
;login:
S U M M E R  2 0 1 9 V O L .  4 4 ,  N O .  2

Columns
Using YAML, Protocol Buffers, and Skycfg
Peter Norton

Using Password Managers from Go
Chris “Mac” McEniry

Prometheus for Systems Monitoring
Dave Josephsen 

Growing Vulnerability in Software
Dan Geer

&  ARM Extensions Catch Memory 
Bugs/Exploits
Kostya Serebryany

&  Interview with Mark Loveless: 
Hacker and Gray Man
Rik Farrow

& Fast and Efficient RPC
Anuj Kalia, Michael Kaminsky, and 
David G. Andersen

& SRE: Logging Standardization
 Vladimir Legeza and Anton Golubtsov with 
Betsy Beyer



UPCOMING EVENTS
SREcon19 Asia/Pacific

June 12–14, 2019, Singapore
www.usenix.org/srecon19asia

2019 USENIX Annual Technical Conference
July 10–12, 2019, Renton, WA, USA
www.usenix.org/atc19

Co-located with USENIX ATC ’19
HotStorage ’19: 11th USENIX Workshop on 
Hot Topics in Storage and File Systems
July 8–9, 2019
www.usenix.org/hotstorage19

HotCloud ’19: 11th USENIX Workshop on 
Hot Topics in Cloud Computing
July 8, 2019
www.usenix.org/hotcloud19

HotEdge ’19: 2nd USENIX Workshop on 
Hot Topics in Edge Computing
July 9, 2019
www.usenix.org/hotedge19

SOUPS 2019: Fifteenth Symposium on 
Usable Privacy and Security

August 11–13, 2019, Santa Clara, CA, USA
Co-located with USENIX Security ’19
www.usenix.org/soups2019

28th USENIX Security Symposium
August 14–16, 2019, Santa Clara, CA, USA
Co-located with SOUPS 2019
www.usenix.org/sec19

Co-located with USENIX Security ’19
PEPR ’19: 2019 USENIX Conference on Privacy 
Engineering Practice and Respect
August 12–13, 2019
www.usenix.org/pepr19

WOOT ’19: 13th USENIX Workshop on Offensive 
Technologies
August 12–13, 2019
www.usenix.org/woot19

CSET ’19: 12th USENIX Workshop on Cyber 
Security Experimentation and Test
August 12, 2019
www.usenix.org/cset19

ScAINet ’19: 2019 USENIX Security and AI 
Networking Conference
August 12, 2019
www.usenix.org/scainet19

FOCI ’19: 9th USENIX Workshop on Free and Open 
Communications on the Internet
August 13, 2019
www.usenix.org/foci19

HotSec ’19: 2019 USENIX Summit on Hot Topics 
in Security
August 13, 2019
www.usenix.org/hotsec19

SREcon19 Europe/Middle East/Africa
October 2–4, 2019, Dublin, Ireland
www.usenix.org/srecon19europe

LISA19
October 28–30, 2019, Portland, OR, USA
Submissions due June 18, 2019
www.usenix.org/lisa19

Enigma 2020
January 27–29, 2020, San Francisco, CA, USA
Submissions due August 21, 2019
www.usenix.org/enigma2020

FAST ’20: 18th USENIX Conference on File and 
Storage Technologies

February 24–27, 2020, Santa Clara, CA, USA
Sponsored by USENIX in cooperation with ACM SIGOPS
Co-located with NSDI ’20
Submissions due September 26, 2019
www.usenix.org/fast20

NSDI ’20: 17th USENIX Symposium on 
Networked Systems Design and 
Implementation

February 25–27, 2020, Santa Clara, CA, USA
Sponsored by USENIX in cooperation with ACM SIGCOMM 
and ACM SIGOPS
Co-located with FAST ’20
Spring paper titles and abstracts due 
September 12, 2019
www.usenix.org/nsdi20

USENIX Open Access Policy
USENIX is the fi rst computing association to  off er free 
and open access to all of our conference proceedings and 
videos. We stand by our mission to foster excellence and 
innovation while supporting research with a practical bias. 
Please help us support open access by becoming a USENIX 
member and asking your colleagues to do the same!

www.usenix.org/membership

  
www.usenix.org/facebook

  
twitter.com/usenix

  
www.usenix.org/youtube

  
www.usenix.org/linkedin



E D I T O R
Rik Farrow 
rik@usenix.org

M A N A G I N G  E D I T O R
Michele Nelson 
michele@usenix.org

C O P Y  E D I T O R S
Steve Gilmartin
Amber Ankerholz

P R O D U C T I O N
Arnold Gatilao
Ann Heron
Jasmine Murcia

T Y P E S E T T E R
Star Type 
startype@comcast.net

U S E N I X  A S S O C I AT I O N
2560 Ninth Street, Suite 215  
Berkeley, California 94710 
Phone: (510) 528-8649 
FAX: (510) 548-5738 

www.usenix.org

;login: is the official magazine of the USENIX 
Association. ;login: (ISSN 1044-6397) 
is published quarterly by the USENIX 
Association, 2560 Ninth Street, Suite 215, 
 Berkeley, CA 94710.

$90 of each member’s annual dues is for 
a subscription to ;login:. Subscriptions for 
non members are $90 per year. Periodicals 
postage paid at  Berkeley, CA, and additional 
mailing offices.

POSTMASTER: Send address changes to 
;login:, USENIX Association, 2560 Ninth Street, 
Suite 215, Berkeley, CA 94710.

©2019 USENIX Association 
USENIX is a registered trademark of the 
USENIX Association. Many of the designa-
tions used by manufacturers and sellers 
to distinguish their products are claimed 
as trademarks. USENIX acknowledges all 
trademarks herein. Where those desig-
nations appear in this publication and 
USENIX is aware of a trademark claim,  
the designations have been printed in caps  
or initial caps.

S U M M E R  2 0 1 9 V O L .  4 4 ,  N O .  2

E D I T O R I A L
2 Musings Rik Farrow

S E C U R I T Y
6  The Man in the Middlebox: Violations of End-to-End Encryption 

Jasmine Peled, Bendert Zevenbergen, and Nick Feamster

12  ARM Memory Tagging Extension and How It Improves  
C/C++ Memory Safety Kostya Serebryany

17 Interview with Mark Loveless Rik Farrow

P R O G R A M M I N G
22  Datacenter RPCs Can Be General and Fast 

Anuj Kalia, Michael Kaminsky, and David G. Andersen

27  The Flipside: A Bit Flip Saved Is Power and Lifetime Earned 
Daniel Bittman, Peter Alvaro, Darrell D. E. Long, and Ethan L. Miller

S R E
32  Structured Logging: Crafting Useful Message Content 

Vladimir Legeza and Anton Golubtsov with Betsy Beyer

39 Complex: The Most Overloaded Word in Technology Laura Nolan

C O L U M N S
42 Other Faces of Python Peter Norton

46 Passwords Chris “Mac” McEniry

50 iVoyeur: Prometheus Dave Josephsen

53 For Good Measure: Curves of Error Dan Geer

56 /dev/random: Techno-illogical Robert G. Ferrell

B O O K S
58 Book Reviews Mark Lamourine and Rik Farrow

U S E N I X  N O T E S
62 Reminder of Annual Meeting



2   S U M M ER 20 19  VO L .  4 4 ,  N O.  2  www.usenix.org

EDITORIALMusings
R I K  F A R R O W

Rik is the editor of ;login:.  
rik@usenix.org While musing, I like to wonder what it would be like to live in a 

world without buggy software. That is, a world very unlike the 
one we live in. As I write this, Boeing’s 737 MAX plane has been 

grounded, apparently because buggy software and not documenting its pos-
sible dangerous effects have killed over 300 people in two separate crashes. 
Businesses and home users regularly have their data encrypted by criminals 
demanding ransom. And whole countries are in turmoil via careful manipu-
lation of opinion via social media.

I attend conferences looking for people with interesting and potentially useful ideas. I first 
met Kostya Serebryany at Enigma 2016, where I tried to get him to write about the work he 
has been doing in security. He deferred then. Kostya then contacted me in the Fall of 2018 
excited about something I find exciting as well: adding security features to hardware. We’ve 
published articles from several authors about hardware features to improve security, as well 
as problems with hardware solutions, such as the ability to extract data from Intel’s secure 
enclave, Meltdown [1]. 

Kostya most recently has worked on fuzzing, techniques for probing programs for potentially 
exploitable bugs. In 2015, Peter Gutmann wrote about various fuzzing techniques, something 
that Kostya has long worked on, and that’s related to what he wrote about for this issue [2].

Weaknesses in C/C++
I’ve long joked that C was a macro-assembly language: a convenience layer for those who 
needed to write code near to the speed of assembly [3], but with the convenience of variable 
labels, for loops, subroutine call handling, and structures. When I first encountered C, I 
immediately fell in love with structures, as the concept made some of the things I needed to 
do so much clearer than calculating offsets in assembler would have been. And, to be honest, 
I was really bad at calculating offsets. C beat the hell out of writing in Intel assembly (or VAX 
or Motorola assembler too).

But C and C++ lack certain safety features found in modern languages like Java, Go, Swift, 
and certainly Rust. In C and C++, you could specify array indices far beyond the end of the 
array you’d locally allocated, leading to buffer overflows on the stack. You could do this as 
well in the heap, and you could also do this with pointers into memory. I consider C and C++ 
to be languages for expert programmers, because they made it so easy to do the wrong thing. 
I always assumed that the authors of these languages were highly intelligent and expert pro-
grammers themselves, and that they had written these languages for their own convenience. 
In the case of C, that was certainly true, although the authors would be sharing C with other 
Bell Labs employees and, eventually, professors at various universities.

Bjarne Stroustrup, also at AT&T Bell Labs, came along a bit later, added classes to C, but 
kept all its wonderful and dangerous flaws. That is, you could create classes and instantiate 
objects, but you could also overrun arrays, leak memory, and abuse pointers.



www.usenix.org  S U M M ER 20 19  VO L .  4 4 ,  N O.  2 3

EDITORIAL
Musings

Smashing the Stack
The Internet Worm really made people aware of the danger of 
buffer overruns. The finger daemon used the C function gets(), 
which collects a string into an array previously allocated but 
doesn’t check to see whether the length of the array is sufficient. 
This function still exists in libc, and the man page includes the 
warning, “Never use this function.” Makes you sort of wonder 
why it’s still there.

I learned much more about smashing stacks from Elias Levy’s 
famous article about buffer overflows [4]. I recreated the finger 
daemon for class exercises and gave students short C programs 
they could use to attack the finger daemon, whose real purpose 
was to run the who command and return the results over the 
network. When correctly exploited, the attack would instead 
run /bin/sh.

And this was only part of the problem with C and C++. There 
were also ways to exploit file structures that contain pointers to 
functions, or to use a little known option of format() to carefully 
overwrite portions of the stack, allowing exploits that used Return 
Oriented Programming (ROP). And this is just a partial list.

There are other issues with C/C++ that have to do with pointers. 
Using malloc() returns a pointer to a block of memory, and free() 
releases that block. But it’s quite common for programmers to 
either forget to free memory (a memory leak) or to use a pointer 
to memory after it had been freed (use-after-free).

During the first time I met Kostya, he showed me dozens of 
places in the Linux kernel where memory was used after it was 
freed and was still unpatched upstream. I could tell he was agi-
tated about this.

Today C and C++ are the second and third most popular pro-
gramming languages (as of April 10, 2019) in the Tiobe Index [5]. 
Looking at language popularity in another way, I asked Chris 
Wysopal of Veracode about how many programs in various 
languages that they analyze each year, and Chris provided me 
with the diagram in Figure 1. Veracode’s numbers, based on the 
thousands for binary programs analyzed, present a different 
picture, where C/C++ is less popular. 

I found myself wishing that C would just go away, but Kostya 
assured me that that’s not going to be happening, as IoT devices 
will use slower CPUs and have less memory, and they are going 
to need compact and fast languages. Damn.

The Lineup
Jasmine Peled, Bendert Zevenbergen, and Nick Feamster have 
written a column about ethics, regarding something I had never 
heard of, called mcTLS. You might think that something with 
TLS in its name has to do with encrypting Internet traffic, and 
you’d be right. However, mcTLS has to do with creating a method 

so that TLS can be decrypted by middle boxes. If you think 
this is a bad idea, Peled and her co-authors agree with you, and 
explain why even the initial researchers should have considered 
this. Note that the IETF isn’t happy about mcTLS either, mainly 
because including TLS in the name violates copyright as well as 
having the ability to confuse people about their Internet traffic 
actually being secure.

Kostya Serebryany has written about a security extension in 
hardware, something I consider a wonderful idea (in case you 
skipped the earlier part of this column). Sun, now part of Oracle, 
first came up with the notion of including tags to help prevent a 
variety of bugs and the successful exploitation of those bugs, and 
now ARM plans on doing this as well.

I interviewed Mark Loveless, aka Simple Nomad. I’ve known 
Mark for many years, and we got together during Enigma ’19 to 
chat and begin this interview. Mark is definitely someone you 
should call a hacker, unlike Beto O’Rourke, whose membership 
in the Cult of the Dead Cow predates most of the cDc’s hacking 
activities. Mark has interesting stories to tell.

Anuj Kalia, Michael Kaminsky, and David Andersen have writ-
ten about eRPC. You might recognize the authors’ names from 
an earlier article about RDMA. This article, like the first one, is 
based on a paper, this time at NSDI ’19. While their paper takes 
a deeper dive, Kalia et al. explain how this open source RPC 
library can be faster than those that rely on niche networking 
technologies.

Daniel Bittman, Peter Alvaro, Darrell Long, and Ethan Miller 
write about how to avoid bit-flipping in programming data struc-
tures. Based on a FAST ’19 paper, Bittman et al. explain why 
bit-flipping may be considered harmful for persistent memories, 
like Micron’s XPoint. But what I particularly like about their 
work is that it offers a different way of thinking about, and using, 
traditional data structures like linked-lists and B-trees that is 
often faster—and involves smaller structures and fewer bit flips.

Figure 1: Popularity of programming languages based on programs 
 analyzed for vulnerabilities by Veracode



4   S U M M ER 20 19  VO L .  4 4 ,  N O.  2  www.usenix.org

EDITORIAL
Musings

Vladimir Legeza and Anton Golubtsov tell us how to make log-
ging much more useful. Legeza, now working at Google, and 
 Golubtsov (Amazon) suggest what should be commonsense 
methods for having standards for your logging messages. Legeza 
first suggested this idea as an opinion article, but I consider it 
much more along the line of best practices. I wish I had read 
such an article 35 years ago!

Laura Nolan considers complexity, taking a different perspective 
from Dave Mangot’s “Boring Tech” article [6] in the Spring 2019 
issue. Laura first describes what is meant by software complex-
ity, then how systems complexity differs from the software 
version. Laura does a great job, and she has volunteered to write 
columns about SRE issues.

Peter Norton has written about how you can use a tool based 
on Python to create portable configuration files. The external 
format is YAML, and the code performs static type checking, 
helping to prevent errors in configuration.

Mac McEniry decided to cover the use of password managers. 
Mac has previously written about Hashicorp’s Vault (Winter 
2017) [7], but this time around he looks at three different Go 
libraries for secure storage of passwords for use by applications: 
Keychain (Mac), Windows Credential Manager, and a library 
called keyring that will work on Linux and the other OSes as well.

Dave Josephsen considers just how weird and wonderful it is to 
be living in the middle of nowhere in Montana. Then Dave gets 
down to business and begins explaining why he likes Prometheus 
for monitoring so much and how it’s used.

Dan Geer ponders about just how common exploited software 
bugs might be. Working from various data sources, Dan tells us 
that the problems with software bugs are much worse than you 
likely suspect, and even worse than I imagined.

Robert Ferrell suggests that we tone down our expectations for 
technology. After all, flying cars are still experimental, and even 
Amazon has decided that having a special button just for order-
ing laundry detergent might not be the best use of technology.

Mark Lamourine has written three book reviews, covering 
Refactoring (second edition), Concurrency in Go, and Cloud 
Native Go. I reviewed David Clark’s Designing an Internet, and 
also wrote two short reviews of books for summertime reading: 
Marcia Bjornerud’s Timefulness and Max Gladstone’s Empress 
of Forever.

In Closing
There are problems with all programming languages. For exam-
ple, while Rust is much safer by design, you can write Rust code 
in unsafe mode, disabling its safety features. Java does checks 
and prohibits array overruns, but the JVM is written in C++, and 
it has had numerous vulnerabilities over the years.

I also asked Chris Wysopal if he could tell me what proportion 
of exploitable bugs came from code that processed input, and 
he answered 75%. If you’ve been reading ;login: for the last five 
years, you will have noticed, and hopefully read, many articles 
relating to LangSec, for example [8, 9]. LangSec, roughly, is the 
notion that security could be tremendously improved by paying 
more attention to input parsing, and Chris’s comment about the 
majority of vulnerabilities coming from input parsing problems 
supports this. 

When I heard about LangSec and learn about efforts to create 
better support for security in hardware, I imagine that the prob-
lem of software insecurity will soon be solved. But I am forget-
ting several things.

First, most programmers are, by definition, of average skill level. 
Second, few programmers know much about security, and far 
fewer have a clue about LangSec. Third, some protocols, like 
the text (versus binary) version of X.509 certificates, cannot be 
parsed securely because the design requires a complex parser. 
And finally, even when ARM or Intel produce security features 
that will greatly reduce successful exploits, most people won’t 
enable them, either because they don’t understand them or 
because such features cause programs to fail sometimes—an 
indication of programming flaws they’d prefer to ignore.



www.usenix.org  S U M M ER 20 19  VO L .  4 4 ,  N O.  2 5

EDITORIAL
Musings

References
[1] D. Gruss, D. Hansen, B. Gregg, “Kernel Isolation: From an 
Academic Idea to an Efficient Patch for Every Computer,” 
;login:, vol. 43, no. 4 (Winter 2018): https://www.usenix.org 
/publications/login/winter2018/gruss. 

[2] P. Gutmann, “Fuzzing Code with AFL,” ;login:, vol. 41, no. 2 
(Summer 2016) : https://www.usenix.org/publications/login 
/summer2016/gutmann.

[3] Wikipedia, “Assembly Language: Macros,” last modified 
on March 25, 2019: https://en.wikipedia.org/wiki/Assembly 
_language#Macros.

[4] E. Levy, “(Aleph One), Smashing the Stack for Fun and Profit,” 
Phrack, vol. 7, no. 49: http://phrack.org/issues/49/14.html.

[5] Tiobe Index, April 2019: https://www.tiobe.com/tiobe-index/.

[6] D. Mangot, “Achieving Reliability with Boring Technol-
ogy,” ;login:, vol. 44, no. 1 (Spring 2019): https://www.usenix.org 
/publications/login/spring2019/mangot.

[7] C. McEniry, “Go: HashiCorp’s Vault,” ;login:, vol. 42, no. 4 
(Winter 2017): https://www.usenix.org/publications/login 
/winter2017/schock.

[8] S. Bratus, M. Patterson, and A. Shubina, “The Bugs We Have 
to Kill,” ;login:, vol. 40, no. 4 (August 2015): https://www.usenix 
.org/publications/login/aug15/bratus.

[9] J. Bangert and N. Zeldovich, “Nail: A Practical Tool for Parsing 
and Generating Data Formats,” ;login:, vol. 40, no. 1 (February 
2015): https://www.usenix.org/publications/login/feb15/bangert.

The 2019 USENIX Annual Technical Conference will bring together leading systems researchers for cutting-edge 
systems research and the opportunity to gain insight into a wealth of must-know topics, including virtualization, 
system and network management and troubleshooting, cloud and edge computing, security, privacy, and trust, 
mobile and wireless, and more.

2nd USENIX Workshop on 
Hot Topics in Edge Computing
July 9, 2019
www.usenix.org/hotedge19 
Join researchers and practitioners 
from academia and industry to discuss 
work in progress, identify novel trends, 
and share approaches to the many 
challenges in design, implementation, 
and deployment of diff erent aspects of 
edge computing.

Register Today!

Register by June 17 and save!

ATC ’19
USENIX 2019 USENIX Annual 

Technical Conference
JULY 10–12, 2019 • RENTON, WA, USA
www.usenix.org/atc19 

11th USENIX Workshop on Hot 
Topics in Storage and File Systems 
July 8–9, 2019
www.usenix.org/hotstorage19
Researchers and industry practitioners 
will come together for this two-day 
workshop on the cutting edge in storage 
technology and research and explore 
and debate longer-term challenges and 
opportunities in the fi eld.

11th USENIX Workshop on 
Hot Topics in Cloud Computing
July 8, 2019
www.usenix.org/hotcloud19 
HotCloud brings together researchers 
and practitioners from academia and 
industry working on cloud computing 
technologies to share their perspec-
tives, report on recent developments, 
discuss research in progress, and 
identify new and emerging trends in 
this important area.

HotStorage ’19 HotCloud ’19 HotEdge ’19
Co-located with USENIX ATC ’19

https://www.usenix.org/publications/login/winter2018/gruss
https://www.usenix.org/publications/login/winter2018/gruss
https://www.usenix.org/publications/login/summer2016/gutmann
https://www.usenix.org/publications/login/summer2016/gutmann
https://en.wikipedia.org/wiki/Assembly_language#Macros
https://en.wikipedia.org/wiki/Assembly_language#Macros
http://phrack.org/issues/49/14.html
https://www.tiobe.com/tiobe-index/
https://www.usenix.org/publications/login/spring2019/mangot
https://www.usenix.org/publications/login/spring2019/mangot
https://www.usenix.org/publications/login/winter2017/schock
https://www.usenix.org/publications/login/winter2017/schock
https://www.usenix.org/publications/login/aug15/bratus
https://www.usenix.org/publications/login/aug15/bratus
https://www.usenix.org/publications/login/feb15/bangert


6   S U M M ER 20 19  VO L .  4 4 ,  N O.  2  www.usenix.org

SECURITYThe Man in the Middlebox
Violations of End-to-End Encryption

J A S M I N E  P E L E D ,  B E N D E R T  Z E V E N B E R G E N ,  A N D  N I C K  F E A M S T E R

Jasmine Peled currently works 
on computer network analysis 
at the Department of Defense. 
She recently graduated from 
Princeton University, where 

she studied computer science and philosophy. 
Her work at Princeton focused on how 
undergraduate computer science courses 
can better incorporate material about ethics 
in order to encourage students to consider 
the ethical and societal implications of the 
technologies they develop. Jasmine’s senior 
thesis, “Towards a Pedagogy of Principles: 
Teaching Ethics in Computer Science,”  
received Princeton’s Outstanding Senior  
Thesis Award. jasminepeled21@gmail.com

Ben Zevenbergen is a visiting 
professional specialist at 
the Center for Information 
Technology Policy at Princeton. 
His work mostly consists 

of multidisciplinary investigations in the 
ethical, social, and legal impacts of Internet 
technologies, and vice versa. At CITP Ben is 
working on the engineering ethics and political 
theory impacts of artificial intelligence. Ben is 
currently finishing a PhD at the Oxford Internet 
Institute about the research ethics for technical 
projects that involve unsuspecting Internet 
users as data subjects.  
benzevenberger@princeton.edu

W e consider the ethical issues of the paper “Multi-Context TLS 
(mcTLS): Enabling Secure In-Network Functionality in TLS” [8], 
which presents a method to extend the Transport Layer Security 

(TLS) protocol to allow it to support middleboxes. Specifically, to what extent 
should third parties be able to decrypt traffic between two Internet end-
points for various purposes, ranging from performance to security? This is 
the first column in a series about ethics that we hope will encourage ongoing 
discussion and debate in the research community about ethical considerations 
that may arise in the course of networking, security, and systems research. 

Ongoing research in the computer science communities of security, privacy, and networking 
investigates and develops network applications and appliances that may improve Internet 
performance and security, often by modifying traffic en route between two Internet end-
points. Middleboxes constitute one such example of this capability; middleboxes are defined 
as “any intermediary box performing functions apart from normal, standard functions of an 
IP router on the data path between a source host and destination host” [1]. Middlebox func-
tionality includes transcoding videostreams to different bit rates or detecting attacks, often 
through inspection of the contents of a packet’s payload. 

Because some of this functionality can require inspecting the contents of network traffic, these 
middleboxes may need to break end-to-end encryption, decrypting traffic midstream to facili-
tate operating on packet contents. mcTLS describes mechanisms for breaking the end-to-end 
encryption of TLS specifically to enable middleboxes to view and edit data and metadata.

Middleboxes and End-to-End Encryption
The rise of end-to-end encryption is generally heralded as a positive development, as it pro-
tects both the integrity and confidentiality of communications between Internet endpoints, 
thus protecting sensitive transactions and preserving user privacy.

On the other hand, if traffic is encrypted, conventional middleboxes have difficulty perform-
ing any operation that depends on seeing packet contents. In response, researchers have 
grappled with this problem in various ways [6]. One approach involves developing techniques 
that can still operate on encrypted traffic, including techniques that can perform opera-
tions on packet headers alone  [5] or limited types of operations on encrypted messages [11]. 
Yet, certain types of operations that require deep packet inspection may be either inefficient 
or ineffective when payloads are encrypted; thus, another approach involves developing a 
“backdoor” of sorts that allows an Internet service provider (ISP) to decrypt encrypted com-
munications in flight.

ISPs have developed an increased interest in deploying middleboxes that perform operations 
on traffic that is en route between source and destination. For example, ISPs often deploy 
middleboxes that perform intrusion detection and detect a range of different types of attacks; 
these middleboxes may also perform certain performance optimizations, such as transcod-
ing a videostream to a lower bit rate or performing other types of optimizations (e.g., WAN 
acceleration, load balancing). These operations may depend on at least inspecting traffic 
contents; in some cases, the traffic contents may even be modified.



www.usenix.org  S U M M ER 20 19  VO L .  4 4 ,  N O.  2 7

Nick Feamster is a Professor 
in the Computer Science 
Department at Princeton 
University and the Deputy 
Director of the Princeton 

University Center for Information Technology 
Policy (CITP). He was formerly a Professor 
at Georgia Tech, and received his MEng and 
PhD degrees from MIT. He has won many 
awards for his networking research, at ACM 
SIGCOMM, IMC, and USENIX NSDI. Nick is 
also an avid distance runner, having completed 
nearly 20 marathons and the Comrades ultra-
marathon in South Africa.  
feamster@cs.princton.edu

Multi-context TLS (mcTLS) is one such technology; it permits ISPs to decrypt secure, end-
to-end sessions of TLS Internet traffic by third parties, allowing them to control, read, and 
write the data in the communications. The authors of the paper [8] outline several technical 
advantages to mcTLS:

◆◆ In-network functions may be more effective at scale, in contrast to relying on endpoint-
based functionality alone.

◆◆ Middleboxes may be useful for both users and service operators in terms of speed and data 
storage. 

◆◆ Middleboxes may help protect personal information by acting as a watchdog over applica-
tions that may leak data unwittingly.

mcTLS is based on the premise that, just like end-to-end encryption, middleboxes are a 
“useful part of the Internet and are here to stay.” More generally, the question of whether 
(and how) middleboxes should have access to encrypted communications is under active 
discussion in industry standards organizations, such as the Internet Engineering Task Force 
(IETF) [7].

A natural question concerns whether the increased in-network capabilities that result from 
breaking end-to-end encryption offer benefits that outweigh the risks of harm to stakehold-
ers. A related question concerns whether the development and deployment of such research 
should focus on technologies that weaken end-to-end encryption in favor of potentially 
improved security and performance, versus technologies that can operate on traffic with 
encrypted payloads, potentially with reduced effectiveness.

The Appropriate Ethical Lens
Ethical analysis can take many forms, which are best understood on a spectrum. On one end 
of the spectrum is normative ethics—as practiced in academic philosophy—which studies 
reasoning methods such as utilitarianism, deontology, and virtue ethics. Ethics compli-
ance frameworks such as research ethics or medical ethics—which consist of more formal 
procedures for specific professions—are on the other end of the spectrum. In between these 
two approaches to ethics are several other, more applied types of ethics sub-disciplines, such 
as information ethics, technology ethics, computer ethics, data ethics, bioethics, animal 
ethics, among many others. Compliance-ethics frameworks typically consist of “check-box 
exercises” that may be rooted in law; applied ethics have some generally agreed upon method-
ologies for reasoning about sectors of society; and normative ethics studies the reasoning 
methods themselves. For this article, it is relevant to establish whether man-in-the-middle 
technologies such as mcTLS should be analyzed through the lens of research ethics or 
through a different approach.

The framework of research ethics is typically an appropriate lens for an academic paper. 
This framework is commonly applied to a study or experimentation when (1) it presents 
research in the formal sense, and (2) when the research is conducted with human subjects.  
In the United States, research in the formal sense is defined in the US Code of Federal 
Regulations on the Protection of Human Subjects as a “systematic investigation, including 
research development, testing and evaluation, designed to develop or contribute to generaliz-
able knowledge” [10].

Once it has been established that a given paper constitutes research, the next question 
is whether the authors conduct research on human subjects. Formal regulations on the 
pro tection of human subjects in research apply to persons who conduct research (e.g., the 

SECURITY
The Man in the Middlebox: Violations of End-to-End Encryption



8   S U M M ER 20 19  VO L .  4 4 ,  N O.  2  www.usenix.org

SECURITY
The Man in the Middlebox: Violations of End-to-End Encryption

 Common Rule [2]). Although security and networking research-
ers typically see themselves as conducting research on technical 
systems, the Internet is more properly understood as a socio-
technical system in which humans and technology interact. 
Humans will often be implicated in data collection.

The mcTLS technology aims to intercept the Internet traffic 
of humans, though the paper discussed in this column merely 
proposes a novel functionality but does not actually present data 
from experimentation on live Internet traffic. Instead, the paper 
presents the research and development of a new technology. 
Therefore, the formal framework of research ethics (such as the 
Common Rule) need not be applied. However, even when formal 
requirements do not demand research conform to a research eth-
ics checklist, researchers should still assess the broader ethical 
impact of their work. After all, research that does not constitute 
“human-subject research” may still affect people, and this series 
of columns seeks to bring to mind some questions that research-
ers should be asking themselves.

Research into computers and networked systems have tradition-
ally challenged the principles laid out in existing research ethics 
procedures, such as the Belmont Report. In response, several 
computer science communities embraced the Menlo Report [3], 
which interprets the principles of the Belmont Report [4] and 
applies them to computer and information security and mea-
surement research specifically. Additional networked systems 
ethics guidelines were developed through lengthy processes of 
reflection and iteration in workshops by scholars from many 
different disciplines [9]. Because the Menlo Report is more appli-
cable to experimentation with human subjects on the Internet, 
the analysis in this article will lean on the concepts presented in 
Networked Systems Ethics Guidelines [9].

Technology Ethics Analysis
The Networked Systems Ethics Guidelines suggest that 
researchers aim to understand a technology within the social 
context where it operates. This social context includes an 
analysis of the stakeholders, the aims, benefits, risks of harm, 
meaning of collected data in context, shifts in power, and an 
understanding of the affected values. The guidelines then sug-
gest analyzing the impact of the values on stakeholders and the 
socio-technical environment, the values themselves, and any 
foreseeable unintended consequences. It is useful to link these 
analyses to the technical sources of the original design. When 
the impact of technical alternatives have been considered in 
minimizing risks of harm, the guidelines suggest managing the 
residual risks through information governance methods, also 
known as responsible data stewardship. We will preface each 
section with a question from the guidelines.

Aims and Benefits
What are the aims and benefits of the project? How will the 
research benefit society and specific stakeholders?

The technology presented in the mcTLS paper [8] realizes a 
technology to intercept, analyze, and possibly manipulate Inter-
net traffic that has been encrypted on an end-to-end basis. The 
proposed tool would replace previous “hacks,” which ostensibly 
decrease security in the existing all-or-nothing security model. 
The authors state the aims of the mcTLS project concretely as 
follows: (1) to optimize network resource usage, (2) to improve 
user experience, and (3) to protect clients and servers from secu-
rity threats. This tool would only be applied with the consent of 
all the parties involved in the connection.

Naylor et al. [8] state some further benefits that could be consid-
ered as secondary goals. For example, the authors mention that 
the in-network services may increase competition, innovation, 
and choice for end-users. Another stated benefit is that the use of 
middleboxes may reduce energy consumption by all stakeholders 
on the Internet.

The aims and benefits appear to be presented from the point of 
view of an ISP or network operator. The interests of end-users on 
the Internet are scarcely considered. The second-order benefits 
to society are difficult—if not impossible—to prove or support 
with evidence, and the paper does not consider some of the unin-
tended social harms that may result from this tool, particularly 
the fact that breaking end-to-end encryption in this way will 
give the network operator complete power to read users’ Internet 
traffic.

Privacy
Which definitions or explanations will be used to assess a value? Is 
the risk of harm high, medium, or low?

The interception and possible processing and dissemination of 
end-users’ Internet traffic data may be considered a violation of 
their privacy. The concept of privacy is vague and illusive, how-
ever, and has thus been difficult to define precisely. Privacy may 
be best understood as an umbrella term referring to a group of 
related concepts, issues, and values that protect the individual’s 
private life from intrusions by others. The use of mcTLS on end 
users’ encrypted traffic violates the sub-category of information 
privacy, especially if their data is further processed or dissemi-
nated to third parties.

Privacy violations can be harmful in immaterial ways, though 
they may also reveal information about persons that can lead to 
physical, financial, reputational, or other types of harm, depend-
ing on the actor who receives the information and decides to 
act upon it. Different types of information have different types 



www.usenix.org  S U M M ER 20 19  VO L .  4 4 ,  N O.  2 9

SECURITY
The Man in the Middlebox: Violations of End-to-End Encryption

of impact on persons when revealed, depending on the context. 
Given the mediating role of the Internet to support modern life, 
encrypted Internet traffic intercepted by mcTLS will likely con-
tain a large variety of information types, concerning a large and 
diverse set of persons.

To assess the risk of harm, one must consider the type of 
attacker who may be interested in the information that mcTLS 
may expose, the level of technical sophistication they have, 
what actions could be taken based on the new knowledge, and 
what the consequences would be for an Internet user. Given the 
large amount of Internet traffic generated by a variety of end-
users that mcTLS could intercept, all types of attackers—from 
individual hackers to well-resourced government surveillance 
actors—should be taken into account. Further, mcTLS creates a 
point of failure for a variety of actors to gain access to Internet 
traffic through both security vulnerabilities and traditional legal 
procedures.

Further, mcTLS poses threats to privacy by altering the context 
in which certain information is processed and handled. Informa-
tion that may be acceptable for both endpoints of communica-
tion to view should not necessarily be shared with third parties. 
For example, a user may choose to enter Personally Identifi-
able Information (PII) into a healthcare site in order to receive 
personalized care, but sharing this information in one context 
does not constitute approval for their ISP to share it with other 
companies. This could violate the Health Insurance Portability 
and Accountability Act (HIPAA), as well as the trust that users 
place in their ISP to keep communications and data private.

Due to the large variety of users, stakeholders, and their pur-
pose for using the Internet, it is nearly impossible to generalize 
the risk of harm and define it precisely and meaningfully. This 
makes it especially challenging to assess the ethical tradeoffs 
presented by an emerging technology. Further, what may be 
considered harmless today may become a much larger threat 
in future. For example, the creation of new data sets may allow 
identification of Internet users in ways that cannot be foreseen 
today.

Violations of end-user privacy may be justified to some extent by 
gaining their consent or when serving the greater good. How-
ever, an informed consent notice or other justifications should 
be based on factual information and informed assessments 
rather than self-serving arguments of increased efficiency. The 
complex and international nature of the Internet complicates 
such an analysis, because risks of privacy harm should first be 
defined and identified for all affected Internet users in their 
contexts. This is, of course, a near impossible task. 

Autonomy, Consent, and Choice
Do you need to rely on informed consent from participants and 
stakeholders? Which stakeholders carry the burdens of the study?

The Belmont Report gives guidance regarding the respect for 
autonomy, balancing the value of autonomy with the interests of 
others:

“To respect autonomy is to give weight to autonomous persons’ 
considered opinions and choices while refraining from obstruct-
ing their actions unless they are clearly detrimental to others” [4].

To achieve the aims and deliver the benefits identified in the 
paper, the existing security that users currently enjoy due to 
end-to-end encryption will be violated. Of course, most Internet 
users may not have a full understanding of the security mecha-
nisms currently in place or even awareness of the existence of 
end-to-end encryption in the first place. This situation raises the 
question of whether taking away a good that users enjoy unwit-
tingly as a means to achieve another end—the relative benefit of 
which is itself debatable—is a valid justification.

Informed consent is widely considered to be a mechanism that 
operationalizes the concept of autonomy of Internet users. 
Indeed, the authors state that both endpoints of a connection 
within which an mcTLS is deployed must consent to its use. 
However, similarly to the realm of healthcare, a key aspect of 
informed consent is being informed of reasonable alternatives 
to the proposed action. In the context of mcTLS, respect for 
autonomy may be understood as the obligation to fully inform an 
Internet user of the benefits and risks of harm in their particular 
context. The rejection of these benefits and risks of harm should 
not lead to a suspension of their Internet connection but possibly 
to access an alternative network within which the mcTLS tool is 
not operational.

Alternatively, an ISP or network operator could choose to base 
the legitimacy of the increase in power on a more paternalistic 
approach, whereby they interpret their duty of care to justify the 
use of mcTLS, along with its benefits and risks of harm. This 
constitutes a use of power over Internet users that may require 
some balancing through accountability mechanisms (see the 
Accountability section, below). For example, the ISP or network 
operator may choose to publish their considered justification 
for the use of mcTLS in their network, along with a technical 
description that allows some auditing of their system, as well 
as an information governance (or data stewardship) statement 
to which it can be held accountable by end-users. It is critical, 
though, that these explanations of benefits and potential harms 
posed by mcTLS do not simply use technical jargon to scare off 
the average user from understanding the full implications of 
middlebox technologies, so that supposed informed consent is, in 
fact, informed.



10   S U M M ER 20 19  VO L .  4 4 ,  N O.  2  www.usenix.org

SECURITY
The Man in the Middlebox: Violations of End-to-End Encryption

Many of these ethical concerns regarding privacy, autonomy, and 
choice could be resolved through agreements between ISPs and 
users about whether mcTLS will be implemented and how user 
data will be used. However, the next two sections present ethical 
challenges to the deployment of mcTLS which do not have such 
clear solutions. 

Stakeholders and Power Shifts
Are particular stakeholders empowered or disempowered as a 
result of this project? Which values will the project conceivably 
impact?

ISPs and network operators will be the actors that implement 
and have access to mcTLS; these actors ultimately make the 
decision to implement and deploy such systems. These actors 
already have significant power over information flows, as the 
de facto gatekeepers to the Internet with the ability to control, 
manipulate, and, in some cases, observe data flows between 
their subscribers and other sites on the Internet. mcTLS further 
amplifies their power over Internet users, giving them the ability 
to observe the contents of network communications that might 
otherwise have been encrypted.

Internet users, on the other hand, will be disempowered over the 
collection and use of their data. Once a user has given consent 
to the use of mcTLS on their traffic, it will be difficult to control 
how their Internet traffic is collected, processed, and further 
disseminated, which may result in a violation of privacy. An 
informed consent notice referring to end-to-end encryption and 
the functionality of mcTLS is unlikely to be meaningful to most 
Internet users. First, an informed consent notice is unlikely to 
give the end-user meaningful information regarding the creation 
of a single-point-of-failure within their Internet traffic and the 
possible attackers or interested parties that may subsequently 
gain access to their data. Further, a rejection of the mcTLS tool 
on their Internet traffic may lead the ISP or network operator 
to suspend Internet access of the end-users, thereby offering 
users a choiceless choice (or Hobson’s choice) whereby the user 
is asked to agree with a technically complex violation of their 
encrypted end-to-end connection. This may constitute a viola-
tion of their autonomy.

The mcTLS paper does not differentiate between Internet users 
in its analysis of benefits and harms. It is important to note that 
the benefits to some users can result in vastly increasing risks 
of harm for other users. For example, the use of middleboxes on 
the Internet traffic of oppressed peoples or whistleblowers in 
countries where the rule of law is not as effective as the authors’ 
home country should be considered.

Unintended Consequences
Does the project potentially set a precedent for unethical method-
ologies that could be misused by others in the future?

Although developers of new technologies may not be directly 
responsible for misuses of their products under the law or under 
typical “checklist” research ethics restrictions, developers 
should still take care to mitigate potential unintended negative 
consequences. It is therefore important that researchers engage 
actively with the possibility that their methods and technologies 
may be misused, and design ways to mitigate those identified 
risks and harms. The most common ways projects influence 
future malevolent technology uses is through function creep and 
precedent setting. The following questions can help address the 
future concerns of creating a technology that enables a so-called 
“back door” into end-to-end encrypted Internet traffic.

Function creep occurs when functionality of a technology 
is used for other purposes than for which it was originally 
intended. Researchers and developers may want to consider for 
which other—more malevolent—aims the mcTLS technology can 
be used. It is relevant to consider a wide array of threat actors 
that would have an interest in using mcTLS for their own aims. 
When even companies such as Experian and Equifax are unable 
to keep their data secure, it is important to consider whether 
users can truly expect ISPs to protect their information and how 
adding a third party complicates this. How could the developers 
mitigate these foreseeable malevolent uses through their techni-
cal design?

Precedent-setting occurs when other researchers or developers 
can point at the use of mcTLS’s technology or functionality to 
justify the development and use of new technologies. Technology 
is typically a double-edged sword that can be used for both good 
and bad purposes. It is therefore important to interrogate the use 
of precedents critically. Developers should consider how other 
future malevolent developers can utilize the existence and use of 
mcTLS to justify the development and use of technologies that 
cause more harms. For example, does the interception of end-to-
end encrypted traffic by ISPs for efficiency in finding malware 
justify the interception of encrypted traffic to create profiles of 
Internet users for law enforcement?

When the risks of harm to stakeholders and potential unin-
tended consequences have been identified, the researchers may 
pinpoint the technological causes of harms. For example, the 
main cause of harms is the creation of a back door and concen-
trated point of access for encrypted Internet traffic. Researchers 
should consider ways to address these issues and justify why 
alternative designs (or not acting at all) may be most beneficial.



www.usenix.org  S U M M ER 20 19  VO L .  4 4 ,  N O.  2 11

SECURITY
The Man in the Middlebox: Violations of End-to-End Encryption

Accountability
Which measures are taken to allow affected stakeholders to 
address concerns effectively?

Accountability is the concept that allows actors to be held liable 
or answerable for their actions. When an actor gains power over 
other stakeholders from the introduction of a technology, and 
the new actions may violate particular values, this increase in 
power should be accompanied by an increase in accountability. 
Accountability thus serves as a rebalancing mechanism. 

Several governance mechanisms exist to allow for the exercise 
of accountability. For example, data governance policies can 
include codes of practice for employees and organizations within 
a sector to limit the extent to which technologies may be (mis)
used. Other mechanisms include a statement of data collection 
policies, data retention periods for collected data, mitigation 
strategies for unforeseen risks, and limits on the further use or 
dissemination of collected data. Technical measures include 
information security strategies, de-identification of collected 
data, and further encryption of retained data. Meaningful 
accountability can be achieved when an organization is trans-
parent about these policies and technical choices, as it allows 
third parties to audit and limit the exercise of power.

Conclusion
The introduction of technology in an environment will inevitably 
empower some actors over others. This is also true for mcTLS, 
a tool that breaks the end-to-end encryption of Internet traffic 
to achieve some beneficial ends, such as increased efficiency in 
identifying and solving security issues. However, the means by 
which these ends are achieved may conceivably cause harms to 
individual Internet users due to the shift in power over Internet 
traffic. End-users’ autonomy and privacy are likely violated, 
which have further social consequences. The developers may 
explore options to remedy these violations through technical 
means. However, not all problems are solvable through tech-
nology. Therefore, the actors who employ a technology such as 
mcTLS should consider rebalancing their newly gained power 
over Internet users with accountability mechanisms, allowing 
for transparency (and audibility) of the systems and clear infor-
mation governance policies to which affected parties can hold 
the operators to account. 

References
[1] B. Carpenter and S. Brim, “Middleboxes: Taxonomy and 
Issues,” 2002: https://tools.ietf.org/html/rfc3234 .

[2] “Federal Policy for the Protection of Human Subjects (‘Com-
mon Rule’),” 1991: https://www.hhs.gov/ohrp/regulations-and 
-policy/regulations/common-rule/index.html. 

[3] D. Dittrich and E. Kenneally, “The Menlo Report: Ethical 
Principles Guiding Information and Communication Tech-
nology Research,” US Department of Homeland Security, 
2012: https://papers.ssrn.com/sol3/papers.cfm?abstract_id= 
2445102. 

[4] National Commission for the Protection of Human Subjects 
of Biomedical and Behavioral Research, “The Belmont Report: 
Ethical Principles and Guidelines for the Protection of Human 
Subjects of Research,” Department of Health, Education, and 
Welfare, 1979: https://www.hhs.gov/ohrp/regulations-and 
-policy/belmont-report/read-the-belmont-report/index.html.

[5] G. Gu, R. Perdisci, J. Zhang, W. Lee, “BotMiner: Clustering 
Analysis of Network Traffic for Protocol-and Structure- 
Independent Botnet Detection,” in Proceedings of the 17th  
USENIX Security Symposium (USENIX Security ’08), pp. 
139–154: http://static.usenix.org/events/sec08/tech/ 
full_papers/gu/gu _html/. 

[6] K. Moriarty, “TLS Security and Data Center Monitoring: 
Searching for a Path Forward,” August 2017: https://www 
.rsa.com/en-us/blog/2017-08/tls-security-and-data-center 
-monitoring-searching-for-a-path-forward. 

[7] K. Moriarty and A. Morton, “Effects of Pervasive Encryption 
on Operators,” 2018: https://tools.ietf.org/html/draft-mm-wg 
-effect-encrypt-14.

[8] D. Naylor, K. Schomp, M. Varvello, I. Leontiadis, J. Black-
burn, D. R. López, K. Papagiannaki, P. R. Rodriguez, and P. 
Steenkiste, “Multi-Context TLS (mcTLS): Enabling Secure In-
Network Functionality in TLS,” in ACM SIGCOMM Computer 
Communication Review, vol. 45 (August 2015), pp. 199–212.

[9] “Networked Systems Ethics—Guidelines,” last modified on 
July 10, 2017: http://networkedsystemsethics.net/index.php 
?title=Networked_Systems_Ethics_-_Guidelines. 

[10] “Code of Federal Regulations, Title 45, Public Welfare, and 
Part 46, Protection of Human Subjects,” Department of Health 
and Human Services, 2009: https://www.hhs.gov/ohrp/sites 
/default/files/ohrp/policy/ohrpregulations.pdf.

[11] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy, “Blind-
box: Deep Packet Inspection over Encrypted Traffic,” in ACM 
SIGCOMM Computer Communication Review, vol. 45 (August 
2015), pp. 213–226. 

https://tools.ietf.org/html/rfc3234
https://www.hhs.gov/ohrp/regulations-and-policy/regulations/common-rule/index.html
https://www.hhs.gov/ohrp/regulations-and-policy/regulations/common-rule/index.html
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2445102
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2445102
https://www.hhs.gov/ohrp/regulations-and-policy/belmont-report/read-the-belmont-report/index.html
https://www.hhs.gov/ohrp/regulations-and-policy/belmont-report/read-the-belmont-report/index.html
http://static.usenix.org/events/sec08/tech/full_papers/gu/gu_html/
http://static.usenix.org/events/sec08/tech/full_papers/gu/gu_html/
https://www.rsa.com/en-us/blog/2017-08/tls-security-and-data-center-monitoring-searching-for-a-path-forward
https://www.rsa.com/en-us/blog/2017-08/tls-security-and-data-center-monitoring-searching-for-a-path-forward
https://www.rsa.com/en-us/blog/2017-08/tls-security-and-data-center-monitoring-searching-for-a-path-forward
https://tools.ietf.org/html/draft-mm-wg-effect-encrypt-14
https://tools.ietf.org/html/draft-mm-wg-effect-encrypt-14
http://networkedsystemsethics.net/index.php?title=Networked_Systems_Ethics_-_Guidelines
http://networkedsystemsethics.net/index.php?title=Networked_Systems_Ethics_-_Guidelines
https://www.hhs.gov/ohrp/sites/default/files/ohrp/policy/ohrpregulations.pdf
https://www.hhs.gov/ohrp/sites/default/files/ohrp/policy/ohrpregulations.pdf


12   S U M M ER 20 19  VO L .  4 4 ,  N O.  2  www.usenix.org

SECURITY

ARM Memory Tagging Extension and  
How It Improves C/C++ Memory Safety 
K O S T Y A  S E R E B R Y A N Y

I discuss memory safety bugs typical to C and C++, current tools and 
approaches to finding such bugs or mitigating their risk, and a new  
hardware feature, ARM MTE, that promises to be the biggest improve-

ment since the introduction of page protection.

Memory (Un)safety 
More than 30 years after the Internet Worm, we are still talking about memory safety bugs 
in C and C++ programs. Numerous improvements in the software development process are 
dwarfed by the exponential increase in the amount of software, its exposed attack surface, 
and the discovery of new attack techniques.

Memory safety bug is an umbrella term to represent program defects inherent in C and C++ 
but also present in other languages. The most common classes of bugs are buffer overflows, 
heap-use-after-free, and stack-use-after-return. 

These bugs often make the code vulnerable to exploitation. Malicious actors can leverage 
memory-unsafe behavior to remotely execute code, leak sensitive information, escalate 
privileges, or escape VMs. A buffer overflow in OpenSSL, nicknamed Heartbleed, achieved 
notoriety for its ease of exploitation and high impact. It allowed attackers to steal a server’s 
private memory, including cryptographic information such as keys and passwords, without 
being detected. But named bugs like Heartbleed and Stagefright, a family of remotely exploit-
able bugs in Android, are just the tip of the iceberg. 

Thousands of memory safety bugs are filed as CVEs every year. Roughly two-thirds of all 
CVEs in the Android platform are memory safety bugs. A similar picture is seen across the 
industry, affecting browsers, operating systems, and server-side and IoT software [1, 2]. And 
even these bugs are still the tip of the iceberg. Many more bugs do not get CVEs assigned, and 
many others remain unknown to software vendors. Some are being silently exploited, others 
cause hard to detect data corruption, and some lie dormant waiting to strike.

Typical Bugs
Before we dive deeper, let’s take a closer look at two of our most beloved insects.

A heap-buffer-overflow happens when an object of a certain size is allocated on the heap, 
and then a pointer to this object is used to access memory outside of the object bounds. 
 Typically, the object is an array of n elements, and the code accesses the i-th element where  
i < 0 or i >= n.

int *array = new int[n];  // heap allocation

array[n] = 42;  // buffer overflow

array[-1] = 42; // buffer overflow (underflow)

array[100500] = 42;  // buffer overflow, assuming n <= 100500

Konstantin (Kostya) Serebryany 
is a Software Engineer at 
Google. His team develops 
and deploys dynamic testing 
tools, such as AddressSanitizer, 

MemorySanitizer, ThreadSanitizer, and 
libFuzzer. Prior to joining Google in 2007, 
Konstantin spent four years at Elbrus/MCST 
working for Sun compiler lab and then three 
years at Intel Compiler Lab. Konstantin holds 
a PhD from Moscow State University of 
Economics, Statistics, and Informatics and an 
MS from Moscow State University. 
kcc@google.com



www.usenix.org  S U M M ER 20 19  VO L .  4 4 ,  N O.  2 13

SECURITY
ARM Memory Tagging Extension and How It Improves C/C++ Memory Safety

A heap-use-after-free happens when an object is allocated on 
the heap, and later deallocated, but a pointer to the object is pre-
served somewhere and is used to access the deallocated memory.

Object *obj = new Object;   // heap allocation, or “malloc”

delete obj;       // heap deallocation, or “free”

obj->member = 0;   // heap-use-after-free, or 

                   // access via a dangling pointer

In both cases the buggy memory access touches someone 
else’s memory. In the C and C++ standards this is considered 
un defined behavior. In real life it may cause a loud crash, a  
silent data corruption, or a convenient back door. 

Existing Tools and Practices 
We haven’t been exactly ignoring the problem for 30 years. 

Coding practices and testing tools reduced the likelihood of 
introducing a memory bug. A test-driven development process 
together with dynamic testing tools like AddressSanitizer [3] or 
Valgrind will help avoid many bugs. Fuzzing (and, ideally, fuzz-
driven development [4]) will pick up the next layer of bugs. Some 
memory bugs can be spotted by static analysis. 

Software-based code-hardening techniques make it harder for 
attackers to exploit memory safety bugs that reach production. 
Stack cookies, non-executable memory, ASLR, control f low 
integrity (LLVM CFI, Microsoft CFG, Shadow Call Stack), and 
other techniques help prevent memory safety bugs from divert-
ing program control flow, the end goal of many exploits. Hard-
ened memory allocators, such as Scudo Hardened Allocator or 
Chrome’s Partition Alloc, frustrate exploitation and may make it 
impossible in some cases.

Hardware-based solutions have begun to appear as well. 
ARM Pointer Authentication, already available in the most 
recent Apple hardware, cryptographically authenticates return 
addresses and discourages attackers from using return-oriented 
programming (ROP). Intel Control-flow Enforcement Technol-
ogy is expected to appear soon to solve ROP in a different way, 
by keeping the return address on a separate stack with special 
permissions. 

All these tools are making our software more stable and secure, 
but they are not enough. No amount of testing guarantees the 
absence of bugs, and existing exploit mitigations only prevent 
some attacks, while almost entirely ignoring others, e.g., data-
oriented attacks.

Among the hardware-based solutions two stand out, SPARC 
ADI and ARM MTE, both implementations of a concept known 
as memory tagging or memory coloring. SPARC ADI has been 
available in mass-produced hardware since 2016; we covered this 
feature in an earlier paper [5]. This article focuses on ARM MTE.

ARM MTE
On September 2018 ARM announced the Memory Tagging 
Extension, or MTE [6], a part of the ARM v8.5 architecture. It 
does not yet exist in real hardware, but everything else about this 
extension is very promising. 

The extension introduces a notion of two types of tags: address 
tags and memory tags.

An address tag is a 4-bit value stored at the top of every pointer in 
the process. MTE utilizes top-byte-ignore, an existing AArch64 
feature that instructs the hardware to ignore the topmost byte of 
addresses, allowing this byte to be used as user-controlled meta-
data. Therefore MTE is applicable only to 64-bit software.

A memory tag is a 4-bit value associated with every aligned 
16-byte region of application memory (memory granule). The 
way memory tags are stored is a hardware implementation 
detail. Logically, every 16 bytes of memory now contain an 
extra 4 bits of metadata in addition to 128 bits of data. 

Every time a heap region is allocated, the software chooses a 
random 4-bit tag and marks both the address and all the newly 
allocated memory granules with this tag. The load and store 
instructions verify that the address tag matches the memory tag, 
causing a hardware exception on tag mismatch. MTE introduces 
new instructions to manipulate the tags. 

Let’s look at the example in Figure 1. When the user code requests 
20 bytes of heap to be allocated, operator new() rounds up the 
size to the 16-byte boundary (i.e., to 32), allocates a 32-byte 
chunk of memory (i.e., two 16-byte memory granules), chooses 
a random 4-bit tag (in this case, 0xA), puts this tag into the 
top-byte of the address, and updates the tags for the two newly 
allocated memory granules (the white-colored regions in the 
diagram). The adjacent memory regions have different memory 
tags (light gray granules have the tag 0x7, dark gray granules 
have the tag 0xE), so when the code tries to access memory at 
offset 32 from the pointer, MTE raises an exception because the 
tag of the pointer does not match the tag of the memory granule 
being accessed. 

Figure 2 demonstrates an example of how heap-use-after-free 
is detected. On deallocation, operator delete() changes the tag 
of all three deallocated granules of memory from 0xD to 0x4, 

Figure 1: Heap-buffer-overflow is detected by MTE because the pointer’s 
address tag 0xA does not match the memory tag 0xE. 



14   S U M M ER 20 19  VO L .  4 4 ,  N O.  2  www.usenix.org

SECURITY
ARM Memory Tagging Extension and How It Improves C/C++ Memory Safety

so that any access to this memory via an old (dangling) pointer 
causes an exception because the pointer still has the old tag 0xD. 
The adjacent memory regions (tagged with 0x9 and 0xB) are not 
affected by retagging of this region. 

You may have noticed that bug detection with MTE is proba-
bilistic. Indeed, there are only 16 possible values of a 4-bit tag. 
One random tag will be different from another random tag with 
a probability of 15/16 or ~93%. It is up to the software to decide 
whether to increase this probability with other tricks. For 
example, in order to detect contiguous buffer overflows with 
perfect accuracy, the allocator may enforce that tags for adjacent 
chunks are never equal.

With MTE, the heap memory is tagged inside malloc() and 
free(), and the tag checking is performed by the hardware. It 
means that recompilation will not be required for detecting 
heap-related bugs. MTE can also identify stack-use-after-return 
and buffer overflows on the stack or in global variables, but it 
will require recompilation with extra compiler options. 

Comparison with AddressSanitizer
AddressSanitizer is a widely used tool for detecting memory 
safety issues. It uses compiler instrumentation to observe all 
loads and stores. Its specialized malloc “poisons” red zones 
around heap objects to detect buffer overflows and keeps freed 
memory in quarantine to detect use-after-free. The red zones 
and the quarantine are the major causes of AddressSanitizer’s 
high memory overhead.

MTE is conceptually similar to AddressSanitizer: both detect 
bugs at runtime, both require special functionality in malloc and 
free, and both require some amount of compiler support. 

However, the use of address tags makes MTE sufficiently dif-
ferent: it does not require red zones or quarantine to detect bugs. 
This allows MTE to consume less memory. Moreover, MTE 
performs checking in hardware, thus eliminating the overhead 
of compiler instrumentation for every load and store.

Compared to AddressSanitizer, MTE brings the following 
benefits: 

◆◆ MTE checking can be turned on and off at runtime.
◆◆ CPU overhead is expected to be very small, hopefully a small 

single-digit percentage, while AddressSanitizer typically has 
2x–3x slowdown.

◆◆ MTE can find heap-related bugs without recompilation. 
◆◆ Due to the small overhead, the same binary can be used for 

 testing and for production.
◆◆ MTE’s memory overhead is 3%–5%, compared to 2x–3x for 

AddressSanitizer.
◆◆ Memory accesses that happen far from the object bounds 

or long after the object lifetime are more likely to be spotted 
by MTE than AddressSanitizer, which makes MTE a better 
exploit mitigation. 

The only downside of MTE is that it may fail to detect buffer 
overflows that happen within the 16-byte granule: 

char *array = new char [13];  // allocates one 16-byte granule

array[14] = 0;  // access within the same 16-byte granule

Various software strategies are possible to improve bug detec-
tion for such cases with additional cost or complexity. 

Uses of MTE
We envision several different usage modes for MTE.

First, MTE is going to be a much nicer version of AddressSani-
tizer for testing and fuzzing. It will find more bugs at a fraction 
of the cost. In many cases it will allow testing using the same 
binary as shipped to production. 

Second, MTE could be used as a mechanism for testing in pro-
duction (e.g., crowdsourced bug detection), always-on or enabled 
randomly. For client software, such as web browsers, it means 
that when a bug happens on a user device it will be detected, and, 
with user consent, an actionable bug report will be sent to the 
vendor. For server-side software it means that even the rarest 
bugs will be detected immediately once they get triggered.

Finally, MTE can be seen as a strong security mitigation. It 
is true that it prevents exploitation with less than 100% prob-
ability, but the probability is still very high, and the first failed 
exploitation attempt will warn the user and the software vendor. 
We believe that memory tagging will detect the most common 
classes of memory safety bugs in the wild, helping vendors 
identify and fix them and discouraging malicious actors from 
exploiting them.

Other clever ways to use MTE will likely be discovered. MTE 
may allow building debuggers with infinite hardware watch-
points, efficient race detectors, or faster garbage collectors. 

Figure 2: Heap-use-after-free is detected by MTE because the pointer’s 
address tag 0xD does not match the memory tag 0x4.



www.usenix.org  S U M M ER 20 19  VO L .  4 4 ,  N O.  2 15

SECURITY
ARM Memory Tagging Extension and How It Improves C/C++ Memory Safety

HWASAN
The full potential of memory tagging will only be available with 
future hardware, several years from now. But you can reap some of 
the benefits now, like significantly reduced memory consumption, 
by using a software implementation of memory tagging: HWASAN 
(hardware-assisted AddressSanitizer) [7]. HWASAN is similar in 
spirit to AddressSanitizer, but its smaller memory footprint makes 
it a better choice on memory-restricted devices, such as mobile 
phones. Today, the tool only supports 64-bit ARM CPUs, since it 
requires the top-byte-ignore feature and a small modification in 
the kernel to allow passing tagged addresses to system calls. 

Compatibility
MTE and HWASAN offer a high level of compatibility with exist-
ing code bases. We build the Android platform and the Chromium 
browser with HWASAN with few source code changes. 

However, we have observed several cases of incompatibility.  
In one such case, pointers to a particular type had application-
specific metadata stored in the top 16 address bits. In another 
case, a pointer was cast to double and then back, losing the 
lower address bits. In one more case, the code computed dif-
ference between the addresses of local variables from different 
stack frames as a way to measure recursion depth. All these 
cases were easy to fix. 

Related Work
With this article I hope to increase the awareness of the concept 
of memory tagging, as well as ARM’s fantastic Memory Tagging 
Extension, so that other CPU vendors adopt it sooner rather than 
later. Unlike most other existing hardware security extensions, 
ARM MTE directly addresses the memory safety bugs, that is, 
the root cause of many vulnerabilities, not just how attackers 
happen to exploit their consequences today. Beyond its effective-
ness as a mitigation, MTE also serves as an effective bug detec-
tion tool that can be deployed in the wild. But even MTE is not a 
panacea for all classes of memory safety bugs.

Intra-Object-Buffer-Overflow
There are other classes of C/C++ bugs waiting to be dealt with. 
One such bug class is called intra-object-buffer-overflow.

struct S {

  int array[5];

  int another_field;

};

int GetInt(int *p, size_t idx) {

  return p[idx];

}

int Foo(S *s) {

  return GetInt(s->array, 5);

}

Here, by accessing an array out of bounds we end up reading 
another field in the same struct. In this case, AddressSanitizer, 
HWASAN, or MTE will not find the bug because the access 
happens within the same heap- (or stack-) allocated object. The 
Undefined Behavior Sanitizer (UBSan) can detect some simper 
cases, but not the more complex ones like this one because the 
function GetInt() that accesses the memory has lost the static 
bound information available in Foo(). There were multiple 
attempts to solve this problem (including at least one hardware 
extension, Intel MPX), but none were practical enough to be 
widely used. 

A potential solution would combine dynamic bounds  checking, 
static analysis (proving that either the code is correct or that 
dynamic checks are effective), and the banning of certain language 
constructs (like passing sub-objects without their bound infor-
mation to unknown functions). For modern C++ code, perhaps 
the best solution is to replace arrays inside structs or classes 
with std::array and rely on the runtime for bounds checking. 

Type-Confusion
Another bug class not directly addressed by MTE is 
type-confusion.

struct Image {

  int pixels[100];

};

struct Secret {

  int sensitive_data[200];

};

Secret *secret = new Secret; 

...

DrawOnScreen((Image*) secret);

This code performs a cast between incompatible types; the 
following memory accesses in DrawOnScreen() will mistak-
enly access sensitive data without violating object bounds or 
lifetimes. 

A potential solution is to use a stricter subset of C++ that dis-
allows some invalid casts statically (via compile-time errors) 
and some other invalid casts dynamically (using a mechanism 
such as implemented in LLVM CFI). 

Uninitialized Memory 
A side effect of MTE is that whenever a memory allocation is 
tagged, it can also be initialized at no extra cost. The new ARM 
instructions can store memory tags and initialize the memory 
itself at the same time. Therefore, enabling MTE for an applica-
tion’s heap and stack will mitigate most vulnerabilities from 
another class, uses of uninitialized memory.



16   S U M M ER 20 19  VO L .  4 4 ,  N O.  2  www.usenix.org

SECURITY
ARM Memory Tagging Extension and How It Improves C/C++ Memory Safety

However, we do not have to wait for MTE to eradicate this class 
of bugs. For example, Clang/LLVM 9.0 will have an option [8] to 
automatically initialize all stack variables. 

Safer Languages 
No discussion of memory safety in C and C++ can ignore the 
existence of “safe languages.” Java, Go, Swift, and Rust, among 
others, are indeed much safer, and in many cases they are a bet-
ter choice for developing new software.

But none of them are really safe. Go and Swift have data races, 
Java’s huge runtime is itself written in C++, and only Rust 
comes close to being safe, at a cost of a (subjectively) steeper 
learning curve. 

All of these languages, of course, have the “unsafe” escape hatch. 
Whenever the unsafe section is used, it turns the language into 
C, but just slightly worse, because fewer tools, practices, and 
habits are available for that language to avoid memory safety 
bugs. Here, again, Rust is probably the best with its support for 
AddressSanitizer and fuzzing. MTE will be useful for Rust and 
any other memory-safe language with “unsafe” code. 

Besides, the billions of lines of C and C++ code are not going 
away any time soon. 

GWP-ASan
GWP-ASan [9] is another bug detection tool that finds heap-
use-after-free and heap-buffer-overflows. It relies on protected 
guard pages, the old trick used in the Electric Fence Malloc 
and similar tools. But there is a twist: guarded allocations are 

sampled. This means that the overhead, and the bug detection 
probability, can be scaled to be arbitrarily small. The small prob-
ability of bug detection can be improved by deploying the tool at 
large scale in production. We are beginning to detect bugs this 
way in the Google Chrome browser and other software. 

GWP-ASan is not a replacement for AddressSanitizer or 
HWASAN since it handles a smaller subset of bugs and has very 
low detection probability, but it finds bugs that evade testing and 
only manifest in production. In the most performance-critical 
applications, where even 1% overhead is prohibitively expensive, 
we will be able to use MTE to implement sampled bug detection 
similar to GWP-ASan, but with a much lower cost and hence 
higher sampling and detection rate.

Conclusion
Once available in hardware, the ARM Memory Tagging Exten-
sion will reduce C and C++ memory unsafety from disastrous 
to tolerable. Hopefully, other hardware vendors will implement 
their variants of memory tagging. Before that happens, don’t 
forget to test your software with all available testing tools (e.g., 
AddressSanitizer or HWASAN) and fuzzers (e.g., libFuzzer), 
and harden your binaries in production.

Acknowledgments
I want to thank my colleagues Vlad Tsyrklevich, Dmitry Vyukov, 
Alexander Potapenko, and Evgeniy Stepanov for helping me 
prepare this article. 

References
[1] K. Serebryany, “Hardware Memory Tagging to Make C/
C++ Memory Safe(r),” iSecCon’18: https://github.com/google 
/sanitizers/blob/master/hwaddress-sanitizer/MTE-iSecCon 
-2018.pdf.

[2] M. Miller, “Trends, Challenges, and Strategic Shifts in the 
Software Vulnerability Mitigation Landscape,” BlueHat 2019: 
https://www.youtube.com/watch?v=PjbGojjnBZQ.

[3] K. Serebryany, D. Bruening, A. Potapenko, D. Vyukov, 
“AddressSanitizer: A Fast Address Sanity Checker,” 2012 
 USENIX Advanced Technical Conference (USENIX ATC ’12): 
https://www.usenix.org/system/files/conference/atc12/atc12 
-final39.pdf.

[4] K. Serebryany, “OSS-Fuzz—Google’s Continuous Fuzzing 
Service for Open Source Software,” 26th USENIX Security 
Symposium (USENIX Security ’17): https://www.usenix.org 
/conference/usenixsecurity17/technical-sessions/presentation 
/serebryany.

[5] K. Serebryany, E. Stepanov, A. Shlyapnikov, V. Tsyrklevich, 
D. Vyukov, “Memory Tagging and How It Improves C/C++ 
Memory Safety”: https://arxiv.org/pdf/1802.09517.pdf.

[6] Arm A-Profile Architecture Developments 2018: Armv8.5-
A: https://community.arm.com/processors/b/blog/posts/arm 
-a-profile-architecture-2018-developments-armv85a.

[7] HWASAN documentation: https://clang.llvm.org/docs/Har
dwareAssistedAddressSanitizerDesign.html.

[8] J. F. Bastien, “Automatic Variable Initialization”: https:// 
reviews.llvm.org/D54604.

[9] GWP-ASan for Chromium documentation: https://chromium 
.googlesource.com/chromium/src/+/lkgr/docs/gwp_asan.md.

https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/MTE-iSecCon-2018.pdf
https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/MTE-iSecCon-2018.pdf
https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/MTE-iSecCon-2018.pdf
https://www.youtube.com/watch?v=PjbGojjnBZQ
https://www.usenix.org/system/files/conference/atc12/atc12-final39.pdf
https://www.usenix.org/system/files/conference/atc12/atc12-final39.pdf
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/serebryany
https://arxiv.org/pdf/1802.09517.pdf
https://community.arm.com/processors/b/blog/posts/arm-a-profile-architecture-2018-developments-armv85a
https://community.arm.com/processors/b/blog/posts/arm-a-profile-architecture-2018-developments-armv85a
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html
https://reviews.llvm.org/D54604
https://reviews.llvm.org/D54604
https://chromium.googlesource.com/chromium/src/+/lkgr/docs/gwp_asan.md
https://chromium.googlesource.com/chromium/src/+/lkgr/docs/gwp_asan.md


www.usenix.org  S U M M ER 20 19  VO L .  4 4 ,  N O.  2 17

SECURITY

Interview with Mark Loveless
R I K  F A R R O W

I first met Mark Loveless online, which is appropriate. We were both part 
of a discussion group of journalists and hackers, although I didn’t fit 
neatly into either group. Over time, I learned some things about Mark, 

mainly that he was best known for Novell Netware security tricks and hacks. 

We had met in person a couple of times in the past, but then I learned that Mark was speak-
ing at Enigma 2019 [1], and we planned to get together a couple of times for dinner. I learned a 
lot more about Mark, some of which we can reveal here.

Rik Farrow: Do some people still call you by your hacker name?

Mark Loveless: Most people who have gray hair call me Simple Nomad.

RF: When you started your career, were you interested in security?

ML: When I started, the security elements of it were more of a hobby. I liked those elements 
of it, but I never in a million years expected that’s where I’d end up. I kinda fell into it. 

My dad brought home an Apple II, because he was a big computer nerd who worked on main-
frames, and that’s where I started. First cassette tapes, then floppy disks after a while. My 
dad had formed a warez group with his friends at work. They would buy some software, and 
my job was to crack the copy protection.

RF: You were a teenager?

ML: Yeah. This was the last of the ’70s to the early ’80s, and I got really good at it. You could 
call up these companies and get developers on the phone. I talked to both “Steves” at Apple, 
but I was more excited when I called the Infocom people who did the game Zork. They were, 
to me, rock stars. I even talked to Bill Gates once, after I had gone back and forth with their 
support. Gates said, “You’re an idiot, why are you doing it that way?” 

RF: LOL!

ML: “I’m a kid, I don’t know anything,” I said. It’s not like they were teaching us anything. In 
college, I got mainframe assembly and used punch cards. That’s where I grew up. I got better 
at it over time.

RF: Where did you start working?

ML: American Airlines, a job at the help desk. I didn’t have the on-paper experience for any-
thing else. I had dropped out of college to be a famous rock star and needed something that 
would pay the bills. So I just went through the whole technological upheaval. My first experi-
ence from the Novell Netware was there.

I worked on the Sabre software, used by travel agencies for reservations, and what that 
included was a Novell server and some nodes. A lot of the nodes were diskless and booted off 
the network. There was a gateway machine, with a floppy drive, so it could talk over X.25. 

Mark Loveless—aka Simple 
Nomad—is a security 
researcher, hacker, and 
explorer. He has worked in 
startups, large corporations, 

hardware and software vendors, and even 
a government think tank. He has spoken at 
numerous security and hacker conferences 
worldwide on security and privacy topics, 
including Black Hat, DEFCON, ShmooCon, 
RSA, AusCERT, among others. He has been 
quoted in television, online, and print media 
outlets as a security expert, including CNN, 
Washington Post, New York Times, and many 
others. He also knows They are out to get him. 
ml@markloveless.net

Rik is the editor of ;login:.  
rik@usenix.org



18   S U M M ER 20 19  VO L .  4 4 ,  N O.  2  www.usenix.org

SECURITY
Interview with Mark Loveless

My dad got a modem, and he had an X.25 account. So not long 
after that, I could use his account. I slowly began to know about 
how all of Sabre was working. I moved from Oklahoma to Texas 
because I got a job consulting, working with travel agencies. And 
that’s where this all really took off. I got a lot of exposure to a lot 
of technology at that point.

I soon moved over to the railroad, Burlington Northern at that 
time, which later merged with Santa Fe Railroad.

RF: What a lot of people probably don’t know is that railroad 
right-of-ways is where a lot of our communication infrastructure 
is buried.

ML: Right. This goes back to Civil War times. Wherever they are 
putting in rail, railroads are putting in telegraph lines. If some-
one else wants to put up telegraph lines that cross their right-of-
way, the railroad can say that you have to hook up to our stuff if 
you want to cross the train tracks. As a result, the railroad got 
very smart: we’ll just run extra cable along all our tracks, and 
they would lease this cable to communications companies. At 
one point, Sprint would advertise their pin drop network, that 
was so quiet: 50% of that ran on Burlington Northern networks. 
Next, people moved to fiber.

Even though “railroad” seems archaic, you picture coal-fired 
locomotives…the railroads have a lot of infrastructure. They had 
the largest IBM mainframe outside of the US government.

RF: You were working with Novell at AA?

ML: Yes, but it was also big time at the railroad. I had been on 
BBS and hacking forums, and it seemed that everyone was 
specialized. I noticed there wasn’t much on Novell Netware, and 
I decided to focus there. I had access to some huge servers and 
huge installations, and there were test systems I could play with 
too. 

RF: That’s great.

ML: You could do really fun stuff. That was my introduction to 
running UNIX I had legitimate access to. 

RF: This is in the ’90s?

ML: Yes. The railroad had 35,000 employees plus union workers 
and no security department. It was me and my boss who became 
the security department.

RF: Many companies don’t want security, as they prefer to “keep 
things simple.”

ML: The weirdest thing we ever ran into was a department’s 
mainframe program where the passwords were just four char-
acters and we wanted to increase the length to eight characters. 
They came back and said, “We have union workers, we know 

what their typing rate is, and they are doing data entry. We don’t 
want to waste keystrokes. We also have your help desk statistics, 
and we know how long it takes to do a password reset. Based 
upon what we think the number of password resets will be, 
moving to an eight character password will double the help desk 
workload.” They had also calculated the amount of time it would 
take to type in the extra four keys based on the average of their 
users’ typing ability.

We ended up doing a compromise. “How about six characters and 
we’ll buy your department Post-It notes for a year?”

RF: LOL!

ML: Done! We had to spend part of our budget on Post-It notes 
for inter-office bribery. We printed up Post-It notes with the 
number of the help desk and “Do not write your password on 
this” printed on them.

That’s what security was like back then. Portions of upper 
management would wonder, why do you even need passwords? 
Everyone knows our rates as we are required to publish them 
because of the DOT.

RF: So they weren’t worried about someone coming in and 
changing all their rates?

ML: Exactly! But obviously, the thing that really cemented the 
security department in the company was when we had a virus 
outbreak and it affected hundreds of computers. We manned 
a hotline and came up with a battle plan. We would have a war 
room, we would fix this. We gained a lot of street cred, so to 
speak, from that. 

I was still doing research on the side, the Novell Netware Hack-
FAQ, and all that stuff. NMRC.org is still technically up and 
running. 

And I was finding security bugs in software we were evaluating 
and using internally at the railroad. I reported a bug to a division 
of Bindview Corporation.

RF: What was Bindview?

ML: Bindview wrote management software computer systems. 
They also had an Internet security scanner, and I found some-
thing in there. So I wrote them that I was going to disclose the 
weakness. They patched the bug, and they ended up offering me 
a job. 

I was thrilled because the railroad was going to have me work 
12-hour shifts because of Y2K. By then the security department 
had grown, so it would me and one other person working round-
the-clock, 12-hour shifts, for two weeks straight. Of course, 
nothing happened, but I left at the beginning of December. 



www.usenix.org  S U M M ER 20 19  VO L .  4 4 ,  N O.  2 19

SECURITY
Interview with Mark Loveless

At that point, I had been Simple Nomad on the Internet. The 
railroad was familiar with that Simple Nomad guy, and they 
could care less. They said just keep it separate, because I was 
helping secure their systems. I didn’t report anything I knew 
about that would endanger the railroad. Or I would make certain 
that things were patched before I’d go public with it. They were 
very cool about it.

RF: Could you talk about responsible disclosure? You worked a 
lot with Novell.

ML: Novell had a reputation with hackers. Back in the day, they 
did this thing with a couple of Russian hackers who reported 
bugs. Novell hired the hackers, had them sign nondisclosure 
agreements, then fired them. The NDA were lifetime NDAs, 
which meant that Novell didn’t have to patch what the hack-
ers had found. They weren’t US citizens, so what the Russians 
did instead was to pass the information to me, because I had a 
website. 

So I was very wary about contacting Novell. And I was keeping 
my identities separate. 

One time I contacted Novell by email, telling them that I’ve got 
this flaw, and I wanted to talk with them on the telephone about 
it. They say okay and gave me an 800 number. Being the paranoid 
hacker type, I knew that even though I could suppress the ANI, 
the automatic numeric identifier, what is now called caller-ID, 
in local exchanges or normal long distance, they could get the 
calling number because the receiving end of the 800 number 
was paying the bill. I decided that I was not calling on that 800 
number. 

Novell was using a PBX system, called Meridian Mail, and I had 
sort of a zero-day for that system. I could dial in, go through a 
sequence of numbers and steps, and I would get a dial tone, so I 
could dial out. I would use a computer to handle the sequence, 
and then I could call long distance for free from that PBX. I used 
that trick with Novell. I called up the PBX, dropped out to a dial 
tone, looked up the number of the security person using the 
Meridian Mail system, then called him up. I asked him for the 
extension for the conference call, and to him it appeared I was 
calling from an internal number. “Where are you?” he asked, and 
I answered, “I’m in Texas.” I got the number for the conference 
call.

I was paranoid that Novell was going to do something. 

RF: Because of what Novell had done to the Russian hackers, this 
seems likely.

ML: I reacted to that. Sometimes Novell employees wouldn’t leak 
bugs but would say “Look at this.” 

RF: They would point you in the right direction.

ML: Correct. I had problems with other companies too. Micro-
soft at the time was weird about stuff when you reported it to 
them. I tried reporting something to ISS, who had a security 
scanner, and they got really weird about it. We just backed away 
from that. We were doing this on the side as a hobby, and they 
wanted us to present our disclosure policy signed with our PGP 
key. And that just seemed too weird.

RF: You worked for MITRE, the defense contractor that pub-
lishes the CVEs for bugs. What was that like?

ML: Weird. I did work on standards like CVE and CWE mainly, 
and dabbled in a few other standards. But a lot of what I did also 
involved working for the security department responsible for 
answering to attacks against MITRE’s systems. That group only 
dealt with APT attacks, and that was some eye-opening stuff. I 
can’t go into much detail, but I can expand on some general con-
cepts. Most of them were Chinese APT groups; we would refer to 
them as campaigns. We tracked dozens and dozens of indi-
vidual little things from phishing email subject lines, various IP 
addresses, recipient lists, compilers used to compile backdoors, 
and on and on, and patterns emerged. We actually didn’t really 
care who was attacking us per se; we mainly wanted to know if 
we’d seen them before so we could anticipate their next move. 

Granted, there were all kinds of clues that most of the attacks 
were Chinese sponsored, but I had tons of friends in the security 
community saying, “APT is made up, people can fake their IP 
address, it’s not the Chinese, and APT isn’t real.” I’d have to bite 
my tongue since most of the proof that it was, for example, Chi-
nese sponsored was from classified briefs and whatnot. I mean I 
had a security clearance.

I think the one I hated the most was the argument that these 
attackers didn’t live up to the “A” part of APT. They weren’t 
“advanced.” I’d hear from friends that “they don’t use zero-day all 
the time, so they aren’t advanced. I’d be using wicked cool zero-
day.” Oh no, you would not. My background was in hacking—I 
was breaking into systems in my youth—and you never wasted a 
zero-day on a target unless you really wanted in there and all of 
the low-level stuff didn’t work. It was like these people who were 
“playing offense” by doing penetration testing really thought 
they were actually hacking. 

Hackers, and these APT actors as well, did not have Statements 
of Work to not attack production systems or to limit themselves 
to a two-week engagement. No, hackers and APT actors would 
cheat, commit felonies, take months and months to get in, hit 
production systems, lie, intimidate, steal, whatever. When you 
reverse engineered an APT backdoor and found your internal 
DNS servers’ IP addresses hard-coded into the exe, you knew 
you were dealing with someone advanced. They’d been in before, 
they knew your internal network layout, and so what if they 



20   S U M M ER 20 19  VO L .  4 4 ,  N O.  2  www.usenix.org

SECURITY
Interview with Mark Loveless

In essence we were doing a form of marketing. The Marketing 
Department loved us; well, we were probably an ass pain to work 
with, but once we got to know each other we had a blast. I loved 
working there, the product was cool, and if you were at a confer-
ence wearing a Duo shirt people would run up and tell you they 
loved you and would want selfies with you.

Originally the plan was to IPO, and they even were hiring C-lev-
els with that in mind, but then the Cisco offer came in and that 
ended that. Many of us were heartbroken, since Cisco is a huge 
corporation with a radically old-style corporate infrastructure. 
Sexy, cloud-based startup to a division of an old school corpora-
tion. Sure they were trying to go a lot more modern, hence the 
buyout, but it still hurt. By then the focus was on making Duo 
look both attractive and useful to Cisco’s bottom line, so my Duo 
job rapidly went away. I had the opportunity to work in one of 
several Cisco departments, but instead I left. I wanted to work 
some place cool like Duo used to be.

I did the “funemployment” thing after Cisco and started blog-
ging and whatnot. I probably could have done that for a year or 
so since I had my buyout money. Not a lot of money but “forget 
working for a while” money. Then I got a call from Kathy Wang, 
whom I’ve known from the hacker and security conference 
scene for nearly two decades, and she told me about GitLab, and 
it sounded too good to pass up. Plus the employee base is 100% 
remote, all cloud-based corporate infrastructure, so it has a 
modern and forward-thinking unicorn startup vibe and every-
one is pretty damn awesome. I had to go for it.

I just started there, and I’ll be working on research in areas 
where my skills are, and doing other stuff like conferences, blog-
ging, and whatever. It’s nice to work at a place that is extremely 
open and really heading in a good direction. I am still going to 
blog and speak at conferences, and life should be a lot of fun.

didn’t use a zero-day to get in. Advanced meant they played seri-
ous and played to win at any cost. At times I wanted to punch 
some of my friends in the mouth. “Not advanced” my ass. Now of 
course it is all out in public, and everyone accepts APT as real.

I remember my first classified meeting and how disappointed I 
was. I mean everything said in that meeting I’d already known 
well before working there. I think the only thing I didn’t know 
was the fancy names of everything. Goofy code names. I was like 
shit, so no reverse engineering UFOs or something?

Speaking of which, I had no idea how I got a security clear-
ance. I’d been under investigation by more than one government 
agency for hacking, and they still approved my DOD-sponsored 
security clearance. I know this in part because a few years 
earlier the NSA tried to recruit me, and I stated, “I can’t work 
for you, I have a file, I’ve been investigated,” and they were 
like, “Well sure, we’ve read it, and yes, you’ll never work for law 
enforcement, but you can work for us, we’re the good guys, we’re 
the NSA.” They actually said that, “We’re the good guys.” What-
ever, I turned them down.

Truthfully, the most interesting work I did at MITRE was all 
classified, and I can’t talk about it, but it was some really cool 
stuff. However, it was nothing to do with UFOs unfortunately.

RF: Also, you worked for Duo Security. What did you do for them?

ML: Yeah. After MITRE I went to Duo Security. The idea was 
Dug’s (Dug Song, the CEO) that we form a Duo research group 
and do security research like the old days—make it fun and 
entertaining. Get content out and speak at conferences, do press 
interviews, all that. We’d be smart security people doing cool 
stuff who happened to work at Duo Security. 

Reference
[1] Physical OPSEC as a Metaphor for Infosec, Enigma 2019: 
https://www.usenix.org/conference/enigma2019/presentation 
/loveless.

https://www.usenix.org/conference/enigma2019/presentation/loveless
https://www.usenix.org/conference/enigma2019/presentation/loveless


Submit Your Work!

FAST brings together storage-system researchers and practitioners to explore new directions in the 
 design, implementation, evaluation, and deployment of storage systems. Interested in participating? 
 Paper and tutorial submissions are due Thursday, September 26, 2019.

18th USENIX Conference on File and 
Storage Technologies
Sponsored by USENIX in cooperation with ACM SIGOPS
Co-located with NSDI ’20
February 24–27, 2020 | Santa Clara, CA, USA
www.usenix.org/fast20/cfp

NSDI will focus on the design principles, implementation, and practical evaluation of networked 
and distributed systems. Our goal is to bring together researchers from across the networking and 
 systems community to foster a broad approach to  addressing overlapping research challenges. The 
Fall deadline to submit paper titles and abstracts is Thursday, September 12, 2019.

17th USENIX Symposium on Networked
Systems Design and Implementation
Sponsored by USENIX in cooperation with ACM SIGCOMM 
and ACM SIGOPS
Co-located with FAST ’20
February 25–27, 2020 | Santa Clara, CA, USA
www.usenix.org/nsdi20



22   S U M M ER 20 19  VO L .  4 4 ,  N O.  2  www.usenix.org

PROGRAMMINGDatacenter RPCs Can Be General and Fast
A N U J  K A L I A ,  M I C H A E L  K A M I N S K Y ,  A N D  D A V I D  G .  A N D E R S E N

Anuj Kalia is a PhD student 
in the Computer Science 
Department at Carnegie 
Mellon University, advised 
by David Andersen and 

Michael Kaminsky. He is interested in high-
performance computer systems and networks. 
akalia@cs.cmu.edu

David G. Andersen is 
an Associate Professor 
of Computer Science at 
Carnegie Mellon University. 
He completed his MS and 

PhD degrees at MIT, and holds BS degrees 
in biology and computer science from the 
University of Utah. In 1995, he co-founded 
an Internet service provider in Salt Lake City, 
Utah. dga@cs.cmu.edu

Michael Kaminsky is a Senior 
Research Scientist at Intel Labs 
and an adjunct faculty member 
of the Computer Science 
Department at Carnegie Mellon 

University. He is part of the Intel Science 
and Technology Center for Visual Cloud 
Systems (ISTC-VCS), based in Pittsburgh, 
PA. His research interests include distributed 
systems, operating systems, and networking. 
michael.e.kaminsky@intel.com

“Using performance to justify placing functions in a low-level subsystem must 
be done carefully. Sometimes, by examining the problem thoroughly, the same or 
better performance can be achieved at the high level.”

—“End-to-End Arguments in System Design,” J. H. Saltzer, D. P. Reed,  
 and D. D. Clark, 1984

It is commonly believed that datacenter networking software must sacri-
fice generality to attain high performance. The popularity of specialized 
distributed systems designed specifically for niche technologies such 

as RDMA, lossless networks, FPGAs, and programmable switches testifies 
to this belief. In this article, we show that such specialization is not neces-
sary. eRPC is a new general-purpose remote procedure call (RPC) library 
that offers performance comparable to specialized systems while running 
on commodity CPUs in traditional datacenter networks based on either lossy 
Ethernet or lossless fabrics.

eRPC performs well in three key metrics: message rate for small messages; bandwidth for 
large messages; and scalability to a large number of nodes and CPU cores. It handles packet 
loss, congestion, and background request execution. In microbenchmarks, one CPU core can 
handle up to 10 million small RPCs per second or send large messages at 75 Gbps. We port a 
production-grade implementation of Raft state machine replication to eRPC without modi-
fying the core Raft source code. We achieve 5.5 µs of replication latency on lossy Ethernet, 
which is faster than or comparable to specialized replication systems that use programmable 
switches, FPGAs, or RDMA. 

Squeezing the best performance out of modern, high-speed datacenter networks has meant 
painstaking specialization that breaks down the abstraction barriers between software 
and hardware layers. The result has been an explosion of co-designed distributed systems 
that depend on niche network technologies, including RDMA, FPGAs, and programmable 
switches. Add to that new distributed protocols with incomplete specifications, the inabil-
ity to reuse existing software, hacks to enable consistent views of remote memory—and the 
 typical developer is likely to give up and just use kernel-based TCP.

These specialized technologies were deployed with the belief that placing their functionality 
in the network would yield a large performance gain. Our work shows that a general-purpose 
RPC library called eRPC can provide state-of-the-art performance on commodity Ethernet 
datacenter networks without additional network support. This helps inform the debate about 
the utility of additional in-network functionality versus purely end-to-end solutions for 
datacenter applications.

The goal of our work is to answer the question: can a general-purpose RPC library provide 
performance comparable to specialized systems? Our solution is based on two key insights. 
First, we optimize for the common case, i.e., when messages are small, the network is 
congestion-free, and RPC handlers are short. Handling large messages, congestion, and long-
running RPC handlers requires expensive code paths, which eRPC avoids whenever possible. 



www.usenix.org  S U M M ER 20 19  VO L .  4 4 ,  N O.  2 23

PROGRAMMIING
Datacenter RPCs Can Be General and Fast

Several eRPC components, including its API, message format, 
and wire protocol, are optimized for the common case. Second, 
restricting each flow to at most one bandwidth-delay  product 
(BDP) of outstanding data effectively prevents packet loss 
caused by switch buffer overflow for common traffic patterns. 
This is because datacenter switch buffers are much larger than 
the network’s BDP. For example, in our two-layer testbed that 
resembles real deployments, each switch has 12 MB of dynamic 
buffer, while the BDP is only 19 kB.

eRPC (efficient RPC) is available at https://erpc.io.

Background and Motivation
We first discuss aspects of modern datacenter networks relevant 
to eRPC and the limitations of existing networking options that 
underlie the need for eRPC.

High-Speed Datacenter Networking
Modern datacenter networks provide tens of Gbps per-port 
bandwidth and a few microseconds of round-trip latency. They 
support polling-based network I/O from userspace, eliminating 
interrupts and system call overhead from the datapath. eRPC 
uses userspace networking with polling, as in most prior high-
performance networked systems.

Lossless fabrics. Lossless packet delivery is a link-level feature 
that prevents congestion-based packet drops. For example, 
priority-based flow control (PFC) for Ethernet prevents a link’s 
sender from overflowing the receiver’s buffer by using pause 
frames. Some datacenter operators, including Microsoft, have 
deployed PFC at scale. Unfortunately, PFC comes with a host 
of problems, including head-of-line blocking, deadlocks due to 
cyclic buffer dependencies, and complex switch configuration. 
In our experience, datacenter operators are often unwilling to 
deploy PFC due to these problems.

Switch buffer >> BDP. The increase in datacenter bandwidth 
has been accompanied by a corresponding decrease in round-
trip time (RTT), resulting in a small BDP. Switch buffers have 
grown in size to the point where “shallow-buffered” switches 
that use SRAM for buffering now provide tens of megabytes of 
shared buffer. Much of this buffer is dynamic, i.e., it can be dedi-
cated to an incast’s target port, preventing packet drops from 
buffer overflow. For example, in our two-layer 25 GbE testbed 
that resembles real datacenters, the RTT between two nodes 
connected to different top-of-rack (ToR) switches is 6 µs, so the 
BDP is 19 kB. In contrast to the small BDP, the Mellanox Spec-
trum switches in our cluster have 12 MB in their dynamic buffer 
pool. Therefore, the switch can ideally tolerate a 640-way incast. 
The popular Broadcom Trident-II chip used in datacenters at 
Microsoft and Facebook has a 9 MB dynamic buffer.

In practice, we wish to support approximately 50-way incasts: 
congestion control protocols deployed in real datacenters are 
tested against comparable incast degrees. This is much smaller 
than 640, allowing substantial tolerance to technology varia-
tions, i.e., we expect the switch buffer to be large enough to 
prevent most packet drops in datacenters with different BDPs 
and switch buffer sizes.

Limitations of Existing Options
Software options. Existing datacenter networking software 
options sacrifice performance or generality, preventing unmodi-
fied applications from using the network efficiently. On the one 
hand, fully general networking stacks such as mTCP [4] allow 
legacy sockets-based applications to run unmodified. Unfortu-
nately, they leave substantial performance on the table, espe-
cially for small messages. On the other extreme, fast packet I/O 
libraries such as DPDK provide only unreliable packet delivery.

Our prior RPC design—FaSST RPCs [6]—was the precursor to 
eRPC. Like eRPC, FaSST RPCs use datagram packet I/O, but 
they assume a lossless network and lack several features such 
as multi-packet messages and congestion control. eRPC’s main 
contribution is a design that performs well in lossy networks and 
supports the aforementioned features with low overhead.

Hardware options. Numerous recent research proposals co-
design distributed systems with special network hardware tech-
nologies like RDMA, FPGAs, and programmable switches for 
fast communication. While there are advantages of  co-design, 
such specialized systems are unfortunately very difficult to 
design, implement, and deploy. Specialization breaks abstrac-
tion boundaries between components, which prevents reuse of 
components and increases software complexity. Building dis-
tributed systems requires tremendous programmer effort, and 
co-design typically mandates starting from scratch, with new 
data structures, consensus protocols, or transaction protocols. 
Co-designed systems often cannot reuse existing codebases or 
protocols, tests, formal specifications, programmer hours, and 
feature sets.

eRPC Overview
eRPC implements RPCs on top of a transport layer that provides 
basic unreliable packet I/O, such as UDP over Ethernet networks 
or InfiniBand’s Unreliable Datagram transport. A userspace NIC 
driver is required for good performance. Our primary contribu-
tion is the design and implementation of end-host mechanisms 
and a network transport (e.g., wire protocol and congestion 
control) for RPCs.

 eRPC’s requests execute at most once and are asynchronous to 
avoid stalling on network round trips; intra-thread concurrency 
is provided using an event loop. RPC servers register request 



24   S U M M ER 20 19  VO L .  4 4 ,  N O.  2  www.usenix.org

PROGRAMMIING
Datacenter RPCs Can Be General and Fast

handler functions with unique request types; clients use these 
request types when issuing RPCs, and get continuation call-
backs on RPC completion. Users store RPC messages in opaque, 
DMA-capable buffers provided by eRPC; a library that provides 
marshalling and unmarshalling can be used as a layer on top  
of eRPC. 

Each user thread that sends or receives requests creates an 
exclusive RPC endpoint. Each endpoint contains an RX and TX 
queue for packet I/O, an event loop, and several sessions. A ses-
sion is a one-to-one connection between two RPC endpoints, i.e., 
two user threads. The client endpoint of a session is used to send 
requests to the user thread at the other end. A user thread may 
participate in multiple sessions, possibly playing different roles 
(i.e., client or server) in different sessions.

User threads act as “dispatch” threads: they must periodically 
run their endpoint’s event loop to make progress. The event loop 
performs the bulk of eRPC’s work, including packet I/O, invok-
ing request handlers and continuations, congestion control, and 
management functions. To avoid blocking on a long-running 
request handler, eRPC provides a pool of background threads to 
handle request types that are annotated by the user as long- 
running, typically over a few microseconds.

Client control flow. rpc->enqueue_request() queues a request 
on a session, which is transmitted when the user runs rpc’s event 
loop. On receiving the response, the event loop copies it to the cli-
ent’s response buffer and invokes the continuation callback.

Server control flow. The event loop of the rpc that owns the 
server session invokes (or dispatches) a request handler on 
receiving a request. We allow nested RPCs, i.e., the handler need 
not enqueue a response before returning. It may issue its own 
RPCs and call enqueue_response() for the first request later 
when all dependencies complete.

eRPC design
Achieving eRPC’s performance goals requires careful design 
and implementation. We discuss three aspects of eRPC’s design 
in this section: scalability of our networking primitives, the 
 challenges involved in supporting zero-copy transfers, and 
the design of sessions. The next section discusses eRPC’s wire 
protocol and congestion control. A recurring theme in eRPC’s 
design is that we optimize for the common case, i.e., when 
request handlers run in dispatch threads, RPCs are small and 
the network is congestion-free.

Scalability considerations. We chose plain packet I/O instead 
of RDMA writes to send messages in eRPC. eRPC holds connec-
tion state in large CPU caches, which allows scaling to a large 
number of connections. In contrast, RDMA requires maintain-
ing per-connection in much smaller (∼2 MB) on-NIC caches, 
which does not scale well to large clusters. Our experiments 

show that whereas RDMA performance drops by up to 50% with 
5000 connections, eRPC’s performance remains constant with 
even 20,000 connections. In addition, eRPC uses modern NIC 
features (e.g., multi-packet receive queues) to guarantee a con-
stant NIC memory footprint per local CPU core.

Zero-copy challenges. eRPC supports zero-copy transfers 
from DMA-capable buffers provided to applications. Supporting 
zero-copy along with eRPC’s feature set required solving several 
challenges, such as reasoning about DMA buffer ownership in 
the presence of retransmissions. Since eRPC transfers packets 
directly from application-owned buffers, care must be taken 
so that buffer references are never used by eRPC after buffer 
ownership is returned to the application. The following example 
demonstrates the problem: Consider a client that falsely suspects 
packet loss and retransmits its request. The server, however, 
received the first copy of the request, and its response reaches 
the client before the retransmitted request is sent out by the 
client’s NIC. Before processing the response and invoking the 
continuation, we must ensure that there are no references to the 
request buffer in the client’s NIC DMA queue.

The conventional approach to ensure DMA completion is to 
use “signaled” packet transmission, in which the NIC writes 
completion entries to the TX completion queue.  Unfortunately, 
doing so increases NIC and PCIe resource use, so we use unsig-
naled packet transmission in eRPC. Our method of ensuring 
DMA completion with unsignaled transmission is in line with 
our design philosophy: we choose to make the common case 
(no retransmission) fast, at the expense of invoking a more- 
expensive mechanism to handle the rare cases. We flush the 
TX DMA queue after queueing a retransmitted packet, which 
blocks until all queued packets are DMA-ed. This f lush is 
moderately expensive (≈2 µs), but it is called only during rare 
retransmissions.

Sessions. Each session maintains multiple outstanding requests 
to keep the network pipe full. Concurrent requests on a  session 
can complete out-of-order with respect to each other. This 
avoids blocking dispatch-mode RPCs behind a long-running 
background RPC. We support a constant number of concurrent 
requests (default = 8) per session; additional requests are trans-
parently queued by eRPC.

eRPC limits the number of unacknowledged packets on a session 
to implement end-to-end flow control, which reduces switch 
queueing. Allowing BDP/MTU unacknowledged packets per 
 session ensures that each session can achieve line rate.

Transport Layer
One of eRPC’s main contributions is the design of low-overhead 
transport layer components, including end-to-end reliability and 
congestion control, discussed next. eRPC uses a  client-driven 



www.usenix.org  S U M M ER 20 19  VO L .  4 4 ,  N O.  2 25

PROGRAMMIING
Datacenter RPCs Can Be General and Fast

protocol, meaning that each packet sent by the server is in 
response to a client packet. This shifts most transport complex-
ity to clients, freeing server CPU that is often more valuable.

End-to-end reliability. For simplicity, eRPC treats  reordered 
packets as losses by dropping them. Datacenter networks 
typically preserve intra-flow ordering even with network load 
balancing (e.g., ECMP), except during rare route churn events. 
On suspecting a lost packet, the client rolls back the request’s 
wire protocol state using a simple Go-Back-N mechanism, and 
retransmits from the updated state. The server never runs the 
request handler for a request twice, guaranteeing at-most-once 
RPC semantics.

Congestion control. Congestion control for datacenter net-
works aims to reduce switch queueing, thereby preventing 
packet drops and reducing RTT. While software-based con-
gestion control has been considered to be slow in the past, we 
show that optimizing for uncongested networks, and recent 
advances in software rate limiting allow congestion control  
with little overhead.

eRPC uses a congestion control algorithm for high-speed data-
center networks called Timely [7], although other algorithms 
may also be supported in the future. Timely uses packet RTT  
as the congestion signal, and it updates session transmission 
rates based on RTT statistics. We use a software rate limiter  
for enforcing the transmission rate suggested by Timely.

Datacenter networks are typically uncongested, so we optimize 
congestion control for uncongested networks. Recent datacenter 
studies support this claim. For example, Roy et al. [9] report that 
99% of all Facebook datacenter links are less than 10% utilized 
at one-minute timescales.

When a session is uncongested, RTTs are low and Timely’s 
computed rate for the session stays at the link’s maximum rate; 
we refer to such sessions as uncongested. If the RTT of a packet 
received on an uncongested session is smaller than Timely’s low 
threshold (∼50 µs), below which it performs additive increase, 
we do not perform a rate update. For uncongested sessions, we 
transmit packets directly instead of placing them in the rate 
limiter.

Evaluation
eRPC is implemented in 6200 SLOC of C++, excluding tests and 
benchmarks. We evaluated eRPC’s performance both in micro-
benchmarks and real applications. The numbers presented here 
were measured on an eight-node cluster with Intel Xeon servers, 
with Mellanox ConnectX-5 NICs connected to a 40 GbE switch.

Microbenchmarks
Latency. For small 32-byte RPCs, eRPC’s median latency is  
2.3 µs, which is only 300 ns more than 32-byte RDMA reads.

Bandwidth. To measure eRPC’s bandwidth for large messages, 
we use a client that sends large requests to a server thread, which 
replies with small, 32-byte responses. With 8 MB requests, eRPC 
saturates the network’s 40 Gbps with one client thread. On a 
faster 100 Gbps InfiniBand network, we measured that eRPC 
can achieve 75 Gbps in the same experiment.

In addition, our microbenchmarks showed that eRPC also 
provides:

◆◆ High scalability. On a large 100-node cluster, eRPC’s perfor-
mance scales to 20,000 connections per-node.

◆◆ Incast tolerance. eRPC’s congestion control successfully 
reduces switch queueing with up to 50-way incasts.

◆◆ Packet loss tolerance. eRPC delivers good bandwidth with a 
packet loss rate of up to 10−5.

Raft over eRPC
To evaluate whether eRPC can be used in real applications with 
unmodified existing storage software, we built a state machine rep-
lication system using an open-source implementation of Raft [8].

State machine replication (SMR) is used to build fault-tolerant 
services. An SMR service consists of a group of server nodes that 
receive commands from clients. SMR protocols ensure that each 
server executes the same sequence of commands and that the 
service remains available if servers fail. Raft is such a protocol 
that takes a leader-based approach: absent failures, the Raft 
replicas have a stable leader to which clients send commands; if 
the leader fails, the remaining Raft servers elect a new one. The 
leader appends the command to replicas’ logs, and it replies to 
the client after receiving ACKs from a majority of replicas.

SMR is difficult to design and implement correctly: the pro-
tocol must have a specification and a proof (e.g., in TLA+), and 
the implementation must adhere to the specification. We avoid 
this difficulty by using an existing implementation of Raft [1]. 
(It had no distinct name, so we term it LibRaft.) We did not write 
LibRaft ourselves; we found it on GitHub and used it as is. LibRaft 
is well tested with fuzzing over a network simulator and 150+ unit 
tests. Its only requirement is that the user provide callbacks for 
sending and handling RPCs—which we implement using eRPC. 
Porting to eRPC required no changes to LibRaft’s code.

Measurement System Median 
(µs)

99% 
(µs)

Measured at client 
NetChain 9.7 N/A

eRPC 5.5 6.3 

Measured at leader 
ZabFPGA 3.0 3.0 

eRPC 3.1 3.4

Table 1: Latency comparison for replicated PUTs



26   S U M M ER 20 19  VO L .  4 4 ,  N O.  2  www.usenix.org

PROGRAMMIING
Datacenter RPCs Can Be General and Fast

We compare against recent consistent replication systems that 
are built from scratch for two specialized hardware types. First, 
NetChain [5] implements chain replication over programmable 
switches. Second, Consensus in a Box [3] (called ZabFPGA here) 
implements ZooKeeper’s atomic broadcast protocol [2] on FPGAs.

Workloads. We mimic NetChain and ZabFPGA’s experiment 
setups for latency measurement: we implement a three-way 
replicated in-memory key-value store with 16-byte keys and 
64-byte values, and use one client to issue PUT requests. The 
replicas’ command logs and key-value store are stored in DRAM. 
We compare eRPC’s performance on CX5 against their pub-
lished numbers because we do not have the hardware to run 
NetChain or ZabFPGA. Table 1 compares the latencies of the 
three systems.

Comparison with NetChain. NetChain’s key assumption is 
that software networking adds 1–2 orders of magnitude more 
latency than switches [5]. However, our experiments show that 
eRPC adds 850 ns, which is comparable to latency added by 
 current programmable switches (∼800 ns).

Raft’s latency over eRPC is 5.5 µs, which is substantially lower 
than NetChain’s 9.7 µs. This result must be taken with a grain 
of salt: on the one hand, NetChain uses NICs that have higher 
latency than our ConnectX-5 NICs. On the other hand, it has 
numerous limitations, including key-value size and capacity 
constraints, serial chain replication whose latency increases 
 linearly with the number of replicas, absence of congestion con-
trol, and reliance on a complex and external failure detector.

Comparison with ZabFPGA. Although ZabFPGA’s SMR serv-
ers are FPGAs, the clients are commodity workstations that 
communicate with the FPGAs over slow kernel-based TCP. For 
a challenging comparison, we compare against ZabFPGA’s com-
mit latency measured at the leader, which involves only FPGAs. 
In addition, we consider its “direct connect” mode, where FPGAs 
communicate over point-to-point links (i.e., without a switch) 
via a custom protocol. Even so, eRPC’s median leader commit 
latency is only 3% worse.

Conclusion
eRPC is a fast, general-purpose RPC system that provides an 
attractive alternative to putting more functions in network 
hardware and specialized system designs that depend on these 
functions. eRPC’s speed comes from prioritizing common-case 
performance, carefully combining a wide range of old and new 
optimizations, and the observation that switch buffer capacity 
far exceeds datacenter BDP. eRPC delivers performance that 
was until now believed possible only with lossless RDMA fabrics 
or specialized network hardware, and it allows unmodified 
applications to perform close to the hardware limits.

References
[1] C Implementation of the Raft Consensus Protocol, 2019: 
https://github.com/willemt/raft.

[2] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zoo-
Keeper: Wait-Free Coordination for Internet-Scale Systems,” 
in Proceedings of the USENIX Annual Technical Conference 
(USENIX ATC ’10), June 2010: https://www.usenix.org/legacy 
/event/usenix10/tech/full_papers/Hunt.pdf.

[3] Z. István, D. Sidler, G. Alonso, and M. Vukolic, “Consensus 
in a Box: Inexpensive Coordination in Hardware,” in Proceed-
ings of the 13th USENIX Symposium on Networked Systems 
Design and Implementation (NSDI ’16), May 2016: https:// 
www.usenix.org/system/files/conference/nsdi16/nsdi16 
-paper-istvan.pdf.

[4] E. Jeong, S. Woo, M. Jamshed, H. Jeong, S. Ihm, D. Han, 
and K. Park, “mTCP: A Highly Scalable User-Level TCP Stack 
for Multicore Systems,” in Proceedings of the 11th USENIX 
Symposium on Networked Systems Design and Implementation 
(NSDI ’14), April 2014: https://www.usenix.org/system/files 
/conference/nsdi14/nsdi14-paper-jeong.pdf.

[5] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim, 
and I. Stoica, “NetChain: Scale-Free Sub-RTT Coordination,” 
in Proceedings of the 15th USENIX Symposium on Networked 
Systems Design and Implementation (NSDI ’18), April 2018: 
https://www.usenix.org/system/files/conference/nsdi18 
/nsdi18-jin.pdf.

[6] A. Kalia, M. Kaminsky, and D. G. Andersen, “FaSST: Fast, 
Scalable and Simple Distributed Transactions with Two-
Sided RDMA Datagram RPCs,” in Proceedings of the 12th 
USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI ’16), November 2016: https://www.usenix.org 
/system/files/conference/osdi16/osdi16-kalia.pdf.

[7] R. Mittal, T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. 
Ghobadi, A. Vahdat, Y. Wang, D. Wetherall, and D. Zats, 
“TIMELY: RTT-Based Congestion Control for the Datacenter,” 
in Proceedings of the ACM SIGCOMM, August 2015.

[8] D. Ongaro and J. Ousterhout, “In Search of an Understand-
able Consensus Algorithm,” in Proceedings of the USENIX 
Annual Technical Conference (USENIX ATC ’14), June 2014: 
https://www.usenix.org/system/files/conference/atc14/atc14 
-paper-ongaro.pdf.

[9] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, 
“Inside the Social Network’s (Datacenter) Network,” in 
 Proceedings of the ACM SIGCOMM, August 2015.

https://github.com/willemt/raft
https://www.usenix.org/legacy/event/usenix10/tech/full_papers/Hunt.pdf
https://www.usenix.org/legacy/event/usenix10/tech/full_papers/Hunt.pdf
https://www.usenix.org/system/files/conference/nsdi16/nsdi16-paper-istvan.pdf
https://www.usenix.org/system/files/conference/nsdi16/nsdi16-paper-istvan.pdf
https://www.usenix.org/system/files/conference/nsdi16/nsdi16-paper-istvan.pdf
https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-jeong.pdf
https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-jeong.pdf
https://www.usenix.org/system/files/conference/nsdi18/nsdi18-jin.pdf
https://www.usenix.org/system/files/conference/nsdi18/nsdi18-jin.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-kalia.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-kalia.pdf
https://www.usenix.org/system/files/conference/atc14/atc14-paper-ongaro.pdf
https://www.usenix.org/system/files/conference/atc14/atc14-paper-ongaro.pdf


www.usenix.org  S U M M ER 20 19  VO L .  4 4 ,  N O.  2 27

PROGRAMMING

The Flipside
A Bit Flip Saved Is Power and Lifetime Earned

D A N I E L  B I T T M A N ,  P E T E R  A L V A R O ,  D A R R E L L  D .  E .  L O N G ,  A N D  E T H A N  L .  M I L L E R

W e have an opportunity to rethink, from scratch, the design of our 
data structures. New byte-addressable non-volatile memory 
(BNVM) technologies promise the construction of systems 

with large persistent memories, potentially improving reliability and per-
formance. With these technologies come new characteristics that deviate 
from those of flash and spinning disk—and with new characteristics come 
new optimization goals. In particular, the read/write cost disparity and fine 
granularity of updates allows us to save power and wear by reducing the bits 
flipped during writes to memory. Targeting these optimizations by formu-
lating new data structure design and implementation strategies instead 
of relying on existing ideas will be vital for BNVM technology to reach its 
full potential. We modified a full-system simulator to count bit flips during 
program operation, opening the door for future research to design, construct, 
and evaluate data structures for these new goals.

New Optimization Targets
As byte-addressable non-volatile memories (BNVMs) become common, it is increasingly 
important that systems are optimized to leverage their strengths and avoid stressing their 
weaknesses. Historically, such optimizations have included reducing the number of writes 
performed, either by designing data structures that require fewer writes or by using hard-
ware techniques such as caching to reduce writes. While still worthwhile, write-reduction 
fails to take advantage of a key optimization made by the memory controller in those non-
volatile memories.

Some technologies, including phase-change memory (PCM), have a significant disparity 
between the cost—be it power, time, or wear—of reading a cell and writing a cell. When these 
technologies also support fine granularity updates, they can make use of a clever optimiza-
tion: checking if a cell already contains the new, target value [10] instead of blindly overwrit-
ing it. Such an optimization yields a change in perspective on what is costly when operating 
on BNVM; it is not the writes themselves so much as bits flipped during the writes. In PCM, 
for example, changing a cell consumes 15.7−22.5x more power than reading a cell [5, 6] in 
addition to causing wear-out (a significant problem for PCM as it has limited endurance).

Therefore, system designers ought to consider the effects of bit flips when building sys-
tems for BNVM, both when considering the target use-case for the hardware and picking 
an appropriate combination of BNVM and DRAM, but also when considering the design 
of the software that issues the writes in the first place. To get a sense of how write patterns 
might affect power consumption, Figure 1 shows a model of power consumption of DRAM 
and PCM under a varying number of bit flips per second. The power consumption of PCM 
depends heavily on the bit flips per second, while DRAM’s power consumption is relatively 
independent. We also see that DRAM requires a high “maintenance” power (due to the need 
to refresh), whereas PCM does not. The choice to use a particular technology could depend, 

Daniel Bittman is a PhD 
candidate at the University of 
California, Santa Cruz, studying 
under Ethan Miller, Darrell Long, 
and Peter Alvaro. His research 

interests include operating systems, non-
volatile memory, concurrency, and systems 
security. He is currently working on developing 
operating system techniques for improving 
the use of persistent memory, reducing power 
and wear for persistent memory, and studying 
non determinism in distributed systems. 
dbittman@ucsc.edu

Peter Alvaro is an Assistant 
Professor of Computer Science 
at the University of California, 
Santa Cruz, where he leads 
the Disorderly Labs research 

group (disorderlylabs.github.io). His research 
focuses on using datacentric languages and 
analysis techniques to build and reason about 
data-intensive distributed systems in order to 
make them scalable, predictable, and robust 
to the failures and nondeterminism endemic to 
large-scale distribution. Peter earned his PhD 
at the University of California, Berkeley, where 
he studied with Joseph M. Hellerstein. He is a 
recipient of the NSF CAREER Award and the 
Facebook Research Award. palvaro@ucsc.edu



28   S U M M ER 20 19  VO L .  4 4 ,  N O.  2  www.usenix.org

PROGRAMMING
The Flipside: A Bit Flip Saved Is Power and Lifetime Earned

Dr. Darrell D. E. Long is 
Distinguished Professor of 
Engineering at the University of 
California, Santa Cruz. He holds 
the Kumar Malavalli Endowed 

Chair of Storage Systems Research and is 
Director Emeritus of the Storage Systems 
Research Center. His broad research interests 
include many areas of mathematics and 
science, and in the area of computer science 
include data storage systems, operating 
systems, distributed computing, reliability and 
fault tolerance, and computer security. He is 
currently Editor-in-Chief of the Letters of the 
Computer Society, and Editor-in-Chief Emeritus 
of the ACM Transactions on Storage. 
darrell@ucsc.edu

Ethan L. Miller is a Professor of 
Computer Science in the Jack 
Baskin School of Engineering, 
where he holds the Veritas 
Presidential Chair in Storage. 

He is the Director of the NSF I/UCRC Center 
for Research in Storage Systems and the 
Director of the Storage Systems Research 
Center. He was a member of the RAID project 
at UC Berkeley, where he did his PhD on a 
decentralized parallel file system for high-end 
scientific computing. His current research 
interests include archival storage systems, file 
systems for storage-class memories, scalable 
view-based metadata management, and issues 
in reliability, scalability, and security, both for 
short-term and archival storage.  
elm@ucsc.edu

therefore, on the expected write patterns to memory, since there is a crossover point on the 
graph. This is particularly important for Internet of Things (IoT) devices, where power con-
sumption and conservation is critical.

Another significant advantage to avoiding bit flips is reducing memory cell wear-out. BNVM 
technologies typically have a maximum number of lifetime writes, and fewer writes means a 
longer lifetime. However, we can make use of hardware techniques such as row shifting [11] 
to spread out the “hot spots,” thus translating a reduction of bit flips in part of a word to an 
average reduction across the entire word.

Optimizing software for a novel optimization goal such as bit flipping requires rethinking 
some core design ideas. The need to incorporate an underlying technology’s characteristics 
into software is not new; indeed, it has been seen with block-oriented sequential access 
data structures for disk and trading writes for random reads in flash. For BNVM, research 
has focused on reducing writes while often ignoring the importance of the bits flipped by 
the writes. Prior work that looks at the bit flips directly either merely considers hardware 
solutions [4, 7, 8] or suggests that write reduction is a good analog for bit flip reduction [3]. 
While hardware techniques are certainly a more general solution to the problem, they lack 
the semantic knowledge available to software to improve bit flip reduction. Similarly, write 
reduction by itself may reduce bit flips, but we have found that this is not always the case [1, 2].

Once we accept that bit flips play a significant role in the power consumption and wear of 
BNVM technologies, we must ask the questions, what changes can we make to software to 
improve bit flip reduction, and how do we measure our work? We approached this problem 
by focusing on optimizing data structures for bit flip reduction, since data organization plays 
a large role in the writes that make it to memory. Although data writes themselves signifi-
cantly affect bit flips, these writes are often unavoidable (since the data must be written), 
while data structure writes are more easily optimized (as we see in existing BNVM data 
structure research). Furthermore, data structures often require a significant number of 
updates over time, while data is often written once (since we can reduce writes by updat-
ing pointers instead of moving data). Thus the overall proportion of bit flips caused by data 
writes may drop over time as data structures are updated.

To show that bit flips can be optimized for, and to explore several techniques we thought of 
to do so, we designed and built several data structures and evaluated them by counting their 
bit flips and writes at the memory controller, as well as measuring the performance of each. 
While our earlier work [2] focused on manual instrumentation of code to count bit flips, we 
decided to use a full-system simulator (Gem5) to count bit flips so we could take into account 
caching layers and compiler optimizations. More details for our current work, including 
more experiments, data structures, and bit flip reduction techniques, are available [1].

Figure 1: Power use of 1 GB devices as a function of flips per second [2]. DRAM’s power consumption is 
largely proportional to memory size whereas PCM’s is largely proportional to bit flip rate.



www.usenix.org  S U M M ER 20 19  VO L .  4 4 ,  N O.  2 29

PROGRAMMING
The Flipside: A Bit Flip Saved Is Power and Lifetime Earned

Pointer Distance in Data Structures
Data structures are often made up of a significant number of 
pointers. Take the doubly linked list, for instance: each node con-
tains two pointers, one forward and one back. A clever technique 
to reduce the memory footprint is to XOR the pointers together, 
storing pointer distance instead of absolute addresses. This is 
known as an XOR linked list [9]. The program can still traverse 
the list in either direction with two adjacent pointers, but the 
overhead of the node is halved. When XOR linked lists were origi-
nally proposed, there wasn’t much of an advantage to using them 
beyond a modest memory saving. However, they reduce bit flips 
by not only cutting the number of writes in half but also zeroing-
out many of the bits contained within a standard pointer value.

We can extend XOR linked lists into the domain of indexing 
structures by reapplying the pointer distance technique to 
binary search trees. Binary search trees are commonly used 
for data indexing and support range queries, and they allow 
efficient lookup and modification, as long as they are balanced. 
In a standard red-black tree (RBT), for example, a node stores a 
left child pointer, a right child pointer, and a parent pointer. We 
can instead store “xleft” and “xright” by XORing the left child 
pointer with the parent pointer and the right child pointer with 
the parent pointer, respectively. This reduces the size of the node 
from three pointers to two pointers while still allowing easy up 
and down traversal (and thus keeping the benefits of the three-
pointer approach), and saves bit flips for the same reason as the 
XOR linked list.

Tree traversal and update operations in the XOR red-black tree 
are largely the same as in a standard red-black tree implementa-
tion. However, since we are storing XORs of pointers and not the 
pointers themselves, some additional effort from the program-
mer is required to “decode” the stored values into a “true” 
address. Additionally, while traversal down the tree is straight-
forward (given a parent node pointer and a current node’s xleft 
value, we can traverse to the left child by XORing together the 
parent pointer and the xleft value), traversing up the tree is 
more difficult. Given a current node and one of its children, the 
traversal algorithm needs to know which child it is. Fortunately, 
we can make use of the node ordering of a binary search tree to 
determine which child we have, thus enabling upward traversal.

Results and Discussion
We implemented our XOR red-black tree design alongside a 
traditional red-black tree and evaluated both under a full-
system simulator—Gem5—which simulates the cache hierarchy 
and allowed us to collect bit flip numbers on unmodified code, 
thus more faithfully representing the behavior of a system. We 
found that the programmer overhead required for dealing with 
pointer distance was not high, especially when considering the 
abundance of tooling that could be used and harnessed to make 

debugging easier. The patch to Gem5 to enable bit flip count-
ing at the memory controller was similarly straightforward, but 
opens up a significant amount of evaluation and research that 
can be done to evaluate the bit flipping characteristics of exist-
ing systems and data structure design (https://gitlab.soe.ucsc 
.edu/gitlab/crss/opensource-bitflipping-fast19).

Figure 2 shows the bit flips and bytes written of xrbt (our XOR 
RBT implementation) and rbt (our standard RBT) under sequen-
tial and random inserts of one million unique items. We also 
evaluated xrbt-big, which was the same implementation as xrbt 
but with the same node size as rbt (to control for node-size in our 
results). Both xrbt and xrbt-big cut bit flips by 1.92x (nearly in 
half) in the case of sequential inserts and by 1.47x in the case of 
random inserts, a dramatic improvement for a simple implemen-
tation change. We can also compare the bytes written, noting 
that due to the cache absorbing writes, xrbt-big and rbt write 
the same number of bytes to memory in all cases, even though 
rbt writes more pointers during its operation.

Because this new optimization target adds additional over-
head, we wanted to get an idea of the performance impact of our 
changes. Figure 3 shows the latency per insert operation for all 
three variants for both sequential and random insert. Somewhat 
surprisingly (at first), the xrbt is faster than rbt! But, when look-
ing at xrbt-big, this makes some sense. There are two conflict-
ing effects in play: the performance cost of doing the extra XOR 
operations, and the performance gain from reducing the size of 
the node. The interval labeled “a” in Figure 3 is the former, while 
the interval labeled “b” is the latter. The two nearly cancel out, 
and we see a similar result for lookup latency.

These results indicate that bit flips can and should be reasoned 
about directly. Not only is it possible to do so, but the methods 
presented here are straightforward once this goal is in mind, 
and they come at little cost to performance and low program-

Figure 2: Memory characteristics of XOR red-black trees compared to 
normal red-black trees (lower is better). The XOR technique significantly 
reduces bit flips.



30   S U M M ER 20 19  VO L .  4 4 ,  N O.  2  www.usenix.org

PROGRAMMING
The Flipside: A Bit Flip Saved Is Power and Lifetime Earned

ming overhead. Furthermore, while reducing writes can reduce 
bit flips, we have confirmed that this is not always true—xrbt 
reduced writes over xrbt-big at the cost of increasing bit flips.

We can use the results of prior research reporting on power 
consumption and wear-out of PCM to estimate the effects of our 
XOR red-black tree. Since PCM power consumption is largely 
dependent on bit flip rate, we estimate that the power consump-
tion per second of rbt and xrbt running at full speed are 13mW 
and 6.6mW, respectively—a ratio of nearly two.

Lifetime is more complex, but a quick calculation taking into 
account row-shifting and the differences in bytes written by 
the two variants shows a savings of 1.83x, assuming that the 
memory controller spreads out writes in larger regions [11]. 
These savings are estimates, and we may see more savings since 
potential nonlinearity in power consumption due to heat could 
improve the power savings from bit flip reduction, and the over-
all operational power use of controllers may reduce slightly along 
with the number of writes.

Discussion and Future Research
The data structures presented here emerge from both old and 
new ideas. While not algorithmically different from existing 
implementations (both xrbt and rbt use the same, standard 
red-black tree algorithms), they present a new approach to 
implementation with optimizations for bit flipping. This has not 
been sufficiently studied before in the context of software opti-
mization; after all, there is no theoretical advance nor is there 
an overwhelming practical advantage to these data structures 
outside of the bit flip reduction, an optimization goal that is new 
with BNVM. They do little to impact performance, but perfor-
mance increases are not the direct goal of this work. Instead, these 
modest changes can gain us a significant reduction in bit flips that 
corresponds directly to power and wear reductions, a worthwhile 
effort even if the saving is small (which, in our work, it is not).

The implications are far-reaching when considering the promise 
of BNVM and the potential for disruption throughout the system 
stack. This work is merely the beginning, and we hope that there 
are future bit flip reduction techniques discovered that we have 
not considered here. By providing a framework that counts bit 
flips on data structures, we hope to open an avenue into devel-
oping more sophisticated profiling tools that help navigate the 
tradeoffs between performance, consistency, power consump-
tion, and wear-out.

Considering these results in the context of larger systems is 
important to understanding the overall effect of bit flip reduc-
tion. For example, it would be useful to compare existing 
key-value stores and observe their memory behavior. How-
ever, applying the data structures discussed here as a drop-in 
replacement for data structures in an existing system would sell 
them short. Since current systems are designed for non-BNVM 
technologies, they would fail to make basic optimizations and 
structural changes that one would expect in a BNVM-optimized 
system even without taking bit flips into consideration. A more 
effective evaluation would be to construct a BNVM-optimized 
system from scratch, taking into account write reduction, 
consistency, and bit flips, and then compare it to an existing, 
unmodified system.

There are a number of implementation details in real hardware 
that might affect bit flip optimizations. While the basic optimi-
zation of avoiding unnecessary overwrites would remain, there 
are several questions that we do not know the answers to when 
it comes to bit flip reduction on real hardware. First, what is 
the actual power cost? We will need to wait for real hardware 
to become available to test this. Second, is there a difference 
between flipping from a 0 to a 1 compared to flipping from a 1 to 
a 0? If there is, a new contract between hardware and software 
would need to contain information that ensures software can 
predict which is cheaper. Third, is there a performance differ-
ence between a write that flips few bits compared to many bits? 
This depends on hardware implementation details, but if there 
is, it might make the benefits from bit flip reduction even more 
significant.

Data structures are not the only causes of memory writes, of 
course. The obvious candidate for targeted bit flip reduction 
is the data itself, for which we could rely on existing hardware 
reduction techniques to work in tandem with software tech-
niques. Another significant source of writes is from the program 
stack, especially when considering the desire for efficient restart 
that BNVM offers. We evaluated potential backward-compatible 
ABI modifications [1], but plenty more work can be done to study 
these modifications in a real compiler or take them further.

Figure 3: Insert latency for XOR red-black trees compared to normal 
red-black trees (lower is better). The label “a” shows the cost of the XORs 
(small), while “b” shows the cost of the larger node.



www.usenix.org  S U M M ER 20 19  VO L .  4 4 ,  N O.  2 31

PROGRAMMING
The Flipside: A Bit Flip Saved Is Power and Lifetime Earned

Finally, there are many existing data organization techniques 
that can be evaluated and tweaked for bit flips. Not only data 
structures, but algorithms too can be evaluated. For example, if 
one were to sort a collection of items in BNVM, what would be 
the most efficient sorting algorithm in terms of bit flips? While 
it is likely one that minimizes the number of moves, this might 
not always be the case; we saw above that write reduction does 
not always correlate with bit flip reduction.

Conclusion
The pressures from new storage hardware trends compel us to 
explore new optimization goals as BNVM becomes more com-
mon as a persistent store; the read/write asymmetry of BNVM 
must be addressed by reducing bit flips. Reasoning about bit flips 
should be done at the application level instead of just in hard-
ware to take into account the semantic knowledge of data struc-

ture operations, and we cannot get away with simply reducing 
writes if we strive to reduce power consumption and wear. While 
hardware techniques apply more broadly, software techniques 
open the door for significant future research at a variety of levels 
of the stack. Our work translates directly to power saving and 
lifetime improvements, both important optimizations for early 
adoption of new storage trends that will have lasting impact on 
systems, applications, and hardware.

Acknowledgments
This research was supported in part by the National Science 
Foundation grant number IIP-1266400 and by the industrial 
partners of the Center for Research in Storage Systems. The 
authors additionally thank the members of the Storage Systems 
Research Center for their support and feedback.

References
[1] D. Bittman, P. Alvaro, D. D. E. Long, and E. L. Miller, “Opti-
mizing Systems for Byte-Addressable NVM by Reducing Bit 
Flipping,” in Proceedings of the 17th USENIX Conference on File 
and Storage Technologies (FAST ’19), February 2019: https:// 
www.usenix.org/system/files/fast19-bittman.pdf. 

[2] D. Bittman, M. Gray, J. Raizes, S. Mukhopadhyay, M. Bryson, 
P. Alvaro, D. D. E. Long, and E. L. Miller, “Designing Data Struc-
tures to Minimize Bit Flips on NVM,” in Proceedings of the 7th 
IEEE Non-Volatile Memory Systems and Applications Sympo-
sium (NVMSA 2018), August 2018.

[3] S. Chen, P. B. Gibbons, and S. Nath, “Rethinking Database 
Algorithms for Phase Change Memory,” in Proceedings of the 
5th Biennial Conference on Innovative Data Systems Research, 
January 2011, pp. 21–31.

[4] S. Cho and H. Lee, “Flip-N-Write: A Simple Deterministic 
Technique to Improve PRAM Write Performance, Energy and 
Endurance,” in Proceedings of the 42nd Annual IEEE/ACM 
International Symposium on Microarchitecture (MICRO), 2009, 
pp. 347–357.

[5] G. Dhiman, R. Ayoub, and T. Rosing, “PDRAM: A Hybrid 
PRAM and DRAM Main Memory System,” in Proceedings of the 
46th IEEE Design Automation Conference (DAC ’09), 2009, pp. 
664–669. 

[6] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “NVSim: A Circuit-
Level Performance, Energy, and Area Model for Emerging Non-
volatile Memory,” IEEE Transactions on Computer-Aided Design 
of Integrated Circuits and Systems, vol. 31, no. 7, July 2012.

[7] A. N. Jacobvitz, R. Calderbank, and D. J. Sorin, “Coset 
 Coding to Extend the Lifetime of Memory,” in Proceedings of 
High Performance Computer Architecture (HPCA ’13), 2013, pp. 
222–233. 

[8] S. M. Seyedzadeh, R. Maddah, D. Kline, A. K. Jones, and R. 
Melhem, “Improving Bit Flip Reduction for Biased and Random 
Data,” IEEE Transactions on Computers, vol. 65, no. 11, 2016, pp. 
3345–3356. 

[9] P. Sinha, “A Memory-Efficient Doubly Linked List,” Linux 
Journal, vol. 129, 2004: http://www.linuxjournal.com/article 
/6828.

[10] B. D. Yang, J. E. Lee, J. S. Kim, J. Cho, S. Y. Lee, and B. G. Yu, 
“A Low Power Phase-Change Random Access Memory Using a 
Data-Comparison Write Scheme,” in Proceedings of IEEE Inter-
national Symposium on Circuits and Systems, May 2007.

[11] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A Durable and 
Energy Efficient Main Memory Using Phase Change Memory 
Technology,” in Proceedings of the 36th International Sympo-
sium on Computer Architecture, 2009, pp. 14–23.

https://www.usenix.org/system/files/fast19-bittman.pdf
https://www.usenix.org/system/files/fast19-bittman.pdf
http://www.linuxjournal.com/article/6828
http://www.linuxjournal.com/article/6828


32   S U M M ER 20 19  VO L .  4 4 ,  N O.  2  www.usenix.org

SREStructured Logging
Crafting Useful Message Content 

V L A D I M I R  L E G E Z A  A N D  A N T O N  G O L U B T S O V  W I T H  B E T S Y  B E Y E R

Vladimir Legeza is a Technical 
Solutions Engineer at Google 
Cloud Japan. For the last few 
decades, he has worked for 
various companies in a variety 

of sizes and business spheres such as business 
consulting, Web portals development, online 
gaming, and TV broadcasting. Since 2010, 
Vladimir has primarily focused on large-scale, 
high-performance solutions. Before Google, 
he worked as an SRE on search services and 
platform infrastructure at Yandex and then in a 
similar position at Amazon Japan.  
lgz@google.com

Anton Golubtsov is a Software 
Development Engineer at 
Amazon Japan. Before Amazon, 
he worked at Yandex in a few 
roles: an SDE, a team leader, 

and a Technical Project Manager.  
zoomacode@zoomacode.ru

Betsy Beyer is a Technical 
Writer for Google Site Reliability 
Engineering in NYC and is 
the editor of Site Reliability 
Engineering: How Google Runs 

Production Systems and Site Reliability Workbook. 
She has previously written documentation for 
Google datacenters and hardware operations 
teams. She holds degrees from Stanford and 
Tulane. bbeyer@google.com

In the context of logging, the word “structured” typically refers to the way 
log records are represented in a machine-readable format, such as JSON 
or XML. In this article, we focus on another aspect of logging structure: 

the message content.

Computing today offers several automated ways of collecting, delivering, and processing log 
records from different types of systems. But modern technologies are not supportive if the 
information describing a specific event is insufficient or otherwise not helpful.

To approach this topic, it’s useful to understand the most common logging issues, why they 
occur and possible solutions. By discussing some representative use cases, we aim to provide 
practical insights and approaches to improving the structure of your logs. As with most 
advice, our proposed solutions are just one way of approaching a problem space—feel free to 
either apply our suggestions wholesale or pick and choose the pieces that suit your needs.

Reasons to Invest in Well-Structured Logging
Before diving into specifics: why should you invest time and effort on designing and imple-
menting a sound logging strategy?

Imagine a scenario in which you’re trying to investigate event statements to determine why 
your main service isn’t responding. Meanwhile, angry customers are reaching out to you via 
every possible communication channel, and upper management is shouting at you to resolve 
the situation quickly. Every corner of the office seems to be consumed with anxiety and 
pressure, but your only reasonable response is, “I couldn’t find any useful information in our 
logs…I’ll need to reproduce this entire event on a staging environment.” 

For many companies, every minute of downtime results in a certain amount of harm: outages 
entail both financial costs and damage to your reputation. When customers and investors 
experience a serious scare, the entire business may be at risk.

Well-structured logging can make a world of difference in the above scenario. After a few 
years in the industry, our experience has shown that investing time and effort in  improving 
the logging process is worthwhile. When a crisis occurs, the alternative is too costly and 
painful.

Anatomy of a Log Entry
Logs can be split into three broad categories:

◆◆ Operational logs: contain information about service usage, such as user requests and 
transactions.

◆◆ Telemetry logs: contain application-internal metrics, expressed in the form of log records. 

◆◆ Behavioral logs: show what is happening inside the application.

Operational and telemetry logs are typically generated from a pre-formatted template, while 
behavioral logs incorporate manually crafted components that are unique to each record. 
We’ll focus on behavioral logs, the most widely used and complex of the three, but you can 
apply the solutions we discuss to operational and telemetry logs as well.



www.usenix.org  S U M M ER 20 19  VO L .  4 4 ,  N O.  2 33

SRE
Structured Logging: Crafting Useful Message Content

Types of Records/Messages
You might implement logging for a variety of purposes, most of 
which enable effective root cause analysis (RCA):

◆◆ Tracking milestones: To show an application’s current state 
or a specified milestone. This type of information is useful in a 
couple scenarios:

◆○ When you want to understand what the application is doing 
right now—whether or not it reaches a particular milestone. 
Example milestones: Operation A is completed; starting 
operation B. No more data to process.

◆○ When you want to see a sequence of state changes in order 
to understand the application’s end-to-end behavior. 
Example implementation: The ssh binary expresses cer-
tain information into STDERR if executed with the -v flag.

◆◆ Alerting: To emit alert notifications when something goes 
amiss.

◆◆ Debugging/sampling: To capture the data samples and state-
ments with which a program is operating. These types of mes-
sages appear in the code in early development stages, when you 
simply want to see if an application is behaving as expected.

These message types map to a set of standard logging severity 
levels, as shown in Table 1.

Granular Decomposition
It’s helpful to think of all log messages as a collection of answers 
about why an issue is happening. To answer why, we also need 
more information about when an event happened, where it hap-
pened, and what exactly happened. (Of course, not every type of 
log will answer all four “W” questions.)

Regardless of the type and category, every log record consists of 
two parts: 

◆◆ Metadata: Information about the event statement

◆◆ Content: The statement itself

Metadata is generated automatically, whereas content is manu-
ally crafted. Each part answers its own set of “W” questions, as 
represented in Figure 1.

Complications
Problems with logging fall into two main buckets: inconsistency 
and missing data.

Inconsistency
Modern systems that use microservice architectures typically 
aggregate logs from multiple applications. The inconsistency 
problem arises at the edge between apps when you attempt to 
correlate events across several services. Because these problems 
largely pertain to the auto-generated portion of logs, you can 
address them systematically by establishing a set of rules about 
metadata and content.

For example, while one engineer might assign a severity level of 
INFO to a given error notification, another might classify that 
notification as an ERROR. The same uncertainty might apply 
to WARNING versus ERROR classifications, ERROR versus 
CRITICAL classifications, and so on. You can overcome this 
inconsistency problem by establishing clear guidelines around 
appropriate severity levels.

It can also be difficult to track where events occur across micro-
services, as identity elements like process and thread IDs, host, 
service, executable names, and source code pointers tend to be 
tightly coupled to specific service instances. To overcome this 
inconsistency, consider introducing global variables, such as 
a unique Request ID that’s randomly generated in a front line 
server and passed along all data paths.

Missing Data
Sometimes the content portion of a log record is missing a 
chunk of valuable information, which means the log entry is 
less meaningful or even meaningless. Overcoming this issue is 
the difference between implementing log messages and making 
sure that their recipients can read meaningful information. 

In order to craft meaningful log messages, put yourself in the 
shoes of potential readers. A log entry’s audience likely needs 
much more context about the application than the engineer who 
crafts the message. In concrete terms, consider two of the pre-
viously mentioned “W” questions: what and why (as where and 
when were automatically generated). After writing a baseline 
message, recursively iterate over each “W” question until the 
message has only one possible meaning. 

Tips and Tricks
Now that you’re familiar with the anatomy of a log entry and the 
broad categories of complications, we’ll address some of the most 
common problems with the structure of logging contents. 

Message Type Severity Level

Milestone INFO

Alert WARNING or ERROR

Data samples, additional details DEBUG

Table 1: Message types mapped to severity levels Figure 1: Anatomy of a log entry (simple)



34   S U M M ER 20 19  VO L .  4 4 ,  N O.  2  www.usenix.org

SRE
Structured Logging: Crafting Useful Message Content

Metadata Issues

Time Zone
Some timestamp formats may not include critical details, or may 
include non-essential information. For example, it’s very impor-
tant for log messages to include time zone information—particu-
larly if your organization spans or will someday span more than 
one location—whereas including the weekday is simply a waste 
of space. Daylight saving time is another hidden issue: even if you 
use a single time zone for all systems and services, this quirk can 
translate into either an empty hour of data or two independent 
sets of records captured for the same hour.

To address these issues, the timestamp identifier should always 
include the time zone. We recommend basing your time zone on 
UTC. Unlike GMT, UTC is not impacted by daylight saving time. 
You likely also need to implement a time converter to align logs 
across time zones.

Severity Level
As previously mentioned, there’s a lot of room for discordance in 
imprecise name-based severity-level definitions. Overcome this 
friction by establishing clear organization-wide guidelines. 

INFO vs. DEBUG
You can define the boundary between INFO and DEBUG 
buckets by restricting the INFO level to represent milestone 
 information. You also need to account for two known gray areas: 

◆◆ Logs that describe decisions that an application made. For 
example: 

Descale cluster ‘abc’ from 7 to 5 nodes. Reason: average node 

load < 30% for the last 10min.

Note: Here, and for most of the examples that follow, we’ve omit-
ted the metadata from log entries since this metadata takes up 
space and isn’t particularly relevant. 

◆◆ Operational logs that require an attached severity level. For 
example, if user request logs pass through the same logging 
mechanism as other entries.

You might classify both of these cases as INFO messages: while 
they’re not clear milestones, they roughly represent a logical 
point in the code, reached during execution.

If a given log record contains only statement information, but you 
also need to provide additional knowledge about that information, 
we recommend distributing the information across two log mes-
sages: the statement itself as an INFO message, and the additional 
information as a DEBUG message. This approach maintains clear 
information on every level, and the person who reads the logs can 
easily decide which level of detail they want to see. DEBUG mes-
sages are ideal for hosting information that doesn’t fit into other 
level criteria or information that may be valuable in the future.

WARNING vs. ERROR MEssAGEs

We recommend differentiating between WARNING versus 
ERROR messages according to application behavior: 

◆◆ WARNING: If the app can automatically recover from this 
state

◆◆ ERROR: If the app can’t automatically recover from this state

You can implement these classifications on a more granular 
level—e.g., on an individual thread, branch, or transaction level. 

For example, the following issue occurred in the middle of the 
request processing: 

Request “/api/v1/get?obj_id=12345678”

Attempt to retrieve from cache.

Unable to resolve “cache-farm.example.com”: Not found. Abort.

Cache miss.

Attempt to retrieve from origin.

Object obtained.

Response sent.

200 OK “/api/v1/get?obj_id=12345678”

If you’re treating signals on a thread basis, you should treat 
the highlighted alert as a WARNING because processing isn’t 
blocked. If you’re treating signals from a branch perspective, 
you should mark the alert as an ERROR because the operational 
branch that retrieves objects from the cache was aborted and 
reached its logical end. By handling alerts based upon the branch 
depth, some ERRORs don’t result as an error in the overall request 
processing. However, you can identify smaller anomalies faster. 

In the following example, which attempts to reach an unavail-
able API, a set of WARNING messages precedes the final 
ERROR message. The service attempts to connect five times 
before giving up. The overall procedure is not yet aborted during 
retries, so the first four requests are marked with WARNING 
messages; only the last attempt is stated as an ERROR. If your 
logs only accounted for ERROR messages, you’d only see the 
final message, which doesn’t tell the entire story. It’s key here 
that the ERROR message explicitly references the five previ-
ous attempts and four WARNING messages—otherwise, the 
WARNING messages may be buried among hundreds of other 
unrelated messages, and the reader might not even realize that 
there were previous attempts to connect to the API.

 ...

WARNING “Unable to connect to Awesome API. Connection timed 

out. Attempt 3/5”

WARNING “Unable to connect to Awesome API. Connection timed 

out. Attempt 4/5”

ERROR “Unable to connect to Awesome API after 5 attempts. 

Connection timed out. Exiting.”



www.usenix.org  S U M M ER 20 19  VO L .  4 4 ,  N O.  2 35

SRE
Structured Logging: Crafting Useful Message Content

ERROR vs. CRITICAL sEvERITy

While a CRITICAL severity doesn’t necessarily indicate that 
something bad happened, an ERROR severity unequivocally does. 

We’ve personally found that CRITICAL severity isn’t useful in 
most scenarios and have chosen to do away with that severity 
entirely. However, you may find useful scenarios for using the 
CRITICAL severity level. Be sure to determine a precise def-
inition of what information is deemed CRITICAL and how to 
clearly distinguish that information. 

Figure 2 consolidates a proposed schema for severity levels and 
their meanings.

Content Issues

INFO
INFO is a simple statement addressing what happened or is 
about to happen. Your aim in crafting this message should be to 
provide clarity.

Consider the following message, which, although accurate, isn’t 
sufficiently descriptive:

Server has started.

This message fails to indicate why this information is important. 
Your what questions should only have one answer. In this case, is 
there more than one server that could have started? If so, which 
server started?

The following message is a marked improvement:

HTTP API Server has started.

You can improve further upon an INFO message by asking, What 
is the most valuable information about the subject of this event? In 
this case, What is the most valuable information about the HTTP 

API server? For any network communication HTTP server, the 
answer to this question is the entry point:

API Server start listening on http://0.0.0.0:80.

This event statement is three times more useful than the 
original.

ERROR and WARNING Messages
ERROR and WARNING messages are categorized as alerts, 
which describe the difference between the expected and actual 
behavior: We expected A, but got B. To craft meaningful ERROR 
and WARNING messages, ask yourself:

◆◆ What happened?

◆◆ Why is there a difference between the expected and actual 
conditions?

In the following example, we attempted to call an HTTP API and 
received an error. We’ll iterate a couple of times on What and 
Why in order to demystify details. 

What happened?

Unsuccessful API call.

What was the reason for this call?

Unable to retrieve the data object via API.

What data object?

Unable to retrieve a file’s metadata via API.

What file?

Unable to retrieve metadata for the “abc123” file via API.

What API?

Unable to retrieve metadata for the “abc123” file from “https://

api.example.com/v1/get_meta?obj=abc123”. 

Figure 2: Anatomy of a log entry (complex)



36   S U M M ER 20 19  VO L .  4 4 ,  N O.  2  www.usenix.org

SRE
Structured Logging: Crafting Useful Message Content

Why?

Unable to retrieve metadata for the “abc123” file from “https://

api.example.com/v1/get_meta?obj=abc123”: Failed to parse 

server response.

What further information do we know about the server 
response?

Unable to retrieve metadata for the “abc123” file from “https://

api.example.com/v1/get_meta?obj=abc123”: Failed to parse JSON 

response.

Why?

Unable to retrieve metadata for the “abc123” file from “https://

api.example.com/v1/get_meta?obj=abc123”: Failed to parse JSON 

response. No JSON object could be decoded.

What happens next?

Unable to retrieve metadata for the “abc123” file from “https://

api.example.com/v1/get_meta?obj=abc123”: Failed to parse JSON 

response. No JSON object could be decoded. Aborting.

Working from the original message text, gathering all this infor-
mation from the live system would take minutes or even hours. 
By iterating through this series of questions, we gather informa-
tion that the original message didn’t provide:

◆◆ Exact file name: We can make a request for this object in a 
separate system to clarify the current object condition, includ-
ing the state of its metadata.

◆◆ Exact URL of a metadata request: Now we can quickly 
request the metadata again for further inspection without hav-
ing to craft this request from scratch. We can also immediately 
verify that the data was requested from the correct place and 
with the correct environment (API version, additional param-
eters, modifiers, etc.).

◆◆ The data source service: We know who to page in case we 
encounter a massive issue.

◆◆ Metadata encoding format: JSON.

◆◆ Final action: No additional retries were made, and the re-
quester did not get the data they needed.

It’s worth emphasizing the What’s next? question here, which 
comes in handy when you encounter a vague statement. In this 
example, the reader was left with questions like, Will the system 
retry requesting data from another source? Was this the only 
attempt? and Did the original request ever succeed? The “Abort-
ing” statement, which reports the application’s next expected 
action, removes all these uncertainties.

Alternatively, when an error requires a long explanation (for 
example, with potential causes and suggestions for various 
methods of mitigation), instead of packing the entire text into 
the message itself, consider assigning a unique ID and provid-
ing a reference to a full explanation. The disadvantage of this 
method is that the log entry may not explain the situation. On the 
other hand, the description can be highly enriched with back-
ground information, solution playbooks, examples, and so on.

DEBUG
The debugging level serves two main purposes: increasing out-
put verbosity and providing data samples. 

When it comes to increasing output verbosity, DEBUG messages 
can better detail lower-level milestones and illustrate ongoing 
values, which are useful to real-time application tracing. For 
example, consider a well-known open-source “OpenSSH” utility. 
Both the server and the client support extended verbosity that 
displays the files being read, network connection establishment 
details, cryptography negotiation, and much more, thereby help-
ing the reader understand how the utility works.

Data sampling is relatively straightforward. Consider it in the 
context of the previous file metadata retrieval example. The next 
logical step for a reader faced with the message “No JSON object 
could be decoded” is to examine the content of this object. We 
can make the reader’s life easier by placing this data as a DEBUG 
message that follows the original alert.

You need to decide whether or not to include the original alert 
information in the DEBUG message—does it suit your purpose 
better to optimize for saving storage or to optimize for individual 
message clarity? Because you can link these messages using 
metadata, there’s no strong need to include the original message. 
However, longer records can save valuable time during incident 
investigations, and they aren’t filtered out from non-metadata 
searches. 

Our final DEBUG entry perfectly aligns with the log entry 
anatomy scheme:

Accounting for sensitive information  
in DEBUG messages

Take care in choosing how to represent the original alert 
as a DEBUG message. Whenever you log a working data 
sample, even partially, make sure that the sample doesn’t 
contain sensitive information. Publishing such infor-
mation accidently can pose a threat and security risk to 
people and systems!



www.usenix.org  S U M M ER 20 19  VO L .  4 4 ,  N O.  2 37

SRE
Structured Logging: Crafting Useful Message Content

Complete entry:

2019.01.15 00:55:12.345012 UTC 43526 62837563 file_manager 

[.../example_api/__init__.py:1024] DEBUG Unable to retrieve 

metadata for the “abc123” file from “https://api.example.com/

v1/get_meta?obj=abc123”: Failed to parse JSON response. No 

JSON object could be decoded. Aborting. Response: ‘Internal 

Server Error.’

Breakdown:

Message Formatting and Processing

Formatting
You can use formatting to coherently represent metadata. Aim to 
keep your formatting brief but sufficiently explicit.

Here’s an example of formatting that’s applied to Kubernetes log 
metadata (you can see the original format description at https://
github.com/kubernetes/klog/blob/master/klog.go):

I0115 02:31:05.029108 1083 server.go:796] GET /stats/summary/: 

(10.507359ms) 200 [[Go-http-client/1.1] 10.44.1.11:60556]

Note the following:

◆◆ The severity level is collapsed to a single capitalized character, 
I, which stands for INFO. You can represent the other  severity 
levels with the letters W (WARNING), E (ERROR), and D 
(DEBUG). Because the severity is the first character in the line, 
it can be easily expressed in a regular expression.

◆◆ The four digits concatenated with the severity level represent 
a date: 0115 refers to January 15, and the year is omitted, likely 
because records aren’t stored for more than 12 months or be-
cause this information is added during entry processing.

◆◆ A single closing square bracket (]) separates the metadata from 
the content.

You could improve this formatting by accounting for time zones. 
For example, Google Cloud Platform collects the full timestamp, 
along with additional metadata. 

By consolidating the date format, this record is readable, con-
tains almost all the data we need, and saves about 10 bytes of 
space per record. 

Output
Messages to the standard file descriptor should be delivered to 
STDERR, as opposed to STDOUT. Because users and various 
tools expect messages to appear on the STDERR, messages 
directed to STDOUT will be ignored or potentially cause harm 
by injecting data into a data flow pipeline. 

You can save time and ensure log format consistency by creating 
a small set of libraries for various languages, which can coordi-
nate all logging configuration out of the box.

Multi-line Messages
Multi-line entries can be problematic when log processing 
software treats messages as one entry per line. You can mitigate 
this problem by performing an additional layer of pre-processing 
on the application level: you can adjust every outgoing string 
by replacing the newline character with another unique string 
(\n, for example), so that the message can be restored by reverse 
conversion. 

This solution’s only drawback is message length. For example, 
a Java stack trace may run up against the maximum  permitted 
message size in the processing or delivery stage. If you run into 
this problem, you can consider splitting one message into a 
sequence of several messages. 

As a practical example, consider the shell script below. Shell 
scripts notoriously suffer from poor logging. We can improve 
the script by replacing the simple echo function with the more 
meaningful log_info. By logging INFO messages, we address 
the previously discussed time zone and output issues, thereby 
accommodating compact formatting and multi-line entries.

Here’s an example implementation, distributed under the Apache 
2.0 license:

$ cat standardized_bash_log.sh

#!/bin/bash

date_fmt=’%m%d %H:%M:%S’

tz=’UTC’

log_preproc(){

    echo “$@” | awk -v ORS=’’ ‘{if (NR!=1) $0 = “\\n” $0};{print}’

}

2019.01.15 00:55:12.345012 UTC WHEN
43526 Process ID

WHERE
62837563 Thread ID
file_manager Binary Name
[.../example_api/__init__.py:1024] Code Pointer
DEBUG SEVERITY
Unable to retrieve metadata for 

the “abc123” file from “https://api.

example.com/v1/get_meta?obj=abc123”

WHAT

Failed to parse JSON response. No 

JSON object could be decoded.
WHY

Aborting. WHAT’S NEXT
Response: ‘Internal Server Error.’ Details



38   S U M M ER 20 19  VO L .  4 4 ,  N O.  2  www.usenix.org

SRE
Structured Logging: Crafting Useful Message Content

log(){

    metadata=”${1}$(TZ=$tz date “+$date_fmt”) $tz $$ \ 

$(basename $0)”

    content=$(log_preproc “$2”)

    echo “${metadata}] $content” >&2

}

log_info(){

    log ‘I’ “$@”

}

Usage:

$ cat logging_example.sh

#!/bin/bash

source standardized_bash_log.sh

log_info ‘The first line of text;

    The second;

    And finally, the third one.’

Execution with multi-line restoration:

$ echo -e $(./logging_example.sh 2>&1 | grep “second”)

I0116 07:42:59 UTC 40844 logging_example.sh] The first line of 

text;

 The second;

 And finally, the third one.

Storage
Root cause analysis (RCA) benefits from robust logging data. 
However, crafting and storing a comprehensive set of logging 
records requires a prohibitively large amount of storage. Does 
storing all logging data from all apps and environments in full 
really make sense?

When performing any kind of RCA, each investigation is initi-
ated by an error. An investigator needs the information sur-
rounding this problematic event. In reality, you need to store 
operational logs (user requests and decision-making informa-
tion) in full, as these events are unique and unrelated to each 
other. The behavioral logs can be partially truncated because 
event sequences are repetitive.

To reduce storage volume, you can place a filter between an 
application and the delivery mechanism. For example, a filter 
can accumulate all messages for the last two to five minutes of 
operation in a buffer; when an error occurs, the filter dumps the 
entire buffer to remote storage. An engineer can then find all 
error-related records as well as all potentially correlated events 
that were in flight during the incident.

This approach has a couple of positive side effects. Because the 
price of log storage depends directly on the number of errors the 
service experiences, the fewer errors your service undergoes, 
the less storage you need. The filter can also prevent the system 
from flooding the logging system with identical errors.

If you’re concerned about potentially problematic situations 
that don’t produce errors and hence can’t be easily detected, you 
can keep the entire logging set locally on the host with a shorter 
retention period.

If you want to minimize storage use when conducting other 
research and development, you can narrow the observation 
scope to a single application instance for a certain period of time. 
That way, you can easily reclaim the space occupied by locally 
stored data once the experiment is complete. 

Conclusion
Many of the problems with logging in modern computing can 
be addressed by bridging the gap between the people writing 
and reading the logs. You can narrow this distance by clarify-
ing and restricting the meanings of various terms and by using 
a question-based approach to ensure that you express all of the 
necessary data. We hope you find the recommendations in this 
article useful and that you adjust our approaches according to 
your preferences and experience, improve them, and share your 
further ideas and best practices with your team and beyond.



www.usenix.org  S U M M ER 20 19  VO L .  4 4 ,  N O.  2 39

SRE

Complex
The Most Overloaded Word in Technology

L A U R A  N O L A N

“Site reliability engineers shall predict the behavior of complex systems.” 

This sentence, which I recently came across in a job description, is fasci-
nating because it is one that, depending on your background, could seem 
either reasonable enough or an utter glaring contradiction in terms. 

Most people use the word complex as a synonym of complicated or intricate—something with 
a lot of parts that’s hard to fully grasp. Understanding something complicated may be hard, 
but make the effort and you can, at least potentially, do it.

However, both software engineers and systems engineers use the word complex as a specific 
term of art. Software engineers in fact use it in several different ways, distinct from the sys-
tems meaning. Software engineers and systems engineers (please read that term throughout 
this article to mean SREs, production engineers, systems administrators, DevOps practi-
tioners, etc.) are overlapping groups of people who work together. We all need to understand 
which meaning is in use at any given time so we can communicate clearly. 

First, software engineers talk about time and space complexity: in other words, Big-O. In this 
context, complexity refers to how the time or space requirements to execute an algorithm 
scale with the properties of the input. There are also code complexity metrics like McCabe’s 
Cyclomatic Complexity—that metric counts the number of independent code paths in a piece 
of software. But neither of these are what most of us mean when we discuss complexity or its 
inverse, simplicity.  

Software Complexity
Complexity has been the enemy of the software engineer for decades now. Fred Brooks’ 
classic essay “No Silver Bullet” [1] divided software’s complexity into two parts: essential 
complexity and accidental complexity. Essential complexity is that related solely to specify-
ing the problem and how it should be solved. Accidental complexity is related to the details 
of implementation. Writing your business logic and unit testing it is (hopefully) mostly 
essential complexity, but HTTP and managing concurrency and garbage collection and 
deployment to production are largely accidental complexity. The overwhelming majority of the 
work of technology operation is about accidental complexity. 

But this doesn’t tell us what software engineers mean by complexity. Fundamentally, com-
plexity is that which makes software difficult to fully understand and to correctly reason 
about. Moseley and Marks’ paper “Out of the Tarpit” [2] discusses several sources of com-
plexity. The biggest, and hardest to deal with, is state—state influences the flow of control of 
a program, but the number of potential states a piece of software can be in increases expo-
nentially with the number of variables. Dealing with this is such a difficult problem that we 
basically handwave past it: we normally run all tests on modules in known states, and we rou-
tinely restart misbehaving programs in order to restore them to a known good internal state. 

Laura Nolan’s background is 
in site reliability engineering, 
software engineering, 
distributed systems, and 
computer science. She wrote 

the “Managing Critical State” chapter in the 
O’Reilly Site Reliability Engineering book and 
was co-chair of SREcon18 Europe/Middle 
East/Africa. Laura Nolan is a production 
engineer at Slack. laura.nolan@gmail.com



40   S U M M ER 20 19  VO L .  4 4 ,  N O.  2  www.usenix.org

SRE
Complex: The Most Overloaded Word in Technology

Other major sources of complexity are sheer code volume and 
the fact that programs, unlike complex physical structures, 
cannot be visually inspected. Mental models of the program 
must be constructed from the source code. This can of course 
be easier or harder depending on how the code is structured. 
John Osterhout’s book A Philosophy of Software Design [3] is all 
about making the design of software systems less complex, and 
he advocates very strongly for relatively few deep modules, each 
of which implements powerful functionality behind a simple 
interface. This is much like the UNIX philosophy—write small 
programs that do one thing well and can be used together. 

Systems Complexity
Systems engineers tend to have a completely different idea of com-
plexity, stemming from systems theory. Systems theory is a dis-
tinct area of research, spanning all kinds of manmade or natural 
systems—everything from an anthill to a nuclear power plant—
and complex systems theory is a subset of it. Complex systems 
have particular characteristics: multiple interacting parts, system 
state (i.e., a memory of some kind), and feedback loops. They 
display emergent phenomena, have nonlinear relationships (small 
changes in one part can lead to large deviations in overall system 
behavior) and tend to be prone to cascading failures or “vicious 
cycles.” Complex system behavior cannot be predicted reliably. 

An amusing example of a complex systems failure is the incident 
that led to two interacting book pricing bots driving the price of a 
book on the genetics of flies to over 23 million dollars [4]. One bot 
was designed to set its price to undercut its competition by 2%, 
and another bot was coded to price books it didn’t have in stock 
at 27% above the price it found in the market (in order to make a 
profit reselling them). In the case of one rare book, each bot set 
its price based on the other bot’s price on a daily basis, leading to 
a vicious cycle of compounding prices. This system has multiple 
interacting parts, state and feedback loops—it is a complex sys-
tem, albeit a trivial example of one.

All computing systems are complex systems. Even if a system is 
running on a single physical machine you are still dealing with 
the interactions of multiple pieces of software, all of which are 
likely complex systems in their own right, running on complex 
hardware. Each running program may have multiple threads of 
control, state, interactions with the operating system and other 
programs—even if not explicitly then via shared resources. 

The “Stella Report” [5] describes several real-world examples of 
the kinds of deviations and failures that are commonly expe-
rienced in complex computing systems. In one example from 
the report, the combination of centralized logging with the 
ELK stack plus installation of a keylogger for audit purposes 
resulted in system failure when the remote Logstash program 
experienced intermittent failure. The issue was compounded 

by the terminal becoming unresponsive (waiting for the logging 
system), hindering debugging. That outcome is hard to predict 
ahead of time by reasoning about system behavior. This is why 
chaos testing has become popular. It’s easier, and far more reli-
able, to add latency to a component in a controlled fashion and 
see what is affected than to attempt to model all the possible 
interactions between system components.  

This systems theory definition of complexity is the one often 
used by systems administrators, SREs, and DevOps practi-
tioners—this is in no small part due to the impact of Richard 
Cook’s paper “How Complex Systems Fail” [6] on the industry 
some years ago. Software engineers, on the other hand, mainly 
think in terms of code structure, interactions between modules, 
and interdependencies in their code bases. Software engineers’ 
primary concern is the difficulty of making correct changes 
without introducing errors. Systems engineers’ primary concern 
is stability of the deployed software in production.  

This is why, when you ask a software engineer to promote sim-
plicity as part of their job description, they look for opportunities 
to separate concerns and reduce coupling in their code base to 
refactor to well-known design patterns, create better-defined 
interactions between modules, and remove unused code. 

When you ask systems engineers to do the same thing, they often 
look for ways to control extremes of the system’s behavior (using 
load shedding and circuit breakers, for instance), or to make 
elements of the system more uniform. Dave Mangot’s recent 
;login: article “Achieving Reliability with Boring Technology” 
[7] discusses the use of infrastructure-as-code techniques to 
make sure your production environments are standard and well-
understood. That’s a very good example of the kinds of ways that 
systems engineers can reduce complexity. 

The two kinds of complexity that we discuss here are quite dif-
ferent, but they do also have one major thing in common: both 
software complexity and systems complexity make the task of 
understanding and predicting behavior impossible.  

All of us—software engineers, systems administrators, site reli-
ability engineers, production engineers, DevOps practitioners—we 
are all fighting the same two-faced demon named complexity. In 
both software and operations, complexity arises from state, from 
the sheer number of components or modules, from the number of 
interactions (both intended and unintended), as well as from the 
impossibility of direct inspection of the systems we work on.

Code and the running production system are two aspects of the 
same thing, and it’s very unlikely we can run a stable, reliable, 
performant, maintainable system if either variety of complexity 
(code or systems) is not continually managed. Let’s understand 
each other’s language, and let’s always have empathy for the 
challenges that our colleagues face.



www.usenix.org  S U M M ER 20 19  VO L .  4 4 ,  N O.  2 41

SRE
Complex: The Most Overloaded Word in Technology

References
[1] F. Brooks, “No Silver Bullet—Essence and Accident in Soft-
ware Engineering,” Proceedings of the IFIP 10th World Comput-
ing Conference, 1986.

[2] B. Moseley, P. Marks, “Out of the Tar Pit,” BCS Software 
Practice Advancement (SPA 2006).  

[3] J. Osterhout, A Philosophy of Software Design (Yaknyam 
Press, 2018).

[4] M. Masnick, “The Infinite Loop of Algorithmic Pricing on 
Amazon…Or How a Book on Flies Cost $23,698,655.93,” Tech-
dirt: http://bit.ly/2FagxMz (accessed March 18, 2019).

[5] D. Woods, “STELLA Report,” SNAFUcatchers Workshop on 
Coping with Complexity, 2017.  

[6] R. I. Cook, MD, “How Complex Systems Fail,” Cognitive 
Technologies Lab, University of Chicago, 2002.

[7] D. Mangot, “Achieving Reliability with Boring Technology,” 
;login:, vol. 44, no. 1 (Spring 2019): https://www.usenix.org 
/publications/login/spring2019/mangot.

Register Today!

Register by July 22 and save!

Fifteenth Symposium on 
 Usable Privacy and Security
Co-located with USENIX Security ’19
August 11–13, 2019 • Santa Clara, CA, USA
www.usenix.org/soups2019

The Fifteenth Symposium on Usable Privacy and Security (SOUPS 2019) 
will bring together an interdisciplinary group of  researchers and prac-
titioners in human computer interaction,  security, and privacy. The 
program will feature technical papers, including replication papers and 
systematization of knowledge papers, workshops and tutorials, a poster 
session, and lightning talks. 

Symposium Organizers
General Chair

Heather Richter Lipford,
University of North Carolina at Charlotte

Technical Papers Co-Chairs
Michelle Mazurek, University of Maryland

Rob Reeder, Google

http://bit.ly/2FagxMz
https://www.usenix.org/publications/login/spring2019/mangot
https://www.usenix.org/publications/login/spring2019/mangot


42   S U M M ER 20 19  VO L .  4 4 ,  N O.  2  www.usenix.org

COLUMNSOther Faces of Python
P E T E R  N O R T O N

I’d like to talk about uses for serialized data this time, looking at them 
through contrasting language-neutral formats: YAML and protocol 
 buffers. These will be the basis for discussing an interesting Python 

interpreter, specially built to make working with protocol buffers easier.

Wikipedia (https://en.wikipedia.org/wiki/Serialization) has a really great, straightforward 
definition of serialization: “the process of translating data structures or object state into a 
format that can be stored.” YAML is a really easy format for serialization/deserialization for 
simple Python data types since it represents data structures in a way that’s really similar to 
how Python does; in my experience, however, this is not so much the case for defined types.

YAML
So let’s talk about YAML. YAML (standing for YAML Ain’t Markup Language, or possibly 
Yet Another Markup Language, or maybe something else) is recognizable in the wild as the 
prolific format where the whitespace is relevant and indentation is incredibly important, and 
which breaks if someone naively makes a single whitespace change (like many people’s first 
impression of Python!). Its goal is to be able to serialize and deserialize data in a format that 
is human-readable (text) and comprehensible (line breaks matter in a way that is similar to 
written language, indentation guides the structure, etc.).

YAML also has all sorts of interesting features, like the ability to name a structure and reuse 
it multiple times, and graft that onto various other locations, similar to using variables. (Some 
interesting discussion about the full range of what it can do is available at http://yaml.org.) 
YAML is often used as more than just a serialization format since it has the ability to, for 
example, declare blocks, repeat them, etc. A recent post at https://blog.atomist.com/in-defense- 
of-yaml/ reminded me of some of the work I’ve been doing. In short, YAML is hugely useful, 
but it also has limits that should be respected.

One trivial example of its usefulness is:

this:

  is: a mapping with

  different: value types

  here: 3

which would look like this in Python:

{“this”: {“is”: “a mapping with”, “different”: “value types”, “here”: 3}}

Declaring a reusable block (called an anchor) is this simple, and you can see how it’s expanded  
by running this in the Python REPL using the pyyaml module (see http://pyyaml.org for 
more info):

>>> import yaml

>>> yaml.load(“””

... this: &use_this_anchor

...   is: cool

...   

Peter works on automating 
cloud environments. He loves 
using Python to solve problems. 
He has contributed to books 
on Linux and Python, helped 

with the New York Linux Users Group, and 
helped to organize past DevOpsDays NYC 
events. In addition to Python, Peter is slowly 
improving his knowledge of Rust, Clojure, and 
maybe other fun things. Even though he is a 
native New Yorker, he is currently living and 
working from home in the northeast of Brazil. 
pcnorton@rbox.co.



www.usenix.org  S U M M ER 20 19  VO L .  4 4 ,  N O.  2 43

COLUMNS
Other Faces of Python

... here: *use_this_anchor

... “””)

{‘this’: {‘is’: ‘cool’}, ‘here’: {‘is’: ‘cool’}}

This can greatly reduce size and repetition. It’s clear that human-
readable and understandable formats like YAML have been 
a huge positive change. Because of their widespread use and 
acceptance, people feel less need to create poorly defined ad-hoc 
configuration formats. The fact that software is shipped using 
YAML means that they’re being configured via plaintext data 
structures. That’s a big win!

YAML and Configuration
These formats make your configuration much easier to compre-
hend. You almost don’t have to do any work. It also means that 
your configuration often seems to be self-documenting—we can 
read about specific data types, quantities, etc., and with only a 
little familiarity with the system you’re working with, it’s almost 
obvious what you (or the program) are trying to express. For 
example, the following is probably going to make sense if I tell 
you that it’s a section of YAML-formatted configuration for the 
Envoy proxy, a Layer 7 proxy (sometimes called a service mesh; 
see envoyproxy.io for more info):

static_resources:

  clusters:

  - circuit_breakers:

      thresholds:

      - max_pending_requests: 8192

        max_requests: 8192

        max_retries: 1000

        priority: DEFAULT

      - max_pending_requests: 8192

        max_requests: 8192

        max_retries: 1000

        priority: HIGH

    connect_timeout: 0.5s

    hosts:

    - socket_address:

        address: foohost-ssl

        port_value: 443

    lb_policy: ROUND_ROBIN

    name: foohost

    per_connection_buffer_limit_bytes: 3100000

    tls_context: {}

    type: STRICT_DNS

It doesn’t provide the person reading it with the larger picture, 
but you can use this as a starting point—it’s probably configura-
tion that governs the behavior of a listening port and multiple 
hosts behind a load-balancer .

One limit to YAML’s flexibility, though, is that small nested 
changes prevent the use of anchors. So there are two threshold 
entries that look almost exactly alike. But the difference in the 
priority key means that the entire structure must be repeated. 
As you can imagine, this sort of inconsistency can become irri-
tating as the size of the data gets larger.

Using YAML as the representation of the data comes with 
another weakness: there is no built-in checking that a message 
has the right shape or the right structure—essentially it doesn’t 
come with any type checking. Let’s focus on this, because better 
type checking is great, especially when it is easily achievable at 
a low cost.

Skycfg, Protocol Buffers, and YAML
So how can someone do better than YAML? One answer is to use 
protocol buffers (usually just called protobufs). Protocol buffers 
are also widely used, and one important role they play is in defin-
ing APIs. Two examples that have been increasingly adopted 
over the past few years are the Envoy proxy (mentioned above) 
and Kubernetes (https://kubernetes.io). In both cases, protocol 
buffers are used to define the structures used by the API inter-
nally, while their external-facing REST API and configuration 
will accept messages in other formats (e.g., YAML) but translate 
them and check them against the API definition. This means 
that a REST API may be used with YAML data, but when this 
data gets into the system and is deserialized, it’ll get checked 
against the protocol buffer definitions, which are the real source 
of truth.

In order to make using protobufs easier, the folks at Stripe have 
created Skycfg, which is based on a special-purpose language 
whose syntax and behavior are derived from Python. While 
Python is usually considered a “general-purpose” language, 
Skycfg has an entirely different reason for existing. It is based 
on a variant of Python whose primary goal is to be as easy to use 
as the standard CPython but to be limited in a way that focuses 
on enhancing the process of configuring large software systems. 
The language Skycfg is based on was once called “Skylark” but 
was renamed “Starlark” (https://blog.bazel.build/2018/08/17/
starlark.html) and released as part of the Bazel build system 
(http://bazel.build).

With Skycfg, protocol buffer messages are compiled from a 
neutral format into a Golang-specific library and imported into 
Skycfg, and your own variation of Skycfg is built for your own 
use. When your custom interpreter is run, you can create objects 
using their protocol buffer message definitions, and they main-
tain their type information per the underlying Golang runtime. 
The intent is that the protobuf data structures remain strongly 
typed and will not have implicit conversions done to them. 
Messages are defined ahead of time; they are created, updated, 
compared, etc. using the syntax of Python (Skycfg), and doing 



44   S U M M ER 20 19  VO L .  4 4 ,  N O.  2  www.usenix.org

COLUMNS
Other Faces of Python

things this way maintains a strongly typed, statically checkable 
configuration.

Some Examples
So let’s have some show and tell.

This bit of YAML is pretty easy to comprehend:

access_log_path: /var/log/envoy/admin_access_log

address:

  socket_address:

    address: 127.0.0.1

    port_value: 1234

This is short and sweet, and as configuration it seems pretty 
straightforward. As mentioned earlier, the user/operator must 
make sure to avoid some common mistakes. If I add a tab instead 
of spaces, it breaks in a way that may not be obvious. If I make 
the port value >65k, I may not notice it, but it’s clearly outside 
the range of available ports. If I mistype something it’s still valid 
YAML, but it doesn’t mean anything to the program that reads it.

By contrast, generating this in Skycfg code has the upfront cost 
of writing some Python, with a disproportionately large  benefit: 
I can create configuration messages where the type of the mes-
sage is known and statically checked. So, unlike YAML, this 
doesn’t allow us to graft the wrong message into the wrong place. 
In addition, the fields of the messages are also type checked, and 
we can create these messages with proper functions instead of 
being YAML anchors, in which you can’t replace at the granular-
ity of one element of a list or a mapping.

Just in case you are interested in the entire v2 API that Envoy pro-
vides, the messages being generated below are documented further 
at https://www.envoyproxy.io/docs/envoy/latest/api-v2/api.

# -*- Python -*-

v2_bootstrap = proto.package(“envoy.config.bootstrap.v2”)

# Code we write, the “//” is specific to Skycfg/starlark

load(“//common_helpers.sky”, “to_struct”)

load(“//common_helpers.sky”, “envoy_address”)

# this gets code the envoy maintainers wrote, 

# built into the main.go

v2_core = proto.package(“envoy.api.v2.core”)

# Bootstrap message sections

def admin_msg(access_log_path, address, port):

    “””This generates the :admin: 

    section, including the access log path

    and the listen address of this server.

    “””

    admin = v2_bootstrap.Admin(

        access_log_path=access_log_path,

        address=envoy_address(address, port))

    return admin

def node_msg(cluster, node_id):

    “””The cluster name should match whatever 

    we’re using to identify the cluster, the 

    node_id should match the IP address or 

    hostname.

    “””

    return v2_core.Node(

        id=node_id,

        cluster=cluster)

def build_bootstrap_msg(

    admin, node, static_resources, stats_sinks):

    “””The core initial config is the 

    bootstrap message - this is essentially

    the jumping-off point that we plant in 

    /̀etc/envoy/envoy.yaml`

    “””

    return v2_bootstrap.Bootstrap(

        admin=admin,

        node=node,

        static_resources=static_resources,

        stats_sinks=stats_sinks)

To use this, you need to build the interpreter, which is really 
simple. Look at https://github.com/pcn/followprotocol for the 
code and try it out.

This is a pretty neat trick, and the benefits become clearer once 
you consider the power of the combination of Python’s syntax 
to easily and dynamically script up the configuration and then 
add strong type checking, where the definitions are supplied by 
the authors of the server side, so you don’t have to track changes. 
So, for instance, when a breaking change appears in a newer 
API version, it will be made clear to you just by generating the 
configuration. The server doesn’t have to try the bad configura-
tion and reject it.

What’s more, protocol buffers provide a way to update message 
formats by adding to the end of a structure. This allows for com-
patibility as you change your messages.

Also, notice that the above snippets do the right thing when  
type bounds are violated. So if I change the port number in the  
bootstrap.sky to something far outside of the bounds of a TCP 
port, the following would happen:

followprotocol$ ./followprotocol envoy.sky 

panic: ValueError: value 12345678910 overflows type ‘uint32’.

goroutine 1 [running]:

main.main()

 /home/spacey/go/src/github.com/pcn/

followprotocol/main.go:94 +0x7c6

Full disclosure: the definition of the message specifies that this 
uint32 must be <= 65536, but as of this writing, there seems to be 



www.usenix.org  S U M M ER 20 19  VO L .  4 4 ,  N O.  2 45

COLUMNS
Other Faces of Python

an issue with this, so I overflowed with a larger number for this 
example to contrast it with CPython behavior.

Any time this sort of check catches an error, it is like free time 
being given back to you! One of the most common problems with 
configuring programs is that in order to know whether a config-
uration is even valid—things that are supposed to be strings look 
and act like strings, numbers are numbers, etc.—you need to pass 
them into a running process where that process validates it (e.g., 
in the best case with a --check-config flag or something along 
those lines). But even a checker often won’t be able to tell you 
that you’ve violated a constraint that has to do with the type and 
not the format. Some things that a strongly typed checker can 
know is that, for example, you’ve configured a number value to 
be larger than an unsigned 8-bit integer, and it will only accept a 
signed 8-bit integer. Or you create a list that contains strings and 
numbers, but for a situation where the required list is only able 
to accept strings. These, in addition to the actual syntax errors, 
are much, much more difficult to catch, and the goal is that the 
process of creating the configuration makes it clear that these 
errors are present. It also turns the problem of perhaps indenting 
YAML a bit oddly into a problem of Python indentation. Since 
the syntax is Python, you can use Python syntax checkers to 
your advantage, though they’re imperfect. In any case, the fact 
that these messages are declared and dealt with by the Skycfg 
protocol buffer handling means a whole class of checks is largely 
done for you.

Another effect of this is that since Skycfg isn’t a general-purpose 
language, once a message is created, handling it is done out-
side of Python syntax. With only a little bit of experience with 
Golang, you can take the messages that are generated by Skycfg 
and do something with them there. They could also be saved to a 
file or shipped out over a network socket—you do need to add this 
in for yourself. Oddly, you may find that after doing all this work, 
you end up writing everything out as YAML, per my example 
repository. So it’s always a good idea to keep that option in mind.

Templating
Lastly, let’s discuss the Skycfg approach as compared to another 
method that’s often used to generate configuration: use a 
templating language/macro language like Jinja2, Mustache, 
or maybe Erb if you’re using Ruby. Configuration syntax for 
simpler things tend to be quite comprehensible at first, but 
some parts can grow and change to the point where you end up 
gaining domain-specific knowledge about particular sections 
of configuration that because of their irregularity have nothing 
to do with anything else—they sort of make up their own rules 
as they go along. The configurations for Apache and Nginx are 
very expressive, but they also make it very challenging to just 
confirm that they are acceptably formatted. Using a templating 
approach works very, very well when the problem is simple, and, 

fortunately, most configurations can be made to be simple and 
can work by fitting them into a pretty simple template.

Unfortunately, generating YAML with templates, even with 
regular, simple YAML, gets tricky as soon as you attempt to graft 
new data structures onto the existing text of a partial message 
via appending templates. It doesn’t seem like it should be so hard, 
but it turns out that it often is. 

By defining a service in terms of protocol buffers, and by using 
that to make systems that are meant to be operated program-
matically via an API, the authors of Envoy and Kubernetes 
(among others) are inviting the use of a solution like Skycfg in 
order to generate the desired configuration faster and more 
safely. I recommend taking a look at Skycfg if you find yourself 
working with a system that defines itself via protobuf messages.

Note about the last column: In the last column, I mentioned 
that I’d look to see whether there’s a way to make a change to 
something like the zip built-in work throughout a codebase. So 
far, I haven’t found a way to do that well (the idea I had in my 
head failed so hard...), so I’ll look a bit more to see if it does, in 
fact, seem possible.



46   S U M M ER 20 19  VO L .  4 4 ,  N O.  2  www.usenix.org

COLUMNS

Passwords
C H R I S  “ M A C ”  M C E N I R Y

Passwords. Everybody hates them, but everyone still uses them.

While there are pushes for certificates, OTP, and other forms of authentications, 
the password is still king. In addition to the ubiquity of passwords, good practice 

dictates that we use different passwords for every account silo, and (controversially) we are 
supposed to change them often.

Most corporate environments use a single account silo, and the use of single sign-on systems 
has the promise of not needing to authenticate regularly. However, most of the time, these 
systems are more consistent sign-on instead of single sign-on, so you end up typing your 
password over and over again. On the plus side, this is convenient in quickly updating muscle 
memory following password changes.

The above reasons have given rise to the heavy use of personal password storage. There are 
online services which provide this in bulk. Most operating systems provide some form of 
personal password storage: Windows has credential manager, OSX has Keychain, and Linux 
has several depending on the distribution that you’re working on. Even the mobile OSes have 
some form of native secrets manager that is now being opened up to the applications.

In this exercise, we’re going to examine Go libraries for OSX password manager, a Windows 
password manager, and one that is cross-platform. We’ll be looking at how to interact with 
them and how they store the passwords via the libraries.

The code for these examples can be found at https://github.com/cmceniry/login in the pass-
words directory. This code is using dep for dependency management, but this should work 
with Go modules as well. After downloading the code, change into the example’s directory 
(keychain, credmgr, keyring) and run the example with go run main.go.

Caveats
The built-in password storage mechanisms on most OSes authenticate the application run-
ning as well as the user. With some storage types, you can grant permissions for the applica-
tion to bypass the user authentication. The target of this grant depends on the OS—e.g., it can 
be the application binary, the user + binary, the name or file path to the binary, etc.

Unfortunately, this does not play as well with go run since that produces a different binary 
and identifier every time you run it.

Because of that, I recommend that you do not apply any “AllowAlways” rules for any of the 
runs, and that you only use test examples for these runs. At the end, you should clean up the 
examples that are created. In a production situation, once your binary has been built and 
distributed, then and only then, should you decide whether “AllowAlways” is worth the risk.

Some of the libraries attempt to simplify the overall interface to the native password stores. 
This simplification sometimes creates incomplete maps. In addition, the multiple libraries do 
not map the fields consistently, and the ones that support multiple native implementations may 
map each of those differently. This does make it a challenge to understand which is the correct 
invocation for each library and native store. Be sure to double check the documentation.

Chris “Mac” McEniry is a 
practicing sysadmin responsible 
for running a large e-commerce 
and gaming service. He’s been 
working and developing in 

an operational capacity for 15 years. In his 
free time, he builds tools and thinks about 
efficiency. cmceniry@mit.edu



www.usenix.org  S U M M ER 20 19  VO L .  4 4 ,  N O.  2 47

COLUMNS
Passwords

I’ve attempted to make it obvious in these examples, but you will 
see that that is not always an easy prospect.

Most of the libraries focus on the password or generic ([]byte) 
secret. Many of the native stores support additional typing for 
their secrets, but most of these are not supported by the libraries. 
Accordingly, we’re going to focus on generic passwords in these 
exercises.

OSX Keychain
There are multiple implementations that interact with the OSX 
Keychain. We’re going to explore the go-keychain library from 
keybase. This will have the import line (with alias to avoid 
 naming issues):

        keychain “github.com/keybase/go-keychain”

Keychain stores “Items” which are a password blob combined 
with metadata.

As mentioned, Keychain is capable of storing multiple Item 
types inside of it; however, the library support, and hence our 
focus, is limited to passwords, specifically “application pass-
word” (term inside of Keychain) or GenericPassword (term 
inside of the library).

go-keychain supports four pieces of metadata: the “Name” or 
“Label,” the “Account,” the “Service,” and the “Access Group.” 
The Name is what this Item shows up under in Keychain itself, 
and the library refers to this name as the Label. The Account is a 
string for the username associated with the password. The Ser-
vice is a string for where (e.g., the URL) you want to use the pass-
word (the underlying Keychain field is literally called “Where”). 
You can have multiple Items with the same Name as long as the 
Account is different. Since the other libraries do not support a 
distinction between the “Name”/”Label” and the “Service” fields, 
we’re going to set them to be the same thing.

The Access Group is a way of collecting multiple applications 
and multiple passwords and administering their access together. 
This is not used by other libraries and other OSes, so we will not 
use it here.

To create a simple password, we pass a NewGenericPassword to 
the AddItem library func:

keychain/main.go: create.

        err := keychain.AddItem(

            keychain.NewGenericPassword(

                “;login example,”

                “falken,”

                “;login example,”

                []byte(“joshua”),

                “,”

            ),

        )

Since we have to ensure that the Name and Account are unique, 
it is possible to encounter a duplicate. For this simple example, 
we’re going check our errors for that and ignore just that error 
while responding to any other errors.

keychain/main.go: duperr.

     if err != nil && err != keychain.ErrorDuplicateItem {

If all goes well, we’ve stored it into the password store, and now 
we need to retrieve it. There are two ways to retrieve the secret: 
the get helper, and a full query.

For just getting a password with known location, there’s a con-
venient GetGenericPassword func that will grab it for us, and we 
can print it out. To use it, we have to identify the metadata for 
it: Name/Label, Account, Service, and Access Group. Since this 
function is general purpose, we have to fill in all four fields, even 
with empty strings, to match the signature.

keychain/main.go: getgeneric.

        item, err := keychain.GetGenericPassword(

            “;login example,”

            “falken,”

            “;login example,”

            “,”

        )

        ...

        fmt.Println(string(item))

The second method is to query for it. The query is useful when 
looking for multiple Items. We set the parameters that we need 
to match on, indicate that we’re looking for one or multiple 
answers, ask for it to return the data rather than just the meta-
data, and then perform our actual query. Since this can return 
multiple responses (though in this case only one will return),  
we still want to iterate over the results.

keychain/main.go: query.

        query := keychain.NewItem()

        query.SetSecClass(keychain.SecClassGenericPassword)

        query.SetLabel(“;login example”)

        query.SetAccount(“falken”)

        query.SetService(“;login example”)

        query.SetMatchLimit(keychain.MatchLimitOne)

        query.SetReturnData(true)

        results, err := keychain.QueryItem(query)

        ...

        for _, i := range results {

            fmt.Println(string(i.Data))

        }

This works well if we’re looking for a specific password by 
account. Try removing the SetService or SetLabel calls for the 
query to see what is returned.



48   S U M M ER 20 19  VO L .  4 4 ,  N O.  2  www.usenix.org

COLUMNS
Passwords

Credential Manager
Next, we’re going to interface with Window’s Credential Man-
ager using the wincred library from GitHub user danieljoos.

It has the import path:

        “github.com/danieljoos/wincred”

Like Keychain, Credential Manager maintains some metadata for 
its secrets. It requires a “TargetName,” which has to be unique, 
and allows for an optional Username field. For this example, 
we’re going to limit it to just the TargetName and secret itself.

The creation of new passwords is relatively straightforward. We 
create a new record by its name with NewGenericCredential, 
assign the password itself and the optional metadata, and then 
write that to the store.

credmgr/main.go: create.

        cred := wincred.NewGenericCredential(“loginExample”)

        cred.UserName = “falken”

        cred.CredentialBlob = []byte(“joshua”)

        err := cred.Write()

In the event of duplicates, Credential Manager will overwrite 
what is there.

Now we can retrieve that password out of the Credential 
 Manager. Since we’re fetching by TargetName, it’s a simple  
get command followed by print.

credmgr/main.go: get.

        cred, err := wincred.GetGenericCredential(“loginExample”)

        ...

        fmt.Println(cred.UserName)

        fmt.Println(strings(cred.CredentialBlob))

The wincred library and underlying interface to Window’s 
 Credential Manager is quite a bit more intuitive than the 
Keychain interface, but it also does not allow for more complex 
cases that use duplicate metadata values for records (e.g., retain-
ing multiple versions).

Cross-Platform
Now, let’s combine those and use a common library to try to 
make it cross-platform. To be specific, our definition of cross-
platform use is to be able to use the same binary/code across 
multiple OSes; it is not about moving the password data across 
multiple OSes. Directly porting over the password data is 
complicated and needs some transformation since Keychain 
and Credential Manager and other native stores have different 
semantics.

For cross-platform usage, we’re going to look at the keyring 
library by 99designs. It supports storing secrets in multiple 

backends: Keychain, Credential Manager, the Gnome secrets 
service, KDE Wallet, and others. It has the import path:

        “github.com/99designs/keyring”

Many of the overall options for go-keychain and wincred are 
stripped out from keyring. With it, you can specify a container, 
the “ServiceName,” and a “Key” for a specific entry. In the under-
lying password store, these two fields may be mirrored onto 
other fields (e.g., when backing with Keychain, it sets Label and 
Service to both be the ServiceName), but keyring only allows for 
these two fields.

For creation and retrieving, we start by opening (read declaring) 
our password container by its ServiceName:

keyring/main.go: open.

        kr, err := keyring.Open(keyring.Config{

            ServiceName: “;login example,”

        })

After that, we are able to commit it to the password store with 
its value. We must also identify the unique Key inside of this 
ServiceName for this password. Note that unlike some of the 
native libraries where this is a “construct then write” method, 
the keyring library does this as one command (again, different 
semantics).

keyring/main.go:create.

        _ = kr.Set(keyring.Item{

            Key:  “falken,”

            Data: []byte(“joshua”),

        })

Much like wincred, keyring overwrites existing values instead of 
indicating a duplicate Item.

Now that we have the data stored, we can pull it out and display 
it. As with the single function to write the Item, the keyring 
library uses a single function to retrieve data.

keyring/main.go: get.

        p, err := kr.Get(“falken”)

        if err != nil {

                      panic(err)

        }

        fmt.Println(string(p.Data))

Library Compatibility
Making it so that we can use keyring and either go-keychain 
or wincred together requires us to match up the appropriate 
metadata.

For go-keychain, this is a matter of matching the keyring 
 ServiceName with both the go-keychain Label and Service and 
the keyring Key with the go-keychain Account.



www.usenix.org  S U M M ER 20 19  VO L .  4 4 ,  N O.  2 49

COLUMNS
Passwords

For wincred, we must match the keyring ServiceName with 
the wincred TargetName which currently has to include some 
additional markup. As of this writing, the keyring library will 
append aws-vault: to the ServiceName and Key to store as the 
TargetName in wincred. (The keyring library was originally 
named aws-vault and so retains a few vestiges of that. There is 
an open issue for this.)

Conclusion
Password management is hard.

The current level of cross-platform compatibility is low. There 
is no standard for password storage—particularly the identity 
and metadata for finding the passwords. There are significant 
inconsistencies in the native password stores as well as incon-
sistencies in the way that the libraries map to those password 
stores. Applications can be ported across multiple OSes, but the 
passwords saved are hit or miss if you try to use them across 
multiple applications. It’s best right now to pick one library and 
stick with it.

When considering the user, it’s a constant tradeoff between 
security and ease of use. You have to decide for yourself what is 
your level of risk. If storing passwords in the native password 
stores encourages other secure activities (e.g., shorter sessions, 

not using static API keys, etc.), then this may be right up your 
alley. If it’s a matter of storing the passwords in the native pass-
words stores versus your own securely wrapped (encrypted, per-
missions, etc.) files, it’s better to use the former as a significant 
amount of engineering effort has been put in place that makes 
the native password stores probably more secure than what most 
of us would do otherwise.

Despite the issues, I hope that this column has given you some 
insight into how to handle these in reasonable ways and the con-
fidence to do so. Anything that we can do to improve the state of 
password management by making it easier on the user and more 
secure is a boon for our field. Native password stores are just one 
of those methods, and I encourage you to use them. Good luck 
and be safe!

XKCD xkcd.com



50   S U M M ER 20 19  VO L .  4 4 ,  N O.  2  www.usenix.org

COLUMNS

iVoyeur
Prometheus

D A V E  J O S E P H S E N

Dave Josephsen is a book 
author, code developer, and 
monitoring expert who works 
for Sparkpost. His continuing 
mission: to help engineers 

worldwide close the feedback loop. 
dave-usenix@skeptech.org

I keep having this conversation—a byproduct of my own incessant hum-
ble-bragging about living in Montana. I will be talking to someone I’ve 
just met, at a nerd meet-up say, or maybe a coffee shop or airplane, and 

the topic will just sort of come up. Arise. Spring forth into being. 

It probably has something to do with my handshake. The way I grab people by their out-
stretched hand, not so much heartily greeting them as capturing them in place, and ensuring 
they cannot politely escape as I loudly exclaim something to the effect of:

“HI-I’M-DAVE-I-LIVE-IN-MONTANA!”

And then, as if by magic, the conversation careens away from whatever direction it probably 
should have been headed directly north into the tree-lined hinterlands.

Obviously, as the architect of this colloquial digression, I’m more or less rudely declaring my 
preference for hinterlands over the unknowable set of topics which could be derived from the 
unique soup of ingredients of your humanity combined with mine.

I mean, we were probably just going to talk about the weather anyway, but it does bother 
me. This notion that I have robbed us of the opportunity for spontaneous conversation in 
exchange for my personal, known baseline of locutionary enjoyment. Had I not grabbed the 
steering wheel and swerved, we might be talking about bread-making right now or tuning 
diesel engines. Maybe you’re 3/4 of the way through the Manga Guide to Linear Algebra and 
are just dying to talk with someone about it. That would have been really fun, and I failed to 
allow that possibility to blossom between us. I didn’t give you the credit you deserve.

I recognize that. I do. So although I brought us here, I won’t insist on us staying. What 
often happens is that you will know of a person or place in Montana. You used to visit your 
grandma in Pony, or maybe your ex frequents the ice-climbing festivals in Hyalite Canyon. 
And so we are brought closer together by virtue of a shared experience with place. 

Maybe the notion of wilderness itself resonates with you. Your heart pounds for the dry-hot, 
windy openness of the West: Arizona, New Mexico, Utah. Maybe you’ve wandered central 
Africa or sailed the coast of South America. You’ve never been to Montana per se, but there 
is a remote place threaded into the fabric of your soul. A hard-to-get-to place into which you 
could happily disappear and, just as happily, never return.

But just as often, you happen to be someone to whom my happy place parses as a hellish sort 
of prison. A person who finds it hard to imagine a fate worse than banishment to the icy, 
deserted foothills of the Absaroka-Beartooth Wilderness, where the elk outnumber people, 
there is no decent pizza, and the preponderance of what little conversation there is to be had 
revolves around, well, bread-making and tuning diesel engines.

Thus, a sort of conversational reset transpires. We can’t, after all just throw our hands in the 
air and run away from each other. That’d be weird. So we do what all good engineers do: we 
turn it off and then turn it back on again. You say something like, “Wow, you really must like 



www.usenix.org  S U M M ER 20 19  VO L .  4 4 ,  N O.  2 51

COLUMNS
iVoyeur: Prometheus

getting away from it all,” and I chuckle politely and hand over 
the wheel. First law of improv and all that; I’m sure we can find 
common ground in some other subject matter that is hopefully 
not the weather.

But that phrase getting away from it all; it’ll still bug me weeks 
later. The unspoken thought that I am willingly abandoning the 
richness of a full place for one of emptiness. That I’m escaping or 
ejecting. Getting away from “it,” whatever it is.

I guess maybe we have different its. And I think I get yours, the 
cultural it, with the third-wave coffee and the music and the 
bright laughter, and liberality of ideas. The golden aura that 
glows around healthy, sophisticated, urban coexistence. 

But you don’t need to come to the hinterlands to experience my 
it. You can find it within yours. Between it. In empty offices after 
dark and in shops that haven’t opened yet. In any kind of place 
where, if you were to stand in place and turn time like a knob, 
you would see that the place always exists, but the people who 
inhabit it exist only between the hours of 8 and 4 say, only as long 
as the band is playing or until the bell rings.

With apologies for polluting an otherwise objective and scien-
tific journal with magical thinking: there’s something that lives 
in the spaces we vacate. Not an emptiness, but a kind of pres-
ence or potential. A thing accentuated by our absence. A signal 
underlying the obvious stuff, there for anyone who cares enough 
to listen. A wilderness. You can feel it vibrating there if you hold 
still, in the in-between. That’s my it.

Prometheus
I have mentioned Prometheus (http://prometheus.io) here and 
there in my recent articles, and I think the time has finally come 
to do a short series on it. There are myriad details of note. Its 
built-in time series database and cloud-native focus. Its reinven-
tion (or maybe revitalization?) of the pull-model so abhorred by 
DevOps acolytes, and its query-centric operation and accompa-
nying domain-specific language: PromQL.

But rather than charging head-first into any of those technical 
frontiers, I’d like to take a moment to make a point about what 
systems like Prometheus represent in the context of the evolu-
tion of systems monitoring. There is a continuum where, on 
one end, exist the monitoring systems of the “past.” They were 
built, in a way, unconcerned with what they would eventually 
be tasked with monitoring. Which is fair, since the things they 
monitored were equally unconcerned with being monitored.

If we built airplanes like this, it would be as if we built one 
airplane with no instrument panel and then a second altogether 
separate airplane to fly beside it, taking note every so often of 

the first plane’s speed and the temperature of its exhaust. What-
ever could be seen from the outside. The first airplane flying 
happily, obliviously along until it didn’t. And in the aftermath 
we’d ignore the wreckage, turning our attention instead to the 
plane that didn’t crash. Scratching our heads and combining its 
samples with our intuition to guess at what might have happened 
to the plane that did.

On the other end of the continuum, every piece of software 
written worldwide is a monitoring system and, oh by the way, 
also possessed of some additional, arbitrary functionality. As if 
everything we make is instrument panel, upon which we some-
times bolt wheels or wings.

Both ends of this continuum are dystopian in their special way, 
but also instructive in that they hint at some middle ground in 
between. Imagine a place where applications run, interactions 
happen, and customers are serviced, and in between all of that, 
quite unbeknownst to everyone, a telemetry signal is emitted, 
underlying the obvious stuff. There for anyone who cares enough 
to listen. 

We aren’t building a monitoring system into everything we 
make, but we are acknowledging the importance of feedback, 
upfront in the development process, and providing an organi-
zational answer to the question of where to send operational 
telemetry.

Prometheus server is probably the first centralized poller that 
assumes the presence of such a signal. It’s a traditional poller 
in that it wakes up on a configurable interval, polls metrics, and 
stores them internally. Its contribution to the field of pollers is 
subtle but important: it only polls this specific kind of signal, 
emitted via HTTP on one or more TCP ports on every host. 

If you’ve worked with other monitoring systems, this might seem 
like a limitation at first, but it’s really quite liberating. There 
is no particular agent to install; no collector-side of its body to 
configure and reunite with its head. Instead, you are encouraged 
to participate directly in the data-model by taking whatever you 
want Prometheus to slurp up, packing it into a text format, and 
making it available via HTTP on a pre-arranged TCP port.

So we are left to create this signal. We can emit it from within—
inside a running process or thread that is our application—or 
from the outside using a piece of software dedicated to collecting 
metrics. We can even post-process logs into the correct format. 
Obviously, we can also use a combination of techniques and, in 
practice, pretty much always do. Here’s a simple example of its 
text format.



52   S U M M ER 20 19  VO L .  4 4 ,  N O.  2  www.usenix.org

COLUMNS
iVoyeur: Prometheus

# HELP go_threads Number of OS threads created.

# TYPE go_threads gauge

go_threads 71

# HELP process_cpu_seconds_total Total user and system \

 CPU time spent in seconds.

# TYPE process_cpu_seconds_total counter

process_cpu_seconds_total 24738.72

# HELP process_max_fds Maximum number of open file \

 descriptors.

# TYPE process_max_fds gauge

process_max_fds 1024

These metrics were emitted from inside a Go program, using 
the Go exporter (https://github.com/prometheus/client_golang). 
If you’re used to dealing with metrics systems, the concept of 
a named value like process_max_fds 1024 is no doubt very 
familiar to you. Note also the metadata fields that provide a data-
type and a human-readable description for each metric; although 
these appear to be comments, they are in fact required fields. 

In Prometheus land, the software that emits metrics signals is 
always called an exporter. Getting started, you probably won’t 
need to write one yourself because there are already off-the-
shelf exporters for just about everything you can imagine, 
including a “node exporter,” which works like a traditional moni-
toring agent, reading values out of /proc and /sys and exporting 
these as Prometheus signals for you. 

Here’s another, more complicated version of Prometheus’s data 
format: 

# HELP nginx_requests_total Total number of reqs by HTTP \ 

 status code.

# TYPE nginx_requests_total counter

promhttp_metric_handler_requests_total{code=”200”} 

1.654693e+06

promhttp_metric_handler_requests_total{code=”500”} 0

promhttp_metric_handler_requests_total{code=”503”} 0

This example adds “labels,” enclosed in curly braces after the 
metric name. Arbitrary metrics dimensionality can be achieved 
with labels, but the Prometheus documentation (and anyone 
who has used it in anger) warns against their overuse (https://
prometheus.io/docs/practices/naming/). In real life, metrics 
should be restricted to labels with fewer than 10 dimensions: 
e.g., recording requests by HTTP type is fine, but attempting to 
record requests by customer ID will quickly blow up in your face.

I can tell you firsthand, the act of creating and nurturing this 
signal proliferates quickly through an organization, with appli-
cation engineers using libraries to export metrics directly from 
their services as well as more operations-oriented engineers 
writing shell-scripts or other little pieces of automation to add 
more host-oriented metrics. Once you start working with it and 
relying on it, it quickly becomes habit-forming. At Fastly we’ve 
written a discovery tool (https://vimeo.com/289893972) called 
PromSD, which makes it easy for Prometheus (and people like 
me) to discover and explore the metrics backchannel in the in-
between space of our network.

The data model is probably my favorite thing about Prometheus, 
this lovely notion of a monitoring subtext quietly woven into 
the fabric of the “important stuff.” A single text format we can 
all agree on, that multiple monitoring systems or even human 
beings can consume. It feels like our little secret, and I think it’s 
an important step forward for the field of monitoring in general. 
Tune in next time when we’ll explore Prometheus’s local storage, 
and PromQL, the query language you can use to interrogate the 
storage layer and draw graphs. 

Take it easy!



www.usenix.org  S U M M ER 20 19  VO L .  4 4 ,  N O.  2 53

COLUMNS

The major difference between a thing that might go wron-g and a thing that cannot 
possibly go wrong is that when a thing that cannot possibly go wrong goes wrong it 
usually turns out to be impossible to get at or repair. —Douglas Adams

One hears often enough that the error rate for software is so many 
flaws per thousand lines of code or the like. A fraction of those flaws 
turn out to create vulnerabilities. A fraction of those vulnerabilities 

get exploited. And “we” learn about a fraction of those exploits. Let’s call it

 S * F *V * E * P

In other words, we create S lines of new code, F of which are wrong, V of which are vulner-
abilities, E of which are weaponized, and P of which come to our attention. Let’s stipulate one 
thing: arguing about what constitutes a line of code is irrelevant. While we’re at it, let’s stipu-
late that everything here is subject to argument about definitions and what goes in what set.

That kind of formulation is similar to the kinds of rough calculations around whether there 
is other intelligent life in the galaxy. On the one hand, there are something like 100 billion 
stars in the Milky Way. On the other hand, intelligent life requires a bunch of pretty unlikely 
coincidences (probabilities) multiplied by that 100 billion. You only need five 1% probabilities 
multiplied together to get down to as many intelligent life planets in the Milky Way as you 
have fingers. Six such conjunctions and the odds turn against our very existence.

So, how many lines of code? That is harder to estimate than the number of stars in the Milky 
Way. An unsubstantiated claim in CSO magazine [1] was that 111 billion lines of code (LOC) 
were created in 2017. Elsewhere, there’s a slightly more substantiated estimate of 20 million 
developers at work today [2]. The old rule of thumb for a developer is/was 50 LOC/day or 
10–15 KLOC/year. Multiplied times 20 million devs, that’s 20–30% of that 100+ billion LOC 
claim. Of course, some code is not written by hand but by machine, but is it really 70–80%? 
Or are there more than 20 million devs? Or are they more productive than 10–15 KLOC/year? 
With almost 8 billion people on earth, does it sound right that 1 in 400 is a dev? Let’s take S 
= 1011 for the moment.

How many flaws are in that code? The old rule of thumb is/was 25–50 flaws per thousand 
lines of code (KLOC), although the various measurements that come to that range of num-
bers were for software products that are deployed en masse after a defined build process as 
opposed to continuously thrashed web applications. Anyhow, if we use 40 flaws/KLOC and 
multiply it by 100 billion LOC, we are looking at 4 billion new flaws per year.

As a kind of comparative calibration, the top six open source package repositories account 
for 80% of all open source repositories [3], a combined total of 1.75 million packages, which 
number is increasing by 1,000 per day. That’s 23% annual growth, and we’re not even talking 
about GitHub or SourceForge.

For Good Measure
Curves of Error

D A N  G E E R

Dan Geer is the CISO for In-Q-
Tel and a security researcher 
with a quantitative bent. He has 
a long history with the USENIX 
Association, including officer 

positions, program committees, etc. dan@
geer.org



54   S U M M ER 20 19  VO L .  4 4 ,  N O.  2  www.usenix.org

COLUMNS
For Good Measure: Curves of Error

Turning to what fraction of uncategorized flaws are security 
flaws, i.e., what fraction of bugs create vulnerabilities, we find 
two schools of thought. School One: any and all bugs are vulner-
abilities unless and until proven otherwise. School Two: only a 
small fraction of all bugs are security bugs. For today’s purpose, 
we’ll side with School Two, taking the line that vulnerabilities 
are a small percentage of total flaws. That may well be incorrect 
in the sense of “failing to make the conservative assumption” 
(conservative with respect to security outcomes, that is).

In any case, the vulnerability to flaw ratio is related to Bruce 
Schneier’s foundational question of whether, in truth, vulner-
abilities in software are sparse or dense [4]. Chris Wysopal says 
that Veracode [5] finds 0.1 vulnerabilities per KLOC, so a 40 
flaws/KLOC starting point means that 0.1/40 = 0. 0025 or 1/4 of 
1% of flaws are actually vulnerabilities. That makes it conser-
vative to say that 1% of all software bugs are vulnerabilities, so 
we’ll go with that for the moment.

Then there is the probability that a given vulnerability can 
and will be weaponized, which is to say turned into a deployed 
exploit. As Dave Aitel [6] has repeatedly argued, what is sparse is 
not vulnerabilities that could be weaponized but the people who 
can weaponize vulnerabilities. Add to that that good exploits 
may require more than one vulnerability, i.e., the conversion rate 
of vulnerabilities to exploits may be lower still. Plus in a whole-
world setting where the installed base of software is growing 
faster than the human population, then the fraction of vulns that 
are weaponized might actually be falling, not for want of oppor-
tunity but for want of labor (back to Aitel). In any case, and for 
the purpose of argument here, let’s call it 1-in-200 or .005 that a 
given vuln will be weaponized.

That 1-in-200 is almost surely way conservative. Brian  Martin 
of Risk Based Security [7] has data showing that out of 199,311 
vulns with a CVSSv2 9.3 or higher, 6,244 have a public exploit, 
2,350 have a proof of concept, and 3,048 have a private exploit. 
That works out to 5.8% of those (very serious) vulns are known 

to have, or be capable of, exploits. That’s an order of magni-
tude higher than 1-in-200, but we’ll stick with 1-in-200 for 
the moment. While we’re at it, HackerOne says that in 2018 
they managed 78,275 reports [8]. If even half of those are valid 
security bugs, then it would more than double the 2018 CVE or 
VulnDB count.

Of course, some weaponized vulns will never come to our 
attention. For this estimate, we must admit that we are in the 
murk; zero-days don’t get counted since they aren’t 0days if we 
can count them, nor are exploits that are use-once for precious 
targets something we’ll ever see. This is what Ablon and Bogart 
covered so well for RAND [9]. For the sake of argument, let’s pick 
maximum ignorance priors, i.e., say that 50% of vulnerability 
weaponization is unobservable while 50% comes to some kind of 
public attention. This brings us back to the top, viz.,

 S * F *V * E * P

which we’ll rewrite with S = 1011, F = .04, V = .01, E = .005, and P = .50

 1011 * .04 * .01 * .005 * .50 = 100,000/yr

A number like 100,000 de novo, non-targeted exploits in the wild 
per year is certainly a stunning number. But is it real? Does it 
carry policy freight? 

In calendar 2017, there were 14,714 new CVE reports made. 
Going back to year 2000, there were 1,020. That works out to 
a compound annual growth rate (CAGR) from 2000 to 2017 of 
15.7%. For 2001, there were 1,677 reports, which amounts to a 
CAGR from 2001 to 2017 of 13.6%. Figure 1 lays this all out; for 
each year, the column represents the number of CVE reports 
made, and the line is the value for the compound annual growth 
rate between that year to 2017.

Focusing on the longest term, from 2000 to 2017, that CAGR of 
15.7% begs the question: how fast is the total body of installed 
code growing? If that total installed base is growing faster than 
15.7%, then CVE would say that either we’re collectively getting 
better at making new software secure or we’re collectively get-
ting worse at finding (and recording) security problems in new 
software.

Generally speaking, a measure that has constant error will 
return value estimates that are wrong, but its trend line will at 
least have the right shape. Therefore, we might ask the question, 
“Does CVE has relatively constant error?” Unfortunately, the 
answer to that question is almost surely “No”—CVE’s coverage 
has been shown to be poor, and the recent spike in its listing of 
new vulnerabilities is more a response to embarrassing congres-
sional hearings in late 2016 than anything else: i.e., the big jump 
in 2017 is an artefact.

Figure 1: Number of CVE entries and CAGR from each year to the 2017 
value



www.usenix.org  S U M M ER 20 19  VO L .  4 4 ,  N O.  2 55

COLUMNS
For Good Measure: Curves of Error

We seem to have no good measure, then, of the shape of the 
curve of error. Bug bounty payouts are not it (it being the way to 
measure the fraction of vulnerabilities that are exploitable). So 
we are back to the number to noodle over: is finding 100,000 de 
novo, non-targeted exploits in the wild per year a round-number 
estimate good enough to inform policy?

Obviously, spreading 100,000 new exploits through 100 billion 
new lines of code constitutes a seemingly low density—literally 
one in a million (105 /1011). That ought to be reassuring. Or should 
it? The 2016 Ford F150 pickup truck is said to have 150 million 
lines of code [10]. By our working guess of 1-in-a-million, that 
150 * 106 LOC might be expected to set the stage for 150 exploits. 
Perhaps thankfully, the Boeing 787 Dreamliner is said to have 
7 million LOC which gives the naive estimate of a half-dozen 
exploits waiting to come “out of the nowhere into the here.”

If the reader thinks software errors are some flavor of inevitable 
and are not designed in by a present-day Illuminati, then those 
errors are sprinkled over software products like some kind of 
pixie dust. Even if the estimates above are off by an order of mag-
nitude (in either direction), the implication, both personal and 
policy, might well be this: the more software there is in a product, 
the less you should depend upon it. The more a given supplier 
lards up the product with features, the less you should want to 
depend on it. The more often the software base turns over, the 
less the software in it has been burned in.

For the present author, a state of security is the absence of 
unmitigatable surprise, hence the Douglas Adams quote at the 
start, the conservative assumptions throughout, and the previ-
ous paragraph’s appeal to retaining alternative—analog if you 
prefer—mechanisms. That position, itself, would be shown to be 
conservative if finding bugs with AI turns out to be as effective 
as it might be. While AI uber-bug-finding would likely depress 
the number of latent, as yet invisible threats, it is hard to imagine 
that any substantial entity would be prepared for their AI to 
autonomously fix bugs it had autonomously found, so, in turn, 
the number of known bugs could well increase faster than the 
market cycle could accommodate fixing them. And then we’d be 
writing about this in parallel to the vaccination of school-age 
children as a state-imposed access requirement to a public good, 
only now it would be autonomous update as a state-imposed 
access requirement to a different public good.

References
[1] S. Morgan, “World Will Need to Secure 111 Billions Lines 
of New Software Code in 2017”: https://www.csoonline.com/
article/3151003/world-will-need-to-secure-111-billion-lines-
of-new-software-code-in-2017.html.

[2] R. Cox, “How Many Go Developers Are There?”: https://
research.swtch.com/gophercount.

[3] Open source repository timeline: http://www.modulecounts.
com/modulecounts.csv.

[4] B. Schneier, “Should U.S. Hackers Fix Cybersecurity Holes 
or Exploit Them?” May 19, 2014: https://www.theatlantic.
com/technology/archive/2014/05/should-hackers-fix-cyber-
security-holes-or-exploit-them/371197/.

[5] Veracode, State of Software Security, vol. 9: https://www.
veracode.com/state-of-software-security-report.

[6] D. Aitel, personal communication.

[7] B. Martin, personal communication; https://vulndb.cyber-
riskanalytics.com.

[8] “Hacker-Powered Security Report 2018,” 
July 11, 2018: https://www.hackerone.com/blog/
Hacker-Powered-Security-Report-2018.

[9] L. Ablon and A. Bogart, Zero Days, Thousands of Nights: 
The Life and Times of Zero-Day Vulnerabilities and Their 
Exploits, RAND Corporation, 2017: https://www.rand.org/
pubs/research_reports/RR1751.html. Also available in print 
form.

[10] R. Saracco, “Guess What Requires 150 Mil-
lion Lines of Code...,” January 13, 2016: https://
www.eitdigital.eu/news-events/blog/article/
guess-what-requires-150-million-lines-of-code/.



56   S U M M ER 20 19  VO L .  4 4 ,  N O.  2  www.usenix.org

COLUMNS

/dev/random
Techno-illogical

R O B E R T  G .  F E R R E L L

I recently stumbled over an online debate attempting to assign blame for 
the failure of technology to live up to society’s expectations (although 
who, precisely, established those expectative benchmarks wasn’t clear, 

possibly because, as is my custom, I only skimmed the first few paragraphs: 
tl;dr is my motto these days). Was it the fault of technology itself or of the 
companies that make it? In other words, is the reason we don’t have flying 
cars because the technology is still out of reach or simply because no com-
pany has bothered to make full use of what we already have available? 

If you’re going to remind me at this juncture that we do in fact have flying cars, let me stop 
you right there. We both know that the flying cars we were promised were something the Jet-
sons would recognize as such, not these giant drone abominations that you could fly inverted 
and mow the lawn. Nor are the “hoverboards” currently available anything like the models 
we were expecting. In fact, no component of them does any actual hovering. They’re more 
akin to self-propelled skateboards with their wheels mounted sideways, as though they were 
designed and assembled under the influence of peyote.

There was a time, I’m led to understand, when technology was still a shining beacon of hope 
on the horizon, promising solutions to problems we hadn’t yet even created for ourselves. 
That was an era of optimism and blind, cheerful trust in the implicit genius of the technolo-
gists who were going to make life so much easier and more pleasant for us all. The utopian 
society of the future would be populated by buttons, gadgets, and machines that go “ping,” all 
working in seamless unison to enable the humans of the household to go about their day in a 
state of blissful freedom, unencumbered by the necessity for manual labor or thinking of any 
sort.

That’s what we were promised. What we got, at least up to the present day, falls a bit short of 
that ideal. The buttons summon products we don’t really need or could easily obtain by more 
conventional avenues that don’t require relinquishing our last vestige of privacy; the gadgets 
spy on us unceasingly and bombard us with a barrage of ads for yet more gizmos we don’t 
need; the machines trap us in a closed loop of surrendering basic control of our domestic 
landscape for the sake of perceived convenience. Hooray for progress.

If future projections aren’t quite being met on the home front, they’re even more divergent 
when seen through a wider lens. We’ve already covered the disappointments that are the 
flying car and hoverboard, but these only scratch the surface of our poor record at projecting 
technological achievements. Perhaps, however (as I intimated in the first paragraph), it isn’t 
our predictive acumen that’s to blame but some aspect of technology itself.

We tend to ascribe virtually no limits to the wonders technology can summon. In point of 
fact, the very word “technology” is more or less useless as a substantive noun. It doesn’t mean 
much, other than the application of knowledge for practical ends. So, can the application of 
knowledge be indicted for not applying itself? Blaming technology for failing to live up to our 
nebulous and in many cases wholly unrealistic fantasies is hardly rational. If indeed there is 

Robert G. Ferrell, author of 
The Tol Chronicles, spends 
most of his time writing 
humor, fantasy, and science 
fiction. rgferrell@gmail.com



www.usenix.org  S U M M ER 20 19  VO L .  4 4 ,  N O.  2 57

COLUMNS
/dev/random: Techno-illogical

a culprit in all this, it must therefore be the company that devel-
ops said technology.

Now that we’ve established culpability for our disappointment, 
let’s move on to creating some sane expectations. Technology 
isn’t a broad-spectrum magic bullet, and it can’t pull solutions 
out of thin air. Pretty much every technological advance gener-
ates as many new questions as it provides old answers, in the 
grand tradition of progress. Moreover, technology has proven 
time and again that it is not easily predictable in any granular 
sense. 

I read a study just today that claims a substantial proportion of 
millennials interviewed considered cracked smartphone glass 
and a failure to receive “likes” on their social media posts as 
major stressors in their lives. Leaving aside the questionable 
priorities thus illuminated, what this statistic reveals to me is 
that technological advances my generation considers relatively 
minor—a smartphone is just the latest iteration of the telephone, 
after all, and that’s been around since the 19th century—have 
assumed a central position in an entire generation’s lives. They 
rely on their phones for, well, everything. 

I dropped my iPhone in a pond several years ago and went 133 
days without it. It was frustrating at times, yes, but really not 
much more than an annoyance. I could still send email, and 

I never really used the phone part of my smartphone much, 
anyway; it served mostly as just a terminus for spam calls. To 
someone of the current generation, however, I’m told that same 
situation might prove utterly devastating, on par with sudden 
amputation of a limb or loss of family members in some horrific 
accident. Technology here has clearly moved from servant to 
master.

Perhaps that’s the crux of this entire discussion: is technology 
meant to be something that enriches our lives or exerts control 
over them? Will we even be able to make that distinction before 
long? The technology we want is occulted by the technology we 
realize, which then eventually replaces our expectations with 
itself. The substituted technology often bears little resemblance 
to what we visualized, but sooner or later that disparity loses any 
relevance.

It’s probably best for our collective blood pressure if we accept 
that technology moves in its own direction at its own pace, 
whether or not we find that movement agreeable. Don’t establish 
inflexible expectations and you won’t be disappointed when they 
fail to come to fruition. If you can’t have the flying car you love, 
honey, love the flying car you get.

USENIX Supporters

USENIX Patrons
Bloomberg • Facebook • Google • Microsoft • NetApp

USENIX Benefactors
Amazon • Oracle • Two Sigma • VMware

USENIX Partners
Cisco Meraki • ProPrivacy • Teradactyl • TheBestVPN.com

Open Access Publishing Partner
PeerJ



58   S U M M ER 20 19  VO L .  4 4 ,  N O.  2  www.usenix.org

BOOKSBook Reviews
M A R K  L A M O U R I N E  A N D  R I K  F A R R O W

Refactoring, 2nd ed.
Martin Fowler, with contributions by Kent Beck
Pearson Education, Inc., 2019, 418 pages
ISBN 978-0-13-475759-9

Reviewed by Mark Lamourine

Martin Fowler released the first edition of Refactoring in 1999. 
It would be nice to think that after 20 years it wasn’t necessary 
to promote the idea of refactoring as a best practice for software 
development. Sadly, I still find that people blink at the idea of 
modifying code without changing its behavior, solely to make it 
easier to read and maintain.

Refactoring is a practice, a technique for improving code and, 
at least in part, a philosophy. The main idea is that, especially 
in the “fail fast” world of Agile methodologies, everyone is likely 
to write a lot of ugly, non-optimal code. That’s not a problem by 
itself because this working-but-incomplete code is revisited over 
and over, eventually resulting in a polished product. Unfortu-
nately, often the pressure to add features overwhelms the need 
to clean up the structure of the code, resulting in layers of hacks 
on hacks that, while strictly functional, become increasingly dif-
ficult to maintain and extend.

This (valid) criticism of Agile development styles leads Fowler 
to compile a set of change patterns (reminiscent to me of Design 
Patterns [1]) which “smell” code that can be improved, based on 
prior work by William Griswold [2], William Opdyke [3], and oth-
ers. Following Opdyke’s lead, Fowler called them “refactorings.”

This second edition largely follows the format of the first, though 
there are numerous updates that justify revising the original. 
The examples are presented using JavaScript rather than the 
original Java. This makes the examples accessible to a larger 
audience and cuts the amount of boilerplate significantly. Tech-
nology has changed in 20 years, and the list of refactorings has 
been adapted, including some entries for functional program-
ming and some for refactoring without classes. Fowler removed 
several chapters from the end of the first edition that discussed 
tools (which go obsolete) and “large refactorings,” which are, in 
reality, redesigned from scratch.

In the first section, Fowler presents the concept and purpose 
of refactoring. The opening chapter walks through cleaning up 
a piece of sample code, now in JavaScript. The second chapter 
provides a definition and motivations for the formal practice. 
Chapter 3 introduces the idea of code “smells” as ways to recog-
nize poor code. This may be a little subjective, but Fowler argues 
that these are only flags to look at code more closely. The final 

chapter of this opening section discusses testing, and how criti-
cal it is to be able to confirm that your refactoring actually didn’t 
change your code behavior.

The main body of the book is really a catalog of refactoring 
patterns. This takes up three-fourths of the total space. Each 
refactoring (yes, it is a noun and a verb) is presented as a kind of 
encyclopedia entry, and each follows a specific format. An entry 
consists of five parts:

1. Name: a short description, 2-4 words
2. Sketch: a graphic depiction of the change in code
3. Motivation: a few paragraphs on when and when not to use  

this entry
4. Mechanics: how to apply the change (sometimes referring to 

other refactorings as intermediate steps)
5. Example: a sample of code to change, an explanation, and inter-

mediate steps leading to a new result

The refactorings are grouped logically based on the type of 
change being made. All have an inverse, though not all of these 
are presented, because many have little value.

The hardcover second edition, published under the Pearson 
imprint of Addison-Wesley, has about the same page count as the 
first, but it is only half the width on the shelf and significantly 
lighter. This does not mean lower quality in any way. The bind-
ings are solid. The pages are smooth without being glossy. Fowler 
is able, with modern printing, to use color in graphics and to 
highlight code changes. Both include page marker ribbons in the 
bindings. The removal of almost 50 pages of summary at the end 
of the first edition allows the addition of new refactorings and 
the expansion of the sketch graphics for all of them.

Fowler will be the first to tell you that nearly all of us do refac-
tor ing without thinking about it on a daily basis. His purpose  

References
[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design 
Patterns: Elements of Reusable Object-Oriented Software, 1st 
ed. (Addison-Wesley, 1994).

[2] W. G. Griswold, “Program Restructuring as an Aid to Soft-
ware Maintenance”: http://cseweb.ucsd.edu/~wgg/Abstracts 
/gristhesis.pdf.

[3] W. F. Opdyke, “Refactoring Object-Oriented Framework” 
doctoral dissertation, 1992: http://dl.acm.org/citation.cfm?id 
=169783.

http://cseweb.ucsd.edu/~wgg/Abstracts/gristhesis.pdf
http://cseweb.ucsd.edu/~wgg/Abstracts/gristhesis.pdf
http://dl.acm.org/citation.cfm?id=169783
http://dl.acm.org/citation.cfm?id=169783


www.usenix.org  S U M M ER 20 19  VO L .  4 4 ,  N O.  2 59

BOOKS

in writing about and promoting refactoring as a formal practice 
is to help us avoid the mess that can happen when we try to com-
bine structural changes with feature additions. By keeping these 
separate in our minds (and in our code), we can both recognize 
what we are doing and focus on the immediate purpose of our work. 

Reference
[1] C. Anthony and R. Hoare, “Communicating Sequential 
Processes,” Communications of the ACM, vol. 1, no. 8 (August 
1978): http://bit.ly/HoareCSP.

Concurrency in Go
Katherine Cox-Buday
O’Reilly and Associates, 2017, 224 pages
ISBN: 978-1-491-94119-5

Reviewed by Mark Lamourine

When Go was first released, one of the major selling points was 
the inclusion of concurrency primitives. Together, goroutines 
and channels were touted as the new solution to a major prob-
lem for many web services, or any service that must accept and 
process many communications at the same time. I read about 
goroutines and channels and, because that’s not the kind of cod-
ing I tend to do, I shrugged and moved on. I have written a fair 
amount of Go, and, because I didn’t really understand concur-
rency, I didn’t try to use it.

One problem was that, while many sources showed mechani-
cally how to use goroutines and channels, they all seemed to stop 
there, assuming that it would be evident that these were cool and 
useful and that the reader would Go Forth And Code. Another 
aspect that most examples neglect is how Go’s primitives work 
under the hood. It’s always helpful to know not just the overt 
consequences of some code feature, but the hidden ones as well. 

In a mere 200 pages, Cox-Buday explains what concurrency 
means, how it’s been done in the past, and how Go offers a new 
way. She devotes a full 30 pages of that to detailing why concur-
rency is important and why it’s hard. Long ago I did some hard 
real-time programming, and this section brought back memo-
ries. The realms of web services and flight control systems are 
very different, but they share a need to process masses of input 
from many sources in limited time. In this first section she 
provides examples of race conditions, deadlock, livelock, and 
resource starvation as well as illustrating the traditional ways of 
managing them with shared memory and mutex locks. She intro-
duces communicating sequential processes [1], which inspired 
Go’s concurrency model, but also dispels the myth that mutex 
and shared memory are dead, even in Go.

Cox-Buday introduces the Go concurrency primitives and con-
structs in a mere 30 pages more. The narrative is clear, concise, 
and complete but without any fluff. I’ve seen all of this elsewhere, 
but the author interlaces code samples, graphics, and program 
output so that each reinforces the others to make her points.

The remainder of the book is a list of usage patterns. Pretty 
much every example offered something I hadn’t considered, and 

it’s going to take me a few times through and a lot of practice to 
really get them. There’s a lot here to digest, but it’s well enough 
written that it doesn’t feel arcane or obscure.

You don’t want to start learning Go from this book. Concurrency 
is fundamental to the language, but you won’t get the most out of 
it by starting there. This is a book for developers who are experi-
enced and want to expand into areas like microservices that will 
require high volume, low latency communications. 

I’ve found Go to be useful and intuitive even without the concur-
rency constructs. Now that I have a taste for what they can do, 
I’m going to be coming back to Concurrency in Go often over the 
next few months to make sure I get the most out of it.

Cloud Native Go: Building Web Applications and 
Microservices for the Cloud with Go and React
Kevin Hoffman and Dan Nemeth
Addison-Wesley, 2017, 244 pages, ebook code samples add  
180 pages
ISBN: 978-0-672-33779-6

Reviewed by Mark Lamourine

Some books I find with the intent to read and review them. Cloud 
Native Go I picked up because I have a pet project that I use for 
learning new languages and techniques. I was browsing one 
day for a book that treats web apps built with Go, MongoDB, and 
React, and I really was only looking for that last section. As it 
happens I learned a lot all the way through.

The book is subtitled Building Web Applications and Microser-
vices for the Cloud with Go and React. As you might surmise for 
a book that tries to cover so much, Hoffman and Nemeth don’t 
speak in depth on any topic. For example, they introduce Git in 
seven pages and Go in eighteen.

Cloud Native Go is really a survey of the suite of technologies and 
specific tools that are needed to create a comprehensive cloud-
based service. The chapters range between 10 and 25 pages, but 
the longer ones often contain a few smaller sections describing 
more than one sub-service or component. The authors do provide 
source code examples on GitHub, although these have not been 
updated since May 2016, at least six months before publication.

As a survey the book does well, outlining the anatomy of a com-
pletely cloud-based service. All of the technologies the authors 
use have good online references and tutorials. At the end of 



60   S U M M ER 20 19  VO L .  4 4 ,  N O.  2  www.usenix.org

BOOKS

Reference
[1] A. Wiggins, “The Twelve-Factor App”: https://12factor.net/.

studying TCP/IP since 1989, and wonder just how well the book 
would work for a lawyer or someone working on a politician’s 
staff. That said, Clark does use startlingly clear analogies that 
should help a determined reader understand at least the basics of 
internetworking.

Clark has been preparing the ground for Chapter 7, where he 
discusses alternative internetwork architectures. These vary 
widely, with some designs being closer to sketches and oth-
ers much more detailed. The only one I recognized was Name 
Data Networking (NDN), which Clark often used as an example 
of applying a label instead of a global address in packet head-
ers. When considering designs, a lot of what Clark has written 
focuses on just two areas: the expressive power in headers and 
the per-hop behavior of routers. 

Expressive power has to do with the expressiveness used as 
a means for determining per-hop behavior. PHB is what we 
expect routers to do, to either forward packets or drop packets 
in the current Internet, but in future designs could cause other 
actions, such as requesting information from one or more central 
servers about how to set up a flow. The expressive power of IPv4 
addressing has changed over time, from the initial flat address 
space, to the classful, then classless inter-domain routing 
(CIDR) architecture we see today.

Clark also discusses security in Chapter 10, something I was 
certainly looking forward to reading. For the most part, Clark 
provides persuasive arguments about why security is really a 
function of the application layer, with a few exceptions, DDoS 
being one and inter-domain routing being another. BGP has 
long been a problem, as any router can send updates about rout-
ing, a technique that has been used by nation-states and some 
attackers to subvert “normal” routing behavior. Clark deftly 
explains that we could be signing updates today, but the problem 
is political/social, as in who gets to run the public key server. 
Clark’s suggestion is that regions could start by running regional 
servers, so that they can at least govern routing updates in their 
own regions.

Clark covers naming, addresses, availability, economics, and 
management and control. Most of these areas were not part of 
the design of the Internet, and Clark discusses why these weren’t 
considered important or relevant in the early days, while provid-
ing suggestions for the future.

Clark provides an extensive glossary, pages covering three-
letter-acronyms, 15 pages of references, a large index, and a 
20-page appendix. The appendix seemed more like a summary of 
the history of internetworking and is excellent reading by itself, 
as long as you are willing to use the glossary to find explanations 
of terms that seemed to me to be unique to this field, like PHB.

that short primer on Go, they suggest that readers new to the 
language set their book aside for a while and get more familiar 
with the language before coming back. In each case, the authors 
explain their choice of a particular tool where choices exist 
(Werker for CI/CD, MongoDB for database, and RabbitMQ for 
messaging) but acknowledge that these are opinionated selec-
tions from a field of possibilities.

Hoffman and Nemeth are evangelists for cloud services and 
“the way of the cloud.” In the first chapter they describe their 
philosophy, which is an evolution of Heroku’s 12 factors [1] and a 
combination of other Agile tenets. This lightweight philosophy 
informs the rest of the book.

I’m not really sure who the audience is for this book. While 
the introductions to Git, Go, and Docker are clear and concise, 
they’re not enough for a new learner and are unnecessary for the 
initiated. In nearly every chapter, Hoffman and Nemeth refer 
the reader to online resources to learn more. That’s not bad, but 
sometimes it feels like that’s all there is. I think this would make 
a good blog series.

The writing does work in one significant way, and perhaps that 
was the intent. For some readers it may be enough, but I found 
myself at the end of each chapter looking for more. Where there 
were links and references, I would go back and follow them. 
Where there was an example or challenge, I would look and 
sometimes try it. I have the names of some new tools and tech-
nologies that I didn’t have before, and I have a sense of just how 
much more there is to a cloud application than a database, a web 
server, and some JavaScript.

Designing an Internet
David D. Clark
The MIT Press, 2018, 419 pages
ISBN: 978-0-262-03680-7

Reviewed by Rik Farrow

David Clark was the head of the Internet Activities Board from 
1980 to 1990. He has also served on committees investigating 
other designs for the Internet as well as writing papers about 
features of alternate designs. As you might expect, Clark is cer-
tainly an expert, if not the expert, in this area.

Clark wrote his book partially for policy-makers, those who 
might need to make decisions about future Internet designs. 
For that reason, he starts out with Internet basics, explains 
what he means when he writes about architecture, design, and 
requirements. While I found Clark’s writing clear, I have been 



www.usenix.org  S U M M ER 20 19  VO L .  4 4 ,  N O.  2 61

BOOKS

As someone who learned about TCP/IP in the field, as it were, 
I occasionally found myself wondering if Clark and I lived in 
different realities. For example, UDP does not appear in the glos-
sary and is mentioned just once in the book. Clark writes that he 
expects that core routers, because they have a very restricted set 
of responsibilities, shouldn’t be as easily exploitable as desk-
top systems. He uses the notion that there haven’t been public 
announcements of these exploits as proof. Yet a search of Cisco 
CVEs turns up dozens of router exploits, with few allowing 
complete control of the router, and most able to cause the router 
to crash. I asked my security-geek friends, and they pointed out 
that other core routers, like Juniper, are based on FreeBSD while 
still others are based on Linux. Huawei is rumored to have cop-
ied Cisco IOS firmware, and so shares the same buggy code that 
Cisco has been building since the late ’80s.

But I make those comments because I would be enjoying reading 
Clark’s writing, subtle humor, and careful explanations, only to 
be jolted by rare assertions that seemed to come from another 
realm of being. Other than that, I highly recommend his book to 
those interested in how we wound up with the Internet archi-
tecture we did, but not the corporate/political side of things, 
why certain decisions were made, and about the many ways that 
people in the US and Europe have been working to create new 
designs for a future Internet. Clark is certainly a master in the 
realm of Internet design.

Timefulness
Marcia Bjornerud
Princeton University Press, 2018, 208 pages
ISBN 978-0-691-18120-2

Reviewed by Rik Farrow

A geology professor writes beautifully about her passion, instill-
ing in the reader the immensity of time as seen in the geological 
records. Bjornerud explains how geologists began by mapping 
time based on the fossil record, then added depth and precision 
by learning how to use natural radioactivity. She covers the 
terrifically slow changes in earth’s crust, the faster changes at 
the surface, the balance that has protected atmospheric compo-
nents, and how these aspects have worked over the aeons. 

Bjornerud concludes with a chapter clearly demolishing hopes of 
using the current notions of geoengineering to solve the climate 
crisis. Appendix II provides wonderful tables demonstrating 
the scales of various geologic changes, from mountain growth 
and erosion (50-100 million years) to cycles and reoccurance 
intervals (supercontinent cycle, 500 million years). An easy read, 
one not requiring any background in geology or science—just an 
interested reader seeking to expand herself.

Empress of Forever
Max Gladstone
Tor Books, 2019, 480 pages 
ISBN 978-0-765-39581-8

Reviewed by Rik Farrow

I read a preview of this book, after being attracted by compari-
sons to Iain M. Banks and William Gibson. While I don’t agree 
with that, that’s largely because the writing style is different and 
the pace much quicker than either of those authors.

The heroine, Viv Liao, is a Silicon Valley entrepreneur on the 
run, having attracted the attention of an increasingly authori-
tarian government. She seeks revenge by installing her nearly 
completed work, a conscious, aware  intelligence requiring a 
distributed system of a trillion cores to run. But something 
goes awry during the break-in and installation at a datacenter, 
throwing her into what appears to be the end of time. 

The Empress of Forever rules over all, destroying worlds if they 
threaten to attract the “Bleed,” a rapacious force magnetized by 
high-technological development. What made this book relevant 
for me was the insight into how an imagined innovator and 
controller of vast companies thinks and how this allowed Viv to 
succeed in an unfamiliar reality, assemble a team of disparate 
allies, and take the fight to the all-powerful Empress’s Citadel.  
A fun read, fast-paced, when what you need is a break from 
 reading papers.



NOTES

62   S U M M ER 20 19  VO L .  4 4 ,  N O.  2  www.usenix.org

USENIX Member Benefits
Members of the USENIX Association 
 receive the following benefits:

Free subscription to ;login:, the Associa-
tion’s quarterly magazine, featuring tech-
nical articles, tips and techniques, book 
 reviews, and practical columns on such top-
ics as security, site reliability engineering, 
Perl, and networks and operating systems

Access to ;login: online from December 
1997 to the current issue: www.usenix.org 
/publications/login/ 

Registration discounts on standard tech-
nical sessions registration fees for selected 
USENIX-sponsored and co-sponsored 
events

The right to vote for board of director can-
didates as well as other matters affecting 
the Association.

For more information regarding member-
ship or benefits, please see www.usenix 
.org/membership/, or contact us via email 
 (membership@usenix.org) or telephone 
 (+1 510.528.8649).

USENIX Board of Directors
Communicate directly with the  USENIX 
Board of Directors by writing to 
board@usenix.org.

P R E S I D E N T

Carolyn Rowland, National Institute of  
Standards and Technology 
carolyn@usenix.org

V I C E  P R E S I D E N T

Hakim Weatherspoon, Cornell University 
hakim@usenix.org

S E C R E T A R Y

Michael Bailey, University of Illinois  
at Urbana-Champaign 
bailey@usenix.org

T R E A S U R E R

Kurt Opsahl, Electronic Frontier  Foundation 
kurt@usenix.org

D I R E C T O R S

Cat Allman, Google 
cat@usenix.org

Kurt Andersen, LinkedIn 
kurta@usenix.org

Angela Demke Brown, University  
of  Toronto 
angela@usenix.org

Amy Rich, Nuna Inc. 
arr@usenix.org

E X E C U T I V E  D I R E C T O R

Casey Henderson 
casey@usenix.org

Reminder of  
Annual Meeting

The USENIX Association’s 
Annual Meeting with the 

membership and the Board of 
Directors will be held on the 
evening of  Monday, July 8, in 
Renton, WA, during the week 
of the 2019 USENIX Annual 

Technical Conference.



www.usenix.org  S U M M ER 20 19  VO L .  4 4 ,  N O.  2 63

NOTES

NSDI ’19 Grant Recipients Poster sessions like the one held at NSDI ’19 offer an excellent opportunity 
for conference attendees to engage one-on-one in conversations about 
important leading-edge research.

SREcon19 Americas co-chairs Liz Fong-Jones and Mike Rembetsy deliver 
remarks during the opening session.

The Tuesday evening reception at SREcon19 Americas, sponsored by 
Packet, featured a live ice sculpting performance.

SREcon19 Americas Grant Recipients

SREcon19 Americas Lightning Talks presenters



Rev. 4/11/19

Submit your proposal today!
www.usenix.org/lisa19/cfp

October 28–30, 2019 
Portland, OR, USA
Sponsored by USENIX, the Advanced Computing Systems Association

LISA19 will take place on October 28–30, 2019, at the Marriott  Downtown Waterfront in Portland, OR, USA.

Important Dates
•  Submissions due: Tuesday, June 18, 2019, 11:59 pm PDT
• Notification to submitters: Friday, July 12, 2019, 11:59 pm PDT
Both presenters and organizers may withdraw or decline  proposals 
for any reason, even after initial acceptance. Submissions must 
come from the speaker. LISA does not accept submissions made 
through PR firms and other third parties.

Overview
System engineering, administration, operations—whatever your 
 organization calls it—has evolved beyond merely making systems 
run. Today’s systems engineers design, develop, and run more com-
plex, optimized, and distributed systems at all levels of scale. Come 
learn the skills and knowledge for pushing your systems to the edge 
at LISA19!

LISA, now in its 33rd year, wants to help you share your stories and 
experience. Whether you’re an infrastructure engineer, system ad-
ministrator, SRE, academic, or developer, we highlight the best in 
systems engineering and the people who make it all come together.

Themes and Topics at LISA
Design
• Cloud Computing
• Containerization
• Machine Learning/AI
• Big Data
•  Infrastructure/Platform/Function as a Service
• Scalability and Resilience
• Infrastructure Design
• Performance Planning
• Backup and Recovery
• Strategic Vision
• What’s Next

Develop
• Automation
• Continuous Integration
• Continuous Delivery
• System Engineering
• Monitoring and Instrumentation
• Performance Tuning
• Debugging
• Security Engineering
• Databases
• Programming
• Release Engineering

Run
• DevOps
• Open Source Communities
• Communication
• Standards and Regulatory Compliance
• On-Call Strategies
• Managing IT Teams
• Diversity and Inclusion
• Mentorship, Education, and Training
• Recruiting and Retention

Proposals We Are Seeking
•  Talks: 35-minute talks with 5 minutes for optional Q&A (40 

 minutes total). See the Call for Participation at www.usenix.org/
lisa19/cfp for links to sample talk submissions.

•  Training: 90-minute training courses teaching practical, im-
mediately applicable skills. See the Call for Participation at 
www.usenix.org/lisa19/cfp for a link to a sample training 
 submission.

Call for Participation
LISA is soliciting proposals that demonstrate the present and future 
of operations in all of its forms. Submissions should inspire and mo-
tivate attendees toward action that improves their day-to-day work 
as well as the tech industry as a whole.

We welcome and encourage participation from all individuals, 
 including people who are underrepresented in, or excluded from, 
technology: people of color, women, LGBTQ people, people with 
 disabilities, students, veterans, and others with unique character-
istics, whether or not they are protected by law. Similarly, we wel-
come participants from diverse professional roles: QA testers, se-
curity teams, DBAs, network administrators, compliance experts, 
UX designers, government employees, scientists. Regardless of 
who you are or the job title you hold, if you are a technologist who 
faces unique challenges, we encourage you to be a part of LISA19.

LISA only accepts vendor-neutral proposals. If you wish to pro-
mote or pitch a product at LISA, please email the USENIX Sponsor-
ship  Department at sponsorship@usenix.org about exhibition and 
sponsor opportunities.

•  Panels: Moderator-led groups of 3–5 experts answering modera-
tor and audience questions on a particular topic. When submitting 
a panel, please include the panel line-up ahead of time, or how 
you will select panelists. Panels must meet before the conference 
to make introductions and go over questions and flow.

Questions?
The chairs can help! Email lisa19chairs@usenix.org.

Code of Conduct
LISA is an inclusive and equitable space that welcomes the  perspectives of everyone. Our Conference Code of Conduct and Event Guide-
lines for Speakers specify our commitment to providing a safe and enjoyable event experience for all event participants and a welcoming 
environment for free discussion of ideas. We do not tolerate  harassment of event participants in any form.

Program Co-Chairs
Patrick Cable, Threat Stack, Inc.
Mike Rembetsy, Bloomberg



J A N  2 7–2 9 ,  2 0 2 0
SA N FR A NCISCO,  C A ,  USA

A USENIX CONFERENCE

www.usenix.org/enigma2020

The submission deadline is August 21, 2019. 

Submit a Talk
Enigma centers on a single track of engaging talks covering a wide range of topics in security and 
privacy. Our goal is to clearly explain emerging threats and defenses in the growing intersection 

of society and technology, and to foster an intelligent and informed conversation within the 
community and the world. We view diversity as a key enabler for this goal and actively work to 

ensure that the Enigma community encourages and welcomes participation from all employment 
sectors, racial and ethnic backgrounds, nationalities, and genders.

Enigma is committed to fostering an open, collaborative, and respectful environment. 
Enigma and USENIX are also dedicated to open science and open conversations, 

and all talk media is available to the public after the conference.

PROGR AM CO-CHAIRS

Daniela Oliveira
University of Florida

Ben Adida
VotingWorks



USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

The full program and registration are now available.
Register by July 22 and save!

www.usenix.org/sec19

AUGUST 14–16, 2019 • SANTA CLARA, CA, USA
The USENIX Security Symposium brings together researchers, practitioners, system administrators,  system 
programmers, and others interested in the  latest advances in the security and privacy of computer systems 
and  networks. The Symposium will span three days, with a technical program including  refereed papers, 
invited talks, posters, panel discussions, and Birds-of-a-Feather sessions (BoFs). 

The following co-located events will occur before the Symposium:
SOUPS 2019: Fifteenth Symposium on Usable 
Privacy and Security

PEPR ʼ19: 2019 USENIX Conference on Privacy 
Engineering Practice and Respect

WOOT ʼ19: 13th USENIX Workshop on Off ensive 
Technologies

CSET ʼ19: 12th USENIX Workshop on Cyber 
Security Experimentation and Test

ScAINet ʼ19: 2019 USENIX Security and AI
Networking Conference

FOCI ʼ19: 9th USENIX Workshop on Free and Open 
Communications on the Internet

HotSec ʼ19: 2019 USENIX Summit on Hot Topics 
in Security

Keynote Address
The Keynote Speaker will be Alex Stamos, Adjunct Professor, Stanford University; 

William J. Perry Fellow, Center for International Security and Cooperation; 
Fellow, Hoover Institution


	Musings
	The Man in the Middlebox: Violations of End-to-End Encryption
	ARM Memory Tagging Extension and 
How It Improves C/C++ Memory Safety 
	Interview with Mark Loveless
	Datacenter RPCs Can Be General and Fast
	The Flipside: A Bit Flip Saved Is Power and Lifetime Earned
	Structured Logging: Crafting Useful Message Content 
	Complex: The Most Overloaded Word in Technology
	Other Faces of Python
	Passwords
	iVoyeur: Prometheus
	For Good Measure: Curves of Error
	/dev/random: Techno-illogical
	Book Reviews
	USENIX Notes



