
S U M M E R 2 0 1 7 V O L . 4 2 , N O . 2

Columns
The New pathlib Module in Python 3.6
David Beazley

Gorilla: Facebook’s Time Series Database
Dave Josephsen

Turning Problems into the Known
Jeanne Schock

To Burn or Not to Burn
Dan Geer and Jon Callas

& Evolving Ext4 for Shingled Disks
Abutalib Aghayev, Theodore Ts’o, Garth Gibson,
and Peter Desnoyers

& Persistent Memory Programming
Andy Rudoff

& Blockchain: Hype or Hope?
 Radia Perlman

& Distributed Sandbox Using SGX
 Tyler Hunt, Zhiting Zhu, Yuanzhong Xu,
Simon Peter, and Emmett Witchel

& Uptane: Secure Updates for
Automobiles

 Trishank Karthik Kuppusamy, Lois Anne
DeLong, and Justin Cappos

& Interview with Eric Allman,
Author of sendmail

U P C O M I N G E V E N T S

USENIX Open Access Policy
USENIX is the fi rst computing association to off er free and
open access to all of our conferences proceedings and
videos. We stand by our mission to foster excellence and
innovation while supporting research with a practical bias.
Your membership fees play a major role in making this
endeavor successful.

Please help us support open access. Renew your USENIX
membership and ask your colleagues to join or renew
today!

www.usenix.org/membership

USENIX ATC ’17: 2017 USENIX Annual Technical
Conference

July 12–14, 2017, Santa Clara, CA, USA
www.usenix.org/atc17

Co-located with USENIX ATC ’17
SOUPS 2017: Thirteenth Symposium on Usable
Privacy and Security
July 12–14, 2017
www.usenix.org/soups2017

HotCloud ’17: 9th USENIX Workshop on Hot Topics
in Cloud Computing
July 10–11, 2017
www.usenix.org/hotcloud17

HotStorage ’17: 9th USENIX Workshop on Hot
Topics in Storage and File Systems
July 10–11, 2017
www.usenix.org/hotstorage17

USENIX Security ’17: 26th USENIX Security
Symposium

August 16–18, 2017, Vancouver, BC, Canada
www.usenix.org/sec17

Co-located with USENIX Security ’17
WOOT ’17: 11th USENIX Workshop on Offensive
Technologies
August 14–15, 2017
www.usenix.org/woot17

CSET ’17: 10th USENIX Workshop on Cyber
Security Experimentation and Test
August 14, 2017
www.usenix.org/cset17

FOCI ’17: 7th USENIX Workshop on Free and Open
Communications on the Internet
August 14, 2017
www.usenix.org/foci17

ASE ’17: 2017 USENIX Workshop on Advances
in Security Education
August 15, 2017
www.usenix.org/ase17

HotSec ’17: 2017 USENIX Summit on Hot Topics
in Security
August 15, 2017
Submissions due June 12, 2017
www.usenix.org/hotsec17

SREcon17 Europe/Middle East/Africa
August 30–September 1, 2017, Dublin, Ireland
www.usenix.org/srecon17europe

LISA17
October 29–November 3, 2017, San Francisco, CA, USA
www.usenix.org/lisa17

Enigma 2018
January 16-18, 2018, Santa Clara, CA
Submissions due August 23, 2017
www.usenix.org/enigma2018

FAST ’18: 16th USENIX Conference on File and
Storage Technologies

February 12–15, 2018, Oakland, CA, USA
Submissions due September 28, 2017
www.usenix.org/fast18

SREcon18 Americas
March 27–29, 2018, Santa Clara, CA

NSDI ’18: 15th USENIX Symposium on Networked
Systems Design and Implementation

April 9-11, 2018, Renton, WA
Paper titles and abstracts due September 18, 2017
www.usenix.org/nsdi18

www.usenix.org/facebook

twitter.com/usenix

www.usenix.org/youtube

www.usenix.org/linkedin

www.usenix.org/gplus

E D I T O R
Rik Farrow
rik@usenix.org

M A N A G I N G E D I T O R
Michele Nelson
michele@usenix.org

C O P Y E D I T O R S
Steve Gilmartin
Amber Ankerholz

P R O D U C T I O N
Arnold Gatilao
Jasmine Murcia

T Y P E S E T T E R
Star Type
startype@comcast.net

U S E N I X A S S O C I AT I O N
2560 Ninth Street, Suite 215
Berkeley, California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

www.usenix.org

;login: is the official magazine of the USENIX
Association. ;login: (ISSN 1044-6397)
is published quarterly by the USENIX
Association, 2560 Ninth Street, Suite 215,
 Berkeley, CA 94710.

$90 of each member’s annual dues is for
a subscription to ;login:. Subscriptions for
non members are $90 per year. Periodicals
postage paid at Berkeley, CA, and additional
mailing offices.

POSTMASTER: Send address changes to
;login:, USENIX Association, 2560 Ninth Street,
Suite 215, Berkeley, CA 94710.

©2017 USENIX Association
USENIX is a registered trademark of the
USENIX Association. Many of the designa-
tions used by manufacturers and sellers
to distinguish their products are claimed
as trademarks. USENIX acknowledges all
trademarks herein. Where those desig-
nations appear in this publication and
USENIX is aware of a trademark claim,
the designations have been printed in caps
or initial caps.

S U M M E R 2 0 1 7 V O L . 4 2 , N O . 2

E D I T O R I A L
2 Musings Rik Farrow
4 Letter to the Editor

F I L E S Y S T E M S A N D S T O R A G E
6 How to Fragment Your File System Alex Conway, Ainesh Bakshi,

Yizheng Jiao, Yang Zhan, Michael A. Bender, William Jannen,
Rob Johnson, Bradley C. Kuszmaul, Donald E. Porter, Jun Yuan,
and Martin Farach-Colton

12 Evolving Ext4 for Shingled Disks Abutalib Aghayev, Theodore Ts’o,
Garth Gibson, and Peter Desnoyers

20 Redundancy Does Not Imply Fault Tolerance: Analysis of Distributed
Storage Reactions to Single Errors and Corruptions Aishwarya Ganesan,
Ramnatthan Alagappan, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau

27 Scaling Namespace Operations with Giraffa File System
Konstantin V. Shvachko and Yuxiang (Chris) Chen

31 2017 USENIX Research in Linux File and Storage Technologies Summit
(Linux FAST Summit ’17) Rik Farrow

P R O G R A M M I N G
34 Persistent Memory Programming Andy Rudoff

41 It’s Better to Rust Than Wear Out Graeme Jenkinson

46 Interview with Eric Allman Rik Farrow

S E C U R I T Y
49 Migrating to BeyondCorp: Maintaining Productivity While Improving

Security Jeff Peck, Betsy Beyer, Colin Beske, and Max Saltonstall

56 Ryoan: A Distributed Sandbox for Untrusted Computation on Secret
Data Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett Witchel

63 Securing Software Updates for Automotives Using Uptane 
Trishank Karthik Kuppusamy, Lois Anne DeLong, and Justin Cappos

68 Blockchain: Hype or Hope? Radia Perlman

73 Internet of Pwnable Things: Challenges in Embedded Binary Security 
Jos Wetzels

C O L U M N S
78 Revisiting Pathlib David Beazley
82 Practical Perl Tools: Perl on a Plane David N. Blank-Edelman
86 iVoyeur: 2 Bits Dave Josephsen
89 Turning Problems into the Known Jeanne Schock
91 For Good Measure: To Burn or Not to Burn Dan Geer and Jon Callas
94 /dev/random Robert G. Ferrell

U S E N I X N O T E S
96 The State of the USENIX  Casey Henderson

http://www.usenix.org
http://www.usenix.org
http://www.comcast.net
http://www.usenix.org

2  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

EDITORIALMusings
R I K F A R R O W

Rik is the editor of ;login:.
rik@usenix.org W e’ve got a jam-packed issue this time, so I thought I’d cut right to

the chase. Instead of musing, I will just tell you why I picked a
particular author, set of authors, or topic for your edification. The

reason, in some cases, is to attempt to disabuse you of long-held beliefs.

We begin with Conway et al., who researched the issue of file system fragmentation in Linux [1].
The researchers used a Git workload and showed that all of the popular Linux file systems
suffer performance degradation, even on SSDs. After just 100 pulls, hard drive performance
was halved, while it took a bit more activity, 800 pulls, to reduce SSD performance by 25%.
The authors do have an agenda: their own file system design, BetrFS, doesn’t manifest this
problem and is faster than other Linux file systems in many cases.

Disk drive manufacturers have been hiding information from us. For many years (decades?),
they have converted the logical block address into the physical location of their firmware’s
choice, so file system designs that attempt to prevent fragmentation really don’t have much of
a chance. But there’s more: hard drives with capacities greater than two terabytes use device
managed shingled magnetic recording (SMR). The Aghayev et al. article describes changes
they made to ext4 that improve performance not just on SMR drives, but on any hard drive.

Ganesan and company delve into another of our popular myths: that having redundant copies
makes our distributed data secure. They researched a number of distributed file systems and
databases, induced read or write errors, and discovered some really terrible things. That is, I
think it’s bad when having multiple copies means that the bad copy gets used to overwrite the
good copy, or when a failed read crashes the system. You might want to read this even if you
don’t use any of the eight distributed systems they tested.

Shvachko and Chen take another look at HDFS. The single-point-of-failure NameNode has
long been an issue, and their Giraffa system replaces the NameNode with a distributed nam-
ing and block management system. HopsFS, from the Niazi et al. paper at FAST ’17 [2], also
confronts this issue, although using a different approach.

Programming
Andy Rudoff, who wrote about persistent memory for ;login: way back in 2013, has written
about the PMEM libraries currently available for use with Linux and Windows systems.
These libraries focus on using PMEM as memory-mapped files (mmap()), but Rudoff also tells
us about some other useful libraries and explains how best to use these new devices. Oh, and
during Rudoff’s FAST ’17 tutorial on this topic, he kept waving around an Intel-Micron 3D
XPoint device. I actually held this device, and can tell you that it’s real. PMEM will change
the way many systems work in profound ways.

Graeme Jenkinson has written a great article explaining Rust, a programming language with
a focus on type safety. Will Rust save the world from buggy code? Probably not, as most people
are addicted to whatever they currently use. But Rust is still really worth looking at.

I interviewed Eric Allman, the author of both syslog and sendmail. Eric has traveled the open
source road, a journey more often painful than rewarding for him.

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 3

EDITORIAL
Musings

Security
Peck et al. have written what may be the final article in the series
on BeyondCorp. BeyondCorp has been a journey away from
traditional, trusted, internal networks and into a Zero Trust
 network design [3]. This article is about the paths taken, ones
that couldn’t have succeeded without the long process of gain-
ing the trust of the users of Google’s networks, learning what
could easily be migrated, and how to migrate the more unusual
services, over several years.

Hunt et al. have written about the Ryoan sandbox, a system
designed to run within Intel SGX enclaves on a distributed sys-
tem. Their model provides assurance that the expected software
is running in the sandbox, that the data sent through the sandbox
remains private, and that the sandbox doesn’t leak much infor-
mation through covert channels. You can also learn a lot about
how SGX enclaves work by reading their article or their OSDI ’16
paper [4].

Kuppaswamy, DeLong, and Kappos challenge people to find
flaws in their design, Uptane, for providing secure firmware
updates for automobiles. Cars are loaded with computers, and
many new cars are also network-connected, so having a secure
method for installing updates that works both within cars and
for car manufacturers is more important than ever.

Radia Perlman reprises her talk at LISA16 about Bitcoin. Radia
compares the design and capabilities of Bitcoin to other systems,
past and present. Bitcoin design has attracted lots of attention
and investors, but is it really any better than other cryptographic
systems?

Jos Wetzels spoke at Enigma 2017 about embedded system secu-
rity. Wetzels researches IoT security issues, and in this article
he describes some of the issues facing both researchers and
developers of software for embedded systems. In short, things
don’t look promising, but policy and regulation could set a rea-
sonable baseline for the IoT, just as RoHS [5] already restricts
the use of certain hazardous substances in electrical and elec-
tronic equipment.

Columns
Dave Beazley explores the new pathlib module that appears in
Python 3.4 and later. Dave had written about pathlib several
years ago, and he demonstrates some of the things you can do
with that module, as well as things you can’t do. Then Dave
explains both how pathlib improves pathname manipulation,
but also problems that arise with incompatibilities between
pathlib objects and other functions that accept pathnames.

David Blank-Edelman explores Perl modules from the air.
David takes us on a tour of some of the modules that come with
a stock install of Perl, a very different approach to his usual
Perl examples.

Dave Josephsen gets excited about compression. Dave tells us
about Gorilla, a time series database that has been open sourced
by Facebook and is designed to keep the most recent data in
memory. In particular, Dave explains some of the tricks used to
compress datestamps in time series.

We have a new columnist this issue. Jeanne Schock, who has
worked as a system administrator and now focuses on change,
incident, and problem management, has written about root
causes and their relations to problems. Seems obvious, right?
Well, read on, because it’s not that obvious.

Dan Geer and Jon Callas have written about the impact of
revealing a nation-state’s exploit toolkit [6]. You’ll have to read
their column, as it’s an interesting exercise in game theory.

Robert Ferrell considers how modern backup systems should
work, then takes pokes at software subscriptions and advertis-
ing that targets your dreams. You might think you know what
that means, having watched ads with people driving fancy cars
 sitting next to the mate of their dreams. But that’s not what
Robert means.

Sometimes it seems to me that things are changing much too
quickly to keep up with. Then I notice that Tim Feldman wrote
about SMR drives in 2013 [7], just as Andy Rudoff was writ-
ing about PMEM the same year. Four years later, and we are
just now seeing the effects of the concepts discussed back then,
and while there are millions of SMR drives in use, there aren’t
any 3D XPoint cards available on the open market. As William
Gibson quipped in 1993, “The future is already here—it’s just not
evenly distributed.”

4  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

EDITORIAL
Musings

References
[1] A. Conway, A. Bakshi, Y. Jiao, Y. Zhan, R. Johnson, B. C.
Kuszmaul, and M. Farach-Colton, “File Systems Fated for
Senescence? Nonsense, Says Science!” in Proceedings of the
15th USENIX Conference on File and Storage Technologies
(FAST ’17): https://www.usenix.org/system/files/conference
/fast17/fast17-conway.pdf.

[2] S. Niazi, M. Ismail, S. Haridi, J. Dowling, S. Grohsschmiedt,
and M. Ronström, “HopsFS: Scaling Hierarchical File System
Metadata Using NewSQL Databases,” in Proceedings of the
15th USENIX Conference on File and Storage Technologies
(FAST ’17): https://www.usenix.org/system/files/conference
/fast17/fast17-niazi.pdf.

[3] D. Barth and E. Gilman, “Zero Trust Networks: Building
Trusted Systems in Untrusted Networks,” SREcon17 Americas:
https://www.usenix.org/conference/srecon17americas/program
/presentation/barth.

[4] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan: A
Distributed Sandbox for Untrusted Computation on Secret
Data,” in Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’16):
https://www.usenix.org/conference/osdi16/technical-sessions
/presentation/hunt.

[5] Wikipedia, “Restriction of Hazardous Substances Directive,”
last modified on March 24, 2017: https://en.wikipedia.org/wiki
/Restriction_of_Hazardous_Substances_Directive.

[6] I. Thomson, “That CIA Exploit List in Full: The Good, the
Bad, and the Very Ugly,” The Register, March 4, 2017: https://
www.theregister.co.uk/2017/03/08/cia_exploit_list_in_full/.

[7] T. Feldman and G. Gibson, “Shingled Magnetic Recording:
Areal Density Increase Requires New Data Management,”
;login:, vol. 38, no. 3 (June 2013), pp. 22–30: https://www.usenix
.org/system/files/login/issues/1306_login_online.pdf.

Letter to the Editor
Hi folks,

I just read the interview with Amit in ;login: while I’m on the
road to AsiaCCS. Great interview, and it’s nice to see renewed
interest in security for embedded devices.

Tock sounds interesting and I’ll definitively check it out.

The fun part is that at AsiaCCS I’ll present our work on enforc-
ing memory safety for TinyOS [1]. We have worked on porting a
CCured-like type system to nesC and enforce memory safety for
a set of embedded devices at low overhead.

Embedded devices have unique advantages such as mostly static
allocation, a well known stack depth, and a bunch of other inter-
esting features that can be used to enforce strong protections,
mostly statically, only falling back to a runtime check when
absolutely required. In addition, there’s usually a single task and
dedicated resources, so we can leverage all available slack for
security mechanisms.

Coincidentally, we also have an upcoming paper at Oakland [2]
on protecting embedded devices using a privilege overlay.
Embedded devices often run bare-metal. Our idea was to
deprivilege all instructions and then, based on a static analysis,
enable privileges on only a few locations and instructions. The
MPU allows a dynamic configuration of these privilege overlays
and enables quick switches.

It’s amazing to see the renewed interest in protecting embedded
systems, and I’d love to talk as we’re continuing to work in that
area!

Cheers,
Mathias Payer

References
[1] https://nebelwelt.net/publications/files/17AsiaCCS2.pdf.

[2] http://nebelwelt.net/publications/files/17Oakland.pdf.

https://www.usenix.org/system/files/conference/fast17/fast17-conway.pdf
https://www.usenix.org/system/files/conference/fast17/fast17-conway.pdf
https://www.usenix.org/system/files/conference/fast17/fast17-niazi.pdf
https://www.usenix.org/system/files/conference/fast17/fast17-niazi.pdf
https://www.usenix.org/conference/srecon17americas/program/presentation/barth
https://www.usenix.org/conference/srecon17americas/program/presentation/barth
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/hunt
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/hunt
https://en.wikipedia.org/wiki/Restriction_of_Hazardous_Substances_Directive
https://en.wikipedia.org/wiki/Restriction_of_Hazardous_Substances_Directive
https://www.theregister.co.uk/2017/03/08/cia_exploit_list_in_full/
https://www.theregister.co.uk/2017/03/08/cia_exploit_list_in_full/
https://www.usenix.org/system/files/login/issues/1306_login_online.pdf
https://www.usenix.org/system/files/login/issues/1306_login_online.pdf

JAN 16–18, 2018
S A N TA CL A R A , C A , US A

A USENIX CONFERENCE

CALL FOR PARTICIPATION NOW OPEN!

SECURIT Y AND PRIVAC Y IDEAS THAT MAT TER
Enigma centers on a single track of engaging talks covering a wide range of topics in security

and privacy. Our goal is to clearly explain emerging threats and defenses in the growing
intersection of society and technology, and to foster an intelligent and informed conversation

within the community and the world. We view diversity as a key enabler for this goal and
actively work to ensure that the Enigma community encourages and welcomes participation

from all employment sectors, racial and ethnic backgrounds, nationalities, and genders.

Enigma is committed to fostering an open, collaborative, and respectful environment.
Enigma and USENIX are also dedicated to open science and open conversations, and will

make all talk media freely available on the USENIX web site.

See the complete CFP at www.usenix.org/enigma2018/cfp

PROGR AM CO-CHAIRS

Franziska Roesner,
University of Washington

Bryan Payne,
Netflix

6  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

FILE SYTEMS AND STORAGEHow to Fragment Your File System
A L E X C O N W A Y , A I N E S H B A K S H I , Y I Z H E N G J I A O , Y A N G Z H A N , M I C H A E L A . B E N D E R ,
W I L L I A M J A N N E N , R O B J O H N S O N , B R A D L E Y C . K U S Z M A U L , D O N A L D E . P O R T E R ,
J U N Y U A N , A N D M A R T I N F A R A C H - C O L T O N

Alex Conway is a PhD student
at Rutgers University, New
Brunswick, New Jersey. His
research interests include
the theory and application

of external memory algorithms and data
structures, caching algorithms, and file
systems. alexander. conway@rutgers.edu

Ainesh Bakshi is looking
forward to starting a PhD in
computer science at Carnegie
Mellon University in 2017.
He graduated from Rutgers

University, New Brunswick, New Jersey. His
research interests broadly include algorithms
and theoretical machine learning, with a focus
on algorithms that look to bridge the gap
between theory and practice.
aineshbakshi@gmail.com

Yizheng Jiao is a PhD student
at Stony Brook University. His
research interests focus on
storage system design and
implementation. Currently, he

is working on a write-optimized file system
for high-speed storage devices as well as
efficient memory system design of big data
applications. He also is interested in hacking
the Linux kernel storage stack and database
index engine. yizheng@cs.unc.edu

Yang Zhan is a PhD student at
the University of North Carolina
at Chapel Hill and is advised
by Donald Porter. His research
mainly focuses on write-

optimized data structures. He also works on
concurrent data structures. yzhan@cs.unc.edu

File systems attempt to avoid aging, or fragmentation over time,
by strategically allocating space for files. System implementers
and users alike treat aging as a solved problem. Here, we present a

 realistic workload, based on Git, that can cause these best-guess file-block-
placement heuristics to fail, inducing large performance declines due to
aging. This performance decline cannot be prevented with more caching
or larger disks, and SSDs reduce but do not eliminate the aging effects. Our
Git-based aging scheme can simulate a year of aging in under an hour. To
make it easy for practitioners to incorporate aging into benchmarks, we
have open-sourced our aging scripts at betrfs.org.

File-system fragmentation occurs when a file system stores a file or directory’s contents
in discontiguous ranges of disk blocks. As a file system becomes more fragmented, per-
formance can drop significantly, since reading the file requires issuing multiple I/Os to
disk. The performance drop can be particularly severe on rotating disks, where each I/O
may require a disk seek. Maintaining locality in a file system as files grow, shrink, and are
renamed can be challenging.

For many years, file systems did not include effective measures for avoiding fragmentation.
The seminal work of Smith and Seltzer [7] showed that FFS file systems age under realistic
workloads, and this aging affects performance.

Users mitigated fragmentation in early file systems by running special tools to defragment
their file systems. Defragmenters reorganize file contents so that each file is stored in a
contiguous range of disk blocks.

Modern file systems, on the other hand, strive to avoid fragmentation by applying best effort
heuristics at allocation time. For example, file systems try to place related files close together
on disk, while also leaving empty space for future files [1, 4, 5, 8]. These and other heuristics
attempt to stay ahead of fragmentation wrought by normal file-system usage.

Fragmentation is thus widely viewed as a solved problem. For example, the Linux System
Administrator’s Guide [9] says:

Modern Linux file systems keep fragmentation at a minimum by keeping all blocks
in a file close together, even if they can’t be stored in consecutive sectors. Some file
systems, like ext3, effectively allocate the free block that is nearest to other blocks in
a file. Therefore it is not necessary to worry about fragmentation in a Linux system.

As a result, few users run defragmentation tools. Furthermore, few file-system benchmarks
attempt to age the file system before measuring its performance.

In this article, we demonstrate that modern file systems can still suffer from fragmentation
under representative workloads, and we describe a simple method for quickly inducing aging.
Our results suggest that fragmentation can be a first-order performance concern—some file
systems slow down by over 20x over the course of our experiments. We show that fragmen-
tation causes performance declines on both hard drives and SSDs, when there is plentiful
cache available, and even on large disks with ample free space.

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 7

FILE SYTEMS AND STORAGE

Fragmentation remains important because there is a large gap between sequential and
random I/O performance of storage devices [2]. On rotating disks, even a few seeks can have
an outsized effect on performance. For example, if a file system places a 100 MiB file in 200
disjoint pieces (i.e., 200 seeks) on a disk with 100 MiB/s bandwidth and 5 ms seek time, read-
ing the data will take twice as long as reading it in an ideal layout.

Even on SSDs, which do not perform mechanical seeks, a decline in locality can harm perfor-
mance [6]. Figure 1 shows that both HDDs and SSDs achieve substantially higher throughput
when reading large blocks. On both types of hardware, we found that a surprisingly large
read block of 4 MiB is necessary to achieve 75% of device bandwidth (see [2] for the specifics
of our experimental setup).

Our technique for causing fragmentation makes it easy for file-system implementers and
benchmarkers to incorporate aging into their evaluations. Our technique can cause years’
worth of file-system aging in just a few hours and can take regular measurements as the file
system ages. File systems begin aging almost immediately in our experiments, meaning that
implementers and benchmarkers can use our tools to induce significant aging in under an hour.

The gold standard for realistically aging a file system is to replay a trace of file-system opera-
tions from a real system. Unfortunately, such traces are almost impossible to find. Smith and
Seltzer proposed to approximate such traces by interpolating changes between successive
file-system snapshots collected during a multi-year experiment [7]. Unfortunately, years-
long collections of file-system snapshots have also been hard to come by.

Michael A. Bender is a
Professor of Computer Science
at Stony Brook University.
He was Founder and Chief
Scientist at Tokutek, Inc., an

enterprise database company, which was
acquired by Percona in 2015. Bender’s research
interests span the areas of data structures
and algorithms, I/O-efficient computing,
scheduling, and parallel computing. Bender
received his BA in applied mathematics from
Harvard University in 1992 and obtained a
DEA in computer science from the Ecole
Normale Superieure de Lyon, France, in 1993.
He completed a PhD on scheduling algorithms
from Harvard University in 1998.
bender@cs.stonybrook.edu

William Jannen teaches at
Williams College, where he
attempts to design systems
that accommodate the
physical characteristics of their

underlying media. He is also an artist and a
player of games. wjannen@cs.stonybrook.edu

Rob Johnson is a Senior
Researcher at VMware and
Research Assistant Professor
at Stony Brook University. He
developed BetrFS, invented

the quotient filter, founded cache-adaptive
analysis, broke the High-bandwidth Digital
Content Protection (HDCP) crypto-system,
and co-authored CQual, a static analysis tool
that has found dozens of bugs in the Linux
kernel. rob@cs.stonybrook.edu

Until July 2016, Bradley C.
Kuszmaul was a Research
Scientist in the Computer
Science and Artificial Intelligence
Laboratory at the Massachusetts

Institute of Technology (MIT CSAIL), where his
research focused on performance engineering
of multicore software as well as data structures
and algorithms that optimize cache and disk I/O.
He has now joined the Bare Metal Cloud group
at Oracle. bradley@mit.edu

0.004 0.016 0.063 0.25 1 4 16 64 256

0.25

1

4

16

64

256

1024

Read size (MiB)

E
ff
ec
ti
ve

b
an

d
w
id
th

(M
iB

p
er

se
co
n
d
)

SSD HDD

Figure 1: Effective bandwidth vs. read size (higher is better). Even on SSDs, large I/Os can yield an order of
magnitude more bandwidth than small I/Os.

8  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

FILE SYSTEMS AND STORAGE
How to Fragment Your File System

The key idea behind our aging technique is that we can view open-source Git (or any other
version control system) repositories as collections of snapshots of the developers’ file systems.
Furthermore, replaying a repository’s revision history will replay a significant portion of
the developers’ actual file system activity, since many developers pull changes from their
 collaborators multiple times per day. Thus replaying the revision history should induce frag-
 mentation similar to that experienced by the developers when they were working on the project.

The large number of open-source projects—many of them with over a decade of history—
means that we can now easily induce representative aging in file systems. Our scripts, avail-
able at betrfs.org, make it straightforward for developers and benchmarkers to integrate
aging into their performance measurements.

How to Age Your File System
In the experiments in this article, we replay commits to the Linux kernel Git repository
hosted on github.com. We start from the first commit and proceed in chronological order.
After every 100 Git pulls, we unmount and remount the file system, clear all caches, and
measure read performance (Figure 2).

We measure performance by the wall-clock time required to perform a recursive grep start-
ing from the root directory of the file system. This operation descends through the directory
structure, reading the content of each file. This grep reads a sequence of file and metadata
blocks, which we call the logical order of the file-system blocks. Fragmentation occurs when
two logically successive blocks are not stored in adjacent logical block addresses on the stor-
age device. Greater fragmentation means that the average I/O size is smaller. As shown in
Figure 1, this reduces the effective bandwidth, causing the grep to take longer.

We divide fragmentation into three categories:

◆◆ Intrafile is fragmentation involving blocks from the same file.

◆◆ Interfile is fragmentation involving blocks from two different files.

◆◆ Metadata is fragmentation involving at least one metadata block.

A recursive grep measures the impact of all these types of fragmentation on overall file-
system performance.

When we run our Git aging workload, various statistics of the file system will naturally
change over time as files and directories are created, modified, and deleted. For example,
as a project progresses, it might include more small files, or subdirectories may include
more source files. In order to make direct comparisons, we need to normalize for such
changes. First, we normalize for file-system size by reporting the grep time in seconds
per GiB. We obtain the file-system size from the output of du.

In order to measure potential aging, after each measurement, we copy the entire file
system to a freshly formatted file system on another partition and repeat the performance

Donald E. Porter is an Assistant
Professor of Computer Science
at the University of North
Carolina at Chapel Hill and,
by courtesy, at Stony Brook

University. His research aims to improve
computer system efficiency and security. In
addition to recent work on write-optimization
in file systems, recent projects have developed
lightweight guest operating systems for virtual
environments, system security abstractions,
and efficient data structures for caching.
porter@cs.unc.edu

Jun Yuan is an Assistant
Professor of Computer Systems
at Farmingdale State College
of SUNY, New York. Her
research interests primarily lie

in systems and data structures. In addition
to write-optimized file systems, she has
researched programming-language-based
security and access control on the Android OS.
yuanj@farmingdale.edu

Martin Farach-Colton is a
Professor of Computer Science
at Rutgers University, New
Brunswick, New Jersey. His
research focuses on both

the theory and practice of external memory
and storage systems. He was a pioneer in
the theory of cache-oblivious analysis. His
current research focuses on the use of write
optimization to improve performance in both
read- and write-intensive big data systems.
He has also worked on the algorithmics of
strings and metric spaces, with applications
to bioinformatics. In addition to his academic
work, Professor Farach-Colton has extensive
industrial experience. He was CTO and co-
founder of Tokutek, a database company that
was founded to commercialize his research.
During 2000–2002, he was a Senior Research
Scientist at Google. farach@cs.rutgers.edu

Figure 2: The Git workload

Do 100 Git pulls

Measure performance

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 9

FILE SYSTEMS AND STORAGE
How to Fragment Your File System

measurement there. We call this copy of the file system the clean
instance, since the file system does not undergo any changes
after the files are copied to it. The logical states of both file
systems are the same; any performance difference between the
aged and clean instances of a file system are due to the history
of preceding operations.

Do modern file systems age? Figure 3 shows the results of
aging btrfs with Git on a hard drive. The grep performance drops
by a factor of 20 after 10,000 pulls. This drop in performance
happens quickly; it only takes 100 pulls for a 2x slowdown and
1100 pulls for a 10x slowdown. Moreover, the grep ends up being
very slow in absolute terms; by the end of the test it takes more
than eight minutes to grep through 1 GiB.

In this article, we present only one file system in each experi-
ment. Our USENIX FAST paper evaluates five popular Linux
file systems under all of these experimental conditions and finds
similar results [2].

Do SSDs fix aging? When we run the same workload on an
SSD, we would expect to see less aging as a result of the superior
random-read performance. Figure 4 shows the results of aging
XFS with Git on an SSD. Although the slowdown due to aging
is smaller, it is still significant. After 10,000 pulls, greps in
the aged file-system instance are 1.9x slower than in the clean
instance. After 800 pulls, the slowdown is 25%, and after 2,500
pulls, the slowdown is 50%.

Does caching fix aging? If most or all of our file system fits in
cache, then the on-disk layout will not affect grep performance,

since reads will be served from cache. We evaluated the sensitiv-
ity of the Git workloads to varying amounts of system RAM and,
therefore, varying amounts of available disk cache. We use the
same Git aging procedure, except that we do not flush any caches
or remount the hard drive between iterations. The size of the
data on disk is initially about 280 MiB and grows throughout the
test to approximately 1.2 GiB.

The results for ext4 on a hard drive are summarized in Figure
5. When there is sufficient memory to keep all the data in cache,
the grep is very fast. As soon as the size of the file system grows
above a threshold, however, the warm-cache performance of grep
quickly approaches the cold-cache performance. Furthermore,
once the file system is no longer cached, the warm-cache perfor-
mance is in all cases worse than the cold-cache performance of a
clean copy of the file system. Unless all data fits into cache, there-
fore, fragmentation is a major driver of file-system performance.

Do big disks fix aging? The results shown in Figures 3 and 4
were performed on a 20 GiB partition in which the file system
size never exceeded 1.2 GiB; therefore, the partition is never
more than 6% full. If we run the Git workload on partitions of
different sizes, as shown in Figure 6, we see that having a larger
partition does not eliminate (or even mitigate) aging.

In fact, as the partition gets larger, the clean performance of
ext4 gets worse. This is because ext4 spreads data across the
partition in order to leave room for future files. Thus, the larger
partition size actually results in longer seeks.

Figure 3: Git aging workload on btrfs on HDD. The overall slowdown is
20.6x. Lower is better.

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000
0

2

4

6

8

10

12

14

16

18

20

Pulls accrued
G
re
p
co
st

(s
ec
/G

iB
)

XFS aged
XFS clean

Figure 4: Git aging workload on XFS on SSD. The overall slowdown is 1.9x.
Lower is better.

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000
0

50

100

150

200

250

300

350

400

450

500

550

Pulls accrued

G
re
p
co
st

(s
ec
/G

iB
)

Btrfs aged
Btrfs clean

10  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

FILE SYSTEMS AND STORAGE
How to Fragment Your File System

Conclusion
The experiments above show that modern file systems can still
age substantially under workloads representative of a typical
software developer’s file-system usage. They also show that
SSDs, caching, and large disks do not prevent aging in today’s
file systems, though SSDs can help.

Furthermore, these results demonstrate that many modern file
system design features, such as delayed allocation, cylinder or
block groups, and extents, do not prevent aging. The file systems
in these benchmarks included some or all of these features, but
they aged nonetheless.

Our USENIX FAST paper delves into other file-system design
tradeoffs related to aging and confirms that our research proto-
type file system, BetrFS [3, 10], exhibits almost no aging [2].

Our Git-based method for inducing aging makes it easy to
incorporate aging into file-system benchmarks. Our scripts are
available at betrfs.org.

Acknowledgments
Part of this work was done while Jiao, Porter, Yuan, and Zhan
were at Stony Brook University. This research was supported in
part by NSF grants CNS-1409238, CNS-1408782, CNS-1408695,
CNS-1405641, CNS-1161541, IIS-1247750, CCF-1314547, a
NetApp Faculty Fellowship, and VMware.

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000
0

100

200

300

400

500

600

700

800

Pulls Accrued

G
re
p
co
st

(s
ec
/G

iB
)

768MiB
1024MiB
1280MiB
1536MiB
2048MiB
cold cache aged
cold cache clean

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000
0

100

200

300

400

500

600

700

800

900

Pulls accrued

G
re
p
co
st

(s
ec
/G

iB
)

4GiB aged
4GiB clean
16GiB aged
16GiB clean
64GiB aged
64GiB clean
256GiB aged
256GiB clean

Figure 5: grep costs as a function of Git pulls with warm cache and vary-
ing system RAM on ext4 (top). Lower is better.

Figure 6: grep costs as a function of Git pulls with varying partition size
on ext4. Lower is better.

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 11

FILE SYSTEMS AND STORAGE
How to Fragment Your File System

References
[1] R. Card, T. Ts’o, and S. Tweedie, “Design and Implementa-
tion of the Second Extended Filesystem,” in Proceedings of the
First Dutch International Symposium on Linux, pp. 1–6: http://
e2fsprogs.sourceforge.net/ext2intro.html.

[2] A. Conway, A. Bakshi, Y. Jiao, Y. Zhan, R. Johnson, B. C.
Kuszmaul, and M. Farach-Colton, “File Systems Fated for
Senescence? Nonsense, Says Science!” in Proceedings of the
15th USENIX Conference on Fi‑le and Storage Technologies
(FAST ’17), pp. 45–58: https://www.usenix.org/system/files
/conference/fast17/fast17-conway.pdf.

[3] W. Jannen, J. Yuan, Y. Zhan, A. Akshintala, J. Esmet, Y. Jiao,
A. Mittal, P. Pandey, P. Reddy, L. Walsh, M. Bender, M. Farach-
Colton, R. Johnson, B. C. Kuszmaul, and D. E. Porter, “BetrFS: A
Right-Optimized Write-Optimized File System,” in Proceedings
of the 13th USENIX Conference on File and Storage Technologies
(FAST ’15), pp. 301–315: https://www.usenix.org/system/files
/conference/fast15/fast15-paper-jannen_william.pdf.

[4] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas,
and L. Vivier, “The New ext4 Filesystem: Current Status and
Future Plans,” in Proceedings of the Ottawa Linux Symposium
(OLS), vol. 2 (2007), pp. 21–34: https://www.kernel.org/doc/ols
/2007/ols2007v2-pages-21-34.pdf.

[5] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry, “A
Fast File System for UNIX,” ACM Transactions on Computer
Systems (TOCS), vol. 2, no. 3 (August 1984), pp. 181–197: https://
cs162.eecs.berkeley.edu/static/readings/FFS84.pdf.

[6] C. Min, K. Kim, H. Cho, S. Lee, and Y. I. Eom, “SFS: Random
Write Considered Harmful in Solid State Drives,” in Proceed‑
ings of the 10th USENIX Conference on File and Storage Technol‑
ogies (FAST ’12), pp. 139–154: https://www.usenix.org/system
/files/conference/fast12/min.pdf.

[7] K. A. Smith and M. Seltzer, “File System Aging—Increasing
the Relevance of File System Benchmarks,” in Proceedings of
the 1997 ACM SIGMETRICS International Conference on Mea‑
surement and Modeling of Computer Systems (SIGMETRICS),
pp. 203–213: https://www.eecs.harvard.edu/margo/papers
/sigmetrics97-fs/paper.pdf.

[8] S. Tweedie, “EXT3, Journaling Filesystem,” Proceedings
of the Ottawa Linux Symposium (OLS), (July 20, 2000), pp.
24–29: http://olstrans.sourceforge.net/release/OLS2000-ext3
/OLS2000-ext3.pdf.

[9] L. Wirzenius, J. Oja, S. Stafford, and A. Weeks, Linux System
Administrator’s Guide, The Linux Documentation Project,
 Version 0.9, 2004: http://www.tldp.org/LDP/sag/sag.pdf.

[10] J. Yuan, Y. Zhan, W. Jannen, P. Pandey, A. Akshintala, K.
Chandnani, P. Deo, Z. Kasheff, L. Walsh, M. Bender, M. Farach-
Colton, R. Johnson, B. C. Kuszmaul, and D. E. Porter, “Optimiz-
ing Every Operation in a Write-Optimized File System,” in
Proceedings of the 14th USENIX Conference on File and Stor‑
age Technologies (FAST ’16), pp. 1–14: https://www.usenix.org
/system/files/conference/fast16/fast16-papers-yuan.pdf.

http://e2fsprogs.sourceforge.net/ext2intro.html
http://e2fsprogs.sourceforge.net/ext2intro.html
https://www.usenix.org/system/files/conference/fast17/fast17-conway.pdf
https://www.usenix.org/system/files/conference/fast17/fast17-conway.pdf
https://www.usenix.org/system/files/conference/fast15/fast15-paper-jannen_william.pdf
https://www.usenix.org/system/files/conference/fast15/fast15-paper-jannen_william.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf
https://cs162.eecs.berkeley.edu/static/readings/FFS84.pdf
https://cs162.eecs.berkeley.edu/static/readings/FFS84.pdf
https://www.usenix.org/system/files/conference/fast12/min.pdf
https://www.usenix.org/system/files/conference/fast12/min.pdf
https://www.eecs.harvard.edu/margo/papers/sigmetrics97-fs/paper.pdf
https://www.eecs.harvard.edu/margo/papers/sigmetrics97-fs/paper.pdf
http://olstrans.sourceforge.net/release/OLS2000-ext3/OLS2000-ext3.pdf
http://olstrans.sourceforge.net/release/OLS2000-ext3/OLS2000-ext3.pdf
http://www.tldp.org/LDP/sag/sag.pdf
https://www.usenix.org/system/files/conference/fast16/fast16-papers-yuan.pdf
https://www.usenix.org/system/files/conference/fast16/fast16-papers-yuan.pdf

12  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

FILE SYSTEMS AND STORAGE

Evolving Ext4 for Shingled Disks
A B U T A L I B A G H A Y E V , T H E O D O R E T S ’ O , G A R T H G I B S O N , A N D
P E T E R D E S N O Y E R S

Multi-terabyte hard disks today use Shingled Magnetic Recording
(SMR), a technique that increases capacity at the expense of more
costly random writes. We introduce ext4-lazy, a small change to

the popular Linux ext4 file system that eliminates a major source of random
writes—the metadata writeback—significantly improving performance on
SMR disks in general, as well as on conventional disks for metadata-heavy
workloads in particular. In this article, we briefly explain why SMR disks
suffer under random writes and how ext4-lazy helps.

To cope with the exponential growth of data, as well as to stay competitive with NAND
flash-based solid state drives (SSDs), hard disk vendors are researching capacity-increasing
technologies. Shingled Magnetic Recording (SMR) is one such technique that allows disk
manufacturers to increase areal density with existing fabrication methods. So far, the industry
has introduced two kinds of SMR disks: Drive-Managed (DM-SMR) and Host-Managed (HM-
SMR). HM-SMR disks have a novel backward-incompatible interface that requires changes to
the I/O stack and, therefore, are not widely deployed. DM-SMR disks, on the other hand, are a
drop-in replacement for Conventional Magnetic Recording (CMR) disks that offer high capac-
ity with the traditional block interface. Millions of DM-SMR disks have been shipped; in the
rest of the article, therefore, we will use SMR disk as a shorthand for DM-SMR disk.

If you buy a multi-terabyte disk today, there is a good chance that it is an SMR disk in dis-
guise, which is easy to tell: unlike CMR disks, SMR disks suffer performance degradation
when subjected to continuous random write traffic, as Figure 1 shows.

One approach to adopting SMR disks is to develop a file system from scratch based on their
performance characteristics. But file systems are complex and critical pieces of code that
take years to mature. Therefore, we take an evolutionary approach to adopting these disks:
we make a small change to the popular Linux file system, ext4, that significantly improves
its performance on SMR disks by avoiding random metadata writes.

We introduce a simple technique that we call lazy writeback journaling, and we call a ver-
sion of ext4 using our journaling technique ext4-lazy. Like other journaling file systems, by
default ext4 writes metadata twice; as Figure 2a shows, it first writes the metadata block to
a temporary location J in the journal and then marks the block as dirty in memory. Once the
block has been in memory for long enough, a writeback thread writes the block to its static
location S, resulting in a random write. Although metadata writeback is typically a small
portion of a workload, it results in many random writes. Ext4-lazy, on the other hand, marks
the block as clean after writing it to the journal, to prevent the writeback, and inserts a map-
ping (S, J) to an in-memory map allowing the file system to access the block in the journal,
as seen in Figure 2b. Since the journal is written sequentially to a circular log, overwriting
a metadata block is not possible. Therefore, ext4-lazy writes an updated block to the head of
the log, updating the map and invalidating the old copy of the block. Ext4-lazy uses a large
journal so that it can continue writing updated blocks while reclaiming the space from the

Abutalib Aghayev is a PhD
student in the Computer
Science Department at
Carnegie Mellon University.
His research interests include

operating systems, file and storage systems,
and, recently, distributed machine learning
systems. agayev@cs.cmu.edu

Theodore Ts’o started working
with Linux in September 1991
and is the first North American
Linux kernel developer. He
also served as the tech lead

for the MIT Kerberos V5 development team
and as a chair of the IP Security working group
at the IETF. He previously was CTO for the
Linux Foundation and is currently employed
at Google. Theodore is a Debian Developer,
and maintains the ext4 file system in the Linux
kernel. He is also the maintainer and original
author of the e2fsprogs userspace utilities for
the ext2, ext3, and ext4 file systems.
tytso@thunk.org

Garth Gibson is a Professor
of Computer Science and an
Associate Dean in the School of
Computer Science at Carnegie
Mellon University. Garth’s

research is split between scalable storage
systems and distributed machine learning
systems, and he has had his hand in the
creation of the RAID taxonomy, the Panasas
PanFS parallel file system, the IETF NFS v4.1
parallel NFS extensions, and the USENIX
Conference on File and Storage Technologies
(FAST). garth@cs.cmu.edu

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 13

FILE SYSTEMS AND STORAGE
Evolving EXT4 for Shingled Disks

invalidated blocks. During mount, it reconstructs the in-memory map from the journal
resulting in a modest increase in mount time. Results show that ext4-lazy significantly
improves performance on SMR disks in general, as well as on CMR disks for metadata-heavy
workloads in particular.

Our main contribution to ext4 includes the design, implementation, and evaluation of ext4-
lazy on SMR and CMR disks. The change we make is minimally invasive—we modify 80
lines of existing code and introduce the new functionality in additional files totaling 600
lines of C code. As we show in the evaluation section, even on a metadata-light file server
benchmark where the metadata writes make up less than 1% of total writes, with stock ext4
the SMR disk appears unresponsive for almost an hour with near-zero throughput. With
ext4-lazy, on the other hand, the SMR disk does not suffer such a behavior and completes
1.7–5.4x faster. For directory traversal and metadata-heavy workloads, ext4-lazy achieves
2–13x improvement on both SMR and CMR disks.

Background
A high-level introduction to SMR technology has been previously presented in ;login: [3].
Readers interested in nitty-gritty details of how an SMR disk works and why it suffers under
random writes may refer to the detailed study [1] of one such disk. Here, we give just enough
background on SMR disks and ext4 journaling to make the rest of the article understandable.

Peter Desnoyers is an Associate
Professor at Northeastern
University. He worked for
Apple, Motorola, and a
number of startups for 15 years

before getting his PhD at the University of
Massachusetts, Amherst, in 2007. He received
BS and MS degrees from MIT. His main
focuses are storage, particularly the integration
of emerging storage technologies, and cloud
computing. pjd@ccs.neu.edu 0.03

0.3

3

30

 0.01

 0.1

 1

 10

 0 100 200 300 400 500

T
h
ro

u
g
h
p
u
t

(M
iB

/s
)

Time (s)

ST5000AS0011
ST8000AS0002
ST4000LM016
WD40NMZW

WD5000YS

Figure 1: Throughput of CMR and SMR disks from Table 1 under 4 KiB random write traffic. The CMR disk
(WD500YS) has a stable but low throughput under random writes. SMR disks, on the other hand, have a
short period of high throughput followed by a continuous period of ultra-low throughput.

Type Vendor Model Capacity Form Factor
SMR Seagate ST8000AS0002 8 TM 3.5 inch

SMR Seagate ST5000AS0011 5 TB 3.5 inch

SMR Seagate ST4000LM016 4 TB 2.5 inch

SMR Western Digital WD40NMZW 4 TB 2.5 inch

CMR Western Digital WD5000YS 500 MB 3.5 inch

Table 1: CMR and SMR disks from two vendors used for evaluation

14  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

FILE SYSTEMS AND STORAGE
Evolving EXT4 for Shingled Disks

SMR
As a concrete example, one SMR disk used in our evaluation
consists of ≈ 30 MiB bands that are the smallest units that must
be written sequentially. Overwriting a random block in a band
requires read-modify-write (RMW) of the whole band. This
results in reading a band, modifying it in memory, writing the
updated band to a temporary band (since overwriting the origi-
nal band is not atomic and could corrupt the old data if power is
lost), and finally overwriting the original band, generating ≈ 90
MiB disk I/O. To hide the cost of random writes, the disk uses a
persistent cache for handling bursts of random writes—incoming
random writes are written to the persistent cache, and the bands

are updated using RMW during the idle times, emptying the per-
sistent cache. If the burst of random writes is large enough to fill
the persistent cache, the throughput of the disk drops because
every incoming write requires RMW of the corresponding band.
Sequential writes, on the other hand, are detected and written
directly to bands, bypassing the persistent cache.

Ext4 and Journaling
The ext4 file system evolved from ext2, which was influenced by
Fast File System (FFS). Similar to FFS, ext2 divides the disk into
cylinder groups—or as ext2 calls them, block groups—and tries to
put all blocks of a file in the same block group. To further increase
locality, the metadata blocks (inode bitmap, block bitmap, and
inode table) representing the files in a block group are also placed
within the same block group, as Figure 3a shows. In ext2 the size
of a block group was limited to 128 MiB—the maximum number
of 4 KiB data blocks that a 4 KiB block bitmap can represent. Ext4
introduced flexible block groups or flex_bgs—a set of contiguous
block groups whose metadata is consolidated in the first 16 MiB
of the first block group within the set, as shown in Figure 3b.

Ext4 ensures metadata consistency via journaling, but it does
not implement journaling itself; rather, it uses a generic kernel
layer called the Journaling Block Device that runs in a separate
kernel thread called jbd2. In response to file system operations,
ext4 reads metadata blocks from disk, updates them in memory,
and exposes them to jbd2 for journaling. For increased perfor-
mance, jbd2 batches metadata updates from multiple file system
operations (by default, for five seconds) into a transaction
buffer and atomically commits the transaction to the journal—a
circular log of transactions. After a commit, jbd2 marks the in-
memory copies of metadata blocks as dirty so that the writeback
thread would write them to their static locations.

(a) ext2 Block Group

Super Block Group Desc Block Bitmap Inode Bitmap Inode Table Data Blocks

Block Group 0 Block Group 1
Data Blocks Data Blocks

Block Group 2
Data Blocks

(b) ext4 flex_bg

Block Group 15
Data Blocks

Metadata for all block groups in a flex_bg ~ 16 MiB

~ 1 MiB ~ 127 MiB

2 GiB

flex_bg 0 flex_bg 1

Band 0 Band 49

flex_bg 3999

Band 266,565 Band 266,566
(c) Disk Layout of ext4 partition on an 8 TB SMR disk

Figure 2: (a) Ext4 writes a metadata block to disk twice. It first writes
the metadata block to the journal at some location J and marks it dirty
in memory. Later, the writeback thread writes the same metadata block
to its static location S on disk, resulting in a random write. (b) Ext4-lazy
writes the metadata block approximately once to the journal and inserts a
mapping (S, J) to an in-memory map so that the file system can find the
metadata block in the journal.

(a) Journaling under ext4
Disk

Journal

Memory

1

2

J
S

J

(b) Journaling under ext4-lazy
Disk

Journal

Memory

12

Map

JS

Figure 3: (a) In ext2, the first megabyte of a 128 MiB block group contains the metadata blocks describing the block group, and the rest is data blocks.
(b) In ext4, a single flex bg (flexible block group) concatenates multiple (16 in this example) block groups into one giant block group and puts all of the
metadata in the first block group. (c) Modifying data in a flex bg will result in a metadata write that may dirty one or two bands, seen at the boundary of
bands 266,565 and 266,566.

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 15

FILE SYSTEMS AND STORAGE
Evolving EXT4 for Shingled Disks

On SMR disks, when the metadata blocks are eventually writ-
ten back, they dirty the bands that are mapped to the metadata
regions in a f lex_bg, as seen in Figure 3c. Since a metadata
region is not aligned with a band, metadata writes to it may dirty
zero, one, or two extra bands, depending on whether the meta-
data region spans one or two bands and whether the data around
the metadata region has been written.

Design of Ext4-lazy
At a high level, ext4-lazy adds the following components to ext4
and jbd2:

Map: Ext4-lazy tracks the location of metadata blocks in the
journal with an in-memory map that associates the static loca-
tion S of a metadata block with its location J in the journal. The
mapping is updated whenever a metadata block is written to the
journal, as shown in Figure 2b.

Indirection: In ext4-lazy, all accesses to metadata blocks go
through the map. If the most recent version of a block is in the
journal, there will be an entry in the map pointing to it; if no
entry is found, then the copy at the static location is up-to-date.

Cleaner: The cleaner in ext4-lazy reclaims space from locations
in the journal that have become invalidated by the writes of new
copies of the same metadata block.

Map reconstruction on mount: On every mount, ext4-lazy
reads the descriptor blocks from the transactions between the
tail and the head pointer of the journal and populates map.

Evaluation
We evaluate ext4-lazy on a system with a quad-core Intel
i7-3820 (Sandy Bridge) 3.6 GHz CPU, 16 GB of RAM running
Linux kernel 4.6, using the disks listed in Table 1. One surprising
finding of our work was that the default journal size on ext4 is a

bottleneck for metadata-heavy workloads. Figure 4 shows that
just by increasing the journal size, a metadata-heavy workload
completes over 40x faster. As a result, the recent version of
e2fsprogs has increased the default journal size from 128 MiB
to 1 GiB for file systems over 128 GiB. Readers interested in the
details may refer to our paper [2]. Since enabling a large journal
on ext4 is a command-line option to mkfs, we choose ext4 with a
10 GiB journal as our baseline.

Next, we first show that ext4-lazy achieves significant speedup
on the CMR disk WD5000YS from Table 1 for metadata-heavy
workloads, and specifically for massive directory traversal
workloads. We then show that on SMR disks, ext4-lazy provides
significant improvement on both metadata-heavy and metadata-
light workloads.

Ext4-lazy on a CMR Disk
For metadata-heavy workloads we use the following bench-
marks. MakeDirs creates 800,000 directories in a directory
tree of depth 10. The directory tree is also used by the following
benchmarks: ListDirs runs ls -lR on the directory tree, TarDirs
creates a tarball of the directory tree, and RemoveDirs removes
the directory tree.

CreateFiles creates 600,000 files each of size 4 KiB in a new
directory tree of depth 20. The directory tree is also used by the
following benchmarks: FindFiles runs find on the directory tree,
TarFiles creates a tarball of the directory tree, and RemoveFiles
removes the directory tree. All of the benchmarks start with a
cold cache, set up by echoing “3” to /proc/sys/vm/drop_caches.

As Figure 5 shows, benchmarks that are in the file/directory
create category (MakeDirs, CreateFiles) complete 1.5–2x
faster on ext4-lazy than on ext4-baseline, while the remaining
benchmarks that are in the directory-traversal category—except
TarFiles—complete 3–5x faster. We choose MakeDirs and
RemoveDirs as a representative of each category and analyze
their performance in detail below.

10
0

10
1

10
2

10
3

T
im

e
(s

)

(a)

ext4-stock
ext4-baseline

0

0.5

1

 0 150 300 450

D
ir

ty
 P

ag
es

 (
G

iB
)

Time (s)

(b)

ext4-stock
ext4-baseline

 10

 20

 30

 40

MakeDirs ListDirs TarDirs RemoveDirs

T
im

e
(m

in
)

ext4-baseline ext4-lazy

 10

 20

 30

 40

CreateFiles FindFiles TarFiles RemoveFiles

T
im

e
(m

in
)

Figure 4: (a) Completion time for a benchmark creating 100,000 files on
ext4-stock (ext4 with 128 MiB journal) and on ext4-baseline (ext4 with
10 GiB journal). (b) The volume of dirty pages during benchmark runs
obtained by sampling /proc/meminfo every second.

Figure 5: Microbenchmark runtimes on ext4-baseline and ext4-lazy

16  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

FILE SYSTEMS AND STORAGE
Evolving EXT4 for Shingled Disks

MakeDirs on ext4-baseline results in ≈ 4,735 MiB of journal
writes that are transaction commits containing metadata
blocks, as seen in the first row of Table 2 and at the center in
Figure 6a; as the dirty timer on the metadata blocks expires,
they are written to their static locations, resulting in a similar
amount of metadata writeback. The block allocator is able to
allocate large contiguous blocks for the directories, because
the file system is fresh. Therefore, in addition to journal writes,
metadata writeback is sequential as well. The write time domi-
nates the runtime in this workload: hence, by avoiding metadata
writeback and writing only to the journal, ext4-lazy halves the
writes as well as the runtime, as seen in the second row of Table
2 and Figure 6b. On an aged file system, the metadata writeback
is more likely to be random, resulting in even higher improve-
ment on ext4-lazy.

An interesting observation about Figure 6b is that although
the total volume of metadata reads—shown as periodic verti-
cal spreads—is ≈ 140 MiB (3% of total I/O in the second row of
Table 2), they consume over 30% of runtime due to long seeks
across the disk. In this benchmark, the metadata blocks are read
from their static locations because we run the benchmark on a
fresh file system, and the metadata blocks are still at their static
locations. As we show next, once the metadata blocks migrate to
the journal, reading them is much faster since no long seeks are
involved.

In RemoveDirs benchmark, on both ext4-baseline and ext4-
lazy, the disk reads ≈ 4,066 MiB of metadata, as seen in the
last two rows of Table 2. However, on ext4-baseline the meta-
data blocks are scattered all over the disk, resulting in long seeks
as indicated by the vertical spread in Figure 6c, while on ext4-
lazy they are within the 10 GiB region in the journal, resulting
in only short seeks, as Figure 6d shows. Ext4-lazy also benefits
from skipping metadata writeback, but most of the improve-
ment comes from eliminating long seeks for metadata reads.
The significant difference in the volume of journal writes
between ext4-baseline and ext4-lazy seen in Table 2 is caused
by metadata write coalescing: Since ext4-lazy completes faster,
there are more operations in each transaction, with many modi-
fying the same metadata blocks, each of which is only written
once to the journal.

The improvement in the remaining benchmarks is also due to
reducing seeks to a small region and avoiding metadata write-
back. We do not observe a dramatic improvement in TarFiles,
because unlike the rest of the benchmarks that read only meta-
data from the journal, TarFiles also reads data blocks of files
that are scattered across the disk. Massive directory traversal
workloads are a constant source of frustration for users of most
file systems. One of the biggest benefits of consolidating meta-
data in a small region is an order-of-magnitude improvement in
such workloads.

Ext4-lazy on SMR Disks
An additional critical factor for file systems when running on
SMR disks is the cleaning time after a workload. A file system
resulting in a short cleaning time gives the disk a better chance
of emptying the persistent cache during idle times of a bursty
I/O workload, and has a higher chance of continuously perform-
ing at the persistent cache speed, whereas a file system resulting
in a long cleaning time is more likely to force the disk to inter-
leave cleaning with file system user work.

In the next section we show microbenchmark results on just one
SMR disk—ST8000AS0002 from Table 1. At the end of every
benchmark, we run a vendor-provided script that polls the disk
until it has completed background cleaning and reports the total
cleaning time, which we report in addition to the benchmark
runtime. We achieve similar normalized results for the remain-
ing disks, which we skip to save space.

Microbenchmarks
Figure 7 shows results of the microbenchmarks (see section
“Ext4-lazy on a CMR Disk”) repeated on ST8000AS0002 with
a 2 TB partition, on ext4-baseline and ext4-lazy. MakeDirs
and CreateFiles do not fill the persistent cache, and, therefore,
they typically complete 2–3x faster than on CMR disk. Similar
to CMR disk, MakeDirs and CreateFiles are 1.5–2.5x faster on
ext4-lazy. On the other hand, ListDir, for example, one of the
remaining directory traversal benchmarks, completes 13x faster
on ext4-lazy, as compared to 5x faster on CMR disk.

Metadata Reads (MiB) Metadata Writes (MiB) Journal Writes (MiB)
MakeDirs/ext4-baseline 143.7±2.8 4,631±33.8 4,735±0.1

MakeDirs/ext4-lazy 144±4 0 4,707±1.8

RemoveDirs/ext4-baseline 4,066.4±0.1 322.4±11.9 1,119±88.6

RemoveDirs/ext4-lazy 4,066.4±0.1 0 472±3.9

Table 2: Distribution of the I/O types with MakeDirs and RemoveDirs benchmarks running on ext4-baseline and ext4-lazy

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 17

FILE SYSTEMS AND STORAGE
Evolving EXT4 for Shingled Disks

The cleaning times for ListDirs, FindFiles, TarDirs, and TarFiles
are zero because they do not write to disk—TarDirs and TarFiles
write their output to a different disk. However, cleaning time
for MakeDirs on ext4-lazy is zero as well, compared to ext4-
baseline’s 846 seconds, despite having written over 4 GB of
metadata, as Table 2 shows. Being a pure metadata workload,
MakeDirs on ext4-lazy consists of journal writes only, as Figure
6b shows, all of which are streamed, bypassing the persistent
cache and resulting in zero cleaning time. Similarly, cleaning
time for RemoveDirs and RemoveFiles are 10 and 20 seconds,
respectively, on ext4-lazy compared to 590 and 366 seconds on
ext4-baseline, because these too are pure metadata workloads
resulting in only journal writes for ext4-lazy. During deletion,
however, some journal writes are small and end up in persistent
cache, resulting in short cleaning times.

File Server Macrobenchmark
Our file server benchmark creates a working set of 10,000 files
spread sparsely across 25,000 directories, with file sizes ranging
from 512 bytes to 1 MiB, and then executes 100,000 transactions
with the I/O size of 1 MiB. In total, the benchmark writes 37.89
GiB and reads 31.54 GiB of data from user space.

Table 3 shows the distribution of write types completed by a
ST8000AS0002 SMR disk with a 400 GB partition during the
benchmark. On ext4-baseline, metadata writes make up 1.6%
of total writes. Although the unique amount of metadata is

only ≈ 120 MiB, as the storage slows down, metadata writeback
increases slightly, because each operation takes a long time to
complete, and the writeback of a metadata block occurs before
the dirty timer is reset.

The benchmark completes more than 2x faster on ext4-lazy, in
461 seconds, as seen in Figure 8. On ext4-lazy, the disk sustains
140 MiB/s throughput and fills the persistent cache in 250
seconds, and then drops to a steady 20 MiB/s until the end of the
run. On ext4-baseline, however, the large number of small meta-
data writes reduces throughput to 50 MiB/s, taking the disk 450
seconds to fill the persistent cache. Once the persistent cache
fills, the disk interleaves cleaning and file system user work, and
small metadata writes become prohibitively expensive, as seen,
for example, between seconds 450 and 530. During this period
we do not see any data writes, because the writeback thread
alternates between page cache and buffer cache when writing
dirty blocks, and it is the buffer cache’s turn. We do, however,
see journal writes because jbd2 runs as a separate thread and
continues to commit transactions.

The benchmark completes even more slowly on a full 8 TB ext4
partition, as seen in Figure 9, because ext4 spreads the same
workload over more bands. With a small partition, updates to
different files are likely to update the same metadata region.
Therefore, cleaning a single band frees more space in the persis-
tent cache, allowing it to accept more random writes. With a full

0

200

400

 0 50 100 150 200 250

D
is

k
 O

ff
se

t
(G

iB
)

(a) MakeDirs/ext4-baseline

Metadata Read Metadata Write Journal Write

0

200

400

 0 500 1000 1500 2000

D
is

k
 O

ff
se

t
(G

iB
)

(c) RemoveDirs/ext4-baseline

Metadata Read Metadata Write Journal Write

0

200

400

 0 50 100 150 200 250

D
is

k
 O

ff
se

t
(G

iB
)

Time (s)

(b) MakeDirs/ext4-lazy

Metadata Read Journal Write

0

200

400

 0 500 1000 1500 2000

D
is

k
 O

ff
se

t
(G

iB
)

Time (s)

(d) RemoveDirs/ext4-lazy

Metadata Read Journal Write

Figure 6: Disk offsets of I/O operations during MakeDirs and RemoveDirs microbenchmarks on ext4-baseline and ext4-lazy. Metadata reads and writes
are spread out while journal writes are at the center. The dots have been scaled based on the I/O size. In part (d), journal writes are not visible due to low
resolution. These are pure metadata workloads with no data writes.

Data Writes (MiB) Metadata Writes (MiB) Journal Writes (MiB)
ext4-baseline 32,917±9.7 563±0.9 1,212±12.6

ext4-lazy 32,847±9.3 0 1,069±11.4

Table 3: Distribution of write types completed by a ST8000AS0002 SMR disk during a Postmark run on ext4-baseline and ext4-lazy. Metadata writes
make up 1.6% of total writes in ext4-baseline, only 20% of which is unique.

18  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

FILE SYSTEMS AND STORAGE
Evolving EXT4 for Shingled Disks

partition, however, updates to different files are likely to update
different metadata regions: now the cleaner has to clean a whole
band to free a space for a single block in the persistent cache.
Hence, after an hour of ultra-low throughput due to cleaning, it
recovers slightly towards the end, and the benchmark completes
5.4x slower on ext4-baseline. Interested readers may refer to our
paper [2] for the evaluations of all disks from Table 1.

Conclusion
Previous work has explored separating metadata from data and
managing it as a log by designing a file system from scratch
[4–6]. Our work, however, is the first that leverages the metadata
separation idea for adapting a legacy file system to SMR disks. It
shows how effective a well-chosen small change can be. It also
suggests that while three decades ago it was wise for file systems
depending on the block interface to scatter the metadata across
the disk, today, with large memory sizes that cache metadata and
with changing recording technology, putting metadata at the cen-
ter of the disk and managing it as a log looks like a better choice.

We conclude with the following general takeaways:

◆◆ We think modern disks are going to practice more extensive
“lying” about their geometry and perform deferred cleaning
when exposed to random writes; therefore, file systems should
work to eliminate structures that induce small isolated writes,
especially if the user workload is not forcing them.

◆◆ With modern disks, operation costs are asymmetric: random
writes have a higher ultimate cost than random reads, and,
furthermore, not all random writes are equally costly. When
random writes are unavoidable, file systems can reduce their
cost by confining them to the smallest perimeter possible.

Figure 7: Microbenchmark runtimes and cleaning times on ext4-baseline
and ext4-lazy running on an SMR disk. Cleaning time is the additional time
after the benchmark run that the SMR disk was busy cleaning.

 15

 30

 45

 60

MakeDirs ListDirs TarDirs RemoveDirs

T
im

e
(m

in
)

ext4-baseline run
ext4-baseline clean

ext4-lazy run
ext4-lazy clean

 5

 10

 15

 20

 25

CreateFiles FindFiles TarFiles RemoveFiles

T
im

e
(m

in
)

 0

 50

 100

 150

 200

 0 200 400 600 800 1000T
h
ro

u
g
h
p
u
t

(M
iB

/s
)

ext4-baseline ext4-lazy

0

200

400

 0 200 400 600 800 1000

D
is

k
 O

ff
se

t
(G

iB
)

Time (s)

Data Write Metadata Write Journal Write

 0

 50

 100

 150

0 500 1000 1500 2000 2500 3000 3500T
h
ro

u
g
h
p
u
t

(M
iB

/s
)

ext4-baseline ext4-lazy

 0

 2

 4

 6

 8

0 500 1000 1500 2000 2500 3000 3500

D
is

k
 O

ff
se

t
(T

iB
)

Time (s)

Data Write Metadata Write Journal Write

Figure 9: The top graph shows the throughput of a ST8000AS0002 SMR
disk with a full 8 TB partition during a file server benchmark run on ext4-
baseline and ext4-lazy. The bottom graph shows the offsets of write types
during the run on ext4-baseline. The graph does not reflect sizes of the
writes, only their offsets.

Figure 8: The top graph shows the throughput of a ST8000AS0002 SMR
disk with a 400 GB partition during a file server benchmark run on ext4-
baseline and ext4-lazy. The bottom graph shows the offsets of write types
during the run on ext4-baseline. The graph does not reflect sizes of the
writes, only their offsets.

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 19

FILE SYSTEMS AND STORAGE
Evolving EXT4 for Shingled Disks

References
[1] A. Aghayev and P. Desnoyers, “Skylight—A Window on
Shingled Disk Operation,” in Proceedings of the 13th USENIX
Conference on File and Storage Technologies (FAST ’15), pp.
135–149: https://www.usenix.org/system/files/conference
/fast15/fast15-paper-aghayev.pdf.

[2] A. Aghayev, T. Ts’o, G. Gibson, and P. Desnoyers, “Evolving
Ext4 for Shingled Disks,” in Proceedings of the 15th USENIX
Conference on File and Storage Technologies (FAST ’17), pp.
105–120: https://www.usenix.org/system/files/conference
/fast17/fast17-aghayev.pdf.

[3] T. Feldman and G. Gibson, “Shingled Magnetic Recording:
Areal Density Increase Requires New Data Management,”
;login, vol. 38, no. 2 (June 2013), pp. 22–30: http://www.pdl.cmu
.edu/PDL-FTP/HECStorage/05_feldman_022-030.pdf.

[4] J. Piernas, T. Cortes, and J. Garcia, “DualFS: A New Journ-
aling File System without Meta-Data Duplication,” in Proceed-
ings of the 16th International Conference on Supercomputing,
2002, pp. 137–146: http://ditec.um.es/web-ditec/ficheros
/publicaciones/publicacion95.pdf.

[5] K. Ren and G. Gibson, “TableFS: Enhancing Metadata Effi-
ciency in the Local File System,” in Proceedings of the 2013 USE-
NIX Annual Technical Conference (USENIX ATC’13), pp. 145–156:
http://www.pdl.cmu.edu/PDL-FTP/FS/CMU-PDL-13-102.pdf.

[6] Z. Zhang and K. Ghose, “hFS: A Hybrid File System Proto-
type for Improving Small File and Metadata Performance,” in
Proceedings of the 2nd ACM SIGOPS/EuroSys European Con-
ference on Computer Systems (EuroSys ’07), pp. 175–187: http://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.507&
rep=rep1&type=pdf.

https://www.usenix.org/system/files/conference/fast15/fast15-paper-aghayev.pdf
https://www.usenix.org/system/files/conference/fast15/fast15-paper-aghayev.pdf
https://www.usenix.org/system/files/conference/fast17/fast17-aghayev.pdf
https://www.usenix.org/system/files/conference/fast17/fast17-aghayev.pdf
http://www.pdl.cmu.edu/PDL-FTP/HECStorage/05_feldman_022-030.pdf
http://www.pdl.cmu.edu/PDL-FTP/HECStorage/05_feldman_022-030.pdf
http://ditec.um.es/web-ditec/ficheros/publicaciones/publicacion95.pdf
http://ditec.um.es/web-ditec/ficheros/publicaciones/publicacion95.pdf
http://www.pdl.cmu.edu/PDL-FTP/FS/CMU-PDL-13-102.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.507&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.507&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.507&rep=rep1&type=pdf

20  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

FILE SYSTEMS AND STORAGE

Redundancy Does Not Imply Fault Tolerance
Analysis of Distributed Storage Reactions to
Single Errors and Corruptions
A I S H W A R Y A G A N E S A N , R A M N A T T H A N A L A G A P P A N ,
A N D R E A C . A R P A C I - D U S S E A U , A N D R E M Z I H . A R P A C I - D U S S E A U

W e analyze how modern distributed storage systems behave in the
presence of file-system faults such as data corruption and read
and write errors. We characterize the behaviors of eight popular

distributed storage systems, including Cassandra, Redis, and ZooKeeper.
The major result of our study is that a single file-system fault introduced in
one node of the cluster can induce catastrophic outcomes such as data loss,
corruption, and unavailability. We find that most systems do not consis-
tently use redundancy to recover from file-system faults. We also find that
the above outcomes arise due to fundamental problems in file-system fault
 handling that are common across many systems. Our results have implica-
tions for the design of next generation fault-tolerant distributed storage
systems.

Redundancy is a well-known technique for providing fault tolerance. Using redundancy, a
system can tolerate failures of one or more of its components. For example, in a distributed
storage system, data and functionality are replicated across many servers for fault tolerance.
In most cases, replication can mask various failures such as system crashes, power failures,
or nodes becoming inaccessible due to network failures. Modern distributed storage systems
typically depend on local file systems to store and manage their data. Although replication
can mask whole machine failures, local file systems exhibit a more complex failure model.
For instance, certain blocks of data can become inaccessible due to an underlying latent
sector error or, worse, the local file system may silently return corrupted data on reads if the
underlying device block is corrupted. We call these failures file-system faults.

Several studies have shown the prevalence of errors and corruptions in disks and SSDs
[1, 2, 5] that lead to these file-system faults. However, little is known about how modern
 distributed storage systems react to such file-system faults. Therefore, in this study, we
answer the following questions: How do distributed storage systems behave in the presence of
local file-system faults? Do they use redundancy to recover from local file-system faults?

To answer these questions, we systematically inject file-system faults into distributed stor-
age systems and observe the effects of the injected fault. We picked a broad spectrum of dis-
tributed storage systems, implementing a variety of replication protocols such as replicated
state machines, primary backup, and dynamo-style quorums.

Our fault model is very simple—we inject exactly one file-system fault into one file-system
block in one node in the system at a time. We inject corruptions on reads, errors on reads, and
errors on writes. Moreover, our fault model only includes data corruptions that are detectable
by applications (e.g., using application-level checksums) and does not include undetectable
memory corruptions.

Aishwarya Ganesan is a PhD
student in Computer Sciences
at the University of Wisconsin-
Madison. Her advisors are
Professors Andrea Arpaci-

Dusseau and Remzi Arpaci-Dusseau. She is
interested in distributed systems, file systems,
and storage. ag@cs.wisc.edu

Ramnatthan Alagappan is
a PhD student in computer
sciences at the University of
Wisconsin-Madison, advised
by Professor Andrea Arpaci-

Dusseau and Professor Remzi Arpaci-Dusseau.
His research interests include file systems,
storage, operating systems, and distributed
systems. ra@cs.wisc.edu

Andrea Arpaci-Dusseau is a
Professor of Computer Sciences
at the University of Wisconsin-
Madison. She is an expert in
file and storage systems, having

published more than 80 papers in this area,
co-advised 20 PhD students, and received
more than 10 Best Paper awards.
dusseau@cs.wisc.edu

Remzi Arpaci-Dusseau is a
Professor of Computer Sciences
at the University of Wisconsin-
Madison. His research focus
is on file and storage systems,

and his teaching interests lie in creating free
online materials for all (e.g., http://www.ostep
.org). remzi@cs.wisc.edu

http://www.ostep.org
http://www.ostep.org

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 21

FILE SYSTEMS AND STORAGE
Redundancy Does Not Imply Fault Tolerance

A common and widespread expectation is that redundancy in
higher layers (i.e., across replicas) enables recovery from local
file-system faults. For instance, consider a data item that is rep-
licated across three machines in a system as shown in Figure 1.
What would a user expect if one of the copies of the data item in
the system gets corrupted? Similarly, what if one of the blocks in
one of the copies becomes inaccessible? It is completely reason-
able for a user to expect that the corrupted data will be recover-
able from the intact copies on other replicas and that the user
never sees the corrupted data.

Unfortunately, from our study, we find that redundancy does not
provide fault tolerance in many distributed storage systems. We
find several pieces of evidence where a single file-system fault
in only one node leads to catastrophic outcomes such as data
loss, silent user-visible corruption, unavailability, or sometimes
even the spread of corrupted data to other intact replicas. Table
1 shows the prevalence of various undesirable behaviors across
multiple systems. Note that since the system has redundant cop-
ies of data and we inject only one fault at a time, these behaviors
are surprising and undesirable.

Why does redundancy not imply fault tolerance? One
might wonder whether the discovered outcomes arise simply due
to some implementation-level bugs that could be fixed by moder-
ate developer effort. Unfortunately, from our study, we find that
the above outcomes arise due to some alarming and fundamen-
tal root causes in file-system fault tolerance that are common to
many distributed storage systems.

The first fundamental problem we observe is that faults are often
undetected locally by the nodes in a distributed storage system,
leading to harmful effects such as corrupted data being returned
to the users. Second, even when systems reliably detect faults,
in most cases, they simply crash instead of using redundancy to
recover from the fault. Third, many systems do not discern cor-
ruptions caused due to crashes from other corruptions, resulting
in many data loss cases. Finally, we find that local fault-handling

behaviors and global distributed protocols interact in an unsafe
manner, leading to propagation of corruption or data loss.

As distributed storage systems are emerging as the primary
choice for storing critical user data, carefully building them to
tolerate file-system faults is important. Our study is a step in
this direction, and we hope that our results will lead to discus-
sions and future research to improve the resiliency of next
generation cloud storage systems. The full version of our work
was published in FAST ’17 [3]. Our testing framework is publicly
available at http://research.cs.wisc.edu/adsl/Software/cords.

Methodology
In this section, we first discuss the fault model and then describe
our methodology to study how distributed storage systems react
to local file-system faults.

Fault Model
Our fault model is very simple—we inject a single fault into a sin-
gle file-system block exactly one node at a time. We inject these
faults into file-system user data and not the file-system meta-
data. The reason for this is simple: the file system is responsible
for maintaining the integrity of its metadata, while applications
should take care of their on-disk data.

Our fault model captures the behavior of different real file
systems. Consider that the nodes of a distributed storage system
run on an ext4 file system. If the underlying device block is cor-
rupted, ext4 returns corrupted data as-is to applications since
it does not have checksums for user data. On the other hand,
consider a file system such as btrfs that maintains checksums
for user data; such a file system transforms an underlying block
corruption into a read error.

To capture these different file system behaviors, our fault model
injects three types of faults: corruption on reads, error on reads,
and error on writes. Our fault model assumes detectable corrup-
tions (e.g., corruptions detectable using application-level check-

Catastrophic Outcomes R
ed

is
Z

oo
K

ee
pe

r

C
as

sa
nd

ra

K
af

ka

R
et

hi
nk

D
B

M
on

go
D

B

L
og

C
ab

in

C
oc

kr
oa

ch
D

B

Silent Corruption × × ×
Unavailability × × × × ×
Data Loss × × × ×
Query Failures × × ×
Reduced Redundancy × × × × × × × ×

Table 1: Catastrophic outcomes: summary. The table shows the sum-
mary of catastrophic outcomes resulting from a single file-system fault. A
shaded box for a system indicates that we discovered at least one instance
of the outcome mentioned on the left.

corrupted
data

intact
copies

Figure 1: User expectations. The figure shows a data item replicated on
three servers in a distributed storage system. When one copy is corrupted,
users typically expect that redundant copies will help recover from the
single corruption.

http://research.cs.wisc.edu/adsl/Software/cords

22  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

FILE SYSTEMS AND STORAGE
Redundancy Does Not Imply Fault Tolerance

sums) and does not include arbitrary memory corruptions that
are not detectable by applications (e.g., corruptions introduced
before checksum computation or corruptions introduced after
checksum verification).

Fault Injection
To study how distributed storage systems react to local file-sys-
tem faults, we build a framework called Cords, which includes
the following key pieces: errfs, a user-level FUSE file system that
systematically injects file-system faults, and errbench, a suite
of system-specific workloads which drives systems to interact
with their local storage.

To understand how our fault-injection methodology works,
consider a distributed storage system with three nodes, as
shown in Figure 2. We configure the system to run atop errfs
and run a system-specific workload multiple times, each time
injecting a single fault for a single file-system block in a single
node. Assume that for a particular run we would like to inject a
read corruption for block B1 on server 1. After reading the blocks
from the disk, errfs corrupts B1 before returning to the server. To
emulate errors, errfs does not perform the operation but simply
returns an appropriate error code.

Behavior Inference
In a distributed system, multiple nodes work with their local file
system to store user data. When a fault is injected in a node, we
need to observe two things: first, the local behavior of the node
where the fault is injected. Locally, the faulty node could crash,
retry the operation, detect and ignore the faulty data, or perform
no detection or recovery, etc.

Second, we need to observe the global effect of the injected fault.
The global effect of a fault is the result that is externally visible.
Ideally, we should not observe any harmful effect since the data

is replicated and we inject only one fault at a time. Some adverse
global effects that could occur include data loss, user-visible
corruption, read-unavailability, write-unavailability, unavail-
ability, or query failure. These local behaviors and global effects
for a given workload and a fault might vary depending on the role
played (leader or follower) by the node where the fault is injected.

Behavior Analysis
We studied the following eight distributed storage systems
using Cords, our framework for injecting faults: Redis (v3.0.4),
ZooKeeper (v3.4.8), Cassandra (v3.7), Kafka (v0.9), RethinkDB
(v2.3.4), MongoDB (v3.2.0), LogCabin (v1.0), and CockroachDB
(beta-20160714).

An Example: Redis
To illustrate our behavior analysis, we use Redis as an example.
Redis is a data structure store with a leader and set of follow-
ers. On a write request, data is appended to the append-only file
and also replicated on to the followers. The append-only file is
periodically snapshotted into the Redis database_file.

Figure 3 shows the behaviors of Redis when faults are injected
during a read workload. We represent our results in grids like the
ones shown in the figure. We inject different faults such as cor-
ruption and read or write errors into either a leader or a follower
one at a time and for different on-disk structures. The on-disk
structures take the form: file_name.logical_entity. We derive

Read

Fault for current run:
Server 1, block B1, and read corruption

read
B1-B4

read
B1-B4

return
B1-B4

return
B1’-B4Local Behavior

Crash
Retry
Ignore faulty data
No detection/
recovery

Global Effect
Corruption
Data loss
Unavailability

Server 1

errfs

Server 2

errfs

Client Server 3

errfs

Figure 2: Fault injection methodology. errfs injects faults into one file-
system block one node at a time. For each fault, we need to observe the
local behavior and the global effect.

Corrupt

Local Behavior Global Effect
On-disk Structures

appendonlyfile.metadata
appendonlyfile.data
redis_db.block_0
redis_db.metadata
redis_db.userdata

Crash Retry
No Detection/
Recovery CorrectCorruption

Redis Read Workload

Read Error

L LF F

LeaderL FollowerF

Read Error

L LF F
Unavailability

Write Unavailability

Reduced
Redundancy

Corrupt

Figure 3: Behavior analysis of Redis read. The figure shows local behaviors
and global effects when corruptions and read errors are injected in various
on-disk logical structures during read workload in Redis. The grid on the
left shows the local behavior of the node where the fault is injected, and
the one on the right shows the cluster-wide global effect of the injected
fault. The annotation on the top of a grid shows the type of fault: for
example, “Corrupt” means that we inject data corruption using errfs. The
annotation between the grids shows the on-disk logical structure in which
the fault is injected. Annotations on the bottom show where a particular
fault is injected (L - leader, F - follower).

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 23

FILE SYSTEMS AND STORAGE
Redundancy Does Not Imply Fault Tolerance

the logical entity name from our understanding of the on-disk
format of the file. For each injected fault, we observe how the
system behaves.

For example, when there are corruptions in the data in the
append-only file on the leader (highlighted with outlining in the
figure), the corruption is undetected (local behavior), and the
corrupted data is silently returned (global effect). Redis does not
use checksums for append-only file user data; thus, it does not
detect corruptions. Moreover, the resynchronization protocol in
Redis propagates corrupted user data from the leader to the fol-
lowers leading to a global user-visible corruption. We repeat this
analysis by running the read workload multiple times, each time
injecting a different fault into a different on-disk structure.

We also repeat the analysis for other systems for read and write
workloads. These results and analyses are presented in detail in
our FAST ’17 paper [3]. We will use the results from this behavior
analysis of various systems to draw observations in the rest of
this article.

Major Results
The most important overarching lesson from our study is this:
a single file-system fault can induce catastrophic outcomes in
most modern distributed storage systems. Despite the pres-
ence of checksums, redundancy, and other resiliency methods
prevalent in distributed storage, a single file-system fault can
lead to data loss, corruption, unavailability, and, in some cases,
the spread of corruption to other intact replicas. Figure 4 shows
a sample of results that illustrate the prevalence of catastrophic
problems across multiple systems.

In most cases, the problems shown in Figure 4 are not caused by
simple implementation bugs. Rather, they are caused due to some

fundamental problems in file-system fault tolerance that are
common to many distributed storage systems.

Fundamental Problems
We now discuss some of the fundamental root causes that are
responsible for the catastrophic problems that we discover in all
systems.

Faults Are Often Undetected Locally

The first fundamental problem we observe is that faults are
often undetected locally. These locally undetected faults might
lead to harmful global effects. For example, a locally undetected
corruption could result in a global silent corruption.

Figure 5 shows how a locally undetected fault leads to harmful
global effects in Cassandra. The figure shows the case where the
user data in the sstable on one node is corrupted. Cassandra does
not detect this corruption using checksums when compression is
not enabled. Thus, any read request for this data item to the cor-
rupted replica will silently receive corrupted data. Further, the

Redis Read
Corrupt Read Error

txn_head
log.tail

ZooKeeper Write
Write Error

log.header
log.other
replication

L F L F

L F

L F L F

Kafka Read

aof.metadata
aof.data
rdb.metadata
rdb.userdata

RethinkDB Read

db.txn_head
db.txn_body
db.txn_tail
db.metablock

L F

Corruption

Write
Unavailability

Data Loss

Unavailability

Corrupt
Query FailureCassandra Read (R=1)

Kafka Write

checkpoint
L F L F

Corrupt Read Error Corrupt Read Error

Corrupt Read Error
sstable.block0
sstable.metadata
sstable.userdata
sstable.index

Reduced
Redundancy

LeaderL
FollowerF

Figure 4: Redundancy does not provide fault tolerance. The figure shows a sample of catastrophic outcomes such as corruption, data loss, unavailability,
query failures, and reduced redundancy that occur across many systems. These outcomes (global effects) occur when corruptions, read errors, and write
errors are injected in various on-disk logical structures during read and write workloads in different distributed storage systems.

Read
Repair

sstable compression = off
No checksums to detect

corruption

sstable
key | value

Client Replica 1 Other Replicas

key | value
sstable.userdata corrupted

key | value
read

corrupt

sstable

corrupt

read (R = 1)

Figure 5: Faults are often undetected locally. The figure shows how a lo-
cally undetected fault can lead to harmful global effects in Cassandra.

24  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

FILE SYSTEMS AND STORAGE
Redundancy Does Not Imply Fault Tolerance

read repair protocol that fixes stale versions of data propagates
the corruption to other replicas. Many other systems exhibit
similar problems (e.g., RethinkDB and Redis); these systems
completely trust and rely upon the lower layers in the storage
stack to handle data integrity problems.

Crashing Is the Most Common Reaction
The next fundamental problem is that crashing is the most com-
mon local reaction. Many systems do reliably detect faults, but
in most cases they simply crash on detecting a fault instead of
using redundancy to recover from the fault. For example, Mon-
goDB and ZooKeeper have checksums for most of their on-disk
data structures to detect corruptions. Figure 6 shows the local
behavior of these systems when corruptions are introduced into
various on-disk structures during the read workload. As shown
in the figure, nodes in MongoDB and ZooKeeper simply crash on
detecting a corruption. We observe the same behavior in many
other systems.

Although crashing does not result in a harmful effect immedi-
ately, it introduces the possibility of an imminent unavailabil-
ity. Moreover, since storage faults could be persistent, simply
restarting the faulty node does not help; the node would encoun-
ter the same fault and crash again. Solving such cases requires
some manual intervention, which is often error-prone and
cumbersome. Although crashing may seem like a good strategy
to employ, in a distributed system there are opportunities to
recover from local faults using copies on other intact replicas.

Crashing and Corruption Handling Are Entangled
The next observation we make is that crash and corruption
handling are entangled. We illustrate this using Kafka. Kafka is
a persistent distributed message queue in which the messages

are stored in a log. Incoming messages are appended to the log,
and each message is checksummed. Consider that a Kafka node
crashes during an append of message 2 as shown in Figure 7.
When the node recovers from the crash, it detects a checksum
mismatch because of the partially appended entry. As a recovery
action, the node truncates the log at message 1. Note that mes-
sage 2 is uncommitted as the node crashed while appending it.
Hence, it is safe to truncate the uncommitted message in this
case.

On the other hand, consider the case where all messages 0, 1, and
2 are persisted safely on disk, but the block holding message 1 is
corrupted. Kafka detects this corruption using checksums, but it
truncates the log at message 0 since it treats this disk corruption
as a corruption that occurred due to a crash. Note that messages
1 and 2 were committed and it is not safe to lose them. Since
Kafka conflates the handling of a disk corruption and a corrup-
tion due to a crash, it loses committed data.

Developers of RethinkDB and LogCabin agree that entanglement
is a problem. Thus, there is a need to disentangle corruptions due
to crashes from other types of corruptions.

Unsafe Interaction between Local and Global Protocols
Next, we observe that the local behavior of a faulty node and the
global protocols interact in unsafe ways. We illustrate this again
using Kafka. Recall that the Kafka node treats a disk corrup-
tion the same way it treats a corruption due to a crash, resulting
in a data loss. However, this data loss is the local behavior of the
corrupted node. Assume that this data loss occurred on node 1.
Other nodes still have the data as shown in Figure 8.

Kafka maintains a piece of metadata that contains information
about replicas that are in-sync; any node in this set has all the
committed data and is eligible to become a leader. In this case,

collections.header
collections.metadata
collections.data
index
journal.header
journal.other
storage_bson
wiredtiger_wt

MongoDB
Read Workload: Local Behavior

L F

epoch
epoch_tmp
myid
log.transaction_head
log.transaction_body
log.transaction_tail
log.remaining
log.tail

ZooKeeper

L F
Crash Leader FollowerL F

CorruptCorrupt

Figure 6: Crashing is the most common local reaction. The figure shows
that crashing is the most common local reaction when corruptions are
introduced into various on-disk structures during the read workload in
MongoDB and ZooKeeper.

append(log, entry 2)

truncate at 0

Kafka Message Logchecksum

data 0 1 2

disk corruption – entry 1 corrupted

truncate at 1

(a) Handling corruption due to a crash

(b) Handling disk corruption

0 1 2

lose uncommitted data

lose committed data!

Figure 7: Crash and corruption handling are entangled. The figure shows
how entanglement in crash and corruption handling could lead to a local
data loss of committed data in Kafka.

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 25

FILE SYSTEMS AND STORAGE
Redundancy Does Not Imply Fault Tolerance

node 1, which lost committed data, is not removed from the set
of in-sync replicas and is elected as the leader. Thus, any further
reads return only message 0, resulting in a silent data loss.
Moreover, the leader also instructs the followers to truncate the
log at message 0 which triggers an assertion at followers, result-
ing in their crash. Thus, all future writes become unavailable.
The unsafe interaction between local behavior (i.e., to truncate
the log) and the global protocol (leader election) in Kafka leads
to a data loss and write unavailability. Thus, there is a need for
synergy between local behaviors and global protocols to avoid
such problems.

Fundamental Problems: Summary
Table 2 shows how the fundamental problems are common
across many systems. We observe that all systems we studied
simply crash on detecting a fault in many cases. In some cases,
systems take incorrect recovery action on detecting a fault, lead-
ing to undesirable behaviors. We also observe that all systems
miss opportunities to recover from local file-system faults using
redundancy.

Conclusion
Most popular distributed systems we studied are not yet resil-
ient to local file-system faults. Although a body of research work
and enterprise storage systems provide software guidelines to
tackle partial file-system faults, such wisdom has not filtered
down to commodity distributed storage systems. Our findings
provide motivation for distributed systems to build on existing
research work to tolerate practical faults other than crashes.

Our study provides four important lessons for future distributed
storage system design. First, in the world of layered storage
stacks that run on commodity hardware, faults are common;

thus, distributed storage systems need to detect such faults care-
fully. Second, in a distributed system, several unavoidable cases
such as power faults and network failures can cause nodes to be
unavailable. In cases where automatic recovery is possible, sim-
ply crashing is not the optimal behavior. Next, by disentangling
corruptions caused by a crash from other types of corruptions
and by handling them differently, storage systems can avoid
many problems. Finally, local fault-handling behavior has global
implications for distributed systems. Distributed storage system
developers need to fully understand this interaction in order to
improve reliability.

We hope that our study and results will provide direction for the
design of more robust distributed storage systems. Our fault-
injection framework is available at http://research.cs.wisc.edu
/adsl/Software/cords.

Acknowledgments
We thank the anonymous FAST reviewers, Hakim Weather-
spoon (our shepherd), and Rik Farrow for their insightful com-
ments. We thank the members of the ADSL and the developers of
CockroachDB, LogCabin, Redis, RethinkDB, and ZooKeeper for
their valuable discussions.

This material was supported by funding from NSF grants CNS-
1419199, CNS-1421033, CNS-1319405, and CNS1218405, DOE
grant DE-SC0014935, as well as donations from EMC, Facebook,
Google, Huawei, Microsoft, NetApp, Samsung, Seagate, Veritas,
and VMware. Finally, we thank CloudLab [4] for providing a
great environment for running our experiments. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors and may not reflect the views of
NSF, DOE, or other institutions.

0 1 2

Client

message: 0
[silent data loss]

read

truncate upto
message 0

assertion failure

failure
write (W = 2)

Leader Followers

0 1 2

disk block of entry 1 corrupted

truncate at 0

crash

Figure 8: Unsafe interaction between local behaviors and global protocols.
The figure shows how local fault-handling behaviors in Kafka interact with
the global leader election protocol in an unsafe manner. Node 1, which lost
committed data due to entanglement in crash and corruption handling, is
elected as the leader, resulting in data loss and write unavailability.

Problem R
ed

is

Z
oo

K
ee

pe
r

C
as

sa
nd

ra

K
af

ka

R
et

hi
nk

D
B

M
on

go
D

B

L
og

C
ab

in

C
oc

kr
oa

ch
D

B

Locally Undetected Faults × × × × ×
Crashing on Faults × × × × × × × ×
Crash Corruption Entangled × × × × ×
Unsafe Protocol Interaction × × ×
Redundancy Underutilized × × × × × × × ×

Table 2: Fundamental problems summary. The table shows the summary
of the fundamental problems across all the systems we studied. A shaded
box for a system indicates that we observed at least one instance of the
problem mentioned on the left.

http://research.cs.wisc.edu/adsl/Software/cords
http://research.cs.wisc.edu/adsl/Software/cords

26  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

FILE SYSTEMS AND STORAGE
Redundancy Does Not Imply Fault Tolerance

References
[1] L. N. Bairavasundaram, A. C. Arpaci-Dusseau, R. H. Arpaci-
Dusseau, G. R. Goodson, and B. Schroeder, “An Analysis of
Data Corruption in the Storage Stack,” in Proceedings of the
6th USENIX Symposium on File and Storage Technologies
(FAST ’08), February 2008, pp. 223–238: https://www.usenix
.org/legacy/event/fast08/tech/full_papers/bairavasundaram
/bairavasundaram.pdf .

[2] L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy, and J.
Schindler, “An Analysis of Latent Sector Errors in Disk Drives,”
in Proceedings of the 2007 ACM SIGMETRICS Conference
on Measurement and Modeling of Computer Systems (SIG-
METRICS ’07), June 2007: http://research.cs.wisc.edu/adsl
/Publications/latent-sigmetrics07.pdf.

[3] A. Ganesan, R. Alagappan, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, “Redundancy Does Not Imply Fault Tolerance:
Analysis of Distributed Storage Reactions to Single Errors and
Corruptions,” in Proceedings of the 15th USENIX Conference
on File and Storage Technologies (FAST ’17), February 2017,
pp. 149–166: https://www.usenix.org/system/files/conference
/fast17/fast17-ganesan.pdf.

[4] R. Ricci, E. Eide, and CloudLab Team, “Introducing Cloud-
Lab: Scientific Infrastructure for Advancing Cloud Architec-
tures and Applications,” ;login:, vol. 39, no. 6 (December 2014):
https://www.usenix.org/publications/login/dec14.

[5] B. Schroeder, R. Lagisetty, and A. Merchant, “Flash Reli-
ability in Production: The Expected and the Unexpected,” in
Proceedings of the 14th USENIX Conference on File and Storage
Technologies (FAST ’16), February 2016, pp. 67–80: https://
www.usenix.org/system/files/conference/fast16/fast16-papers
-schroeder.pdf.

https://www.usenix.org/legacy/event/fast08/tech/full_papers/bairavasundaram/bairavasundaram.pdf
https://www.usenix.org/legacy/event/fast08/tech/full_papers/bairavasundaram/bairavasundaram.pdf
https://www.usenix.org/legacy/event/fast08/tech/full_papers/bairavasundaram/bairavasundaram.pdf
http://research.cs.wisc.edu/adsl/Publications/latent-sigmetrics07.pdf
http://research.cs.wisc.edu/adsl/Publications/latent-sigmetrics07.pdf
https://www.usenix.org/system/files/conference/fast17/fast17-ganesan.pdf
https://www.usenix.org/system/files/conference/fast17/fast17-ganesan.pdf
https://www.usenix.org/publications/login/dec14
https://www.usenix.org/system/files/conference/fast16/fast16-papers-schroeder.pdf
https://www.usenix.org/system/files/conference/fast16/fast16-papers-schroeder.pdf
https://www.usenix.org/system/files/conference/fast16/fast16-papers-schroeder.pdf

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 27

FILE SYSTEMS AND STORAGE

Scaling Namespace Operations with
Giraffa File System
K O N S T A N T I N V . S H V A C H K O A N D Y U X I A N G (C H R I S) C H E N

HDFS clusters rely on a single NameNode, the master, as its metadata
service. Single master design of HDFS is known to be a limiting
factor for potential growth of the file system in its size and perfor-

mance. Project Giraffa replaces the single master of HDFS with a dynami-
cally distributed namespace service, thus overcoming scalability limits of
HDFS while remaining fully compatible with it. We focus on the perfor-
mance of namespace operations and present a benchmark that demonstrates
that Giraffa can linearly scale the throughput of metadata operation by sim-
ply adding more servers to store the file-system namespace.

Apache Hadoop is a system for distributed storage and computation for big data problems.
As members of the Hadoop Development team at LinkedIn, it is our daily job to monitor the
condition of our clusters, fix problems, and optimize their performance. The most troubling
problems are those that result in a cluster-wide crisis.

One day, a user complained that his job was running unusually slowly and not progressing.
We thought it could be a problem of the particular job. But with more similar reports coming
in, we realized that the cluster became stagnant for most of the jobs assigned to it. Eventu-
ally we noticed that the NameNode was unresponsive, running at 100% CPU. Further drill-
ing into HDFS audit logs, we identified one job that was producing hundreds of thousands
of namespace operations per second, saturating the NameNode and degrading its perfor-
mance. The majority of these operations were read requests such as listStatus, getFileInfo,
getBlockLocations.

We call the above scenario the “bad client” problem, which means a single “bad” job can
make the whole cluster unavailable for everybody. The root cause of this problem is the single
master architecture of HDFS, where the performance of a single NameNode, the single mas-
ter, can constrain the performance of the entire cluster.

Scaling file system metadata along with its data is our primary motivation for building
the Giraffa file system. We show that Giraffa metadata operations scale linearly and thus
can prevent the bad client problem. See [4] for different aspects of scalability limitations of
HDFS architecture [6].

Giraffa Overview
Giraffa [5] is a distributed, highly scalable file system that aims to:

1. Support millions of concurrent clients

2. Store trillions of objects

3. Maintain exabyte total storage capacity

Giraffa is intended to scale both the data storage and its metadata. Giraffa keeps its meta-
data—directories, files, and blocks—in a distributed key-value store, currently Apache
HBase, as a single table distributed across multiple servers, while file data are stored in block

Konstantin V. Shvachko is an
expert in big data technologies,
file systems, and storage
solutions. He specializes in
efficient data structures and

algorithms for large-scale distributed storage
systems. Konstantin is known as an open
source software developer, author, inventor,
and entrepreneur. He is currently a part of the
Hadoop team at LinkedIn.
kshvachko@linkedin.com

Yuxiang Chen is a graduate
student in the School of
Computer Science, Carnegie
Mellon University. In summer
2016 he worked as an intern

with the Hadoop Development team at
LinkedIn. His research interests include cloud
computing and distributed systems.
yuxiang1@andrew.cmu.edu

28  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

FILE SYSTEMS AND STORAGE
Scaling Namespace Operations with Giraffa File System

files located on HDFS DataNodes. In other words, we still store
all the data in DataNodes as Hadoop does. However, we save all
the information that is stored in the NameNode in Hadoop to
an HBase table in Giraffa. This architecture makes Giraffa a
drop-in (no data copy) replacement for HDFS. Figure 1 shows the
high-level architecture of Giraffa.

In Giraffa the file system metadata is served by the Namespace
Service, which is composed of a single HBase table called
Namespace. The Namespace table stores records corresponding
to files and directories. Each record has a unique key, identifying
the file or the directory, and contains the following attributes:
local name, owner, group, permissions, access time, modification
time, block size, replication, length, and a directory flag. When
you need to read a file, you get the file’s list of blocks and their
locations, so your application can read the data from the respec-
tive DataNodes. When you write to a file, Giraffa allocates a
block using its BlockManager. The client then writes data to the
designated DataNodes.

BlockManager is another service that is used to maintain the
flat namespace of blocks. The BlockManager is responsible for:

1. New block allocation

2. Scheduling block replication and deletion

3. DataNode management: process DataNode block reports,
heartbeats, detect lost nodes

HBase automatically partitions its tables, and this allows
Giraffa to dynamically partition its Namespace. That is, file and
directory metadata—table rows—can automatically migrate
between nodes based on nodes’ utilization and load-balancing
requirements. Since metadata is distributed across multiple

nodes, this allows the number of files in the file system to
increase and ensures that Giraffa is able to deal with trillions of
files representing as much as 1000 PB of data on a single cluster.

Row keys identify files and directories as rows in the Namespace
table, and they also define the sorting of the rows in the table.
Thus, keys play an important role in Namespace partitioning.
Row-key definition is based on the locality requirement and is
chosen during file-system formatting.

Currently the row key is implemented as a byte array represent-
ing the full path to a file in the namespace tree. For example, file
/user/jsmith/job.xml is identified by the row key, which is a
byte representation of the string “/user/jsmith/job.xml”. Lexico-
graphic ordering of such keys guarantees locality of reference—
that is, the children of the same directory fall into the same
table partition, a region, most of the time. In the future we plan
to define the row keys based on unique immutable INode IDs,
which include selfID and two nearest parent IDs. This way, we
still guarantee the locality of reference but also allow in-place
renames—that is, if a file name changes, it remains in the same
region because name changes do not affect row key values.

Giraffa is still in an experimental phase. The problems remain-
ing to be addressed include:

1. Full set of HDFS functionality

2. INode ID-based keys to allow in-place atomic rename

3. Distributed block management

4. Short-circuit HBase metadata into itself

5. HBase scalability: single HMaster, region redundancy

Setting Up a Giraffa Cluster
We’ve used Giraffa on Java 8 without issues, but it also works
with Java 7. We need Gradle 2.5 to build Giraffa sources. Similar
to Hadoop, Giraffa uses Google Protocol Buffers version 2.5.0.
Giraffa currently depends on hbase-1.0.1 and hadoop-2.5.1.

Although the Giraffa Wiki page on GitHub has instructions for
setting up Giraffa in standalone mode, we will show you how to
install Giraffa on a real cluster. Our cluster consisted of 11 physi-
cal servers (node-001 to node-011). Below are the step-by-step
instructions on how to set up the cluster. One may consider writ-
ing a batch of scripts to automate the installation process.

Hadoop 2.5.1 Setup
Set up Hadoop normally if you haven’t already, following Cluster
Setup instructions [1]. HDFS cluster status can be checked via
the NameNode Web UI at http://node-001:50070. In our case,
node-001 runs the NameNode process, while the other 10 serv-
ers node-002–node-011 run DataNodes.

Figure 1: Giraffa Namespace Agent obtains metadata from Giraffa
Namespace Service and streams data to or from HDFS DataNodes, while
Giraffa Block Manager maintains all blocks.

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 29

FILE SYSTEMS AND STORAGE
Scaling Namespace Operations with Giraffa File System

HBase 1.0.1 Setup
1. Follow the official Apache HBase Reference guide [2] to

 configure and set up HBase cluster.

2. Start HBase. In our cluster, node-001 hosts HMaster and
HQuorumPeer processes, and the remaining machines host
HRegionServer process. The status of the HBase cluster can
be checked on the HMaster Web UI at http://node-001:16010.

3. Stop HDFS and HBase after testing.

Giraffa Setup
1. Download and build Giraffa according to [3].

2. Copy giraffa-standalone-0.4-SNAPSHOT.tgz to all nodes,
and change the configuration according to [3].

3. Start and format Giraffa using giraffa format command.
The script that starts Giraffa will also bring up Hadoop and
HBase.

After completing these steps, you should be able to run file
system operations on Giraffa. Here are some examples of Giraffa
CLI commands.

Get listing of the Giraffa root directory:

bin/giraffa fs –ls /

Create a new directory:

bin/giraffa fs -mkdir testdir

YARN Setup
1. Configure YARN according to the official Apache Hadoop

tutorial [1].

2. Use Giraffa commands to start YARN daemons: the
ResourceManager on node-001, and NodeManager processes
on the rest of the nodes:
bin/yarn-giraffa-daemon.sh start resourcemanager

bin/yarn-giraffa-daemon.sh start nodemanager

The cluster setup is now complete.

TeraSort is an example of a YARN application. By default it
starts small MapReduce jobs, which will test the entire setup.
Note that in this case all data is stored and processed on the
Giraffa file system rather than on HDFS.

1. Run TeraGen:
bin/yarn-giraffa jar $HADOOP_HOME/share/hadoop

/mapreduce/hadoop-mapreduce-examples-2.5.1.jar

 teragen 10000000 /teragen

2. Run TeraSort:
bin/yarn-giraffa jar $HADOOP_HOME/share/hadoop

/mapreduce/hadoop-mapreduce-examples-2.5.1.jar

 terasort /teragen /terasort

3. Run TeraValidate:
bin/yarn-giraffa jar $HADOOP_HOME/share/hadoop

/mapreduce/hadoop-mapreduce-examples-2.5.1.jar

 teravalidate /terasort /teravalidate

The Benchmarks
In order to show that Giraffa scales linearly with the number of
region servers, we built a benchmark. In this benchmark, we first
create a number of files, and then run a MapReduce job, where
each mapper calls listStatus for those files.

Suppose we have m map tasks running in parallel, and each map
task performs listStatus for n files. Then the result we want to
output is (m * n / t), where t is the time of the mapping phase.
YARN does not guarantee that all tasks start at the same time.
In order to synchronize our m map tasks running in parallel, we
set a start time t1. All map tasks will wait until time point t1
before running the listStatus operations. That way we can guar-
antee that the mappers hit the Namespace Service all at once,
providing maximum workload on the service. Finally, we record
time t2 when the last map task stops, and measure the running
time for all mappers as t = t2 – t1.

This benchmark gives us the number of read operations that
Giraffa can handle per second, which is an important metric of
the cluster performance.

The configuration of the experiment is as follows:

We set up a cluster with 11 nodes. node-001 hosts master
processes: NameNode, HMaster, ResourceManager. node-002–
node-011 host the slave processes: DataNode, HRegion, Node-
Manager. We managed to run 220 map tasks simultaneously on
our cluster, and required each of them to perform listStatus for
10,000 files. We collected the running time and repeated this
experiment several times to get rid of the soft bias.

We chose the number of map tasks to run (220) based on the
capacity of the cluster. YARN as a resource manager allocates
containers, each of which runs a single task and defines how
much of execution resources, RAM and CPU (vCores), to be dedi-
cated to a specific task. Thus, the cluster capacity is determined
by the total amount of RAM and the total number of vCores.
Our goal was to fully utilize the cluster without overutilizing it,
so that all mappers ran simultaneously rather than in “waves.”

30  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

FILE SYSTEMS AND STORAGE
Scaling Namespace Operations with Giraffa File System

From these tests, we can see that the read performance of
Giraffa scales linearly with the number of region servers. The
write performance was partly addressed in [7]. It shows that the
mkdir operation scales linearly. We expect that some operations
like file create or delete will scale linearly as well, but some
like addBlock will not due to limitations of the current Giraffa
implementation, something yet to be fixed.

Conclusion
We showed that the Giraffa file system could linearly scale
metadata operation for read requests by simply adding more
servers to store the file-system namespace.

Authors of [7] came to the same conclusion as they benchmarked
Giraffa along with two other systems, ShardFS and IndexFS,
on a variety of metadata workloads. It shows that Giraffa scales
linearly in throughput as more servers are dynamically added to
the system for most of the workloads.

In our cluster, we had a total of 220 GB of RAM and 320 vCores
available for containers. Each task requires at least 1 GB of
memory and 1 vCore. We therefore decided to set the number of
map tasks to be 220, which satisfies the single wave requirement
without affecting the performance of the cluster.

We started the Giraffa benchmark with a single region server
serving the entire Namespace table. Then we used the HBase
split command to dynamically partition the table into two
regions served by two different region servers. Dynamically here
means that we did not need to copy file data or restart the cluster
for repartitioning. Then we similarly split the table into four and
eight regions and made sure that each of them was assigned to a
different region server.

In order to compare the performance of Giraffa and HDFS, we
ran the same benchmark on an HDFS cluster using the same
hardware. The main difference is that the Hadoop cluster does
not need HMaster and HRegion processes. We stopped the
Giraffa cluster, set up HDFS, and configured and started YARN
with HDFS according to [1].

For Hadoop we also ran 220 parallel mappers with each of
them performing listStatus for 10,000 files. Figure 2 shows the
benchmark results.

The x-axis represents the number of region servers serving
Giraffa namespace, and the y-axis represents the number of read
operations per second that the file system processed. Since in
our HDFS cluster we had only one NameNode, the number of
read operations per second does not change, and the dashed line
serves as the baseline. The solid line represents the throughput
of Giraffa. It shows linear growth of read operations per second
with the number of region servers. The benchmark is limited to
eight region servers because of the cluster size limitations.

References
[1] Apache Hadoop Cluster Setup: https://hadoop.apache
.org/docs/current/hadoop-project-dist/hadoop-common
/ClusterSetup.html.

[2] Apache HBase Configuration: https://hbase.apache.org/0.94
/book/configuration.html.

[3] How to Set up, Build, and Use Giraffa: https://github.com
/GiraffaFS/giraffa/wiki/How-to-Setup,-Build,-and-Use
-Giraffa.

[4] K. V. Shvachko, “HDFS Scalability: The Limits to Growth,”
;login:, vol. 35, no. 2 (April 2010): https://www.usenix.org
/legacy/publications/login/2010-04/openpdfs/shvachko.pdf.

[5] K. V. Shvachko, P. Jeliazkov, “Dynamic Namespace Par-
titioning with Giraffa File System,” Hadoop Summit 2012:
http://lanyrd.com/2012/hadoop-summit/stttw/.

[6] K. Shvachko, H. Kuang, S. Radia, R. Chansler, “The Hadoop
Distributed File System,” 2010 IEEE 26th Symposium on
Mass Storage Systems and Technologies (MSST), 2010.

[7] L. Xiao, K. Ren, Q. Zheng, G. A. Gibson, “ShardFS vs.
IndexFS: Replication vs. Caching Strategies for Distributed
Metadata Management in Cloud Storage Systems,” Sixth
ACM Symposium on Cloud Computing, 2015.

Figure 2: Giraffa read performance scales linearly with number of servers
compared to the single NameNode.

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hbase.apache.org/0.94/book/configuration.html
https://hbase.apache.org/0.94/book/configuration.html
https://github.com/GiraffaFS/giraffa/wiki/How-to-Setup,-Build,-and-Use-Giraffa
https://github.com/GiraffaFS/giraffa/wiki/How-to-Setup,-Build,-and-Use-Giraffa
https://github.com/GiraffaFS/giraffa/wiki/How-to-Setup,-Build,-and-Use-Giraffa
https://www.usenix.org/legacy/publications/login/2010-04/openpdfs/shvachko.pdf
https://www.usenix.org/legacy/publications/login/2010-04/openpdfs/shvachko.pdf
http://lanyrd.com/2012/hadoop-summit/stttw/

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 31

FILE SYSTEMS AND STORAGE

2017 USENIX Research in Linux File and Storage
Technologies Summit (Linux FAST Summit ’17)
R I K F A R R O W

Ric Wheeler (Red Hat) chaired the Linux FAST Summit ’17. There were
50 attendees, the most yet, with 60% from large companies, 20% from
universities, and the rest consultants or from smaller companies.

According to Ric, 33% of the Linux FAST attendees did not attend FAST ’17.

After introducing ourselves and briefly explaining why we were attending, discussion of
issues with block I/O began. Someone mentioned that the latest Linux kernels can handle
as many as 40 million IOPS. Ted Ts’o (Google) suggested that it’s time to start considering
techniques used in high-speed networking to further improve performance.

Erez Zadok (Stony Brook University) wondered how multiple write queues to the same device
affected order handling. Christoph Hellwig (consultant and Linux file system hacker) said
ordering isn’t handled; it’s an unsolved problem. Most devices behave as if they are non-vol-
atile, returning completion codes while data is still buffered in on-device RAM. And devices
perform out-of-order writes as they see fit. That pretty much guarantees that anything done
by an OS, such as write barriers, can’t work.

Andrew Morton (Google) then began the “how to work with the Linux kernel” section, a
tradition at Linux FAST. Andrew suggested sending him your first patch (for file system
patches) rather than just posting your patch to the Linux-kernel list. Andrew pointed out
that the kernel developers had gotten a bad reputation for being harsh, but now “we’re pretty
professional.”

Ted Ts’o put this another way. Suppose someone unknown to the developers sends an email,
which is like cold calling. You want to work through introductions if at all possible, just as
you would in any social situation, and it’s also important to use the most recent kernel pos-
sible. You can get the most recent build at kernel.org, but if you are working with a specialist
in some area, ask that person which build to work with. In general, choosing a stable release
means you will be working with a kernel that will be supported for some time.

Ted also mentioned that he has created some regression testing tools for file systems. You
can find these tools at https://github.com/tytso/xfstests. Ted, who co-authored the FAST ’17
paper “Evolving Ext4 for Shingled Disks” (in this issue), tried the patches written for improv-
ing SMR performances against his regression testing tools. The patches failed, although they
were good enough to run the benchmarks used to write the paper. Those patches will eventu-
ally be cleaned up and merged into the upstream kernel.

George Amvrosiadis (student at Carnegie Mellon University) mentioned having three thou-
sand lines of code that he shared with members of the file system group. He said he got lots
of feedback and started to develop a relationship with this group of kernel hackers. He also
wanted a particular tracepoint added to the kernel and hasn’t succeeded yet. But he wasn’t
discouraged by the process.

Ric then shifted the focus to FUSE by asking Sage Weil (Red Hat, key author of Ceph) about
his experience working with FUSE. Sage said that although writing user-space software is

Rik is the editor of ;login:.
rik@usenix.org

Editor’s Note: This report includes some
summaries from Mai Zheng (zheng@
nmsu.edu) and Om Rameshwar Gatla
(omram@nmsu.edu)

32  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

FILE SYSTEMS AND STORAGE
2017 USENIX Research in Linux File and Storage Technologies Summit

easier, you still run into kernel issues. For example, you don’t
control the page cache or writeback queue.

Erez mentioned a paper he co-authored for FAST ’17 (Vangoor
et al., “To FUSE or Not to FUSE: Performance of User-Space
File Systems”), where they played with lots of switches in FUSE
to see how those affected performance. He was surprised there
was so little documentation for FUSE. George mentioned that
the patch he wanted was a tracepoint that would let them know
when metadata had been modified. Sage pointed out that with
FUSE, the kernel is still doing a lot of work “under the hood” and
that FUSE performance has gotten a lot faster over time.

Another person from Red Hat mentioned that one big advantage
with using FUSE is that you can run your file system without
having to patch a certified kernel. Jeff Darcy (Red Hat) agreed
and added that trying to run non-standard kernels in the cloud
was a non-starter.

John Grove (Micron) said his group was developing a new file
system and that being able to work in FUSE for prototyping was
a great help.

The next topic covered had to do with writing “dirty” buffers
back to disk. Jonathan Amit (IBM Israel) has a problem with a
project that allows customers to write many gigabytes, using
multiple threads. But there is just one kernel thread serving
the write-back cache, and to get the best performance they just
bypass the page cache. Ted answered that using O_DIRECT is
the way people who are passionate about performance handle
this problem. Jonathan said it was not always easy to use O_
DIRECT, and Ted agreed.

Mai Zheng (New Mexico State University) mentioned two cases
where bugs in the Linux kernel affected devices’ behavior. In one
case he tested dozens of SSDs under power faults, and many
devices exhibited corruptions in the tests (see “Understanding
the Robustness of SSDs under Power Fault” presented at FAST ’13).
However, after several years, the same tests were performed
using a newer kernel. It turns out that a bug patch (by Christoph
Hellwig) changes the corruptions observed on some devices
(published in 2016 in ACM Transactions on Computer Systems).
In another case that happened at Algolia datacenter, Samsung’s
SSDs were blamed for data corruption initially. However,
 Samsung’s engineers eventually found that it was a kernel bug
that caused the trouble (http://www.spinics.net/lists/raid/
msg49440.html); the bug was patched by Martin K. Petersen.

Ted commented that only enterprise-class SSDs can be relied
upon (at all) for safe behavior on power fail. The enterprise-class
SSDs have super-capacitors that store enough power to write all
data stored in the RAM within the SSD on power fail, and ven-
dors charge three times as much as they do for consumer class
SSDs. Some vendors do certify their SSDs, but you should check

them under real power-fail conditions, like pulling the plug.
Peter Desnoyers (Northeastern University) suggested using an
Arduino with a relay for experimenting with cutting off power.

Jonathan then changed the topic to ask about NVME device per-
formance. Christoph replied that he had rewritten that device to
make it simpler: no waiting, no polling, and this should be in the
4.9 kernel.

Om Rameshwar Gatla (New Mexico State University) raised
a question regarding how robust the local and large-scale file
system checkers are besides e2fsck. Christoph replied that even
the XFS repair utility is as vulnerable to faults as e2fsck is,
and this could be the same with the repair utility of B-tree file
system (btrfs). In regards to the robustness of checkers for large-
scale file systems, developers of Ceph said that their file system
includes many fault-handling techniques such as journaling,
data replication, etc. by which this situation may be mitigated.

Ric Wheeler commented that many repair utilities, such as XFS
repair, consume a lot of memory and that this problem could
serve as a good research topic. The other topic discussed regard-
ing fsck was its running time. Ric suggested running all file
system checkers of an aging, fragmented file system on a hard
disk whose sizes are on the magnitude of terabytes and observe
the memory consumption and total run times. The results from
these experiments may provide a good research opportunity. Ted
added that the problem that e2fsck’s slowness is because EXT
file systems maintain lots of bitmaps to track information on all
the inodes, direct and indirect blocks, etc., but the overall mem-
ory consumption of e2fsck is far less than any other file system
checker. To support his argument, Ted gave an example where
they ran e2fsck on a 6 TB hard disk that was 80% full and had
the Hadoop layout. e2fsck consumed less than 9 MB of memory
to complete. Ted added that having a large number of hard links
creates the greatest challenge for fsck.

Niels De Vos (Red Hat) mentioned that GlusterFS uses extended
attributes (xattrs) in ext4, and if users edit the attributes, you
really get into big trouble. Of course, there’s no way that an fsck
could check for that. They also do erasure coding for files, which
means that checking involves reading files on multiple servers.

Om also asked about the error reporting mechanism from file
systems or lower layers. He wanted to know more details when
facing some errors (e.g., why a volume is reported “unmount-
able”). Ted, Christoph, Ric, and some others commented that
the current mechanism relies on error numbers (errno). The
overhead of passing more detailed information around might be
high. Also, dmesg is a good place to look for more detailed error
messaging in current systems.

There was some discussion about mapping and providing low-
level block information to higher level software. Ted commented

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 33

FILE SYSTEMS AND STORAGE
2017 USENIX Research in Linux File and Storage Technologies Summit

that debugfs (https://www.kernel.org/doc/Documentation/
filesystems/debugfs.txt) provides such a mechanism. Mai com-
mented that in his project about analyzing the bugs in databases
and file systems, debugfs has helped a lot for examining the
relationship between the corruption at low-level I/O blocks and
the impact on database logs.

Jonathan asked about why mmaping two terabytes of memory
takes so long. Andrew pointed out that populating two terabytes
working with four-kilobyte pages was always going to take a
long time, leading Jonathan to wonder whether the Persistent
Memory (PMEM) driver supported huge pages.

Pankaj Mehra (Western Digital) said that people so far don’t
understand PMEM, as they are not using mmap (see Andy
Rudoff’s article “Persistent Memory Programming” in this
issue). Ted agreed: you don’t want a POSIX layer, you want to
mmap PMEM into your process memory. You can treat PMEM as
superflash, but there’s lots of overhead there.

Pankaj replied that if you have PMEM, you are going to want
to manage it, which includes encryption, snapshots, naming,
permissions, and free space. Sam Fineberg (Consultant) pointed
out that the traditional way of dealing with memory errors in
Linux is to use ECC or to crash. Ric mentioned that the Micron-
Intel XPoint PMEM will be able to report bad memory. Mai

mentioned a paper published in EuroSys ’13 which makes the
msync() system call robust (“Failure-Atomic msync(): A Simple
and Efficient Mechanism for Preserving the Integrity of Durable
Data”). Christoph confirmed that the idea as well as the findings
in a follow-up paper from the same group have been incorporated
into the Linux kernel.

Pankaj continued: “When we first came up with the term
PMEM, we were very careful. The way we handled this is the
way Rudoff describes it: one instruction per address. When you
do a store, we will store. If you want PMEM to do transactions,
you lose the performance benefits.”

In the (near) final topic of the day, Ted said that he is currently
working on data encryption at the file system level and that there
are many challenges to it, such as how to provision crypto keys
for encryption and decryption, and where to store them securely.
Ted also said that the efficiency is highly architecture-depen-
dent, with Intel Skylake able to encrypt one word per cycle, but
ARM CPUs having no native support.

The final topic concerned tuning the page cache, and Ric pointed
out that there is a tool called tuned that helps with picking
appropriate sets of tuning for storage, and that you can actually
find tuned profiles for different use cases.

XKCD xkcd.com

34  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

PROGRAMMINGPersistent Memory Programming
A N D Y R U D O F F

Andy Rudoff is a Senior
Principal Engineer at Intel
Corporation, focusing on non-
volatile memory programming.
He is a contributor to the SNIA

NVM Programming Technical Work Group.
His more than 30 years’ industry experience
includes design and development work in
operating systems, file systems, networking,
and fault management at companies large
and small, including Sun Microsystems and
VMware. Andy has taught various operating
systems classes over the years and is a
co-author of the popular UNIX Network
Programming textbook. andy.rudoff@intel.com

In the June 2013 issue of ;login:, I wrote about future interfaces for non-
volatile memory (NVM) [1]. In it, I described an NVM programming
model specification [2] under development in the SNIA NVM Program-

ming Technical Work Group (TWG). In the four years that have passed, the
spec has been published, and, as predicted, one of the programming models
contained in the spec has become the focus of considerable follow-up work.
That programming model, described in the spec as NVM.PM.FILE, states
that persistent memory (PM) should be exposed by operating systems as
memory-mapped files. In this article, I’ll describe how the intended persistent
memory programming model turned out in actual OS implementations, what
work has been done to build on it, and what challenges are still ahead of us.

The Essential Background on Persistent Memory
The terms persistent memory and storage class memory are synonymous, describing media
with byte-addressable, load/store memory access, but with the persistence properties of
storage. In this article, I will focus on persistent memory connected to the system memory
bus, like a DRAM DIMM, creating a class of non-volatile DIMMs known as NVDIMMs.

To further clarify what I mean by persistent memory, I am only speaking about NVDIMMs
that allow software to access the media as memory (some NVDIMMs only support block
access and are not covered here). This provides all the benefits of memory semantics, like
CPU cache coherency, direct memory access (DMA) by other devices, and cache line granu-
larity access which programmers can treat as byte-addressability. To provide these seman-
tics, the media must be fast enough that it is reasonable to stall a CPU while an instruction
is accessing it. NAND Flash, for example, is too slow to be considered persistent memory
by itself, since access is typically done in block granularity and it takes long enough that
context switching to allow another thread to do work makes more sense than stalling. Where
hard drive accesses are typically measured in milliseconds, and NAND Flash SSD accesses
are measured in microseconds, persistent memory accesses are measured in nanoseconds.
Depending on the exact type of media, an NVDIMM may not be as fast as DRAM, but it is in
the neighborhood.

Some NVDIMM products on the market today use DRAM as the media at runtime but auto-
matically back up the contents to NAND Flash on power loss and restore the contents when
the power returns. These products provide DRAM performance but also require additional
components and an energy source to save the data, giving them a lower per-DIMM capacity
and higher cost per gigabyte than DRAM. Emerging non-volatile media, like the 3D XPoint
technology announced jointly by Intel and Micron in 2015, promises higher capacity at a
price point lower than DRAM. Multiple terabytes per CPU socket are expected, making per-
sistent memory interesting on multiple fronts: persistence, capacity, and cost [3].

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 35

PROGRAMMING
Persistent Memory Programming

The Persistent Memory Programming Model
How does an application get access to persistent memory?
Unlike volatile memory, the application needs a way to con-
nect with specific persistent contents; persistent memory isn’t
anonymous like volatile memory; regions need names so applica-
tions can find them, just like files. And also like files, regions of
persistent memory need permissions to control which applica-
tions have access to the persistent information. The entire point
of the persistent memory programming model specified by
the SNIA TWG was to recommend that operating systems use
standard file semantics to provide naming, permissions, and
memory-mapping of persistent memory.

Now that this has been implemented in multiple operating sys-
tems, including Linux and Windows, it seems very obvious, and
you might wonder why a specification was even necessary. But four
years ago when I wrote the first ;login: article, there were multiple
competing ideas on how to expose persistent memory, and soft-
ware vendors were in danger of having to decide between incom-
patible programming models from different products. Instead, the
ecosystem has unified nicely around the model shown in Figure 1.

The NVDIMM shown at the bottom of the figure represents the
persistent memory installed in the system, potentially spread

across many NVDIMMs, and potentially interleaved (striped)
for performance by the memory controller. On Intel-based
systems, the BIOS creates a table called the NVDIMM Firm-
ware Interface Table (NFIT) that enumerates the NVDIMMs
installed. This table was added to the ACPI specification in ver-
sion 6.0 and continues to evolve as NVDIMMs evolve. As shown
in the figure, some driver (or collection of drivers) consumes
the NFIT information and takes ownership of the persistent
memory, exposing it to management software (left side of the
figure), potentially exposing it as traditional block storage which
is emulated by the driver (middle part of the figure), and expos-
ing it directly to applications through a persistent memory aware
file system (the right side of the figure).

DAX
My definition of a persistent memory aware file system, like the
one shown in Figure 1, is a file system that allows direct access
to persistent memory without using the system page cache as
it would for normal, storage-based files. This feature has been
named DAX by the operating systems folks, short for Direct
Access. Conveniently, both Linux and Windows use the same
term for the same feature.

Figure 1: The SNIA persistent memory programming model

36  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

PROGRAMMING
Persistent Memory Programming

The persistent memory programming model, and the cor-
responding DAX feature, says persistent memory files can be
mapped into memory using standard calls like mmap() on Linux
or MapViewOfFile() on Windows. This results in the far-right
arrow on Figure 1, where the application has direct load/store
access to the persistence. Once these mappings are set up (and
after any initial minor page faults that may be required to create
the mappings in the MMU), this provides the shortest possible
code path to persistence, allowing the applications to perform
loads and stores on the persistent media directly with no kernel
involvement. No interrupts, no context switching, no kernel code
at all is required for media access.

Making Stores Persistent
Just as persistent memory is accessed using standard memory-
mapped files, the steps for making changes persistent follow
the same standards. On Linux (actually any POSIX-compliant
system), the range-based msync() call or file-based fsync() call
may be used to ensure changes are persistent. On Windows,
the combination of FlushViewOfFile() and FlushFileBuffers()
is used. These calls create a store barrier, a point after which
the program can assume the previous changes it made to the
persistent memory are actually persistent. Historically, this
store barrier required the operating system to find dirty pages
in the system page cache, flushing them to block storage, such
as a disk. But since persistent memory doesn’t use the page
cache, the operating system need only flush the CPU caches, as
appropriate, to get changes into the persistence domain. I define
the persistence domain as the point along the data path taken by
stores where they are considered persistent because that point is
power fail safe (see Figure 2).

The dashed box in Figure 2 shows the persistence domain
required by Intel platforms supporting persistent memory. At the
platform level, any stores inside the dashed box are either on the
DIMM, or still in the write pending queue (WPQ) in the memory
controller, on their way to the DIMM. Either way, platforms sup-
porting persistent memory are required to have enough stored
energy to flush any stores inside the dashed box all the way to
persistent media on power loss. This feature, flushing the stores
the rest of the way on power failure, is known as asynchronous
DRAM refresh (ADR) and has been a requirement of NVDIMM
products since they first appeared a few years ago.

At the x86 instruction level, simply executing a store instruction
is not enough to make data persistent, since the data may be sit-
ting in the CPU caches indefinitely and could be lost by a power
failure. Additional cache flush actions are required to make
the stores persistent. The following table describes how each of
these works.

Looking at Figure 2 and the instructions in the Table 1 might
make you wonder why Intel didn’t just make the CPU caches part

of the persistence domain. This is technically possible, produc-
ing the situation shown in Figure 2 but with the dashed box now
including the CPU caches.

The problem with extending the persistence domain to include
the CPU caches is that the x86 caches are quite large, and it would
take more energy than the capacitors in a power supply can prac-
tically provide. This usually means the platform would have to
contain battery. Requiring a battery for every server supporting
persistent memory is not practical at this time, but it is certainly
possible for companies, such as appliance vendors who ship cus-
tom hardware, to include a battery in their product. This would
allow the cache flush instructions described in Table 1 to be
skipped, but the SFENCE instruction would still be required as a
store barrier—stores should be considered persistent only when
they are globally visible, and that’s what the SFENCE ensures.

Because some appliance vendors plan to use batteries as I’ve
described, and because I hope that all platforms will someday
include the CPU caches in the persistence domain, a property is
being added to ACPI so that the BIOS can notify the operating
system when the CPU flushes can be skipped. This allows the
operating system to implement calls like msync() in the most
optimal way.

User Space Flushing to Persistence
With the exception of WBINVD, the instructions I described in
Table 1 are supported in user mode by Intel CPUs. Flushing a
cache line using CLWB (or CLFLUSHOPT or CLFLUSH) and
using non-temporal stores are all supported from user space.

Figure 2: The path taken by a store, and the persistence domain (dashed box)

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 37

PROGRAMMING
Persistent Memory Programming

This could allow the flushing to persistence directly from user
space, without calling into the kernel, a feature documented in
the SNIA programming model spec as Optimized Flush. The
spec describes Optimized Flush as optionally supported by the
platform, depending on the hardware and operating system sup-
port. Despite the CPU support, it is important for applications
to only use Optimized Flush when the operating system says
it is safe to use. The operating system may require the control
point provided by calls like msync() when, for example, there are
changes to file system metadata that need to be written as part
of the msync() operation.

Support for safe userspace flushing is an evolving feature in
the current implementations. At the time of this writing, the
DAX support in Windows, provided by the NTFS file system,
includes unconditional support for Optimized Flush. Windows
programs can ensure stores to persistent memory are persistent
using instruction sequences like CLWB + SFENCE. On Linux,
the two file systems that support DAX, ext4 and XFS, do not
currently consider userspace flushing safe. While hoping to
work out interfaces with these file systems that tell applications
when Optimized Flush is safe, it is an ongoing discussion. Other
file systems, like NOVA [4], a research project from UCSD, are
designed from the start to support Optimized Flush but are not
considered production ready yet. As an interim solution, Linux
provides Device-DAX [5], which allows an application to open a
persistent memory device (without a file system), memory map
it, and utilize userspace flushes to make stores persistent.

To insulate application programmers from this complexity, and
to keep them from having to research the current state of affairs
while programming for persistent memory, the libpmem library
provides a function which tells the application when Optimized
Flush is safe. Programmers are strongly encouraged to use
libpmem to make this determination and to use userspace flush-
ing only when it is safe, falling back on the standard method of
flushing stores to memory mapped files otherwise. The libp-
mem library is also designed to detect the case of the platform
with a battery I described above, turning flush calls into simple
SFENCE instructions instead. I’ve got much more to say about
libraries below, and all the libraries I describe build on this logic
to make sure they transparently depend on the most optimal
type of flushing available to the program.

Persistent Memory Challenges
When a modern program changes any data structure in memory,
the question of atomicity comes up. Is it possible for another
thread to access the data structure and see the change only
partially complete? With multithreaded programming, this
issue is commonly solved using locks to protect data structures.
Sometimes it is solved by using instruction sequences that guar-
antee atomicity in hardware. These issues have been around for
years and are very familiar to programmers, library writers, and
high-level language designers. In this context, the term atomi-
city really refers to visibility, protecting the changes made by one
thread from becoming visible by other threads until the changes
are complete. Adding persistent memory into this picture, the
requirements change from simple atomicity to something more

Table 1: x86 cache flush instructions for use with persistent memory

CLFLUSH
This instruction, supported in many generations of CPU, flushes a single cache line. Historically, this instruction
is serialized, causing multiple CLFLUSH instructions to execute one after the other, without any concurrency.

CLFLUSHOPT
(followed by an
SFENCE)

This instruction, newly introduced for persistent memory support, is like CLFLUSH but without the
serialization. To flush a range, software executes a CLFLUSHOPT instruction for each 64-byte cache line
in the range, followed by a single SFENCE instruction to ensure the flushes are complete before continuing.
CLFLUSHOPT is optimized (hence the name) to allow some concurrency when executing multiple
CLFLUSHOPT instructions back-to-back.

CLWB
(followed by an
SFENCE)

Another newly introduced instruction, CLWB stands for cache line write back. The effect is the same as
CLFLUSHOPT except that the cache line may remain valid in the cache (but no longer dirty, since it was
flushed). This makes it more likely to get a cache hit on this line as the data is accessed again later.

NT stores
(followed by an
SFENCE)

Another feature that has been around for a while in x86 CPUs is the non-temporal store. These stores are “write
combining” and bypass the CPU cache, so using them does not require a flush. The final SFENCE instruction is
still required to ensure the stores have reached the persistence domain.

WBINVD

This kernel-mode-only instruction flushes and invalidates every cache line on the CPU that executes it. After
executing this on all CPUs, all stores to persistent memory are certainly in the persistence domain, but all cache
lines are empty, impacting performance. In addition, the overhead of sending a message to each CPU to execute
this instruction can be significant. Because of this, WBINVD is only expected to be used by the kernel for
flushing very large ranges, many megabytes at least.

38  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

PROGRAMMING
Persistent Memory Programming

like the ACID semantics required for database transactions on
storage [6]. Not only do we want to keep other threads from see-
ing an incomplete change, we want to handle changes that are
interrupted by power failures, program crashes, or exceptions.
Everyone who starts writing programs to use persistent memory
seems to immediately come to this conclusion: we need transac-
tions that are power fail safe.

Before persistent memory existed, if a store was interrupted by
something like power failure, the resulting memory state didn’t
matter much because it was volatile. But with persistent mem-
ory, it is important to understand what is guaranteed by hard-
ware and what is left to software. On Intel, only an eight-byte
store, aligned on an eight-byte boundary, is guaranteed to be
failure atomic. That means if the store is interrupted by a power
failure, the memory contents will contain the previous eight
bytes, or the new eight bytes, but not some combination of the old
and new data. Anything larger than eight bytes can be torn by
power failure and must be handled by software. For example, if
you want to update two eight-byte pointers in your program, and
you want it to happen atomically, protecting those pointers with
a lock will only help you prevent other running threads from
seeing the partial update. A power failure might leave the update
partially done, and there’s no single instruction that will solve

that—software must arrange for the update to be transactional
by building on the eight-byte power-fail-atomic store provided
by hardware. The logic for creating these transactions is a bit
tricky, which points to the need for libraries or language features
to provide them.

Another persistent memory challenge is more basic: manag-
ing the space. Since persistent memory regions are exposed as
files, the file system primarily manages that space. But once the
file is memory-mapped by an application, what happens within
that file is completely up to the application. Functions like C’s
malloc() assume memory is volatile, offering no way on program
start-up to reconnect with a persistent heap and taking no steps
to make sure the heap is consistent in the face of failure. This
adds space allocation to our list of requirements for persistent
memory programming.

The need for location-independence is another challenge.
Although it is technically possible to require that a range of
persistent memory is always mapped at exactly the same address
in a program, it can become impractical when the sizes of other
mapped items change. A security feature known as Address Space
Layout Randomization (ASLR) additionally causes operating
systems to randomly adjust where libraries and files are mapped.
Location-independence means that when one data structure in
persistent memory refers to another using a pointer, that pointer
must be somehow usable even when the file is mapped at a dif-
ferent address. There are several ways to achieve this, such as
relocating pointers after mapping, using relative pointers instead
of absolute pointers, or by using some type of Object ID (OID) to
refer to persistent memory-resident data structures.

The NVM Libraries
The libraries produced by my team at Intel are designed to solve
the challenges described above. They are meant as a conve-
nience, not as a requirement for persistent memory program-
mers. Although I refer to them collectively by the single name
NVML, they are really a suite of six libraries (with additional
libraries already under development). The libraries are all open
source, BSD-licensed, and developed in the open on GitHub. I’ll
describe the libraries here, but much more information is avail-
able at http://pmem.io, including man pages, blog entries, and
lots of example code.

The libraries are written in C and are validated and ready for
use on 64-bit Linux and Windows systems. Some Linux distros
already contain the libraries in their repositories, allowing them
to be installed with simple package management commands.
Otherwise, you can clone the GitHub tree and use make install
to install the library from source (details are on the Web site [7]).

Since these are C libraries, it is possible to call them from various
languages. When using C, we provide some macros to try to help

Figure 3: Using the libpmemobj library, which in turn uses the primitives
in libpmem

http://pmem.io

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 39

PROGRAMMING
Persistent Memory Programming

catch common persistent memory programming errors, but C
macros are never a replacement for full language integration. The
C++ support recently released in libpmemobj (http://pmem.io
/nvml/libpmemobj/; see below) is the cleanest, least error-prone
way we have to do persistent memory programming. For this
reason, if you’re just beginning to explore persistent memory
programming, the C++ examples are the best place to start.

Here’s an overview of the suite of libraries in NVML. Many
examples are available in the examples directory of the source
on GitHub, but to save space I will limit my examples to the most
commonly used library, libpmemobj.

libpmem: Basic Persistence Support
The libpmem library is small and fairly simple, containing the
code that detects which types of flush instructions are sup-
ported by the CPU, as well as performance-tuned routines for
copying ranges of persistence memory using the best instruc-
tion choices for the platform. As mentioned above, a routine
that tells the caller whether Optimized Flush is safe is supplied
(this routine is called is_pmem() for historical reasons—perhaps
optimized_flush_available() would have been a better name in
hindsight).

Even if you decide not to use any of the libraries I describe below,
you might still decide to use libpmem (or steal the code) just to
avoid the tedious development of code that detects supported
instructions, the correct use of non-temporal stores, etc.

libpmemobj: General-Purpose Allocations and
Transactions
This is probably the library you want. As you might guess, the
“obj” in the name is short for object, but by that I mean the vari-
able-sized blob of data referred to by the term object storage, not
the class with methods in an object-oriented language. Figure 3
shows where this library sits in the programming model. Like all
the persistent libraries in the NVML suite, this library builds on
the primitives provided by libpmem.

The libpmemobj library allows persistent memory objects to
be allocated in a way that is power fail safe, allows referring to
them by Object IDs (OIDs), which are location-independent, and
allows making an arbitrary number of changes atomic by encom-
passing the changes in a transaction. The library is multithread
safe and optimized for multithread scalability (by doing things
like maintaining per-thread allocation caches).

As mentioned above, the C++ support in this library provides
the cleanest, easiest-to-use interfaces, so I’ll use a C++ example.
The classic persistent memory example is to link something
into a linked list (a queue in this example, taken verbatim from
the queue.cpp example in the NVML examples area), where
multiple operations are required to be done as a transaction. The

example code below starts by creating a class which defines the
struct pmem_entry, the entries on the queue:

class pmem_queue {

 /* entry in the list */

 struct pmem_entry {

 persistent_ptr<pmem_entry> next;

 p<uint64_t> value;

 };

 /* … */

Notice the persistent_ptr smart pointer template. This indi-
cates a pointer to an object in persistent memory, namely the
next item in the persistent queue. These are the location-inde-
pendent OIDs I mentioned earlier. Also notice the p<> persistent
property in the above declaration, used to indicate fields that
reside in persistent memory. The result of these C++ declara-
tions is that the code to atomically allocate a new entry, initialize
it, and link it into the queue can be done as follows:

 /*

 * Inserts a new element at the end of the queue.

 */

 void

 push(pool_base &pop, uint64_t value)

 {

 transaction::exec_tx(pop, [&] {

 auto n = make_persistent<pmem_entry>();

 n->value = value;

 n->next = nullptr;

 if (head == nullptr) {

 head = tail = n;

 } else {

 tail->next = n;

 tail = n;

 }

 });

 }

The above push operation is transactional. More specifically,
the code in the C++ lambda, indicated by [&] {…}, is transac-
tional, meaning if the program or the machine crashes during
the execution of that code, libpmemobj automatically rolls any
partially done changes back (this includes the allocation done by
the make_persistent call).

There are many more details available for this example, as well
as others, on the pmem.io Web site. The main point of the short
example above is to show that, with no compiler or language
changes, libpmemobj provides a flexible allocation and transac-
tion mechanism for persistent memory.

http://pmem.io/nvml/libpmemobj/
http://pmem.io/nvml/libpmemobj/

40  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

PROGRAMMING
Persistent Memory Programming

libpmemblk and libpmemlog: Support for Specific
Use Cases
In addition to libpmemobj and its flexible transaction sup-
port, two other libraries target specific use cases. The library
libpmemblk is written specifically to maintain a large array of
persistent memory blocks, all the same size. This is useful, for
example, when an application is managing a block cache. The
block size provided by the library is flexible, supporting blocks
512-bytes and larger.

Similarly, the library libpmemlog is written for a specific use
case where the application frequently appends to a private log
file, one that is read rarely, like during crash recovery. This
library takes the relatively long file system append path through
the kernel and turns it into a very short memory copy in persis-
tent memory, followed by an atomic pointer adjustment.

Both of these specific use cases are easily solved using the more
flexible libpmemobj, but the point of libpmemblk and libpmem-
log is they provide APIs that constrain the caller, allowing the
library to assume specific cases and optimize for them.

libmemkind: The Volatile Use of Persistent
Memory
With the large capacity and cheaper-than-DRAM price points
expected for emerging persistent memory products, many vola-
tile use cases have come up. These are cases where the applica-
tion places some data structures in persistent memory to avoid
a large DRAM footprint, but the application doesn’t really care
that the memory is persistent—it is just using it as a second tier
of volatile memory. When NVML was first developed, we created
a library called libvmem (“vmem” for volatile memory). Since
then, another more general library for volatile use cases has been
open sourced on GitHub [8]. Some projects have already been
written to our libvmem interfaces, but for all future development
of volatile use cases, we recommend using libmemkind.

Conclusion
The ideas I outlined in 2013 have come true and have matured
into a fairly complete programming model, resulting at the
operating system level in the DAX feature for both Windows
and Linux (and potentially other operating systems beyond the
scope of this article). Next, libraries have been built on that basic
model to provide application developers with a menu of APIs to
choose from as they leverage the benefits persistent memory has
to offer. There’s still a long list of interesting and fruitful work to
be done, integrating persistent memory support into additional
languages and libraries (see our GitHub area at https://github
.com/pmem for numerous works-in-progress in this space).

References
[1] A. Rudoff, “Programming Models for Emerging Non-
Volatile Memory Technologies,” ;login:, vol. 38, no. 3 (June
2013): https://www.usenix.org/system/files/login/articles/08
_rudoff_040-045_final.pdf.

[2] “SNIA NVM Programming Technical Work Group”: http://
www.snia.org/forums/sssi/nvmp.

[3] “3D XPoint™ Technology Revolutionizes Storage Memory”:
https://www.youtube.com/watch?v=Wgk4U4qVpNY.

[4] J. Xu and S. Swanson, “NOVA: A Log-Structured File
System for Hybrid Volatile/Non-Volatile Main Memories,” in
Proceedings of the 14th USENIX Conference on File and Storage
Technologies (FAST ’16): https://www.usenix.org/system/files
/conference/fast16/fast16-papers-xu.pdf.

[5] Dan Williams, “Device-DAX”: https://lists.gt.net/linux
/kernel/2434768.

[6] T. Haerder, A. Reuter, “Principles of Transaction-Oriented
Database Recovery,” ACM Computing Surveys, vol. 15, no. 4
(December 1983), pp. 287–317.

[7] NVML install instructions: https://github.com/pmem
/nvml/blob/master/README.md.

[8] libmemkind: https://github.com/memkind.

https://github.com/pmem
https://github.com/pmem
https://www.usenix.org/system/files/login/articles/08_rudoff_040-045_final.pdf
https://www.usenix.org/system/files/login/articles/08_rudoff_040-045_final.pdf
http://www.snia.org/forums/sssi/nvmp
http://www.snia.org/forums/sssi/nvmp
https://www.youtube.com/watch?v=Wgk4U4qVpNY
https://www.usenix.org/system/files/conference/fast16/fast16-papers-xu.pdf
https://www.usenix.org/system/files/conference/fast16/fast16-papers-xu.pdf
https://lists.gt.net/linux/kernel/2434768
https://lists.gt.net/linux/kernel/2434768
https://github.com/pmem/nvml/blob/master/README.md
https://github.com/pmem/nvml/blob/master/README.md
https://github.com/memkind

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 41

PROGRAMMING

It’s Better to Rust Than Wear Out
G R A E M E J E N K I N S O N

W hen a colleague of mine first enthused to me about Rust, I
was skeptical. Back in the day, I’d cut my programming teeth
 developing software for safety-critical systems, and I’d learned

the hard way that programming languages are frequently less sane than
they first appear. Take C. Despite a considerable standardization effort, the
C specification remains riddled with unspecified, undefined, and imple-
mentation-defined behaviors [2]. And even in 2016, researchers continue to
explore the differences between the C ISO standard and the de facto
usage [4].

While not all software engineers need be concerned with the seemingly esoteric issues of
what happens when a bit field is declared with a type other than int, signed int, or unsigned
int (it’s undefined [2]), I’d worked too long with safety-critical and security systems to switch
off this retentive part of my brain. And so, somewhat dismissively, I mentally parked Rust
along with Go, Haskell, and all the other technologies that sound cool, but which I could
never foresee actually using. Then early this year I had the opportunity to revisit Rust, and I
found I’d been a bit hasty.

I had been developing a prototype for a distributed tracing framework built on top of DTrace.
The prototype, written in C, acted as a DTrace consumer (interfacing with libdtrace) and
sent DTrace records upstream for further processing (aggregation, reordering, and so on)
using Apache Kafka. For a prototype this worked fine, but as the work progressed, I needed
to rapidly explore the design space.

This task favored adopting higher-level language, but which one to choose? Like all good
engineers, I started to list out my requirements. I needed a language that emphasized pro-
grammer productivity. It needed to easily and efficiently interface with libraries written in
C (such as libdtrace). I also needed easy deployment, therefore languages requiring a heavy
runtime (and Java specifically) were complete nonstarters. Good support for concurrency
and, ideally, prevention of data races would be nice. And, finally, with my security hat on, I
didn’t want to embarrass myself by introducing a bucket-load of exploitable vulnerabilities.
I thought back to that earlier conversation with my colleague; aren’t these requirements
exactly what Rust is designed for? And so I decided to give Rust a whirl, and I’m glad that I
did, because I really liked what I found.

So What’s Rust All About?
Rust’s vision is simple—to provide a safe alternative to C++ that makes system programmers
more productive, mission-critical software less prone to bugs, and parallel algorithms more
tractable. Rust’s main benefits are [5]:

Graeme Jenkinson is Senior
Research Associate in the
University of Cambridge’s
Computer Laboratory, leading
development of distributed

tracing for the Causal, Adaptive, Distributed,
and Efficient Tracing System (CADETS)
project. Prior to working on CADETS, he had 13
years’ experience working in the defense and
automotive industries.

This article first appeared in the Free
BSD Journal, Nov/Dec 2016.

42  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

PROGRAMMING
It’s Better to Rust Than Wear Out

◆◆ Zero-cost abstractions

◆◆ Guaranteed memory safety (without garbage collection)

◆◆ Threads without data races

◆◆ Type inference

◆◆ Minimal runtime

◆◆ Efficient C bindings

The Rust language has a number of comprehensive tutorials,
notably the “Rust Book” [5]. Therefore, rather than retreading
that ground, I will instead highlight the features of Rust that I
find particularly compelling. Along the way, I’ll discuss the fea-
tures of Rust that are most difficult to master. And, finally, I’ll
show how to get started programming in Rust on FreeBSD.

Fighting the Borrow Checker
Before diving in headfirst and firing up your favorite text editor
(vim, obviously), it is important to understand Rust’s most signif-
icant cost, its steep learning curve. On that learning curve, noth-
ing is more frustrating than repeatedly invoking the wrath of
the “borrow checker” (the notional enforcer of Rust’s ownership
system). Ownership is one of Rust’s most compelling features,
and it provides the foundations on which Rust’s guarantees of
memory safety are built. In Rust, a variable binding (the binding
of a value to a name) has ownership of the value it is bound to.
Ownership is mutually exclusive; that is, a resource must have a
single owner. It is the borrow checker’s job to enforce this invari-
ant, which it does by failing early (at compile time) and loudly.

In the following example, taken from the “Rust Book” (The Rust
Programming Language, 2016), v is bound to the vector vec![1,

2, 3], a Rust macro creating a contiguous, growable array con-
taining the values 1, 2, and 3. The function foo() is the “owning
scope” for variable binding v. When v comes into scope, a new
vector is allocated on the stack and its elements on the heap;
when the scope ends, v’s memory (both the components on the
stack and on the heap) is automatically freed. Yay, memory safety
without garbage collection.

fn foo() {

 let v = vec![1, 2, 3];

}

Ownership can be transferred through an assignment let x = y
(move semantics). But remember, ownership is mutually exclu-
sive, so in the example below, when the variable v is referenced
(in the println! macro) after the transfer of ownership to v2, the
borrow checker cries foul: error: use of moved value: `v .̀

let v = vec![1, 2, 3];

let v2 = v;

println!(“v[0] is: {}”, v[0]);

In the next example, calling the function bar() passing the
vector v as an argument transfers the ownership of v. When the
owning scope, the function bar, ends, v’s memory is automati-
cally freed as before. Ownership of v can be returned to the caller
by simply returning v from bar. This approach would get tedious
pretty quickly, and so Rust allows borrowing of a reference (that
is, “borrowing” the ownership of the variable binding). A bor-
rowed binding does not deallocate the resource when the binding
goes out of scope. This means that after the call to bar(), we can
use our original bindings once again.

fn bar(v: &Vec<i32>) {

 // do something useful v here

}

let v = vec![1, 2, 3];

bar(&v);

println!(“v[0] is: {}”, v[0]);

Immutability by Default
By default, Rust variable bindings are immutable. Having spent
many an hour typing const, *const, and final in C and Java,
respectively, this feature alone fills me with joy; and what is
more, unlike const, it actually provides immutability. Variable
bindings can be specified as mutable using the mut keyword: let

mut x = 10. Also note the sensible use of type inference. Like
variable bindings, references are immutable by default and can
be made mutable by the addition of the mut keyword (&mut T).
Shared mutable state causes data races. Rust prevents shared
mutable state by enforcing that there is either:

◆◆ One or more references (&T) to a resource or

◆◆ Exactly one mutable reference (&mut T)

Choosing Your Guarantees
Rust’s philosophy is to provide the programmer with control
over guarantees and costs. Rust’s rule that there can be one or
more immutable references or exactly one mutable reference is
enforced at compile time. However, in keeping with the overall
philosophy, various different tradeoffs between runtime and
compile time enforcement are supported.

A reference counted pointer (Rc<T>) allows multiple “owning”
pointers to the same (immutable) data; the data is dropped and
memory freed only when all the referenced counter pointers are
out of scope. This is useful when read-only data is shared and
it is non-deterministic to when all consumers have finished
accessing the data. A reference counted pointer gives a differ-
ent guarantee (that memory is freed when all owned pointers go
out of scope) than the compile time enforced guarantees of the
ownership system. However, this comes with additional costs

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 43

PROGRAMMING
It’s Better to Rust Than Wear Out

(memory and computation to maintain the reference count).
Similarly, mutable state can be shared (using a Cell<T> type); this
again brings different tradeoffs for guarantees and costs.

Lifetimes
There is one final and rather subtle issue with ownership. Vari-
able bindings exist within their owned scope, and borrowed
references to these bindings also exist within their own separate
scope. When variable bindings go out of scope, the ownership
is relinquished and the memory is automatically freed. So what
would happen if a variable binding went out of scope while a
borrowed reference was still in use? In summary, really bad
things invalidate Rust’s guarantees of memory safety. Therefore,
this can’t be allowed to happen. Lifetimes are Rust’s mecha-
nism to prevent borrowed references from outliving the original
resource.

In Rust, every reference has an associated lifetime. However,
lifetimes can often be elided. The example below shows equiva-
lent syntax with the lifetime (‘a) of the reference s elided and
made explicit:

fn print(s: &str); // elided

fn print<’a>(s: &’a str); // expanded

Global variables are likely to be the novice Rust programmer’s
first interaction with lifetimes. Global variables are specified
with Rust’s special static lifetime as follows: static N: i32 =

5;. A static lifetime specifies that the variable binding has the
lifetime of the entire program (note that string literals possess
the type &’static str, and therefore live for the entire life of the
program). If I were to hazard a guess at where lifetimes next rear
their heads, it would be storing a reference in a struct. In Rust,
a struct is used to create complex (composite) datatypes. When
Rust structs contain references (that is, they borrow owner-
ship), it is important to ensure that any references to the struct
do not outlive any references that the struct possesses. There-
fore, a Rust struct’s lifetime must be equal to or shorter than
that of any references it contains.

Efficient Inheritance
In contrast to C++ and Java’s heavyweight approach to inheri-
tance, Rust takes a muted approach; in fact, the word inheri-
tance is studiously avoided. With traditional inheritance gone
AWOL, classes are no longer needed. Having been freed from
the confines of classes, methods can be defined anywhere, and
types can have an arbitrary collection of methods. As in Go,
inheritance in Rust has been boiled down to simply sharing a
collection of method signatures. This approach is sometimes
referred to as objects without classes. Rust Traits group together
a collection of methods signatures—a Rust type can implement
an arbitrary set of Traits. Thus, Traits are similar to mixins.

Fighting the Borrow Checker Redux
What makes Rust’s ownership system so tricky to master?
Ownership is not a complexity introduced by the Rust language;
it is an intrinsic complexity of programming regardless of the
language being used. Languages that fail to address owner-
ship fail at runtime with data races and so on. In contrast, Rust
makes issues of ownership explicit, allowing the language to fail
early and loudly at compile time. Rust’s borrow checker is like
that friend you couldn’t quite get on with on first meeting. Over
time, and once they’ve helped you out multiple times, you realize
that they’ve actually got some pretty great qualities and you’re
glad to have made their acquaintance.

Foreign Function Interface (FFI)
Another of Rust’s features that particularly appealed to me is its
support for efficient C bindings: calling C code from Rust incurs
no additional overhead. Efficient C bindings support incremen-
tal rewriting of software, allowing programmers to leverage
the large quantities of C code that are not going away anytime
soon. External functions fall beyond the protections of Rust and
thus are always assumed to be unsafe. It is important to note
that there are many behaviors, such as deadlocks and integer
overflows, that are undesirable but not explicitly unsafe in the
Rust sense.

In Rust, unsafe actions must be placed inside an unsafe block.
Inside the unsafe block, Rust’s wilder crazier cousin “Unsafe
Rust” rules. “Unsafe Rust” is allowed to break limited sets of
Rust’s normal rules, the most important being that it is allowed
to call external functions.

In practice, calling C functions from Rust isn’t always quite
so straightforward as tutorials make out. Consider calling the
function dtrace_open() from libdtrace. The C prototype for
dtrace_open() is shown below:

dtrace_hdl_t *

dtrace_open(int version, int flags, int *errp)

{

 ….

}

To call dtrace_open() from Rust, we first specify the dtrace_

open()’s signature in an extern block (extern “C” indicates the
call uses the platform’s C ABI). We can then call that function
directly from an unsafe block.

extern crate libc;

...

44  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

PROGRAMMING
It’s Better to Rust Than Wear Out

extern “C” {

 fn dtrace_open(arg1: ::std::os::raw::c_int,

 arg2: ::std::os::raw::c_int,

 arg3: *mut ::std::os::raw::c_int) -> *mut dtrace_hdl_t;

}

fn main() {

 let dtrace_version = 3;

 let flags = 0;

 Let mut err = libc::c_int = 0;

 let handle = unsafe {

 dtrace_open(dtrace_version , flags, &mut err)

 };

}

But there is one significant problem: where is the type dtrace_

hdl_t defined? While dtrace_hdl_t can be specified by hand,
it contains many, many fields, which in turn use yet more new
types that must be defined. Specifying all this by hand would
be extremely tedious and error prone. Fortunately, there is a
solution. C bindings can be generated automatically using Rust’s
bindgen crate, cargo install bindgen. Unfortunately, bindgen
is not a very mature tool. And, as a result, manually tweaking its
outputs is often required (usually adding or removing mutabil-
ity). With SWIG (Simplified Wrapper and Interface Generator)
support for Rust not looking imminent, better native tooling for
generating Rust bindings is desperately needed.

Package Management
The final, and in many ways most important, feature that
attracted me to Rust was its support for modern application
package management. Rust provides a flexible system of crates
and modules for organizing and partitioning software and man-
aging visibility. Rust crates are equivalent to a library or package
in other languages, and Rust modules partition the code within
the crate.

A Rust program typically consists of a single executable crate,
which optionally has dependencies on one or more library crates.
Reusable, community-developed library crates are hosted at
crates.io, the central package repository for cargo, Rust’s pack-
age management tool (crates.io is broadly equivalent to Python’s
PyPI). Rust’s cargo tool fetches project build dependencies from
crates.io and manages building of the software. Yeah, I know,
does the world really need yet another mechanism for packaging
software, resolving dependencies, and building software? Well
perhaps not, but cargo actually works really well, though for
those with experience with Maven, the bar hasn’t been set that
high.

Getting Started on FreeBSD
Rust’s platform support is divided into three tiers, each provid-
ing a different set of guarantees. FreeBSD for x86_64 is cur-
rently a Tier 2 platform. That is, it is guaranteed to build but not
to actually work. Despite the lack of a guarantee, in practice,
things generally seem to work pretty well. Tier 2 platforms
provide official releases of the Rust compiler rustc, standard
library std (pkg install rust), and package manager cargo (pkg

install cargo). FreeBSD’s binary Rust package is currently (at
the time of writing) at v1.12 with v1.13 being the latest stable
release. Once installed, Rust can be updated to the latest version
by executing the rustup script:

curl -sSf https://static.rust-lang.org/rustup.sh | sh

32-bit FreeBSD sits in Rust’s lowly third tier where, without
guarantees about either building or working, things are pretty
unstable. For example, Rust 1.13 recently shipped in spite of a
serious code generation bug on ARM platforms using hardware
floating point. Here be dragons, so beware!

Where Are We Now?
Rust started life in 2009 as a personal project of Mozilla
employee Graydon Hoare. In subsequent years, Rust has tran-
sitioned to a Mozilla-sponsored community project with over
1,200 contributors. Since the 1.0 release, delivered in June 2015,
Rust has been used in a number of real-world deployments. June
2016 saw another major milestone on the road to maturity, with
Mozilla shipping Rust code for the Servo rendering engine in
Firefox 48.

So people are using Rust, but does it really deliver on its vision
of providing a safe alternative to C++? I think the answer is
pretty much yes, though the differences aren’t all that huge. For
example, in C++, a unique_ptr owns and manages an object and
disposes of that object when the unique_ptr goes out of scope.
Furthermore, ownership can be transferred using std::move;,
and as a bonus, there is type inference using the auto keyword.
But in spite of these similarities, smart pointers don’t give every-
thing that Rust’s ownership system does. In the example below
[3], accessing orig after the move results in a segmentation fault
at runtime—a morally equivalent example in Rust would fail to
compile. Failing early is a good thing. That a careful and skilled
C++ programmer wouldn’t make such mistakes is somewhat of a
circular argument, because if such mistakes weren’t widespread,
languages attempting to prevent them wouldn’t exist in the first
place. C++ also lacks a module system and has a number of pretty
ropey features like header files and textual inclusion. These are
all wins for Rust.

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 45

PROGRAMMING
It’s Better to Rust Than Wear Out

#include <iostream>

#include <memory>

using namespace std;

int main ()

{

 unique_ptr<int> orig(new int(5));

 cout << *orig << endl;

 auto stolen = move(orig);

 cout << *orig << endl;

}

How does Rust compare with C++ on performance? Control
studies comparing the performance of idiomatic C++ and Rust
are hard to find. A comparison between Firefox’s Servo and
Gecko rendering engines (written in Rust and C++, respectively)
reported that the Rust Servo engine was on the order of twice
as fast [1]. While these figures should be taken with a pinch of
salt, the consensus opinion is that Rust is at least comparable in
terms of performance to C++. One of the reasons for this is that
Rust features, like genuine immutability, allow optimizations
that can’t be made in C++. And Rust’s semantics bring signifi-
cant potential for further optimizations.

Despite the advances made in deploying Rust in production
environments, problems remain. The Rust ABI is unstable, and
as with the Glasgow Haskell compiler, a stable ABI may never
happen, almost certainly not anytime soon. This problem most
impacts Rust native, shared libraries because without a stable
ABI, they are incompatible across major version changes. But
ABI instability isn’t a showstopper. So is there a technical bar-
rier to upstreaming Rust code to FreeBSD, for instance? In my
opinion, I don’t think so, but I’d be interested to hear others’ opin-
ions on both the technical and political challenges of doing so.

I like Rust. It’s fun. And isn’t that what really makes us come into
work in the morning?

References
[1] B. Anderson, L. Bergstrom, M. Goregaokar, J. Matthews, K.
McAllister, J. Moffitt, and S. Sapin, “Engineering the Servo
Web Browser Engine Using Rust,” in Proceedings of the 38th
International Conference on Software Engineering Companion
(May 2016), pp. 81–89.

[2] L. Hatton, Safer C, 1st ed. (McGraw-Hill, 1995).

[3] S. Klabnik, Unique Pointer Problems, Steve Klabnik’s home
page: http://www.steveklabnik.com/uniq_ptr_problem/.

[4] K. Memarian, J. Matthiesen, J. Lingard, K. Nienhuis, D.
Chisnall, R. N. Watson, and P. Sewell, “Into the Depths of C:
Elaborating the De Facto Standards,” in Proceedings of the
37th ACM SIGPLAN Conference on Programming Language
Design and Implementation (June 2016), pp. 1–15.

[5] The Rust Programming Language, “Getting Started”:
https://doc.rust-lang.org/book/getting-started.html.

http://www.steveklabnik.com/uniq_ptr_problem/
https://doc.rust-lang.org/book/getting-started.html

46  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

PROGRAMMING

Interview with Eric Allman
R I K F A R R O W

I first heard Eric Allman speak during a LISA tutorial. Eric was explain-
ing some of the intricacies of sendmail, the mail server software he had
written while at UC Berkeley in the early ’80s.

I later cornered Eric during a conference reception, an action very unlike me. But I was
determined to find out why Eric had included what I thought were three backdoors in send-

mail, something that turned out to be incorrect. Eric also mentioned wishing he had received
even a fraction of one cent for each copy of sendmail then in use. He later started a company
that provided support for sendmail, a company that followed the rise and fall of the Internet
boom in the late ’90s.

I met with Eric in person last February in Cory Hall at the University of California, Berkeley,
where he currently works. We discussed some of his past and current work.

Rik Farrow: Your experience with open source has been interesting to say the least.

Eric Allman: Open source, or if you prefer, free software, existed long before most people
thought. They had IBM Share way, way back. One of the main reasons you used to go to USE-
NIX conferences was that you always brought along six tapes with you and you walked away
with six tapes, but they weren’t the same six tapes you brought in. That was one of the big
things about them, not just to go to talks.

RF: I believe that your open source adventure started by creating delivermail to handle deliv-
ery of mail that required transport beyond the local system.

EA: delivermail had no transport mechanisms, like binmail, which just delivered mail to a
spool file. delivermail would examine the email address looking for exclamation points or
at signs. If the email address didn’t have these punctuations, it just appended the mail to the
spool file. If the mail address did include these punctuations, then it would send the email
to the correct command. Another difference between sendmail and delivermail was that
delivermail didn’t do any address translations. People had to become experts in what John
Quarterman called “the matrix.” One of the goals of sendmail was to make it easier for people
to survive in this multi-network world, which included Berknet, Arpanet, and UUCP.

RF: I wanted to ask you about the backdoors in sendmail. When I first asked you about this
many years ago, you told me you were a student maintaining sendmail on a small number of
systems, and then someone copied sendmail to a machine you had no access to. The owners
of that machine then demanded that you fix a bug only expressed on that system.

EA: Precisely. So I said let me log in and look at it. And they said we can’t allow someone
who is not part of the administrative staff onto the machine, which is normally a prag-
matic approach to security. I said I will come into your office and someone can watch over
my shoulder and make sure I don’t do anything bad. They said, no, we can’t let you on the
machine. Then I can’t fix your problem, and they said you have to fix our problem.

Eric Allman earned his BS and
MS degrees from UC Berkeley
in 1977 and 1980. He wrote
sendmail and syslog, which
became part of BSD in 1981.

In 1998, Allman and Greg Olson founded
Sendmail, Inc. Currently, Eric works as a
Research Assistant on the Swarm project at
UC Berkeley. eric.allman@gmail.com

Rik is the editor of ;login:.
rik@usenix.org

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 47

PROGRAMMING
Interview with Eric Allman

RF: A double-bind.

EA: They got more and more insistent, that I had to fix this
magically somehow. And that’s when the backdoor went into
sendmail. If they won’t let me on the machine, well, here’s a new
version, why don’t we see if it fixes the problem. And it did.

The lesson out of that is the systems, including the humans that
maintain them, will find a way around the security to get the job
done. They actually lost security, and it would have cost them
nothing to just have somebody watch me.

RF: That backdoor stayed in there for a long time.

EA: My mistake was in not taking it out immediately. The back-
door was so convenient, I thought maybe I’ll leave it in and it will
contribute to development. I pretty much forgot it was there.

RF: Then there was the problem with the frozen configura-
tion file, that meant that the wizard mode password would get
deleted when that was used [1].

EA: Yeah. Keep in mind that there was exactly one backdoor.
There were other bugs, like ones that allowed you to clobber the
stack, and you could do nefarious things there. But these were
just flat out bugs.

RF: I thought that the Internet Worm used Debug, where you
send a shell script as the recipient [2].

EA: Someone else put that into sendmail. Somebody tried to get me
to put that in the sendmail distribution, and I said, “Are you nuts?”

RF: There’s a recent movement called language security, or
LangSec for short. LangSec followers believe that a key problem
for most software is input parsing. It turned out that there were
a lot of bugs in sendmail all associated with parsing, and that’s
because parsing is difficult.

EA: The biggest problems, of course, are buffer overflows, which
are the scourge of security everywhere, and those pretty much
went away after we had yet another buffer overflow and we said,
“Screw it.” We are just going to go around and every place we see
*p++ we are going to put a test around it.

RF: Right. In 2003, I remember that LSD had a sort of a cool
exploit which wasn’t a typical buffer overflow, as they figured
out how write a new binary in the right place and essentially
replace sendmail with a shell attached to an outgoing connection
from port 25 [3].

EA: If I recall correctly, I had a fixed-length buffer which was
pointers to opening bracket, so when I found the closing bracket I
could return a pointer to the correct address.

RF: I had been single-stepping through the code, looking for
where the bug was. I did find where the bug was, but by reverse
engineering the patch to the source code, which of course is what
hackers were doing. That’s why when you said *p++, that brought
up the memory. That was the last sendmail bug I remember see-
ing. But over the years, that whole process was very painful.

EA: Well, all I can say is sendmail was never as bad as Flash.

RF: Another thing you said during that short meeting, we prob-
ably only talked for 10 minutes, was if you only had a tenth of a
cent for each copy of sendmail in use. So you eventually started
Sendmail, Inc. Was that your idea, or did somebody approach
you?

EA: I had just come out of a disastrous job, and I was sitting
around, getting a little enthusiasm back, thinking what do I do
next. I looked around a little bit and someone, I don’t remember
who, asked me if I thought about commercializing sendmail.
I didn’t know how to do that. Then I ran into a friend of mine
whom I had worked for 10 years prior, and he had gone the cor-
porate route. He helped me write a business plan and eventually
agreed to come on board as their first CEO. He was a very good
CEO for a company in that state. He had the sense to say at some
point I’m stepping down, I like starting companies a lot more
than I like running them.

RF: Those really are two different things.

EA: Sendmail, Inc., was a very interesting place to work, a lot
going on, maybe too much. Then the Internet bubble burst
[March 10, 2000]. We survived because the co-founder and I who
were co-operating the company tended to be a bit more fiscally
conservative than a lot of people in those days. We had a board
member who said you aren’t spending money fast enough, and
at the very next board meeting he said you need to downsize
instantly, how could you let yourself get so big. He was not my
favorite board member.

RF: You survived.

EA: We did survive, but let’s not go into corporate politics. Send-

mail, Inc. got bought by Proofpoint, and the investors, includ-
ing myself, got nothing out of it. But most of the employees had
jobs, and the customers got taken care of. Investors, employees,
customers, two out of three ain’t bad. I actually was pretty happy
with that.

RF: What did you do after Sendmail, Inc.?

EA: I kind of retired. I can afford to live as long as my tastes don’t
get too extravagant. That’s fine, I don’t have a lot of expenses. I
had some offers. Then one came by email, about a new lab [4],
with an invitation to come by and see what they were doing. They
said they have seminars on Thursdays, including free lunch. So I

48  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

PROGRAMMING
Interview with Eric Allman

went for the free lunch. There was a research meeting right after
the seminars, and I started staying for that, and at some point the
person who became my supervisor said, why don’t we pay you?

RF: So you are doing coding? Looks like you are involved in
embedded systems here…

EA: I’m working on, loosely speaking, data storage and security
for what I hesitate to call the Internet of Things, because every-
one thinks they know what that means.

RF: IoT is a very broad term, from video cameras running Linux
to tiny sensors with 1K of RAM…

EA: 1K? If you’re lucky. There’s a paper called “The Cloud Is Not
Enough” [5] done by our group. These days, everyone is saying that
whatever your problem is, the answer is “cloud.” That’s when you
know you need to be looking elsewhere. The cloud may often be
adequate, but there are times where it’s nowhere near fast enough.

We are looking at using more distributed storage and computing.
You have the cloud there, and if you have big compute jobs, you
can send them off to a cloud service. If you are storing massive
amounts of data, you can send them off to the cloud. We don’t
have objection per se to the cloud. But where somebody just
unlocks a door or turns on the lights, I see no particular reason
why we need to go up to the cloud and back. Our concept is that
there are Swarm boxes [he indicates one sitting on the desk
beside us, looking a bit like a WiFi router], and these do local pro-
cessing. This box is fanless, essentially an Intel NUC; we actu-
ally have some bigger servers for storage with multiple terabytes
of disk on it. Kind of a balance between the two.

RF: And there’s the big problem with the Internet of Things: get-
ting devices to play well together. And the big players have been
trying to get their separate solutions accepted.

EA: Lots and lots of stovepipes.

RF: Yes, too many stovepipes. And it’s my data, and I don’t want
to be sharing it to aid in marketing stuff to me.

EA: That’s another point we are trying to address. It’s your data,
you should have access to it, you should have control over it, and
we are doing security stuff: everything that goes into the db is
signed, and if not marked public data, then encrypted. There are
some performance issues with public key encryption, which is
very slow. But that’s exactly what we have implemented right
now. We do a public key signature on every message that goes in,
and, yes, encryption slows our system down. We have techniques
for saying only every 10th record gets signed, something like
that, and use hash chains. Hashes compute fast, to verify integ-
rity. So that part’s important.

References
[1] Steve Bellovin explains why the wizard mode password
got deleted when a frozen configuration (sendmail.fc) file got
used: http://textfiles.com/internet/sendmailwb.txt.

[2] E. H. Spafford, “The Internet Worm Program: An Analy-
sis,” Purdue Technical Report CSD-TR-823: http://spaf.cerias
.purdue.edu/tech-reps/823.pdf page 5, paragraph 3.

[3] LSD sendmail reference: http://www.ouah.org
/LSDsendmail.html.

[4] Swarm Lab: https://swarmlab.eecs.berkeley.edu/.

[5] B. Zhang, N. Mor, J. Kolb, D. S. Chan, N. Goyal, K. Lutz,
E. Allman, J. Wawrzynek, E. Lee, and J. Kubiatowicz, “The
Cloud Is Not Enough: Saving IoT from the Cloud,” in Proceed-
ings of the 7th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud ’15): https://www.usenix.org/system
/files/conference/hotcloud15/hotcloud15-zhang.pdf.

http://textfiles.com/internet/sendmailwb.txt
http://spaf.cerias.purdue.edu/tech-reps/823.pdf
http://spaf.cerias.purdue.edu/tech-reps/823.pdf
http://www.ouah.org/LSDsendmail.html
http://www.ouah.org/LSDsendmail.html
https://swarmlab.eecs.berkeley.edu/
https://www.usenix.org/system/files/conference/hotcloud15/hotcloud15-zhang.pdf
https://www.usenix.org/system/files/conference/hotcloud15/hotcloud15-zhang.pdf

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 49

SECURITYMigrating to BeyondCorp
Maintaining Productivity While Improving Security

J E F F P E C K , B E T S Y B E Y E R , C O L I N B E S K E , A N D M A X S A L T O N S T A L L

Jeff Peck is a Technical
Program Manager for CorpEng
in Google. He previously
worked at companies large and
small around Silicon Valley,

doing software engineering and program
management for a variety of projects in the
telecom, server, and network application
domains. He has a BS in computer, information,
and control sciences from the University of
Minnesota. jpeck@google.com

Betsy Beyer is a Technical
Writer for Google Site
Reliability Engineering in NYC.
She has previously provided
documentation for Google

Data Center and Hardware Operations
teams. Before moving to New York, Betsy
was a lecturer in technical writing at Stanford
University. She holds degrees from Stanford
and Tulane. bbeyer@google.com

Colin Beske is a Technical
Program Manager at Google.
Since joining in 2010, he has
worked on IT support, printing
operations, and internal

change management. Prior to Google, he
held positions in systems and networking
engineering. He has a BA in computer science
from Oberlin College. beske@google.com

Max Saltonstall is a Technical
Director in the Google Cloud
Office of the CTO in New
York. Since joining Google in
2011, he has worked on video

products, internal change management, IT
externalization, and coding puzzles. He has a
degree in computer science and psychology
from Yale. maxsaltonstall@google.com

If you’re familiar with the articles about Google’s BeyondCorp network
security model published in ;login: [1-3] over the past two years, you
may be thinking, “That all sounds good, but how does my organization

move from where we are today to a similar model? What do I need to do?
And what’s the potential impact on my company and my employees?” This
article discusses how we moved from our legacy network to the BeyondCorp
model—changing the fundamentals of network access—without reducing the
company’s productivity.

Among the many challenges that a migration to a BeyondCorp-type model entails, several
are particularly notable:

◆◆ This process affects the entire company. Getting everyone on board and keeping everyone
aligned and informed requires commitment and buy-in from all levels of management. That
commitment needs to be reinforced through extensive communications with all parties
involved, from the teams that own individual services, to management, to support teams, to
users.

◆◆ The migration can’t be done overnight. The process is multi-layered and incremental, with
stages of information gathering, trial deployments, corrections to processes and technology,
and exceptions and remediation where and when necessary.

◆◆ The process requires changes at many or all layers of the stack: networking, security gate-
ways, client platforms, and backend services. Partitioning the changes in order to make
progress independently at different layers makes this multi-pronged undertaking more
approachable and manageable.

The following sections discuss how we partitioned the BeyondCorp migration effort, and the
tools and technologies we used to bring the various layers into alignment while minimizing
negative impact on users.

Prerequisites: Commitment and Communications
Before you can undertake a migration to a BeyondCorp-like model, you need buy-in from top
level management and other stakeholders in your organization. Step one here is understand-
ing and communicating the motivation for the migration: you want to reduce the threat of a
successful cyberattack while maintaining productivity. You need to document the rationale
behind the proposed migrations, the threat model, and the costs of doing “business as usual.”
Then be prepared to explain to each line-of-business why this process is valuable and essen-
tial. As with all security operations, deploying a new model comes with a price: new tools,
additional processes, and changes in habits to apply. Top-level management needs to actively
support this change and drive the motivation and commitment down to all stakeholders.

Armed with a charter and commitment from management, identify and enlist the support of
leaders in crucial areas: security, identity, networking, access control, client and server plat-
form software, business-critical application services, and any third-party partners or out-
sourced IT functions. The leads should identify and enlist the subject matter experts for each
area and commit their time and energy to the process. Our BeyondCorp team was a globally

50  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

SECURITY
Migrating to BeyondCorp: Maintaining Productivity While Improving Security

distributed virtual team headed by a director responsible for
policy decisions and a technical program manager to drive and
coordinate execution. Active membership changed over time,
but the stakeholders, team leads, and other contributors were
consistently linked through online documentation, group email,
and regular face-to-face and video conference meetings to stay
informed of current processes and project status.

As the effort progresses, the usual rules of change management
apply, because each work group will have its own concerns and
priorities. Listen to feedback and adapt to the special circum-
stances and requirements of each contributor or affected group.
Publishing plans and information is necessary but insufficient;
interactive communication (ideally done in person, but at
minimum conducted over video or audio conferencing) speeds
assistance and adoption.

Partitioning for Progress
The overall objective of the BeyondCorp program is to transition
from a network that allows clients to directly access servers to
a new network design, one that removes the privilege of direct
access to backend servers. For more details, see “BeyondCorp: A
New Approach to Enterprise Security” [1], the first article in this
series. To this end, we considered removing privileged access
from the legacy VLAN by blocking each application or server in
sequence. This strategy was less than ideal for two reasons: it
would be difficult to deploy and coordinate at the network layer,
and it posed increased risks to productivity at the application layer.
Instead, we decided to deploy a new VLAN in its final Beyond-
Corp configuration. This VLAN only permits access to the server
network through access control gateways, ensuring that all traffic
flows are authenticated, authorized, and encrypted. Rather than
incrementally restricting the privileges of the legacy VLAN, we
incrementally moved devices to this new end-state VLAN.

The VLAN migration project achieved the complex but critical
goal of removing user devices from the legacy “privileged” net-
work and assigning them to the new Managed Non-Privileged
Client (MNP) VLAN. This move had a key constraint: any legacy
application that expected or required direct access to the server
network would fail when run from a workstation on the new
VLAN. Therefore, achieving this migration without breaking
business-critical operations was an immediate subgoal. We used
a three-pronged strategy to meet this subgoal:

1. Extensively analyzing network traffic logs

2. Identifying and remediating noncompliant applications

3. Migrating devices after determining they would be successful
on the new network

This approach allowed the network layer to roll out the new con-
figuration and achieve stability independently from other parts
of the BeyondCorp program. The BeyondCorp design includes

the use of 802.1x for network admission and VLAN assignment,
which we utilized to isolate the network layer from the details of
the migration policies. Higher level software and data analysis
determined each device’s VLAN assignment, which the RADIUS
servers then communicated to the network layer.

Realizing these goals was a vast undertaking that required
changes at almost every layer of the stack. Rather than attempt-
ing to introduce change to all of these layers in a single transition
(undoubtedly a recipe for disaster), we pursued a partitioned
approach that entailed:

◆◆ Decoupling network layer projects: new VLANs, 802.1x,
 RADIUS policy server

◆◆ Decoupling client platform upgrades: certificate generation and
installation, user authentication tools

◆◆ Migrating devices incrementally as we remediated services and
workflows

◆◆ Continuously refining our processes and procedures

First Steps: An 802.1x Network
In the first phase of BeyondCorp, we installed certificates on
each user device and transitioned to 802.1x for all network
access grants. This seemingly simple step implied several new
developments: a certificate authority, tools to install certifi-
cates on company-managed devices (for each OS type), enabling
802.1x on the network switches, and integrating with a policy-
driven RADIUS service. We undertook all of these developments
in parallel.

The security team designed a new Certificate Authority with
APIs to enable the various per-OS platform management teams
to obtain and install certificates on their platforms. Each
platform team independently deployed the software, tools, and
telemetry to enforce and monitor certificate rollout to each
device. We created the processes for mass distribution and
maintenance of certificates while we were still working on inte-
gration with the access switches.

Likewise, re-provisioning the access switches to include the new
VLAN definitions proceeded in parallel—we enabled and later
required 802.1x and RADIUS-provided VLAN assignments.
Automated scripts audited the switch upgrades to identify
switches not yet provisioned with the new VLAN. As a result,
the RADIUS server would not request a VLAN assignment that
wasn’t available on a particular switch.

We used 802.1x so we could move control of VLAN assignments
from the network layer to a VLAN policy server. Because we
wanted to reduce failures caused by the new RADIUS server, the
initial policy simply matched the existing assignments (which
included complex blacklists and whitelists). We first deployed
the policy server in an auditing mode that compared the new

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 51

SECURITY
Migrating to BeyondCorp: Maintaining Productivity While Improving Security

assignments with the legacy assignments. When the differences
were sufficiently few, we enabled the new policy. From that point
on, we could manage device assignment to VLANs in near-real
time using high-level software and data-driven policies. Using
this simple initial policy allowed us to enable dynamic VLAN
assignments in the network while the end-state (and transition)
policies were still being developed.

Success-Oriented Migration
It took years to fully deploy the 802.1x layer, and several more
years before the inventory-based tiered access VLAN assign-
ments were available as input to the RADIUS policy server [2].
While those developments were underway, we wanted to identify
our two main groups of users and application services: those that
were ready for BeyondCorp versus those that needed to upgrade
their network and security capabilities to become BeyondCorp
compliant. Our first step was to capture and analyze traffic
from the network routers. By logging and analyzing a fractional
sample of all traffic through the corporate routers, we discov-
ered patterns of noncompliant usage. As a second-order benefit,
this analysis also helped us discover unusual, unexpected, and
unauthorized traffic on the network. Identifying these applica-
tions meant we could start the reengineering earlier and avoid
disrupting the users of these systems.

Some networking use cases, such as workstations using an
NFS/CIFS file server, were obviously noncompliant. Although
a NFS/CIFS file server is a simple way for users to maintain a
single, common copy of their files, the underlying protocol didn’t
support our desired security properties (strong encryption and
authentication). To eliminate this dependency, we initiated a
major project early on to accomplish two goals: moving NFS
home directories to local disk with automatic backup to secure
cloud storage, and replacing other NFS usage with Google Drive
or other secure file-sharing technologies. Even so, some applica-
tions, like CAD (computer-aided design) editors, are deeply
dependent on NFS and required special solutions before we
could move their users and workstations to the restricted MNP
VLAN. We discuss the details of our framework for handling
these special requirements in the “Remediating Difficult Use
Cases” section below.

Other noncompliant workflows were not so obvious but would
nevertheless fail when subjected to the restrictions of the
MNP network ACL. This failure was by design, as we couldn’t
assume that NFS, RDP, SQL, etc. had adequate authentica-
tion, authorization, and encryption. Detecting these workflows
and re-enabling productivity by changing the device’s network
assignment is difficult and time-consuming when remediation
must happen at the network layer. To avoid large impacts on pro-
ductivity (not to mention user morale), we needed an analysis-

driven strategy to detect failing workflows and correct them
before assigning users to the MNP VLAN.

To facilitate easy analysis and user workflow testing on the
non-privileged network, we created a client-based network ACL
simulator that identified network packets that would be blocked
by the MNP ACL. The underlying technology used Capirca (see
[4] for the source code) to create local iptables or Packet Filter
rules from the actual MNP network ACL. During the analy-
sis and migration phase, user devices continued to operate on
the privileged network, while the MNP-simulator monitored
network traffic and logged the source and destination of all
non-MNP-compatible traffic to a central repository. The IP
source address identified the failing user, and the IP destination
address identified the failing service. By analyzing the logs over
time (with appropriate privacy constraints in place), we could
identify devices with MNP-compliant traffic and assign them to
the MNP VLAN. Likewise, we could identify devices, users, and
services that relied on noncompliant traffic and initiate projects
to move those services to alternative solutions. Over time, more
devices became compliant and were automatically assigned to
the MNP VLAN.

In a second mode, the MNP-simulator can actually block/drop
the non-MNP traffic, thereby enforcing the MNP ACL without
relying on network level deployment of the MNP VLAN and the
802.1x pipeline. Although we ultimately enforce the ACL in the
network equipment, where it is isolated from user (or hacker)
abuse, enabling and disabling this “enforcement” mode in the
client workstation is much easier and faster during the trial
and transition period. Client-side enforcement served as both
an important step in the migration process and a self-service
tool for testing. Without this feature, we wouldn’t have gained
the confidence we needed to move devices to MNP at nearly the
speed (or with the high level of success) that we did.

Figure 1 shows the pipeline for moving Google computers to the
Managed Non-Privileged (MNP) network.

Handling Easy Use Cases with the Access Proxy
Google’s basic security policy requires that all traffic that flows
from workstations to servers is:

◆◆ Authenticated (to identify the device and user making the
request)

◆◆ Authorized (to verify that the user and device are allowed to
access the backend resource)

◆◆ Encrypted (to prevent eavesdropping)

◆◆ Independently logged (to aid in forensic analysis)

The Access Proxy [3] achieves all these requirements for
HTTP/S traffic and for our HTTP-encapsulated SSH traffic.

52  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

SECURITY
Migrating to BeyondCorp: Maintaining Productivity While Improving Security

Happily, most of our high-usage applications are browser-based
Web applications. This condition is both “happy” and by design:
Google is somewhat unique in the industry in its core philosophy
of using browser-based applications when possible. We provided
tools and documentation to each Web application provider so
each could configure their application to run behind the Access
Proxy.

When an application is behind the Access Proxy, corporate
and public DNS contains a CNAME that resolves to the Access
Proxy, so the URLs for such applications work from both cor-
porate and public networks with equivalent ease and security.
The ability to access corporate applications from public net-
works meant that authenticated remote users could access the
corporate Web applications without diverting to initiate a VPN
connection. As a result, the overhead for using and supporting
VPN connections for remote work immediately and dramati-
cally decreased. According to our rough estimates, the resultant
productivity gains easily outweigh the implementation costs of
BeyondCorp.

Once browser-based applications were secured behind the
Access Proxy, we could make dramatic progress. We activated
an automatic process for analyzing, verifying, and migrating
devices to the non-privileged network; within a year this process
moved over 50% of the fleet to non-privileged network access.

Remediating Difficult Use Cases
While we could handle the vast majority of applications via
the Access Proxy, other applications weren’t so easy. Our plans
and schedules also had to address the reality of the long tail of
non-Web cases that required additional time and resources to
migrate. Evolving these use cases to become compliant required
new tools, technology, and workflow modifications.

In particular, some of our workgroups use third-party desktop
or “thick client” applications that are not HTTP-based, which
entail a special set of problems. For example:

◆◆ Some tools are intrinsically designed to rely on network
mounted file shares.

◆◆ Java applications may use RMI (Remote Method Invocation)
or other direct socket connections.

◆◆ Many tools may be linked to license servers using non-HTTP
sockets and protocols.

Even applications that use HTTP may be problematic due to
obscure, unexpected failure modes. For example, some applica-
tions aren’t designed to present a client certificate or proper user
credentials, while some have logic built into the load balancing
layer that doesn’t mesh well with the Access Proxy. For some of
these cases, we tweaked the Access Proxy to allow traffic com-
ing from the MNP VLAN to pass without a certificate. We felt
comfortable with this temporary strategy because the device had
to present a certificate in order to access MNP. Each problematic
case required a diagnosis and remediation project.

To address the class of hard cases, we developed a solution
using a multi-port encrypted tunnel to carry application traffic
between the client and server:

◆◆ When initiating a connection from client to server, the Access
Proxy applies the usual user and device authentication and
authorization.

◆◆ Routing tables on the client direct packets to a TUN device that
captures and encrypts traffic to specific backend servers.

◆◆ The encrypted packets flow directly between the client and
encryption server using a UDP-based encapsulation protocol.

◆◆ The encryption servers only allow traffic to the services and
ports for which the application needs access.

Figure 1: The pipeline for moving Google computers to the Managed Non-Privileged (MNP) network

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 53

SECURITY
Migrating to BeyondCorp: Maintaining Productivity While Improving Security

This approach allows legacy third-party applications to more
securely connect to their servers from any network and still
assert the BeyondCorp invariants of authentication, authoriza-
tion, and encryption.

Table 1 shows our general approach to resolving difficult work-
flows. For more detailed information, see “BeyondCorp Part
III: The Access Proxy” [3]. In some cases, the solution shown in
the table also required users to modify a workflow by running a
script or providing the necessary authentication before access-
ing the backend resources.

Some essential framework services were noncompliant. Rather
than block all migration, we temporarily opened access from
MNP to the specific ports or servers for these critical services.
To prevent these temporary exceptions from becoming com-
monplace and subverting the basic goals of BeyondCorp, we only
allowed such exceptions when a service had a concrete plan for
implementing and deploying a compliant solution.

As we remediated each application or use case, the automated
process for analysis, verification, and migration moved more
users and devices to the non-privileged VLAN. As we pro-
gressed, the network logging and analysis provided ready met-
rics about the number of users and devices that were successful
on MNP.

Incrementally Rolling Out and Continually Refining
Our Approach
The MNP simulator, analysis pipeline, and the subsequent
automatic assignment of devices to the MNP VLAN was a sig-
nificant software development and process creation project. As
such, we developed and deployed it incrementally: we tested each
phase on small groups, continuously fixed the software, adjusted
user messaging when appropriate, trained the tech support
team, and then gradually expanded to full-scale deployment.

The simulation and pre-analysis approach helped us avoid nega-
tive impact on users while we identified users of noncompliant
workflows. However, because this approach assigned all newly
provisioned, unanalyzed devices to the privileged network and
didn’t prevent unmigrated users from using or creating new
noncompliant applications, it wasn’t an acceptable long-term
strategy. After reducing the number of exceptions by remediat-
ing the high volume use cases, we changed our approach to a
policy of “MNP by default.” Proceeding site by site, we assigned
all devices to MNP, granting exceptions to devices belonging
to users in job functions that use unremediated applications.
This policy-based assignment marked the evolution from “Prove
the user will be successful before migrating their devices” to
“Assume the user will be successful and migrate their devices.”

Scaling Support to Minimize Impact on
Employees
Using the tools and processes discussed above, we were able
to automatically identify, contact, and migrate entire groups
of users. However, we also needed ways to assist people and
communicate with users, both in advance of change and when
something went wrong. A combination of specialized training
for tech support and strategies to scale user communications
and interactions was critical in shifting workflows to the new
model.

Empowering Tech Support
We trained a select group of technicians in our support organi-
zation to become champions of the new BeyondCorp model and
primary local points of contact. From the early stages of rollout,
these techs helped affected users return to work quickly without
compromising migration strategies, and also efficiently esca-
lated appropriate issues to implementation and policy experts.

Use Case Solution
Browser-based HTTP/S Access proxy

Naive HTTP cmd-line applications:
We provide a client-side proxy server that supplies the platform certificate to achieve an authenti-
cated and encrypted connection to the Access Proxy. We then direct the naive application to that
localhost proxy.

Local authenticating proxy

Single TCP connection:
For applications that need a TCP socket to a server, we can often arrange to establish an SSH
connection to a backend bastion, and tunnel the port for the naive TCP application.

SSH tunnel and port forwarding

Many ports or unpredictable port numbers Encrypted service tunnel

Latency-sensitive, real-time, UDP flow Encrypted service tunnel

Table 1: Approaches to solving problematic workflows

54  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

SECURITY
Migrating to BeyondCorp: Maintaining Productivity While Improving Security

Initially, these specially trained technicians were granted more
advanced access to remediation systems than their fellow tech-
nicians. As the first observers of the BeyondCorp rollout, they
could anticipate what access, tools, and processes the rest of tech
support would need. Additionally, they trained the rest of the
support organization through global tech talks, discussion lists,
brown bag lunches, and office hours. As knowledge was dissemi-
nated, we expanded system access to all of support.

Establishing local subject matter experts enabled us to engage
directly with teams that had incompatible workflows. By work-
ing with one knowledgeable point of contact, teams had direct
lines of communication to project experts and could collabora-
tively find solutions. Simultaneously, technicians were empow-
ered and encouraged to add new temporary workarounds or fixes
to internal documentation as soon as they identified problems.
Distributing the power to solve problems to as wide a network
as possible enabled us to efficiently share knowledge and scale
support.

Self-Service Help
To avoid a flood of queries and concerns, we needed a way to
minimize confusion and answer common questions without
personal intervention by support personnel. When a user was
selected for migration, we automatically sent them an email
containing a clear timeline, an idea of how the migration would
impact their work, and links to project information, FAQs, self-
help, and escalation points.

We also provided a self-service Web portal that allowed users
subject to business-critical time constraints to delay their
migration. To answer questions and further disseminate knowl-
edge at scale, we created an internal discussion list where people
could crowdsource answers. Using analysis of common ques-
tions, we were able to quickly iterate the initial email communi-
cation and project documentation.

Throughout the rollout we also iterated and improved error mes-
saging with a dedicated Web application. This application clearly
identified common problems (for example, explaining why a
user was denied access to a certain resource), provided steps for
resolution, and linked to knowledge-base articles. Users could
fix common issues such as group membership and certificate
problems themselves, further reducing tech support requests.
The Web application also helped technicians by coalescing
information from the many different layers and systems into a
single series of actions to solve an error.

Internal Publicity Campaign
To raise awareness of BeyondCorp, we ran an internal publicity
campaign with laptop stickers, common logos and wording, and
visible articles posted throughout our offices. These materials
pointed to self-service help and office hours open to anyone with

any question. By focusing on informing, educating, and help-
ing, we directly built trust, goodwill, and buy-in with our users.
Corporate communications and tech writer involvement were
critical throughout the process—especially in the early phases,
when we needed to provide a clear picture of the program’s intent
and impact.

Phased Rollout
BeyondCorp began as a small-scale pilot, geographically close to
the project team. We increased the rollout over time by progres-
sively targeting locations with local technical experts, eventu-
ally expanding to increasingly risky workflows and sites further
from the project team. We didn’t migrate critical business work-
flows until we had a history of success, strong buy-in from users,
and confidence in our strategy. During this process, tech support
load decreased as rollout size and affected workflows increased.
Phasing our approach was a key element of its success.

End Result
By continually analyzing and improving all of the methods
described above, we built a system that ensured the BeyondCorp
rollout could scale globally without negatively affecting busi-
ness, support, or user experience. Rather than simply “throwing
more people at the issue,” we scaled our efforts by building sys-
tems and processes to efficiently handle questions, escalations,
and training. Additionally, we were able to trust our users to help
us enable change by relying on information, openness, and agree-
ment on a shared goal.

We carefully tracked support incidents caused by the Beyond-
Corp rollout as we moved more and more of the company onto
this model. In recent months, BeyondCorp is responsible for only
0.3% of issues handled by our tech support organization. From
an initial rate of 0.8%, escalations have steadily decreased with
the help of improved documentation, training, messaging, and
rollout methodology. Compared to similar wide-scale internal IT
changes at Google, BeyondCorp has caused 30% fewer support
issues.

Conclusion
There is always tension between the urgency to improve security
and resistance to changing the habits of end users. When infra-
structure and workflow changes threaten to impact productivity,
this tension only escalates. Achieving a balance between prog-
ress and stability is more art than science. BeyondCorp’s keys to
success and acceptance were analysis, adaptive planning, and
proactive communications.

By partitioning BeyondCorp changes into independent units,
we could make progress in parallel, and user impact at each
stage was minimal. Although it took years to deploy Beyond-
Corp across its many layers, each milestone came with benefits.

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 55

SECURITY
Migrating to BeyondCorp: Maintaining Productivity While Improving Security

Cumulatively, we made remote access significantly easier and
faster, simplified network management, and strengthened our
security posture.

Creating the technology to implement the BeyondCorp security
model is a challenge. Planning the rollout and managing the
migration of users to that technology is just as challenging. It’s
essential to ensure that each transition has minimal impact on
users and does not break ongoing productivity. Each successful
transition brings fresh awareness of the value of the program
and provides continued enthusiasm and acceptance of the
program goals by both users and management. We succeeded
by empowering a cross-functional team with representatives
from each of the technology and implementation teams, security
and policy stakeholders, and specialists in end-user support and
communications.

At Google, we’ve been able to apply what we learned during
the BeyondCorp effort to other programs and services—most
notably, the new services we’ve recently added to Google’s Cloud
Platform (such as the Identity-Aware Proxy). One of the biggest
lessons of BeyondCorp was the importance of phasing a proj-
ect and continuing to refine and develop our strategies as we
encountered additional use cases. While this article focuses on
Google’s specific experience, the lessons it shares can be adopted
at any organization, regardless of size, so long as the effort has
solid backing from relevant stakeholders.

Acknowledgments
Thanks to the following people for their help in making this
article possible: Heather Adkins, Jeff Baird, Darren Bilby, John
Brady, Victor Escobedo, Cynthia Horiguchi, Michael Janosko,
Rob Peasegood, Dan Polsby, Val Stiris, and Rory Ward.

References
[1] R. Ward and B. Beyer, “BeyondCorp, A New Approach to
Enterprise Security,” ;login:, vol. 39, no. 6 (December 2014),
pp. 6–11: https://www.usenix.org/system/files/login/articles
/login_dec14_02_ward.pdf.

[2] B. Osborn, J. McWilliams, B. Beyer, and M. Saltonstall,
“BeyondCorp: Design to Deployment at Google,” ;login:, vol.
41, no. 1 (Spring 2016), pp. 28–35: https://www.usenix.org
/publications/login/spring2016/osborn.

[3] L. Cittadini, B. Spear, B. Beyer, and M. Saltonstall,
 “BeyondCorp Part III: The Access Proxy,” ;login:, vol. 41,
no. 4 (Winter 2016), pp. 28–33: https://www.usenix.org
/publications/login/winter2016/cittadini.

[4] Capirca is a tool designed to utilize common definitions of
networks, services, and high-level policy files to facilitate the
development and manipulation of network access control lists:
github.com/google/capirca.

https://www.usenix.org/system/files/login/articles/login_dec14_02_ward.pdf
https://www.usenix.org/system/files/login/articles/login_dec14_02_ward.pdf
https://www.usenix.org/publications/login/spring2016/osborn
https://www.usenix.org/publications/login/spring2016/osborn
https://www.usenix.org/publications/login/winter2016/cittadini
https://www.usenix.org/publications/login/winter2016/cittadini
github.com/google/capirca

56  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

SECURITY

Ryoan: A Distributed Sandbox for Untrusted
Computation on Secret Data
T Y L E R H U N T , Z H I T I N G Z H U , Y U A N Z H O N G X U , S I M O N P E T E R , E M M E T T W I T C H E L

R yoan provides a distributed sandbox, leveraging hardware enclaves
(e.g., Intel’s software guard extensions (SGX)) to protect sandbox
instances from potentially malicious computing platforms. The pro-

tected sandbox instances confine untrusted data-processing modules to pre-
vent leakage of the user’s input data. Ryoan is designed for a request-oriented
data model, where confined modules only process input once and do not
persist state about the input. We present the design and prototype implemen-
tation of Ryoan and evaluate it on a series of challenging problems, including
email filtering, health analysis, image processing, and machine translation.

Data-processing services are widely available on the Internet. Individual users can con-
veniently access them for tasks, including image editing (e.g., Pixlr), tax preparation (e.g.,
TurboTax), data analytics (e.g., SAS OnDemand), and even personal health analysis (e.g.,
23andMe). However, user inputs to such services, such as tax documents and health data, are
often sensitive, which creates a dilemma for the user. In order to leverage the convenience
and expertise of these services, she has to disclose sensitive data to them, potentially allow-
ing them to disclose the data to third parties. If she wants to keep her data secret, she either
has to give up using the services or hope that they can be trusted—that their service software
will not leak data (intentionally or unintentionally), and that their administrators will not
read the data while it resides on the server machines.

Companies providing data-processing services for users often wish to outsource part of the
computation to third-party cloud services, a practice called “software as a service (SaaS).”
For example, 23andMe may choose to use a general-purpose machine learning service
hosted by Amazon. SaaS encourages the decomposition of problems into specialized pieces
that can be assembled on behalf of a user, e.g., combining the health expertise of 23andMe
with the machine learning expertise and robust cloud infrastructure of Amazon. However,
23andMe now finds itself a user of Amazon’s machine learning service and faces its own
dilemma—it must disclose proprietary correlations between health data and various diseases
in order to use Amazon’s machine learning service. In these scenarios, the owner of secret
data has no control over the data-processing service.

We propose Ryoan [1], a distributed sandbox that forces data-processing services to keep
user data secret, without trusting the service’s software stack, developers, or administrators.
Ryoan’s name is inspired by a famous dry landscape Zen garden that stimulates contempla-
tion (Ryōan-ji). First, Ryoan provides a sandbox to confine individual data-processing mod-
ules and prevent them from leaking data; second, it uses trusted hardware to allow a remote
user to verify the integrity of individual sandbox instances and protect their execution; third,
the sandbox can be configured to allow confined code modules to communicate in controlled
ways, enabling flexible delegation among mutually distrustful parties. Ryoan gives a user
confidence that a service has protected her secrets.

Tyler Hunt is a PhD student
at the University of Texas at
Austin, working with Emmett
Witchel. His research interests
involve designing and building

systems with interesting security properties.
thunt@cs.utexas.edu

Zhiting Zhu has been a PhD
student at the University of
Texas at Austin since 2014,
where he works with Emmett
Witchel. He is interested in

operating systems. zhitingz@cs.utexas.edu

Yuanzhong Xu received his PhD
in computer science from the
University of Texas at Austin in
2016. He is generally interested
in systems and security. He

currently works for Facebook as a research
scientist. yxu@utexas.edu

Simon Peter is an Assistant
Professor at the University
of Texas at Austin, where he
conducts research in operating
systems and networks. He

received a PhD in computer science from
ETH Zurich in 2012 and an MSc in computer
science from the Carl von Ossietzky University
of Oldenburg, Germany, in 2006. Before
joining UT Austin in 2016, he was a Research
Associate at the University of Washington
from 2012 to 2016. simon@cs.utexas.edu

Emmett Witchel is a Professor
in Computer Science at the
University of Texas at Austin.
He received his doctorate from
MIT in 2004. He and his group

are interested in operating systems, security,
and concurrency. witchel@cs.utexas.edu

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 57

SECURITY
Ryoan: A Distributed Sandbox for Untrusted Computation on Secret Data

A key enabling technology for Ryoan is hardware enclave-
protected execution (e.g., Intel’s Software Guard Extensions
(SGX) [2]), a new hardware primitive that uses trusted hardware
to protect a user-level computation from potentially malicious
privileged software. The processor hardware keeps unencrypted
data on chip but encrypts data when it moves into RAM. The
hypervisor and operating system retain their ability to manage
memory (e.g., move memory pages onto secondary storage), but
privileged software sees only an encrypted version of the data
that is protected from tampering by a cryptographic hash. Haven
[3] and SCONE [4] are examples of systems that use enclaves to
protect a user’s computation from potentially malicious system
software, including a library operating system to increase back-
ward compatibility.

Ryoan faces issues beyond those faced by enclave-protected
computation systems such as Haven. Enclaves are intended to
protect an application that is trusted by the user, which does not
collude with the infrastructure, though it may unintentionally
leak data via side channels. In Ryoan’s model the application and
the infrastructure are under the control of an adversary and may
collude to steal the user’s secrets. Even if the application itself
is isolated from the infrastructure using enclave protection, the
adversary could exercise its control to construct covert chan-
nels between the application and the platform. Ryoan’s goal is to
prevent such covert channels and stop an untrusted application
from intentionally and covertly using users’ data to modulate
events like system call arguments or I/O traffic statistics, which
are visible to the infrastructure.

An untrusted application in Ryoan is confined by a trusted
sandbox. For the Ryoan prototype we use Native Client (NaCl)
[5, 6], which is a state-of-the-art user-level sandbox. NaCl can
be built as a standalone binary independent from the browser.
NaCl uses compiler-based techniques to confine untrusted code
rather than relying on address space separation, a property nec-
essary to be compatible with SGX enclaves. The Ryoan sandbox
safeguards secrets by controlling explicit I/O channels, as well
as covert channels such as system call traces and data sizes.

The Ryoan prototype uses SGX to provide hardware enclaves.
Each SGX enclave contains a NaCl sandbox instance that loads
and executes untrusted modules. The NaCl instances communi-
cate with each other to form a distributed sandbox that enforces
strong privacy guarantees for all participating parties—the users
and different service providers. Confining untrusted code [7] is a
longstanding problem that remains technically challenging, but
Ryoan benefits from hardware-supported enclave protection.
Ryoan also assumes a request-oriented data model, where con-
fined modules only process input once and cannot read or write
persistent storage after they receive their input. This model

makes Ryoan applicable only to request-oriented server applica-
tions—but such servers are the most common way to bring scal-
able services to large numbers of users.

Ryoan’s security goal is simple: prevent leakage of secret data.
However, confining services over which the user has no control
is challenging without a centralized trusted platform. We make
the following contributions:

◆◆ A new execution model that allows mutually distrustful parties
to process sensitive data in a distributed fashion on untrusted
infrastructure.

◆◆ The design and implementation of a prototype distributed
sandbox that confines untrusted code modules (possibly on dif-
ferent machines) and enforces I/O policies that prevent leakage
of secrets.

◆◆ Several case studies of real-world application scenarios to
demonstrate how they benefit from the secrecy guarantees of
Ryoan, including an image processing system, an email spam/
virus filter, a personal health analysis tool, and a machine
translator.

◆◆ Evaluation of the performance characteristics of our prototype
by measuring the execution overheads of each of its build-
ing blocks: the SGX enclave, confinement, and checkpoint/
rollback. The evaluation is based on both SGX hardware and
simulation.

Background and Threat Model
Ryoan assumes a processor with hardware-protected enclaves,
e.g., Intel’s SGX-enabled Skylake (or later) architecture. The
address space of a protected enclave has its privacy and integ-
rity guaranteed by hardware. Hardware encrypts and hashes
memory contents when it moves off chip, protecting the contents
from other users and also from the platform’s privileged soft-
ware (operating system and hypervisor). Code within an enclave
can manipulate user secrets without fear of divulging them
to the underlying execution platform. Code within an enclave
cannot have its code or control manipulated by the platform’s
privileged software.

SGX’s security guarantees are ideal for Ryoan’s distributed
NaCl-based sandbox. The sandbox confines the code it loads,
ensuring that the code cannot leak secrets via storage, network,
or other channels provided by the underlying platform. Ryoan
instances communicate with each other using secure TLS con-
nections. By collecting SGX measurements and by providing
trusted initialization code, Ryoan can demonstrate to the user
that their processing topology has been set up correctly.

58  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

SECURITY
Ryoan: A Distributed Sandbox for Untrusted Computation on Secret Data

Threat Model
We consider multiple, mutually distrustful parties involved in
data-processing services. A service provider is not trusted by the
users of the service to keep data secret; if the service provider
outsources part of the computation to other services, it becomes
a user of them and does not trust them to provide secrecy, either.
Each service provider can deploy its software on its own compu-
tational platform, or it can use a third-party cloud platform that
is mutually distrustful of all service providers. We assume that
users and providers trust their own code and platform but do not
trust each other’s code or platforms. Everyone must trust Ryoan
and SGX.

A service provider might be the same as its computational
platform provider, and the two might collude to steal secrets
from their input data. Besides directly communicating data,
untrusted code may use covert channels via software interfaces,
such as syscall sequences and arguments, to communicate bits
from the user’s input to the platform.

A user of a service does not trust the software at any privilege
level in the computational platform. For example, the attacker
could be the machine’s owner and operator, a curious or even
malicious administrator, an invader who has taken control of
the operating system and/or hypervisor, the owner of a virtual
machine physically co-located with the VM being attacked, or
even a developer of the untrusted application or OS writing code
to directly record user input.

Although we consider covert channels based on software inter-
faces like system calls, we do not consider side or covert chan-
nels based on hardware limitations or execution time. Untrusted
enclaves can leak bits by modulating their cache accesses, page
accesses, execution time, etc. While we do not claim to prevent
the execution-time channel, Ryoan does limit the use of this
channel to once per request.

Intel Software Guard Extensions
Software Guard Extensions (SGX), available in new Intel
processors, allow processes to shield part of their address space
from privileged software. Processes on an SGX-capable machine
may construct an enclave, which is an address region whose
contents are protected from all software outside of the enclave
via encryption and hashing. Code and data loaded into enclaves,
therefore, can operate on secret data without fear of uninten-
tional disclosure to the platform. These guarantees are provided
by the hardware [2].

SGX provides attestation of enclave identity, which for Ryoan
is a hash of the enclave’s initial state, that is, memory contents
and permissions offset from the enclave base address. Ryoan
assumes that the initial state of an enclave cannot be imperson-
ated under standard cryptographic assumptions. Ryoan uses

SGX to attest that all enclaves have the same initial state and
thus the same identity. Ryoan loads service provider code after it
initializes. Before the service code is loaded and before passing
sensitive data to Ryoan, a user will request an attestation from
SGX and verify the identity of the enclave.

Enclave code may access any part of the address space which
does not belong to another enclave. Enclave code does not, how-
ever, have access to all x86 features. All enclave code is unprivi-
leged (ring 3), and any instruction that would raise its privilege
results in a fault.

Hardware security limitations
Enclaves on modern Intel processors have security limitations
including page faults [8], cache timing, address bus monitoring,
and the information exposed by processor monitoring units.
We believe these limitations must be addressed independently
from Ryoan, and we hope they will be. Each of these limitations
compromise Ryoan’s security goals. If there are other hardware
limitations, they also must be addressed independently from
Ryoan. Part of the purpose in constructing the Ryoan prototype
is to demonstrate the importance of addressing these hardware-
based information leaks.

Native Client
Google Native Client (NaCl) is a sandbox for running x86/x86-
64 native code (a NaCl module) using software fault isolation.
NaCl consists of a verifier and a service runtime. To guarantee
that the untrusted module cannot break out of NaCl’s software-
based fault isolation sandbox, the verifier disassembles the
binary and validates the disassembled instructions as being safe
to execute.

NaCl executes system calls on behalf of the loaded application.
System calls in the application transfer control to the NaCl run-
time which determines the proper action. Ryoan cannot allow
the application to use its system calls to pass information to the
underlying operating system. For example, if Ryoan passed read
system calls from the application directly to the platform, the
application could use the size and number of the calls to encode
information about the secret data it is processing. We discuss
the details of the confinement provided by Ryoan in the section
“Ryoan’s Confined Environment,” below.

Design
Ryoan is a distributed sandbox that executes a directed acy-
clic graph (DAG) of communicating untrusted modules which
operate on sensitive data. Ryoan’s primary job is to prevent the
modules from communicating any of the sensitive data outside
the confines of the system, including external hosts and the
platform’s privileged software.

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 59

SECURITY
Ryoan: A Distributed Sandbox for Untrusted Computation on Secret Data

Ryoan prevents modules from leaking sensitive data by decou-
pling externally visible behaviors from the content of secret data.
SGX hardware limits externally visible behaviors to explicit
stores to unprotected memory and use of system services
(syscalls).

Unprotected stores are eliminated by the NaCl tool chain and
runtime. Ryoan mostly eliminates system calls by provid-
ing their functionality from within NaCl. For example, Ryoan
provides mmap functionality by managing a fixed-sized memory
pool within the SGX enclave. However, untrusted modules must
read input and write output, so Ryoan provides a restricted I/O
model that prevents data leaks: for example, the output size is a
fixed function of input size. A module cannot communicate the
contents of the input data by changing the size of the output.

Figure 1 shows a single instance of the Ryoan distributed sand-
box. A principal—for example, a company providing software
as a service—can contribute a module which Ryoan loads and
confines, enabling the module to safely operate on secret data. A
module consists of code, initialized data, and the maximum size
of dynamically allocated memory. The NaCl sandbox uses a load-
time code validator to ensure that the module cannot violate
the sandbox by reaching outside of its address range or making
syscalls without Ryoan intervention.

Ryoan executes inside of hardware-protected enclaves and does
not trust the operating system nor the hypervisor. SGX gener-
ates an unforgeable remote attestation for the user that a Ryoan
instance is executing in an enclave on the platform. The user
can establish an encrypted channel that she knows terminates
within that Ryoan instance. SGX guarantees the enclave crypto-
graphic secrecy and integrity against manipulation by privileged
software.

Enforcing Topology
The user either defines the communication topology of confined
modules or explicitly approves it. A topology is a DAG of modules
with unidirectional links. The DAG specification is first passed

to an initial enclave which we call the master. The master con-
tains standard, trusted initialization code provided by Ryoan.
The master requests that the operating system start enclaves
that contain Ryoan instances for modules listed in the specifica-
tion. These enclaves can be hosted on different machines. The
master uses SGX to perform local or remote attestation to verify
the validity of individual Ryoan enclaves, then lets neighbor
enclaves in the DAG establish cryptographically protected
communication channels via key exchange using the untrusted
network or local inter-process communication as a transport.
The user can verify the validity of the master via attestation
and ask it whether a desired topology has been initialized. After
that, the user establishes secure channels with the entry and exit
enclaves of the DAG and starts data processing.

Figure 2 shows an example of Ryoan processing input from
user Alice whose sensitive data is processed by both 23andMe
and Amazon. Each Ryoan instance executes in an enclave on
the same or different machines. The host machine(s) might be
provided by 23andMe, Amazon, or a third party. In all cases,
Ryoan ensures no leakage of the user’s secrets and also prevents
leakage of any trade secrets used by 23andMe and Amazon.

Data-Oblivious Communication
One of the primary safety functions of Ryoan is to prevent the
computational platform from inferring secrets about the input
data by observing data flow among modules. Therefore, data
flow must be independent from the contents of the input data:
Ryoan never moves data in response to activity under the control
of the untrusted module once the module has read its input data.
This safety property is sometimes called being data oblivious [9].

Units of work can be any size, but Ryoan ensures that data flow
patterns do not leak secrets from input data by making module
output size a fixed, application-defined function of the input
size. Ryoan protects communication with the following rules: (1)
each Ryoan instance reads its entire input from every input-
connected Ryoan instance before the module starts processing;
(2) the size of the output is a polynomial function of the input
size, specified as part of the DAG, and Ryoan pads/truncates all
outputs to the exact length determined by the polynomial and
the size of the input; (3) Ryoan is notified by the module when
its output is complete, and it writes the module’s output to all
output-connected Ryoan instances. Ryoan encapsulates module
output in a message that contains metadata which describes
what is module output and what is padding (if any). The meta-
data is interpreted, and any padding is stripped away by the next
Ryoan instance before exposing the data to its module. Each
Ryoan instance must receive the complete input of a work unit
before executing its module. These rules are sufficient because
they ensure that output traffic is independent from input data

Figure 1: A single instance of Ryoan’s distributed sandbox. The privileged
software includes an operating system and an optional hypervisor.

60  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

SECURITY
Ryoan: A Distributed Sandbox for Untrusted Computation on Secret Data

(though there are possible alternatives—for example, each
request could specify its output size).

Consider the scenario in Figure 2. Each input comes from a user.
The user can choose to leak the size of the input, or he can hide
the size by padding the input. The description of the DAG speci-
fies that (1) the output of 23andMe’s first module is padded to a
fixed size, defined by 23andMe, which can hold the largest pos-
sible model query; (2) the output of Amazon Machine Learning’s
classifier module is padded to a fixed size to encode the classi-
fication result; and (3) the response to the user from 23andMe’s
second module is also padded to a fixed size that can hold the
largest possible result.

Ryoan’s Confined Environment
Any module with access to user data is executed in Ryoan’s con-
fined environment, which prevents information leakage while
reducing porting effort. When a module receives the secret data
contained within a request, it enters the confined environment
and loses the ability to communicate with the untrusted OS via
any system call. Therefore, Ryoan must provide a system API
sufficient for most legacy code to function properly. To reduce
porting effort, Ryoan provides an in-memory virtual file system
and supports anonymous memory mappings from a pre-allo-
cated memory region to support module dynamic memory.

Ryoan’s confined environment is sufficient for many data-
processing tasks. For example, ClamAV, a popular virus scan-
ning tool, loads the entire virus database during initialization;
when scanning the input such as a PDF file, ClamAV creates
temporary files to store objects extracted from the PDF. Ryoan’s
in-memory file system satisfies these requirements.

Module Life Cycle
A Ryoan instance enforces the following life cycle on its module:
creation, initialization, wait, process, output, destruction/reset.
The sandbox begins by validating its module and verifying that
its identity matches the DAG specification. The instance allows
the module to initialize with full access to the system services
exposed by vanilla NaCl. Nonconfined initialization makes mod-
ule creation more efficient and makes porting easier because
initialization code can remain unchanged.

Modules signal Ryoan when initialization is complete by calling
wait_for_work, a routine implemented by Ryoan. Once a module
is initialized, the module processes a request, generates its
output, and then is destroyed or reset to prevent accumulating
secret data. Ryoan instances are request oriented: input can be
any size, but each input is an application-defined “unit of work.”
For example, a unit of work can be an email when classifying
spam or a complete file when scanning for viruses. Each module
gets a single opportunity to process its input data.

Checkpoint-Based Enclave Reset
Creating and initializing modules often requires far more CPU
time than processing a single request. For instance, loading the
data necessary for virus scanning takes 24 seconds; orders of
magnitude greater than the ≈0.124 seconds it takes to process
a single email. Ryoan manages the module life cycle efficiently
using checkpoint-based enclave reset.

Ryoan provides a checkpoint service that allows the application
to be rolled back to an untainted, but initialized, memory state
(Figure 3). In our prototype this state is at the first invocation
of wait_for_work. Ryoan does not allow an enclave that has
seen secret input to be checkpointed, because its data model is
request-oriented: modules should not depend on past requests to
operate. Checkpointing a module that has seen secret data would
(potentially) give that module multiple execution opportunities
on a single request’s data.

Checkpoint restore allows Ryoan to save the cost of tear-
ing down and rebuilding the SGX enclave, and it saves the
cost of executing the application’s initialization code. Ryoan
checkpoints are taken once but restored after each request is
processed. Therefore, Ryoan makes a full copy of the module’s
writable state and simply tracks which pages get modified,
avoiding a memory copy during processing. Only the contents of
pages that were modified during input processing are restored.
SGX provides a way for enclave code to verify page permissions
and be reliably notified about memory faults, which is necessary
to track which pages are written.

Figure 2: Ryoan’s distributed sandbox. In this example, the application spans the administrative domains of 23andMe and Amazon.

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 61

SECURITY
Ryoan: A Distributed Sandbox for Untrusted Computation on Secret Data

Use Cases
This section explains four scenarios where Ryoan provides a
previously unattainable level of security for processing sensitive
data. For all examples, the Ryoan instances could execute on the
same platform or on different platforms, e.g., the entire computa-
tion might execute on a third-party cloud platform like Google
Compute Engine, or a provider’s module might execute on its
own server. Ryoan’s security guarantees apply to all scenarios.

Email Processing
A company can use Ryoan to outsource email filtering and scan-
ning while keeping email text secret. We consider spam filtering
and virus scanning, using popular legacy applications—DSPAM
3.10.2 and ClamAV 0.98.7. The computation DAG for this service
contains four Ryoan instances, each confining a data process-
ing module (see Figure 4). An email arrives at the entry enclave
over a secure channel. The entry enclave simply distributes the
email text and attachments to the enclaves containing DSPAM
and ClamAV, respectively. The results of virus scanning and
spam filtering are sent to a final post-processing enclave, which
constructs a response to the user over a secure channel.

Personal Health Analysis
Consider a company (e.g., 23andMe) that provides custom-
ized health reports for users based on a variety of health data.
23andMe accepts a user’s genetic data, medical history, and
physical activity log as input, extracts important health features
from these data, and predicts the likelihood of certain diseases.

Secrecy for both users and 23andMe is protected with a DAG
(see Figures 2 and 4). Amazon provides the classifier, which
queries a model as a Ryoan module. Users provide their genetic
information, medical history, and activity log in a request. Upon
receiving a user’s request, 23andMe’s first module constructs a
Boolean vector of health features and forwards it to Amazon’s
module. Amazon’s module generates predictions based on the
model and forwards the result to 23andMe’s second enclave,
which then forwards the result back to the user.

Image Processing
Image classification as a service is an emerging area that could
benefit from Ryoan’s security guarantees. We envision a sce-
nario where a user wants different image classification services
based on her expertise. For example, one service might be known

for accurate identification of adult content while another might
do an excellent job recognizing and segmenting horses. The
image processing DAG in Figure 4 shows an example where an
image filtering service outsources different subtasks to different
providers and then combines the results. Our prototype imple-
ments all of these detection tasks using OpenCV 3.1.0, and each
detection task loads a model that is specialized to the detection
task and would represent a company’s competitive advantage.

Translation
A company uses Ryoan to provide a machine translation service
while keeping the uploaded text secret. Users upload text to the
translation enclave and get the translated text back. Our proto-
type uses Moses, a statistical machine translation system. We
train a phrase-based French to English model using the News
Commentary data set released for the 2013 workshop in machine
translation [10].

Evaluation
We evaluated Ryoan’s overhead on realistic workloads for each of
these use cases. Slowdowns range from 27% to 419%. The Ryoan
prototype relies on some unreleased SGX features. Therefore,
our evaluation involves an SGX performance model where appli-
cable. For evaluation details see the original publication [1].

Conclusion
Ryoan allows users to safely process their secret data with
software they do not trust, executing on a platform they do not
control, thereby benefiting users, data processing services, and
computational platforms.

Figure 3: Instance life cycle: unoptimized vs. checkpoint based

Figure 4: Topologies of Ryoan example applications. Nodes in the graph
are Ryoan instances, though we identify them by their untrusted module.
Users establish secure channels with trusted Ryoan code for the source
and sink nodes to provide input and get output, respectively.

62  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

SECURITY
Ryoan: A Distributed Sandbox for Untrusted Computation on Secret Data

References
[1] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan: A
Distributed Sandbox for Untrusted Computation on Secret
Data,” in Proceedings of the 12th USENIX Symposium on
 Operating Systems Design and Implementation (OSDI ’16),
pp. 533–549: https://www.usenix.org/conference/osdi16
/technical-sessions/presentation/hunt.

[2] Intel(R) Software Guard Extensions Programming Ref-
erence, 2014: https://software.intel.com/sites/default/files
/managed/48/88/329298-002.pdf.

[3] A. Baumann, M. Peinado, and G. Hunt, “Shielding Applica-
tions from an Untrusted Cloud with Haven,” in Proceedings of
the 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’14), pp. 267–283: https://www.usenix
.org/system/files/conference/osdi14/osdi14-paper-baumann
.pdf.

[4] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C.
Priebe, J. Lind, D. Muthukumaran, D. O’Keeffe, M. L. Stillwell,
D. Goltzsche, D. Eyers, R. Kapitza, P. Pietzuch, and C. Fetzer,
“SCONE: Secure Linux Containers with Intel SGX,” in Pro-
ceedings of the 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’16), pp. 689–703: https://
www.usenix.org/system/files/conference/osdi16/osdi16
-arnautov.pdf.

[5] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar, “Native Client: A Sand-
box for Portable, Untrusted X86 Native Code,” in Proceedings
of the 30th IEEE Symposium on Security and Privacy, 2009, pp.
79–93: http://regmedia.co.uk/2008/12/09/native_client_paper
.pdf.

[6] D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko, K. Schimpf,
B. Yee, and B. Chen, “Adapting Software Fault Isolation to
Contemporary CPU Architectures,” in Proceedings of the 19th
USENIX Security Symposium (USENIX Security ’10), pp. 1–11:
https://www.usenix.org/legacy/event/sec10/tech/full_papers
/Sehr.pdf.

[7] B. W. Lampson, “A Note on the Confinement Problem,” Com-
munications of the ACM, vol. 16, no. 10, October 1973.

[8] Y. Xu, W. Cui, and M. Peinado, “Controlled-Channel Attacks:
Deterministic Side Channels for Untrusted Operating Sys-
tems,” in Proceedings of the IEEE Symposium on Security and
Privacy, 2015, pp. 640–656: http://www.ieee-security.org/TC
/SP2015/papers-archived/6949a640.pdf.

[9] O. Ohrimenko, F. Schuster, C. Fournet, S. Nowozin, A. Mehta,
K. Vaswani, and M. Costa, “Oblivious Multi-Party Machine
Learning on Trusted Processors,” in Proceedings of the 25th
USENIX Security Symposium (USENIX Security ’16), pp.
619–636: https://www.usenix.org/system/files/conference
/usenixsecurity16/sec16_paper_ohrimenko.pdf.

[10] Shared Task: Machine Translation: http://www.statmt.org
/wmt13/translation-task.html.

https://www.usenix.org/conference/osdi16
https://www.usenix.org/conference/osdi16
https://www.usenix.org/conference/osdi16/%E2%80%8Btechnical%E2%80%8B-sessions/presentation/hunt
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://www.usenix.org/conference/osdi16
https://www.usenix.org/conference/osdi16
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-baumann.pdf
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-baumann.pdf
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-baumann.pdf
https://www.usenix.org/conference/osdi16
https://www.usenix.org/conference/osdi16
https://www.usenix.org/system/files/conference/osdi16/osdi16-arnautov.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-arnautov.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-arnautov.pdf
http://regmedia.co.uk/2008/12/09/native_client_paper.pdf
http://regmedia.co.uk/2008/12/09/native_client_paper.pdf
https://www.usenix.org/legacy/event/sec10/tech/full_papers/Sehr.pdf
https://www.usenix.org/legacy/event/sec10/tech/full_papers/Sehr.pdf
http://www.ieee-security.org/TC/SP2015/papers-archived/6949a640.pdf
http://www.ieee-security.org/TC/SP2015/papers-archived/6949a640.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_ohrimenko.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_ohrimenko.pdf
http://www.statmt.org/wmt13/translation-task.html
http://www.statmt.org/wmt13/translation-task.html
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/hunt

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 63

SECURITY

Securing Software Updates for
Automotives Using Uptane
T R I S H A N K K A R T H I K K U P P U S A M Y , L O I S A N N E D E L O N G , A N D J U S T I N C A P P O S

Does secrecy improve security or impede securing software updates?
The automotive industry has traditionally relied upon proprietary
strategies developed behind closed doors. However, experience in the

software security community suggests that open development processes can
find flaws before they can be exploited. We introduce Uptane, a secure sys-
tem for updating software on automobiles that follows the open door strategy.
It was jointly developed with the University of Michigan Transportation
Research Institute (UMTRI), and the Southwest Research Institute (SWRI),
with input from the automotive industry as well as government regulators.
We are now looking for academics and security researchers to attempt to
break our system before black-hat hackers do it in the real world—with pos-
sibly fatal consequences.

Security Should Not Be a Competitive Advantage
Imagine that you get into your car and turn on the ignition, but the engine does not start. You
turn the key again, but the only sound you hear is the automatic door locks closing. After a
few more futile attempts to start the car—and to open the doors—you notice a message on
the screen of your infotainment system: “$500 in Bitcoin if you want to get out of your car.”
A hacker has just exploited a security flaw in the system used to deliver software updates to
one of your car’s on-board computing units, and the result is this simple but effective cyber-
attack. We need your help in preventing this scenario from happening in the real world.

Presently, vehicle manufacturers purchase proprietary software update systems from third-
party suppliers. This helps to keep costs competitive, because a manufacturer need not worry
about developing its own system. These systems are proprietary in nature, and, thus, their
security guarantees are unclear. A manufacturer may not even have access to the source
code used in parts created by one of their suppliers. What is known is that these systems
have been hacked repeatedly [1–3]. At a time when computing units continue to proliferate on
vehicles, and where the cost of security flaws in code can be measured in human lives, many
manufacturers still follow the design principle of security by obscurity, which has resulted in
a substantial number of successful attacks.

We strongly believe that the security of your car should not be based upon which supplier
can market their solution best to the car companies. It would not be a desirable outcome for
a manufacturer or supplier to advertise that compromises of their software update system
only harmed hundreds of people, while their competitors’ compromises harmed thousands.
Open security reviews have been used time and time again in the design of critically impor-
tant systems, such as cryptographic algorithms, anti-censorship software, and secure
software update systems. Designing software systems in a more open manner can benefit
manufacturers, suppliers, and the public simultaneously.

Trishank Karthik Kuppusamy
is a fifth-year PhD student at
the NYU Tandon School of
Engineering, where he works
with Professor Justin Cappos on

the design and deployment of software update
security systems. He led the specification for
Uptane, a new technology to secure software
updates for automotives. trishank@nyu.edu

Lois Anne DeLong is a Research
Associate and Technical Writer
for the Secure Systems Lab
at NYU Tandon School of
Engineering. She has served as

a writer and editor for technical journals, and
has also taught technical writing and basic
composition courses. lad278@nyu.edu

Justin Cappos is an Assistant
Professor at NYU in the
Tandon School of Engineering.
Justin’s research interests
focus on improving the

security of real-world systems in a variety of
practical applications. His more recent work
on software updaters has been standardized
by the Python community and deployed by
Docker. jcappos@nyu.edu

64  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

SECURITY
Securing Software Updates for Automotives Using Uptane

Uptane, a new, secure software update system, is a direct
product of such an open process. Uptane was designed in col-
laboration with major vehicle manufacturers and suppliers
responsible for 78% of vehicles on US roads, as well as govern-
ment regulators. We have shared technical documents and a
reference implementation to aid manufacturers and suppliers to
build, customize, and deploy their own variants of this system. A
supplier has begun selling a product that includes Uptane, and a
few others are integrating it as we speak. As adoption grows, we
are looking to the open source community to give our code a test
drive. We welcome white-hat hackers to try to break Uptane and
to give us feedback before you, and millions of others, are betting
your life on its security.

A Quick Primer on Computers in Vehicles
While most people think of a car as a collection of mechani-
cal parts such as the engine, door locks, and brakes, a modern
vehicle is actually a sophisticated container for a collection of
microcomputers called electronic control units (ECUs). Like
any other computer, these ECUs are responsible for executing
specific functions, from tightening a seat belt during an accident
to adjusting a passenger side mirror. Where ECUs differ from
traditional computers is in how heterogeneous their computa-
tional speed, memory, and network capabilities are. For example,
some ECUs, such as the telematics or infotainment units,
have general-purpose CPUs with high speed, large memory,
and a wireless connection to the outside world, whereas other
ECUs, such as the seat belt pretensioner ECU, use specialized
CPUs with low speed, small memory, and no external network
connection.

An original equipment manufacturer (OEM), such as Ford or
General Motors, chooses the ECUs that will reside on a vehicle
model. However, these units are usually produced by third-party
suppliers, such as Bosch or Lear. The software for an ECU is
maintained by its supplier and delivered to the OEM to be dis-
tributed to vehicles.

To distribute software updates, the OEM maintains a software
repository, which hosts and distributes images and metadata. An
image is a self-contained archive of code and/or data required
for an ECU to function. Metadata is information about images or
other metadata files. Typically, this metadata lists the crypto-
graphic hashes and file sizes of images.

This metadata should be signed, using well-protected keys,
so that attackers cannot tamper with images without being
detected. However, some manufacturers and suppliers do not
provide signed metadata about images. As a result, ECUs can be
reflashed over the network if attackers know the fixed chal-
lenge-response algorithm used to unlock ECUs. Although these
fixed algorithms are supposed to be secret, they are known by

the car tuning community [1, 2]. To take another example, Tesla
did not, to the best of our knowledge, sign its images at all until
security researchers used a wireless connection to rewrite soft-
ware on its ECUs and exert physical control over its vehicles [3].
Although it is important to sign metadata, the security of ECUs
depends on precisely how it is signed.

Existing Software Update Systems Do Not Fit the
Automotive Industry
Existing software update systems force an unacceptable
tradeoff upon OEMs. To achieve maximum security, they often
have to sacrifice the customizability that allows them to offer
different images to different vehicles. On the other hand, other
systems offer customizability but no security when attackers
have compromised the repository itself.

Some security systems use online keys, or signing keys that
are accessible from the repository, to sign metadata, protect-
ing ECUs from man-in-the-middle attacks. For example, these
systems may use the SSL/TLS or CUP transport protocol to
sign images and metadata in transit. The upside of using an
online key is that it allows on-demand customization of vehicles,
an attribute that was considered very important by our industry
collaborators for various legal and technical reasons.

Unfortunately, the downside of using an online key to sign all
metadata is that attackers who compromise the repository can
also immediately abuse this key to sign and distribute malware.
This is true even if the online key is protected behind a Hard-
ware Security Module (HSM).

To solve this problem, some security systems use offline keys, or
signing keys that are not accessible from the repository, to sign
all metadata. These systems may use, for example, the PGP/
GPG or RSA cryptographic schemes for this purpose. The upside
of using offline keys is that it provides compromise-resilience:
attackers who compromise the repository are unable to tamper
with images without being detected. In practice, however, it is
typically a precarious form of compromise-resilience, because
often a single offline key is used to sign all metadata.

Unfortunately, the downside of using only offline keys to sign all
metadata is that we have lost on-demand customization of vehi-
cles. This is because the repository cannot dynamically respond
to fresh information that indicates what is currently installed on
a vehicle and decide what should be installed next.

Besides the on-demand customization of vehicles, there are
other critical constraints in designing a secure software update
system for automotives. Above all else, the system must be
simple for manufacturers and suppliers to implement, custom-
ize, and deploy. Another important constraint is that ECUs are
often limited by speed, memory, or network connection. Many

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 65

SECURITY
Securing Software Updates for Automotives Using Uptane

ECUs are highly optimized for a specific function in order to
keep costs low. Thus, many ECUs may not have enough storage
space to maintain a large amount of metadata, may not have a
direct network connection to the repository, and may not be able
to compute or verify a signature in a reasonable amount of time.

Uptane: A New, Secure Software Update System
Uptane is a new, secure software update system that is specifi-
cally designed to solve problems in the automotive domain [4].
The key idea is to use two repositories, one to provide compro-
mise-resilience and the other to provide on-demand customiza-
tion of vehicles.

Uptane uses four design principles that help to achieve com-
promise-resilience [5, 6]. First, different types of metadata are
signed using different keys, so that the impact of a key compro-
mise is minimized and does not necessarily affect the security
of the whole system. As illustrated in Figure 1, and summarized
in Table 1, there are four top-level roles on a repository: the root,
timestamp, snapshot, and targets roles. Second, a threshold
number of signatures may be required to sign a metadata file, so
that a single key compromise is insufficient to publish malicious
images. Third, there must be a way to revoke keys when they
are compromised. Keys can be revoked explicitly by publishing
new keys to replace old ones, or they can be revoked implicitly by
setting expiration timestamps in metadata files. Finally, use of
offline keys can minimize the risk of a key compromise for high-
value roles whose compromise can lead to malicious images.

On the image repository, offline keys are used to sign all meta-
data about all images for all ECUs on all vehicles manufactured
by the OEM. Metadata for the top-level roles are signed by the
OEM’s administrators. The OEM may delegate the signing of
images to their respective suppliers, or it may sign them itself.
This repository provides compromise-resilience but not on-
demand customization of vehicles.

The director repository instructs vehicles on what should be
installed next, given information about what they have cur-
rently installed. This repository uses online keys to sign fresh
timestamp, snapshot, and targets metadata for each vehicle
that indicate which images from the image repository should be
installed next.

As depicted in Figure 2, vehicles install images only if both
repositories agree on their contents. That is, the contents of
images chosen for installation by the director repository must
match the contents of the same images available on the image
repository. Since the director repository has more complicated
functionality, it is more likely to contain vulnerabilities that can
be remotely exploited, and thus compromised. By separating both
repositories, we are able to prevent attackers who compromise
one repository from being able to distribute malicious images.

Role Responsibilities
Root The root role is the locus of trust. It indicates which keys are authorized for the targets, snapshot, and

timestamp roles. It also lists the keys for the root role itself.

Targets The targets role provides crucial metadata about images, such as their hashes and lengths. This role may delegate
the signing of images to their respective suppliers.

Snapshot The snapshot role indicates the latest versions of all metadata on the repository. This prevents an ECU from
installing outdated images.

Timestamp The timestamp role is responsible for indicating if images or metadata have changed.

Table 1: A summary of responsibilities of the top-level roles on a repository

timestamp

metadata images
signs metadata for

signs root keys for

delegates images toroot

snapshot targets

A1

BC

A.img

C.img

signs for images

A.*

B.*, C.*

*.pkg A2

B.img

Figure 1: Separation of duties between roles on a compromise-resilient
repository

OEMVehicle

offline
keys

Image
repository

online
keys

ECU
Director
repository

Figure 2: Using two repositories to provide both compromise-resilience
and on-demand customization of vehicles

66  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

SECURITY
Securing Software Updates for Automotives Using Uptane

There are two types of ECUs. A primary downloads, verifies, and
distributes images and metadata to secondaries. A secondary
receives them from a primary, and installs a new image only if it
has been successfully verified against the signed metadata.

There are two types of metadata verification designed to accom-
modate ECUs with different security and cost requirements.
Full verification requires checking that the images chosen for
installation by the director repository match the same images on
the image repository. Primaries always perform full verification
in order to protect secondaries from security attacks. Partial
verification requires checking only that the signatures from the
director repository are valid.

A brief security analysis is illustrated in Figure 3. The difference
between ECUs that perform full and partial verification is in
how resilient they are against a repository compromise. When
there are only man-in-the-middle attacks but no key compromise,
attackers do not pose a serious threat. When attackers have com-
promised the director repository, there are two cases: primaries
that have been compromised and primaries that have not.

If attackers have not compromised primaries, then they may
be able to cause both types of ECUs to fail to interoperate. This
is because attackers can control which images are installed
on which ECUs. However, it is possible to limit the attackers’
choices by including metadata that prevent ECUs from install-
ing incompatible or conflicting images. Nevertheless, they can-
not install malicious updates, because primaries always perform
full verification on behalf of secondaries.

However, attackers that have compromised primaries can
install malicious updates, but only on partial verification ECUs.
Attackers cannot install malicious updates on full verification
ECUs, even if they have also compromised the image repository,
because they must also compromise offline keys.

In summary, Uptane offers basic security guarantees for all
ECUs and greater compromise-resilience for ECUs that can
afford additional computation and storage space. In addition,
by separating concerns over multiple repositories, Uptane also
provides on-demand customization of vehicles.

A Call to Action
We believe that Uptane provides the strongest solution to a
real-world problem, without sacrificing usability and flexibil-
ity. However, we do not know of a better way to guarantee the
security of any system than subjecting it to a critical, rigorous,
and open review. We want you to scrutinize Uptane and find any
design flaws before the black-hat hackers use them against us.
You can drop us comments on our Google Docs or report issues
and send pull requests on our GitHub projects. To do so, please
visit our Web site at https://uptane.github.io.

Acknowledgments and Disclaimers
Our co-authors include Akan Brown (NYU), Sebastien Awwad
(NYU), Damon McCoy (NYU), Russ Bielawski (UMTRI), Sam
Weber (NYU), John Liming (SWRI), Cameron Mott (SWRI),
Sam Lauzon (UMTRI), and André Weimerskirch (UMTRI/Lear
Corporation).

Uptane is supported by US Department of Homeland Security
grants D15PC00239 and D15PC00302. The views and con-
clusions contained herein are the authors’ and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the US Depart-
ment of Homeland Security (DHS) or the US government.

MitM
outside / inside

vehicle

MitM + director repository compromise

Primaries not
compromised

Primaries
compromised

Partial
verification

No serious attacks
May be able to

cause ECUs to fail
to interoperate

Can install
malware

Full
verification

Increasing difficulty for attackers

Greater
compromise-

resilience

Mild Serious Critical

Figure 3: A brief security analysis of ECUs using Uptane, depending on
which repositories and ECUs attackers have compromised

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 67

SECURITY
Securing Software Updates for Automotives Using Uptane

References
[1] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S.
Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, and
S. Savage, “Experimental Security Analysis of a Modern Auto-
mobile,” 2010 IEEE Symposium on Security and Privacy: http://
www.autosec.org/pubs/cars-oakland2010.pdf.

[2] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Sha-
cham, S. Savage, K. Koscher, A. Czeskis, F. Roesner, and T.
Kohno, “Comprehensive Experimental Analyses of Automo-
tive Attack Surfaces,” in Proceedings of the 20th USENIX
Security Symposium, 2011: http://www.autosec.org/pubs/cars
-usenixsec2011.pdf.

[3] A. Greenberg, “Tesla Responds to Chinese Hack with a
Major Security Upgrade,” Wired, September 27, 2016: https://
www.wired.com/2016/09/tesla-responds-chinese-hack-major
-security-upgrade/.

[4] T. K. Kuppusamy, A. Brown, S. Awwad, D. McCoy, R.
Bielawski, C. Mott, S. Lauzon, A. Weimerskirch, J. Cappos,
“Uptane: Securing Software Updates for Automobiles,” 14th
ESCAR Europe 2016: https://ssl.engineering.nyu.edu/papers
/kuppusamy_escar_16.pdf.

[5] J. Samuel, N. Mathewson, J. Cappos, R. Dingledine, “Sur-
vivable Key Compromise in Software Update Systems,” in
Proceedings of the 17th ACM Conference on Computer and
 Communications Security (CCS ‘10), pp. 61–72: https://ssl
.engineering.nyu.edu/papers/samuel_tuf_ccs_2010.pdf.

[6] T. K. Kuppusamy, S. Torres-Arias, V. Diaz, and J. Cappos,
“Diplomat: Using Delegations to Protect Community Reposi-
tories,” in Proceedings of the 13th USENIX Symposium on
 Networked Systems Design and Implementation (NSDI ’16), pp.
567–581: https://www.usenix.org/conference/nsdi16/technical
-sessions/presentation/kuppusamy.

oreilly.com/safari

Get a free 10-day trial on the world’s
 most comprehensive technology and
business learning platform, now
featuring live online training.

Stay ahead—and learn
faster—with Safari.

©2017 O’Reilly Media, Inc. O’Reilly is a registered trademark of O’Reilly Media, Inc. | D3523

http://www.autosec.org/pubs/cars-oakland2010.pdf
http://www.autosec.org/pubs/cars-oakland2010.pdf
http://www.autosec.org/pubs/cars-usenixsec2011.pdf
http://www.autosec.org/pubs/cars-usenixsec2011.pdf
https://www.wired.com/2016/09/tesla-responds-chinese-hack-major-security-upgrade/
https://www.wired.com/2016/09/tesla-responds-chinese-hack-major-security-upgrade/
https://www.wired.com/2016/09/tesla-responds-chinese-hack-major-security-upgrade/
https://ssl.engineering.nyu.edu/papers/kuppusamy_escar_16.pdf
https://ssl.engineering.nyu.edu/papers/kuppusamy_escar_16.pdf
https://ssl.engineering.nyu.edu/papers/samuel_tuf_ccs_2010.pdf
https://ssl.engineering.nyu.edu/papers/samuel_tuf_ccs_2010.pdf
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/kuppusamy
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/kuppusamy

68  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

SECURITY

Blockchain
Hype or Hope?

R A D I A P E R L M A N

In this article, I describe the technology behind Bitcoin’s blockchain, and
its scalability, security, and robustness. Most of what is written about
“blockchain technology” talks about how it will revolutionize all sorts of

applications without contrasting it with alternative solutions. To complicate
matters, there are all sorts of proposed variants of the original blockchain
(the technology behind Bitcoin), making the definition of “blockchain tech-
nology” very unclear. I explain how Bitcoin’s blockchain technology works,
along with its performance implications.

A lot has been written about “blockchain technology” recently, but most of it talks about how
it “is being investigated” for various applications and how it is a revolution in computing that
will change the world [1]. It is not that easy to discover, from these sorts of articles, how the
technology works or what its true properties are. These articles treat “blockchain” as a sort of
black box that stores and retrieves data, with certain properties:

◆◆ Append-only log
◆◆ “Immutable”
◆◆ No central point of control

The term blockchain was introduced as the name of the technology that powers Bitcoin.
Given that Bitcoin’s technology is widely deployed and unlikely to change very dramatically,
it is possible to describe how it works and what its scalability, robustness, and security prop-
erties are. It is not clear how much this system can be modified and still be called blockchain
technology. Therefore, with the term blockchain technology being less and less well-defined,
I will not attempt to describe the properties of every variant proposed, and for the rest of this
article, when I say “blockchain,” I am referring to Bitcoin’s blockchain.

Description of Blockchain
In this section I’ll give an overview of the Bitcoin blockchain technology.

Bitcoin
Bitcoin was introduced to the world in a 2008 article [2] and, shortly thereafter, was released
as open source software. The concepts are described in the paper, but the details are defined by
the implementation. The open source community in control of the software may make changes,
but the more widely deployed it is, the more difficult it is to make incompatible changes.

The design goal of Bitcoin was to create a currency that could not be controlled by any gov-
ernment or any known organizations. This design is intended to foil the ability of govern-
ments to do things like:

◆◆ Enforce tax laws
◆◆ Follow a money trail
◆◆ Prohibit payments to certain countries or organizations
◆◆ Inhibit criminals from anonymously collecting ransom money

Radia Perlman’s work has had
a profound impact on how
computer networks function
today, enabling huge networks,
like the Internet, to be robust,

scalable, and largely self-managing. She has
also made important contributions in network
security, assured delete, key management for
data at rest encryption, DDoS defense, and
user authentication. She is currently a Fellow
at Dell EMC, and has taught as adjunct faculty
at University of Washington, Harvard, and
MIT. She wrote the textbook Interconnections
and co-wrote the textbook Network Security.
She holds over 100 issued patents and has
received numerous awards, including induction
into the Inventor Hall of Fame, lifetime
achievement awards from ACM’s SIGCOMM
and USENIX, election to the National Academy
of Engineering, induction into the Internet Hall
of Fame, and an honorary doctorate from KTH.
She has a PhD in computer science from MIT.
radia@alum.mit.edu

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 69

Format of Ledger: Blockchain

1

Hash prev block
nonce
miner’s public key
Transaction
Transaction
Transaction
…
Transaction

Hash prev block
nonce
miner’s public key
Transaction
Transaction
Transaction
…
Transaction

Hash prev block
nonce
miner’s public key
Transaction
Transaction
Transaction
…
Transaction

Figure 1

The Ledger

2

(hash=x15) From transaction x8, X pays A 74.92
(hash=x16) From transaction x11, Z pays B 38.22
(hash=x17) From transaction x15, A pays C 74.21
(hash=x18) From transaction x4, Q pays D 855.21
(hash=x19) From transaction x17, C pays D 74.03
(hash=x20) From transaction x18, D pays E 25.11, and F 830
etc.

Figure 2

SECURITY
Blockchain: Hype or Hope?

These may or may not be desirable goals for a currency, but I will
examine the performance implications of a design with these
goals, and whether applications other than cryptocurrency really
benefit from a design without known entities at the center.

The basic concepts behind blockchain:

◆◆ A large (thousands) community of anonymous entities called
“miners” collectively agree upon the history of transactions, in
an append-only data structure known as “the ledger.”

◆◆ Users of Bitcoin are not identified with names, but rather, with
public keys, and a user is allowed (even encouraged) to change
public keys often, to make transactions more anonymous.

◆◆ The ledger contains a list of every Bitcoin transaction since
Bitcoin was invented.

◆◆ A transaction records that a public key X pays a certain amount
of Bitcoin to public key Y.

◆◆ In order to add transactions to the ledger, a miner must validate
the transactions and compute a valid block containing them.

◆◆ A valid block contains a hash of the previous block in the block-
chain, a set of new valid transactions, and a random number
chosen so that the hash of the block meets certain conditions.
A valid block is, by design, just hard enough to compute that the
collective compute power of the miner community will find a
new block at some cadence (about every 10 minutes).

◆◆ The miner who is lucky enough to be the first to find the next
valid block is awarded with some amount of Bitcoin.

Now I will describe these steps in more detail.

Format of the Ledger
Each block in the blockchain contains the hash of the previous
block, a nonce (a random number), the public key of the lucky
miner who was the first to find a valid next block, and valid trans-
actions that have not yet been recorded in the ledger (Figure 1).

Transactions
The information in transactions looks like this:

A transaction (with hash T1) consists of the payer (public key
X) signing away all of the Bitcoins that X had been paid in some
previous transaction (with hash T2).

In order for the transaction T1 to be valid,

◆◆ There must be a prior transaction with hash T2, in which X was
the payee of the amount of Bitcoin being paid in transaction T1.

◆◆ The signature on T1 must properly validate, using public key X.
◆◆ There must be no other transaction in the ledger in which X has

already spent the proceeds of T2.

There are extra details. For example, notice in the third line of
Figure 2 (the transaction with hash x17), A is signing over to C
the results of the transaction with hash x15, in which X received
74.92 Bitcoins. But A is only paying 74.21 in transaction x17, even
though in transaction x15, A had received 74.92. The difference
(74.92 − 74.21) is a transaction fee, paid to the miner who adds
a block to the blockchain that contains transaction x17. This
rewards the miner for including this transaction in the new block.

The Hash
The mining community imposes conditions on the hash of a
valid block. These conditions are designed to be just difficult
enough to meet, that it will take the community about 10 min-
utes to find a block with the appropriate hash.

A good cryptographic hash is like a random number. Given
random input, it should have probability 0.5 that the first bit
in the hash will be 0, or probability 0.25 that the first two bits
would both be 0. The method that blockchain uses to adjust the
difficulty of computing the hash is to have a maximum value
that the hash must have. Currently, the maximum value of the
hash has about 70 leading zeroes. That means that for any block,
the probability of its hash having 70 leading 0s is 1/(270). Using a
brute force search, and the collective compute power of the min-
ing community, it takes about 10 minutes for at least one miner
to find a block with a small enough hash. If blocks are found too
quickly, then the maximum hash value is adjusted to be smaller.
If blocks are found too slowly, then the maximum hash value is
adjusted to be larger.

Traditional Integrity Checks vs. Blockchain Hash
Traditional public key cryptography creates digital signatures
that can be efficiently computed, if and only if the signer knows

70  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

SECURITY
Blockchain: Hype or Hope?

a secret known as the private key. The signature can be verified
by anyone with knowledge of the associated public key. And an
essential component of any public key system is that there will
be some way of making sure that the public key is well-known.

With a traditional public key system, the cryptography ensures
that there is an enormous gap between the computation needed
for someone with knowledge of the private key to generate a
signature, and someone without knowledge of the key to forge
a signature. With RSA, the computation necessary to gener-
ate a signature (knowing the private key) is a small power of
the length of the key (between 2 and 3). In contrast, brute force
breaking of a key is almost exponential in the length of the key.
So, for instance, for a 1024 bit RSA key, it is about 263 times more
expensive to forge a signature than to generate one. Increasing
the key size increases the gap between forging and generating
signatures. If an RSA key were increased from 1024 bits to 2048
bits, the gap becomes about 294 times more expensive to forge
rather than generate a signature.

Since it’s hard to imagine these huge numbers, another way to
say it is that signing with RSA 1024 takes about a millisecond on
a typical CPU, and signing with RSA 2048 might take 6 millisec-
onds on the same CPU. However, breaking RSA 1024 takes about
as much computation as all the Bitcoin miners do in an hour.
Breaking RSA 2048 takes about as much computation as all the
Bitcoin miners would do if they continued at the present rate for
a million years.

The startling aspect of the Bitcoin hash is that it is equally
difficult for the community of miners to compute a hash as for
someone to forge a hash. This means that the security of Bitcoin
depends on the assumption that no entity or collection of entities
can amass as much compute power as the Bitcoin mining com-
munity. This is a very surprising assumption. It would indeed be
easy for a nation-state to amass more compute power than the
Bitcoin community.

What could a malicious set of miners, with more compute power
than the honest Bitcoin miners do? They could discriminate
against certain transactions, refusing to ever record them in the
ledger. They could compute an alternate ledger, where transac-
tions they had previously spent were not recorded anymore, and
then they could double-spend.

And not only is the security assumption highly questionable,
since it is hard to believe that the community of honest miners
has cornered the market on all computation power on the planet,
but it means that the computation required by the honest miners
is mind-bogglingly huge.

What Would Motivate Someone to Be a Miner?
Miners have to do a lot of computation if they ever hope to be
rewarded with any Bitcoins. Currently, the miner community

earns about 2 million US dollars every day. And reports are that
this barely covers the amount they are spending on electricity.
That amount of electricity is estimated to be equal to what a
nuclear power plant generates per day, about 500 megawatts.

So any application of this technology must somehow generate
revenue for the miners.

Other Costs
It is also necessary to store the entire ledger so that transac-
tions can be checked for validity. Currently, the ledger is about
100 GB and is stored in thousands of places around the network.
Also, there is a huge amount of network bandwidth to broadcast
transactions and new blocks to all the Bitcoin nodes, as well as to
be able to download the entire ledger to any node that is joining
the community.

What Is Novel about Blockchain?
If “blockchain” is truly a revolution in computing, there must be
something about it that did not exist before. What could it be?

Is It Having a “Ledger”?
Blockchain’s “ledger” is an append-only log that needs to be kept
in its entirety, and needs to be world-readable and world-writ-
able. Very few applications really want these properties. Much
more flexible databases have of course existed for a long time.

Is It Replicating the Data?
Blockchain highly replicates the ledger so that it will not easily
get lost. Obviously, the more locations in which something is
stored, the less likely it is that it will become permanently lost.
Large public clouds tend to store data in perhaps six places, care-
fully chosen to be located in different locations so that a natural
disaster in one location will not wipe out all copies of the data.
If any copy is lost, the public cloud quickly replicates the data to
new locations to replace the ones that have lost the data. In con-
trast, blockchain stores the ledger in thousands of locations.

To store something in N places requires N times as much stor-
age, as well as network bandwidth to communicate the data to
all the places. What is the optimal number of locations? It is
unlikely that the extra redundancy of thousands vs. six merits
the storage cost and network bandwidth for replication. And
despite how many copies are kept, there have been many clones
of Bitcoin that eventually failed due to lack of interest, and all
of the copies then were lost, because there is no obligation for a
node in a blockchain system to maintain the data.

Is It Being “Immutable”?
The term immutable means the data cannot be modified. The
term “immutable ledger” isn’t quite true. The data can certainly
be modified, but the assumption is that there is an integrity

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 71

SECURITY
Blockchain: Hype or Hope?

check that can be used to detect whether the data has been
modified. Blockchain did not invent the concept of an integrity
check, just the concept of a horrendously expensive-to-compute
integrity check. Traditional cryptography has long known about
easy-to-compute integrity checks that are computationally
infeasible to forge.

Furthermore, the ledger in blockchain is not actually immutable.
Forks can occur, starting from, say, block N, where multiple dif-
ferent subsequent blocks N+1 and further might be found. The
hope is that this situation would be resolved quickly, because
a miner seeing two different valid chains will only accept the
longer one. However, a fork can persist for a long time if there
were an Internet partition, or if the gossip network connecting
the miners got partitioned, due to some highly connected node
going down, perhaps. Also, if there were any incompatibility in
code, such that a transaction looked valid in one version of the
code and invalid in a different version, then the miners running
different versions will ignore each other’s chains. This situation
actually occurred in 2013. If blockchain were truly decentral-
ized, then this situation would be permanent. However, there are
a few people who really are paying attention and in charge, and
after the fork in 2013, they decided which version of the block-
chain should live.

Is It Being Decentralized?
The concept of having a ledger agreed upon by consensus of
thousands of anonymous entities, none of which can be held
responsible or be shut down by some malevolent government, is
fairly unique. However, most applications would not require or
even want this property. And, as demonstrated by the Bitcoin
community’s reaction to forks, there really are a few people who
are in charge who can control the system, by, for example, mak-
ing a decision on which fork should be chosen.

The concept of general distributed databases is very old. For
instance, this is a survey paper about the state of such systems
from 1981 [3]. Such systems are more complicated than Block-
chain, because they handle things like having multiple nodes
simultaneously attempting to update the same location and atomic
transactions. In contrast, Blockchain is an append-only log.

If all that were needed was an append-only log, and an applica-
tion (e.g., a consortium of banks) wished to collaborate on main-
taining the log, a very simple solution would be to have an entry
signed by any of the trusted parties in the consortium appended
to the log. To handle Byzantine failures (where a minority of the
entities in the consortium might become untrustworthy), the
simple solution would be to require an entry to be signed by a
majority of the consortium before it is appended to the log.

So the novel part of Blockchain is having a consortium of
unknown entities maintain the ledger.

Blockchain vs. Traditional Solutions for Sample
Applications
In this section we’ll examine some applications that have been
proposed as uses for blockchain and compare more traditional
approaches. Since these systems are not actually deployed, it’s
not possible to completely predict the details of a blockchain-
based approach, but we’ll mention some issues.

DNS Names
Assigning DNS names is an interesting application. DNS is quite
political. Which organization controls the names in a domain?
What is the definition of a country? It might be tempting to
“democratize” DNS names to first-come first-served, without
any organization deciding who is allowed to have which name.
With blockchain technology, we could do without any central
organizations. And there is indeed a revenue stream for paying
the miners, since people would still have to pay to rent a name.

However, people have come to assume that names have some
meaning. They assume that the owner of the name usenix.org
has some affiliation with the organization USENIX. And some-
one will still need to maintain the servers to map DNS names to
IP addresses, along with all the other information stored in DNS.

So it would be preferable to have some mediation of names by a
large, identifiable organization that could be held accountable
if it misbehaved. And the current system is much less expensive
than a blockchain system would be.

Health Records
When switching doctors, or when visiting several doctors with
different specialties, it is important for them all to have access
to your health records. However, is a universal, world-readable
unstructured database with everyone’s medical data the best
answer? The sheer size of the database is daunting, especially
when, as proposed by some blockchain enthusiasts, all medical
devices attached to all people would report their readings into
the blockchain. And this database would be stored in thousands
of places.

Clearly with medical information, people will not want their
information world-readable. Which leads to many questions that
blockchain doesn’t answer. Data must be encrypted. Who man-
ages the keys? Who authorizes a new doctor you are meeting to
see your records? What if you are in an accident? And, further-
more, who authorizes you, a doctor or a device, to write some-
thing about you in the blockchain?

72  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

SECURITY
Blockchain: Hype or Hope?

With traditional technology, there would be a database stored
with several trusted organizations, organized so that data for
a particular patient could be quickly retrieved (rather than
needing to have all the pieces found by searching through the
blockchain). And even if encrypted, there would likely be access
control on the data. And maintaining the database would be
much less expensive if one organization, or a few large organiza-
tions, were using traditional digital signatures as an integrity
check on the data.

Timestamping
One of the applications claimed for blockchain is the ability to
prove that something happened before some time, because of
where it appears in the blockchain. For instance, to prove you
invented something, you could write a paper about it and store a
hash of the paper on the blockchain.

However, there is much less expensive technology that can
accomplish this. A trusted timestamping service can take a
hash, append a timestamp, and sign it. Since this is such an inex-
pensive service, there could be hundreds or thousands of them.
If Alice wants to be able to prove to Bob that something existed
before some time, she needs to collect multiple signed copies
to ensure that, when she needs to prove a timestamp to Bob, at
least one of the timestampers she used is trusted by Bob. It is less
expensive for everyone who wants this service to store their own
signed copies than to store them publicly in a large blockchain.

Conclusion
Blockchain technology is extremely expensive in terms of
computation, storage, and network bandwidth. With traditional
technology, it is possible to replicate data, and public clouds are
careful to do so. But there would be a handful of replicas; not
thousands. Also, databases would be more structured than an
append-only log combining information from all users and for
many applications.

Most applications (such as financial ones) do want to have
some collection of well-known organizations at the heart of
the technology to mediate disputes and be held responsible if
things go wrong. If it is distasteful to have a single organization
in the center, it could be a consortium of several, and transac-
tions could be considered valid only after a majority of the inner
circle of organizations have signed the transaction. This would
be immensely less expensive, and be a more natural trust model,
than thousands of anonymous miners.

And traditional cryptographic integrity checks (digital sig-
natures) by well-known organizations are practical and
inexpensive.

References
[1] K. Torpey, “Why the Bitcoin Blockchain Is the Biggest
Thing Since the Internet,” Bitcoin Magazine, April 19, 2016:
http://www.nasdaq.com/article/why-the-bitcoin-blockchain
-is-the-biggest-thing-since-the-internet-cm608228.

[2] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash
System,” Bitcoin: https://bitcoin.org/bitcoin.pdf.

[3] P. A. Bernstein and N. Goodman, “Concurrency Control
in Distributed Database Systems,” Computing Surveys, vol.
13, no. 2, June 1981: https://people.eecs.berkeley.edu/~brewer
/cs262/concurrency-distributed-databases.pdf.

http://www.nasdaq.com/article/why-the-bitcoin-blockchain-is-the-biggest-thing-since-the-internet-cm608228
http://www.nasdaq.com/article/why-the-bitcoin-blockchain-is-the-biggest-thing-since-the-internet-cm608228
https://bitcoin.org/bitcoin.pdf
https://people.eecs.berkeley.edu/~brewer/cs262/concurrency-distributed-databases.pdf
https://people.eecs.berkeley.edu/~brewer/cs262/concurrency-distributed-databases.pdf

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 73

SECURITY

Internet of Pwnable Things
Challenges in Embedded Binary Security

J O S W E T Z E L S

Embedded systems are everywhere, from consumer electronics to
critical infrastructure, and with the rise of the Internet of Things
(IoT), such systems are set to proliferate throughout all aspects of

everyday life. Due to their ubiquitous and often critical nature, such systems
have myriad security and privacy concerns, but proper attention to these
aspects in the embedded world is often sorely lacking. In this article I will
discuss how embedded binary security in particular tends to lag behind what
is commonly expected of modern general purpose systems, why bridging
this gap is non-trivial, and offer some suggestions for promising defensive
research directions.

Embedded Systems Security
Because embedded systems are so diverse, the threat landscape is equally varied, ranging
from life-threatening sabotage of cyber-physical systems (e.g., electrical blackouts, smart-
car crashes, insulin pump tampering) to economic (e.g., cable TV piracy, smart meter fraud)
and privacy (e.g., smart-home surveillance) threats. Embedded security priorities also differ
from those in the general purpose (GP) world. Whereas the latter tend to be mostly concerned
about threats to confidentiality, embedded systems tend to prioritize availability and integ-
rity. You want nuclear reactors to operate safely and automotive braking and flight control
systems to function properly at all times.

Compared to GP systems, attention to embedded security is relatively recent, something that
is especially visible in the industrial control systems (ICS), which form the technological
backbone of electric grids, water supplies, and manufacturing environments. These sys-
tems were never designed to be connected to untrusted networks in the first place but, over
the years, have steadily become more and more networked and exposed. As a result, these
systems do not have corresponding security improvements. And concerns here are far from
hypothetical as high-profile attacks have damaged nuclear facilities in Iran, caused black-
outs on the Ukrainian power grid, and physically damaged a German steel mill.

This situation is compounded by the challenges of embedded patch deployment. Whereas in
the GP world, patch management is often centralized and automated, the embedded world
is faced by a myriad of problems (absence of hot-patching capabilities, safety recertifica-
tion upon introduction of new code, extreme availability requirements, long device lifespans
exceeding vendor support, etc.) complicating such an approach. This creates a situation of
prolonged vulnerability exposure and exploits with long shelf-life capable of targeting mil-
lions of vulnerable, unpatched, and connected embedded devices.

Memory Corruption, Safe Languages, and Exploit Mitigations
When it comes to embedded systems, memory corruption issues (e.g., buffer overflows)
consistently rank among the most prevalent categories of vulnerabilities as exemplified by a
2016 Kaspersky study of ICS vulnerabilities [1]. This prevalence is largely due to the domi-
nance of unsafe languages such as C++ and assembly in embedded software development. As

Jos Wetzels is a Research
Assistant with the Distributed
and Embedded Security
(DIES) Research Group at the
University of Twente in The

Netherlands. He currently works on projects
aimed at hardening embedded systems used
in critical infrastructure, where he focuses
on binary security in general and exploit
development and mitigation in particular, and
has been involved in research regarding on-
the-fly detection and containment of unknown
malware and advanced persistent threats.
He has assisted teaching hands-on offensive
security classes for graduate students at the
Dutch Kerckhoffs Institute for several years.
a.l.g.m.wetzels@gmail.com

74  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

SECURITY
Internet of Pwnable Things: Challenges in Embedded Binary Security

someone once said: “C is a terse and unforgiving abstraction of
silicon.” Ideally, this problem would be mitigated by widespread
adoption of safe languages, and while some are currently used
(e.g., Ada, which is used in civilian and military avionics and
aerospace systems) or show potential (e.g., Rust, which provides
memory safety without garbage collection) for future adoption in
the embedded world, there are some serious limitations.

First of all, the “close to metal” nature of C makes it well-
suited for writing similarly bare-metal software (e.g., OSes
or firmware) in a way that almost all safe languages are not.
Note that Rust seems promising in this regard as shown by the
 intermezzOS and Tock [2, 8] OSes. Secondly, there’s the issue of
portability as there are billions of lines of legacy code written in
unsafe languages, and there already are C toolchains for nearly
every platform out there. Hence, even if the ideal embedded safe
language existed right now, it would still take quite a while for an
industry-wide shift in development practices to take off, never
mind what to do with all that legacy code. So safe languages are a
long-term solution at best, and we live in a short-term world that
needs short-term solutions.

Exploit mitigations are just such a short-term solution since they
seek to complicate exploitation of existing vulnerabilities rather
than prevent their introduction in the first place. Exploit devel-
opment can be conceptualized as the programming of so-called
“weird machines” [3] through composition of “exploit primitives”
into a chain. Complicating this chain means making each link
harder to forge by making mitigations harder to overcome and
lengthening the chain by crafting mitigations for various steps of
the exploitation process in order to raise attacker cost and elimi-
nate practical exploitability of certain vulnerabilities altogether.

Ever since memory corruption vulnerabilities started getting
widespread attention with Aleph One’s 1996 Phrack article
“Smashing the Stack for Fun and Profit,” various exploit mitiga-
tions have been proposed, implemented, broken, and improved
until we’ve arrived at the present-day situation, where exploiting
a stack buffer overflow on a modern GP system often requires
you to at least either find an information leak to bypass stack
canaries or overwrite a function pointer, find an information
leak to bypass ASLR, craft a ROP (return-oriented program-
ming) chain to bypass non-executable memory, and find a sand-
box escape: that’s two to three additional bugs (though less if one
has a flexible enough vulnerability) on top of the actual vulner-
ability itself to achieve arbitrary code execution.

Embedded Exploitation: Blast from the Past
Compared to the GP world, embedded exploitation often feels
like it’s stuck somewhere in the ’90s. Consider, for example, the
Shadow Brokers incident [4] last year, where an unknown threat
actor managed to obtain exploit and implant code used by the
top-tier, probably state-sponsored, Equation Group threat actor
and published part of the plunder online. This included exploits
targeting enterprise firewalls used in very sensitive environ-
ments; what stood out here is that none of the exploits needed
bypasses for any mitigation whatsoever.

In order to get an idea of what the situation with respect to
embedded mitigation adoption looks like, I surveyed 36 popular
embedded operating systems (ranging from high-end Linux-
based ones to tiny proprietary real-time microkernels) for
support of the “bread & butter” baseline of mitigations: Execut-
able Space Protection (ESP, also known as DEP, NX, or W^X
memory), Address Space Layout Randomization (ASLR), and
stack canaries (also known as stack cookies or stack smashing
protection). Briefly put: ESP forces attackers to use code-reuse
payloads (such as ROP chains) by making data memory non-
executable, while ASLR complements this by ensuring memory
layout secrecy in order to prevent attackers from constructing
such code-reuse payloads. Stack canaries are orthogonal to the for-
mer mitigations and work by inserting a randomized secret value,
between stackframe metadata and local variables, that is checked
for integrity when a function returns in order to detect whether it
has been overwritten as part of a stack-smashing attack.

As you can see in Figure 1, only a minority supports these
mitigations, and this becomes a negligibly small minority once
you discard the Linux-, BSD-, and Windows-based OSes or only
consider the most constrained OSes. And note that this survey
was an optimistic one: if a mitigation is supported by an OS for
even a single platform, no matter implementation quality, it was
marked as supported. It’s pretty safe to say embedded binary
security lags behind the GP world significantly.

44.4

25.9

15
22.2

4.9
0

33.3

11.1
5

Figure 1: Exploit mitigation support among 36 popular embedded OSes.
Non-LBW means Non-Linux, BSD, and Windows-based OSes, and
Constrained indicates those tiny, minimalistic OSes designed for so-called
deeply embedded systems.

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 75

SECURITY
Internet of Pwnable Things: Challenges in Embedded Binary Security

Dependencies, Constraints, and Possible
Solutions
So what’s the reason for this adoption gap? Well, it turns out
that if you map out the hardware and software dependencies of
these mitigations (Figure 2), there’s some serious constraints
that complicate adoption. Embedded devices are designed for a
specific task and tend to have limited resources as well as often
being headless and diskless. The hardware is often simple and
lacking in advanced features, and the software is tailored for
such constraints. And on top of all that there are often real-time
and safety-critical requirements.

In order to get an idea of the state of mitigation dependency sup-
port among common embedded hardware and OSes, I surveyed
51 popular von Neumann-style embedded core families (Figure
3) and mapped out OS feature dependency support (Figure 4)
among the 36 previously surveyed OSes. As shown in these fig-
ures, widespread support for key dependencies is lacking, which
presents a significant hurdle to mitigation adoption. To see why
these dependencies are so crucial and to provide some sugges-
tions for research directions that can potentially overcome exist-
ing limitations, let’s take a look at each mitigation in our baseline
in detail.

Stack Canaries and Embedded Random Number
 Generators (RNGs)

Stack canary mechanisms are implemented as a compiler fea-
ture but require some sort of (secure) random number generator
to be present on the target OS to generate the master canary
value when the binary in question is loaded. This is best left to
the cryptographically secure pseudo-random number genera-
tor (CSPRNG) provided by the OS itself (e.g., /dev/urandom
on UNIX-like systems), but as Figure 4 shows, only 41.7% of

surveyed embedded OSes provide a system CSPRNG, and this
number drops to 22.2% if you eliminate Linux-, BSD-, and
Windows-based ones and becomes negligible altogether if you
only consider the most constrained operating systems.

I’ve discussed the issues with embedded OS CSPRNGs in more
detail in my recent 33C3 talk “Wheel of Fortune: Analyzing
Embedded OS Random Number Generators.” To put it briefly,
it’s not trivial to port existing designs from the GP world, mainly
because of a combination of resource constraints in terms
of processing speed, memory and power consumption, and a
general low entropy environment. These systems are designed
for limited, specific tasks, often in a machine-to-machine set-
ting without human activity, and are designed to perform those
tasks in a reliable, predictable fashion. This is a major stumbling
block because PRNGs need sources with some external entropy
in order to stretch their output into longer sequences of pseudo-
random output.

On GP systems common sources for entropy are user input
devices like the mouse, keyboard, or disk activity, but since many
embedded systems are headless and/or diskless this is not an
option. Depending on the embedded device in question, poten-
tially suitable entropy sources might be available from sensor
values, radio measurements, accelerometer data, etc., but from
an OS designer’s point of view these sources cannot be assumed
to be universally present on all devices the OS is to be deployed
on. This problem would ideally be solved by having omnipres-
ent on-chip high-throughput true random number generators
(TRNGs), but this is quite unrealistic considering accompanying
cost increases. In addition, it doesn’t help with existing legacy
systems.

Figure 2: Exploit mitigation hardware and OS feature dependencies

43.1
47.1

11.8

Figure 3: Hardware feature support among 51 popular von Neumann
embedded core families

76  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

SECURITY
Internet of Pwnable Things: Challenges in Embedded Binary Security

Two promising research directions upon which embedded OS
CSPRNG designers could draw are advances in lightweight
cryptography and investigation of omnipresent entropy sources.
The former encompasses various cryptographic primitives
designed for highly constrained systems. Initiatives such as the
ACRYPT project [5] have produced a “zoo” of IoT-oriented light-
weight primitives, with accompanying implementation footprint
information (in terms of code size, memory usage, and execution
time), which can serve as building blocks in a larger OS CSPRNG
design. The embedded entropy problem is a more fundamental
one and doesn’t lend itself well to a one size fits all solution, but
a thorough exploration of the suitability of potential entropy
sources, which are virtually omnipresent in embedded systems,
such as startup values of on-chip SRAM, clock jitter, and so on,
would definitely be worthwhile.

Executable Space Protection (ESP)
Essentially there are two main CPU architectural styles: Har-
vard and von Neumann. The former has physically separate
code and data memories, while the latter has a single memory
holding both code and data. There are many possible nuances
to these “pure” styles, but when it comes to the goals of ESP the
only thing that matters is that memory can’t be both writable
and executable so that attackers can’t easily inject malicious
shellcode payloads into memory. As such, Harvard architectures
trivially provide ESP, but for von Neumann-style CPUs, ESP
will have to be implemented either in a hardware-assisted way
or through software emulation. The former case is implemented
in the form of a dedicated hardware feature (x86 NX bit, ARM
XN bit, etc.), usually as part of the memory management unit
(MMU) regulating memory executability at a certain granular-
ity level on a per-page basis. In the case of software emulation,

there are multiple approaches all outside the scope of this article,
the most famous of them probably being the PaX project’s imple-
mentation [6], but all of them incur at least some overhead and
tend to be architecture-specific.

As shown in Figure 3, 43.1% of surveyed core families have hard-
ware ESP support, something you need to consider in light of
the fact that software emulation-based approaches to ESP only
exist for a limited number of OS and architecture combinations
(e.g., Linux on x86). Both ESP implementations require memory
protection support (and as such an MMU or more lightweight
memory protection unit (MPU)) on the part of the OS to allow
for memory permission management. And while most embedded
OSes offer memory protection support, we can see in Figure 3
that only 47.1% of all surveyed core families have MMU sup-
port and only 11.8% have MPU support, leaving 41.1% unable to
accommodate memory protection. Now some microcontrollers
might offer (limited) memory permission management capabili-
ties without featuring an MPU/MMU, and for some processors
there are external MMUs available, like the Motorola 68851,
but apart from these edge cases, there’s a significant “gap seg-
ment” of embedded systems without support for the core ESP
dependencies.

Ideally, embedded systems designers would start consciously
using either Harvard CPUs (AVR, 8051, PIC, etc.) or von Neu-
mann ones with hardware ESP support (ARMv6+, MIPS32r3+,
x86, etc.), but for those systems where this is not an option we
will need widespread embedded OS adoption of a multi-architec-
ture, low-overhead software emulation ESP approach. This does,
however, still leave us with the open problem of how to deal with
MPU-/MMU-less systems that cannot offer any form of memory
protection to begin with.

Address Space Layout Randomization (ASLR)
In order to craft the code-reuse payloads used to bypass ESP,
attackers will have to know the addresses of particular code
fragments (so-called “gadgets”) to incorporate into their pay-
load. ASLR aims to complicate this by ensuring memory layout
secrecy through randomization, which is done by placing various
different memory objects—the stack, heap, main program image,
loaded libraries—at randomized addresses. In order to do this,
ASLR has three key dependencies: a CSPRNG, OS virtual mem-
ory support, and hardware with an MMU. The ASLR random-
ization takes place at load-time and draws upon an OS CSPRNG,
as we’ve seen earlier, and is far from omnipresently available in
all embedded operating systems.

Virtual memory provides memory isolation between different
tasks/processes and thus prevents shared memory conflicts that
might otherwise arise from ASLR’s memory object randomiza-
tion. If we look at Figure 4, however, we can see that only 44.4%
of all surveyed embedded operating systems provide virtual

80.6
74.1

65

44.4

17.1

0

41.7

22.2

5

Figure 4: OS feature support among 36 popular embedded OSes

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 77

SECURITY
Internet of Pwnable Things: Challenges in Embedded Binary Security

memory support, and this number drops to a mere 17.1% if we
eliminate the Linux-, BSD-, and Windows-based OSes. Even
worse are the most constrained operating systems, none of
which support virtual memory for various reasons, such as being
designed for MMU-less and diskless targets or having conflict-
ing hard real-time requirements.

This widespread lack of embedded virtual memory and MMU
support are two major obstacles to widespread ASLR adoption
that are not going away anytime soon, which means that we need
an embedded alternative to ASLR. ASLR’s dependency on vir-
tual memory arises from the fact that it is a load-time software
diversification technique [7]. This dependency does not apply,
however, to diversification techniques operating at earlier points
in the software life cycle such as at compile or install time. In
these cases either a compiler feature or a dedicated transforma-
tion program produce diversified binaries by randomizing code
layout and/or individual instruction sequences. Such approaches
achieve a similar effect to ASLR by randomizing the addresses
(and nature) of code-reuse gadgets but have the downside of
being less effective since they only diversify between differ-
ent software builds or individual device instances rather than
between individual boots or program runs as well as only diver-
sifying code memory. There are currently no mature, widely
adopted implementations of such schemes that I know of, nor has
their applicability to the embedded world been covered, but they
seem to be a promising embedded ASLR alternative.

A Call to Action
So where do we go from here? First of all, security research-
ers should continue to demonstrate the urgency and impact of
embedded vulnerabilities to drive the point home that embed-
ded systems cannot afford to keep lagging behind when they
are becoming increasingly ubiquitous and interconnected.
Secondly, work on short-term solutions (researchers addressing
the challenges outlined in this article working together with OS
developers to push for embedded exploit mitigation adoption)
should be conducted alongside work on more long-term solu-
tions such as embedded safe language research and development
of secure embedded patching and updating mechanisms. And,
finally, with the rise of the Internet of Things there is a real need
for IoT standardization, policy, and regulation that focuses on
security by design rather than leaving it as an afterthought or
something that has to be retrofitted after the first vulnerabili-
ties are discovered due to a vendor focus on novel features and
time-to-market.

References
[1] O. Andreeva, S. Gordeychik, G. Gritsai, O. Kochetova, E.
 Potseluevskaya, S. I. Sidorov, and A. A. Timorin, “Industrial Con-
trol Systems Vulnerabilities Statistics,” Kaspersky Lab, 2016:
https://kasperskycontenthub.com/securelist/files/2016/07/KL
_REPORT_ICS_Statistic_vulnerabilities.pdf.

[2] http://intermezzos.github.io/.

[3] S. Bratus, S. Bratus, M. E. Locasto, M. L. Patterson, L. Sas-
saman, and A. Shubina, “Exploit Programming: From Buffer
Overflows to ‘Weird Machines’ and Theory of Computation,”
;login: vol . 36, no. 6 (December 2011): https://www.usenix.org
/system/files/login/articles/105516-Bratus.pdf.

[4] M. Al-Bassam, Equation Group Firewall Operations
 Catalog, 2016.

[5] A. Biryukov, D. Dinu, J. Großschädl, D. Khovratovich, Y. Le
Corre, L. Perrin, “The ACRYPT Project: Lightweight Cryp-
tography for the Internet of Things,” CRYPTO 2015 Rump
Session, 2015.

[6] NOEXEC, PaX project Documentation, 2003.

[7] P. Larsen, A. Homescu, S. Brunthaler, M. Franz, “SoK:
Automated Software Diversity,” 2014 IEEE Symposium
on Security and Privacy: https://www.ics.uci.edu/~perl
/automated_software_diversity.pdf.

[8] https://www.tockos.org/.

https://kasperskycontenthub.com/securelist/files/2016/07/KL_REPORT_ICS_Statistic_vulnerabilities.pdf
https://kasperskycontenthub.com/securelist/files/2016/07/KL_REPORT_ICS_Statistic_vulnerabilities.pdf
http://intermezzos.github.io/
https://www.usenix.org/system/files/login/articles/105516-Bratus.pdf
https://www.usenix.org/system/files/login/articles/105516-Bratus.pdf
https://www.ics.uci.edu/~perl/automated_software_diversity.pdf
https://www.ics.uci.edu/~perl/automated_software_diversity.pdf
https://www.tockos.org/

78  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

COLUMNS
Over the last few years Python has changed substantially, introducing

a variety of new language syntax and libraries. While certain fea-
tures have received more of the limelight (e.g., asynchronous I/O), an

easily overlooked aspect of Python is its revamped handling of file names and
directories. I introduced some of this when I wrote about the pathlib mod-
ule in ;login: back in October 2014 [1]). Since writing that, however, I’ve been
unable to bring myself to use this new feature of the library. It was simply too
different, and it didn’t play nicely with others. Apparently, I wasn’t alone in
finding it strange--pathlib [2] was almost removed from the standard library
before being rescued in Python 3.6. Given that three years have passed,
maybe it’s time to revisit the topic of file and directory handling.

The Old Ways
If you have to do anything with files and directories, you know that the functionality is
spread out across a wide variety of built-in functions and standard library modules. For
example, you have the open function for opening files:

with open(‘Data.txt’) as f:

 data = f.read()

And there are functions in the os module for dealing with directories:

import os

files = os.listdir(‘.’) # Directory listing

os.mkdir(‘data’) # Make a directory

And then there is the problem of manipulating pathnames. For that, there is the os.path
module. For example, if you needed to pull a file name apart, you could write code like this:

>>> filename = ‘/Users/beazley/Pictures/img123.jpg’

>>> import os.path

>>> # Get the base directory name

>>> os.path.dirname(filename)

‘/Users/beazley/Pictures’

>>> # Get the base filename

>>> os.path.basename(filename)

‘img123.jpg’

>>> # Split a filename into directory and filename components

>>> os.path.split(filename)

(‘/Users/beazley/Pictures’, ‘img123.jpg’)

David Beazley is an open
source developer and author of
the Python Essential Reference
(4th Edition, Addison-Wesley,
2009). He is also known as the

creator of Swig (http://www.swig.org) and
Python Lex-Yacc (http://www.dabeaz.com
/ply.html). Beazley is based in Chicago, where
he also teaches a variety of Python courses.
dave@dabeaz.com

Revisiting Pathlib
D A V I D B E A Z L E Y

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 79

COLUMNS
Revisiting Pathlib

>>> # Get the filename and extension

>>> os.path.splitext(filename)

(‘/Users/beazley/Pictures/img123’, ‘.jpg’)

>>>

>>> # Get just the extension

>>> os.path.splitext(filename)[1]

‘.jpg’

>>>

Or if you needed to rewrite part of a file name, you might do this:

>>> filename

‘/Users/beazley/Pictures/img123.jpg’

>>> dirname, basename = os.path.split(filename)

>>> base, ext = os.path.splitext(basename)

>>> newfilename = os.path.join(dirname, ‘thumbnails’, base+’.png’)

>>> newfilename

‘/Users/beazley/Pictures/thumbnails/img123.png’

>>>

Finally, there are an assortment of other file-related features
that get regular use. For example, the glob module can be used
to get file listings with shell wildcards. The shutil module has
functions for copying and moving files. The os module has a
walk() function for walking directories. You might use these to
search for files and perform some kind of processing:

import os

import os.path

import glob

def make_dir_thumbnails(dirname, pat):

 filenames = glob.glob(os.path.join(dirname, pat))

 for filename in filenames:

 dirname, basename = os.path.split(filename)

 base, ext = os.path.splitext(basename)

 origfilename = os.path.join(dirname, filename)

 newfilename = os.path.join(dirname, ‘thumbnails’, base+’.png’)

 print(‘Making thumbnail %s -> %s’ % (filename, newfilename))

 out = subprocess.check_output([‘convert’, ‘-resize’,

 ‘100x100’, origfilename, newfilename])

def make_all_thumbnails(dirname, pat):

 for path, dirs, files in os.walk(dirname):

 make_dir_thumbnails(path, pat)

Example

make_all_thumbnails(‘/Users/beazley/PhotoLibrary’, ‘*.JPG’)

If you’ve written any kind of Python code that manipulates files,
you’re probably already familiar with this sort of code (for better
or worse).

The New Way
Starting in Python 3.4, it became possible to think about path-
names in a different way. Instead of merely being a string, a
pathname could be a proper object in its own right. For example,
you could make a Path [3] instance and do this like this:

>>> from pathlib import Path

>>> filename = Path(‘/Users/beazley/Pictures/img123.jpg’)

>>> filename

PosixPath(‘/Users/beazley/Pictures/img123.jpg’)

>>> data = filename.read_bytes()

>>> newname = filename.with_name(‘backup_’ + filename.name)

>>> newname

PosixPath(‘/Users/beazley/Pictures/backup_img123.jpg’)

>>> newname.write_bytes(data)

1805312

>>>

Manipulation of the file name itself turns into methods:

>>> filename.parent

PosixPath(‘/Users/beazley/Pictures’)

>>> filename.name

‘img123.jpg’

>>> filename.parts

(‘/’, ‘Users’, ‘beazley’, ‘Pictures’, ‘img123.jpg’)

>>> filename.parent / ‘newdir’ / filename.name

PosixPath(‘/Users/beazley/Pictures/newdir/img123.jpg’)

>>> filename.stem

‘img123’

>>> filename.suffix

‘.jpg’

>>> filename.with_suffix(‘.png’)

PosixPath(‘/Users/beazley/Pictures/img123.png’)

>>> filename.as_uri()

‘file:///Users/beazley/Pictures/img123.jpg’

>>> filename.match(‘*.jpg’)

True

>>>

Paths have a lot of other useful features. For example, you can
easily get file metadata:

>>> filename.exists()

True

>>> filename.is_file()

True

>>> filename.owner()

‘beazley’

>>> filename.stat().st_size

1805312

>>> filename.stat().st_mtime

1388575451

>>>

80  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

COLUMNS
Revisiting Pathlib

There are also some nice directory manipulation features. For
example, the glob method returns an iterator for finding match-
ing files:

>>> pics = Path(‘/Users/beazley/Pictures’)

>>> for pngfile in pics.glob(‘*.PNG’):

... print(pngfile)

...

/Users/beazley/Pictures/IMG_3383.PNG

/Users/beazley/Pictures/IMG_3384.PNG

/Users/beazley/Pictures/IMG_3385.PNG

...

>>>

If you use rglob(), you will search an entire directory tree. For
example, this finds all PNG files in my home directory:

for pngfile in Path(‘/Users/beazley’).rglob(‘*.PNG’):

 print(pngfile)

The Achilles Heel…And Much Sadness
At first glance, it looks like Path objects are quite useful—and
they are. Until recently, however, they were a bit of an “all-in”
proposition: if you created a Path object, it couldn’t be used
anywhere else in the non-path world. In Python 3.5, for example,
you’d get all sorts of errors if you ever used a Path with more
traditional file-related functionality:

>>> # PYTHON 3.5

>>> filename = Path(‘/Users/beazley/Pictures/img123.png’)

>>> open(filename, ‘rb’)

Traceback (most recent call last):

 File “<stdin>”, line 1, in <module>

TypeError: invalid file: PosixPath(‘/Users/beazley/Pictures/

img123.png’)

>>> os.path.dirname(filename)

Traceback (most recent call last):

 File “<stdin>”, line 1, in <module>

 File “/usr/local/lib/python3.5/posixpath.py”, line 148,

in dirname i = p.rfind(sep) + 1

AttributeError: ‘PosixPath’ object has no attribute ‘rfind’

>>>

>>> import subprocess

>>> subprocess.check_output([‘convert’, ‘-resize’, ‘100x100’,

filename, newfilename])

Traceback (most recent call last):

 File “<stdin>”, line 1, in <module>

 File “/usr/local/lib/python3.5/subprocess.py”, line 626,

in check_output **kwargs).stdout

 File “/usr/local/lib/python3.5/subprocess.py”, line 693,

in run with Popen(*popenargs, **kwargs) as process:

 File “/usr/local/lib/python3.5/subprocess.py”, line 947,

in __init__ restore_signals, start_new_session)

 File “/usr/local/lib/python3.5/subprocess.py”, line 1490,

in _execute_child restore_signals, start_new_session, preexec_fn)

TypeError: Can’t convert ‘PosixPath’ object to str implicitly

>>>

Basically, pathlib partitioned Python into two worlds—the
world of pathlib and the world of everything else. It’s not entirely
unlike the separation of Unicode versus bytes, which is to say
rather unpleasant if you don’t know what’s going on. You could
get around these limitations, but the fix involves placing explicit
string conversions everywhere. For example:

>>> import subprocess

>>> subprocess.check_output([‘convert’, ‘-resize’, ‘100x100’,

str(filename), str(newfilename)])

>>>

Frankly, that’s pretty annoying. It makes it virtually impossible
to pass Path objects around in your program as a substitute for a
file name. Everywhere that passed the name a low-level func-
tion would have to remember to include the string conversion.
Modifying the whole universe of Python code is just not practi-
cal. It’s forcing me to think about a problem that I don’t want to
think about.

Python 3.6 to the Rescue!
The good news is that pathlib was rescued in Python 3.6. A new
magic protocol was introduced for file names. Specifically, if a
class defines a __fspath__() method, it is called to produce a
valid path string. For example:

>>> filename = Path(‘/Users/beazley/Pictures/img123.png’)

>>> filename.__fspath__()

‘/Users/beazley/Pictures/img123.png’

>>>

A corresponding function fspath() that was added to the os
module for coercing a path to a string (or returning a string
unmodified):

>>> import os

>>> os.fspath(filename)

‘/Users/beazley/Pictures/img123.png’

>>>

A corresponding C API function was also added so that C exten-
sions to Python could receive path-like objects.

Finally, there is also an abstract base class that can be used to
implement your own custom path objects:

class MyPath(os.PathLike):

 def __init__(self, name):

 self.name = name

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 81

COLUMNS
Revisiting Pathlib

 def __fspath__(self):

 print(‘Converting path’)

 return self.name

The above class allows you to investigate conversions. For
example:

>>> p = MyPath(‘/Users/beazley/Pictures/img123.jpg’)

>>> f = open(p, ‘rb’)

Converting path

>>> os.path.dirname(p)

Converting path

‘/Users/beazley/Pictures’

>>> subprocess.check_output([‘ls’, p])

Converting path

b’/Users/beazley/Pictures/img123.png\n’

>>>

So far as I can tell, the integration of Path objects with the
Python standard library is fairly extensive. All of the core file-
related functionality in modules such as os, os.path, shutil,
subprocess seems to work. By extension, nearly any standard
library module that accepts a file name and uses that standard
functionality will also work. It’s nice. Here’s a revised example of
code that uses pathlib:

from pathlib import Path

import subprocess

def make_thumbnails(topdir, pat):

 topdir = Path(topdir)

 for filename in topdir.rglob(pat):

 newdirname = filename.parent / ‘thumbnails’

 newdirname.mkdir(exist_ok=True)

 newfilename = newdirname / (filename.stem + ‘.png’)

 out = subprocess.check_output([‘convert’, ‘-resize’,’100x100’,

 filename, newfilename])

if __name__ == ‘__main__’:

 make_thumbnails(‘/Users/beazley/PhotoLibrary’, ‘*.JPG’)

That’s pretty nice.

Potential Potholes
Alas, all is still not entirely perfect in the world of paths. One
area where you could get tripped up is in code that’s too finicky
about type checking. For example, a function like this will hate
paths:

def read_data(filename):

 assert isinstance(filename, str), “Filename must be a string”

 ...

If you’re a library writer, it’s probably best to coerce the input
through os.fspath() instead. This will report an exception if the
input isn’t compatible. Thus, you could write this:

def read_data(filename):

 filename = os.fspath(filename)

 ...

You can also get tripped up by code that assumes the use of
strings and performs string manipulation to do things with file
names. For example:

def make_backup(filename):

 backup_file = filename + ‘.bak’

 ...

If you pass a Path object to this function, it will crash with a
TypeError since Path instances don’t implement the + operator.
Shame on the author for not using the os.path module in the first
place. Again, the problem can likely be solved with a coercion.

def make_backup(filename):

 filename = os.fspath(filename)

 backup_file = filename + ‘.bak’

 ...

But be aware that file names are allowed to be byte-strings. Even
if you make the above change, the code is still basically broken.
The concatenation will fail if a byte-string file name is passed.

C extensions accepting file names could also potentially break
unless they are using the new protocol. Hopefully, such cases are
rare—it’s not too common to see libraries that directly open files
on their own as opposed to using Python’s built-in functions.

Final Words
All things considered, it now seems like pathlib might be some-
thing that can be used as a replacement for os.path without too
much annoyance. Now, I just need to train my brain to use it—
honestly, this might be even harder than switching from print to
print(). However, let’s not discuss that.

References
[1] D. Beazley, “A Path Less Traveled,” ;login:, vol. 39, no. 5
(October 2014), pp. 47–51: https://www.usenix.org/system
/files/login/articles/login_1410_10_beazley.pdf.

[2] pathlib module: https://docs.python.org/3/library/pathlib
.html.

[3] PEP 519—Adding a file system path protocol: https://www
.python.org/dev/peps/pep-0519/.

https://www.usenix.org/system/files/login/articles/login_1410_10_beazley.pdf
https://www.usenix.org/system/files/login/articles/login_1410_10_beazley.pdf
https://docs.python.org/3/library/pathlib.html
https://docs.python.org/3/library/pathlib.html
https://www.python.org/dev/peps/pep-0519/
https://www.python.org/dev/peps/pep-0519/

82  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

COLUMNS

Practical Perl Tools
Perl on a Plane

D A V I D N . B L A N K - E D E L M A N

I travel a great deal these days for my work, so it isn’t uncommon for me to
find myself on an airplane hoping to get some work done with only drib-
bles of WiFi. In those cases, you often have to make do with whatever is

already on your laptop. I thought it might be interesting to explore what sort
of goodies you might have available under those conditions from a stock Perl
installation. To make this column extra realistic, let me report that as I write
this I am flying at 34,153 ft at a speed of 437 mph over Lake Ontario (hon-
est truth). Right before I left for the airport, I used perlbrew to install a stock
version of the stable version of Perl (5.24.1) on my laptop. Let’s switch to it
and start our exploration:

$ source ~/perl5/perlbrew/etc/bashrc

$ perlbrew --notest install perl-5.24.1

$ perlbrew use perl-5.24.1

Perlbrew is a lovely tool for installing a discrete installation of Perl on a machine without
perturbing any version of Perl shipped with the system. It will pull down the source for the
version you desire and compile it. In the second line, I had to add --notest because 5.24.1
appears to have an issue on the version of OS X I’m running, which has a few broken tests
in Time::Hires to be fixed in future versions of Perl. After hitting that failure a few times, I
didn’t think it would materially change what happens in this column, so I chose to skip the
tests normally run as part of installing Perl.

The first place to look for interesting material is in the documentation system. Say what
you’d like about Perl, no one can accuse it of not shipping with enough documentation. If I
type “perldoc perl” it lists the following (heavily excerpted) list:

 Overview

 perl Perl overview (this section)

 perlintro Perl introduction for beginners

 perlrun Perl execution and options

 perltoc Perl documentation table of contents

 Tutorials

 perlreftut Perl references short introduction

 perldsc Perl data structures intro

 perllol Perl data structures: arrays of arrays

 perlrequick Perl regular expressions quick start

 perlretut Perl regular expressions tutorial

 perlootut Perl OO tutorial for beginners

 perlperf Perl performance and optimization techniques

 perlstyle Perl style guide

David Blank-Edelman is the
Technical Evangelist at Apcera
(the comments/views here
are David’s alone and do not
represent Apcera/Ericsson) .

He has spent close to 30 years in the systems
administration/DevOps/SRE field in large
multiplatform environments including Brandeis
University, Cambridge Technology Group,
MIT Media Laboratory, and Northeastern
University. He is the author of the O’Reilly
Otter book Automating System Administration
with Perl and is a frequent invited speaker/
organizer for conferences in the field. David
is honored to serve on the USENIX Board of
Directors. He prefers to pronounce Evangelist
with a hard ‘g’.  dnb@usenix.org

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 83

COLUMNS
Practical Perl Tools: Perl on a Plane

 perlcheat Perl cheat sheet

 perltrap Perl traps for the unwary

 perldebtut Perl debugging tutorial

 perlfaq Perl frequently asked questions

 Reference Manual

 perlsyn Perl syntax

 perldata Perl data structures

 perlop Perl operators and precedence

 perlsub Perl subroutines

 perlfunc Perl built-in functions

...

 perluniintro Perl Unicode introduction

...

 perlunitut Perl Unicode tutorial

 perlebcdic Considerations for running Perl on

 EBCDIC platforms

 perlsec Perl security

 perlmod Perl modules: how they work

...

 Internals and C Language Interface

 perlembed Perl ways to embed perl in your C or C++

 application

 perldebguts Perl debugging guts and tips

 perlxstut Perl XS tutorial

...

 Miscellaneous

 perlbook Perl book information

 perlcommunity Perl community information

 perldoc Look up Perl documentation in Pod

 format

 perlhist Perl history records

 perldelta Perl changes since previous version

 perlexperiment A listing of experimental features in Perl

...

 Language-Specific

 perlcn Perl for Simplified Chinese (in EUC-CN)

 perljp Perl for Japanese (in EUC-JP)

 perlko Perl for Korean (in EUC-KR)

 perltw Perl for Traditional Chinese (in Big5)

 Platform-Specific

 perlaix Perl notes for AIX

 perlamiga Perl notes for AmigaOS

 perlandroid Perl notes for Android

 perlbs2000 Perl notes for POSIX-BC BS2000

...

Be sure to run that command to see the full list for yourself.
There are 178 documents in all. So even if you just decide to
spend your time reading Perl docs on a plane, you’ve got plenty of
material available to you.

The Weirdest Module Search You Ever Did See
There’s a straightforward way to find the modules installed
with Perl, but let’s go looking for interesting modules the hard
way. What if we searched for all of the modules mentioned in the
Perlfaq documents and used that as the starting place for our
exploration? There are more sophisticated ways to find all of the
modules, but let’s start with a crude hammer and look for all of
the :: sequences in the FAQs. And as we do it, let’s eliminate all
of those mentioned with CPAN on the same line (since we theo-
retically don’t have great access to it here in the air):

for i in 1 2 3 4 5 6 7 8; do

 perldoc perlfaq$i|grep ‘::’|grep -v CPAN

done

This yields 307 lines (not all of which actually include non-CPAN-
dwelling module names), so I’m going to cherry-pick a few that
look interesting and talk about them:

Module::CoreList—Why, yes, there is a madness in my method.
Wait, strike that, reverse that. Module::CoreList is a great place
to start because it is a module that can help us find and describe
the modules that have shipped with Perl (core) over the years.
We could either use the command line utility that comes with it
(corelist) or write little snippets of code like:

use Module::CoreList;

print join(“\n”,Module::CoreList->find_modules(‘^Text::’,$]));

This will display all of the Text::* modules that ship in core
with the current version of Perl. find_modules() searches for a
regular expression and also takes a second argument describing
which Perl versions it should consider. The magic variable $]

returns the current version of Perl. We print this using a join just
to place each element in the returned array on its own line. And,
yes, this would be a fine and dandy way to find all of the modules
shipped with the current copy of Perl. Something like this:

print join(“\n”,Module::CoreList->find_modules(‘’,$]));

But if I told you that, it might cut short our little wandering
walk together, so let’s keep this between the two of us. As a
small aside, it probably would have made my cherry-picking of
modules to discuss here more efficient if I had run them through
Module::CoreList::is_core first.

ExtUtils::Installed—Okay, really I’m not cooking the books
here. This is the next module that comes up in the FAQ.
ExtUtils::Installed gives you a way to figure out the names of all
of the modules installed and the files and directories for each.

84  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

COLUMNS
Practical Perl Tools: Perl on a Plane

This is distinct from the previous module that talks about what
modules are shipped with the core vs. the ones that are currently
installed (core + whatever else you installed). It does this by
inspecting the special “dot file droppings” that get installed with
a module (.packlist). When I first tried out this module, it briefly
puzzled me. I wrote:

use ExtUtils::Installed;

my $inst = ExtUtils::Installed->new();

print join(“\n”,$inst->modules());

And it printed:

Perl

That’s right, just “Perl.” It turns out that ExtUtils::Installed
attempts to be smart. It knows which modules are considered
“core” and lumps those all into “Perl.” When I ran the same
script using an older version of Perl that had more modules that
I had expressly installed, it did indeed report the list of installed
modules in addition to just “Perl.” ExtUtils::Installed can do
other tricks like show you the files and directories installed by a
module—for example:

print join(“\n”,$inst->directories(“Perl”))

will indeed show you all of the directories of all of the modules
shipped with that version of Perl live from your file system.

TimePiece—If you’ve ever found it annoying to use localtime()
or gmtime() in Perl because it either returns an array of fields
you have to guess how to index to find the field you want or (in a
scalar context) just a string:

$ perl -de 0

DB<1> x localtime()

0 24

1 47

2 20

3 20

4 2

5 117

6 1

7 78

8 1

DB<2> x scalar localtime()

0 ‘Mon Mar 20 20:47:27 2017’

Time::Piece can help. It lets you write code that looks like this
instead (to quote the docs):

use Time::Piece;

my $t = localtime;

print “Time is $t\n”;

print “Year is “, $t->year, “\n”;

localtime() now returns an object that has methods you can
call to retrieve the part of the time structure you want (for
example, “$t->hour” will return the current hour). It also gives
you some convenience methods like “->isdst” to determine if it
is currently daylight savings time. Check out the documentation
for the full list.

TieFile—In a previous column many moons ago I went gaga for
the cool and cruel things you can do with the Perl tie() function.
This function lets you essentially run arbitrary code as part
of the process of retrieving and setting variable contents. For
example, instead of getting a value from memory when asking
for $weather{‘Boston’}, Perl could query some weather service
on the Web and return the information instead. Tie::File isn’t
that futuristic, but it can do something pretty cool. If you use it
like this:

use Tie::File;

tie @array, ‘Tie::File’, filename

you can access lines of the file (getting and setting) by just read-
ing or changing array values. The doc gives these examples:

 $array[13] = ‘blah’; # line 13 of the file is now ‘blah’

 print $array[42]; # display line 42 of the file

If you truncate the array by changing its size, so too does the file
change. Your other standard array operations (push, pop, etc.)
behave exactly as you would expect. Oh, and here’s a fun tidbit
from the doc:

The file is not loaded into memory, so this will work even for

gigantic files.

FileCopy—Yup, does what you would expect.

FilePath—Probably not what you would expect. Use this to
 create or delete directory trees.

FileTemp—Use this, and probably only this, for dealing with
temporary files.

TextBalanced—If you ever read Jeffrey Friedl’s Mastering
Regular Expressions you know that trying to extract things from
delimited text (for example, some text that has parentheses
around it, like this one) can be less than straightforward. This
comes up in all sorts of situations, like when parsing HTML or
XML, program source code, and so on.

TermANSIColor—I’m almost tempted not to mention this one
because it has such a potential to be overused (thus allowing you
to write code that outputs “angry fruit salad”), but I’m going to
assume that we’re all adults here and that with great power…

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 85

COLUMNS
Practical Perl Tools: Perl on a Plane

Yup, time to write code like (from the doc):

 use Term::ANSIColor;

 print color ‘bold blue’;

 print “This text is bold blue.\n”;

 print color ‘reset’;

 print “This text is normal.\n”;

 print colored(“Yellow on magenta.”, ‘yellow on_magenta’), “\n”;

Do me a favor and don’t tell anyone where you got this super-
power. On a serious note, I would commend you to consider that
a larger part of the population than you probably think has some
sort of color blindness (bring yourself up to speed about color
blindness via a quick online search). Please consider this when
writing code where the color of the output is significant and
important.

And with that fun set of modules, I’m going to stop. Since I find
myself on a plane too often it is entirely likely that this will be
the first part in a several part series. Do let me know what you
think of the idea. Take care, and I’ll see you next time.

Thanks to Our
USENIX Supporters

USENIX Patrons
Facebook Google Microsoft NetApp

USENIX Benefactors
VMware

USENIX Partners
Booking.com CanStockPhoto Cisco Meraki Fotosearch

Open Access Publishing Partner
PeerJ

86  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

COLUMNS

iVoyeur
2 Bits

D A V E J O S E P H S E N

Dave Josephsen is a book
author, code developer,
and monitoring expert. His
continuing mission: to help
engineers worldwide close the

feedback loop. dave-usenix@skeptech.org

I guess you could say I’m between jobs at the moment. I won’t say it,
because I don’t want to sound clichéd and self-conscious about being
unemployed, but if you said it, it’d be fine.

You’d be right.

Don’t worry. Everything’s fine. Mostly. It’s not like I was scandalously terminated or that I
rage-quit in a righteous whirlwind of well-justified sanctimony. I kind of wish it were that
interesting, but no, I loved them, they loved me, it was great. And yet, filled to the brim with
what can only be described as a heaping pile of privileged old dude problems, I quit.

You see, I had this plan, or maybe it was more like a nagging daydream. I couldn’t shake it. I
have a little money in the bank—not really an impressive amount by my-startup-got-acquired
standards, but enough to take a little time if I wanted, so I thought: “Why not just quit and
drive away?”

I’d jump in my 30-year old truck and drive it north until it broke down. In that place, wherever
it was, I’d talk to people who were physically standing in front of me. I’d read books made of
paper, purchased from a physical store that sold books made of paper. I’d look at the clouds in
the sky rather than the clouds on the other side of my VPN connection. I’d drink until my neu-
rons realigned to real life—until character began to sound to my ears like a collection of per-
sonality traits rather than a Unicode rune, and string became a thing you tied stuff up with. I
wouldn’t think about JSON, or Jinja, JVMs, or how best to organize data into structures.

I know every millimeter of exactly how stupid that sounds. They have all that stuff right
where I live. Books…clouds…strings…real life. But like I said, I couldn’t shake it; like techni-
cal debt, it just seemed to keep growing, ominous and ever-present, until there was no other
choice but to take a deep breath and wade in. I can hear you thinking burnout or mid-life cri-
sis, and you’re probably right. I have no idea what I’m doing. I can say, however, that I haven’t
bought a sports car, and I have no desire to write a novel, and anyway I can’t help but feel like
suddenly he took a road-trip is a pretty insipid mid-life crisis, so my money is on burnout.

I’m not super worried about putting a name on it, but I became utterly convinced that indulg-
ing myself in this sad, half-baked escapist scheme would cure me. Either I’d grow back some
passion for this career I’d stumbled into so many years ago, or I’d get eaten by a bear. Either
outcome seemed equally likely, and I was fine with that (as long as they never caught the
bear). My point is, at some point I cognitively crossed this threshold where the daydream
seemed less like selfish indulgence and more like life-saving necessity.

So instead of seeing a therapist like a reasonable person, I quit (having already burned up
all my vacation days and then some). Not waiting for my two-weeks’ notice to be up, I hit the
road immediately. My team members were somewhat confused to suddenly find me in a Mis-
souri coffee-shop at the next morning’s stand-up meeting, but we’re all work-from-homers
anyway and my problem reports kept rolling in, so it wasn’t a huge deal. Then, as Missouri
became Illinois, and Illinois became Iowa, and eventually everything became South Dakota,
I feel like it became somewhat normal, if not even a little entertaining for them.

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 87

COLUMNS
iVoyeur: 2 Bits

And then finally my two weeks were up, and I awoke jobless
and snowed-in, in Rapid City, South Dakota, my freedom finally
secured, my escape complete, my insurance revoked. I didn’t
waste a single moment. I reached right into my bag, cracked open
my laptop, and dug right in to Facebook’s paper on in-memory
time-series databases.

Sorry, I’m new at this burnout thing. I’m sure I’ll get the hang
of it eventually. On the bright side, at least I have something to
share with you in this month’s column.

Gorilla
If you haven’t read Facebook’s paper, “Gorilla: A Fast, Scalable,
In-Memory Time Series Database,” then you’re really missing
out [1]. They had a problem that is extremely common in our line—
er, that is to say your line—of work. Namely, too many metrics.

Having outgrown graphite, many of us—er, you—turn to
OpenTSDB, the google-scale map-reduce-for-metrics system.
Facebook had reached this level several years hence, and their
in-house analog of OpenTSDB [2] had grown to petabyte-levels
of data. Their read latency had grown in kind, such that their
90th percentile read latency was seconds long.

Facebook’s solution to this problem was to create a write-
through in-memory cache system called Gorilla, which banks on
a series of key observations to provide massive improvements to
query-times without impacting writes.

Following that most fundamental of software engineering
principles that states every problem can be solved with one
additional layer of abstraction, Gorilla is inserted between the
metrics-sending client nodes and Facebook’s ODS data store.
Accepting posted metrics in lieu of the real persistence layer,
it proxies the data to the real back end while keeping a highly
compressed in-memory copy for itself. Clients can then directly
query Gorilla for rapid access to recently persisted data.

One of the aforementioned observations around which Gorilla
was built is that recently stored data are more valuable than
older measurements. This is not surprising, but Facebook quan-
tified it, analyzing their own query habits and discovering that
85% of their query volume targeted data less than 26 hours old.

One way Gorilla was task-optimized for its user-base is,
therefore, that it only holds 26 hours worth of data. In fact,
Gorilla may be the single most thoroughly spec’d out monitor-
ing system in the history of mankind, having been specifically
designed to index two billion unique time series, ingest 700
million data points per minute, and service 40,000 queries per
second, to name a mere few of its many overly specific sounding
design criteria. The engineers at Facebook also designed it to be
horizontally scalable and resilient against their most common
failure scenarios, namely, individual node failures and network
partitions affecting entire regions.

There are quite a few fascinating design features in the paper,
but among them, their novel approach to data compression cer-
tainly stands out.

Most metrics-oriented monitoring systems report metrics as
a tuple of name (string), date (int), and value (double). Another
fundamental observation the Facebook engineers made was
that the timestamps in the tuples submitted to their ODS
metrics system were highly periodic (data arrived on regular
intervals). They therefore reasoned that rather than storing
raw timestamps for every measurement in a given series, they
could instead store the delta of the delta of the timestamps. For
example, a hypothetically perfect time-series that reported every
60 seconds would always have a delta of 60 and delta-of-deltas of
0. By comparison, a somewhat malfunctioning time series might
report at: 2:30:00, 2:31:01, and 2:31:59. These deltas would be 60,
61, and 59, and the subsequent delta-of-deltas would be 0, 1, and -1.

Writing a periodic header with a real epoch value every two
hours or so would hypothetically enable you to store a much
smaller numerical representation of the ongoing datestamps for
a given series (0 instead of an epoch value like 1490064897). I
say hypothetically because 0 actually requires len(int) bits of
memory to internally represent. In other words, inside the com-
puter, 0 is actually 0000000000, because computers are dumb,
so in real life, storing 0 instead of 1490064897 doesn’t actually
save you any space.

The Facebook engineers therefore eschew generic types for their
own variable-length binary encoding to store these delta values.
Their design works like this (where D is the value of the delta-of-
the-delta for a given measurement):

◆◆ If D is zero, store binary 0 (only requires 1 bit of memory).

◆◆ If D is between [-63, 64], store ‘10’ followed by the value (7 bits).

◆◆ If D is between [-255, 256], store ‘110’ followed by the value
(9 bits).

◆◆ If D is between [-2047, 2048], store ‘1110’ followed by the value
(12 bits).

◆◆ Otherwise store ‘1111’ followed by D using 32 bits.

Because the measurement values themselves begin life as
double-precision floats rather than ints, their compression is
more complex, but only slightly more so. The values are XOR’d
instead of delta’d, and a similar variable-length binary encoding
is employed that is based on discarding the insignificant digits
of the resultant XOR’d values.

The paper reports that 96% of all inbound timestamps compress
to a single-bit (i.e., stuff is mostly ‘0’) due to the periodicity of the
input data (based on a random sampling of 440,000 real-world
series in use at Facebook). The paper goes on to find that, for
sample series that are recorded long enough (two hours seems to

88  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

COLUMNS
iVoyeur: 2 Bits

be the sweet spot), the double-precision floating point measure-
ment values can achieve a compression ratio of 1.37 bits per data
point.

Assuming 64-bit doubles, that’s 460800 uncompressed bits in a
two-hour series to 9864 compressed, or a 46x compression ratio
though the paper only claims a 10x compression improvement.
I infer the 10x number was derived by comparing Facebook’s
Gorilla implementation’s overall storage footprint to that of their
HBase system.

Gorilla has also achieved the scalability, fault-tolerance, and
impressive sub-millisecond read latency goals set forth by its
designers, though it’s worth noting that a successful read yields
compressed data (decompression is handled client-side).

Again, if you haven’t read it, it’s pretty fantastic work, and you
should have a look. I mean I read it, and I don’t even work with
computers, so I don’t know what you’re waiting for. It’s also
worth noting that there is already some subsequent work based
on Gorilla. Facebook itself has open-sourced a general-purpose
reference implementation of the Gorilla daemon plus client soft-
ware called Beringei [3].

Other examples include libraries that implement Gorilla’s com-
pression algorithm, like go-tsz [4] as well as some open-source
data stores like Raintank’s MetricTank [5], which uses Gorilla’s
compression algorithm inside its own Cassandra-based storage
back-end.

By the time you read this, I’ll hopefully still be happily unem-
ployed—but I kind of doubt it. I’ll hold out as long as I can. Think
of me when you look at the northern hemisphere.

Take it easy.

References
[1] T. Pelkonen, S. Franklin, J. Teller, P. Cavallaro, Q. Huang,
J. Meza, K. Veeraraghavan, “Gorilla: A Fast, Scalable, In-
Memory Time Series Database,” in Proceedings of the VLDB
Endowment, vol. 8, no. 12 (August 2015), pp. 1816–1827: http://
www.vldb.org/pvldb/vol8/p1816-teller.pdf.

[2] V. Venkataraman, C. Thayer, L. Tang, “Facebook’s
Large Scale Monitoring System Built on HBase,” Strata +
Hadoop World 2012: https://conferences.oreilly.com/strata
/stratany2012/public/schedule/detail/25540.

[3] Berengei, Facebook’s Gorilla client: https://github.com
/facebookincubator/beringei.

[4] go-tsz compression library: https://github.com/dgryski/go
-tsz.

[5] Metric Tank: https://github.com/raintank/metrictank.

http://www.vldb.org/pvldb/vol8/p1816-teller.pdf
http://www.vldb.org/pvldb/vol8/p1816-teller.pdf
https://conferences.oreilly.com/strata/stratany2012/public/schedule/detail/25540
https://conferences.oreilly.com/strata/stratany2012/public/schedule/detail/25540
https://github.com/facebookincubator/beringei
https://github.com/facebookincubator/beringei
https://github.com/dgryski/go-tsz
https://github.com/dgryski/go-tsz
https://github.com/raintank/metrictank

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 89

COLUMNS

Turning Problems into the Known
J E A N N E S C H O C K

System administrators rightly associate problem management with
identifying and removing the underlying root causes of incidents. But
finding and resolving root causes requires resources and interdepart-

mental political will that are not always available. Living with a documented
yet unresolved problem is not a failure of your team. Nor is it a failure of pro-
cess. The real failure would be to overlook the smaller, incremental improve-
ments that can be gained by addressing the factors and conditions that
contribute to incidents. Make sure that your problem process is focused on
outcomes beyond technical solutions to root causes: knowledge gain, effec-
tive decision-making, elimination of negative activities such as finger-point-
ing, and the only metric that really matters in IT—customer satisfaction.

The Problem Management Process
We define an incident as a disruption to normal IT service, and a problem as the unknown
cause of an incident. It is unknown because we don’t know either what caused the incident
or how to prevent it from happening again. Incidents don’t become problems; rather, prob-
lems cause incidents. A problem management process manages the life cycle of problems:
identification/categorization/prioritization, establishing workarounds, tracking activities,
changes in status and decisions, investigating and determining causes, finding and imple-
menting permanent solutions. One purpose of the process is to prevent recurrence of inci-
dents through permanent solutions. A second, often-overlooked, purpose is to minimize the
impact of unavoidable incidents. Reasons why future incidents might be unavoidable include
resource limitations, technical limitations, or practical decisions to live with the problem
based on a cost to benefit analysis.

Establish Good Workarounds
Where does this leave a technical team? With a good workaround, we can both mitigate the
impact of an unresolved problem and buy more time for implementing a permanent solution.
Our objectives are to quickly detect the conditions indicative of a recurrence of the incident,
to reduce the mean time to resolve, and to continually improve the workaround as we learn
more about the problem. The workaround may be good enough to complete a project that
entirely eliminates the software or application or network device that underpins all other
causes of the incident. We speak disparagingly of workarounds as “duct tape,” because we
know from experience that duct-tape solutions usually become permanent. That’s why it is
critical to build into your problem management process routine reviews of all workarounds.
Define the review schedule based on the priority of the problem: e.g., high-weekly, low-
monthly. Then define the behavior that you want and write a policy to match: all work-
arounds must be continually reassessed for effectiveness in mitigating the impact of the
incident, cost in staff time to maintain, and level of confidence that it will continue to work.

Jeanne Schock has a
background in Linux/
FreeBSD/Windows system
administration that includes
working at a regional ISP, a

large video hosting company, and a DNS and
top-level domain registry services provider.
She is a certified Expert in the IT Infrastructure
Library (ITIL) process framework with in-
the-trenches experience in change, incident,
and problem management. Jeanne also has a
pre-IT academic and teaching career and is an
experienced trainer and public presenter.
jeanneschock@gmail.com

90  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

COLUMNS
Turning Problems into the Known

Document and Track Known Errors
If you have recorded the problem, and you either have a work-
around or preliminary investigation hints at the nature of the
problem, you can declare a known error. This may sound like
an attempt to mask the problem. But turning an unknown
cause of incidents into a known error has value. Which situa-
tion would you prefer: a published list of known errors, linked to
incidents they are suspected to have caused, perhaps even with
a confirmed workaround, or undocumented problems that may
re-manifest at any time in the form of another service interrup-
tion? Turning the unknown into the known is time well spent.
You already use the known error concept when you are waiting
for in-house developers or vendors to patch software bugs and
vulnerabilities. In these examples, the known error is well-
understood, and you are just waiting for a solution. But you can
also say that you have a known error when you have even a vague
understanding of the correlation between causes of the incident.
The objective isn’t necessarily to solve every single root cause,
but to make good decisions and to track and continually reassess
those decisions.

This may require you to shift your thinking about your role as
problem solver to provider of strategies, information, and tools
that can help your company manage problems. The known error
database (which could simply be a list maintained in a Google
doc or wiki page) informs better risk analysis and decisions
around authorization of change requests. It is a useful reference
for on-call shift changes. As a list of “improvement opportuni-
ties,” it helps with departmental planning and goal setting.
Tracking a known error includes linking new incidents, or even
older incidents that you come to realize were likely caused by the
same problem. This helps build a case for developers to prioritize
a bug fix, or convince management to re-prioritize resources in
ways usually reserved for root cause investigations after large
or embarrassing incidents. If you find your team is tracking an
increasing number of known errors that are beyond your control
to repair, try building relationships outside your team that you
can leverage to resolve some of those problems.

Root Cause
Let’s talk about root cause. System administrators know well
that complex technologies most likely have multiple correlated
causes. At a purely semantic level, you should be comfortable
replacing “the root cause” with “multiple root causes.” Don’t
assume that you must always delve into an investigation for
underlying causes. Think of the problem process as one of the
many tools in your toolbox that you can use for improving the
services for which you are responsible. Improvement can come
in the form of large-scale leaps, but it is more likely to result
incrementally from small, iterative steps forward. Ask yourself,
what is within your control to improve:

◆◆ What tools could you build that would enable you to detect the
conditions that were present during past manifestations of the
problem?

◆◆ Can you automate the workaround?

◆◆ What tools or knowledge would reduce the time required to
resolve the incident?

◆◆ Can you reduce the conditions that contribute to slow trouble-
shooting by asking the DBAs to train your team over lunch on
replication errors?

◆◆ Can you be prepared to collect more data during the next occur-
rence of the incident that would enhance your understanding
of the problem?

◆◆ Can you revise alerts and escalation procedures to get the right
people looking at the incident faster?

◆◆ Can you reduce dysfunctions by improving your team’s rela-
tionship with teams that are both ahead and behind you in the
value chain?

These are all actions that can be taken that do not require root
cause investigation or permanent solutions. And they should be
acceptable outcomes for teams with limited resources.

Human Error
Can you mitigate the risk of human error? Human error is a com-
mon trigger or contributing factor to incidents. Human error is
an inevitability, just like hardware failure. Systems that are not
designed and built for resilience in the face of inevitabilities are
incidents waiting to happen. There is no value in assigning the
root cause of an incident to human error, as there will never be
a permanent fix. We can’t eliminate human error, but we should
anticipate it and work to mitigate its impact.

Conclusion
How we respond to human error and to problems says a lot
about our culture. We should expect both and have effective,
established, and well-understood processes in place that enable
good decisions and positive outcomes. The ideal outcome of any
problem investigation or postmortem is finding and solving root
causes. But don’t let the perfect become the enemy of the good.
Improving the experience of your users and customers and pro-
viding cost-effective solutions that benefit your company should
be the drivers of any IT process, including problem management.

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 91

COLUMNS

There is no question that vulnerabilities are important. There is a rich
history of vulnerabilities and of their use, yet if that history is a sig-
nal, then it is a noisy one. Inferences drawn from agreed upon history

of vulnerabilities are still the source of quite conflicting interpretations—
proof that it is hard to reduce the question of vulnerabilities to a simple set
of inferences. Experts are less likely to agree on a simple set of inferences
about vulnerabilities than the non-experts. Often as not, experts claim that
all other expert opinions besides theirs are simplistic rather than simple (and
that “I have discovered a truly remarkable proof which this [Tweet] is too
small to contain”).

At the time of writing this column, a new report from RAND had just appeared. The RAND
report [1] (which you must read) is the best look yet at the question of vulnerabilities as seen
through the lens of vulnerabilities not yet known. As should be expected, a part of its conclu-
sions were immediately dismissed as simplistic by Those Who Tweet.

Three terms from the field of epidemiology may help us think about the life cycle of vulner-
abilities. First is incidence (I), which is the number of new cases of disease which appear per
unit time. Second is prevalence (P), which is the number of infections at a given time. Third
is duration (D), which is the time interval between when infection appears and when that
infection is cured. In a stable population, those three are mutually redundant—knowing any
two of them allows you to determine the third: I*D=P. For the defender whose job is to treat
disease, prevalence is the measure of workload. For the defender whose job is to prevent
disease, changes in incidence are the measure of whether their work has or has not been suc-
cessful. For the defender whose job is to judge the societal cost of disease, duration is likely
the focus. Analysts studying risk factors for the disease must use incident cases within a
given time interval rather than prevalent cases at a given time, i.e., near real-time detection
matters: cf., “Neyman” bias.

But each of I, P, and D are for the single disease case. Thinking of the offender as an oppor-
tunistic infection, that is to say a secondary (intentional) infection that exploits an already
infected patient, a patient whose existing infection(s) make that patient susceptible (vulner-
able) to additional infections, the defender might come to think in terms of global immune
system failure more than the lack of some specific antibody. Just as there is no human
immune to all human diseases, RAND notes that

[a]ny serious attacker can always get an affordable zero-day for almost any target.
The majority of the cost of a zero-day exploit does not come from labor, but rather
the value inherent in them and the lack of supply.

Which reminds us that we are talking about sentient opponents, not stray alpha particles or
metal fatigue. We are inside a natural experiment, not some controlled laboratory work.

For Good Measure
To Burn or Not to Burn

D A N G E E R A N D J O N C A L L A S

Dan Geer is the CISO for In-Q-
Tel and a security researcher
with a quantitative bent. He has
a long history with the USENIX
Association, including officer

positions, program committees, etc. dan@
geer.org

Jon Callas is a cryptographer,
software engineer, UX designer,
and entrepreneur. He is the
co-author of many crypto and
security systems, including

OpenPGP, DKIM, ZRTP, Skein, and Threefish.
He has co-founded several startups, including
PGP, Silent Circle, and Blackphone. He has
worked on security, UX, and crypto for Tesla,
Kroll-O’Gara, Counterpane, and Entrust.
He is fond of Leica cameras, Morgan sports
cars, and Birman cats. His photographs have
been used by Wired, CBS News, and The
Guggenheim Museum. jon@callas.org

92  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

COLUMNS
For Good Measure: To Burn or Not to Burn

So be it, but it is that existence of multiple possible infections—
due to multiple possible infectious agents—that we find worth
comment. Consider the set of tools (vulnerabilities, exploits,
software, etc.) that A has, and the set that B has, and C, and D,
and E,…Make a Venn diagram of these; their union is the threat
landscape (Figure 1). What is especially noteworthy is not the
area common to all the closed curves in the diagram but the
areas outside that joint intersection.

If any actor holds their tools secret, then what is in that actor’s
subset that is not in the union of everyone else? If that subset is
small compared to the whole set union, and then the marginal
cost to you of any actor, state or otherwise, holding such a cache
of tools is small. Yet to any given attacker, they view their whole
tool set as an asset and are loathe to give it up. Thus, perhaps
counterintuitively, they tend to view their tool set as being worth
a lot because it is their whole set, but the defender would view
it as not being worth much because the marginal cost to the
defender of that set being held secret is only the cost that can be
imposed by the tools unique to it.

If you capture someone else’s tool set, then the cost to you of
burning (exposing) all the other entity’s tools is the intersec-
tion of that tool set with yours. The smaller the intersection, the
smaller the cost. When you burn someone else’s tool, you signal
to them that they lost control of it. Beyond that effect, burning
the other entity’s tools also burns them for anyone else in the
intersection set, which alerts all the actors with intersections
with the set that you burned that there is some other-party intel-
ligence that they didn’t know about.

Earlier, we spoke of the defender whose job is to think about pre-
vention. If the number of tools that are common to many actors’
tool sets is a large fraction of all such tools, that is to say that the
joint intersection in the Venn diagram contains the greater share

of all known tools, then burning them would greatly reduce the
firepower available to all actors in the aggregate, including you.

As with all modeling exercises (which is what we are doing),
there are assumptions. Assumptions are not bad, but the better
grade of analyst will make them, get an analysis done, and then
test whether the result of the analysis was or was not critically
dependent on its assumptions.

Aitel and Tait’s superb article [2] on the conditions under which
a free-world nation-state should reveal vulnerabilities to their
authors of record has especially telling conclusions in this
regard, which follow from two axioms (assumptions). The first
axiom is that the free world’s most dangerous opponents do not
have the constraints on their discovery, use, retention, and dis-
closure of vulnerabilities that free world nations do. The second
axiom is that the vulnerabilities that are a crucial threat to the
software base of one nation are different from the vulnerabilities
that are a crucial threat to another. The Venn diagram for “How
much of my code base is also your code base?” is not something
we have in hand, but we strongly suspect that the parts that are
country-unique are the greater half, and if that is the case, then it
biases the equation away from disclosing vulnerabilities to ven-
dors of code you don’t use. If opponent countries are investing in
home-grown software as a strategic defense, then the bias away
from disclosure to their vendors only grows stronger.

It must be acknowledged that part of our problem is the rapid
rate of change which “we” otherwise praise. Beginning with
Ozment and Schecter’s 2006 paper [3], we have known that
stable code bases under stable oversight do cleanse themselves of
vulnerabilities. Clark et al. have since shown in measurable ways
[4] that while the goals and compromises necessary to compete
in a global market have made software reuse almost compulsory,
“familiarity with a codebase is a useful heuristic for determining
how quickly vulnerabilities will be discovered and, consequently,
that software reuse (exactly because it is already familiar to
attackers) can be more harmful to software security than ben-
eficial.” The language theoretic security group [5] has indirectly
shown that the closer the code is to Turing-complete, the more
likely it is to be reused, i.e., the very code that has the greatest
probability of being reused is the code that has the greatest prob-
ability of being rich enough in complexity to enhance exploit-
ability. In medical care, this is called “adverse selection” (the
better the care you provide, the sicker are the people who throw
themselves on your mercy).

Which leads us to the—repeat, the—fundamental question with
respect to vulnerabilities: are they sparse or are they dense [6]?
RAND’s conjecture is that “the overlap between what is found
and disclosed publicly and what is found and kept privately
appears to be relatively small... [which] implies that vulnerabili-
ties may either be dense or very hard to find,” to which we might

overlap

Figure 1: The threat landscape includes the overlap of different actors’
toolsets.

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 93

COLUMNS
For Good Measure: To Burn or Not to Burn

add a third option, that vulnerabilities are essentially sparse but
aggregate code volume is increasing so fast that there are many
more vulnerabilities than there are researchers to find them.
Meanwhile, the fallout from the DARPA Cyber Grand Challenge
[7] may well answer the question of sparse vs. dense and thus tell
us whether or not to look for vulnerabilities (they are sparse so
each killing brings them closer to extinction vs. they are dense so
killings have negative return on investment).

End-of-life code bases are a special case; because they remain
“unimproved” (stable), every vulnerability killed decreases the
number of vulnerabilities extant. As such, it would be useful to
patch zero-day vulnerabilities in no-longer-maintained soft-
ware, especially for code that remains in widespread use [8].

But knowing what we know now, as underscored by Aitel and
Tait, the—repeat, the—central policy question is this: are the
vulnerabilities that will take you down the same vulnerabilities
that will take down your opponent? If they are different, then
disclosing to vendors vulnerabilities in code upon which you do
not rely is an act of unilateral disarmament. Releasing a vulner-
ability is an aggressive act if you know someone else has it—and
an intelligent move.

References
[1] L. Ablon and T. Bogart, “Zero Days, Thousands of Nights:
The Life and Times of Zero-Day Vulnerabilities and Their
Exploits”: www.rand.org/content/dam/rand/pubs/research
_reports/RR1700/RR1751/RAND_RR1751.pdf.

[2] D. Aitel and M. Tait, “Everything You Know About the
Vulnerability Equities Process Is Wrong,” Lawfare, August
18, 2016: www.lawfareblog.com/everything-you-know-about
-vulnerability-equities-process-wrong.

[3] A. Ozment and S. Schechter, “Milk or Wine: Does Soft-
ware Security Improve with Age?” in Proceedings of the 15th
 USENIX Security Symposium (USENIX Security ’06), pp.
93–104: www.usenix.org /legacy /events /sec06 /tech /full
_papers /ozment /ozment.pdf.

[4] S. Clark, M. Collis, M. Blaze, J. M. Smith, “Moving Targets:
Security and Rapid-Release in Firefox”: seclab.upenn.edu
/sandy/movingtargets_acmccs14_340.pdf.

[5] Language-theoretic security: http://langsec.org.

[6] B. Schneier, “Should U.S. Hackers Fix Cybersecurity Holes
or Exploit Them?”: www.theatlantic.com/technology/archive
/2014/05/should-hackers-fix-cybersecurity-holes-or-exploit
-them/371197.

[7] Defense Advanced Research Projects Agency, Cyber
Grand Challenge, August 4, 2016: archive.darpa.mil
/cybergrandchallenge.

[8] D. Geer, “On Abandonment,” IEEE Security and Privacy
(July/August 2013): geer.tinho.net/ieee/ieee.sp.geer.1307.pdf.

http://www.rand.org/content/dam/rand/pubs/research_reports/RR1700/RR1751/RAND_RR1751.pdf
http://www.rand.org/content/dam/rand/pubs/research_reports/RR1700/RR1751/RAND_RR1751.pdf
http://www.lawfareblog.com/everything-you-know-about-vulnerability-equities-process-wrong
http://www.lawfareblog.com/everything-you-know-about-vulnerability-equities-process-wrong
http://www.usenix.org/legacy/events/sec06/tech/full_papers/ozment/ozment.pdf
http://www.usenix.org/legacy/events/sec06/tech/full_papers/ozment/ozment.pdf
seclab.upenn.edu/sandy/movingtargets_acmccs14_340.pdf
seclab.upenn.edu/sandy/movingtargets_acmccs14_340.pdf
http://langsec.org
http://www.theatlantic.com/technology/archive/2014/05/should-hackers-fix-cybersecurity-holes-or-exploit-them/371197
http://www.theatlantic.com/technology/archive/2014/05/should-hackers-fix-cybersecurity-holes-or-exploit-them/371197
http://www.theatlantic.com/technology/archive/2014/05/should-hackers-fix-cybersecurity-holes-or-exploit-them/371197
archive.darpa.mil/cybergrandchallenge
archive.darpa.mil/cybergrandchallenge
geer.tinho.net/ieee/ieee.sp.geer.1307.pdf

94  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

COLUMNS

/dev/random
R O B E R T G . F E R R E L L

Let us now consider backups: boon or bane? “Boon obviously,” I hear
you respond with more than a soupçon of righteous indignation. Fair
enough. Having an additional copy of your critical data is objectively

better than the alternative; I agree. Provided, of course, that said copy is truly
a copy. If, on the contrary, it is no more than a hollow shell filled with empty
zeroes, that “backup” may prove less salubrious. Allow me to elucidate.

In 1997 I was a UNIX system administrator and email/DNS monkey at USGS headquarters
in Reston, VA. Not long after I started that job a scientist came in and reported that he’d
experienced a catastrophic laptop drive failure while in the field and needed to restore from
one of the backups conducted every few months during brief visits to headquarters. I pulled
the appropriate DAT tape, properly labeled and stored, and began the restore procedure.
Much to my chagrin and horror, while the tape headers and log entry for the backup looked
perfectly normal, there was no actual data therein residing. Frantically, I tried everything
I could think of to recover at least a partial image, but it was no use. There simply wasn’t
anything there to recover. That volcanologist lost three full years of field research because
someone (not me, thankfully) didn’t bother to check the integrity of the backup process.

The point of this sad story is to show that backups aren’t always what they promise to be.
If you trust them without verification, sooner or later you will regret it. This cautionary
principle can of course be applied across a swath of IT-related activities; at its most
fundamental it warns against complacency and making presumptions. While backups
themselves are, overall, Good Things To Have Around, betting the farm on those backups
existing simply because they appear to exist is skating on exceptionally thin metaphorical
ice.

Even properly executed backups aren’t a universal panacea. There are times when you simply
don’t want everything recorded accurately for posterity. One might reasonably presume that
the sorts of activities best forgotten are not likely to be found in a routine corporate disk
image, true, but even this is not a foregone conclusion. Mistakes, indiscretions, bad ideas,
erroneous data, miscommunications, poorly conceived notions, fumbling, hemming, hawing,
tangents, memos you wish you hadn’t written, memos you wish you hadn’t read—all of these
and more might be better off consigned to oblivion.

Where am I leading this parade of the obvious? Right past my flea market of invention,
naturally. The idea that backing up data is a simple binary decision is outdated and probably
runs contrary to all sorts of sound business practices, I guess. If not currently, then I
hereby instantiate said practices such that they can be run contrary to for the purposes of
furthering this diverting narrative. It feels good to take charge of my own twisted destiny.

You know how in some operating systems each file has various flags that can be set?
“Archive,” “Read Only,” “Certified Organic,” and so on? I propose we add one for “Backup
Suitability.” It’ll have to be a metadata field rather than a simple binary flag, though. It
would need at least four or five possible values, to denote Retention Desirability Quotient.

Robert G. Ferrell is an award-
winning author of humor,
fantasy, and science fiction,
most recently The Tol Chronicles
(www.thetolchronicles.com).

rgferrell@gmail.com

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 95

COLUMNS
/dev/random

This value would range from 5 (Totally Keep This Data For All
Eternity, Possibly Longer) to 0 (Civilization As We Know It Will
Be Irrevocably Harmed If This File Is Not Deleted Immediately
And With Extreme Prejudice). When the backup program
encounters these flags, it acts accordingly.

You might at this juncture feel compelled to point out that there
are already backup products available that feature very similar,
if less sarcastic, functionality. To this I can only reply, “bah.”
My proposed program goes further, much further. There’s also
a predictive component that will scan each file, no matter the
format, for potentially embarrassing content and—here’s the best
bit—report when and to what extent it will interfere with your
future life. It can even modify or extract those damaging areas
based on a wide range of user-configurable filters. Think of it
as a sort of personal Minority Report. In “Forensic Avoidance”
mode the program copies the dodgy file bit by bit into memory,
makes the appropriate changes, and writes it to the backup
image without modifying any of the administrative metadata:
instant file integrity without all that messy undesirable content.
The program download, incidentally, is free. The client is
charged only when a file is actually backed up, on a sliding scale
depending on degree of “posterity assurance” undertaken. It’s all
very scientific and stuff.

The whole “subscription” model for software bothers me, now
that we’ve brought it up. It’s like rent-to-own, except you never
get to the “own” part. As if online privacy hasn’t taken enough of
a beating with adware, trackers, consumer profiling, constant
account compromises, draconian digital “rights” management,
and shadowy government data slurping on a beyond-massive
scale, now software companies want us to borrow their products
temporarily in exchange for radio tracking collars on our most
intimate computer use habits.

Since we seem to have slopped our way over into targeted
marketing now, let me state without fear of being regarded in
any way as an original thinker that it cannot, statistically, be
long before even the prime real estate of our sleep periods is
being developed for advertising purposes. Do you have liberating
flying dreams? Airlines and exotic travel destinations will
pay handsomely for ads plopped down into those. Leave home
without your pants? Clothing manufacturers have you covered.

If you’re thinking that the technology to beam these ads directly
into your neural landscape from some advertising studio does
not exist, you’re (probably) correct. However, they don’t need
said technology to achieve oneiric product placement nirvana.
All they require is a series of carefully constructed subliminal
implants: essentially, a buffer overflow for the brain. They inject
the right code via TV or streaming video and it runs in batch
mode in the heap of your subconscious mind. Corporations will
now control your nighttime data dumps even more stringently
than before. Nowhere is safe; nothing is sacred.

To sleep: perchance to dream: ay, there’s the market;
For in that consumer’s sleep what dreams may come
When they are no longer able to change channels or
 surf away,
Must give us profit…

Once again is the immortal bard shamelessly and tastelessly
paraphrased for petty purpose. Try haddock, and let’s see what
slips the dogs wore.

USENIX Board of Directors
Communicate directly with the USENIX Board of Directors by writing to board@usenix.org.

P R E S I D E N T

Carolyn Rowland,
National Institute of Standards
and Technology
carolyn@usenix.org

V I C E P R E S I D E N T

Hakim Weatherspoon,
Cornell University
hakim@usenix.org

S E C R E T A R Y

Michael Bailey,
University of Illinois
at Urbana-Champaign
bailey@usenix.org

T R E A S U R E R

Kurt Opsahl,
Electronic Frontier Foundation
kurt@usenix.org

D I R E C T O R S

Cat Allman, Google
cat@usenix.org

David N. Blank-Edelman,
Apcera
dnb@usenix.org

Angela Demke Brown,
University of Toronto
demke@usenix.org

Daniel V. Klein, Google
dan.klein@usenix.org

E X E C U T I V E D I R E C T O R

Casey Henderson
casey@usenix.org

NOTES

96  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

USENIX Member Benefits
Members of the USENIX Association
 receive the following benefits:

Free subscription to ;login:, the Associa-
tion’s quarterly magazine, featuring techni-
cal articles, system administration articles,
tips and techniques, practical columns on
such topics as security, Perl, networks and
operating systems, and book reviews

Access to ;login: online from December
1997 to the current issue: www.usenix.org
/publications/login/

Discounts on registration fees for all
 USENIX conferences

Special discounts on a variety of products,
books, software, and periodicals: www
.usenix.org/member-services/discount
-instructions

The right to vote on matters affecting the
Association, its bylaws, and election of its
directors and officers

For more information regarding member-
ship or benefits, please see www.usenix.org
/membership or contact office@usenix.org.
Phone: 510-528-8649.

The State of the USENIX
by Casey Henderson, USENIX Executive Director

When I assumed the role as Executive
Director, I had dreams of scaling USENIX
globally to better serve our constituents.
It is exciting that just over three years
later, thanks to collaboration by staff and
volunteers, USENIX is actively engaged in
hosting events at international venues. In
fact, as I write this, I am en route to Europe
to visit prospective locations for SREcon18
Europe/Middle East/Africa, and will soon
leave for SREcon17 Asia/Australia in
 Singapore.

I also had dreams of creating events that
would more directly address the challenges
of gender diversity in our field. Now, among
the SREcon events and the security-focused
Enigma conference, we have succeeded in
engineering environments with diverse
leadership matched by attendees who are
engaged in diversifying their respective
fields as they strive to scale and secure
systems. We plan to transfer the lessons
learned from these events to our systems
research-focused conferences.

These initiatives are rooted in the Board
and staff’s twin goals of securing USENIX’s
sustainability and maintaining its relevance
through new ways of fulfilling our mis-
sion. We face financial limitations, which
challenge our small but mighty staff to be
creative and flexible. I often receive ques-
tions from our constituents about why our
Web site can’t do this and why a conference
can’t be there. While we appreciate and keep

track of your ideas and input, the answers
usually tie back to a limited budget with
ambitious plans for serving myriad commu-
nities. This makes it all the more reward-
ing to report on the progress we’ve made in
developing new events, nurturing emerging
communities worldwide, and engaging in
new processes.

We currently serve 40% more attendees
annually than we did five years ago, and are
exploring new approaches to provide the
best possible service with our existing staff.
For example, you may have experienced self
check-in at a recent USENIX event; we are
revamping the arrival process to improve
the attendee experience, reduce the amount
of staff time needed to prepare for events,
and ship fewer materials to events. By
strategically spending to meet a variety of
goals, we are attempting to meet the needs
of constituents while watching the budget.

Soon you’ll see more changes to the USENIX
Web site, beyond the recent revamping of
our conference pages. You’ll notice discus-
sion about ;login: as we consider the most
effective ways to serve its audience. You’ll
see how our events evolve as we continue
to engage in experiments: HotSec has a
new model in 2017; FAST and NSDI will
 co-locate in Boston in 2019; and SOUPS
will continue to find its home at USENIX,
but will shift from ATC to Security in 2018.

I hope you’ll join the Board and staff teams
for the Annual Meeting in Santa Clara on
July 13 to find out more about our plans and
provide us with feedback.

http://www.usenix.org/publications/login/
http://www.usenix.org/publications/login/
http://www.usenix.org/member-services/discount-instructions
http://www.usenix.org/member-services/discount-instructions
http://www.usenix.org/member-services/discount-instructions
http://www.usenix.org/membership
http://www.usenix.org/membership

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

Register by July 24 and Save!
www.usenix.org/sec17

AUGUST 14–16, 2017 • VANCOUVER, BC, CANADA

The USENIX Security Symposium brings together researchers, practitioners,
system administrators, system programmers, and others interested in the latest
advances in the security and privacy of computer systems and networks. The
 Symposium will span three days, with a technical program including refereed
papers, invited talks, a poster session, a Work-in-Progress session, a Doctoral
Colloquium, and Birds-of-a-Feather sessions (BoFs).

WOOT ʼ17: 11th USENIX Workshop on
Off ensive Technologies
August 14–15

CSET ʼ17: 10th USENIX Workshop on Cyber
Security Experimentation and Test
August 14

FOCI ʼ17: 7th USENIX Workshop on Free and
Open Communications on the Internet
August 14

The following co-located events will occur before the Symposium:

ASE ʼ17: 2017 USENIX Workshop on
Advances in Security Education
August 15

HotSec ʼ17: 2017 USENIX Summit on
Hot Topics in Security
August 15

	login_summer17_00_masthead
	login_summer17_01_farrow
	login_summer17_02_conway
	login_summer17_03_aghayev
	login_summer17_04_ganesan
	login_summer17_05_shvachko
	login_summer17_06_fast_summit
	login_summer17_07_rudoff
	login_summer17_08_jenkinson
	login_summer17_09_allman_interview
	login_summer17_10_peck
	login_summer17_11_hunt
	login_summer17_12_kuppusamy
	login_summer17_13_perlman
	login_summer17_14_wetzels
	login_summer17_15_beazley
	login_summer17_16_blank-edelman
	login_summer17_17_josephsen
	login_summer17_18_schock
	login_summer17_19_geer
	login_summer17_20_ferrell
	login_summer17_21_usenix_notes

