
;login:
S U M M E R 2 0 1 8 V O L . 4 3 , N O . 2

Columns
neo4
David N. Blank-Edelman

Cobra for the Go cmdline
Chris “Mac” McEniry

Recall and Precision
Dan Geer and Michael Roytman

Sensu 1 and 2
Dave Josephsen

& Mayhem and Hacking
David Brumley

& Eusocial Devices
Philip Kufeldt, Carlos Maltzahn, Tim Feldman,
Christine Green, Grant Mackey, and Shingo
Tanaka

& Fail-Slow Hardware
Haryadi S. Gunawi, Riza O. Suminto, Russell
Sears, Swaminathan Sundararaman, Xing Lin,
and Robert Ricci

& 25 Years of LISA
 Sean Kamath

UPCOMING EVENTS
2018 USENIX Annual Technical Conference

July 11–13, 2018, Boston, MA, USA
www.usenix.org/atc18

Co-located with USENIX ATC ’18
HotStorage ’18: 10th USENIX Workshop on Hot
Topics in Storage and File Systems
July 9–10, 2018
www.usenix.org/hotstorage18

HotCloud ’18: 10th USENIX Workshop on Hot
Topics
in Cloud Computing
July 9, 2018
www.usenix.org/hotcloud18

HotEdge ’18: USENIX Workshop on Hot Topics
in Edge Computing
July 10, 2018
www.usenix.org/hotedge18

27th USENIX Security Symposium
August 15–17, 2018, Baltimore, MD, USA
www.usenix.org/sec18

Co-located with USENIX Security ’18
SOUPS 2018: Fourteenth Symposium on Usable
Privacy and Security
August 12–14, 2018
www.usenix.org/soups2018

WOOT ’18: 12th USENIX Workshop on Offensive
Technologies
August 13–14, 2018
www.usenix.org/woot18

ASE ’18: 2018 USENIX Workshop on Advances
in Security Education
August 13, 2018
www.usenix.org/ase18

CSET ’18: 11th USENIX Workshop on Cyber
Security Experimentation and Test
August 13, 2018
www.usenix.org/cset18

FOCI ’18: 8th USENIX Workshop on Free and Open
Communications on the Internet
August 14, 2018
www.usenix.org/foci18

HotSec ’18: 2018 USENIX Summit on Hot Topics
in Security
August 14, 2018
Lightning Talk submissions due June 11, 2018
www.usenix.org/hotsec18

SREcon18 Europe/Middle East/Africa
August 29–31, 2018, Dusseldorf, Germany
www.usenix.org/srecon18europe

OSDI ’18: 13th USENIX Symposium on Operating
Systems Design and Implementation

October 8–10, 2018, Carlsbad, CA, USA
www.usenix.org/osdi18

LISA18
October 29–31, 2018, Nashville, TN, USA
www.usenix.org/lisa18

Enigma 2019
January 28–30, 2019, Burlingame, CA, USA
Submissions due August 22, 2018
www.usenix.org/enigma2019

FAST ’19: 17th USENIX Conference on File and
Storage Technologies

February 25–28, 2019, Boston, MA, USA
Submissions due September 26, 2018
www.usenix.org/fast19

NSDI ’19: 16th USENIX Symposium on
Networked Systems Design and
Implementation

February 26–28, 2019, Boston, MA, USA
Paper titles and abstracts due (Fall deadline)
September 13, 2018
www.usenix.org/nsdi19

SREcon19 Americas
March 25–27, 2019, Brooklyn, NY, USA

USENIX Open Access Policy
USENIX is the fi rst computing association to off er free and
open access to all of our conferences proceedings and
videos. We stand by our mission to foster excellence and
innovation while supporting research with a practical bias.
Your membership fees play a major role in making this
endeavor successful.

Please help us support open access. Renew your USENIX
membership and ask your colleagues to join or renew today!

www.usenix.org/membership

www.usenix.org/facebook

twitter.com/usenix

www.usenix.org/youtube

www.usenix.org/linkedin

www.usenix.org/gplus

E D I T O R
Rik Farrow
rik@usenix.org

M A N A G I N G E D I T O R
Michele Nelson
michele@usenix.org

C O P Y E D I T O R S
Steve Gilmartin
Amber Ankerholz

P R O D U C T I O N
Arnold Gatilao
Jasmine Murcia

T Y P E S E T T E R
Star Type
startype@comcast.net

U S E N I X A S S O C I AT I O N
2560 Ninth Street, Suite 215
Berkeley, California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

www.usenix.org

;login: is the official magazine of the USENIX
Association. ;login: (ISSN 1044-6397)
is published quarterly by the USENIX
Association, 2560 Ninth Street, Suite 215,
 Berkeley, CA 94710.

$90 of each member’s annual dues is for
a subscription to ;login:. Subscriptions for
non members are $90 per year. Periodicals
postage paid at Berkeley, CA, and additional
mailing offices.

POSTMASTER: Send address changes to
;login:, USENIX Association, 2560 Ninth Street,
Suite 215, Berkeley, CA 94710.

©2018 USENIX Association
USENIX is a registered trademark of the
USENIX Association. Many of the designa-
tions used by manufacturers and sellers
to distinguish their products are claimed
as trademarks. USENIX acknowledges all
trademarks herein. Where those desig-
nations appear in this publication and
USENIX is aware of a trademark claim,
the designations have been printed in caps
or initial caps.

S U M M E R 2 0 1 8 V O L . 4 3 , N O . 2

E D I T O R I A L
2 Musings Rik Farrow

4 Letter to the Editor Cary Gray

S E C U R I T Y
6 The Cyber Grand Challenge and the Future of Cyber-Autonomy

David Brumley

10 Interview with Travis McPeak Rik Farrow

H O T E D G E
14 Interview with Swami Sundararaman Rik Farrow

S T O R A G E
16 Eusocial Storage Devices: Offloading Data Management to Storage

Devices that Can Act Collectively
Philip Kufeldt, Carlos Maltzahn, Tim Feldman, Christine Green,
Grant Mackey, and Shingo Tanaka

23 Fail-Slow at Scale: Evidence of Hardware Performance Faults in
Large Production Systems
Haryadi S. Gunawi, Riza O. Suminto, Russell Sears, Swaminathan
Sundararaman, Xing Lin, and Robert Ricci

S Y S A D M I N
30 A Quarter Century of LISA (with Apologies to Peter Salus)

Sean Kamath

C O L U M N S
34 Practical Perl Tools: It’s a Relationship Thing

David N. Blank-Edelman

38 Knowing Is Half the Battle: The Cobra Command Line Library of Go
Chris “Mac” McEniry

44 iVoyeur: Sensu Rising: An Interview with Matt Broberg
Dave Josephsen

48 For Good Measure: Remember the Recall
Dan Geer and Mike Roytman

52 /dev/random: Machine Learning Disability Robert G. Ferrell

B O O K S
54 Book Reviews Mark Lamourine

U S E N I X N O T E S
56 Notice of Annual Meeting

56 Results of the Election for the USENIX Board of Directors,
2018–2020

57 First Impressions on the Path to Community Engagement
Liz Markell

2  S U M M ER 20 1 8 VO L . 4 3 , N O. 2 www.usenix.org

EDITORIALMusings
R I K F A R R O W

Rik is the editor of ;login:.
rik@usenix.org While I was at OSDI in Atlanta (2016), I heard a couple of paper pre

senters mention the use of machine learning (ML) as part of their
research for those papers. I was immediately intrigued because

ML, part of artificial intelligence (AI), seemed much too complicated to
simply drop in as part of a graduate research project. So I set out in search of
someone who could write an ML article for beginners.

I first asked Mihai Surdeanu [1], whom a fellow attendee at OSDI suggested I contact. Sur
deanu considered the possibility of writing an article but backed out because he was already
too busy. He suggested a list of names in the machine learning field. I tried Andrew Ng, the
person who developed the famous Coursera class on machine learning, and of course he was
too busy. Then I tried his course, but soon found myself flummoxed by the math. I had taken
three years of advanced calculus in college, but that was 40 years ago. And I hadn’t taken the
class on linear regression, which turned out to be as important as matrix manipulation early
in Ng’s course.

Mihai comforted me, saying that Ng’s class is for people designing new ML algorithms and
that most people just use readymade ones. That got me thinking: perhaps I could read some
books and learn enough about ML to be dangerous.

The first book I found was Machine Learning in Python by Michael Bowles [2]. I also found a
PDF of the book online, along with the code examples and data. That was good because I was
in a hurry.

Bowles’ book focuses on just two classes of ML algorithms: penalized linear regression (e.g.,
elastic net and lasso) and ensemble methods (e.g., stacking and gradient boosting). Bowles
has an easytofollow writing style, and it’s in Chapter 2 of his book where I learned about the
importance of understanding the data you want to use for training data for your ML model.
If you use bad data, your model will turn out to be useless. Your data also determines which
class of algorithm is most appropriate. Bowles spends a lot of time performing statistical
analyses of his data sets, helping me understand the importance of this step.

I began to understand why no one—and yes, I had asked more than just the two people mentioned
here—wanted to attempt to write a “beginners guide” to ML. There really is a lot involved.

Mihai suggested a newer book, Deep Learning with Python by Francois Chollet [3], saying that
Chollet uses newer algorithms than the Bowles book, which is two years older. I think I will
continue with Bowles for now, then move on to Chollet.

I came out of my ML adventure realizing just how important training ML data is. Garbagein,
garbageout was an old programmer saying, and it’s just as relevant today as it was when I
learned it decades ago. The goal of ML is to produce a model that can be used to predict output
given new data. The ML algorithms build these models through a recursive process, refining,
for example, weights for features that guide the decision process.

Stayed tuned, as I don’t plan on giving up yet. I’ve heard there will be an extreme need for
programmers who understand ML in the near future…

www.usenix.org S U M M ER 20 1 8 VO L . 4 3 , N O. 2 3

EDITORIAL
Musings

The Lineup
When I heard about the Cyber Grand Challenge (CGC) during
USENIX Security ’16 in Austin, people there suggested watch
ing a long video. I was too impatient to ever get very far into
the video. Other articles about CGC were rehashes of press
releases: all alike without much info. But David Brumley, CEO
of ForAllSecure and, through CMU, mentor to the hacking team
PPP, had a participant’s first hand perspective. His team not only
won the CGC, it was the first autonomous computer system ever
to compete in a DefCon Capture the Flag, making him the ideal
person to describe the contest; ForAllSecure’s Mayhem program
was up against the best human hacking teams at DefCon and did
very well.

Travis McPeak had also given a talk at Enigma, but I wanted
more details and so engaged Travis in an interview about how
they handle least privilege at Netflix. Netflix uses AWS, which
in turn provides extensive configuration for controlling per
missions. Travis makes points about mistakes with granting
permissions, problems with setting up permissions when an app
is first deployed, and how to automatically remove permissions
from apps over time.

I also interviewed Swami Sundararaman, one of the cochairs of
the new HotEdge workshop (associated with USENIX ATC ’18).
I wanted to know why, suddenly, the edge is hot, and what this
edge consists of. Turns out that, of course, things change, and
there are new demands best met by services that will live at the
edge of the Internet.

I was strolling through the FAST ’18 posters and came across
some familiar faces talking about something that just seemed
too weird. Philip Kufeldt and his associates from many different
storage companies were introducing eusocial devices. Like ants
or bees, one device alone can’t do much. But together, they can
accomplish a lot. In this case, they want to take over data man
agement to help unload CPUs and the memory pathways from
work that could be handled by the eusocial storage devices.

Haryadi Gunawi et al. had presented a very cool paper at FAST
about research into slow failures. When memory, or a network
ing or storage device, fails quickly, the failure is obvious. But
when the failure is partial, such as a slowdown but not death,
uncovering the failed component is much harder, particularly in
current layered architectures.

Sean Kamath at LISA17 said he wanted to write another article
about LISA. His first, “Whither LISA” [4], written in 2010,
disturbed marketing folks but did stir up discussion. The LISA
conference is undergoing more changes this year [5], and Sean
has written a retrospective of his 25 years of attending LISA,
how things have changed, and why they will be different in the
future.

Mac McEniry continues to evolve the remote execution example
with the addition of commandline processing and execution of
multiple modules on the server side. Mac introduces Cobra, a Go
package that is more flexible than the native Golang interface to
the command line.

David BlankEdelman takes a look at using graph databases from
Perl. He focuses on Neo4j, explaining how graph databases work
through examples, then covers who to do this via the REST::Neo4p
module.

Dave Josephsen, as excited as ever, interviews Matt Broberg,
the VP of Community for Sensu Inc. Sensu is an open source
monitoring system that by design is very flexible and is already
popular. After introducing Sensu 1.x, Dave moves on to asking
about Sensu 2.0, written in Go, and how that will change things
for Sensu users.

Dan Geer and Michael Roytman write about recall and preci
sion, terms defined in their article. Their interest lies in how
a security practitioner finds the crucial nuggets among all the
events being generated by their security monitoring applications.
They show, through a hypothetical example, how an organization
couldn’t possibly uncover all the significant events, and suggest
how security software should be improved. Apart from the work
reflected in this column, Michael turns out to have a very amaz
ing project [6].

When I mentioned my interest in machine learning, Robert
Ferrell wanted to participate too. Robert focuses on some of the
failures of the notsosmart machines around his house.

Mark Lamourine has reviewed three books this time. The first
is Teach Yourself Go in 24 Hours, a Sams book that Mark was
favorably impressed by. The second seemed a bit of a stretch for
our community, but Mark came away from reading Crucial Con-
versations feeling there was a lot to learn there. Mark also read a
relatively thin tome, Linux Hardening, and while he yearned for
a bit more depth, concurs that the author succeeds by following a
narrow path.

While I’ve been interested in AI and ML for several years now, a
propaganda video about the dangers of autonomous killer drones
(little tiny ones) really motivated me. We can expect to see more
autonomous weapons going forward: just search for autonomous
paintball sentry gun. People have been building these for years,
and the South Koreans have taken their version a bit more seri
ously, replacing the paintball guns with machine guns.

But these are a far cry from little drones that can recognize
their targets, with each drone working cooperatively, so that two
drones don’t gang up on one target, then approaching and killing
the victim. The video rather loses the point that you can swat a
little drone from the air with your hand, and certainly would do
so before it got close enough. When current image recognition

4  S U M M ER 20 1 8 VO L . 4 3 , N O. 2 www.usenix.org

EDITORIAL
Musings

software still has problems describing what’s in a photograph,
forget about drones recognizing specific faces, much less cooper
ating during an attack.

The more common concern these days about AI is what is
termed general intelligence. General intelligence is what humans
are supposed to be able to manage: flexible behavior in varying
circumstances, the ability to communicate intelligently, and so
on. If you note a bit of cynicism here, just consider world politi
cians today. General intelligence in AI is supposed to lead to the
extinction of humanity.

General intelligence in AI is as far off today as fusion power.
Instead, AI works best when trained to operate in a particu
lar, narrow field: for example, playing Go or providing medical
advice; the gameplaying Watson has moved on [7]. And to be
honest, I’d much rather believe in a faroff future like the one
created by Iain M. Banks in his Culture series. While Banks’ AI
machines (called minds) have godlike intelligence, they choose
to continue working with humans—for reasons we might con
sider inscrutable.

Today, our AI still struggles with speech comprehension, and
our autonomous paintball sentries don’t even need AI. Instead,
we need to focus on what ML can do to help us to understand the
mountains of data we are acquiring every day.

References
[1] Mihai Surdeanu: http://www.surdeanu.info/mihai/.

[2] M. Bowles, Machine Learning in Python (Wiley, 2015),
ISBN: 9781118961742.

[3] F. Chollet, Deep Learning with Python: (Manning, 2018),
ISBN13: 9781617294433.

[4] S. Kamath, “Whither LISA,” ;login:, vol. 35, no. 1 (February
2010): https://www.usenix.org/system/files/login/articles
/102kamath.pdf.

[5] LISA18: https://www.usenix.org/conference/lisa18.

[6] A. Maxmen, “Out of the Syrian Crisis, a Data Revolution
Takes Shape,” Nature, October 25, 2017: https://www.nature
.com/news/outofthesyriancrisisadatarevolutiontakes
shape1.22886.

[7] “IBM’s Watson AI Recommends Same Treatment as Doc
tors”: https://futurism.com/ibmswatsonairecommends
sametreatmentasdoctorsin99ofcancercases/.

Letter to the Editor
Rik,

In your Spring 2018 ;login: column you asked about references
to disk (controllers) taking over block/sector placement.
The first I heard of this was in the early 1990s; after a bit of
hunting I located a paper that would correspond to what I
remember:

Robert M. English and Alexander A. Stepanov, “Loge: A Self
Organizing Disk Controller,” in Proceedings of the USENIX
Winter 1992 Technical Conference, pp. 237–251.

I don’t remember who I heard present this when I was work
ing for DEC Networks AD.

I found the paper online at http://stepanovpapers.com/Loge
.USENIX.pdf (it appears to be just a little too old to be in
USENIX’s online archive, and I haven’t found an entry for it
in ACM’s portal).

Cary Gray

Rik responds:

That’s an amazing find. And I’m guessing that lots of people
don’t know that HewlettPackard manufactured disk drives
in the past.

Although there are no links from the USENIX site yet, old
proceedings are being digitized and hosted on archive.org.
You can find the full Proceedings of the Winter 1992 Annual
Technical Conference here: https://archive.org/details
/winter92_usenix_technical_conf.

Thanks!
Rik

http://www.surdeanu.info/mihai/
https://www.usenix.org/system/files/login/articles/102-kamath.pdf
https://www.usenix.org/system/files/login/articles/102-kamath.pdf
https://www.usenix.org/conference/lisa18
https://www.nature.com/news/out-of-the-syrian-crisis-a-data-revolution-takes-shape-1.22886
https://www.nature.com/news/out-of-the-syrian-crisis-a-data-revolution-takes-shape-1.22886
https://www.nature.com/news/out-of-the-syrian-crisis-a-data-revolution-takes-shape-1.22886
https://futurism.com/ibms-watson-ai-recommends-same-treatment-as-doctors-in-99-of-cancer-cases/
https://futurism.com/ibms-watson-ai-recommends-same-treatment-as-doctors-in-99-of-cancer-cases/
http://stepanovpapers.com/Loge.USENIX.pdf
http://stepanovpapers.com/Loge.USENIX.pdf
https://archive.org/details/winter92_usenix_technical_conf
https://archive.org/details/winter92_usenix_technical_conf

2018 USENIX
Annual Technical Conference
JULY 11–13, 2018 • BOSTON, MA
www.usenix.org/atc18
The 2018 USENIX Annual Technical Conference will bring together
leading systems researchers for cutting-edge systems research and
the opportunity to gain insight into a wealth of must-know topics,
including virtualization, system and network management and
troubleshooting, cloud and edge computing, security, privacy, and
trust, mobile and wireless, and more.

The program includes a Keynote Address by Dahlia Malkhi, VMware
Research, 76 refereed paper presentations, a poster session, Birds-of-
a-Feather sessions (BoFs), and more.

HotStorage ’18
10th USENIX Workshop on Hot Topics in Storage and File Systems
July 9–10, 2018
www.usenix.org/hotstorage18
Researchers and industry practitioners will come together for this two-
day workshop on the cutting edge in storage technology and research and
explore and debate longer-term challenges and opportunities in the fi eld.

HotCloud ’18
10th USENIX Workshop on Hot Topics in Cloud Computing
July 9, 2018
www.usenix.org/hotcloud18
HotCloud brings together researchers and practitioners from academia
and industry working on cloud computing technologies to share their
perspectives, report on recent developments, discuss research in progress,
and identify new and emerging trends in this important area. While cloud
computing has gained traction over the past few years, many challenges
remain in its design, implementation, and deployment.

HotEdge ’18
USENIX Workshop on Hot Topics in Edge Computing
July 10, 2018
www.usenix.org/hotedge18
Join researchers and practitioners from academia and industry to discuss
work in progress, identify novel trends, and share approaches to the many
challenges in design, implementation, and deployment of diff erent aspects
of edge computing.

Co-located with USENIX ATC ’18

Register Today!

Register by June 19 and save!

6  S U M M ER 20 1 8 VO L . 4 3 , N O. 2 www.usenix.org

SECURITYThe Cyber Grand Challenge and the
Future of Cyber-Autonomy
D A V I D B R U M L E Y

David Brumley is the CEO and
co-founder of ForAllSecure,
and a Professor at Carnegie
Mellon University in ECE and
CS. ForAllSecure’s mission is

to make the world’s software safe, and they
develop automated techniques to find and
repair exploitable bugs to make this happen.
Brumley’s honors include a United States
Presidential Early Career Award for Scientists
and Engineers (PECASE), a Sloan Foundation
award, numerous best paper awards, and
advising one of the world’s most elite
competitive hacking teams.
dbrumley@forallsecure.com

The Cyber Grand Challenge was about much more than a capturethe
flag (CTF) competition between computers. The people who built
those systems had to learn how to replicate the behavior of human

hackers, perform binary program analysis, patch vulnerable applications—
or not, if installing the patch hurt performance or resulted in a functional
regression. In this article, based on my 2018 Enigma talk [1], I will describe
the competition, and also how human hackers and the CGC competitors’
systems have different strengths.

I want to begin by introducing you to the person whom I believe is one of the world’s best
hackers. His name is Loki and he’s an expert at web browser security. At the 2016 Pwn2Own
competition [2], Loki demonstrated three new vulnerabilities and was able to exploit them in
applications that would have enabled him to break into 85% of the computers in the world.

The rules for Pwn2Own are actually pretty simple. The people running the contest install
a fully patched version of an operating system on a laptop, and then they install the latest,
greatest, directfromdevelopers version of a web browser. The goal is to break into the com
puter through the web browser. If you think about it, this is pretty amazing because vendors
spent a lot of money trying to secure their operating systems. But Loki has been studying
computer security, is an expert in the internals of Google Chrome, and has been studying
web browsers for a long time.

Loki sat down in front of a laptop running Google Chrome on top of Windows and within two
minutes had demonstrated a vulnerability. What’s amazing is that over the course of the next two
days he also demonstrated new zero days in Microsoft Edge and Apple Safari. Those were the
three vulnerabilties that would have allowed him to break into 85% of the world’s computers.

Loki is the world’s best hacker, in my opinion, but he’s not a criminal. I don’t want to conflate
the terms hacker and criminal. Loki responsibly disclosed those vulnerabilities to vendors,
and those vendors issued updates that protected millions of people.

Over the course of that weekend Loki also made $145,000. Not bad for 15 minutes of work,
keeping in mind that like a professional athlete, Loki spent a lot of time preparing for this
contest.

Software and Vulnerabilities
Think of all the software that you use every day. And I’m not just talking about the software
that’s running on your computer, your laptop, or on your smartphone. I’m also thinking about
all this software that you interact with on nonobvious devices: IoT devices, your WiFi router,
even the software that powers the safety system on your car. Who’s checking it for security
vulnerabilities?

How do we go about doing what Loki does and do it at scale? On just the Google Play and
Apple stores, a new app is released every 13 seconds. How do we go about checking software
when a new app is released so frequently? I’ve been working on this problem for a long time,
along with other academic researchers. If we could take what Loki does and program com
puters to emulate it, computers could do that work for us.

www.usenix.org S U M M ER 20 1 8 VO L . 4 3 , N O. 2 7

SECURITY
The Cyber Grand Challenge and the Future of Cyber-Autonomy

At Carnegie Mellon University, we built a tool called Mayhem
that takes offtheshelf software and audits it for vulnerabilities.
As an example, we used Mayhem to explore iwconfig. Mayhem
systematically explored the state space in iwconfig and output
an exploit. You can take that exploit, give it as input to iwconfig,
and get a root shell. At a basic level, we enabled a computer to
take a software binary, autonomously find a security vulnerabil
ity, and prove it with a working exploit. This isn’t the world that
we live in today, but I think this is the world that we need to live
in—one where not just developers can check for the security of
applications but anyone can, using systems like Mayhem.

Scale
In one study we used Mayhem to examine 37,391 programs—
every Debian program available. We spent three years of CPU
time analyzing the programs: that amounts to five minutes per
application. We did this in an embarrassingly parallel way by
bringing up a bunch of Amazon nodes. We found 2.6 million new
crashes due to 13,875 new bugs in those programs. Of those, 250
exploits would allow getting a shell.

We want to be operating at the scale where we can check the
world’s software for exploitable bugs. Doing analysis like this
cost us 28 cents per new bug and $21 per exploit. Compare that to
Loki who made $145,000 for three working exploits.

Cyber Grand Challenge
We’ve been doing this research at CMU for over a decade, along
with other researchers such as Giovanni Vigna at UC Santa
Barbara, Dawn Song at UC Berkeley, and a much larger com
munity. DARPA, the Defense Advanced Research Projects
Agency, stepped up to challenge this community in an open
forum. DARPA issued the Cyber Grand Challenge, wanting
to do for cyber what the autonomous driving challenge [3] did
for vehicles. DARPA wanted to turn cyber into something that
was completely autonomous and controlled by computers. They
challenged the community to combine the speed and scale of
automation with reasoning abilities that exceeded those of
human experts.

DARPA first issued an open call for proposals for a fully autono
mous offense and defense contest, with a $2 million cash prize
for the winner. That got lots of attention, and over 100 US enti
ties registered for the CGC. At the end of the first year, DARPA
pared down the entrants based on the same performance factors
to be used in the final contest, leaving seven contestants.

The final contest occurred at DefCon 2016. This contest was
different from the usual Capture the Flag (CTF), held at DefCon
every year, which pits human teams against one another. In
the CGC, it was computer against computer, with an air gap
separating the computers from any attempt at outside help or
interference.

DARPA structured the event by sending programs to all the
contestants’ systems. These systems needed to find vulner
abilities in those programs and create patches that fixed those
vulnerabilities, sending patches back to the DARPA moderator.
The DARPA moderator system evaluated the security solu
tions based on a number of factors. The first was if you created
an exploit, does it work against other people’s patched binaries.
DARPA called this “consensus evaluation”: you get points based
on whether your exploit works against other people’s running
programs—patched or not.

Second, the patch itself is evaluated for security, checking to see
whether the patch itself could be exploited.

But the world isn’t just about security. It’s also about things like
functionality. DARPA would take the patched binaries and make
sure that the system retained all its original functionality. After
all, if a patch breaks your system you’re not going to install it.
They also measured the performance of the patch. DARPA’s
moderator would look at things like memory overhead.

And so when you considered the type of contest, it wasn’t all
about security. It was about making decisions that operated
within a confined space to make sure that it wasn’t just the
most secure but also maintained performance and functional
ity. To give you an idea, on our system, if we determined that our
patches had more than 5% overhead, it may have been better to
play the original buggy binary.

Round after Round
When a competitor found an exploitable bug and submitted a
patch, things didn’t end there, because that’s not how the world
works. DARPA changed the direction of the community by say
ing the goal here is to win, and the way you win is by giving peo
ple access to your patches. DARPA’s moderator would take our
patches and give them to our competitors, and the competitors
could do further analysis to see whether they could circumvent
them. They could try to steal our patches and use those patch
techniques themselves and submit them back to the DARPA
moderator round after round. So the CGC wasn’t just about
security and a point in time, but about security as it evolves. It
allowed attackers and defenders to learn from each other. And by
the end of the contest, we’d completed over 95 rounds to deter
mine a winner.

When we looked at the scope of CGC, we had to do three things.
First, we needed to be able to automatically exploit software. We
had to do what Loki does to find vulnerabilities, and we had to
teach a computer to do it. Second, we had to be able to automati
cally rewrite binaries to add in defenses to prevent them from
being exploited again. And third, just as importantly, we had to
make better decisions than our opponents. That was huge.

8  S U M M ER 20 1 8 VO L . 4 3 , N O. 2 www.usenix.org

SECURITY
The Cyber Grand Challenge and the Future of Cyber-Autonomy

Automatic Vulnerability Discovery
Let’s talk about how we went about doing the automatic vulner
ability discovery. We needed to be able to perform code analysis
without source code. We built the binary analysis platform (BAP,
[4]) at CMU, available for free from GitHub. BAP allows us to
take a binary and raise it up to an intermediate representation
that is useful for doing program analysis.

We then created tools to find vulnerabilities in software using
a technique called “symbolic execution.” We, and others in the
community, considered symbolic execution as a very academi
cally promising technique that we could publish papers about
while advancing the frontiers of research. But we discovered
during this contest that trying to find the best single solution
was the wrong thing to do.

Instead, we realized that applying a portfolio of techniques, such
as fuzzing and crash exploration, would be more effective. If you
have a crash, the program has some sort of mental problem with
the world at that point. The program thinks the world is differ
ent than it actually is; if there’s a bug in one place, there’s likely a
bug nearby as well. We also built a feedback loop between these
techniques which allowed us to find far more vulnerabilities
than any single technique alone.

At the end of the contest we found 67% of our bugs with fuzzing
and 33% with symbolic execution. But those percentages only
reflect the final uncovering of the bugs themselves. We found
that the symbolic executer would often reach a promising part
of a code then hand that over to a fuzzer, which used a different
set of techniques. It would be the fuzzer that ultimately found
the vulnerability, but only after being enabled by the symbolic
execution technique. We learned that building a portfolio of
techniques that work together cooperatively is always going to
outperform any single technique.

Defense
For defense, we had to be able to statically rewrite binaries.
We used data flow analysis as a basis to focus formal program
analysis on understanding how a program worked. We could
then derive an analysis that would rewrite the program. Here
too we used the portfolio, with two techniques. The first we
called hardening, rewriting the binary to essentially introduce
seatbelts: control flow integrity, stack canaries, ASLR, DEP,
and so on. Now these remediations are agnostic about whether
there is a vulnerability or not, but they make the program safer
overall. Second, when we found a particular bug, we’d automati
cally rewrite that portion of the code where the bug occurred to
introduce safety checks.

After hardening the binary, we could add crashspecific patches
for vulnerabilities when we found them. For example, one of
the challenges DARPA gave us in CGC was based on the SQL

Slammer worm. When Mayhem receives a binary, it immediately
starts generating automatic regression tests, which function as
the baseline for the binary. We’d start patching, creating a hard
ened binary and then replaying those test cases to make sure
that we had no loss of performance and functionality. We would
also go in and rewrite the patches, replaying those automatically
generated test cases to measure and ensure that functional
ity and performance were maintained. Then we would have to
decide which of these patches to apply. Instead of having just one
patch, we had an array of patches based on the portfolio of tech
niques. We would measure them and empirically determine the
best ones to deploy at a particular time. Finally, we had to build a
system that was completely autonomous.

Dynamic Scaling
When DARPA started the contest, we didn’t know whether
they were going to give us 10 programs, 100 programs, or 1000
programs. So we had to build in the capability to dynamically
scale our environment to dedicate resources where they were
going to matter most. For example, if we have a program that we
keep finding new bugs in, it would make sense to devote more
resources to that than to a program that’s not buggy.

Second, we had to make sure that we were playing the game the
optimal way. For example, if we created a patch and that patch
had 5% overhead, we might decide that it was too dangerous
to play since that 5% overhead would hurt our score unless we
thought someone was attacking us.

In a nutshell, we would do the binary analysis, we’d harden, we’d
find exploits, we’d patch, and we’d run through a decision process
that determined the best security solution. Then we’d deploy and
iterate through this process again and again and again.

In the CGC, we faced some of the most notable names in program
analysis out there: UC Berkeley and UC Santa Barbara, who have
been doing research on this forever; Raytheon, a large defense
contractor, was also in the final seven contestants. We also had
a twoperson team from the University of Idaho who qualified,
beating out 93 other teams.

At the end of this contest, Mayhem won. ForAllSecure, the com
pany we founded to continue the development, got the $2 million
cash prize. But when you looked at the contest, everyone had
little twists on their techniques that were different, and if you
look at the scores you’ll notice they’re not very far apart.

CTF
At the end of the CGC, our system, Mayhem, got to participate
in the annual DefCon 24 CTF [5] (Table 1 shows the final results).
Just to give you an idea of the caliber of the people Mayhem played
against, the number three team DEFKOR had Loki on it, the person
who demonstrated three zerodays over the course of two days.

www.usenix.org S U M M ER 20 1 8 VO L . 4 3 , N O. 2 9

SECURITY
The Cyber Grand Challenge and the Future of Cyber-Autonomy

We had built Mayhem as part of ForAllSecure, and I’ve also
been the faculty mentor of the human hacking team at CMU,
PPP (Plaid Parliament of Pwning). So I have some insight into
what the machines could do versus what the humans could do.
Although the machine lost, you’ll notice from the scores that it
was competitive. For two out of the three days of the DefCon 24
CTF, the machine was beating some of the teams.

But there are differences. For example, if you look at the humans,
they have an incredible notion of being able to abstract details
(Table 2). It’s something that humans are great at, while the
machine has precision going for it. At one point in the contest, for
example, aPPP was looking at a line of code they thought might
be vulnerable but couldn’t figure out how to exploit. Mayhem was
able to create an exploit because it had to reason about program
branches and the particular program state, which was extremely
complicated and would far exceed human understanding. May
hem was able to do that in a fraction of a second.

Second, humans have intuition, and this is extremely important
when you hack because you have to decide where to focus your
attention. You may think, this part of the code looks extremely
tricky, and therefore I’m going to focus my attention there.

Machines have brute force. Very simply, brute force is incredibly
useful when you’re trying to analyze, exploit, and patch applica
tions at scale. And the way we see it from our research point of
view is that once a person has an intuition of where to look, brute
force can be used as a leverage point.

Finally, humans have creativity. The machine will only look
for vulnerabilities that it has been programmed to look for,
while humans aren’t restricted. Attackers and defenders get to
coevolve. For example, there is a class of attacks called timing
attacks. The way I describe them is as follows: suppose my wife
asked me, “Do I look fat in these pants?” and I took a few seconds
to respond. It doesn’t really matter what my response is now. The
amount of time it took me to respond reveals all the information
needed. It’s the same way in security, where the amount of time it
takes to do something can reveal something about the secret.

Humans have this great creativity to invent new classes of
attacks. While the machine, once we program it to look for that
class of attacks, has enormous scalability in looking at all the
programs in the world.

Conclusion
In this article, there have really been two themes. The first
theme is that human effort alone does not scale. Apps are being
released at a pace that far outstrips people’s ability to examine
every one. Yet we need something as a safety checkpoint to make
sure we’ve looked at every piece of software for security vulner
abilities. It’s just too important not to do.

Second, we can teach computers to hack. Humans can teach
computers to do at least a little bit of what Loki does and apply
that to every piece of software in the world.

References
[1] Enigma 2018 talk: https://www.usenix.org/conference
/enigma2018/presentation/brumley.

[2] A. Armstrong, Pwn2Own 2016—The Results: http://www
.iprogrammer.info/news/149security/9556pwn2own2016
.html.

[3] https://www.darpa.mil/aboutus/timeline/grand
challengeforautonomousvehicles.

[4] Binary Analysis Platform: https://github.com/Binary
AnalysisPlatform/bap/graphs.

[5] DefCon 24 CTF: https://www.defcon.org/html/defcon24
/dc24ctf.html.

Team Score

PPP 113555

b1o0p 98891

DEFKOR 97468

HITCON 93539

KaisHack GoN 91331

LC↯BC 84412

Eat Sleep Pwn Repeat 80859

Binja 80812

Pasten 78518

Shellphish 78044

9447 77722

Dragon Sector 75320

!SpamAndHex 73993
侍 73368

Mayhem 72047

Table 1: DefCon 24 CTF results [5]

Table 2: Human vs. machine qualities when it comes to hacking, as well as
other forms of problem solving

Human Machine
Abstraction Precision

Intuition Brute force

 Creativity Scalability

https://www.usenix.org/conference
http://www.i-programmer.info/news/149-security/9556-pwn2own2016.html
http://www.i-programmer.info/news/149-security/9556-pwn2own2016.html
http://www.i-programmer.info/news/149-security/9556-pwn2own2016.html
https://www.darpa.mil/about-us/timeline/-grand
https://github.com/Binary
https://www.defcon.org/html/defcon-24

10  S U M M ER 20 1 8 VO L . 4 3 , N O. 2 www.usenix.org

SECURITY

Interview with Travis McPeak
R I K F A R R O W

I missed attending Enigma this year, so I started watching the online
videos as soon as they became available. As always, I was doing more
than just satisfying my own curiosity—I was also looking for talks that

deserve a wider audience. I found several, asked the speakers, and Travis
McPeak was the first to respond.

The technique of least privilege goes back to the dawn of computer security. First published
in 1973, and presented at the fourth SOSP, Saltzer and Schroeder [1] laid out the ideas for
granting only the level of privilege needed so that a particular application can function as
intended.

Travis McPeak adds a new spin on this technique by applying it to applications deployed in
the AWS cloud, starting with a safe list of permissions and automatically removing unused
permissions over time, using an application he shares on GitHub.

Rik Farrow: What is least privilege, and why is it so hard for developers to get right?

Travis McPeak: Least privilege is a classic case of a simple concept that is very difficult to
apply at scale. The idea itself is intuitive: we should only give applications the permissions
that are required to function correctly. This is useful because in the case that an application
becomes compromised, we can constrain the potential impact. For example, we protect files
on Linux systems by granting read/write/execute permissions to only the user or group that
needs access. This protects application resources from other processes on the system that
we may not trust. Browsers enforce tablevel isolation so that a compromised tab can’t affect
the confidentiality or integrity of other tabs. One important point about least privilege is that
it’s a moving target. As an application changes, permissions may need to be added or removed
to match the new requirements. This is analogous to applications that require and then shed
root privileges when no longer needed.

The problems with manually applying least privilege become increasingly apparent when
an organization grows in size and complexity. If I work by myself on an application, it’s
pretty easy for me to add permissions as I need them. Removing permissions when they are
no longer required is a bit more challenging as there is no builtin reminder or incentive to
remove them. I can set periodic reminders for myself and remove things that aren’t needed
anymore, but this may not be my top priority. However, what about organizations with dozens
of applications and hundreds of developers continuously developing and redeploying? Who is
responsible for periodically cleaning up permissions?

In many organizations the security team is responsible for granting and revoking privileges.
There are a few problems with this. The security team doesn’t work on all of these applica
tions, so they don’t know when an application changed and no longer needs some of the per
missions. Manual security reviews are also a big problem because security teams are trying
to balance lots of high priority work with a relatively small number of staff. If security teams
are expected to stay on top of application changes and manually adjust permission sets to
least privilege, they may not have enough time left to perform other critical work such as

Travis works at Netflix on
the Cloud Security team. He
enjoys building automation to
increase security while boosting
developer productivity. Travis

is a core developer of the Bandit and Repokid
open source projects and has presented at
security conferences, including BlackHat USA
2017, Enigma 2018, and re:Invent 2017. He
currently serves as the Bay Area Open Web
Application Security Project chapter leader. In
previous roles he has served on the OpenStack
Security team and as a founding member of
the Cloud Foundry Security Team.
travis.mcpeak@gmail.com

Rik Farrow is the editor of ;login:.
rik@usenix.org

www.usenix.org S U M M ER 20 1 8 VO L . 4 3 , N O. 2 11

SECURITY
Interview with Travis McPeak

applying patches, building tools to support secure development,
and reviewing applications for security vulnerabilities.

For these reasons security teams seem forced into a binary deci
sion: if the application is “important” enough, manually review
it, otherwise ignore it. Every application that is “important” and
manually reviewed saps time from both the application’s devel
opers and the security team. Every application that’s ignored
presents a risk to the business.

RF: In your Enigma ’18 talk [2], you mention an AWS mechanism
for controlling privilege. Could you describe that mechanism?

TM: At Netflix we rely on Amazon Web Services (AWS) heavily
as our cloud provider. AWS provides a powerful accesscontrol
system called Identity and Access Management (IAM) that
gives us very finegrained control over specific actions and the
resources they apply to. Here’s a simple example policy:

{

 “Effect”: “Allow”,

 “Action”: [“s3:GetObject”, “s3:PutObject”],

 “Resource”: “arn:aws:s3:::example_bucket/example_path”

}

This policy statement grants read and write access to the
“example_path” in the S3 “example_bucket.” While this policy
is simple, it can quickly become difficult to determine which
actions and resources should be allowed in a policy. With thou
sands of permissions, AWS can be configured very granularly
compared to Linux file permissions. This configurability makes
it both a powerful tool for security teams and very complicated
for regular users. Even IAM experts may have difficulty deter
mining exactly which permissions are needed to support a given
application workflow.

RF: What techniques did the security team at Netflix come up
with to deal with maintaining or improving least privilege in
their applications?

TM: We use data about the permissions and resources that are
actually used by an application to remove permissions that
aren’t required. To understand how this works in our environ
ment it is useful to track the life cycle of an application and its
permissions, beginning with how it gets permissions in the first
place. Rather than wasting the valuable time of both developers
and the security team, we automatically grant, by default, most
of the benign permissions that applications need to perform
common tasks. When a developer creates a new application, an
applicationspecific role with the default permissions is created
on their behalf by our deployment tool. If the application needs
to perform any unusual or potentially dangerous actions, the
security team and developers will perform a manual review, but
in most cases the default permissions allow the application to do
everything it needs.

After the application has been launched, we begin profiling it
with tools that collect the data that AWS provides about which
permissions and resources are actually used. Once a threshold of
time has passed, unused permissions are automatically removed.
Our opensource tool Repokid [3] automatically calculates
new policies that preserve used permissions, removes unused
permissions, and rewrites the new policy over the old. This
approach eventually generates perfect leastprivilege policies
because anything that is kept is, by definition, actually used by
the application.

If developers require a new permission or need something
that was previously taken away added back, the security team
manually adds it, but this is done with a quick conversation
rather than the manual security reviews that we used to have to
perform. The reasoning is simple: if developers are asking for a
permission, then they either need it and will use it, or it will be
automatically removed.

Once an application stops being used entirely, Repokid will
remove all of the permissions, and the role becomes powerless.
This is important because unused and unmaintained applica
tions are huge headaches for security teams. The old applica
tions have the same permissions with which they were originally
deployed but aren’t receiving patches or attention. By automati
cally removing permissions from these unmaintained applica
tions, we can close a huge security hole.

RF: What are the challenges to this approach and how do you
address them in your solution?

TM: Some applications don’t regularly use their permissions
but need them on an infrequent basis. Our usagebased analysis
fails for these applications, and if we aren’t careful, we can break
them. For this reason, it’s important to identify such applications
and exclude them. Fortunately, there are relatively few, and we
can fall back to the traditional manual review process for them.

Another concern is the eventuality that we will break something.
We have put a lot of thought and consideration into how we can
recover quickly and also detect as rapidly as possible that we
have broken an application. Our goal is to use high quality data
sources to avoid breaking applications. If we do break something
we detect it, and when we detect a broken application we can fix
it with the push of a button by rolling back to an earlier permis
sions state.

At Netflix we are focusing on logistics such as how to inform
developers when changes are occurring for their applications
and to give them options to defer or entirely block changes. Our
goal is for developers to view this as a service that the security
team provides for them to automatically make their applications
more secure. The better we can communicate this message, the
more successful our program will ultimately be.

12  S U M M ER 20 1 8 VO L . 4 3 , N O. 2 www.usenix.org

SECURITY
Interview with Travis McPeak

RF: Does this approach only work for AWS or can it be applied to
other areas of security?

TM: The solution we developed is for AWS applications and
permissions, but we think this approach extends equally well to
other areas of security. For example, it should be possible to use
the same kind of data to constrain application container permis
sions to allow only the required syscalls and capabilities. Appli
cations running directly on Linux systems may similarly be
constrained by AppArmor or seccomp profiles that are generated
automatically based on usage profiling. Mobile application privi
leges may be reduced by profiling usage in a sandbox environ
ment and then having required permissions suggested, taking
the guesswork out of permissions for the application’s developer.
There are many other possibilities for a similar approach applied
to other areas of security in the future.

RF: What are the next steps for the project and its application at
Netflix?

References
[1] J. Saltzer, M. Schroeder, “The Protection of Information in
Computer Systems,” in Fourth ACM Symposium on Operating
System Principles (October 1973): http://www.cs.virginia
.edu/~evans/cs551/saltzer/.

[2] T. McPeak, “Least Privilege: Security Gain without Devel
oper Pain,” ENIGMA Conference (USENIX, 2018): https://
www.usenix.org/conference/enigma2018/presentation
/mcpeak.

[3] Repokid: https://github.com/Netflix/repokid.

TM: We are continuing active development on the Repokid [3]
project. As we add more data sources, we’ll gain both more con
fidence in the policy suggestions and the ability to trim unused
permissions even further. Specifically, we’re excited about using
data to constrain policy access to resources. We’re starting
with S3 but look forward to protecting other resources as well.
Another data source that might be interesting is the software
we’re deploying itself. By examining the package, we may be able
to infer what access it needs and remove access that it doesn’t.
As always, we welcome contributions to Repokid and feedback
from organizations that are using it.

XKCD xkcd.com

http://www.cs.virginia
http://www.usenix.org/conference/enigma2018/presentation
https://github.com/Netflix/repokid

J A N 2 8 – 3 0 , 2 0 1 9
BUR LING A ME, C A , USA

A USENIX CONFERENCE

enigma.usenix.org

The submission deadline is August 22, 2018.

Submit a Talk
Enigma centers on a single track of engaging talks covering a wide range of topics in security and
privacy. Our goal is to clearly explain emerging threats and defenses in the growing intersection

of society and technology, and to foster an intelligent and informed conversation within the
community and the world. We view diversity as a key enabler for this goal and actively work to

ensure that the Enigma community encourages and welcomes participation from all employment
sectors, racial and ethnic backgrounds, nationalities, and genders.

Enigma is committed to fostering an open, collaborative, and respectful environment.
Enigma and USENIX are also dedicated to open science and open conversations,

and all talk media is available to the public after the conference.

PROGR AM CO-CHAIRS

Franziska Roesner,
University of Washington

Ben Adida
Clever

14  S U M M ER 20 1 8 VO L . 4 3 , N O. 2 www.usenix.org

HOTEDGEInterview with Swami Sundararaman
R I K F A R R O W

Swaminathan (Swami)
Sundararaman is the Lead
Architect of ParallelM, an
early-stage startup focused on
production machine learning

and deep learning. Swami was previously at
Fusion-io Inc. and Sandisk Corp. He holds
a PhD from the University of Wisconsin-
Madison. swaminathan.sundararaman@
parallelmachines.com

Rik Farrow is the editor of ;login:.
rik@usenix.org

W hen I read the announcement for the HotEdge workshop [1], I was
immediately intrigued. What the heck is HotEdge? I thought the
“edge” consisted of network devices and content distribution net

works. As I read the prospectus, I learned that edge, in this context, means
something quite different from what I (and most of my friends) considered it
to be.

I’ll let the words of one of the cochairs, Swami Sundararaman, do the explaining.

Rik Farrow: I thought the “edge” consisted of network devices and CDNs. But the edge in
HotEdge is something different.

Swami Sundararaman: Edge computing has many definitions depending on who you ask. The
one that I like the best is the following: edge computing is a new computing paradigm where
server resources, ranging from a miniature computer (such as Raspberry Pi) to a small
datacenter, are placed closer to data and information generation sources. Application and
systems developers could use these resources to enable a new class of latency and band
widthsensitive applications (such as augmented reality, wearable cognitive assistance, sen
sor data processing, etc.) that are not realizable with current cloud computing architectures.

In most ways, edge computing is the opposite of cloud computing and therefore requires
rethinking many tradeoffs that have become normal in cloud computing. Compared to its
potential and the dire need for solutions for upcoming applications, we did not see workshops
to foster earlystage ideas in this field as it deserves. As cochairs, Irfan Ahmad and I wanted
to help advance the field of edge computing by providing a venue where both researchers
and practitioners could come together to both share their vision for building edge computing
applications and systems and also discuss their nascent ideas and receive feedback well in
advance of rigorous academic or industrial product treatments.

RF: So what’s changed that has created the need for this new computing paradigm?

SS: There are two major trends that are driving the demand for lowlatency offloading infra
structure. First, with the advent of Internet of Things (IoT), there are many more connected
devices that are constantly generating tons of data (such as video, audio, sensor data, image,
text, etc.). Second, the need to act or react quickly to changes provides tremendous value
for businesses using sophisticated techniques (such as machine learning, deep learning,
and image processing) that are both compute and memory intensive. Unfortunately, having
heavy compute and/or memory demands on these sensor or other devices is not always pos
sible for multiple reasons: power requirements, form factor, cost, development effort, etc.

Also, the latency required to move the data from these devices to the cloud (which could take
multiple hops) is high and would result in a poor user experience. Even cloud providers such
as Amazon and Microsoft have identified the abovementioned trends and have started to
heavily invest in edge computing (see Greengrass [2] and Azure IoT Edge [3]).

RF: Looking at your background [4], I see recent work with nonvolatile memory, and older
work in operating systems and storage. To me, edge computing seems very different from

www.usenix.org S U M M ER 20 1 8 VO L . 4 3 , N O. 2 15

HOTEDGE
Interview with Swami Sundararaman

what you have done in the past. What drew you to create a gath
ering place for edge researchers, given that you have focused on
other areas in your past?

SS: This is a great question.

I love working on cuttingedge technologies and was fortunate
to work on many diverse interesting problems in the past. As you
have correctly observed, I started with file and storage systems
research and then worked on operating systems and distributed
systems in addition to traditional storage systems during my
PhD. When I graduated, I jumped at the opportunity to work on
nonvolatile memory (including flash and persistent memory
technologies), the latest upcoming storage technology at that
time. At my current job, I am working on automating the deploy
ment, orchestration, and management of machine learning in
production.

As a company, we were initially interested in deploying machine
learning at scale in the context of IoT. Very soon we realized that
the biggest challenge to deploying performant machine learn
ing on (or near) the “things” in IoT is the lack of infrastructure
and standards. We explored the possibility of leveraging edge
computing to solve our problem since it was very promising and
had the potential of being the vehicle to deploy machine learning
(and other upcoming computeintensive technologies) because
it addressed many of the issues (such as latency, power, com
pute, scale, etc.). Unfortunately, we couldn’t fully embrace edge
computing for its lack of widescale adoption. On further investi
gation, we discovered that there are still many open problems
in edge computing and also that edge computing itself is not yet
well defined.

These problems motivated me to contribute and help advance
the field of edge computing. We realized that there were a few
fullfledged conferences (such as SEC and Edge), but there
were no workshops to discuss nascent ideas similar to what
we have in other fields (such as HotOS, HotCloud, HotMobile,
HotStorage, etc.). This was the primary motivation for starting
HotEdge (which serves as a gathering place for edge computing
researchers).

RF: Edge sounds both very interesting and important when mov
ing forward with many technologies. But the requirements you
mention, such as the need for systems that can provide enough
compute power or can be scaled out to do this, will also be attrac
tive targets. The data processed on these systems will also need
to be protected. While it’s still early days for edge, are people
starting to think about the security requirements for these
systems? I find myself imagining edge systems mining digital
currency or used for spying on people using augmented reality.

SS: Yes, researchers and also industry folks have already started
thinking about both security and privacy in edge computing.
This is one of the key pieces needed for the adoption of edge com
puting as multiple entities/users could be sharing the same edge
infrastructure (including CPU, memory, network, and storage).
There have already been a few blogs and papers that focused on
addressing both security and privacy issues in the context of
edge computing.

References
[1] HotEdge Workshop: https://www.usenix.org/conference
/hotedge18.

[2] Amazon Greengrass: https://aws.amazon.com/greengrass.

[3] Microsoft Azure IoT Edge: https://azure.microsoft.com
/enus/resources/videos/microsoftignite2017enableedge
computingwithazureiotedge.

[4] Swami Sundararaman at University of Wisconsin: http://
pages.cs.wisc.edu/~swami/.

https://www.usenix.org/conference
https://aws.amazon.com/greengrass
https://azure.microsoft.com
pages.cs.wisc.edu/~swami/

16  S U M M ER 20 1 8 VO L . 4 3 , N O. 2 www.usenix.org

STORAGEEusocial Storage Devices
Offloading Data Management to Storage Devices
that Can Act Collectively

P H I L I P K U F E L D T , C A R L O S M A L T Z A H N , T I M F E L D M A N , C H R I S T I N E G R E E N ,
G R A N T M A C K E Y , A N D S H I N G O T A N A K A

Philip Kufeldt is a Director of
Storage Standards at Huawei
Technologies, focusing on
NVMe, new key value, and
smart media-based storage

standards. He has over 20 years of experience
in storage, software, and systems. Before
Huawei, Philip was at Toshiba, creating new
smart media devices; Marvell, Parascale,
VERITAS Software, Sun Microsystems, and
IBM; and he has founded several storage-
oriented startups. pak@protium.com

Carlos Maltzahn is an Adjunct
Professor of Computer Science
at UC Santa Cruz and the
Director of the Center for
Research in Open Source

Software (CROSS) and the Systems Research
Lab (SRL). Carlos graduated with a PhD in
computer science from the University of
Colorado at Boulder. carlosm@ucsc.edu

Tim Feldman works on drive
design at Seagate Technology’s
Longmont, Colorado, Design
Center. His current work
focuses on object storage. He

also spends time randonneuring, Nordic skiing,
and logging. timothy.r.feldman@seagate.com

Christine Green led the
Kinetic Open Source Project
development at Seagate and
continues work on Seagate’s
ActiveDrive™ technology. Her

HDD background includes experience with
recording heads and media as well as VLSI and
signal processing. She has a BS in electrical
engineering from Stanford University.
christine.green@seagate.com

A s storage devices get faster, data management tasks rob the host of
CPU cycles and DDR bandwidth. In this article, we examine a new
interface to storage devices that can leverage existing and new CPU

and DRAM resources to take over data management tasks like availability,
recovery, and migrations. This new interface provides a roadmap for device
todevice interactions and more powerful storage devices capable of provid
ing instore compute services that can dramatically improve performance.
We call such storage devices “eusocial” because we are inspired by eusocial
insects like ants, termites, and bees, which as individuals are primitive but
collectively accomplish amazing things.

The Evolution of the Problem
Why Try Smart Storage Again, and Why Now?
Offloading storage processing has been around since the earliest days of computing. The idea
of having a dedicated and cheaper I/O processor offloading the main processor complex made
sense at a time when processor cycles were incredibly scarce and costly. However, over the
years, processor cycle availability has geometrically increased and costs have plummeted
making the utilitarian I/O processor costlier in terms of complexity in both hardware archi
tecture and software. These fast and large CPU complexes permit generalpurpose execution
and I/O management, including data management. Data management tasks are beyond the
basic tasks of storing and retrieving data, including services such as translation, map
ping, deduplication, compaction, sorting, scrubbing, data movement, data redundancy, and
recovery.

Including I/O management created a tight coupling of storage with the server system archi
tecture. With such compute resources available, storage devices need only do the media
management and map logical placement information to physical placement information,
leaving essentially all data management relegated to the generalpurpose processor. Fur
thermore, the simplistic API required to accomplish these goals treats every device as com
pletely independent even though data management necessarily creates device relationships
and dependencies, all of which have to be managed by the generalpurpose processor.

This has driven the evolution of the storage component towards a highly costefficient model
that has resisted most attempts to offload tasks to the component. Attempts to push some
of data management back into the device, such as SCSI OSD or Kinetic, have all failed due to
the need for additional compute and memory in the device pushing up perGiB costs.

NAS Succeeds in Offloading
The one place where data management offloading was successful was Network Attached
Storage (NAS). NAS environments offload all the data management to centralized servers on
the network (Figure 1).

Client servers then use a networkbased access protocol (NFS, CIFS) to store and retrieve
data. The reason for the offloading was twofold:

www.usenix.org S U M M ER 20 1 8 VO L . 4 3 , N O. 2 17

1. Centralizing storage management
2. Disaggregating the storage from the server

The former is a straightforward centralization gain; by consolidating all of the server man
agement touch points, management man hours were reduced. Disaggregation was driven by
the need for sharing and availability. By separating data resources from the local server and
its processor complex, these resources could be placed on a generalpurposes network. This
provided two big wins: the data could be shared by many servers, and data resources could
remain available even with the loss of the local server. This did introduce additional costs
into the data layer. It was made cost effective by scaling up the number of storage devices
and, hence, the number of GiB available attached to a NAS server, driving down the perGiB
costs. Also, being a central resource, this cost was further diluted by the increased number of
servers being served. Even with the gains, the NAS servers themselves were tightly coupled
to the storage, which created scaling limits and vulnerable islands of storage.

So, what has changed?

1. The commodity smartphone market over the last 10 years has driven the cost of embedded
multicore 64bit processors, such as ARM, way below the cost of server processors.

2. The smartphone market also drove the power consumption of these embedded processors
way down.

3. The densities of storage devices continue to skyrocket, making it easier to hide additional
computing resources in the perGiB cost.

4. New denser flash media is permitting the bandwidth aggregation of many discrete flash
chips, making a single device capable of streaming GiB/s of throughput, and they will
continue to get faster. This new performance level demands greater processor capabilities,
and, as such, the processor costs are already partially priced into the perGiB cost of flash
devices.

But there is more. Highspeed flash devices must be connected to the processor complex.
Luckily, PCIe bandwidth has kept pace, growing rapidly with PCIe v3/v4, and PCIe v5 is on
the horizon. However, the same cannot be said about the ultimate destination of datasystem
memory (Figure 2). System memory bandwidth is growing at a much slower pace than the
flash devices and their interconnects. Since all I/O requests must ultimately be transferred
into system memory, the system memory is already becoming the next real bottleneck.

As the storage devices deliver higher and higher throughput, the system memory bottleneck
will reduce the number of storage devices that a server can effectively utilize. This problem
requires that the data transferred by the server to the storage be classified and prioritized.

STORAGE
Eusocial Storage Devices: Offloading Data Management to Storage Devices that Can Act Collectively

Grant Mackey works as a
researcher in the office of
the CTO at Western Digital
Corporation in Irvine, California.
His current work focuses

on modeling and simulation of data-centric
computing. His off time is spent hiking,
cooking, and fiddling with IoT devices at home.
grant.mackey@wdc.com

Shingo Tanaka is working on
new types of SSD projects in
the Flash Storage Department,
SSD Division, Toshiba Memory
Corporation, Tokyo, Japan. His

current work focuses on higher functioning
SSD, which can offload host tasks into SSD,
effectively integrating them into existing SSD
architecture. shingo3.tanaka@toshiba.co.jp

Figure 1: NAS provides centralized storage management while disaggregating storage from the server.

18  S U M M ER 20 1 8 VO L . 4 3 , N O. 2 www.usenix.org

STORAGE
Eusocial Storage Devices: Offloading Data Management to Storage Devices that Can Act Collectively

Data transfers strictly for data management (mapping/place
ment, scrubbing, redundancy, recovery, and accessibility) is of
less benefit than actual I/O transfers for real work and should be
offload targets.

RocksDB as an Example
Take the example of a keyvalue store like RocksDB, a library
that allows an application to maintain a keyvalue database. The
real work by the application is not likely to be the storing and
retrieving of data; rather, the application is dependent on being
able to persistently put and get data to/from the RocksDB store.
This means any I/O transfers done to map the data and ensure
its durability, availability, or accessibility is work done outside of
the knowledge of the application.

RocksDB maps the keyvalue data through a data structure
called a logstructured mergetree (LSM). This LSM tree is
implemented atop a file system, which in turn uses a block
device to persistently store and retrieve data (Figure 3). The
LSM tree itself constantly sorts the data as it comes into the
store. This requires that large sections of data be read into the
server memory via the file system and block device, manipulated
and then stored into new file system structures. In addition,
RocksDB ensures durability by checksumming the data as it is
added to the store. It then periodically scrubs the data by trans
ferring it to server memory and validating the checksums. All of
this I/O can be considered northsouth data transfers, moving
data in and out of the storage device. RocksDB is not only con
suming processor cycles in the sorting and scrubbing of data but,
more importantly, is consuming memory bandwidth for its own
data management outside of the application’s knowledge.

This example gets worse when considering availability, recovery,
and accessibility. In this example, RocksDB is using local stor
age resources. To guarantee availability of the store even if the

server fails, the data would need to be replicated to other servers
with storage resources. This means data has to be transferred
not only to local storage controllers but also to network control
lers, greatly increasing the memory bandwidth usage. These
transfers can be considered eastwest transfers because the data
moves laterally from one server to another (Figure 4).

Recovery again potentially moves data east and west when
there are failures. Data accessibility incurs east and west data
movement for the purposes of tiering, caching, or load balancing
across a set of servers.

All of these activities increase the usage of the server memory
bus for data management, putting the data management directly
in contention with the application. With the advent of the cheap,
lowpower embedded processors, highdensity storage devices,
and highspeed devices, it is now time again to look at offloading
data management to the devices themselves.

Goals of the Solution
The current standard storage API characterizes a storage
device’s available space as a static, linear address space of
contiguous fixedsize data blocks. These address spaces can be
segmented (partitioned) but have the same properties as the par
ent address space. Data within these address spaces is accessed
in block granularities by giving a location address (logical
block address, LBA) within the address space and the number

Figure 2: Throughput mismatch, based on Jae Do, “SoftFlash: Program-
mable Storage in Future Data Centers,” SNIA SDC 2017, Santa Clara, CA

Figure 3: Translations for data management and DMA use for data
management. WAF/RAF stands for the write/read amplification in Flash
devices.

Figure 4: When scaling out a key-value database, data moves in two dif-
ferent dimensions: within the scale-out server (north-south) and between
servers (east-west).

www.usenix.org S U M M ER 20 1 8 VO L . 4 3 , N O. 2 19

STORAGE
Eusocial Storage Devices: Offloading Data Management to Storage Devices that Can Act Collectively

of sequential blocks to be transferred. This interface requires
applications to locate their data by remembering the device, the
partition, the LBA, and the length.

This locationcentric model provides no other alternatives for
abstract data location, data layout, redundancy, deduplication,
sorting, scrubbing, data movement, data recovery, QoS, etc.
Therefore, offloading data management to a storage device is
more than expansion of the current storage device API—it is
indeed a complete sea change.

It is important to understand the scope and highlevel goals of a
new storage API. The goals are:

1. Data placement within a device should be abstracted from the
I/O path. Consequently, data layout should be opaque.

2. Data location should be abstracted from the I/O path.
3. Data movement from one device to another should be ab

stracted from the I/O path.
4. Data availability should be configurable and abstracted from

the I/O path.
5. Data recovery and repair should be abstracted from the I/O

path.
6. Data attributes should be supported.
7. Data access at scale should be supported.
8. Design should be mechanismbased, leaving policy to be de

fined by the user.

Introducing Eusocial Storage
Eusocial storage is a new API definition that drives data man
agement activities into the device and sets a course towards in
store compute functionality. It takes into account today’s scale
requirements and builds on top of them.

Software
Eusocial storage is a mechanismbased software abstraction
that standardizes a network/fabricbased object protocol that
supports variablesized keys and objects (Figure 5). Eusocial

◆◆ inherently disaggregates, permitting composable systems;
◆◆ inherently abstracts data location, permitting dynamic systems

like scaleout storage with data availability, scaled access, and
dynamic balancing;

◆◆ inherently reduces failure domains;
◆◆ supports peertopeer interactions, permitting autonomous

data availability and data migrations between devices;
◆◆ supports device class organization, permitting scaling on a

classofservice basis;
◆◆ supports userdefined but autonomous data migrations be

tween classes, providing for userdefined tiering and caching;
◆◆ supports instore computing.

Hardware
Eusocial places no hard requirements on the hardware other
than it must support a bidirectional network or fabric to satisfy
the disaggregation, peer to peer, cluster, and control require
ments. Other than this network requirement, the hardware
can be defined in any fashion and take any form. There are no
restrictions on media type, form factor, capacity, components,
and fabric type. For example, a eusocial storage device could be
a small Ethernetenabled SSD, a small sled of HDDs, an opti
cal jukebox, or even a medialess gateway to S3. It is anticipated
that manufacturers will compete on designing hardware that
is highly optimized for the media type or the targeted class of
service.

Organization
Eusocial is organized into levels: storage devices, castes, and the
cluster (Figure 6). The storage devices represent highly opti
mized, autonomous units of objectbased storage. These devices
define the lines of service they provide, such as throughput,
latency, media type, and instore compute availability. Devices
that have similar lines of service can be organized into castes.
Within a caste, devices scale out a line of service providing for
data availability, data accessibility, and potentially instore

Figure 5: Eusocial device Figure 6: Eusocial hierarchy

20  S U M M ER 20 1 8 VO L . 4 3 , N O. 2 www.usenix.org

STORAGE
Eusocial Storage Devices: Offloading Data Management to Storage Devices that Can Act Collectively

compute. As an example, one can imagine having the following
storagemedia groupings:

◆◆ Highspeed: a caste consisting of scaled out replicated enter
prise eusocial SSDs

◆◆ Warm: a caste consisting of scaled out replicated eusocial
HDDs

◆◆ Cold: a caste consisting of scaled out erasureencoded and spin
controlled eusocial HDDs

◆◆ S3: a caste consisting of a gateway to S3
◆◆ Compute: a caste consisting of scaled out instore computing

enabled eusocial devices

Once the devices are organized into castes, users can define the
lifecycle of an object by defining caste relationships, called caste
maps (Figure 7). These maps plot the trajectory of an object
through a set of castes and what events trigger objects to move.
Once a map is defined by a user, applications can tag objects with
the appropriate map. Eusocial devices themselves are respon
sible for following these maps and moving the data as dictated by
the map.

Ultimately, the eusocial devices and castes exist inside a cluster
that shares the whole configuration with all members. The clus
ter is also responsible for managing events and event notifica
tion. Clients also receive the configuration so that they can get
and put data within the system.

Because eusocial storage is a scaleout object protocol, tradi
tional access methods such as block and file access would be
implemented atop the eusocial protocol.

The Evolution of the Solution
Changing the API is a significant issue since the block stor
age APIs have been ingrained in our programming model for
decades. Consequently, all server software has been written to
the block interface. Changing this interface will require time
and some strategy to occur.

The good news is that there are significant numbers of appli
cations that use placement abstraction storage APIs such as
keyvalue or object. Today, these applications require a layer(s)
of software like a file system to map the abstracted data to the

block interface. Removing these mapping or translation layers
can provide not only performance enhancements to the app but
also can return processor cycles and DMA bandwidth back to
the server. Paying close attention to these applications’ require
ments creates a readymade set of consumers for the new API.

In addition to picking the right firstuse cases, care needs to be
taken on how to roll out the API’s inherent complexity. An API
roadmap can be broken down into several discrete steps:

1. Northsouth data management offloading
2. Disaggregation
3. Eastwest data management offloading
4. Instore computing

North-South Data Management Offloading
A natural starting point for data management offloading is hap
pening in the industry today. There are standards bodies already
working on creating a simple keyvalue command set that will
provide an alternative to the standard block command set.
This work introduces the notion of an API that has abstracted
placement information behind a keyvalue interface and places
the work of maintaining the key value store inside the device.
Although initially targeted for direct connect devices, this work
is being done so that it can be easily used with disaggregated pro
tocols as well. This step begins moving applications away from
the block interface programming model and onto a keyvalue
based interface.

The initial industrybased work will target those readymade
consumers who already use keyvalue APIs but have to depend
on server software to implement keyvalue store. This effort will
provide a proof point and beachhead for the eusocial API work.

Eusocial will build on this by completely providing a full object
API between a eusocial device and a host. Initially this can be
done on directly connected devices.

Disaggregated Storage
Many and diverse solutions prove that disaggregation is ben
eficial to storage workloads: NAS, Ceph, Swift, Gluster, etc.
Hence the eusocial approach is revolutionary not because it is
arguing for disaggregation. The novelty is the granularity of that
disaggregation is now properly attributed to singularly capable
devices rather than a singular server (potentially far over
scoped) responsible for a collection of dependents. So instead of
having to fanin clients only to fanout to media (Figure 1), the
eusocial approach constructs a virtual crossbar allowing clients
to talk directly to all the storage devices (Figure 8).

The resulting shift increases the number of devices that need
to be managed by some type of service, and that can be seen as a
detriment to eusocial storage. However, we argue that this added

Figure 7: Eusocial caste hopping

www.usenix.org S U M M ER 20 1 8 VO L . 4 3 , N O. 2 21

STORAGE
Eusocial Storage Devices: Offloading Data Management to Storage Devices that Can Act Collectively

complexity is just added flexibility. A softwaredefined storage
layer with many options can make better choices for applications
that need a certain class of storage with a certain level of quality
of service.

Eusocial storage can take advantage of existing tools such as
softwaredefined networking to centralize management of data
path and management into simple interfaces, while maintaining
storage disaggregation. As an example, we have a set of euso
cial castes which are connected via a softwaredefined, fully
connected crossbar, meaning that the latency of requests from
any device in any caste to any other device is similar. The actual
physical architecture connecting all of these devices may dif
fer, but the way they are advertised to client applications is this
simple crossbar.

This means two things to two different groups of individu
als. First, the application team enjoys a remarkable degree of
freedom in choosing the type of eusocial caste their data should
live and act in, without having to consider the underlying system
architecture. Second, because the underlying architecture is
obfuscated from the application by this layer of softwaredefined
networking, the system infrastructure group that maintains the
various devices participating in the eusocial castes has freedom
in architecting the disaggregation of devices so long as they do
not violate the higher level QoS guarantees being advertised by
a particular eusocial caste to applications. Combined, these two
groups of people are happy, and the underlying infrastructure is
more efficiently consumed.

East-West Data Management Offloading
Once eusocial devices are disaggregated, the balance of the data
management features of eusocial can be delivered. This includes
scale access, data movement, data redundancy, data recovery,
and caste hopping. These features all require peertopeer
operations, or eastwest data movement.

In-Store Computing
The design of eusocial storage naturally progresses towards
“instore computing,” that is, performing computing such as data
filtering, transformation, and even more computeintensive ana

lytics within a storage device (Figure 9). The evolution observed
so far shows a slow increase of data management offloading onto
storage devices, slowly increasing the requirement for process
ing in the device (e.g., translation layers in flash and shingled
magnetic recording disks). Eastwest communication among
instore computing devices will enable functionalities such as
deduplication, secret sharing, and divergent replication (i.e.,
each replica has a different layout). We anticipate that due to the
increase in cost, instore computing devices will be separate
from the main storage and reside in their own caste.

Because scale out is done within the caste, implementers are free
to determine the number of instore computing eusocial devices,
how they are replicated, and, through the use of caste maps,
when old data should be moved out. Datacenter uses will focus
around bigdata processing and search. A caste of IoT eusocial
devices deployed at the edge store acquired data and then do
firstpass processing before shuttling the data back to the home
office castes.

The benefits from instore computing have been studied by
Seagate. While many details could not be made available for this
article, some of the results are promising: using benchmarks
that include MapReduce, search, and data maintenance tasks,
Seagate was able to double storage throughput and reduce host
CPU utilization by 15–20% by offloading these tasks to devices
capable of instore computing. Seagate also found evidence
that instore computing can increase uploading speeds. In one
case, uploading speeds increased by a factor of 10 over a Hadoop
installation with traditional devices. All these results are mainly
due to scaleout effects of offloading dataintensive operations
to many devices where the data already resides and where data
transfers to hosts become unnecessary.

Conclusion
This paper has examined the effects of rapidly growing stor
age throughput on our computing environments as well as the
need for scale environments. Both of these issues are forcing a
dramatic change in the roles and responsibilities of components
in our systems. Previously, it was desirable to have dumb and
cheap devices that a system could program and manage. But as

Figure 8: Full crossbar disaggregation Figure 9: In-store compute caste

22  S U M M ER 20 1 8 VO L . 4 3 , N O. 2 www.usenix.org

STORAGE
Eusocial Storage Devices: Offloading Data Management to Storage Devices that Can Act Collectively

their capacities and speeds grow, it is becoming clear that their
management and some data processing belong to the devices
themselves. The eusocial concept is a design space that is open
ing the door to just such a future.

Acknowledgments
This work has been made possible by the Center for Research in
Open Source Software at UC Santa Cruz (cross.ucsc.edu), which
is funded by a donation from Sage Weil and industry member
ships. Industry members include Toshiba Memory America,
Inc., Micron Technology, Inc., Seagate Technology LLC, Western
Digital Corporation, and Huawei Technologies Co. Ltd. CROSS,
founded in September 2015 as a forum for highimpact research
with strong industry participation, leverages technology transfer
and standardization effects of opensource software communi
ties and educates the nextgeneration of opensource software
leadership among UC Santa Cruz doctoral students.

The setup for the instore activedisk results are Linux; PLX
PCIe switch, PCIe Gen1, x4; 2 SSD drives Attribution: Nitin
Kabra, Rajesh Bhagwat, Sneha Wagh; Seagate.

References
A. Acharya, M. Uysal, and J. Saltz, “Active Disks: Program
ming Model, Algorithms and Evaluation,” ACM SIGPLAN
Notices, vol. 33, no. 11 (1998), pp. 81–91: http://pages.cs.wisc
.edu/~remzi/BrainClass/Wiki/Readings/Systems/p81
acharya.pdf.

E. Riedel, G. A. Gibson, and C. Faloutsos, “Active Storage for
LargeScale Data Mining and Multimedia,” in Proceedings of
the 24th International Conference on Very Large Data Bases,
1998, pp. 62–73: http://www.vldb.org/conf/1998/p062.pdf.

K. Keeton, D. A. Patterson, and J. M. Hellerstein, “A Case for
Intelligent Disks (IDISKs),” SIGMOD Record, vol. 27, no. 3
(1998), pp. 42–52: http://db.cs.berkeley.edu/papers/sigmodr98
idisk.pdf.

H. Lim, V. Kapoor, C. Wighe, and D. H. Du, “Active Disk File
System: A Distributed, Scalable File System,” in Proceedings
of the 18th IEEE Symposium on Mass Storage Systems and
Technologies, 2001: https://pdfs.semanticscholar.org/b290/7b
9e230a68250781ff4779585b2dc2a144d0.pdf.

N. Golpayegani, S. Prathapan, M. Halem, R. Warmka, B.
Wyatt, J. Trantham, and C. Markey, “Bringing MapReduce
Closer to Data with Active Drives,” Abstract IN21D0059
presented at 2017 Fall Meeting, AGU.

http://pages.cs.wisc.edu/~remzi/BrainClass/Wiki/Readings/Systems/p81-acharya.pdf
http://pages.cs.wisc.edu/~remzi/BrainClass/Wiki/Readings/Systems/p81-acharya.pdf
http://pages.cs.wisc.edu/~remzi/BrainClass/Wiki/Readings/Systems/p81-acharya.pdf
http://www.vldb.org/conf/1998/p062.pdf
http://db.cs.berkeley.edu/papers/sigmodr98-idisk.pdf
http://db.cs.berkeley.edu/papers/sigmodr98-idisk.pdf
https://pdfs.semanticscholar.org/b290/7b9e230a68250781ff4779585b2dc2a144d0.pdf
https://pdfs.semanticscholar.org/b290/7b9e230a68250781ff4779585b2dc2a144d0.pdf

www.usenix.org S U M M ER 20 1 8 VO L . 4 3 , N O. 2 23

STORAGE

Fail-Slow at Scale
Evidence of Hardware Performance Faults in Large Production Systems

H A R Y A D I S . G U N A W I , R I Z A O . S U M I N T O , R U S S E L L S E A R S , S W A M I N A T H A N S U N D A R A R A M A N ,
X I N G L I N , A N D R O B E R T R I C C I

Understanding fault models is an important criterion for building
robust systems. Decades of research have developed mature failure
models such as failstop [10], failpartial [2], failtransient [9], and

Byzantine failures [5]. We highlight an understudied “new” failure type:
failslow hardware, i.e., hardware that is still running and functional but in
a degraded mode, i.e., slower than its expected performance. We found that
all major hardware components can exhibit failslow faults. For example,
disk throughput can drop by three orders of magnitude to 100 KB/s due to
vibration; CPUs can unexpectedly run at halfspeed due to lack of power; and
network card performance can collapse to Kbps level due to buffer corrup
tion and retransmission.

While failslow hardware arguably did not surface frequently in the past, in today’s systems,
deployed at scale along with many intricacies of largescale operational conditions, the prob
ability that a failslow hardware incident can occur increases. Furthermore, as hardware
technology continues to scale (smaller and more complex), today’s hardware development
and manufacturing will only exacerbate the problem.

To fill the void of strong evidence of hardware performance faults in the field, we—a group
of researchers, engineers, and operators of largescale datacenter systems across 12 institu
tions—decided to write this “community paper” [11]. More specifically, we have collected 101
detailed reports of failslow hardware behaviors, including the hardware types, root causes,
symptoms, and impacts to highlevel software.

Methodology
We collected 101 reports of failslow hardware
from largescale cluster deployments in 12
institutions (Table 1). At such scales, hardware
is more likely to witness failslow occurrences.
The reports were all unformatted text, written
by the engineers and operators who still vividly
remember the incidents due to the severity of the
impacts. The incidents were reported between
2000 and 2017, with only 30 reports predating
2010. Each institution reported a unique set of
root causes. For example, although an institution
may have seen a corrupt buffer as the root cause
slowing down networking hardware (packet loss
and retransmission) many times, it was only
collected as one report. Thus, a single report can
represent multiple instances of an incident. If
multiple institutions report the same root cause,

Haryadi Gunawi is a Neubauer
Family Assistant Professor in
the Department of Computer
Science at the University of
Chicago where he leads the

UCARE Lab (U Chicago systems research
on Availability, Reliability, and Efficiency).
He received his PhD from the University
of Wisconsin—Madison and was awarded
an Honorable Mention for the 2009 ACM
Doctoral Dissertation Award.
haryadi@cs.uchicago.edu

Riza Suminto received a BS in
computer science from Gadjah
Mada University in 2010. In
2013, he joined the University
of Chicago to pursue his PhD in

computer science. He is currently a member of
the UCARE Lab and is interested in addressing
performance and outage bugs in cloud
systems. riza@cs.uchicago.edu

Russell Sears is a Senior
Engineer at Pure Storage. His
research interests include
high-performance and scalable
systems with a focus on storage

infrastructure. He is currently working on new
storage APIs to replace flash translation layers
and the block device abstraction.
sears@purestorage.com

Swaminathan (Swami)
Sundararaman is the Lead
Architect of ParallelM, an
early-stage startup focused on
production machine learning

and deep learning. Swami was previously at
Fusion-io Inc. and Sandisk Corp. He holds
a PhD from the University of Wisconsin—
Madison. swaminathan.sundararaman@
parallelmachines.com Table 1: Operational scale

Institution Nodes
Company 1 >10,000

Company 2 150

Company 3 100

Company 4 >1,000

Company 5 >10,000

University A 300

University B >100

University C >1,000

University D 500

Nat’l Lab X >1,000

Nat’l Lab Y >10,000

Nat’l Lab Z >10,000

24  S U M M ER 20 1 8 VO L . 4 3 , N O. 2 www.usenix.org

STORAGE

however, it is counted multiple times. The majority of root causes (66%) were unique, how
ever, and only 22% were duplicates (12% of the reports did not pinpoint a root cause). More
specifically, a duplicated incident was reported on average by 2.4 institutions; for example,
firmware bugs were reported from five institutions, driver bugs from three institutions, and
the remaining issues from two institutions. The raw (partial) data set can be downloaded on
our group website [1].

We note that there are no analyzable hardwarelevel performance logs (more in the To
Vendors section, below), which prevents largescale log studies. We strongly believe that
there were many more cases that slipped by unnoticed. Some occurrences undoubtedly went
unreported since operators change jobs. We did not include known slowdowns (e.g., random
I/Os causing slow disks, or GC activities occasionally slowing down SSDs). We only include
reports of unexpected degradation. For example, unexpected hardware faults that make GC
activities work harder are reported.

Xing Lin is a member of the
technical staff in the NetApp
Advanced Technology Group.
He joined NetApp after
receiving his PhD from the

University of Utah, where his research focused
on improving space efficiency for storage
systems. xing.lin@netapp.com

Robert Ricci is a Research Associate
Professor in the School of Computing at the

University of Utah and is one
of the directors of the Flux
Research Group. He has been
a designer and implementer
of research infrastructure for

nearly two decades, including at Emulab and
CloudLab. ricci@cs.utah.edu

STORAGE
Fail-Slow at Scale: Evidence of Hardware Performance Faults in Large Production Systems

Table 2: Summary of our findings and suggestions

Important Findings and Observations

Varying root causes: Failslow hardware can be induced by internal causes such as firm
ware bugs or device errors/wearouts as well as external factors such as configuration,
environment, temperature, and power issues.

Faults convert from one form to another: Failstop, partial, and transient faults can con
vert to failslow faults (e.g., the overhead of frequent error masking of corrupt data can lead
to performance degradation).

Varying symptoms: Failslow behavior can exhibit a permanent slowdown, transient slow
down (upanddown performance), partial slowdown (degradation of subcomponents),
and transient stop (e.g., occasional reboots).

A long chain of root causes: Failslow hardware can be induced by a long chain of causes
(e.g., a fan stopped working, making other fans run at maximal speeds, causing heavy
vibration that degraded the disk performance).

Cascading impacts: A failslow hardware can collapse the entire cluster performance; for
example, a degraded NIC made many jobs lock task slots/containers in healthy machines,
hence new jobs cannot find enough free slots.

Rare but deadly (long time to detect): It can take hours to months to pinpoint and isolate a
failslow hardware for many reasons (e.g., no fullstack visibility, environment conditions,
cascading root causes and impacts).

Suggestions

To vendors: When error masking becomes more frequent (e.g., due to increasing internal
faults), more explicit signals should be thrown rather than running with a high overhead.
Devicelevel performance statistics should be collected and reported (e.g., via SMART) to
facilitate further studies.

To operators: Thirtynine percent of root causes are external; thus troubleshooting fail
slow hardware must be done online. Due to cascading root causes and impacts, fullstack
monitoring is needed. Failslow root causes and impacts exhibit some correlation; thus
statistical correlation techniques may be useful (with fullstack monitoring).

To systems designers: While software systems are effective in handling the failstop
(binary) model, more research is needed to tolerate failslow (nonbinary) behavior. Sys
tem architects, designers, and developers can faultinject their systems with all the root
causes reported in this study to evaluate the robustness of their systems.

www.usenix.org S U M M ER 20 1 8 VO L . 4 3 , N O. 2 25

STORAGE
Fail-Slow at Scale: Evidence of Hardware Performance Faults in Large Production Systems

Observations (Take-Away Points)
Varying Root Causes
Pinpointing the root cause of a failslow hardware is a daunting
task as it can be induced in a variety of ways, as shown in Table
3. Hardware performance fault can be caused by internal root
causes from within the device such as firmware issues or device
errors/wear-outs. For example, many individual I/Os in SSD that
should only take tens of µs were throttled by exactly multiples of
250µs, as high as 23ms; a bad batch of SSDs stopped responding
for seconds and then recovered; a disk head moved slower due to
gunk that spilled from the actuator assembly and accumulated
between the disk head and the platter; and a NIC driver bug
caused a “very poor” throughput, and the operators had to dis
able TCP offload to work around the problem.

However, a perfectly working device can also be degraded by
many external root causes such as configuration, environment,
temperature, and powerrelated issues. Some examples of exter
nal causes are: a clogged air filter caused optics in the switch to
start failing due to a high temperature, generating a high 10%
packetloss rate; a partial power supply failure meant throttling
the CPUs by 50%; some nodes were running slow because other
nodes in the same rack were drawing more power, causing rack
power supply instability and dropping power to various parts of
the rack; and faulty chassis fans surrounding nodes caused such
a strong vibration that drives went into recovery mode.

Fault Conversions to Fail-Slow
Different types of faults such as failstop, partial, and transient
can convert to failslow faults.

Fail-stop to fail-slow: Because many hardware pieces are
connected, a failstop component can make other components
exhibit a failslow behavior. For example, a dead power supply
throttled the CPUs by 50% since the backup supply was unable
to deliver enough power; and a vendor’s buggy firmware made a
batch of SSDs stop for seconds, disabling the flash cache layer
and slowing the entire storage stack. These examples suggest
that failslow occurrences can be correlated to other failstop
faults in the system. A robust failstoptolerant system should
ensure that a failstop fault does not convert to failslow.

Fail-transient to fail-slow: In addition to failstop, many kinds
of hardware can exhibit failtransient errors: for example, disks
occasionally return I/O errors, processors sometimes produce
a wrong result, and memory corrupts from time to time. Due
to their transient and “rare” nature, firmware/software typi
cally masks these errors from users. A simple mechanism is to
retry the operation or repair the error (e.g., with ECC or parity).
When the transient failures are recurring much more frequently,
however, error masking can be a “doubleedged sword.” That is,
because error masking is not a free operation (there are retry
delays, repair costs), when the errors are not rare, the masking
overhead becomes the common case performance.

We observed many cases of failtransient to failslow conver
sion. For example, a disk firmware triggered frequent “read
afterwrite” checks in a degraded disk; and many cases of loss/
corrupt network packets (a 1–50% rate in our reports) triggered
heavy retries that collapsed the network throughput by orders of
magnitude.

From the stories above, it is clear that a distinction must be
made between rare and frequent failtransient faults. While it is
acceptable to mask the former, the latter should be exposed to and
not hidden from highlevel software stack and monitoring tools.

Fail-partial to fail-slow: Some hardware can also exhibit fail
partial fault where only some part of the device is unusable (that
is, a partial failstop). This kind of failure is typically masked by
the firmware/software layer (e.g., with remapping). However,
when the scale of partial failure grows, the fault masking brings
a negative impact to performance. Bad chips in SSDs reduce the
size of overprovisioned space, triggering more frequent garbage
collection; and a more known problem, remapping a large num
ber of bad sectors, can induce more disk seeks. Similar to the
failtransient case above, there must be a distinction between
small and largescale partial faults.

Varying Fail-Slow Symptoms
We observed the “many faces” of failslow symptoms: perma
nent, transient, and partial failslow and transient failstop, as
illustrated in Figure 1.

Hardware Types
Root SSD Disk Mem Net CPU Total
Device errors 10 8 9 10 3 40

Firmware bugs 6 3 0 9 2 20

Temperature 1 3 0 2 5 11

Power 1 0 1 0 6 8

Environment 3 5 2 4 4 18

Configuration 1 1 0 2 3 7

Unknown 0 3 1 2 2 8

Total 22 23 13 29 25 112

Table 3: Root causes across hardware types. “Unknown” implies that
operators could not pinpoint the root cause but simply replaced the hard-
ware. Note that a report can have multiple root causes (e.g., environment
and power/temperature issues), and thus the total (112) is larger than the
101 reports.

26  S U M M ER 20 1 8 VO L . 4 3 , N O. 2 www.usenix.org

STORAGE
Fail-Slow at Scale: Evidence of Hardware Performance Faults in Large Production Systems

Permanent slowdown: The first symptom (Figure 1a) is a per
manent slowdown, wherein the device initially works normally
but its performance drops off over time and does not return to
the normal condition (until the problem is manually fixed). This
mode is the simplest among the four models because operators
can consistently see the issue.

Transient slowdown: The second symptom (Figure 1b) is a
transient slowdown, wherein the device’s performance fluctu
ates between normal and significant degradation, which is more
difficult to troubleshoot. For example, applications that create a
massive load can cause the rack power control to deliver insuf
ficient power to other machines (degrading their performance),
but only until the powerhungry applications finish.

Partial slowdown: The third model (Figure 1c) is a partial
slowdown, where only some parts of the device slow. In other
words, this is the case of partial failstop converting to partial
slowdown. For example, some parts of memory that are faulty
require more ECC checks to be performed. The partial failslow
model also complicates debugging since some operations experi
ence the slowdown but others on the same device are not affected.

Transient stop: The last symptom (Figure 1d) is the case of
transient stop, where the device occasionally reboots itself,
causing performance at times to degrade to zero. For example, a
buggy firmware sometimes made the SSDs “disappear” from the
RAID controller and later reappear.

Cascading Causes and Impacts
Another intricacy of failslow hardware is the chain of cascading
events: First, between the actual root cause and the hardware’s
failslow symptom, there is a chain of cascading root causes.

 Second, the failslow symptom then creates cascading impacts
to the highlevel software stack, and potentially to the entire
cluster.

Here are some examples of long cascading root causes that lead
to failslow hardware. A fan in a compute node stopped working,
making other fans compensate for the dead fan by operating at
maximal speeds, which then caused a lot of noise and vibration
that subsequently degraded the disk performance. When a piece
of hardware becomes failslow, not only does it affect the host
machine, but it can cause cascading impacts across the cluster.
For example, a degraded NIC in one machine, slowing from 1
Gbps to 1 Kbps, caused a chain reaction that slowed down the
entire cluster of 100 machines as the connecting tasks that were
affected held up containers/slots for a long time, and new jobs
could not run due to the slot shortage.

Rare but Deadly: Long Time-to-Detect
The failslow hardware incidents in our report took hours or
even months to detect (pinpoint). More specifically, 1% of the
cases were detected in minutes, 13% in hours, 13% in days,
11% in weeks, 17% in months, with an unknown time in 45% of
cases. Some engineers called this a “costly debugging tail.” In
one incident, an entire team of engineers was pulled to debug
the problem, costing the institution tens of thousands of dollars.
There are several reasons why the timetodetect (TTD) is long.

First, the fact that the incidence of failslow hardware is not as
frequent as failstop cases implies that today’s software systems
do not completely anticipate (that is, undermine) such scenarios.
Thus, while morefrequent failures can be solved quickly, less
frequent but more complex failures (that cannot be mitigated by
the system) can significantly cost the engineers time.

Second, as explained before, the root cause might not originate
from the failslow hardware. For example, the case of transient
slowdown caused by powerhungry applications took months to
figure out since the problem was not rooted in the slow machines
nor the power supply.

Third, externalenvironment conditions beyond the control of the
operators can prolong diagnosis. For months, a vendor failed to
reproduce the failslow symptoms in its sealevel testing facility
since the hardware only slowed down at a high mountain altitude.

Finally, operators do not always have full visibility of the entire
hardware stack. For example, an incident took days to solve
because the operators had no visibility into the power supply
health.

Suggestions
In addition to cataloging instances of failslow hardware, a goal
of this study is to offer vendors, operators, and systems designers
insights about how to address this poorly studied failure mode.

Figure 1: Fail-slow symptoms. The figure shows four types.

www.usenix.org S U M M ER 20 1 8 VO L . 4 3 , N O. 2 27

STORAGE
Fail-Slow at Scale: Evidence of Hardware Performance Faults in Large Production Systems

To Vendors
Making implicit error masking explicit: Failslow hardware
can be categorized as an “implicit” fault, meaning it does not
always return any explicit hard errors (e.g., due to error masking;
see the Fault Conversions to FailSlow section, above). How
ever, there were many cases of slowly increasing error rates that
would eventually cause cascading performance failures. Vendors
might consider throwing explicit error signals when the error
rates far exceed the expected rate.

Exposing device-level performance statistics: Modern
hardware now exposes such information via SMART. However,
our conversations with operators suggest that the information
from SMART is “insufficient to act on.” We hope vendors will
expose devicelevel performance data to support future statisti
cal studies.

To Operators
Online diagnosis: In our study, 39% of the cases were caused by
external root causes. Some reports suggest that operators took
days or even months to diagnose the problem since it could not be
reproduced in offline testing. Thus, online diagnosis is impor
tant, but also not straightforward, because not all hardware
components are typically monitored, which we will discuss next.

Monitoring of all hardware components: Today, in addition
to main hardware components, other hardware components and
environment conditions such as fan speeds and temperature are
also monitored. Unfortunately, not all hardware is monitored in
practice. For example, multiple organizations failed to moni
tor network cables, using the flow of traffic as a proxy for cable
health instead. The diagnosis took much longer because blame
for poor performance is usually directed towards the main
hardware components such as NICs or switches. The challenge
is then to prevent too much data being logged.

Another operational challenge is that different teams are
responsible for different parts of the data center: software
behavior, machine performance, cooling, power. With limited
views, operators cannot fully diagnose the problem.

A future challenge relates to a proprietary fullpackaged solution
like hyperconverged or rackscale design. Such design usually
comes with the vendor’s monitoring tools, which might not mon
itor and expose all information to the operators. Instead, vendors
of such systems often monitor hardware health remotely, which
can lead to fragmentation of monitoring infrastructure as the
number of vendors increases.

Correlating full-stack information: With fullstack perfor
mance data, operators can use statistical approaches to pinpoint
and isolate the root cause [6].

Although most of the cases in our study were hardtodiagnose
problems, the revealed root causes were relatively “simple.”

For example, when a powerhungry application was running, it
drained the rack power and degraded other nodes. Such a corre
lation can easily be made but requires processing of powerlevel
information. Future research can be done to evaluate whether
existing statistical monitoring approaches can detect such
correlations.

While the metrics above are easy to monitor, there are other
finegrained metrics that are hard to correlate. For example,
in one configuration issue, only multicast network traffic was
affected, and in another similar one, only big packets (>1500
bytes) experienced long latencies. In these examples, the
contrast between multicast and unicast traffics and small and
big packets is clear. However, to make the correlation, detailed
packet characteristics must be logged as well.

Finally, monitoring algorithms should also detect “counter
intuitive” correlations. For example, when user performance
degrades, operators tend to react by adding more nodes. How
ever, there were cases where adding more nodes did not translate
to better performance since the underlying root cause was not
isolated.

To Systems Designers
While the previous section focuses on postmortem remedies,
this section provides some suggestions on how to better antici
pate failslow hardware in future systems.

Making implicit error-masking explicit: Similar to hardware,
error masking (as well as “tail” masking) in higher software
stacks can make the problem worse. We have observed failslow
hardware that caused many jobs to time out and be retried again
repeatedly, consuming many other resources and converting
the single hardware problem into larger clusterwide failures.
Software systems should not just silently work around fail
slow hardware but need to expose enough information to help
troubleshooting.

Fail-slow to fail-stop: Earlier, we discussed many fault conver
sions to failslow faults. The reverse can be asked: can fail
slow faults be converted into failstop mode? Such a concept is
appealing because modern systems are well equipped to handle
failstop failures [3]. We next discuss opportunities and chal
lenges of this concept.

Skip non-primary fail-slow components: Some resources, such
as caching layers, can be considered nonprimary components.
For example, in many deployments, SSDs are treated as a cach
ing layer for the backend disks. The assumption that SSD is
always fast and never stalls does not always hold. Thus, when
failslow SSDs (acting as a caching layer) introduce more laten
cies than the backend disks, they can be skipped temporarily
until the problem subsides. However, consistency issues must
be taken into account. Another suggestion is to run in “partial”

28  S U M M ER 20 1 8 VO L . 4 3 , N O. 2 www.usenix.org

STORAGE
Fail-Slow at Scale: Evidence of Hardware Performance Faults in Large Production Systems

mode rather than in full mode but with slow performance. For
example, if many disks cause heavy vibration that degrades the
disk throughput significantly, it is better to run fewer disks to
eliminate the throughputdegrading vibration [4].

Detect fail-slow recurrences: Another method to make slowto
stop conversion is to monitor the recurrence of failslow faults.
For example, when disks or SSDs continue to “flipflop” between
online/offline mode, triggering RAID rebalancing all the time, it
is better to take them offline. We observed several cases of tran
sient failslow hardware that was taken offline, but after passing
the inoffice diagnosis, the device was put online again, only to
cause the same problem.

Fail-slow fault injections: System architects can inject failslow
root causes reported in this study to their systems and analyze
the impacts.

One can argue that asynchronous distributed systems (eventual
consistency) should naturally tolerate failslow behaviors. While
this is true, there are many stateful systems that cannot work in
fully asynchronous mode: in widely used opensourced distrib
uted systems, failslow hardware can cause cascading failures
such as thread pool exhaustion, message backlogs, and outof
memory errors [8].

Tailtolerant distributed systems [7] are supposed to be resilient.
However, other recent work shows that the “tail” concept only
targets performance degradation from resource contention,
which is different from the failslow hardware model such as
slow NICs; as a result, not all tailtolerant systems, like Hadoop
or Spark, can cut tail latencies induced by degraded NICs [13].

Beyond networking components, the assumption that storage
latency is stable is also fatal. It has been reported that disk delays
cause race conditions or deadlock in distributed consistency
protocols [12]. The problem is that some consistency protocols,
while tolerating network delays, do not incorporate the possibil
ity of disk delays, for the sake of simplicity.

With failslow injections, operators can also evaluate whether
their systems or monitoring tools signal the right warnings or
errors. There were a few cases in our reports where wrong sig
nals were sent, causing the operators to debug only the healthy
part of the system.

Overall, we strongly believe that injecting root causes reported
in this study will reveal many flaws in existing systems. Fur
thermore, all forms of failslow hardware such as slow NICs,
switches, disks, SSD, NVDIMM, and CPUs need to be exercised
since they lead to different symptoms. The challenge is then to
build future systems that enable various failslow behaviors to
be injected easily.

Conclusion
Today’s software systems are arguably robust at logging and
recovering from failstop hardware—there is a clear, binary
signal that is fairly easy to recognize and interpret. We believe
failslow hardware is a fundamentally harder problem to solve.
It is very hard to distinguish such cases from ones that are
caused by software performance issues. It is also evident that
many modern, advanced deployed systems do not anticipate this
failure mode. We hope that our study can influence vendors,
operators, and systems designers to treat failslow hardware
as a separate class of failures and start addressing them more
robustly in future systems.

Complete List of Authors
Haryadi S. Gunawi, Riza O. Suminto, Mingzhe Hao, and
Huaicheng Li, University of Chicago
Russell Sears and Casey Golliher, Pure Storage
Swaminathan Sundararaman, Parallel Machines
Xing Lin and Tim Emami, NetApp
Weiguang Sheng and Nematollah Bidokhti, Huawei
Caitie McCaffrey, Twitter
Gary Grider and Parks M. Fields, Los Alamos National
Laboratory
Kevin Harms and Robert B. Ross, Argonne National Laboratory
Andree Jacobson, New Mexico Consortium
Robert Ricci and Kirk Webb, University of Utah
Peter Alvaro, University of California, Santa Cruz
H. Birali Runesha, Mingzhe Hao, and Huaicheng Li, University
of Chicago Research Computing Center

www.usenix.org S U M M ER 20 1 8 VO L . 4 3 , N O. 2 29

STORAGE
Fail-Slow at Scale: Evidence of Hardware Performance Faults in Large Production Systems

References
[1] Download the failslow database: http://ucare.cs.uchicago
.edu/projects/failslow/.

[2] L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy, and
J. Schindler, “An Analysis of Latent Sector Errors in Disk
Drives,” in Proceedings of the 2007 ACM Conference on Mea-
surement and Modeling of Computer Systems (SIGMETRICS),
2007: http://research.cs.wisc.edu/adsl/Publications/latent
sigmetrics07.pdf.

[3] G. Candea and A. Fox, “CrashOnly Software,” in Proceed-
ings of the Ninth Workshop on Hot Topics in Operating Systems
(HotOS IX), 2003.

[4] C. S. Chan, B. Pan, K. Gross, K. Gross, T. S. Rosing, and K.
Vaidyanathan, “Correcting VibrationInduced Performance
Degradation in Enterprise Servers,” in Proceedings of the Green-
metrics workshop (Greenmetrics), 2013: http://seelab.ucsd.edu
/papers/cschan_gm13.pdf.

[5] A. Clement, E. L. Wong, L. Alvisi, M. Dahlin, and M. Mar
chetti, “Making Byzantine Fault Tolerant Systems Tolerate
Byzantine Faults,” in Proceedings of the 6th Symposium on
Networked Systems Design and Implementation (NSDI), 2009:
https://www.usenix.org/legacy/event/nsdi09/tech/full_papers
/clement/clement.pdf.

[6] D. J. Dean, H. Nguyen, X. Gu, H. Zhang, J. Rhee, N. Arora,
and G. Jiang, “PerfScope: Practical Online Server Performance
Bug Inference in Production Cloud Computing Infrastructures,”
in Proceedings of the 5th ACM Symposium on Cloud Computing
(SoCC), 2014: http://www.nipunarora.net/pdf/perfscope.pdf.

[7] J. Dean and S. Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters,” in Proceedings of the 6th Sympo-
sium on Operating Systems Design and Implementation (OSDI),
2004: https://www.usenix.org/legacy/event/osdi04/tech/full
_papers/dean/dean.pdf.

[8] T. Do, M. Hao, T. Leesatapornwongsa, T. Patanaanake, and
Haryadi S. Gunawi, “Limplock: Understanding the Impact of
Limpware on ScaleOut Cloud Systems,” in Proceedings of the
4th ACM Symposium on Cloud Computing (SoCC), 2013: http://
ucare.cs.uchicago.edu/pdf/socc13limplock.pdf.

[9] T. Do, T. Harter, Y. Liu, H. S. Gunawi, A. C. ArpaciDusseau,
and R. H. ArpaciDusseau, “HardFS: Hardening HDFS with
Selective and Lightweight Versioning,” in Proceedings of the
11th USENIX Symposium on File and Storage Technologies
(FAST), 2013: https://www.usenix.org/system/files/conference
/fast13/fast13final70_0.pdf.

[10] H. S. Gunawi, M. Hao, R. O. Suminto, A. Laksono, A. D.
Satria, J. Adityatama, and K. J. Eliazar, “Why Does the Cloud
Stop Computing? Lessons from Hundreds of Service Outages,”
in Proceedings of the 7th ACM Symposium on Cloud Computing
(SoCC), 2016: http://ucare.cs.uchicago.edu/pdf/socc16cos.pdf.

[11] H. S. Gunawi, R. O. Suminto, R. Sears, C. Golliher, S. Sunda
raraman, X. Lin, T. Emami, W. Sheng, N. Bidokhti, C. McCaf
frey, G. Grider, P. M. Fields, K. Harms, R. B. Ross, A. Jacobson,
R. Ricci, K. Webb, P. Alvaro, H. B. Runesha, M. Hao, and H. Li,
“FailSlow at Scale: Evidence of Hardware Performance Faults
in Large Production Systems,” in Proceedings of the 16th USE-
NIX Symposium on File and Storage Technologies (FAST ’16),
2018: https://www.usenix.org/system/files/conference/fast18
/fast18gunawi.pdf.

[12] T. Leesatapornwongsa, J. F. Lukman, S. Lu, and H. S.
Gunawi, “TaxDC: A Taxonomy of NonDeterministic Concur
rency Bugs in Datacenter Distributed Systems,” in Proceedings
of the 21st International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS),
2016: http://ucare.cs.uchicago.edu/pdf/asplos16TaxDC.pdf.

[13] R. O. Suminto, C. A. Stuardo, A. Clark, H. Ke, T. Leesa
tapornwongsa, B. Fu, D. H. Kurniawan, V. Martin, U. M. Rao
G., and H. S. Gunawi, “PBSE: A Robust PathBased Specu
lative Execution for DegradedNetwork Tail Tolerance in
Data Parallel Frameworks,” in Proceedings of the 8th ACM
Symposium on Cloud Computing (SoCC), 2017: http://ucare.cs
.uchicago.edu/pdf/socc17pbse.pdf.

http://ucare.cs.uchicago
http://research.cs.wisc.edu/adsl/Publications/latent
http://seelab.ucsd.edu
https://www.usenix.org/legacy/event/nsdi09/tech/full_papers
http://www.nipunarora.net/pdf/perfscope.pdf
https://www.usenix.org/legacy/event/osdi04/tech/full
http://ucare.cs.uchicago.edu/pdf/socc13-limplock.pdf
http://ucare.cs.uchicago.edu/pdf/socc13-limplock.pdf
https://www.usenix.org/system/files/conference
http://ucare.cs.uchicago.edu/pdf/socc16-cos.pdf
https://www.usenix.org/system/files/conference/fast18
http://ucare.cs.uchicago.edu/pdf/asplos16-TaxDC.pdf
http://ucare.cs.uchicago.edu/pdf/socc17-pbse.pdf
http://ucare.cs.uchicago.edu/pdf/socc17-pbse.pdf

30  S U M M ER 20 1 8 VO L . 4 3 , N O. 2 www.usenix.org

SYSADMINA Quarter Century of LISA
(with Apologies to Peter Salus)

S E A N K A M A T H

Sean Kamath is a Production
Engineer at Facebook. He
has been a lurker at LISA
conferences since 1992.
kamath@moltingpenguin.com

In 1992, I had just hired another sysadmin named Dan. One day he asked
me about going to this conference, which I had never heard of. I’d never
been to any sort of conference before and had no idea what to expect.

What we found, however, was amazing. We had found our people. It seemed
like everyone there was just like us, all struggling with the same things, all
looking for similar solutions. In retrospect, in such a young industry, this
wasn’t all that surprising. Perhaps the most surprising thing, however, was
the vaunted “hallway track” and learning the backgrounds of everyone I met.
I don’t actually recall meeting a single CS major. Science was well repre
sented (I’m a physics major, and there were plenty of math, biology, chem
istry, and physics majors), but in a strange twist there were also plenty of
music, art, theater, literature, and all sorts of other liberal arts majors.

This was my first LISA conference, LISA VI, held in Long Beach, CA. You won’t find it on the
USENIX website (you can find a reference to it if you try hard enough). I have attended every
LISA conference since then, the last being the 31st LISA, held in San Francisco. While I’ve
written before of my experience attending LISA (“Whither LISA,” ;login: February 2010),
what follows are my thoughts and observations about the conference over these 25 years
rather than a history of the first 25 years. When I started in the system administration field,
the sysadmin was a mysterious creature. Most companies didn’t know they needed one. Most
probably didn’t need one. My first UNIX experience, when I went to college in 1984, was on
the school’s VAX running BSD4.1.

What a lot of people these days don’t know is that system administration back then was very
often done by one of two types of people: folks who wanted to be software developers but
weren’t quite there, and folks who just fell into it. People in the former camp usually only did
the job for a year or two until they could get a job as a developer. The rest of us? We just did it
because we could.

So this was the beginning of my experience at LISA, a conference full of people doing some
thing they hadn’t been formally trained to do but who did it because they loved it or were
good at it (often both), where the goal of attending was to learn, experience, discover. Swag
was nonexistent and unexpected. Vendors didn’t exist. It was a conference set up and run by
people attending. It was like a bunch of geeks just congregating in the same place and spend
ing a week talking about everyone they were dealing with.

I hope I’ve set the stage appropriately as an attendee. However, I should take a moment to
say that I know that organizing this seemingly spontaneous congregation of sysadmins
actually took a lot of work, and that a lot of dedicated, smart, and talented people made it
appear completely seamless. Further, I believe that over the years, as conference organizers
have come and gone, it has become increasingly hard to do what they do. Having been on the
papers committee, I know how incredibly hard it is to find quality papers, and I was not at all
surprised when the refereed papers track went away, a victim of the internet, in my opinion.

www.usenix.org S U M M ER 20 1 8 VO L . 4 3 , N O. 2 31

SYSADMIN
A Quarter Century of LISA

As I look back on these last 25 years, I see a similarity to my
college years. I’ve watched LISA start out as a freshman and
develop into a senior. And, conveniently for me, I had two junior
years, so that makes it a nice five years per…year. I’m reminded
that no analogy is perfect.

Freshman
As I’ve explained, sysadmins during this time were mostly
people who fell into the job. When I hired Dan (who had been at
the company a long time in a different role), he admitted to me
that he was unsure whether this was a direction he wanted to go
in, uncertain whether system administration was something you
could do for an extended period. In short, it wasn’t a career path.
And yet, at that first conference we attended, in one of the tutori
als or talks (time clouds my memory), someone said, “It’s OK to
make system administration your career.” Dan was so relieved to
hear this. I was too young and naïve to realize it was a watershed
moment until much later.

Sometimes it’s hard to explain to people that this time was at
the very beginning of the internet as we know it. Forget smart
phones—this was before the graphical web browser (NCSA
Mosaic was released in 1993). Discussions would often men
tion Gopher. What this meant in practical terms was that we all
tended to be isolated, with no way to easily see new things being
created, no easy way to discover new tools, no way to broadcast
that you had written this cool thing that did something everyone
needed done. It’s not that there was no way (I’m looking at you,
NetNews), but it took time.

In addition, so many building blocks of what we know and love
today, while not exactly hot off the presses, were still pretty darn
new. Everyone ran their own mail server, people were excited
about using DNS—for large installations, DNS was almost a
must—and might have used BOOTP (defined in an RFC from
1985), but it wouldn’t be until 1997 that anyone was using DHCP.
It could take years for enough people to realize their problems
were similar to others’, to craft some notion of how their problems
might be solved, and to actually write and disseminate code.

This is what made LISA so amazing. We could all get together,
those of us charged with the responsibility of running large
installations, and accelerate the dissemination of these tools,
practices, ideas, and experiences. One of the great things about
LISA at this time was that the refereed papers were where people
could publish their code. The loudest groans from the attendees
would come when someone who’d written a paper on some great
new tool, when asked about getting it, would reply, “We’re still
trying to see if we can release this.”

It wasn’t just the technical side where we came together and
discussed things. Rob Kolstad’s tutorial on the ethics of system

administration opened our eyes to issues never thought of. There
were sessions on being a manager. On running a team. On the
human side of dealing with so many users.

In many ways, this was the Golden Age of LISA. It was ach
ingly relevant. It was so necessary. It was everything—reckless,
bawdy, outrageous, as well as thoughtful, helpful, and just plain
wonderful.

Sophomore
As the profession of system administration grew and developed,
things got more serious. No longer were the hotel room parties
stuffed with people, with a bathtub full of beer and ice in the
bathroom, the bed tipped up against the wall (my first BayLISA
“hospitality suite”). Now they were stuffed with people, hosted
by companies looking to hire. People, and companies, thought
that much of what the sysadmin did was a “solved problem.” If
not solved, well, one or two software updates away from being
solved. Just look at configuration management. (CFEngine vs.
Bcfg2! And, yow, the Wikipedia page on CFEngine doesn’t even
mention Bcfg2.)

This was an age of vendors trying so hard to provide solutions
for all the companies that were just starting to be aware that
they needed people to run their computers, but couldn’t find the
people that had the experience to do the job well. No longer could
you hire a wannabe software developer to run the computer. And
when the sysadmin failed, real work was lost, either in lost time
or lost data.

System administration was All Things Computer around this
time, which meant trying to find ways of managing PCs as well
as the central servers. The conference started to draw people
from all sorts of shops, not just “Large Installations.” The inter
net was starting to take off, especially for hightech companies.
This had two effects on the conference. First, it got the word
out. People would put up URLs to get their code. Mailing lists
cropped up, and communities formed around software. Second,
and perhaps somewhat detrimental to the existing conference
format, the ability to directly publish to the web meant that some
folks started to release software, and then talk about it at LISA.

This period created two diametrically opposed problems for
those running the conference. It saw the dotcom bubble, as well
as the dotcom bust. And with that came the massive growth of
the conference, followed by an implosion of attendees. Imagine
one year with over 2000 attendees, and the next, fewer than
1000. I don’t know the actual numbers, but I was there. One year
you couldn’t find a place to sit at the tutorial lunches, the next
was a grim affair where we ate in silence with a lot of empty
seats at all the tables. The number of companies that showed up

32  S U M M ER 20 1 8 VO L . 4 3 , N O. 2 www.usenix.org

SYSADMIN
A Quarter Century of LISA

and plied their wares similarly imploded—not just the vendors,
but the companies sending their employees. Where once multiple
people would show up from major companies, there now was one
person who got to go that year.

It was a grim time.

Junior
The conference had to find a way to stay relevant after the
dotcom bust. Not because what it had to offer wasn’t relevant
anymore, far from it. All the companies out there still needed
people to do their job. And now, more than ever, they needed to be
as efficient as possible. Just like my (first) Junior year in college,
it was time for the conference to buckle down and get to work.

The pace of innovation slowed only slightly around this time.
People couldn’t afford to attend the conference, but problems
still needed to be solved. The dotcom bubble brought a whole
new paradigm for how systems could be used and for the impor
tance of the internet. With it came the challenges of running
systems that people other than your users used.

Around this time, I think the conference reached the peak of
trying to be all things to all people. Run PCs? Come to LISA. Run
internet services? Come to LISA. Running corporate infrastruc
ture? Networking? Storage? Suddenly, “All Things Computer”
was simply too much. You could see it in the huge expanse of the
refereed papers, invited talks, and BoFs.

The culmination of these two things (people couldn’t afford to
attend, and the conference trying to appeal to as broad an audi
ence as possible to attract more attendees) resulted in both a
wide variety of topics covered, as well as a similarly wide variety
in quality and applicability. One thing to keep in mind about this
time, the early aughts, is that even after the bubble burst there
was an explosion of opportunity for companies with this internet
thing, as well as for corporate systems (everyone had a computer
at work, it seemed).

Additionally, while we had accepted methodologies for how to
provide certain services, etc., the pace of solutions couldn’t keep
up with the new problems companies and universities found
as they expanded. Issues of scalability, reliability, reachability,
accountability, securability—well, you get the idea. These issues
outstripped everyone’s ability to find solutions.

The upshot of all this was that the conference tilted away from
direct solutions and toward explorations of possible solu
tions, along with descriptions of problems encountered. The
invited talks expanded from one track to two and became better
attended as people looked for insights into problems they were
running into. Workshops were added to the training, serving as
a way to delve more deeply into problems that were moving from
edge cases to commonly encountered.

Junior (Redux)
What happens when what you thought you were doing correctly
turns out to need a course correction? It was in the middle of
this period that I wrote “Whither LISA,” my attempt to reflect
on what LISA meant to me and to issue a call to action to come
together and infuse new life into the conference. I felt that LISA
had, to some extent, reached a crisis point. It could no longer be
the conference that covered everything. There were other con
ferences competing for attendees, with a slightly different slant.

I think a lot of the genesis for this stems from the growth of the
field. We went from system administrators to system engineers,
then system/network/storage engineers, and then…site reliabil
ity engineers. Then along came DevOps.

When I think about the evolution of the role of “people who make
machines work,” I think of this: the very first system adminis
trators were the people who wrote the operating systems for the
simple reason that they built the OS and there was no one else to
manage it. As with all things run by the people who built them, it
was assumed that the person running the system knew every
thing the person who built it knew.

Eventually, the UNIX distributions landed at sites with people
who didn’t build them. And thus, people who didn’t have that
intimate knowledge of how things were constructed were
responsible for keeping things working nonetheless. And, as
often happens, those people, freed of the presumption of how
things should work, could often make things run quite well,
sometimes in unexpected ways.

As the problems faced by sites grew more diverse, complicated,
and involved, the need for specialization grew. At first, the need
was for base technologies (storage, networking), but eventually it
grew even to encompass what the system was designed to solve.
The skills and tools used to provide a reliable environment for
doing software development were often dramatically different
from, and yet in some ways the same as, providing a thousand
office workers with functional, uptodate PCs.

And then came the web. Suddenly we had a whole new denizen
of the system administrator realm: software developers working
on systems that were providing services that system administra
tors might support, but the support was for customers. Some
times they even paid.

As for the companies that had huge environments, well, they
experienced the most problems. They also had the resources
(people, money, motivation) to solve the problems. And many of
those companies were very involved in open source software and
were more than willing to share with their communities.

The result was that there was a bit of a dichotomy at LISA. There
were the people from the large companies who were facing prob
lems that were unique to their industry but who were driving the

www.usenix.org S U M M ER 20 1 8 VO L . 4 3 , N O. 2 33

SYSADMIN
A Quarter Century of LISA

talks. There were also the folks from smaller shops who started
to feel sidelined. I can’t tell you the number of times that I heard
someone talk about the lack of applicability of talks and papers
to their job. When LISA first ramped up, people who were new,
even those from very small shops, found a lot of useful informa
tion they could use, sometimes right away. Fifteen years later,
what was someone running a small shop of 100 people and a few
servers going to do with the information about running Hadoop
clusters? What was I, working at a fairly large animation studio,
going to do with that information? I tried to glean as much useful
information from the various sources as possible. At least my
environment wasn’t that far off from the big guys. But I saw a lot
of folks from small shops stop coming and heard a lot of people
say this was their first, and likely last, LISA.

Senior
Around 20 years after I started attending LISA, after much
internal upheaval and change over those intervening years, LISA
started to morph. Not a lot, but just enough. Instead of every
thing being about concrete “solutions,” instead of restatement of
problems, instead of a little bit of everything, there started to be
a convergence. Two things started to become apparent.

First, a thread that had been common since the beginning of
LISA became mainstream: it’s not about the current problems;
it’s about how we navigate around to find solutions. It’s about
the habits, behaviors, and techniques that people should develop
to help them find their way in this job. Be it managing manag
ers, budgets, time, or systems, useful information about strate
gies and examples of people facing and handling challenges
became a fundamental part of the tutorials, invited talks, and,
of course, the hallway track. As a smart friend of mine recently
said: “Most of what we as sysadmins, of whatever flavor, do is to
learn enough about how something works, then adapt it so that it
works in our environment. We learn from examples but must be
able to apply those examples.” So true.

Second, everyone was an internet company now. While everyone
still had the challenge of running internal systems, that turned
out to be fairly static. But after 20 years of trying to figure out
how to provision and configure internal systems (be they PCs or
whatever), people and companies (and vendors!) knew how to do
it. Even the explosive growth of mobile was addressed in short
order by vendors and companies with BYOD policies and apps.

What made this goround different from the last one was this:
The Cloud. Yeah, a lot of us laughed at the term. I still do. But it
turned out that companies were thrilled to offload their work
onto other companies. We saw everything as a service, to the
point that these days we have Services as a Service (turtles all
the way down). Companies were more than happy to farm out
their email to a few large vendors. Speaking as someone who still
runs a small personal mail server, this freaks me out. We saw

companies migrate (sometimes with good reasons) to cloud
based document storage and editing.

But the killer app turned out to be cloudbased servers. No longer
did companies shell out capital for hardware to run their ser
vices. Instead, they could just rent the machines and have all the
benefits of a highly paid professional staff to run them. Software
to run all these machines was created, and all you had to do was
learn how to use it.

And so, in a bizarre twist, the cloud became ouroboros. The
companies that were providing *aaS and the customers of those
companies had a convergence of interest, one solved by attend
ing LISA. Both groups of people used the same, or similar, tools,
albeit for very different ends. Sure, Ansible/Salt vs. Chef/Puppet
replaced CFEngine vs. Bcfg2, as even cloudbased services need
configuration management of some sort. If you needed a huge
Hadoop cluster, no problem; fire up a couple thousand machines
for a week or two.

Graduate School?
So where does that leave us now? Well, recently USENIX
announced a significant change to the LISA conference. Gone
are the dedicated three days of training. Tutorials will live on
in the minitutorial, but the need for half a day or a full day to
fully grok some key concepts is gone. People need and want self
guided training, or access to knowledgeable people to ask ques
tions of. The conference will become smaller and more focused,
I think. I don’t know if smaller in size, but definitely compressed
in time.

Change is hard. And for an oldtimer like me, it’s really scary. I
will be interested in, and trepidatious about, the changes that are
in store and how they will play out. I don’t think this is the last
change we’ll see and with good reason. If the conference hadn’t
changed from that first one in 1992, I would have stopped going
by 1995. And I have a lot of trust in the fine folks at USENIX and
the people from our own community who make up the steering
committee of the conference. Because one thing has remained
constant despite the changes and tumult over all the years: it’s
still a conference by and for the people who are putting it on.

34  S U M M ER 20 1 8 VO L . 4 3 , N O. 2 www.usenix.org

COLUMNSPractical Perl Tools
It’s a Relationship Thing

D A V I D N . B L A N K - E D E L M A N

Faithful readers of this column will know I have a declared affection
for graphs. In the past, we’ve looked at ways to represent graphs in
Perl and ways to draw them. But strangely enough, we’ve never looked

at one of the more interesting uses for them these days: as a data representa
tion for a database, that is, graph databases. This column aims to right that
wrong. Rather than take on the entirety of the graph database space in this
column, we’ll use Neo4j, one of the more popular ones, as a springboard for
how they work and how we can interact with them via Perl.

The Things and the Other Things (the Basics)
Graph databases are all about dealing with pieces of data and the relationships between
those pieces of data. But wait (you cry out in alarm), “Aren’t all databases about this? Cough,
cough, relational databases, cough, cough…”

(super oversimplification alert!) Relational databases store information in a number of tables
containing rows of data (records). The row is broken up into columns (fields). We perform
operations that attempt to find matches between the contents of a column in one table and a
column in another table. When we get a match, we treat the corresponding rows as related.
The usual example of this is a table of people and a table of addresses. If both tables share a
“Person ID” column, we can pick an ID from the people table, match it to the address table,
and determine that person’s address or addresses. Let’s say we want to also store orders this
person has placed. Add another table. And stored payment info for this person? Add another
table. Membership in a special discount group? Add another table. Cumbersome, but pretty
straightforward.

To make this example more interesting, let’s say we want to introduce a new concept of a
family and keep track of the relationship between the people in that people table. Can do, but
it starts to get more and more hairy the more complicated these relationships get. Anyone
who has had to work with gnarly JOIN statements knows exactly what I am talking about.
And the point where you have to redo your entire data model based on new requirements for
data representation? No fun at all.

Graph databases (Neo4j in particular, to keep this concrete) go about this in a different
way. In Neo4j, you have nodes. These are the things you are storing. A person, an address,
an order, a piece of payment info, a discount group, that sort of thing. Each node has a label
(typically used to identify the “kind” of node—examples would be person or address) and a set
of properties stored in the node (examples: first/last name, street name, item number, credit
card number, discount percentage).

Now let’s add the relations part that will construct the graph. We can connect two nodes via
a unidirectional (more on this later) relationship. For example: CHILD, MARRIED, LIVES_
AT, ORDERED, JOINED. Relationships are firstclass things unto themselves. They have
labels like the ones I just used as examples (CHILD, MARRIED, etc.) and properties too (e.g.,
MARRIED could have a property of wedding_date).

David has over 30 years of
experience in the systems
administration/DevOps/SRE
field in large multiplatform
environments and is the author

of the O’Reilly Otter book (new book on SRE
forthcoming!). He is one of the co-founders
of the now global set of SREcon conferences.
David is honored to serve on the USENIX
Board of Directors where he helps to organize
and engineer conferences like LISA and
SREcon.  dnb@usenix.org

www.usenix.org S U M M ER 20 1 8 VO L . 4 3 , N O. 2 35

COLUMNS
Practical Perl Tools: It’s a Relationship Thing

If I wanted to write some of these nodes and relationships down,
you could imagine I might write them something like this:

(adam) -[:MARRIED]-> (steve)

(steve) -[CHILD]-> (jaime)

(adam) -[CHILD]-> (jaime)

(jaime) -[:LIVES_AT]-> (2560 Ninth Street)

(jaime) -[:ORDERED]-> (order 2560)

(jaime) -[:ORDERED]-> (order 2561)

(jaime) -[:ORDERED]-> (order 2562)

Adam (well, the node representing Adam) has a married
relationship to Steve (his person node). They have a kid named
Jaime. She lives on Ninth Street and placed three different
orders.

But You Promised Perl Code
For some reason I always feel compelled to give fair warning
when I will be taking an approach that leads with a language that
is not Perl, so here’s your warning: Neo4j has a builtin graph
query language called Cypher. Yes, I know, not a particularly
encouraging name for a new thing to learn, but I didn’t name it. It
is possible to perform Neo4j actions from Perl without knowing
any Cypher, but you won’t get very far that way. This means we
are going to dive into some basic Cypher first before getting to
the Perl code. Sorry not sorry?

And being the meany I am, we already did it. The previous
section had examples of nodes and relationships using Cypher
conventions. Nodes are placed in parentheses. Relationships
are specified in square brackets connected to nodes via arrows
showing the direction of that relationship.

Quick aside about the directional nature of relationships: in
Neo4j, you can only create relationships that go a single way
from one node to another. But there is no restriction at query
time around direction. You can easily (and with no performance
hit) query either for relationships that exist (i.e., “Who is Steve
married to?”) and for nodes in a relationship that goes in a spe
cific direction (i.e., “Who is Adam’s kid?”).

Let’s see some more Cypher statements so you can get a sense of
how data is inserted and queried in a Neo4j graph database. For
these examples, we’re going to use the example movie database
that ships with the community (free) version of Neo4j (you can
access it from the web console with “:play movies”). Adam, Steve,
and Jaime are a lovely family, but let’s play around with a larger
data set.

First off, let’s start by populating the database. Here are some of
the lines from the script that creates a movie node and a number
of people nodes:

CREATE (TheMatrix:Movie {title:’The Matrix’, released:1999,

tagline:’Welcome to the Real World’})

CREATE (Keanu:Person {name:’Keanu Reeves’, born:1964})

CREATE (Carrie:Person {name:’Carrie-Anne Moss’, born:1967})

CREATE (Laurence:Person {name:’Laurence Fishburne’,

born:1961})

CREATE (Hugo:Person {name:’Hugo Weaving’, born:1960})

CREATE (LillyW:Person {name:’Lilly Wachowski’, born:1967})

CREATE (LanaW:Person {name:’Lana Wachowski’, born:1965})

CREATE (JoelS:Person {name:’Joel Silver’, born:1952})

To break this apart, let’s pick on Keanu. We create a Keanu node
with the label “Person”. That node has two properties (his name
and birthdate). Now let’s add some relationships:

CREATE

 (Keanu)-[:ACTED_IN {roles:[‘Neo’]}]->(TheMatrix),

 (Carrie)-[:ACTED_IN {roles:[‘Trinity’]}]->(TheMatrix),

 (Laurence)-[:ACTED_IN {roles:[‘Morpheus’]}]->(TheMatrix),

 (Hugo)-[:ACTED_IN {roles:[‘Agent Smith’]}]->(TheMatrix),

 (LillyW)-[:DIRECTED]->(TheMatrix),

 (LanaW)-[:DIRECTED]->(TheMatrix),

 (JoelS)-[:PRODUCED]->(TheMatrix)

A little more dense, but if you can handle Perl data structures,
surely a little punctuation won’t throw you. Let’s start from the
bottom because those statements are simpler. The Wachowski
sisters directed The Matrix, so we created DIRECTED relation
ships from them to their movie. Similarly, Joel Silver produced
the movie, so there is a PRODUCED relationship put into place.
Back to Keanu: Keanu acted in the film, so there is an ACTED_
IN relationship specified. The part of that line which may look
peculiar is this part:

{roles:[‘Neo’]}

Earlier I mentioned that relationships are firstclass citizens.
They also have properties (just like nodes do). This is just
attaching a property to that relationship. The property holds a
list (actors can play more than one part in a movie), hence the
square brackets in the property definition.

Just to make sure this is crystal clear (and because I find it so
cool), not only are we specifying a relationship between a person
node and a movie node (actor acted in movie), we also get to store
information about that relationship (which roles or anything
else we want) in that relationship definition itself. Relationships
matter.

Once we load it into the database, we can ask the web interface
to show us an interactive diagram of the database using the
Cypher statement “MATCH (a) RETURN (a)” (match every node
and returns them). By default the web interface only shows 300
nodes at a time, so the pretty picture in Figure 1 is only showing
300 nodes.

36  S U M M ER 20 1 8 VO L . 4 3 , N O. 2 www.usenix.org

COLUMNS
Practical Perl Tools: It’s a Relationship Thing

Now let’s do some querying. We can find Keanu like this:

MATCH (k {name: “Keanu Reeves”}) RETURN (k)

Here we’ve said, “Find the node with that property, assign it to
k, and return k.” But this query doesn’t really do the right thing.
If there was a movie node (the blockbuster documentary on the
life of Keanu), that would also get returned. Better would be to
include the label in the query:

MATCH (k:Person name: “Keanu Reeves”) RETURN (k)

If I run this from the commandline shell that ships with Neo4j
(cyphershell), I get the result I would expect:

Neo4j> MATCH (k:Person {name: “Keanu Reeves”}) RETURN (k);

+--+

| k |

+--+

| (:Person {born: 1964, name: “Keanu Reeves”}) |

+--+

Now let’s find his movies. To do this, we’ll have to construct a
query that includes a relationship:

MATCH (k:Person {name: “Keanu Reeves”})-[:ACTED_IN]->(kmovies)

 RETURN k.name,kmovies.title;

Breaking this down: find a Person node with the property
“name” set to “Keanu Reeves,” then look for all nodes related to
that node by an ACTED_IN relationship. Return this, showing
only the name property for the k nodes and the title property for
the kmovies nodes. The result:

+--+

| k.name | kmovies.title |

+--+

| “Keanu Reeves” | “Something’s Gotta Give” |

| “Keanu Reeves” | “Johnny Mnemonic” |

| “Keanu Reeves” | “The Replacements” |

| “Keanu Reeves” | “The Matrix Revolutions” |

| “Keanu Reeves” | “The Devil’s Advocate” |

| “Keanu Reeves” | “The Matrix Reloaded” |

| “Keanu Reeves” | “The Matrix” |

+--+

One last query, so let’s make it a fun one. What if we want to find
all of the actors Keanu acted with in the database? Let’s break
the question down first, then see it in Cypher form:

1. What movies has he been in? Just did that, check.

2. What actors have acted in those same movies? That can be
stated as “Given a movie, what actors have an ACTED_IN rela
tionship to that movie?”

Here’s the Cypher version where our query asks both questions
at once:

MATCH (k:Person {name:”Keanu Reeves”})-[:ACTED_IN]->

 (movie)

 <-[:ACTED_IN]-(actor) RETURN actor.name

I’ve broken it up on several lines to make it easier to read, but you
would likely use it as a single line. We find the movie nodes rep
resenting the movies Keanu has acted in and then look for other
actors who also have acted in each movie (have an ACTED_IN
relationship to it). The results:

+----------------------------+

| actor.name |

+----------------------------+

| “Diane Keaton” |

| “Jack Nicholson” |

| “Takeshi Kitano” |

| “Dina Meyer” |

| “Ice-T” |

| “Brooke Langton” |

| “Gene Hackman” |

| “Orlando Jones” |

| “Laurence Fishburne” |

| “Hugo Weaving” |

| “Carrie-Anne Moss” |

| “Charlize Theron” |

| “Al Pacino” |

| “Laurence Fishburne” |

| “Carrie-Anne Moss” |

| “Hugo Weaving” |

| “Emil Eifrem” |

Figure 1: Three hundred of the nodes and relationships in our movie
database

www.usenix.org S U M M ER 20 1 8 VO L . 4 3 , N O. 2 37

COLUMNS
Practical Perl Tools: It’s a Relationship Thing

| “Laurence Fishburne” |

| “Carrie-Anne Moss” |

| “Hugo Weaving” |

+----------------------------+

Chances are we only want to see each actor’s name once, but
I wanted to drive home the notion that we’re walking around
a graph to return results. To produce a list that has each actor
listed only once, we would write:

RETURN DISTINCT actor.name;

There’s a ton more things we can do using Cypher (for example,
it becomes easy to do a “six degrees of Kevin Bacon” query), but
I’d recommend you look at the Neo4j doc and demo packages for
that information. Let’s actually see some Perl.

DBI-ish…
We’ve explored DBI (“the standard database interface model for
Perl”) in the past, so hopefully this section elicits feelings of “Oh
good, it is that easy.” Before we actually look at REST::Neo4p,
the Perl module we are going to use, I should mention that there
does exist a DBD::Neo4p. This means you could use exactly the
DBI syntax if you really wanted to. DBI is definitely the way to go
when you are dealing with relational databases and you want to
make sure that your code has some level of portability between
database engines. I suppose it is plausible that you might be
switching from a standard relational database, and so you will be
treating the graph database like any other database engine ini
tially, but this feels like a bit of a stretch for me. There might be
another scenario I’m not thinking of, but, in the meantime, let’s
dive into REST::Neo4p. Even if it isn’t DBI per se, it is definitely
modeled on it.

Just as you would do with any DBI code, the first step is to con
nect to the database:

use REST::Neo4p;

REST::Neo4p->connect(‘http://127.0.0.1:7474’,

 ‘neo4j’, ‘password’);

From here we can go two ways with the module:

1. We could use method calls to operate on the database.

2. We could tee up and then execute Cypher commands in a very
similar fashion to the way we might use SQL in a standard
DBI program.

Let’s see both approaches.

The first method would look like this:

my $movie = REST::Neo4p::Node->new(

 {

 title => ‘The Room’,

 released => ‘2003’,

 tagline => ‘Experience this quirky new black comedy,

it’s a riot!’

 }

)->set_labels(‘Movie’);

my $person = REST::Neo4p::Node->new(

 {

 name => ‘Tommy Wiseau’,

 born => ‘1955’,

 }

)->set_labels(‘Person’);

$person->relate_to($movie, ‘DIRECTED’);

We create nodes and their properties and relationships (with no
properties—we would just need to add in a hash reference with
the info, similar to the way it is done for node creation).

For the second approach, using Cypher from Perl, it should be
relatively straightforward to people used to working with SQL
from Perl:

my $cypher = REST::Neo4p::Query->new(

 ‘MATCH (theroom {title: “The Room”})<-[:DIRECTED]-(director)

 RETURN director’);

$cypher->execute;

while (my $result = $cypher->fetch) {

 print $result->[0]->get_property(‘name’), “\n”;

}

In this code we prepare and execute a Cypher query that

◆◆ starts by looking for the movie node with a property matching
the title we are looking for,

◆◆ then looks for nodes that have a relationship of director to that
movie and returns the nodes it finds.

The rest of the Perl code just iterates over the returned nodes
and prints out the key property from them (the name of the
director).

And that’s the basics of working with Neo4j from Perl. Take care,
and I’ll see you next time.

38  S U M M ER 20 1 8 VO L . 4 3 , N O. 2 www.usenix.org

COLUMNS

Knowing Is Half the Battle
The Cobra Command Line Library of Go

C H R I S “ M A C ” M C E N I R Y

In our previous articles, we built a remote directory listing service. If
we wanted to, we could extend this to provide generalized remote file
system access by adding a gcp, gmv, grm, gcat or any other number of mir

roring actions that you can do with a local file system and the command line.
In this article, we’re going to go through a little bit of an exercise to see what
that would look like.

The straightforward extension of the gls command is to put the core of the actions into
libraries and then copy the interface of those libraries into separate mains that become sepa
rate binaries. In working with Go, you may have also noticed that the binaries produced tend
to be a little on the large side. A simple “hello world” built with Go 1.9 weighs in at around 2.5
MB. There’s a lot in that binary, and it is a tradeoff between maintaining a separate runtime
and dependencies versus having the runtime and dependencies come with the binaryspace
versus ease of distributing the application. While the size consideration is not an issue in
most cases with current storage availability, there are various use cases where storage is still
limited—embedded and RAMbased just to name a couple.

Several tools provide a way for you to have your cake (ease of distribution) and eat it too
(limit overall size needs). We can combine all of the commands into a single binary, and then
access it one of two ways. In tools like BusyBox, the same binary is invoked, and it looks at
what it was called in order to decide what to do. Other tools, like Git, Vault, the AWS com
mand line tools, and even Go itself, use subcommands to decide what to do.

In addition to deciding which action to take, the binary has to handle all of the arguments
passed to it. In handling command line arguments, there are two categories: positional
and optional. Positional arguments are ones whose meaning comes from where they show
up on the command line. One could argue that subcommands are just a special case of the
positional argument, and that the command name as subcommand is a special case on top
of that. Optional arguments are ones that are identified by name and an argument token
(the poster children have the token being a hyphen – or, in POSIX/LongOpt format, a double
hyphen --). One of the added benefits of a combined binary is that you can more easily main
tain consistency across your command line arguments, especially the ones that are needed
across multiple binaries.

gofs
In this article, we’re going to focus on building out the commandline interface to gls into a
general tool called gofs. To make this a bit more concrete, we’re going to use the following rules:

◆◆ It will be a single command line tool with subcommands (instead of examining the process
name).

◆◆ It will have a general option, which will allow us to select different servers.

◆◆ It will implement the interface to ls and cp to show two patterns for handling positional
arguments.

◆◆ It will combine the server start interface as well under the serve subcommand.

Chris “Mac” McEniry is a
practicing sysadmin responsible
for running a large e-commerce
and gaming service. He’s been
working and developing in

an operational capacity for 15 years. In his
free time, he builds tools and thinks about
efficiency. cmceniry@mit.edu

www.usenix.org S U M M ER 20 1 8 VO L . 4 3 , N O. 2 39

COLUMNS
Knowing Is Half the Battle: The Cobra Command Line Library of Go

Note: For brevity, the focus here is strictly on the command line
interface. Most operations of the actual gofs library and service
would look the same as our existing glsbased ones, so I’ll leave
an actual implementation of the service as an exercise for the
reader.

The code for this can be found at https://github.com/cmceniry
/login/tree/master/gofs.

Go Command Line Options
Most programming decisions are opinions; the Go command line
options are no different. There are several ways to achieve this.
We’re going to examine three options, and then choose one.

Standard Library: os.Args
As seen in the preceding articles, the most basic level is parsing
the command line options directly. This involves handling the
os.Args slice.

For the gls services, we just took the very first argument passed
into our program and operated on that. There was no decision
process, and it was very simple.

This has the upside of being very straightforward to process. The
downside is that it is the application’s responsibility to handle
the various types of arguments. It has to

1. process and remove the optional arguments and then

2. decode subcommands/positional arguments.

Standard Library: flags
Go comes with an opinionated command line optionsparsing
library. It is strictly for parsing the command line arguments—
i.e., it does not handle subcommands. It needs to handle the
remaining arguments, directly or via another library, to be able
to achieve the subcommand pattern that we’re aiming for.

Probably the most controversial opinionated implementation
of the flags library is what format it uses for arguments. It only
handles the single hyphen token. Additionally, it does not sup
port short options. Though you can name an option using a short
name, there’s no library method to connect a short and long
option.

The Cobra Library
Steve Francia took the time to extract the subcommand pattern
out into a library, and separately took the time to extend (more
like a dropin replacement for) the flags library to support the
LongOpt format. These libraries are:

◆◆ https://github.com/spf13/cobra

◆◆ https://github.com/spf13/pflag

Cobra is billed as “a library providing a simple interface to create
powerful modern CLI interfaces similar to git & go tools.” pflag
handles the the option parsing for Cobra built commands.

Given that Cobra handles the subcommand pattern that we
want, and pflag implements the familiar LongOpt format, this
seems like a good choice on top of which to build.

Implementation
Cobra works by defining Command structs and then wiring
them together with flag arguments and with other commands.
Both our primary command and all subcommands use the Com
mand struct. It is the wiring that decides whether a command is
a primary command or a subcommand.

To organize our code, we’re going to implement our application
as the gofs package. The primary, or root, command will be in its
own root file. Each subcommand will also get its own file.

The main.main func will be in its own cmd directory. This is to
reduce any confusion with a main package file being in the gofs
package directory—some tools and IDEs will see this as an error.

Our directory structure looks like:

 gofs/cmd/main.go # main.main calls into root.go

 gofs/ls.go

 gofs/mv.go

 gofs/put.go

 gofs/root.go # primary command

 gofs/serve.go

To build this, using the default GOPATH:

 go get -u github.com/cmceniry/login/gofs

 cd ~/go/src/github.com/cmceniry/login/gofs

 go build -o gofs ./cmd/main.go

Root Command
Cobra builds commands off each other. At the start of it is the
root command:

root.go : rootcmd.

 var rootCmd = &cobra.Command{

Common convention is that each command tends to be a
packagelevel variable. You could define these inside of a setup
function (and we’ll see something like that with the arguments),
but the common method is to do this at the package level.

For each command, we first need to define its usage. We’ll see
additional usage options shortly, but to start, we need to describe
what our application is:

https://github.com/cmceniry/login/tree/master/gofs
https://github.com/cmceniry/login/tree/master/gofs
https://github.com/spf13/cobra
https://github.com/spf13/pflag
github.com/cmceniry/login/gofs
github.com/cmceniry/login/gofs

40  S U M M ER 20 1 8 VO L . 4 3 , N O. 2 www.usenix.org

COLUMNS
Knowing Is Half the Battle: The Cobra Command Line Library of Go

root.go : rootusage.

 Long: À simple interface to a remote file system.

 It provides a remote interface similar to the standard tools of

 ls, cp, mv, etc.̀ ,

 }

Cobra provides a builtin help system. Long is displayed when
ever help or --help or invalid options are used.

 $ go run cmd/main.go

 A simple interface to a remote file system.

 It provides a remote interface similar to the standard tools of

 ls, cp, mv, etc.

Now that we have a root command, we need to wire it into the
main.main. Since the root command is in the gofs package, we
need to export that in some manner. The common way is to
define an Execute func which main.main invokes:

cmd/main.go.

 package main

 import “github.com/cmceniry/login/gofs”

 func main() {

 gofs.Execute()

 }

The gofs.Execute func is really just a wrapper around rootCmd.

Execute:

root.go : execute.

 func Execute() {

 if err := rootCmd.Execute(); err != nil {

 fmt.Println(err)

 os.Exit(1)

 }

 }

We cannot invoke rootCmd.Execute from main.main directly
because rootCmd is a gofs packagelevel variable. While this
may present extra hoops to jump through, it does keep the code
cleanly separated. It’s unlikely that any main using this will want
to do anything else, but this does make it very clear that this com
mand line library is meant to only operate in an opinionated way.

--server Optional
Since all of our subcommands are going to depend on being able
to connect to the server, we have to put the configuration for that
at the highest level. This will be an optional variable --server,
which takes the Go network string (e.g., localhost:4270). This
can be passed to every subcommand so that they are consistently
connecting to the correct server.

Options are added to Cobra commands using the *Flags() meth
ods. Cobra has PersistentFlags, which carry from commands to
subcommands, and local Flags, which only apply to the subcom
mands. There are special rules for applying local Flags to parent
commands and passing those along, but those aren’t needed for
this exercise.

To add an option, we first have to define a variable for where to
keep the flag’s value inside of our program. Like the commands,
these are commonly found as packagelevel variables since
they may be used in various parts of the package’s code. Since it
attaches at our rootCmd, we can include this in our root.go file:

root.go : serveraddress.

 var (

 serverAddress string

)

We could choose to add sections to our Execute command to do
some initialization, but it would be nice to have this happen a bit
automatically. Conveniently, Go has a facility for this.

When Go instantiates a package inside of the runtime, it per
forms a few initializations. The first that we’re concerned with is
to set up packagelevel variables (e.g., rootCmd, serverAddress).
Following that, Go invokes the package’s init func. This order is
critical to us because we need to be able to reference the pack
agelevel variables inside of our init func.

Our init func starts like this—we’ll add more to it in a bit:

root.go : flag.

 func init() {

 rootCmd.PersistentFlags().StringVarP(

 &serverAddress,

 “server”,

 “s”,

 “localhost:4270”,

 “address:port of the server to connect to”,

)

github.com/cmceniry/login/gofs
localhost:4270
localhost:4270
address:port

www.usenix.org S U M M ER 20 1 8 VO L . 4 3 , N O. 2 41

COLUMNS
Knowing Is Half the Battle: The Cobra Command Line Library of Go

Since we’re binding only one option, we only need to invoke
it once. PersistentFlags accesses the flags for the gofs root
command. StringVarP binds a pointer for a string to a variable,
so that the variable can be modified. We use the address of our
serverAddress variable to act as our pointer. The next two argu
ments, “server” and “s”, declare the name of the argument. Fol
lowing that is the default value. The very last part is our usage
information, which shows up in help much like the command.

Long field.

The serve Subcommand: No Arguments
Now that we’ve built out our primary command, we can build out
and attach a child to it.

The simplest of these is the command that would start up our
gofs server: serve. We construct it very much like our rootCmd,
although we’re going to add more usage information to it:

server.go : servercmd.

 var serveCmd = &cobra.Command{

 Use: “serve”,

 Short: “Start the gofs server side”,

 Long: `This will run the gofs server.

 The gofs server provides a remote file system management

interface.̀ ,

There are two new fields here. Use describes the name of our
subcommand. Short shows up when help is invoked on our root-

Cmd (as opposed to Long which shows up when help is invoked on
this command).

Next, we declare that this command should have no position
arguments.

server.go : args.

 Args: cobra.NoArgs,

While it’s not clear here, cobra.NoArgs is a func, not a data value.
You can supply your own argument validation function, or use
the builtin ones that come with the Cobra library.

We can now provide the func for our command to run. As men
tioned, since the focus of this article is on the command line
interface, the command just returns output back to the user.

server.go : run.

 Run: func(cmd *cobra.Command, args []string) {

 fmt.Printf(“Starting server on ‘%s’\n”, serverAddress)

 },

We’ll see shortly how the func arguments can be used.

The last part to do is to wire serveCmd to our rootCmd. Like the
--server argument, this is done in the init func:

root.go : wireserve.

 rootCmd.AddCommand(serveCmd)

ls/mv: Handling Arguments
Next let’s look at one argument with the ls command (one here to
mirror the use of ls from previous articles). At this point, most of
the ls command should be inferable:

ls.go : cmd.

 var lsCmd = &cobra.Command{

 Use: “ls [path to ls]”,

 Short: “Shows the directory contents of a path”,

 Long: `Shows the directory contents of a path. If given

no path, uses the running path for the gofs server.̀ ,

 Args: cobra.MaximumNArgs(1),

 Run: func(cmd *cobra.Command, args []string) {

 fmt.Printf(“ls server=’%s’ path=’%s’\n”, serverAddress,

args[0])

 },

 }

The new item here is the Args value. cobra.MaximumNArgs is
a builtin func that is used to indicate a cap to the number of
positional arguments. Of special note to remember is that Args
requires a func, so cobra.MaximumNArgs is a func that returns a
func.

We can see a similar approach to Args with the mv command:

mv.go : cmd.

 var mvCmd = &cobra.Command{

 Use: “mv source ... target”,

 Short: “Moves a file to a destination file, or moves

multiple files into a directory”,

 Long: `If given two arguments, moves the first file to

the second file. If that second file is a directory, the first is

moved into it.

 If more than two arguments are given, it moves all but the

last file into the last one which it expects to be a directory.̀ ,

 Args: cobra.MinimumNArgs(2),

Note that Args is used to validate the arguments, not to decide
how to use them. That happens in the Run field:

42  S U M M ER 20 1 8 VO L . 4 3 , N O. 2 www.usenix.org

COLUMNS
Knowing Is Half the Battle: The Cobra Command Line Library of Go

mv.go : run.

 Run: func(cmd *cobra.Command, args []string) {

 if len(args) == 2 {

 fmt.Printf(“Moving file ‘%s’ to ‘%s’”, args[0],

args[1])

 } else {

 fmt.Printf(

 “Moving files ‘%s’ into directory ‘%s’\n”,

 strings.Join(args[0:len(args)-1], “,”),

 args[len(args)-1],

)

 }

 }

 }

In this case, we want to behave differently depending on the
number of arguments. With two arguments, we’re looking largely
at a rename or move. With three or more arguments, we can only
do a move. Since this is done at the same time as our normal
execution, it happens all at once, unlike the separate validation
step.

Before we finish, we have to wire these commands to our root-

Cmd in the package’s init func:

root.go : wirelsmv.

 rootCmd.AddCommand(lsCmd)

 rootCmd.AddCommand(mvCmd)

Conclusion
This article has presented just the tip of the iceberg in handling
command line arguments in Go. While there are several options,
one of the most powerful ones is the github.com/spf13/cobra
library. In addition to the work it performs for you, it also demon
strates some good aspects for the developer experience:

◆◆ Cobra allows you to keep all of your related code with itself.
Each command is largely selfcontained except where there are
logical overlaps (PersistentFlags).

◆◆ It has a builtin help system that automatically generates help
and usage results. The developer doesn’t have to spend extra
time managing a separate usage function, which means it’s less
work and less likely to go out of date.

I hope that you feel confident using the Cobra library in your own
code. As mentioned, implementing the legwork of this code is
left as an exercise for the user. Even if you don’t implement the
actual function, you can consider how other file system utilities
might be implemented to work through some of the odd use cases
of command line parameters.

Whatever path you choose, good luck and happy Going!

github.com/spf13/cobra

Save the Date!

www.usenix.org/lisa18

October 29–31, 2018
Nashville, TN, USA

LISA: Where systems engineering and operations professionals
share real-world knowledge about designing, building, and

maintaining the critical systems of our interconnected world.

The full program will be available in August.

Program Co-Chairs

Rikki Endsley
Opensource.com

Brendan Gregg
Netflix

44  S U M M ER 20 1 8 VO L . 4 3 , N O. 2 www.usenix.org

COLUMNS

iVoyeur
Sensu Rising: An Interview with Matt Broberg

D A V E J O S E P H S E N

Matt Broberg is VP of
Community for Sensu, Inc.,
focused on the incredible
community around Sensu,
the open source monitoring

framework. Matt is on the board of the
Influence Marketing Council, co-maintains
the Evangelist Collective, contributes to the
Go Community Outreach Working Group,
occasionally blogs on Medium.com, and shares
code on GitHub. He’s also a fan of tattoos, rock
climbing, and cats, though remains unsure of
Schrödinger’s.

Dave Josephsen is a book
author, code developer, and
monitoring expert who works
for Sparkpost. His continuing
mission: to help engineers

worldwide close the feedback loop.
dave-usenix@skeptech.org

It’s hard to believe that Sensu, the opensource, distributed monitoring
framework, is over seven years old. Its scalable, ultraflexible design and
practitionerfocused development model still make it the most forward

thinking centralized poller in existence. The project is one of the very few
that still “feels” fresh to me, and yet it retains that aura of bulletproof resil
iency that only comes with time in the trenches.

In recent months, the project founders have incorporated to form Sensu, Inc., hiring on a
dreamteam of people I personally adore, including engineers Greg Poirier (Opsee) and Jason
Dixon of Graphite fame, as well as ace community architect extraordinaire, Matt Broberg.
The fledgling corporation is busy funding and managing Sensu community development,
providing enterprise Sensu support, and laying the groundwork for the future in the form of
SensuGo, a groundup rewrite of Sensu in the Go programming language.

Given all the exciting change happening in the Sensusphere, I thought it’d be fun to interview
Matt and get a feel for what’s going on from within.

Dave Josephsen: Describe Sensu in your own words.

Matt Broberg: Sensu provides total visibility for your business, from the server closet to the
cloud. Said simply, Sensu connects the dots between every tool in your monitoring solution,
providing a single way to manage service checks, telemetry, alerting, and remediation, and it
gives you the right primitives to build custom monitoring that scales.

DJ: Who is using Sensu today? How many teams? How are they distributed with respect to
industry?

MB: It’s helpful to recall that Sensu has been around for seven years, while Sensu Enterprise
has nearly three years (full story at [1]). With over 13,000 downloads a day of Sensu Core
packages, we know there are more users than the team behind Sensu, Inc. has gotten to know,
and we look forward to discovering them. Shameless request: if you’re a current user, I’d love
to hear from you: community@sensu.io.

Talks from last year’s Sensu Summit are a great crosssection of our user base. We have com
panies large and small, off and onpremises, running in every environment from bare metal
to Kubernetes to AWS. You have folks like GoDaddy scaling a selfservice Sensu environ
ment with 40,000 clients spread throughout their globally distributed datacenters. Spin up a
box, get base knowledge about your environment outofthebox, and then help your product
team customize it all.

Then you have an architect at TMobile talking about Sensu monitoring their Cloud Foundry
environment. Nagios migration is a very common use case for us. Sometimes it seems like
everyone at the summit has a story about migrating from Nagios at some point due to scaling
or customization challenges. My personal favorite comes from David Schroeder who goes
into the detail of the how and why he needed to move on [2].

www.usenix.org S U M M ER 20 1 8 VO L . 4 3 , N O. 2 45

COLUMNS
iVoyeur: Sensu Rising: An Interview with Matt Broberg

Like any healthy open core model, we have a majority of users
successfully running on their own with the MITlicensed open
source version. A healthy majority of users are open source,
using our large library of plugins filled with service checks and
telemetry collectors, or running their preSensu plugins for Nag
ios, or pushing data using the StatsD extension. Some significant
OSS shops, like Yelp or TripAdvisor, have open sourced tools
that make Sensu even easier to run. One of my favorites is Sens8,
which extends Sensu functionality to fit smoothly into Kuber
netes. Schuberg Philis [3], for example, has a great blog about the
custom code they’re running to monitor 20 Kubernetes clusters
with Sensu and Sens8.

We have a growing number of Sensu Enterprise customers as
well, who get the benefit of enterprisey integrations (Service
Now and Jira are popular) along with support and training. It’s
a perfect choice for those who want all the pieces of Sensu put
together for them so they can focus on introducing monitoring
to their teams. These companies run the gamut of company size,
from those as large as GE, who use Sensu to monitor Predix
infrastructure, to smaller organizations like David’s I mentioned
above. And what I personally love is that many of them are con
tributors to the community, answering questions for new users
or by sharing plugins.

Sensu 1.0
DJ: Compared to other monitoring tools you generally compete
with, what are Sensu’s particular strengths?

MB: Sensu’s strength is how well it meets the challenge of moni
toring dynamic infrastructure. Whether you run on bare metal,
hypervisors, container orchestrators, or clouds, no matter how
shortlived or ephemeral, it all works with Sensu. Our client runs
on all operating systems, everything from Windows and Linux
to Mac OS, and we can ingest and emit monitoring data with any
purposespecific monitoring system out there.

Scalability is a big win for Sensu as well. Our clients participate
in a pub/sub relationship with a scalable transport layer which,
in turn, communicates with a scalable server layer. If you have
more infrastructure to monitor, spinning up more Sensu serv
ers linearly scales your processing of checks. Dynamic client
registration has historically been a bit of a thorny problem in the
monitoring world, but it’s been a solved problem for Sensu from
its inception. The Sensu client’s dynamic selfregistration (and
deregistration) hits home for those who have felt the pain of get
ting alerts for servers that were deprovisioned long ago.

The last major category of users that I know will love Sensu are
used to monitoring tools that only work when you use them in
the exact way they were intended. Configuration of those tools
becomes unmanageable as soon as you leave that happy path,

and our users love customization. Sensu has sane defaults, but
will also never give you that feeling of being limited. Its API
exposes the right primitives to let you build the monitoring you
need with all the event handling, filtering, and automation of bits
you can imagine.

DJ: We understand Sensu was architected from the ground up
with a scalable distributed architecture model. Can you give us a
rough idea of what the architecture looks like? For example, what
are the primary components of a Sensu install, and how do they
work together to achieve visibility?

MB: The Sensu client is our heavy lifter; it collects measure
ments. Typically, it runs on the instance you want to monitor,
but it can also interrogate remote entities like switches or act
as a processlocal endpoint to receive, for example, threadlevel
metrics from a locally running app. Clients can also cooperate
with other clients to achieve summarization or route messages,
commonly around things like firewalls.

Clients selfregister with the Sensu transport layer, which, by
default, is a RabbitMQ Queue. Clients use the transport layer to
publish their check results to the Sensu server and consume new
check requests from Sensu server or events from other clients.

The Sensu server orchestrates service checks by publish
ing check requests to, and collecting service check results
from, various clients via the transport layer. Nagios style
(OK,WARN,CRIT,UNKNOWN) checks, as well as metrics and
telemetry collection, happen by the same means, via messages
passed through the transport layer. The Sensu server stores its
state in Redis, performing roughly a single write operation per
check result. Every Sensu server in the installation uses the
same Redis state DB, ensuring that each individual Sensu server
is, itself, stateless.

Most users persist data beyond Sensu, which fits perfectly with
the design. It was a design goal for Sensu to easily and cheaply
route telemetry or check results to external timeseries data
bases like Graphite, Librato, and InfluxDB or store output to
logging platforms like ElasticSearch.

DJ: Sensu ships with a very nice RESTful API. What sorts of
operations are available from the API, and how do your custom
ers use it?

MB: One of Sensu’s greatest strengths is its RESTful API,
making all of the data captured by Sensu accessible via HTTP.
This APIfirst approach is a huge win for those living in dash
boards; users can query for everything from current events (i.e.,
incidents) to registered Sensu client information. The fact that
everything—from the Uchiwa dashboard and CLI to thirdparty
dashboards like Grafana—uses the same API to communicate
provides a single authority to keep results consistent.

46  S U M M ER 20 1 8 VO L . 4 3 , N O. 2 www.usenix.org

COLUMNS
iVoyeur: Sensu Rising: An Interview with Matt Broberg

Beyond the dashboard, you have a ton of options when you think
about the API. Customers are a quick curl loop away from silenc
ing alerts or getting a snapshot of the client health. There are
endless ways users can combine API calls to flesh out runbooks,
then add links to them to your check results with a custom attri
bute. The world is your oyster.

DJ: Many monitoring systems are protective with the monitor
ing data they collect and inflexible with respect to exporting
that data to other systems. Can you talk a little bit about Sensu’s
philosophy on interoperability?

MB: What personally attracted me to working at Sensu was
the story of how we intentionally fit into a bestofclass set
of monitoring software instead of trying to be everything to
everyone. Sensu wants to help you build the monitoring pipeline
you need. In most cases we can natively ingest check results
from your existing plugins in foreign data formats (Nagios,
StatsD, and now Prometheus through extensions) and output to
an evergrowing litany of other monitoring systems (Graphite,
OpenTSDB, Metrics 2.0, JSON, and more).

Through our pluggable architecture, you choose where your
data lives: your favorite TSDB, SaaS, S3 buckets, or anywhere
else. Same goes for oncall or escalation management through
OpsGenie or VictorOps or otherwise. Sensu makes sure it gets
there. You get to decide where it goes.

DJ: Can you give us a rough idea of how hard it is to migrate to
Sensu from an existing monitoring system (like Nagios)?

MB: It’s as easy as running an existing Nagios check in a Sensu
check config file. If you have an existing plugin for Nagios,
maybe through yum install, and if you want to run it in Sensu,
you deploy Sensu—ideally through your favorite configuration
management tooling—and then wrap the command into a check
definition under the ‘command’ attribute. Tada, you’re done.

Sensu 2.0
DJ: We understand Sensu2 is available via GitHub at https://
github.com/sensu/sensugo. What is the release date, and what
is the current status of the release candidate?

MB: Sensu Core 2.0 is in an Alpha state as of today, making it
the perfect time to dive in to make sure to get your feedback in
to guide the user experience. I recommend spinning it up on a
nonproduction environment and seeing how it goes. When we
hit Beta, we’ll have a fully documented API and some larger
scale test cases to point to for performance expectations. Our
official release target is for later this year, but we are committed
to production readiness being a gate to GA, not a date.

DJ: We understand Sensu 2 is a fromscratch rewrite in Golang.
Can you talk about what prompted the rewrite and share any
toplevel goals you set out to accomplish?

MB: While extremely resilient and powerful, Sensu 1.x’s depen
dencies are numerous. We knew an adjustment was necessary
to get to where monitoring needs to go to manage bare metal
alongside container and serverless workloads. Moving from
the external dependence and runtime requirements to a simple
twobinariesandyou’redone design will have a major impact to
ease of deployment.

Go, as a language, offers clear advantages for that future as well.
Concurrency is straightforward with goroutines, and many
features that are seen as advanced in other languages are baked
into Go’s suite of tools, like race detection, testing, and perfor
mance analysis to name a few of my favorites.

In recent years, Go has established itself as the new language of
systems programming. Because of this, our users are increas
ingly learning Go as part of their development toward an SRE
skill set, making it even more essential to ensure community
participation. Go’s popularity and growing community provide
a wealth of shared knowledge and understanding. The language
and its documentation are welcoming to this new, growing seg
ment of users coming from higherlevel interpreted languages
and frameworks in Ruby and Python.

DJ: We were excited to hear that the datastore in Sensu2 will be
changed from Redis to etcd. Has your experience with etcd been
positive so far?

MB: Etcd has been a powerhouse of a datastore. Sensu backend
will have etcd embedded for clustered state and configuration
management, replacing the state that Redis managed and the
configuration files that used to live on disk. It’s exciting to get
a highly available Sensu backend that has the thorough testing
that etcd gets in order to support largescale Kubernetes deploy
ments. That’s a slam dunk for us.

We’ve also really enjoyed our interactions with the team working
on etcd. We’ve contributed a few patches and have seen turn
around on bug reports in just a few days. The last fix we worked
on with them was in a release only two weeks after the bug was
filed and fixed on master. It’s wonderful to be part of that com
munity as well.

DJ: To what extent, as a user of Sensu2, will I need to be an etcd
adept? Is its presence completely abstracted away to the point
where I don’t even know it’s there? Or will I be expected to per
form light maintenance/tuning?

https://github.com/sensu/sensu-go
https://github.com/sensu/sensu-go

www.usenix.org S U M M ER 20 1 8 VO L . 4 3 , N O. 2 47

COLUMNS
iVoyeur: Sensu Rising: An Interview with Matt Broberg

Most importantly, all your existing plugins will run on both
versions of Sensu. We will have runtimes available for download
so you can pick up an embedded Ruby environment to keep your
plugins upandrunning. Client config and plugins will need to
be deployed alongside the new binaries. Our main focus will be
to release updated Ansible, Puppet, and Chef code to enable the
majority of users to painlessly deploy Sensu Core 2.0. For others
not living the infrastructureascode paradigm, we will have
upgrade readiness guides and CLI tooling to ease the transition.

DJ: Where can I hang out with the Sensu community at large
and/or perhaps contribute to the development of Sensu2?

MB: We would love to have you get involved. We have a #sensu2
channel to talk through user experience and give live feedback in
our Community Slack (and yes, you can sign in using IRC!). For
the daytoday banter of software development, join the #core
dev channel. If—or should I say when—you have a great idea or
a new bug to share with us, get involved on GitHub at https://
github.com/sensu/sensugo. Star the repo to let us know you’re
interested, or watch it to get regular notifications every step of
the way. If you prefer the highlights over the details, sign up for
our newsletter for regular updates.

MB: Our goal with 2.x is to abstract project dependencies so
users can focus on the goal of monitoring the right services. If
we can stick to sane defaults and avoid exposing config we don’t
need, it will be for the better. Maybe that’s idealistic and we’ll
need to allow users to tune etcd’s configuration, but we’ll cross
that bridge when it’s warranted. The core team is open to adapt
ing as we continue to test in larger environments.

DJ: Given that the datastore is changing, is the transport layer,
RabbitMQ, also changing or possibly going away entirely?

MB: Yes, it is. RabbitMQ is a great piece of technology, providing
pub/sub messaging with queueing and several routing topolo
gies. It also does way more than Sensu ever needed it to do. With
Sensu 2.x, we’ve implemented a builtin messaging transport,
greatly simplifying Sensu’s architecture, while still having the
key capabilities that RabbitMQ provided. Given that we only
ever scratched the surface of the power of RabbitMQ, it made
sense for us to simplify the architecture and build the little bit of
queueing we need. Fans of simpler architectures will be happy
to know we have the same pub/sub model without additional
services to run.

DJ: What will the upgrade path between Sensu and Sensu2 look
like? Can Sensu2 process events from an inplace Sensu client?
Is Sensu2 plugincompatible with Sensu? APIcompatible?

MB: The team at Sensu, Inc. and the many community contribu
tors are committed to making the migration path as simple as
can be. That said, this major release will be a breaking change in
a few ways. New Sensu clients, backend and dashboard, will be
deployed during installation. They will no longer need RabbitMQ
and Redis services alongside them, so these can be spun down as
part of installation as well.

References
[1] Caleb Hailey, “From Open Source to Open Core: The Hard
Way,” The Sensu Blog, May 2, 2016: https://blog.sensuapp.org
/fromopensourcetoopencorebc3007c96236.

[2] Sensu Summit 2017, YouTube: https://bit.ly/2GEcWsR.

[3] Andy Repton, “Our Journey Implementing Sensu to Moni
tor Kubernetes in Production,” The Sensu Blog: https://blog
.sensuapp.org/ourjourneyimplementingsensutomonitor
kubernetesinproduction5764aff2dd50.

https://github.com/sensu/sensu-go
https://github.com/sensu/sensu-go
https://blog.sensuapp.org/from-open-source-to-open-core-bc3007c96236
https://blog.sensuapp.org/from-open-source-to-open-core-bc3007c96236
https://bit.ly/2GEcWsR
https://blog.sensuapp.org/our-journey-implementing-sensu-to-monitor-kubernetes-in-production-5764aff2dd50
https://blog.sensuapp.org/our-journey-implementing-sensu-to-monitor-kubernetes-in-production-5764aff2dd50
https://blog.sensuapp.org/our-journey-implementing-sensu-to-monitor-kubernetes-in-production-5764aff2dd50

48  S U M M ER 20 1 8 VO L . 4 3 , N O. 2 www.usenix.org

COLUMNS

When you have eliminated the impossible, whatever remains, however improbable,
must be the truth.—Sir Arthur Conan Doyle

Sherlock’s statement is most often quoted to imply that uncommon
scenarios can all be explained away by reason and logic. This is miss
ing the point. The quote’s power is in the elimination of the impos

sible before engaging in such reasoning. The present authors seek to expose
a similar misapplication of methodology as it exists throughout information
security and offer a framework by which to elevate the common Watson.

There was a time when one might answer the question, “What do you do?” with “computer
security,” but even five years ago generalists were beginning to be scarce, or, as one of us
wrote:

While some people like to say, “Specialization is for insects,” tell me that the
security field itself is not specializing. We have people who are expert in forensics
on specific operating system localizations, expert in setting up intrusion response,
expert in analyzing large sets of firewall rules using nontrivial set theory, expert
in designing egress filters for universities that have no ingress filters, expert in
steganographically watermarking binaries, and so forth. Generalists are becoming
rare, and they are being replaced by specialists. This is biologic speciation in action,
and the narrowing of ecologic niches. In rough numbers, there are somewhere close
to 5,000 various technical certifications you can get in the computer field, and
the number of them is growing thus proving the conjecture of specialization and
speciation is not just for insects and it will not stop. [1]

A year ago, Oppenheimer & Co CISO Henry Jiang offered a visual for the specialization state
of the security world [2]; it has 86 specialties (and commenters asked for more). Yet among
the many specialties that make up security, all recognize the inherent uncertainty created by
a sentient opponent, and all are currently grappling with one of two formulations of the same
problem: (1) there is too much noise and not enough signal, or (2) there is a shortage of quali
fied security professionals, a shortage arguably made more acute by specialization, however
logical specialization is in the face of security pressure as it now is.

Specialization has not proved to be a panacea; we are still beset by errors. Gorovitz and
MacIntyre [3] explored a similar phenomenon in medicine by categorizing errors doctors
were making into three types: failures of ignorance, failures of ineptitude (failing to apply
knowledge that already exists), and necessary fallibility, a kind of prehistoric black swan that
we shall not concern ourselves with here.

In our pursuit of knowledge, we have generated ineptitude. This is not an asseveration about
the security industry; it is rather an allusion to a law, an analytic relationship between preci
sion and recall in search problems [4, 5], and it is our claim that “search problems” is what
information security is all about.

For Good Measure
Remember the Recall

D A N G E E R A N D M I K E R O Y T M A N

Dan Geer is the CISO for
In-Q-Tel and a security
researcher with a quantitative
bent. He has a long history
with the USENIX Association,

including officer positions, program
committees, etc. dan@geer.org

Michael Roytman is the
Chief Data Scientist at Kenna
Security. His work there focuses
on cybersecurity data science
and Bayesian algorithms.
He serves on the board of

the Society of Information Risk Analysts as
Program Director. He is also a technical advisor
in the humanitarian space, having worked with
Doctors Without Borders, The World Health
Organization, and the UN, and is a member
of Forbes Technology Council. He is the
cofounder and board chair of Dharma.ai, for
which he landed on the 2017 Forbes 30 under
30 list. He holds an MS in Operations Research
from Georgia Tech, and his coffee roastery,
Sputnik Coffee Company, offers dog treats to
all visiting canines. mikeroytman@gmail.com

www.usenix.org S U M M ER 20 1 8 VO L . 4 3 , N O. 2 49

COLUMNS
For Good Measure: Remember the Recall

Explanatory aside:

Library scientists use precision to mean what fraction
of search results are actually useful and recall to
mean what fraction of potentially useful results that
the search actually returned. Epidemiologists know
precision as predictive value positive, what fraction
of positive tests actually have disease, and recall as
sensitivity, what fraction of those with disease will test
positive. As may be obvious, making recall (sensitivity)
rise makes false positives rise, too. Conversely, as
false positives rise, the precision (predictive value of a
positive result) falls.

Security tools mostly deal with answering some form of the
question, “Does this matter?” In vulnerability management, that
question is, “Does this vulnerability pose a risk?” In incident
response, that question is, “Was this a malicious event or a false
positive?” In threat intelligence, it can be said as, “Is this indica
tor malicious or not?”

Each of these questions by whatever name is a statistical test,
a classifier which vendors have tried to answer since before the
time of KDD ’99—a contest for “a predictive model capable of
distinguishing between legitimate and illegitimate connections
in a computer network” [6].

Accuracy, in the technical sense, has little meaning when
searching for rare events. If one in a hundred machines is
infected, I am 99% accurate when I routinely guess that “none
of our machines are infected.” Hence, we turn to measures of
recall and precision when evaluating how “good” we are as an
industry at answering these questions. The hope for all ana
lytic tools is to reduce the number of errors the user makes. Are
presentday security tools reducing failures of ignorance and
failures of ineptitude sufficiently? We illustrate that the answer
is a resounding “no.” But there is hope. We also show that by
measuring existing models through the lens of precision and
recall, small changes to the models can have outsized impact on
error reduction.

The perhaps foreseeable consequence of Ian Grigg’s 2008 article
“The Market for Silver Bullets” [7] has been a maddening prolif
eration of vendors, paralleling the proliferation of cybersecurity
practice specialties. In 2016 alone, venture capital firms laid
out $3.1 billion in funding 279 new security vendors [8]. We’ve
“enjoyed” a 25% compound annual growth rate in venture money
for cybersecurity over the past 13 years, with over $800 million
placed in 2017 Q4 alone, but when a typical organization uses
50+ vendor products at once, the output of that instrumenta
tion means an overload in the volume, velocity, and variability
of the data that describes the ground truth we seek to classify.
It is no surprise that most alerts are never examined. In the

course of developing security tools, defenses, and processes, we
as an industry have made one simple miscalculation—we have
attempted to output truth, aka results, but instead have output
a vast amount of noise and have overloaded our most precious
resource—the security professional’s time.

Generally speaking, security instrumentation seeks to improve
models on its own grounds—by reducing false positives or by
increasing the search space. While either approach is logical, it
means that vendors always start their analyses at the theoretical
level, move to the population level, and progress steadily towards
the customer’s environment. The result is overwhelming, and
every additional product installed adds to the problem. It would
be better to optimize for the capacity an organization has at hand
and construct models with the feasible in mind. So far as the
present authors know, every CISO survey ever taken has essen
tially found cybersecurity to be a lemons market, one where the
buyer can’t readily tell a lowquality product from a highquality
one. Investopedia then reminds us that “Ironically, [a lemons
market] creates a disadvantage for the seller of a premium [prod
uct], since the potential buyer’s asymmetric information, and the
resulting fear of getting stuck with a lemon, means that he is not
willing to offer a premium price even though the [product] is of
superior value” [9].

Eliminating the Impossible
We offer a solution widely deployed in practice in other fields and
talked about in the parlor rooms of security. If security tooling
were to focus on analyst enablement, the approach to testing
might be altered to resemble something more akin to medical
practice—costeffective multistage testing and process termi
nation (see [10] for our prior work on testing)—multistage so as
to be able to optimize test performance without incurring side
effects, and process termination when no therapeutic difference
would follow from sharper diagnostic detail even if that detail
were available for free.

Rare does not mean malicious, and building models specifi
cally for very low base rate maliciousness means there is very
little chance your positive test results are true positives. If the
base rate of a nonmalicious event, vulnerability, or indicator
is high, we can be fairly certain that our test will categorize a
nonmalicious event as such—whatever remains after that is a
new search space, where the base rate of “malicious” to “benign”
is more evenly balanced and hence lends itself better to a second
test, one where precision is the goal. In short, the first tests you
must apply are not the ones that identify the malicious but the
ones that identify the benign. It is conceivable that in a special
istheavy field, recall is always > precision, perhaps because
specialization increases hourly rates.

50  S U M M ER 20 1 8 VO L . 4 3 , N O. 2 www.usenix.org

COLUMNS
For Good Measure: Remember the Recall

A Worked Example
Consider ACME, Inc., a fictitious organization constructed by
sampling the data set we have at hand: Kenna Security’s vulner
ability scan data [11]. It contains 8,551,837 assets, 293 organiza
tions, a median vulnerability count per asset of 116, a median
monthly close rate of 25 vulnerabilities per asset, and a median
monthly open rate of 20 vulnerabilities per asset (hence a net
reduction of five vulnerabilities per asset per month).

The fictitious ACME has 10,000 assets; they vary from load
balancers to Linux boxes to printers, and so forth. ACME has
1,160,000 vulnerabilities (116 x 10,000). ACME can remediate
250,000 vulnerabilities in a month (25 x 10,000) during which
time another 200,000 vulnerabilities will be released (20 x
10,000), i.e., ACME has the capacity to reduce total vulnerabili
ties by 50,000 per month (5 x 10,000). ACME’s goal is to remove
the riskiest vulnerabilities from the organization’s environment,
so they turn to the 28% of the inthewild detected vulner
abilities that are ranked “critical” by CVSS, meaning 324,800
(1,160,000 x 0.28) vulnerabilities are ACME’s first concern.

But 87.8% of those CVSS criticals are false positives (prior
work at [12]), so ACME’s meaningful effort towards security
is limited to 39,626 (324,000 x (1 − 0.878)) vulnerabilities that
are CVSS true positives. This number (39,626) is well within
ACME’s remediation capacity (39,626 < 50,000), but only if the
remediation is somehow aimed only at truepositive vulnerabili
ties. However, if the level of effort required to remediate 50,000
vulnerabilities is spread across all those 324,800 vulnerabilities
marked as critical, 85% (1 − 50,000/324,800) of ACME’s invest
ment will yield no useful result. Not only that, there will still
be 33,525 ((324,800 − 50,000) x (1 − 0.878)) unremediated true
positive vulnerabilities extant. They go on next year’s budget…

Turning to the threat and incident use cases (and using the base
rates in BalaBit’s contextual security intelligence report [18]),
ACME would collect about 6.78 billion raw log entries per month,
process about 34% of those, getting it down to 2.26 billion pro
cessed log entries, and receive 17,300 alerts per month—one alert
for each 130,635 processed log entries. ACME has the capacity
to investigate 34% of those, that is to say 5,900 (17,300 x 0.34)
alerts. They incur a falsepositive rate of 18% while taking an
average of seven minutes to decide whether an alert is or is not
malicious, 688 (5,900 x 7/60) hours of work of which 124 (688 x
0.18) hours is wasted. ACME will correctly classify and inves
tigate 4,800 (5,900 x (1 − 0.18)) of the 17,300 events a month,
neglecting 9,363 ((17,300 − 5,900) x (1 − 0.18)) actually malicious
events because that would require an additional 1,330 ((17,300
− 5,900) x 7/60) hours of labor to get to. If the organization could
handle all 17,300 alerts, 363 (17,300 x 0.18 x 7/60) hours of their
labor would be spent on false positives.

Capacity Optimality
The following should be treated as axioms:

1. We are data rich and signal poor.

2. Multistage testing costeffectively increases both precision
and recall.

3. Analyst time is the capacity constraint for most security prob
lems (and Cybersecurity Ventures predicts 3.5 million unfilled
cybersecurity positions in 2021).

When we say “Remember the Recall” in the alert scenario,
“recall” means the percentage of alerts investigated that are in
fact malicious. In the vulnerability problem, “recall” means the
percentage of vulnerabilities that are identified as worth actu
ally fixing. In both alerting and in vulnerability remission, false
positives burn analyst time, our most precious resource. But
suppressing false positives is not good enough to be “the” answer
[13]. We have to go multistage.

The firststage test has to find and dismiss absolutely the
maximum number of benign markers be they alerts, vulnerabil
ity notifications, or whatever. This test has to be cheap, which
is to say automated. It has to have no false negatives, that is,
whatever it says is benign has to be benign. Epidemiologists call
this “specificity.” In our ACME example, one alert from 130,635
processed log entries illustrates strongly reduced search space—
discarding the benign as fast as is possible, and there’s a lot of
benign to discard.

Where the firststage test exists to throw out every datum it
can so long as there are no false negatives, the secondstage test
exists to select every datum it can so long as there are no false
positives. The second stage is the analyst, the person with that
sevenminute budget for selecting true, not false, positives. His
or her tools can be much better if, and only if, the analyst plus
tool combo is presented with a search space with the benign
removed, that is the second stage can really be focused on recall
(sensitivity). Medicine is riddled with this technique [14]. Legal
document review [15] and payment fraud [16] are already there,
too. And for those who want academic backup, see [17].

This framework is necessary to understanding the current
state of security. We exist in a dualstage testing regime. We
are subject to a low prevalence (rare event) environment. To act
rationally in this scenario, the first test must remove as many
false negatives as it can. This necessarily implies automation
in hopes of increasing the analyst’s seven minutes to a more
reasonable figure. To act with real foresight is to look to methods
that automate the second test as well, saving analyst time for the
highest quality, precleaned data we can provide.

www.usenix.org S U M M ER 20 1 8 VO L . 4 3 , N O. 2 51

COLUMNS
For Good Measure: Remember the Recall

Assuming that our first test has, as we suggest, high specificity,
it is then safe(r) to automate and bias the second test towards
recall—meaning we work to solve failures of ignorance. But if we
can automate the second test, we can then increase the amount
of time the analyst can spend deciding—meaning we are working
to solve failures of ineptitude. Perhaps then, and only then, will
we get enough minutes back to spend those minutes chasing
those rare birds, the black swans.

References
[1] D. Geer, “Trends in Cyber Security,” Nov. 6, 2013: geer.tinho
.net/geer.nro.6xi13.txt.

[2] Cybersecurity domains: www.linkedin.com/pulse/map
cybersecuritydomainsversion20henryjiangcisocissp.

[3] S. Gorovitz and A. MacIntyre, “Toward a Theory of Medical
Fallibility,” The Hastings Center Report, vol. 5, no. 6 (December
1975), pp. 13–23: www.jstor.org/stable/3560992.

[4] L. Egghe, “The Measures Precision, Recall, Fallout and Miss
in Function of the Number of Retrieved Documents and Their
Mutual Interrelations,” Information Processing & Management,
vol. 44, no. 2 (2008), pp. 856–876: doclib.uhasselt.be/dspace
/retrieve/22360/measures%202.pdf.

[5] S. A. Alvarez, “An Exact Analytical Relation among
Recall, Precision, and Classification Accuracy in Information
Retrieval,” Boston College, Technical Report BCCS0201,
2002: pdfs.semanticscholar.org/d8ff/71a903a73880599fdd2c7
be12de1f3730d29.pdf.

[6] “KDD Cup 1999: Computer Network Intruder Detection”:
www.kdd.org/kddcup/view/kddcup1999.

[7] iang.org/papers/market_for_silver_bullets.html.

[8] Cybersecurity Ventures: cybersecurityventures.com
/cybersecuritymarketreport.

[9] “Lemons Problem,” Investopedia: https://www.investopedia
.com/terms/l/lemonsproblem.asp.

[10] D. Geer, “Testing,” ;login:, vol. 39, no. 5 (October 2014): www
.usenix.org/system/files/login/articles/login_1410_12_geer
.pdf.

[11] Kenna Security, “How the Rise in NonTargeted Attacks
Has Widened the Remediation Gap,” September 2015:
www.kennasecurity.com/wpcontent/uploads/Kenna
NonTargetedAttacksReport.pdf.

[12] D. Geer and M. Roytman, “Measuring vs. Modeling,” ;login:,
vol. 38, no. 6 (December 2013): www.usenix.org/system/files
/login/articles/14_geeronline_0.pdf.

[13] A. Mokarian, A. Faraahi, A. G. Delavar: “False Positives
Reduction Techniques in Intrusion Detection SystemsA
Review,” International Journal of Computer Science and
 Network Security, vol. 13, no. 10 (October 2013): paper.ijcsns.org
/07_book/201310/20131020.pdf.

[14] J. Liu, F. Chen, H. Yu, P. Zeng, L. Liu, “A TwoStage Bayes
ian Method for Estimating Accuracy and Disease Prevalence
for Two Dependent Dichotomous Screening Tests When the
Status of Individuals Who Are Negative on Both Tests Is
Unverified,” BMC Medical Research Methodology (September
2014): bmcmedresmethodol.biomedcentral.com/articles/10
.1186/1471228814110).

[15] http://www.nytimes.com/2011/03/05/science/05legal.html.

[16] J. Markoff, “Armies of Expensive Lawyers Replaced by
Cheap Software,” New York Times, March 4, 2011: https://pdfs
.semanticscholar.org/2259/447c4ee67017999cbe0a539b86185
e263eec.pdf.

[17] M. K. Buckland and F. C. Gey, “The Relationship between
Recall and Precision,” Journal of the American Society for Infor-
mation Science, vol. 45, no. 1 (January 1994), pp. 12–19: www
.researchgate.net/publication/220433788_The_Relationship
_between_Recall_and_Precision.

[18] https://pages.balabit.com/rs/balabititsecurity/images
/BalaBiteCSImagazine2015031013.pdf.

geer.tinho.net/geer.nro.6xi13.txt
geer.tinho.net/geer.nro.6xi13.txt
http://www.linkedin.com/pulse/map-cybersecurity-domains-version-20-henry-jiang-ciso-cissp
http://www.linkedin.com/pulse/map-cybersecurity-domains-version-20-henry-jiang-ciso-cissp
http://www.jstor.org/stable/3560992
doclib.uhasselt.be/dspace/retrieve/22360/measures%202.pdf
doclib.uhasselt.be/dspace/retrieve/22360/measures%202.pdf
pdfs.semanticscholar.org/d8ff/71a903a73880599fdd2c7be12de1f3730d29.pdf
pdfs.semanticscholar.org/d8ff/71a903a73880599fdd2c7be12de1f3730d29.pdf
http://www.kdd.org/kdd-cup/view/kdd-cup-1999
iang.org/papers/market_for_silver_bullets.html
cybersecurityventures.com/cybersecurity-market-report
cybersecurityventures.com/cybersecurity-market-report
https://www.investopedia.com/terms/l/lemons-problem.asp
https://www.investopedia.com/terms/l/lemons-problem.asp
http://www.usenix.org/system/files/login/articles/login_1410_12_geer.pdf
http://www.usenix.org/system/files/login/articles/login_1410_12_geer.pdf
http://www.usenix.org/system/files/login/articles/login_1410_12_geer.pdf
http://www.kennasecurity.com/wp-content/uploads/Kenna-NonTargetedAttacksReport.pdf
http://www.kennasecurity.com/wp-content/uploads/Kenna-NonTargetedAttacksReport.pdf
http://www.usenix.org/system/files/login/articles/14_geer-online_0.pdf
http://www.usenix.org/system/files/login/articles/14_geer-online_0.pdf
paper.ijcsns.org/07_book/201310/20131020.pdf
paper.ijcsns.org/07_book/201310/20131020.pdf
bmcmedresmethodol.biomedcentral.com/articles/10.1186/1471-2288-14-110
bmcmedresmethodol.biomedcentral.com/articles/10.1186/1471-2288-14-110
http://www.nytimes.com/2011/03/05/science/05legal.html
https://pdfs.semanticscholar.org/2259/447c4ee67017999cbe0a539b86185e263eec.pdf
https://pdfs.semanticscholar.org/2259/447c4ee67017999cbe0a539b86185e263eec.pdf
https://pdfs.semanticscholar.org/2259/447c4ee67017999cbe0a539b86185e263eec.pdf
http://www.researchgate.net/publication/220433788_The_Relationship_between_Recall_and_Precision
http://www.researchgate.net/publication/220433788_The_Relationship_between_Recall_and_Precision
http://www.researchgate.net/publication/220433788_The_Relationship_between_Recall_and_Precision
https://pages.balabit.com/rs/balabititsecurity/images/BalaBit-eCSI-magazine-201
https://pages.balabit.com/rs/balabititsecurity/images/BalaBit-eCSI-magazine-201

52  S U M M ER 20 1 8 VO L . 4 3 , N O. 2 www.usenix.org

COLUMNS

/dev/random
Machine Learning Disability

R O B E R T G . F E R R E L L

Machine learning is a hot topic currently, and for good reason:
machines are pretty stupid. Maybe not all machines, but the ones
around my house certainly fall well into subgenius territory.

Take, for instance, my aluminum can crusher. It really only has one job: using
humanpowered compression, reduce an empty aluminum vessel that can
hold 12 ounces into one with a capacity of perhaps 1/30th that volume. Grav
ity then induces that flattened carcass to drop through an appropriately
sized slot into a waiting receptacle. Elaborate, it is not.

Yet as much as 5% of the time, the resulting crumpled disk is sufficiently misshapen that it
remains in the chamber, mocking me and gravity in concert. This is not an acceptable failure
rate for a mechanism barely above the wheel in complexity. Oh, there are some who in their
hateful ignorance will claim operator error, but I snap my fingers in their puffy faces. All I do
is pull a handle—what’s to err? It’s just mechanical spite, if you ask me.

Because I’m, like, really old now, I have vivid memories of one of the more classic stupid
machines of yesteryear: the eighttrack tape player. Heck, let’s lump the eighttrack tape
itself in there too while we’re at it. Basically, an eighttrack tape (and this goes for some early
computer tapes, as far as I care) is a huge Gordian knot that sort of spirals in around itself on
a spool mounted in a rectangular cartridge. It is designed specifically to be nearly impossible
to open without incurring damage and fifteen minutes in the penalty box.

The innermost edge is where the tape pops out of the spiral and scrapes its way back across
the top of the coil to some rollers that hold it in position for the magnetic read heads in the
player. The whole thing looks like it was designed to work exactly once, which isn’t too far off
the mark. I know this mechanism intimately because, being a foolhardy manner of fellow, I
made a little money in high school unjamming these things for my musicloving friends. It
was not a pastime for the faint of heart or unsteady of hand.

The tapes themselves were already prone to spontaneous breakage, but just to make certain
any music that managed to make it through was not enjoyed without significant additional
risk, the industry provided each user with a machine winched up from the worst neighbor
hood of the Hadean realm. The eighttrack “player” fed the staggeringly bad engineering of
the tape cartridge through the guts of a repurposed pasta machine in the decidedly opti
mistic hope that whatever music might be encoded on the tape somehow leaked out into the
amplifier before the selfdestruct sequence was complete.

I offer up the eighttrack as a machine learning bullet point mostly because it effectively
taught anyone who came into contact with said machine to avoid it. While a couple of frus
trating hours spent fishing mangled tape from around a variety of rollers accessible only via
a narrow slot guarded by a springloaded door could mar even the sunniest of dispositions,
the lessons thus imparted stuck around for life. Relying on such a system for one’s music is
hardly my idea of La Vida Bella.

Robert G. Ferrell is a fourth-
generation Texan, literary
techno-geek, and finalist
for the 2011 Robert Benchley
Society Humor Writing

Award. rgferrell@gmail.com

Thanks to Our
USENIX Supporters

USENIX Patrons
Facebook Google Microsoft NetApp Private Internet Access

USENIX Benefactors
Amazon Bloomberg Oracle Squarespace VMware

USENIX Partners
Booking.com CanStockPhoto Cisco Meraki DealsLands Fotosearch

Open Access Publishing Partner
PeerJ

COLUMNS
/dev/random: Machine Learning Disability

There are in fact multiple areas of domestic life where I think
machine learning might prove beneficial. My home security sys
tem leaps to mind. For some months I was plagued with an alarm
that would go off for no readily apparent reason, almost always
in the dead of night. A technician would be dispatched, certify
that absolutely nothing was amiss with the wiring or electronics,
and almost before he turned the street corner after departing the
blaring siren would sound again.

When conventional technical solutions failed to present
themselves, I began to suspect something supernatural was at
work here. After all, if I’m going to be faced with an intractable
technical issue I may as well be entertained by consideration of
its origin, am I right? Of course I am. The problem with the oth
erworldly causation hypothesis is that this is a fairly new house
and hasn’t had time to build up any spectral inventory to speak
of. Not much has passed to the other side here, apart from one cat
and a host of houseplants my wife either inundated mercilessly
or neglected to water at all.

Proceeding on the assumption that cats in the afterlife have
no more initiative than they did while earthbound, my alarm
system is not possessed by a feline spirit. Our recently departed
Fenchurch simply wouldn’t bother. Oh, she might bat some
ghostly creepycrawly in front of a motion sensor from time to
time between celestial naps, but I can’t see her intentionally

messing with the Master Bedroom Door contacts on a regu
lar basis unless their ectoplasmic manifestation happens to
resemble feathers dangling from strings.

My alarm system could therefore probably benefit from some
machine learning. But are the eponymous machines undertak
ing said learning, or meting it out? I’m not clear on this point. I
suppose either situation would be an improvement. Sooner or
later the machines are going to cut humanity completely out of
the educational cycle. We’ll have virtual machines going door
todoor (or nodetonode) offering tutorial services for a reason
able fee payable in whatever currency machines find pleasant to
exchange (CPU cycles, maybe, or little bags of qubits).

There’s been a lot of fairly hysterical speculation over the past
few decades on when the digital singularity will take place and
the dire consequences of said event for the human race. Some
say the machines will assume control and immediately turn on
us meat sacks, regarding us as no better than ants invading the
picnic of existence. Others suggest that our machine overlords
will be benevolent, granting humanity a largely unfettered life
so long as we don’t overstep our bounds and interfere with their
ascendancy.

Even if I live to see that day, I’ll be too old to care one way or the
other. I’ll just sit on the porch waving my gnarled fist defiantly
and yelling at those damn bots to stay off my data.

54  S U M M ER 20 1 8 VO L . 4 3 , N O. 2 www.usenix.org

BOOKSBook Reviews
M A R K L A M O U R I N E

Sams Teach Yourself Go in 24 Hours
George Ornbo
Pearson Education, 2018, 464 pages
ISBN 9780672338038

You might think that Sams Teach Yourself Go in 24 Hours
expects you to binge learn a programming language overnight.
What Ornbo has in mind is much more reasonable and actually
quite digestible. The whole line of Sams’ Teach Yourself series
runs to over 80 titles, so they have some experience with this
format, and the polish shows. These are definitely practical
learning manuals for professionals.

Ornbo’s book is a prime example of the form. There is very little
space given for theory or abstract concepts. The longest chapter
is 22 pages, with most around 15 pages. All of the source code
shown in the book is also available on GitHub (divided by chap
ter). Nearly every page has a small box labeled “Try it yourself.”
These boxes explain the examples, provide instructions, and
describe the expected results for the reader.

Each chapter concludes with a short Q&A, a “Workshop” section
with quiz questions meant to get the reader to think about or
review the chapter, and finally three or four suggested exercises.
Some of the exercises are coding practice, but others refer the
reader to a video (e.g., Rob Pike’s introduction to Go [1]) or fur
ther reading (e.g., blog posts, module documentation).

The author really means for you to read each chapter in an hour,
spend some time working on the examples, and stop. I’m sur
prised to find I actually like this format. I’m used to skimming
and scanning tech books in a sitting or two and only going back
when I think, “Oh, I saw how to do that somewhere.” By limiting
each chapter to a small topic with tight examples, Ornbo creates
truly bitesized pieces. The upfront time limit reminded me to
stop and play and digest each bit. I’m familiar with Go, so I didn’t
stick to it for all three weeks, but I think that a disciplined reader
would do well to take it slow and enjoy the easy pace. I found
myself thinking through new possibilities and experiments at the
end of each session. The “workshop” and reading exercises do a
good job of inspiring curiosity and provide the means to follow up.

Another advantage to the compact “24 hours” format is that it
gives Ornbo the chance to talk about more than just the lan
guage syntax. He finished the pure language instruction halfway
through the book, with chapters on goroutines and channels
as Chapters 12 and 13. In the latter part of the book, he spends
a chapter on debugging, one on packaging, two on building
web services, and one on JSON serialization. There are even
two “bonus chapters,” available only in the eBook forms, that

describe designing a RESTful API and a chat server using the
concepts and techniques presented earlier.

Teach Yourself Go won’t replace Donovan and Kernigan’s The Go
Programming Language [2], but it makes a great companion for
the professional adding a tool to their box.

Crucial Conversations, 2nd ed.
Kerry Patterson, Joseph Grenny, Ron McMillan, and Al Switzler
McGrawHill, 2012, 244 pages
ISBN 9780071775304

When I saw the cover of Crucial Conversations, where it
proclaims “3 Million Copies Sold,” my expectations were low.
When your numberone recommendation is “We Sold a Lot,”
I’m prepared to be unimpressed. The whole cover screams “Pop
Psychology SelfHelp!” All of my skeptic buttons were pushed.

Crucial Conversations is indeed a selfhelp book but perhaps one
that many people in tech could use. The major message is “Think
before you speak, especially in highstakes situations,” and I
know that’s something I’m still learning.

In each chapter, the authors address some aspect of how people
interact, in small groups or one on one. First, they introduce a
scenario and the participants. Each person comes to the con
versation with something at stake, but all have different goals,
priorities, and points of view.

At the start of each conversation it is clear that things could eas
ily go off the rails without some care. One person is the primary
actor, usually the one with the least power and the most to lose.
Through the remainder of the chapter the authors talk about the
motivations of each person and how they might react to different
approaches to the conversation, with a focus on the goals that the
primary actor has and the pitfalls to avoid.

The chapters address how to approach a sensitive conversation
and keep the goal in mind, while avoiding the minefields of emotion,
defensiveness, cheap jabs, and destructive criticism. The goal isn’t
to win an argument but to have a dialog and come to a consensus.

I’ve been reading and learning a lot in the last decade about how
my perspective and behavior, both in the workplace and at home,
influence the impressions and responses of the people around
me. Looking back on my career, I wish I’d understood some of
these things long ago, and I struggle to act only in a way that will
be constructive (something I did not always do).

The outward trappings of Crucial Conversations are those of an
upscale businessoriented miracle cure for the climbing execu
tive. The writing style has a similar feel throughout, right down

www.usenix.org S U M M ER 20 1 8 VO L . 4 3 , N O. 2 55

BOOKS

References
[1] https://www.youtube.com/watch?v=rKnDgT73v8s.

[2] The Go Programming Language (AddisonWesley Profes
sional, 2015), ISBN 9780134190440.

to the subsection at the end of the first chapter entitled “Our
Audacious Claim,” in which the authors talk about the ways you
can “Improve Your Relationships” and “Improve Your Health”
using their methods.

Crucial Conversations is one of several books by these authors.
Together they have formed a company that makes its money
selling the books and teaching seminars all over the country. The
book feels a lot like a promotion for the seminar, and I came to read
it after a friend suggested to her whole company that they should
invite the authors to present. I’ll find out more after that occurs.

There is, however, a contrast in content to typical diet, exercise,
and poppsych fads. The scenarios presented here are realis
tic and not too contrived. The authors really make few magic
promises in the rest of the book, concentrating more on how
each conversation requires listening, analysis, and selfcontrol
to reach the best outcome. Much of the messaging is in line with
the tenets and goals of modern Agile management styles.

I don’t know if there is a better way to present these ideas, but if
readers can set aside their own wariness, they may find some
thing here to think about and use. I certainly would recommend
this book to someone who wants to think more about their own
approach to communicating in tense situations.

Linux Hardening in Hostile Networks
Kyle Rankin
Pearson Education, 2018, 242 pages
ISBN 9780134173269

One of the ideas I learned in the 1990s working as a sysadmin
for a large ISP is “always assume your environment is hostile.”
It seems a bit quaint now, but we ran exposed server hosts and
desktops and had to learn how to probe and harden them. We
assumed our networks were unsafe, and our network group
assumed the same thing about all of our infrastructure hosts.
We weren’t actively malicious to each other, but we were always
wary of our assumptions. It actually made for a great dynamic,
and we only had one incident I can recall where someone failed
to pay attention and was caught out by the other group.

These days most people rely on their firewalls, both soft
ware and hardware, and on virus scanners. I’m not as actively
paranoid as I once was just because I don’t have the time. But I
haven’t stopped being watchful and curious.

When I picked up Linux Hardening I was surprised at how slim it
is. I was expecting, for example, a series of rather arcane steps to
tweak the behavior of the network stack in the kernel. Appar
ently, that kind of manual is why Rankin decided to write his
own book. In his treatment he does touch on all of the expected
topics, but he focuses on the most basic and practical steps to
take in each area. What Rankin has realized is that, in the com

mon focus on network boundaries and kernel exploits, a lot has
been lost. It’s not easy to find a highquality guide to good, basic
technical hygiene.

In the first major section of the book, Rankin offers the topics
you’d expect: workstation and server security, host networking,
and firewalls. The next four chapters touch on common services;
web, email, DNS, and database. He closes with a chapter on
incident response and a couple of appendices that go into some
technical details of Tor and TLS/SSL.

Each chapter presents a progression from the most basic
considerations through intermediate tasks and concludes with
what Rankin believes are steps that can protect against even
governmentlevel attacks (with the caveat that today’s advanced
attacks are tomorrow’s scriptkiddie tools).

Rankin includes a number of techniques that make perfect sense
today but have only become reasonable in the last decade or so.
Tails is a modern bootable readonly distribution, and Qubes is
designed to isolate each application in its own virtual machine.
Both allow the user to control when data is written to disk or is
shared between applications. In the networking section, Rankin
shows how to create a personal VPN using OpenVPN and intro
duces Tor. The fact that both have become reasonable things
for an intermediate level sysadmin to do just warms my geeky
sysadmin heart.

Other high points are the inclusion of a treatment of email
transport security using SPF, DKIM, and DMARC, and an entire
chapter on securing DNS. The DNS chapter starts with prevent
ing your servers from being coopted into DDoS attacks and ends
with the most practical, compact introduction to DNSSEC that
I’ve ever read.

Rankin chooses several tools in the workstation section that
have many peers. I would have liked to see some space given to
some of the alternatives to his selections. That said, I understand
the desire to avoid confusing readers with variety that perhaps
doesn’t really improve the learning experience.

Linux Hardening isn’t a deep or comprehensive guide to Linux
security, and I wish it had more references to external materials,
but it is a good, broad survey of the most important topics. The
basic and intermediate tasks are probably within reach of junior
or intermediate sysadmins, and the advanced ones would make a
good challenge. For the advanced sysadmin there are probably a
few nuggets here. I’m off to create a VPN for my home network.

NOTES

56  S U M M ER 20 1 8 VO L . 4 3 , N O. 2 www.usenix.org

USENIX Member Benefits
Members of the USENIX Association
 receive the following benefits:

Free subscription to ;login:, the Associa
tion’s quarterly magazine, featuring techni
cal articles, system administration articles,
tips and techniques, practical columns on
such topics as security, Perl, networks and
operating systems, and book reviews

Access to ;login: online from December
1997 to the current issue: www.usenix.org
/publications/login/

Discounts on registration fees for all
 USENIX conferences

Special discounts on a variety of products,
books, software, and periodicals: www
.usenix.org/memberservices/discount
instructions

The right to vote on matters affecting the
Association, its bylaws, and election of its
directors and officers

For more information regarding member
ship or benefits, please see www.usenix.org
/membership/or contact office@usenix.org.
Phone: 5105288649.

USENIX Board of Directors
Communicate directly with the USENIX
Board of Directors by writing to
board@usenix.org.

P R E S I D E N T

Carolyn Rowland, National Institute of
Standards and Technology
carolyn@usenix.org

V I C E P R E S I D E N T

Hakim Weatherspoon, Cornell University
hakim@usenix.org

S E C R E T A R Y

Michael Bailey, University of Illinois
at Urbana-Champaign
bailey@usenix.org

T R E A S U R E R

Kurt Opsahl, Electronic Frontier Foundation
kurt@usenix.org

D I R E C T O R S

Cat Allman, Google
cat@usenix.org

David N. BlankEdelman, Apcera
dnb@usenix.org

Angela Demke Brown, University
of Toronto
demke@usenix.org

Daniel V. Klein, Google
dan.klein@usenix.org

E X E C U T I V E D I R E C T O R

Casey Henderson
casey@usenix.org

Notice of Annual Meeting
The USENIX Association’s Annual Meeting with the
membership and the Board of Directors will be held

at 6:00 pm on Tuesday, July 10, in Boston, MA, during the
2018 USENIX Annual Technical Conference.

Results of the Election for the
USENIX Board of Directors,
2018–2020
The newly elected Board will assume office
on July 1, 2018.

PRESIDENT
Carolyn Rowland, National Institute of
Standards and Technology (NIST)

VICE PRESIDENT
Hakim Weatherspoon, Cornell University

SECRETARY
Michael Bailey, University of Illinois
at Urbana-Champaign

TREASURER
Kurt Opsahl, Electronic Frontier
Foundation

DIRECTORS
Cat Allman, Google
Kurt Andersen, LinkedIn
Angela Demke Brown, University
of Toronto
Amy Rich, Nuna, Inc.

http://www.usenix.org/publications/login/
http://www.usenix.org/publications/login/
http://www.usenix.org/member-services/discount-instructions
http://www.usenix.org/member-services/discount-instructions
http://www.usenix.org/member-services/discount-instructions
http://www.usenix.org/membership/or
http://www.usenix.org/membership/or

www.usenix.org S U M M ER 20 1 8 VO L . 4 3 , N O. 2 57

NOTES

First Impressions on
the Path to Community
Engagement
Liz Markel, Community
Engagement Manager

On Day 7 of my new job at USENIX this
past March, I found myself wandering the
hallways of the Hyatt Regency Santa Clara
taking in the energy and excitement of
SREcon18 Americas. I have planned and
attended many large conferences before—
some with upwards of 20,000 people—but
always with program content that was
already near and dear to my heart, including
nonprofit leadership, literature, and librari
anship. The experience of being a nontech
expert at a techfocused conference was
completely foreign to me, though I was
determined to leverage my fresh perspective
to my advantage.

SREs are one of the many communities
USENIX serves, and that I will too in my
new role as Community Engagement Man
ager. As the new kid in town—with a back
ground in marketing and nonprofit manage
ment, and only slightly more knowledge of
tech than the average person—I wondered
how I would find common ground with this
exceptionally smart, passionate group of
people, as well as the many other communi
ties represented at conferences like FAST,
NSDI, USENIX Security and others.

As I listened in on workshops, presenta
tions, “hallway track” conversations, and
the lively exchanges at vendor booths, I did
indeed discover that we have much in com
mon! We are both, to quote USENIX Board
of Directors member Cat Allman writing

in the Winter 2016 issue of ;login:, “honest,
practical, problem solvingengineers.” The
things I have built throughout my career
differ significantly from what you, reader,
are building with your daily work. However,
I think these shared attributes are a fantas
tic foundation for good conversation.

Conversations about what, you ask? I’d like
to talk about what we at USENIX can build
for you.

Do you have ideas to help fuel our com
munity engagement activities? What do
you want to see brought to life that will
enhance your experience as a part of the
larger USENIX community? A few oppor
tunities come to mind that build on existing
frameworks:

◆◆ Enhance engagement activities at confer
ences through likeminded groups such as
BirdsofaFeather sessions (BoFs);

◆◆ Take advantage of effective tools for
thoughtful discussion and networking
online between conferences;

◆◆ Create content for USENIX’s digital plat
forms or print publications that piques
your interest and could spark lively con
versation with your global colleagues.

This is a fascinating time to be part of an
association staff as a team member focused
on community engagement. The broadly
observed trend for many professional asso
ciations shows interest in official member
ship waning among upcoming generations.
This trend, coupled with natural shifts due
to members’ retirements, has challenging
implications for member recruitment and
retention. My initial observations lead me
to believe that USENIX may be defying
this trend, and that the root cause of this
success is the thoughtful, pragmatic, and
considerate organizational leadership that
includes both the Board of Directors and
the USENIX staff. This effective leadership
manifests itself in many ways including
the Conference Code of Conduct; the well
thoughtout rationale for making changes
to the LISA conference for 2018 in response
to attendee feedback and changes in the in
dustry; and the personal, daily experiences

SREcon18 Americas attendees built relationships
and made connections in the Recharge Lounge
sponsored by Twitter.

Tammy Butow of Gremlin kicked off “Chaos En-
gineering Bootcamp” at SREcon18 Americas with
some fun audience participation.

Attendees at “Chaos Engineering Bootcamp” took
sides in a brief debate about the value of chaos
engineering for a business.

Many SREcon18 Americas sessions involved
peer-to-peer collaboration and problem-solving.

Lisa Carey of Google delivered important skills in
her workshop, “Tech Writing 101 for SREs.”

58  S U M M ER 20 1 8 VO L . 4 3 , N O. 2 www.usenix.org

NOTES

of USENIX staff—myself included. All
encompassing leadership of this caliber is
extremely rare in the nonprofit sector, and it
bodes extremely well for the organization’s
sustainability and continued relevance to
the communities it serves.

The highly relevant mission of USENIX is
another primary reason for the association’s
strength. Through our work, we are com
mitted to:

◆◆ Fostering technical excellence and
 innovation

◆◆ Supporting and disseminate research
with a practical bias

◆◆ Providing a neutral forum for discussion
of technical issues

◆◆ Encouraging computing outreach into
the community at large.

I spent much of my time at SREcon engag
ing attendees in conversations about their
professional priorities, their impressions of
USENIX, and their thoughts about trends
in the field, all in relation to our mission.
There were lots of interesting insights, but
I was most impressed by the passionate
support for USENIX’s commitment to open
access and the role this plays in fostering
technical innovation and education. It’s a
passion that I am looking forward to explor
ing, understanding, and enhancing in the
months and years to come.

I reflected on the importance of this shared
passion as I browsed the Spring 2016 issue
of this magazine, in which Board of Direc
tors member Dan Klein described the glue
that binds USENIX together and has kept
it relevant for more than 35 years: “Magic,
wonder, and play.”

Where have you felt the magic, wonder, and
play at work in your USENIX experiences?
How can we scale it, share it with others
across the country and around the globe,
and grow the breadth and depth of our com
munities?

I would love to hear from you. Drop me a line
(liz@usenix.org) so that we can start the
conversation and build some amazing new
things together.

Collaboration extended beyond the programs at
SREcon18 Americas--teams could often be found
problem-solving in other areas of the hotel.

Kate Taggart of HashiCorp promoted the benefits
of newbies in her SREcon18 Americas program
“Junior Engineers Are Features, Not Bugs.”

Thomas Limoncelli delivered a humorous closing
keynote for SREcon18 Americas: “Operational
Excellence in April Fools’ Pranks.”

Following her presentation with Jez Humble
at SREcon18 Americas, Nicole Forsgren signed
copies of her new book Accelerate: The Science of
DevOps.

SREcon18 Americas program co-chairs Kurt
Andersen (LinkedIn) and Betsy Beyer (Google)
offered an appreciative shout-out to their fellow
program committee members.

Attendees enjoyed the beautiful northern
California weather during evening receptions at
SREcon18 Americas.

SREcon is a gathering of engineers who care deeply about site reliability, systems engineering,
and working with complex distributed systems at scale. It strives to challenge both those new to
the profession as well as those who have been involved in it for decades. The conference has a
culture of critical thought, deep technical insights, continuous improvement, and innovation.

SAVE THE DATES!

JUNE 6–8, 2018 • SINGAPORE
www.usenix.org/srecon18asia

AUGUST 29–31, 2018 • DUSSELDORF, GERMANY
www.usenix.org/srecon18europe

MARCH 25-27, 2019 • BROOKLYN, NY, USA
www.usenix.org/srecon19americas

Follow us at @SREcon

Register Now!

Register by July 23 and save!

S
O

U PS

2018

Sym
posiu

m
 O

n U
sable Privacy and Security

Fourteenth Symposium on
 Usable Privacy and Security
Co-located with USENIX Security ’18
August 12–14, 2018 • Baltimore, MD, USA

The Fourteenth Symposium on Usable Privacy and Security (SOUPS 2018)
will bring together an interdisciplinary group of researchers and practi-
tioners in human computer interaction, security, and privacy. The program
will feature technical papers, including replication papers, workshops and
tutorials, a poster session, and lightning talks.

Workshops include:

• Workshop on Security Information Workers (WSIW)

• Workshop on the Human Aspects of Smarthome
Security Privacy (WSSP)

• Who Are You?! Adventures in Authentication (WAY)

• Workshop on Inclusion Privacy and Security (WIPS)

• Designing Privacy and Security Tools for Children
and Teenagers

www.usenix.org/soups2018

18 13th USENIX Symposium on Operating Systems
Design and Implementation

October 8–10, 2018 • Carlsbad, CA, USA
OSDI brings together professionals from academic and industrial backgrounds in what has become a

premier forum for discussing the design, implementation, and implications of systems software. The

OSDI Symposium emphasizes innovative research as well as quantifi ed or insightful experiences in

systems design and implementation.

Program Co-Chairs:
Andrea Arpaci-Dusseau, University of Wisconsin—Madison

 and Geoff Voelker, University of California, San Diego

Save the Date!

www.usenix.org/osdi18

The full program and registration will be available in August.

www.usenix.org S U M M ER 20 1 8 VO L . 4 3 , N O. 2 61

Announcement and Call for Papers www.usenix.org/nsdi19/cfp

February 26–28, 2019 • Boston, MA, USA

NSDI ’19: 16th USENIX Symposium on
Networked Systems Design and
 Implementation
Sponsored by USENIX, the Advanced Computing Systems Association

Important Dates
Spring deadline:

• Paper titles and abstracts due: Thursday, May 24, 2018,
6:00 p.m. US PDT

• Full paper submissions due: Thursday, May 31, 2018,
6:00 p.m. US PDT

• Notification to authors: Saturday, July 28, 2018
• Final paper files due: Wednesday, October 17, 2018

Fall deadline:

• Paper titles and abstracts due: Thursday, September 13, 2018,
6:00 p.m. US PDT

• Full paper submissions due: Thursday, September 20, 2018,
6:00 p.m. US PDT

• Notification to authors: Monday, December 3, 2018
• Final paper titles due: Friday, February 8, 2019
• Final paper files due: Wednesday, February 13, 2019

Conference Organizers
Program Co-Chairs
Jay Lorch, Microsoft Research
Minlan Yu, Harvard University

Program Committee
Fadel Adib, Massachusetts Institute of Technology
Aditya Akella, University of Wisconsin—Madison
Katerina Argyraki, École Polytechnique Fédérale de Lausanne (EPFL)
Aruna Balasubramanian, Stony Brook University
Sujata Banerjee, VMware Research
Kai Chen, Hong Kong University of Science and Technology
Mosharaf Chowdhury, University of Michigan
Anja Feldmann, Technische Universität Berlin
Bryan Ford, École Polytechnique Fédérale de Lausanne (EPFL)
Michael J. Freedman, Princeton University
Roxana Geambasu, Columbia University

Monia Ghobadi, Microsoft Research
Jana Giceva, Imperial College London
Ronghui Gu, Columbia University
Haryadi Gunawi, University of Chicago
Haitham Hassanieh, University of Illinois at Urbana-Champaign
Jon Howell, Google
Rebecca Isaacs, Twitter
Xin Jin, Johns Hopkins University
Srikanth Kandula, Microsoft Research
Manos Kapritsos, University of Michigan
Dejan Kostić, KTH Royal Institute of Technology
Ramakrishna Kotla, Amazon Web Services
Arvind Krishnamurthy, University of Washington
Harsha Madhyastha, University of Michigan
Dahlia Malkhi, VMware Research
Allison Mankin, Salesforce
Derek Murray, Google
Aurojit Panda, New York University
KyoungSoo Park, KAIST
Amar Phanishayee, Microsoft Research
Raluca Ada Popa, University of California, Berkeley
Lili Qiu, University of Texas at Austin
K. K. Ramakrishnan, University of California, Riverside
Michael Schapira, Hebrew University of Jerusalem
Cole Schlesinger, Barefoot Networks
Vyas Sekar, Carnegie Mellon University
Ankit Singla, ETH Zurich
Anirudh Sivaraman, New York University
Alex C. Snoeren, University of California San Diego
Michael Stumm, University of Toronto
Ryan Stutsman, University of Utah
Geoff Voelker, University of California San Diego
Hakim Weatherspoon, Cornell University
John Wilkes, Google
James Hongyi Zeng, Facebook
Irene Zhang, Microsoft Research
Xinyu Zhang, University of California San Diego
Heather Zheng, University of Chicago
Lin Zhong, Rice University

http://static.usenix.org/

62 S U M M ER 20 1 8 VO L . 4 3 , N O. 2 www.usenix.org

Steering Committee
Aditya Akella, University of Wisconsin–Madison
Katerina Argyraki, EPFL
Sujata Banerjee, VMware Research
Paul Barham, Google
Nick Feamster, Princeton University
Casey Henderson, USENIX Association
Jon Howell, Google
Arvind Krishnamurthy, University of Washington
Jeff Mogul, Google
Brian Noble, University of Michigan
Timothy Roscoe, ETH Zurich
Srinivasan Seshan, Carnegie Mellon University

Overview
NSDI focuses on the design principles, implementation, and practical
evaluation of networked and distributed systems. Our goal is to bring
together researchers from across the networking and systems com-
munity to foster a broad approach to addressing overlapping research
challenges.

NSDI provides a high-quality, single-track forum for presenting results
and discussing ideas that further the knowledge and understanding of
the networked systems community as a whole, continue a significant
research dialog, or push the architectural boundaries of network services.

Topics
We solicit papers describing original and previously unpublished
 research. Specific topics of interest include but are not limited to:

• Highly available and reliable networked systems
• Security and privacy of networked systems
• Distributed storage, caching, and query processing systems
• Energy-efficient computing in networked systems
• Cloud/multi-tenant systems
• Mobile and embedded/sensor applications and systems
• Wireless networked systems
• Network and workload measurement systems
• Self-organizing, autonomous, and federated networked systems
• Managing, debugging, and diagnosing problems in networked

systems
• Virtualization and resource management for networked systems
• Systems aspects of networking hardware
• Experience with deployed networked systems
• Communication and computing over big data on networked systems
• Practical aspects of economics and verification applied to networked

systems
• Any innovative solution for a significant problem involving networked

systems

This year, we’re making two major changes: we’re offering two sub-
mission deadlines and we’re providing the possibility of getting one-
shot-revision decisions in lieu of rejection. To see a detailed explanation
of the expected benefits from these changes, see “Additional Information
about Multiple Deadlines Process” at www.usenix.org/conference/nsdi19
/additional-info.

Two Deadlines
NSDI ’19 offers authors the choice of two submission deadlines. Any
paper submitted to one of these deadlines and accepted during the
subsequent reviewing period will be presented at the conference and
will appear as part of the proceedings. In the meantime, authors are per-
mitted to advertise their papers as accepted by NSDI, for example listing
them on CVs.

A paper submitted and rejected may not be submitted again to NSDI
(even in revised form) until 11 months after the deadline it was sub-
mitted to.

One-Shot-Revision
Each paper may be accepted, rejected, or given the option of one-shot-
revision. Such a revision decision includes a summary of the paper’s
merits and a list of necessary changes that are required for the paper to
be accepted at NSDI. Authors may then submit a version of their work ad-
dressing those needs during the subsequent deadline. At that point, the
paper will be reviewed to judge whether it addresses the requirements
requested; this review will be conducted, to the extent possible, by the
same reviewers as earlier. To enable this, PC members who give one-shot-
revision decisions late in a year are obligated to participate as external
reviewers in the following year to review those papers’ re submissions,
which would be considered for the following year’s conference. Papers
revised and re-submitted following a one-shot-revision decision can only
receive a decision of accept or reject, not revise; this is what makes revi-
sions “one-shot.”

The judgment about whether to accept a revised paper will be made as
follows. Reviewers will primarily judge whether the authors have satisfied
the requests accompanying the revision decision. They will also judge
the resubmission on its independent merits, but should avoid reject-
ing it for non-fatal concerns that they could have raised during the first
round of reviews. The reviewers should also ensure that the revised paper
doesn’t introduce new assertions without sufficient support. Unlike the
shepherding process, the requested action points may include running
additional experiments that obtain specific results, e.g., comparing per-
formance against a certain alternative and beating it by at least 10%.

During the revision period, the paper is still considered under review to
NSDI and therefore cannot be submitted to other conferences unless the
authors first withdraw it from consideration. To make this obligation clear,
authors who receive a one-shot-revision notification must, within two
weeks of the notification, explicitly send an email acknowledging their
participation in the one-shot-revision process. That email should indicate
they understand that this means the USENIX Submission Policy (www
.usenix.org/conferences/author-resources/submissions-policy) precludes
concurrent submission to other conferences.

To make a one-shot-revision decision, reviewers must be comfortable
accepting the paper if the authors make all the changes requested in it.
Most notably, if a paper makes an insufficient contribution, or is incre-
mental, then it should be rejected, not given a one-shot-revision decision.
After all, the point of one-shot revision is not to produce highly-polished
uninteresting papers, but rather to allow publication of exciting work
that’s unfortunately submitted in a form that’s flawed in a way that can’t
be fixed with mere shepherding.

Reviewers will also be instructed to not offer a one-shot-revision option
if they can’t determine that the paper is adequate modulo the proposed
revisions. For instance, if the paper is written so sloppily that there may
be a hidden deep flaw, then the paper should be rejected, not given a
one-shot-revision request to fix the inadequate writing.

Authors given a one-shot-revision decision will be sent, within a few
days of the decision, detailed instructions about how to re-submit. These
instructions will include the list of necessary changes that are required for
the paper to be accepted. They will also explain how the authors should
accompany their re-submission with auxiliary material to demonstrate
how they’ve satisfied that list of changes. This auxiliary material will
consist of (1) an additional version of the re-submission in which revision
changes since the first submission are clearly marked, and (2) a sepa-
rate textual explanation of the high-level differences between the two
versions.

http://www.usenix.org/conference/nsdi19/additional-info
http://www.usenix.org/conference/nsdi19/additional-info
http://www.usenix.org/conferences/author-resources/submissions-policy
http://www.usenix.org/conferences/author-resources/submissions-policy

www.usenix.org S U M M ER 20 1 8 VO L . 4 3 , N O. 2 63

If authors receive a one-shot-revision decision but don’t want to submit
a revised version, they may withdraw it. In this case, they may not submit
the paper to NSDI again until 11 months after the deadline they originally
it submitted to.

If authors receive a one-shot-revision decision for a paper submitted
to the fall deadline of NSDI ’19, this gives them the option to make the
requested changes and re-submit it to the next NSDI deadline, which is
the first deadline of NSDI ’20. If the paper is accepted then, it will appear
at NSDI ’20, not NSDI ’19.

Operational Systems Track
In addition to papers that describe original research, NSDI ’19 also solicits
papers that describe the design, implementation, analysis, and experi-
ence with large-scale, operational systems and networks. We encourage
submission of papers that disprove or strengthen existing assumptions,
deepen the understanding of existing problems, and validate known
techniques at scales or environments in which they were never used
or tested before. Such operational papers need not present new ideas
or results to be accepted; indeed, new ideas or results will not influ-
ence whether the papers are accepted. Note that the rules regarding
submission and anonymization are different for operational systems
track papers. Since the evaluation of operational systems track papers
requires understanding the real-world use of the system, papers in this
track will be reviewed in a more limited double-blind process. Authors’
names should be withheld, as usual. However, in contrast to other papers,
authors need not anonymize the content of their submission in any other
way—they may keep company names, links, real system names, etc. as
appropriate for the paper. Please note that you cannot switch tracks for
your paper after submission since the submission rules differ.

Authors should indicate on the title page of the paper and in the submis-
sion form that they are submitting to this track.

The final program will make no distinction between papers accepted
from this track and papers accepted from the regular track.

What to Submit
NSDI ’19 is double-blind, meaning that authors should make a good faith
effort to anonymize papers. Note that the operational track papers have
different rules as described above. As an author, you should not identify
yourself in the paper either explicitly or by implication (e.g., through
the references or acknowledgments). However, only non-destructive
anonymization is required. For example, system names may be left de-
anonymized, if the system name is important for a reviewer to be able to
evaluate the work. For example, a paper on experiences with the design
of .NET should not be re-written to be about “an anonymous but widely
used commercial distributed systems platform.”

Additionally, please take the following steps when preparing your
submission:

• Remove authors’ names and affiliations from the title page.

• Remove acknowledgment of identifying names and funding sources.

• Do not provide links to your own online content. If this online content
is critical to the content of your paper, please see the submission form,
which allows for some forms of content upload, or contact the PC
chairs.

• Use care in naming your files. Source file names, e.g., Joe.Smith.dvi, are
often embedded in the final output as readily accessible comments.

• Use care in referring to related work, particularly your own. Do not omit
references to provide anonymity, as this leaves the reviewer unable to
grasp the context. Instead, a good solution is to reference your past
work in the third person, just as you would any other piece of related
work. If you cite anonymous work, you will need to enter the deanony-
mized reference(s) on the online submission form.

• If you need to reference another submission at NSDI ’19 on a related
topic, reference it as follows: “A related paper describes the design
and implementation of our compiler [Anonymous 2019].” with the
corresponding citation: “[Anonymous 2019] Under submission. Details
omitted for double-blind reviewing.”

• Work that extends an author’s previous workshop paper is
 welcome, but the paper should (a) acknowledge their own previous
workshop publications with an anonymous citation and (b) explain
the differences between the NSDI submission and the prior workshop
paper. The online submission form will also require authors to submit
the deanonymized citation and a short explanation of the differences
from the prior workshop paper.

• Blinding is not intended to be a great burden. If blinding your paper
seems too burdensome, please contact the program co-chairs and
discuss your specific situation.

Submissions—as well as final papers—must be no longer than 12 pages,
including footnotes, figures, and tables. Submissions may include as
many additional pages as needed for references and for supplemen-
tary material in appendices. The paper should stand alone without the
supplementary material, but authors may use this space for content that
may be of interest to some readers but is peripheral to the main technical
contributions of the paper. Note that members of the program commit-
tee are free to not read this material when reviewing the paper.

New in 2019: Submissions must be in two-column format, using 10-point
type on 12-point (single-spaced) leading, in a text block 7” wide x 9” deep,
with .33” inter-column space, formatted for 8.5” x 11” paper. Please note
that the text block size has changed.

Papers not meeting these criteria will be rejected without review, and no
deadline extensions will be granted for reformatting. Pages should be
numbered, and figures and tables should be legible when printed with-
out requiring magnification. Authors may use color in their figures, but
the figures should be readable when printed in black and white. If you
wish, you may use the template for LaTeX available on the conference
paper templates page at www.usenix.org/conferences/author-resources
/paper-templates. All papers must be submitted via the submission form
linked from the NSDI ’19 Call for Papers web page. Please do not email
submissions.

Submissions will be judged on originality, significance, interest, clarity,
relevance, and correctness.

Policies
Simultaneous submission of the same work to multiple venues, submis-
sion of previously published work, or plagiarism constitutes dishonesty or
fraud. USENIX, like other scientific and technical conferences and journals,
prohibits these practices and may take action against authors who have
committed them. See the USENIX Conference Submissions Policy at www
.usenix.org/conferences/author-resources/submissions-policy for details.

Previous publication at a workshop is acceptable as long as the NSDI sub-
mission includes substantial new material that has been developed since
the publication of any earlier version. However, NSDI submissions cannot
be concurrent with submission to a workshop venue. If the notification
date for the workshop submission is after the submission date for NSDI
(as is the case for ACM HotNets 2018), this would be considered a concur-
rent submission and would be rejected without review. Such concurrent
submissions would have limited the possibility of substantially extending
the prior work, which would violate the intent of policies allowing for ex-
tended submissions (as described in www.sigcomm.org/about/policies
/frequently-asked-questions-faq/) See remarks above about how to cite
and contrast with a workshop paper.

Authors uncertain whether their submission meets USENIX’s guidelines
should contact the Program Co-Chairs, nsdi19chairs@usenix.org.

http://www.usenix.org/conferences/author-resources/paper-templates
http://www.usenix.org/conferences/author-resources/paper-templates
http://www.usenix.org/conferences/author-resources/submissions-policy
http://www.usenix.org/conferences/author-resources/submissions-policy
http://www.sigcomm.org/about/policies/frequently-asked-questions-faq/
http://www.sigcomm.org/about/policies/frequently-asked-questions-faq/

64 S U M M ER 20 1 8 VO L . 4 3 , N O. 2 www.usenix.org

Papers accompanied by nondisclosure agreement forms will not be con-
sidered. All submissions will be treated as confidential prior to publication
on the USENIX NSDI ’19 website; rejected submissions will be perma-
nently treated as confidential.

Ethical Considerations
Papers describing experiments with users or user data (e.g., network traf-
fic, passwords, social network information), should follow the basic prin-
ciples of ethical research, e.g., beneficence (maximizing the benefits to an
individual or to society while minimizing harm to the individual), minimal
risk (appropriateness of the risk versus benefit ratio), voluntary consent,
respect for privacy, and limited deception. When appropriate, authors are
encouraged to include a subsection describing these issues. Authors may
want to consult the Menlo Report at www.caida.org/publications/papers
/2012/menlo_report_actual_formatted/ for further information on ethi-
cal principles, or the Allman/Paxson IMC ’07 paper at http://conferences
.sigcomm.org/imc/2007/papers/imc76.pdf for guidance on ethical data
sharing.

Authors must, as part of the submission process, attest that their work
complies with all applicable ethical standards of their home institution(s),
including, but not limited to privacy policies and policies on experiments
involving humans. Note that submitting research for approval by one’s
institution’s ethics review body is necessary, but not sufficient—in cases
where the PC has concerns about the ethics of the work in a submission,
the PC will have its own discussion of the ethics of that work. The PC’s
review process may examine the ethical soundness of the paper just as it
examines the technical soundness.

Processes for Accepted Papers
If your paper is accepted and you need an invitation letter to apply for a
visa to attend the conference, please contact conference@usenix.org as
soon as possible. (Visa applications can take at least 30 working days to
process.) Please identify yourself as a presenter and include your mailing
address in your email.

Accepted papers may be shepherded through an editorial review process
by a member of the Program Committee. Based on initial feedback from
the Program Committee, authors of shepherded papers will submit an
editorial revision of their paper to their Program Committee shepherd.
The shepherd will review the paper and give the author additional
comments. All authors, shepherded or not, will upload their final file to
the submissions system by the camera ready date for the conference
Proceedings.

Paper publishing schedule: A list of papers accepted from the Spring
submissions will be posted on the NSDI ’19 website in August. In Decem-
ber, when the full program is available, paper titles and abstracts will be
posted for all accepted papers from both the Spring and Fall deadlines. At
this time, the Spring final paper PDFs will also be posted, accessible only
to registered attendees. In February, the full Proceedings as well as all of
the final paper PDFs will be posted.

All papers will be available online to registered attendees before the
conference. If your accepted paper should not be published prior to the
event, please notify production@usenix.org. The papers will be available
online to everyone beginning on the first day of the conference.

Best Paper Awards
Awards will be given for the best paper(s) at the conference.

Community Award
To encourage broader code and data sharing within the NSDI commu-
nity, the conference will also present a “Community Award” for the best
paper whose code and/or data set is made publicly available by the final
papers deadline, February 13, 2019. Authors who would like their paper to
be considered for this award will have the opportunity to tag their paper
during the submission process.

Rev. 4/27/18

http://www.caida.org/publications/papers/2012/menlo_report_actual_formatted/
http://www.caida.org/publications/papers/2012/menlo_report_actual_formatted/
http://conferences.sigcomm.org/imc/2007/papers/imc76.pdf
http://conferences.sigcomm.org/imc/2007/papers/imc76.pdf

Co-located Workshops

WOOT ’18 12th USENIX Workshop on Offensive Technologies
August 13–14, 2018
www.usenix.org/woot18

WOOT presents a broad picture of offense and its contributions. Offensive security today is a large-scale operation
managed by organized, capitalized actors, and software used by millions is built by startups less than a year old. In the
field’s infancy, offensive security research was conducted separately by industry, independent hackers, or in academia,
and collaboration between these groups could be difficult. Since 2007, WOOT has brought these communities together
to share, explore, and produce high-quality, peer-reviewed work discussing tools and techniques for attack.

ASE ’18 2018 USENIX Workshop on Advances in Security Education
August 13, 2018
www.usenix.org/ase18

Educators, designers, and evaluators attend ASE to collaborate, share cutting-edge research in computer security education,
improve existing practices, and validate or refute widely held beliefs within the field. The workshop program covers
computer security education in various settings and with a diverse set of goals, including developing or maturing specific
knowledge, skills, and abilities, and improving awareness of issues in the cyber domain.

CSET ’18 11th USENIX Workshop on Cyber Security Experimentation and Test
August 13, 2018
www.usenix.org/cset18

CSET is a forum for researchers and practitioners in academia, government, and industry to explore the significant
 challenges within the science of cyber security. Presenters and attendees are encouraged to engage in interactive discus-
sions on cyber security evaluation, experimentation, measurement, metrics, data, simulations, and testbeds for software,
hardware, or malware.

FOCI ’18 8th USENIX Workshop on Free and Open Communications on the Internet
August 14, 2018
www.usenix.org/foci18

Political and social change around the world is driven by Internet communications, which governments and other actors
seek to control, monitor, and block using multifarious methods. These threats to free and open communications on the
Internet raise a wide range of research and interdisciplinary challenges. FOCI brings together researchers and practitioners
from technology, law, and policy who are working on means to study, detect, or circumvent practices that inhibit free and
open communications on the Internet.

HotSec ’18 2018 USENIX Summit on Hot Topics in Security
August 14, 2018
www.usenix.org/hotsec18

Researchers across computer security disciplines convene at HotSec to discuss the state-of-the-art, with emphasis on
 future directions and emerging areas. HotSec is not your traditional security workshop! It’s a series of lightning talks
 sessions on emerging work and positions in security, followed by discussion among attendees. The format provides a
quick and informal way to share ideas and inspire breakout discussions for the remainder of the day.

Register by July 23 and save!

BALTIMORE, MD, USA

The full program and registration are now available.
Register by July 23 and save!

www.usenix.org/sec18

AUGUST 15–17, 2018 • BALTIMORE, MD, USA
The USENIX Security Symposium brings together researchers, practitioners, system administrators, system
programmers, and others interested in the latest advances in the security and privacy of computer systems
and networks. The Symposium will span three days, with a technical program including refereed papers,
invited talks, posters, panel discussions, and Birds-of-a-Feather sessions (BoFs).

Keynote Address
“Q: Why Do Keynote Speakers Keep Suggesting That Improving Security Is Possible?

A: Because Keynote Speakers Make Bad Life Decisions and Are Poor Role Models.”
James Mickens, Harvard University

SOUPS 2018: Fourteenth Symposium on Usable
Privacy and Security
August 12–14

WOOT ʼ18: 12th USENIX Workshop on Off ensive
Technologies
August 13–14

ASE ʼ18: 2018 USENIX Workshop on Advances in
Security Education
August 13

The following co-located events will occur before the Symposium:

CSET ʼ18: 11th USENIX Workshop on Cyber Security
Experimentation and Test
August 13

FOCI ʼ18: 8th USENIX Workshop on Free and Open
Communications on the Internet
August 14

HotSec ʼ18: 2018 USENIX Summit on Hot Topics
in Security
August 14

27TH

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

	Cover
	Upcoming Events
	Contents
	Musings
	rik farrow

	Letter to the Editor
	The Cyber Grand Challenge and the
Future of Cyber-Autonomy
	Interview with Travis McPeak
	Interview with Swami Sundararaman
	Eusocial Storage Devices
	Fail-Slow at Scale
	A Quarter Century of LISA
	Practical Perl Tools
	Knowing Is Half the Battle
	iVoyeur
	For Good Measure
	/dev/random
	Book Reviews
	USENIX Notes
	Results of the Election for the USENIX Board of Directors
	First Impressions on the Path to Community Engagement
	NSDI ’19 Announcement and Call for Papers

