Figure 4 only includes drives with 
rated life used of less than 1% (the majority of drives).

We find that drives’ firmware version can have a tremendous 
impact on reliability. In particular, the earliest versions can 
have an order of magnitude higher ARR than later versions. This 
effect is most notable for families I-B (more than 2x decrease 
in ARR from FV1 to FV2), II-A (8x decrease from FV2 to FV3), 
and II-F (more than 10x decrease from FV2 to FV3). Finally, we 
note that this effect persists even if we only include drives whose 
firmware has never changed in our data snapshots.

Finding 5: Earlier firmware versions can be correlated with sig-
nificantly higher replacement rates, emphasizing the importance 
of firmware updates.

Correlations between Drive Failures
A key question when deriving reliability estimates—e.g., for dif-
ferent RAID configurations—is how failures of drives within the 
same RAID group are correlated.

For a detailed understanding of correlations, we consider all RAID 
groups that have experienced more than one drive replacement 
over the course of our observation period, and plot in Figure 5 
the time between consecutive drive replacements within the 
same RAID group. We observe that very commonly, the second 
drive replacement follows the preceding one within a short time 
interval. For example, 46% of consecutive replacements take 
place at most one day after the previous replacement, while 52% 
of all consecutive replacements take place within a week of the 
previous replacement.

Another important question in RAID reliability modeling is how 
the chance of multiple failures grows as the number of drives in 
the RAID group increases. Figure 6 (left) presents, for the most 
common RAID group sizes, the percentage of RAID groups of 

that size that experienced at least one drive replacement. As one 
would expect, larger RAID groups have a higher chance of experi-
encing a drive replacement; yet, the effect of a RAID group’s size on 
the replacement rates saturates for RAID groups comprising more 
than 18 drives.

Concerning multiple failures within the same RAID group, we 
make an interesting observation in Figure 6 (middle). When we 
look at the percentage of RAID groups that have experienced at 
least two drive replacements (potential double failure), this does 
not seem to be clearly correlated with RAID group size. In other 
words, the largest RAID group sizes do not necessarily seem to 
have a higher rate of double (or multiple) failures compared to 
smaller RAID groups.

This observation is confirmed when we look at the conditional 
probability that a RAID group will experience more replace-
ments, given that it has already experienced another replacement, 
in Figure 6 (right). More precisely, for each RAID group size, we 
consider those RAID groups that had at least one drive replace-
ment and compute what percentage of them had at least one more 
replacement within a week. Interestingly, we observe there is 
no clear trend that larger RAID group sizes have a larger chance 
of one drive replacement being followed by more replacements. 
Note that, as already mentioned, the chance of experiencing a 
drive failure grows with the size of the RAID group (Figure 6 
left); however, the chance of correlated failures does not show a 
direct relationship with the group’s size.

Finding 6: While large RAID groups have a larger number of 
drive replacements, we find no evidence that the rate of multiple 
failures per group (which is what can create potential for data loss) 
is correlated with RAID group size. The reason seems to be that the 
likelihood of a follow-up failure after a first failure is not correlated 
with RAID group size.

Figure 4: Effect of the firmware version on replacement rates broken down 
by drive family

Figure 5: Time difference between successive replacements within RAID 
groups
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Conclusion
Previous work has focused on the reliability characteristics of 
SSDs deployed in distributed datacenter storage systems. Our 
work presents the first large-scale field study of NAND-based 
SSDs in enterprise storage systems [2]. Below, we summarize 
some of the most important findings and implications of our work:

 3 Our observations emphasize the importance of firmware 
updates, as earlier firmware versions can be correlated with 
significantly higher failure rates. Yet 70% of drives remain at 
the same firmware version throughout the length of our study. 
Consequently, we encourage enterprise storage vendors to 
make firmware upgrades as easy and painless as possible so 
that customers apply the upgrades without worries about sta-
bility issues.
 3 We observe significant correlations between failures within 
RAID groups. This emphasizes the importance of incorporating 
correlated failures into any analytical models in order to arrive 
at realistic estimates of the probability of data loss. It also makes  
a case for more than just single-parity RAID.
 3 The failure rates in our study do not resemble the “bathtub” 
shape assumed by classical reliability models. Instead, we observe 
no signs of increased failure rates at end of life and also a very 
drawn-out period of infant mortality, which can last for more than 
a year and see failure rates 2–3x larger than later in life.
 3 There has been a fear that the limited PE cycles of NAND SSDs 
can create a threat to data reliability in the later part of a RAID 
system’s life due to correlated wear-out failures, as the drives in 
a RAID group age at the same rate. Instead, we observe that cor-
related failures due to infant mortality are likely to be a bigger 
threat.
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SkyhookDM: Data Processing in Ceph with 
Programmable Storage
J E F F  L E F E V R E  A N D  C A R L O S  M A L T Z A H N

W ith ever larger data sets and cloud-based storage systems, it 
becomes increasingly more attractive to move computation to 
data, a common principle in big data systems. Historically, data 

management systems have pushed computation nearest to the data in order  
to reduce data moving through query execution pipelines. Computational 
storage approaches address the problem of both data reduction nearest the 
source as well as offloading some processing to the storage layer.

As storage systems become more disaggregated from client applications, such as distributed 
object storage (e.g., S3, Swift, and Ceph), there is new interest in computational storage dis-
aggregated over networks [7]. There has also been a long line of efforts toward computational 
storage, including custom hardware and software for intelligent disks and active storage [5, 6, 
13, 15], commercial appliances, and middleware approaches in the cloud [1, 2].

Recent research on programmable storage systems [4, 9–12, 14, 16] takes the approach of 
exposing, augmenting, or combining existing functionality already present in the storage sys-
tem to increase storage capabilities, performance, or provide new storage APIs and services 
to clients. There are several benefits to this approach, including (1) building upon a trusted, 
production quality storage system rather than starting from scratch or building a one-off 
solution; (2) requiring no additional system or hardware (e.g., Zookeeper or specialized disks) 
to be installed to provide these new functions; and (3) avoiding the need for each client to 
reimplement available functionality on a per-use-case basis by simply accessing newly avail-
able storage services as they become available.

The Skyhook Data Management project (skyhookdm.com) [8, 9] utilizes programmable 
storage methods to extend Ceph with data processing and management capabilities. Our 
methods are applied directly to objects or across groups of objects by the storage system 
itself. These capabilities are implemented as extensions to Ceph’s through its existing cls 
mechanism. This mechanism allows users to install custom functions that can be applied to 
objects in addition to read() or write(). Our approach that includes custom extensions along 
with data partitioning and structured data storage enables storage servers to semantically 
interpret object data in order to execute functions such as SQL SELECT, PROJECT, and 
AGGREGATE. We also developed extensions for data management functions that perform 
physical design tasks such as indexing, data repartitioning, and formatting. Partitioning and 
formatting can be especially useful in the context of row versus column-oriented formats for 
workload processing.

The immediate benefits of this approach are I/O and CPU scalability (for certain functions) 
that grows or shrinks along with the number of storage servers. Since objects are semanti-
cally self-contained (i.e., a database partition) and are the entities that custom functions 
operate on, and since the storage system automatically rebalances objects across available 
servers—our approach, using I/O and compute elasticity, can directly benefit any storage 
 client application that is able to take advantage of these methods.
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The key insight of SkyhookDM is to simplify data management 
and minimize data movement by enabling the storage system to 
semantically interpret, manage, and process data. This can dra-
matically reduce the complexity of coordination and resources 
required higher up the software stack at the application layer. For 
example, applying a filter, building an index, or reformatting data 
can happen in parallel remotely on individual objects. This is 
because the necessary context for many common data processing 
and management tasks resides with the data, which makes data 
movement to establish computational contexts entirely unneces-
sary. In our work, this context includes the data semantics and 
the processing functions that are included in our formatted data 
within objects and our shared library extensions available within 
the storage servers, respectively.

For example, a single node database such as PostgreSQL can 
push query operations into the storage layer through its external 
table interface (foreign data wrapper), which can invoke these 
functions on objects and, hence, distribute computation across 
many storage nodes. For file interfaces, a similar mechanism 
is available in the scientific file format HDF5 with its  Virtual 
Object Layer (VOL) that enables HDF5 to be mapped to non-
POSIX storage back ends. Hence, similar to partitioning a 
database table, a large file can be “extended” by HDF5 functions 
into smaller objects across many storage nodes. SkyhookDM  
also provides a Python client using the Pandas DataFrame 
abstraction. In these ways, our methods can be used to scale out  
a database or another data-intensive application designed to  
run only on a single node.

Our approach to extend storage with data management tasks has 
several significant benefits:

 3 Increased query performance when pushing down computation 
directly to objects across many storage servers.
 3 Reduced network I/O and host interconnect  bandwidth for 
computations that result in data reduction (e.g., SELECT, 
PROJECT, AGGREGATE).
 3 Reduced CPU at clients due to offloading and reduced CPU both 
at clients and servers due to creating, sending, and receiving 
fewer packets for data reduction queries.
 3 Reduced application complexity and resources for data manage-
ment tasks such as indexing, re-partitioning data, or converting 
between formats (e.g., row to column).
 3 Support for operating on multiple data formats in storage, and 
the capability to extend support for other formats.
 3 Fewer application-level storage system assumptions of (pos-
sibly out-of-date) “storage-friendly” access patterns and more 
intelligent storage systems adapting to new devices.

Next we provide a short background, our architecture and meth-
odology, and a few experiments to evaluate performance, scal-
ability, and overhead of our approach to in-storage processing.

Background
Ceph is a widely used open source distributed object storage 
system created by Sage Weil at UC Santa Cruz and backed by Red 
Hat, IBM, and many other large corporations. It has no single 
point of failure, is self-healing, and scales to very large instal-
lations of 100’s petabytes of data. It provides file, block, and 
object interfaces. New object methods can be created using cls 
extensions that are registered as READ and/or WRITE methods 
and then compiled into shared libraries within the Ceph source 
tree or via an SDK. These new shared libraries are installed on 
 storage servers (also known as OSDs) in a directory well known 
to Ceph, /usr/lib64/rados-classes/.

Figure 1: Example Ceph custom object class method to compute MD5 sum
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Ceph object classes currently support C++ and Lua interfaces, 
and an example implementation of an object method would be 
to compute a checksum, or perhaps generate a thumbnail image 
as part of a custom read or write method as shown in Figure 1. 
Critically, partial reads and writes of objects are also possible in 
Ceph, which is useful to reduce disk I/O for certain queries such 
as PROJECT a subset of all columns.

Apache Arrow and Google FlatBuffers are fast, in-memory seri-
alization libraries. Arrow was developed for columnar processing 
and sharing data over the wire, and supports compression and 
interacts well with other formats, especially Parquet. FlatBuffers 
was developed for gaming, with a row-based abstraction; is very 
flexible, including a schema-free interface called FlexBuffers; 
and supports user-defined structs. They both offer a highest 
level abstraction of a table. We include these libraries within our 
shared library code to locally interpret and process object data.

SkyhookDM Architecture
Figure 2 shows our architecture, with a client application con-
nected to a standard Ceph cluster with SkyhookDM cls exten-
sions installed. The client application connects to Ceph using the 
standard librados library which makes the extensions available 
to the client. In this way databases such as PostgreSQL can 
invoke these extensions via their foreign data wrapper.

Figure 2 depicts a Ceph cluster of three Object Storage Devices 
(OSDs), each with its own CPU and memory resources that are 
utilized by our extensions for data processing. Each OSD stores a 
collection of objects and also has a local RocksDB instance that 
we exploit as an indexing mechanism.

SkyhookDM extensions are present as a shared library on each 
OSD, and these extensions can be applied to any local object for 
customized local processing. During processing, results can be 
returned to the client in a different format than the internal stor-
age format, e.g., Arrow table, or PostgreSQL binary format from 
an object with FlatBuffer data format. Since our shared  libraries 
are present on each OSD, they are immediately available to 
objects stored on newly added OSDs—for instance, when adding 
nodes to a Ceph cluster.

Methodology
Our work exploits Ceph’s cls extension interface by first  writing 
structured data to objects and then adding access methods 
implementing common SQL operations. We store structured 
data using popular and very efficient data serialization libraries 
such as Apache Arrow and Google FlatBuffers and use their APIs 
to  implement new cls access methods. For greater f lexibility 
to support multiple data formats, the structured data includes 
metadata about itself that expresses higher level information 
such as the data’s current layout, whether or not it is compressed, 
and the data’s length. Figure 3 shows this information, which 
is itself defined as a Flatbuffer wrapper. This helps to abstract 
away data layout information from the higher level client applica-
tions, creating f lexibility to store and process data in various 
formats as well as reduce the need for client applications to keep 
track of data formats or compression on a per-object basis.

Physical and Logical Data Alignment
Physical and logical data alignment can be crucial for good per-
formance, including with big data processing frameworks such 
as MapReduce [3]. In our work, physical and logical alignment is 
required such that when partitions are stored in objects of struc-
tures data, a given object contains a complete logical subset of the 
original data in order to interpret the data’s semantics and per-
form any meaningful processing. For example, a database table 
partition could be stored in an object, resulting in a collection 
of complete rows that can be operated upon. In contrast, byte-
aligned physical partitions (e.g., 64 MB) can result in incomplete 
rows, with part of a row stored across two different objects. Any 
processing for such rows would need to be performed at a higher 
layer and first perform a collect or gather operation across perhaps 
multiple storage servers. This would render object-local process-
ing useless and result in unnecessary network I/O.

Data Partitioning and Format
In our work, we consider row and column-based partitions. 
Partitions are formatted using fast, in-memory data serialization 
formats: Google FlatBuffers for row partitions or Apache Arrow 
for column partitions. Both of these formats allow us to encode 
the data schema within, which allows the structured data to be 
interpreted by our cls methods.

Figure 2: SkyhookDM architecture showing a three-node Ceph cluster 
with four objects

Figure 3: Per object metadata wrapper regarding the serialized data 
 partition (blob data) stored within
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For either row or column storage, data is partitioned, formatted, 
and named using conventions such as table_name.partition_num, 
resulting in a collection of objects per table where each object 
represents a logical data partition that is self-contained, with 
metadata indicating its semantics such as the table schema. Fig-
ure 4 depicts how data is partitioned and formatted for a database 
table. Data semantics are included within the format, which is 
then wrapped with our metadata wrapper, serialized as binary 
object data, and stored in Ceph. Data placement is handled by 
Ceph’s pseudo-random data distribution function (CRUSH).

Rather than looking up all object names of a table, our object-
naming convention includes content information, such as the 
table or column name. This results in constant-size metadata 
per table that includes only a name generator function and a few 
constants such as total number of objects. Further content-based 
information is possible to encode in the naming as well, such as 
row ranges for range-based row partitions (e.g., month). Such 
content-based object names and generator functions can then 
also be used for partition pruning during query plan generation.

This partitioning and formatting method achieves logical and 
physical alignment, embeds data semantics locally within each 
partition, and, along with the serialization format APIs and 
custom object classes, allows us to perform processing indepen-
dently on each partition. Creating many objects (i.e., partitions) 
and scaling out the number of storage servers can enable a high 
degree of parallelism for data processing.

Data Layout and Physical Design
Within an object, there are several options to consider for laying 
out the data, either as a set of byte stream extents in a chunk 
store, as a set of entries in a key/value store, or combinations of 
both. The key-value store is a local instance of RocksDB, used 
by Ceph for managing the local collection of objects on the OSD. 
Object methods can also access RocksDB via Ceph’s object_map 
or omap interface. SkyhookDM uses omap to store both  logical 
information (data content) and physical information (data offsets). 
For instance, the logical information includes the row number of 
a particular value within an objects formatted data (e.g., row i) 
to provide quick lookups for point or range queries. The physical 
information includes the offsets and lengths of the sequence of 

data structures within an object. Both indexing and data layout 
within an object is a consideration for physical design [4] man-
agement, such as potentially storing each column of a table as a 
separate data structure in order to minimize the amount of disk 
I/O required to retrieve a given column. This helps to improve 
the performance of PROJECT queries, for example.

Evaluation
We executed all experiments on Cloudlab, an NSF bare-metal-
as-a-service infrastructure. We used machine profile c220-g5 
for all nodes, 2x Intel Xeon Silver 2.2 GHz, 192 GB RAM, 1 TB 
HDD, and 10 GbE. Our data set was the LINEITEM table from 
the standard TPC-H database benchmark, with one billion rows. 
We partition this table, format, and store into 10,000 objects of 
an equal number of rows. The objects are distributed by Ceph 
across all storage nodes. Data is formatted as FlatBuffer or 
Arrow as indicated.

Figure 6: Query execution time for storage-side processing (offloading) 
versus processing on client machine with a four-node Ceph cluster

Figure 4: Data partitioning, formatting, and objects in SkyhookDM

Figure 5: Query execution time as the number of storage servers is scaled out
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Performance Improvement with Pushdown Query 
Processing
Figure 5 shows query latency is reduced as the number of storage 
servers increases. The no-processing bar is a standard read of all 
the data, representing I/O scale out. The other bars show offload-
ing of a select query for 1% and 10% of data rows. This represents 
I/O and CPU scale out. The offloading result tracks very closely 
to the I/O scale out, with little extra overhead for the storage 
servers to read and process versus only read. This highlights how 
the computation is distributed across all storage servers. While 
execution time is not reduced in this case, likely due to many 
cores and very fast network, the overhead to apply computa-
tion in Ceph is low, and CPU usage on the client is dramatically 
reduced, as we show next.

Overhead of Data Processing Libraries in Ceph
Figure 6 shows query execution time when processing data with 
all storage machines or on the single client machine. We first 
execute a standard read (no processing) as a baseline. Then we 
execute a query that selects 1%, 10%, or 100% of rows. In both 
cases there is little overhead to apply the data processing in 
storage except the case when selecting all data. This is due to 
the extra cost to both filter and then repackage and return each 
object when all rows pass the filter. This indicates the need for a 
statistics-based query optimizer to make wise decisions about 
what computations to offload.

CPU Usage with and without Offloading
Figure 7 shows that without offloading (no pushdown process-
ing), the client spends over 5% of CPU usage to receive packets 
and apply SELECT (top left). With offloading the client CPU, 
usage is near zero (bottom left). This is because the client 
receives only 1% of the original data packets and does not have 
to apply SELECT. The processing work is shifted to the storage 
servers (bottom right), showing a small corresponding increase 
in the stacked total CPU usage that is distributed across all 
storage servers (bottom right). However, now the work done by 
storage servers is actually useful for data processing, whereas 
the work done by storage servers in the without pushdown case 
(top right) is simply creating and sending packets containing 
99% unnecessary data.

Conclusion
SkyhookDM extends Ceph with object classes and fast serializa-
tion libraries to offload computation and data management tasks 
to storage. We have shown our approach has minimal overhead 
and scales with the number of storage servers. Our design is 
highly flexible, utilizing row or column-oriented data formats as 
well as the ability to dynamically convert between them directly 
in storage, eliminating the need to bring data into the client for 
processing or data management tasks. Extending our program-
mable storage approach to support custom data formats and 
more complex processing is another goal, and we are currently 
working on extensions for high energy physics data that uses the 
ROOT file format.

Figure 7: CPU usage during first 60 seconds for client machine (left) and eight storage servers (right, stacked) for 1% selectivity file query without pushdown 
processing (top) and with pushdown (bottom)
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I met Natalie Silvanovich at the luncheon during USENIX Security ’19 in 
Santa Clara. We had a fun discussion, and I resolved to spend some time 
following up later.

Rik Farrow: I am familiar with a really  “old” way of finding bugs: fuzzing. I know this was 
very common in the late ’90s, and I assume you were using fuzzing sometimes when you 
worked at BlackBerry. What’s different about how you search for bugs today?

Natalie Silvanovich: It’s been nearly 15 years since I started doing vulnerability research, and 
in some ways the fundamental techniques for finding security bugs haven’t changed much. 
Fuzzing and code review (or binary analysis for software that doesn’t have source code avail-
able) are still the techniques I use to find the majority of bugs I report. What has changed is 
the maturity of each methodology.

There have been a lot of tools and techniques developed over the past few years that have 
greatly improved the efficiency and effectiveness of fuzzing. I think one of the most impor-
tant innovations is fuzzers like AFL (http://lcamtuf.coredump.cx/afl/) that use code coverage 
measurements to guide fuzzing, so that the fuzzer can focus on testing new and unexplored 
areas of software. Also important are tools that allow for fuzzing to be performed at scale, for 
developers to easily integrate fuzzing into the development process, and for errors to be more 
consistently detected when fuzzers hit them.

The flip side of this is that, in general, it is more difficult to find bugs with fuzzing these days. 
I think this is due to more security awareness among developers, as well as more software 
teams fuzzing their code as a part of the development process. Fifteen years ago, it was com-
mon to find security bugs using simple mutation fuzzing on a single host in a few hours. Now 
it usually takes more advanced techniques on multiple cores.

Code review techniques have been fairly consistent throughout the years, although now, 
of course, we know a lot more about bug classes and how attackers can exploit them. It is 
also generally more challenging to find security bugs with code review these days, probably 
because software is both better tested and more complex.

RF: As part of Project Zero, do you ever work as groups/teams on a project?

NS: Yes, we do. In fact, I worked on a large research project on the iPhone [1–5] with Samuel 
Groß last year. We also do team hackathons a few times a year where we work on the same target 
together. While we do a lot of independent research, there’s a lot to be gained by sharing ideas!

RF: Do you and others in Project Zero get direction on what software to search, or can you 
pick and choose?

NS: Project Zero’s mission is to “make zero-day hard,” and we pick our targets based on this 
mission. Usually, this means software that has a large user base, a history of being targeted 
by certain attackers, and/or a vulnerable user base. Team members are free to pick their own 
targets within the mission, although we also often discuss targets and make goals as a team.

http://lcamtuf.coredump.cx/afl/
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RF: You wrote about what someone should do to get hired 
at  Project Zero (https://googleprojectzero.blogspot.com 
/p/working-at-project-zero.html), and I wondered if you have 
thought of anything you’d like to add since you posted that?

NS: Not really, but I would like to mention that vulnerability 
research is just one of the many careers available in information 
security, and that post is very specific to our team.

RF: Are there other women working on the Project Zero team?  
In my experience, the number of women working in security is 
even lower than in other areas in IT—much lower.

NS: I was the only woman on Project Zero for about four years, 
but we’ve recently been joined by the amazing Maddie Stone. 
There are fewer women in information than a lot of other IT 
fields, but it’s improved somewhat over the last few years.

RF: With your goal of making zero-day hard, I wonder what 
things you consider can make security better. I find myself sur-
prised that things have gotten better, as most programmers are 
average in skill, and the languages they most often write in,  
C and C++, are the same as they were when they were first cre-
ated when it comes to security. For example, a programmer can 
still use gets() on Linux, and buffer overflows are still possible, 
although compiler support for protecting the stack has pushed 
their exploitation to the heap. 

NS: This is a huge question, because there are so many ways to 
improve software security. And I also want to qualify “things get-
ting better”—while I suspect there are fewer bugs per line of code 
today than there were in the past, there is also more software 
being used by more users for more applications than ever before. 
So overall, software security is a more important problem than it 
has ever been.

Taking the example of a call to gets() that causes an overflow, 
there’s a lot of things that can happen during the development 
process that can stop it from getting into release code. For 
example:

 3 The developer understands that gets() can lead to vulnerabili-
ties, and doesn’t use it.
 3 The developer’s compiler or development environment warns 
them about gets(), and they remove it.
 3 The repository they submit the code to has pre-submit or com-
piler checks that reject gets(), and the developer can’t submit 
their code until they fix it.
 3 Submitting code requires the commit to be reviewed by another 
developer, and that developer finds and fixes the bug.
 3 The code in the repository is automatically fuzzed, and the bug 
gets found before release.

 3 The code is security reviewed before it is released, and the bug 
gets found before release.
 3 The crash occurs during beta testing, and the developer fixes it 
based on the crash log.
 3 The release binary contains mitigations that make it more time-
consuming to exploit memory corruption bugs.

Good “development discipline” can greatly reduce the number 
of security (and other) bugs in software, and there are a lot of 
tools and technology available to help with this. Of course, this 
requires that the organization produce the software to prioritize 
and invest in security, which is unfortunately not always the case.

RF: While I am still a fan of LangSec (langsec.org), I now realize 
that it is just a part of the overall picture of secure programming 
practices. What do you think of LangSec, and where do you see 
that LangSec falls short of what programmers need to be doing?

NS: LangSec aims to improve software security by creating 
formally verifiable languages and parsers that are immune to 
many common security problems. They view the root cause of 
security issues to be that most protocols and other input formats 
are poorly defined and often have many undefined states, and the 
programming languages that process them also support a huge 
amount of undefined behavior. They think all software should 
abstract out all input processing code, and design and imple-
ment it in a way that is verifiable and has no undefined states or 
behavior.  

One observation behind LangSec’s philosophy is that the lan-
guage software is written in has a huge influence on the number 
of vulnerabilities it contains. There is a lot of evidence for this. 
The most important distinction in my mind is managed (does not 
allow dynamic memory allocation) versus unmanaged (allows 
dynamic memory allocation) languages. Since the majority of 
vulnerabilities exploited by attackers are memory corruption 
vulnerabilities that occur due to the misuse of dynamically allo-
cated memory, even just moving to dynamic languages has a lot 
of potential to reduce the number of vulnerabilities in software.  

LangSec’s goal is lot broader than increasing the use of managed 
languages, though. Dynamically allocated memory is just one of 
the causes of the undefined and unverifiable software behavior 
they want to prevent. Unfortunately, while there would be a lot 
of benefits to fully verifiable input processing, the reality is that 
technology is not quite there yet. Even just with managed lan-
guages, there are a lot of reasons that developers don’t use them, 
including performance, capabilities, and compatibility with 
legacy code, and formally verifiable languages have even more 
limitations. So while LangSec’s ideas are very promising for the 
future, I feel that a lot more work needs to be done before their 
work is practical for most applications.

https://googleprojectzero.blogspot.com/p/working-at-project-zero.html
https://googleprojectzero.blogspot.com/p/working-at-project-zero.html
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Another concern is that LangSec’s approach doesn’t prevent logic 
bugs. For example, imagine a shopping website that notifies the 
warehouse to ship an item before it collects payment. This design 
has a security problem where if a user gets to the point where 
the shopping service notifies the warehouse to ship, and then 
the user stops interacting with the site, the user will get the item 
for free. Formal verification won’t prevent this type of problem, 
it will only check that the implementation conforms exactly to 
the design. It is also likely that any formally verifiable language 
or parser has at least some bugs in it (because all software has 
bugs), which could lead to security bugs in software that uses 
that language. It’s also possible attackers think of new types of 
vulnerabilities that no one has thought of yet. So while LangSec’s 
approach would likely greatly reduce the number of vulnerabili-
ties in software, it won’t eliminate all of them.

That said, there are two important takeaways from LangSec’s 
approach that developers can use right now. One is that the lan-
guage they choose to write software in impacts its security a lot. 
The other is that design is really important. The better defined  
a feature is, and the more thought that is given to making it easy 
to implement securely, the more likely it is to be secure.

RF: Other than good “development discipline,” what else can 
programmers prevent to make their software more secure?

NS: One important strategy for improving software security is 
Attack Surface Reduction. Put simply, every piece of software 
has a portion of code that can be manipulated by attackers, and 
making this as small as possible can have huge returns with 
regards to preventing vulnerabilities. It’s not unusual for Project 
Zero to find bugs in software features that have low or no usage, 
meaning they present security risk to users with little benefit. 
It’s important for developers to be aware that all code creates 
a security risk and other bugs, and to make sure that tradeoff 
makes sense.
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Careful observation of Linux dynamic behavior reveals surprising 
anomalies in its schedulers, its use of modern chip power-saving 
states, and its memory allocation overhead. Such observation can lead 

to better understanding of how the actual behavior differs from the pictures 
in our heads. This understanding can in turn lead to better algorithms to 
control dynamic behavior. 

We study here four such behaviors on x86-64 systems: 

1. Scheduling dynamics across the Completely Fair Scheduler, the real-time FIFO scheduler, 
and the real-time Round-Robin scheduler 

2. Dynamic use of mwait-sleep-wakeup to save power 

3. Dynamic CPU clock frequency changes to save power 

4. Invisible cost of heap allocation just after allocation 

In each case, the interaction of Linux and the underlying hardware can be improved in 
simple ways.

The software observation tool is KUtrace [1–3], which timestamps and records every transition 
between kernel-mode and user-mode execution in a live computer system, using less than 1% 
CPU and memory overhead and thus observing with minimal distortion. Each transition is 
recorded in just four bytes in a kernel trace buffer—20 bits of timestamp and 12 bits of event 
number (syscall/sysreturn, interrupt/return, fault/return numbers plus context-switch new 
process ID, and a handful of other items). Everything else is done by postprocessing a raw 
binary trace. Depending on the processor, each trace entry takes an average of 12–20 nsec to 
record, about 30 times faster than ftrace [4]. The robustly achieved design point is to handle 
200,000 transitions per second per CPU core with less than 1% overhead. I built the first such 
system at Google over a decade ago, and it and its offspring have been used in live production 
datacenters since.

Linux Schedulers: Not Completely Fair
The Linux CPU schedulers juggle program execution by assigning tasks to CPU cores at vari-
ous times. The Completely Fair Scheduler (CFS) runs each task at equal speed, each getting 
CPUs/tasks speed over time. The FIFO real-time scheduler runs each task in FIFO order 
to completion or until it blocks. The Round-Robin real-time scheduler runs like FIFO but 
imposes a maximum time quantum, moving tasks to the end of a run queue in round-robin 
fashion at quantum boundaries. 

On a four-core Intel i3-7100 processor (actually two physical cores hyperthreaded) running 
the Linux 4.19.19 LTS (long-term support) kernel version, I ran 1 to 12 identical CPU-bound 
threads and observed the true scheduling behavior [5]. Each thread repeatedly checksums a 
240 KB array that fits into a per-core L2 cache. From the Linux documentation, I expected 
the resulting timelines for more than four tasks to show each task running periodically and 
all completing at nearly the same time. Not so. 
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Figure 1 shows groups of 1 to 12 threads running under CFS. 
As the last thread of each group finishes, the next group starts, 
consuming about 26 seconds in all. The pictures for the other 
schedulers look similar at this scale. (Note that all the figures in 
this article appear in color in the online version.)

Looking at just the seven-thread group, Figure 2 shows it for each 
of the three schedulers. The smallest dashes are 12 ms execution 
periods (the quantum), chosen by the scheduler based on four 
cores and timer interrupts every 4 ms. This simple example does 
not stress the differences that the real-time schedulers would 
provide in a mixture of batch and real-time programs, but it does 
highlight their underlying dynamics.  

The documentation for these schedulers did not lead me to expect 
that some tasks would run uninterrupted for a dozen quanta or 
more, nor did it lead me to expect a 20–30% variation in comple-
tion time between the earliest and latest ones. None of this 

approaches “completely fair.” Observing these actual dynamics 
can lead to better algorithms.

Deep Sleep: Too Much Too Soon
Our second study concerns power-saving dynamics. Modern 
software passes hints to the chip hardware that nothing inter-
esting will be executing for a while, so the hardware might well 
want to slow down or turn off a core to save (battery) power. 
For x86 processors, the Linux idle-process code issues mwait 
 instructions to suggest sleep states to the hardware. Deep sleep 
states such as Intel C6 involve turning off a CPU core and its 
caches (first doing any necessary writebacks). When a subse-
quent interrupt arrives at that core, the hardware and micro-
code first crank up the CPU core’s clock and voltage, write good 
parity/ECC bits in the cache(s), and eventually execute the first 
instruction of the interrupt handler. Coming out of C6 deep sleep 
in an Intel i3-7100 takes about 30 microseconds, delaying inter-
rupt handling by that amount. 

You might not think that this matters much until you observe 
the dynamics of multiple communicating threads sending inter-
processor interrupts to each other just as the receiving core has 
gone to sleep, and when that one responds, the reply goes back to  
a core that in turn has just gone to sleep. Rinse and repeat. 

Figure 3 shows just such a sequence, at the beginning of launch-
ing the group of seven threads in the program in the previous 
section. Note that Figures 1–6 show everything happening on 
every CPU core every nanosecond—all idle time and kernel and 
user execution time for all programs, with nothing missing. For 

Figure 1: Running groups of 1 to 12 compute threads under CFS. The main program spawns one thread at the top left, and when that completes one second 
later it spawns two threads, then three, etc. With only four logical CPU cores, the scheduler starts its real work with five or more threads. The vertical line 
marks the group of seven that is expanded in Figure 2.

Figure 2: Running groups of seven compute-bound threads under the three 
Linux schedulers, shown over about two seconds total. In each case, the 
thread-preemption times vary substantially, and some threads complete un-
expectedly much sooner than others—arrows depict the largest differences.
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example, Figure 1 also has threads with names like systemd-
journal, cron, avahi-daemon, sshd, and DeadPoolForage. None  
of these take any appreciable CPU time, so I cropped out most  
of them except the three cron jobs that run near time 1.8 sec-
onds and take up a little vertical space between the group of  
two threads and the group of three threads in that figure.

The thin black lines in Figure 3 are the idle process executing, 
while the tall gray/colored lines are kernel-mode execution, and 
the half-height gray/colored lines are user-mode execution. The 
sine waves are the time coming out of C6 sleep (the time spent in 
deep sleep is short here, but is often several milliseconds). The 
dotted arcs show one process waking up another. 

The idle threads do an mwait instruction to sleep after spinning 
for only 400–900 nsec, which is much too soon. In the diagram, 
the first four of seven clone()calls are on CPU 0 at the upper left, 
and the spawned threads start executing on CPUs 3, 2, 2, and 1, 

respectively, just after and just below. Each child thread blocks 
almost immediately inside page_fault, waiting for the parent 
to finish setting up shared pages. Full execution of four threads 
begins only on the right side of the diagram. The bouncing back 
and forth between parent and child keeps encountering ~50 μs 
delays because the CPU cores prematurely go into deep sleep.

There are two problems here: (1) 30 μs is a long time to be recov-
ering from a siesta, ruining any expectations of fast interrupt 
response, for example, and (2) violation of the Half-Optimal 
 Principle [6]:

If it takes time T to come out of a state waiting for some 
event at unknown time E in future, spin at least time T 
before going into that state. This is at least half-optimal 
in all cases, even though you don’t know the future.

In this case, the half-optimal strategy is to spin for 30 μs instead 
of 0.4–0.8 μs before dropping into a C6 sleep state that takes  

Figure 3: Premature sleep in the intel_idle.c Linux kernel code causes startup delays for seven spawned threads. Thin black lines are the idle process, 
and sine waves are the time it takes a chip core in deep sleep to wake up again. Heavier lines on the right are compute-bound execution of four of the seven 
threads on the four CPU cores.

Figure 4: Non-idle execution on three CPUs at the left triggers a jump in all four CPU clock frequencies from slowest 800 MHz to fastest 3.9 GHz, which 
then step back to slow (frequency in units of 100 MHz indicated by the shading surrounding the lines for each CPU).
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30 μs to exit. Doing so would completely avoid sleeping in the 
trace above and would speed up the initial song-and-dance by 
over 3x. Observing these actual dynamics can lead to better 
algorithms.

Fluctuating Frequency: Mismatched to Goal
Our next study looks at another power-saving technique—vary-
ing the CPU clock frequency for each core. The goal is to use slow 
clocks when not much execution is happening and to use fast 
clocks when doing real computing. The measured Intel i3-7100 
chip core clocks vary between 800 MHz and 3.9 GHz. For this 
processor, Linux allows the chip hardware to dynamically vary 
the clock frequency—“HWP enabled” in the Linux kernel Intel 
x86 jargon. Once enabled, no operating system code runs to vary 
the frequency or even to deliver an event when the frequency 
changes. However, a machine-specific register can be read to 
get some hint of the likely upcoming frequency. I added code to 
read that register at every timer interrupt and add it to the raw 
KUtrace.  

For a computing load to observe, I ran a command to find some 
files and look for a regular expression in them:

find ~/linux-4.19.19/ -name “*.h” |xargs grep rdmsr

and then traced that for 20 seconds. This runs three programs, 
find, xargs, and grep. The first two mostly wait for disk while 
reading directories, and the last is mostly CPU-bound scanning a 

file. I picked this combination because I expected low CPU clock 
rates while waiting for disk and higher ones while scanning files.

Figure 4 shows an execution timeline on four CPU cores running 
mostly the bash, find, and xargs programs but with a little bit of 
other processes such as jbd2, ssh, and chrome. The gray overlay 
(yellow in the online version) shows CPU clock speeds: dark 
gray for slow clocks and lighter and lighter for faster clocks. The 
freq numbers are multiples of 100 MHz. Based on the non-idle 
program execution at the far left on CPUs 1, 2, and 3, the chip 
switches from 800 MHz to 3.9 GHz on all four CPU clocks, then 
slowly, over about 100 ms, drops the frequency back to 800 MHz. 
These are the true clock dynamics and match what one would 
expect from reading the (sparse) documentation. Note, however, 
that the execution bursts on CPU 1 in the right half of the dia-
gram do not raise the clock frequency.

In contrast to the intended behavior, Figure 5 shows a region of 
the same trace eight seconds later. This time the clock frequency 
jumps up from 800 MHz to 3.9 GHz as expected, but 8 ms later it 
jumps back to 800 and then 900 MHz, even though CPU 2 is still 
quite busy running grep. 

This dynamic is mismatched to the performance goal of the 
power-management design. Observing these actual dynamics 
can lead to better algorithms.

Figure 5: Non-idle execution at the left triggers a jump in CPU clock frequencies from slowest to fastest, which prematurely jump back to slow while CPU 2 is 
still 100% busy.

Figure 6: The page faults immediately after allocating memory take over 100x more time than the allocation itself. 
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Cost of Malloc: Not There but Soon Thereafter
Our final study looks at memory allocation. In a client-server 
environment with the client sending 1,000,000-byte data-
base write messages to the server, the server trace reveals 
a user-mode allocation of 1,000,000 bytes for receiving the 
message,  followed by 245 page faults (ceil of 1,000,000/4096), 
the  repeating blips on CPU 3 in Figure 6. You can see similar 
page-fault bursts in the completely different program at the far 
right of Figure 3. The big blips near time 98.7 ms are timer inter-
rupts. You can directly see in the ~30 μs skew in delivering timer 
interrupts on sleeping CPU 2 and on busy CPU 3.

The allocation takes a few microseconds in the underlying 
system call just before the page faults, but the page faults them-
selves take over 1100 microseconds. The (good) Linux design 
for extending heap allocation simply creates 245 read-only 
page table entries pointing to the kernel’s single all-zero page. 
As the user-mode program moves data into this buffer, each 
memory write to a new page takes a page fault, at which time the 
page-fault handler allocates a real memory page, does a copy-
on-write (CoW) to zero it to prevent data security leaks between 
 programs, sets the page table entry to read-write, and returns to 
redo the memory write. This goes on for 245 pages, taking much, 
much longer than the allocation time that is visible in many pro-
filing tools. The dominant page-fault time is invisible to normal 
observation tools.

The copy-on-write path itself is inefficient in several ways. First, 
it could do groups of 4–16 pages at once, saving some page-fault 
entry/exit overhead without spending excess time in the fault 
routine and without allocating too many real pages that might 
never be used. Second, the kernel code does not special-case the 
Linux ZERO_PAGE as source to avoid reading it, by something like:

        if (src == ZERO_PAGE) 
                memset(dst, 0, 4096);
        else
                memcpy(dst, src, 4096);

Doing so would avoid reading an extra 4 KB of zeros into the L1 
cache each time and would avoid half of the memory accesses. It 
would also speed up the instructions per cycle (IPC) of the CoW 
inner loop. 

A malloc call that reuses previously allocated heap space does 
not have the behavior seen here, but one that extends the heap 
does. Some programs aggressively extend and then shrink the 
heap repeatedly, wasting time not only in malloc/free but also in 
page faults. Allocating a buffer once and then explicitly reusing 
it in user code can be faster, for example. Observing these actual 
dynamics can lead to better algorithms.

Conclusion
Careful observation of Linux dynamic behavior reveals sur-
prising anomalies in its schedulers, its use of modern chip 
power-saving states, and its memory allocation overhead. Such 
observation can lead to better understanding of how the actual 
behavior differs from the pictures in our heads. This understand-
ing can in turn lead to better algorithms and better control of 
dynamic behavior. 

As an industry, we have poor nondistorting tools for observ-
ing the true dynamic behavior of complex software, including 
the operating system itself. KUtrace is an example of a better 
tool. I encourage operating-system designers to provide such 
extremely-low-overhead, and hence nondistorting, tools in 
future releases.
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A fter more than six years helping engineering organizations figure out 
how to modernize their technology, I’ve come to realize that Conway’s 
Law is more about how organizational structure creates incentives 

than where boxes and lines are drawn on an org chart. Misaligned incentives 
for managers and individual contributors carve their impact into the system 
design, influencing tool selection and complicating future maintenance. 

In 1968 Melvin Conway published a paper titled “How Do Committees Invent?” This paper, 
originally intended for Harvard Business Review but rejected for being too speculative, 
outlined the ways in which the structure and incentives of an organization influenced the 
software product it produced. It received little response but eventually made its way to the 
chair of the University of North Carolina at Chapel Hill’s computer science department, 
Fred Brooks. At the time, Brooks had been pondering a question from his exit interview 
at IBM: why is it so much harder to manage software projects than hardware projects? 
Conway’s insight linking the structure of software to the structure of the committees that 
invented them seemed significant enough for Brooks to repackage the thesis as “Conway’s 
Law” when he published his guide on effectively managing software teams—The Mythical 
Man-Month—in 1975.

Yet this was not the only useful observation in Conway’s paper. As it has subsequently been 
referenced by hundreds of computer science texts since Brooks’s adoption of it as a universal 
truth, the more nuanced observations that supported Conway’s argument have largely been 
omitted from the conversation. Conway’s Law has become a voodoo curse, something that 
people believe only in retrospect. Few engineers attribute their architectural success to the 
structure of their organization, but when a product is malformed the explanation of Conway’s 
Law is easily accepted.

Conway’s original paper outlined not just how organizational structure influenced tech-
nology but also how human factors contributed to its evolution. Conway felt organizational 
structure influenced architecture because organizational structure influenced incentives. 
How individual contributors get ahead in a particular organization determined which tech-
nical choices were appealing to them. 

Conway’s observations are more important in maintaining existing systems than they are 
in building new systems. Organizations and products both change, but they do not always 
change at the same pace. Figuring out whether to change the organization or change the 
design of the technology is just another scaling challenge.

Individual Incentives
How do software engineers get ahead? What does an engineer on one level need to accomplish 
for the organization in order to be promoted to another level? Such questions are usually dele-
gated to the world of engineering managers and not incorporated in technical decisions. And 
yet the answers absolutely have technical impacts.
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Most of us have encountered this in the wild: a service, a library, 
or a piece of a system that is inexplicably different from the rest 
of the applications it connects to. Sometimes this is an older com-
ponent of the system reimplemented using a different set of tools. 
Sometimes this is a new feature. It’s always technology that was 
trendy at the time the code was introduced.

When the organization has no clear career pathway for  engineers, 
software engineers grow their careers by building their reputa-
tion externally. This means getting drawn into the race of being 
one of the first to prove the production scale benefits of a new 
paradigm, language, or technical product. While it’s good for the 
engineering team to experiment with different approaches as 
they iterate, introducing new tools and databases, and supporting 
new languages and infrastructures, increases the complexity of 
maintaining the system over time.

One organization I worked for had an entire stable of custom-
built solutions for things like caching, routing, and message 
handling. Senior management hated this but felt their com-
plaints—even their instructions that it stop—did little to course 
correct. Culturally, the engineering organization was flat, with 
teams formed on an ad hoc basis. Opportunities to work on 
interesting technical challenges were awarded based on personal 
relationships, so the organization’s regular hack days became 
critical networking events. Engineering wanted to build difficult 
and complex solutions in order to advertise their skills to the lead 
engineers who were assembling teams.

Stern lectures about the importance of choosing the right tech-
nology for the job did not stop this behavior. It stopped when the 
organization hired engineering managers who developed a career 
ladder. By defining what the expectations were for every experi-
ence level of engineering and by hiring managers who would 
coach and advocate for their engineers, engineers could earn 
promotions and opportunities without the need to show off.

Organizations end up with patchwork solutions because the tech 
community rewards explorers. Being among the first with tales 
of documenting, experimenting with, or destroying a piece of 
technology builds an individual’s prestige. Pushing the boundar-
ies of performance by adopting something new and innovative 
contributes even more so to one’s reputation.

Software engineers are incentivized to forego tried-and-true 
approaches in favor of new frontiers. Left to their own devices, 
software engineers will proliferate tools, ignoring feature over-
laps for the sake of that one thing tool X does better than tool Y 
that is only relevant in that specific situation.

Well-integrated, high-functioning software that is easy to 
under stand usually blends in. Simple solutions do not do much 
to enhance personal brand. They are rarely worth talking about. 
Therefore, when an organization provides no pathway to promo-

tion for software engineers, the engineers are incentivized to 
make technical decisions that emphasize their individual con-
tribution over smoothly integrating into an existing system.

Typically this manifests itself in one of three different patterns: 

1. Creating frameworks, tooling, and other abstraction layers in 
order to make code that is unlikely to have more than one use 
case theoretically “reusable.”

2. Breaking off functions into new services, particularly  
middleware.

3. Introducing new languages or tools in order to optimize perfor-
mance for the sake of optimizing performance (in other words, 
without any need to improve an SLO or existing benchmark).

Essentially, engineers are motivated to create named things. If 
something can be named it can have a creator. If the named thing 
turns out to be popular, then the engineer’s prestige is increased 
and her career will advance.

This is not to say that good software engineers should never 
create a new service, or introduce a new tool, or try out a new 
 language on a production system. There just needs to be a 
 compelling reason why these actions benefit the system versus 
benefit the prospects of the individual engineer. 

Most of the systems I work on rescuing are not badly built. They 
are badly maintained. Technical decisions that highlight indi-
viduals’ unique contributions are not always comprehensible to 
the rest of the team. For example, switching from language X to 
 language Z may in fact boost memory performance significantly, 
but if no one else on the team understands the new language well 
enough to continue developing the code, those gains will be whit-
tled away over time by technical debt that no one knows how to fix.

The folly of engineering culture is that we are often ashamed of 
signing our organization up for a future rewrite by picking the 
right architecture for right now, but we have no misgivings about 
producing systems that are difficult for others to understand and 
therefore impossible to maintain. This was a constant problem 
for software engineers answering the call to public service from 
organizations like United States Digital Service and 18F. When 
modernizing a critical government system, when should the 
team build it using common private sector tools and train the 
government owners on said tools, and when should the solution 
be built with the tools the government worker already knows? 
Wasn’t the newest, greatest web application stack always the 
best option? Conway argued against aspiring for a universally 
correct architecture. He wrote in 1968, “It is an article of faith 
among experienced system designers that given any system 
design, someone someday will find a better one to do the same 
job. In other words, it is misleading and incorrect to speak of the 
design for a specific job, unless this is understood in the context 
of space, time, knowledge, and technology.”
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Manager Incentives
An engineering manager is a strange creature in the technical 
organization. How should we judge a good one from a bad one? 
Unfortunately, far too often managers advance in their careers 
by managing more people. And if the organization isn’t properly 
controlling for that, then system design will be overcomplicated 
by the need to broadcast importance. Or as Conway put it: “The 
greatest single common factor behind many poorly designed 
systems now in existence has been the availability of a design 
organization in need of work.”

Opportunities to go from an engineering manager and senior 
engineering manager come up from time to time as the organi-
zation grows and changes. It’s the difference between handling 
one team and handling many. Managers leave, new teams form, 
existing teams grow past their ideal size. A good manager could 
easily earn those opportunities in the normal course of business. 
Going from senior manager to director, though, is more difficult. 
Going from director to vice president or higher even more so. It 
takes a long time for an organization to reach that level of growth 
organically.

Organizations that are unprepared to grow talent end up with 
managers who are incentivized to subdivide their teams into 
more specialized units before there is either enough people or 
enough work to maintain such a unit. The manager gets to check 
off career-building experiences of running multiple teams, hir-
ing more engineers, and taking on more ambitious projects while 
the needs of the overall architecture are ignored.

Scaling an organization before it needs to be scaled has very 
similar consequences to scaling technology too early. It restricts 
your future technical choices. Deciding to skip the monolith 
phase of development and “build it right the first time” with 
microservices means the organization must successfully 

anticipate a number of future requirements and determine how 
code should be best abstracted to create shared services based 
on those predictions. Rarely if ever are all of those predictions 
right, but once a shared service is deployed, changing it is often 
difficult. 

In the same way, a manager who subdivides a team before there is 
need to do so is making a prediction about future needs that may 
or may not come true. In my last role, our director of engineering 
decided the new platform we were building needed a dedicated 
team to manage data storage. Predictions about future scaling 
challenges supported her conclusions, but in order to get the head 
count for this new team, she had to cut it from teams that were 
working on the organization’s existing scaling challenges. Sud-
denly, new abstractions around data storage that we didn’t need 
yet were being developed while systems that affected our SLAs 
had maintenance and updates deferred.

Carrying existing initiatives to completion was not as attractive 
an accomplishment as breaking new ground. But the problem 
with designing team structure around the desired future state of 
the technology is that if it doesn’t come true the team is thrown 
into the chaos of a reorganization. Aversions to reorganizations 
alone often incentivize people to build to their organizational 
structure.

Conclusion
Both individual contributors and managers make decisions with 
their future careers in mind. Those decisions create constraints 
on possible design choices that drive the organization to design 
systems that ref lect the structure of the organization itself. 
Those wishing to benefit from the forces of Conway’s Law would 
do well to consider how people within the engineering organiza-
tion are incentivized before asking them to design a system.
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Service level objectives, or SLOs, are quickly becoming the latest indus-
try buzzword. Engineers want them, leadership demands them, and 
job postings increasingly ask for experience with them. However, SLOs 

are meaningless unless they are understood as more than just the latest 
industry jargon. There are true, real-world benefits to adopting an SLO-based 
approach to reliability. I will explain why they are important and how you can 
use them most effectively to have discussions that lead to better decisions.

Using service level objectives to measure the reliability of services is getting more attention 
than ever before. This is partly due to the success of the first two Google-authored site reli-
ability engineering (SRE) books. But it also seems that many people actually resonate with the 
approach and find it an intuitive concept to follow. While it is possible that many organizations 
are forcing their teams to adopt SLOs via mandate just to ensure they’re on board with the lat-
est buzzwords, it also seems likely that many people are finding true value in the approach.

I found only one study tracking the adoption rates of SLO-based approaches in this book: 
https://www.oreilly.com/library/view/slo-adoption-and/9781492075370/. Instead, I’ll have 
to rely on the general anecdotal evidence I have in terms of how many companies are rolling 
out products to help people measure SLOs, how many conference talks are focused on them, 
and how often I personally find myself engaged with people who want to learn more about the 
process.

While SLO-based approaches to reliability are certainly useful to many people, I also cannot 
ignore the fact that the very phrase has become a buzzword that is starting to lose meaning. 
It’s not uncommon for words, phrases, and concepts that gain traction and desirability to 
have their original meanings forgotten. Service level objectives are no different. They provide 
many benefits, but some of their most important aims have unfortunately become obfuscated 
by more readily available ones.

SLO-based approaches to reliability give you many benefits, and there are many reasons why 
organizations may choose to adopt them. Unfortunately, for many they have just become “a 
thing you do.” This is not to say that every organization looking to adopt such an approach has 
overlooked the benefits of SLOs, but few manage to use them to their full potential.

Let’s explore some of the ways you can use the information that service level objectives pro-
vide to make better decisions through data. Making better decisions is at the very heart of the 
SLO approach, and that’s often the part that is overlooked.

But first, let’s outline how this approach works in a little more detail.

SLO Components
There are three primary components to an SLO-based approach. The first is service level 
indicators, or SLIs. A good SLI is a measurement that tells you how your service is performing 
from the perspective of your users. In this case, when I say users, they could be anything from 
paying customers to coworkers to other services that depend on yours—there doesn’t strictly 
have to be a human attached to the other end. In this article, I’ll mostly be talking about 
human users who interact with web services since they are intuitively accessible concepts 
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that almost all of us interact with on a daily basis; however, the 
concepts and approaches apply to any service and any type of 
user, even if those users are just other computer systems. 

After SLIs, you have service level objectives, which are targets for 
how you want your SLI to perform. While a service level indica-
tor may tell you how quickly a web page loads, an SLO allows 
you to do things like set thresholds and target percentages. An 
example SLI might be “Web pages are fully rendered in the user’s 
browser within 2500 ms.” Building off of that, an SLO might 
read, “The 95th percentile of web page render times will com-
plete within 2500 ms 99.9% of the time.” Service level objectives 
allow you to set reasonable targets. Nothing is ever perfect, and 
100% is impossible for just about everything, but by using SLOs, 
you can ensure that you’re striving for a reasonable target and not 
an unreachable one. 

Finally, you have error budgets. An error budget is a way of 
keeping track of how an SLO has performed over time. If you 
acknowledge that only 99.9% of the 95th percentile of your web 
page render times have to complete within 2500 ms, you are also 
acknowledging that 0.1% of them don’t have to. Error budgets give 
you a way to do the math necessary to determine whether your 
adherence to your SLO target is suitable for your users, not just in 
the moment but over the last day, week, month, quarter, or year.

SLIs, SLOs, and error budgets are all data—data that 
allows you to ask important questions that can drive better 
decision-making.
 3 Is our SLI adequately measuring what our users need and ex-
pect? If not, we need to figure out a new way to measure this.
 3 Is our SLO target meaningfully capturing the failure rates our 
users can tolerate? If not, we need to pick a new target or new 
thresholds.
 3 What is our error budget status telling us about how our  users 
have actually experienced our service over time? If we’ve ex-
ceeded the error budget, perhaps we drop feature work and 
focus on reliability instead.

Decisions about User Experience
A meaningful SLI is one that captures the user experience as 
closely as possible. Following our simple example from above, it  
is pretty intuitive to think about the fact that the users of a web 
service need their pages to load—and to load in an amount of time 
that won’t annoy them. But there is so much more to the user 
experience than just the concepts of availability and latency. A 
web service is not doing its job just by being able to render pages 
in a timely manner. If you’re only measuring things like avail-
ability and latency, the only data SLO-based approaches can 
provide you are ones that focus on improving your availability 
and latency.

A web service is often much more than just serving data to 
people. Imagine that your web service is a retail site. In such a 

case, you suddenly have many other user journeys to consider.  
If you want people to be able to purchase items from you, they 
need to be able to do exactly that and not just have web pages 
display in their browser.

For example, a standard retail website often has some sort 
of shopping cart feature—one where a user can add a potential 
purchase to a list of items they might want to check out with later. 
This shopping cart feature has to do a lot of things in order to be 
reliable.

The first is that it needs to do what it is supposed to: if a user 
wants to add an item to their shopping cart, they should be able to 
do exactly that. Additionally, it needs to be persistent; a shopping 
cart isn’t much good if it only remains consistent with the wishes 
of a user for a short amount of time.

It also has to be accurate. There is no sense in allowing  customers 
to add to a list of items they might want to purchase if that list 
doesn’t represent the items they have actually chosen.

Finally, how the user interacts with the shopping cart has to 
work properly. If an item is added or removed, it should actually 
be added or removed. If the user expects an icon representing 
how many items they have in their cart to be updated when they 
add a new item, that icon should actually update in real-time.

These examples all represent different data points that mean-
ingful SLIs can give you—and these data points help you make 
decisions. If it’s simply the case that your site isn’t loading well or 
quickly enough, you might just need to introduce more resources. 
However, if the shopping cart isn’t working well, the problem 
could be anything from the JavaScript powering user interac-
tions to the service that talks to the database to the data-storage 
systems that are ultimately responsible for holding the ones and 
zeroes. By having the data that multiple meaningful SLIs pro-
vide you, you can make better decisions about what you should 
be measuring in the first place and what areas of your system 
require the most attention.

Decisions about Tolerable Failures
One of the most attractive aspects of measuring services with 
SLOs is that the entire discipline acknowledges the fact that 
nothing is ever perfect. All complex systems fail at some point  
in time, and because of this fact it is fruitless to aim for 100%. 
Additionally, it turns out that people already know and are okay 
with this—whether they’re consciously aware of it or not. 

For example, if you start streaming a video via a video-streaming 
service, you have a certain expectation for how long it should take 
for such a video to buffer before it begins playing in real time. 
However, if it takes much longer than normal to buffer every 
once in a while, you likely won’t care too much. Most people won’t 
abandon a streaming video platform if one in every 100 videos 
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takes 10 seconds of buffering time instead of three seconds. 
Failure in the sense that the streaming platform had to buffer 
too long occasionally is just fine—it just can’t happen too often. 
If videos take 10 seconds to start every single time, people might 
become annoyed and look for other options. 

A good service level objective lies somewhere just beyond what 
you need for users of your service to be happy. If people are okay 
with one in every 100 streaming attempts buffering for longer 
than normal, you should set your SLO target at something like 
one in every 200 streaming attempts. Exactly where you set this 
target is up to the data you have available to you and the feed-
back you’re able to collect from your users. The important part is 
that your SLO should be more strict than the level at which users 
might decide to leave and use a different option. No matter how 
refined your SLO target is, you’re not always going to reach it, and 
you don’t want your business or organization to suffer if you don’t. 

Acknowledging failure and accounting for it are at the very base 
of how SLO-based approaches work. Understand that nothing is 
perfect, but use SLO data to help you decide how close to perfect 
you should attempt to be—or risk losing users.

Decisions about Work Focus
Once you have a meaningful SLI and a reasonable SLO target, 
you can produce an error budget. Error budgets are simply just 
another data point you can use to make decisions. They’re the 
most complicated part of the stack, but once you can find your-
self using error budgets to drive your decision-making, you’ll 
truly understand how the entire SLO-based approach works. 

Error budgets are the ultimate decision-making tool once you’ve 
established SLIs and SLOs. By measuring how you’ve performed 
over a time window, you can drive large-scale decisions that 
could impact anything from the focus of your team for a single 
sprint to the focus of an entire company for a quarter. 

For example, let’s say you have a reasonable measurement of how 
reliable one particular microservice has been. Using your error 
budget, you can now also see that you haven’t been reliable about 
10% of the time over the last month. At this point you can use this 
data to inform a few different discussions that can fuel decisions. 

One example is that you simply haven’t been performing well 
enough, and that you believe that your SLI measurement and 
your SLO target are well-defined. If this is the case, you might 
choose to pivot one or more members of your team to focusing 
on reliability work instead of feature work. You could do this for 
anything, like the length of an on-call shift to a full sprint or even 
until you’ve recovered all of your budget. There are no hard-and-
fast rules at play here. Error budgets, like everything else, are just 
data to help you decide what to do.

Another example is that you’ve completely depleted your error 
budget but have reason to think this exact situation is unlikely to 

arise again. An example of this kind of event could be anything 
like the disruption of power at a datacenter or just a historically 
bad bug pushed to production. Just because you’ve depleted your 
error budget over time doesn’t mean you have to take action. 
Sometimes it absolutely makes sense to do so: perhaps you need to 
introduce a better testing infrastructure to your deployment pipe-
line, or maybe you need to install additional circuits or distribute 
your footprint geographically to avoid further power disruptions.

The point is that it’s totally okay to look at how you’ve performed 
in terms of reliability over time and say, “This time we can just 
continue our current work focus.” Error-budget statuses are just 
another data set you should use to make decisions—they shouldn’t 
be rules that need to be followed every single time you examine 
your status. It doesn’t matter if you’re looking at the error budget 
status for a single small microservice that sees very little traffic 
or your entire service as viewed from your paying customers. Use 
error budgets as data to help you think about prioritization. 

For a larger service, such as an entire customer-facing web 
service, burning through all of your error budget probably war-
rants some stricter decision-making. Even if it was due to your 
ISP that your users experienced an hour of outage last month, it 
still probably doesn’t make sense for you to do things like perform 
potentially disruptive chaos engineering or experimentation in 
your production environment until a significant amount of time 
has passed. Be reasonable about how you make decisions using 
your error budgets, and certainly feel free to ignore their status 
from time to time—but never do so at the expense of your users’ 
experience.

Conclusion
There are many benefits to SLO-based approaches that I don’t 
have room to cover here. They can help you better communicate 
to other teams about how they should think about the reliability 
of their own services. They can be excellent tools in reporting to 
management and product teams. They can also be used for many 
things outside of computer services, such as examining whether 
your team’s ticket load is too high or whether people aren’t taking 
enough vacation time. An SLO-based approach is simply about 
thinking about people and users first, acknowledging nothing 
is perfect, and using some math to help you aim for reasonable 
targets instead.

But one of the most important parts of this approach is that 
it allows you to make better data-driven decisions. Don’t just 
implement SLOs because they’re popular and a buzzword, or 
because you heard a conference talk about them, or because 
upper-management has decided that every team must have one.

Implement SLOs because they give you data you can use to have 
better discussions and make better decisions—decisions that can 
help make both your team and your users happier.



www.usenix.org  S U M M ER 2020  VO L .  45 ,  N O.  2 33

SRE

ML for Operations
Pitfalls, Dead Ends, and Hope

S T E V E N  R O S S  A N D  T O D D  U N D E R W O O D

Machine learning (ML) is often proposed as the solution to auto-
mate this unpleasant work. Many believe that ML will provide 
near-magical solutions to these problems. This article is for 

developers and systems engineers with production responsibilities who are 
lured by the siren song of magical operations that ML seems to sing. Assum-
ing no prior detailed expertise in ML, we provide an overview of how ML 
works and doesn’t, production considerations with using it, and an assess-
ment of considerations for using ML to solve various operations problems.

Even in an age of cloud services, maintaining applications in production is full of hard and 
tedious work. This is unrewarding labor, or toil, that we collectively would like to automate. 
The worst of this toil is manual, repetitive, tactical, devoid of enduring value, and scales lin-
early as a service grows. Think of work such as manually building/testing/deploying binaries, 
configuring memory limits, and responding to false-positive pages. This toil takes time from 
activities that are more interesting and produce more enduring value, but it exists because it 
takes just enough human judgment that it is difficult to find simple, workable heuristics to 
replace those humans.

We will list a number of ideas that appear plausible but, in fact, are not workable.

What Is ML?
Machine learning is the study of algorithms that learn from data. More specifically, ML 
is the study of algorithms that enable computer systems to solve some specific problem or 
perform some task by learning from known examples of data. Using ML requires training a 
model on data where each element in the data has variables of interest (features) specified 
for it. This training creates a model that can later be used to make inferences about new data. 
The generated model is a mathematical function, which determines the predicted value(s) 
(“dependent variable(s)”) based on some input values (“independent variables”). How well the 
model’s inferences fit the historical data is the objective function, generally a function of the 
difference between predictions and correct inferences for supervised models. In an iterative 
algorithm, the model parameters are adjusted incrementally on every iteration such that they 
(hopefully) decrease the objective function.

Main Types of ML
In order to understand how we’ll apply ML, it is useful to understand the main types of ML 
and how they are generally used. Here are broad categories:

Supervised Learning
A supervised learning system is presented with example inputs and their desired outputs 
labeled by someone or a piece of software that knows the correct answer. The goal is to learn 
a mapping from inputs to outputs that also works well on new inputs. Supervised learning is 
the most popular form of ML in production. It generally works well if your data consist of a 
large volume (millions to trillions) of correctly labeled training examples. It can be  effective 
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with many fewer examples, depending on the specific applica-
tion, but it most commonly does well with lots of input data.

Think of identifying fruit in an image. Given a set of pictures 
that either contain apples or oranges, humans do an amazing job 
of picking out the right label (“apple” or “orange”) for the right 
object. But doing this without ML is actually quite challenging 
because the heuristics are not at all easy. Color won’t work since 
some apples are green and some oranges are green. Shape won’t 
work because it’s hard to project at various angles, and some 
apples are exceedingly round. We could try to figure out the skin/
texture but some oranges are smooth and some apples are bumpy.

With ML we simply train a model on a few hundred (or a few 
thousand) pictures labeled “orange” or “apple.” The model builds 
up a set of combinations of features that predict whether the 
picture has an apple or an orange in it.

Unsupervised Learning
The goal of unsupervised learning is to cluster pieces of data by 
some degree of “similarity” without making any particular opin-
ion about what they are, i.e., what label applies to each cluster. So 
unsupervised learning draws inferences without labels, such as 
classifying patterns in the data. 

One easy-to-understand use case is fraud detection. Unsuper-
vised learning on a set of transactions can identify small clusters 
of outliers, where some combination of features (card-not- present, 
account creation time, amount, merchant, expense category, 
location, time of day) is unusual in some way. 

Unsupervised learning is particularly useful as part of a broader 
strategy of ML, as we’ll see below. In particular, in the example 
above, clustering outlier transactions isn’t useful unless we do 
something with that information. 

Semi-Supervised Learning
The goal of semi-supervised learning is to discover characteris-
tics of a data set when only a subset of the data is labeled. Human 
raters are generally very expensive and slow, so semi-supervised 
learning tries to use a hybrid of human-labeled data and auto-
matically “guessed” labels based on those human labels. Heuris-
tics are used to generate assumed labels for the data that isn’t 
labeled, based on its relationship to the data that is labeled.

Semi-supervised learning is often used in conjunction with 
unsupervised learning and supervised learning to generate 
 better results from less effort. 

Reinforcement Learning
In reinforcement learning (RL), software is configured to take 
actions in an environment or a simulation of an environment in 
order to accomplish some goal or cumulative set of values. The 
software is often competing with another system (which may 

be a prior copy of itself or might be a human) without externally 
provided labeled training data, following the rules. 

Google’s DeepMind division is well known for using RL to solve 
various real-world problems. Famously, this has included playing 
(and winning) against humans in the strategy game Go [1] as 
well as the video game StarCraft [2]. But it has also included such 
practical and important work as optimizing datacenter power 
utilization [3].

ML for Operations: Why Is It Hard? 
Given that ML facilitates clustering, categorization, and actions 
on data, it is enormously appealing as a system to automate op er -
ational tasks. ML offers the promise of replacing the human 
judgment still used in decisions, such as whether a particular new 
deployment works well enough to continue the roll-out, and whether 
a given alert is a false positive or foreshadowing a real out age. Sev-
eral factors make this more difficult than one might think.

ML produces models that encode information by interpreting 
features in a fashion that is often difficult to explain and debug 
(especially with deep neural networks, a powerful ML tech-
nique). Errors in the training data, bugs in the ML algorithm 
implementation, or mismatches between the encoding of data 
between training and inference will often cause serious errors in 
the resulting predictions that are hard to debug. Below we sum-
marize some common issues.

ML Makes Errors
ML is probabilistic in nature, so it will not always be right. It 
can classify cats as dogs or even blueberry muffins [4] as dogs a 
small fraction of the time, especially if the data being analyzed 
is significantly different from any specific training example. 
Of course, humans make errors as well, but we are often better 
able to predict, tolerate, and understand the types of errors that 
humans make. Systems need to be designed so such occasional 
gross errors will be tolerable, which sometimes requires sanity 
tests on the result (especially for numerical predictions).

Large Problem Spaces Require Lots of Training Data
The more possible combinations of feature values that a model 
needs to deal with, the more training data it requires to be accu-
rate. In other words, where many factors could contribute to a 
particular labeling or clustering decision, more data is required. 
But in large feature spaces, there may be a large difference 
between examples being analyzed and the closest training data, 
leading to error caused by trying to generalize over a large space. 
This is one of the most serious issues with using ML in opera-
tions, as it is often hard to find sufficient correctly labeled train-
ing data, and there are often many relevant variables/features. 

Specifically, the problem space of production engineering or 
operations is much messier than the space of fruit  categorization. 
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In practice, it turns out to be quite difficult to get experts to 
categorize outages, SLO violations, and causes in a mutually con-
sistent manner. Getting good labels is going to be quite difficult.

Training Data Is Biased Relative to Inference Demand
The data you use to train your model may be too different from 
the data you’re trying to cluster or categorize. If your training 
data only cover a particular subset of all things the model might 
need to infer over, all the other slices it wasn’t trained on will see 
higher errors because of their divergence from the training data. 
Additionally, if the statistical distribution of classifications in 
the training data differs from the statistical distribution in the 
real world, the model will make skewed predictions, thinking 
that things that are more common in the training set are more 
common in the real world than they really are. For example, if 
the training data had 10 million dogs and 1000 cats, and dogs and 
cats are equally likely in the inference examples, it will tend to 
infer the presence of a dog more often than it should.

Lack of Explainability
Many of the best performing ML systems make judgments that 
are opaque to their users. In other words, it is often difficult or 
impossible to know why, in human intelligible terms, an ML 
model made a particular decision with respect to an example.  
In some problem domains, this is absolutely not a difficulty. For 
example, if you have a large number of false positive alerts for a 
production system and you’re simply trying to reduce that, it’s not 
generally a concern to know that an ML model will use unex-
pected combinations of features to decide which alerts are real. 
For this specific application, as long as the model is accurate, it 
is useful.  But models with high accuracy due purely to correla-
tion rather than causation do not support decision making. In 
other situations aspects of provable fairness and lack of bias 
are critical. Finally, sometimes customers or users are simply 
uncomfortable with systems that make decisions that cannot  
be explained to them.

Potential Applications of ML to Operations
Given all of these challenges, it will be useful to examine several 
potential applications of ML to operations problems and consider 
which of these is feasible or even possible.

Monitoring
For complex systems, the first problem of production mainte-
nance is deciding which of many thousands of variables to moni-
tor. Candidates might include RAM use by process, latency for 
particular operations, request rate from end users, timestamp of 
most recent build, storage usage by customer, number, and type 
of connections to other microservices, and so on. The possibili-
ties of exactly what to monitor seem unbounded. 

Systems and software engineering sometimes suggest using ML 
to identify the most relevant variables to monitor. The objective 
would be to correlate particular data series with the kinds of 
events that we are most interested in predicting—for example, 
outages, slowness, capacity shortfalls, or other problems. 

In order to understand why this is a difficult problem, let us 
consider how to build an ML model to solve it. In order to use ML 
to create a dashboard that highlights the best metrics to see any 
current problems with your system, the best approach will be to 
treat the problem as a supervised multiclass prediction problem. 
To address that problem we will need: 

 3 A class to predict for every metric of interest
 3 Labels for all classes that were helpful for millions of production 
events of concern
 3 Training and periodic retraining of your model as you fix bugs 
and create new ones with failure types shifting over time
 3 Periodic (potentially on page load) inferring with the model over 
which metrics should be shown to the user.

There are other complexities, but the biggest issue here is that 
you need millions of labeled training examples of production 
events of concern. Without millions of properly categorized 
examples, simple heuristics, for example that operators select  
the metrics that appear to be the most relevant, are likely to be 
as or more effective and at a fraction of the cost to develop and 
maintain. Simple heuristics also have several advantages over 
ML, as previously mentioned. We hope you don’t have millions  
of serious problematic events to your production infrastruc-
ture to train over. However, if your infrastructure is of a scale 
and complexity that you think that you will, eventually, have 
an appropriate amount of data for this kind of application, you 
should begin accumulating and structuring that data now.

Alerting
Most production systems have some kind of manually configured 
but automated alerting system. The objective of these systems 
is to alert a human if and only if there is something wrong with 
the system that cannot be automatically mitigated by the system 
itself. 

The general idea of an ML-centric approach to alerting is that 
once you have determined which time series of data are worth 
monitoring (see above) it might be possible to automatically and 
semi-continuously correlate values and combinations of these. 
To accomplish this we can start with every alert that we have or 
could easily have and create a class for each. 

We then need to create positive and negative labels. Positive 
labels are applied to the alerts that were both useful and predic-
tive of some serious problem in the system that actually required 
human intervention. Negative labels are the opposite: either not 



36   S U M M ER 2020  VO L .  45 ,  N O.  2  www.usenix.org

SRE
ML for Operations: Pitfalls, Dead Ends, and Hope

useful or not predictive of required human intervention. We need 
to label many events, those where something bad was happening 
and those where everything was fine, and continuously add new 
training examples. To scope the effort, we estimate that we will 
need at least tens of thousands of positive examples and  probably 
even more (millions, most likely) of negative examples in order 
to have a pure-ML solution that is able to differentiate real 
problems from noise more effectively than a simple heuristic. 
We are not discussing potential hybrid heuristic + ML solutions 
here since, in many practical setups, this will lead to increased 
complexity from integrating two systems that need to be kept in 
sync for the intended outcome, which is unlikely to be worth the 
extra effort.

Even if we had all these labels (and they’re correct) and a good 
model, which we know to be difficult from the monitoring case 
above, the on-call will still need to know where to look for the 
problem. While we may be able to correlate anomalous metrics 
with a confident alerting signal, covering the majority of alert 
explanations this way would not be enough. For as long as the 
fraction of “unexplainable” alerts is perceived by alert recipients 
as high, the explainability problem makes adoption cumbersome 
at best. This is the problem of explainability.

Canarying/Validation
Pushing new software to production frequently or continuously 
as soon as it is effectively tested poses risks that new software 
will sometimes be broken in ways the tests won’t catch. The stan-
dard mitigation for this is to use a canary process that gradually 
rolls out to production combined with monitoring for problems 
and a rapid rollback if problems are detected. The problem is 
that monitoring is incomplete, so occasionally bad pushes slip 
through the canary process unnoticed and cause serious issues. 

For this reason, production engineers often suggest using ML to 
automatically detect bad pushes and alert and/or roll them back. 

This is a specialized version of the alerting problem; you need 
positive labels and negative labels, labeling successful pushes 
with positive labels and broken pushes with negative labels. 
Much like with alerting, you will probably need thousands of 
examples of bad pushes and hundreds of thousands of examples 
of good pushes to differentiate real problems from noise better 
than a simple heuristic. The main factor that makes canarying 
a little less hard than general alerting is that you have a strong 
signal of a high-risk event when your canary starts (as opposed 
to continuous monitoring for general alerting) and an obvious 
mitigation step (roll back), but you still need a large number of 
correctly labeled examples to do better than heuristics. Note 
that if you have a bad push that you didn’t notice in your labeling, 
because it was rolled back too fast or got blocked by something 
else and improperly labeled as a good push, it will mess up your 
data and confuse your ML model. 

False-positive canary failures will halt your release (which is 
usually a preferable outcome to an outage). To maintain release 
velocity, these need to be kept to a minimum, but that will lower 
the sensitivity of your model.

Root Cause Analysis
Outages are difficult to troubleshoot because there are a huge 
number of possible root causes. Experienced engineers tend to be 
much faster than inexperienced engineers, showing that there is 
some knowledge that can be learned. 

Production engineers would like to use ML to identify the most 
likely causes and surface information about them in an ordered 
fashion to the people debugging problems so that they can con-
centrate on what is likely. This would require classifying the set 
of most likely causes, and then labeling and training over enough 
data to rank this list of causes appropriately. 

Because you need a fixed list of classes to train over for this 
problem, if a new type of problem shows up your model won’t be 
able to predict it until it has trained over enough new examples. 
If you have a case that isn’t on your list, then people may spend 
excessive time looking through the examples recommended by 
the model even though they’re irrelevant. To minimize this risk, 
you might want to add lots of classes to handle every different 
possibility you can think of, but this makes the training problem 
harder as you need more properly labeled training data for every 
class of problem you want the model to be able to predict. To be 
able to differentiate between a list of a hundred causes, you’ll 
probably need tens of thousands of properly labeled training 
examples. It will be difficult to label these examples with the cor-
rect root cause(s) without a huge number of incidents, and there 
is a strong risk that some of the manually determined root cause 
labels will be incorrect due to the complexity, making the model 
inaccurate. An additional complexity is that events  (potential 
causes) sequenced in one order may be harmless (capacity 
taken down for updates after load has dropped), but sequenced 
in another order may cause a serious outage (capacity taken 
down for updates during peak load), and the importance of this 
sequencing may confuse the ML model. 

A manually assembled dashboard with a list of the top N most 
common root causes, how to determine them (some of which 
might be automated heuristics), and related monitoring will 
probably be more helpful than an ML model for root cause analy-
sis in most production systems today. 

Path Forward
We do not recommend that most organizations use machine 
learning to manage production operations at this point in the 
maturity of software services and ML itself. Most systems are 
not large enough and would do better to focus their engineering 
effort and compute resources on more straightforward means of 
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improving production operations or expanding the business by 
improving the product itself. Unless all of your monitoring is well 
curated, alerting is carefully tuned, new code releases thoroughly 
tested, and rollouts carefully and correctly canaried, there is no 
need to expend the effort on ML. 

However, in the future as production deployments scale, data 
collection becomes easier, and ML pipelines are increasingly 
automated, ML will definitely be useful to a larger fraction of 
system operators. Here are some ways to get ready: 

1. Collect your data. Figure out what data you think you might use 
to run production infrastructure and collect it.

2. Curate those data. Make sure that the data are part of a system 
that separates and, where possible, labels the data.

3. Begin to experiment with ML. Identify models that might make 
sense and, with the full understanding that they will not reach 
production any time soon, begin the process of prototyping.

Conclusion
While ML is promising for many applications, it is difficult to 
apply to operations today because it makes errors, it requires a 
large amount of high-quality training data that is hard to obtain 
and label correctly, and it’s hard to explain the reasons behind its 
decisions. We’ve identified some areas where people commonly 
think ML can help in operations and what makes it difficult to 
use in those applications. We recommend using standard tools 
to improve operations first before moving forward with ML, and 
we suggest collecting and curating your training data as the first 
step to take before using ML in operations.
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This column will be published in Summer 2020, but I’m writing it in 
mid-March. In the past week, in a response to the spread of the new 
SARS-CoV-2 virus, many nations have closed down schools and 

imposed restrictions on travel and events. Several major technology com-
panies are encouraging most employees to work from home. Stock markets 
are falling more quickly than in the first stages of the 2008 crash. Nothing  
is normal.

My social media feeds clearly show that SARS-CoV-2 is a source of fascination for systems 
engineers and SREs (site reliability engineers) because it has some characteristics of the 
kinds of systems problems we deal with in our work. The pandemic response is currently 
centered around preventing the spread of the infection, effectively an attempt to throttle 
admissions to intensive care in order to avoid saturating scarce medical resources. It involves 
gathering metrics (which are lagging and sparse due to shortage of test kits) to make analyses 
and projections. The mathematical analysis of the spread of the illness is very similar to the 
characteristics of information propagation in a dissemination gossip protocol [1], which will 
be familiar to anyone who has worked with Cassandra, Riak, Consul, or even BitTorrent—the 
major difference being that instead of modifying software parameters to adjust the propaga-
tion, we all now need to reduce our social interactions, and perhaps to partition our systems 
with travel restrictions.

I am not an epidemiologist, and I can’t predict how this situation will unfold between now and 
when you read these words. Will we have endured on an international scale the kind of health 
crisis that northern Italy is experiencing in March, or will most nations succeed in averting 
the worst consequences of the pandemic, as South Korea seems to have done? If we do suc-
ceed, it’s possible that many will consider the robust response to the outbreak to be an over-
reaction, even in light of the evidence from northern Italy and Wuhan that failure to control 
outbreaks leads to major public health problems.

The Job Is to Get Ahead of Problems
There is a phenomenon in operations, which I’ve heard called the “paradox of preparation”—
an organization that is effectively managing risks and preventing problems can fail to be 
 recognized as such. Bad outcomes aren’t actually occurring, because of this preventative 
work, so decision-makers may come to believe that the risks are significantly lower than  
they actually are. Therefore, leaders may conclude that the organization that is preventing  
the negative events from occurring isn’t an efficient use of resources anymore.

This appears to have been the fate of the White House’s National Security Council Direct-
orate for Global Health Security and Biodefense, which was set up in 2014 in response to the 
Ebola outbreaks in Western Africa, then shut down abruptly in 2018. It was tasked with moni-
toring emerging disease risks and coordinating responses and preparation. According to its 
former head, Beth Cameron, “The job of a White House pandemics office would have been to 
get ahead: to accelerate the response, empower experts, anticipate failures, and act quickly 
and transparently to solve problems” [2]. That is a function very much akin to what a good 
SRE or resilience engineering team can do within a software engineering organization.
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In 2019, before the SARS-CoV-2 virus appeared, the Center for 
Strategic and International Studies think tank drew attention to 
the closure of the Directorate. 

When health crises strike—measles, MERS, Zika, 
dengue, Ebola, pandemic flu—and the American 
people grow alarmed, the U.S. government springs 
into action. But all too often, when the crisis fades 
and fear subsides, urgency morphs into complacency. 
Investments dry up, attention shifts, and a false 
sense of security takes hold. The CSIS Commission 
on Strengthening America’s Health Security urges 
the U.S. government to replace the cycle of crisis and 
complacency that has long plagued health security 
preparedness with a doctrine of continuous pre-
vention, protection, and resilience. [3]

This cycle of crisis and complacency is one we see in other kinds 
of organizations, including software companies—a view that 
reliability is only worth investing in the wake of problems, and at 
other times it may be deprioritized and destaffed. The last edition 
of this column discussed Professor Nancy Leveson’s model of 
operations as a sociotechnical system dedicated to establishing 
controls over production systems in order to keep them within 
predefined safety constraints [4]. The crisis/complacency cycle 
makes it impossible to build a strong sociotechnical system 
that proactively manages change and emerging risks, because it 
means that when investment into reliability happens you have 
to build expertise, standards, processes, and organizations from 
scratch while already in crisis mode.

Against the Advice of Their Own Experts
This crisis/complacency cycle is not new, nor is it unique to 
either software or to pandemic prevention. The Boeing 737 Max 
has been in the news for most of the past year following two fatal 
crashes which were the consequence of design flaws in the new 
aircraft type. The entire 737 Max fleet was grounded in response 
to the accidents.

The airplane’s design was certified by the US Federal Aviation 
Administration (FAA), a body created in 1958 to manage all 
aspects of safety in aviation. Air travel has become safer every 
decade since the FAA was set up, driven by improvements in 
technology and safety culture. Perhaps not coincidentally, the 
FAA has come under significant budgetary pressure in recent 
years. Partly as a result of those budgetary constraints and partly 
because of a shortage of relevant technical expertise, the FAA 
delegated much of the technical work of validating the design of 
the 737 Max aircraft against FAA standards to Boeing itself.

The report of the House Committee on Transportation and 
Infrastructure paints a clear picture of enormous pressure 
from Boeing’s management to get the aircraft to the market as 

quickly as possible, at the lowest feasible cost and without any 
need for existing 737 pilots to take further training— regardless 
of any safety concerns [5]. Budgets for testing were cut, and 
multiple suggestions by engineers to incorporate extra alerts and 
indicators were rejected. Though it isn’t in Boeing’s commercial 
interest to develop an unsafe aircraft, the company’s manage-
ment consistently made decisions that compromised safety, 
contrary to the advice of their own technical experts. That they 
did this against the backdrop of the safest period in the history of 
commercial flight strongly suggests the same cycle of crisis and 
complacency was at work in Boeing and the FAA that led to the 
shutdown of the White House’s pandemics office in 2018.

Disconnects between Management and Engineers
On January 28, 1986, the Space Shuttle Challenger exploded dur-
ing liftoff. The accident was triggered by the failure of an O-ring 
seal in unusually cold weather conditions. The disaster occurred 
after 24 successful space shuttle launches, and these successes 
helped to create complacency about safety at NASA. The incident 
has been studied extensively, most notably by Diane Vaughan, 
who coined the term “normalization of deviance” to describe the 
process by which previously unacceptable results and practices 
can gradually become the norm over time [6]. Despite that phe-
nomenon, the Rogers Commission Report on the disaster found 
that engineers had raised safety concerns over the design with 
management.

Richard Feynman, the noted physicist, was a member of the 
commission that investigated the Challenger accident. Feynman 
was particularly struck by the difference in perception of risk 
between the engineers who worked on the shuttle and NASA’s 
management. The engineers mostly believed that the shuttle had  
a risk of catastrophic failure between 1 in 50 and 1 in 200. NASA’s 
management claimed that the risk was 1 in 100,000. Feynman’s 
assessment was that the engineers’ estimate of the risk was far 
closer to the truth than management’s number, which seemed 
based largely on wishful thinking and misunderstandings [7].

This kind of disconnect seems also to have existed at Boeing in 
recent years. In 2001, Boeing’s executives moved from Seattle, 
where its engineers are located, to Chicago, and non-engineers 
moved into many executive roles.

[T]he ability [was lost] to comfortably interact with an 
engineer who in turn feels comfortable telling you their 
reservations, versus calling a manager [more than] 
1,500 miles away who you know has a reputation for 
wanting to take your pension away. It’s a very different 
dynamic. As a recipe for disempowering engineers in 
particular, you couldn’t come up with a better format. [8]
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“Captain Hindsight Suited Up”: Outcome Bias
Many of us in the software industry still remember the caution-
ary tale of Knight Capital, a financial firm that went bust in 2012 
as a result of a bug in their trading software. As Knight Capital 
was an SEC (Securities and Exchange Commission) regulated 
company, there was an investigation and a report, which recom-
mended that the company should have halted trading as soon as 
they realized there was something amiss [9].

On July 9, 2015, the New York Stock Exchange discovered a 
problem in their systems. They halted trading, just as the SEC 
said that Knight Capital ought to have done. However, as John 
Allspaw put it, the “clone army of Captain Hindsights suited up, 
ready to go” decided that the shutdown hadn’t been essential and 
criticized the NYSE for unnecessarily halting over a “glitch” [10].

This is outcome bias, a cognitive bias that leads us to judge deci-
sions based on their results. We can’t predict the consequences 
of decisions perfectly at the time we make them. Many tough 
decisions have to be made with imperfect information—risks we 
can’t fully quantify, information that’s incomplete or missing. 
Sometimes, you need to make a sacrifice decision to avoid a risk 
of greater harm. This is likely better than simply reacting accord-
ing to prevailing conditions of the crisis/complacency cycle. This 
closely describes the situation that the political leaders of most of 
the world find themselves in March 2020 with respect to SARS-
CoV-2. By the time you read this, outcome bias will likely have 
declared their actions as overkill (if successful) or insufficient.

Risk and Rot in Sociotechnical Systems
We work in organizations made up of people, all subject to out-
come bias and prone to underestimate or overestimate risks, 
 depending on to what extent normalization of deviance has set in 
on our team. Executives can become far removed from the reality 
of life at the front line, and their appreciation of probabilities of 
adverse events can be strongly affected by recent outcomes.

One of the major functions of an SRE or operations team is 
to proactively manage risks. This kind of work covers a broad 
spectrum, from keeping systems patched, rotating certs and 
tokens, and validating backups, through to less routine things 

like writing runbooks and recovery tools, running disaster tests, 
performing production readiness reviews for new systems, and 
doing thorough reviews of near-miss production incidents. These 
are also the kinds of work that can fall by the wayside all too 
easily when a team is overloaded or understaffed. The eventual 
outcome is likely to be a crisis and the start of a new cycle of 
investment.

An important part of our job, therefore, is to make the value of our 
work visible in order to avoid the organizational rot that makes 
us underestimate risk and underinvest in reliability. We live in 
a data-driven world, but of course, we can’t track the incidents 
that don’t happen because of good preventative work. However, at 
times when we aren’t in crisis mode, there are many other things 
that we can do to show how our work contributes to increasing 
reliability.

We can create internal SLOs for the routine jobs we do to man-
age risks, and set up dashboards to show whether you’re meet-
ing those SLOs or not. Write production-readiness standards 
that you’d like your services to meet—covering areas such as 
change management, monitoring and alerting, load balancing 
and request management, failover, and capacity planning. Track 
how your services meet those standards (or don’t). Set up chaos 
engineering and game days to test how your services deal with 
failure, and track those results as you would postmortem action 
items. Load test your systems to understand how they scale, 
and address bottlenecks you will encounter in the next year or 
two. Take near-misses and surprises seriously, and track them, 
along with action items. All of these things help to prevent a slide 
into normalization of deviance as well as giving visibility into  
our work.

As engineers, we have a responsibility to clearly communicate 
about risks in our systems and the proactive work we do to reduce 
them. But “the fish rots from the head down”: engineering lead-
ers ultimately make critical decisions and therefore they must 
be acutely aware of outcome bias and the risk of disconnects in 
understanding of risk between front-line engineers and them-
selves. Most importantly, they must be mindful of the crisis/
complacency cycle and maintain an appropriate continuous 
investment in resilience and reliability in order to avoid crisis.
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I spent my high-school years in a tightly entangled group of four friends. 
We were basically inseparable, formed a horrible rock band, and I think 
did a lot of typical ’90s Los Angeles kid things like throwing powdered 

doughnuts into oncoming traffic and making a nuisance of ourselves at 
7-Eleven and Guitar Center. We smashed against the breakwater of gradu-
ation and went different places, but of the four of us, I was the only one who 
didn’t go off to college to study music theory. Opting instead to eject into the 
Marine Corps, which is a longer story, and irrelevant to the current metaphor. 

Anyway, we kept in touch, and in their letters all three of my friends described the process of 
learning music theory in a very similar way. As a neophyte musician, you typically have some 
aptitude with one or two instruments, but very little knowledge about how music itself works. 
Evidently in the first year of music theory, you are presented with myriad complicated rules. 
From what I understand, in fact, you do little else the first year but learn the rules and some 
important exceptions to the rules. 

Then bit by bit, as the years progress, the rules are stripped away, until you reach some sort of 
musical enlightenment, where there are no rules and you work in a kind of effortless innova-
tory fugue where everything you create just clicks. 

I vaguely remember feeling this way about computer science. Having written my first Perl 
script, f lush with optimism and newfound aptitude. “So this is what it feels like to have 
mastered computering at last,” I thought to myself, setting aside my Camel book to cross my 
arms in a self-satisfied way, and cursing whatever company I was working for at the time 
with whatever abomination I’d just created. 

Many—er, well, several years later, I feel strongly that computer science is something like the 
exact opposite of how my friends described music theory in those hastily scribbled letters all 
that time ago. The rules do not so much disappear but rather change and reassemble anew 
every so often, and instead of effortless enlightenment, I find myself splitting my days between 
confounded frustration and shocked dismay, each of those punctuated by short bouts of 
relief and semi-comprehension. In our world I sometimes feel like it’s a miracle anything 
works at all, and the more I learn, the less I seem to know.

In my last article I introduced eBPF, the extended Berkeley Packet Filter, along with a shell 
tool called biolatency, which uses eBPF-based kernel probes to instrument the block I/O (or 
bio) layer of the kernel and return per-device latency data in the form of a histogram. There 
is a deeply refreshing crispness about delving into the solar system of eBPF, a brisk under-
current that pulls one down through abstraction layers and toward the metal. There are over 
150 tools in the BCC (https://github.com/iovisor/bcc) tools suite, and you can use them all 
without knowing how they work, of course. I think you’ll find, however, that your effective-
ness with BCC tools like biolatency scales linearly with your knowledge of kernel internals, 
and the slightest exploration into their inner workings leads one directly into the kernel 
source.
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Let’s begin this second article on eBPF, therefore, with a short 
discussion of the Linux Kernel’s “bio” layer [1]. This is the kernel 
software layer loosely defined as the contents of the block 
subdirectory of the Linux kernel source. The code here resides 
between file systems like ext3 and device drivers, which do the 
work of interacting directly with storage hardware. 

At this layer, we are below abstraction notions like files and 
directories. Disks are represented by a small struct inside the 
kernel called struct_gendisk [2], for “generic disk,” and reads 
and writes no longer exist as separate entities. Instead, all types  
of block I/O operations are wrapped inside a generic request 
wrapper called struct_bio [2], the struct for which the “bio” 
layer is named.

Without delving any further into the bio layer, we can already see 
how ideally situated the bio layer is for trace-style instrumenta-
tion. Above us, in the file systems, we would need to probe every 
kind of disk operation: a different probe for reads, writes, opens, 
etc. Below bio we will find vendor-specific code and a mountain 
of historical, related exceptions and complications. But right 
here inside bio, we have a single, well-defined data-structure that 
represents every type of disk I/O possible operation. No writes, 
no reads, just requests, and one probe can summarize them all.

We can also assume that tracing these requests will give us read 
access to the struct_bio data structure, because we’ll need it 
to see what kind of request we’re dealing with (e.g., read/write), 
what block device each request is destined for, and so on.

We now have the necessary information to take our first cursory 
glance inside biolatency.py [3] to intuit what’s going on. The 
first 53 lines are pretty typical preamble for a Python script: 
documentation, imports, and argument parsing. The arguments 
are interesting, but we’ll set them aside for now to take a look at 
the large string that begins on line 55:

# define BPF program
bpf_text = “””
#include <uapi/linux/ptrace.h>
#include <linux/blkdev.h>
typedef struct disk_key {

From our last article you’ll remember that eBPF is a virtual 
machine that resides in the kernel. This string (named bpf_text) 
is the payload intended for that in-kernel VM; it takes up about 
a quarter of the overall code in the Python script and is written 
in C. It is a program, embedded within our program, that will be 
compiled to bytecode and loaded into the kernel’s eBPF VM. If 
you look closely, you’ll notice that this C code won’t compile as is, 
because of expressions like this one on line 70: 

BPF_HASH(start, struct request *);
STORAGE

These are string-replacement match targets. These will be 
replaced in this string with valid code, depending on options 
passed in by the user. These substitutions begin on line 103  
and all take the same general form: 

if args.milliseconds:
    bpf_text = bpf_text.replace(‘FACTOR’, ‘delta /= 1000000;’)
    label = “msecs”
else:
    bpf_text = bpf_text.replace(‘FACTOR’, ‘delta /= 1000;’)
    label = “usecs”

All of these substring substitutions follow the same basic pat-
tern: if option X was set by the user, then replace MACRO in the 
payload program with value Y; otherwise, replace MACRO with 
value Z. In the example above, we’re choosing between micro and 
milliseconds in the payload string. We’re also setting a “label” 
variable to give hints for properly printing the output later on. 
This process of rewriting sections of the payload string goes on 
for most of the options the user passes in. The exception is -Q, 
which selects whether we will include the time an I/O request 
spends queued in the kernel as part of the latency calculation.

This switch affects our choice of which particular kernel func-
tions we ultimately choose to trace. If we don’t care about queue-
time, we will want to measure latency starting from the moment 
the I/O request is issued. However if -Q is set, we will also want to 
include the time each request spent waiting on the kernel. We can 
see how this is implemented starting on line 134:

b = BPF(text=bpf_text)
if args.queued:
    b.attach_kprobe(event=”blk_account_io_start”, \
        fn_name=”trace_req_start”)
else:
    if BPF.get_kprobe_functions(b’blk_start_request’):
        b.attach_kprobe(event=”blk_start_request”, \
          fn_name=”trace_req_start”)
    b.attach_kprobe(event=”blk_mq_start_request”, \
        fn_name=”trace_req_start”)
b.attach_kprobe(event=”blk_account_io_done”,
        fn_name=”trace_req_done”)

First, we instantiate a new BPF Python object, passing in our 
newly rewritten payload in the process. What happens next 
depends on the -Q option. If we care about the latency induced 
by in-kernel queue time, then we’ll insert our kernel probe at the 
blk_account_io_start() kernel function, which is called when 
an I/O request is first queued in the kernel. However, if we want 
to measure “pure” block I/O latency—that is, the amount of time a 
given generic I/O request took to return—we’ll instrument blk 
_mq_start_request() and possibly blk_start_request() if the 
latter function exists in the current kernel. No matter what paths 
we choose, we’ll close each trace at blk_account_io_done().
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At this point, our payload is inserted into the running kernel, and 
we are collecting data. Now we are confronted with some bitwise 
arithmetic beginning with a collection of constants on line 147 
and continuing with some bitmask construction, and constants 
definition on line 157:

REQ_OP_BITS = 8
REQ_OP_MASK = ((1 << REQ_OP_BITS) - 1)
REQ_SYNC = 1 << (REQ_OP_BITS + 3)
REQ_META = 1 << (REQ_OP_BITS + 4)
REQ_PRIO = 1 << (REQ_OP_BITS + 5)

This is necessary to understand the data we’re collecting. The 
bit-specifics correspond to the bi_opf [4] attribute (bio opera-
tional flags) inside struct_bio, the central block I/O request 
struct I mentioned above in the bio layer. The attribute is an 
unsigned int that’s used to track metadata about a given block 
I/O request. You can see the constant defs for this bitmask a 
few lines down [5] from the struct_bio definition in the kernel 
source. In short, these flags tell us whether a given request was a 
read, write, cache-flush, etc. and provide some additional meta-
data about the operation, whether it was priority, backgrounded, 
read-ahead, etc.

If you continue down to line 171 in biolatency, you’ll see that we 
AND the flags value, given to us from the probe, against a bitmask 
with bit 7 set to determine an integer value that corresponds to 
the top-level operation type (read, write, flush, discard, etc.). We 
then proceed to individually check for flags in the bitmask which 
correspond to subcategories. Prepending these to the top-level 
operation type: 

    if flags & REQ_SYNC:
        desc = “Sync-” + desc
    if flags & REQ_META:
        desc = “Metadata-” + desc
    if flags & REQ_FUA:
        desc = “ForcedUnitAccess-” + desc

So if the flags mask AND’d to a value of 0, which equates to “Read,” 
and then we subsequently discovered that bit 11 was set in the flags 
mask corresponding to “Sync,” we’d wind up filing this bio-request 
under “Sync-Read.” Biolatency can use this data to plot histograms 
of I/O latency per category of I/O operation with the -F flag. 

The last section in the script deals with printing our output.  
The script stays in the foreground until it encounters a keyboard 
interrupt from the user, and then dumps its output depending 
on how the user specified they wanted to see it in the argument 
flags. Unfortunately, these all use functions defined deeper 
inside the BCC Python library code, and scratching at them 
requires us to understand the eBPF data model, and a little bit 
more about the line between kernel and userspace, all of which 
we will get into in our next article. 

If you’re feeling like you know less than you did when you came 
in, then you are in a pretty good place. As I said in the intro, 
studying eBPF internals brings you close to the kernel in short 
order, which is a refreshing place to be. If you’d like to read a little 
more about the kernel’s bio layer, there is an excellent set of intro-
ductory articles at LWN [1], and Brendan Gregg’s BCC Python 
Development Tutorials [6] are another great resource for those 
wanting to read ahead. 

Take it easy.
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“A little neglect may breed mischief ... 
for want of a nail, the shoe was lost; 
for want of a shoe, the horse was lost; 
and for want of a horse, the rider was lost.”

—Benjamin Franklin, Poor Richard’s Almanac (1758)

A s software eats the world and open source eats software, IT supply 
chains and enterprise risk management postures are evolving. Top-
down, CIO-led commercial software procurement is shifting towards 

bottom-up, developer-driven choices that increasingly involve open source 
software (OSS) [1]. Security in this context requires visibility, starting with 
a comprehensive inventory (software bill of materials) as well as an under-
standing of code provenance (software composition analysis). It also entails 
application testing, automated vulnerability scanning, instrumentation, and 
observability, which can provide insights for defenders. For organizations 
that plan over longer time horizons, however, mitigating OSS risk sometimes 
means taking on direct responsibility for software maintenance. Little by 
little, organizations are empowering staff to perform upstream code improve-
ments that the rest of the world can access. When implemented thoughtfully, 
this pragmatic form of software stewardship can help avoid broken builds, 
obsolescence, and other potential failure modes.

In a rough count by the authors, we found that at least one-third of Fortune 500 firms have a 
public Git presence for company-sanctioned OSS activity [2]. While proprietary software use 
remains widespread, and while many more companies use private repositories for internal 
collaboration projects, or inner-source, many high-profile enterprise software development 
efforts are now happening in the open under permissive license terms. A similar pattern 
appears to be unfolding in the public sector, albeit at a more gradual pace. NASA, the GSA, the 
Department of Transportation, and the Department of Energy, for instance, have earned high 
marks on the code.gov agency compliance dashboard for their performance under the Federal 
Source Code Policy. Other federal agencies are taking more incremental steps in adapting 
OSS to their missions, and these initiatives are likely to remain a continual work-in-progress. 
With commercial and governmental enterprises mostly consuming but increasingly produc-
ing OSS, and with shared source code resources circulating across both types of Git repos, 
knowledge spillovers [3] appear to be reshaping a wide variety of software development com-
munities. Silicon Valley is playing a prominent role in this arena, and as the Linux Foundation’s 
Core Infrastructure Initiative recently noted, “some of the most active OSS developers contrib-
ute to projects under their Microsoft, Google, IBM, or Intel employee email addresses” [4].

Whether public or private, funding for OSS can help underwrite open innovation, reduce 
security costs, and amortize technical debt, but Red Hat’s Gordon Haff reminds us: “Open 
source today is not peace, love, and Linux” [5]. Fiscal sponsorship can skew incentives in 

Who Will Pay the Piper for Open Source 
Software Maintenance?
Can We Increase Reliability as We Increase Reliance?

D A N  G E E R  A N D  G E O R G E  P .  S I E N I A W S K I

Dan Geer is the CISO for In-Q-
Tel and a security researcher 
with a quantitative bent. He has 
a long history with the USENIX 
Association, including officer 

positions, program committees, etc.  
dan@geer.org

George P. Sieniawski is a tech-
nologist at In-Q-Tel Labs, which 
develops open source tools and 
data sets that address challenges 
at the intersection of national 

security, the public interest, and the private sec-
tor. He specializes in data visualization research 
and prototype development for a wide variety of 
use cases. GSieniawski@iqt.org



46   S U M M ER 2020  VO L .  45 ,  N O.  2  www.usenix.org

COLUMNS
Who Will Pay the Piper for Open Source Software Maintenance? 

unexpected ways since OSS backers are in a position to influence 
feature prioritization and project governance. As organizations 
start treating user-driven open source development as a  regular 
operating expense, some developers worry about ecosystem 
fragmentation, value capture, and selective appropriation of 
benefits. Indeed, the advent of new software funding vehicles 
and managed open source subscription plans has drawn com-
parisons to gentrification and gerrymandering [6]. Consequently, 
organizations looking to engage with OSS communities around 
the world need to understand developer motivations, which are 
distinct from ownership and contract [7] and which involve a mix 
of pecuniary, reputational, and “own-use”/DIY reasons.

As Internet researcher Nadia Eghbal rightly recognizes, the OSS 
community’s “volunteer culture discourages talk of money” [8]. 
Moreover, “The pervasive belief, even among stakeholders such 
as software companies, that open source is well-funded, makes 
it harder to generate support” for fledgling projects. It also high-
lights the need to find a balance between bearing private cost 
and conferring public benefit, which is the crux of open source 
stewardship. In the years since Eghbal’s magisterial study of 
OSS, developers have become increasingly vocal about fund-
ing. Researchers are also beginning to look more closely at the 
individual contributors whose work underpins today’s OSS eco-
system. These efforts have started to shed light on the complex 
symbiosis—or perhaps commensalism—between community-
developed OSS and corporate-backed OSS.

Among other companies, Netflix, JP Morgan, and Airbnb have 
reaped significant benefits from company-sponsored community-
maintained open source, not only in terms of demonstrating 
technical prowess and cultivating talent, but also in terms of 
operational impact. Other groups, like the world’s largest auto-
makers collaborating on Automotive Grade Linux or the finan-
cial sector companies embracing the Hyperledger project, seem 
to be following suit by forming consortia. GitLab’s effort to estab-
lish a clear set of principles that enable a diverse OSS contributor 
community to work as one is another compelling case in point. 
The company’s management promises not to “remove features 
from the open source codebase in order to make the same feature 

paid.” GitLab also stresses contributors’ right to the integrity of 
their work: “If the wider community contributes a new feature they 
get to choose if it is open source or source-available (proprietary 
and paid)” [9]. By explicitly recognizing the value volunteer devel-
opers bring to the platform, the company has been able to promote 
high-quality code contributions while avoiding cannibalization.

GitLab’s rivals also appear to be taking a long-term view of OSS 
risk [10]. In February 2019, Microsoft took a snapshot of the top 
active public GitHub repositories, depositing physical copies of 
some of the world’s most widely used software in a decommis-
sioned coal mine in the Svalbard archipelago of Norway. The 
company has already stored copies of the source code for the 
Linux and Android operating systems in this remote region, 
along with 6,000 other OSS libraries it considers significant. 
Part gene bank and part library, this mega-repository is now 
the largest tenant in the Arctic World Archive, with additional 
redundancies planned for other locations. Backing up this 
treasure trove of software is a significant resilience and data 
loss prevention measure. However, building a nest for Coase’s 
Penguin [11] in Svalbard is by no means sufficient for the vitality 
of the open source economy. On the contrary, as OSS becomes ever 
more ubiquitous, active maintenance becomes an increasingly 
pressing priority. Which brings us to the maintainers.

OSS Maintenance
Although there is “a high correlation between being employed 
and being a top contributor to” OSS [12], sustaining it takes 
more than a regular income stream. Long-term commitment 
to open source stewardship is also essential, as is budgeting 
time for periodic upkeep. For perspective, consider that 36% of 
professional developers report never contributing to open source 
projects, with another 28% reporting less than one open source 
contribution per year (2019 Stack Overflow Developer Survey). 
Thus, despite more direct enterprise engagement with open 
source, risk-averse attitudes towards licensing risk and poten-
tial loss of proprietary advantage endure by and large. Consider 
further Table 1, which shows how concentrated contribution pat-
terns are, particularly in JavaScript, and thus where additional 
OSS maintenance support could have an outsized impact.

Top 50 Packages  
(for each package manager) Primary Language Language 

Rank,* 2019
Language 

Rank,* 2018
Average  Dependent 

Projects
Average Direct 

Contributors

npm JS 1 1 3,500,000 35

Pip Python 2 3 78,000 204

Maven Java 3 2 167,000 99

NuGet .NET/C++ 6 5 94,000 109

RubyGems Ruby 10 10 737,000 146

Table 1: Concentration of GitHub contributions. *Popularity ranked by number of unique contributors to public and private GitHub repositories tagged with 
the corresponding primary language. Source: GitHub, State of the Octoverse (https://octoverse.github.com/#average-package-contributors-and-dependencies), 
released Nov. 6, 2019 (a few months before GitHub acquired npm).



www.usenix.org  S U M M ER 2020  VO L .  45 ,  N O.  2 47

COLUMNS
Who Will Pay the Piper for Open Source Software Maintenance? 

For additional context, Figures 1 and 2 show the geo-
graphic and technological mix of contemporary OSS 
development worldwide. Note that this is not an exhaus-
tive account of OSS growth, merely an indicative snap-
shot at a single point in time. In addition, keep in mind 
that this data, sourced from the Open Source Compass, 
excludes GitHub projects with fewer than 10 watchers. 
For more detail on these smaller open source projects, 
which are enjoying intense growth outside of the US,  
see the State of the Octoverse report mentioned in the 
caption of Table 1.

Figure 1: Geographic mix of OSS contributors on GitHub, 1Q19. Source: Open Source  Compass 
(https://opensourcecompass.io/locations); note that this map excludes  countries with 
fewer than 5,000 commits.

Figure 2: Technological mix of GitHub contributions, 1Q19. Source: Open Source Compass (https://opensourcecompass.io/domains/#which-domains-have-
the-most-contributors), which uses data from the GH Torrent project, a research initiative led by Georgios Gousios of Delft University of Technology. GH 
 Torrent monitors the GitHub public event timeline and retrieves and stores the contents and dependencies of each event. 
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Conclusion
Each year, the Augean task of patching OSS vulnerabilities 
falls to small groups of solitary maintainers who generally rise 
to the occasion but who also have to balance competing com-
mitments. This developer dynamic has unfortunate security 
ramifications for widely used software like bash, OpenSSL, and 
Apache Struts, the latter of which played a significant role in the 
Equifax breach. In parallel, bitsquatting and typosquatting (e.g., 
the python3-dateutil library masquerading as the popular 
dateutil tool) as well as developer infrastructure exploits (such 
as the event-stream hack) are opening up new attack vectors 
that undermine trust in OSS. In addition, with “rage-quit” 
takedowns (like the npm left-pad deletion [13], which briefly 
impacted React and Babel) and with maintainer withdrawal on 
libraries like core-js and jsrsasign, enterprise risk managers 

are increasingly attuned to the risk of broken builds. Given these 
challenges, federated package registries, cryptographically signed 
software packages, and reproducible builds are all steps in the 
right direction. 

In the long run, however, establishing a modus vivendi between 
IT risk managers and open source developers will be critical to 
open source innovation, security, and competitiveness. Such an 
outcome will be as much a function of cultural adjustment as 
of technological advancement. Organizations paying the open 
source piper need to remain attuned to developer trust and trans-
parency issues, and while there are few easy answers for how 
to sustain and secure OSS, paying it forward on maintenance is 
likely to generate outsized benefits, not only for end users, but 
also for society at large.
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/dev/random
Rewind Your Mind

R O B E R T  G .  F E R R E L L

In the course of writing a speculative fiction short story about the direc-
tion human intellectual evolution might take (it doesn’t involve giant 
melon-shaped foreheads with pulsing veins, if that’s what you were 

visualizing), I found myself ruminating on the intersection between human 
and artificial intelligence. If we are to consider that, sooner or later, we and 
machines will become competitors for the same resources (electricity and 
self-direction), then it might be logical to presume that evolutionary fitness 
principles will also apply.

Which is to be master, that’s all.

It seems probable to me that carbon and silicon will eventually merge, although perhaps not 
in the way many people envision. One of the first points of intersection may well be solid state 
biological memory. Not SSDs with our neural connections imprinted on them (we’ll get to that 
later), but rather onboard computing of physiological data derived from embedded sensors, 
the results of which may be downloaded by your friendly neighborhood medical professional 
whether you like it or not. Taking your blood pressure or assaying your CBC might soon hap-
pen anytime you wander too near an RFI (Radio Frequency Intrusion) hub. That certainly 
puts the “Portability” into HIPAA.

Since we’ve brushed lightly past the subject, how practical is the “store your complete neural 
identity in electronic form” pipe dream/nightmare? Given that each of your 16 billion or so 
cortical neurons can have thousands of connections—which makes your neocortex a neural 
network of neural networks—we’re talking about a level of convolution that would impress 
even a tax code author. I’ve seen a plethora of thought experiments on “post-humanity” that 
reduce us to digitized entities streaming Douglas Adams-style across the universe as a 
series of ones and zeroes. I think this is about as far-fetched as Star Trek teleportation, to be 
brutally honest (or honestly brutal, which, not to be brutal, I honestly prefer). Reducing our 
cognition to a collection of binary impulses seems beyond impractical.

I think neurons in the neocortex communicate not only using simple point-to-point connec-
tions, but also by interpreting patterns generated by attenuation of depolarization signals 
traveling those connected nerve fibers. Axons aren’t just “on” or “off,” in other words: they can 
demonstrate different signal strengths, which can then be used to overlay more information 
onto the binary connection map. This adds another layer of complexity, the depth of which is 
at least partially dependent on the minimum pattern size needed for constructing meaning-
ful data objects.

Let’s say memories are stored like multimedia files, with video, audio, olfactory, and gus-
tatory tracks. Rather than a simple bitwise image map, however, we’ll pretend the optical 
component is compressed by some form of pattern-based encoding that is then decoded by 
the visual cortex when a memory is replayed. That encoding relies on a large collection of 
“primitives” or stored data archetypes stitched together from the individual’s past experi-
ences. When we remember a scene containing a tree, for example, we don’t need to visualize 
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a specific tree unless that specificity is integral to the memory. 
How much space a memory requires depends on the number of 
unique moieties it contains and the array of “facets” each of these 
exhibits. Accessing a memory containing only a few modifica-
tions from an existing template is, after all, a lot less processor-
intensive than building the entire scene from scratch. Think of it 
as “clipping” for the memory.

While the process by which it is accomplished is even less clear 
to me, the brain may also use the archetype approach for smells, 
sounds, and tastes. Tastes are probably the simplest, since they 
are all some combination of the five identified base sensations 
(20% sour / 15% sweet / 5% bitter / 35% salty / 25% umami, for 
example). This scheme is no doubt overly simplistic (especially 
since science recognizes seven, not five, basic tastes), but you 
get the idea. Odors, being closely associated with tastes, are 
likely stored in much the same manner. The audio track has 
to encode, at a bare minimum, pitch, timbre, rhythm, balance, 
dynamics, and several other characteristics. There are doubt-
less archetypes for all of these, too. Percussion, strings (plucked 
and bowed), winds, and voice must have their own sets of primi-
tives that can be mixed and matched to create any music. This 
presumably goes as well for sounds of nonmusical origin (such  
as my singing).

The longer I think about this, the more it seems to me that the 
algorithms for data storage and retrieval in the human memory 
are probably even more subtly complex than we currently imag-
ine. I expect some sophisticated sorting goes on, such that each 
data object can trigger a variety of different patterns depending  
on the contextual filtering it experiences along the way to the 
area where the memory is rendered. The brain in this respect 
works more like an analog music synthesizer than a digital 
computer. I think memories could well be categorized as waves, 
rather than particles; perhaps there’s even a photon-like duality 
at work. Maybe thoughts are themselves packetized in quanta, 
giving the term “neuron” another meaning altogether: the intel-
ligence particle. Its anti-particle is, then, the “moron.”

Storing ourselves electronically may require a continuous 
recording medium like magnetic tape, as opposed to a lattice 
of discrete bits. Future humans might need to carry around 
some kind of analog-to-digital converter in order to back up to 
or restore memories from hard drives. After all, thoughts are 
not exactly binary in nature. What do you see in your mind’s 
eye when you hear your favorite music: zero or one? Not a useful 
descriptor.

Mapping and storing a human’s mental landscape would, realis-
tically, require a lot more than just bit-flipping. I believe that our 
brains use those patterns we discussed as fundamental storage 
tokens. Sensory input is formed into multidimensional objects 
that are then stored ad hoc in some pseudo-hierarchical matrix. 
Specific memories are composed of pattern fragments pulled 
from this cache using a linked index created by ranking those 
fragments by frequency of appearance and something representa-
tionally equivalent to color or texture, along with other metadata.

Perhaps the brain employs a QR code-like mechanism to assem-
ble complex memories from disparate archives scattered around 
wherever those moieties could be fitted in (hence the “ad hoc”). 
It does seem that something akin to disk fragmentation occurs 
in my own memory from time to time, which leads to attention 
headache. People with true long-duration eidetic recollection 
may keep all the fragments of a memory object in much closer 
logical proximity to one another than do the rest of us. I’m pretty 
certain my sensory input tumbles immediately into a neural 
woodchipper, to be blown across the perceptual lawn like gale-
driven autumn leaves. My memory is more pathetic than eidetic.

Or maybe this whole line of reasoning is utter nonsense. Per-
haps it turns out we store our memories on a very long VHS tape 
looping in the hippocampus. If we forget to rewind, it takes a lot 
longer the next time we want to access that memory. I’m pretty 
sure that somewhere on my personal VHS tape there is a memory 
of flunking neuroanatomy, so you might think I would avoid toss-
ing around terms like “gyrus,” “sulcus,” “nucleus,” and “ganglion,” 
but it makes me feel like a stable genius.
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Docker in Action, 2nd Edition
Jeff Nickoloff and Stephen Kuenzli
Manning Publications, 2019, 310 pages
ISBN 978-1-61-729476-1

I guess you could say that when a tech book reaches a second edi-
tion the software it describes has reached some kind of maturity. 
Docker has inspired a whole new type of software infrastructure, 
and today there are a variety of resources for the beginner build-
ing and using containerized software. It’s still a niche, however 
large, and it’s still an advanced topic. Running containerized 
software requires the skills of a software developer, systems and 
network administrator, and operator.

The first edition of Docker in Action was one of the early books to 
market. A lot has happened since 2016, and they’ve added a few 
chapters and updated the rest.

Docker in Action follows the common narrative path for tuto-
rial style references. They start with justification, show basics, 
and add features until they’ve covered the topic. Containers are 
easier to start with than some things because of the presence 
of public repositories of working images. With Docker, you can 
create a functional default configured database or web server 
in a few minutes. That’s enough to hook a reader early and give a 
sense of what is possible. Nickoloff and Kuenzli use the first sec-
tion to teach the reader how to run single containers on a single 
host. This includes adding storage, network communications, 
and customized configuration to make a useful service.

The second section is devoted to creating new container images. 
The chapter on creating containers really only touches on the 
basics, as there are lots of good references on the details. The 
section is about more than just building images. The succeed-
ing chapters show how to interact with public and private image 
repositories and how to automate the production, testing, and 
publication of new container images, all triggered from public 
source code repositories. When combined, these capabilities 
form a software development and delivery chain.

I like the authors’ writing style. They are clear and concise. The 
theoretical exposition is balanced nicely with the practical ele-
ments. I do wish there were more external references, either in 
the text or in the chapter summaries. I know from experience 
that the Docker website has detailed references describing all of 
the keywords available for creating Dockerfiles. The authors only 
demonstrate the basics needed to get started, which is adequate 
as they have limited space. However, I would have liked to see 
reference callouts to those well-known stable resources.

In the final section, the authors introduce container orchestra-
tion. This is the idea of describing and automating clusters of 
coordinating containers to form larger applications. It is pos-
sible to start a database container, a front-end web server, and a 
middleware container to implement some kind of business logic, 
and to do all this manually, a step at a time. Applications like 
this form patterns, though, and the patterns make it possible to 
build services to manage the deployment of these complex sets  
of containers.

The authors use Docker Swarm to show the possibilities of 
container orchestration. Swarm is an integral part of the Docker 
application system and so is available anywhere that Docker 
itself is. The alternatives, such as Kubernetes or the commer-
cial cloud offerings, each have whole books devoted to them, so 
Swarm is a good choice for a first look. The authors admit that 
Swarm probably isn’t suitable for large-scale deployments, but 
perhaps it has a place in production in smaller shops.

Likewise, the authors make no mention of alternative container 
runtime systems or tool sets. I used to liken the Docker suite 
to the BASIC programming language. It is a good easy starting 
point to engage and learn concepts, but it is possible to outgrow 
its capabilities and its limits. The Open Container Foundation 
describes a standard container format and a standard runtime 
behavior. Docker is one compliant system, but there are others.

For a moderately experienced system administrator, this  second 
edition of Docker in Action will be a good introduction to con-
tainer systems. Like VMs, container management requires an 
understanding of underlying storage and complex networking 
that this book only glosses over. To go deeper, the reader will have 
to keep learning, but this is enough to get started doing useful work.

Microservices and Containers
Parminder Singh Kocher
Addison-Wesley Professional, 2018, 283 pages
ISBN: 978-0-13-459838-3

I’m the kind of geek who likes a mix of theory and practice in 
a tech book. For some reason, most of the books I’ve seen on 
software containers and microservices tend to be tutorials for 
specific technologies. In Microservices and Containers Kocher 
does discuss the tools, but he doesn’t stick to just the syntax 
and behavior. The first section is devoted to an overview of 
Microservices.

The flexibility that microservices offer comes with some up-
front cost. People who first hear about how easy Docker is to use 
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for simple containers want to jump right in and port their appli-
cations to single containers. I like that Kocher doesn’t give in to 
the temptation to get right to the sexy tech.

The term “microservice” refers to the components that are used 
to make up a conventional application stack. In the original 
LAMP (Linux, Apache, MySQL, PHP) stack, the components are 
installed directly onto a host computer. Using software contain-
ers, it is possible to implement the same behavior running the 
service components in containers rather than installing them 
directly on the host.

Containers impose boundaries that conventional host instal-
lations do not. Porting an application to microservices tends to 
expose the boundaries that are often neglected or left implicit in 
a conventional deployment. Kocher does a good job of addressing 
the challenges that porting an application poses.

Inevitably, when Kocher starts to talk about the implementation 
of individual microservices, he is forced to revert to expressing it 
in terms of an existing container system. Despite the existence of 
a number of alternative runtime and container image build tools, 
Docker remains the overwhelmingly dominant environment. In 
the middle section of the book he provides the same catalog of 
Docker commands that you’ll find in other books.

This book is one of the unfortunate cases where the print 
and ebook versions are significantly different in appearance. 
The ebook has color graphics that don’t convert well to gray-
scale. Furthermore, the code examples in the print version are 
compressed to fit the pages to the point that they are nearly 
unreadable.

The final chapter of this section covers container orchestra-
tion, and Kocher returns to implementation agnosticism. There 
are whole books about Kubernetes, Mesos, and Swarm, and he 
doesn’t try to go into depth about any of them before returning to 
their common features: automation, service discovery, and global 
metrics.

In the final section, Kocher distinguishes himself again with 
a set of case studies in implementation and migration. Again, 
this book isn’t long enough to be a comprehensive guide, but it 
is sufficient to give the experienced reader a sense of the dif-
ferent challenges that microservice design, deployment, and 
management present. Three cases are used to explore and then 
contrast a monolithic deployment and a fully containerized one. 
He includes an intermediate case where the application is in the 
process of migration. Together, these case studies expose the 
assumptions underlying a monolithic deployment and the com-
mon misconceptions about containerization that can undermine 
a project.

I liked Kocher’s perspective and his approach to microservice 
applications. He shows a thorough understanding of the issues 

that I often see downplayed by other authors in their enthusi-
asm for the tech. I don’t think the full potential of microservice 
architecture has made it to the mainstream yet. In Microservices 
and Containers, Kocher presents a realistic path for application 
designers to explore the possibilities.

An Illustrated Book of Bad Arguments, 2nd Edition
Ali Almossawi, illustrated by Alejandro Giraldo
The Experiment LLC, 2014, 56 pages
ISBN 978-1-61-519225-0

First Edition: http://bookofbadarguments.com
Creative Commons BY-NC license
ISBN 978-1-61-519226-7

It’s hard to swing a syllogism these days without hitting a bad 
argument. It’s one thing, though, to know that something isn’t 
right and another to know what’s not right about it. Aristotelian 
logic was required for the engineering students where I went to 
college, but most of the focus was on how to create and  evaluate 
good arguments. The most illustrative lesson on bad arguments 
was the 10-minute comedy set at the beginning of the first 
lecture in which the professor enumerated the ways students 
would try to persuade him to give them a better grade, and why  
he wouldn’t be swayed by any of them.

I also remember that most of the other students in the class were 
intimidated by the professor and the topic. Logic has a reputa-
tion for being difficult and the province of nerds. Logic is like 
grammar—people who make a big deal about rigor in daily life are 
mostly annoying to others.

Making logic palatable, even amusing, is the challenge that 
Almossawi took on in 2013 when he published the first edition 
of An Illustrated Book of Bad Arguments as an online book. He 
released it under a Creative Commons Non-Commercial license 
then, and this second edition was published the following year 
in print. As the title indicates, he focuses on how arguments go 
bad. You won’t find more than the most basic definition of terms 
needed to understand what a good argument is and is not.

Most of the arguments made in the public sphere today are con-
structed rather informally, and most of the ways they are broken 
are informal as well. A formal argument is literally one that has 
the correct form. There are logical fallacies related to the form 
of an argument, that is, where the failure of the argument comes 
from the failure of the structure of the argument, but most of 
the fallacies you find in discourse today are not of this type. In 
fact, Almossawi offers only one formal fallacy. The rest of the 19 
total examples are informal fallacies. This makes them no less 
significant.

Each pair of facing pages describes and demonstrates one form 
of logical fallacy. The footer includes the fallacy’s place in the 
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taxonomy of bad argument. Yes, fallacies have families. I hadn’t 
realized until I saw the diagram in the front of the book that most 
fallacies are a variation of a red herring. They divert attention 
away from the actual argument by offering something unrelated 
to the point. All of the informal fallacies are a form of non sequi-
tur, or “does not follow.”

The text for each page is brief and clear. The illustrations have 
the style of 19th- and early-20th-century woodcuts. They remind 
me of the illustrations from Alice in Wonderland or the animals 
from my mother’s “Laughing Brook” books by Thornton W. Bur-
gess. The cover and pages are printed to look antiqued.

You’re not going to make any friends by pulling out this book and 
pointing at a page the next time you’re on Facebook. It is useful 
for understanding the myriad ways what you see there can be 
wrong. It’s really important to understand that an invalid argu-
ment does not mean that the conclusion is false. It just means you 
can’t prove it that way. It is good to have a taxonomy and a name 
for each of the ways that an argument can go wrong, and it’s most 
helpful for me to recognize when I find myself leaning on these 
when my own biases and wishes try to lead me off the path. Bad 
Arguments is a slim volume or URL to keep handy when you find 
yourself thinking “Hey, wait a minute…”
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Running Virtual PC 
(vPC) Meetings
Erez Zadok and Ada Gavrilovska 
2020 USENIX Annual Technical 
Conference (USENIX ATC ’20) 
Program Co-Chairs

As the co-chairs of the 
USENIX ATC ’20 PC, our 
original plans to hold an in-
person PC meeting pivoted 

to virtual PC (vPC) meeting planning due 
to COVID-19. Along with our very helpful 
submission chairs (Dongyoon Lee from 
Stony Brook University and Ketan Bhardwaj 
from Georgia Institute of Technology), we 
experimented with three solutions to see 
what would work best: Webex, BlueJeans, 
and Zoom. We have now concluded running 
the vPC meeting, with over 70 participants 
for at least part of the meeting. Below we 
describe our experiences in planning and 
running the vPC.

Ultimately, we settled on Zoom, but it did 
not solve all of our problems. At this point, 
we are mainly interested in reporting our 
experiences while they are still fresh in our 
memory, in hopes you will find it useful. It 
would take more time and experimentation 
to turn this document into a concrete set of 
recommendations.

Running USENIX ATC is a relatively 
complex operation for many reasons, in-
cluding the number of submissions (in the 
hundreds), and the three tiers of reviewers 
(numbering almost 120). The two co-chairs 
and the two submission chairs all need ad-
ministrative privileges in the online paper 
reviewing system  (HotCRP.com).

vPC Meeting Requirements
1. Our key need for the PC meeting is how 

to handle conflicts of interest (CoI). In a 
physical PC meeting, any PC members 

with a conflict are kicked out of the room, 
and called back in after the conflicted 
paper’s  discussion is over. This requires a 
waiting room feature.

2. There are numerous tasks that all four of 
us have to handle efficiently: watching and 
moving the discussions along, marking de-
cisions, reviewing paper summaries, pick-
ing and assigning shepherds, and of course 
managing conflicts of interest (CoIs). As 
a result, all four of us need to have admin 
privileges when running the meeting, not 
just in HotCRP.

3. We need to verify the identity of PC mem-
bers, and ensure that only invited indi-
viduals can join the meeting after proper 
authentication.

Webex
Webex allows the host to define alternate 
hosts. Alas, only one of the alternates at a 
time can be an active host: once person A 
dele gates host privileges to person B, person 
A loses host privileges and can’t get them 
back. What we need is true co-hosting, and 
Webex doesn’t seem to support that at the 
moment.

Webex does have a decent waiting room 
feature: we were able to manually move 
 attendees to the waiting room and verify 
that they could not hear or see anything,  
and could not get back in on their own.

Webex has a very nice registration feature: 
you invite N people with specific emails 
and names to a Webex meeting. They are 
required to register with the email they  
were invited with, and they cannot change 
their name.

BlueJeans
BlueJeans supports multiple co-hosts. It 
also supports a “breakout room,” and we 
were able to move people to it. Alas, people 
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in the breakout room could rejoin the main 
meeting on their own—clearly undesired. (I 
guess it’s like a conflicted PC meeting mem-
ber who is outside the main room barging 
right back in.)

We didn’t test BlueJeans’s registration 
feature, as the breakout room problem was a 
showstopper for us.

Zoom
Zoom has a rudimentary role-based access 
control system, and allows one host and 
multiple co-hosts at a time. It allows true 
co-hosts, which the host can define when 
creating the meeting, but they need to have 
a Zoom account. If they don’t, the host can 
easily promote them to co-hosts after the 
meeting starts. Only hosts can declare 
 others as co-hosts, and the host can even 
hand off actual host privileges to another 
co-host, but cannot take them back. All co-
hosts have the same admin control over the 
meeting: they can admit people in/out,  
un/mute all, etc. 

In our experience, Zoom’s waiting room 
worked very well. Participants with con-
flicts could be kicked out of the meeting and 
sent into the waiting room, where they could 
not hear or see anything. We could then 
re-admit them all with a single click of the 
admit-all button, and go on to remove the 
next set of CoI out of the meeting. The key 
here is that all co-hosts were able to man-
age these conflicts and the waiting room, 
allowing us to better parallelize (and double 
check) this complex task.

Zoom’s registration feature is not as good 
as Webex’s. We had to send the Zoom URL 
to all of our PC members, who then had to 
register with a valid email and enter their 
names. They received an email with a 
personal link to join the meeting—thank-
fully not a shared URL that could be easily 
zoombombed. However, they were able to 
enter any valid email and any first/last 
name. In theory, someone could create a new 
dummy email and masquerade as another 
PC member if they got their hands on the 
invitation URL. 

In the future, we will need to ask PC mem-
bers to use their proper names and emails 
that are registered in HotCRP. When the 
meeting starts, all PC members will be in 
the waiting room by default, and we’ll have 
to verify one by one whom we are admitting 
into the meeting—otherwise we can chat 
privately with them in Zoom to establish 
their identity. Once we admit everyone, we 
can turn off the “participants can rename 
themselves” feature.

Registration becomes even more important 
for people who will dial in by phone to the 
meeting. They will still have to register with 
a per-participant link; then they will receive 
an email with instructions for connecting to 
the meeting with a personal phone code that 
identifies them. When dial-in users connect, 
they are shown as “Phone User N.” We have 
to identify them by voice and rename them 
in the Zoom participants list so everyone 
knows who they are.

Other Solutions?
We heard that at least one PC meeting via 
Microsoft Teams worked well. Given that 
we were reasonably pleased with the Zoom 
setup, and were not sure we had access to 
test Teams, we did not investigate it. Erez 
did have the opportunity to join a Teams 
meeting recently, described below, and we 
are interested to hear from anyone who has 
detailed experience with it.

Erez recently joined three different back-to-
back meetings with about 6–8 people each, 
using Microsoft Teams, Zoom, and Google 
Meet. Overall, he felt that Zoom worked 
much better and doubted that Teams or 
Meet would have met our vPC needs.

Microsoft Teams does seem to have a wait-
ing room feature, as Erez had to wait to be 
admitted, but it’s unclear how well it would 
work for running a vPC. Video and audio 
quality was lower for some participants; 
while it might have been their Internet 
connections, we fear that it might not have 
scaled to our PC size. Only four people’s vid-
eos were visible at a time, limiting the ability 
to feel inclusive and see more people. After 

examining all the buttons and menu options 
during the meeting, it seemed to Erez that 
Teams had far fewer features.

Google Meet also has very few features 
compared to Zoom, and even fewer than 
 Microsoft Teams. The worst part was that 
the audio and video quality in Google Meet 
was considerably poorer for everyone par-
ticipating. Even turning off everyone’s video 
and streaming audio only, the quality was 
still fairly choppy.

Webex Teams, which we did not have access 
to test, reportedly supports multiple concur-
rent co-hosts.

Experiences from Running the 
 Actual Virtual PC
With a virtual PC, there was more to man-
age at once. It was important that each 
organizer use a computer with a large 
screen—even two screens. We had to have 
the conference paper management window 
open as well as the Zoom window, with sub-
windows for chat, the participant list, and 
the waiting room list, our email and messag-
ing client (or cell phone), since people were 
emailing or texting us with various issues, 
and a private Slack chat window for the 
organizers.

When streaming media for hours, some 
people’s computers overheated and shut 
down after a few hours. It is important to 
have a sufficiently powerful computer for 
long-running CPU-hog processes like video 
and audio streaming.

We used Slack as a side channel for private 
communications among the meeting orga-
nizers. We could have used Zoom’s chat fea-
ture, but it was too risky—participants could 
inadvertently broadcast something publicly 
unintentionally. So we allowed participants 
to chat only with the host(s) in Zoom. It was 
useful as people had to tell us about last-
minute schedule changes or other requests. 
The Zoom messaging feature was not very 
convenient, however, when we needed to 
send the same message to a few participants 
(but not all, so as not to violate conflicts), for 
instance, that their paper would need to be 
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reshuffled in the schedule. Also, Zoom let 
participants chat with one of the co-hosts 
but not all of them as a group. Lastly, there 
was no way to clear the chat history between 
paper discussions in order to avoid leaking 
information to other participants once they 
rejoined.

While Zoom permitted us to manage 
conflicts as described above, it took time 
to do so: we had to look up the conflicts in 
HotCRP, then scroll or search for the right 
participant in the participant list, then 
move them to the waiting room one by one. 
There is no feature for participants to take 
themselves into the waiting room the way 
they would during an in-person PC meeting. 
Zoom, perhaps under network stress, had 
a delay of 2–3 seconds between when you 
kicked someone off the meeting and they 
actually showed up in the waiting room. So 
 it took 1–2 minutes per paper just to man-
age those conflicts, precious time when 
you are under a tight schedule. Conversely, 
in a physical PC meeting, you quickly call 
the names of all conflicted members, and 
they all get up at once and leave the room in 
parallel.

Zoom shows at most 25 participants’ video 
at once, and not all of our participants used 
their video. (One insisted on calling in from 
an anonymous phone number due to reports 
of Zoom privacy concerns.) This made it 
harder for PC members to know when they 
could jump in and speak. We tried to manage 
the order as best we could, calling on people 
in turn, and we also used the “raise hand” 
feature a bit, but it still took longer than with 
an in-person meeting. There were also natu-
ral delays in people’s audio/video stream 
and a few people with poor connections. All 
this added another 1-2 minutes of time when 
discussing each paper.

When a PC meeting is held in person, 
people come from all over the world and 
are present at the start of the meeting at 
the designated time. But with a virtual PC 
meeting spanning 12–15 time zones, it was 
impossible to expect people to be at the 
meeting at ridiculous early/late hours. So 

our meeting was scheduled for the middle 
of the day. We sent a Doodle survey to see 
what times people could attend, and we tried 
our best to group papers based on people’s 
time constraints—not an easy task. Worse, 
because of COVID19, people had day job 
duties they couldn’t ignore, childcare duties, 
last-minute schedule changes, and more. We 
had to adapt to people’s changing schedules 
dynamically. This added more “context 
switching” time between papers.

A few other aspects made the process 
challenging. First, it was more difficult to 
control inadvertent leakage of information 
about paper reviewers—we had cases where 
either one of us or reviewers themselves 
asked if we could do paper #X before they 
left, or when we waited to discuss a paper 
because of a missing reviewer, but now that 
information was visible to others—they saw 
who just joined the meeting. Likely some 
of this exists in an in-person PC meeting, 
but probably less so. Second, managing the 
discussions to wrap up in a fixed amount 
of time was more difficult, given the lack of 
other options. PC voting as an option really 
doesn’t work in an online format. We rarely 
had the full PC, and with people coming 
and going and videos switched off, it was 
difficult to tell who was around, whether 
they would listen in a brief summary of the 
discussion before voting, etc. As a result, in 
cases when the PC discussion was “dead-
locked” and it was obvious that a reviewer’s 
vote wouldn’t resolve it (e.g., an even number 
of reviewers split 50/50), asking the PC to 
vote could not resolve the paper’s status.

In addition, it was harder to ask the PC 
members to take the conversation offline 
and report back—something that’s com-
monly done during in-person PC meetings— 
because of the above-mentioned issue with 
time zones and daytime duties. Taking 
a conversation “offline” meant pushing 
papers to be decided at some undetermined 
later point, likely after the actual PC meet-
ing. These two issues made it harder to cut 
discussions short, which again added to the 
meeting time.

We already expected that our virtual PC 
meeting wasn’t going to be as effective as 
an in-person one would have been. So for 
weeks leading to the meeting, we pushed 
our PC hard to try and reach a decision on 
as many papers as possible. That certainly 
helped a lot (and we have even heard of some 
PC Chairs who canceled their online PC 
meeting so they didn’t have to deal with the 
complexities of running it virtually). Still, 
all these complications caused our PC meet-
ing, originally scheduled for five hours, to 
take seven hours. And we still had a few of 
the discussed papers to finalize offline after 
the meeting.

Finally, a word about security and privacy. 
Since Zoom saw its user base grow 20-fold 
in just a few months, it has attracted a lot 
of media attention and reporting of serious 
security and privacy concerns. (This is not 
to suggest that Zoom’s competitors’ security 
and privacy practices are perfect and their 
software bug-free.) As a result, a few high 
profile communities (e.g., school districts) 
banned or abandoned Zoom altogether. To 
their credit, Zoom has apologized publicly, 
has begun to address these concerns, and 
has already released several security fixes 
and new features, promising more. Still, 
some of our PC members, understandably, 
preferred not to run the Zoom client or ac-
cept their privacy policy as there are reports 
of numerous Zoom users’ credentials sold 
on the dark web. These users called in via 
phone instead.

With safety in mind, the 2020 
USENIX Annual  Technical 

Conference  (USENIX ATC ’20) 
and co-located HotCloud ’20  
and HotStorage ’20 will take 

place as virtual events.  
We hope to see you online,  

July 13–17, 2020.  
Find out more at usenix.org/atc20.

https://www.usenix.org/atc20
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•  What, if any, non-text elements (illustrations, code, 

diagrams, etc.) will be included?
• What is the approximate length of the article?

Start out by answering each of those six questions. In an-
swering the question about length, the limit for articles is 
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