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EDITORIALMusings
R I K  F A R R O W

Rik is the editor of ;login:.  
rik@usenix.org W e’ve got a jam-packed issue this time, so I thought I’d cut right to 

the chase. Instead of musing, I will just tell you why I picked a 
particular author, set of authors, or topic for your edification. The 

reason, in some cases, is to attempt to disabuse you of long-held beliefs.

We begin with Conway et al., who researched the issue of file system fragmentation in Linux [1]. 
The researchers used a Git workload and showed that all of the popular Linux file systems 
suffer performance degradation, even on SSDs. After just 100 pulls, hard drive performance 
was halved, while it took a bit more activity, 800 pulls, to reduce SSD performance by 25%. 
The authors do have an agenda: their own file system design, BetrFS, doesn’t manifest this 
problem and is faster than other Linux file systems in many cases.

Disk drive manufacturers have been hiding information from us. For many years (decades?), 
they have converted the logical block address into the physical location of their firmware’s 
choice, so file system designs that attempt to prevent fragmentation really don’t have much of 
a chance. But there’s more: hard drives with capacities greater than two terabytes use device 
managed shingled magnetic recording (SMR). The Aghayev et al. article describes changes 
they made to ext4 that improve performance not just on SMR drives, but on any hard drive.

Ganesan and company delve into another of our popular myths: that having redundant copies 
makes our distributed data secure. They researched a number of distributed file systems and 
databases, induced read or write errors, and discovered some really terrible things. That is, I 
think it’s bad when having multiple copies means that the bad copy gets used to overwrite the 
good copy, or when a failed read crashes the system. You might want to read this even if you 
don’t use any of the eight distributed systems they tested.

Shvachko and Chen take another look at HDFS. The single-point-of-failure NameNode has 
long been an issue, and their Giraffa system replaces the NameNode with a distributed nam-
ing and block management system. HopsFS, from the Niazi et al. paper at FAST ’17 [2], also 
confronts this issue, although using a different approach.

Programming
Andy Rudoff, who wrote about persistent memory for ;login: way back in 2013, has written 
about the PMEM libraries currently available for use with Linux and Windows systems. 
These libraries focus on using PMEM as memory-mapped files (mmap()), but Rudoff also tells 
us about some other useful libraries and explains how best to use these new devices. Oh, and 
during Rudoff’s FAST ’17 tutorial on this topic, he kept waving around an Intel-Micron 3D 
XPoint device. I actually held this device, and can tell you that it’s real. PMEM will change 
the way many systems work in profound ways.

Graeme Jenkinson has written a great article explaining Rust, a programming language with 
a focus on type safety. Will Rust save the world from buggy code? Probably not, as most people 
are addicted to whatever they currently use. But Rust is still really worth looking at.

I interviewed Eric Allman, the author of both syslog and sendmail. Eric has traveled the open 
source road, a journey more often painful than rewarding for him.



www.usenix.org  S U M M ER 20 17  VO L .  42 ,  N O.  2 3

EDITORIAL
Musings

Security
Peck et al. have written what may be the final article in the series 
on BeyondCorp. BeyondCorp has been a journey away from 
traditional, trusted, internal networks and into a Zero Trust 
 network design [3]. This article is about the paths taken, ones 
that couldn’t have succeeded without the long process of gain-
ing the trust of the users of Google’s networks, learning what 
could easily be migrated, and how to migrate the more unusual 
services, over several years. 

Hunt et al. have written about the Ryoan sandbox, a system 
designed to run within Intel SGX enclaves on a distributed sys-
tem. Their model provides assurance that the expected software 
is running in the sandbox, that the data sent through the sandbox 
remains private, and that the sandbox doesn’t leak much infor-
mation through covert channels. You can also learn a lot about 
how SGX enclaves work by reading their article or their OSDI ’16 
paper [4].

Kuppaswamy, DeLong, and Kappos challenge people to find 
flaws in their design, Uptane, for providing secure firmware 
updates for automobiles. Cars are loaded with computers, and 
many new cars are also network-connected, so having a secure 
method for installing updates that works both within cars and 
for car manufacturers is more important than ever.

Radia Perlman reprises her talk at LISA16 about Bitcoin. Radia 
compares the design and capabilities of Bitcoin to other systems, 
past and present. Bitcoin design has attracted lots of attention 
and investors, but is it really any better than other cryptographic 
systems?

Jos Wetzels spoke at Enigma 2017 about embedded system secu-
rity. Wetzels researches IoT security issues, and in this article  
he describes some of the issues facing both researchers and 
developers of software for embedded systems. In short, things 
don’t look promising, but policy and regulation could set a rea-
sonable baseline for the IoT, just as RoHS [5] already restricts 
the use of certain hazardous substances in electrical and elec-
tronic equipment.

Columns
Dave Beazley explores the new pathlib module that appears in 
Python 3.4 and later. Dave had written about pathlib several 
years ago, and he demonstrates some of the things you can do 
with that module, as well as things you can’t do. Then Dave 
explains both how pathlib improves pathname manipulation, 
but also problems that arise with incompatibilities between 
pathlib objects and other functions that accept pathnames.

David Blank-Edelman explores Perl modules from the air. 
David takes us on a tour of some of the modules that come with  
a stock install of Perl, a very different approach to his usual  
Perl examples.

Dave Josephsen gets excited about compression. Dave tells us 
about Gorilla, a time series database that has been open sourced 
by Facebook and is designed to keep the most recent data in 
memory. In particular, Dave explains some of the tricks used to 
compress datestamps in time series.

We have a new columnist this issue. Jeanne Schock, who has 
worked as a system administrator and now focuses on change, 
incident, and problem management, has written about root 
causes and their relations to problems. Seems obvious, right? 
Well, read on, because it’s not that obvious.

Dan Geer and Jon Callas have written about the impact of 
revealing a nation-state’s exploit toolkit [6]. You’ll have to read 
their column, as it’s an interesting exercise in game theory.

Robert Ferrell considers how modern backup systems should 
work, then takes pokes at software subscriptions and advertis-
ing that targets your dreams. You might think you know what 
that means, having watched ads with people driving fancy cars 
 sitting next to the mate of their dreams. But that’s not what 
Robert means.

Sometimes it seems to me that things are changing much too 
quickly to keep up with. Then I notice that Tim Feldman wrote 
about SMR drives in 2013 [7], just as Andy Rudoff was writ-
ing about PMEM the same year. Four years later, and we are 
just now seeing the effects of the concepts discussed back then, 
and while there are millions of SMR drives in use, there aren’t 
any 3D XPoint cards available on the open market. As William 
Gibson quipped in 1993, “The future is already here—it’s just not 
evenly distributed.”
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Letter to the Editor
Hi folks, 

I just read the interview with Amit in ;login: while I’m on the 
road to AsiaCCS. Great interview, and it’s nice to see renewed 
interest in security for embedded devices.

Tock sounds interesting and I’ll definitively check it out.

The fun part is that at AsiaCCS I’ll present our work on enforc-
ing memory safety for TinyOS [1]. We have worked on porting a 
CCured-like type system to nesC and enforce memory safety for 
a set of embedded devices at low overhead.

Embedded devices have unique advantages such as mostly static 
allocation, a well known stack depth, and a bunch of other inter-
esting features that can be used to enforce strong protections, 
mostly statically, only falling back to a runtime check when 
absolutely required. In addition, there’s usually a single task and 
dedicated resources, so we can leverage all available slack for 
security mechanisms. 

Coincidentally, we also have an upcoming paper at Oakland [2]  
on protecting embedded devices using a privilege overlay. 
Embedded devices often run bare-metal. Our idea was to 
deprivilege all instructions and then, based on a static analysis, 
enable privileges on only a few locations and instructions. The 
MPU allows a dynamic configuration of these privilege overlays 
and enables quick switches.

It’s amazing to see the renewed interest in protecting embedded 
systems, and I’d love to talk as we’re continuing to work in that 
area!

Cheers, 
Mathias Payer
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File systems attempt to avoid aging, or fragmentation over time, 
by strategically allocating space for files. System implementers 
and users alike treat aging as a solved problem. Here, we present a 

 realistic workload, based on Git, that can cause these best-guess file-block-
placement heuristics to fail, inducing large performance declines due to 
aging. This performance decline cannot be prevented with more caching  
or larger disks, and SSDs reduce but do not eliminate the aging effects. Our 
Git-based aging scheme can simulate a year of aging in under an hour. To 
make it easy for practitioners to incorporate aging into benchmarks, we  
have open-sourced our aging scripts at betrfs.org.

File-system fragmentation occurs when a file system stores a file or directory’s contents 
in discontiguous ranges of disk blocks. As a file system becomes more fragmented, per-
formance can drop significantly, since reading the file requires issuing multiple I/Os to 
disk. The performance drop can be particularly severe on rotating disks, where each I/O 
may require a disk seek. Maintaining locality in a file system as files grow, shrink, and are 
renamed can be challenging.

For many years, file systems did not include effective measures for avoiding fragmentation. 
The seminal work of Smith and Seltzer [7] showed that FFS file systems age under realistic 
workloads, and this aging affects performance. 

Users mitigated fragmentation in early file systems by running special tools to defragment 
their file systems. Defragmenters reorganize file contents so that each file is stored in a 
contiguous range of disk blocks.

Modern file systems, on the other hand, strive to avoid fragmentation by applying best effort 
heuristics at allocation time. For example, file systems try to place related files close together 
on disk, while also leaving empty space for future files [1, 4, 5, 8]. These and other heuristics 
attempt to stay ahead of fragmentation wrought by normal file-system usage.

Fragmentation is thus widely viewed as a solved problem. For example, the Linux System 
Administrator’s Guide [9] says:

Modern Linux file systems keep fragmentation at a minimum by keeping all blocks 
in a file close together, even if they can’t be stored in consecutive sectors. Some file 
systems, like ext3, effectively allocate the free block that is nearest to other blocks in 
a file. Therefore it is not necessary to worry about fragmentation in a Linux system.

As a result, few users run defragmentation tools. Furthermore, few file-system benchmarks 
attempt to age the file system before measuring its performance.

In this article, we demonstrate that modern file systems can still suffer from fragmentation 
under representative workloads, and we describe a simple method for quickly inducing aging. 
Our results suggest that fragmentation can be a first-order performance concern—some file 
systems slow down by over 20x over the course of our experiments. We show that fragmen-
tation causes performance declines on both hard drives and SSDs, when there is plentiful 
cache available, and even on large disks with ample free space.
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Fragmentation remains important because there is a large gap between sequential and 
random I/O performance of storage devices [2]. On rotating disks, even a few seeks can have 
an outsized effect on performance. For example, if a file system places a 100 MiB file in 200 
disjoint pieces (i.e., 200 seeks) on a disk with 100 MiB/s bandwidth and 5 ms seek time, read-
ing the data will take twice as long as reading it in an ideal layout.

Even on SSDs, which do not perform mechanical seeks, a decline in locality can harm perfor-
mance [6]. Figure 1 shows that both HDDs and SSDs achieve substantially higher throughput 
when reading large blocks. On both types of hardware, we found that a surprisingly large 
read block of 4 MiB is necessary to achieve 75% of device bandwidth (see [2] for the specifics 
of our experimental setup).

Our technique for causing fragmentation makes it easy for file-system implementers and 
benchmarkers to incorporate aging into their evaluations. Our technique can cause years’ 
worth of file-system aging in just a few hours and can take regular measurements as the file 
system ages. File systems begin aging almost immediately in our experiments, meaning that 
implementers and benchmarkers can use our tools to induce significant aging in under an hour.

The gold standard for realistically aging a file system is to replay a trace of file-system opera-
tions from a real system. Unfortunately, such traces are almost impossible to find. Smith and 
Seltzer proposed to approximate such traces by interpolating changes between successive 
file-system snapshots collected during a multi-year experiment [7]. Unfortunately, years-
long collections of file-system snapshots have also been hard to come by.
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The key idea behind our aging technique is that we can view open-source Git (or any other 
version control system) repositories as collections of snapshots of the developers’ file systems. 
Furthermore, replaying a repository’s revision history will replay a significant portion of 
the developers’ actual file system activity, since many developers pull changes from their 
 collaborators multiple times per day. Thus replaying the revision history should induce frag- 
 mentation similar to that experienced by the developers when they were working on the project.

The large number of open-source projects—many of them with over a decade of history—
means that we can now easily induce representative aging in file systems. Our scripts, avail-
able at betrfs.org, make it straightforward for developers and benchmarkers to integrate 
aging into their performance measurements.

How to Age Your File System
In the experiments in this article, we replay commits to the Linux kernel Git repository 
hosted on github.com. We start from the first commit and proceed in chronological order. 
After every 100 Git pulls, we unmount and remount the file system, clear all caches, and 
measure read performance (Figure 2).

We measure performance by the wall-clock time required to perform a recursive grep start-
ing from the root directory of the file system. This operation descends through the directory 
structure, reading the content of each file. This grep reads a sequence of file and metadata 
blocks, which we call the logical order of the file-system blocks. Fragmentation occurs when 
two logically successive blocks are not stored in adjacent logical block addresses on the stor-
age device. Greater fragmentation means that the average I/O size is smaller. As shown in 
Figure 1, this reduces the effective bandwidth, causing the grep to take longer.

We divide fragmentation into three categories:

◆◆ Intrafile is fragmentation involving blocks from the same file.

◆◆ Interfile is fragmentation involving blocks from two different files.

◆◆ Metadata is fragmentation involving at least one metadata block.

A recursive grep measures the impact of all these types of fragmentation on overall file-
system performance.

When we run our Git aging workload, various statistics of the file system will naturally 
change over time as files and directories are created, modified, and deleted. For example,  
as a project progresses, it might include more small files, or subdirectories may include  
more source files. In order to make direct comparisons, we need to normalize for such 
changes. First, we normalize for file-system size by reporting the grep time in seconds  
per GiB. We obtain the file-system size from the output of du.

In order to measure potential aging, after each measurement, we copy the entire file 
system to a freshly formatted file system on another partition and repeat the performance 
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measurement there. We call this copy of the file system the clean 
instance, since the file system does not undergo any changes 
after the files are copied to it. The logical states of both file 
systems are the same; any performance difference between the 
aged and clean instances of a file system are due to the history  
of preceding operations.

Do modern file systems age? Figure 3 shows the results of 
aging btrfs with Git on a hard drive. The grep performance drops 
by a factor of 20 after 10,000 pulls. This drop in performance 
happens quickly; it only takes 100 pulls for a 2x slowdown and 
1100 pulls for a 10x slowdown. Moreover, the grep ends up being 
very slow in absolute terms; by the end of the test it takes more 
than eight minutes to grep through 1 GiB.

In this article, we present only one file system in each experi-
ment. Our USENIX FAST paper evaluates five popular Linux 
file systems under all of these experimental conditions and finds 
similar results [2].

Do SSDs fix aging? When we run the same workload on an 
SSD, we would expect to see less aging as a result of the superior 
random-read performance. Figure 4 shows the results of aging 
XFS with Git on an SSD. Although the slowdown due to aging 
is smaller, it is still significant. After 10,000 pulls, greps in 
the aged file-system instance are 1.9x slower than in the clean 
instance. After 800 pulls, the slowdown is 25%, and after 2,500 
pulls, the slowdown is 50%.

Does caching fix aging? If most or all of our file system fits in 
cache, then the on-disk layout will not affect grep performance, 

since reads will be served from cache. We evaluated the sensitiv-
ity of the Git workloads to varying amounts of system RAM and, 
therefore, varying amounts of available disk cache. We use the 
same Git aging procedure, except that we do not flush any caches 
or remount the hard drive between iterations. The size of the 
data on disk is initially about 280 MiB and grows throughout the 
test to approximately 1.2 GiB.

The results for ext4 on a hard drive are summarized in Figure 
5. When there is sufficient memory to keep all the data in cache, 
the grep is very fast. As soon as the size of the file system grows 
above a threshold, however, the warm-cache performance of grep 
quickly approaches the cold-cache performance. Furthermore, 
once the file system is no longer cached, the warm-cache perfor-
mance is in all cases worse than the cold-cache performance of a 
clean copy of the file system. Unless all data fits into cache, there-
fore, fragmentation is a major driver of file-system performance.

Do big disks fix aging? The results shown in Figures 3 and 4 
were performed on a 20 GiB partition in which the file system 
size never exceeded 1.2 GiB; therefore, the partition is never 
more than 6% full. If we run the Git workload on partitions of 
different sizes, as shown in Figure 6, we see that having a larger 
partition does not eliminate (or even mitigate) aging.

In fact, as the partition gets larger, the clean performance of 
ext4 gets worse. This is because ext4 spreads data across the 
partition in order to leave room for future files. Thus, the larger 
partition size actually results in longer seeks.

Figure 3: Git aging workload on btrfs on HDD. The overall slowdown is 
20.6x. Lower is better.
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Conclusion
The experiments above show that modern file systems can still 
age substantially under workloads representative of a typical 
software developer’s file-system usage. They also show that 
SSDs, caching, and large disks do not prevent aging in today’s 
file systems, though SSDs can help.

Furthermore, these results demonstrate that many modern file 
system design features, such as delayed allocation, cylinder or 
block groups, and extents, do not prevent aging. The file systems 
in these benchmarks included some or all of these features, but 
they aged nonetheless.

Our USENIX FAST paper delves into other file-system design 
tradeoffs related to aging and confirms that our research proto-
type file system, BetrFS [3, 10], exhibits almost no aging [2].

Our Git-based method for inducing aging makes it easy to 
incorporate aging into file-system benchmarks. Our scripts are 
available at betrfs.org.
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Evolving Ext4 for Shingled Disks
A B U T A L I B  A G H A Y E V ,  T H E O D O R E  T S ’ O ,  G A R T H  G I B S O N ,  A N D  
P E T E R  D E S N O Y E R S

Multi-terabyte hard disks today use Shingled Magnetic Recording 
(SMR), a technique that increases capacity at the expense of more 
costly random writes. We introduce ext4-lazy, a small change to 

the popular Linux ext4 file system that eliminates a major source of random 
writes—the metadata writeback—significantly improving performance on 
SMR disks in general, as well as on conventional disks for metadata-heavy 
workloads in particular. In this article, we briefly explain why SMR disks 
suffer under random writes and how ext4-lazy helps.

To cope with the exponential growth of data, as well as to stay competitive with NAND 
flash-based solid state drives (SSDs), hard disk vendors are researching capacity-increasing 
technologies. Shingled Magnetic Recording (SMR) is one such technique that allows disk 
manufacturers to increase areal density with existing fabrication methods. So far, the industry 
has introduced two kinds of SMR disks: Drive-Managed (DM-SMR) and Host-Managed (HM-
SMR). HM-SMR disks have a novel backward-incompatible interface that requires changes to 
the I/O stack and, therefore, are not widely deployed. DM-SMR disks, on the other hand, are a 
drop-in replacement for Conventional Magnetic Recording (CMR) disks that offer high capac-
ity with the traditional block interface. Millions of DM-SMR disks have been shipped; in the 
rest of the article, therefore, we will use SMR disk as a shorthand for DM-SMR disk.

If you buy a multi-terabyte disk today, there is a good chance that it is an SMR disk in dis-
guise, which is easy to tell: unlike CMR disks, SMR disks suffer performance degradation 
when subjected to continuous random write traffic, as Figure 1 shows.

One approach to adopting SMR disks is to develop a file system from scratch based on their 
performance characteristics. But file systems are complex and critical pieces of code that 
take years to mature. Therefore, we take an evolutionary approach to adopting these disks: 
we make a small change to the popular Linux file system, ext4, that significantly improves 
its performance on SMR disks by avoiding random metadata writes.

We introduce a simple technique that we call lazy writeback journaling, and we call a ver-
sion of ext4 using our journaling technique ext4-lazy. Like other journaling file systems, by 
default ext4 writes metadata twice; as Figure 2a shows, it first writes the metadata block to 
a temporary location J in the journal and then marks the block as dirty in memory. Once the 
block has been in memory for long enough, a writeback thread writes the block to its static 
location S, resulting in a random write. Although metadata writeback is typically a small 
portion of a workload, it results in many random writes. Ext4-lazy, on the other hand, marks 
the block as clean after writing it to the journal, to prevent the writeback, and inserts a map-
ping (S, J) to an in-memory map allowing the file system to access the block in the journal, 
as seen in Figure 2b. Since the journal is written sequentially to a circular log, overwriting 
a metadata block is not possible. Therefore, ext4-lazy writes an updated block to the head of 
the log, updating the map and invalidating the old copy of the block. Ext4-lazy uses a large 
journal so that it can continue writing updated blocks while reclaiming the space from the 
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invalidated blocks. During mount, it reconstructs the in-memory map from the journal 
resulting in a modest increase in mount time. Results show that ext4-lazy significantly 
improves performance on SMR disks in general, as well as on CMR disks for metadata-heavy 
workloads in particular.

Our main contribution to ext4 includes the design, implementation, and evaluation of ext4-
lazy on SMR and CMR disks. The change we make is minimally invasive—we modify 80 
lines of existing code and introduce the new functionality in additional files totaling 600 
lines of C code. As we show in the evaluation section, even on a metadata-light file server 
benchmark where the metadata writes make up less than 1% of total writes, with stock ext4 
the SMR disk appears unresponsive for almost an hour with near-zero throughput. With 
ext4-lazy, on the other hand, the SMR disk does not suffer such a behavior and completes 
1.7–5.4x faster. For directory traversal and metadata-heavy workloads, ext4-lazy achieves 
2–13x improvement on both SMR and CMR disks.

Background
A high-level introduction to SMR technology has been previously presented in ;login: [3]. 
Readers interested in nitty-gritty details of how an SMR disk works and why it suffers under 
random writes may refer to the detailed study [1] of one such disk. Here, we give just enough 
background on SMR disks and ext4 journaling to make the rest of the article understandable.
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Figure 1: Throughput of CMR and SMR disks from Table 1 under 4 KiB random write traffic. The CMR disk 
(WD500YS) has a stable but low throughput under random writes. SMR disks, on the other hand, have a 
short period of high throughput followed by a continuous period of ultra-low throughput.

Type Vendor Model Capacity Form Factor
SMR Seagate ST8000AS0002 8 TM 3.5 inch

SMR Seagate ST5000AS0011 5 TB 3.5 inch

SMR Seagate ST4000LM016 4 TB 2.5 inch

SMR Western Digital WD40NMZW 4 TB 2.5 inch

CMR Western Digital WD5000YS 500 MB 3.5 inch

Table 1: CMR and SMR disks from two vendors used for evaluation
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SMR
As a concrete example, one SMR disk used in our evaluation 
consists of ≈ 30 MiB bands that are the smallest units that must 
be written sequentially. Overwriting a random block in a band 
requires read-modify-write (RMW) of the whole band. This 
results in reading a band, modifying it in memory, writing the 
updated band to a temporary band (since overwriting the origi-
nal band is not atomic and could corrupt the old data if power is 
lost), and finally overwriting the original band, generating ≈ 90 
MiB disk I/O. To hide the cost of random writes, the disk uses a 
persistent cache for handling bursts of random writes—incoming 
random writes are written to the persistent cache, and the bands 

are updated using RMW during the idle times, emptying the per-
sistent cache. If the burst of random writes is large enough to fill 
the persistent cache, the throughput of the disk drops because 
every incoming write requires RMW of the corresponding band. 
Sequential writes, on the other hand, are detected and written 
directly to bands, bypassing the persistent cache.

Ext4 and Journaling
The ext4 file system evolved from ext2, which was influenced by 
Fast File System (FFS). Similar to FFS, ext2 divides the disk into 
cylinder groups—or as ext2 calls them, block groups—and tries to 
put all blocks of a file in the same block group. To further increase 
locality, the metadata blocks (inode bitmap, block bitmap, and 
inode table) representing the files in a block group are also placed 
within the same block group, as Figure 3a shows. In ext2 the size 
of a block group was limited to 128 MiB—the maximum number 
of 4 KiB data blocks that a 4 KiB block bitmap can represent. Ext4 
introduced flexible block groups or flex_bgs—a set of contiguous 
block groups whose metadata is consolidated in the first 16 MiB 
of the first block group within the set, as shown in Figure 3b.

Ext4 ensures metadata consistency via journaling, but it does 
not implement journaling itself; rather, it uses a generic kernel 
layer called the Journaling Block Device that runs in a separate 
kernel thread called jbd2. In response to file system operations, 
ext4 reads metadata blocks from disk, updates them in memory, 
and exposes them to jbd2 for journaling. For increased perfor-
mance, jbd2 batches metadata updates from multiple file system 
operations (by default, for five seconds) into a transaction 
buffer and atomically commits the transaction to the journal—a 
circular log of transactions. After a commit, jbd2 marks the in-
memory copies of metadata blocks as dirty so that the writeback 
thread would write them to their static locations.

(a) ext2 Block Group

Super Block Group Desc Block Bitmap Inode Bitmap Inode Table Data Blocks

Block Group 0 Block Group 1
Data Blocks Data Blocks

Block Group 2
Data Blocks

(b) ext4 flex_bg

Block Group 15
Data Blocks

Metadata for all block groups in a flex_bg ~ 16 MiB

~ 1 MiB ~ 127 MiB

2 GiB

flex_bg 0 flex_bg 1

Band 0 Band 49

flex_bg 3999

Band 266,565 Band 266,566
(c) Disk Layout of ext4 partition on an 8 TB SMR disk

Figure 2: (a) Ext4 writes a metadata block to disk twice. It first writes 
the metadata block to the journal at some location J and marks it dirty 
in memory. Later, the writeback thread writes the same metadata block 
to its static location S on disk, resulting in a random write. (b) Ext4-lazy 
writes the metadata block approximately once to the journal and inserts a 
mapping (S, J) to an in-memory map so that the file system can find the 
metadata block in the journal.

(a) Journaling under ext4
Disk
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(b) Journaling under ext4-lazy
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Figure 3: (a) In ext2, the first megabyte of a 128 MiB block group contains the metadata blocks describing the block group, and the rest is data blocks.  
(b) In ext4, a single flex bg (flexible block group) concatenates multiple (16 in this example) block groups into one giant block group and puts all of the 
metadata in the first block group. (c) Modifying data in a flex bg will result in a metadata write that may dirty one or two bands, seen at the boundary of 
bands 266,565 and 266,566.
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On SMR disks, when the metadata blocks are eventually writ-
ten back, they dirty the bands that are mapped to the metadata 
regions in a f lex_bg, as seen in Figure 3c. Since a metadata 
region is not aligned with a band, metadata writes to it may dirty 
zero, one, or two extra bands, depending on whether the meta-
data region spans one or two bands and whether the data around 
the metadata region has been written.

Design of Ext4-lazy
At a high level, ext4-lazy adds the following components to ext4 
and jbd2:

Map: Ext4-lazy tracks the location of metadata blocks in the 
journal with an in-memory map that associates the static loca-
tion S of a metadata block with its location J in the journal. The 
mapping is updated whenever a metadata block is written to the 
journal, as shown in Figure 2b.

Indirection: In ext4-lazy, all accesses to metadata blocks go 
through the map. If the most recent version of a block is in the 
journal, there will be an entry in the map pointing to it; if no 
entry is found, then the copy at the static location is up-to-date.

Cleaner: The cleaner in ext4-lazy reclaims space from locations 
in the journal that have become invalidated by the writes of new 
copies of the same metadata block.

Map reconstruction on mount: On every mount, ext4-lazy 
reads the descriptor blocks from the transactions between the 
tail and the head pointer of the journal and populates map.

Evaluation
We evaluate ext4-lazy on a system with a quad-core Intel 
i7-3820 (Sandy Bridge) 3.6 GHz CPU, 16 GB of RAM running 
Linux kernel 4.6, using the disks listed in Table 1. One surprising 
finding of our work was that the default journal size on ext4 is a 

bottleneck for metadata-heavy workloads. Figure 4 shows that 
just by increasing the journal size, a metadata-heavy workload 
completes over 40x faster. As a result, the recent version of 
e2fsprogs has increased the default journal size from 128 MiB 
to 1 GiB for file systems over 128 GiB. Readers interested in the 
details may refer to our paper [2]. Since enabling a large journal 
on ext4 is a command-line option to mkfs, we choose ext4 with a 
10 GiB journal as our baseline.

Next, we first show that ext4-lazy achieves significant speedup 
on the CMR disk WD5000YS from Table 1 for metadata-heavy 
workloads, and specifically for massive directory traversal 
workloads. We then show that on SMR disks, ext4-lazy provides 
significant improvement on both metadata-heavy and metadata-
light workloads.

Ext4-lazy on a CMR Disk
For metadata-heavy workloads we use the following bench-
marks. MakeDirs creates 800,000 directories in a directory 
tree of depth 10. The directory tree is also used by the following 
benchmarks: ListDirs runs ls -lR on the directory tree, TarDirs 
creates a tarball of the directory tree, and RemoveDirs removes 
the directory tree.

CreateFiles creates 600,000 files each of size 4 KiB in a new 
directory tree of depth 20. The directory tree is also used by the 
following benchmarks: FindFiles runs find on the directory tree, 
TarFiles creates a tarball of the directory tree, and RemoveFiles 
removes the directory tree. All of the benchmarks start with a 
cold cache, set up by echoing “3” to /proc/sys/vm/drop_caches.

As Figure 5 shows, benchmarks that are in the file/directory 
create category (MakeDirs, CreateFiles) complete 1.5–2x 
faster on ext4-lazy than on ext4-baseline, while the remaining 
benchmarks that are in the directory-traversal category—except 
TarFiles—complete 3–5x faster. We choose MakeDirs and 
RemoveDirs as a representative of each category and analyze 
their performance in detail below.
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Figure 4: (a) Completion time for a benchmark creating 100,000 files on 
ext4-stock (ext4 with 128 MiB journal) and on ext4-baseline (ext4 with 
10 GiB journal). (b) The volume of dirty pages during benchmark runs 
obtained by sampling /proc/meminfo every second. 

Figure 5: Microbenchmark runtimes on ext4-baseline and ext4-lazy
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MakeDirs on ext4-baseline results in ≈ 4,735 MiB of journal 
writes that are transaction commits containing metadata 
blocks, as seen in the first row of Table 2 and at the center in 
Figure 6a; as the dirty timer on the metadata blocks expires, 
they are written to their static locations, resulting in a similar 
amount of metadata writeback. The block allocator is able to 
allocate large contiguous blocks for the directories, because 
the file system is fresh. Therefore, in addition to journal writes, 
metadata writeback is sequential as well. The write time domi-
nates the runtime in this workload: hence, by avoiding metadata 
writeback and writing only to the journal, ext4-lazy halves the 
writes as well as the runtime, as seen in the second row of Table 
2 and Figure 6b. On an aged file system, the metadata writeback 
is more likely to be random, resulting in even higher improve-
ment on ext4-lazy.

An interesting observation about Figure 6b is that although 
the total volume of metadata reads—shown as periodic verti-
cal spreads—is ≈ 140 MiB (3% of total I/O in the second row of 
Table 2), they consume over 30% of runtime due to long seeks 
across the disk. In this benchmark, the metadata blocks are read 
from their static locations because we run the benchmark on a 
fresh file system, and the metadata blocks are still at their static 
locations. As we show next, once the metadata blocks migrate to 
the journal, reading them is much faster since no long seeks are 
involved.

In RemoveDirs benchmark, on both ext4-baseline and ext4-
lazy, the disk reads ≈ 4,066 MiB of metadata, as seen in the 
last two rows of Table 2. However, on ext4-baseline the meta-
data blocks are scattered all over the disk, resulting in long seeks 
as indicated by the vertical spread in Figure 6c, while on ext4-
lazy they are within the 10 GiB region in the journal, resulting 
in only short seeks, as Figure 6d shows. Ext4-lazy also benefits 
from skipping metadata writeback, but most of the improve- 
ment comes from eliminating long seeks for metadata reads.  
The significant difference in the volume of journal writes 
between ext4-baseline and ext4-lazy seen in Table 2 is caused 
by metadata write coalescing: Since ext4-lazy completes faster, 
there are more operations in each transaction, with many modi-
fying the same metadata blocks, each of which is only written 
once to the journal.

The improvement in the remaining benchmarks is also due to 
reducing seeks to a small region and avoiding metadata write-
back. We do not observe a dramatic improvement in TarFiles, 
because unlike the rest of the benchmarks that read only meta-
data from the journal, TarFiles also reads data blocks of files 
that are scattered across the disk. Massive directory traversal 
workloads are a constant source of frustration for users of most 
file systems. One of the biggest benefits of consolidating meta-
data in a small region is an order-of-magnitude improvement in 
such workloads. 

Ext4-lazy on SMR Disks
An additional critical factor for file systems when running on 
SMR disks is the cleaning time after a workload. A file system 
resulting in a short cleaning time gives the disk a better chance 
of emptying the persistent cache during idle times of a bursty 
I/O workload, and has a higher chance of continuously perform-
ing at the persistent cache speed, whereas a file system resulting 
in a long cleaning time is more likely to force the disk to inter-
leave cleaning with file system user work.

In the next section we show microbenchmark results on just one 
SMR disk—ST8000AS0002 from Table 1. At the end of every 
benchmark, we run a vendor-provided script that polls the disk 
until it has completed background cleaning and reports the total 
cleaning time, which we report in addition to the benchmark 
runtime. We achieve similar normalized results for the remain-
ing disks, which we skip to save space. 

Microbenchmarks
Figure 7 shows results of the microbenchmarks (see section 
“Ext4-lazy on a CMR Disk”) repeated on ST8000AS0002 with 
a 2 TB partition, on ext4-baseline and ext4-lazy. MakeDirs 
and CreateFiles do not fill the persistent cache, and, therefore, 
they typically complete 2–3x faster than on CMR disk. Similar 
to CMR disk, MakeDirs and CreateFiles are 1.5–2.5x faster on 
ext4-lazy. On the other hand, ListDir, for example, one of the 
remaining directory traversal benchmarks, completes 13x faster 
on ext4-lazy, as compared to 5x faster on CMR disk.

Metadata Reads (MiB) Metadata Writes (MiB) Journal Writes (MiB)
MakeDirs/ext4-baseline 143.7±2.8 4,631±33.8 4,735±0.1

MakeDirs/ext4-lazy 144±4 0 4,707±1.8

RemoveDirs/ext4-baseline 4,066.4±0.1 322.4±11.9 1,119±88.6

RemoveDirs/ext4-lazy 4,066.4±0.1 0 472±3.9

Table 2: Distribution of the I/O types with MakeDirs and RemoveDirs benchmarks running on ext4-baseline and ext4-lazy
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The cleaning times for ListDirs, FindFiles, TarDirs, and TarFiles 
are zero because they do not write to disk—TarDirs and TarFiles 
write their output to a different disk. However, cleaning time 
for MakeDirs on ext4-lazy is zero as well, compared to ext4-
baseline’s 846 seconds, despite having written over 4 GB of 
metadata, as Table 2 shows. Being a pure metadata workload, 
MakeDirs on ext4-lazy consists of journal writes only, as Figure 
6b shows, all of which are streamed, bypassing the persistent 
cache and resulting in zero cleaning time. Similarly, cleaning 
time for RemoveDirs and RemoveFiles are 10 and 20 seconds, 
respectively, on ext4-lazy compared to 590 and 366 seconds on 
ext4-baseline, because these too are pure metadata workloads 
resulting in only journal writes for ext4-lazy. During deletion, 
however, some journal writes are small and end up in persistent 
cache, resulting in short cleaning times.

File Server Macrobenchmark
Our file server benchmark creates a working set of 10,000 files 
spread sparsely across 25,000 directories, with file sizes ranging 
from 512 bytes to 1 MiB, and then executes 100,000 transactions 
with the I/O size of 1 MiB. In total, the benchmark writes 37.89 
GiB and reads 31.54 GiB of data from user space.

Table 3 shows the distribution of write types completed by a 
ST8000AS0002 SMR disk with a 400 GB partition during the 
benchmark. On ext4-baseline, metadata writes make up 1.6% 
of total writes. Although the unique amount of metadata is 

only ≈ 120 MiB, as the storage slows down, metadata writeback 
increases slightly, because each operation takes a long time to 
complete, and the writeback of a metadata block occurs before 
the dirty timer is reset.

The benchmark completes more than 2x faster on ext4-lazy, in 
461 seconds, as seen in Figure 8. On ext4-lazy, the disk sustains 
140 MiB/s throughput and fills the persistent cache in 250 
seconds, and then drops to a steady 20 MiB/s until the end of the 
run. On ext4-baseline, however, the large number of small meta-
data writes reduces throughput to 50 MiB/s, taking the disk 450 
seconds to fill the persistent cache. Once the persistent cache 
fills, the disk interleaves cleaning and file system user work, and 
small metadata writes become prohibitively expensive, as seen, 
for example, between seconds 450 and 530. During this period 
we do not see any data writes, because the writeback thread 
alternates between page cache and buffer cache when writing 
dirty blocks, and it is the buffer cache’s turn. We do, however, 
see journal writes because jbd2 runs as a separate thread and 
continues to commit transactions.

The benchmark completes even more slowly on a full 8 TB ext4 
partition, as seen in Figure 9, because ext4 spreads the same 
workload over more bands. With a small partition, updates to 
different files are likely to update the same metadata region. 
Therefore, cleaning a single band frees more space in the persis-
tent cache, allowing it to accept more random writes. With a full 
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Figure 6: Disk offsets of I/O operations during MakeDirs and RemoveDirs microbenchmarks on ext4-baseline and ext4-lazy. Metadata reads and writes 
are spread out while journal writes are at the center. The dots have been scaled based on the I/O size. In part (d), journal writes are not visible due to low 
resolution. These are pure metadata workloads with no data writes.

Data Writes (MiB) Metadata Writes (MiB) Journal Writes (MiB)
ext4-baseline 32,917±9.7 563±0.9 1,212±12.6

ext4-lazy 32,847±9.3 0 1,069±11.4

Table 3: Distribution of write types completed by a ST8000AS0002 SMR disk during a Postmark run on ext4-baseline and ext4-lazy. Metadata writes 
make up 1.6% of total writes in ext4-baseline, only 20% of which is unique.
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partition, however, updates to different files are likely to update 
different metadata regions: now the cleaner has to clean a whole 
band to free a space for a single block in the persistent cache. 
Hence, after an hour of ultra-low throughput due to cleaning, it 
recovers slightly towards the end, and the benchmark completes 
5.4x slower on ext4-baseline. Interested readers may refer to our 
paper [2] for the evaluations of all disks from Table 1. 

Conclusion
Previous work has explored separating metadata from data and 
managing it as a log by designing a file system from scratch 
[4–6]. Our work, however, is the first that leverages the metadata 
separation idea for adapting a legacy file system to SMR disks. It 
shows how effective a well-chosen small change can be. It also 
suggests that while three decades ago it was wise for file systems 
depending on the block interface to scatter the metadata across 
the disk, today, with large memory sizes that cache metadata and 
with changing recording technology, putting metadata at the cen-
ter of the disk and managing it as a log looks like a better choice.

We conclude with the following general takeaways:

◆◆ We think modern disks are going to practice more extensive 
“lying” about their geometry and perform deferred cleaning 
when exposed to random writes; therefore, file systems should 
work to eliminate structures that induce small isolated writes, 
especially if the user workload is not forcing them.

◆◆ With modern disks, operation costs are asymmetric: random 
writes have a higher ultimate cost than random reads, and, 
furthermore, not all random writes are equally costly. When 
random writes are unavoidable, file systems can reduce their 
cost by confining them to the smallest perimeter possible.

Figure 7: Microbenchmark runtimes and cleaning times on ext4-baseline 
and ext4-lazy running on an SMR disk. Cleaning time is the additional time 
after the benchmark run that the SMR disk was busy cleaning. 
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Figure 9: The top graph shows the throughput of a ST8000AS0002 SMR 
disk with a full 8 TB partition during a file server benchmark run on ext4-
baseline and ext4-lazy. The bottom graph shows the offsets of write types 
during the run on ext4-baseline. The graph does not reflect sizes of the 
writes, only their offsets.

Figure 8: The top graph shows the throughput of a ST8000AS0002 SMR 
disk with a 400 GB partition during a file server benchmark run on ext4-
baseline and ext4-lazy. The bottom graph shows the offsets of write types 
during the run on ext4-baseline. The graph does not reflect sizes of the 
writes, only their offsets.
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Redundancy Does Not Imply Fault Tolerance
Analysis of Distributed Storage Reactions to  
Single Errors and Corruptions
A I S H W A R Y A  G A N E S A N ,  R A M N A T T H A N  A L A G A P P A N ,  
A N D R E A  C .  A R P A C I - D U S S E A U ,  A N D  R E M Z I  H .  A R P A C I - D U S S E A U

W e analyze how modern distributed storage systems behave in the 
presence of file-system faults such as data corruption and read 
and write errors. We characterize the behaviors of eight popular 

distributed storage systems, including Cassandra, Redis, and ZooKeeper. 
The major result of our study is that a single file-system fault introduced in 
one node of the cluster can induce catastrophic outcomes such as data loss, 
corruption, and unavailability. We find that most systems do not consis-
tently use redundancy to recover from file-system faults. We also find that 
the above outcomes arise due to fundamental problems in file-system fault 
 handling that are common across many systems. Our results have implica-
tions for the design of next generation fault-tolerant distributed storage 
systems.

Redundancy is a well-known technique for providing fault tolerance. Using redundancy, a 
system can tolerate failures of one or more of its components. For example, in a distributed 
storage system, data and functionality are replicated across many servers for fault tolerance. 
In most cases, replication can mask various failures such as system crashes, power failures, 
or nodes becoming inaccessible due to network failures. Modern distributed storage systems 
typically depend on local file systems to store and manage their data. Although replication 
can mask whole machine failures, local file systems exhibit a more complex failure model. 
For instance, certain blocks of data can become inaccessible due to an underlying latent 
sector error or, worse, the local file system may silently return corrupted data on reads if the 
underlying device block is corrupted. We call these failures file-system faults.

Several studies have shown the prevalence of errors and corruptions in disks and SSDs  
[1, 2, 5] that lead to these file-system faults. However, little is known about how modern 
 distributed storage systems react to such file-system faults. Therefore, in this study, we 
answer the following questions: How do distributed storage systems behave in the presence of 
local file-system faults? Do they use redundancy to recover from local file-system faults?

To answer these questions, we systematically inject file-system faults into distributed stor-
age systems and observe the effects of the injected fault. We picked a broad spectrum of dis-
tributed storage systems, implementing a variety of replication protocols such as replicated 
state machines, primary backup, and dynamo-style quorums.

Our fault model is very simple—we inject exactly one file-system fault into one file-system 
block in one node in the system at a time. We inject corruptions on reads, errors on reads, and 
errors on writes. Moreover, our fault model only includes data corruptions that are detectable 
by applications (e.g., using application-level checksums) and does not include undetectable 
memory corruptions.
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A common and widespread expectation is that redundancy in 
higher layers (i.e., across replicas) enables recovery from local 
file-system faults. For instance, consider a data item that is rep-
licated across three machines in a system as shown in Figure 1. 
What would a user expect if one of the copies of the data item in 
the system gets corrupted? Similarly, what if one of the blocks in 
one of the copies becomes inaccessible? It is completely reason-
able for a user to expect that the corrupted data will be recover-
able from the intact copies on other replicas and that the user 
never sees the corrupted data.

Unfortunately, from our study, we find that redundancy does not 
provide fault tolerance in many distributed storage systems. We 
find several pieces of evidence where a single file-system fault 
in only one node leads to catastrophic outcomes such as data 
loss, silent user-visible corruption, unavailability, or sometimes 
even the spread of corrupted data to other intact replicas. Table 
1 shows the prevalence of various undesirable behaviors across 
multiple systems. Note that since the system has redundant cop-
ies of data and we inject only one fault at a time, these behaviors 
are surprising and undesirable.

Why does redundancy not imply fault tolerance? One 
might wonder whether the discovered outcomes arise simply due 
to some implementation-level bugs that could be fixed by moder-
ate developer effort. Unfortunately, from our study, we find that 
the above outcomes arise due to some alarming and fundamen-
tal root causes in file-system fault tolerance that are common to 
many distributed storage systems.

The first fundamental problem we observe is that faults are often 
undetected locally by the nodes in a distributed storage system, 
leading to harmful effects such as corrupted data being returned 
to the users. Second, even when systems reliably detect faults, 
in most cases, they simply crash instead of using redundancy to 
recover from the fault. Third, many systems do not discern cor-
ruptions caused due to crashes from other corruptions, resulting 
in many data loss cases. Finally, we find that local fault-handling 

behaviors and global distributed protocols interact in an unsafe 
manner, leading to propagation of corruption or data loss.

As distributed storage systems are emerging as the primary 
choice for storing critical user data, carefully building them to 
tolerate file-system faults is important. Our study is a step in 
this direction, and we hope that our results will lead to discus-
sions and future research to improve the resiliency of next 
generation cloud storage systems. The full version of our work 
was published in FAST ’17 [3]. Our testing framework is publicly 
available at http://research.cs.wisc.edu/adsl/Software/cords.

Methodology
In this section, we first discuss the fault model and then describe 
our methodology to study how distributed storage systems react 
to local file-system faults.

Fault Model
Our fault model is very simple—we inject a single fault into a sin-
gle file-system block exactly one node at a time. We inject these 
faults into file-system user data and not the file-system meta-
data. The reason for this is simple: the file system is responsible 
for maintaining the integrity of its metadata, while applications 
should take care of their on-disk data.

Our fault model captures the behavior of different real file 
systems. Consider that the nodes of a distributed storage system 
run on an ext4 file system. If the underlying device block is cor-
rupted, ext4 returns corrupted data as-is to applications since 
it does not have checksums for user data. On the other hand, 
consider a file system such as btrfs that maintains checksums 
for user data; such a file system transforms an underlying block 
corruption into a read error.

To capture these different file system behaviors, our fault model 
injects three types of faults: corruption on reads, error on reads, 
and error on writes. Our fault model assumes detectable corrup-
tions (e.g., corruptions detectable using application-level check-
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Silent Corruption × × ×
Unavailability × × × × ×
Data Loss × × × ×
Query Failures × × ×
Reduced Redundancy × × × × × × × ×

Table 1: Catastrophic outcomes: summary. The table shows the sum-
mary of catastrophic outcomes resulting from a single file-system fault. A 
shaded box for a system indicates that we discovered at least one instance 
of the outcome mentioned on the left.

corrupted 
data

intact 
copies

Figure 1: User expectations. The figure shows a data item replicated on 
three servers in a distributed storage system. When one copy is corrupted, 
users typically expect that redundant copies will help recover from the 
single corruption.

http://research.cs.wisc.edu/adsl/Software/cords
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sums) and does not include arbitrary memory corruptions that 
are not detectable by applications (e.g., corruptions introduced 
before checksum computation or corruptions introduced after 
checksum verification).

Fault Injection
To study how distributed storage systems react to local file-sys-
tem faults, we build a framework called Cords, which includes 
the following key pieces: errfs, a user-level FUSE file system that 
systematically injects file-system faults, and errbench, a suite 
of system-specific workloads which drives systems to interact 
with their local storage.

To understand how our fault-injection methodology works, 
consider a distributed storage system with three nodes, as 
shown in Figure 2. We configure the system to run atop errfs 
and run a system-specific workload multiple times, each time 
injecting a single fault for a single file-system block in a single 
node. Assume that for a particular run we would like to inject a 
read corruption for block B1 on server 1. After reading the blocks 
from the disk, errfs corrupts B1 before returning to the server. To 
emulate errors, errfs does not perform the operation but simply 
returns an appropriate error code.

Behavior Inference
In a distributed system, multiple nodes work with their local file 
system to store user data. When a fault is injected in a node, we 
need to observe two things: first, the local behavior of the node 
where the fault is injected. Locally, the faulty node could crash, 
retry the operation, detect and ignore the faulty data, or perform 
no detection or recovery, etc.

Second, we need to observe the global effect of the injected fault. 
The global effect of a fault is the result that is externally visible. 
Ideally, we should not observe any harmful effect since the data 

is replicated and we inject only one fault at a time. Some adverse 
global effects that could occur include data loss, user-visible 
corruption, read-unavailability, write-unavailability, unavail-
ability, or query failure. These local behaviors and global effects 
for a given workload and a fault might vary depending on the role 
played (leader or follower) by the node where the fault is injected.

Behavior Analysis
We studied the following eight distributed storage systems 
using Cords, our framework for injecting faults: Redis (v3.0.4), 
ZooKeeper (v3.4.8), Cassandra (v3.7), Kafka (v0.9), RethinkDB 
(v2.3.4), MongoDB (v3.2.0), LogCabin (v1.0), and CockroachDB 
(beta-20160714).

An Example: Redis
To illustrate our behavior analysis, we use Redis as an example. 
Redis is a data structure store with a leader and set of follow-
ers. On a write request, data is appended to the append-only file 
and also replicated on to the followers. The append-only file is 
periodically snapshotted into the Redis database_file.

Figure 3 shows the behaviors of Redis when faults are injected 
during a read workload. We represent our results in grids like the 
ones shown in the figure. We inject different faults such as cor-
ruption and read or write errors into either a leader or a follower 
one at a time and for different on-disk structures. The on-disk 
structures take the form: file_name.logical_entity. We derive 

Read

Fault for current run: 
Server 1, block B1, and read corruption

read      
B1-B4

read      
B1-B4

return      
B1-B4

return      
B1’-B4Local Behavior

Crash 
Retry
Ignore faulty data
No detection/
recovery

Global Effect
Corruption
Data loss
Unavailability

Server 1

errfs

Server 2

errfs

Client Server 3

errfs

Figure 2: Fault injection methodology. errfs injects faults into one file-
system block one node at a time. For each fault, we need to observe the 
local behavior and the global effect.

Corrupt

Local Behavior Global Effect
On-disk Structures

appendonlyfile.metadata
appendonlyfile.data
redis_db.block_0
redis_db.metadata
redis_db.userdata

Crash Retry
No Detection/ 
Recovery CorrectCorruption

Redis Read Workload

Read Error

L LF F

LeaderL FollowerF

Read Error

L LF F
Unavailability

Write Unavailability

Reduced
Redundancy

Corrupt

Figure 3: Behavior analysis of Redis read. The figure shows local behaviors 
and global effects when corruptions and read errors are injected in various 
on-disk logical structures during read workload in Redis. The grid on the 
left shows the local behavior of the node where the fault is injected, and 
the one on the right shows the cluster-wide global effect of the injected 
fault. The annotation on the top of a grid shows the type of fault: for 
example, “Corrupt” means that we inject data corruption using errfs. The 
annotation between the grids shows the on-disk logical structure in which 
the fault is injected. Annotations on the bottom show where a particular 
fault is injected (L - leader, F - follower).
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the logical entity name from our understanding of the on-disk 
format of the file. For each injected fault, we observe how the 
system behaves.

For example, when there are corruptions in the data in the 
append-only file on the leader (highlighted with outlining in the 
figure), the corruption is undetected (local behavior), and the 
corrupted data is silently returned (global effect). Redis does not 
use checksums for append-only file user data; thus, it does not 
detect corruptions. Moreover, the resynchronization protocol in 
Redis propagates corrupted user data from the leader to the fol-
lowers leading to a global user-visible corruption. We repeat this 
analysis by running the read workload multiple times, each time 
injecting a different fault into a different on-disk structure.

We also repeat the analysis for other systems for read and write 
workloads. These results and analyses are presented in detail in 
our FAST ’17 paper [3]. We will use the results from this behavior 
analysis of various systems to draw observations in the rest of 
this article.

Major Results
The most important overarching lesson from our study is this: 
a single file-system fault can induce catastrophic outcomes in 
most modern distributed storage systems. Despite the pres-
ence of checksums, redundancy, and other resiliency methods 
prevalent in distributed storage, a single file-system fault can 
lead to data loss, corruption, unavailability, and, in some cases, 
the spread of corruption to other intact replicas. Figure 4 shows 
a sample of results that illustrate the prevalence of catastrophic 
problems across multiple systems.

In most cases, the problems shown in Figure 4 are not caused by 
simple implementation bugs. Rather, they are caused due to some 

fundamental problems in file-system fault tolerance that are 
common to many distributed storage systems.

Fundamental Problems
We now discuss some of the fundamental root causes that are 
responsible for the catastrophic problems that we discover in all 
systems.

Faults Are Often Undetected Locally

The first fundamental problem we observe is that faults are 
often undetected locally. These locally undetected faults might 
lead to harmful global effects. For example, a locally undetected 
corruption could result in a global silent corruption.

Figure 5 shows how a locally undetected fault leads to harmful 
global effects in Cassandra. The figure shows the case where the 
user data in the sstable on one node is corrupted. Cassandra does 
not detect this corruption using checksums when compression is 
not enabled. Thus, any read request for this data item to the cor-
rupted replica will silently receive corrupted data. Further, the 

Redis Read
Corrupt Read Error

txn_head
log.tail

ZooKeeper Write
Write Error

log.header
log.other
replication

L F L F

L F

L F L F

Kafka Read

aof.metadata
aof.data
rdb.metadata
rdb.userdata

RethinkDB Read

db.txn_head
db.txn_body
db.txn_tail
db.metablock

L F

Corruption

Write 
Unavailability

Data Loss

Unavailability

Corrupt
Query FailureCassandra Read (R=1)

Kafka Write
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Corrupt Read Error Corrupt Read Error

Corrupt Read Error
sstable.block0
sstable.metadata
sstable.userdata
sstable.index

Reduced 
Redundancy
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Figure 4: Redundancy does not provide fault tolerance. The figure shows a sample of catastrophic outcomes such as corruption, data loss, unavailability, 
query failures, and reduced redundancy that occur across many systems. These outcomes (global effects) occur when corruptions, read errors, and write 
errors are injected in various on-disk logical structures during read and write workloads in different distributed storage systems.
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corrupt
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Figure 5: Faults are often undetected locally. The figure shows how a lo-
cally undetected fault can lead to harmful global effects in Cassandra.
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read repair protocol that fixes stale versions of data propagates 
the corruption to other replicas. Many other systems exhibit 
similar problems (e.g., RethinkDB and Redis); these systems 
completely trust and rely upon the lower layers in the storage 
stack to handle data integrity problems.

Crashing Is the Most Common Reaction
The next fundamental problem is that crashing is the most com-
mon local reaction. Many systems do reliably detect faults, but 
in most cases they simply crash on detecting a fault instead of 
using redundancy to recover from the fault. For example, Mon-
goDB and ZooKeeper have checksums for most of their on-disk 
data structures to detect corruptions. Figure 6 shows the local 
behavior of these systems when corruptions are introduced into 
various on-disk structures during the read workload. As shown 
in the figure, nodes in MongoDB and ZooKeeper simply crash on 
detecting a corruption. We observe the same behavior in many 
other systems.

Although crashing does not result in a harmful effect immedi-
ately, it introduces the possibility of an imminent unavailabil-
ity. Moreover, since storage faults could be persistent, simply 
restarting the faulty node does not help; the node would encoun-
ter the same fault and crash again. Solving such cases requires 
some manual intervention, which is often error-prone and 
cumbersome. Although crashing may seem like a good strategy 
to employ, in a distributed system there are opportunities to 
recover from local faults using copies on other intact replicas. 

Crashing and Corruption Handling Are Entangled
The next observation we make is that crash and corruption 
handling are entangled. We illustrate this using Kafka. Kafka is 
a persistent distributed message queue in which the messages 

are stored in a log. Incoming messages are appended to the log, 
and each message is checksummed. Consider that a Kafka node 
crashes during an append of message 2 as shown in Figure 7. 
When the node recovers from the crash, it detects a checksum 
mismatch because of the partially appended entry. As a recovery 
action, the node truncates the log at message 1. Note that mes-
sage 2 is uncommitted as the node crashed while appending it. 
Hence, it is safe to truncate the uncommitted message in this 
case.

On the other hand, consider the case where all messages 0, 1, and 
2 are persisted safely on disk, but the block holding message 1 is 
corrupted. Kafka detects this corruption using checksums, but it 
truncates the log at message 0 since it treats this disk corruption 
as a corruption that occurred due to a crash. Note that messages 
1 and 2 were committed and it is not safe to lose them. Since 
Kafka conflates the handling of a disk corruption and a corrup-
tion due to a crash, it loses committed data.

Developers of RethinkDB and LogCabin agree that entanglement 
is a problem. Thus, there is a need to disentangle corruptions due 
to crashes from other types of corruptions.

Unsafe Interaction between Local and Global Protocols
Next, we observe that the local behavior of a faulty node and the 
global protocols interact in unsafe ways. We illustrate this again 
using Kafka. Recall that the Kafka node treats a disk corrup-
tion the same way it treats a corruption due to a crash, resulting 
in a data loss. However, this data loss is the local behavior of the 
corrupted node. Assume that this data loss occurred on node 1. 
Other nodes still have the data as shown in Figure 8.

Kafka maintains a piece of metadata that contains information 
about replicas that are in-sync; any node in this set has all the 
committed data and is eligible to become a leader. In this case, 
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Figure 6: Crashing is the most common local reaction. The figure shows 
that crashing is the most common local reaction when corruptions are 
introduced into various on-disk structures during the read workload in 
MongoDB and ZooKeeper.
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Figure 7: Crash and corruption handling are entangled. The figure shows 
how entanglement in crash and corruption handling could lead to a local 
data loss of committed data in Kafka.
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node 1, which lost committed data, is not removed from the set 
of in-sync replicas and is elected as the leader. Thus, any further 
reads return only message 0, resulting in a silent data loss. 
Moreover, the leader also instructs the followers to truncate the 
log at message 0 which triggers an assertion at followers, result-
ing in their crash. Thus, all future writes become unavailable. 
The unsafe interaction between local behavior (i.e., to truncate 
the log) and the global protocol (leader election) in Kafka leads 
to a data loss and write unavailability. Thus, there is a need for 
synergy between local behaviors and global protocols to avoid 
such problems.

Fundamental Problems: Summary
Table 2 shows how the fundamental problems are common 
across many systems. We observe that all systems we studied 
simply crash on detecting a fault in many cases. In some cases, 
systems take incorrect recovery action on detecting a fault, lead-
ing to undesirable behaviors. We also observe that all systems 
miss opportunities to recover from local file-system faults using 
redundancy.

Conclusion
Most popular distributed systems we studied are not yet resil-
ient to local file-system faults. Although a body of research work 
and enterprise storage systems provide software guidelines to 
tackle partial file-system faults, such wisdom has not filtered 
down to commodity distributed storage systems. Our findings 
provide motivation for distributed systems to build on existing 
research work to tolerate practical faults other than crashes.

Our study provides four important lessons for future distributed 
storage system design. First, in the world of layered storage 
stacks that run on commodity hardware, faults are common; 

thus, distributed storage systems need to detect such faults care-
fully. Second, in a distributed system, several unavoidable cases 
such as power faults and network failures can cause nodes to be 
unavailable. In cases where automatic recovery is possible, sim-
ply crashing is not the optimal behavior. Next, by disentangling 
corruptions caused by a crash from other types of corruptions 
and by handling them differently, storage systems can avoid 
many problems. Finally, local fault-handling behavior has global 
implications for distributed systems. Distributed storage system 
developers need to fully understand this interaction in order to 
improve reliability.

We hope that our study and results will provide direction for the 
design of more robust distributed storage systems. Our fault-
injection framework is available at http://research.cs.wisc.edu 
/adsl/Software/cords.
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Locally Undetected Faults × × × × ×
Crashing on Faults × × × × × × × ×
Crash Corruption Entangled × × × × ×
Unsafe Protocol Interaction × × ×
Redundancy Underutilized × × × × × × × ×

Table 2: Fundamental problems summary. The table shows the summary 
of the fundamental problems across all the systems we studied. A shaded 
box for a system indicates that we observed at least one instance of the 
problem mentioned on the left.
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Scaling Namespace Operations with  
Giraffa File System
K O N S T A N T I N  V .  S H V A C H K O  A N D  Y U X I A N G  ( C H R I S )  C H E N

HDFS clusters rely on a single NameNode, the master, as its metadata 
service. Single master design of HDFS is known to be a limiting 
factor for potential growth of the file system in its size and perfor-

mance. Project Giraffa replaces the single master of HDFS with a dynami-
cally distributed namespace service, thus overcoming scalability limits of 
HDFS while remaining fully compatible with it. We focus on the perfor-
mance of namespace operations and present a benchmark that demonstrates 
that Giraffa can linearly scale the throughput of metadata operation by sim-
ply adding more servers to store the file-system namespace.

Apache Hadoop is a system for distributed storage and computation for big data problems. 
As members of the Hadoop Development team at LinkedIn, it is our daily job to monitor the 
condition of our clusters, fix problems, and optimize their performance. The most troubling 
problems are those that result in a cluster-wide crisis.

One day, a user complained that his job was running unusually slowly and not progressing. 
We thought it could be a problem of the particular job. But with more similar reports coming 
in, we realized that the cluster became stagnant for most of the jobs assigned to it. Eventu-
ally we noticed that the NameNode was unresponsive, running at 100% CPU. Further drill-
ing into HDFS audit logs, we identified one job that was producing hundreds of thousands 
of namespace operations per second, saturating the NameNode and degrading its perfor-
mance. The majority of these operations were read requests such as listStatus, getFileInfo, 
getBlockLocations.

We call the above scenario the “bad client” problem, which means a single “bad” job can 
make the whole cluster unavailable for everybody. The root cause of this problem is the single 
master architecture of HDFS, where the performance of a single NameNode, the single mas-
ter, can constrain the performance of the entire cluster.

Scaling file system metadata along with its data is our primary motivation for building 
the Giraffa file system. We show that Giraffa metadata operations scale linearly and thus 
can prevent the bad client problem. See [4] for different aspects of scalability limitations of 
HDFS architecture [6].

Giraffa Overview
Giraffa [5] is a distributed, highly scalable file system that aims to:

1. Support millions of concurrent clients

2. Store trillions of objects

3. Maintain exabyte total storage capacity

Giraffa is intended to scale both the data storage and its metadata. Giraffa keeps its meta-
data—directories, files, and blocks—in a distributed key-value store, currently Apache 
HBase, as a single table distributed across multiple servers, while file data are stored in block 
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files located on HDFS DataNodes. In other words, we still store 
all the data in DataNodes as Hadoop does. However, we save all 
the information that is stored in the NameNode in Hadoop to 
an HBase table in Giraffa. This architecture makes Giraffa a 
drop-in (no data copy) replacement for HDFS. Figure 1 shows the 
high-level architecture of Giraffa.

In Giraffa the file system metadata is served by the Namespace 
Service, which is composed of a single HBase table called 
Namespace. The Namespace table stores records corresponding 
to files and directories. Each record has a unique key, identifying 
the file or the directory, and contains the following attributes: 
local name, owner, group, permissions, access time, modification 
time, block size, replication, length, and a directory flag. When 
you need to read a file, you get the file’s list of blocks and their 
locations, so your application can read the data from the respec-
tive DataNodes. When you write to a file, Giraffa allocates a 
block using its BlockManager. The client then writes data to the 
designated DataNodes.

BlockManager is another service that is used to maintain the 
flat namespace of blocks. The BlockManager is responsible for:

1. New block allocation

2. Scheduling block replication and deletion

3. DataNode management: process DataNode block reports, 
heartbeats, detect lost nodes

HBase automatically partitions its tables, and this allows 
Giraffa to dynamically partition its Namespace. That is, file and 
directory metadata—table rows—can automatically migrate 
between nodes based on nodes’ utilization and load-balancing 
requirements. Since metadata is distributed across multiple 

nodes, this allows the number of files in the file system to 
increase and ensures that Giraffa is able to deal with trillions of 
files representing as much as 1000 PB of data on a single cluster.

Row keys identify files and directories as rows in the Namespace 
table, and they also define the sorting of the rows in the table. 
Thus, keys play an important role in Namespace partitioning. 
Row-key definition is based on the locality requirement and is 
chosen during file-system formatting.

Currently the row key is implemented as a byte array represent-
ing the full path to a file in the namespace tree. For example, file 
/user/jsmith/job.xml is identified by the row key, which is a 
byte representation of the string “/user/jsmith/job.xml”. Lexico-
graphic ordering of such keys guarantees locality of reference—
that is, the children of the same directory fall into the same 
table partition, a region, most of the time. In the future we plan 
to define the row keys based on unique immutable INode IDs, 
which include selfID and two nearest parent IDs. This way, we 
still guarantee the locality of reference but also allow in-place 
renames—that is, if a file name changes, it remains in the same 
region because name changes do not affect row key values.

Giraffa is still in an experimental phase. The problems remain-
ing to be addressed include:

1. Full set of HDFS functionality

2. INode ID-based keys to allow in-place atomic rename

3. Distributed block management

4. Short-circuit HBase metadata into itself

5. HBase scalability: single HMaster, region redundancy

Setting Up a Giraffa Cluster
We’ve used Giraffa on Java 8 without issues, but it also works 
with Java 7. We need Gradle 2.5 to build Giraffa sources. Similar 
to Hadoop, Giraffa uses Google Protocol Buffers version 2.5.0. 
Giraffa currently depends on hbase-1.0.1 and hadoop-2.5.1.

Although the Giraffa Wiki page on GitHub has instructions for 
setting up Giraffa in standalone mode, we will show you how to 
install Giraffa on a real cluster. Our cluster consisted of 11 physi-
cal servers (node-001 to node-011). Below are the step-by-step 
instructions on how to set up the cluster. One may consider writ-
ing a batch of scripts to automate the installation process.

Hadoop 2.5.1 Setup
Set up Hadoop normally if you haven’t already, following Cluster 
Setup instructions [1]. HDFS cluster status can be checked via 
the NameNode Web UI at http://node-001:50070. In our case, 
node-001 runs the NameNode process, while the other 10 serv-
ers node-002–node-011 run DataNodes.

Figure 1: Giraffa Namespace Agent obtains metadata from Giraffa 
Namespace Service and streams data to or from HDFS DataNodes, while 
Giraffa Block Manager maintains all blocks.
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HBase 1.0.1 Setup
1. Follow the official Apache HBase Reference guide [2] to 

 configure and set up HBase cluster.

2. Start HBase. In our cluster, node-001 hosts HMaster and 
HQuorumPeer processes, and the remaining machines host 
HRegionServer process. The status of the HBase cluster can 
be checked on the HMaster Web UI at http://node-001:16010.

3. Stop HDFS and HBase after testing.

Giraffa Setup
1. Download and build Giraffa according to [3]. 

2. Copy giraffa-standalone-0.4-SNAPSHOT.tgz to all nodes, 
and change the configuration according to [3].

3. Start and format Giraffa using giraffa format command. 
The script that starts Giraffa will also bring up Hadoop and 
HBase.

After completing these steps, you should be able to run file 
system operations on Giraffa. Here are some examples of Giraffa 
CLI commands.

Get listing of the Giraffa root directory: 

bin/giraffa fs –ls /

Create a new directory:

bin/giraffa fs -mkdir testdir 

YARN Setup
1. Configure YARN according to the official Apache Hadoop 

tutorial [1].

2. Use Giraffa commands to start YARN daemons: the 
ResourceManager on node-001, and NodeManager processes 
on the rest of the nodes: 
bin/yarn-giraffa-daemon.sh start resourcemanager 

bin/yarn-giraffa-daemon.sh start nodemanager

The cluster setup is now complete. 

TeraSort is an example of a YARN application. By default it 
starts small MapReduce jobs, which will test the entire setup. 
Note that in this case all data is stored and processed on the 
Giraffa file system rather than on HDFS.

1. Run TeraGen: 
bin/yarn-giraffa jar $HADOOP_HOME/share/hadoop 

/mapreduce/hadoop-mapreduce-examples-2.5.1.jar 

 teragen 10000000 /teragen

2. Run TeraSort: 
bin/yarn-giraffa jar $HADOOP_HOME/share/hadoop 

/mapreduce/hadoop-mapreduce-examples-2.5.1.jar 

 terasort /teragen /terasort

3. Run TeraValidate: 
bin/yarn-giraffa jar $HADOOP_HOME/share/hadoop 

/mapreduce/hadoop-mapreduce-examples-2.5.1.jar 

 teravalidate /terasort /teravalidate

The Benchmarks
In order to show that Giraffa scales linearly with the number of 
region servers, we built a benchmark. In this benchmark, we first 
create a number of files, and then run a MapReduce job, where 
each mapper calls listStatus for those files.

Suppose we have m map tasks running in parallel, and each map 
task performs listStatus for n files. Then the result we want to 
output is (m * n / t), where t is the time of the mapping phase. 
YARN does not guarantee that all tasks start at the same time. 
In order to synchronize our m map tasks running in parallel, we 
set a start time t1. All map tasks will wait until time point t1 
before running the listStatus operations. That way we can guar-
antee that the mappers hit the Namespace Service all at once, 
providing maximum workload on the service. Finally, we record 
time t2 when the last map task stops, and measure the running 
time for all mappers as t = t2 – t1.

This benchmark gives us the number of read operations that 
Giraffa can handle per second, which is an important metric of 
the cluster performance.

The configuration of the experiment is as follows:

We set up a cluster with 11 nodes. node-001 hosts master 
processes: NameNode, HMaster, ResourceManager. node-002–
node-011 host the slave processes: DataNode, HRegion, Node-
Manager. We managed to run 220 map tasks simultaneously on 
our cluster, and required each of them to perform listStatus for 
10,000 files. We collected the running time and repeated this 
experiment several times to get rid of the soft bias.

We chose the number of map tasks to run (220) based on the 
capacity of the cluster. YARN as a resource manager allocates 
containers, each of which runs a single task and defines how 
much of execution resources, RAM and CPU (vCores), to be dedi-
cated to a specific task. Thus, the cluster capacity is determined 
by the total amount of RAM and the total number of vCores. 
Our goal was to fully utilize the cluster without overutilizing it, 
so that all mappers ran simultaneously rather than in “waves.” 
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From these tests, we can see that the read performance of 
Giraffa scales linearly with the number of region servers. The 
write performance was partly addressed in [7]. It shows that the 
mkdir operation scales linearly. We expect that some operations 
like file create or delete will scale linearly as well, but some 
like addBlock will not due to limitations of the current Giraffa 
implementation, something yet to be fixed.

Conclusion
We showed that the Giraffa file system could linearly scale 
metadata operation for read requests by simply adding more 
servers to store the file-system namespace.

Authors of [7] came to the same conclusion as they benchmarked 
Giraffa along with two other systems, ShardFS and IndexFS, 
on a variety of metadata workloads. It shows that Giraffa scales 
linearly in throughput as more servers are dynamically added to 
the system for most of the workloads.

In our cluster, we had a total of 220 GB of RAM and 320 vCores 
available for containers. Each task requires at least 1 GB of 
memory and 1 vCore. We therefore decided to set the number of 
map tasks to be 220, which satisfies the single wave requirement 
without affecting the performance of the cluster.

We started the Giraffa benchmark with a single region server 
serving the entire Namespace table. Then we used the HBase 
split command to dynamically partition the table into two 
regions served by two different region servers. Dynamically here 
means that we did not need to copy file data or restart the cluster 
for repartitioning. Then we similarly split the table into four and 
eight regions and made sure that each of them was assigned to a 
different region server.

In order to compare the performance of Giraffa and HDFS, we 
ran the same benchmark on an HDFS cluster using the same 
hardware. The main difference is that the Hadoop cluster does 
not need HMaster and HRegion processes. We stopped the 
Giraffa cluster, set up HDFS, and configured and started YARN 
with HDFS according to [1].

For Hadoop we also ran 220 parallel mappers with each of 
them performing listStatus for 10,000 files. Figure 2 shows the 
benchmark results.

The x-axis represents the number of region servers serving 
Giraffa namespace, and the y-axis represents the number of read 
operations per second that the file system processed. Since in 
our HDFS cluster we had only one NameNode, the number of 
read operations per second does not change, and the dashed line 
serves as the baseline. The solid line represents the throughput 
of Giraffa. It shows linear growth of read operations per second 
with the number of region servers. The benchmark is limited to 
eight region servers because of the cluster size limitations.
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R I K  F A R R O W

Ric Wheeler (Red Hat) chaired the Linux FAST Summit ’17. There were 
50 attendees, the most yet, with 60% from large companies, 20% from 
universities, and the rest consultants or from smaller companies. 

According to Ric, 33% of the Linux FAST attendees did not attend FAST ’17.

After introducing ourselves and briefly explaining why we were attending, discussion of 
issues with block I/O began. Someone mentioned that the latest Linux kernels can handle 
as many as 40 million IOPS. Ted Ts’o (Google) suggested that it’s time to start considering 
techniques used in high-speed networking to further improve performance.

Erez Zadok (Stony Brook University) wondered how multiple write queues to the same device 
affected order handling. Christoph Hellwig (consultant and Linux file system hacker) said 
ordering isn’t handled; it’s an unsolved problem. Most devices behave as if they are non-vol-
atile, returning completion codes while data is still buffered in on-device RAM. And devices 
perform out-of-order writes as they see fit. That pretty much guarantees that anything done 
by an OS, such as write barriers, can’t work.

Andrew Morton (Google) then began the “how to work with the Linux kernel” section, a 
tradition at Linux FAST. Andrew suggested sending him your first patch (for file system 
patches) rather than just posting your patch to the Linux-kernel list. Andrew pointed out 
that the kernel developers had gotten a bad reputation for being harsh, but now “we’re pretty 
professional.”

Ted Ts’o put this another way. Suppose someone unknown to the developers sends an email, 
which is like cold calling. You want to work through introductions if at all possible, just as 
you would in any social situation, and it’s also important to use the most recent kernel pos-
sible. You can get the most recent build at kernel.org, but if you are working with a specialist 
in some area, ask that person which build to work with. In general, choosing a stable release 
means you will be working with a kernel that will be supported for some time.

Ted also mentioned that he has created some regression testing tools for file systems. You 
can find these tools at https://github.com/tytso/xfstests. Ted, who co-authored the FAST ’17 
paper “Evolving Ext4 for Shingled Disks” (in this issue), tried the patches written for improv-
ing SMR performances against his regression testing tools. The patches failed, although they 
were good enough to run the benchmarks used to write the paper. Those patches will eventu-
ally be cleaned up and merged into the upstream kernel.

George Amvrosiadis (student at Carnegie Mellon University) mentioned having three thou-
sand lines of code that he shared with members of the file system group. He said he got lots 
of feedback and started to develop a relationship with this group of kernel hackers. He also 
wanted a particular tracepoint added to the kernel and hasn’t succeeded yet. But he wasn’t 
discouraged by the process.

Ric then shifted the focus to FUSE by asking Sage Weil (Red Hat, key author of Ceph) about 
his experience working with FUSE. Sage said that although writing user-space software is 
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easier, you still run into kernel issues. For example, you don’t 
control the page cache or writeback queue.

Erez mentioned a paper he co-authored for FAST ’17 (Vangoor 
et al., “To FUSE or Not to FUSE: Performance of User-Space 
File Systems”), where they played with lots of switches in FUSE 
to see how those affected performance. He was surprised there 
was so little documentation for FUSE. George mentioned that 
the patch he wanted was a tracepoint that would let them know 
when metadata had been modified. Sage pointed out that with 
FUSE, the kernel is still doing a lot of work “under the hood” and 
that FUSE performance has gotten a lot faster over time.

Another person from Red Hat mentioned that one big advantage 
with using FUSE is that you can run your file system without 
having to patch a certified kernel. Jeff Darcy (Red Hat) agreed 
and added that trying to run non-standard kernels in the cloud 
was a non-starter.

John Grove (Micron) said his group was developing a new file 
system and that being able to work in FUSE for prototyping was 
a great help.

The next topic covered had to do with writing “dirty” buffers 
back to disk. Jonathan Amit (IBM Israel) has a problem with a 
project that allows customers to write many gigabytes, using 
multiple threads. But there is just one kernel thread serving 
the write-back cache, and to get the best performance they just 
bypass the page cache. Ted answered that using O_DIRECT is 
the way people who are passionate about performance handle 
this problem. Jonathan said it was not always easy to use  O_
DIRECT, and Ted agreed.

Mai Zheng (New Mexico State University) mentioned two cases 
where bugs in the Linux kernel affected devices’ behavior. In one 
case he tested dozens of SSDs under power faults, and many 
devices exhibited corruptions in the tests (see “Understanding 
the Robustness of SSDs under Power Fault” presented at FAST ’13). 
However, after several years, the same tests were performed 
using a newer kernel. It turns out that a bug patch (by Christoph 
Hellwig) changes the corruptions observed on some devices 
(published in 2016 in ACM Transactions on Computer Systems). 
In another case that happened at Algolia datacenter,  Samsung’s 
SSDs were blamed for data corruption initially. However, 
 Samsung’s engineers eventually found that it was a kernel bug 
that caused the trouble (http://www.spinics.net/lists/raid/
msg49440.html); the bug was patched by Martin K. Petersen.

Ted commented that only enterprise-class SSDs can be relied 
upon (at all) for safe behavior on power fail. The enterprise-class 
SSDs have super-capacitors that store enough power to write all 
data stored in the RAM within the SSD on power fail, and ven-
dors charge three times as much as they do for consumer class 
SSDs. Some vendors do certify their SSDs, but you should check 

them under real power-fail conditions, like pulling the plug. 
Peter Desnoyers (Northeastern University) suggested using an 
Arduino with a relay for experimenting with cutting off power.

Jonathan then changed the topic to ask about NVME device per-
formance. Christoph replied that he had rewritten that device to 
make it simpler: no waiting, no polling, and this should be in the 
4.9 kernel.

Om Rameshwar Gatla (New Mexico State University) raised 
a question regarding how robust the local and large-scale file 
system checkers are besides e2fsck. Christoph replied that even 
the XFS repair utility is as vulnerable to faults as e2fsck is, 
and this could be the same with the repair utility of B-tree file 
system (btrfs). In regards to the robustness of checkers for large-
scale file systems, developers of Ceph said that their file system 
includes many fault-handling techniques such as journaling, 
data replication, etc. by which this situation may be mitigated.

Ric Wheeler commented that many repair utilities, such as XFS 
repair, consume a lot of memory and that this problem could 
serve as a good research topic. The other topic discussed regard-
ing fsck was its running time. Ric suggested running all file 
system checkers of an aging, fragmented file system on a hard 
disk whose sizes are on the magnitude of terabytes and observe 
the memory consumption and total run times. The results from 
these experiments may provide a good research opportunity. Ted 
added that the problem that e2fsck’s slowness is because EXT 
file systems maintain lots of bitmaps to track information on all 
the inodes, direct and indirect blocks, etc., but the overall mem-
ory consumption of e2fsck is far less than any other file system 
checker. To support his argument, Ted gave an example where 
they ran e2fsck on a 6 TB hard disk that was 80% full and had 
the Hadoop layout. e2fsck consumed less than 9 MB of memory 
to complete. Ted added that having a large number of hard links 
creates the greatest challenge for fsck.

Niels De Vos (Red Hat) mentioned that GlusterFS uses extended 
attributes (xattrs) in ext4, and if users edit the attributes, you 
really get into big trouble. Of course, there’s no way that an fsck 
could check for that. They also do erasure coding for files, which 
means that checking involves reading files on multiple servers.

Om also asked about the error reporting mechanism from file 
systems or lower layers. He wanted to know more details when 
facing some errors (e.g., why a volume is reported “unmount-
able”). Ted, Christoph, Ric, and some others commented that 
the current mechanism relies on error numbers (errno). The 
overhead of passing more detailed information around might be 
high. Also, dmesg is a good place to look for more detailed error 
messaging in current systems.

There was some discussion about mapping and providing low-
level block information to higher level software. Ted commented 
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that debugfs (https://www.kernel.org/doc/Documentation/
filesystems/debugfs.txt) provides such a mechanism. Mai com-
mented that in his project about analyzing the bugs in databases 
and file systems, debugfs has helped a lot for examining the 
relationship between the corruption at low-level I/O blocks and 
the impact on database logs.

Jonathan asked about why mmaping two terabytes of memory 
takes so long. Andrew pointed out that populating two terabytes 
working with four-kilobyte pages was always going to take a 
long time, leading Jonathan to wonder whether the Persistent 
Memory (PMEM) driver supported huge pages.

Pankaj Mehra (Western Digital) said that people so far don’t 
understand PMEM, as they are not using mmap (see Andy 
Rudoff’s article “Persistent Memory Programming” in this 
issue). Ted agreed: you don’t want a POSIX layer, you want to 
mmap PMEM into your process memory. You can treat PMEM as 
superflash, but there’s lots of overhead there.

Pankaj replied that if you have PMEM, you are going to want 
to manage it, which includes encryption, snapshots, naming, 
permissions, and free space. Sam Fineberg (Consultant) pointed 
out that the traditional way of dealing with memory errors in 
Linux is to use ECC or to crash. Ric mentioned that the Micron-
Intel XPoint PMEM will be able to report bad memory. Mai 

mentioned a paper published in EuroSys ’13 which makes the 
msync() system call robust (“Failure-Atomic msync(): A Simple 
and Efficient Mechanism for Preserving the Integrity of Durable 
Data”). Christoph confirmed that the idea as well as the findings 
in a follow-up paper from the same group have been incorporated 
into the Linux kernel.

Pankaj continued: “When we first came up with the term 
PMEM, we were very careful. The way we handled this is the 
way Rudoff describes it: one instruction per address. When you 
do a store, we will store. If you want PMEM to do transactions, 
you lose the performance benefits.” 

In the (near) final topic of the day, Ted said that he is currently 
working on data encryption at the file system level and that there 
are many challenges to it, such as how to provision crypto keys 
for encryption and decryption, and where to store them securely. 
Ted also said that the efficiency is highly architecture-depen-
dent, with Intel Skylake able to encrypt one word per cycle, but 
ARM CPUs having no native support.

The final topic concerned tuning the page cache, and Ric pointed 
out that there is a tool called tuned that helps with picking 
appropriate sets of tuning for storage, and that you can actually 
find tuned profiles for different use cases.

XKCD xkcd.com
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In the June 2013 issue of ;login:, I wrote about future interfaces for non-
volatile memory (NVM) [1]. In it, I described an NVM programming 
model specification [2] under development in the SNIA NVM Program-

ming Technical Work Group (TWG). In the four years that have passed, the 
spec has been published, and, as predicted, one of the programming models 
contained in the spec has become the focus of considerable follow-up work. 
That programming model, described in the spec as NVM.PM.FILE, states 
that persistent memory (PM) should be exposed by operating systems as 
memory-mapped files. In this article, I’ll describe how the intended persistent 
memory programming model turned out in actual OS implementations, what 
work has been done to build on it, and what challenges are still ahead of us.

The Essential Background on Persistent Memory
The terms persistent memory and storage class memory are synonymous, describing media 
with byte-addressable, load/store memory access, but with the persistence properties of 
storage. In this article, I will focus on persistent memory connected to the system memory 
bus, like a DRAM DIMM, creating a class of non-volatile DIMMs known as NVDIMMs.

To further clarify what I mean by persistent memory, I am only speaking about NVDIMMs 
that allow software to access the media as memory (some NVDIMMs only support block 
access and are not covered here). This provides all the benefits of memory semantics, like 
CPU cache coherency, direct memory access (DMA) by other devices, and cache line granu-
larity access which programmers can treat as byte-addressability. To provide these seman-
tics, the media must be fast enough that it is reasonable to stall a CPU while an instruction 
is accessing it. NAND Flash, for example, is too slow to be considered persistent memory 
by itself, since access is typically done in block granularity and it takes long enough that 
context switching to allow another thread to do work makes more sense than stalling. Where 
hard drive accesses are typically measured in milliseconds, and NAND Flash SSD accesses 
are measured in microseconds, persistent memory accesses are measured in nanoseconds. 
Depending on the exact type of media, an NVDIMM may not be as fast as DRAM, but it is in 
the neighborhood.

Some NVDIMM products on the market today use DRAM as the media at runtime but auto-
matically back up the contents to NAND Flash on power loss and restore the contents when 
the power returns. These products provide DRAM performance but also require additional 
components and an energy source to save the data, giving them a lower per-DIMM capacity 
and higher cost per gigabyte than DRAM. Emerging non-volatile media, like the 3D XPoint 
technology announced jointly by Intel and Micron in 2015, promises higher capacity at a 
price point lower than DRAM. Multiple terabytes per CPU socket are expected, making per-
sistent memory interesting on multiple fronts: persistence, capacity, and cost [3].
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The Persistent Memory Programming Model
How does an application get access to persistent memory? 
Unlike volatile memory, the application needs a way to con-
nect with specific persistent contents; persistent memory isn’t 
anonymous like volatile memory; regions need names so applica-
tions can find them, just like files. And also like files, regions of 
persistent memory need permissions to control which applica-
tions have access to the persistent information. The entire point 
of the persistent memory programming model specified by 
the SNIA TWG was to recommend that operating systems use 
standard file semantics to provide naming, permissions, and 
memory-mapping of persistent memory. 

Now that this has been implemented in multiple operating sys-
tems, including Linux and Windows, it seems very obvious, and 
you might wonder why a specification was even necessary. But four 
years ago when I wrote the first ;login: article, there were multiple 
competing ideas on how to expose persistent memory, and soft-
ware vendors were in danger of having to decide between incom-
patible programming models from different products. Instead, the 
ecosystem has unified nicely around the model shown in Figure 1.

The NVDIMM shown at the bottom of the figure represents the 
persistent memory installed in the system, potentially spread 

across many NVDIMMs, and potentially interleaved (striped) 
for performance by the memory controller. On Intel-based 
systems, the BIOS creates a table called the NVDIMM Firm-
ware Interface Table (NFIT) that enumerates the NVDIMMs 
installed. This table was added to the ACPI specification in ver-
sion 6.0 and continues to evolve as NVDIMMs evolve. As shown 
in the figure, some driver (or collection of drivers) consumes 
the NFIT information and takes ownership of the persistent 
memory, exposing it to management software (left side of the 
figure), potentially exposing it as traditional block storage which 
is emulated by the driver (middle part of the figure), and expos-
ing it directly to applications through a persistent memory aware 
file system (the right side of the figure).

DAX
My definition of a persistent memory aware file system, like the 
one shown in Figure 1, is a file system that allows direct access 
to persistent memory without using the system page cache as 
it would for normal, storage-based files. This feature has been 
named DAX by the operating systems folks, short for Direct 
Access. Conveniently, both Linux and Windows use the same 
term for the same feature.

Figure 1: The SNIA persistent memory programming model
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The persistent memory programming model, and the cor-
responding DAX feature, says persistent memory files can be 
mapped into memory using standard calls like mmap() on Linux 
or MapViewOfFile() on Windows. This results in the far-right 
arrow on Figure 1, where the application has direct load/store 
access to the persistence. Once these mappings are set up (and 
after any initial minor page faults that may be required to create 
the mappings in the MMU), this provides the shortest possible 
code path to persistence, allowing the applications to perform 
loads and stores on the persistent media directly with no kernel 
involvement. No interrupts, no context switching, no kernel code 
at all is required for media access.

Making Stores Persistent
Just as persistent memory is accessed using standard memory-
mapped files, the steps for making changes persistent follow 
the same standards. On Linux (actually any POSIX-compliant 
system), the range-based msync() call or file-based fsync() call 
may be used to ensure changes are persistent. On Windows, 
the combination of FlushViewOfFile() and FlushFileBuffers() 
is used. These calls create a store barrier, a point after which 
the program can assume the previous changes it made to the 
persistent memory are actually persistent. Historically, this 
store barrier required the operating system to find dirty pages 
in the system page cache, flushing them to block storage, such 
as a disk. But since persistent memory doesn’t use the page 
cache, the operating system need only flush the CPU caches, as 
appropriate, to get changes into the persistence domain. I define 
the persistence domain as the point along the data path taken by 
stores where they are considered persistent because that point is 
power fail safe (see Figure 2).

The dashed box in Figure 2 shows the persistence domain 
required by Intel platforms supporting persistent memory. At the 
platform level, any stores inside the dashed box are either on the 
DIMM, or still in the write pending queue (WPQ) in the memory 
controller, on their way to the DIMM. Either way, platforms sup-
porting persistent memory are required to have enough stored 
energy to flush any stores inside the dashed box all the way to 
persistent media on power loss. This feature, flushing the stores 
the rest of the way on power failure, is known as asynchronous 
DRAM refresh (ADR) and has been a requirement of NVDIMM 
products since they first appeared a few years ago.

At the x86 instruction level, simply executing a store instruction 
is not enough to make data persistent, since the data may be sit-
ting in the CPU caches indefinitely and could be lost by a power 
failure. Additional cache flush actions are required to make 
the stores persistent. The following table describes how each of 
these works.

Looking at Figure 2 and the instructions in the Table 1 might 
make you wonder why Intel didn’t just make the CPU caches part 

of the persistence domain. This is technically possible, produc-
ing the situation shown in Figure 2 but with the dashed box now 
including the CPU caches.

The problem with extending the persistence domain to include 
the CPU caches is that the x86 caches are quite large, and it would 
take more energy than the capacitors in a power supply can prac-
tically provide. This usually means the platform would have to 
contain battery. Requiring a battery for every server supporting 
persistent memory is not practical at this time, but it is certainly 
possible for companies, such as appliance vendors who ship cus-
tom hardware, to include a battery in their product. This would 
allow the cache flush instructions described in Table 1 to be 
skipped, but the SFENCE instruction would still be required as a 
store barrier—stores should be considered persistent only when 
they are globally visible, and that’s what the SFENCE ensures.

Because some appliance vendors plan to use batteries as I’ve 
described, and because I hope that all platforms will someday 
include the CPU caches in the persistence domain, a property is 
being added to ACPI so that the BIOS can notify the operating 
system when the CPU flushes can be skipped. This allows the 
operating system to implement calls like msync() in the most 
optimal way.

User Space Flushing to Persistence
With the exception of WBINVD, the instructions I described in 
Table 1 are supported in user mode by Intel CPUs. Flushing a 
cache line using CLWB (or CLFLUSHOPT or CLFLUSH) and 
using non-temporal stores are all supported from user space. 

Figure 2: The path taken by a store, and the persistence domain (dashed box)
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This could allow the flushing to persistence directly from user 
space, without calling into the kernel, a feature documented in 
the SNIA programming model spec as Optimized Flush. The 
spec describes Optimized Flush as optionally supported by the 
platform, depending on the hardware and operating system sup-
port. Despite the CPU support, it is important for applications 
to only use Optimized Flush when the operating system says 
it is safe to use. The operating system may require the control 
point provided by calls like msync() when, for example, there are 
changes to file system metadata that need to be written as part 
of the msync() operation.

Support for safe userspace flushing is an evolving feature in 
the current implementations. At the time of this writing, the 
DAX support in Windows, provided by the NTFS file system, 
includes unconditional support for Optimized Flush. Windows 
programs can ensure stores to persistent memory are persistent 
using instruction sequences like CLWB + SFENCE. On Linux, 
the two file systems that support DAX, ext4 and XFS, do not 
currently consider userspace flushing safe. While hoping to 
work out interfaces with these file systems that tell applications 
when Optimized Flush is safe, it is an ongoing discussion. Other 
file systems, like NOVA [4], a research project from UCSD, are 
designed from the start to support Optimized Flush but are not 
considered production ready yet. As an interim solution, Linux 
provides Device-DAX [5], which allows an application to open a 
persistent memory device (without a file system), memory map 
it, and utilize userspace flushes to make stores persistent.

To insulate application programmers from this complexity, and 
to keep them from having to research the current state of affairs 
while programming for persistent memory, the libpmem library 
provides a function which tells the application when Optimized 
Flush is safe. Programmers are strongly encouraged to use 
libpmem to make this determination and to use userspace flush-
ing only when it is safe, falling back on the standard method of 
flushing stores to memory mapped files otherwise. The libp-
mem library is also designed to detect the case of the platform 
with a battery I described above, turning flush calls into simple 
SFENCE instructions instead. I’ve got much more to say about 
libraries below, and all the libraries I describe build on this logic 
to make sure they transparently depend on the most optimal 
type of flushing available to the program.

Persistent Memory Challenges
When a modern program changes any data structure in memory, 
the question of atomicity comes up. Is it possible for another 
thread to access the data structure and see the change only 
partially complete? With multithreaded programming, this 
issue is commonly solved using locks to protect data structures. 
Sometimes it is solved by using instruction sequences that guar-
antee atomicity in hardware. These issues have been around for 
years and are very familiar to programmers, library writers, and 
high-level language designers. In this context, the term atomi-
city really refers to visibility, protecting the changes made by one 
thread from becoming visible by other threads until the changes 
are complete. Adding persistent memory into this picture, the 
requirements change from simple atomicity to something more 

Table 1: x86 cache flush instructions for use with persistent memory

CLFLUSH
This instruction, supported in many generations of CPU, flushes a single cache line. Historically, this instruction 
is serialized, causing multiple CLFLUSH instructions to execute one after the other, without any concurrency.

CLFLUSHOPT 
(followed by an 
SFENCE)

This instruction, newly introduced for persistent memory support, is like CLFLUSH but without the 
serialization. To flush a range, software executes a CLFLUSHOPT instruction for each 64-byte cache line 
in the range, followed by a single SFENCE instruction to ensure the flushes are complete before continuing. 
CLFLUSHOPT is optimized (hence the name) to allow some concurrency when executing multiple 
CLFLUSHOPT instructions back-to-back.

CLWB  
(followed by an 
SFENCE)

Another newly introduced instruction, CLWB stands for cache line write back. The effect is the same as 
CLFLUSHOPT except that the cache line may remain valid in the cache (but no longer dirty, since it was 
flushed). This makes it more likely to get a cache hit on this line as the data is accessed again later.

NT stores 
(followed by an 
SFENCE)

Another feature that has been around for a while in x86 CPUs is the non-temporal store. These stores are “write 
combining” and bypass the CPU cache, so using them does not require a flush. The final SFENCE instruction is 
still required to ensure the stores have reached the persistence domain.

WBINVD

This kernel-mode-only instruction flushes and invalidates every cache line on the CPU that executes it. After 
executing this on all CPUs, all stores to persistent memory are certainly in the persistence domain, but all cache 
lines are empty, impacting performance. In addition, the overhead of sending a message to each CPU to execute 
this instruction can be significant. Because of this, WBINVD is only expected to be used by the kernel for 
flushing very large ranges, many megabytes at least.
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like the ACID semantics required for database transactions on 
storage [6]. Not only do we want to keep other threads from see-
ing an incomplete change, we want to handle changes that are 
interrupted by power failures, program crashes, or exceptions. 
Everyone who starts writing programs to use persistent memory 
seems to immediately come to this conclusion: we need transac-
tions that are power fail safe.

Before persistent memory existed, if a store was interrupted by 
something like power failure, the resulting memory state didn’t 
matter much because it was volatile. But with persistent mem-
ory, it is important to understand what is guaranteed by hard-
ware and what is left to software. On Intel, only an eight-byte 
store, aligned on an eight-byte boundary, is guaranteed to be 
failure atomic. That means if the store is interrupted by a power 
failure, the memory contents will contain the previous eight 
bytes, or the new eight bytes, but not some combination of the old 
and new data. Anything larger than eight bytes can be torn by 
power failure and must be handled by software. For example, if 
you want to update two eight-byte pointers in your program, and 
you want it to happen atomically, protecting those pointers with 
a lock will only help you prevent other running threads from 
seeing the partial update. A power failure might leave the update 
partially done, and there’s no single instruction that will solve 

that—software must arrange for the update to be transactional 
by building on the eight-byte power-fail-atomic store provided 
by hardware. The logic for creating these transactions is a bit 
tricky, which points to the need for libraries or language features 
to provide them.

Another persistent memory challenge is more basic: manag-
ing the space. Since persistent memory regions are exposed as 
files, the file system primarily manages that space. But once the 
file is memory-mapped by an application, what happens within 
that file is completely up to the application. Functions like C’s 
malloc() assume memory is volatile, offering no way on program 
start-up to reconnect with a persistent heap and taking no steps 
to make sure the heap is consistent in the face of failure. This 
adds space allocation to our list of requirements for persistent 
memory programming.

The need for location-independence is another challenge. 
Although it is technically possible to require that a range of 
persistent memory is always mapped at exactly the same address 
in a program, it can become impractical when the sizes of other 
mapped items change. A security feature known as Address Space 
Layout Randomization (ASLR) additionally causes operating 
systems to randomly adjust where libraries and files are mapped. 
Location-independence means that when one data structure in 
persistent memory refers to another using a pointer, that pointer 
must be somehow usable even when the file is mapped at a dif-
ferent address. There are several ways to achieve this, such as 
relocating pointers after mapping, using relative pointers instead 
of absolute pointers, or by using some type of Object ID (OID) to 
refer to persistent memory-resident data structures.

The NVM Libraries
The libraries produced by my team at Intel are designed to solve 
the challenges described above. They are meant as a conve-
nience, not as a requirement for persistent memory program-
mers. Although I refer to them collectively by the single name 
NVML, they are really a suite of six libraries (with additional 
libraries already under development). The libraries are all open 
source, BSD-licensed, and developed in the open on GitHub. I’ll 
describe the libraries here, but much more information is avail-
able at http://pmem.io, including man pages, blog entries, and 
lots of example code.

The libraries are written in C and are validated and ready for 
use on 64-bit Linux and Windows systems. Some Linux distros 
already contain the libraries in their repositories, allowing them 
to be installed with simple package management commands. 
Otherwise, you can clone the GitHub tree and use make install 
to install the library from source (details are on the Web site [7]).

Since these are C libraries, it is possible to call them from  various 
languages. When using C, we provide some macros to try to help 

Figure 3: Using the libpmemobj library, which in turn uses the primitives 
in libpmem

http://pmem.io


www.usenix.org  S U M M ER 20 17  VO L .  42 ,  N O.  2 39

PROGRAMMING
Persistent Memory Programming

catch common persistent memory programming errors, but C 
macros are never a replacement for full language integration. The 
C++ support recently released in libpmemobj (http://pmem.io 
/nvml/libpmemobj/; see below) is the cleanest, least error-prone 
way we have to do persistent memory programming. For this 
reason, if you’re just beginning to explore persistent memory 
programming, the C++ examples are the best place to start.

Here’s an overview of the suite of libraries in NVML. Many 
examples are available in the examples directory of the source 
on GitHub, but to save space I will limit my examples to the most 
commonly used library, libpmemobj.

libpmem: Basic Persistence Support
The libpmem library is small and fairly simple, containing the 
code that detects which types of flush instructions are sup-
ported by the CPU, as well as performance-tuned routines for 
copying ranges of persistence memory using the best instruc-
tion choices for the platform. As mentioned above, a routine 
that tells the caller whether Optimized Flush is safe is supplied 
(this routine is called is_pmem() for historical reasons—perhaps 
optimized_flush_available() would have been a better name in 
hindsight).

Even if you decide not to use any of the libraries I describe below, 
you might still decide to use libpmem (or steal the code) just to 
avoid the tedious development of code that detects supported 
instructions, the correct use of non-temporal stores, etc.

libpmemobj: General-Purpose Allocations and 
Transactions
This is probably the library you want. As you might guess, the 
“obj” in the name is short for object, but by that I mean the vari-
able-sized blob of data referred to by the term object storage, not 
the class with methods in an object-oriented language. Figure 3 
shows where this library sits in the programming model. Like all 
the persistent libraries in the NVML suite, this library builds on 
the primitives provided by libpmem.

The libpmemobj library allows persistent memory objects to 
be allocated in a way that is power fail safe, allows referring to 
them by Object IDs (OIDs), which are location-independent, and 
allows making an arbitrary number of changes atomic by encom-
passing the changes in a transaction. The library is multithread 
safe and optimized for multithread scalability (by doing things 
like maintaining per-thread allocation caches).

As mentioned above, the C++ support in this library provides 
the cleanest, easiest-to-use interfaces, so I’ll use a C++ example. 
The classic persistent memory example is to link something 
into a linked list (a queue in this example, taken verbatim from 
the queue.cpp example in the NVML examples area), where 
multiple operations are required to be done as a transaction. The 

example code below starts by creating a class which defines the 
struct pmem_entry, the entries on the queue:

class pmem_queue {

 /* entry in the list */

 struct pmem_entry {

  persistent_ptr<pmem_entry> next;

  p<uint64_t> value;

 };

 /* … */

Notice the persistent_ptr smart pointer template. This indi-
cates a pointer to an object in persistent memory, namely the 
next item in the persistent queue. These are the location-inde-
pendent OIDs I mentioned earlier. Also notice the p<> persistent 
property in the above declaration, used to indicate fields that 
reside in persistent memory. The result of these C++ declara-
tions is that the code to atomically allocate a new entry, initialize 
it, and link it into the queue can be done as follows:

 /*

  * Inserts a new element at the end of the queue.

  */

 void

 push(pool_base &pop, uint64_t value)

 {

  transaction::exec_tx(pop, [&] {

   auto n = make_persistent<pmem_entry>();

   n->value = value;

   n->next = nullptr;

   if (head == nullptr) {

    head = tail = n;

   } else {

    tail->next = n;

    tail = n;

   }

  });

 } 

The above push operation is transactional. More specifically, 
the code in the C++ lambda, indicated by [&] {…}, is transac-
tional, meaning if the program or the machine crashes during 
the execution of that code, libpmemobj automatically rolls any 
partially done changes back (this includes the allocation done by 
the make_persistent call).

There are many more details available for this example, as well 
as others, on the pmem.io Web site. The main point of the short 
example above is to show that, with no compiler or language 
changes, libpmemobj provides a flexible allocation and transac-
tion mechanism for persistent memory.

http://pmem.io/nvml/libpmemobj/
http://pmem.io/nvml/libpmemobj/
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libpmemblk and libpmemlog: Support for Specific 
Use Cases
In addition to libpmemobj and its flexible transaction sup-
port, two other libraries target specific use cases. The library 
libpmemblk is written specifically to maintain a large array of 
persistent memory blocks, all the same size. This is useful, for 
example, when an application is managing a block cache. The 
block size provided by the library is flexible, supporting blocks 
512-bytes and larger.

Similarly, the library libpmemlog is written for a specific use 
case where the application frequently appends to a private log 
file, one that is read rarely, like during crash recovery. This 
library takes the relatively long file system append path through 
the kernel and turns it into a very short memory copy in persis-
tent memory, followed by an atomic pointer adjustment.

Both of these specific use cases are easily solved using the more 
flexible libpmemobj, but the point of libpmemblk and libpmem-
log is they provide APIs that constrain the caller, allowing the 
library to assume specific cases and optimize for them.

libmemkind: The Volatile Use of Persistent 
Memory
With the large capacity and cheaper-than-DRAM price points 
expected for emerging persistent memory products, many vola-
tile use cases have come up. These are cases where the applica-
tion places some data structures in persistent memory to avoid 
a large DRAM footprint, but the application doesn’t really care 
that the memory is persistent—it is just using it as a second tier 
of volatile memory. When NVML was first developed, we created 
a library called libvmem (“vmem” for volatile memory). Since 
then, another more general library for volatile use cases has been 
open sourced on GitHub [8]. Some projects have already been 
written to our libvmem interfaces, but for all future development 
of volatile use cases, we recommend using libmemkind.

Conclusion
The ideas I outlined in 2013 have come true and have matured 
into a fairly complete programming model, resulting at the 
operating system level in the DAX feature for both Windows 
and Linux (and potentially other operating systems beyond the 
scope of this article). Next, libraries have been built on that basic 
model to provide application developers with a menu of APIs to 
choose from as they leverage the benefits persistent memory has 
to offer. There’s still a long list of interesting and fruitful work to 
be done, integrating persistent memory support into additional 
languages and libraries (see our GitHub area at https://github 
.com/pmem for numerous works-in-progress in this space).
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It’s Better to Rust Than Wear Out 
G R A E M E  J E N K I N S O N

W hen a colleague of mine first enthused to me about Rust, I 
was skeptical. Back in the day, I’d cut my programming teeth 
 developing software for safety-critical systems, and I’d learned 

the hard way that programming languages are frequently less sane than  
they first appear. Take C. Despite a considerable standardization effort, the 
C specification remains riddled with unspecified, undefined, and imple-
mentation-defined behaviors [2]. And even in 2016, researchers continue to 
explore the differences between the C ISO standard and the de facto  
usage [4]. 

While not all software engineers need be concerned with the seemingly esoteric issues of 
what happens when a bit field is declared with a type other than int, signed int, or unsigned 
int (it’s undefined [2]), I’d worked too long with safety-critical and security systems to switch 
off this retentive part of my brain. And so, somewhat dismissively, I mentally parked Rust 
along with Go, Haskell, and all the other technologies that sound cool, but which I could 
never foresee actually using. Then early this year I had the opportunity to revisit Rust, and I 
found I’d been a bit hasty.

I had been developing a prototype for a distributed tracing framework built on top of DTrace. 
The prototype, written in C, acted as a DTrace consumer (interfacing with libdtrace) and 
sent DTrace records upstream for further processing (aggregation, reordering, and so on) 
using Apache Kafka. For a prototype this worked fine, but as the work progressed, I needed 
to rapidly explore the design space. 

This task favored adopting higher-level language, but which one to choose? Like all good 
engineers, I started to list out my requirements. I needed a language that emphasized pro-
grammer productivity. It needed to easily and efficiently interface with libraries written in 
C (such as libdtrace). I also needed easy deployment, therefore languages requiring a heavy 
runtime (and Java specifically) were complete nonstarters. Good support for concurrency 
and, ideally, prevention of data races would be nice. And, finally, with my security hat on, I 
didn’t want to embarrass myself by introducing a bucket-load of exploitable vulnerabilities. 
I thought back to that earlier conversation with my colleague; aren’t these requirements 
exactly what Rust is designed for? And so I decided to give Rust a whirl, and I’m glad that I 
did, because I really liked what I found. 

So What’s Rust All About? 
Rust’s vision is simple—to provide a safe alternative to C++ that makes system programmers 
more productive, mission-critical software less prone to bugs, and parallel algorithms more 
tractable. Rust’s main benefits are [5]:
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◆◆ Zero-cost abstractions

◆◆ Guaranteed memory safety (without garbage collection)

◆◆ Threads without data races

◆◆ Type inference

◆◆ Minimal runtime

◆◆ Efficient C bindings

The Rust language has a number of comprehensive tutorials, 
notably the “Rust Book” [5]. Therefore, rather than retreading 
that ground, I will instead highlight the features of Rust that I 
find particularly compelling. Along the way, I’ll discuss the fea-
tures of Rust that are most difficult to master. And, finally, I’ll 
show how to get started programming in Rust on FreeBSD.

Fighting the Borrow Checker
Before diving in headfirst and firing up your favorite text editor 
(vim, obviously), it is important to understand Rust’s most signif-
icant cost, its steep learning curve. On that learning curve, noth-
ing is more frustrating than repeatedly invoking the wrath of 
the “borrow checker” (the notional enforcer of Rust’s ownership 
system). Ownership is one of Rust’s most compelling features, 
and it provides the foundations on which Rust’s guarantees of 
memory safety are built. In Rust, a variable binding (the binding 
of a value to a name) has ownership of the value it is bound to. 
Ownership is mutually exclusive; that is, a resource must have a 
single owner. It is the borrow checker’s job to enforce this invari-
ant, which it does by failing early (at compile time) and loudly.

In the following example, taken from the “Rust Book” (The Rust 
Programming Language, 2016), v is bound to the vector vec![1, 

2, 3], a Rust macro creating a contiguous, growable array con-
taining the values 1, 2, and 3. The function foo() is the “owning 
scope” for variable binding v. When v comes into scope, a new 
vector is allocated on the stack and its elements on the heap; 
when the scope ends, v’s memory (both the components on the 
stack and on the heap) is automatically freed. Yay, memory safety 
without garbage collection.

fn foo() {

    let v = vec![1, 2, 3];

}

Ownership can be transferred through an assignment let x = y 
(move semantics). But remember, ownership is mutually exclu-
sive, so in the example below, when the variable v is referenced 
(in the println! macro) after the transfer of ownership to v2, the 
borrow checker cries foul: error: use of moved value: `v .̀

let v = vec![1, 2, 3];

let v2 = v;

println!(“v[0] is: {}”, v[0]);

In the next example, calling the function bar() passing the 
vector v as an argument transfers the ownership of v. When the 
owning scope, the function bar, ends, v’s memory is automati-
cally freed as before. Ownership of v can be returned to the caller 
by simply returning v from bar. This approach would get tedious 
pretty quickly, and so Rust allows borrowing of a reference (that 
is, “borrowing” the ownership of the variable binding). A bor-
rowed binding does not deallocate the resource when the binding 
goes out of scope. This means that after the call to bar(), we can 
use our original bindings once again.

fn bar(v: &Vec<i32>) {

    // do something useful v here

}

let v = vec![1, 2, 3];

bar(&v);

println!(“v[0] is: {}”, v[0]);

Immutability by Default
By default, Rust variable bindings are immutable. Having spent 
many an hour typing const, *const, and final in C and Java, 
respectively, this feature alone fills me with joy; and what is 
more, unlike const, it actually provides immutability. Variable 
bindings can be specified as mutable using the mut keyword: let 

mut x = 10. Also note the sensible use of type inference. Like 
variable bindings, references are immutable by default and can 
be made mutable by the addition of the mut keyword (&mut T). 
Shared mutable state causes data races. Rust prevents shared 
mutable state by enforcing that there is either:

◆◆ One or more references (&T) to a resource or

◆◆ Exactly one mutable reference (&mut T)

Choosing Your Guarantees
Rust’s philosophy is to provide the programmer with control 
over guarantees and costs. Rust’s rule that there can be one or 
more immutable references or exactly one mutable reference is 
enforced at compile time. However, in keeping with the overall 
philosophy, various different tradeoffs between runtime and 
compile time enforcement are supported. 

A reference counted pointer (Rc<T>) allows multiple “owning” 
pointers to the same (immutable) data; the data is dropped and 
memory freed only when all the referenced counter pointers are 
out of scope. This is useful when read-only data is shared and 
it is non-deterministic to when all consumers have finished 
accessing the data. A reference counted pointer gives a differ-
ent guarantee (that memory is freed when all owned pointers go 
out of scope) than the compile time enforced guarantees of the 
ownership system. However, this comes with additional costs 



www.usenix.org  S U M M ER 20 17  VO L .  42 ,  N O.  2 43

PROGRAMMING
It’s Better to Rust Than Wear Out

(memory and computation to maintain the reference count). 
Similarly, mutable state can be shared (using a Cell<T> type); this 
again brings different tradeoffs for guarantees and costs.

Lifetimes
There is one final and rather subtle issue with ownership. Vari-
able bindings exist within their owned scope, and borrowed 
references to these bindings also exist within their own separate 
scope. When variable bindings go out of scope, the ownership 
is relinquished and the memory is automatically freed. So what 
would happen if a variable binding went out of scope while a 
borrowed reference was still in use? In summary, really bad 
things invalidate Rust’s guarantees of memory safety. Therefore, 
this can’t be allowed to happen. Lifetimes are Rust’s mecha-
nism to prevent borrowed references from outliving the original 
resource.

In Rust, every reference has an associated lifetime. However, 
lifetimes can often be elided. The example below shows equiva-
lent syntax with the lifetime (‘a) of the reference s elided and 
made explicit:

fn print(s: &str); // elided

fn print<’a>(s: &’a str); // expanded

Global variables are likely to be the novice Rust programmer’s 
first interaction with lifetimes. Global variables are specified 
with Rust’s special static lifetime as follows: static N: i32 = 

5;. A static lifetime specifies that the variable binding has the 
lifetime of the entire program (note that string literals possess 
the type &’static str, and therefore live for the entire life of the 
program). If I were to hazard a guess at where lifetimes next rear 
their heads, it would be storing a reference in a struct. In Rust, 
a struct is used to create complex (composite) datatypes. When 
Rust structs contain references (that is, they borrow owner-
ship), it is important to ensure that any references to the struct 
do not outlive any references that the struct possesses. There-
fore, a Rust struct’s lifetime must be equal to or shorter than 
that of any references it contains.

Efficient Inheritance
In contrast to C++ and Java’s heavyweight approach to inheri-
tance, Rust takes a muted approach; in fact, the word inheri-
tance is studiously avoided. With traditional inheritance gone 
AWOL, classes are no longer needed. Having been freed from 
the confines of classes, methods can be defined anywhere, and 
types can have an arbitrary collection of methods. As in Go, 
inheritance in Rust has been boiled down to simply sharing a 
collection of method signatures. This approach is sometimes 
referred to as objects without classes. Rust Traits group together 
a collection of methods signatures—a Rust type can implement 
an arbitrary set of Traits. Thus, Traits are similar to mixins.

Fighting the Borrow Checker Redux
What makes Rust’s ownership system so tricky to master? 
Ownership is not a complexity introduced by the Rust language; 
it is an intrinsic complexity of programming regardless of the 
language being used. Languages that fail to address owner-
ship fail at runtime with data races and so on. In contrast, Rust 
makes issues of ownership explicit, allowing the language to fail 
early and loudly at compile time. Rust’s borrow checker is like 
that friend you couldn’t quite get on with on first meeting. Over 
time, and once they’ve helped you out multiple times, you realize 
that they’ve actually got some pretty great qualities and you’re 
glad to have made their acquaintance.

Foreign Function Interface (FFI)
Another of Rust’s features that particularly appealed to me is its 
support for efficient C bindings: calling C code from Rust incurs 
no additional overhead. Efficient C bindings support incremen-
tal rewriting of software, allowing programmers to leverage 
the large quantities of C code that are not going away anytime 
soon. External functions fall beyond the protections of Rust and 
thus are always assumed to be unsafe. It is important to note 
that there are many behaviors, such as deadlocks and integer 
overflows, that are undesirable but not explicitly unsafe in the 
Rust sense. 

In Rust, unsafe actions must be placed inside an unsafe block. 
Inside the unsafe block, Rust’s wilder crazier cousin “Unsafe 
Rust” rules. “Unsafe Rust” is allowed to break limited sets of 
Rust’s normal rules, the most important being that it is allowed 
to call external functions.

In practice, calling C functions from Rust isn’t always quite 
so straightforward as tutorials make out. Consider calling the 
function dtrace_open() from libdtrace. The C prototype for 
dtrace_open() is shown below:

dtrace_hdl_t *

dtrace_open(int version, int flags, int *errp)

{

 ….

}

To call dtrace_open() from Rust, we first specify the dtrace_

open()’s signature in an extern block (extern “C” indicates the 
call uses the platform’s C ABI). We can then call that function 
directly from an unsafe block.

extern crate libc;

...
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extern “C” {

    fn dtrace_open(arg1: ::std::os::raw::c_int,

        arg2: ::std::os::raw::c_int,

        arg3: *mut ::std::os::raw::c_int) -> *mut dtrace_hdl_t;

}

fn main() {

    let dtrace_version = 3;

    let flags = 0;

    Let mut err = libc::c_int = 0;

    let handle = unsafe {

        dtrace_open(dtrace_version , flags, &mut err)

    };

}

But there is one significant problem: where is the type dtrace_

hdl_t defined? While dtrace_hdl_t can be specified by hand, 
it contains many, many fields, which in turn use yet more new 
types that must be defined. Specifying all this by hand would 
be extremely tedious and error prone. Fortunately, there is a 
solution. C bindings can be generated automatically using Rust’s 
bindgen crate, cargo install bindgen. Unfortunately, bindgen 
is not a very mature tool. And, as a result, manually tweaking its 
outputs is often required (usually adding or removing mutabil-
ity). With SWIG (Simplified Wrapper and Interface Generator) 
support for Rust not looking imminent, better native tooling for 
generating Rust bindings is desperately needed.

Package Management
The final, and in many ways most important, feature that 
attracted me to Rust was its support for modern application 
package management. Rust provides a flexible system of crates 
and modules for organizing and partitioning software and man-
aging visibility. Rust crates are equivalent to a library or package 
in other languages, and Rust modules partition the code within 
the crate. 

A Rust program typically consists of a single executable crate, 
which optionally has dependencies on one or more library crates. 
Reusable, community-developed library crates are hosted at 
crates.io, the central package repository for cargo, Rust’s pack-
age management tool (crates.io is broadly equivalent to Python’s 
PyPI). Rust’s cargo tool fetches project build dependencies from 
crates.io and manages building of the software. Yeah, I know, 
does the world really need yet another mechanism for packaging 
software, resolving dependencies, and building software? Well 
perhaps not, but cargo actually works really well, though for 
those with experience with Maven, the bar hasn’t been set that 
high.

Getting Started on FreeBSD
Rust’s platform support is divided into three tiers, each provid-
ing a different set of guarantees. FreeBSD for x86_64 is cur-
rently a Tier 2 platform. That is, it is guaranteed to build but not 
to actually work. Despite the lack of a guarantee, in practice, 
things generally seem to work pretty well. Tier 2 platforms 
provide official releases of the Rust compiler rustc, standard 
library std (pkg install rust), and package manager cargo (pkg 

install cargo). FreeBSD’s binary Rust package is currently (at 
the time of writing) at v1.12 with v1.13 being the latest stable 
release. Once installed, Rust can be updated to the latest version 
by executing the rustup script:

curl -sSf https://static.rust-lang.org/rustup.sh | sh

32-bit FreeBSD sits in Rust’s lowly third tier where, without 
guarantees about either building or working, things are pretty 
unstable. For example, Rust 1.13 recently shipped in spite of a 
serious code generation bug on ARM platforms using hardware 
floating point. Here be dragons, so beware!

Where Are We Now?
Rust started life in 2009 as a personal project of Mozilla 
employee Graydon Hoare. In subsequent years, Rust has tran-
sitioned to a Mozilla-sponsored community project with over 
1,200 contributors. Since the 1.0 release, delivered in June 2015, 
Rust has been used in a number of real-world deployments. June 
2016 saw another major milestone on the road to maturity, with 
Mozilla shipping Rust code for the Servo rendering engine in 
Firefox 48. 

So people are using Rust, but does it really deliver on its vision 
of providing a safe alternative to C++? I think the answer is 
pretty much yes, though the differences aren’t all that huge. For 
example, in C++, a unique_ptr owns and manages an object and 
disposes of that object when the unique_ptr goes out of scope. 
Furthermore, ownership can be transferred using std::move;, 
and as a bonus, there is type inference using the auto keyword. 
But in spite of these similarities, smart pointers don’t give every-
thing that Rust’s ownership system does. In the example below 
[3], accessing orig after the move results in a segmentation fault 
at runtime—a morally equivalent example in Rust would fail to 
compile. Failing early is a good thing. That a careful and skilled 
C++ programmer wouldn’t make such mistakes is somewhat of a 
circular argument, because if such mistakes weren’t widespread, 
languages attempting to prevent them wouldn’t exist in the first 
place. C++ also lacks a module system and has a number of pretty 
ropey features like header files and textual inclusion. These are 
all wins for Rust.
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#include <iostream>

#include <memory>

using namespace std;

int main ()

{

    unique_ptr<int> orig(new int(5));

    cout << *orig << endl;

    auto stolen = move(orig);

    cout << *orig << endl;

}

How does Rust compare with C++ on performance? Control 
studies comparing the performance of idiomatic C++ and Rust 
are hard to find. A comparison between Firefox’s Servo and 
Gecko rendering engines (written in Rust and C++, respectively) 
reported that the Rust Servo engine was on the order of twice 
as fast [1]. While these figures should be taken with a pinch of 
salt, the consensus opinion is that Rust is at least comparable in 
terms of performance to C++. One of the reasons for this is that 
Rust features, like genuine immutability, allow optimizations 
that can’t be made in C++. And Rust’s semantics bring signifi-
cant potential for further optimizations. 

Despite the advances made in deploying Rust in production 
environments, problems remain. The Rust ABI is unstable, and 
as with the Glasgow Haskell compiler, a stable ABI may never 
happen, almost certainly not anytime soon. This problem most 
impacts Rust native, shared libraries because without a stable 
ABI, they are incompatible across major version changes. But 
ABI instability isn’t a showstopper. So is there a technical bar-
rier to upstreaming Rust code to FreeBSD, for instance? In my 
opinion, I don’t think so, but I’d be interested to hear others’ opin-
ions on both the technical and political challenges of doing so.

I like Rust. It’s fun. And isn’t that what really makes us come into 
work in the morning? 
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R I K  F A R R O W

I first heard Eric Allman speak during a LISA tutorial. Eric was explain-
ing some of the intricacies of sendmail, the mail server software he had 
written while at UC Berkeley in the early ’80s.

I later cornered Eric during a conference reception, an action very unlike me. But I was 
determined to find out why Eric had included what I thought were three backdoors in send-

mail, something that turned out to be incorrect. Eric also mentioned wishing he had received 
even a fraction of one cent for each copy of sendmail then in use. He later started a company 
that provided support for sendmail, a company that followed the rise and fall of the Internet 
boom in the late ’90s.

I met with Eric in person last February in Cory Hall at the University of California, Berkeley, 
where he currently works. We discussed some of his past and current work.

Rik Farrow: Your experience with open source has been interesting to say the least.

Eric Allman: Open source, or if you prefer, free software, existed long before most people 
thought. They had IBM Share way, way back. One of the main reasons you used to go to USE-
NIX conferences was that you always brought along six tapes with you and you walked away 
with six tapes, but they weren’t the same six tapes you brought in. That was one of the big 
things about them, not just to go to talks.

RF: I believe that your open source adventure started by creating delivermail to handle deliv-
ery of mail that required transport beyond the local system.

EA: delivermail had no transport mechanisms, like binmail, which just delivered mail to a 
spool file. delivermail would examine the email address looking for exclamation points or 
at signs. If the email address didn’t have these punctuations, it just appended the mail to the 
spool file. If the mail address did include these punctuations, then it would send the email 
to the correct command. Another difference between sendmail and delivermail was that 
delivermail didn’t do any address translations. People had to become experts in what John 
Quarterman called “the matrix.” One of the goals of sendmail was to make it easier for people 
to survive in this multi-network world, which included Berknet, Arpanet, and UUCP.

RF: I wanted to ask you about the backdoors in sendmail. When I first asked you about this 
many years ago, you told me you were a student maintaining sendmail on a small number of 
systems, and then someone copied sendmail to a machine you had no access to. The owners 
of that machine then demanded that you fix a bug only expressed on that system.

EA: Precisely. So I said let me log in and look at it. And they said we can’t allow someone 
who is not part of the administrative staff onto the machine, which is  normally a prag-
matic approach to security. I said I will come into your office and someone can watch over 
my shoulder and make sure I don’t do anything bad. They said, no, we can’t let you on the 
machine. Then I can’t fix your problem, and they said you have to fix our problem. 

Eric Allman earned his BS and 
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sendmail and syslog, which 
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In 1998, Allman and Greg Olson founded 
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RF: A double-bind.

EA: They got more and more insistent, that I had to fix this 
magically somehow. And that’s when the backdoor went into 
sendmail. If they won’t let me on the machine, well, here’s a new 
version, why don’t we see if it fixes the problem. And it did.

The lesson out of that is the systems, including the humans that 
maintain them, will find a way around the security to get the job 
done. They actually lost security, and it would have cost them 
nothing to just have somebody watch me.

RF: That backdoor stayed in there for a long time.

EA: My mistake was in not taking it out immediately. The back-
door was so convenient, I thought maybe I’ll leave it in and it will 
contribute to development. I pretty much forgot it was there.

RF: Then there was the problem with the frozen configura-
tion file, that meant that the wizard mode password would get 
deleted when that was used [1].

EA: Yeah. Keep in mind that there was exactly one backdoor. 
There were other bugs, like ones that allowed you to clobber the 
stack, and you could do nefarious things there. But these were 
just flat out bugs.

RF: I thought that the Internet Worm used Debug, where you 
send a shell script as the recipient [2].

EA: Someone else put that into sendmail. Somebody tried to get me 
to put that in the sendmail distribution, and I said, “Are you nuts?”

RF: There’s a recent movement called language security, or 
LangSec for short. LangSec followers believe that a key problem 
for most software is input parsing. It turned out that there were 
a lot of bugs in sendmail all associated with parsing, and that’s 
because parsing is difficult.

EA: The biggest problems, of course, are buffer overflows, which 
are the scourge of security everywhere, and those pretty much 
went away after we had yet another buffer overflow and we said, 
“Screw it.” We are just going to go around and every place we see 
*p++ we are going to put a test around it.

RF: Right. In 2003, I remember that LSD had a sort of a cool 
exploit which wasn’t a typical buffer overflow, as they figured 
out how write a new binary in the right place and essentially 
replace sendmail with a shell attached to an outgoing connection 
from port 25 [3].

EA: If I recall correctly, I had a fixed-length buffer which was 
pointers to opening bracket, so when I found the closing bracket I 
could return a pointer to the correct address.

RF: I had been single-stepping through the code, looking for 
where the bug was. I did find where the bug was, but by reverse 
engineering the patch to the source code, which of course is what 
hackers were doing. That’s why when you said *p++, that brought 
up the memory. That was the last sendmail bug I remember see-
ing. But over the years, that whole process was very painful.

EA: Well, all I can say is sendmail was never as bad as Flash.

RF: Another thing you said during that short meeting, we prob-
ably only talked for 10 minutes, was if you only had a tenth of a 
cent for each copy of sendmail in use. So you eventually started 
Sendmail, Inc. Was that your idea, or did somebody approach 
you?

EA: I had just come out of a disastrous job, and I was sitting 
around, getting a little enthusiasm back, thinking what do I do 
next. I looked around a little bit and someone, I don’t remember 
who, asked me if I thought about commercializing sendmail. 
I didn’t know how to do that. Then I ran into a friend of mine 
whom I had worked for 10 years prior, and he had gone the cor-
porate route. He helped me write a business plan and eventually 
agreed to come on board as their first CEO. He was a very good 
CEO for a company in that state. He had the sense to say at some 
point I’m stepping down, I like starting companies a lot more 
than I like running them. 

RF: Those really are two different things.

EA: Sendmail, Inc., was a very interesting place to work, a lot 
going on, maybe too much. Then the Internet bubble burst 
[March 10, 2000]. We survived because the co-founder and I who 
were co-operating the company tended to be a bit more fiscally 
conservative than a lot of people in those days. We had a board 
member who said you aren’t spending money fast enough, and 
at the very next board meeting he said you need to downsize 
instantly, how could you let yourself get so big. He was not my 
favorite board member.

RF: You survived.

EA: We did survive, but let’s not go into corporate politics. Send-

mail, Inc. got bought by Proofpoint, and the investors, includ-
ing myself, got nothing out of it. But most of the employees had 
jobs, and the customers got taken care of. Investors, employees, 
customers, two out of three ain’t bad. I actually was pretty happy 
with that.

RF: What did you do after Sendmail, Inc.?

EA: I kind of retired. I can afford to live as long as my tastes don’t 
get too extravagant. That’s fine, I don’t have a lot of expenses. I 
had some offers. Then one came by email, about a new lab [4], 
with an invitation to come by and see what they were doing. They 
said they have seminars on Thursdays, including free lunch. So I 
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went for the free lunch. There was a research meeting right after 
the seminars, and I started staying for that, and at some point the 
person who became my supervisor said, why don’t we pay you? 

RF: So you are doing coding? Looks like you are involved in 
embedded systems here…

EA: I’m working on, loosely speaking, data storage and security 
for what I hesitate to call the Internet of Things, because every-
one thinks they know what that means. 

RF: IoT is a very broad term, from video cameras running Linux 
to tiny sensors with 1K of RAM…

EA: 1K? If you’re lucky. There’s a paper called “The Cloud Is Not 
Enough” [5] done by our group. These days, everyone is saying that 
whatever your problem is, the answer is “cloud.” That’s when you 
know you need to be looking elsewhere. The cloud may often be 
adequate, but there are times where it’s nowhere near fast enough. 

We are looking at using more distributed storage and computing. 
You have the cloud there, and if you have big compute jobs, you 
can send them off to a cloud service. If you are storing massive 
amounts of data, you can send them off to the cloud. We don’t 
have objection per se to the cloud. But where somebody just 
unlocks a door or turns on the lights, I see no particular reason 
why we need to go up to the cloud and back. Our concept is that 
there are Swarm boxes [he indicates one sitting on the desk 
beside us, looking a bit like a WiFi router], and these do local pro-
cessing. This box is fanless, essentially an Intel NUC; we actu-
ally have some bigger servers for storage with multiple terabytes 
of disk on it. Kind of a balance between the two.

RF: And there’s the big problem with the Internet of Things: get-
ting devices to play well together. And the big players have been 
trying to get their separate solutions accepted.

EA: Lots and lots of stovepipes.

RF: Yes, too many stovepipes. And it’s my data, and I don’t want 
to be sharing it to aid in marketing stuff to me.

EA: That’s another point we are trying to address. It’s your data, 
you should have access to it, you should have control over it, and 
we are doing security stuff: everything that goes into the db is 
signed, and if not marked public data, then encrypted. There are 
some performance issues with public key encryption, which is 
very slow. But that’s exactly what we have implemented right 
now. We do a public key signature on every message that goes in, 
and, yes, encryption slows our system down. We have techniques 
for saying only every 10th record gets signed, something like 
that, and use hash chains. Hashes compute fast, to verify integ-
rity. So that part’s important. 
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If you’re familiar with the articles about Google’s BeyondCorp network 
security model published in ;login: [1-3] over the past two years, you 
may be thinking, “That all sounds good, but how does my organization 

move from where we are today to a similar model? What do I need to do? 
And what’s the potential impact on my company and my employees?” This 
article discusses how we moved from our legacy network to the BeyondCorp 
model—changing the fundamentals of network access—without reducing the 
company’s productivity.

Among the many challenges that a migration to a BeyondCorp-type model entails, several 
are particularly notable: 

◆◆ This process affects the entire company. Getting everyone on board and keeping everyone 
aligned and informed requires commitment and buy-in from all levels of management. That 
commitment needs to be reinforced through extensive communications with all parties 
involved, from the teams that own individual services, to management, to support teams, to 
users.

◆◆ The migration can’t be done overnight. The process is multi-layered and incremental, with 
stages of information gathering, trial deployments, corrections to processes and technology, 
and exceptions and remediation where and when necessary.

◆◆ The process requires changes at many or all layers of the stack: networking, security gate-
ways, client platforms, and backend services. Partitioning the changes in order to make 
progress independently at different layers makes this multi-pronged undertaking more 
approachable and manageable.

The following sections discuss how we partitioned the BeyondCorp migration effort, and the 
tools and technologies we used to bring the various layers into alignment while minimizing 
negative impact on users. 

Prerequisites: Commitment and Communications
Before you can undertake a migration to a BeyondCorp-like model, you need buy-in from top 
level management and other stakeholders in your organization. Step one here is understand-
ing and communicating the motivation for the migration: you want to reduce the threat of a 
successful cyberattack while maintaining productivity. You need to document the rationale 
behind the proposed migrations, the threat model, and the costs of doing “business as usual.” 
Then be prepared to explain to each line-of-business why this process is valuable and essen-
tial. As with all security operations, deploying a new model comes with a price: new tools, 
additional processes, and changes in habits to apply. Top-level management needs to actively 
support this change and drive the motivation and commitment down to all stakeholders. 

Armed with a charter and commitment from management, identify and enlist the support of 
leaders in crucial areas: security, identity, networking, access control, client and server plat-
form software, business-critical application services, and any third-party partners or out-
sourced IT functions. The leads should identify and enlist the subject matter experts for each 
area and commit their time and energy to the process. Our BeyondCorp team was a globally 
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distributed virtual team headed by a director responsible for 
policy decisions and a technical program manager to drive and 
coordinate execution. Active membership changed over time, 
but the stakeholders, team leads, and other contributors were 
consistently linked through online documentation, group email, 
and regular face-to-face and video conference meetings to stay 
informed of current processes and project status.

As the effort progresses, the usual rules of change management 
apply, because each work group will have its own concerns and 
priorities. Listen to feedback and adapt to the special circum-
stances and requirements of each contributor or affected group. 
Publishing plans and information is necessary but insufficient; 
interactive communication (ideally done in person, but at 
minimum conducted over video or audio conferencing) speeds 
assistance and adoption.

Partitioning for Progress
The overall objective of the BeyondCorp program is to transition 
from a network that allows clients to directly access servers to 
a new network design, one that removes the privilege of direct 
access to backend servers. For more details, see “BeyondCorp: A 
New Approach to Enterprise Security” [1], the first article in this 
series. To this end, we considered removing privileged access 
from the legacy VLAN by blocking each application or server in 
sequence. This strategy was less than ideal for two reasons: it 
would be difficult to deploy and coordinate at the network layer, 
and it posed increased risks to productivity at the application layer. 
Instead, we decided to deploy a new VLAN in its final Beyond-
Corp configuration. This VLAN only permits access to the server 
network through access control gateways, ensuring that all traffic 
flows are authenticated, authorized, and encrypted. Rather than 
incrementally restricting the privileges of the legacy VLAN, we 
incrementally moved devices to this new end-state VLAN. 

The VLAN migration project achieved the complex but critical 
goal of removing user devices from the legacy “privileged” net-
work and assigning them to the new Managed Non-Privileged 
Client (MNP) VLAN. This move had a key constraint: any legacy 
application that expected or required direct access to the server 
network would fail when run from a workstation on the new 
VLAN. Therefore, achieving this migration without breaking 
business-critical operations was an immediate subgoal. We used 
a three-pronged strategy to meet this subgoal:

1. Extensively analyzing network traffic logs

2. Identifying and remediating noncompliant applications

3. Migrating devices after determining they would be successful 
on the new network

This approach allowed the network layer to roll out the new con-
figuration and achieve stability independently from other parts 
of the BeyondCorp program. The BeyondCorp design includes 

the use of 802.1x for network admission and VLAN assignment, 
which we utilized to isolate the network layer from the details of 
the migration policies. Higher level software and data analysis 
determined each device’s VLAN assignment, which the RADIUS 
servers then communicated to the network layer. 

Realizing these goals was a vast undertaking that required 
changes at almost every layer of the stack. Rather than attempt-
ing to introduce change to all of these layers in a single transition 
(undoubtedly a recipe for disaster), we pursued a partitioned 
approach that entailed:

◆◆ Decoupling network layer projects: new VLANs, 802.1x, 
 RADIUS policy server

◆◆ Decoupling client platform upgrades: certificate generation and 
installation, user authentication tools

◆◆ Migrating devices incrementally as we remediated services and 
workflows

◆◆ Continuously refining our processes and procedures

First Steps: An 802.1x Network
In the first phase of BeyondCorp, we installed certificates on 
each user device and transitioned to 802.1x for all network 
access grants. This seemingly simple step implied several new 
developments: a certificate authority, tools to install certifi-
cates on company-managed devices (for each OS type), enabling 
802.1x on the network switches, and integrating with a policy-
driven RADIUS service. We undertook all of these developments 
in parallel. 

The security team designed a new Certificate Authority with 
APIs to enable the various per-OS platform management teams 
to obtain and install certificates on their platforms. Each 
platform team independently deployed the software, tools, and 
telemetry to enforce and monitor certificate rollout to each 
device. We created the processes for mass distribution and 
maintenance of certificates while we were still working on inte-
gration with the access switches.

Likewise, re-provisioning the access switches to include the new 
VLAN definitions proceeded in parallel—we enabled and later 
required 802.1x and RADIUS-provided VLAN assignments. 
Automated scripts audited the switch upgrades to identify 
switches not yet provisioned with the new VLAN. As a result, 
the RADIUS server would not request a VLAN assignment that 
wasn’t available on a particular switch.

We used 802.1x so we could move control of VLAN assignments 
from the network layer to a VLAN policy server. Because we 
wanted to reduce failures caused by the new RADIUS server, the 
initial policy simply matched the existing assignments (which 
included complex blacklists and whitelists). We first deployed 
the policy server in an auditing mode that compared the new 
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assignments with the legacy assignments. When the differences 
were sufficiently few, we enabled the new policy. From that point 
on, we could manage device assignment to VLANs in near-real 
time using high-level software and data-driven policies. Using 
this simple initial policy allowed us to enable dynamic VLAN 
assignments in the network while the end-state (and transition) 
policies were still being developed.

Success-Oriented Migration
It took years to fully deploy the 802.1x layer, and several more 
years before the inventory-based tiered access VLAN assign-
ments were available as input to the RADIUS policy server [2]. 
While those developments were underway, we wanted to identify 
our two main groups of users and application services: those that 
were ready for BeyondCorp versus those that needed to upgrade 
their network and security capabilities to become BeyondCorp 
compliant. Our first step was to capture and analyze traffic 
from the network routers. By logging and analyzing a fractional 
sample of all traffic through the corporate routers, we discov-
ered patterns of noncompliant usage. As a second-order benefit, 
this analysis also helped us discover unusual, unexpected, and 
unauthorized traffic on the network. Identifying these applica-
tions meant we could start the reengineering earlier and avoid 
disrupting the users of these systems. 

Some networking use cases, such as workstations using an 
NFS/CIFS file server, were obviously noncompliant. Although 
a NFS/CIFS file server is a simple way for users to maintain a 
single, common copy of their files, the underlying protocol didn’t 
support our desired security properties (strong encryption and 
authentication). To eliminate this dependency, we initiated a 
major project early on to accomplish two goals: moving NFS 
home directories to local disk with automatic backup to secure 
cloud storage, and replacing other NFS usage with Google Drive 
or other secure file-sharing technologies. Even so, some applica-
tions, like CAD (computer-aided design) editors, are deeply 
dependent on NFS and required special solutions before we 
could move their users and workstations to the restricted MNP 
VLAN. We discuss the details of our framework for handling 
these special requirements in the “Remediating Difficult Use 
Cases” section below.

Other noncompliant workflows were not so obvious but would 
nevertheless fail when subjected to the restrictions of the 
MNP network ACL. This failure was by design, as we couldn’t 
assume that NFS, RDP, SQL, etc. had adequate authentica-
tion, authorization, and encryption. Detecting these workflows 
and re-enabling productivity by changing the device’s network 
assignment is difficult and time-consuming when remediation 
must happen at the network layer. To avoid large impacts on pro-
ductivity (not to mention user morale), we needed an analysis-

driven strategy to detect failing workflows and correct them 
before assigning users to the MNP VLAN.

To facilitate easy analysis and user workflow testing on the 
non-privileged network, we created a client-based network ACL 
simulator that identified network packets that would be blocked 
by the MNP ACL. The underlying technology used Capirca (see 
[4] for the source code) to create local iptables or Packet Filter 
rules from the actual MNP network ACL. During the analy-
sis and migration phase, user devices continued to operate on 
the privileged network, while the MNP-simulator monitored 
network traffic and logged the source and destination of all 
non-MNP-compatible traffic to a central repository. The IP 
source address identified the failing user, and the IP destination 
address identified the failing service. By analyzing the logs over 
time (with appropriate privacy constraints in place), we could 
identify devices with MNP-compliant traffic and assign them to 
the MNP VLAN. Likewise, we could identify devices, users, and 
services that relied on noncompliant traffic and initiate projects 
to move those services to alternative solutions. Over time, more 
devices became compliant and were automatically assigned to 
the MNP VLAN. 

In a second mode, the MNP-simulator can actually block/drop 
the non-MNP traffic, thereby enforcing the MNP ACL without 
relying on network level deployment of the MNP VLAN and the 
802.1x pipeline. Although we ultimately enforce the ACL in the 
network equipment, where it is isolated from user (or hacker) 
abuse, enabling and disabling this “enforcement” mode in the 
client workstation is much easier and faster during the trial 
and transition period. Client-side enforcement served as both 
an important step in the migration process and a self-service 
tool for testing. Without this feature, we wouldn’t have gained 
the confidence we needed to move devices to MNP at nearly the 
speed (or with the high level of success) that we did.

Figure 1 shows the pipeline for moving Google computers to the 
Managed Non-Privileged (MNP) network.

Handling Easy Use Cases with the Access Proxy
Google’s basic security policy requires that all traffic that flows 
from workstations to servers is: 

◆◆ Authenticated (to identify the device and user making the 
request)

◆◆ Authorized (to verify that the user and device are allowed to 
access the backend resource)

◆◆ Encrypted (to prevent eavesdropping)

◆◆ Independently logged (to aid in forensic analysis)

The Access Proxy [3] achieves all these requirements for 
HTTP/S traffic and for our HTTP-encapsulated SSH traffic. 
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Happily, most of our high-usage applications are browser-based 
Web applications. This condition is both “happy” and by design: 
Google is somewhat unique in the industry in its core philosophy 
of using browser-based applications when possible. We provided 
tools and documentation to each Web application provider so 
each could configure their application to run behind the Access 
Proxy. 

When an application is behind the Access Proxy, corporate 
and public DNS contains a CNAME that resolves to the Access 
Proxy, so the URLs for such applications work from both cor-
porate and public networks with equivalent ease and security. 
The ability to access corporate applications from public net-
works meant that authenticated remote users could access the 
corporate Web applications without diverting to initiate a VPN 
connection. As a result, the overhead for using and supporting 
VPN connections for remote work immediately and dramati-
cally decreased. According to our rough estimates, the resultant 
productivity gains easily outweigh the implementation costs of 
BeyondCorp.

Once browser-based applications were secured behind the 
Access Proxy, we could make dramatic progress. We activated 
an automatic process for analyzing, verifying, and migrating 
devices to the non-privileged network; within a year this process 
moved over 50% of the fleet to non-privileged network access.

Remediating Difficult Use Cases
While we could handle the vast majority of applications via 
the Access Proxy, other applications weren’t so easy. Our plans 
and schedules also had to address the reality of the long tail of 
non-Web cases that required additional time and resources to 
migrate. Evolving these use cases to become compliant required 
new tools, technology, and workflow modifications.

In particular, some of our workgroups use third-party desktop 
or “thick client” applications that are not HTTP-based, which 
entail a special set of problems. For example:

◆◆ Some tools are intrinsically designed to rely on network 
mounted file shares. 

◆◆ Java applications may use RMI (Remote Method Invocation) 
or other direct socket connections.

◆◆ Many tools may be linked to license servers using non-HTTP 
sockets and protocols. 

Even applications that use HTTP may be problematic due to 
obscure, unexpected failure modes. For example, some applica-
tions aren’t designed to present a client certificate or proper user 
credentials, while some have logic built into the load balancing 
layer that doesn’t mesh well with the Access Proxy. For some of 
these cases, we tweaked the Access Proxy to allow traffic com-
ing from the MNP VLAN to pass without a certificate. We felt 
comfortable with this temporary strategy because the device had 
to present a certificate in order to access MNP. Each problematic 
case required a diagnosis and remediation project. 

To address the class of hard cases, we developed a solution 
using a multi-port encrypted tunnel to carry application traffic 
between the client and server:

◆◆ When initiating a connection from client to server, the Access 
Proxy applies the usual user and device authentication and 
authorization. 

◆◆ Routing tables on the client direct packets to a TUN device that 
captures and encrypts traffic to specific backend servers. 

◆◆ The encrypted packets flow directly between the client and 
encryption server using a UDP-based encapsulation protocol.

◆◆ The encryption servers only allow traffic to the services and 
ports for which the application needs access. 

Figure 1: The pipeline for moving Google computers to the Managed Non-Privileged (MNP) network
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This approach allows legacy third-party applications to more 
securely connect to their servers from any network and still 
assert the BeyondCorp invariants of authentication, authoriza-
tion, and encryption.

Table 1 shows our general approach to resolving difficult work-
flows. For more detailed information, see “BeyondCorp Part 
III: The Access Proxy” [3]. In some cases, the solution shown in 
the table also required users to modify a workflow by running a 
script or providing the necessary authentication before access-
ing the backend resources.

Some essential framework services were noncompliant. Rather 
than block all migration, we temporarily opened access from 
MNP to the specific ports or servers for these critical services. 
To prevent these temporary exceptions from becoming com-
monplace and subverting the basic goals of BeyondCorp, we only 
allowed such exceptions when a service had a concrete plan for 
implementing and deploying a compliant solution.

As we remediated each application or use case, the automated 
process for analysis, verification, and migration moved more 
users and devices to the non-privileged VLAN. As we pro-
gressed, the network logging and analysis provided ready met-
rics about the number of users and devices that were successful 
on MNP.

Incrementally Rolling Out and Continually Refining 
Our Approach
The MNP simulator, analysis pipeline, and the subsequent 
automatic assignment of devices to the MNP VLAN was a sig-
nificant software development and process creation project. As 
such, we developed and deployed it incrementally: we tested each 
phase on small groups, continuously fixed the software, adjusted 
user messaging when appropriate, trained the tech support 
team, and then gradually expanded to full-scale deployment. 

The simulation and pre-analysis approach helped us avoid nega-
tive impact on users while we identified users of noncompliant 
workflows. However, because this approach assigned all newly 
provisioned, unanalyzed devices to the privileged network and 
didn’t prevent unmigrated users from using or creating new 
noncompliant applications, it wasn’t an acceptable long-term 
strategy. After reducing the number of exceptions by remediat-
ing the high volume use cases, we changed our approach to a 
policy of “MNP by default.” Proceeding site by site, we assigned 
all devices to MNP, granting exceptions to devices belonging 
to users in job functions that use unremediated applications. 
This policy-based assignment marked the evolution from “Prove 
the user will be successful before migrating their devices” to 
“Assume the user will be successful and migrate their devices.” 

Scaling Support to Minimize Impact on 
Employees
Using the tools and processes discussed above, we were able 
to automatically identify, contact, and migrate entire groups 
of users. However, we also needed ways to assist people and 
communicate with users, both in advance of change and when 
something went wrong. A combination of specialized training 
for tech support and strategies to scale user communications 
and interactions was critical in shifting workflows to the new 
model.

Empowering Tech Support
We trained a select group of technicians in our support organi-
zation to become champions of the new BeyondCorp model and 
primary local points of contact. From the early stages of rollout, 
these techs helped affected users return to work quickly without 
compromising migration strategies, and also efficiently esca-
lated appropriate issues to implementation and policy experts.

Use Case Solution
Browser-based HTTP/S Access proxy

Naive HTTP cmd-line applications: 
We provide a client-side proxy server that supplies the platform certificate to achieve an authenti-
cated and encrypted connection to the Access Proxy. We then direct the naive application to that 
localhost proxy.

Local authenticating proxy

Single TCP connection: 
For applications that need a TCP socket to a server, we can often arrange to establish an SSH 
connection to a backend bastion, and tunnel the port for the naive TCP application.

SSH tunnel and port forwarding

Many ports or unpredictable port numbers Encrypted service tunnel 

Latency-sensitive, real-time, UDP flow Encrypted service tunnel

Table 1: Approaches to solving problematic workflows
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Initially, these specially trained technicians were granted more 
advanced access to remediation systems than their fellow tech-
nicians. As the first observers of the BeyondCorp rollout, they 
could anticipate what access, tools, and processes the rest of tech 
support would need. Additionally, they trained the rest of the 
support organization through global tech talks, discussion lists, 
brown bag lunches, and office hours. As knowledge was dissemi-
nated, we expanded system access to all of support.

Establishing local subject matter experts enabled us to engage 
directly with teams that had incompatible workflows. By work-
ing with one knowledgeable point of contact, teams had direct 
lines of communication to project experts and could collabora-
tively find solutions. Simultaneously, technicians were empow-
ered and encouraged to add new temporary workarounds or fixes 
to internal documentation as soon as they identified problems. 
Distributing the power to solve problems to as wide a network 
as possible enabled us to efficiently share knowledge and scale 
support.

Self-Service Help
To avoid a flood of queries and concerns, we needed a way to 
minimize confusion and answer common questions without 
personal intervention by support personnel. When a user was 
selected for migration, we automatically sent them an email 
containing a clear timeline, an idea of how the migration would 
impact their work, and links to project information, FAQs, self-
help, and escalation points. 

We also provided a self-service Web portal that allowed users 
subject to business-critical time constraints to delay their 
migration. To answer questions and further disseminate knowl-
edge at scale, we created an internal discussion list where people 
could crowdsource answers. Using analysis of common ques-
tions, we were able to quickly iterate the initial email communi-
cation and project documentation.

Throughout the rollout we also iterated and improved error mes-
saging with a dedicated Web application. This application clearly 
identified common problems (for example, explaining why a 
user was denied access to a certain resource), provided steps for 
resolution, and linked to knowledge-base articles. Users could 
fix common issues such as group membership and certificate 
problems themselves, further reducing tech support requests. 
The Web application also helped technicians by coalescing 
information from the many different layers and systems into a 
single series of actions to solve an error.

Internal Publicity Campaign
To raise awareness of BeyondCorp, we ran an internal publicity 
campaign with laptop stickers, common logos and wording, and 
visible articles posted throughout our offices. These materials 
pointed to self-service help and office hours open to anyone with 

any question. By focusing on informing, educating, and help-
ing, we directly built trust, goodwill, and buy-in with our users. 
Corporate communications and tech writer involvement were 
critical throughout the process—especially in the early phases, 
when we needed to provide a clear picture of the program’s intent 
and impact.

Phased Rollout
BeyondCorp began as a small-scale pilot, geographically close to 
the project team. We increased the rollout over time by progres-
sively targeting locations with local technical experts, eventu-
ally expanding to increasingly risky workflows and sites further 
from the project team. We didn’t migrate critical business work-
flows until we had a history of success, strong buy-in from users, 
and confidence in our strategy. During this process, tech support 
load decreased as rollout size and affected workflows increased. 
Phasing our approach was a key element of its success.

End Result
By continually analyzing and improving all of the methods 
described above, we built a system that ensured the BeyondCorp 
rollout could scale globally without negatively affecting busi-
ness, support, or user experience. Rather than simply “throwing 
more people at the issue,” we scaled our efforts by building sys-
tems and processes to efficiently handle questions, escalations, 
and training. Additionally, we were able to trust our users to help 
us enable change by relying on information, openness, and agree-
ment on a shared goal.

We carefully tracked support incidents caused by the Beyond-
Corp rollout as we moved more and more of the company onto 
this model. In recent months, BeyondCorp is responsible for only 
0.3% of issues handled by our tech support organization. From 
an initial rate of 0.8%, escalations have steadily decreased with 
the help of improved documentation, training, messaging, and 
rollout methodology. Compared to similar wide-scale internal IT 
changes at Google, BeyondCorp has caused 30% fewer support 
issues.

Conclusion 
There is always tension between the urgency to improve security 
and resistance to changing the habits of end users. When infra-
structure and workflow changes threaten to impact productivity, 
this tension only escalates. Achieving a balance between prog-
ress and stability is more art than science. BeyondCorp’s keys to 
success and acceptance were analysis, adaptive planning, and 
proactive communications.

By partitioning BeyondCorp changes into independent units, 
we could make progress in parallel, and user impact at each 
stage was minimal. Although it took years to deploy Beyond-
Corp across its many layers, each milestone came with benefits. 
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Cumulatively, we made remote access significantly easier and 
faster, simplified network management, and strengthened our 
security posture. 

Creating the technology to implement the BeyondCorp security 
model is a challenge. Planning the rollout and managing the 
migration of users to that technology is just as challenging. It’s 
essential to ensure that each transition has minimal impact on 
users and does not break ongoing productivity. Each successful 
transition brings fresh awareness of the value of the program 
and provides continued enthusiasm and acceptance of the 
program goals by both users and management. We succeeded 
by empowering a cross-functional team with representatives 
from each of the technology and implementation teams, security 
and policy stakeholders, and specialists in end-user support and 
communications.

At Google, we’ve been able to apply what we learned during 
the BeyondCorp effort to other programs and services—most 
notably, the new services we’ve recently added to Google’s Cloud 
Platform (such as the Identity-Aware Proxy). One of the biggest 
lessons of BeyondCorp was the importance of phasing a proj-
ect and continuing to refine and develop our strategies as we 
encountered additional use cases. While this article focuses on 
Google’s specific experience, the lessons it shares can be adopted 
at any organization, regardless of size, so long as the effort has 
solid backing from relevant stakeholders.
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R yoan provides a distributed sandbox, leveraging hardware enclaves 
(e.g., Intel’s software guard extensions (SGX)) to protect sandbox 
instances from potentially malicious computing platforms. The pro-

tected sandbox instances confine untrusted data-processing modules to pre-
vent leakage of the user’s input data. Ryoan is designed for a request-oriented 
data model, where confined modules only process input once and do not 
persist state about the input. We present the design and prototype implemen-
tation of Ryoan and evaluate it on a series of challenging problems, including 
email filtering, health analysis, image processing, and machine translation.

Data-processing services are widely available on the Internet. Individual users can con-
veniently access them for tasks, including image editing (e.g., Pixlr), tax preparation (e.g., 
TurboTax), data analytics (e.g., SAS OnDemand), and even personal health analysis (e.g., 
23andMe). However, user inputs to such services, such as tax documents and health data, are 
often sensitive, which creates a dilemma for the user. In order to leverage the convenience 
and expertise of these services, she has to disclose sensitive data to them, potentially allow-
ing them to disclose the data to third parties. If she wants to keep her data secret, she either 
has to give up using the services or hope that they can be trusted—that their service software 
will not leak data (intentionally or unintentionally), and that their administrators will not 
read the data while it resides on the server machines.

Companies providing data-processing services for users often wish to outsource part of the 
computation to third-party cloud services, a practice called “software as a service (SaaS).” 
For example, 23andMe may choose to use a general-purpose machine learning service 
hosted by Amazon. SaaS encourages the decomposition of problems into specialized pieces 
that can be assembled on behalf of a user, e.g., combining the health expertise of 23andMe 
with the machine learning expertise and robust cloud infrastructure of Amazon. However, 
23andMe now finds itself a user of Amazon’s machine learning service and faces its own 
dilemma—it must disclose proprietary correlations between health data and various diseases 
in order to use Amazon’s machine learning service. In these scenarios, the owner of secret 
data has no control over the data-processing service.

We propose Ryoan [1], a distributed sandbox that forces data-processing services to keep 
user data secret, without trusting the service’s software stack, developers, or administrators. 
Ryoan’s name is inspired by a famous dry landscape Zen garden that stimulates contempla-
tion (Ryōan-ji). First, Ryoan provides a sandbox to confine individual data-processing mod-
ules and prevent them from leaking data; second, it uses trusted hardware to allow a remote 
user to verify the integrity of individual sandbox instances and protect their execution; third, 
the sandbox can be configured to allow confined code modules to communicate in controlled 
ways, enabling flexible delegation among mutually distrustful parties. Ryoan gives a user 
confidence that a service has protected her secrets.
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A key enabling technology for Ryoan is hardware enclave-
protected execution (e.g., Intel’s Software Guard Extensions 
(SGX) [2]), a new hardware primitive that uses trusted hardware 
to protect a user-level computation from potentially malicious 
privileged software. The processor hardware keeps unencrypted 
data on chip but encrypts data when it moves into RAM. The 
hypervisor and operating system retain their ability to manage 
memory (e.g., move memory pages onto secondary storage), but 
privileged software sees only an encrypted version of the data 
that is protected from tampering by a cryptographic hash. Haven 
[3] and SCONE [4] are examples of systems that use enclaves to 
protect a user’s computation from potentially malicious system 
software, including a library operating system to increase back-
ward compatibility.

Ryoan faces issues beyond those faced by enclave-protected 
computation systems such as Haven. Enclaves are intended to 
protect an application that is trusted by the user, which does not 
collude with the infrastructure, though it may unintentionally 
leak data via side channels. In Ryoan’s model the application and 
the infrastructure are under the control of an adversary and may 
collude to steal the user’s secrets. Even if the application itself 
is isolated from the infrastructure using enclave protection, the 
adversary could exercise its control to construct covert chan-
nels between the application and the platform. Ryoan’s goal is to 
prevent such covert channels and stop an untrusted application 
from intentionally and covertly using users’ data to modulate 
events like system call arguments or I/O traffic statistics, which 
are visible to the infrastructure.

An untrusted application in Ryoan is confined by a trusted 
sandbox. For the Ryoan prototype we use Native Client (NaCl) 
[5, 6], which is a state-of-the-art user-level sandbox. NaCl can 
be built as a standalone binary independent from the browser. 
NaCl uses compiler-based techniques to confine untrusted code 
rather than relying on address space separation, a property nec-
essary to be compatible with SGX enclaves. The Ryoan sandbox 
safeguards secrets by controlling explicit I/O channels, as well 
as covert channels such as system call traces and data sizes.

The Ryoan prototype uses SGX to provide hardware enclaves. 
Each SGX enclave contains a NaCl sandbox instance that loads 
and executes untrusted modules. The NaCl instances communi-
cate with each other to form a distributed sandbox that enforces 
strong privacy guarantees for all participating parties—the users 
and different service providers. Confining untrusted code [7] is a 
longstanding problem that remains technically challenging, but 
Ryoan benefits from hardware-supported enclave protection. 
Ryoan also assumes a request-oriented data model, where con-
fined modules only process input once and cannot read or write 
persistent storage after they receive their input. This model 

makes Ryoan applicable only to request-oriented server applica-
tions—but such servers are the most common way to bring scal-
able services to large numbers of users.

Ryoan’s security goal is simple: prevent leakage of secret data. 
However, confining services over which the user has no control 
is challenging without a centralized trusted platform. We make 
the following contributions:

◆◆ A new execution model that allows mutually distrustful parties 
to process sensitive data in a distributed fashion on untrusted 
infrastructure.

◆◆ The design and implementation of a prototype distributed 
sandbox that confines untrusted code modules (possibly on dif-
ferent machines) and enforces I/O policies that prevent leakage 
of secrets.

◆◆ Several case studies of real-world application scenarios to 
demonstrate how they benefit from the secrecy guarantees of 
Ryoan, including an image processing system, an email spam/
virus filter, a personal health analysis tool, and a machine 
translator.

◆◆ Evaluation of the performance characteristics of our prototype 
by measuring the execution overheads of each of its build-
ing blocks: the SGX enclave, confinement, and checkpoint/
rollback. The evaluation is based on both SGX hardware and 
simulation.

Background and Threat Model
Ryoan assumes a processor with hardware-protected enclaves, 
e.g., Intel’s SGX-enabled Skylake (or later) architecture. The 
address space of a protected enclave has its privacy and integ-
rity guaranteed by hardware. Hardware encrypts and hashes 
memory contents when it moves off chip, protecting the contents 
from other users and also from the platform’s privileged soft-
ware (operating system and hypervisor). Code within an enclave 
can manipulate user secrets without fear of divulging them 
to the underlying execution platform. Code within an enclave 
cannot have its code or control manipulated by the platform’s 
privileged software.

SGX’s security guarantees are ideal for Ryoan’s distributed 
NaCl-based sandbox. The sandbox confines the code it loads, 
ensuring that the code cannot leak secrets via storage, network, 
or other channels provided by the underlying platform. Ryoan 
instances communicate with each other using secure TLS con-
nections. By collecting SGX measurements and by providing 
trusted initialization code, Ryoan can demonstrate to the user 
that their processing topology has been set up correctly.
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Threat Model
We consider multiple, mutually distrustful parties involved in 
data-processing services. A service provider is not trusted by the 
users of the service to keep data secret; if the service provider 
outsources part of the computation to other services, it becomes 
a user of them and does not trust them to provide secrecy, either. 
Each service provider can deploy its software on its own compu-
tational platform, or it can use a third-party cloud platform that 
is mutually distrustful of all service providers. We assume that 
users and providers trust their own code and platform but do not 
trust each other’s code or platforms. Everyone must trust Ryoan 
and SGX.

A service provider might be the same as its computational 
platform provider, and the two might collude to steal secrets 
from their input data. Besides directly communicating data, 
untrusted code may use covert channels via software interfaces, 
such as syscall sequences and arguments, to communicate bits 
from the user’s input to the platform.

A user of a service does not trust the software at any privilege 
level in the computational platform. For example, the attacker 
could be the machine’s owner and operator, a curious or even 
malicious administrator, an invader who has taken control of 
the operating system and/or hypervisor, the owner of a virtual 
machine physically co-located with the VM being attacked, or 
even a developer of the untrusted application or OS writing code 
to directly record user input.

Although we consider covert channels based on software inter-
faces like system calls, we do not consider side or covert chan-
nels based on hardware limitations or execution time. Untrusted 
enclaves can leak bits by modulating their cache accesses, page 
accesses, execution time, etc. While we do not claim to prevent 
the execution-time channel, Ryoan does limit the use of this 
channel to once per request.

Intel Software Guard Extensions
Software Guard Extensions (SGX), available in new Intel 
processors, allow processes to shield part of their address space 
from privileged software. Processes on an SGX-capable machine 
may construct an enclave, which is an address region whose 
contents are protected from all software outside of the enclave 
via encryption and hashing. Code and data loaded into enclaves, 
therefore, can operate on secret data without fear of uninten-
tional disclosure to the platform. These guarantees are provided 
by the hardware [2].

SGX provides attestation of enclave identity, which for Ryoan 
is a hash of the enclave’s initial state, that is, memory contents 
and permissions offset from the enclave base address. Ryoan 
assumes that the initial state of an enclave cannot be imperson-
ated under standard cryptographic assumptions. Ryoan uses 

SGX to attest that all enclaves have the same initial state and 
thus the same identity. Ryoan loads service provider code after it 
initializes. Before the service code is loaded and before passing 
sensitive data to Ryoan, a user will request an attestation from 
SGX and verify the identity of the enclave.

Enclave code may access any part of the address space which 
does not belong to another enclave. Enclave code does not, how-
ever, have access to all x86 features. All enclave code is unprivi-
leged (ring 3), and any instruction that would raise its privilege 
results in a fault.

Hardware security limitations
Enclaves on modern Intel processors have security limitations 
including page faults [8], cache timing, address bus monitoring, 
and the information exposed by processor monitoring units. 
We believe these limitations must be addressed independently 
from Ryoan, and we hope they will be. Each of these limitations 
compromise Ryoan’s security goals. If there are other hardware 
limitations, they also must be addressed independently from 
Ryoan. Part of the purpose in constructing the Ryoan prototype 
is to demonstrate the importance of addressing these hardware-
based information leaks.

Native Client
Google Native Client (NaCl) is a sandbox for running x86/x86-
64 native code (a NaCl module) using software fault isolation. 
NaCl consists of a verifier and a service runtime. To guarantee 
that the untrusted module cannot break out of NaCl’s software-
based fault isolation sandbox, the verifier disassembles the 
binary and validates the disassembled instructions as being safe 
to execute.

NaCl executes system calls on behalf of the loaded application. 
System calls in the application transfer control to the NaCl run-
time which determines the proper action. Ryoan cannot allow 
the application to use its system calls to pass information to the 
underlying operating system. For example, if Ryoan passed read 
system calls from the application directly to the platform, the 
application could use the size and number of the calls to encode 
information about the secret data it is processing. We discuss 
the details of the confinement provided by Ryoan in the section 
“Ryoan’s Confined Environment,” below.

Design
Ryoan is a distributed sandbox that executes a directed acy-
clic graph (DAG) of communicating untrusted modules which 
operate on sensitive data. Ryoan’s primary job is to prevent the 
modules from communicating any of the sensitive data outside 
the confines of the system, including external hosts and the 
platform’s privileged software.
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Ryoan prevents modules from leaking sensitive data by decou-
pling externally visible behaviors from the content of secret data. 
SGX hardware limits externally visible behaviors to explicit 
stores to unprotected memory and use of system services 
(syscalls). 

Unprotected stores are eliminated by the NaCl tool chain and 
runtime. Ryoan mostly eliminates system calls by provid-
ing their functionality from within NaCl. For example, Ryoan 
provides mmap functionality by managing a fixed-sized memory 
pool within the SGX enclave. However, untrusted modules must 
read input and write output, so Ryoan provides a restricted I/O 
model that prevents data leaks: for example, the output size is a 
fixed function of input size. A module cannot communicate the 
contents of the input data by changing the size of the output.

Figure 1 shows a single instance of the Ryoan distributed sand-
box. A principal—for example, a company providing software 
as a service—can contribute a module which Ryoan loads and 
confines, enabling the module to safely operate on secret data. A 
module consists of code, initialized data, and the maximum size 
of dynamically allocated memory. The NaCl sandbox uses a load-
time code validator to ensure that the module cannot violate 
the sandbox by reaching outside of its address range or making 
syscalls without Ryoan intervention.

Ryoan executes inside of hardware-protected enclaves and does 
not trust the operating system nor the hypervisor. SGX gener-
ates an unforgeable remote attestation for the user that a Ryoan 
instance is executing in an enclave on the platform. The user 
can establish an encrypted channel that she knows terminates 
within that Ryoan instance. SGX guarantees the enclave crypto-
graphic secrecy and integrity against manipulation by privileged 
software.

Enforcing Topology
The user either defines the communication topology of confined 
modules or explicitly approves it. A topology is a DAG of modules 
with unidirectional links. The DAG specification is first passed 

to an initial enclave which we call the master. The master con-
tains standard, trusted initialization code provided by Ryoan. 
The master requests that the operating system start enclaves 
that contain Ryoan instances for modules listed in the specifica-
tion. These enclaves can be hosted on different machines. The 
master uses SGX to perform local or remote attestation to verify 
the validity of individual Ryoan enclaves, then lets neighbor 
enclaves in the DAG establish cryptographically protected 
communication channels via key exchange using the untrusted 
network or local inter-process communication as a transport. 
The user can verify the validity of the master via attestation 
and ask it whether a desired topology has been initialized. After 
that, the user establishes secure channels with the entry and exit 
enclaves of the DAG and starts data processing.

Figure 2 shows an example of Ryoan processing input from 
user Alice whose sensitive data is processed by both 23andMe 
and Amazon. Each Ryoan instance executes in an enclave on 
the same or different machines. The host machine(s) might be 
provided by 23andMe, Amazon, or a third party. In all cases, 
Ryoan ensures no leakage of the user’s secrets and also prevents 
leakage of any trade secrets used by 23andMe and Amazon.

Data-Oblivious Communication
One of the primary safety functions of Ryoan is to prevent the 
computational platform from inferring secrets about the input 
data by observing data flow among modules. Therefore, data 
flow must be independent from the contents of the input data: 
Ryoan never moves data in response to activity under the control 
of the untrusted module once the module has read its input data. 
This safety property is sometimes called being data oblivious [9].

Units of work can be any size, but Ryoan ensures that data flow 
patterns do not leak secrets from input data by making module 
output size a fixed, application-defined function of the input 
size. Ryoan protects communication with the following rules: (1) 
each Ryoan instance reads its entire input from every input-
connected Ryoan instance before the module starts processing; 
(2) the size of the output is a polynomial function of the input 
size, specified as part of the DAG, and Ryoan pads/truncates all 
outputs to the exact length determined by the polynomial and 
the size of the input; (3) Ryoan is notified by the module when 
its output is complete, and it writes the module’s output to all 
output-connected Ryoan instances. Ryoan encapsulates module 
output in a message that contains metadata which describes 
what is module output and what is padding (if any). The meta-
data is interpreted, and any padding is stripped away by the next 
Ryoan instance before exposing the data to its module. Each 
Ryoan instance must receive the complete input of a work unit 
before executing its module. These rules are sufficient because 
they ensure that output traffic is independent from input data 

Figure 1: A single instance of Ryoan’s distributed sandbox. The privileged 
software includes an operating system and an optional hypervisor.
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(though there are possible alternatives—for example, each 
request could specify its output size).

Consider the scenario in Figure 2. Each input comes from a user. 
The user can choose to leak the size of the input, or he can hide 
the size by padding the input. The description of the DAG speci-
fies that (1) the output of 23andMe’s first module is padded to a 
fixed size, defined by 23andMe, which can hold the largest pos-
sible model query; (2) the output of Amazon Machine Learning’s 
classifier module is padded to a fixed size to encode the classi-
fication result; and (3) the response to the user from 23andMe’s 
second module is also padded to a fixed size that can hold the 
largest possible result.

Ryoan’s Confined Environment
Any module with access to user data is executed in Ryoan’s con-
fined environment, which prevents information leakage while 
reducing porting effort. When a module receives the secret data 
contained within a request, it enters the confined environment 
and loses the ability to communicate with the untrusted OS via 
any system call. Therefore, Ryoan must provide a system API 
sufficient for most legacy code to function properly. To reduce 
porting effort, Ryoan provides an in-memory virtual file system 
and supports anonymous memory mappings from a pre-allo-
cated memory region to support module dynamic memory.

Ryoan’s confined environment is sufficient for many data-
processing tasks. For example, ClamAV, a popular virus scan-
ning tool, loads the entire virus database during initialization; 
when scanning the input such as a PDF file, ClamAV creates 
temporary files to store objects extracted from the PDF. Ryoan’s 
in-memory file system satisfies these requirements.

Module Life Cycle
A Ryoan instance enforces the following life cycle on its module: 
creation, initialization, wait, process, output, destruction/reset. 
The sandbox begins by validating its module and verifying that 
its identity matches the DAG specification. The instance allows 
the module to initialize with full access to the system services 
exposed by vanilla NaCl. Nonconfined initialization makes mod-
ule creation more efficient and makes porting easier because 
initialization code can remain unchanged.

Modules signal Ryoan when initialization is complete by calling 
wait_for_work, a routine implemented by Ryoan. Once a module 
is initialized, the module processes a request, generates its 
output, and then is destroyed or reset to prevent accumulating 
secret data. Ryoan instances are request oriented: input can be 
any size, but each input is an application-defined “unit of work.” 
For example, a unit of work can be an email when classifying 
spam or a complete file when scanning for viruses. Each module 
gets a single opportunity to process its input data.

Checkpoint-Based Enclave Reset
Creating and initializing modules often requires far more CPU 
time than processing a single request. For instance, loading the 
data necessary for virus scanning takes 24 seconds; orders of 
magnitude greater than the ≈0.124 seconds it takes to process 
a single email. Ryoan manages the module life cycle efficiently 
using checkpoint-based enclave reset.

Ryoan provides a checkpoint service that allows the application 
to be rolled back to an untainted, but initialized, memory state 
(Figure 3). In our prototype this state is at the first invocation 
of wait_for_work. Ryoan does not allow an enclave that has 
seen secret input to be checkpointed, because its data model is 
request-oriented: modules should not depend on past requests to 
operate. Checkpointing a module that has seen secret data would 
(potentially) give that module multiple execution opportunities 
on a single request’s data.

Checkpoint restore allows Ryoan to save the cost of tear-
ing down and rebuilding the SGX enclave, and it saves the 
cost of executing the application’s initialization code. Ryoan 
checkpoints are taken once but restored after each request is 
processed. Therefore, Ryoan makes a full copy of the module’s 
writable state and simply tracks which pages get modified, 
avoiding a memory copy during processing. Only the contents of 
pages that were modified during input processing are restored. 
SGX provides a way for enclave code to verify page permissions 
and be reliably notified about memory faults, which is necessary 
to track which pages are written.

Figure 2: Ryoan’s distributed sandbox. In this example, the application spans the administrative domains of 23andMe and Amazon.
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Use Cases
This section explains four scenarios where Ryoan provides a 
previously unattainable level of security for processing sensitive 
data. For all examples, the Ryoan instances could execute on the 
same platform or on different platforms, e.g., the entire computa-
tion might execute on a third-party cloud platform like Google 
Compute Engine, or a provider’s module might execute on its 
own server. Ryoan’s security guarantees apply to all scenarios.

Email Processing
A company can use Ryoan to outsource email filtering and scan-
ning while keeping email text secret. We consider spam filtering 
and virus scanning, using popular legacy applications—DSPAM 
3.10.2 and ClamAV 0.98.7. The computation DAG for this service 
contains four Ryoan instances, each confining a data process-
ing module (see Figure 4). An email arrives at the entry enclave 
over a secure channel. The entry enclave simply distributes the 
email text and attachments to the enclaves containing DSPAM 
and ClamAV, respectively. The results of virus scanning and 
spam filtering are sent to a final post-processing enclave, which 
constructs a response to the user over a secure channel.

Personal Health Analysis
Consider a company (e.g., 23andMe) that provides custom-
ized health reports for users based on a variety of health data. 
23andMe accepts a user’s genetic data, medical history, and 
physical activity log as input, extracts important health features 
from these data, and predicts the likelihood of certain diseases.

Secrecy for both users and 23andMe is protected with a DAG 
(see Figures 2 and 4). Amazon provides the classifier, which 
queries a model as a Ryoan module. Users provide their genetic 
information, medical history, and activity log in a request. Upon 
receiving a user’s request, 23andMe’s first module constructs a 
Boolean vector of health features and forwards it to Amazon’s 
module. Amazon’s module generates predictions based on the 
model and forwards the result to 23andMe’s second enclave, 
which then forwards the result back to the user.

Image Processing
Image classification as a service is an emerging area that could 
benefit from Ryoan’s security guarantees. We envision a sce-
nario where a user wants different image classification services 
based on her expertise. For example, one service might be known 

for accurate identification of adult content while another might 
do an excellent job recognizing and segmenting horses. The 
image processing DAG in Figure 4 shows an example where an 
image filtering service outsources different subtasks to different 
providers and then combines the results. Our prototype imple-
ments all of these detection tasks using OpenCV 3.1.0, and each 
detection task loads a model that is specialized to the detection 
task and would represent a company’s competitive advantage.

Translation
A company uses Ryoan to provide a machine translation service 
while keeping the uploaded text secret. Users upload text to the 
translation enclave and get the translated text back. Our proto-
type uses Moses, a statistical machine translation system. We 
train a phrase-based French to English model using the News 
Commentary data set released for the 2013 workshop in machine 
translation [10].

Evaluation
We evaluated Ryoan’s overhead on realistic workloads for each of 
these use cases. Slowdowns range from 27% to 419%. The Ryoan 
prototype relies on some unreleased SGX features. Therefore, 
our evaluation involves an SGX performance model where appli-
cable. For evaluation details see the original publication [1].

Conclusion
Ryoan allows users to safely process their secret data with 
software they do not trust, executing on a platform they do not 
control, thereby benefiting users, data processing services, and 
computational platforms. 

Figure 3: Instance life cycle: unoptimized vs. checkpoint based

Figure 4: Topologies of Ryoan example applications. Nodes in the graph 
are Ryoan instances, though we identify them by their untrusted module. 
Users establish secure channels with trusted Ryoan code for the source 
and sink nodes to provide input and get output, respectively.
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Does secrecy improve security or impede securing software updates? 
The automotive industry has traditionally relied upon proprietary 
strategies developed behind closed doors. However, experience in the 

software security community suggests that open development processes can 
find flaws before they can be exploited. We introduce Uptane, a secure sys-
tem for updating software on automobiles that follows the open door strategy. 
It was jointly developed with the University of Michigan Transportation 
Research Institute (UMTRI), and the Southwest Research Institute (SWRI), 
with input from the automotive industry as well as government regulators. 
We are now looking for academics and security researchers to attempt to 
break our system before black-hat hackers do it in the real world—with pos-
sibly fatal consequences.

Security Should Not Be a Competitive Advantage
Imagine that you get into your car and turn on the ignition, but the engine does not start. You 
turn the key again, but the only sound you hear is the automatic door locks closing. After a 
few more futile attempts to start the car—and to open the doors—you notice a message on 
the screen of your infotainment system: “$500 in Bitcoin if you want to get out of your car.” 
A hacker has just exploited a security flaw in the system used to deliver software updates to 
one of your car’s on-board computing units, and the result is this simple but effective cyber-
attack. We need your help in preventing this scenario from happening in the real world.

Presently, vehicle manufacturers purchase proprietary software update systems from third-
party suppliers. This helps to keep costs competitive, because a manufacturer need not worry 
about developing its own system. These systems are proprietary in nature, and, thus, their 
security guarantees are unclear. A manufacturer may not even have access to the source 
code used in parts created by one of their suppliers. What is known is that these systems 
have been hacked repeatedly [1–3]. At a time when computing units continue to proliferate on 
vehicles, and where the cost of security flaws in code can be measured in human lives, many 
manufacturers still follow the design principle of security by obscurity, which has resulted in 
a substantial number of successful attacks.

We strongly believe that the security of your car should not be based upon which supplier 
can market their solution best to the car companies. It would not be a desirable outcome for 
a manufacturer or supplier to advertise that compromises of their software update system 
only harmed hundreds of people, while their competitors’ compromises harmed thousands. 
Open security reviews have been used time and time again in the design of critically impor-
tant systems, such as cryptographic algorithms, anti-censorship software, and secure 
software update systems. Designing software systems in a more open manner can benefit 
manufacturers, suppliers, and the public simultaneously.
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Uptane, a new, secure software update system, is a direct 
product of such an open process. Uptane was designed in col-
laboration with major vehicle manufacturers and suppliers 
responsible for 78% of vehicles on US roads, as well as govern-
ment regulators. We have shared technical documents and a 
reference implementation to aid manufacturers and suppliers to 
build, customize, and deploy their own variants of this system. A 
supplier has begun selling a product that includes Uptane, and a 
few others are integrating it as we speak. As adoption grows, we 
are looking to the open source community to give our code a test 
drive. We welcome white-hat hackers to try to break Uptane and 
to give us feedback before you, and millions of others, are betting 
your life on its security.

A Quick Primer on Computers in Vehicles
While most people think of a car as a collection of mechani-
cal parts such as the engine, door locks, and brakes, a modern 
vehicle is actually a sophisticated container for a collection of 
microcomputers called electronic control units (ECUs). Like 
any other computer, these ECUs are responsible for executing 
specific functions, from tightening a seat belt during an accident 
to adjusting a passenger side mirror. Where ECUs differ from 
traditional computers is in how heterogeneous their computa-
tional speed, memory, and network capabilities are. For example, 
some ECUs, such as the telematics or infotainment units, 
have general-purpose CPUs with high speed, large memory, 
and a wireless connection to the outside world, whereas other 
ECUs, such as the seat belt pretensioner ECU, use specialized 
CPUs with low speed, small memory, and no external network 
connection.

An original equipment manufacturer (OEM), such as Ford or 
General Motors, chooses the ECUs that will reside on a vehicle 
model. However, these units are usually produced by third-party 
suppliers, such as Bosch or Lear. The software for an ECU is 
maintained by its supplier and delivered to the OEM to be dis-
tributed to vehicles.

To distribute software updates, the OEM maintains a software 
repository, which hosts and distributes images and metadata. An 
image is a self-contained archive of code and/or data required 
for an ECU to function. Metadata is information about images or 
other metadata files. Typically, this metadata lists the crypto-
graphic hashes and file sizes of images.

This metadata should be signed, using well-protected keys, 
so that attackers cannot tamper with images without being 
detected. However, some manufacturers and suppliers do not 
provide signed metadata about images. As a result, ECUs can be 
reflashed over the network if attackers know the fixed chal-
lenge-response algorithm used to unlock ECUs. Although these 
fixed algorithms are supposed to be secret, they are known by 

the car tuning community [1, 2]. To take another example, Tesla 
did not, to the best of our knowledge, sign its images at all until 
security researchers used a wireless connection to rewrite soft-
ware on its ECUs and exert physical control over its vehicles [3]. 
Although it is important to sign metadata, the security of ECUs 
depends on precisely how it is signed.

Existing Software Update Systems Do Not Fit the 
Automotive Industry
Existing software update systems force an unacceptable 
tradeoff upon OEMs. To achieve maximum security, they often 
have to sacrifice the customizability that allows them to offer 
different images to different vehicles. On the other hand, other 
systems offer customizability but no security when attackers 
have compromised the repository itself.

Some security systems use online keys, or signing keys that 
are accessible from the repository, to sign metadata, protect-
ing ECUs from man-in-the-middle attacks. For example, these 
systems may use the SSL/TLS or CUP transport protocol to  
sign images and metadata in transit. The upside of using an 
online key is that it allows on-demand customization of vehicles, 
an attribute that was considered very important by our industry 
collaborators for various legal and technical reasons.

Unfortunately, the downside of using an online key to sign all 
metadata is that attackers who compromise the repository can 
also immediately abuse this key to sign and distribute malware. 
This is true even if the online key is protected behind a Hard-
ware Security Module (HSM).

To solve this problem, some security systems use offline keys, or 
signing keys that are not accessible from the repository, to sign 
all metadata. These systems may use, for example, the PGP/
GPG or RSA cryptographic schemes for this purpose. The upside 
of using offline keys is that it provides compromise-resilience: 
attackers who compromise the repository are unable to tamper 
with images without being detected. In practice, however, it is 
typically a precarious form of compromise-resilience, because 
often a single offline key is used to sign all metadata.

Unfortunately, the downside of using only offline keys to sign all 
metadata is that we have lost on-demand customization of vehi-
cles. This is because the repository cannot dynamically respond 
to fresh information that indicates what is currently installed on 
a vehicle and decide what should be installed next.

Besides the on-demand customization of vehicles, there are 
other critical constraints in designing a secure software update 
system for automotives. Above all else, the system must be 
simple for manufacturers and suppliers to implement, custom-
ize, and deploy. Another important constraint is that ECUs are 
often limited by speed, memory, or network connection. Many 
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ECUs are highly optimized for a specific function in order to 
keep costs low. Thus, many ECUs may not have enough storage 
space to maintain a large amount of metadata, may not have a 
direct network connection to the repository, and may not be able 
to compute or verify a signature in a reasonable amount of time.

Uptane: A New, Secure Software Update System
Uptane is a new, secure software update system that is specifi-
cally designed to solve problems in the automotive domain [4]. 
The key idea is to use two repositories, one to provide compro-
mise-resilience and the other to provide on-demand customiza-
tion of vehicles.

Uptane uses four design principles that help to achieve com-
promise-resilience [5, 6]. First, different types of metadata are 
signed using different keys, so that the impact of a key compro-
mise is minimized and does not necessarily affect the security 
of the whole system. As illustrated in Figure 1, and summarized 
in Table 1, there are four top-level roles on a repository: the root, 
timestamp, snapshot, and targets roles. Second, a threshold 
number of signatures may be required to sign a metadata file, so 
that a single key compromise is insufficient to publish malicious 
images. Third, there must be a way to revoke keys when they 
are compromised. Keys can be revoked explicitly by publishing 
new keys to replace old ones, or they can be revoked implicitly by 
setting expiration timestamps in metadata files. Finally, use of 
offline keys can minimize the risk of a key compromise for high-
value roles whose compromise can lead to malicious images.

On the image repository, offline keys are used to sign all meta-
data about all images for all ECUs on all vehicles manufactured 
by the OEM. Metadata for the top-level roles are signed by the 
OEM’s administrators. The OEM may delegate the signing of 
images to their respective suppliers, or it may sign them itself. 
This repository provides compromise-resilience but not on-
demand customization of vehicles.

The director repository instructs vehicles on what should be 
installed next, given information about what they have cur-
rently installed. This repository uses online keys to sign fresh 
timestamp, snapshot, and targets metadata for each vehicle 
that indicate which images from the image repository should be 
installed next.

As depicted in Figure 2, vehicles install images only if both 
repositories agree on their contents. That is, the contents of 
images chosen for installation by the director repository must 
match the contents of the same images available on the image 
repository. Since the director repository has more complicated 
functionality, it is more likely to contain vulnerabilities that can 
be remotely exploited, and thus compromised. By separating both 
repositories, we are able to prevent attackers who compromise 
one repository from being able to distribute malicious images.

Role Responsibilities
Root The root role is the locus of trust. It indicates which keys are authorized for the targets, snapshot, and 

timestamp roles. It also lists the keys for the root role itself.

Targets The targets role provides crucial metadata about images, such as their hashes and lengths. This role may delegate 
the signing of images to their respective suppliers.

Snapshot The snapshot role indicates the latest versions of all metadata on the repository. This prevents an ECU from 
installing outdated images.

Timestamp The timestamp role is responsible for indicating if images or metadata have changed.

Table 1: A summary of responsibilities of the top-level roles on a repository
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Figure 1: Separation of duties between roles on a compromise-resilient 
repository
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Figure 2: Using two repositories to provide both compromise-resilience 
and on-demand customization of vehicles
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There are two types of ECUs. A primary downloads, verifies, and 
distributes images and metadata to secondaries. A secondary 
receives them from a primary, and installs a new image only if it 
has been successfully verified against the signed metadata.

There are two types of metadata verification designed to accom-
modate ECUs with different security and cost requirements. 
Full verification requires checking that the images chosen for 
installation by the director repository match the same images on 
the image repository. Primaries always perform full verification 
in order to protect secondaries from security attacks. Partial 
verification requires checking only that the signatures from the 
director repository are valid.

A brief security analysis is illustrated in Figure 3. The difference 
between ECUs that perform full and partial verification is in 
how resilient they are against a repository compromise. When 
there are only man-in-the-middle attacks but no key compromise, 
attackers do not pose a serious threat. When attackers have com-
promised the director repository, there are two cases: primaries 
that have been compromised and primaries that have not.

If attackers have not compromised primaries, then they may 
be able to cause both types of ECUs to fail to interoperate. This 
is because attackers can control which images are installed 
on which ECUs. However, it is possible to limit the attackers’ 
choices by including metadata that prevent ECUs from install-
ing incompatible or conflicting images. Nevertheless, they can-
not install malicious updates, because primaries always perform 
full verification on behalf of secondaries.

However, attackers that have compromised primaries can 
install malicious updates, but only on partial verification ECUs. 
Attackers cannot install malicious updates on full verification 
ECUs, even if they have also compromised the image repository, 
because they must also compromise offline keys.

In summary, Uptane offers basic security guarantees for all 
ECUs and greater compromise-resilience for ECUs that can 
afford additional computation and storage space. In addition, 
by separating concerns over multiple repositories, Uptane also 
provides on-demand customization of vehicles.

A Call to Action
We believe that Uptane provides the strongest solution to a 
real-world problem, without sacrificing usability and flexibil-
ity. However, we do not know of a better way to guarantee the 
security of any system than subjecting it to a critical, rigorous, 
and open review. We want you to scrutinize Uptane and find any 
design flaws before the black-hat hackers use them against us. 
You can drop us comments on our Google Docs or report issues 
and send pull requests on our GitHub projects. To do so, please 
visit our Web site at https://uptane.github.io.
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Hype or Hope?

R A D I A  P E R L M A N

In this article, I describe the technology behind Bitcoin’s blockchain, and 
its scalability, security, and robustness. Most of what is written about 
“blockchain technology” talks about how it will revolutionize all sorts of 

applications without contrasting it with alternative solutions. To complicate 
matters, there are all sorts of proposed variants of the original blockchain 
(the technology behind Bitcoin), making the definition of “blockchain tech-
nology” very unclear. I explain how Bitcoin’s blockchain technology works, 
along with its performance implications.

A lot has been written about “blockchain technology” recently, but most of it talks about how 
it “is being investigated” for various applications and how it is a revolution in computing that 
will change the world [1]. It is not that easy to discover, from these sorts of articles, how the 
technology works or what its true properties are. These articles treat “blockchain” as a sort of 
black box that stores and retrieves data, with certain properties:

◆◆ Append-only log
◆◆ “Immutable”
◆◆ No central point of control

The term blockchain was introduced as the name of the technology that powers Bitcoin. 
Given that Bitcoin’s technology is widely deployed and unlikely to change very dramatically, 
it is possible to describe how it works and what its scalability, robustness, and security prop-
erties are. It is not clear how much this system can be modified and still be called blockchain 
technology. Therefore, with the term blockchain technology being less and less well-defined, 
I will not attempt to describe the properties of every variant proposed, and for the rest of this 
article, when I say “blockchain,” I am referring to Bitcoin’s blockchain.

Description of Blockchain
In this section I’ll give an overview of the Bitcoin blockchain technology.

Bitcoin
Bitcoin was introduced to the world in a 2008 article [2] and, shortly thereafter, was released 
as open source software. The concepts are described in the paper, but the details are defined by 
the implementation. The open source community in control of the software may make changes, 
but the more widely deployed it is, the more difficult it is to make incompatible changes.

The design goal of Bitcoin was to create a currency that could not be controlled by any gov-
ernment or any known organizations. This design is intended to foil the ability of govern-
ments to do things like:

◆◆ Enforce tax laws
◆◆ Follow a money trail
◆◆ Prohibit payments to certain countries or organizations
◆◆ Inhibit criminals from anonymously collecting ransom money
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Format of Ledger: Blockchain
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The Ledger
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These may or may not be desirable goals for a currency, but I will 
examine the performance implications of a design with these 
goals, and whether applications other than cryptocurrency really 
benefit from a design without known entities at the center.

The basic concepts behind blockchain:

◆◆ A large (thousands) community of anonymous entities called 
“miners” collectively agree upon the history of transactions, in 
an append-only data structure known as “the ledger.”

◆◆ Users of Bitcoin are not identified with names, but rather, with 
public keys, and a user is allowed (even encouraged) to change 
public keys often, to make transactions more anonymous.

◆◆ The ledger contains a list of every Bitcoin transaction since 
Bitcoin was invented.

◆◆ A transaction records that a public key X pays a certain amount 
of Bitcoin to public key Y.

◆◆ In order to add transactions to the ledger, a miner must validate 
the transactions and compute a valid block containing them.

◆◆ A valid block contains a hash of the previous block in the block-
chain, a set of new valid transactions, and a random number 
chosen so that the hash of the block meets certain conditions. 
A valid block is, by design, just hard enough to compute that the 
collective compute power of the miner community will find a 
new block at some cadence (about every 10 minutes).

◆◆ The miner who is lucky enough to be the first to find the next 
valid block is awarded with some amount of Bitcoin.

Now I will describe these steps in more detail.

Format of the Ledger
Each block in the blockchain contains the hash of the previous 
block, a nonce (a random number), the public key of the lucky 
miner who was the first to find a valid next block, and valid trans-
actions that have not yet been recorded in the ledger (Figure 1).

Transactions
The information in transactions looks like this:

A transaction (with hash T1) consists of the payer (public key 
X) signing away all of the Bitcoins that X had been paid in some 
previous transaction (with hash T2).

In order for the transaction T1 to be valid,

◆◆ There must be a prior transaction with hash T2, in which X was 
the payee of the amount of Bitcoin being paid in transaction T1.

◆◆ The signature on T1 must properly validate, using public key X.
◆◆ There must be no other transaction in the ledger in which X has 

already spent the proceeds of T2.

There are extra details. For example, notice in the third line of 
Figure 2 (the transaction with hash x17), A is signing over to C 
the results of the transaction with hash x15, in which X received 
74.92 Bitcoins. But A is only paying 74.21 in transaction x17, even 
though in transaction x15, A had received 74.92. The difference 
(74.92 − 74.21) is a transaction fee, paid to the miner who adds 
a block to the blockchain that contains transaction x17. This 
rewards the miner for including this transaction in the new block.

The Hash
The mining community imposes conditions on the hash of a 
valid block. These conditions are designed to be just difficult 
enough to meet, that it will take the community about 10 min-
utes to find a block with the appropriate hash.

A good cryptographic hash is like a random number. Given 
random input, it should have probability 0.5 that the first bit 
in the hash will be 0, or probability 0.25 that the first two bits 
would both be 0. The method that blockchain uses to adjust the 
difficulty of computing the hash is to have a maximum value 
that the hash must have. Currently, the maximum value of the 
hash has about 70 leading zeroes. That means that for any block, 
the probability of its hash having 70 leading 0s is 1/(270). Using a 
brute force search, and the collective compute power of the min-
ing community, it takes about 10 minutes for at least one miner 
to find a block with a small enough hash. If blocks are found too 
quickly, then the maximum hash value is adjusted to be smaller. 
If blocks are found too slowly, then the maximum hash value is 
adjusted to be larger.

Traditional Integrity Checks vs. Blockchain Hash
Traditional public key cryptography creates digital signatures 
that can be efficiently computed, if and only if the signer knows 
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a secret known as the private key. The signature can be verified 
by anyone with knowledge of the associated public key. And an 
essential component of any public key system is that there will 
be some way of making sure that the public key is well-known.

With a traditional public key system, the cryptography ensures 
that there is an enormous gap between the computation needed 
for someone with knowledge of the private key to generate a 
signature, and someone without knowledge of the key to forge 
a signature. With RSA, the computation necessary to gener-
ate a signature (knowing the private key) is a small power of 
the length of the key (between 2 and 3). In contrast, brute force 
breaking of a key is almost exponential in the length of the key. 
So, for instance, for a 1024 bit RSA key, it is about 263 times more 
expensive to forge a signature than to generate one. Increasing 
the key size increases the gap between forging and generating 
signatures. If an RSA key were increased from 1024 bits to 2048 
bits, the gap becomes about 294 times more expensive to forge 
rather than generate a signature. 

Since it’s hard to imagine these huge numbers, another way to 
say it is that signing with RSA 1024 takes about a millisecond on 
a typical CPU, and signing with RSA 2048 might take 6 millisec-
onds on the same CPU. However, breaking RSA 1024 takes about 
as much computation as all the Bitcoin miners do in an hour. 
Breaking RSA 2048 takes about as much computation as all the 
Bitcoin miners would do if they continued at the present rate for 
a million years.

The startling aspect of the Bitcoin hash is that it is equally 
difficult for the community of miners to compute a hash as for 
someone to forge a hash. This means that the security of Bitcoin 
depends on the assumption that no entity or collection of entities 
can amass as much compute power as the Bitcoin mining com-
munity. This is a very surprising assumption. It would indeed be 
easy for a nation-state to amass more compute power than the 
Bitcoin community. 

What could a malicious set of miners, with more compute power 
than the honest Bitcoin miners do? They could discriminate 
against certain transactions, refusing to ever record them in the 
ledger. They could compute an alternate ledger, where transac-
tions they had previously spent were not recorded anymore, and 
then they could double-spend.

And not only is the security assumption highly questionable, 
since it is hard to believe that the community of honest miners 
has cornered the market on all computation power on the planet, 
but it means that the computation required by the honest miners 
is mind-bogglingly huge.

What Would Motivate Someone to Be a Miner?
Miners have to do a lot of computation if they ever hope to be 
rewarded with any Bitcoins. Currently, the miner community 

earns about 2 million US dollars every day. And reports are that 
this barely covers the amount they are spending on electricity. 
That amount of electricity is estimated to be equal to what a 
nuclear power plant generates per day, about 500 megawatts. 

So any application of this technology must somehow generate 
revenue for the miners.

Other Costs
It is also necessary to store the entire ledger so that transac-
tions can be checked for validity. Currently, the ledger is about 
100 GB and is stored in thousands of places around the network. 
Also, there is a huge amount of network bandwidth to broadcast 
transactions and new blocks to all the Bitcoin nodes, as well as to 
be able to download the entire ledger to any node that is joining 
the community.

What Is Novel about Blockchain?
If “blockchain” is truly a revolution in computing, there must be 
something about it that did not exist before. What could it be?

Is It Having a “Ledger”?
Blockchain’s “ledger” is an append-only log that needs to be kept 
in its entirety, and needs to be world-readable and world-writ-
able. Very few applications really want these properties. Much 
more flexible databases have of course existed for a long time.

Is It Replicating the Data?
Blockchain highly replicates the ledger so that it will not easily 
get lost. Obviously, the more locations in which something is 
stored, the less likely it is that it will become permanently lost. 
Large public clouds tend to store data in perhaps six places, care-
fully chosen to be located in different locations so that a natural 
disaster in one location will not wipe out all copies of the data. 
If any copy is lost, the public cloud quickly replicates the data to 
new locations to replace the ones that have lost the data. In con-
trast, blockchain stores the ledger in thousands of locations. 

To store something in N places requires N times as much stor-
age, as well as network bandwidth to communicate the data to 
all the places. What is the optimal number of locations? It is 
unlikely that the extra redundancy of thousands vs. six merits 
the storage cost and network bandwidth for replication. And 
despite how many copies are kept, there have been many clones 
of Bitcoin that eventually failed due to lack of interest, and all 
of the copies then were lost, because there is no obligation for a 
node in a blockchain system to maintain the data.

Is It Being “Immutable”?
The term immutable means the data cannot be modified. The 
term “immutable ledger” isn’t quite true. The data can certainly 
be modified, but the assumption is that there is an integrity 
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check that can be used to detect whether the data has been 
modified. Blockchain did not invent the concept of an integrity 
check, just the concept of a horrendously expensive-to-compute 
integrity check. Traditional cryptography has long known about 
easy-to-compute integrity checks that are computationally 
infeasible to forge.

Furthermore, the ledger in blockchain is not actually immutable. 
Forks can occur, starting from, say, block N, where multiple dif-
ferent subsequent blocks N+1 and further might be found. The 
hope is that this situation would be resolved quickly, because 
a miner seeing two different valid chains will only accept the 
longer one. However, a fork can persist for a long time if there 
were an Internet partition, or if the gossip network connecting 
the miners got partitioned, due to some highly connected node 
going down, perhaps. Also, if there were any incompatibility in 
code, such that a transaction looked valid in one version of the 
code and invalid in a different version, then the miners running 
different versions will ignore each other’s chains. This situation 
actually occurred in 2013. If blockchain were truly decentral-
ized, then this situation would be permanent. However, there are 
a few people who really are paying attention and in charge, and 
after the fork in 2013, they decided which version of the block-
chain should live.

Is It Being Decentralized?
The concept of having a ledger agreed upon by consensus of 
thousands of anonymous entities, none of which can be held 
responsible or be shut down by some malevolent government, is 
fairly unique. However, most applications would not require or 
even want this property. And, as demonstrated by the Bitcoin 
community’s reaction to forks, there really are a few people who 
are in charge who can control the system, by, for example, mak-
ing a decision on which fork should be chosen.

The concept of general distributed databases is very old. For 
instance, this is a survey paper about the state of such systems 
from 1981 [3]. Such systems are more complicated than Block-
chain, because they handle things like having multiple nodes 
simultaneously attempting to update the same location and atomic 
transactions. In contrast, Blockchain is an append-only log.

If all that were needed was an append-only log, and an applica-
tion (e.g., a consortium of banks) wished to collaborate on main-
taining the log, a very simple solution would be to have an entry 
signed by any of the trusted parties in the consortium appended 
to the log. To handle Byzantine failures (where a minority of the 
entities in the consortium might become untrustworthy), the 
simple solution would be to require an entry to be signed by a 
majority of the consortium before it is appended to the log.

So the novel part of Blockchain is having a consortium of 
unknown entities maintain the ledger.

Blockchain vs. Traditional Solutions for Sample 
Applications
In this section we’ll examine some applications that have been 
proposed as uses for blockchain and compare more traditional 
approaches. Since these systems are not actually deployed, it’s 
not possible to completely predict the details of a blockchain-
based approach, but we’ll mention some issues.

DNS Names
Assigning DNS names is an interesting application. DNS is quite 
political. Which organization controls the names in a domain? 
What is the definition of a country? It might be tempting to 
“democratize” DNS names to first-come first-served, without 
any organization deciding who is allowed to have which name. 
With blockchain technology, we could do without any central 
organizations. And there is indeed a revenue stream for paying 
the miners, since people would still have to pay to rent a name.

However, people have come to assume that names have some 
meaning. They assume that the owner of the name usenix.org 
has some affiliation with the organization USENIX. And some-
one will still need to maintain the servers to map DNS names to 
IP addresses, along with all the other information stored in DNS.

So it would be preferable to have some mediation of names by a 
large, identifiable organization that could be held accountable 
if it misbehaved. And the current system is much less expensive 
than a blockchain system would be.

Health Records
When switching doctors, or when visiting several doctors with 
different specialties, it is important for them all to have access 
to your health records. However, is a universal, world-readable 
unstructured database with everyone’s medical data the best 
answer? The sheer size of the database is daunting, especially 
when, as proposed by some blockchain enthusiasts, all medical 
devices attached to all people would report their readings into 
the blockchain. And this database would be stored in thousands 
of places.

Clearly with medical information, people will not want their 
information world-readable. Which leads to many questions that 
blockchain doesn’t answer. Data must be encrypted. Who man-
ages the keys? Who authorizes a new doctor you are meeting to 
see your records? What if you are in an accident? And, further-
more, who authorizes you, a doctor or a device, to write some-
thing about you in the blockchain?
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With traditional technology, there would be a database stored 
with several trusted organizations, organized so that data for 
a particular patient could be quickly retrieved (rather than 
needing to have all the pieces found by searching through the 
blockchain). And even if encrypted, there would likely be access 
control on the data. And maintaining the database would be 
much less expensive if one organization, or a few large organiza-
tions, were using traditional digital signatures as an integrity 
check on the data.

Timestamping
One of the applications claimed for blockchain is the ability to 
prove that something happened before some time, because of 
where it appears in the blockchain. For instance, to prove you 
invented something, you could write a paper about it and store a 
hash of the paper on the blockchain.

However, there is much less expensive technology that can 
accomplish this. A trusted timestamping service can take a 
hash, append a timestamp, and sign it. Since this is such an inex-
pensive service, there could be hundreds or thousands of them. 
If Alice wants to be able to prove to Bob that something existed 
before some time, she needs to collect multiple signed copies 
to ensure that, when she needs to prove a timestamp to Bob,  at 
least one of the timestampers she used is trusted by Bob. It is less 
expensive for everyone who wants this service to store their own 
signed copies than to store them publicly in a large blockchain.

Conclusion
Blockchain technology is extremely expensive in terms of 
computation, storage, and network bandwidth. With traditional 
technology, it is possible to replicate data, and public clouds are 
careful to do so. But there would be a handful of replicas; not 
thousands. Also, databases would be more structured than an 
append-only log combining information from all users and for 
many applications. 

Most applications (such as financial ones) do want to have 
some collection of well-known organizations at the heart of 
the technology to mediate disputes and be held responsible if 
things go wrong. If it is distasteful to have a single organization 
in the center, it could be a consortium of several, and transac-
tions could be considered valid only after a majority of the inner 
circle of organizations have signed the transaction. This would 
be immensely less expensive, and be a more natural trust model, 
than thousands of anonymous miners.

And traditional cryptographic integrity checks (digital sig-
natures) by well-known organizations are practical and 
inexpensive.
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Internet of Pwnable Things
Challenges in Embedded Binary Security

J O S  W E T Z E L S

Embedded systems are everywhere, from consumer electronics to 
critical infrastructure, and with the rise of the Internet of Things 
(IoT), such systems are set to proliferate throughout all aspects of 

everyday life. Due to their ubiquitous and often critical nature, such systems 
have myriad security and privacy concerns, but proper attention to these 
aspects in the embedded world is often sorely lacking. In this article I will 
discuss how embedded binary security in particular tends to lag behind what 
is commonly expected of modern general purpose systems, why bridging 
this gap is non-trivial, and offer some suggestions for promising defensive 
research directions.

Embedded Systems Security
Because embedded systems are so diverse, the threat landscape is equally varied, ranging 
from life-threatening sabotage of cyber-physical systems (e.g., electrical blackouts, smart-
car crashes, insulin pump tampering) to economic (e.g., cable TV piracy, smart meter fraud) 
and privacy (e.g., smart-home surveillance) threats. Embedded security priorities also differ 
from those in the general purpose (GP) world. Whereas the latter tend to be mostly concerned 
about threats to confidentiality, embedded systems tend to prioritize availability and integ-
rity. You want nuclear reactors to operate safely and automotive braking and flight control 
systems to function properly at all times.

Compared to GP systems, attention to embedded security is relatively recent, something that 
is especially visible in the industrial control systems (ICS), which form the technological 
backbone of electric grids, water supplies, and manufacturing environments. These sys-
tems were never designed to be connected to untrusted networks in the first place but, over 
the years, have steadily become more and more networked and exposed. As a result, these 
systems do not have corresponding security improvements. And concerns here are far from 
hypothetical as high-profile attacks have damaged nuclear facilities in Iran, caused black-
outs on the Ukrainian power grid, and physically damaged a German steel mill.

This situation is compounded by the challenges of embedded patch deployment. Whereas in 
the GP world, patch management is often centralized and automated, the embedded world 
is faced by a myriad of problems (absence of hot-patching capabilities, safety recertifica-
tion upon introduction of new code, extreme availability requirements, long device lifespans 
exceeding vendor support, etc.) complicating such an approach. This creates a situation of 
prolonged vulnerability exposure and exploits with long shelf-life capable of targeting mil-
lions of vulnerable, unpatched, and connected embedded devices.

Memory Corruption, Safe Languages, and Exploit Mitigations
When it comes to embedded systems, memory corruption issues (e.g., buffer overflows) 
consistently rank among the most prevalent categories of vulnerabilities as exemplified by a 
2016 Kaspersky study of ICS vulnerabilities [1]. This prevalence is largely due to the domi-
nance of unsafe languages such as C++ and assembly in embedded software development. As 
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someone once said: “C is a terse and unforgiving abstraction of 
silicon.” Ideally, this problem would be mitigated by widespread 
adoption of safe languages, and while some are currently used 
(e.g., Ada, which is used in civilian and military avionics and 
aerospace systems) or show potential (e.g., Rust, which provides 
memory safety without garbage collection) for future adoption in 
the embedded world, there are some serious limitations. 

First of all, the “close to metal” nature of C makes it well-
suited for writing similarly bare-metal software (e.g., OSes 
or firmware) in a way that almost all safe languages are not. 
Note that Rust seems promising in this regard as shown by the 
 intermezzOS and Tock [2, 8] OSes. Secondly, there’s the issue of 
portability as there are billions of lines of legacy code written in 
unsafe languages, and there already are C toolchains for nearly 
every platform out there. Hence, even if the ideal embedded safe 
language existed right now, it would still take quite a while for an 
industry-wide shift in development practices to take off, never 
mind what to do with all that legacy code. So safe languages are a 
long-term solution at best, and we live in a short-term world that 
needs short-term solutions.

Exploit mitigations are just such a short-term solution since they 
seek to complicate exploitation of existing vulnerabilities rather 
than prevent their introduction in the first place. Exploit devel-
opment can be conceptualized as the programming of so-called 
“weird machines” [3] through composition of “exploit primitives” 
into a chain. Complicating this chain means making each link 
harder to forge by making mitigations harder to overcome and 
lengthening the chain by crafting mitigations for various steps of 
the exploitation process in order to raise attacker cost and elimi-
nate practical exploitability of certain vulnerabilities altogether. 

Ever since memory corruption vulnerabilities started getting 
widespread attention with Aleph One’s 1996 Phrack article 
“Smashing the Stack for Fun and Profit,” various exploit mitiga-
tions have been proposed, implemented, broken, and improved 
until we’ve arrived at the present-day situation, where exploiting 
a stack buffer overflow on a modern GP system often requires 
you to at least either find an information leak to bypass stack 
canaries or overwrite a function pointer, find an information 
leak to bypass ASLR, craft a ROP (return-oriented program-
ming) chain to bypass non-executable memory, and find a sand-
box escape: that’s two to three additional bugs (though less if one 
has a flexible enough vulnerability) on top of the actual vulner-
ability itself to achieve arbitrary code execution.

Embedded Exploitation: Blast from the Past
Compared to the GP world, embedded exploitation often feels 
like it’s stuck somewhere in the ’90s. Consider, for example, the 
Shadow Brokers incident [4] last year, where an unknown threat 
actor managed to obtain exploit and implant code used by the 
top-tier, probably state-sponsored, Equation Group threat actor 
and published part of the plunder online. This included exploits 
targeting enterprise firewalls used in very sensitive environ-
ments; what stood out here is that none of the exploits needed 
bypasses for any mitigation whatsoever. 

In order to get an idea of what the situation with respect to 
embedded mitigation adoption looks like, I surveyed 36 popular 
embedded operating systems (ranging from high-end Linux-
based ones to tiny proprietary real-time microkernels) for 
support of the “bread & butter” baseline of mitigations: Execut-
able Space Protection (ESP, also known as DEP, NX, or W^X 
memory), Address Space Layout Randomization (ASLR), and 
stack canaries (also known as stack cookies or stack smashing 
protection). Briefly put: ESP forces attackers to use code-reuse 
payloads (such as ROP chains) by making data memory non-
executable, while ASLR complements this by ensuring memory 
layout secrecy in order to prevent attackers from constructing 
such code-reuse payloads. Stack canaries are orthogonal to the for-
mer mitigations and work by inserting a randomized secret value, 
between stackframe metadata and local variables, that is checked 
for integrity when a function returns in order to detect whether it 
has been overwritten as part of a stack-smashing attack.

As you can see in Figure 1, only a minority supports these 
mitigations, and this becomes a negligibly small minority once 
you discard the Linux-, BSD-, and Windows-based OSes or only 
consider the most constrained OSes. And note that this survey 
was an optimistic one: if a mitigation is supported by an OS for 
even a single platform, no matter implementation quality, it was 
marked as supported. It’s pretty safe to say embedded binary 
security lags behind the GP world significantly.
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Figure 1: Exploit mitigation support among 36 popular embedded OSes. 
Non-LBW means Non-Linux, BSD, and Windows-based OSes, and 
Constrained indicates those tiny, minimalistic OSes designed for so-called 
deeply embedded systems.
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Dependencies, Constraints, and Possible 
Solutions
So what’s the reason for this adoption gap? Well, it turns out 
that if you map out the hardware and software dependencies of 
these mitigations (Figure 2), there’s some serious constraints 
that complicate adoption. Embedded devices are designed for a 
specific task and tend to have limited resources as well as often 
being headless and diskless. The hardware is often simple and 
lacking in advanced features, and the software is tailored for 
such constraints. And on top of all that there are often real-time 
and safety-critical requirements. 

In order to get an idea of the state of mitigation dependency sup-
port among common embedded hardware and OSes, I surveyed 
51 popular von Neumann-style embedded core families (Figure 
3) and mapped out OS feature dependency support (Figure 4) 
among the 36 previously surveyed OSes. As shown in these fig-
ures, widespread support for key dependencies is lacking, which 
presents a significant hurdle to mitigation adoption. To see why 
these dependencies are so crucial and to provide some sugges-
tions for research directions that can potentially overcome exist-
ing limitations, let’s take a look at each mitigation in our baseline 
in detail.

Stack Canaries and Embedded Random Number 
 Generators (RNGs)

Stack canary mechanisms are implemented as a compiler fea-
ture but require some sort of (secure) random number generator 
to be present on the target OS to generate the master canary 
value when the binary in question is loaded. This is best left to 
the cryptographically secure pseudo-random number genera-
tor (CSPRNG) provided by the OS itself (e.g., /dev/urandom 
on UNIX-like systems), but as Figure 4 shows, only 41.7% of 

surveyed embedded OSes provide a system CSPRNG, and this 
number drops to 22.2% if you eliminate Linux-, BSD-, and 
Windows-based ones and becomes negligible altogether if you 
only consider the most constrained operating systems.

I’ve discussed the issues with embedded OS CSPRNGs in more 
detail in my recent 33C3 talk “Wheel of Fortune: Analyzing 
Embedded OS Random Number Generators.” To put it briefly, 
it’s not trivial to port existing designs from the GP world, mainly 
because of a combination of resource constraints in terms 
of processing speed, memory and power consumption, and a 
general low entropy environment. These systems are designed 
for limited, specific tasks, often in a machine-to-machine set-
ting without human activity, and are designed to perform those 
tasks in a reliable, predictable fashion. This is a major stumbling 
block because PRNGs need sources with some external entropy 
in order to stretch their output into longer sequences of pseudo-
random output. 

On GP systems common sources for entropy are user input 
devices like the mouse, keyboard, or disk activity, but since many 
embedded systems are headless and/or diskless this is not an 
option. Depending on the embedded device in question, poten-
tially suitable entropy sources might be available from sensor 
values, radio measurements, accelerometer data, etc., but from 
an OS designer’s point of view these sources cannot be assumed 
to be universally present on all devices the OS is to be deployed 
on. This problem would ideally be solved by having omnipres-
ent on-chip high-throughput true random number generators 
(TRNGs), but this is quite unrealistic considering accompanying 
cost increases. In addition, it doesn’t help with existing legacy 
systems.

Figure 2: Exploit mitigation hardware and OS feature dependencies
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Figure 3: Hardware feature support among 51 popular von Neumann 
embedded core families
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Two promising research directions upon which embedded OS 
CSPRNG designers could draw are advances in lightweight 
cryptography and investigation of omnipresent entropy sources. 
The former encompasses various cryptographic primitives 
designed for highly constrained systems. Initiatives such as the 
ACRYPT project [5] have produced a “zoo” of IoT-oriented light-
weight primitives, with accompanying implementation footprint 
information (in terms of code size, memory usage, and execution 
time), which can serve as building blocks in a larger OS CSPRNG 
design. The embedded entropy problem is a more fundamental 
one and doesn’t lend itself well to a one size fits all solution, but 
a thorough exploration of the suitability of potential entropy 
sources, which are virtually omnipresent in embedded systems, 
such as startup values of on-chip SRAM, clock jitter, and so on, 
would definitely be worthwhile.

Executable Space Protection (ESP)
Essentially there are two main CPU architectural styles: Har-
vard and von Neumann. The former has physically separate 
code and data memories, while the latter has a single memory 
holding both code and data. There are many possible nuances 
to these “pure” styles, but when it comes to the goals of ESP the 
only thing that matters is that memory can’t be both writable 
and executable so that attackers can’t easily inject malicious 
shellcode payloads into memory. As such, Harvard architectures 
trivially provide ESP, but for von Neumann-style CPUs, ESP 
will have to be implemented either in a hardware-assisted way 
or through software emulation. The former case is implemented 
in the form of a dedicated hardware feature (x86 NX bit, ARM 
XN bit, etc.), usually as part of the memory management unit 
(MMU) regulating memory executability at a certain granular-
ity level on a per-page basis. In the case of software emulation, 

there are multiple approaches all outside the scope of this article, 
the most famous of them probably being the PaX project’s imple-
mentation [6], but all of them incur at least some overhead and 
tend to be architecture-specific.

As shown in Figure 3, 43.1% of surveyed core families have hard-
ware ESP support, something you need to consider in light of 
the fact that software emulation-based approaches to ESP only 
exist for a limited number of OS and architecture combinations 
(e.g., Linux on x86). Both ESP implementations require memory 
protection support (and as such an MMU or more lightweight 
memory protection unit (MPU)) on the part of the OS to allow 
for memory permission management. And while most embedded 
OSes offer memory protection support, we can see in Figure 3 
that only 47.1% of all surveyed core families have MMU sup-
port and only 11.8% have MPU support, leaving 41.1% unable to 
accommodate memory protection. Now some microcontrollers 
might offer (limited) memory permission management capabili-
ties without featuring an MPU/MMU, and for some processors 
there are external MMUs available, like the Motorola 68851, 
but apart from these edge cases, there’s a significant “gap seg-
ment” of embedded systems without support for the core ESP 
dependencies.

Ideally, embedded systems designers would start consciously 
using either Harvard CPUs (AVR, 8051, PIC, etc.) or von Neu-
mann ones with hardware ESP support (ARMv6+, MIPS32r3+, 
x86, etc.), but for those systems where this is not an option we 
will need widespread embedded OS adoption of a multi-architec-
ture, low-overhead software emulation ESP approach. This does, 
however, still leave us with the open problem of how to deal with 
MPU-/MMU-less systems that cannot offer any form of memory 
protection to begin with.

Address Space Layout Randomization (ASLR)
In order to craft the code-reuse payloads used to bypass ESP, 
attackers will have to know the addresses of particular code 
fragments (so-called “gadgets”) to incorporate into their pay-
load. ASLR aims to complicate this by ensuring memory layout 
secrecy through randomization, which is done by placing various 
different memory objects—the stack, heap, main program image, 
loaded libraries—at randomized addresses. In order to do this, 
ASLR has three key dependencies: a CSPRNG, OS virtual mem-
ory support, and hardware with an MMU. The ASLR random-
ization takes place at load-time and draws upon an OS CSPRNG, 
as we’ve seen earlier, and is far from omnipresently available in 
all embedded operating systems.

Virtual memory provides memory isolation between different 
tasks/processes and thus prevents shared memory conflicts that 
might otherwise arise from ASLR’s memory object randomiza-
tion. If we look at Figure 4, however, we can see that only 44.4% 
of all surveyed embedded operating systems provide virtual 
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Figure 4: OS feature support among 36 popular embedded OSes
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memory support, and this number drops to a mere 17.1% if we 
eliminate the Linux-, BSD-, and Windows-based OSes. Even 
worse are the most constrained operating systems, none of 
which support virtual memory for various reasons, such as being 
designed for MMU-less and diskless targets or having conflict-
ing hard real-time requirements.

This widespread lack of embedded virtual memory and MMU 
support are two major obstacles to widespread ASLR adoption 
that are not going away anytime soon, which means that we need 
an embedded alternative to ASLR. ASLR’s dependency on vir-
tual memory arises from the fact that it is a load-time software 
diversification technique [7]. This dependency does not apply, 
however, to diversification techniques operating at earlier points 
in the software life cycle such as at compile or install time. In 
these cases either a compiler feature or a dedicated transforma-
tion program produce diversified binaries by randomizing code 
layout and/or individual instruction sequences. Such approaches 
achieve a similar effect to ASLR by randomizing the addresses 
(and nature) of code-reuse gadgets but have the downside of 
being less effective since they only diversify between differ-
ent software builds or individual device instances rather than 
between individual boots or program runs as well as only diver-
sifying code memory. There are currently no mature, widely 
adopted implementations of such schemes that I know of, nor has 
their applicability to the embedded world been covered, but they 
seem to be a promising embedded ASLR alternative.

A Call to Action
So where do we go from here? First of all, security research-
ers should continue to demonstrate the urgency and impact of 
embedded vulnerabilities to drive the point home that embed-
ded systems cannot afford to keep lagging behind when they 
are becoming increasingly ubiquitous and interconnected. 
Secondly, work on short-term solutions (researchers addressing 
the challenges outlined in this article working together with OS 
developers to push for embedded exploit mitigation adoption) 
should be conducted alongside work on more long-term solu-
tions such as embedded safe language research and development 
of secure embedded patching and updating mechanisms. And, 
finally, with the rise of the Internet of Things there is a real need 
for IoT standardization, policy, and regulation that focuses on 
security by design rather than leaving it as an afterthought or 
something that has to be retrofitted after the first vulnerabili-
ties are discovered due to a vendor focus on novel features and 
time-to-market.
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Over the last few years Python has changed substantially, introducing 

a variety of new language syntax and libraries. While certain fea-
tures have received more of the limelight (e.g., asynchronous I/O), an 

easily overlooked aspect of Python is its revamped handling of file names and 
directories. I introduced some of this when I wrote about the pathlib mod-
ule in ;login: back in October 2014 [1]). Since writing that, however, I’ve been 
unable to bring myself to use this new feature of the library. It was simply too 
different, and it didn’t play nicely with others. Apparently, I wasn’t alone in 
finding it strange--pathlib [2] was almost removed from the standard library 
before being rescued in Python 3.6. Given that three years have passed, 
maybe it’s time to revisit the topic of file and directory handling.

The Old Ways
If you have to do anything with files and directories, you know that the functionality is 
spread out across a wide variety of built-in functions and standard library modules. For 
example, you have the open function for opening files:

with open(‘Data.txt’) as f:

    data = f.read()

And there are functions in the os module for dealing with directories:

import os

files = os.listdir(‘.’)     # Directory listing

os.mkdir(‘data’)           # Make a directory

And then there is the problem of manipulating pathnames. For that, there is the os.path 
module. For example, if you needed to pull a file name apart, you could write code like this:

>>> filename = ‘/Users/beazley/Pictures/img123.jpg’

>>> import os.path

>>> # Get the base directory name

>>> os.path.dirname(filename)    

‘/Users/beazley/Pictures’

>>> # Get the base filename

>>> os.path.basename(filename)

‘img123.jpg’

>>> # Split a filename into directory and filename components

>>> os.path.split(filename)

(‘/Users/beazley/Pictures’, ‘img123.jpg’)
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>>> # Get the filename and extension

>>> os.path.splitext(filename)

(‘/Users/beazley/Pictures/img123’, ‘.jpg’)

>>>

>>> # Get just the extension

>>> os.path.splitext(filename)[1]

‘.jpg’

>>>

Or if you needed to rewrite part of a file name, you might do this:

>>> filename

‘/Users/beazley/Pictures/img123.jpg’

>>> dirname, basename = os.path.split(filename)

>>> base, ext = os.path.splitext(basename)

>>> newfilename = os.path.join(dirname, ‘thumbnails’, base+’.png’)

>>> newfilename

‘/Users/beazley/Pictures/thumbnails/img123.png’

>>>

Finally, there are an assortment of other file-related features 
that get regular use. For example, the glob module can be used 
to get file listings with shell wildcards. The shutil module has 
functions for copying and moving files. The os module has a 
walk() function for walking directories. You might use these to 
search for files and perform some kind of processing: 

import os

import os.path

import glob

def make_dir_thumbnails(dirname, pat):

    filenames = glob.glob(os.path.join(dirname, pat))

    for filename in filenames:

       dirname, basename = os.path.split(filename)

       base, ext = os.path.splitext(basename)

       origfilename = os.path.join(dirname, filename)

       newfilename = os.path.join(dirname, ‘thumbnails’, base+’.png’)

       print(‘Making thumbnail %s -> %s’ % (filename, newfilename))

       out = subprocess.check_output([‘convert’, ‘-resize’, 

          ‘100x100’, origfilename, newfilename])

def make_all_thumbnails(dirname, pat):

    for path, dirs, files in os.walk(dirname):

        make_dir_thumbnails(path, pat)

# Example

make_all_thumbnails(‘/Users/beazley/PhotoLibrary’, ‘*.JPG’)

If you’ve written any kind of Python code that manipulates files, 
you’re probably already familiar with this sort of code (for better 
or worse).

The New Way
Starting in Python 3.4, it became possible to think about path-
names in a different way. Instead of merely being a string, a 
pathname could be a proper object in its own right. For example, 
you could make a Path [3] instance and do this like this:

>>> from pathlib import Path

>>> filename = Path(‘/Users/beazley/Pictures/img123.jpg’)

>>> filename

PosixPath(‘/Users/beazley/Pictures/img123.jpg’)

>>> data = filename.read_bytes()

>>> newname = filename.with_name(‘backup_’ + filename.name)

>>> newname

PosixPath(‘/Users/beazley/Pictures/backup_img123.jpg’)

>>> newname.write_bytes(data)

1805312

>>> 

Manipulation of the file name itself turns into methods:

>>> filename.parent

PosixPath(‘/Users/beazley/Pictures’)

>>> filename.name

‘img123.jpg’

>>> filename.parts

(‘/’, ‘Users’, ‘beazley’, ‘Pictures’, ‘img123.jpg’)

>>> filename.parent / ‘newdir’ / filename.name

PosixPath(‘/Users/beazley/Pictures/newdir/img123.jpg’)

>>> filename.stem

‘img123’

>>> filename.suffix

‘.jpg’

>>> filename.with_suffix(‘.png’)

PosixPath(‘/Users/beazley/Pictures/img123.png’)

>>> filename.as_uri()

‘file:///Users/beazley/Pictures/img123.jpg’

>>> filename.match(‘*.jpg’)

True

>>>

Paths have a lot of other useful features. For example, you can 
easily get file metadata:

>>> filename.exists()

True

>>> filename.is_file()

True

>>> filename.owner()

‘beazley’

>>> filename.stat().st_size

1805312

>>> filename.stat().st_mtime

1388575451

>>>



80   S U M M ER 20 17  VO L .  42 ,  N O.  2  www.usenix.org

COLUMNS
Revisiting Pathlib

There are also some nice directory manipulation features. For 
example, the glob method returns an iterator for finding match-
ing files:

>>> pics = Path(‘/Users/beazley/Pictures’)

>>> for pngfile in pics.glob(‘*.PNG’):

...       print(pngfile)

...

/Users/beazley/Pictures/IMG_3383.PNG

/Users/beazley/Pictures/IMG_3384.PNG

/Users/beazley/Pictures/IMG_3385.PNG

...

>>>

If you use rglob(), you will search an entire directory tree. For 
example, this finds all PNG files in my home directory:

for pngfile in Path(‘/Users/beazley’).rglob(‘*.PNG’):

      print(pngfile)

The Achilles Heel…And Much Sadness
At first glance, it looks like Path objects are quite useful—and 
they are. Until recently, however, they were a bit of an “all-in” 
proposition: if you created a Path object, it couldn’t be used 
anywhere else in the non-path world. In Python 3.5, for example, 
you’d get all sorts of errors if you ever used a Path with more 
traditional file-related functionality:

>>> # PYTHON 3.5

>>> filename = Path(‘/Users/beazley/Pictures/img123.png’)

>>> open(filename, ‘rb’)

Traceback (most recent call last):

  File “<stdin>”, line 1, in <module>

TypeError: invalid file: PosixPath(‘/Users/beazley/Pictures/

img123.png’)

>>> os.path.dirname(filename)

Traceback (most recent call last):

  File “<stdin>”, line 1, in <module>

  File “/usr/local/lib/python3.5/posixpath.py”, line 148, 

in dirname i = p.rfind(sep) + 1

AttributeError: ‘PosixPath’ object has no attribute ‘rfind’

>>> 

>>> import subprocess

>>> subprocess.check_output([‘convert’, ‘-resize’, ‘100x100’, 

filename, newfilename])

Traceback (most recent call last):

  File “<stdin>”, line 1, in <module>

  File “/usr/local/lib/python3.5/subprocess.py”, line 626, 

in check_output **kwargs).stdout

  File “/usr/local/lib/python3.5/subprocess.py”, line 693, 

in run with Popen(*popenargs, **kwargs) as process:

  File “/usr/local/lib/python3.5/subprocess.py”, line 947, 

in __init__ restore_signals, start_new_session)

  File “/usr/local/lib/python3.5/subprocess.py”, line 1490, 

in _execute_child restore_signals, start_new_session, preexec_fn)

TypeError: Can’t convert ‘PosixPath’ object to str implicitly

>>> 

Basically, pathlib partitioned Python into two worlds—the 
world of pathlib and the world of everything else. It’s not entirely 
unlike the separation of Unicode versus bytes, which is to say 
rather unpleasant if you don’t know what’s going on. You could 
get around these limitations, but the fix involves placing explicit 
string conversions everywhere. For example:

>>> import subprocess

>>> subprocess.check_output([‘convert’, ‘-resize’, ‘100x100’, 

str(filename), str(newfilename)])

>>>

Frankly, that’s pretty annoying. It makes it virtually impossible 
to pass Path objects around in your program as a substitute for a 
file name. Everywhere that passed the name a low-level func-
tion would have to remember to include the string conversion. 
Modifying the whole universe of Python code is just not practi-
cal. It’s forcing me to think about a problem that I don’t want to 
think about.

Python 3.6 to the Rescue!
The good news is that pathlib was rescued in Python 3.6. A new 
magic protocol was introduced for file names. Specifically, if a 
class defines a __fspath__() method, it is called to produce a 
valid path string. For example:

>>> filename = Path(‘/Users/beazley/Pictures/img123.png’)

>>> filename.__fspath__()

‘/Users/beazley/Pictures/img123.png’

>>>

A corresponding function fspath() that was added to the os 
module for coercing a path to a string (or returning a string 
unmodified):

>>> import os

>>> os.fspath(filename)

‘/Users/beazley/Pictures/img123.png’

>>>

A corresponding C API function was also added so that C exten-
sions to Python could receive path-like objects.

Finally, there is also an abstract base class that can be used to 
implement your own custom path objects:

class MyPath(os.PathLike):

    def __init__(self, name):

        self.name = name
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    def __fspath__(self):

        print(‘Converting path’)

        return self.name

The above class allows you to investigate conversions. For 
example:

>>> p = MyPath(‘/Users/beazley/Pictures/img123.jpg’)

>>> f = open(p, ‘rb’)

Converting path

>>> os.path.dirname(p)

Converting path

‘/Users/beazley/Pictures’

>>> subprocess.check_output([‘ls’, p])

Converting path

b’/Users/beazley/Pictures/img123.png\n’

>>> 

So far as I can tell, the integration of Path objects with the 
Python standard library is fairly extensive. All of the core file-
related functionality in modules such as os, os.path, shutil, 
subprocess seems to work. By extension, nearly any standard 
library module that accepts a file name and uses that standard 
functionality will also work. It’s nice. Here’s a revised example of 
code that uses pathlib: 

from pathlib import Path

import subprocess

def make_thumbnails(topdir, pat):

    topdir = Path(topdir)

    for filename in topdir.rglob(pat):

       newdirname = filename.parent / ‘thumbnails’

       newdirname.mkdir(exist_ok=True)

       newfilename = newdirname / (filename.stem + ‘.png’)

       out = subprocess.check_output([‘convert’, ‘-resize’,’100x100’, 

                                                filename, newfilename])

if __name__ == ‘__main__’:

    make_thumbnails(‘/Users/beazley/PhotoLibrary’, ‘*.JPG’)

That’s pretty nice. 

Potential Potholes
Alas, all is still not entirely perfect in the world of paths. One 
area where you could get tripped up is in code that’s too finicky 
about type checking. For example, a function like this will hate 
paths:

def read_data(filename):

    assert isinstance(filename, str), “Filename must be a string”

    ...

If you’re a library writer, it’s probably best to coerce the input 
through os.fspath() instead. This will report an exception if the 
input isn’t compatible. Thus, you could write this:

def read_data(filename):

    filename = os.fspath(filename)

    ...

You can also get tripped up by code that assumes the use of 
strings and performs string manipulation to do things with file 
names. For example:

def make_backup(filename):

    backup_file = filename + ‘.bak’

    ...

If you pass a Path object to this function, it will crash with a 
TypeError since Path instances don’t implement the + operator. 
Shame on the author for not using the os.path module in the first 
place. Again, the problem can likely be solved with a coercion.

def make_backup(filename):

    filename = os.fspath(filename)

    backup_file = filename + ‘.bak’

    ...

But be aware that file names are allowed to be byte-strings. Even 
if you make the above change, the code is still basically broken. 
The concatenation will fail if a byte-string file name is passed. 

C extensions accepting file names could also potentially break 
unless they are using the new protocol. Hopefully, such cases are 
rare—it’s not too common to see libraries that directly open files 
on their own as opposed to using Python’s built-in functions. 

Final Words
All things considered, it now seems like pathlib might be some-
thing that can be used as a replacement for os.path without too 
much annoyance. Now, I just need to train my brain to use it—
honestly, this might be even harder than switching from print to 
print(). However, let’s not discuss that.
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D A V I D  N .  B L A N K - E D E L M A N

I travel a great deal these days for my work, so it isn’t uncommon for me to 
find myself on an airplane hoping to get some work done with only drib-
bles of WiFi. In those cases, you often have to make do with whatever is 

already on your laptop. I thought it might be interesting to explore what sort 
of goodies you might have available under those conditions from a stock Perl 
installation. To make this column extra realistic, let me report that as I write 
this I am flying at 34,153 ft at a speed of 437 mph over Lake Ontario (hon-
est truth). Right before I left for the airport, I used perlbrew to install a stock 
version of the stable version of Perl (5.24.1) on my laptop. Let’s switch to it 
and start our exploration:

$ source ~/perl5/perlbrew/etc/bashrc

$ perlbrew --notest install perl-5.24.1

$ perlbrew use perl-5.24.1

Perlbrew is a lovely tool for installing a discrete installation of Perl on a machine without 
perturbing any version of Perl shipped with the system. It will pull down the source for the 
version you desire and compile it. In the second line, I had to add --notest because 5.24.1 
appears to have an issue on the version of OS X I’m running, which has a few broken tests 
in Time::Hires to be fixed in future versions of Perl. After hitting that failure a few times, I 
didn’t think it would materially change what happens in this column, so I chose to skip the 
tests normally run as part of installing Perl.

The first place to look for interesting material is in the documentation system. Say what 
you’d like about Perl, no one can accuse it of not shipping with enough documentation. If I 
type “perldoc perl” it lists the following (heavily excerpted) list:

  Overview

        perl          Perl overview (this section)

        perlintro      Perl introduction for beginners

        perlrun        Perl execution and options

        perltoc        Perl documentation table of contents

  Tutorials

        perlreftut      Perl references short introduction

        perldsc          Perl data structures intro

        perllol           Perl data structures: arrays of arrays

        perlrequick     Perl regular expressions quick start

        perlretut       Perl regular expressions tutorial

        perlootut       Perl OO tutorial for beginners

        perlperf         Perl performance and optimization techniques

        perlstyle        Perl style guide
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        perlcheat      Perl cheat sheet

        perltrap      Perl traps for the unwary

        perldebtut     Perl debugging tutorial

        perlfaq      Perl frequently asked questions

  Reference Manual

        perlsyn      Perl syntax

        perldata     Perl data structures

        perlop       Perl operators and precedence

        perlsub     Perl subroutines

        perlfunc     Perl built-in functions

...

        perluniintro    Perl Unicode introduction

...

        perlunitut    Perl Unicode tutorial

        perlebcdic     Considerations for running Perl on 

                  EBCDIC platforms

        perlsec      Perl security

        perlmod       Perl modules: how they work

... 

  Internals and C Language Interface

        perlembed      Perl ways to embed perl in your C or C++ 

                     application

        perldebguts      Perl debugging guts and tips

        perlxstut         Perl XS tutorial

...

  Miscellaneous

        perlbook        Perl book information

        perlcommunity    Perl community information

        perldoc        Look up Perl documentation in Pod 

                 format

        perlhist      Perl history records

        perldelta        Perl changes since previous version

        perlexperiment   A listing of experimental features in Perl

...

  Language-Specific

        perlcn          Perl for Simplified Chinese (in EUC-CN)

        perljp           Perl for Japanese (in EUC-JP)

        perlko          Perl for Korean (in EUC-KR)

        perltw           Perl for Traditional Chinese (in Big5)

  Platform-Specific

        perlaix        Perl notes for AIX

        perlamiga       Perl notes for AmigaOS

        perlandroid      Perl notes for Android

        perlbs2000      Perl notes for POSIX-BC BS2000

...

Be sure to run that command to see the full list for yourself. 
There are 178 documents in all. So even if you just decide to 
spend your time reading Perl docs on a plane, you’ve got plenty of 
material available to you.

The Weirdest Module Search You Ever Did See
There’s a straightforward way to find the modules installed 
with Perl, but let’s go looking for interesting modules the hard 
way. What if we searched for all of the modules mentioned in the 
Perlfaq documents and used that as the starting place for our 
exploration? There are more sophisticated ways to find all of the 
modules, but let’s start with a crude hammer and look for all of 
the :: sequences in the FAQs. And as we do it, let’s eliminate all 
of those mentioned with CPAN on the same line (since we theo-
retically don’t have great access to it here in the air):

for i in 1 2 3 4 5 6 7 8; do 

    perldoc perlfaq$i|grep ‘::’|grep -v CPAN

done

This yields 307 lines (not all of which actually include non-CPAN-
dwelling module names), so I’m going to cherry-pick a few that 
look interesting and talk about them:

Module::CoreList—Why, yes, there is a madness in my method. 
Wait, strike that, reverse that. Module::CoreList is a great place 
to start because it is a module that can help us find and describe 
the modules that have shipped with Perl (core) over the years. 
We could either use the command line utility that comes with it 
(corelist) or write little snippets of code like:

use Module::CoreList;

print join(“\n”,Module::CoreList->find_modules(‘^Text::’,$]));

This will display all of the Text::* modules that ship in core 
with the current version of Perl. find_modules() searches for a 
regular expression and also takes a second argument describing 
which Perl versions it should consider. The magic variable $] 

returns the current version of Perl. We print this using a join just 
to place each element in the returned array on its own line. And, 
yes, this would be a fine and dandy way to find all of the modules 
shipped with the current copy of Perl. Something like this:

print join(“\n”,Module::CoreList->find_modules(‘’,$]));

But if I told you that, it might cut short our little wandering 
walk together, so let’s keep this between the two of us. As a 
small aside, it probably would have made my cherry-picking of 
modules to discuss here more efficient if I had run them through 
Module::CoreList::is_core first.

ExtUtils::Installed—Okay, really I’m not cooking the books 
here. This is the next module that comes up in the FAQ. 
ExtUtils::Installed gives you a way to figure out the names of all 
of the modules installed and the files and directories for each. 
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This is distinct from the previous module that talks about what 
modules are shipped with the core vs. the ones that are currently 
installed (core + whatever else you installed). It does this by 
inspecting the special “dot file droppings” that get installed with 
a module (.packlist). When I first tried out this module, it briefly 
puzzled me. I wrote:

use ExtUtils::Installed;

my $inst = ExtUtils::Installed->new();

print join(“\n”,$inst->modules());

And it printed:

Perl

That’s right, just “Perl.” It turns out that ExtUtils::Installed 
attempts to be smart. It knows which modules are considered 
“core” and lumps those all into “Perl.” When I ran the same 
script using an older version of Perl that had more modules that 
I had expressly installed, it did indeed report the list of installed 
modules in addition to just “Perl.” ExtUtils::Installed can do 
other tricks like show you the files and directories installed by a 
module—for example:

print join(“\n”,$inst->directories(“Perl”))

will indeed show you all of the directories of all of the modules 
shipped with that version of Perl live from your file system.

TimePiece—If you’ve ever found it annoying to use localtime() 
or gmtime() in Perl because it either returns an array of fields 
you have to guess how to index to find the field you want or (in a 
scalar context) just a string:

$ perl -de 0

DB<1> x localtime()

0  24

1  47

2  20

3  20

4  2

5  117

6  1

7  78

8  1

DB<2> x scalar localtime()

0  ‘Mon Mar 20 20:47:27 2017’

Time::Piece can help. It lets you write code that looks like this 
instead (to quote the docs):

use Time::Piece;

my $t = localtime;

print “Time is $t\n”;

print “Year is “, $t->year, “\n”;

localtime() now returns an object that has methods you can 
call to retrieve the part of the time structure you want (for 
example, “$t->hour” will return the current hour). It also gives 
you some convenience methods like “->isdst” to determine if it 
is currently daylight savings time. Check out the documentation 
for the full list.

TieFile—In a previous column many moons ago I went gaga for 
the cool and cruel things you can do with the Perl tie() function. 
This function lets you essentially run arbitrary code as part 
of the process of retrieving and setting variable contents. For 
example, instead of getting a value from memory when asking  
for $weather{‘Boston’}, Perl could query some weather service 
on the Web and return the information instead. Tie::File isn’t 
that futuristic, but it can do something pretty cool. If you use it 
like this:

use Tie::File;

tie @array, ‘Tie::File’, filename

you can access lines of the file (getting and setting) by just read-
ing or changing array values. The doc gives these examples:

  $array[13] = ‘blah’;     # line 13 of the file is now ‘blah’

  print $array[42];        # display line 42 of the file

If you truncate the array by changing its size, so too does the file 
change. Your other standard array operations (push, pop, etc.) 
behave exactly as you would expect. Oh, and here’s a fun tidbit 
from the doc:

The file is not loaded into memory, so this will work even for 

gigantic files.

FileCopy—Yup, does what you would expect.

FilePath—Probably not what you would expect. Use this to 
 create or delete directory trees.

FileTemp—Use this, and probably only this, for dealing with 
temporary files.

TextBalanced—If you ever read Jeffrey Friedl’s Mastering 
Regular Expressions you know that trying to extract things from 
delimited text (for example, some text that has parentheses 
around it, like this one) can be less than straightforward. This 
comes up in all sorts of situations, like when parsing HTML or 
XML, program source code, and so on. 

TermANSIColor—I’m almost tempted not to mention this one 
because it has such a potential to be overused (thus allowing you 
to write code that outputs “angry fruit salad”), but I’m going to 
assume that we’re all adults here and that with great power…
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Yup, time to write code like (from the doc):

 use Term::ANSIColor;

 print color ‘bold blue’;

 print “This text is bold blue.\n”;

 print color ‘reset’;

 print “This text is normal.\n”;

 print colored(“Yellow on magenta.”, ‘yellow on_magenta’), “\n”;

Do me a favor and don’t tell anyone where you got this super-
power. On a serious note, I would commend you to consider that 
a larger part of the population than you probably think has some 
sort of color blindness (bring yourself up to speed about color 
blindness via a quick online search). Please consider this when 
writing code where the color of the output is significant and 
important.

And with that fun set of modules, I’m going to stop. Since I find 
myself on a plane too often it is entirely likely that this will be 
the first part in a several part series. Do let me know what you 
think of the idea. Take care, and I’ll see you next time.
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I guess you could say I’m between jobs at the moment. I won’t say it, 
because I don’t want to sound clichéd and self-conscious about being 
unemployed, but if you said it, it’d be fine. 

You’d be right.

Don’t worry. Everything’s fine. Mostly. It’s not like I was scandalously terminated or that I 
rage-quit in a righteous whirlwind of well-justified sanctimony. I kind of wish it were that 
interesting, but no, I loved them, they loved me, it was great. And yet, filled to the brim with 
what can only be described as a heaping pile of privileged old dude problems, I quit. 

You see, I had this plan, or maybe it was more like a nagging daydream. I couldn’t shake it. I 
have a little money in the bank—not really an impressive amount by my-startup-got-acquired 
standards, but enough to take a little time if I wanted, so I thought: “Why not just quit and 
drive away?”

I’d jump in my 30-year old truck and drive it north until it broke down. In that place, wherever 
it was, I’d talk to people who were physically standing in front of me. I’d read books made of 
paper, purchased from a physical store that sold books made of paper. I’d look at the clouds in 
the sky rather than the clouds on the other side of my VPN connection. I’d drink until my neu-
rons realigned to real life—until character began to sound to my ears like a collection of per-
sonality traits rather than a Unicode rune, and string became a thing you tied stuff up with. I 
wouldn’t think about JSON, or Jinja, JVMs, or how best to organize data into structures. 

I know every millimeter of exactly how stupid that sounds. They have all that stuff right 
where I live. Books…clouds…strings…real life. But like I said, I couldn’t shake it; like techni-
cal debt, it just seemed to keep growing, ominous and ever-present, until there was no other 
choice but to take a deep breath and wade in. I can hear you thinking burnout or mid-life cri-
sis, and you’re probably right. I have no idea what I’m doing. I can say, however, that I haven’t 
bought a sports car, and I have no desire to write a novel, and anyway I can’t help but feel like 
suddenly he took a road-trip is a pretty insipid mid-life crisis, so my money is on burnout.

I’m not super worried about putting a name on it, but I became utterly convinced that indulg-
ing myself in this sad, half-baked escapist scheme would cure me. Either I’d grow back some 
passion for this career I’d stumbled into so many years ago, or I’d get eaten by a bear. Either 
outcome seemed equally likely, and I was fine with that (as long as they never caught the 
bear). My point is, at some point I cognitively crossed this threshold where the daydream 
seemed less like selfish indulgence and more like life-saving necessity.

So instead of seeing a therapist like a reasonable person, I quit (having already burned up 
all my vacation days and then some). Not waiting for my two-weeks’ notice to be up, I hit the 
road immediately. My team members were somewhat confused to suddenly find me in a Mis-
souri coffee-shop at the next morning’s stand-up meeting, but we’re all work-from-homers 
anyway and my problem reports kept rolling in, so it wasn’t a huge deal. Then, as Missouri 
became Illinois, and Illinois became Iowa, and eventually everything became South Dakota, 
I feel like it became somewhat normal, if not even a little entertaining for them.
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And then finally my two weeks were up, and I awoke jobless 
and snowed-in, in Rapid City, South Dakota, my freedom finally 
secured, my escape complete, my insurance revoked. I didn’t 
waste a single moment. I reached right into my bag, cracked open 
my laptop, and dug right in to Facebook’s paper on in-memory 
time-series databases.

Sorry, I’m new at this burnout thing. I’m sure I’ll get the hang 
of it eventually. On the bright side, at least I have something to 
share with you in this month’s column. 

Gorilla
If you haven’t read Facebook’s paper, “Gorilla: A Fast, Scalable, 
In-Memory Time Series Database,” then you’re really missing 
out [1]. They had a problem that is extremely common in our line—
er, that is to say your line—of work. Namely, too many metrics.

Having outgrown graphite, many of us—er, you—turn to 
OpenTSDB, the google-scale map-reduce-for-metrics system. 
Facebook had reached this level several years hence, and their 
in-house analog of OpenTSDB [2] had grown to petabyte-levels 
of data. Their read latency had grown in kind, such that their 
90th percentile read latency was seconds long.

Facebook’s solution to this problem was to create a write-
through in-memory cache system called Gorilla, which banks on 
a series of key observations to provide massive improvements to 
query-times without impacting writes.

Following that most fundamental of software engineering 
principles that states every problem can be solved with one 
additional layer of abstraction, Gorilla is inserted between the 
metrics-sending client nodes and Facebook’s ODS data store. 
Accepting posted metrics in lieu of the real persistence layer, 
it proxies the data to the real back end while keeping a highly 
compressed in-memory copy for itself. Clients can then directly 
query Gorilla for rapid access to recently persisted data.

One of the aforementioned observations around which Gorilla 
was built is that recently stored data are more valuable than 
older measurements. This is not surprising, but Facebook quan-
tified it, analyzing their own query habits and discovering that 
85% of their query volume targeted data less than 26 hours old.

One way Gorilla was task-optimized for its user-base is, 
therefore, that it only holds 26 hours worth of data. In fact, 
Gorilla may be the single most thoroughly spec’d out monitor-
ing system in the history of mankind, having been specifically 
designed to index two billion unique time series, ingest 700 
million data points per minute, and service 40,000 queries per 
second, to name a mere few of its many overly specific sounding 
design criteria. The engineers at Facebook also designed it to be 
horizontally scalable and resilient against their most common 
failure scenarios, namely, individual node failures and network 
partitions affecting entire regions. 

There are quite a few fascinating design features in the paper, 
but among them, their novel approach to data compression cer-
tainly stands out.

Most metrics-oriented monitoring systems report metrics as 
a tuple of name (string), date (int), and value (double). Another 
fundamental observation the Facebook engineers made was 
that the timestamps in the tuples submitted to their ODS 
metrics system were highly periodic (data arrived on regular 
intervals). They therefore reasoned that rather than storing 
raw timestamps for every measurement in a given series, they 
could instead store the delta of the delta of the timestamps. For 
example, a hypothetically perfect time-series that reported every 
60 seconds would always have a delta of 60 and delta-of-deltas of 
0. By comparison, a somewhat malfunctioning time series might 
report at: 2:30:00, 2:31:01, and 2:31:59. These deltas would be 60, 
61, and 59, and the subsequent delta-of-deltas would be 0, 1, and -1.

Writing a periodic header with a real epoch value every two 
hours or so would hypothetically enable you to store a much 
smaller numerical representation of the ongoing datestamps for 
a given series (0 instead of an epoch value like 1490064897). I 
say hypothetically because 0 actually requires len(int) bits of 
memory to internally represent. In other words, inside the com-
puter, 0 is actually 0000000000, because computers are dumb, 
so in real life, storing 0 instead of 1490064897 doesn’t actually 
save you any space.

The Facebook engineers therefore eschew generic types for their 
own variable-length binary encoding to store these delta values. 
Their design works like this (where D is the value of the delta-of-
the-delta for a given measurement): 

◆◆ If D is zero, store binary 0 (only requires 1 bit of memory).

◆◆ If D is between [-63, 64], store ‘10’ followed by the value (7 bits).

◆◆ If D is between [-255, 256], store ‘110’ followed by the value  
(9 bits).

◆◆ If D is between [-2047, 2048], store ‘1110’ followed by the value 
(12 bits).

◆◆ Otherwise store ‘1111’ followed by D using 32 bits.

Because the measurement values themselves begin life as 
double-precision floats rather than ints, their compression is 
more complex, but only slightly more so. The values are XOR’d 
instead of delta’d, and a similar variable-length binary encoding 
is employed that is based on discarding the insignificant digits 
of the resultant XOR’d values.

The paper reports that 96% of all inbound timestamps compress 
to a single-bit (i.e., stuff is mostly ‘0’) due to the periodicity of the 
input data (based on a random sampling of 440,000 real-world 
series in use at Facebook). The paper goes on to find that, for 
sample series that are recorded long enough (two hours seems to 
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be the sweet spot), the double-precision floating point measure-
ment values can achieve a compression ratio of 1.37 bits per data 
point. 

Assuming 64-bit doubles, that’s 460800 uncompressed bits in a 
two-hour series to 9864 compressed, or a 46x compression ratio 
though the paper only claims a 10x compression improvement. 
I infer the 10x number was derived by comparing Facebook’s 
Gorilla implementation’s overall storage footprint to that of their 
HBase system.

Gorilla has also achieved the scalability, fault-tolerance, and 
impressive sub-millisecond read latency goals set forth by its 
designers, though it’s worth noting that a successful read yields 
compressed data (decompression is handled client-side).

Again, if you haven’t read it, it’s pretty fantastic work, and you 
should have a look. I mean I read it, and I don’t even work with 
computers, so I don’t know what you’re waiting for. It’s also 
worth noting that there is already some subsequent work based 
on Gorilla. Facebook itself has open-sourced a general-purpose 
reference implementation of the Gorilla daemon plus client soft-
ware called Beringei [3].

Other examples include libraries that implement Gorilla’s com-
pression algorithm, like go-tsz [4] as well as some open-source 
data stores like Raintank’s MetricTank [5], which uses Gorilla’s 
compression algorithm inside its own Cassandra-based storage 
back-end.

By the time you read this, I’ll hopefully still be happily unem-
ployed—but I kind of doubt it. I’ll hold out as long as I can. Think 
of me when you look at the northern hemisphere.

Take it easy.

References
[1] T. Pelkonen, S. Franklin, J. Teller, P. Cavallaro, Q. Huang, 
J. Meza, K. Veeraraghavan, “Gorilla: A Fast, Scalable, In-
Memory Time Series Database,” in Proceedings of the VLDB 
Endowment, vol. 8, no. 12 (August 2015), pp. 1816–1827: http:// 
www.vldb.org/pvldb/vol8/p1816-teller.pdf.

[2] V. Venkataraman, C. Thayer, L. Tang, “Facebook’s 
Large Scale Monitoring System Built on HBase,” Strata + 
Hadoop World 2012: https://conferences.oreilly.com/strata 
/stratany2012/public/schedule/detail/25540.

[3] Berengei, Facebook’s Gorilla client: https://github.com 
/facebookincubator/beringei.

[4] go-tsz compression library: https://github.com/dgryski/go 
-tsz.

[5] Metric Tank: https://github.com/raintank/metrictank.

http://www.vldb.org/pvldb/vol8/p1816-teller.pdf
http://www.vldb.org/pvldb/vol8/p1816-teller.pdf
https://conferences.oreilly.com/strata/stratany2012/public/schedule/detail/25540
https://conferences.oreilly.com/strata/stratany2012/public/schedule/detail/25540
https://github.com/facebookincubator/beringei
https://github.com/facebookincubator/beringei
https://github.com/dgryski/go-tsz
https://github.com/dgryski/go-tsz
https://github.com/raintank/metrictank


www.usenix.org  S U M M ER 20 17  VO L .  42 ,  N O.  2 89

COLUMNS

Turning Problems into the Known
J E A N N E  S C H O C K

System administrators rightly associate problem management with 
identifying and removing the underlying root causes of incidents. But 
finding and resolving root causes requires resources and interdepart-

mental political will that are not always available. Living with a documented 
yet unresolved problem is not a failure of your team. Nor is it a failure of pro-
cess. The real failure would be to overlook the smaller, incremental improve-
ments that can be gained by addressing the factors and conditions that 
contribute to incidents. Make sure that your problem process is focused on 
outcomes beyond technical solutions to root causes: knowledge gain, effec-
tive decision-making, elimination of negative activities such as finger-point-
ing, and the only metric that really matters in IT—customer satisfaction.

The Problem Management Process
We define an incident as a disruption to normal IT service, and a problem as the unknown 
cause of an incident. It is unknown because we don’t know either what caused the incident 
or how to prevent it from happening again. Incidents don’t become problems; rather, prob-
lems cause incidents. A problem management process manages the life cycle of problems: 
identification/categorization/prioritization, establishing workarounds, tracking activities, 
changes in status and decisions, investigating and determining causes, finding and imple-
menting permanent solutions. One purpose of the process is to prevent recurrence of inci-
dents through permanent solutions. A second, often-overlooked, purpose is to minimize the 
impact of unavoidable incidents. Reasons why future incidents might be unavoidable include 
resource limitations, technical limitations, or practical decisions to live with the problem 
based on a cost to benefit analysis.

Establish Good Workarounds
Where does this leave a technical team? With a good workaround, we can both mitigate the 
impact of an unresolved problem and buy more time for implementing a permanent solution. 
Our objectives are to quickly detect the conditions indicative of a recurrence of the incident, 
to reduce the mean time to resolve, and to continually improve the workaround as we learn 
more about the problem. The workaround may be good enough to complete a project that 
entirely eliminates the software or application or network device that underpins all other 
causes of the incident. We speak disparagingly of workarounds as “duct tape,” because we 
know from experience that duct-tape solutions usually become permanent. That’s why it is 
critical to build into your problem management process routine reviews of all workarounds. 
Define the review schedule based on the priority of the problem: e.g., high-weekly, low-
monthly. Then define the behavior that you want and write a policy to match: all work-
arounds must be continually reassessed for effectiveness in mitigating the impact of the 
incident, cost in staff time to maintain, and level of confidence that it will continue to work.
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Document and Track Known Errors
If you have recorded the problem, and you either have a work-
around or preliminary investigation hints at the nature of the 
problem, you can declare a known error. This may sound like 
an attempt to mask the problem. But turning an unknown 
cause of incidents into a known error has value. Which situa-
tion would you prefer: a published list of known errors, linked to 
incidents they are suspected to have caused, perhaps even with 
a confirmed workaround, or undocumented problems that may 
re-manifest at any time in the form of another service interrup-
tion? Turning the unknown into the known is time well spent. 
You already use the known error concept when you are waiting 
for in-house developers or vendors to patch software bugs and 
vulnerabilities. In these examples, the known error is well-
understood, and you are just waiting for a solution. But you can 
also say that you have a known error when you have even a vague 
understanding of the correlation between causes of the incident. 
The objective isn’t necessarily to solve every single root cause, 
but to make good decisions and to track and continually reassess 
those decisions. 

This may require you to shift your thinking about your role as 
problem solver to provider of strategies, information, and tools 
that can help your company manage problems. The known error 
database (which could simply be a list maintained in a Google 
doc or wiki page) informs better risk analysis and decisions 
around authorization of change requests. It is a useful reference 
for on-call shift changes. As a list of “improvement opportuni-
ties,” it helps with departmental planning and goal setting. 
Tracking a known error includes linking new incidents, or even 
older incidents that you come to realize were likely caused by the 
same problem. This helps build a case for developers to prioritize 
a bug fix, or convince management to re-prioritize resources in 
ways usually reserved for root cause investigations after large 
or embarrassing incidents. If you find your team is tracking an 
increasing number of known errors that are beyond your control 
to repair, try building relationships outside your team that you 
can leverage to resolve some of those problems. 

Root Cause
Let’s talk about root cause. System administrators know well 
that complex technologies most likely have multiple correlated 
causes. At a purely semantic level, you should be comfortable 
replacing “the root cause” with “multiple root causes.” Don’t 
assume that you must always delve into an investigation for 
underlying causes. Think of the problem process as one of the 
many tools in your toolbox that you can use for improving the 
services for which you are responsible. Improvement can come 
in the form of large-scale leaps, but it is more likely to result 
incrementally from small, iterative steps forward. Ask yourself, 
what is within your control to improve:

◆◆ What tools could you build that would enable you to detect the 
conditions that were present during past manifestations of the 
problem? 

◆◆ Can you automate the workaround? 

◆◆ What tools or knowledge would reduce the time required to 
resolve the incident? 

◆◆ Can you reduce the conditions that contribute to slow trouble-
shooting by asking the DBAs to train your team over lunch on 
replication errors? 

◆◆ Can you be prepared to collect more data during the next occur-
rence of the incident that would enhance your understanding 
of the problem? 

◆◆ Can you revise alerts and escalation procedures to get the right 
people looking at the incident faster? 

◆◆ Can you reduce dysfunctions by improving your team’s rela-
tionship with teams that are both ahead and behind you in the 
value chain? 

These are all actions that can be taken that do not require root 
cause investigation or permanent solutions. And they should be 
acceptable outcomes for teams with limited resources. 

Human Error
Can you mitigate the risk of human error? Human error is a com-
mon trigger or contributing factor to incidents. Human error is 
an inevitability, just like hardware failure. Systems that are not 
designed and built for resilience in the face of inevitabilities are 
incidents waiting to happen. There is no value in assigning the 
root cause of an incident to human error, as there will never be 
a permanent fix. We can’t eliminate human error, but we should 
anticipate it and work to mitigate its impact. 

Conclusion
How we respond to human error and to problems says a lot 
about our culture. We should expect both and have effective, 
established, and well-understood processes in place that enable 
good decisions and positive outcomes. The ideal outcome of any 
problem investigation or postmortem is finding and solving root 
causes. But don’t let the perfect become the enemy of the good. 
Improving the experience of your users and customers and pro-
viding cost-effective solutions that benefit your company should 
be the drivers of any IT process, including problem management.
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There is no question that vulnerabilities are important. There is a rich 
history of vulnerabilities and of their use, yet if that history is a sig-
nal, then it is a noisy one. Inferences drawn from agreed upon history 

of vulnerabilities are still the source of quite conflicting interpretations—
proof that it is hard to reduce the question of vulnerabilities to a simple set 
of inferences. Experts are less likely to agree on a simple set of inferences 
about vulnerabilities than the non-experts. Often as not, experts claim that 
all other expert opinions besides theirs are simplistic rather than simple (and 
that “I have discovered a truly remarkable proof which this [Tweet] is too 
small to contain”).

At the time of writing this column, a new report from RAND had just appeared. The RAND 
report [1] (which you must read) is the best look yet at the question of vulnerabilities as seen 
through the lens of vulnerabilities not yet known. As should be expected, a part of its conclu-
sions were immediately dismissed as simplistic by Those Who Tweet.

Three terms from the field of epidemiology may help us think about the life cycle of vulner-
abilities. First is incidence (I), which is the number of new cases of disease which appear per 
unit time. Second is prevalence (P), which is the number of infections at a given time. Third 
is duration (D), which is the time interval between when infection appears and when that 
infection is cured. In a stable population, those three are mutually redundant—knowing any 
two of them allows you to determine the third: I*D=P. For the defender whose job is to treat 
disease, prevalence is the measure of workload. For the defender whose job is to prevent 
disease, changes in incidence are the measure of whether their work has or has not been suc-
cessful. For the defender whose job is to judge the societal cost of disease, duration is likely 
the focus. Analysts studying risk factors for the disease must use incident cases within a 
given time interval rather than prevalent cases at a given time, i.e., near real-time detection 
matters: cf., “Neyman” bias.

But each of I, P, and D are for the single disease case. Thinking of the offender as an oppor-
tunistic infection, that is to say a secondary (intentional) infection that exploits an already 
infected patient, a patient whose existing infection(s) make that patient susceptible (vulner-
able) to additional infections, the defender might come to think in terms of global immune 
system failure more than the lack of some specific antibody. Just as there is no human 
immune to all human diseases, RAND notes that

[a]ny serious attacker can always get an affordable zero-day for almost any target. 
The majority of the cost of a zero-day exploit does not come from labor, but rather 
the value inherent in them and the lack of supply.

Which reminds us that we are talking about sentient opponents, not stray alpha particles or 
metal fatigue. We are inside a natural experiment, not some controlled laboratory work.

For Good Measure
To Burn or Not to Burn
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So be it, but it is that existence of multiple possible infections—
due to multiple possible infectious agents—that we find worth 
comment. Consider the set of tools (vulnerabilities, exploits, 
software, etc.) that A has, and the set that B has, and C, and D, 
and E,…Make a Venn diagram of these; their union is the threat 
landscape (Figure 1). What is especially noteworthy is not the 
area common to all the closed curves in the diagram but the 
areas outside that joint intersection.

If any actor holds their tools secret, then what is in that actor’s 
subset that is not in the union of everyone else? If that subset is 
small compared to the whole set union, and then the marginal 
cost to you of any actor, state or otherwise, holding such a cache 
of tools is small. Yet to any given attacker, they view their whole 
tool set as an asset and are loathe to give it up. Thus, perhaps 
counterintuitively, they tend to view their tool set as being worth 
a lot because it is their whole set, but the defender would view 
it as not being worth much because the marginal cost to the 
defender of that set being held secret is only the cost that can be 
imposed by the tools unique to it.

If you capture someone else’s tool set, then the cost to you of 
burning (exposing) all the other entity’s tools is the intersec-
tion of that tool set with yours. The smaller the intersection, the 
smaller the cost. When you burn someone else’s tool, you signal 
to them that they lost control of it. Beyond that effect, burning 
the other entity’s tools also burns them for anyone else in the 
intersection set, which alerts all the actors with intersections 
with the set that you burned that there is some other-party intel-
ligence that they didn’t know about.

Earlier, we spoke of the defender whose job is to think about pre-
vention. If the number of tools that are common to many actors’ 
tool sets is a large fraction of all such tools, that is to say that the 
joint intersection in the Venn diagram contains the greater share 

of all known tools, then burning them would greatly reduce the 
firepower available to all actors in the aggregate, including you.

As with all modeling exercises (which is what we are doing), 
there are assumptions. Assumptions are not bad, but the better 
grade of analyst will make them, get an analysis done, and then 
test whether the result of the analysis was or was not critically 
dependent on its assumptions.

Aitel and Tait’s superb article [2] on the conditions under which 
a free-world nation-state should reveal vulnerabilities to their 
authors of record has especially telling conclusions in this 
regard, which follow from two axioms (assumptions). The first 
axiom is that the free world’s most dangerous opponents do not 
have the constraints on their discovery, use, retention, and dis-
closure of vulnerabilities that free world nations do. The second 
axiom is that the vulnerabilities that are a crucial threat to the 
software base of one nation are different from the vulnerabilities 
that are a crucial threat to another. The Venn diagram for “How 
much of my code base is also your code base?” is not something 
we have in hand, but we strongly suspect that the parts that are 
country-unique are the greater half, and if that is the case, then it 
biases the equation away from disclosing vulnerabilities to ven-
dors of code you don’t use. If opponent countries are investing in 
home-grown software as a strategic defense, then the bias away 
from disclosure to their vendors only grows stronger.

It must be acknowledged that part of our problem is the rapid 
rate of change which “we” otherwise praise. Beginning with 
Ozment and Schecter’s 2006 paper [3], we have known that 
stable code bases under stable oversight do cleanse themselves of 
vulnerabilities. Clark et al. have since shown in measurable ways 
[4] that while the goals and compromises necessary to compete 
in a global market have made software reuse almost compulsory, 
“familiarity with a codebase is a useful heuristic for determining 
how quickly vulnerabilities will be discovered and, consequently, 
that software reuse (exactly because it is already familiar to 
attackers) can be more harmful to software security than ben-
eficial.” The language theoretic security group [5] has indirectly 
shown that the closer the code is to Turing-complete, the more 
likely it is to be reused, i.e., the very code that has the greatest 
probability of being reused is the code that has the greatest prob-
ability of being rich enough in complexity to enhance exploit-
ability. In medical care, this is called “adverse selection” (the 
better the care you provide, the sicker are the people who throw 
themselves on your mercy).

Which leads us to the—repeat, the—fundamental question with 
respect to vulnerabilities: are they sparse or are they dense [6]? 
RAND’s conjecture is that “the overlap between what is found 
and disclosed publicly and what is found and kept privately 
appears to be relatively small... [which] implies that vulnerabili-
ties may either be dense or very hard to find,” to which we might 

overlap

Figure 1: The threat landscape includes the overlap of different actors’ 
toolsets.
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add a third option, that vulnerabilities are essentially sparse but 
aggregate code volume is increasing so fast that there are many 
more vulnerabilities than there are researchers to find them. 
Meanwhile, the fallout from the DARPA Cyber Grand Challenge 
[7] may well answer the question of sparse vs. dense and thus tell 
us whether or not to look for vulnerabilities (they are sparse so 
each killing brings them closer to extinction vs. they are dense so 
killings have negative return on investment).

End-of-life code bases are a special case; because they remain 
“unimproved” (stable), every vulnerability killed decreases the 
number of vulnerabilities extant. As such, it would be useful to 
patch zero-day vulnerabilities in no-longer-maintained soft- 
ware, especially for code that remains in widespread use [8].

But knowing what we know now, as underscored by Aitel and 
Tait, the—repeat, the—central policy question is this: are the 
vulnerabilities that will take you down the same vulnerabilities 
that will take down your opponent? If they are different, then 
disclosing to vendors vulnerabilities in code upon which you do 
not rely is an act of unilateral disarmament. Releasing a vulner-
ability is an aggressive act if you know someone else has it—and 
an intelligent move.
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Let us now consider backups: boon or bane? “Boon obviously,” I hear 
you respond with more than a soupçon of righteous indignation. Fair 
enough. Having an additional copy of your critical data is objectively 

better than the alternative; I agree. Provided, of course, that said copy is truly 
a copy. If, on the contrary, it is no more than a hollow shell filled with empty 
zeroes, that “backup” may prove less salubrious. Allow me to elucidate.

In 1997 I was a UNIX system administrator and email/DNS monkey at USGS headquarters 
in Reston, VA. Not long after I started that job a scientist came in and reported that he’d 
experienced a catastrophic laptop drive failure while in the field and needed to restore from 
one of the backups conducted every few months during brief visits to headquarters. I pulled 
the appropriate DAT tape, properly labeled and stored, and began the restore procedure. 
Much to my chagrin and horror, while the tape headers and log entry for the backup looked 
perfectly normal, there was no actual data therein residing. Frantically, I tried everything 
I could think of to recover at least a partial image, but it was no use. There simply wasn’t 
anything there to recover. That volcanologist lost three full years of field research because 
someone (not me, thankfully) didn’t bother to check the integrity of the backup process.

The point of this sad story is to show that backups aren’t always what they promise to be. 
If you trust them without verification, sooner or later you will regret it. This cautionary 
principle can of course be applied across a swath of IT-related activities; at its most 
fundamental it warns against complacency and making presumptions. While backups 
themselves are, overall, Good Things To Have Around, betting the farm on those backups 
existing simply because they appear to exist is skating on exceptionally thin metaphorical 
ice. 

Even properly executed backups aren’t a universal panacea. There are times when you simply 
don’t want everything recorded accurately for posterity. One might reasonably presume that 
the sorts of activities best forgotten are not likely to be found in a routine corporate disk 
image, true, but even this is not a foregone conclusion. Mistakes, indiscretions, bad ideas, 
erroneous data, miscommunications, poorly conceived notions, fumbling, hemming, hawing, 
tangents, memos you wish you hadn’t written, memos you wish you hadn’t read—all of these 
and more might be better off consigned to oblivion.

Where am I leading this parade of the obvious? Right past my flea market of invention, 
naturally. The idea that backing up data is a simple binary decision is outdated and probably 
runs contrary to all sorts of sound business practices, I guess. If not currently, then I 
hereby instantiate said practices such that they can be run contrary to for the purposes of 
furthering this diverting narrative. It feels good to take charge of my own twisted destiny.

You know how in some operating systems each file has various flags that can be set? 
“Archive,” “Read Only,” “Certified Organic,” and so on? I propose we add one for “Backup 
Suitability.” It’ll have to be a metadata field rather than a simple binary flag, though. It 
would need at least four or five possible values, to denote Retention Desirability Quotient. 
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This value would range from 5 (Totally Keep This Data For All 
Eternity, Possibly Longer) to 0 (Civilization As We Know It Will 
Be Irrevocably Harmed If This File Is Not Deleted Immediately 
And With Extreme Prejudice). When the backup program 
encounters these flags, it acts accordingly. 

You might at this juncture feel compelled to point out that there 
are already backup products available that feature very similar, 
if less sarcastic, functionality. To this I can only reply, “bah.” 
My proposed program goes further, much further. There’s also 
a predictive component that will scan each file, no matter the 
format, for potentially embarrassing content and—here’s the best 
bit—report when and to what extent it will interfere with your 
future life. It can even modify or extract those damaging areas 
based on a wide range of user-configurable filters. Think of it 
as a sort of personal Minority Report. In “Forensic Avoidance” 
mode the program copies the dodgy file bit by bit into memory, 
makes the appropriate changes, and writes it to the backup 
image without modifying any of the administrative metadata: 
instant file integrity without all that messy undesirable content. 
The program download, incidentally, is free. The client is 
charged only when a file is actually backed up, on a sliding scale 
depending on degree of “posterity assurance” undertaken. It’s all 
very scientific and stuff.

The whole “subscription” model for software bothers me, now 
that we’ve brought it up. It’s like rent-to-own, except you never 
get to the “own” part. As if online privacy hasn’t taken enough of 
a beating with adware, trackers, consumer profiling, constant 
account compromises, draconian digital “rights” management, 
and shadowy government data slurping on a beyond-massive 
scale, now software companies want us to borrow their products 
temporarily in exchange for radio tracking collars on our most 
intimate computer use habits. 

Since we seem to have slopped our way over into targeted 
marketing now, let me state without fear of being regarded in 
any way as an original thinker that it cannot, statistically, be 
long before even the prime real estate of our sleep periods is 
being developed for advertising purposes. Do you have liberating 
flying dreams? Airlines and exotic travel destinations will 
pay handsomely for ads plopped down into those. Leave home 
without your pants? Clothing manufacturers have you covered.

If you’re thinking that the technology to beam these ads directly 
into your neural landscape from some advertising studio does 
not exist, you’re (probably) correct. However, they don’t need 
said technology to achieve oneiric product placement nirvana. 
All they require is a series of carefully constructed subliminal 
implants: essentially, a buffer overflow for the brain. They inject 
the right code via TV or streaming video and it runs in batch 
mode in the heap of your subconscious mind. Corporations will 
now control your nighttime data dumps even more stringently 
than before. Nowhere is safe; nothing is sacred.

To sleep: perchance to dream: ay, there’s the market; 
For in that consumer’s sleep what dreams may come 
When they are no longer able to change channels or  
          surf away, 
Must give us profit…

Once again is the immortal bard shamelessly and tastelessly 
paraphrased for petty purpose. Try haddock, and let’s see what 
slips the dogs wore.
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The State of the USENIX
by Casey Henderson, USENIX Executive Director

When I assumed the role as Executive 
Director, I had dreams of scaling USENIX 
globally to better serve our constituents. 
It is exciting that just over three years 
later, thanks to collaboration by staff and 
volunteers, USENIX is actively engaged in 
hosting events at international venues. In 
fact, as I write this, I am en route to Europe 
to visit prospective locations for SREcon18 
Europe/Middle East/Africa, and will soon 
leave for SREcon17 Asia/Australia in 
 Singapore. 

I also had dreams of creating events that 
would more directly address the challenges 
of gender diversity in our field. Now, among 
the SREcon events and the security-focused 
Enigma conference, we have succeeded in 
engineering environments with diverse 
leadership matched by attendees who are 
engaged in diversifying their respective 
fields as they strive to scale and secure 
systems. We plan to transfer the lessons 
learned from these events to our systems 
research-focused conferences.

These initiatives are rooted in the Board 
and staff’s twin goals of securing  USENIX’s 
sustainability and maintaining its relevance 
through new ways of fulfilling our mis-
sion. We face financial limitations, which 
challenge our small but mighty staff to be 
creative and flexible. I often receive ques-
tions from our constituents about why our 
Web site can’t do this and why a conference 
can’t be there. While we appreciate and keep 

track of your ideas and input, the answers 
usually tie back to a limited budget with 
ambitious plans for serving myriad commu-
nities. This makes it all the more reward-
ing to report on the progress we’ve made in 
developing new events, nurturing emerging 
communities worldwide, and engaging in 
new processes.

We currently serve 40% more attendees 
annually than we did five years ago, and are 
exploring new approaches to provide the 
best possible service with our existing staff. 
For example, you may have experienced self 
check-in at a recent USENIX event; we are 
revamping the arrival process to improve 
the attendee experience, reduce the amount 
of staff time needed to prepare for events, 
and ship fewer materials to events. By 
strategically spending to meet a variety of 
goals, we are attempting to meet the needs 
of constituents while watching the budget.

Soon you’ll see more changes to the  USENIX 
Web site, beyond the recent revamping of 
our conference pages. You’ll notice discus-
sion about ;login: as we consider the most 
effective ways to serve its audience. You’ll 
see how our events evolve as we continue 
to engage in experiments: HotSec has a 
new model in 2017; FAST and NSDI will 
 co-locate in Boston in 2019; and SOUPS 
will continue to find its home at USENIX, 
but will shift from ATC to Security in 2018. 

I hope you’ll join the Board and staff teams 
for the Annual Meeting in Santa Clara on 
July 13 to find out more about our plans and 
provide us with feedback.
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