
;login:
S U M M E R 2 0 2 0 V O L . 4 5 , N O . 2

Columns
Culture of Complacency and Crisis
Laura Nolan

Using eBPF, Part 2
Dave Josephsen

Supporting OSS
Dan Geer and George P. Sieniawski

& Finding Anomalies in Linux
Performance
Richard L. Sites

& Misaligned Incentives and Bad
Software Design
Marianne Bellotti

& Failures in Enterprise SSDs
Stathis Maneas, Kaveh Mahdaviani, Tim Emami,
and Bianca Schroeder

& Using ML in Support of SRE
Steven Ross and Todd Underwood

& Interview with Natalie Silvanovich
Rik Farrow

Thanks to our USENIX Supporters!
USENIX appreciates the financial assistance our Supporters provide to subsidize our day-to-day
operations and to continue our non-profit mission. Our supporters help ensure:

• Free and open access to technical information
• Student Grants and Diversity Grants to participate in USENIX conferences
• The nexus between academic research and industry practice
• Diversity and representation in the technical workplace

We need you now more than ever! Contact us at sponsorship@usenix.org.

We offer our heartfelt appreciation to the following sponsors and champions of conference
diversity, open access, and our SREcon communities via their sponsorship of multiple conferences:

Ethyca

Datadog

Dropbox

Goldman Sachs

Microsoft Azure

LinkedIn

Packet

Salesforce

More information at www.usenix.org/supporters

USENIX PATRONS

USENIX BENEFACTORS

USENIX PARTNERS

E D I T O R
Rik Farrow

M A N A G I N G E D I T O R
Michele Nelson

C O P Y E D I T O R S
Steve Gilmartin
Amber Ankerholz

P R O D U C T I O N
Arnold Gatilao
Ann Heron
Jasmine Murcia
Olivia Vernetti

T Y P E S E T T E R
Linda Davis

U S E N I X A S S O C I AT I O N
2560 Ninth Street, Suite 215
Berkeley, California 94710, USA
Phone: +1 510.528.8649
login@usenix.org

www.usenix.org

;login: is the official magazine of the USENIX
Association. ;login: (ISSN 1044-6397)
is published quarterly by the USENIX
Association, 2560 Ninth Street, Suite 215,
 Berkeley, CA 94710, USA.

A one-year print subscription to ;login:
magazine is available only to USENIX
Association members at the Sustainer
level and higher. Periodicals postage is
paid at Berkeley, CA, USA, and additional
mailing offices.

POSTMASTER: Send address changes to
;login:, USENIX Association, 2560 Ninth Street,
Suite 215, Berkeley, CA 94710, USA.

©2020 USENIX Association
USENIX is a registered trademark of the
USENIX Association. Many of the designa-
tions used by manufacturers and sellers
to distinguish their products are claimed
as trademarks. USENIX acknowledges all
trademarks herein. Where those desig na tions
appear in this publication and USENIX is
aware of a trademark claim, the designations
have been printed in caps or initial caps.

S U M M E R 2 0 2 0 V O L . 4 5 , N O . 2

E D I T O R I A L
2 Musings Rik Farrow

F I L E S Y S T E M S A N D S T O R A G E
6 A Study of SSD Reliability in Large Scale Enterprise Storage

Deployments Stathis Maneas, Kaveh Mahdaviani, Tim Emami, and
Bianca Schroeder

13 SkyhookDM: Data Processing in Ceph with Programmable
Storage Jeff LeFevre and Carlos Maltzahn

S E C U R I T Y
19 Interview with Natalie Silvanovich Rik Farrow

P R O G R A M M I N G
22 Anomalies in Linux Processor Use Richard L. Sites

27 Revisiting Conway’s Law Marianne Bellotti

S R E
30 Decision-Making Using Service Level Objectives Alex Hidalgo

33 ML for Operations: Pitfalls, Dead Ends, and Hope
Steven Ross and Todd Underwood

C O L U M N S
38 Site Reliability Engineering and the Crisis/Complacency Cycle

Laura Nolan

42 iVoyeur: eBPF Tools Dave Josephsen

45 Who Will Pay the Piper for Open Source Software Maintenance?
Can We Increase Reliability as We Increase Reliance?
Dan Geer and George P. Sieniawski

49 /dev/random: Rewind Your Mind Robert G. Ferrell

B O O K S
51 Book Reviews Mark Lamourine

U S E N I X N O T E S
54 Running Virtual PC (vPC) Meetings 

Erez Zadok and Ada Gavrilovska, 2020 USENIX Annual Technical
Conference (USENIX ATC ’20) Program Co-Chairs

https://www.usenix.org

2  S U M M ER 2020 VO L . 45 , N O. 2 www.usenix.org

EDITORIALMusings
R I K F A R R O W

Rik is the editor of ;login:.
rik@usenix.org Cost externalization is usually applied to the use of the environment

as a dumping ground for industrial waste. Instead of having to pay
for cleaning up sulfur and nitrogen dioxides from burning coal,

 companies passed those costs along to humans and the world. Turns out,
open source software has a parallel problem.

Many of you would not have been alive to experience the ’70s, and too young to be bored by
the ’80s. I’m not referring to the culture wars but rather to the acid rain that was eating holes
in tree leaves, ruining crops, and hurting wildlife [1]. The yellow smog was particularly bad
when combined with summer heat and ozone, limiting visibility in big US cities to one hun-
dred meters on some days.

In the 1990s, the US Congress passed laws forcing coal burners to scrub their emissions. That
made burning coal more expensive, continuing to do so even in 2020, but eventually made the
air a lot cleaner [2] by removing nearly half of the sulfur and nitrogen dioxides from coal burn-
ing plants’ exhausts.

Moving costs off of your company’s balance sheet appears to be a fine idea, whether you are
communist or capitalist. You can read a short blog entry about cost externalization [3], but all
you really need to know is that some companies have artificially lowered their production costs.

I started out by stating that OSS has a similar problem, but I don’t mean air pollution. Many
companies use OSS without contributing to its maintenance or creation. They have exter-
nalized the costs of programming the software they need to run their businesses to OSS
 developers—people whom they usually do not pay.

Let’s take a particularly toxic example: the Equifax hack of 2017 [4]. Equifax was using the
Apache Struts software as part of the web front-end they used to make money. Equifax, like
the other credit agencies, collected data on individuals and families and sold that to potential
creditors. In Equifax’s case, attackers took advantage of the Struts framework to invade the
Equifax network, and stole data for over 147 million people. The vulnerability they used had
been patched in March, while the hack began in July.

I hope that my comparison appears fair to you—that using OSS without contributing to its
support is a form of cost externalization. If Equifax had been actively supporting Struts, I
believe they would also have been very aware of the vulnerability and would have patched it.

Equifax will be fined and forced to “repay” those whose data had been stolen—to the tune of
hundreds of millions of dollars, maybe [5]. Seems like crime does pay, or perhaps externalizing
your costs to society works well enough most of the time.

The Lineup
I was inspired to write about cost externalization after reading Dan Geer and George
 Sieniawski’s article about paying for the maintenance of OSS. It appears that externalizing
costs extends to even tiny code snippets, such as the 11 lines of JavaScript that millions
of programmers had been using.

www.usenix.org S U M M ER 2020 VO L . 45 , N O. 2 3

EDITORIAL
Musings

But that’s not where we begin in this issue. An award-winning
paper about the reliability of enterprise SSDs forms the basis
for the first feature article. Maneas et al. used data provided by
NetApp to examine four different failure modes seen in SSDs.
Interestingly, the failures over time of enterprise SSDs are very
different from those of hard drives.

Jeff LeFevre and Carlos Maltzahn explore a way to leverage
Ceph, the distributed storage system, to move computation to the
location of data. SkyhookDM takes advantage of Ceph’s design to
distribute data across Ceph’s Object Storage Devices so that work,
such as SQL queries, can be executed on the system where data
resides instead of having to copy all data to a single server first.

I interviewed Natalie Silvanovich, part of Google’s Project Zero
team. Natalie, the first woman on the team, talked about the
techniques she uses while bug-searching, having another woman
join the team, and things you should know or learn about if you
want to learn more about finding exploitable bugs.

Dick Sites volunteered to write an article demonstrating some
uses of his kernel monitoring software, KUtrace. KUtrace
provides much finer observations of CPU activity while the CPU
executes kernel code. Sites describes four activities where the
kernel is wasting a lot of CPU cycles that likely occur commonly
enough to be serious issues.

Marianne Bellotti writes about how misaligned incentives result
in bad software design. Most people who have heard of Conway’s
Law know that it describes how designs mirror organizational
structures, but Bellotti uncovers a different facet of the law: pro-
grammers are incentivized to stand out, and that often results
in championing their own additions to code that no one else can
support.

Alex Hidalgo considers how best to use service level objectives as
a tool in decision-making. Hidalgo expresses concerns about how
SLOs are becoming buzzwords, when SLOs and SLIs can be used
to create more system reliability.

Steve Ross and Todd Underwood take a look at using ML in sup-
port of SRE. Both engineers support ML and have often been
asked to use ML as part of the support infrastructure. The
authors explain machine learning and then point out serious
issues with applying ML to SRE tasks.

Laura Nolan focuses her SRE column on decision-making, mak-
ing that the theme of this issue. Nolan, however, disparages the
current culture of complacency that encourages ignoring poten-
tial problems until they become crises. Nolan uses the response
to the coronavirus pandemic in process as I write this as an
example of the crisis/complacency dynamic.

Dave Josephsen, who lives in self-quarantine by choice, contin-
ues his exploration of BPF scripts. In particular, Dave explains
the biolatency script and how it integrates with the block I/O
(the bio) portion of the Linux kernel.

I’ve mentioned Geer and Sieniawski’s column already as having
inspired my musings about externalization. Their focus is actu-
ally on how widely OSS is used by enterprises while few take
care to actively support the software they use, as they would with
commercial software that they pay for.

Mark Lamourine has a container focus this issue, reviewing
books about Docker, microservices, and containers. Mark joined
the decision-making crowd with reviews of related books.

Robert G. Ferrell was inspired by the failed foray, related by Ross
and Underwood, to have ML take over SRE. Robert spins this a
bit differently, as he instead discusses how humans and AI will
become competitors.

Peter Norton and Chris McEniry didn’t write for this issue.

In the world we live and work in, market forces are supposed
to rein in cheaters—those who sell bad products or take advan-
tage of our culture to cut costs. In reality, market forces seem to
encourage cheating, even when companies that do this get caught
in the process. Oil companies are still supported by tax breaks,
while companies like Theranos thrive for a while until the illu-
sion they created via marketing dissipates.

And perhaps we should give Equifax a break. After the attack,
people feared that identities would be stolen, bank accounts
drained, and false tax forms filed. Instead, it turns out the Chi-
nese hackers were to blame [6]. So instead of being worried about
identity theft, we should be worried about Chinese intelligence
operatives using our personal data to blackmail us.

Oh, well. I bet the people at Equifax weren’t thinking about
that when they designed their web front-ends using someone
else’s code.

4  S U M M ER 2020 VO L . 45 , N O. 2 www.usenix.org

EDITORIAL
Musings

References
[1] “Effects of Acid Rain”: https://www.epa.gov/acidrain/effects
-acid-rain.

[2] N. S. Rastogi, “Whatever Happened to Acid Rain?” Slate,
August 2009: https://slate.com/technology/2009/08/whatever
-happened-to-acid-rain.html.

[3] J. Whitehead and T. Haab, “ECON 101: Negative Externality”:
https://www.env-econ.net/negative-externality.html.

[4] L. H. Newman, “Equifax Officially Has No Excuse,”
WIRED, September 14, 2017: https://www.wired.com/story
/equifax-breach-no-excuse/.

[5] Z. Whittaker, “FTC Slaps Equifax with a Fine of up to $700
Million for 2017 Data Breach,” TechCrunch, July 22, 2019:
https://techcrunch.com/2019/07/22/equifax-fine-ftc/.

[6] B. Krebs, “U.S. Charges 4 Chinese Military Officers in 2017
Equifax Hack,” Krebs on Security, February 10, 2020: https://
krebsonsecurity.com/tag/equifax-breach/.

XKCD xkcd.com

https://www.epa.gov/acidrain/effects-acid-rain
https://www.epa.gov/acidrain/effects-acid-rain
https://slate.com/technology/2009/08/whatever-happened-to-acid-rain.html
https://slate.com/technology/2009/08/whatever-happened-to-acid-rain.html
https://www.env-econ.net/negative-externality.html
https://www.wired.com/story/equifax-breach-no-excuse/
https://www.wired.com/story/equifax-breach-no-excuse/
https://techcrunch.com/2019/07/22/equifax-fine-ftc/
https://krebsonsecurity.com/tag/equifax-breach/
https://krebsonsecurity.com/tag/equifax-breach/

https://www.freebsdfoundation.org/journal

6  S U M M ER 2020 VO L . 45 , N O. 2 www.usenix.org

FILE SYSTEMSA Study of SSD Reliability in Large Scale
Enterprise Storage Deployments
S T A T H I S M A N E A S , K A V E H M A H D A V I A N I , T I M E M A M I , A N D B I A N C A S C H R O E D E R

Stathis Maneas is a PhD
candidate in the Department
of Computer Science at the
University of Toronto. Prior to
that, he obtained his MSc and

BSc degrees at the National and Kapodistrian
University of Athens. His main research interests
include the design and implementation of
computer systems, especially storage and file
systems, and distributed systems. His current
research focuses on the reliability aspect of
systems. smaneas@cs.toronto.edu

Kaveh Mahdaviani is a Postdoc-
toral Fellow in the Department
of Computer Science at the
University of Toronto. Before
that, he completed his PhD, MSc,

and BSc programs at the University of Toronto,
University of Alberta, and Isfahan University of
Technology, respectively. His research focuses
on distributed systems, information theory, and
coding theory. mahdaviani@cs.toronto.edu

Tim Emami is a Senior Technical
Director and the Storage Media
subject matter expert at NetApp.
During his over 13-year tenure,
he helped pioneer ONTAP’s

transition from disk to flash. Prior to NetApp,
he worked in R&D roles at Maxtor, Quantum,
WDC, and StorCard. He studied control sys-
tems at California Polytechnic State Institute,
San Luis Obispo.
Tim.Emami@netapp.com

W e present the first large-scale field study of NAND-based SSDs
deployed in enterprise storage systems. Our study is based on
field data, collected over 2.5 years, for a sample of almost 1.4 mil-

lion drives from the total SSD population of a major enterprise storage vendor
(NetApp). The data allows us to study a large number of factors that were not
included in prior work, such as the effect of firmware versions, the reliability
of TLC NAND, and correlations between drives within a RAID group. Our
analysis provides insight into flash reliability, along with a number of practi-
cal implications.

System reliability is arguably one of the most important aspects of a storage system, and, as
such, a large body of work exists on the topic of storage device reliability. Much of the older
work is focused on hard disk drives (HDDs) [1, 5–7], but as more data is being stored on solid
state drives (SSDs), the focus has recently shifted to the reliability of SSDs. In addition to a
large amount of work on SSDs in lab conditions under controlled experiments, the first field
studies reporting on SSD reliability in deployed production systems have recently appeared
[3, 4, 8, 10]. These studies are based on data collected at datacenters at Facebook, Microsoft,
Google, and Alibaba, where drives are deployed as part of large distributed storage systems.
However, we observe that there still are a number of critical gaps in the existing literature
that this work is striving to bridge:

 3 There were no studies that focus on enterprise storage systems. The drives, workloads, and
reliability mechanisms in these systems can differ significantly from those in cloud datacen-
ters. For example, the drives used in enterprise storage systems include high-end drives, and
reliability is ensured through (single, double, or triple parity) RAID, instead of replication or
distributed storage codes.
 3 We also observe that existing studies do not cover some of the most important character-
istics of failures that are required for building realistic failure models, in order to compute
metrics such as the mean time to data loss. This includes, for example, a breakdown of the
reasons for drive replacements, including the scope of the underlying problem and the cor-
responding repair action (RAID reconstruction versus draining the drive), and most impor-
tantly, an understanding of the correlations between drive replacements in the same RAID
group.

In this article, we present some selected findings of our work. For detailed results, please see
our USENIX FAST ’20 paper [2].

Reasons for Replacements
SSD replacement can be triggered for various reasons, and different subsystems in the storage
hierarchy can detect issues that trigger the replacement of drives. For example, issues might
be reported by the drive itself, the storage layer, or the file system. Table 1 describes the differ-
ent reason types that can trigger a drive replacement, along with their frequency, the recovery
action taken by the system, and the scope of the problem. We group the different reason types
behind SSD replacements into four categories, labeled A to D, based on their severity.

www.usenix.org S U M M ER 2020 VO L . 45 , N O. 2 7

FILE SYSTEMS AND STORAGE
Bianca Schroeder is an Associate
Professor and Canada Research
Chair in the Computer Science
Department at the University of
Toronto. She completed her PhD

and a post-doc at Carnegie Mellon University
under the guidance of Mor Harchol-Balter and
Garth Gibson, respectively. She is an Alfred
P. Sloan Research Fellow and the recipient of
the Outstanding Young Canadian Computer
Science Prize of the Canadian Association for
Computer Science, an Ontario Early Researcher
Award, five best paper awards and a Test of
Time award. bianca@cs.toronto.edu

The most benign category is category D, which relates to replacements that were triggered by
logic either inside the drive or at higher levels in the system, which predicts future drive fail-
ure, based on, for example, previous errors, timeouts, and a drive’s SMART statistics [9]. The
most severe category is category A, which comprises those situations where drives become
completely unresponsive, or where the SCSI layer detects a hardware error (reported by the
drive) severe enough to trigger immediate replacement and RAID reconstruction of its data.

Category B refers to drive replacements that are taking place when the system suspects the
drive to have lost a write, e.g., because it did not perform the write at all, wrote it to a wrong
location, or otherwise corrupted the write. The root cause could be a firmware bug in the
drive, although other layers in the storage stack could be responsible as well. As there are
many potential causes, a heuristic is used to decide whether to trigger a replacement or not.

Finally, in category C most of the reasons for replacements are related to commands that
were aborted or timed out. For instance, a command can be aborted when the host has sent some
write commands to the device, but the actual data never reached the device due to connection
issues. Ownership errors are related to the subsystem that keeps track of which node owns a drive;
if an error occurs during the communication with this subsystem, the drive is marked as failed.

When examining the frequency of each individual type, we observe that SCSI errors are the
most common type, responsible for ~33% of all replacements and, unfortunately, also one of
the most severe reason types. On the other hand, drives rarely become completely unrespon-
sive (0.60% of all replacements). Fortunately, one-third of all drive replacements are merely
preventative (category D), using predictions of future drive failures, and are hence unlikely to
have severe impact on system reliability. Finally, the two remaining categories (B and C) are
roughly equally common, and both have the potential of partial data loss if RAID reconstruc-
tion of the affected data should turn out unsuccessful.

Finding 1: One-third of replacements are associated with one of the most severe reason types
(i.e., SCSI errors); on the other hand, one-third of drive replacements are merely preventative,
based on predictions.

Category Type Pct. Annual Repl.
Rate (%)

Recovery
Action Scope

A
SCSI Error 32.78 0.055 RAID

Reconstruction
Full

Unresponsive Drive 0.60 0.001

B Lost Writes 13.54 0.023
RAID
Reconstruction

Partial

C

Aborted Commands 13.56 0.023

RAID
Reconstruction

Partial
Disk Ownership I/O
Errors

3.27 0.005

Command Timeouts 1.81 0.003

D

Predictive Failures 12.78 0.021

Disk Copy ZeroThreshold Exceeded 12.73 0.020

Recommended Failures 8.93 0.015

Table 1: Description of reason types that can trigger a drive replacement. Disk copy operations are performed
only where possible (e.g., a spare disk must be available).

8  S U M M ER 2020 VO L . 45 , N O. 2 www.usenix.org

FILE SYSTEMS AND STORAGE
A Study of SSD Reliability in Large Scale Enterprise Storage Deployments

Factors Impacting Replacement Rates
We evaluate how different factors impact the replacement rates
of the SSDs in our data set. We make use of the annual replace-
ment rate (ARR) metric, which is commonly used to report
failure frequency [4, 5, 7] and is defined as follows:

Total failed devices
 ARR = in %

Total device years

Usage and Age
It is well known that usage, and the wear-out of flash cells that
comes with it, affects the reliability of flash-based SSDs; drives
are guaranteed to remain functional for only a certain number of
program/erase (PE) cycles. In our data set, SLC drives have a PE
cycles limit of 100K, whereas the limit of most cMLC, eMLC, and
3D-TLC drives is equal to 10K cycles, with the exception of a few
eMLC drive families with a 30K PE cycles limit.

Each drive reports the number of PE cycles it has experienced
as a percentage of its PE cycle limit (denoted as rated life used),
allowing us to study how usage affects replacement rates. Unfor -
tunately, the rated life used is only reported as a truncated
integer, and a significant fraction of drives report a zero for this
metric, indicating less than 1% of their rated life has been used.
Therefore, our first step is a comparison of the ARR of drives that
report less than 1% versus more than 1% of their rated life used.
The results for eMLC and 3D-TLC drives are shown in Figure 1,
which includes both overall replacement rates (“All”) and rates
broken down by their replacement category (A to D). Throughout
the article, error bars refer to 95th percentile confidence inter-
vals; we also exclude two outlier models, i.e., I-C and II-C, with
unusually high replacement rates to not obscure trends except
for graphs involving individual drive families.

Figure 1 provides evidence for effects of infant mortality. For
example, eMLC drives, the drives with less than 1% rated life
used, are more likely (1.25x) to be replaced than those with more
than 1% of rated life used. When further breaking results down
by reason category, we find that drives with less usage consis-
tently experience higher replacement rates for all categories.

Making conclusive claims for the 3D-TLC drives is harder due
to limited data on drives above 1% of rated life used, resulting in
wide confidence intervals. However, where we have enough data,
observations are similar to those for eMLC drives, e.g., we see a
significant drop in lost writes for drives above 1% of rated life used.

We also look at replacement rates as a function of a drive’s age
measured by its total months in the field. Figure 2 shows the con-
ditional probability of a drive being replaced in a given month of
its life, i.e., the probability that the drive will fail in month x given
that it has survived up to the end of month x-1.

We observe an unexpectedly long period of infant mortality with
a shape that differs from the common “bathtub” model, often
used in reliability theory. The bathtub model assumes a short
initial period of high failure rates, which then quickly drops.
Instead, we observe for both 3D-TLC and eMLC drives, a long
period (12–15 months) of increasing failure rates, followed by
a lengthy period (another 6–12 months) of slowly decreasing
failure rates, before rates finally stabilize. This brings up the
question of what could be done to reduce these effects. One might
consider, for example, an extended, more intense burn-in period
before deployment, where drives are subjected to longer periods
of high read and write loads. Given the low consumption of PE
cycles that drives see in the field (99% of drives do not even use
up 1% of their PE cycle limit), there seems to be room to sacrifice
some PE cycles in the burn-in process.

Finally, it might be surprising that we do not observe an increase
in ARR for drives towards the end of their life, but the majority of
drives, even those deployed for several years, do not experience a
large number of PE cycles.

Finding 2: We observe a very drawn-out period of infant mortality,
which can last more than a year, and see failure rates 2–3x larger
than later in life.

Flash and Drive Type
The drive models in our study differ in the type of flash they are
based on, i.e., in how many bits are encoded in a single flash cell.
For instance, Single-Level Cell (SLC) drives encode only one bit
per cell, while Multi-Level Cell (MLC) drives encode two bits in
one cell for higher data density and thus a lower total cost, but
potentially higher propensity to errors. The most recent genera-
tion of flash in our data set is based on Triple-Level Cell (3D-TLC)
flash with three bits per cell.

Figure 1: Annual replacement rate per flash type based on the drives’
“rated-life-used” percentage

www.usenix.org S U M M ER 2020 VO L . 45 , N O. 2 9

FILE SYSTEMS AND STORAGE
A Study of SSD Reliability in Large Scale Enterprise Storage Deployments

We turn to Figures 1 and 3 to compare 3D-TLC and eMLC drives,
which take usage and lithography into account. Figure 1 indicates
that ARRs for 3D-TLC drives are around 1.5x higher than for
eMLC drives, when comparing similar levels of usage. Figure
3 paints a more complex picture. While V2 3D-TLC drives have
a significantly higher replacement rate than any of the other
groups, the V3 3D-TLC drives are actually comparable to 2x nm
eMLC drives, and in fact have lower ARR than the 1x nm eMLC
drives. So lithography might play a larger role than flash type
alone; we take a closer look at lithography below.

When we compare the results for the MLC drives in our data
set against previous work, we observe that Narayanan et al. [4]
report replacement rates between 0.5–1% for their consumer
class MLC drives, with the exception of a single enterprise
class model, whose replacement rate is equal to 0.1%; however,
the authors in [4] consider only fail-stop failures. In our study,
we consider different types of failures, and, thus, the reported
replacement rates would have been even smaller had we consid-
ered only fail-stop failures.

Finding 3: Overall, the highest replacement rates in our study are
associated with 3D-TLC drives. However, no single flash type has
noticeably higher replacement rates than the other flash types in
this work, indicating that other factors (e.g., lithography) can have
a bigger impact on reliability.

Lithography
Lithography has been shown to be highly correlated with a drive’s
raw bit error rate (RBER); models with smaller lithography
report higher RBERs according to a study based on datacenter
drives [8], but not necessarily higher replacement rates. We
explore what these trends look like for the drives in enterprise
storage systems. To separate the effect of lithography from flash
type, we perform the analysis separately for each flash type.

The bar graph in Figure 3 (right) shows the ARR for eMLC drives
separated into 2x nm and 1x nm lithographies broken down by
failure category, also including one bar for replacements of all

categories. The 1x nm and 2x nm notations denote any lithog-
raphy in the range of 10–19 nm and 20–29 nm, respectively. We
observe that the higher density 1x nm drives experience almost
twice the replacement rate of 2x nm drives. Also, replacement
rates for each of the individual reason types are higher for 1x nm
drives than for 2x nm, with the only exception of reason category
A, which corresponds to unresponsive drives.

In contrast to eMLC drives, the 3D-TLC drives see higher replace-
ment rates for the lower density V2 drives, which internally have
fewer layers than V3. When breaking replacement rates down by
failure reason, we observe that consistently with the results for
TLC drives, the only reason code that is not affected by lithogra-
phy is category A, which corresponds to unresponsive drives.

Finding 4: In contrast to previous work, higher density drives do
not always see higher replacement rates. In fact, we observe that,
although higher density eMLC drives have higher replacement
rates, this trend is reversed for 3D-TLC.

Firmware Version
Given that bugs in a drive’s firmware can lead to drive errors or,
in the worst case, to an unresponsive drive, we are interested to
see whether different firmware versions are associated with a
different ARR. Each drive model in our study experiences dif-
ferent firmware versions over time. We name the first firmware
version of a model FV1, the next one FV2, and so on. An indi-
vidual drive’s firmware might be updated to a new version, but we
observe that the majority of drives (70%) appear under the same
firmware version in all data snapshots.

Figure 4 shows the ARR associated with different firmware
versions for each drive family. Considering that firmware varies
across drive families and manufacturers, it only makes sense to
compare the ARR of different firmware versions within the same
drive family. To avoid other confounding factors, in particular

Figure 2: Conditional probability of failure based on a drive’s age (number
of months in the field) for all drive families

Figure 3: Annual replacement rate per flash type and lithography broken
down by replacement category. The 1x nm and 2x nm notations denote any
lithography in the range of 10–19 nm and 20–29 nm, respectively.

10  S U M M ER 2020 VO L . 45 , N O. 2 www.usenix.org

FILE SYSTEMS AND STORAGE
A Study of SSD Reliability in Large Scale Enterprise Storage Deployments

age and usage, the graph in Figure 4 only includes drives with
rated life used of less than 1% (the majority of drives).

We find that drives’ firmware version can have a tremendous
impact on reliability. In particular, the earliest versions can
have an order of magnitude higher ARR than later versions. This
effect is most notable for families I-B (more than 2x decrease
in ARR from FV1 to FV2), II-A (8x decrease from FV2 to FV3),
and II-F (more than 10x decrease from FV2 to FV3). Finally, we
note that this effect persists even if we only include drives whose
firmware has never changed in our data snapshots.

Finding 5: Earlier firmware versions can be correlated with sig-
nificantly higher replacement rates, emphasizing the importance
of firmware updates.

Correlations between Drive Failures
A key question when deriving reliability estimates—e.g., for dif-
ferent RAID configurations—is how failures of drives within the
same RAID group are correlated.

For a detailed understanding of correlations, we consider all RAID
groups that have experienced more than one drive replacement
over the course of our observation period, and plot in Figure 5
the time between consecutive drive replacements within the
same RAID group. We observe that very commonly, the second
drive replacement follows the preceding one within a short time
interval. For example, 46% of consecutive replacements take
place at most one day after the previous replacement, while 52%
of all consecutive replacements take place within a week of the
previous replacement.

Another important question in RAID reliability modeling is how
the chance of multiple failures grows as the number of drives in
the RAID group increases. Figure 6 (left) presents, for the most
common RAID group sizes, the percentage of RAID groups of

that size that experienced at least one drive replacement. As one
would expect, larger RAID groups have a higher chance of experi-
encing a drive replacement; yet, the effect of a RAID group’s size on
the replacement rates saturates for RAID groups comprising more
than 18 drives.

Concerning multiple failures within the same RAID group, we
make an interesting observation in Figure 6 (middle). When we
look at the percentage of RAID groups that have experienced at
least two drive replacements (potential double failure), this does
not seem to be clearly correlated with RAID group size. In other
words, the largest RAID group sizes do not necessarily seem to
have a higher rate of double (or multiple) failures compared to
smaller RAID groups.

This observation is confirmed when we look at the conditional
probability that a RAID group will experience more replace-
ments, given that it has already experienced another replacement,
in Figure 6 (right). More precisely, for each RAID group size, we
consider those RAID groups that had at least one drive replace-
ment and compute what percentage of them had at least one more
replacement within a week. Interestingly, we observe there is
no clear trend that larger RAID group sizes have a larger chance
of one drive replacement being followed by more replacements.
Note that, as already mentioned, the chance of experiencing a
drive failure grows with the size of the RAID group (Figure 6
left); however, the chance of correlated failures does not show a
direct relationship with the group’s size.

Finding 6: While large RAID groups have a larger number of
drive replacements, we find no evidence that the rate of multiple
failures per group (which is what can create potential for data loss)
is correlated with RAID group size. The reason seems to be that the
likelihood of a follow-up failure after a first failure is not correlated
with RAID group size.

Figure 4: Effect of the firmware version on replacement rates broken down
by drive family

Figure 5: Time difference between successive replacements within RAID
groups

www.usenix.org S U M M ER 2020 VO L . 45 , N O. 2 11

FILE SYSTEMS AND STORAGE
A Study of SSD Reliability in Large Scale Enterprise Storage Deployments

Conclusion
Previous work has focused on the reliability characteristics of
SSDs deployed in distributed datacenter storage systems. Our
work presents the first large-scale field study of NAND-based
SSDs in enterprise storage systems [2]. Below, we summarize
some of the most important findings and implications of our work:

 3 Our observations emphasize the importance of firmware
updates, as earlier firmware versions can be correlated with
significantly higher failure rates. Yet 70% of drives remain at
the same firmware version throughout the length of our study.
Consequently, we encourage enterprise storage vendors to
make firmware upgrades as easy and painless as possible so
that customers apply the upgrades without worries about sta-
bility issues.
 3 We observe significant correlations between failures within
RAID groups. This emphasizes the importance of incorporating
correlated failures into any analytical models in order to arrive
at realistic estimates of the probability of data loss. It also makes
a case for more than just single-parity RAID.
 3 The failure rates in our study do not resemble the “bathtub”
shape assumed by classical reliability models. Instead, we observe
no signs of increased failure rates at end of life and also a very
drawn-out period of infant mortality, which can last for more than
a year and see failure rates 2–3x larger than later in life.
 3 There has been a fear that the limited PE cycles of NAND SSDs
can create a threat to data reliability in the later part of a RAID
system’s life due to correlated wear-out failures, as the drives in
a RAID group age at the same rate. Instead, we observe that cor-
related failures due to infant mortality are likely to be a bigger
threat.

Acknowledgments
We would like to acknowledge several people at NetApp for
their contributions to this work: Rodney Dekoning, Saumyabrata
Bandyopadhyay, and Anita Jindal for their early support and
encouragement, and Aziz Htite, who helped cross-validate
our data and assumptions along the way. We would also like to
thank the internal reviewers within the ATG, ONTAP WAFL,
and RAID groups for their careful and detailed feedback. A very
special thank you to Biren Fondekar’s Active IQ team in Banga-
lore: Asha Gangolli, Kavitha Degavinti, and finally Vinay N., who
spent countless late nights on the phone with us as we cleaned
and curated this work’s foundational data sets. We also thank our
USENIX FAST reviewers and our shepherd, Devesh Tiwari, for
their detailed feedback and valuable suggestions.

Figure 6: Statistics on replacements within RAID groups

(a) RAID groups that experience at least
one replacement

(b) RAID groups that experience
multiple replacements

(c) RAID groups with replacement that
experience at least one follow-up replace-
ment within the next week

12  S U M M ER 2020 VO L . 45 , N O. 2 www.usenix.org

FILE SYSTEMS AND STORAGE
A Study of SSD Reliability in Large Scale Enterprise Storage Deployments

References
[1] D. N. Bairavasundaram, G. R. Goodson, S. Pasupathy, and
J. Schindler, “An Analysis of Latent Sector Errors in Disk Drives,”
in Proceedings of the 2007 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS ’07), pp. 289–300.

[2] S. Maneas, K. Mahdaviani, T. Emami, and B. Schroeder,
“A Study of SSD Reliability in Large Scale Enterprise Storage
Deployments,” in Proceedings of the 18th USENIX Conference on
File and Storage Technologies (FAST ’20), pp. 137–149: https://
www.usenix.org/system/files/fast20-maneas.pdf.

[3] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “A Large-Scale Study
of Flash Memory Failures in the Field,” in Proceedings of the
2015 ACM SIGMETRICS International Conference on Measure-
ment and Modeling of Computer Systems (SIGMETRICS ’15),
pp. 177–190.

[4] I. Narayanan, D. Wang, M. Jeon, B. Sharma, L. Caulfield,
A. Sivasubramaniam, B. Cutler, J. Liu, B. Khessib, and K. Vaid,
“SSD Failures in Datacenters: What? When? And Why?” in
 Proceedings of the 9th ACM International on Systems and
 Storage Conference (SYSTOR ’16), pp. 7:1–7:11.

[5] E. Pinheiro, W.-D. Weber, and L. André Barroso, “Failure
Trends in a Large Disk Drive Population,” in Proceedings of the
5th USENIX Conference on File and Storage Technologies
(FAST ’07), pp. 17–23: https://www.usenix.org/legacy/event
/fast07/tech/full_papers/pinheiro/pinheiro.pdf.

[6] B. Schroeder, S. Damouras, and P. Gill, “Understanding
Latent Sector Errors and How to Protect Against Them,” ACM
Transactions on Storage (TOS), vol. 6, no. 3 (September 2010),
pp. 9:1–9:23.

[7] B. Schroeder and G. A. Gibson, “Disk Failures in the Real
World: What Does an MTTF of 1,000,000 Hours Mean to You?”
in Proceedings of the 5th USENIX Conference on File and Storage
Technologies (FAST ’07), pp. 1–16: https://www.usenix.org
/legacy/event/fast07/tech/schroeder/schroeder.pdf.

[8] B. Schroeder, R. Lagisetty, and A. Merchant, “Flash Reli-
ability in Production: The Expected and the Unexpected,” in
Proceedings of the 14th USENIX Conference on File and Storage
Technologies (FAST ’16), pp. 67–80: https://www.usenix.org
/system/files/conference/fast16/fast16-papers-schroeder.pdf.

[9] Wikipedia, “S.M.A.R.T.”: https://en.wikipedia.org/wiki
/S.M.A.R.T. Accessed: 3/2/20.

[10] E. Xu, M. Zheng, F. Qin, Y. Xu, and J. Wu, “Lessons and
Actions: What We Learned from 10k SSD-Related Storage
System Failures,” in Proceedings of the 2019 USENIX Annual
Technical Conference (USENIX ATC ’19), pp. 961–976: https://
www.usenix.org/system/files/atc19-xu_0.pdf.

https://www.usenix.org/system/files/fast20-maneas.pdf
https://www.usenix.org/system/files/fast20-maneas.pdf
https://www.usenix.org/legacy/event/fast07/tech/full_papers/pinheiro/pinheiro.pdf
https://www.usenix.org/legacy/event/fast07/tech/full_papers/pinheiro/pinheiro.pdf
https://www.usenix.org/legacy/event/fast07/tech/schroeder/schroeder.pdf
https://www.usenix.org/legacy/event/fast07/tech/schroeder/schroeder.pdf
https://www.usenix.org/system/files/conference/fast16/fast16-papers-schroeder.pdf
https://www.usenix.org/system/files/conference/fast16/fast16-papers-schroeder.pdf
https://en.wikipedia.org/wiki/S.M.A.R.T
https://en.wikipedia.org/wiki/S.M.A.R.T
https://www.usenix.org/system/files/atc19-xu_0.pdf
https://www.usenix.org/system/files/atc19-xu_0.pdf

www.usenix.org S U M M ER 2020 VO L . 45 , N O. 2 13

FILE SYSTEMS AND STORAGE

SkyhookDM: Data Processing in Ceph with
Programmable Storage
J E F F L E F E V R E A N D C A R L O S M A L T Z A H N

W ith ever larger data sets and cloud-based storage systems, it
becomes increasingly more attractive to move computation to
data, a common principle in big data systems. Historically, data

management systems have pushed computation nearest to the data in order
to reduce data moving through query execution pipelines. Computational
storage approaches address the problem of both data reduction nearest the
source as well as offloading some processing to the storage layer.

As storage systems become more disaggregated from client applications, such as distributed
object storage (e.g., S3, Swift, and Ceph), there is new interest in computational storage dis-
aggregated over networks [7]. There has also been a long line of efforts toward computational
storage, including custom hardware and software for intelligent disks and active storage [5, 6,
13, 15], commercial appliances, and middleware approaches in the cloud [1, 2].

Recent research on programmable storage systems [4, 9–12, 14, 16] takes the approach of
exposing, augmenting, or combining existing functionality already present in the storage sys-
tem to increase storage capabilities, performance, or provide new storage APIs and services
to clients. There are several benefits to this approach, including (1) building upon a trusted,
production quality storage system rather than starting from scratch or building a one-off
solution; (2) requiring no additional system or hardware (e.g., Zookeeper or specialized disks)
to be installed to provide these new functions; and (3) avoiding the need for each client to
reimplement available functionality on a per-use-case basis by simply accessing newly avail-
able storage services as they become available.

The Skyhook Data Management project (skyhookdm.com) [8, 9] utilizes programmable
storage methods to extend Ceph with data processing and management capabilities. Our
methods are applied directly to objects or across groups of objects by the storage system
itself. These capabilities are implemented as extensions to Ceph’s through its existing cls
mechanism. This mechanism allows users to install custom functions that can be applied to
objects in addition to read() or write(). Our approach that includes custom extensions along
with data partitioning and structured data storage enables storage servers to semantically
interpret object data in order to execute functions such as SQL SELECT, PROJECT, and
AGGREGATE. We also developed extensions for data management functions that perform
physical design tasks such as indexing, data repartitioning, and formatting. Partitioning and
formatting can be especially useful in the context of row versus column-oriented formats for
workload processing.

The immediate benefits of this approach are I/O and CPU scalability (for certain functions)
that grows or shrinks along with the number of storage servers. Since objects are semanti-
cally self-contained (i.e., a database partition) and are the entities that custom functions
operate on, and since the storage system automatically rebalances objects across available
servers—our approach, using I/O and compute elasticity, can directly benefit any storage
 client application that is able to take advantage of these methods.

Jeff LeFevre is an Assistant
Adjunct Professor for Computer
Science and Engineering at UC
Santa Cruz. He currently leads
the SkyhookDM project, and

his research interests are in cloud databases,
database physical design, and storage systems.
Dr. LeFevre joined the CSE faculty in 2018 and
has previously worked on the Vertica database
for HP. jlefevre@ucsc.edu

Carlos Maltzahn is an Adjunct
Professor for Computer Science
and Engineering at UC Santa
Cruz. He is the founder and
director of Center for Research in

Open Source Software (cross.ucsc.edu) and a
co-founder of the Systems Research Lab, known
for its cutting-edge work on programmable
storage systems, big data storage and
processing, scalable data management,
distributed system performance management,
and practical replicable evaluation of computer
systems. In 2005 he co-founded and became
a key mentor on Sage Weil’s Ceph project.
Dr. Maltzahn joined the CSE faculty in 2008,
has graduated nine PhD students since, and
has previously worked on storage for NetApp.
carlosm@ucsc.edu

14  S U M M ER 2020 VO L . 45 , N O. 2 www.usenix.org

FILE SYSTEMS AND STORAGE
SkyhookDM: Data Processing in Ceph with Programmable Storage

The key insight of SkyhookDM is to simplify data management
and minimize data movement by enabling the storage system to
semantically interpret, manage, and process data. This can dra-
matically reduce the complexity of coordination and resources
required higher up the software stack at the application layer. For
example, applying a filter, building an index, or reformatting data
can happen in parallel remotely on individual objects. This is
because the necessary context for many common data processing
and management tasks resides with the data, which makes data
movement to establish computational contexts entirely unneces-
sary. In our work, this context includes the data semantics and
the processing functions that are included in our formatted data
within objects and our shared library extensions available within
the storage servers, respectively.

For example, a single node database such as PostgreSQL can
push query operations into the storage layer through its external
table interface (foreign data wrapper), which can invoke these
functions on objects and, hence, distribute computation across
many storage nodes. For file interfaces, a similar mechanism
is available in the scientific file format HDF5 with its Virtual
Object Layer (VOL) that enables HDF5 to be mapped to non-
POSIX storage back ends. Hence, similar to partitioning a
database table, a large file can be “extended” by HDF5 functions
into smaller objects across many storage nodes. SkyhookDM
also provides a Python client using the Pandas DataFrame
abstraction. In these ways, our methods can be used to scale out
a database or another data-intensive application designed to
run only on a single node.

Our approach to extend storage with data management tasks has
several significant benefits:

 3 Increased query performance when pushing down computation
directly to objects across many storage servers.
 3 Reduced network I/O and host interconnect bandwidth for
computations that result in data reduction (e.g., SELECT,
PROJECT, AGGREGATE).
 3 Reduced CPU at clients due to offloading and reduced CPU both
at clients and servers due to creating, sending, and receiving
fewer packets for data reduction queries.
 3 Reduced application complexity and resources for data manage-
ment tasks such as indexing, re-partitioning data, or converting
between formats (e.g., row to column).
 3 Support for operating on multiple data formats in storage, and
the capability to extend support for other formats.
 3 Fewer application-level storage system assumptions of (pos-
sibly out-of-date) “storage-friendly” access patterns and more
intelligent storage systems adapting to new devices.

Next we provide a short background, our architecture and meth-
odology, and a few experiments to evaluate performance, scal-
ability, and overhead of our approach to in-storage processing.

Background
Ceph is a widely used open source distributed object storage
system created by Sage Weil at UC Santa Cruz and backed by Red
Hat, IBM, and many other large corporations. It has no single
point of failure, is self-healing, and scales to very large instal-
lations of 100’s petabytes of data. It provides file, block, and
object interfaces. New object methods can be created using cls
extensions that are registered as READ and/or WRITE methods
and then compiled into shared libraries within the Ceph source
tree or via an SDK. These new shared libraries are installed on
 storage servers (also known as OSDs) in a directory well known
to Ceph, /usr/lib64/rados-classes/.

Figure 1: Example Ceph custom object class method to compute MD5 sum

www.usenix.org S U M M ER 2020 VO L . 45 , N O. 2 15

FILE SYSTEMS AND STORAGE
SkyhookDM: Data Processing in Ceph with Programmable Storage

Ceph object classes currently support C++ and Lua interfaces,
and an example implementation of an object method would be
to compute a checksum, or perhaps generate a thumbnail image
as part of a custom read or write method as shown in Figure 1.
Critically, partial reads and writes of objects are also possible in
Ceph, which is useful to reduce disk I/O for certain queries such
as PROJECT a subset of all columns.

Apache Arrow and Google FlatBuffers are fast, in-memory seri-
alization libraries. Arrow was developed for columnar processing
and sharing data over the wire, and supports compression and
interacts well with other formats, especially Parquet. FlatBuffers
was developed for gaming, with a row-based abstraction; is very
flexible, including a schema-free interface called FlexBuffers;
and supports user-defined structs. They both offer a highest
level abstraction of a table. We include these libraries within our
shared library code to locally interpret and process object data.

SkyhookDM Architecture
Figure 2 shows our architecture, with a client application con-
nected to a standard Ceph cluster with SkyhookDM cls exten-
sions installed. The client application connects to Ceph using the
standard librados library which makes the extensions available
to the client. In this way databases such as PostgreSQL can
invoke these extensions via their foreign data wrapper.

Figure 2 depicts a Ceph cluster of three Object Storage Devices
(OSDs), each with its own CPU and memory resources that are
utilized by our extensions for data processing. Each OSD stores a
collection of objects and also has a local RocksDB instance that
we exploit as an indexing mechanism.

SkyhookDM extensions are present as a shared library on each
OSD, and these extensions can be applied to any local object for
customized local processing. During processing, results can be
returned to the client in a different format than the internal stor-
age format, e.g., Arrow table, or PostgreSQL binary format from
an object with FlatBuffer data format. Since our shared libraries
are present on each OSD, they are immediately available to
objects stored on newly added OSDs—for instance, when adding
nodes to a Ceph cluster.

Methodology
Our work exploits Ceph’s cls extension interface by first writing
structured data to objects and then adding access methods
implementing common SQL operations. We store structured
data using popular and very efficient data serialization libraries
such as Apache Arrow and Google FlatBuffers and use their APIs
to implement new cls access methods. For greater f lexibility
to support multiple data formats, the structured data includes
metadata about itself that expresses higher level information
such as the data’s current layout, whether or not it is compressed,
and the data’s length. Figure 3 shows this information, which
is itself defined as a Flatbuffer wrapper. This helps to abstract
away data layout information from the higher level client applica-
tions, creating f lexibility to store and process data in various
formats as well as reduce the need for client applications to keep
track of data formats or compression on a per-object basis.

Physical and Logical Data Alignment
Physical and logical data alignment can be crucial for good per-
formance, including with big data processing frameworks such
as MapReduce [3]. In our work, physical and logical alignment is
required such that when partitions are stored in objects of struc-
tures data, a given object contains a complete logical subset of the
original data in order to interpret the data’s semantics and per-
form any meaningful processing. For example, a database table
partition could be stored in an object, resulting in a collection
of complete rows that can be operated upon. In contrast, byte-
aligned physical partitions (e.g., 64 MB) can result in incomplete
rows, with part of a row stored across two different objects. Any
processing for such rows would need to be performed at a higher
layer and first perform a collect or gather operation across perhaps
multiple storage servers. This would render object-local process-
ing useless and result in unnecessary network I/O.

Data Partitioning and Format
In our work, we consider row and column-based partitions.
Partitions are formatted using fast, in-memory data serialization
formats: Google FlatBuffers for row partitions or Apache Arrow
for column partitions. Both of these formats allow us to encode
the data schema within, which allows the structured data to be
interpreted by our cls methods.

Figure 2: SkyhookDM architecture showing a three-node Ceph cluster
with four objects

Figure 3: Per object metadata wrapper regarding the serialized data
 partition (blob data) stored within

16  S U M M ER 2020 VO L . 45 , N O. 2 www.usenix.org

FILE SYSTEMS AND STORAGE
SkyhookDM: Data Processing in Ceph with Programmable Storage

For either row or column storage, data is partitioned, formatted,
and named using conventions such as table_name.partition_num,
resulting in a collection of objects per table where each object
represents a logical data partition that is self-contained, with
metadata indicating its semantics such as the table schema. Fig-
ure 4 depicts how data is partitioned and formatted for a database
table. Data semantics are included within the format, which is
then wrapped with our metadata wrapper, serialized as binary
object data, and stored in Ceph. Data placement is handled by
Ceph’s pseudo-random data distribution function (CRUSH).

Rather than looking up all object names of a table, our object-
naming convention includes content information, such as the
table or column name. This results in constant-size metadata
per table that includes only a name generator function and a few
constants such as total number of objects. Further content-based
information is possible to encode in the naming as well, such as
row ranges for range-based row partitions (e.g., month). Such
content-based object names and generator functions can then
also be used for partition pruning during query plan generation.

This partitioning and formatting method achieves logical and
physical alignment, embeds data semantics locally within each
partition, and, along with the serialization format APIs and
custom object classes, allows us to perform processing indepen-
dently on each partition. Creating many objects (i.e., partitions)
and scaling out the number of storage servers can enable a high
degree of parallelism for data processing.

Data Layout and Physical Design
Within an object, there are several options to consider for laying
out the data, either as a set of byte stream extents in a chunk
store, as a set of entries in a key/value store, or combinations of
both. The key-value store is a local instance of RocksDB, used
by Ceph for managing the local collection of objects on the OSD.
Object methods can also access RocksDB via Ceph’s object_map
or omap interface. SkyhookDM uses omap to store both logical
information (data content) and physical information (data offsets).
For instance, the logical information includes the row number of
a particular value within an objects formatted data (e.g., row i)
to provide quick lookups for point or range queries. The physical
information includes the offsets and lengths of the sequence of

data structures within an object. Both indexing and data layout
within an object is a consideration for physical design [4] man-
agement, such as potentially storing each column of a table as a
separate data structure in order to minimize the amount of disk
I/O required to retrieve a given column. This helps to improve
the performance of PROJECT queries, for example.

Evaluation
We executed all experiments on Cloudlab, an NSF bare-metal-
as-a-service infrastructure. We used machine profile c220-g5
for all nodes, 2x Intel Xeon Silver 2.2 GHz, 192 GB RAM, 1 TB
HDD, and 10 GbE. Our data set was the LINEITEM table from
the standard TPC-H database benchmark, with one billion rows.
We partition this table, format, and store into 10,000 objects of
an equal number of rows. The objects are distributed by Ceph
across all storage nodes. Data is formatted as FlatBuffer or
Arrow as indicated.

Figure 6: Query execution time for storage-side processing (offloading)
versus processing on client machine with a four-node Ceph cluster

Figure 4: Data partitioning, formatting, and objects in SkyhookDM

Figure 5: Query execution time as the number of storage servers is scaled out

www.usenix.org S U M M ER 2020 VO L . 45 , N O. 2 17

FILE SYSTEMS AND STORAGE
SkyhookDM: Data Processing in Ceph with Programmable Storage

Performance Improvement with Pushdown Query
Processing
Figure 5 shows query latency is reduced as the number of storage
servers increases. The no-processing bar is a standard read of all
the data, representing I/O scale out. The other bars show offload-
ing of a select query for 1% and 10% of data rows. This represents
I/O and CPU scale out. The offloading result tracks very closely
to the I/O scale out, with little extra overhead for the storage
servers to read and process versus only read. This highlights how
the computation is distributed across all storage servers. While
execution time is not reduced in this case, likely due to many
cores and very fast network, the overhead to apply computa-
tion in Ceph is low, and CPU usage on the client is dramatically
reduced, as we show next.

Overhead of Data Processing Libraries in Ceph
Figure 6 shows query execution time when processing data with
all storage machines or on the single client machine. We first
execute a standard read (no processing) as a baseline. Then we
execute a query that selects 1%, 10%, or 100% of rows. In both
cases there is little overhead to apply the data processing in
storage except the case when selecting all data. This is due to
the extra cost to both filter and then repackage and return each
object when all rows pass the filter. This indicates the need for a
statistics-based query optimizer to make wise decisions about
what computations to offload.

CPU Usage with and without Offloading
Figure 7 shows that without offloading (no pushdown process-
ing), the client spends over 5% of CPU usage to receive packets
and apply SELECT (top left). With offloading the client CPU,
usage is near zero (bottom left). This is because the client
receives only 1% of the original data packets and does not have
to apply SELECT. The processing work is shifted to the storage
servers (bottom right), showing a small corresponding increase
in the stacked total CPU usage that is distributed across all
storage servers (bottom right). However, now the work done by
storage servers is actually useful for data processing, whereas
the work done by storage servers in the without pushdown case
(top right) is simply creating and sending packets containing
99% unnecessary data.

Conclusion
SkyhookDM extends Ceph with object classes and fast serializa-
tion libraries to offload computation and data management tasks
to storage. We have shown our approach has minimal overhead
and scales with the number of storage servers. Our design is
highly flexible, utilizing row or column-oriented data formats as
well as the ability to dynamically convert between them directly
in storage, eliminating the need to bring data into the client for
processing or data management tasks. Extending our program-
mable storage approach to support custom data formats and
more complex processing is another goal, and we are currently
working on extensions for high energy physics data that uses the
ROOT file format.

Figure 7: CPU usage during first 60 seconds for client machine (left) and eight storage servers (right, stacked) for 1% selectivity file query without pushdown
processing (top) and with pushdown (bottom)

18  S U M M ER 2020 VO L . 45 , N O. 2 www.usenix.org

FILE SYSTEMS AND STORAGE
SkyhookDM: Data Processing in Ceph with Programmable Storage

References
[1] Amazon Redshift Spectrum documentation: https://docs.
aws.amazon.com/redshift/latest/dg/c-using-spectrum.html.

[2] Swift storelet engine overview documentation: https://docs.
openstack.org/storlets/latest/storlet_engine_overview.html.

[3] J. B. Buck, N. Watkins, J. LeFevre, K. Ioannidou, C. Malt-
zahn, N. Polyzotis, and S. Brandt, “SciHadoop: Array-Based
Query Processing in Hadoop,” in Proceedings of the 2011 Inter-
national Conference for High Performance Computing, Net-
working, Storage, and Analysis (SC11), November 12–18, 2011,
Seattle, WA.

[4] K. Dahlgren, J. LeFevre, A. Shirwadkar, K. Iizawa, A. Mon-
tana, P. Alvaro, and C. Maltzahn, “Towards Physical Design
Management in Storage Systems,” in Proceedings of the 2019
IEEE/ACM Fourth International Parallel Data Systems Work-
shop (PDSW), November 18, 2019, Denver, CO.

[5] K. Keeton, D. A. Patterson, and J. M. Hellerstein, “A Case for
Intelligent Disks (IDISKs),” ACM SIGMOD Record, vol. 27, no. 3
(September 1998), pp. 42–52.

[6] S. Kim, H. Oh, C. Park, S. Cho, S.-W. Lee, and B. Moon, “In-
Storage Processing of Database Scans and Joins,” Information
Sciences, vol. 327 (January 10, 2016), pp. 183–200.

[7] P. Kufeldt, C. Maltzahn, T. Feldman, C. Green, G. Mackey,
and S. Tanaka, “Eusocial Storage Devices: Offloading Data
Management to Storage Devices that Can Act Collectively,”
;login:, vol. 43, no. 2 (Summer 2018), pp. 16–22.

[8] J. LeFevre and C. Maltzahn, “Scaling Databases and File
APIs with Programmable Ceph Object Storage,” 2020 Linux
Storage and Filesystems Conference (Vault ’20), February
24–25, 2020, Santa Clara, CA.

[9] J. LeFevre and N. Watkins, “Skyhook: Programmable Stor-
age for Databases,” 2019 Linux Storage and Filesystems Con-
ference (Vault ’19), February 25–26, 2019, Boston, MA.

[10] M. A. Sevilla, I. Jimenez, N. Watkins, J. LeFevre, P. Alvaro,
S. Finkelstein, P. Donnelly, and C. Maltzahn, “Cudele: An API
and Framework for Programmable Consistency and Durability
in a Global Namespace,” in Proceedings of 32nd IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS
2018), May 21–25, 2018, Vancouver, BC, Canada.

[11] M. A. Sevilla, R. Nasirigerdeh, C. Maltzahn, J. LeFevre,
N. Watkins, P. Alvaro, M. Lawson, J. Lofstead, and J. Pivarski,
“Tintenfisch: File System Namespace Schemas and Generators,”
10th USENIX Workshop on Hot Topics in Storage and File Sys-
tems (HotStorage ’18), July 9–10, 2018, Boston, MA.

[12] M. A. Sevilla, N. Watkins, I. Jimenez, P. Alvaro, S. Finkel-
stein, J. LeFevre, and C. Maltzahn, “Malacology: A Program-
mable Storage System,” in Proceedings of the 12th European
Conference on Computer Systems (EuroSys ’17), April 23–26,
2017, Belgrade, Serbia.

[13] M. Sivathanu, L. N. Bairavasundaram, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau, “Database-Aware Semantically-
Smart Storage,” in Proceedings of the 4th USENIX Conference
on File and Storage Technologies (FAST ’05), December 13–16,
2005, San Francisco, CA.

[14] N. Watkins, M. A. Sevilla, I. Jimenez, K. Dahlgren, P. Alvaro,
S. Finkelstein, and C. Maltzahn, “Declstore: Layering Is for the
Faint of Heart,” 9th USENIX Workshop on Hot Topics in Stor-
age and File Systems (HotStorage ’17), July 10–11, 2017, Santa
Clara, CA.

[15] L. Woods, Z. István, and G. Alonso, “Ibex: An Intelligent
Storage Engine with Support for Advanced SQL Offloading,” in
Proceedings of the VLDB Endowment, vol. 7, no. 11 (July 2014),
pp. 963–974.

[16] M. Sevilla, N. Watkins, C. Maltzahn, I. Nassi, S. Brandt,
S. Weil, G.Farnum, and S. Fineberg, “Mantle: A Programmable
Metadata Load Balancer for the Ceph File System,” in Proceed-
ings of the 2015 International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC15), Novem-
ber 15–20, 2015, Austin, TX.

Acknowledgments
Support provided by the Center for Research in Open Source
Software at UC Santa Cruz (cross.ucsc.edu), NSF Grant OAC-
1836650, CNS-1764102, CNS-1705021. We would also like to
thank everyone who has contributed to the open source Sky-
hookDM project.

www.usenix.org S U M M ER 2020 VO L . 45 , N O. 2 19

SECURITYInterview with Natalie Silvanovich
R I K F A R R O W

Natalie Silvanovich is a security
researcher on Google Project
Zero. Her current focus is
browser security, including
script engines, WebAssembly,

and WebRTC. Previously, she worked in
mobile security on the Android Security Team
at Google and as a team lead of the Security
Research Group at BlackBerry, where her work
included finding security issues in mobile
software and improving the security of mobile
platforms. Outside of work, Natalie enjoys
applying her hacking and reverse-engineering
skills to unusual targets and has spoken at sev-
eral conferences on the subject of Tamagotchi
hacking. natalie@natashenka.ca

Rik is the editor of ;login:.
rik@usenix.org

I met Natalie Silvanovich at the luncheon during USENIX Security ’19 in
Santa Clara. We had a fun discussion, and I resolved to spend some time
following up later.

Rik Farrow: I am familiar with a really “old” way of finding bugs: fuzzing. I know this was
very common in the late ’90s, and I assume you were using fuzzing sometimes when you
worked at BlackBerry. What’s different about how you search for bugs today?

Natalie Silvanovich: It’s been nearly 15 years since I started doing vulnerability research, and
in some ways the fundamental techniques for finding security bugs haven’t changed much.
Fuzzing and code review (or binary analysis for software that doesn’t have source code avail-
able) are still the techniques I use to find the majority of bugs I report. What has changed is
the maturity of each methodology.

There have been a lot of tools and techniques developed over the past few years that have
greatly improved the efficiency and effectiveness of fuzzing. I think one of the most impor-
tant innovations is fuzzers like AFL (http://lcamtuf.coredump.cx/afl/) that use code coverage
measurements to guide fuzzing, so that the fuzzer can focus on testing new and unexplored
areas of software. Also important are tools that allow for fuzzing to be performed at scale, for
developers to easily integrate fuzzing into the development process, and for errors to be more
consistently detected when fuzzers hit them.

The flip side of this is that, in general, it is more difficult to find bugs with fuzzing these days.
I think this is due to more security awareness among developers, as well as more software
teams fuzzing their code as a part of the development process. Fifteen years ago, it was com-
mon to find security bugs using simple mutation fuzzing on a single host in a few hours. Now
it usually takes more advanced techniques on multiple cores.

Code review techniques have been fairly consistent throughout the years, although now,
of course, we know a lot more about bug classes and how attackers can exploit them. It is
also generally more challenging to find security bugs with code review these days, probably
because software is both better tested and more complex.

RF: As part of Project Zero, do you ever work as groups/teams on a project?

NS: Yes, we do. In fact, I worked on a large research project on the iPhone [1–5] with Samuel
Groß last year. We also do team hackathons a few times a year where we work on the same target
together. While we do a lot of independent research, there’s a lot to be gained by sharing ideas!

RF: Do you and others in Project Zero get direction on what software to search, or can you
pick and choose?

NS: Project Zero’s mission is to “make zero-day hard,” and we pick our targets based on this
mission. Usually, this means software that has a large user base, a history of being targeted
by certain attackers, and/or a vulnerable user base. Team members are free to pick their own
targets within the mission, although we also often discuss targets and make goals as a team.

http://lcamtuf.coredump.cx/afl/

20  S U M M ER 2020 VO L . 45 , N O. 2 www.usenix.org

SECURITY
Interview with Natalie Silvanovich

RF: You wrote about what someone should do to get hired
at Project Zero (https://googleprojectzero.blogspot.com
/p/working-at-project-zero.html), and I wondered if you have
thought of anything you’d like to add since you posted that?

NS: Not really, but I would like to mention that vulnerability
research is just one of the many careers available in information
security, and that post is very specific to our team.

RF: Are there other women working on the Project Zero team?
In my experience, the number of women working in security is
even lower than in other areas in IT—much lower.

NS: I was the only woman on Project Zero for about four years,
but we’ve recently been joined by the amazing Maddie Stone.
There are fewer women in information than a lot of other IT
fields, but it’s improved somewhat over the last few years.

RF: With your goal of making zero-day hard, I wonder what
things you consider can make security better. I find myself sur-
prised that things have gotten better, as most programmers are
average in skill, and the languages they most often write in,
C and C++, are the same as they were when they were first cre-
ated when it comes to security. For example, a programmer can
still use gets() on Linux, and buffer overflows are still possible,
although compiler support for protecting the stack has pushed
their exploitation to the heap.

NS: This is a huge question, because there are so many ways to
improve software security. And I also want to qualify “things get-
ting better”—while I suspect there are fewer bugs per line of code
today than there were in the past, there is also more software
being used by more users for more applications than ever before.
So overall, software security is a more important problem than it
has ever been.

Taking the example of a call to gets() that causes an overflow,
there’s a lot of things that can happen during the development
process that can stop it from getting into release code. For
example:

 3 The developer understands that gets() can lead to vulnerabili-
ties, and doesn’t use it.
 3 The developer’s compiler or development environment warns
them about gets(), and they remove it.
 3 The repository they submit the code to has pre-submit or com-
piler checks that reject gets(), and the developer can’t submit
their code until they fix it.
 3 Submitting code requires the commit to be reviewed by another
developer, and that developer finds and fixes the bug.
 3 The code in the repository is automatically fuzzed, and the bug
gets found before release.

 3 The code is security reviewed before it is released, and the bug
gets found before release.
 3 The crash occurs during beta testing, and the developer fixes it
based on the crash log.
 3 The release binary contains mitigations that make it more time-
consuming to exploit memory corruption bugs.

Good “development discipline” can greatly reduce the number
of security (and other) bugs in software, and there are a lot of
tools and technology available to help with this. Of course, this
requires that the organization produce the software to prioritize
and invest in security, which is unfortunately not always the case.

RF: While I am still a fan of LangSec (langsec.org), I now realize
that it is just a part of the overall picture of secure programming
practices. What do you think of LangSec, and where do you see
that LangSec falls short of what programmers need to be doing?

NS: LangSec aims to improve software security by creating
formally verifiable languages and parsers that are immune to
many common security problems. They view the root cause of
security issues to be that most protocols and other input formats
are poorly defined and often have many undefined states, and the
programming languages that process them also support a huge
amount of undefined behavior. They think all software should
abstract out all input processing code, and design and imple-
ment it in a way that is verifiable and has no undefined states or
behavior.

One observation behind LangSec’s philosophy is that the lan-
guage software is written in has a huge influence on the number
of vulnerabilities it contains. There is a lot of evidence for this.
The most important distinction in my mind is managed (does not
allow dynamic memory allocation) versus unmanaged (allows
dynamic memory allocation) languages. Since the majority of
vulnerabilities exploited by attackers are memory corruption
vulnerabilities that occur due to the misuse of dynamically allo-
cated memory, even just moving to dynamic languages has a lot
of potential to reduce the number of vulnerabilities in software.

LangSec’s goal is lot broader than increasing the use of managed
languages, though. Dynamically allocated memory is just one of
the causes of the undefined and unverifiable software behavior
they want to prevent. Unfortunately, while there would be a lot
of benefits to fully verifiable input processing, the reality is that
technology is not quite there yet. Even just with managed lan-
guages, there are a lot of reasons that developers don’t use them,
including performance, capabilities, and compatibility with
legacy code, and formally verifiable languages have even more
limitations. So while LangSec’s ideas are very promising for the
future, I feel that a lot more work needs to be done before their
work is practical for most applications.

https://googleprojectzero.blogspot.com/p/working-at-project-zero.html
https://googleprojectzero.blogspot.com/p/working-at-project-zero.html

www.usenix.org S U M M ER 2020 VO L . 45 , N O. 2 21

SECURITY
Interview with Natalie Silvanovich

Another concern is that LangSec’s approach doesn’t prevent logic
bugs. For example, imagine a shopping website that notifies the
warehouse to ship an item before it collects payment. This design
has a security problem where if a user gets to the point where
the shopping service notifies the warehouse to ship, and then
the user stops interacting with the site, the user will get the item
for free. Formal verification won’t prevent this type of problem,
it will only check that the implementation conforms exactly to
the design. It is also likely that any formally verifiable language
or parser has at least some bugs in it (because all software has
bugs), which could lead to security bugs in software that uses
that language. It’s also possible attackers think of new types of
vulnerabilities that no one has thought of yet. So while LangSec’s
approach would likely greatly reduce the number of vulnerabili-
ties in software, it won’t eliminate all of them.

That said, there are two important takeaways from LangSec’s
approach that developers can use right now. One is that the lan-
guage they choose to write software in impacts its security a lot.
The other is that design is really important. The better defined
a feature is, and the more thought that is given to making it easy
to implement securely, the more likely it is to be secure.

RF: Other than good “development discipline,” what else can
programmers prevent to make their software more secure?

NS: One important strategy for improving software security is
Attack Surface Reduction. Put simply, every piece of software
has a portion of code that can be manipulated by attackers, and
making this as small as possible can have huge returns with
regards to preventing vulnerabilities. It’s not unusual for Project
Zero to find bugs in software features that have low or no usage,
meaning they present security risk to users with little benefit.
It’s important for developers to be aware that all code creates
a security risk and other bugs, and to make sure that tradeoff
makes sense.

References
[1] The Fully Remote Attack Surface of the iPhone: https://
googleprojectzero.blogspot.com/2019/08/the-fully-remote
-attack-surface-of.html.

[2] The Many Possibilities of CVE-2019-8646: https://
googleprojectzero.blogspot.com/2019/08/the-many
-possibilities-of-cve-2019-8646.html.

[3] Remote iPhone Exploitation, Part 1: https://googleprojectzero
.blogspot.com/2020/01/remote-iphone-exploitation-part
-1.html.

[4] Remote iPhone Exploitation, Part 2: https://googleprojectzero
.blogspot.com/2020/01/remote-iphone-exploitation-part
-2.html.

[5] Remote iPhone Exploitation, Part 3: https://googleprojectzero
.blogspot.com/2020/01/remote-iphone-exploitation-part
-3.html.

https://googleprojectzero.blogspot.com/2019/08/the-fully-remote-attack-surface-of.html
https://googleprojectzero.blogspot.com/2019/08/the-fully-remote-attack-surface-of.html
https://googleprojectzero.blogspot.com/2019/08/the-fully-remote-attack-surface-of.html
https://googleprojectzero.blogspot.com/2019/08/the-many-possibilities-of-cve-2019-8646.html
https://googleprojectzero.blogspot.com/2019/08/the-many-possibilities-of-cve-2019-8646.html
https://googleprojectzero.blogspot.com/2019/08/the-many-possibilities-of-cve-2019-8646.html
https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-1.html
https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-1.html
https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-1.html
https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-2.html
https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-2.html
https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-2.html
https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-3.html
https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-3.html
https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-3.html

22  S U M M ER 2020 VO L . 45 , N O. 2 www.usenix.org

PROGRAMMINGAnomalies in Linux Processor Use
R I C H A R D L . S I T E S

Richard L. Sites is a semi-retired
computer architect and software
engineer. He received his PhD
from Stanford University several
decades ago. He was co-

architect of the DEC Alpha computers and then
worked on performance analysis of software
at Adobe and Google. His main interest now is
to build better tools for careful non-distorting
observation of complex live real-time software,
from datacenters to embedded processors in
vehicles and elsewhere. dick.sites@gmail.com

Careful observation of Linux dynamic behavior reveals surprising
anomalies in its schedulers, its use of modern chip power-saving
states, and its memory allocation overhead. Such observation can lead

to better understanding of how the actual behavior differs from the pictures
in our heads. This understanding can in turn lead to better algorithms to
control dynamic behavior.

We study here four such behaviors on x86-64 systems:

1. Scheduling dynamics across the Completely Fair Scheduler, the real-time FIFO scheduler,
and the real-time Round-Robin scheduler

2. Dynamic use of mwait-sleep-wakeup to save power

3. Dynamic CPU clock frequency changes to save power

4. Invisible cost of heap allocation just after allocation

In each case, the interaction of Linux and the underlying hardware can be improved in
simple ways.

The software observation tool is KUtrace [1–3], which timestamps and records every transition
between kernel-mode and user-mode execution in a live computer system, using less than 1%
CPU and memory overhead and thus observing with minimal distortion. Each transition is
recorded in just four bytes in a kernel trace buffer—20 bits of timestamp and 12 bits of event
number (syscall/sysreturn, interrupt/return, fault/return numbers plus context-switch new
process ID, and a handful of other items). Everything else is done by postprocessing a raw
binary trace. Depending on the processor, each trace entry takes an average of 12–20 nsec to
record, about 30 times faster than ftrace [4]. The robustly achieved design point is to handle
200,000 transitions per second per CPU core with less than 1% overhead. I built the first such
system at Google over a decade ago, and it and its offspring have been used in live production
datacenters since.

Linux Schedulers: Not Completely Fair
The Linux CPU schedulers juggle program execution by assigning tasks to CPU cores at vari-
ous times. The Completely Fair Scheduler (CFS) runs each task at equal speed, each getting
CPUs/tasks speed over time. The FIFO real-time scheduler runs each task in FIFO order
to completion or until it blocks. The Round-Robin real-time scheduler runs like FIFO but
imposes a maximum time quantum, moving tasks to the end of a run queue in round-robin
fashion at quantum boundaries.

On a four-core Intel i3-7100 processor (actually two physical cores hyperthreaded) running
the Linux 4.19.19 LTS (long-term support) kernel version, I ran 1 to 12 identical CPU-bound
threads and observed the true scheduling behavior [5]. Each thread repeatedly checksums a
240 KB array that fits into a per-core L2 cache. From the Linux documentation, I expected
the resulting timelines for more than four tasks to show each task running periodically and
all completing at nearly the same time. Not so.

www.usenix.org S U M M ER 2020 VO L . 45 , N O. 2 23

PROGRAMMING
Anomalies in Linux Processor Use

Figure 1 shows groups of 1 to 12 threads running under CFS.
As the last thread of each group finishes, the next group starts,
consuming about 26 seconds in all. The pictures for the other
schedulers look similar at this scale. (Note that all the figures in
this article appear in color in the online version.)

Looking at just the seven-thread group, Figure 2 shows it for each
of the three schedulers. The smallest dashes are 12 ms execution
periods (the quantum), chosen by the scheduler based on four
cores and timer interrupts every 4 ms. This simple example does
not stress the differences that the real-time schedulers would
provide in a mixture of batch and real-time programs, but it does
highlight their underlying dynamics.

The documentation for these schedulers did not lead me to expect
that some tasks would run uninterrupted for a dozen quanta or
more, nor did it lead me to expect a 20–30% variation in comple-
tion time between the earliest and latest ones. None of this

approaches “completely fair.” Observing these actual dynamics
can lead to better algorithms.

Deep Sleep: Too Much Too Soon
Our second study concerns power-saving dynamics. Modern
software passes hints to the chip hardware that nothing inter-
esting will be executing for a while, so the hardware might well
want to slow down or turn off a core to save (battery) power.
For x86 processors, the Linux idle-process code issues mwait
 instructions to suggest sleep states to the hardware. Deep sleep
states such as Intel C6 involve turning off a CPU core and its
caches (first doing any necessary writebacks). When a subse-
quent interrupt arrives at that core, the hardware and micro-
code first crank up the CPU core’s clock and voltage, write good
parity/ECC bits in the cache(s), and eventually execute the first
instruction of the interrupt handler. Coming out of C6 deep sleep
in an Intel i3-7100 takes about 30 microseconds, delaying inter-
rupt handling by that amount.

You might not think that this matters much until you observe
the dynamics of multiple communicating threads sending inter-
processor interrupts to each other just as the receiving core has
gone to sleep, and when that one responds, the reply goes back to
a core that in turn has just gone to sleep. Rinse and repeat.

Figure 3 shows just such a sequence, at the beginning of launch-
ing the group of seven threads in the program in the previous
section. Note that Figures 1–6 show everything happening on
every CPU core every nanosecond—all idle time and kernel and
user execution time for all programs, with nothing missing. For

Figure 1: Running groups of 1 to 12 compute threads under CFS. The main program spawns one thread at the top left, and when that completes one second
later it spawns two threads, then three, etc. With only four logical CPU cores, the scheduler starts its real work with five or more threads. The vertical line
marks the group of seven that is expanded in Figure 2.

Figure 2: Running groups of seven compute-bound threads under the three
Linux schedulers, shown over about two seconds total. In each case, the
thread-preemption times vary substantially, and some threads complete un-
expectedly much sooner than others—arrows depict the largest differences.

24  S U M M ER 2020 VO L . 45 , N O. 2 www.usenix.org

PROGRAMMING
Anomalies in Linux Processor Use

example, Figure 1 also has threads with names like systemd-
journal, cron, avahi-daemon, sshd, and DeadPoolForage. None
of these take any appreciable CPU time, so I cropped out most
of them except the three cron jobs that run near time 1.8 sec-
onds and take up a little vertical space between the group of
two threads and the group of three threads in that figure.

The thin black lines in Figure 3 are the idle process executing,
while the tall gray/colored lines are kernel-mode execution, and
the half-height gray/colored lines are user-mode execution. The
sine waves are the time coming out of C6 sleep (the time spent in
deep sleep is short here, but is often several milliseconds). The
dotted arcs show one process waking up another.

The idle threads do an mwait instruction to sleep after spinning
for only 400–900 nsec, which is much too soon. In the diagram,
the first four of seven clone()calls are on CPU 0 at the upper left,
and the spawned threads start executing on CPUs 3, 2, 2, and 1,

respectively, just after and just below. Each child thread blocks
almost immediately inside page_fault, waiting for the parent
to finish setting up shared pages. Full execution of four threads
begins only on the right side of the diagram. The bouncing back
and forth between parent and child keeps encountering ~50 μs
delays because the CPU cores prematurely go into deep sleep.

There are two problems here: (1) 30 μs is a long time to be recov-
ering from a siesta, ruining any expectations of fast interrupt
response, for example, and (2) violation of the Half-Optimal
 Principle [6]:

If it takes time T to come out of a state waiting for some
event at unknown time E in future, spin at least time T
before going into that state. This is at least half-optimal
in all cases, even though you don’t know the future.

In this case, the half-optimal strategy is to spin for 30 μs instead
of 0.4–0.8 μs before dropping into a C6 sleep state that takes

Figure 3: Premature sleep in the intel_idle.c Linux kernel code causes startup delays for seven spawned threads. Thin black lines are the idle process,
and sine waves are the time it takes a chip core in deep sleep to wake up again. Heavier lines on the right are compute-bound execution of four of the seven
threads on the four CPU cores.

Figure 4: Non-idle execution on three CPUs at the left triggers a jump in all four CPU clock frequencies from slowest 800 MHz to fastest 3.9 GHz, which
then step back to slow (frequency in units of 100 MHz indicated by the shading surrounding the lines for each CPU).

www.usenix.org S U M M ER 2020 VO L . 45 , N O. 2 25

PROGRAMMING
Anomalies in Linux Processor Use

30 μs to exit. Doing so would completely avoid sleeping in the
trace above and would speed up the initial song-and-dance by
over 3x. Observing these actual dynamics can lead to better
algorithms.

Fluctuating Frequency: Mismatched to Goal
Our next study looks at another power-saving technique—vary-
ing the CPU clock frequency for each core. The goal is to use slow
clocks when not much execution is happening and to use fast
clocks when doing real computing. The measured Intel i3-7100
chip core clocks vary between 800 MHz and 3.9 GHz. For this
processor, Linux allows the chip hardware to dynamically vary
the clock frequency—“HWP enabled” in the Linux kernel Intel
x86 jargon. Once enabled, no operating system code runs to vary
the frequency or even to deliver an event when the frequency
changes. However, a machine-specific register can be read to
get some hint of the likely upcoming frequency. I added code to
read that register at every timer interrupt and add it to the raw
KUtrace.

For a computing load to observe, I ran a command to find some
files and look for a regular expression in them:

find ~/linux-4.19.19/ -name “*.h” |xargs grep rdmsr

and then traced that for 20 seconds. This runs three programs,
find, xargs, and grep. The first two mostly wait for disk while
reading directories, and the last is mostly CPU-bound scanning a

file. I picked this combination because I expected low CPU clock
rates while waiting for disk and higher ones while scanning files.

Figure 4 shows an execution timeline on four CPU cores running
mostly the bash, find, and xargs programs but with a little bit of
other processes such as jbd2, ssh, and chrome. The gray overlay
(yellow in the online version) shows CPU clock speeds: dark
gray for slow clocks and lighter and lighter for faster clocks. The
freq numbers are multiples of 100 MHz. Based on the non-idle
program execution at the far left on CPUs 1, 2, and 3, the chip
switches from 800 MHz to 3.9 GHz on all four CPU clocks, then
slowly, over about 100 ms, drops the frequency back to 800 MHz.
These are the true clock dynamics and match what one would
expect from reading the (sparse) documentation. Note, however,
that the execution bursts on CPU 1 in the right half of the dia-
gram do not raise the clock frequency.

In contrast to the intended behavior, Figure 5 shows a region of
the same trace eight seconds later. This time the clock frequency
jumps up from 800 MHz to 3.9 GHz as expected, but 8 ms later it
jumps back to 800 and then 900 MHz, even though CPU 2 is still
quite busy running grep.

This dynamic is mismatched to the performance goal of the
power-management design. Observing these actual dynamics
can lead to better algorithms.

Figure 5: Non-idle execution at the left triggers a jump in CPU clock frequencies from slowest to fastest, which prematurely jump back to slow while CPU 2 is
still 100% busy.

Figure 6: The page faults immediately after allocating memory take over 100x more time than the allocation itself.

26  S U M M ER 2020 VO L . 45 , N O. 2 www.usenix.org

PROGRAMMING
Anomalies in Linux Processor Use

References
[1] R. L. Sites, “Benchmarking ‘Hello World’,” ACM Queue
Magazine, vol. 16, no. 5 (November 2018): https://queue.acm
.org/detail.cfm?id=3291278.

[2] R. L. Sites, “KUTrace: Where Have All the Nanoseconds
Gone?” Tracing Summit 2017 (11:00 a.m., slides and video):
https://tracingsummit.org/wiki/TracingSummit2017.

[3] Open-source code for KUtrace: https://github.com
/dicksites/KUtrace.

[4] Ftrace function tracer: https://www.kernel.org/doc/html
/latest/trace/ftrace.html.

[5] Credit to Lars Nyland at Nvidia for first showing me this.

[6] I have used this principle for many years but only created
the name while writing this article. A related Half-Useful
Principle applies to disk transfers and other situations with
startup delays: if you spend 10 ms doing a seek, then try to
spend 10 ms transferring data (1 MB+ these days), so that at
least half the time is useful work.

Cost of Malloc: Not There but Soon Thereafter
Our final study looks at memory allocation. In a client-server
environment with the client sending 1,000,000-byte data-
base write messages to the server, the server trace reveals
a user-mode allocation of 1,000,000 bytes for receiving the
message, followed by 245 page faults (ceil of 1,000,000/4096),
the repeating blips on CPU 3 in Figure 6. You can see similar
page-fault bursts in the completely different program at the far
right of Figure 3. The big blips near time 98.7 ms are timer inter-
rupts. You can directly see in the ~30 μs skew in delivering timer
interrupts on sleeping CPU 2 and on busy CPU 3.

The allocation takes a few microseconds in the underlying
system call just before the page faults, but the page faults them-
selves take over 1100 microseconds. The (good) Linux design
for extending heap allocation simply creates 245 read-only
page table entries pointing to the kernel’s single all-zero page.
As the user-mode program moves data into this buffer, each
memory write to a new page takes a page fault, at which time the
page-fault handler allocates a real memory page, does a copy-
on-write (CoW) to zero it to prevent data security leaks between
 programs, sets the page table entry to read-write, and returns to
redo the memory write. This goes on for 245 pages, taking much,
much longer than the allocation time that is visible in many pro-
filing tools. The dominant page-fault time is invisible to normal
observation tools.

The copy-on-write path itself is inefficient in several ways. First,
it could do groups of 4–16 pages at once, saving some page-fault
entry/exit overhead without spending excess time in the fault
routine and without allocating too many real pages that might
never be used. Second, the kernel code does not special-case the
Linux ZERO_PAGE as source to avoid reading it, by something like:

 if (src == ZERO_PAGE)
 memset(dst, 0, 4096);
 else
 memcpy(dst, src, 4096);

Doing so would avoid reading an extra 4 KB of zeros into the L1
cache each time and would avoid half of the memory accesses. It
would also speed up the instructions per cycle (IPC) of the CoW
inner loop.

A malloc call that reuses previously allocated heap space does
not have the behavior seen here, but one that extends the heap
does. Some programs aggressively extend and then shrink the
heap repeatedly, wasting time not only in malloc/free but also in
page faults. Allocating a buffer once and then explicitly reusing
it in user code can be faster, for example. Observing these actual
dynamics can lead to better algorithms.

Conclusion
Careful observation of Linux dynamic behavior reveals sur-
prising anomalies in its schedulers, its use of modern chip
power-saving states, and its memory allocation overhead. Such
observation can lead to better understanding of how the actual
behavior differs from the pictures in our heads. This understand-
ing can in turn lead to better algorithms and better control of
dynamic behavior.

As an industry, we have poor nondistorting tools for observ-
ing the true dynamic behavior of complex software, including
the operating system itself. KUtrace is an example of a better
tool. I encourage operating-system designers to provide such
extremely-low-overhead, and hence nondistorting, tools in
future releases.

https://queue.acm.org/detail.cfm?id=3291278
https://queue.acm.org/detail.cfm?id=3291278
https://tracingsummit.org/wiki/TracingSummit2017
https://github.com/dicksites/KUtrace
https://github.com/dicksites/KUtrace
https://www.kernel.org/doc/html/latest/trace/ftrace.html
https://www.kernel.org/doc/html/latest/trace/ftrace.html

www.usenix.org S U M M ER 2020 VO L . 45 , N O. 2 27

PROGRAMMING

Revisiting Conway’s Law
M A R I A N N E B E L L O T T I

A fter more than six years helping engineering organizations figure out
how to modernize their technology, I’ve come to realize that Conway’s
Law is more about how organizational structure creates incentives

than where boxes and lines are drawn on an org chart. Misaligned incentives
for managers and individual contributors carve their impact into the system
design, influencing tool selection and complicating future maintenance.

In 1968 Melvin Conway published a paper titled “How Do Committees Invent?” This paper,
originally intended for Harvard Business Review but rejected for being too speculative,
outlined the ways in which the structure and incentives of an organization influenced the
software product it produced. It received little response but eventually made its way to the
chair of the University of North Carolina at Chapel Hill’s computer science department,
Fred Brooks. At the time, Brooks had been pondering a question from his exit interview
at IBM: why is it so much harder to manage software projects than hardware projects?
Conway’s insight linking the structure of software to the structure of the committees that
invented them seemed significant enough for Brooks to repackage the thesis as “Conway’s
Law” when he published his guide on effectively managing software teams—The Mythical
Man-Month—in 1975.

Yet this was not the only useful observation in Conway’s paper. As it has subsequently been
referenced by hundreds of computer science texts since Brooks’s adoption of it as a universal
truth, the more nuanced observations that supported Conway’s argument have largely been
omitted from the conversation. Conway’s Law has become a voodoo curse, something that
people believe only in retrospect. Few engineers attribute their architectural success to the
structure of their organization, but when a product is malformed the explanation of Conway’s
Law is easily accepted.

Conway’s original paper outlined not just how organizational structure influenced tech-
nology but also how human factors contributed to its evolution. Conway felt organizational
structure influenced architecture because organizational structure influenced incentives.
How individual contributors get ahead in a particular organization determined which tech-
nical choices were appealing to them.

Conway’s observations are more important in maintaining existing systems than they are
in building new systems. Organizations and products both change, but they do not always
change at the same pace. Figuring out whether to change the organization or change the
design of the technology is just another scaling challenge.

Individual Incentives
How do software engineers get ahead? What does an engineer on one level need to accomplish
for the organization in order to be promoted to another level? Such questions are usually dele-
gated to the world of engineering managers and not incorporated in technical decisions. And
yet the answers absolutely have technical impacts.

Marianne Bellotti has worked
as a software engineer for
over 15 years. She built data
infrastructure for the United
Nations to help humanitarian

organizations share crisis data worldwide and
spent three and a half years running incident
response for the United States Digital Service.
While in government she found success
applying organizational change management
techniques to the problem of modernizing
legacy software systems. More recently, she
was in charge of Platform Services at Auth0 and
currently works as Principal Engineer for System
Safety at Rebellion Defense. She has a book on
running legacy modernization projects coming
out this year from No Starch Press called Kill It
with Fire. marianne.bellotti@gmail.com

28  S U M M ER 2020 VO L . 45 , N O. 2 www.usenix.org

PROGRAMMING
Revisiting Conway’s Law

Most of us have encountered this in the wild: a service, a library,
or a piece of a system that is inexplicably different from the rest
of the applications it connects to. Sometimes this is an older com-
ponent of the system reimplemented using a different set of tools.
Sometimes this is a new feature. It’s always technology that was
trendy at the time the code was introduced.

When the organization has no clear career pathway for engineers,
software engineers grow their careers by building their reputa-
tion externally. This means getting drawn into the race of being
one of the first to prove the production scale benefits of a new
paradigm, language, or technical product. While it’s good for the
engineering team to experiment with different approaches as
they iterate, introducing new tools and databases, and supporting
new languages and infrastructures, increases the complexity of
maintaining the system over time.

One organization I worked for had an entire stable of custom-
built solutions for things like caching, routing, and message
handling. Senior management hated this but felt their com-
plaints—even their instructions that it stop—did little to course
correct. Culturally, the engineering organization was flat, with
teams formed on an ad hoc basis. Opportunities to work on
interesting technical challenges were awarded based on personal
relationships, so the organization’s regular hack days became
critical networking events. Engineering wanted to build difficult
and complex solutions in order to advertise their skills to the lead
engineers who were assembling teams.

Stern lectures about the importance of choosing the right tech-
nology for the job did not stop this behavior. It stopped when the
organization hired engineering managers who developed a career
ladder. By defining what the expectations were for every experi-
ence level of engineering and by hiring managers who would
coach and advocate for their engineers, engineers could earn
promotions and opportunities without the need to show off.

Organizations end up with patchwork solutions because the tech
community rewards explorers. Being among the first with tales
of documenting, experimenting with, or destroying a piece of
technology builds an individual’s prestige. Pushing the boundar-
ies of performance by adopting something new and innovative
contributes even more so to one’s reputation.

Software engineers are incentivized to forego tried-and-true
approaches in favor of new frontiers. Left to their own devices,
software engineers will proliferate tools, ignoring feature over-
laps for the sake of that one thing tool X does better than tool Y
that is only relevant in that specific situation.

Well-integrated, high-functioning software that is easy to
under stand usually blends in. Simple solutions do not do much
to enhance personal brand. They are rarely worth talking about.
Therefore, when an organization provides no pathway to promo-

tion for software engineers, the engineers are incentivized to
make technical decisions that emphasize their individual con-
tribution over smoothly integrating into an existing system.

Typically this manifests itself in one of three different patterns:

1. Creating frameworks, tooling, and other abstraction layers in
order to make code that is unlikely to have more than one use
case theoretically “reusable.”

2. Breaking off functions into new services, particularly
middleware.

3. Introducing new languages or tools in order to optimize perfor-
mance for the sake of optimizing performance (in other words,
without any need to improve an SLO or existing benchmark).

Essentially, engineers are motivated to create named things. If
something can be named it can have a creator. If the named thing
turns out to be popular, then the engineer’s prestige is increased
and her career will advance.

This is not to say that good software engineers should never
create a new service, or introduce a new tool, or try out a new
 language on a production system. There just needs to be a
 compelling reason why these actions benefit the system versus
benefit the prospects of the individual engineer.

Most of the systems I work on rescuing are not badly built. They
are badly maintained. Technical decisions that highlight indi-
viduals’ unique contributions are not always comprehensible to
the rest of the team. For example, switching from language X to
 language Z may in fact boost memory performance significantly,
but if no one else on the team understands the new language well
enough to continue developing the code, those gains will be whit-
tled away over time by technical debt that no one knows how to fix.

The folly of engineering culture is that we are often ashamed of
signing our organization up for a future rewrite by picking the
right architecture for right now, but we have no misgivings about
producing systems that are difficult for others to understand and
therefore impossible to maintain. This was a constant problem
for software engineers answering the call to public service from
organizations like United States Digital Service and 18F. When
modernizing a critical government system, when should the
team build it using common private sector tools and train the
government owners on said tools, and when should the solution
be built with the tools the government worker already knows?
Wasn’t the newest, greatest web application stack always the
best option? Conway argued against aspiring for a universally
correct architecture. He wrote in 1968, “It is an article of faith
among experienced system designers that given any system
design, someone someday will find a better one to do the same
job. In other words, it is misleading and incorrect to speak of the
design for a specific job, unless this is understood in the context
of space, time, knowledge, and technology.”

www.usenix.org S U M M ER 2020 VO L . 45 , N O. 2 29

PROGRAMMING
Revisiting Conway’s Law

Manager Incentives
An engineering manager is a strange creature in the technical
organization. How should we judge a good one from a bad one?
Unfortunately, far too often managers advance in their careers
by managing more people. And if the organization isn’t properly
controlling for that, then system design will be overcomplicated
by the need to broadcast importance. Or as Conway put it: “The
greatest single common factor behind many poorly designed
systems now in existence has been the availability of a design
organization in need of work.”

Opportunities to go from an engineering manager and senior
engineering manager come up from time to time as the organi-
zation grows and changes. It’s the difference between handling
one team and handling many. Managers leave, new teams form,
existing teams grow past their ideal size. A good manager could
easily earn those opportunities in the normal course of business.
Going from senior manager to director, though, is more difficult.
Going from director to vice president or higher even more so. It
takes a long time for an organization to reach that level of growth
organically.

Organizations that are unprepared to grow talent end up with
managers who are incentivized to subdivide their teams into
more specialized units before there is either enough people or
enough work to maintain such a unit. The manager gets to check
off career-building experiences of running multiple teams, hir-
ing more engineers, and taking on more ambitious projects while
the needs of the overall architecture are ignored.

Scaling an organization before it needs to be scaled has very
similar consequences to scaling technology too early. It restricts
your future technical choices. Deciding to skip the monolith
phase of development and “build it right the first time” with
microservices means the organization must successfully

anticipate a number of future requirements and determine how
code should be best abstracted to create shared services based
on those predictions. Rarely if ever are all of those predictions
right, but once a shared service is deployed, changing it is often
difficult.

In the same way, a manager who subdivides a team before there is
need to do so is making a prediction about future needs that may
or may not come true. In my last role, our director of engineering
decided the new platform we were building needed a dedicated
team to manage data storage. Predictions about future scaling
challenges supported her conclusions, but in order to get the head
count for this new team, she had to cut it from teams that were
working on the organization’s existing scaling challenges. Sud-
denly, new abstractions around data storage that we didn’t need
yet were being developed while systems that affected our SLAs
had maintenance and updates deferred.

Carrying existing initiatives to completion was not as attractive
an accomplishment as breaking new ground. But the problem
with designing team structure around the desired future state of
the technology is that if it doesn’t come true the team is thrown
into the chaos of a reorganization. Aversions to reorganizations
alone often incentivize people to build to their organizational
structure.

Conclusion
Both individual contributors and managers make decisions with
their future careers in mind. Those decisions create constraints
on possible design choices that drive the organization to design
systems that ref lect the structure of the organization itself.
Those wishing to benefit from the forces of Conway’s Law would
do well to consider how people within the engineering organiza-
tion are incentivized before asking them to design a system.

30  S U M M ER 2020 VO L . 45 , N O. 2 www.usenix.org

SREDecision-Making Using Service Level
Objectives
A L E X H I D A L G O

Alex Hidalgo is a Site Reliability
Engineer and author of the
forthcoming Implementing Service
Level Objectives (O’Reilly Media,
September 2020). During

his career he has developed a deep love for
sustainable operations, proper observability,
and use of SLO data to drive discussions
and make decisions. Alex’s previous jobs
have included IT support, network security,
restaurant work, t-shirt design, and hosting
game shows at bars. When not sharing his
passion for technology with others, you can
find him scuba diving or watching college
basketball. He lives in Brooklyn with his partner
Jen and a rescue dog named Taco. Alex has a
BA in philosophy from Virginia Commonwealth
University. sometimesitsalex@gmail.com 
@ahidalgosre

Service level objectives, or SLOs, are quickly becoming the latest indus-
try buzzword. Engineers want them, leadership demands them, and
job postings increasingly ask for experience with them. However, SLOs

are meaningless unless they are understood as more than just the latest
industry jargon. There are true, real-world benefits to adopting an SLO-based
approach to reliability. I will explain why they are important and how you can
use them most effectively to have discussions that lead to better decisions.

Using service level objectives to measure the reliability of services is getting more attention
than ever before. This is partly due to the success of the first two Google-authored site reli-
ability engineering (SRE) books. But it also seems that many people actually resonate with the
approach and find it an intuitive concept to follow. While it is possible that many organizations
are forcing their teams to adopt SLOs via mandate just to ensure they’re on board with the lat-
est buzzwords, it also seems likely that many people are finding true value in the approach.

I found only one study tracking the adoption rates of SLO-based approaches in this book:
https://www.oreilly.com/library/view/slo-adoption-and/9781492075370/. Instead, I’ll have
to rely on the general anecdotal evidence I have in terms of how many companies are rolling
out products to help people measure SLOs, how many conference talks are focused on them,
and how often I personally find myself engaged with people who want to learn more about the
process.

While SLO-based approaches to reliability are certainly useful to many people, I also cannot
ignore the fact that the very phrase has become a buzzword that is starting to lose meaning.
It’s not uncommon for words, phrases, and concepts that gain traction and desirability to
have their original meanings forgotten. Service level objectives are no different. They provide
many benefits, but some of their most important aims have unfortunately become obfuscated
by more readily available ones.

SLO-based approaches to reliability give you many benefits, and there are many reasons why
organizations may choose to adopt them. Unfortunately, for many they have just become “a
thing you do.” This is not to say that every organization looking to adopt such an approach has
overlooked the benefits of SLOs, but few manage to use them to their full potential.

Let’s explore some of the ways you can use the information that service level objectives pro-
vide to make better decisions through data. Making better decisions is at the very heart of the
SLO approach, and that’s often the part that is overlooked.

But first, let’s outline how this approach works in a little more detail.

SLO Components
There are three primary components to an SLO-based approach. The first is service level
indicators, or SLIs. A good SLI is a measurement that tells you how your service is performing
from the perspective of your users. In this case, when I say users, they could be anything from
paying customers to coworkers to other services that depend on yours—there doesn’t strictly
have to be a human attached to the other end. In this article, I’ll mostly be talking about
human users who interact with web services since they are intuitively accessible concepts

www.usenix.org S U M M ER 2020 VO L . 45 , N O. 2 31

SRE
Decision-Making Using Service Level Objectives

that almost all of us interact with on a daily basis; however, the
concepts and approaches apply to any service and any type of
user, even if those users are just other computer systems.

After SLIs, you have service level objectives, which are targets for
how you want your SLI to perform. While a service level indica-
tor may tell you how quickly a web page loads, an SLO allows
you to do things like set thresholds and target percentages. An
example SLI might be “Web pages are fully rendered in the user’s
browser within 2500 ms.” Building off of that, an SLO might
read, “The 95th percentile of web page render times will com-
plete within 2500 ms 99.9% of the time.” Service level objectives
allow you to set reasonable targets. Nothing is ever perfect, and
100% is impossible for just about everything, but by using SLOs,
you can ensure that you’re striving for a reasonable target and not
an unreachable one.

Finally, you have error budgets. An error budget is a way of
keeping track of how an SLO has performed over time. If you
acknowledge that only 99.9% of the 95th percentile of your web
page render times have to complete within 2500 ms, you are also
acknowledging that 0.1% of them don’t have to. Error budgets give
you a way to do the math necessary to determine whether your
adherence to your SLO target is suitable for your users, not just in
the moment but over the last day, week, month, quarter, or year.

SLIs, SLOs, and error budgets are all data—data that
allows you to ask important questions that can drive better
decision-making.
 3 Is our SLI adequately measuring what our users need and ex-
pect? If not, we need to figure out a new way to measure this.
 3 Is our SLO target meaningfully capturing the failure rates our
users can tolerate? If not, we need to pick a new target or new
thresholds.
 3 What is our error budget status telling us about how our users
have actually experienced our service over time? If we’ve ex-
ceeded the error budget, perhaps we drop feature work and
focus on reliability instead.

Decisions about User Experience
A meaningful SLI is one that captures the user experience as
closely as possible. Following our simple example from above, it
is pretty intuitive to think about the fact that the users of a web
service need their pages to load—and to load in an amount of time
that won’t annoy them. But there is so much more to the user
experience than just the concepts of availability and latency. A
web service is not doing its job just by being able to render pages
in a timely manner. If you’re only measuring things like avail-
ability and latency, the only data SLO-based approaches can
provide you are ones that focus on improving your availability
and latency.

A web service is often much more than just serving data to
people. Imagine that your web service is a retail site. In such a

case, you suddenly have many other user journeys to consider.
If you want people to be able to purchase items from you, they
need to be able to do exactly that and not just have web pages
display in their browser.

For example, a standard retail website often has some sort
of shopping cart feature—one where a user can add a potential
purchase to a list of items they might want to check out with later.
This shopping cart feature has to do a lot of things in order to be
reliable.

The first is that it needs to do what it is supposed to: if a user
wants to add an item to their shopping cart, they should be able to
do exactly that. Additionally, it needs to be persistent; a shopping
cart isn’t much good if it only remains consistent with the wishes
of a user for a short amount of time.

It also has to be accurate. There is no sense in allowing customers
to add to a list of items they might want to purchase if that list
doesn’t represent the items they have actually chosen.

Finally, how the user interacts with the shopping cart has to
work properly. If an item is added or removed, it should actually
be added or removed. If the user expects an icon representing
how many items they have in their cart to be updated when they
add a new item, that icon should actually update in real-time.

These examples all represent different data points that mean-
ingful SLIs can give you—and these data points help you make
decisions. If it’s simply the case that your site isn’t loading well or
quickly enough, you might just need to introduce more resources.
However, if the shopping cart isn’t working well, the problem
could be anything from the JavaScript powering user interac-
tions to the service that talks to the database to the data-storage
systems that are ultimately responsible for holding the ones and
zeroes. By having the data that multiple meaningful SLIs pro-
vide you, you can make better decisions about what you should
be measuring in the first place and what areas of your system
require the most attention.

Decisions about Tolerable Failures
One of the most attractive aspects of measuring services with
SLOs is that the entire discipline acknowledges the fact that
nothing is ever perfect. All complex systems fail at some point
in time, and because of this fact it is fruitless to aim for 100%.
Additionally, it turns out that people already know and are okay
with this—whether they’re consciously aware of it or not.

For example, if you start streaming a video via a video-streaming
service, you have a certain expectation for how long it should take
for such a video to buffer before it begins playing in real time.
However, if it takes much longer than normal to buffer every
once in a while, you likely won’t care too much. Most people won’t
abandon a streaming video platform if one in every 100 videos

32  S U M M ER 2020 VO L . 45 , N O. 2 www.usenix.org

SRE
Decision-Making Using Service Level Objectives

takes 10 seconds of buffering time instead of three seconds.
Failure in the sense that the streaming platform had to buffer
too long occasionally is just fine—it just can’t happen too often.
If videos take 10 seconds to start every single time, people might
become annoyed and look for other options.

A good service level objective lies somewhere just beyond what
you need for users of your service to be happy. If people are okay
with one in every 100 streaming attempts buffering for longer
than normal, you should set your SLO target at something like
one in every 200 streaming attempts. Exactly where you set this
target is up to the data you have available to you and the feed-
back you’re able to collect from your users. The important part is
that your SLO should be more strict than the level at which users
might decide to leave and use a different option. No matter how
refined your SLO target is, you’re not always going to reach it, and
you don’t want your business or organization to suffer if you don’t.

Acknowledging failure and accounting for it are at the very base
of how SLO-based approaches work. Understand that nothing is
perfect, but use SLO data to help you decide how close to perfect
you should attempt to be—or risk losing users.

Decisions about Work Focus
Once you have a meaningful SLI and a reasonable SLO target,
you can produce an error budget. Error budgets are simply just
another data point you can use to make decisions. They’re the
most complicated part of the stack, but once you can find your-
self using error budgets to drive your decision-making, you’ll
truly understand how the entire SLO-based approach works.

Error budgets are the ultimate decision-making tool once you’ve
established SLIs and SLOs. By measuring how you’ve performed
over a time window, you can drive large-scale decisions that
could impact anything from the focus of your team for a single
sprint to the focus of an entire company for a quarter.

For example, let’s say you have a reasonable measurement of how
reliable one particular microservice has been. Using your error
budget, you can now also see that you haven’t been reliable about
10% of the time over the last month. At this point you can use this
data to inform a few different discussions that can fuel decisions.

One example is that you simply haven’t been performing well
enough, and that you believe that your SLI measurement and
your SLO target are well-defined. If this is the case, you might
choose to pivot one or more members of your team to focusing
on reliability work instead of feature work. You could do this for
anything, like the length of an on-call shift to a full sprint or even
until you’ve recovered all of your budget. There are no hard-and-
fast rules at play here. Error budgets, like everything else, are just
data to help you decide what to do.

Another example is that you’ve completely depleted your error
budget but have reason to think this exact situation is unlikely to

arise again. An example of this kind of event could be anything
like the disruption of power at a datacenter or just a historically
bad bug pushed to production. Just because you’ve depleted your
error budget over time doesn’t mean you have to take action.
Sometimes it absolutely makes sense to do so: perhaps you need to
introduce a better testing infrastructure to your deployment pipe-
line, or maybe you need to install additional circuits or distribute
your footprint geographically to avoid further power disruptions.

The point is that it’s totally okay to look at how you’ve performed
in terms of reliability over time and say, “This time we can just
continue our current work focus.” Error-budget statuses are just
another data set you should use to make decisions—they shouldn’t
be rules that need to be followed every single time you examine
your status. It doesn’t matter if you’re looking at the error budget
status for a single small microservice that sees very little traffic
or your entire service as viewed from your paying customers. Use
error budgets as data to help you think about prioritization.

For a larger service, such as an entire customer-facing web
service, burning through all of your error budget probably war-
rants some stricter decision-making. Even if it was due to your
ISP that your users experienced an hour of outage last month, it
still probably doesn’t make sense for you to do things like perform
potentially disruptive chaos engineering or experimentation in
your production environment until a significant amount of time
has passed. Be reasonable about how you make decisions using
your error budgets, and certainly feel free to ignore their status
from time to time—but never do so at the expense of your users’
experience.

Conclusion
There are many benefits to SLO-based approaches that I don’t
have room to cover here. They can help you better communicate
to other teams about how they should think about the reliability
of their own services. They can be excellent tools in reporting to
management and product teams. They can also be used for many
things outside of computer services, such as examining whether
your team’s ticket load is too high or whether people aren’t taking
enough vacation time. An SLO-based approach is simply about
thinking about people and users first, acknowledging nothing
is perfect, and using some math to help you aim for reasonable
targets instead.

But one of the most important parts of this approach is that
it allows you to make better data-driven decisions. Don’t just
implement SLOs because they’re popular and a buzzword, or
because you heard a conference talk about them, or because
upper-management has decided that every team must have one.

Implement SLOs because they give you data you can use to have
better discussions and make better decisions—decisions that can
help make both your team and your users happier.

www.usenix.org S U M M ER 2020 VO L . 45 , N O. 2 33

SRE

ML for Operations
Pitfalls, Dead Ends, and Hope

S T E V E N R O S S A N D T O D D U N D E R W O O D

Machine learning (ML) is often proposed as the solution to auto-
mate this unpleasant work. Many believe that ML will provide
near-magical solutions to these problems. This article is for

developers and systems engineers with production responsibilities who are
lured by the siren song of magical operations that ML seems to sing. Assum-
ing no prior detailed expertise in ML, we provide an overview of how ML
works and doesn’t, production considerations with using it, and an assess-
ment of considerations for using ML to solve various operations problems.

Even in an age of cloud services, maintaining applications in production is full of hard and
tedious work. This is unrewarding labor, or toil, that we collectively would like to automate.
The worst of this toil is manual, repetitive, tactical, devoid of enduring value, and scales lin-
early as a service grows. Think of work such as manually building/testing/deploying binaries,
configuring memory limits, and responding to false-positive pages. This toil takes time from
activities that are more interesting and produce more enduring value, but it exists because it
takes just enough human judgment that it is difficult to find simple, workable heuristics to
replace those humans.

We will list a number of ideas that appear plausible but, in fact, are not workable.

What Is ML?
Machine learning is the study of algorithms that learn from data. More specifically, ML
is the study of algorithms that enable computer systems to solve some specific problem or
perform some task by learning from known examples of data. Using ML requires training a
model on data where each element in the data has variables of interest (features) specified
for it. This training creates a model that can later be used to make inferences about new data.
The generated model is a mathematical function, which determines the predicted value(s)
(“dependent variable(s)”) based on some input values (“independent variables”). How well the
model’s inferences fit the historical data is the objective function, generally a function of the
difference between predictions and correct inferences for supervised models. In an iterative
algorithm, the model parameters are adjusted incrementally on every iteration such that they
(hopefully) decrease the objective function.

Main Types of ML
In order to understand how we’ll apply ML, it is useful to understand the main types of ML
and how they are generally used. Here are broad categories:

Supervised Learning
A supervised learning system is presented with example inputs and their desired outputs
labeled by someone or a piece of software that knows the correct answer. The goal is to learn
a mapping from inputs to outputs that also works well on new inputs. Supervised learning is
the most popular form of ML in production. It generally works well if your data consist of a
large volume (millions to trillions) of correctly labeled training examples. It can be effective

Steven Ross is a Technical Lead
in site reliability engineering for
Google in Pittsburgh, and has
worked on machine learning at
Google since Pittsburgh Pattern

Recognition was acquired by Google in 2011.
Before that he worked as a Software Engineer
for Dart Communications, Fishtail Design
Automation, and then Pittsburgh Pattern
Recognition until Google acquired it. Steven
has a BS from Carnegie Mellon University
(1999) and an MS in electrical and computer
engineering from Northwestern University
(2000). He is interested in mass-producing
machine learning models. stross@google.com

Todd Underwood is a lead
Machine Learning for Site
Reliability Engineering Director
at Google and is a Site Lead for
Google’s Pittsburgh office. ML

SRE teams build and scale internal and external
ML services and are critical to almost every
product area at Google. Todd was in charge of
operations, security, and peering for Renesys’s
Internet intelligence services that is now part of
Oracle’s cloud service. He also did research for
some early social products that Renesys worked
on. Before that Todd was Chief Technology
Officer of Oso Grande, an independent Internet
service provider (AS2901) in New Mexico.
Todd has a BA in philosophy from Columbia
University and a MS in computer science from
the University of New Mexico. He is interested
in how to make computers and people work
much, much better together. tmu@goggle.com

34  S U M M ER 2020 VO L . 45 , N O. 2 www.usenix.org

SRE
ML for Operations: Pitfalls, Dead Ends, and Hope

with many fewer examples, depending on the specific applica-
tion, but it most commonly does well with lots of input data.

Think of identifying fruit in an image. Given a set of pictures
that either contain apples or oranges, humans do an amazing job
of picking out the right label (“apple” or “orange”) for the right
object. But doing this without ML is actually quite challenging
because the heuristics are not at all easy. Color won’t work since
some apples are green and some oranges are green. Shape won’t
work because it’s hard to project at various angles, and some
apples are exceedingly round. We could try to figure out the skin/
texture but some oranges are smooth and some apples are bumpy.

With ML we simply train a model on a few hundred (or a few
thousand) pictures labeled “orange” or “apple.” The model builds
up a set of combinations of features that predict whether the
picture has an apple or an orange in it.

Unsupervised Learning
The goal of unsupervised learning is to cluster pieces of data by
some degree of “similarity” without making any particular opin-
ion about what they are, i.e., what label applies to each cluster. So
unsupervised learning draws inferences without labels, such as
classifying patterns in the data.

One easy-to-understand use case is fraud detection. Unsuper-
vised learning on a set of transactions can identify small clusters
of outliers, where some combination of features (card-not- present,
account creation time, amount, merchant, expense category,
location, time of day) is unusual in some way.

Unsupervised learning is particularly useful as part of a broader
strategy of ML, as we’ll see below. In particular, in the example
above, clustering outlier transactions isn’t useful unless we do
something with that information.

Semi-Supervised Learning
The goal of semi-supervised learning is to discover characteris-
tics of a data set when only a subset of the data is labeled. Human
raters are generally very expensive and slow, so semi-supervised
learning tries to use a hybrid of human-labeled data and auto-
matically “guessed” labels based on those human labels. Heuris-
tics are used to generate assumed labels for the data that isn’t
labeled, based on its relationship to the data that is labeled.

Semi-supervised learning is often used in conjunction with
unsupervised learning and supervised learning to generate
 better results from less effort.

Reinforcement Learning
In reinforcement learning (RL), software is configured to take
actions in an environment or a simulation of an environment in
order to accomplish some goal or cumulative set of values. The
software is often competing with another system (which may

be a prior copy of itself or might be a human) without externally
provided labeled training data, following the rules.

Google’s DeepMind division is well known for using RL to solve
various real-world problems. Famously, this has included playing
(and winning) against humans in the strategy game Go [1] as
well as the video game StarCraft [2]. But it has also included such
practical and important work as optimizing datacenter power
utilization [3].

ML for Operations: Why Is It Hard?
Given that ML facilitates clustering, categorization, and actions
on data, it is enormously appealing as a system to automate op er -
ational tasks. ML offers the promise of replacing the human
judgment still used in decisions, such as whether a particular new
deployment works well enough to continue the roll-out, and whether
a given alert is a false positive or foreshadowing a real out age. Sev-
eral factors make this more difficult than one might think.

ML produces models that encode information by interpreting
features in a fashion that is often difficult to explain and debug
(especially with deep neural networks, a powerful ML tech-
nique). Errors in the training data, bugs in the ML algorithm
implementation, or mismatches between the encoding of data
between training and inference will often cause serious errors in
the resulting predictions that are hard to debug. Below we sum-
marize some common issues.

ML Makes Errors
ML is probabilistic in nature, so it will not always be right. It
can classify cats as dogs or even blueberry muffins [4] as dogs a
small fraction of the time, especially if the data being analyzed
is significantly different from any specific training example.
Of course, humans make errors as well, but we are often better
able to predict, tolerate, and understand the types of errors that
humans make. Systems need to be designed so such occasional
gross errors will be tolerable, which sometimes requires sanity
tests on the result (especially for numerical predictions).

Large Problem Spaces Require Lots of Training Data
The more possible combinations of feature values that a model
needs to deal with, the more training data it requires to be accu-
rate. In other words, where many factors could contribute to a
particular labeling or clustering decision, more data is required.
But in large feature spaces, there may be a large difference
between examples being analyzed and the closest training data,
leading to error caused by trying to generalize over a large space.
This is one of the most serious issues with using ML in opera-
tions, as it is often hard to find sufficient correctly labeled train-
ing data, and there are often many relevant variables/features.

Specifically, the problem space of production engineering or
operations is much messier than the space of fruit categorization.

www.usenix.org S U M M ER 2020 VO L . 45 , N O. 2 35

SRE
ML for Operations: Pitfalls, Dead Ends, and Hope

In practice, it turns out to be quite difficult to get experts to
categorize outages, SLO violations, and causes in a mutually con-
sistent manner. Getting good labels is going to be quite difficult.

Training Data Is Biased Relative to Inference Demand
The data you use to train your model may be too different from
the data you’re trying to cluster or categorize. If your training
data only cover a particular subset of all things the model might
need to infer over, all the other slices it wasn’t trained on will see
higher errors because of their divergence from the training data.
Additionally, if the statistical distribution of classifications in
the training data differs from the statistical distribution in the
real world, the model will make skewed predictions, thinking
that things that are more common in the training set are more
common in the real world than they really are. For example, if
the training data had 10 million dogs and 1000 cats, and dogs and
cats are equally likely in the inference examples, it will tend to
infer the presence of a dog more often than it should.

Lack of Explainability
Many of the best performing ML systems make judgments that
are opaque to their users. In other words, it is often difficult or
impossible to know why, in human intelligible terms, an ML
model made a particular decision with respect to an example.
In some problem domains, this is absolutely not a difficulty. For
example, if you have a large number of false positive alerts for a
production system and you’re simply trying to reduce that, it’s not
generally a concern to know that an ML model will use unex-
pected combinations of features to decide which alerts are real.
For this specific application, as long as the model is accurate, it
is useful. But models with high accuracy due purely to correla-
tion rather than causation do not support decision making. In
other situations aspects of provable fairness and lack of bias
are critical. Finally, sometimes customers or users are simply
uncomfortable with systems that make decisions that cannot
be explained to them.

Potential Applications of ML to Operations
Given all of these challenges, it will be useful to examine several
potential applications of ML to operations problems and consider
which of these is feasible or even possible.

Monitoring
For complex systems, the first problem of production mainte-
nance is deciding which of many thousands of variables to moni-
tor. Candidates might include RAM use by process, latency for
particular operations, request rate from end users, timestamp of
most recent build, storage usage by customer, number, and type
of connections to other microservices, and so on. The possibili-
ties of exactly what to monitor seem unbounded.

Systems and software engineering sometimes suggest using ML
to identify the most relevant variables to monitor. The objective
would be to correlate particular data series with the kinds of
events that we are most interested in predicting—for example,
outages, slowness, capacity shortfalls, or other problems.

In order to understand why this is a difficult problem, let us
consider how to build an ML model to solve it. In order to use ML
to create a dashboard that highlights the best metrics to see any
current problems with your system, the best approach will be to
treat the problem as a supervised multiclass prediction problem.
To address that problem we will need:

 3 A class to predict for every metric of interest
 3 Labels for all classes that were helpful for millions of production
events of concern
 3 Training and periodic retraining of your model as you fix bugs
and create new ones with failure types shifting over time
 3 Periodic (potentially on page load) inferring with the model over
which metrics should be shown to the user.

There are other complexities, but the biggest issue here is that
you need millions of labeled training examples of production
events of concern. Without millions of properly categorized
examples, simple heuristics, for example that operators select
the metrics that appear to be the most relevant, are likely to be
as or more effective and at a fraction of the cost to develop and
maintain. Simple heuristics also have several advantages over
ML, as previously mentioned. We hope you don’t have millions
of serious problematic events to your production infrastruc-
ture to train over. However, if your infrastructure is of a scale
and complexity that you think that you will, eventually, have
an appropriate amount of data for this kind of application, you
should begin accumulating and structuring that data now.

Alerting
Most production systems have some kind of manually configured
but automated alerting system. The objective of these systems
is to alert a human if and only if there is something wrong with
the system that cannot be automatically mitigated by the system
itself.

The general idea of an ML-centric approach to alerting is that
once you have determined which time series of data are worth
monitoring (see above) it might be possible to automatically and
semi-continuously correlate values and combinations of these.
To accomplish this we can start with every alert that we have or
could easily have and create a class for each.

We then need to create positive and negative labels. Positive
labels are applied to the alerts that were both useful and predic-
tive of some serious problem in the system that actually required
human intervention. Negative labels are the opposite: either not

36  S U M M ER 2020 VO L . 45 , N O. 2 www.usenix.org

SRE
ML for Operations: Pitfalls, Dead Ends, and Hope

useful or not predictive of required human intervention. We need
to label many events, those where something bad was happening
and those where everything was fine, and continuously add new
training examples. To scope the effort, we estimate that we will
need at least tens of thousands of positive examples and probably
even more (millions, most likely) of negative examples in order
to have a pure-ML solution that is able to differentiate real
problems from noise more effectively than a simple heuristic.
We are not discussing potential hybrid heuristic + ML solutions
here since, in many practical setups, this will lead to increased
complexity from integrating two systems that need to be kept in
sync for the intended outcome, which is unlikely to be worth the
extra effort.

Even if we had all these labels (and they’re correct) and a good
model, which we know to be difficult from the monitoring case
above, the on-call will still need to know where to look for the
problem. While we may be able to correlate anomalous metrics
with a confident alerting signal, covering the majority of alert
explanations this way would not be enough. For as long as the
fraction of “unexplainable” alerts is perceived by alert recipients
as high, the explainability problem makes adoption cumbersome
at best. This is the problem of explainability.

Canarying/Validation
Pushing new software to production frequently or continuously
as soon as it is effectively tested poses risks that new software
will sometimes be broken in ways the tests won’t catch. The stan-
dard mitigation for this is to use a canary process that gradually
rolls out to production combined with monitoring for problems
and a rapid rollback if problems are detected. The problem is
that monitoring is incomplete, so occasionally bad pushes slip
through the canary process unnoticed and cause serious issues.

For this reason, production engineers often suggest using ML to
automatically detect bad pushes and alert and/or roll them back.

This is a specialized version of the alerting problem; you need
positive labels and negative labels, labeling successful pushes
with positive labels and broken pushes with negative labels.
Much like with alerting, you will probably need thousands of
examples of bad pushes and hundreds of thousands of examples
of good pushes to differentiate real problems from noise better
than a simple heuristic. The main factor that makes canarying
a little less hard than general alerting is that you have a strong
signal of a high-risk event when your canary starts (as opposed
to continuous monitoring for general alerting) and an obvious
mitigation step (roll back), but you still need a large number of
correctly labeled examples to do better than heuristics. Note
that if you have a bad push that you didn’t notice in your labeling,
because it was rolled back too fast or got blocked by something
else and improperly labeled as a good push, it will mess up your
data and confuse your ML model.

False-positive canary failures will halt your release (which is
usually a preferable outcome to an outage). To maintain release
velocity, these need to be kept to a minimum, but that will lower
the sensitivity of your model.

Root Cause Analysis
Outages are difficult to troubleshoot because there are a huge
number of possible root causes. Experienced engineers tend to be
much faster than inexperienced engineers, showing that there is
some knowledge that can be learned.

Production engineers would like to use ML to identify the most
likely causes and surface information about them in an ordered
fashion to the people debugging problems so that they can con-
centrate on what is likely. This would require classifying the set
of most likely causes, and then labeling and training over enough
data to rank this list of causes appropriately.

Because you need a fixed list of classes to train over for this
problem, if a new type of problem shows up your model won’t be
able to predict it until it has trained over enough new examples.
If you have a case that isn’t on your list, then people may spend
excessive time looking through the examples recommended by
the model even though they’re irrelevant. To minimize this risk,
you might want to add lots of classes to handle every different
possibility you can think of, but this makes the training problem
harder as you need more properly labeled training data for every
class of problem you want the model to be able to predict. To be
able to differentiate between a list of a hundred causes, you’ll
probably need tens of thousands of properly labeled training
examples. It will be difficult to label these examples with the cor-
rect root cause(s) without a huge number of incidents, and there
is a strong risk that some of the manually determined root cause
labels will be incorrect due to the complexity, making the model
inaccurate. An additional complexity is that events (potential
causes) sequenced in one order may be harmless (capacity
taken down for updates after load has dropped), but sequenced
in another order may cause a serious outage (capacity taken
down for updates during peak load), and the importance of this
sequencing may confuse the ML model.

A manually assembled dashboard with a list of the top N most
common root causes, how to determine them (some of which
might be automated heuristics), and related monitoring will
probably be more helpful than an ML model for root cause analy-
sis in most production systems today.

Path Forward
We do not recommend that most organizations use machine
learning to manage production operations at this point in the
maturity of software services and ML itself. Most systems are
not large enough and would do better to focus their engineering
effort and compute resources on more straightforward means of

www.usenix.org S U M M ER 2020 VO L . 45 , N O. 2 37

SRE
ML for Operations: Pitfalls, Dead Ends, and Hope

improving production operations or expanding the business by
improving the product itself. Unless all of your monitoring is well
curated, alerting is carefully tuned, new code releases thoroughly
tested, and rollouts carefully and correctly canaried, there is no
need to expend the effort on ML.

However, in the future as production deployments scale, data
collection becomes easier, and ML pipelines are increasingly
automated, ML will definitely be useful to a larger fraction of
system operators. Here are some ways to get ready:

1. Collect your data. Figure out what data you think you might use
to run production infrastructure and collect it.

2. Curate those data. Make sure that the data are part of a system
that separates and, where possible, labels the data.

3. Begin to experiment with ML. Identify models that might make
sense and, with the full understanding that they will not reach
production any time soon, begin the process of prototyping.

Conclusion
While ML is promising for many applications, it is difficult to
apply to operations today because it makes errors, it requires a
large amount of high-quality training data that is hard to obtain
and label correctly, and it’s hard to explain the reasons behind its
decisions. We’ve identified some areas where people commonly
think ML can help in operations and what makes it difficult to
use in those applications. We recommend using standard tools
to improve operations first before moving forward with ML, and
we suggest collecting and curating your training data as the first
step to take before using ML in operations.

References
[1] https://deepmind.com/research/case-studies/alphago-the
-story-so-far.

[2] https://www.seas.upenn.edu/~cis520/papers/RL_for
_starcraft.pdf.

[3] https://static.googleusercontent.com/media/research
.google.com/en//pubs/archive/42542.pdf.

[4] https://www.topbots.com/chihuahua-muffin-searching
-best-computer-vision-api/.

https://deepmind.com/research/case-studies/alphago-the-story-so-far
https://deepmind.com/research/case-studies/alphago-the-story-so-far
https://www.seas.upenn.edu/~cis520/papers/RL_for_starcraft.pdf
https://www.seas.upenn.edu/~cis520/papers/RL_for_starcraft.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42542.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42542.pdf
https://www.topbots.com/chihuahua-muffin-searching-best-computer-vision-api/
https://www.topbots.com/chihuahua-muffin-searching-best-computer-vision-api/

38  S U M M ER 2020 VO L . 45 , N O. 2 www.usenix.org

COLUMNSSite Reliability Engineering and the
Crisis/Complacency Cycle
L A U R A N O L A N

This column will be published in Summer 2020, but I’m writing it in
mid-March. In the past week, in a response to the spread of the new
SARS-CoV-2 virus, many nations have closed down schools and

imposed restrictions on travel and events. Several major technology com-
panies are encouraging most employees to work from home. Stock markets
are falling more quickly than in the first stages of the 2008 crash. Nothing
is normal.

My social media feeds clearly show that SARS-CoV-2 is a source of fascination for systems
engineers and SREs (site reliability engineers) because it has some characteristics of the
kinds of systems problems we deal with in our work. The pandemic response is currently
centered around preventing the spread of the infection, effectively an attempt to throttle
admissions to intensive care in order to avoid saturating scarce medical resources. It involves
gathering metrics (which are lagging and sparse due to shortage of test kits) to make analyses
and projections. The mathematical analysis of the spread of the illness is very similar to the
characteristics of information propagation in a dissemination gossip protocol [1], which will
be familiar to anyone who has worked with Cassandra, Riak, Consul, or even BitTorrent—the
major difference being that instead of modifying software parameters to adjust the propaga-
tion, we all now need to reduce our social interactions, and perhaps to partition our systems
with travel restrictions.

I am not an epidemiologist, and I can’t predict how this situation will unfold between now and
when you read these words. Will we have endured on an international scale the kind of health
crisis that northern Italy is experiencing in March, or will most nations succeed in averting
the worst consequences of the pandemic, as South Korea seems to have done? If we do suc-
ceed, it’s possible that many will consider the robust response to the outbreak to be an over-
reaction, even in light of the evidence from northern Italy and Wuhan that failure to control
outbreaks leads to major public health problems.

The Job Is to Get Ahead of Problems
There is a phenomenon in operations, which I’ve heard called the “paradox of preparation”—
an organization that is effectively managing risks and preventing problems can fail to be
 recognized as such. Bad outcomes aren’t actually occurring, because of this preventative
work, so decision-makers may come to believe that the risks are significantly lower than
they actually are. Therefore, leaders may conclude that the organization that is preventing
the negative events from occurring isn’t an efficient use of resources anymore.

This appears to have been the fate of the White House’s National Security Council Direct-
orate for Global Health Security and Biodefense, which was set up in 2014 in response to the
Ebola outbreaks in Western Africa, then shut down abruptly in 2018. It was tasked with moni-
toring emerging disease risks and coordinating responses and preparation. According to its
former head, Beth Cameron, “The job of a White House pandemics office would have been to
get ahead: to accelerate the response, empower experts, anticipate failures, and act quickly
and transparently to solve problems” [2]. That is a function very much akin to what a good
SRE or resilience engineering team can do within a software engineering organization.

Laura Nolan’s background is
in site reliability engineering,
software engineering, distributed
systems, and computer science.
She wrote the “Managing Critical

State” chapter in the O’Reilly Site Reliability
Engineering book and was co-chair of SREcon18
Europe/Middle East/Africa. Laura is a produc-
tion engineer at Slack. laura.nolan@gmail.com

www.usenix.org S U M M ER 2020 VO L . 45 , N O. 2 39

COLUMNS
Site Reliability Engineering and the Crisis/Complacency Cycle

In 2019, before the SARS-CoV-2 virus appeared, the Center for
Strategic and International Studies think tank drew attention to
the closure of the Directorate.

When health crises strike—measles, MERS, Zika,
dengue, Ebola, pandemic flu—and the American
people grow alarmed, the U.S. government springs
into action. But all too often, when the crisis fades
and fear subsides, urgency morphs into complacency.
Investments dry up, attention shifts, and a false
sense of security takes hold. The CSIS Commission
on Strengthening America’s Health Security urges
the U.S. government to replace the cycle of crisis and
complacency that has long plagued health security
preparedness with a doctrine of continuous pre-
vention, protection, and resilience. [3]

This cycle of crisis and complacency is one we see in other kinds
of organizations, including software companies—a view that
reliability is only worth investing in the wake of problems, and at
other times it may be deprioritized and destaffed. The last edition
of this column discussed Professor Nancy Leveson’s model of
operations as a sociotechnical system dedicated to establishing
controls over production systems in order to keep them within
predefined safety constraints [4]. The crisis/complacency cycle
makes it impossible to build a strong sociotechnical system
that proactively manages change and emerging risks, because it
means that when investment into reliability happens you have
to build expertise, standards, processes, and organizations from
scratch while already in crisis mode.

Against the Advice of Their Own Experts
This crisis/complacency cycle is not new, nor is it unique to
either software or to pandemic prevention. The Boeing 737 Max
has been in the news for most of the past year following two fatal
crashes which were the consequence of design flaws in the new
aircraft type. The entire 737 Max fleet was grounded in response
to the accidents.

The airplane’s design was certified by the US Federal Aviation
Administration (FAA), a body created in 1958 to manage all
aspects of safety in aviation. Air travel has become safer every
decade since the FAA was set up, driven by improvements in
technology and safety culture. Perhaps not coincidentally, the
FAA has come under significant budgetary pressure in recent
years. Partly as a result of those budgetary constraints and partly
because of a shortage of relevant technical expertise, the FAA
delegated much of the technical work of validating the design of
the 737 Max aircraft against FAA standards to Boeing itself.

The report of the House Committee on Transportation and
Infrastructure paints a clear picture of enormous pressure
from Boeing’s management to get the aircraft to the market as

quickly as possible, at the lowest feasible cost and without any
need for existing 737 pilots to take further training— regardless
of any safety concerns [5]. Budgets for testing were cut, and
multiple suggestions by engineers to incorporate extra alerts and
indicators were rejected. Though it isn’t in Boeing’s commercial
interest to develop an unsafe aircraft, the company’s manage-
ment consistently made decisions that compromised safety,
contrary to the advice of their own technical experts. That they
did this against the backdrop of the safest period in the history of
commercial flight strongly suggests the same cycle of crisis and
complacency was at work in Boeing and the FAA that led to the
shutdown of the White House’s pandemics office in 2018.

Disconnects between Management and Engineers
On January 28, 1986, the Space Shuttle Challenger exploded dur-
ing liftoff. The accident was triggered by the failure of an O-ring
seal in unusually cold weather conditions. The disaster occurred
after 24 successful space shuttle launches, and these successes
helped to create complacency about safety at NASA. The incident
has been studied extensively, most notably by Diane Vaughan,
who coined the term “normalization of deviance” to describe the
process by which previously unacceptable results and practices
can gradually become the norm over time [6]. Despite that phe-
nomenon, the Rogers Commission Report on the disaster found
that engineers had raised safety concerns over the design with
management.

Richard Feynman, the noted physicist, was a member of the
commission that investigated the Challenger accident. Feynman
was particularly struck by the difference in perception of risk
between the engineers who worked on the shuttle and NASA’s
management. The engineers mostly believed that the shuttle had
a risk of catastrophic failure between 1 in 50 and 1 in 200. NASA’s
management claimed that the risk was 1 in 100,000. Feynman’s
assessment was that the engineers’ estimate of the risk was far
closer to the truth than management’s number, which seemed
based largely on wishful thinking and misunderstandings [7].

This kind of disconnect seems also to have existed at Boeing in
recent years. In 2001, Boeing’s executives moved from Seattle,
where its engineers are located, to Chicago, and non-engineers
moved into many executive roles.

[T]he ability [was lost] to comfortably interact with an
engineer who in turn feels comfortable telling you their
reservations, versus calling a manager [more than]
1,500 miles away who you know has a reputation for
wanting to take your pension away. It’s a very different
dynamic. As a recipe for disempowering engineers in
particular, you couldn’t come up with a better format. [8]

40  S U M M ER 2020 VO L . 45 , N O. 2 www.usenix.org

COLUMNS
Site Reliability Engineering and the Crisis/Complacency Cycle

“Captain Hindsight Suited Up”: Outcome Bias
Many of us in the software industry still remember the caution-
ary tale of Knight Capital, a financial firm that went bust in 2012
as a result of a bug in their trading software. As Knight Capital
was an SEC (Securities and Exchange Commission) regulated
company, there was an investigation and a report, which recom-
mended that the company should have halted trading as soon as
they realized there was something amiss [9].

On July 9, 2015, the New York Stock Exchange discovered a
problem in their systems. They halted trading, just as the SEC
said that Knight Capital ought to have done. However, as John
Allspaw put it, the “clone army of Captain Hindsights suited up,
ready to go” decided that the shutdown hadn’t been essential and
criticized the NYSE for unnecessarily halting over a “glitch” [10].

This is outcome bias, a cognitive bias that leads us to judge deci-
sions based on their results. We can’t predict the consequences
of decisions perfectly at the time we make them. Many tough
decisions have to be made with imperfect information—risks we
can’t fully quantify, information that’s incomplete or missing.
Sometimes, you need to make a sacrifice decision to avoid a risk
of greater harm. This is likely better than simply reacting accord-
ing to prevailing conditions of the crisis/complacency cycle. This
closely describes the situation that the political leaders of most of
the world find themselves in March 2020 with respect to SARS-
CoV-2. By the time you read this, outcome bias will likely have
declared their actions as overkill (if successful) or insufficient.

Risk and Rot in Sociotechnical Systems
We work in organizations made up of people, all subject to out-
come bias and prone to underestimate or overestimate risks,
 depending on to what extent normalization of deviance has set in
on our team. Executives can become far removed from the reality
of life at the front line, and their appreciation of probabilities of
adverse events can be strongly affected by recent outcomes.

One of the major functions of an SRE or operations team is
to proactively manage risks. This kind of work covers a broad
spectrum, from keeping systems patched, rotating certs and
tokens, and validating backups, through to less routine things

like writing runbooks and recovery tools, running disaster tests,
performing production readiness reviews for new systems, and
doing thorough reviews of near-miss production incidents. These
are also the kinds of work that can fall by the wayside all too
easily when a team is overloaded or understaffed. The eventual
outcome is likely to be a crisis and the start of a new cycle of
investment.

An important part of our job, therefore, is to make the value of our
work visible in order to avoid the organizational rot that makes
us underestimate risk and underinvest in reliability. We live in
a data-driven world, but of course, we can’t track the incidents
that don’t happen because of good preventative work. However, at
times when we aren’t in crisis mode, there are many other things
that we can do to show how our work contributes to increasing
reliability.

We can create internal SLOs for the routine jobs we do to man-
age risks, and set up dashboards to show whether you’re meet-
ing those SLOs or not. Write production-readiness standards
that you’d like your services to meet—covering areas such as
change management, monitoring and alerting, load balancing
and request management, failover, and capacity planning. Track
how your services meet those standards (or don’t). Set up chaos
engineering and game days to test how your services deal with
failure, and track those results as you would postmortem action
items. Load test your systems to understand how they scale,
and address bottlenecks you will encounter in the next year or
two. Take near-misses and surprises seriously, and track them,
along with action items. All of these things help to prevent a slide
into normalization of deviance as well as giving visibility into
our work.

As engineers, we have a responsibility to clearly communicate
about risks in our systems and the proactive work we do to reduce
them. But “the fish rots from the head down”: engineering lead-
ers ultimately make critical decisions and therefore they must
be acutely aware of outcome bias and the risk of disconnects in
understanding of risk between front-line engineers and them-
selves. Most importantly, they must be mindful of the crisis/
complacency cycle and maintain an appropriate continuous
investment in resilience and reliability in order to avoid crisis.

www.usenix.org S U M M ER 2020 VO L . 45 , N O. 2 41

COLUMNS
Site Reliability Engineering and the Crisis/Complacency Cycle

References
[1] K. Birman, “The Promise, and Limitations, of Gossip Proto-
cols”: http://www.cs.cornell.edu/Projects/Quicksilver/public
_pdfs/2007PromiseAndLimitations.pdf.

[2] B. Cameron, “I ran the White House pandemic office. Trump
closed it,” The Washington Post, March 13, 2020.

[3] J. S. Morrison, K. Ayotte, and J. Gerberding, “Ending the
Cycle of Crisis and Complacency in U.S. Global Health Secu-
rity,” November 20, 2019, Center for Strategic International
Studies: https://www.csis.org/analysis/ending-cycle-crisis
-and-complacency-us-global-health-security.

[4] L. Nolan, “Constraints and Controls: The Sociotechnical
Model of Site Reliability Engineering,” ;login:, vol. 45, no. 1
(Spring 2020), pp. 44–48.

[5] The House Committee on Transportation and Infrastruc-
ture, “Boeing 737 MAX Aircraft: Costs, Consequences, and
Lessons from Its Design, Development, and Certification,”
March 2020: https://transportation.house.gov/imo/media/doc
/TI%20Preliminary%20Investigative%20Findings%20Boeing
%20737%20MAX%20March%202020.pdf.

[6] D. Vaughan, The Challenger Launch Decision: Risky Tech-
nology, Culture, and Deviance at NASA (University of Chicago
Press, 1996).

[7] Presidential Commission on the Space Shuttle Challenger
Accident, Report, 1986: https://science.ksc.nasa.gov/shuttle
/missions/51-l/docs/rogers-commission/table-of-contents
.html.

[8] J. Useem, “The Long-Forgotten Flight That Sent Boeing
Off Course,” The Atlantic, November 20, 2019: https://www
.theatlantic.com/ideas/archive/2019/11/how-boeing-lost-its
-bearings/602188/.

[9] “In the Matter of Knight Capital Americas LLC,” SEC
Release No. 70694, October 16, 2013: https://www.sec.gov
/litigation/admin/2013/34-70694.pdf.

[10] J. Allspaw, “Hindsight and Sacrifice Decisions,” March 3,
2019: https://www.adaptivecapacitylabs.com/blog/2019/03/03
/hindsight-and-sacrifice-decisions/.

http://www.cs.cornell.edu/Projects/Quicksilver/public_pdfs/2007PromiseAndLimitations.pdf
http://www.cs.cornell.edu/Projects/Quicksilver/public_pdfs/2007PromiseAndLimitations.pdf
https://www.csis.org/analysis/ending-cycle-crisis-and-complacency-us-global-health-security
https://www.csis.org/analysis/ending-cycle-crisis-and-complacency-us-global-health-security
https://transportation.house.gov/imo/media/doc/TI%20Preliminary%20Investigative%20Findings%20Boeing%20737%20MAX%20March%202020.pdf
https://transportation.house.gov/imo/media/doc/TI%20Preliminary%20Investigative%20Findings%20Boeing%20737%20MAX%20March%202020.pdf
https://transportation.house.gov/imo/media/doc/TI%20Preliminary%20Investigative%20Findings%20Boeing%20737%20MAX%20March%202020.pdf
https://science.ksc.nasa.gov/shuttle/missions/51-l/docs/rogers-commission/table-of-contents.html
https://science.ksc.nasa.gov/shuttle/missions/51-l/docs/rogers-commission/table-of-contents.html
https://science.ksc.nasa.gov/shuttle/missions/51-l/docs/rogers-commission/table-of-contents.html
https://www.theatlantic.com/ideas/archive/2019/11/how-boeing-lost-its-bearings/602188/
https://www.theatlantic.com/ideas/archive/2019/11/how-boeing-lost-its-bearings/602188/
https://www.theatlantic.com/ideas/archive/2019/11/how-boeing-lost-its-bearings/602188/
https://www.sec.gov/litigation/admin/2013/34-70694.pdf
https://www.sec.gov/litigation/admin/2013/34-70694.pdf
https://www.adaptivecapacitylabs.com/blog/2019/03/03/hindsight-and-sacrifice-decisions/
https://www.adaptivecapacitylabs.com/blog/2019/03/03/hindsight-and-sacrifice-decisions/

42  S U M M ER 2020 VO L . 45 , N O. 2 www.usenix.org

COLUMNS

iVoyeur
eBPF Tools

D A V E J O S E P H S E N

Dave Josephsen is a book author,
code developer, and monitoring
expert who works for Fastly.
His continuing mission: to help
engineers worldwide close the

feedback loop. dave-usenix@skeptech.org

I spent my high-school years in a tightly entangled group of four friends.
We were basically inseparable, formed a horrible rock band, and I think
did a lot of typical ’90s Los Angeles kid things like throwing powdered

doughnuts into oncoming traffic and making a nuisance of ourselves at
7-Eleven and Guitar Center. We smashed against the breakwater of gradu-
ation and went different places, but of the four of us, I was the only one who
didn’t go off to college to study music theory. Opting instead to eject into the
Marine Corps, which is a longer story, and irrelevant to the current metaphor.

Anyway, we kept in touch, and in their letters all three of my friends described the process of
learning music theory in a very similar way. As a neophyte musician, you typically have some
aptitude with one or two instruments, but very little knowledge about how music itself works.
Evidently in the first year of music theory, you are presented with myriad complicated rules.
From what I understand, in fact, you do little else the first year but learn the rules and some
important exceptions to the rules.

Then bit by bit, as the years progress, the rules are stripped away, until you reach some sort of
musical enlightenment, where there are no rules and you work in a kind of effortless innova-
tory fugue where everything you create just clicks.

I vaguely remember feeling this way about computer science. Having written my first Perl
script, f lush with optimism and newfound aptitude. “So this is what it feels like to have
mastered computering at last,” I thought to myself, setting aside my Camel book to cross my
arms in a self-satisfied way, and cursing whatever company I was working for at the time
with whatever abomination I’d just created.

Many—er, well, several years later, I feel strongly that computer science is something like the
exact opposite of how my friends described music theory in those hastily scribbled letters all
that time ago. The rules do not so much disappear but rather change and reassemble anew
every so often, and instead of effortless enlightenment, I find myself splitting my days between
confounded frustration and shocked dismay, each of those punctuated by short bouts of
relief and semi-comprehension. In our world I sometimes feel like it’s a miracle anything
works at all, and the more I learn, the less I seem to know.

In my last article I introduced eBPF, the extended Berkeley Packet Filter, along with a shell
tool called biolatency, which uses eBPF-based kernel probes to instrument the block I/O (or
bio) layer of the kernel and return per-device latency data in the form of a histogram. There
is a deeply refreshing crispness about delving into the solar system of eBPF, a brisk under-
current that pulls one down through abstraction layers and toward the metal. There are over
150 tools in the BCC (https://github.com/iovisor/bcc) tools suite, and you can use them all
without knowing how they work, of course. I think you’ll find, however, that your effective-
ness with BCC tools like biolatency scales linearly with your knowledge of kernel internals,
and the slightest exploration into their inner workings leads one directly into the kernel
source.

www.usenix.org S U M M ER 2020 VO L . 45 , N O. 2 43

COLUMNS
iVoyeur: eBPF Tools

Let’s begin this second article on eBPF, therefore, with a short
discussion of the Linux Kernel’s “bio” layer [1]. This is the kernel
software layer loosely defined as the contents of the block
subdirectory of the Linux kernel source. The code here resides
between file systems like ext3 and device drivers, which do the
work of interacting directly with storage hardware.

At this layer, we are below abstraction notions like files and
directories. Disks are represented by a small struct inside the
kernel called struct_gendisk [2], for “generic disk,” and reads
and writes no longer exist as separate entities. Instead, all types
of block I/O operations are wrapped inside a generic request
wrapper called struct_bio [2], the struct for which the “bio”
layer is named.

Without delving any further into the bio layer, we can already see
how ideally situated the bio layer is for trace-style instrumenta-
tion. Above us, in the file systems, we would need to probe every
kind of disk operation: a different probe for reads, writes, opens,
etc. Below bio we will find vendor-specific code and a mountain
of historical, related exceptions and complications. But right
here inside bio, we have a single, well-defined data-structure that
represents every type of disk I/O possible operation. No writes,
no reads, just requests, and one probe can summarize them all.

We can also assume that tracing these requests will give us read
access to the struct_bio data structure, because we’ll need it
to see what kind of request we’re dealing with (e.g., read/write),
what block device each request is destined for, and so on.

We now have the necessary information to take our first cursory
glance inside biolatency.py [3] to intuit what’s going on. The
first 53 lines are pretty typical preamble for a Python script:
documentation, imports, and argument parsing. The arguments
are interesting, but we’ll set them aside for now to take a look at
the large string that begins on line 55:

define BPF program
bpf_text = “””
#include <uapi/linux/ptrace.h>
#include <linux/blkdev.h>
typedef struct disk_key {

From our last article you’ll remember that eBPF is a virtual
machine that resides in the kernel. This string (named bpf_text)
is the payload intended for that in-kernel VM; it takes up about
a quarter of the overall code in the Python script and is written
in C. It is a program, embedded within our program, that will be
compiled to bytecode and loaded into the kernel’s eBPF VM. If
you look closely, you’ll notice that this C code won’t compile as is,
because of expressions like this one on line 70:

BPF_HASH(start, struct request *);
STORAGE

These are string-replacement match targets. These will be
replaced in this string with valid code, depending on options
passed in by the user. These substitutions begin on line 103
and all take the same general form:

if args.milliseconds:
 bpf_text = bpf_text.replace(‘FACTOR’, ‘delta /= 1000000;’)
 label = “msecs”
else:
 bpf_text = bpf_text.replace(‘FACTOR’, ‘delta /= 1000;’)
 label = “usecs”

All of these substring substitutions follow the same basic pat-
tern: if option X was set by the user, then replace MACRO in the
payload program with value Y; otherwise, replace MACRO with
value Z. In the example above, we’re choosing between micro and
milliseconds in the payload string. We’re also setting a “label”
variable to give hints for properly printing the output later on.
This process of rewriting sections of the payload string goes on
for most of the options the user passes in. The exception is -Q,
which selects whether we will include the time an I/O request
spends queued in the kernel as part of the latency calculation.

This switch affects our choice of which particular kernel func-
tions we ultimately choose to trace. If we don’t care about queue-
time, we will want to measure latency starting from the moment
the I/O request is issued. However if -Q is set, we will also want to
include the time each request spent waiting on the kernel. We can
see how this is implemented starting on line 134:

b = BPF(text=bpf_text)
if args.queued:
 b.attach_kprobe(event=”blk_account_io_start”, \
 fn_name=”trace_req_start”)
else:
 if BPF.get_kprobe_functions(b’blk_start_request’):
 b.attach_kprobe(event=”blk_start_request”, \
 fn_name=”trace_req_start”)
 b.attach_kprobe(event=”blk_mq_start_request”, \
 fn_name=”trace_req_start”)
b.attach_kprobe(event=”blk_account_io_done”,
 fn_name=”trace_req_done”)

First, we instantiate a new BPF Python object, passing in our
newly rewritten payload in the process. What happens next
depends on the -Q option. If we care about the latency induced
by in-kernel queue time, then we’ll insert our kernel probe at the
blk_account_io_start() kernel function, which is called when
an I/O request is first queued in the kernel. However, if we want
to measure “pure” block I/O latency—that is, the amount of time a
given generic I/O request took to return—we’ll instrument blk
_mq_start_request() and possibly blk_start_request() if the
latter function exists in the current kernel. No matter what paths
we choose, we’ll close each trace at blk_account_io_done().

44  S U M M ER 2020 VO L . 45 , N O. 2 www.usenix.org

COLUMNS
iVoyeur: eBPF Tools

At this point, our payload is inserted into the running kernel, and
we are collecting data. Now we are confronted with some bitwise
arithmetic beginning with a collection of constants on line 147
and continuing with some bitmask construction, and constants
definition on line 157:

REQ_OP_BITS = 8
REQ_OP_MASK = ((1 << REQ_OP_BITS) - 1)
REQ_SYNC = 1 << (REQ_OP_BITS + 3)
REQ_META = 1 << (REQ_OP_BITS + 4)
REQ_PRIO = 1 << (REQ_OP_BITS + 5)

This is necessary to understand the data we’re collecting. The
bit-specifics correspond to the bi_opf [4] attribute (bio opera-
tional flags) inside struct_bio, the central block I/O request
struct I mentioned above in the bio layer. The attribute is an
unsigned int that’s used to track metadata about a given block
I/O request. You can see the constant defs for this bitmask a
few lines down [5] from the struct_bio definition in the kernel
source. In short, these flags tell us whether a given request was a
read, write, cache-flush, etc. and provide some additional meta-
data about the operation, whether it was priority, backgrounded,
read-ahead, etc.

If you continue down to line 171 in biolatency, you’ll see that we
AND the flags value, given to us from the probe, against a bitmask
with bit 7 set to determine an integer value that corresponds to
the top-level operation type (read, write, flush, discard, etc.). We
then proceed to individually check for flags in the bitmask which
correspond to subcategories. Prepending these to the top-level
operation type:

 if flags & REQ_SYNC:
 desc = “Sync-” + desc
 if flags & REQ_META:
 desc = “Metadata-” + desc
 if flags & REQ_FUA:
 desc = “ForcedUnitAccess-” + desc

So if the flags mask AND’d to a value of 0, which equates to “Read,”
and then we subsequently discovered that bit 11 was set in the flags
mask corresponding to “Sync,” we’d wind up filing this bio-request
under “Sync-Read.” Biolatency can use this data to plot histograms
of I/O latency per category of I/O operation with the -F flag.

The last section in the script deals with printing our output.
The script stays in the foreground until it encounters a keyboard
interrupt from the user, and then dumps its output depending
on how the user specified they wanted to see it in the argument
flags. Unfortunately, these all use functions defined deeper
inside the BCC Python library code, and scratching at them
requires us to understand the eBPF data model, and a little bit
more about the line between kernel and userspace, all of which
we will get into in our next article.

If you’re feeling like you know less than you did when you came
in, then you are in a pretty good place. As I said in the intro,
studying eBPF internals brings you close to the kernel in short
order, which is a refreshing place to be. If you’d like to read a little
more about the kernel’s bio layer, there is an excellent set of intro-
ductory articles at LWN [1], and Brendan Gregg’s BCC Python
Development Tutorials [6] are another great resource for those
wanting to read ahead.

Take it easy.

References
[1] “A block layer introduction part 1: The bio layer”: https://
lwn.net/Articles/736534/.

[2] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds
/linux.git/tree/include/linux/genhd.h?h=v4.13#n171.

[3] https://github.com/iovisor/bcc/blob/master/tools
/biolatency.py.

[4] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds
/linux.git/tree/include/linux/blk_types.h?h=v4.14-rc1#n54.

[5] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds
/linux.git/tree/include/linux/blk_types.h?h=v4.14-rc1#n182.

[6] https://github.com/iovisor/bcc/blob/master/docs/tutorial
_bcc_python_developer.md.

https://lwn.net/Articles/736534/
https://lwn.net/Articles/736534/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/genhd.h?h=v4.13#n171
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/genhd.h?h=v4.13#n171
https://github.com/iovisor/bcc/blob/master/tools/biolatency.py
https://github.com/iovisor/bcc/blob/master/tools/biolatency.py
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/blk_types.h?h=v4.14-rc1#n54
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/blk_types.h?h=v4.14-rc1#n54
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/blk_types.h?h=v4.14-rc1#n182
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/blk_types.h?h=v4.14-rc1#n182
https://github.com/iovisor/bcc/blob/master/docs/tutorial_bcc_python_developer.md
https://github.com/iovisor/bcc/blob/master/docs/tutorial_bcc_python_developer.md

www.usenix.org S U M M ER 2020 VO L . 45 , N O. 2 45

COLUMNS

“A little neglect may breed mischief ...
for want of a nail, the shoe was lost;
for want of a shoe, the horse was lost;
and for want of a horse, the rider was lost.”

—Benjamin Franklin, Poor Richard’s Almanac (1758)

A s software eats the world and open source eats software, IT supply
chains and enterprise risk management postures are evolving. Top-
down, CIO-led commercial software procurement is shifting towards

bottom-up, developer-driven choices that increasingly involve open source
software (OSS) [1]. Security in this context requires visibility, starting with
a comprehensive inventory (software bill of materials) as well as an under-
standing of code provenance (software composition analysis). It also entails
application testing, automated vulnerability scanning, instrumentation, and
observability, which can provide insights for defenders. For organizations
that plan over longer time horizons, however, mitigating OSS risk sometimes
means taking on direct responsibility for software maintenance. Little by
little, organizations are empowering staff to perform upstream code improve-
ments that the rest of the world can access. When implemented thoughtfully,
this pragmatic form of software stewardship can help avoid broken builds,
obsolescence, and other potential failure modes.

In a rough count by the authors, we found that at least one-third of Fortune 500 firms have a
public Git presence for company-sanctioned OSS activity [2]. While proprietary software use
remains widespread, and while many more companies use private repositories for internal
collaboration projects, or inner-source, many high-profile enterprise software development
efforts are now happening in the open under permissive license terms. A similar pattern
appears to be unfolding in the public sector, albeit at a more gradual pace. NASA, the GSA, the
Department of Transportation, and the Department of Energy, for instance, have earned high
marks on the code.gov agency compliance dashboard for their performance under the Federal
Source Code Policy. Other federal agencies are taking more incremental steps in adapting
OSS to their missions, and these initiatives are likely to remain a continual work-in-progress.
With commercial and governmental enterprises mostly consuming but increasingly produc-
ing OSS, and with shared source code resources circulating across both types of Git repos,
knowledge spillovers [3] appear to be reshaping a wide variety of software development com-
munities. Silicon Valley is playing a prominent role in this arena, and as the Linux Foundation’s
Core Infrastructure Initiative recently noted, “some of the most active OSS developers contrib-
ute to projects under their Microsoft, Google, IBM, or Intel employee email addresses” [4].

Whether public or private, funding for OSS can help underwrite open innovation, reduce
security costs, and amortize technical debt, but Red Hat’s Gordon Haff reminds us: “Open
source today is not peace, love, and Linux” [5]. Fiscal sponsorship can skew incentives in

Who Will Pay the Piper for Open Source
Software Maintenance?
Can We Increase Reliability as We Increase Reliance?

D A N G E E R A N D G E O R G E P . S I E N I A W S K I

Dan Geer is the CISO for In-Q-
Tel and a security researcher
with a quantitative bent. He has
a long history with the USENIX
Association, including officer

positions, program committees, etc. 
dan@geer.org

George P. Sieniawski is a tech-
nologist at In-Q-Tel Labs, which
develops open source tools and
data sets that address challenges
at the intersection of national

security, the public interest, and the private sec-
tor. He specializes in data visualization research
and prototype development for a wide variety of
use cases. GSieniawski@iqt.org

46  S U M M ER 2020 VO L . 45 , N O. 2 www.usenix.org

COLUMNS
Who Will Pay the Piper for Open Source Software Maintenance?

unexpected ways since OSS backers are in a position to influence
feature prioritization and project governance. As organizations
start treating user-driven open source development as a regular
operating expense, some developers worry about ecosystem
fragmentation, value capture, and selective appropriation of
benefits. Indeed, the advent of new software funding vehicles
and managed open source subscription plans has drawn com-
parisons to gentrification and gerrymandering [6]. Consequently,
organizations looking to engage with OSS communities around
the world need to understand developer motivations, which are
distinct from ownership and contract [7] and which involve a mix
of pecuniary, reputational, and “own-use”/DIY reasons.

As Internet researcher Nadia Eghbal rightly recognizes, the OSS
community’s “volunteer culture discourages talk of money” [8].
Moreover, “The pervasive belief, even among stakeholders such
as software companies, that open source is well-funded, makes
it harder to generate support” for fledgling projects. It also high-
lights the need to find a balance between bearing private cost
and conferring public benefit, which is the crux of open source
stewardship. In the years since Eghbal’s magisterial study of
OSS, developers have become increasingly vocal about fund-
ing. Researchers are also beginning to look more closely at the
individual contributors whose work underpins today’s OSS eco-
system. These efforts have started to shed light on the complex
symbiosis—or perhaps commensalism—between community-
developed OSS and corporate-backed OSS.

Among other companies, Netflix, JP Morgan, and Airbnb have
reaped significant benefits from company-sponsored community-
maintained open source, not only in terms of demonstrating
technical prowess and cultivating talent, but also in terms of
operational impact. Other groups, like the world’s largest auto-
makers collaborating on Automotive Grade Linux or the finan-
cial sector companies embracing the Hyperledger project, seem
to be following suit by forming consortia. GitLab’s effort to estab-
lish a clear set of principles that enable a diverse OSS contributor
community to work as one is another compelling case in point.
The company’s management promises not to “remove features
from the open source codebase in order to make the same feature

paid.” GitLab also stresses contributors’ right to the integrity of
their work: “If the wider community contributes a new feature they
get to choose if it is open source or source-available (proprietary
and paid)” [9]. By explicitly recognizing the value volunteer devel-
opers bring to the platform, the company has been able to promote
high-quality code contributions while avoiding cannibalization.

GitLab’s rivals also appear to be taking a long-term view of OSS
risk [10]. In February 2019, Microsoft took a snapshot of the top
active public GitHub repositories, depositing physical copies of
some of the world’s most widely used software in a decommis-
sioned coal mine in the Svalbard archipelago of Norway. The
company has already stored copies of the source code for the
Linux and Android operating systems in this remote region,
along with 6,000 other OSS libraries it considers significant.
Part gene bank and part library, this mega-repository is now
the largest tenant in the Arctic World Archive, with additional
redundancies planned for other locations. Backing up this
treasure trove of software is a significant resilience and data
loss prevention measure. However, building a nest for Coase’s
Penguin [11] in Svalbard is by no means sufficient for the vitality
of the open source economy. On the contrary, as OSS becomes ever
more ubiquitous, active maintenance becomes an increasingly
pressing priority. Which brings us to the maintainers.

OSS Maintenance
Although there is “a high correlation between being employed
and being a top contributor to” OSS [12], sustaining it takes
more than a regular income stream. Long-term commitment
to open source stewardship is also essential, as is budgeting
time for periodic upkeep. For perspective, consider that 36% of
professional developers report never contributing to open source
projects, with another 28% reporting less than one open source
contribution per year (2019 Stack Overflow Developer Survey).
Thus, despite more direct enterprise engagement with open
source, risk-averse attitudes towards licensing risk and poten-
tial loss of proprietary advantage endure by and large. Consider
further Table 1, which shows how concentrated contribution pat-
terns are, particularly in JavaScript, and thus where additional
OSS maintenance support could have an outsized impact.

Top 50 Packages
(for each package manager) Primary Language Language

Rank,* 2019
Language

Rank,* 2018
Average Dependent

Projects
Average Direct

Contributors

npm JS 1 1 3,500,000 35

Pip Python 2 3 78,000 204

Maven Java 3 2 167,000 99

NuGet .NET/C++ 6 5 94,000 109

RubyGems Ruby 10 10 737,000 146

Table 1: Concentration of GitHub contributions. *Popularity ranked by number of unique contributors to public and private GitHub repositories tagged with
the corresponding primary language. Source: GitHub, State of the Octoverse (https://octoverse.github.com/#average-package-contributors-and-dependencies),
released Nov. 6, 2019 (a few months before GitHub acquired npm).

www.usenix.org S U M M ER 2020 VO L . 45 , N O. 2 47

COLUMNS
Who Will Pay the Piper for Open Source Software Maintenance?

For additional context, Figures 1 and 2 show the geo-
graphic and technological mix of contemporary OSS
development worldwide. Note that this is not an exhaus-
tive account of OSS growth, merely an indicative snap-
shot at a single point in time. In addition, keep in mind
that this data, sourced from the Open Source Compass,
excludes GitHub projects with fewer than 10 watchers.
For more detail on these smaller open source projects,
which are enjoying intense growth outside of the US,
see the State of the Octoverse report mentioned in the
caption of Table 1.

Figure 1: Geographic mix of OSS contributors on GitHub, 1Q19. Source: Open Source Compass
(https://opensourcecompass.io/locations); note that this map excludes countries with
fewer than 5,000 commits.

Figure 2: Technological mix of GitHub contributions, 1Q19. Source: Open Source Compass (https://opensourcecompass.io/domains/#which-domains-have-
the-most-contributors), which uses data from the GH Torrent project, a research initiative led by Georgios Gousios of Delft University of Technology. GH
 Torrent monitors the GitHub public event timeline and retrieves and stores the contents and dependencies of each event.

48  S U M M ER 2020 VO L . 45 , N O. 2 www.usenix.org

COLUMNS
Who Will Pay the Piper for Open Source Software Maintenance?

Conclusion
Each year, the Augean task of patching OSS vulnerabilities
falls to small groups of solitary maintainers who generally rise
to the occasion but who also have to balance competing com-
mitments. This developer dynamic has unfortunate security
ramifications for widely used software like bash, OpenSSL, and
Apache Struts, the latter of which played a significant role in the
Equifax breach. In parallel, bitsquatting and typosquatting (e.g.,
the python3-dateutil library masquerading as the popular
dateutil tool) as well as developer infrastructure exploits (such
as the event-stream hack) are opening up new attack vectors
that undermine trust in OSS. In addition, with “rage-quit”
takedowns (like the npm left-pad deletion [13], which briefly
impacted React and Babel) and with maintainer withdrawal on
libraries like core-js and jsrsasign, enterprise risk managers

are increasingly attuned to the risk of broken builds. Given these
challenges, federated package registries, cryptographically signed
software packages, and reproducible builds are all steps in the
right direction.

In the long run, however, establishing a modus vivendi between
IT risk managers and open source developers will be critical to
open source innovation, security, and competitiveness. Such an
outcome will be as much a function of cultural adjustment as
of technological advancement. Organizations paying the open
source piper need to remain attuned to developer trust and trans-
parency issues, and while there are few easy answers for how
to sustain and secure OSS, paying it forward on maintenance is
likely to generate outsized benefits, not only for end users, but
also for society at large.

References
[1] P. Ford, “What Is Code?” Bloomberg Businessweek, June 11,
2015 (describing this secular shift in detail from the perspective
of non-technical company managers): https://www.bloomberg
.com/graphics/2015-paul-ford-what-is-code/.

[2] In early 2020, the list includes media companies (Disney,
CBS), insurers (State Farm, Liberty Mutual, and Northwestern
Mutual), asset managers (JP Morgan, Goldman Sachs, BNY
Mellon, BlackRock), industrial firms (3M, GE, and Emerson
Electric), energy giants (Halliburton, DCP Midstream, and
NRG), retailers (Walmart, Nordstrom, and Home Depot), airlines
(Alaska Air and American Airlines), tractor OEMs (John Deere
and AGCO), and automakers (Tesla and Ford), among others.

Another ≈20% of the Fortune 500 appears to have OSS place-
holder pages for brand integrity and/or developer recruiting
purposes.

[3] See generally T. Wang, “Knowledge Spillovers in the Open
Source Community,” Toulouse Digital Seminar, 2017; see also
J. Meinwald, “Why Two Sigma Contributes to Open Source”
(January 29, 2018): https://www.youtube.com/watch?v=5lk7LJU
_zZM.

[4] F. Nagle, J. Wilkerson, J. Dana, and J. L. Hoffman, “Vulner-
abilities in the Core Preliminary Report and Census II of Open
Source Software,” The Linux Foundation & The Laboratory for
Innovation Science at Harvard, February 18, 2020: https://
www.coreinfrastructure.org/wp-content/uploads/sites/6/2020
/02/census_ii_vulnerabilities_in_the_core.pdf.

[5] G. Haff, How Open Source Ate Software (Apress, 2018), p. 172.

[6] C. Aniszczyk, “Open Source Gerrymandering,” Oct. 8,
2019: https://www.aniszczyk.org/2019/10/08/open-source
-gerrymandering/; B. Scott, “The Hacker Hacked,” Aeon, August
10, 2015: https://aeon.co/essays/how-yuppies-hacked-the
-original-hacker-ethos.

[7] See generally Y. Benkler, “Coase’s Penguin, or, Linux and The
Nature of the Firm,” Yale Law Journal, vol. 112, no. 3 (December
2002), pp. 369–446 : https://www.yalelawjournal.org/article
/coases-penguin-or-linux-and-the-nature-of-the-firm.

[8] N. Eghbal, Roads and Bridges: The Unseen Labor Behind
Our Digital Infrastructure (Ford Foundation, 2016): https://
www.fordfoundation.org/work/learning/research-reports
/roads-and-bridges-the-unseen-labor-behind-our-digital
-infrastructure/.

[9] “Our Stewardship of GitLab”: https://about.gitlab.com
/company/stewardship/.

[10] A. Vance, “Open Source Code Will Survive the Apocalypse
in an Arctic Cave,” Bloomberg Businessweek, November 13,
2019: https://www.bloomberg.com/news/features/2019-11-13
/microsoft-apocalypse-proofs-open-source-code-in-an-arctic
-cave.

[11] See [7], citing Y. Benkler, 2002. As Benkler notes, “the geek
culture that easily recognizes ‘Coase’ doesn’t [always] recognize
the ‘Penguin,’ and vice versa. ‘Coase’ refers to Ronald Coase,
who originated the transactions costs theory of the firm that
provides the methodological template for the positive analysis
of peer production…The penguin refers to the fact that the Linux
kernel development community has adopted the image of a
paunchy penguin as its mascot/trademark. One result of this
cross-cultural conversation is that [discussions of open source
require one to] explain in some detail concepts that are well
known in one community but not in the other.”

[12] See [4], citing, Nagle et al., 2020.

[13] D. Haney, “NPM & left-pad: Have We Forgotten How to
 Program?” (March 23, 2016): https://www.davidhaney.io/npm
-left-pad-have-we-forgotten-how-to-program/.

https://www.bloomberg.com/graphics/2015-paul-ford-what-is-code/
https://www.bloomberg.com/graphics/2015-paul-ford-what-is-code/
https://www.youtube.com/watch?v=5lk7LJU_zZM
https://www.youtube.com/watch?v=5lk7LJU_zZM
https://www.coreinfrastructure.org/wp-content/uploads/sites/6/2020/02/census_ii_vulnerabilities_in_the_core.pdf
https://www.coreinfrastructure.org/wp-content/uploads/sites/6/2020/02/census_ii_vulnerabilities_in_the_core.pdf
https://www.coreinfrastructure.org/wp-content/uploads/sites/6/2020/02/census_ii_vulnerabilities_in_the_core.pdf
https://www.aniszczyk.org/2019/10/08/open-source-gerrymandering/
https://www.aniszczyk.org/2019/10/08/open-source-gerrymandering/
https://aeon.co/essays/how-yuppies-hacked-the-original-hacker-ethos
https://aeon.co/essays/how-yuppies-hacked-the-original-hacker-ethos
https://www.yalelawjournal.org/article/coases-penguin-or-linux-and-the-nature-of-the-firm
https://www.yalelawjournal.org/article/coases-penguin-or-linux-and-the-nature-of-the-firm
https://www.fordfoundation.org/work/learning/research-reports/roads-and-bridges-the-unseen-labor-behind-our-digital-infrastructure/
https://www.fordfoundation.org/work/learning/research-reports/roads-and-bridges-the-unseen-labor-behind-our-digital-infrastructure/
https://www.fordfoundation.org/work/learning/research-reports/roads-and-bridges-the-unseen-labor-behind-our-digital-infrastructure/
https://www.fordfoundation.org/work/learning/research-reports/roads-and-bridges-the-unseen-labor-behind-our-digital-infrastructure/
https://about.gitlab.com/company/stewardship/
https://about.gitlab.com/company/stewardship/
https://www.bloomberg.com/news/features/2019-11-13/microsoft-apocalypse-proofs-open-source-code-in-an-arctic-cave
https://www.bloomberg.com/news/features/2019-11-13/microsoft-apocalypse-proofs-open-source-code-in-an-arctic-cave
https://www.bloomberg.com/news/features/2019-11-13/microsoft-apocalypse-proofs-open-source-code-in-an-arctic-cave
https://www.davidhaney.io/npm-left-pad-have-we-forgotten-how-to-program/
https://www.davidhaney.io/npm-left-pad-have-we-forgotten-how-to-program/

www.usenix.org S U M M ER 2020 VO L . 45 , N O. 2 49

COLUMNS

/dev/random
Rewind Your Mind

R O B E R T G . F E R R E L L

In the course of writing a speculative fiction short story about the direc-
tion human intellectual evolution might take (it doesn’t involve giant
melon-shaped foreheads with pulsing veins, if that’s what you were

visualizing), I found myself ruminating on the intersection between human
and artificial intelligence. If we are to consider that, sooner or later, we and
machines will become competitors for the same resources (electricity and
self-direction), then it might be logical to presume that evolutionary fitness
principles will also apply.

Which is to be master, that’s all.

It seems probable to me that carbon and silicon will eventually merge, although perhaps not
in the way many people envision. One of the first points of intersection may well be solid state
biological memory. Not SSDs with our neural connections imprinted on them (we’ll get to that
later), but rather onboard computing of physiological data derived from embedded sensors,
the results of which may be downloaded by your friendly neighborhood medical professional
whether you like it or not. Taking your blood pressure or assaying your CBC might soon hap-
pen anytime you wander too near an RFI (Radio Frequency Intrusion) hub. That certainly
puts the “Portability” into HIPAA.

Since we’ve brushed lightly past the subject, how practical is the “store your complete neural
identity in electronic form” pipe dream/nightmare? Given that each of your 16 billion or so
cortical neurons can have thousands of connections—which makes your neocortex a neural
network of neural networks—we’re talking about a level of convolution that would impress
even a tax code author. I’ve seen a plethora of thought experiments on “post-humanity” that
reduce us to digitized entities streaming Douglas Adams-style across the universe as a
series of ones and zeroes. I think this is about as far-fetched as Star Trek teleportation, to be
brutally honest (or honestly brutal, which, not to be brutal, I honestly prefer). Reducing our
cognition to a collection of binary impulses seems beyond impractical.

I think neurons in the neocortex communicate not only using simple point-to-point connec-
tions, but also by interpreting patterns generated by attenuation of depolarization signals
traveling those connected nerve fibers. Axons aren’t just “on” or “off,” in other words: they can
demonstrate different signal strengths, which can then be used to overlay more information
onto the binary connection map. This adds another layer of complexity, the depth of which is
at least partially dependent on the minimum pattern size needed for constructing meaning-
ful data objects.

Let’s say memories are stored like multimedia files, with video, audio, olfactory, and gus-
tatory tracks. Rather than a simple bitwise image map, however, we’ll pretend the optical
component is compressed by some form of pattern-based encoding that is then decoded by
the visual cortex when a memory is replayed. That encoding relies on a large collection of
“primitives” or stored data archetypes stitched together from the individual’s past experi-
ences. When we remember a scene containing a tree, for example, we don’t need to visualize

Robert G. Ferrell, author of The
Tol Chronicles, spends most of
his time writing humor, fantasy,
and science fiction. 
rgferrell@gmail.com

50  S U M M ER 2020 VO L . 45 , N O. 2 www.usenix.org

COLUMNS
/dev/random: Rewind Your Mind

a specific tree unless that specificity is integral to the memory.
How much space a memory requires depends on the number of
unique moieties it contains and the array of “facets” each of these
exhibits. Accessing a memory containing only a few modifica-
tions from an existing template is, after all, a lot less processor-
intensive than building the entire scene from scratch. Think of it
as “clipping” for the memory.

While the process by which it is accomplished is even less clear
to me, the brain may also use the archetype approach for smells,
sounds, and tastes. Tastes are probably the simplest, since they
are all some combination of the five identified base sensations
(20% sour / 15% sweet / 5% bitter / 35% salty / 25% umami, for
example). This scheme is no doubt overly simplistic (especially
since science recognizes seven, not five, basic tastes), but you
get the idea. Odors, being closely associated with tastes, are
likely stored in much the same manner. The audio track has
to encode, at a bare minimum, pitch, timbre, rhythm, balance,
dynamics, and several other characteristics. There are doubt-
less archetypes for all of these, too. Percussion, strings (plucked
and bowed), winds, and voice must have their own sets of primi-
tives that can be mixed and matched to create any music. This
presumably goes as well for sounds of nonmusical origin (such
as my singing).

The longer I think about this, the more it seems to me that the
algorithms for data storage and retrieval in the human memory
are probably even more subtly complex than we currently imag-
ine. I expect some sophisticated sorting goes on, such that each
data object can trigger a variety of different patterns depending
on the contextual filtering it experiences along the way to the
area where the memory is rendered. The brain in this respect
works more like an analog music synthesizer than a digital
computer. I think memories could well be categorized as waves,
rather than particles; perhaps there’s even a photon-like duality
at work. Maybe thoughts are themselves packetized in quanta,
giving the term “neuron” another meaning altogether: the intel-
ligence particle. Its anti-particle is, then, the “moron.”

Storing ourselves electronically may require a continuous
recording medium like magnetic tape, as opposed to a lattice
of discrete bits. Future humans might need to carry around
some kind of analog-to-digital converter in order to back up to
or restore memories from hard drives. After all, thoughts are
not exactly binary in nature. What do you see in your mind’s
eye when you hear your favorite music: zero or one? Not a useful
descriptor.

Mapping and storing a human’s mental landscape would, realis-
tically, require a lot more than just bit-flipping. I believe that our
brains use those patterns we discussed as fundamental storage
tokens. Sensory input is formed into multidimensional objects
that are then stored ad hoc in some pseudo-hierarchical matrix.
Specific memories are composed of pattern fragments pulled
from this cache using a linked index created by ranking those
fragments by frequency of appearance and something representa-
tionally equivalent to color or texture, along with other metadata.

Perhaps the brain employs a QR code-like mechanism to assem-
ble complex memories from disparate archives scattered around
wherever those moieties could be fitted in (hence the “ad hoc”).
It does seem that something akin to disk fragmentation occurs
in my own memory from time to time, which leads to attention
headache. People with true long-duration eidetic recollection
may keep all the fragments of a memory object in much closer
logical proximity to one another than do the rest of us. I’m pretty
certain my sensory input tumbles immediately into a neural
woodchipper, to be blown across the perceptual lawn like gale-
driven autumn leaves. My memory is more pathetic than eidetic.

Or maybe this whole line of reasoning is utter nonsense. Per-
haps it turns out we store our memories on a very long VHS tape
looping in the hippocampus. If we forget to rewind, it takes a lot
longer the next time we want to access that memory. I’m pretty
sure that somewhere on my personal VHS tape there is a memory
of flunking neuroanatomy, so you might think I would avoid toss-
ing around terms like “gyrus,” “sulcus,” “nucleus,” and “ganglion,”
but it makes me feel like a stable genius.

www.usenix.org S U M M ER 2020 VO L . 45 , N O. 2 51

BOOKSBook Reviews
M A R K L A M O U R I N E

Docker in Action, 2nd Edition
Jeff Nickoloff and Stephen Kuenzli
Manning Publications, 2019, 310 pages
ISBN 978-1-61-729476-1

I guess you could say that when a tech book reaches a second edi-
tion the software it describes has reached some kind of maturity.
Docker has inspired a whole new type of software infrastructure,
and today there are a variety of resources for the beginner build-
ing and using containerized software. It’s still a niche, however
large, and it’s still an advanced topic. Running containerized
software requires the skills of a software developer, systems and
network administrator, and operator.

The first edition of Docker in Action was one of the early books to
market. A lot has happened since 2016, and they’ve added a few
chapters and updated the rest.

Docker in Action follows the common narrative path for tuto-
rial style references. They start with justification, show basics,
and add features until they’ve covered the topic. Containers are
easier to start with than some things because of the presence
of public repositories of working images. With Docker, you can
create a functional default configured database or web server
in a few minutes. That’s enough to hook a reader early and give a
sense of what is possible. Nickoloff and Kuenzli use the first sec-
tion to teach the reader how to run single containers on a single
host. This includes adding storage, network communications,
and customized configuration to make a useful service.

The second section is devoted to creating new container images.
The chapter on creating containers really only touches on the
basics, as there are lots of good references on the details. The
section is about more than just building images. The succeed-
ing chapters show how to interact with public and private image
repositories and how to automate the production, testing, and
publication of new container images, all triggered from public
source code repositories. When combined, these capabilities
form a software development and delivery chain.

I like the authors’ writing style. They are clear and concise. The
theoretical exposition is balanced nicely with the practical ele-
ments. I do wish there were more external references, either in
the text or in the chapter summaries. I know from experience
that the Docker website has detailed references describing all of
the keywords available for creating Dockerfiles. The authors only
demonstrate the basics needed to get started, which is adequate
as they have limited space. However, I would have liked to see
reference callouts to those well-known stable resources.

In the final section, the authors introduce container orchestra-
tion. This is the idea of describing and automating clusters of
coordinating containers to form larger applications. It is pos-
sible to start a database container, a front-end web server, and a
middleware container to implement some kind of business logic,
and to do all this manually, a step at a time. Applications like
this form patterns, though, and the patterns make it possible to
build services to manage the deployment of these complex sets
of containers.

The authors use Docker Swarm to show the possibilities of
container orchestration. Swarm is an integral part of the Docker
application system and so is available anywhere that Docker
itself is. The alternatives, such as Kubernetes or the commer-
cial cloud offerings, each have whole books devoted to them, so
Swarm is a good choice for a first look. The authors admit that
Swarm probably isn’t suitable for large-scale deployments, but
perhaps it has a place in production in smaller shops.

Likewise, the authors make no mention of alternative container
runtime systems or tool sets. I used to liken the Docker suite
to the BASIC programming language. It is a good easy starting
point to engage and learn concepts, but it is possible to outgrow
its capabilities and its limits. The Open Container Foundation
describes a standard container format and a standard runtime
behavior. Docker is one compliant system, but there are others.

For a moderately experienced system administrator, this second
edition of Docker in Action will be a good introduction to con-
tainer systems. Like VMs, container management requires an
understanding of underlying storage and complex networking
that this book only glosses over. To go deeper, the reader will have
to keep learning, but this is enough to get started doing useful work.

Microservices and Containers
Parminder Singh Kocher
Addison-Wesley Professional, 2018, 283 pages
ISBN: 978-0-13-459838-3

I’m the kind of geek who likes a mix of theory and practice in
a tech book. For some reason, most of the books I’ve seen on
software containers and microservices tend to be tutorials for
specific technologies. In Microservices and Containers Kocher
does discuss the tools, but he doesn’t stick to just the syntax
and behavior. The first section is devoted to an overview of
Microservices.

The flexibility that microservices offer comes with some up-
front cost. People who first hear about how easy Docker is to use

52  S U M M ER 2020 VO L . 45 , N O. 2 www.usenix.org

BOOKS

for simple containers want to jump right in and port their appli-
cations to single containers. I like that Kocher doesn’t give in to
the temptation to get right to the sexy tech.

The term “microservice” refers to the components that are used
to make up a conventional application stack. In the original
LAMP (Linux, Apache, MySQL, PHP) stack, the components are
installed directly onto a host computer. Using software contain-
ers, it is possible to implement the same behavior running the
service components in containers rather than installing them
directly on the host.

Containers impose boundaries that conventional host instal-
lations do not. Porting an application to microservices tends to
expose the boundaries that are often neglected or left implicit in
a conventional deployment. Kocher does a good job of addressing
the challenges that porting an application poses.

Inevitably, when Kocher starts to talk about the implementation
of individual microservices, he is forced to revert to expressing it
in terms of an existing container system. Despite the existence of
a number of alternative runtime and container image build tools,
Docker remains the overwhelmingly dominant environment. In
the middle section of the book he provides the same catalog of
Docker commands that you’ll find in other books.

This book is one of the unfortunate cases where the print
and ebook versions are significantly different in appearance.
The ebook has color graphics that don’t convert well to gray-
scale. Furthermore, the code examples in the print version are
compressed to fit the pages to the point that they are nearly
unreadable.

The final chapter of this section covers container orchestra-
tion, and Kocher returns to implementation agnosticism. There
are whole books about Kubernetes, Mesos, and Swarm, and he
doesn’t try to go into depth about any of them before returning to
their common features: automation, service discovery, and global
metrics.

In the final section, Kocher distinguishes himself again with
a set of case studies in implementation and migration. Again,
this book isn’t long enough to be a comprehensive guide, but it
is sufficient to give the experienced reader a sense of the dif-
ferent challenges that microservice design, deployment, and
management present. Three cases are used to explore and then
contrast a monolithic deployment and a fully containerized one.
He includes an intermediate case where the application is in the
process of migration. Together, these case studies expose the
assumptions underlying a monolithic deployment and the com-
mon misconceptions about containerization that can undermine
a project.

I liked Kocher’s perspective and his approach to microservice
applications. He shows a thorough understanding of the issues

that I often see downplayed by other authors in their enthusi-
asm for the tech. I don’t think the full potential of microservice
architecture has made it to the mainstream yet. In Microservices
and Containers, Kocher presents a realistic path for application
designers to explore the possibilities.

An Illustrated Book of Bad Arguments, 2nd Edition
Ali Almossawi, illustrated by Alejandro Giraldo
The Experiment LLC, 2014, 56 pages
ISBN 978-1-61-519225-0

First Edition: http://bookofbadarguments.com
Creative Commons BY-NC license
ISBN 978-1-61-519226-7

It’s hard to swing a syllogism these days without hitting a bad
argument. It’s one thing, though, to know that something isn’t
right and another to know what’s not right about it. Aristotelian
logic was required for the engineering students where I went to
college, but most of the focus was on how to create and evaluate
good arguments. The most illustrative lesson on bad arguments
was the 10-minute comedy set at the beginning of the first
lecture in which the professor enumerated the ways students
would try to persuade him to give them a better grade, and why
he wouldn’t be swayed by any of them.

I also remember that most of the other students in the class were
intimidated by the professor and the topic. Logic has a reputa-
tion for being difficult and the province of nerds. Logic is like
grammar—people who make a big deal about rigor in daily life are
mostly annoying to others.

Making logic palatable, even amusing, is the challenge that
Almossawi took on in 2013 when he published the first edition
of An Illustrated Book of Bad Arguments as an online book. He
released it under a Creative Commons Non-Commercial license
then, and this second edition was published the following year
in print. As the title indicates, he focuses on how arguments go
bad. You won’t find more than the most basic definition of terms
needed to understand what a good argument is and is not.

Most of the arguments made in the public sphere today are con-
structed rather informally, and most of the ways they are broken
are informal as well. A formal argument is literally one that has
the correct form. There are logical fallacies related to the form
of an argument, that is, where the failure of the argument comes
from the failure of the structure of the argument, but most of
the fallacies you find in discourse today are not of this type. In
fact, Almossawi offers only one formal fallacy. The rest of the 19
total examples are informal fallacies. This makes them no less
significant.

Each pair of facing pages describes and demonstrates one form
of logical fallacy. The footer includes the fallacy’s place in the

www.usenix.org S U M M ER 2020 VO L . 45 , N O. 2 53

BOOKS

taxonomy of bad argument. Yes, fallacies have families. I hadn’t
realized until I saw the diagram in the front of the book that most
fallacies are a variation of a red herring. They divert attention
away from the actual argument by offering something unrelated
to the point. All of the informal fallacies are a form of non sequi-
tur, or “does not follow.”

The text for each page is brief and clear. The illustrations have
the style of 19th- and early-20th-century woodcuts. They remind
me of the illustrations from Alice in Wonderland or the animals
from my mother’s “Laughing Brook” books by Thornton W. Bur-
gess. The cover and pages are printed to look antiqued.

You’re not going to make any friends by pulling out this book and
pointing at a page the next time you’re on Facebook. It is useful
for understanding the myriad ways what you see there can be
wrong. It’s really important to understand that an invalid argu-
ment does not mean that the conclusion is false. It just means you
can’t prove it that way. It is good to have a taxonomy and a name
for each of the ways that an argument can go wrong, and it’s most
helpful for me to recognize when I find myself leaning on these
when my own biases and wishes try to lead me off the path. Bad
Arguments is a slim volume or URL to keep handy when you find
yourself thinking “Hey, wait a minute…”

NOTES

54  S U M M ER 2020 VO L . 45 , N O. 2 www.usenix.org

USENIX Board of Directors
Communicate directly with the USENIX
Board of Directors by writing to board@
usenix.org.

P R E S I D E N T

Carolyn Rowland, National Institute of
Standards and Technology
carolyn@usenix.org

V I C E P R E S I D E N T

Hakim Weatherspoon, Cornell University
hakim@usenix.org

S E C R E T A R Y

Michael Bailey, University of Illinois
at Urbana-Champaign
bailey@usenix.org

T R E A S U R E R

Kurt Opsahl, Electronic Frontier Foundation
kurt@usenix.org

D I R E C T O R S

Cat Allman, Google
cat@usenix.org

Kurt Andersen, LinkedIn
kurta@usenix.org

Angela Demke Brown, University
of Toronto
angela@usenix.org

Amy Rich, Redox
arr@usenix.org

E X E C U T I V E D I R E C T O R

Casey Henderson
casey@usenix.org

Running Virtual PC
(vPC) Meetings
Erez Zadok and Ada Gavrilovska
2020 USENIX Annual Technical
Conference (USENIX ATC ’20)
Program Co-Chairs

As the co-chairs of the
USENIX ATC ’20 PC, our
original plans to hold an in-
person PC meeting pivoted

to virtual PC (vPC) meeting planning due
to COVID-19. Along with our very helpful
submission chairs (Dongyoon Lee from
Stony Brook University and Ketan Bhardwaj
from Georgia Institute of Technology), we
experimented with three solutions to see
what would work best: Webex, BlueJeans,
and Zoom. We have now concluded running
the vPC meeting, with over 70 participants
for at least part of the meeting. Below we
describe our experiences in planning and
running the vPC.

Ultimately, we settled on Zoom, but it did
not solve all of our problems. At this point,
we are mainly interested in reporting our
experiences while they are still fresh in our
memory, in hopes you will find it useful. It
would take more time and experimentation
to turn this document into a concrete set of
recommendations.

Running USENIX ATC is a relatively
complex operation for many reasons, in-
cluding the number of submissions (in the
hundreds), and the three tiers of reviewers
(numbering almost 120). The two co-chairs
and the two submission chairs all need ad-
ministrative privileges in the online paper
reviewing system (HotCRP.com).

vPC Meeting Requirements
1. Our key need for the PC meeting is how

to handle conflicts of interest (CoI). In a
physical PC meeting, any PC members

with a conflict are kicked out of the room,
and called back in after the conflicted
paper’s discussion is over. This requires a
waiting room feature.

2. There are numerous tasks that all four of
us have to handle efficiently: watching and
moving the discussions along, marking de-
cisions, reviewing paper summaries, pick-
ing and assigning shepherds, and of course
managing conflicts of interest (CoIs). As
a result, all four of us need to have admin
privileges when running the meeting, not
just in HotCRP.

3. We need to verify the identity of PC mem-
bers, and ensure that only invited indi-
viduals can join the meeting after proper
authentication.

Webex
Webex allows the host to define alternate
hosts. Alas, only one of the alternates at a
time can be an active host: once person A
dele gates host privileges to person B, person
A loses host privileges and can’t get them
back. What we need is true co-hosting, and
Webex doesn’t seem to support that at the
moment.

Webex does have a decent waiting room
feature: we were able to manually move
 attendees to the waiting room and verify
that they could not hear or see anything,
and could not get back in on their own.

Webex has a very nice registration feature:
you invite N people with specific emails
and names to a Webex meeting. They are
required to register with the email they
were invited with, and they cannot change
their name.

BlueJeans
BlueJeans supports multiple co-hosts. It
also supports a “breakout room,” and we
were able to move people to it. Alas, people

www.usenix.org S U M M ER 2020 VO L . 45 , N O. 2 55

NOTES

in the breakout room could rejoin the main
meeting on their own—clearly undesired. (I
guess it’s like a conflicted PC meeting mem-
ber who is outside the main room barging
right back in.)

We didn’t test BlueJeans’s registration
feature, as the breakout room problem was a
showstopper for us.

Zoom
Zoom has a rudimentary role-based access
control system, and allows one host and
multiple co-hosts at a time. It allows true
co-hosts, which the host can define when
creating the meeting, but they need to have
a Zoom account. If they don’t, the host can
easily promote them to co-hosts after the
meeting starts. Only hosts can declare
 others as co-hosts, and the host can even
hand off actual host privileges to another
co-host, but cannot take them back. All co-
hosts have the same admin control over the
meeting: they can admit people in/out,
un/mute all, etc.

In our experience, Zoom’s waiting room
worked very well. Participants with con-
flicts could be kicked out of the meeting and
sent into the waiting room, where they could
not hear or see anything. We could then
re-admit them all with a single click of the
admit-all button, and go on to remove the
next set of CoI out of the meeting. The key
here is that all co-hosts were able to man-
age these conflicts and the waiting room,
allowing us to better parallelize (and double
check) this complex task.

Zoom’s registration feature is not as good
as Webex’s. We had to send the Zoom URL
to all of our PC members, who then had to
register with a valid email and enter their
names. They received an email with a
personal link to join the meeting—thank-
fully not a shared URL that could be easily
zoombombed. However, they were able to
enter any valid email and any first/last
name. In theory, someone could create a new
dummy email and masquerade as another
PC member if they got their hands on the
invitation URL.

In the future, we will need to ask PC mem-
bers to use their proper names and emails
that are registered in HotCRP. When the
meeting starts, all PC members will be in
the waiting room by default, and we’ll have
to verify one by one whom we are admitting
into the meeting—otherwise we can chat
privately with them in Zoom to establish
their identity. Once we admit everyone, we
can turn off the “participants can rename
themselves” feature.

Registration becomes even more important
for people who will dial in by phone to the
meeting. They will still have to register with
a per-participant link; then they will receive
an email with instructions for connecting to
the meeting with a personal phone code that
identifies them. When dial-in users connect,
they are shown as “Phone User N.” We have
to identify them by voice and rename them
in the Zoom participants list so everyone
knows who they are.

Other Solutions?
We heard that at least one PC meeting via
Microsoft Teams worked well. Given that
we were reasonably pleased with the Zoom
setup, and were not sure we had access to
test Teams, we did not investigate it. Erez
did have the opportunity to join a Teams
meeting recently, described below, and we
are interested to hear from anyone who has
detailed experience with it.

Erez recently joined three different back-to-
back meetings with about 6–8 people each,
using Microsoft Teams, Zoom, and Google
Meet. Overall, he felt that Zoom worked
much better and doubted that Teams or
Meet would have met our vPC needs.

Microsoft Teams does seem to have a wait-
ing room feature, as Erez had to wait to be
admitted, but it’s unclear how well it would
work for running a vPC. Video and audio
quality was lower for some participants;
while it might have been their Internet
connections, we fear that it might not have
scaled to our PC size. Only four people’s vid-
eos were visible at a time, limiting the ability
to feel inclusive and see more people. After

examining all the buttons and menu options
during the meeting, it seemed to Erez that
Teams had far fewer features.

Google Meet also has very few features
compared to Zoom, and even fewer than
 Microsoft Teams. The worst part was that
the audio and video quality in Google Meet
was considerably poorer for everyone par-
ticipating. Even turning off everyone’s video
and streaming audio only, the quality was
still fairly choppy.

Webex Teams, which we did not have access
to test, reportedly supports multiple concur-
rent co-hosts.

Experiences from Running the
 Actual Virtual PC
With a virtual PC, there was more to man-
age at once. It was important that each
organizer use a computer with a large
screen—even two screens. We had to have
the conference paper management window
open as well as the Zoom window, with sub-
windows for chat, the participant list, and
the waiting room list, our email and messag-
ing client (or cell phone), since people were
emailing or texting us with various issues,
and a private Slack chat window for the
organizers.

When streaming media for hours, some
people’s computers overheated and shut
down after a few hours. It is important to
have a sufficiently powerful computer for
long-running CPU-hog processes like video
and audio streaming.

We used Slack as a side channel for private
communications among the meeting orga-
nizers. We could have used Zoom’s chat fea-
ture, but it was too risky—participants could
inadvertently broadcast something publicly
unintentionally. So we allowed participants
to chat only with the host(s) in Zoom. It was
useful as people had to tell us about last-
minute schedule changes or other requests.
The Zoom messaging feature was not very
convenient, however, when we needed to
send the same message to a few participants
(but not all, so as not to violate conflicts), for
instance, that their paper would need to be

56  S U M M ER 2020 VO L . 45 , N O. 2 www.usenix.org

NOTES

reshuffled in the schedule. Also, Zoom let
participants chat with one of the co-hosts
but not all of them as a group. Lastly, there
was no way to clear the chat history between
paper discussions in order to avoid leaking
information to other participants once they
rejoined.

While Zoom permitted us to manage
conflicts as described above, it took time
to do so: we had to look up the conflicts in
HotCRP, then scroll or search for the right
participant in the participant list, then
move them to the waiting room one by one.
There is no feature for participants to take
themselves into the waiting room the way
they would during an in-person PC meeting.
Zoom, perhaps under network stress, had
a delay of 2–3 seconds between when you
kicked someone off the meeting and they
actually showed up in the waiting room. So
 it took 1–2 minutes per paper just to man-
age those conflicts, precious time when
you are under a tight schedule. Conversely,
in a physical PC meeting, you quickly call
the names of all conflicted members, and
they all get up at once and leave the room in
parallel.

Zoom shows at most 25 participants’ video
at once, and not all of our participants used
their video. (One insisted on calling in from
an anonymous phone number due to reports
of Zoom privacy concerns.) This made it
harder for PC members to know when they
could jump in and speak. We tried to manage
the order as best we could, calling on people
in turn, and we also used the “raise hand”
feature a bit, but it still took longer than with
an in-person meeting. There were also natu-
ral delays in people’s audio/video stream
and a few people with poor connections. All
this added another 1-2 minutes of time when
discussing each paper.

When a PC meeting is held in person,
people come from all over the world and
are present at the start of the meeting at
the designated time. But with a virtual PC
meeting spanning 12–15 time zones, it was
impossible to expect people to be at the
meeting at ridiculous early/late hours. So

our meeting was scheduled for the middle
of the day. We sent a Doodle survey to see
what times people could attend, and we tried
our best to group papers based on people’s
time constraints—not an easy task. Worse,
because of COVID19, people had day job
duties they couldn’t ignore, childcare duties,
last-minute schedule changes, and more. We
had to adapt to people’s changing schedules
dynamically. This added more “context
switching” time between papers.

A few other aspects made the process
challenging. First, it was more difficult to
control inadvertent leakage of information
about paper reviewers—we had cases where
either one of us or reviewers themselves
asked if we could do paper #X before they
left, or when we waited to discuss a paper
because of a missing reviewer, but now that
information was visible to others—they saw
who just joined the meeting. Likely some
of this exists in an in-person PC meeting,
but probably less so. Second, managing the
discussions to wrap up in a fixed amount
of time was more difficult, given the lack of
other options. PC voting as an option really
doesn’t work in an online format. We rarely
had the full PC, and with people coming
and going and videos switched off, it was
difficult to tell who was around, whether
they would listen in a brief summary of the
discussion before voting, etc. As a result, in
cases when the PC discussion was “dead-
locked” and it was obvious that a reviewer’s
vote wouldn’t resolve it (e.g., an even number
of reviewers split 50/50), asking the PC to
vote could not resolve the paper’s status.

In addition, it was harder to ask the PC
members to take the conversation offline
and report back—something that’s com-
monly done during in-person PC meetings—
because of the above-mentioned issue with
time zones and daytime duties. Taking
a conversation “offline” meant pushing
papers to be decided at some undetermined
later point, likely after the actual PC meet-
ing. These two issues made it harder to cut
discussions short, which again added to the
meeting time.

We already expected that our virtual PC
meeting wasn’t going to be as effective as
an in-person one would have been. So for
weeks leading to the meeting, we pushed
our PC hard to try and reach a decision on
as many papers as possible. That certainly
helped a lot (and we have even heard of some
PC Chairs who canceled their online PC
meeting so they didn’t have to deal with the
complexities of running it virtually). Still,
all these complications caused our PC meet-
ing, originally scheduled for five hours, to
take seven hours. And we still had a few of
the discussed papers to finalize offline after
the meeting.

Finally, a word about security and privacy.
Since Zoom saw its user base grow 20-fold
in just a few months, it has attracted a lot
of media attention and reporting of serious
security and privacy concerns. (This is not
to suggest that Zoom’s competitors’ security
and privacy practices are perfect and their
software bug-free.) As a result, a few high
profile communities (e.g., school districts)
banned or abandoned Zoom altogether. To
their credit, Zoom has apologized publicly,
has begun to address these concerns, and
has already released several security fixes
and new features, promising more. Still,
some of our PC members, understandably,
preferred not to run the Zoom client or ac-
cept their privacy policy as there are reports
of numerous Zoom users’ credentials sold
on the dark web. These users called in via
phone instead.

With safety in mind, the 2020
USENIX Annual Technical

Conference (USENIX ATC ’20)
and co-located HotCloud ’20
and HotStorage ’20 will take

place as virtual events.
We hope to see you online,

July 13–17, 2020.
Find out more at usenix.org/atc20.

https://www.usenix.org/atc20

We are looking for people with personal experience and
ex pertise who want to share their knowledge by writing.
 USENIX supports many conferences and workshops, and
articles about topics related to any of these subject areas
(system administration, programming, SRE, file systems,
storage, networking, distributed systems, operating
systems, and security) are welcome. We will also publish
opinion articles that are relevant to the computer sciences
research community, as well as the system adminstrator
and SRE communities.
Writing is not easy for most of us. Having your writing
rejected, for any reason, is no fun at all. The way to get
your articles published in ;login:, with the least effort on
your part and on the part of the staff of ;login:, is to submit
a proposal to login@usenix.org.

PROPOSALS
In the world of publishing, writing a proposal is nothing
new. If you plan on writing a book, you need to write one
chapter, a proposed table of contents, and the proposal
itself and send the package to a book publisher. Writing
the entire book first is asking for rejection, unless you are
a well-known, popular writer.
;login: proposals are not like paper submission abstracts.
We are not asking you to write a draft of the article as
the proposal, but instead to describe the article you wish
to write. There are some elements that you will want to
include in any proposal:

• What’s the topic of the article?
• What type of article is it (case study, tutorial, editorial,

article based on published paper, etc.)?
• Who is the intended audience (syadmins, programmers,

security wonks, network admins, etc.)?
• Why does this article need to be read?
• What, if any, non-text elements (illustrations, code,

diagrams, etc.) will be included?
• What is the approximate length of the article?

Start out by answering each of those six questions. In an-
swering the question about length, the limit for articles is
about 3,000 words, and we avoid publishing articles longer
than six pages. We suggest that you try to keep your article
between two and five pages, as this matches the attention
span of many people.

The answer to the question about why the article needs to
be read is the place to wax enthusiastic. We do not want
marketing, but your most eloquent explanation of why this
article is important to the readership of ;login:, which is also
the membership of USENIX.

UNACCEPTABLE ARTICLES
;login: will not publish certain articles. These include but are
not limited to:

• Previously published articles. A piece that has appeared
on your own Web server but has not been posted to
USENET or slashdot is not considered to have been
published.

• Marketing pieces of any type. We don’t accept articles
about products. “Marketing” does not include being
enthusiastic about a new tool or software that you can
download for free, and you are encouraged to write
case studies of hardware or software that you helped
install and configure, as long as you are not affiliated
with or paid by the company you are writing about.

• Personal attacks

FORMAT
The initial reading of your article will be done by people
using UNIX systems. Later phases involve Macs, but please
send us text/plain formatted documents for the proposal.
Send pro posals to login@usenix.org.
The final version can be text/plain, text/html, text/mark-
down, LaTeX, or Microsoft Word/Libre Office. Illustrations
should be PDF or EPS if possible. Raster formats (TIFF, PNG,
or JPG) are also acceptable, and should be a minimum of
1,200 pixels wide.

DEADLINES
For our publishing deadlines, including the time you can
expect to be asked to read proofs of your article, see the
online schedule at www.usenix.org/publications/login/
publication_schedule.

COPYRIGHT
You own the copyright to your work and grant USENIX first
publication rights. USENIX owns the copyright on the col-
lection that is each issue of ;login:. You have control over
who may reprint your text; financial negotiations are a
private matter between you and any reprinter.

Writing for ;login:Thanks to our USENIX Supporters!
USENIX appreciates the financial assistance our Supporters provide to subsidize our day-to-day
operations and to continue our non-profit mission. Our supporters help ensure:

• Free and open access to technical information
• Student Grants and Diversity Grants to participate in USENIX conferences
• The nexus between academic research and industry practice
• Diversity and representation in the technical workplace

We need you now more than ever! Contact us at sponsorship@usenix.org.

We offer our heartfelt appreciation to the following sponsors and champions of conference
diversity, open access, and our SREcon communities via their sponsorship of multiple conferences:

Ethyca

Datadog

Dropbox

Goldman Sachs

Microsoft Azure

LinkedIn

Packet

Salesforce

More information at www.usenix.org/supporters

USENIX PATRONS

USENIX BENEFACTORS

USENIX PARTNERS

https://www.usenix.org/publications/login/publication_schedule

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

	Contents
	Musings
	A Study of SSD Reliability in Large Scale Enterprise Storage Deployments
	SkyhookDM: Data Processing in Ceph with Programmable Storage
	Interview with Natalie Silvanovich
	Anomalies in Linux Processor Use
	Revisiting Conway’s Law
	Decision-Making Using Service Level Objectives
	ML for Operations: Pitfalls, Dead Ends, and Hope
	Site Reliability Engineering and the Crisis/Complacency Cycle
	iVoyeur: eBPF Tools
	Who Will Pay the Piper for Open SourceSoftware Maintenance?
	/dev/randomRewind Your Mind
	/dev/random: Rewind Your Mind
	USENIX Notes
	USENIX Board of Directors
	Running Virtual PC(vPC) Meetings

