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EDITORIALMusings
R I K  F A R R O W

Rik is the editor of ;login:.  
rik@usenix.org In 1983, I wrote one of my first attempts at fiction: a day in the life of a 

system administrator. My intent was to provide examples of what system 
administrators of UNIX systems typically did: boot the system, check 

logs, solve problems with printers or full disks, update software, and back up 
the system. These tasks didn’t require a full-time position as there was just 
one system to manage. That was my vision at the time, and you can see my 
story at [1], scanned from the documentation I wrote.

When I started writing my sysadmin book, I did more research. My first sally into the field 
had been based on documentation I was asked to write for systems that were being sold 
to organizations that needed a way to have multiple people share that same system, using 
terminals. I visited UC Berkeley, where they had four VAXen running BSD, and talked to 
 sysadmins there, who had no idea they were acting as sysadmins. They were students tasked 
with freeing up disk space, unclogging print queues, backing up, adding or deleting users, in 
other words, pretty much what I had imagined sysadmins would be doing. My vision of the 
world of sysadmin seemed well-aligned with reality. 

For many years after that initial research in 1985, the world of the sysadmin remained 
mostly unchanged. Sysadmins were very often chosen from the ranks of Liberal Arts majors 
(although no college education was required) because they expressed an interest and willing-
ness to work with UNIX systems or, perhaps, because they were drafted unwillingly to work 
on computers, especially anything as arcane as UNIX appeared to be. Not that UNIX had 
the corner on weirdness. Based on my own experience by that time, UNIX was refreshingly 
consistent and easy to use compared to the Microsoft or IBM systems of the day.

Things had begun to change by the late ’80s, and that change was marked by the creation of 
the LISA conference. LISA, or Large Installation System Administration, was founded as a 
conference to help those who had so many systems to manage that the older methods of doing 
so, sitting at each console and typing away, were no longer sufficient. Over time, the need for 
automation led to infrastructure as code, beginning with tools to manage configurations like 
CFEngine and NIS [2]. 

Over the next decade, workstations multiplied like bacteria, covering desktops at most orga-
nizations. These fell into two classes: UNIX systems, because they supported networking, 
and PCs running Novell Netware, as Windows didn’t support either file sharing or network-
ing until 1996. Novell featured centralized administration, while those managing fleets of 
UNIX workstations had to get creative, and often did so by building their own set of tools. You 
could say that we had whole networks of pets (as opposed to cattle [3]) in the ’90s, and each 
set of pets was ruled by idiosyncratic tools, largely unportable to other organizations.

Sea Change
What changed everything was yet another startup: Google. Larry Page and Sergey Brin 
wanted to create an efficient way to index the Internet. Companies had built indexes mostly 
manually up to that time, meaning that you searched through these indexes hoping they 
might lead you to the information or product you were really searching for. Page and Brin had 
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another idea and that was to actually canvas the web, collect all 
the pages they could find, then index and rank those pages based 
on the data the pages contained and the links that referred to 
those pages. 

Besides needing serious network bandwidth, Page and Brin also 
needed a lot of computing horsepower, and that was seriously 
expensive. Their approach was to divide up the task so that a col-
lection of computers could do the job, creating a form of parallel-
ism that was fairly new at the time and terribly common today.

As Google grew, so did their clusters of computers. The service 
provided by those clusters also grew over time, so different clus-
ters would be providing different services. But the clusters them-
selves were designed to be pretty interchangeable from the start. 
And managing those clusters of Linux systems had also moved 
very far away from being the system administrator of a bunch of 
desktops and a handful of servers. Google had invented cattle.

Ben Treynor Sloss, VP of Engineering at Google, invented the 
term Site Reliability Engineer (SRE). Ben had started out as a 
developer who got moved into operations in 2003, and decided to 
run his operations team as he would a developer team. Ben also 
came up with other important concepts, such as the error bud-
get. That is, if your service-level objective (SLO) is 98.6%, that 
remaining 1.4% is your error budget: the amount of time your 
team has for updates or handling service outages.

There’s much more to being an SRE, and one of the most impor-
tant concepts, in my opinion, is eliminating toil. Toil is repetitive 
work that can be automated away, and SREs are supposed to 
spend no more than 50% of their time on operations so they can 
spend the rest of the working time on automation. As Sloss has 
mentioned, as you grow, your operations may scale exponentially. 
But your operations staff cannot scale exponentially. You must 
automate.

Even as SRE concepts became more popular, there has been a 
lot of pushback: not all organizations are going to be like Google, 
Facebook, and LinkedIn, to name a few. But what are most 
organizations today doing with their computing infrastructure? 
They are moving to the cloud, and if they expect to scale up their 
operations, they too will need to behave more like organizations 
with SREs.

The Lineup
We open this issue with three articles based on papers presented 
at OSDI ’18. There were many more papers at OSDI of course [4], 
but I picked these because I liked them and thought they would 
be of broad interest to USENIX members.

Cody Cutler, Frans Kaashoek, and Robert Morris wrote an 
experimental operating system using Go. Their original goal 
had been to see whether language features would be an aid in OS 

writing, but the project pivoted toward seeing whether a high-
level language, one with garbage collection, could run popular 
applications as fast as Linux could. 

The next two articles include open source projects that support 
running services in clouds or clusters. Ana Klimovic et al. cre-
ated Pocket as a means for ephemeral storage. Services that need 
to quickly store short-lived objects, such as Spark, are poorly 
served by the current mix of cloud storage, like S3. Pocket man-
ages a range of storage services that are both faster and cheaper 
to use than current offerings.

Jon Gjengset et al. wrote Noria, a database server with an 
SQL front end that is not only faster than existing servers, like 
MySQL, but also supports much higher loads. Noria is a data-
flow processing system that creates graphs where the vertices 
are operators and edges carry updates. Noria is slower to write 
but much faster for reads, and fits best when applications have 
read-heavy mixes.

While at LISA18, I heard several people talking about boring 
tech. That sounds, well, boring, but it’s actually about keeping 
your architecture as simple as possible. I met Dave Mangot, who 
had presented “Familiar Smells” [5] and stirred up a fair bit of 
controversy. Dave agreed to explain his points about how impor-
tant it is to architect your systems and services so that they are 
as simple as possible.

Laura Nolan volunteered to write a column about operational 
debt. You probably have heard of technical debt. Laura compares 
technical debt to credit card debt, but likens operational debt 
to a mortgage. Operational debt has to do with having failed to 
automate as much of operations as possible and instead having 
to waste most of one’s time on toil.

Sergey Babkin offered to write about his experience interview-
ing people for mid-level programming positions. Sergey’s thesis 
is that when it comes to solving the programming problems that 
often are used during interviews, he sees people using two dif-
ferent approaches. Each approach has its strengths, but they are 
best used together rather than in isolation.

Nisha Talagala, Bharath Ramsundar, and Swami Sundarara-
man wrote about the new, one-day OpML conference happen-
ing in May 2019. With the huge surge in interest in machine 
learning (ML), they discovered that just as there is a need for AI 
specialists, there’s also a growing need for people who can run 
ML at scale. ML involves not just AI, but also working with vast 
amounts of data as well as other production issues.

Peter Norton explores issues with zip, a function used to create 
iterables in Python. Peter had been stretching his skills using 
the Advent of Code and, while solving one of the problems, 
 uncovered a weakness in how zip works. His workaround, 
SnitchZip, is simple, but it won’t be replacing zip.
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David Blank-Edelman is retiring his column after having writ-
ten it 66 times. At least that’s what his final Perl program has 
discovered. We thank David for being so generous with his time 
over the last 12 years, and sharing his approaches to problem-
solving with a Perl flair.

Mac McEniry shows us how to execute commands from within 
a Go program. Mac breaks down the potential usage into groups, 
depending on input and output, and whether to wait, forget, pipe-
in, check out, or replace data.

Dave Josephsen expands on the monitoring system for mail 
processing at Sparkpost. In Part 3, Dave focuses on detecting 
backed-up queues within Fluentd, as well as staying with his 
theme on rivers and flow. With the sewers of Paris backing up, 
the flows aren’t so fragrant.

Dan Geer and Scott Guthery examine the patterns of patents 
granted that relate to cybersecurity. Over time, the preponder-
ance of new patents has shifted from the US and Europe to 
Asia, even as the general topics of security-related patents has 
changed over a period of decades.

Robert Ferrell discusses the reality of ubiquitous computing. 
With everything from online doorbells to toilets, Robert still 
manages to leave out automotive systems like OnStar that tell 
GM every time you accelerate or stop too quickly. But like the 
systems Robert describes, all of the data gathered is for the use 
of our corporate overlords.

Mark Lamourine has written three book reviews, covering 
 managing Kubernetes, learning Git, and using “gamestorming.”  
I reviewed The Site Reliability Workbook, the follow up to Site 
Reliability Engineering.

In USENIX Notes, I interview Liz Markel, the new Community 
Engagement Manager. You will be seeing Liz, often with her 
camera handy, at future USENIX events.

System administration has morphed from managing single serv-
ers to riding herd on fleets of cattle. While there will always be 
pets, especially in organizations that are naturally disposed to 
being fiefdoms, like many universities, the world has changed. 
To be honest, I think many people are glad that they don’t have 
to design their own systems for fleet management and that the 
tooling has become so much more powerful over time.

References
[1] A Day in the Life of a System Administrator: https:// 
rikfarrow.com/sysadminday.html.
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Co-located Workshops

13th USENIX Workshop on Offensive Technologies
August 12–13, 2019
Submissions due May 29, 2019
www.usenix.org/woot19

WOOT ’19 aims to present a broad picture of offense and its contributions, bringing together researchers and practitioners in all areas of computer 
security. Offensive security has changed from a hobby to an industry. No longer an exercise for isolated enthusiasts, offensive security is today 
a large-scale operation managed by organized, capitalized actors. Meanwhile, the landscape has shifted: software used by millions is built by start-
ups less than a year old, delivered on mobile phones and surveilled by national signals intelligence agencies. In the field’s infancy, offensive security 
research was conducted separately by industry, independent hackers, or in academia. Collaboration between these groups could be difficult. Since 
2007, the USENIX Workshop on Offensive Technologies (WOOT) has aimed to bring those communities together.

12th USENIX Workshop on Cyber Security Experimentation and Test
August 12, 2019
Submissions due May 21, 2019
www.usenix.org/cset19

CSET ’19 invites submissions on cyber security evaluation, experimentation, measurement, metrics, data, simulations, and testbeds. The science 
of cyber security poses significant challenges. For example, experiments must recreate relevant, realistic features in order to be meaningful, yet 
identifying those features and modeling them is very difficult. Repeatability and measurement accuracy are essential in any scientific experiment, 
yet hard to achieve in practice. Few security-relevant datasets are publicly available for research use and little is understood about what “good 
datasets” look like. Finally, cyber security experiments and performance evaluations carry significant risks if not properly contained and controlled, 
yet often require some degree of interaction with the larger world in order to be useful.

9th USENIX Workshop on Free and Open Communications on the Internet
August 13, 2019
Submissions due May 23, 2019
www.usenix.org/foci19

FOCI ’19 will bring together researchers and practitioners from technology, law, and policy who are working on means to study, detect, or circum-
vent practices that inhibit free and open communications on the Internet.

2019 USENIX Summit on Hot Topics in Security
August 13, 2019
Lightning talk submissions due Monday, June 10, 2019
www.usenix.org/hotsec19

HotSec ’19 aims to bring together researchers across computer security disciplines to discuss the state of the art, with emphasis on future directions 
and emerging areas. HotSec is not your traditional security workshop! The day will consist of sessions of lightning talks on emerging work and 
positions in security, followed by discussion among attendees. Lightning talks are 5 MINUTES in duration—time limit strictly enforced with a gong! 
The format provides a way for lots of individuals to share ideas with others in a quick and more informal way, which will inspire breakout discussion 
for the remainder of the day.

Registration will open in May 2019.

SANTA CLARA, CA, USA

ScAINet ’19 will be a single track symposium of cutting edge and thought-inspiring talks covering a wide range of topics in ML/AI by and for security. 
The format will be similar to Enigma but with a focus on security and AI. Our goal is to clearly explain emerging challenges, threats, and defenses 
at the intersection of machine learning and cybersecurity, and to build a rich and vibrant community which brings academia and industry together 
under the same roof. We view diversity as a key enabler for this goal and actively work to ensure that the ScAINet community encourages and 
 welcomes participation from all employment sectors, racial and ethnic backgrounds, nationalities, and genders.

2019 USENIX Security and AI Networking Conference
August 12, 2019
Talk proposals due March 28, 2019
www.usenix.org/scainet19
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C O D Y  C U T L E R ,  M .  F R A N S  K A A S H O E K ,  A N D  R O B E R T  M O R R I S

Cody Cutler is a PhD candidate 
in computer science at MIT. 
Cody loves baffling bugs, 
performance optimization, and 
building systems. ccutler@csail.

mit.edu

Frans Kaashoek is the Charles 
Piper Professor in MIT’s EECS 
department and a member 
of CSAIL, where he co-leads 
the Parallel and Distributed 

Operating Systems Group (http://pdos.csail.
mit.edu/). Frans is a member of the National 
Academy of Engineering and the American 
Academy of Arts and Sciences, and is the 
recipient of the ACM SIGOPS Mark Weiser 
award and the 2010 ACM Prize in Computing. 
He was a co-founder of Sightpath, Inc. and 
Mazu Networks, Inc. His current research 
focuses on multicore operating systems and 
certification of system software. kaashoek@
mit.edu

Robert Morris is a Professor 
of Computer Science at MIT. 
rtm@csail.mit.edu

Biscuit is a POSIX-subset operating system kernel for x86_64 CPUs, 
which we wrote from scratch over the last four years. Biscuit is a bit 
more than a research toy. It can run Nginx and Redis with good per-

formance and has some important operating system features, like multicore 
support, kernel-supported threads, a journaled file system, virtual memory, 
a TCP/IP stack, and device drivers for AHCI SATA disks and Intel 10 Gb 
 network cards. Building Biscuit was a lot of fun and a lot of work.

Unlike most kernels, Biscuit is written in Go instead of C. C is the usual programming lan-
guage choice for kernels because it can deliver high performance via flexible low-level access 
to memory and control over memory management (allocation and freeing). But C requires 
care and experience to use safely, and even then low-level bugs are common. For example, 
in 2017 at least 50 Linux kernel security vulnerabilities were reported that involved buffer 
overflow or use-after-free bugs in C code [7].

High-level languages (HLLs) have the potential to eliminate or reduce the impact of some 
common classes of bugs, particularly those having to do with memory and type safety. HLLs 
can also reduce programmer effort, thanks to automatic memory management, type safety, 
support for abstraction, and support for threads and synchronization.

However, OS designers have been skeptical about whether HLLs’ memory management and 
abstraction are compatible with high-performance production kernels [9, 10]. Garbage col-
lection (GC), runtime safety checks, and abstraction all cost CPU cycles, and many suspect 
that the benefits may not be worth the performance cost. For example, Rust [8] is partially 
motivated by the idea that GC cannot be made efficient; instead, the Rust compiler analyzes 
the program to partially automate freeing of memory.

Whether or not to use HLLs for kernels, then, requires an investigation of their performance 
in that context. There has been little research exploring this question, so we set out to shed a 
bit more light on it.

Our first step was to build a new POSIX-subset kernel, called Biscuit, in Go. Biscuit can run 
many programs that also run on Linux (after recompilation), so we were able to compare 
total application+kernel performance for Biscuit versus Linux. We did this for the Nginx and 
Redis servers, both of which make intensive use of the kernel. We found that throughput on 
Biscuit was within 10% of throughput on Linux, though this comparison should be taken 
with a grain of salt: although we examined both kernels’ code and numerous CPU profiles to 
verify that they executed the applications’ system calls in nearly the same way, we cannot 
completely rule out the possibility that Linux’s performance was understated due to  having 
many more features than Biscuit. Nevertheless, we suspect the performance difference 
between the two is approximately correct. To better focus on the HLL’s impact on perfor-
mance, we then measured the CPU overhead of Go’s HLL features while running our applica-
tions on Biscuit. The CPU overhead of HLL features was at most 15%, with GC accounting 
for up to 3%. We presented these results in detail at the OSDI 2018 conference [11].
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Paying a performance cost of 15% for the benefits of an HLL 
seems worthwhile in non-performance-critical situations. Simi-
lar tradeoffs regularly occur in existing kernels; for example, 
the Linux kernels included in Ubuntu and Debian have several 
compile-time features for security and debugging enabled. These 
features (hardened user copy, scheduling stats, and ftrace) 
reduce performance (by up to 25% in one microbenchmark), but 
most people probably don’t disable them. Go has a performance 
cost, but it improves both security and programmability.

Readers may wonder why we used Go instead of Rust, given that 
Rust has no GC and thus wouldn’t pay GC’s performance price. 
We specifically wanted a language with GC in order to explore 
whether GC simplifies concurrent code.

In the remainder of the article, we will discuss a few challenges 
faced by HLL kernels, some benefits of HLL kernels, and reflect 
on our experience building Biscuit.

HLL Kernel Challenges
This section discusses some common concerns about HLLs and 
GC in kernels, and outlines what we learned about them while 
building Biscuit.

A kernel in Go cannot recover from low-memory situations 
since Go does not expose allocation failure. Linux and the 
BSDs handle kernel heap RAM exhaustion (“out of memory,” or 
OOM) by returning NULL from the allocator; the calling kernel 
code must detect and handle the failure. Biscuit can’t do this 
because Go implicitly allocates and does not have a way to indi-
cate allocation failure.

Biscuit therefore uses a different approach: each kernel opera-
tion (system call, interrupt, etc.) reserves the maximum amount 
of heap RAM that the operation could possibly allocate before 
executing the operation. If the reservation isn’t immediately 
available, the code waits until it is, after waking a separate 
thread that attempts to free heap memory by evicting from 
caches and perhaps by killing memory-hogging processes. The 
reservation guarantees that all allocations made by the opera-
tion cannot fail and thus no code is needed to detect and handle 
their failure. Additionally, since Biscuit waits for memory before 
executing the operation and thus while holding no locks, this 
approach cannot deadlock, a problem that Linux has struggled 
with [2, 3]. The challenging part is deciding how much memory 
each operation should reserve.

Fortunately, Go was helpful in overcoming this challenge: it 
turns out that it is easy to statically analyze Go code. We used 
publicly available static analysis packages to write a tool that 
inspects Biscuit’s source and performs an analysis similar to 
escape analysis. The tool does most of the work of choosing res-
ervation sizes, with reasonably tight bounds, but some manual 
effort is still required.

GC will use too much total CPU. The GC must follow the 
pointers in all live heap objects, which typically requires a RAM 
fetch per object. If there are millions of objects, the total time 
required can be on the order of hundreds of milliseconds. How-
ever, there are a couple of reasons why the CPU cycles used by 
the GC in practice is likely to be acceptably low.

Kernel heaps are typically small. Kernel heap objects are usually 
small metadata describing resources like files, sockets, virtual 
memory mappings, routing table entries, etc. The kernel heap 
does not contain large data items, such as user memory pages 
or file-cache pages. Few programs cause the kernel to accumu-
late millions of files, sockets, or noncontiguous virtual memory 
mappings. Thus the kernel heap typically uses a relatively small 
fraction of RAM even if user applications use many gigabytes of 
user memory. 

To understand kernel heap sizes, we inspected four of MIT’s big 
time-sharing machines. All four run Ubuntu Linux, had at least 
79 users logged in, and had at least 800 processes with between 9 
and 16 GB of total resident memory. The total kernel heap RAM 
(the sum of allocated and free kernel heap RAM) was less than 
2 GB on each machine. On the OpenBSD desktop machine on 
which the first author edited this article, the total resident user 
memory is 1.4 GB, but the total kernel heap RAM is less than 
170 MB.

One potential source of large kernel heaps is the vnode cache. 
Careful eviction of the vnodes may keep the number of kernel 
heap objects low without hurting application performance, 
depending on the access pattern.

If a large kernel heap is necessary, one can provision extra RAM 
to reduce the fraction of CPU time spent in GC. The collector 
only has to run when the kernel heap has no free space. Thus 
the amount of free heap RAM (and allocation rate) determines 
the frequency of GCs: doubling the amount of free heap RAM 
halves the frequency of GCs. Therefore, so long as a machine has 
enough extra RAM that can be donated to the kernel heap, the 
GCs can be made rare enough that total CPU cycles used by GC 
will be low.

We suspect that dedicating extra memory to kernel heaps will 
often be an acceptable cost: many applications probably wouldn’t 
be affected if the RAM available to them or the buffer cache was 
decreased by a few hundred megabytes.

Finally, it may be possible to further reduce the CPU overhead 
even when there is little free heap RAM by modifying Go’s GC to 
be generational. Generational collection is effective at reducing 
GC overhead for most programs, and we suspect Biscuit would 
benefit from it similarly.



8   S P R I N G 20 19  VO L .  4 4 ,  N O.  1  www.usenix.org

SYSTEMS
The Benefits and Costs of Writing a POSIX Kernel in a High-Level Language

GC pause times will be too long. Even if the interval between 
collections can be made long, the collector must eventually execute. 
If the collector causes kernel execution to pause for substantial 
periods, it could delay latency-sensitive tasks such as redrawing 
a moved mouse pointer or processing an urgent client request.

Go uses a technique called concurrent collection to reduce col-
lection pauses. The main idea is to split the GC work into small 
units and interleave them with ordinary execution. The result is 
that individual pauses caused by GC will last only for the dura-
tion of a unit of work. There are still two potential problems. One 
is that smaller units of GC work are less efficient than larger 
ones. The other problem is that spreading collection work out 
over time increases the time that write barriers must be active. 
Write barriers are code the compiler inserts before each write 
that perform bookkeeping if a heap object is written during a col-
lection. Concurrent collection therefore trades decreased pause 
times for decreased efficiency.

We measured the pauses caused by Biscuit’s GC while running 
a kernel-intensive server, Nginx. The maximum single pause 
incurred by kernel GC was 115 microseconds. A given client 
request, however, may be delayed by multiple individual pauses. 
So we also measured the total accumulated pauses during each 
Nginx client request and found that the maximum was 582 
microseconds. Such pauses are rare: less than 0.3% of Nginx 
requests spent more than 100 microseconds executing GC work.

Some applications can’t tolerate even rare pauses of hundreds 
of microseconds, but we suspect that many can. For example, 
servers in one Google service had a 99th-percentile latency of 10 
milliseconds [4].

The Go compiler will generate slower code than C compilers. 
Readily available C compilers have been optimized for decades. 
Go’s compiler is comparatively young and must generate addi-
tional instructions for safety checks (bounds checks, nil-pointer 
checks, etc.) and write barriers.

We compared the performance of generated code from Go and 
GCC by modifying Biscuit and Linux to have near-identical code 
paths for two kernel-intensive microbenchmarks, pipe ping-pong, 
and zero-fill-on-demand page faults. We found that the Go 
versions were 15% and 5% slower than the C versions, respec-
tively. The main reason pipe ping-pong is slower in Go is that it 
executes more instructions for safety checks and write barriers. 
The performance of the page fault handler in Go is closer to that 
of C because the generated instructions are less important: the 
main bottlenecks are the fundamental CPU operations of enter-
ing/exiting the kernel and copying the zero page.

Thus, for these two examples of typical kernel code, Go produced 
5% to 15% slower executable code than C. For many situations, 
this is probably an acceptable price for the increased safety and 
programmability of Go.

HLL Kernel Benefits
Increased productivity. One of the main benefits of writing 
Biscuit in Go is the increased productivity over C. Unfortunately, 
we don’t know a direct way of measuring productivity. Neverthe-
less, we believe Go significantly reduced the effort required to 
build Biscuit. Some of our favorite language features are GC’ed 
allocation, slices, defer, multi-value returns, closures, strings, 
and maps. Individually, none of these features are transforma-
tive, but together they result in significantly simpler code.

HLL features can increase productivity, but we weren’t sure 
whether a kernel would be able to make good use of them. We 
compared the rate of use of several HLL features in Biscuit to 
two other large Go projects, Moby (https://github.com/moby/
moby) and Golang (containing Go’s compiler, runtime, and 
standard packages). Each bar in Figure 1 shows the number of 
uses of a particular feature per thousands of lines of code in the 
indicated project. Biscuit’s use of most of the HLL features is in 
line with the other projects.

Memory safety. Manual memory management in C is error-
prone, and the consequences of bugs can be severe: 40 out of the 
65 publicly available, execute-code CVEs found in Linux during 
2017 were due to manual memory management bugs, and all of 
them allow an attacker to execute malicious code in the kernel. 
Had this buggy code been written in Biscuit, the GC and runtime 
safety checks would have prevented malicious code execution in 
all 40 cases.

Figure 1: Uses of Go HLL features in the Git repositories for Biscuit, 
 Golang, and Moby per 1,000 lines of code
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func serve() {

    buf := new(request_t)

    read_next_request(buf)

    go func() {

        // log_request() occasionally

        // blocks on IO

        log_request(buf)

    }()

    process_request(buf)

}

Listing 1: A simple case where threads share data

Simpler concurrency. Garbage collection makes threaded 
sharing of transient heap objects particularly convenient. For 
example, consider the request processing code in Listing 1. A 
network server calls the serve function to receive and process 
the next request. The code calls log_request in a separate 
thread in order to prevent file writes from delaying the process-
ing of the request. Each thread accesses buf while logging or 
processing. The GC automatically ensures that buf will be freed 
only after both threads have finished using it.

In contrast, this style of threaded programming can be awkward 
in C, because of the need for code that decides when the last 
thread has finished using the object. Consider writing List-
ing 1 in C. The C programmer would allocate buf via malloc. 
Neither thread could simply free buf before returning since the 
other thread may still be accessing buf. The programmer must 
delay the call to free until both threads have finished accessing 
buf. One solution would be to embed a reference count in buf, 
manipulated with atomic instructions. This is eminently pos-
sible in C but requires more programmer thought than in Go, and 
thus more chance of error.

Simpler lock-free sharing. GC is convenient in the above 
example, but GC is more than convenient when threads share 
data without locks (which is common in optimized kernels [5]) 
because the resulting code is significantly simpler than in C. In 
C, each thread must increase and decrease the corresponding 
reference count before and after accessing an object. Forgetting 
to increase or decrease a reference count will result in corrupted 
or leaked memory. Since threads may concurrently modify the 
same reference counter, all modifications must be atomic with 
respect to other counter accesses. Furthermore, the reference 
counters themselves cannot be stored in the same memory as the 
object that they protect, since then a thread may modify freed 
memory. Thus the programmer needs to find the counter belong-
ing to each object.

The atomic operations to maintain reference counts can reduce 
performance. This is the main reason why Linux uses RCU [5, 
6] to safely free memory shared among threads. RCU requires 
significantly fewer atomic operations and thus achieves good 

performance, but it is not simple to use: code which accesses 
memory managed by RCU must follow a list of rules (see https://
www.kernel.org/doc/Documentation/RCU/checklist.txt) and 
be surrounded by a special prologue and epilogue. All such code 
cannot sleep, schedule, or block in any way, in addition to follow-
ing a few other rules.

GC makes these programming difficulties disappear. Biscuit 
code can share heap objects among threads without worrying 
about when to free the objects. The reduction of programmer 
effort is especially evident in the case of read-lock-free data 
structures, which Biscuit uses in its directory cache, routing 
table, and network interface table. The result is high performance 
with less programmer effort, particularly in the directory cache. 

Experience and Reflections
Biscuit was a really exciting project because we had no idea what 
to expect of Go. Would Go make optimizing low-level code dif-
ficult or impossible? Can interrupt handlers tolerate GC pauses? 
Is a language runtime with its own state and invariants com-
patible with the degree of concurrency kernels have to handle? 
When we started, we expected to spend at most a couple of 
months on the project and quickly find an indisputable, concrete 
reason why a fast kernel could not be built in Go. We did not 
expect to end up with a kernel that runs Nginx and Redis on 10 
Gb NICs with performance similar to Linux.

The focus of the project wasn’t always performance. At the 
beginning, we hoped that Go’s good support for threads and 
interthread communication and synchronization would allow 
simpler or more powerful designs for kernel code. For example, 
we hoped that a kernel in Go could make free use of transient 
worker threads to parallelize operations on multicore hardware. 
Unfortunately, we found few such situations. As a result, we 
switched goals away from exploring new kernel architectures 
and towards evaluating the effect of language choice and GC on 
performance. Thus the design of Biscuit started to become more 
and more traditional and similar to Linux in order to isolate per-
formance differences due to the language as opposed to differing 
architectures.

Building an operating system is a huge amount of work, and it 
took months before Biscuit could run even the most trivial of 
programs. Biscuit currently has 58 system calls, and nearly all of 
them are required to run Nginx, Redis, and CMailbench.

As much work as it took to allow Biscuit to run complex pro-
grams, the optimization effort to run the programs well was far 
greater. We knew that Linux delivered good performance when 
we started, but we were stunned at how much effort it took to 
build a kernel whose performance was even within a factor of 
two of Linux’s. Getting decent performance required implement-
ing some interesting optimizations: mapping kernel text with 
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large pages to reduce iTLB misses, implementing TCP timers 
via streamlined timer-wheels, building a directory cache with 
store-free lookups that is correct with racing eviction, etc. But 
most were less interesting details: reducing lock contention by 
dedicating a NIC TX queue to each CPU instead of sharing one 
queue among all CPUs, avoiding unnecessary allocations or 
function calls, carefully batching TCP ACKs, sometimes using 
a linked list instead of an array, etc. Despite the effort, optimiz-
ing Biscuit’s performance was the most fun part of the project 
and that’s mainly because it honed our performance debugging 
skills. If we had to do it over again, we would write the code to 
profile via the CPU performance-monitoring counters as early 
as possible; those profiles were by far the most helpful tool for 
debugging performance problems.

We are grateful for QEMU [1], which has been a critical tool 
for building and testing Biscuit. We were amazed at how little 
work it took to get Biscuit to successfully boot on real hardware 
despite running it exclusively on QEMU up to that point. Real 
hardware did expose a few bugs in Biscuit (E820 memory map 
parsing, PCI interrupt routing, and the BIOS’s INT 13h imple-
mentation apparently doesn’t restore the interrupt flag), but it 
was generally painless, and that speaks to the quality of QEMU’s 
emulation.

Our overall experience has been that building a kernel in Go was 
similar to building one in C: good kernel performance is more 
about implementing the right optimizations and less about the 
choice of programming language. Go didn’t prevent us from 
implementing important kernel optimizations, which suggests 
that Go is a good choice for kernel programming.

Conclusion
Our experience using Go to implement the Biscuit kernel has been 
positive. Go’s high-level language features are helpful in the con-
text of a kernel. Examination of historical Linux kernel bugs due 
to C suggests that a type- and memory-safe language such as Go 
might avoid real-world bugs or handle them more cleanly than C. 
The ability to statically analyze Go helped us implement defenses 
against kernel heap exhaustion, a traditionally difficult task.

We measured some of the performance costs of Biscuit’s use 
of Go’s HLL features on a set of kernel-intensive benchmarks. 
The fraction of CPU time consumed by garbage collection and 
safety checks is less than 15%. We compared the performance of 
equivalent kernel code paths written in C and Go, finding that 
the C version is about 15% faster.

The paper and Biscuit’s code are available at https://pdos.csail.
mit.edu/projects/biscuit.html. 

References
[1] QEMU, the FAST! processor emulator, 2018: https://www 
.qemu.org.

[2] J. Corbet, “The Too Small to Fail Memory-Allocation Rule,” 
LWN.net, December 2014: https://lwn.net/Articles/627419/.

[3] J. Corbet, “Revisiting Too Small to Fail,” LWN.net, May 
2017: https://lwn.net/Articles/723317/.

[4] J. Dean and L. A. Barroso, “The Tail at Scale,” Communica-
tions of the ACM, vol. 56, no. 2, February 2013, pp. 74–80.

[5] P. E. McKenney, S. Boyd-Wickizer, and J. Walpole, “RCU 
Usage in the Linux Kernel: One Decade Later,” 2012.

[6] P. E. McKenney and J. D. Slingwine, “Read-Copy Update: 
Using Execution History to Solve Concurrency Problems,” 
in Parallel and Distributed Computing and Systems, 1998, pp. 
509–518.

[7] MITRE Corporation, CVE Linux Kernel Vulnerability 
 Statistics, 2018: http://www.cvedetails.com/product/47 
/Linux-Linux-Kernel.html?vendor id=33.

[8] S. Klabnik and C. Nichols, The Rust Programming Lan-
guage (No Starch, 2018): https://doc.rust-lang.org/book/.

[9] A. S. Tanenbaum, Modern Operating Systems (Pearson 
Prentice Hall, 2008), p. 71.

[10] L. Torvalds, On C++, January 2004: http://harmful.cat 
-v.org/software/c++/linus.

[11] C. Cutler, M. F. Kaashoek, R. T. Morris, “The Benefits and 
Costs of Writing a POSIX Kernel in a High-Level Language,” 
in Proceedings of the 13th USENIX Symposium on Operating 
Systems Design and Implementation (OSDI ’18), pp. 89–105: 
https://www.usenix.org/system/files/osdi18-cutler.pdf.

https://www.qemu.org
https://www.qemu.org
https://lwn.net/Articles/627419/
https://lwn.net/Articles/723317/
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor
https://doc.rust-lang.org/book/
http://harmful.cat-v.org/software/c++/linus
http://harmful.cat-v.org/software/c++/linus
https://www.usenix.org/system/files/osdi18-cutler.pdf


www.usenix.org  S P R I N G 20 19  VO L .  4 4 ,  N O.  1 11

SYSTEMS

Pocket
Elastic Ephemeral Storage for Serverless Analytics

A N A  K L I M O V I C ,  Y A W E N  W A N G ,  P A T R I C K  S T U E D I ,  A N I M E S H  T R I V E D I ,  
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Serverless computing platforms are increasingly being used to exploit 
massive parallelism and fine-grained billing for interactive analytics 
jobs [1–3]. A key challenge is exchanging intermediate data efficiently 

between tasks, as serverless tasks are short-lived and stateless. The  systems 
commonly used to store and exchange intermediate data in serverless jobs 
today do not meet the performance, cost, and elasticity requirements of 
interactive analytics applications. We present Pocket, a fast, elastic, fully 
managed cloud storage service designed for efficient data sharing in server-
less analytics applications. To achieve high performance and cost efficiency, 
Pocket leverages multiple storage technologies, right sizes resource alloca-
tions for jobs, and automatically scales cluster resources based on utilization. 
The system achieves similar performance to Redis, an in-memory datastore, 
while offering automatic, fine-grained scaling and significantly lower cost 
for serverless analytics jobs. Pocket is open source software [4].

Serverless Analytics
Serverless platforms like AWS Lambda, Google Cloud Functions, and Azure Functions 
enable users to quickly launch thousands of lightweight tasks, as opposed to entire virtual 
machines. Cloud providers automatically scale the number of serverless tasks based on 
application demands, and users pay only for the resources their tasks consume, at sub-sec-
ond time granularity.

Though serverless computing was initially used for web microservices and IoT applications, 
its high elasticity and fine-grain billing make serverless computing appealing for more 
complex jobs, such as interactive analytics [1–3]. Analytics jobs typically consist of multiple 
stages of execution and require tasks in different stages to exchange data. We refer to the 
intermediate data shared between tasks as ephemeral (i.e., short-lived) data. We distinguish 
ephemeral data from the initial input and final output data of analytics jobs, which typically 
have longer lifetimes.

Traditional analytics frameworks (e.g., Spark) implement ephemeral data sharing with long-
running framework agents buffering data in local storage on each node. In contrast, tasks in 
serverless deployments are short-lived, and any data that a task stores locally is lost when a 
task exits. Thus, direct communication between tasks is difficult, and the natural approach 
to share data is to use remote storage.

For instance, serverless analytics frameworks use object stores (e.g., S3), databases (e.g., 
CouchDB), or distributed caches (e.g., Redis).

Ana Klimovic is a PhD student 
at Stanford University advised 
by Professor Christos Kozyrakis. 
Her research interests are 
in computer systems and 

computer architecture. She is particularly 
interested in improving performance and 
resource efficiency for cloud computing. Ana 
is a Microsoft Research PhD Fellow, Stanford 
Graduate Fellow, and Accel Innovation Scholar. 
anakli@stanford.edu

Yawen Wang is a second-
year PhD student advised by 
Professor Christos Kozyrakis 
at Stanford University. She is 
broadly interested in computer 

systems and cloud computing. Her current 
research focuses on leveraging machine 
learning to manage cloud resources more 
efficiently. yawenw@stanford.edu

Patrick Stuedi is a researcher 
at IBM Research Zurich. 
His research interests are 
in distributed systems, 
networking, and operating 

systems. Patrick graduated with a PhD from 
ETH Zurich in 2008 and spent two years 
(2008–10) as a postdoc at Microsoft Research 
Silicon Valley. His work explores how modern 
networking and storage hardware can be 
exploited in distributed systems. Patrick is the 
creator of several open source projects such 
as DiSNI (RDMA for Java) and DaRPC (low 
latency RPC) and is co-founder of Apache Crail 
(Incubating). stu@zurich.ibm.com



12   S P R I N G 20 19  VO L .  4 4 ,  N O.  1  www.usenix.org

SYSTEMS
Pocket: Elastic Ephemeral Storage for Serverless Analytics

However, existing storage services are not a good fit for sharing ephemeral data in server-
less applications [5]. Popular fully managed cloud storage services, such as Amazon S3, are 
designed to store data with high durability and are not optimized for low latency or high elas-
ticity. Distributed key-value stores offer good performance but burden users with managing 
the configuration and scale of a storage cluster. Selecting storage resource configurations 
for jobs is difficult yet critical for performance and cost efficiency [6]. Figure 1 shows an 
example of the performance-cost tradeoff for a serverless video analytics application using 
an ephemeral storage cluster configured with different storage technologies (DRAM, Flash, 
and disk), number of nodes, compute resources per node, and network bandwidth. Finding 
the minimum cost storage cluster configuration that provides optimal performance (e.g., the 
bold point in Figure 1) is nontrivial and gets even more difficult with multiple jobs.

Ephemeral Storage Requirements for Serverless Analytics
We study the ephemeral storage requirements of three different types of serverless analyt-
ics applications: distributed software compilation, video object recognition, and MapReduce 
sort. Figure 2 shows that ephemeral object size varies from 100s of bytes to 100s of mega-
bytes. Hence, serverless analytics applications require both low latency, which is important 
for small object accesses, and high throughput, which is important for large object accesses. 
As serverless computing platforms elastically scale the number of tasks based on load, the 
ephemeral datastore must also be able to scale up and down automatically to meet dynamic 
I/O requirements while minimizing cost. In addition to rightsizing storage cluster resources 
based on current load, the system must place data on the right type of storage technology 
for each job by taking into account the latency, throughput, and cost tradeoffs of different 
technologies.

On the other hand, fault tolerance is not a high requirement for the ephemeral datastore as 
the data is short-lived, and application frameworks typically have built-in mechanisms, such 
as lineage tracking, that can be used to regenerate ephemeral data. Figure 3 shows the object 
lifetime CDF for the three serverless analytics jobs we study. Most ephemeral data objects 
only need to be stored for less than 30 seconds.
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Figure 1: Example of the performance-cost tradeoff space for a serverless video analytics job using differ-
ent storage technologies and VM types in Amazon EC2 for the ephemeral storage cluster. Data points of 
the same storage type represent applications using different numbers of nodes, compute resources, and 
network bandwidth.
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Ephemeral Storage as a Service
We introduce Pocket, an elastic storage service for ephemeral 
data sharing. The system provides high I/O performance while 
minimizing cost by leveraging multiple storage technologies 
with different performance-cost tradeoffs, rightsizing resource 
allocations for jobs, and automatically scaling cluster resources 
based on utilization. Pocket is a distributed /tmp for the cloud.

Pocket splits responsibilities across three separate planes: a 
control plane that determines data placement policies for jobs, 
a metadata plane that manages distributed data placement, and 
a metadata-oblivious data plane responsible for storing data. 
Pocket scales all three planes independently at fine granularity 
based on the current load. The system leverages optional hints 
about job characteristics, which can be provided by applica-
tion frameworks or users via Pocket’s API, to allocate the right 
storage technology, capacity, bandwidth, and CPU resources for 
each job. We intend for cloud operators to run Pocket as a fully 
managed storage service and charge users for only the storage 
capacity and bandwidth that their tasks consume.

Figure 4 shows Pocket’s system architecture and how a job 
interacts with Pocket. To use Pocket, a job starts by register-
ing with a logically centralized controller, which runs the 
 control plane logic for Pocket. The controller decides the storage 
throughput, capacity, and type of storage technology to allocate 
for the job, leveraging any optional hints provided about the job’s 
characteristics, such as latency sensitivity and the peak number 
of concurrent tasks. The controller decides on a data placement 
policy for the job, spinning up additional storage or metadata 
nodes if necessary to meet the job’s allocation. The controller 
communicates the data-placement policy for the job to metadata 
servers, which will enforce data placement by routing client 
write requests. After registering with the controller, the job 
launches serverless tasks (i.e., lambdas), which issue GET/PUT 
requests using Pocket’s client library. 

Metadata servers route I/O requests to the appropriate stor-
age nodes based on the job’s data-placement policy determined 
upfront by the controller during job registration. By default, a 
job’s ephemeral data is deleted when the job deregisters with the 
controller. However, Pocket’s API accepts hints to manage data 
lifetime. For example, since we find that most ephemeral data is 
written and read only once, a user or application framework can 
hint to Pocket that an object should be deleted immediately after 
it is read, optimizing garbage collection.

In addition to rightsizing resource allocations across multiple 
dimensions upfront when jobs register, the controller also con-
tinuously monitors resource utilization in the cluster. Pocket’s 
controller adds/removes nodes to keep CPU, storage capacity, 
and network bandwidth utilization within a target range. To 
balance load in a cluster of changing size, Pocket leverages the 
short-lived nature of ephemeral data and serverless jobs. We find 
that ephemeral data objects in the serverless applications we 
study typically only need to be stored for less than 30 seconds. 
Hence, migrating this data to redistribute load when nodes are 
added or removed would have high overhead. Instead, Pocket 
focuses on steering data for incoming jobs across active and new 
storage nodes in the cluster, while allowing nodes that the con-
troller wants to take down to be drained as their data is garbage 
collected.

Implementation. Pocket’s implementation leverages several 
open-source systems, and Pocket is also open source [4]. The 
metadata and data planes are built on top of the Apache Crail 
distributed datastore, which is designed for low latency, high 
throughput access to data with low durability requirements 
[7, 8]. Though Crail is originally designed to leverage RDMA 
networks, the system’s modular architecture supports pluggable 
RPC libraries and storage tiers. We implement a TCP-based 
RPC library for Pocket. Our implementation of Pocket includes 
three different storage tiers. The first is a DRAM tier that effi-
ciently serves client requests over TCP connections. The second 
tier is an NVMe Flash storage tier. We implement this tier using 

Figure 2: Ephemeral data object size CDF for three different serverless 
analytics applications. Objects vary widely in size.

Figure 3: Ephemeral data objects have short lifetimes (seconds to 
 minutes).
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ReFlex, a software system that enables fast, predictable access 
to remote Flash storage over commodity Ethernet networks [9]. 
The third tier is a generic block storage tier that allows Pocket to 
use any block device such as a hard-drive disk or SATA/SAS SSD 
with a standard kernel block device driver. We deploy Pocket 
storage and metadata servers inside of containers on AWS EC2 
machines. We use Kubernetes to orchestrate the containers and 
implement autoscaling.

Elastic and Automatic Resource Scaling with 
Pocket
We evaluate Pocket with three different serverless analytics 
applications: a video analytics application that does object recog-
nition, a MapReduce sort job, and a distributed compilation job 
that compiles the source code for cmake. The applications differ 
in their degree of parallelism, ephemeral object size distribu-
tion, and throughput requirements. We use AWS Lambda as our 
serverless computing platform.

Figure 5 shows how Pocket elastically scales cluster resources 
as multiple jobs register and deregister with the controller. In 
this experiment, we assume Pocket receives hints about the 
capacity and throughput requirements of each job. The first 
job is a 10 GB sort requesting 3 GB/s throughput. The second 
job does video object recognition, requesting 2.5 GB/s, and the 
third job is a different invocation of a 10 GB sort also requesting 
3 GB/s. Pocket quickly and automatically scales the allocated 
storage bandwidth (dotted line) to meet application throughput 
demands (solid line). Application throughput briefly surpasses 
the total allocated throughput due to bursty EC2 VM network 
bandwidth, which causes a storage node to provide greater than 
the anticipated 1 GB/s bandwidth per node for a short period 
of time. In this experiment, the controller is configured to 
maintain a minimum cluster size of two storage nodes, which 
provides 2 GB/s cumulative throughput.

Comparing Pocket to Amazon S3 and Redis
We compare Pocket to two popular storage systems used by 
serverless analytics applications today. Amazon S3 is a fully 
managed cloud storage service that offers a convenient “server-
less” storage abstraction and cost model in which users pay only 
for the capacity and bandwidth their tasks consume. S3 offers 
durable storage and is optimized for access to large objects. In 
contrast, Redis is a popular key-value store that uses DRAM 
to provide high performance. However, users need to manually 
select and manage resource configurations for a Redis stor-
age cluster. Although Amazon and Azure offer managed Redis 
clusters through their ElastiCache and Redis Cache services, 
respectively, they do not automate storage management as 
desired by serverless applications. Users must still select 
instance types with the appropriate memory and compute and 
network resources to match their application requirements.

We first compare job execution time when using Pocket versus 
S3 and ElastiCache Redis as the ephemeral datastore. Figure 
6 plots the per-task execution time breakdown for a 100 GB 
MapReduce sort job, run with 250, 500, and 1000 concurrent 
lambdas. The light-gray/orange bars show the time spent fetch-
ing original input data and writing final output data to long-term 
S3 storage, while the darker-gray/blue bars compare the time 
for ephemeral data I/O, comparing S3, Redis, and Pocket. S3 
does not provide sufficient throughput for this I/O-intensive 
job, hence in the 250 lambda experiment, each task spends over 
three times longer shuffling data when using S3 compared to 
Redis or Pocket. When the job is run with 500 or more lambdas, 
S3 does not support sufficient request rates. The system returns 
errors and advises to reduce the I/O rate. On the other hand, 
Pocket provides similar throughput to Redis. In this experiment, 
we assume Pocket receives a hint that the job is not sensitive 
to latency—hence, Pocket uses NVMe Flash instead of DRAM. 
Thus Pocket achieves similar performance to Redis while dra-
matically saving cost.

Figure 4: Pocket system architecture and the steps to register job C, issue 
a PUT from a lambda, and deregister the job. The shaded/colored bars on 
storage servers show used and allocated resources for all jobs in the cluster.

Figure 5: Pocket dynamically scales cluster resources to meet I/O require-
ments as jobs come and go.
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To compare the cost of running jobs using Pocket versus S3 
and ElastiCache Redis for ephemeral data sharing, we derive a 
fine-grain resource cost model for Pocket based on Amazon EC2 
pricing. Our minimum-size Pocket cluster, consisting of one 
controller node, one metadata server, and two NVMe Flash stor-
age nodes, costs $1.63 per hour to run on Amazon EC2. How-
ever, Pocket’s fixed cost can be amortized because the system 
is designed to support multiple concurrent jobs from one or more 
tenants. We intend for Pocket to be operated by a cloud provider 
and offered as a storage service with a pay-what-you-use cost 
model for users, similar to the cost model of serverless comput-
ing platforms. Hence, for our cost analysis, we derive fine-grain 
resource costs, such as the cost of a CPU core and the cost of 
each storage technology per GB, based on the prices of various 
EC2 instances.

Using this fine-grain resource pricing model for Pocket, we 
compare the cost of running the 100 GB sort, video analytics, 
and distributed compilation jobs with S3, ElastiCache Redis, 
and Pocket. For S3, we assume its GB-month cost is charged 
hourly. We base Redis costs on the price of entire VMs, not only 
the resources consumed, since ElastiCache Redis clusters are 
managed by individual users rather than cloud providers. Pocket 
achieves the same performance as Redis for all three jobs while 
saving 59% in cost. S3 is still orders of magnitude cheaper. 
However, S3’s cloud provider-based cost is not a fair compari-
son to the cloud user-based cost model we use for Pocket and 
Redis. Furthermore, while the distributed compilation job has 
similar performance with all three ephemeral storage systems 
because it saturates CPU resources on serverless tasks, the 
execution time is 40 to 65% higher with S3 compared to Pocket 
for the video analytics and MapReduce sort jobs. A more detailed 
analysis of Pocket’s performance and cost can be found in our 
OSDI ’18 paper [10].

Conclusion
General-purpose analytics on serverless infrastructure presents 
unique opportunities and challenges for performance, elasticity, 
and resource efficiency. We analyzed the challenges associated 
with efficient data sharing and presented Pocket, a fully man-
aged ephemeral data storage service. Pocket provides a highly 
elastic, cost-effective, and high performance storage solution 
for analytics workloads. Pocket achieves these goals using a 
strict separation of responsibilities for control, metadata, and 
data management. Although we designed Pocket specifically to 
enable efficient data sharing in serverless analytics applications, 
more generally, Pocket is a distributed temporary datastore that 
can be useful for a variety of different cloud applications.
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Noria
A New Take on Fast Web Application Backends

J O N  G J E N G S E T ,  M A L T E  S C H W A R Z K O P F ,  J O N A T H A N  B E H R E N S ,  L A R A  T I M B Ó  A R A Ú J O , 
M A R T I N  E K ,  E D D I E  K O H L E R ,  M .  F R A N S  K A A S H O E K ,  A N D  R O B E R T  M O R R I S

Noria [2], first presented at OSDI ’18, is a new web application back-
end that delivers the same fast reads as an in-memory cache in front 
of the database, but without the application having to manage the 

cache. Even better, Noria still accepts SQL queries and allows changes to 
the queries without extra effort, just like a database. Noria performs well: it 
serves up to 14M requests per second on a single server, and supports a 5x 
higher load than carefully hand-tuned queries issued to MySQL.

Writing web applications that tolerate high load is difficult. The reason is that the backend 
storage system that the application relies on—typically a relational database, like MySQL—
can easily become a serious bottleneck with many clients. Each page view typically involves 
10 or more database queries, which each take up CPU time on the database servers to evalu-
ate. To avoid such slow database interactions and to reduce load on the database, applications 
often introduce caches (like memcached or Redis) that store already-computed query results 
for fast common case access. These caches, however, impose significant application com-
plexity, because the application must query, invalidate, and maintain them [1]. Surely there 
has to be a better way.

Data-Flow for High Performance
At first glance, Noria seems similar to a database because it processes SQL queries. How-
ever, instead of evaluating queries on-the-fly as a traditional database would, the application 
registers long-term queries with Noria for repeated use. Queries contain free parameters 
that the application specifies when it actually executes its reads, similar to the interface 
provided by prepared SQL statements. From the pre-specified queries, Noria constructs a 
data-flow graph that continuously and incrementally evaluates the queries when the underly-
ing data changes.

Data-flow processing was initially invented in the 1970s for circuit design but has recently 
been adopted for large-scale parallel data-processing in systems like Dryad [4], Naiad [5], 
and TensorFlow [6], for example. In data-flow, the system represents computations as a 
graph whose vertices are data-flow operators and whose edges carry updates between the 
operators. When an operator receives an update on an incoming edge, it processes the update 
(possibly consulting internal state that it keeps) and emits zero or more updates of its own on 
all its outgoing edges. This graph representation is appealing, as it makes the computation’s 
dependencies explicit: update propagation across different edges and processing at differ-
ent vertices can happen in parallel. Therefore, data-flow processing is well-suited to scaling 
across multiple CPU cores and servers.

In Noria, the data-flow graph connects classic database tables at its inputs to materialized 
views at its leaves. The intervening operators proactively execute the application’s queries for 
each change to the tables. Noria generates the data-flow from SQL queries using a process 
similar to database query planning. Noria then serves all reads directly from the materialized 
views in memory, which makes reads as fast as reading from a cache. When the records in a 
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table change (e.g., in response to a client insert or update), Noria feeds updates through the 
data-flow to modify the materialized views as necessary.

The idea of materialized views has been around for decades, and some commercial and 
research databases support them. However, existing implementations lack the flexibility and 
performance that web applications require.

Noria’s approach effectively flips the database query model on its head: instead of executing 
queries in response to reads, Noria executes them in response to writes. Reads are simple 
lookups into materialized state, which makes them (much) faster by moving work from reads 
to writes. Modern web applications are generally read-heavy, so this tradeoff makes sense 
for them. Furthermore, since Noria takes care of making reads fast even for complex SQL 
 queries, the developer no longer needs to write error-prone, complex cache-maintenance 
code, or tune their queries for fast execution. They can simply issue the SQL queries they 
wish, inline aggregations and all, and Noria does the rest.

An Example: Votes for News Stories
Let’s take a look at how Noria executes a particular SQL query. Figure 1a shows the data-
flow that Noria constructs when given a query that counts the votes for each story in a news 
aggregator like Hacker News or Lobste.rs. The query joins with the stories table to retrieve 
the story’s details (title, author, etc.). When a client inserts a new vote (let’s say for the story 
with the identifier A), an update enters the data-flow at the vertex that corresponds to the 
votes table. From there, the data-flow propagates the update to the aggregation vertex below, 
which looks up the current vote count for the new vote’s story in the internal state it main-
tains (say, 7). The count then updates the internal state to record that the vote count for that 
story is now 8 and emits an update to its children saying that the count for A is now 8, not 7. 
This update arrives at the join, which looks up A’s title in stories and produces a new update 
that says A, whose title is “Space elevator nearly completed,” now has a vote count of 8, not 
7. That update finds its way to the materialized view StoryWithVotes, which Noria updates 
appropriately so that any subsequent read from it sees A’s vote count as 8. Here, we say that 
StoryWithVotes is keyed by the story’s identifier. In general, the key for a view is dictated by a 
set of free parameters in the corresponding SQL query issued by the application.

Figure 1a: Example Noria data-flow for a query that counts the votes for each story in a news aggregator 
and incrementally updates the count as new votes arrive (solid). Reads hit materialized view (dashed).
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Making Data-Flow Work for Web Applications
Naively adding new queries and initializing their data-flow state 
and materialized views may require Noria to compute a signifi-
cant amount of state for the new query and induce downtime 
while it does so. More generally, if Noria always kept all state for 
all stateful internal data-flow operators and all its materialized 
views, its memory footprint would explode with many queries. 
Noria solves this problem by introducing partially stateful data-
flow. This new model in turn enables Noria to support dynamic 
materialized views, where the set of queries changes over time 
without requiring a system restart.

Dynamic change. Figure 1b shows the data-flow from Figure 
1a after the application adds a new Karma query (the shaded gray 
region). Karma computes the total votes for all stories posted by 
a given user. Notice that the data-flow path for Karma partially 
overlaps with that of StoryWithVotes. Noria realizes that it does 
not need to recount all the votes but can instead reuse the counts 
it already has. When the application first issues the Karma query, 
Noria extends the currently running data-flow to also include 
the extra data-flow operators needed for the new query and a new 
materialized view for Karma. It then initializes the state needed 
by stateful data-flow operators and the materialized view before 
making the latter available for application reads. Reads of old 
views are unaffected by changes to the data-flow, as are writes to 
unconnected parts of the data-flow. In combination with partial 
state, Noria makes the change instantaneous for writes as well.

Data-flow systems prior to Noria were designed for stream, graph, 
and parallel “big data” processing and cannot change the compu-
tation (i.e., queries) without restarting [6]. They must either keep 
all computed state in internal operator state and materialized 
views or apply windowing to reduce computed state by throwing 
away old records. For web applications, neither is acceptable: the 
backend cannot be down when queries change, and it must return 
complete results rather than ones based only on recent changes.

This brings us back to Noria’s key idea: partially stateful data-
flow. Noria’s data-flow changes on-the-fly in response to query 
changes, and it keeps only a subset of state in memory, fetching 
missing data on-demand.

Partial state. Noria marks some keys in each data-flow state as 
absent and recomputes them only when needed. To support such 
recomputation—e.g., when a client reads an absent key from a 
materialized view—Noria relies on upqueries through the data-
flow. Upqueries allow a vertex to ask its ancestors to recompute 
the absent state the vertex needs in order to serve an application 
read. The upstream ancestors respond to an upquery with the 
records in their state that match the absent key or keys speci-
fied by the upquery, and the results percolate back down through 
the data-flow. Since upqueries allow vertices to recover absent 
state, Noria is free to evict infrequently accessed state to save 
memory. More importantly, Noria also uses absent state to cre-
ate new materialized views and operators with initially empty 
state, relying on upqueries to fill the state on demand. This 
allows Noria to adapt to most query changes entirely without 
downtime; all that is required is to bring up a set of empty data-
flow operators. Absent state also speeds up regular processing, 
as updates for keys that are evicted, or that the application has 
never requested, can be discarded early.

Partial state and upqueries are conceptually simple, but mak-
ing them always correct actually requires care. Intuitively, a 
partially stateful data-flow is only correct if it always—whether 
directly or via upqueries—produces the same result for a client 
read that a classic data-flow with full state would have returned. 
However, ensuring this in the face of concurrent processing 
in the data-flow, and with upqueries that can race with “nor-
mal” updates traveling downstream that themselves may be 
contained in the eventual upquery response, is difficult. Noria 
ensures this property using a new data-flow model and extra 
invariants. Some of the challenges are:

◆◆ How do data-flow operators handle updates that encounter 
absent state? Consider the earlier count: if its state for story A  
is absent, how can the count operator produce (A, 8) as the 
emitted update?

◆◆ How does parallel processing of complex data-flows that fork 
and join still ensure that upquery responses always contain all 
the updates processed at the queried operator exactly once?

◆◆ How do operators that change the key column handle up-
queries? For example, the sum operator added in Figure 1 may 
upquery the join on its incoming edge for a particular user, but 
that join is keyed by the story identifier column.

◆◆ How do multi-ancestor operators handle upqueries if state  
for the upquery key is available in one ancestor but not in  
the other?

Figure 1b: If the application adds another query to compute the “Karma” 
score for each user (the total votes received for the user’s stories), Noria 
dynamically adds to the running data-flow (dash-dot) the extra operators 
and materialized views needed.
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Our paper [2] gives the invariants that Noria must maintain to 
guarantee correct execution and points out what goes wrong if 
these invariants are not properly maintained.

Evaluating the Noria Prototype
We implemented Noria in about 60,000 lines of Rust, along with 
a MySQL adapter that implements the MySQL binary protocol 
and makes Noria appear as a MySQL server to legacy applica-
tions. This way, Noria can support unmodified MySQL applica-
tions that use prepared statements (e.g., through PHP’s PDO 
library). Noria supports sharding and partitioning the data-flow 
across cores and servers, and stores all base tables durably in 
RocksDB [7]. It handles failures in the distributed system by 
recreating those parts of the data-flow that a failure affects.

To evaluate Noria’s performance and check that it actually 
makes web applications faster and reduces their complexity, we 
wrote a workload generator that emulates the real production 
workload seen by the news aggregator website Lobste.rs (https://
lobste.rs). Lobste.rs is a Ruby-on-Rails application backed by a 
MySQL database, and the Lobste.rs developers carefully hand-
optimized its queries for performance. Our benchmark issues the 
same SQL queries as the real Lobste.rs website, with the same 
frequency and popularity skew, using the MySQL binary protocol.

We then run that against both MySQL directly (we use MariaDB 
v10.1.34, a GPLv2 community fork of MySQL) and against Noria, 
on a 16-core Amazon EC2 VM. Figure 2 plots the offered load on 
the x-axis (in page views per second; each page issues around ten 
queries) and the achieved median and 95th percentile latency 
on the y-axis (so lower is better). At the point where each setup 
stops scaling—for example, because it saturates the server’s CPU 
cores—the latency curve forms a “hockey stick” that shoots up 
when the system cannot keep up with the load anymore. The 
results indicate that Noria scales to a 2.5x–5x higher load than 
the MySQL baseline. For the initial result (blue line with circles, 
2.5x improvement), we use the exact same queries as the Lobste 
.rs developers.

We then go a step further and remove all manual optimizations 
from the queries (line with squares). For example, the original 
application keeps upvotes and downvotes columns in the stories 
table and updates them on every vote, so that read query evalua-
tion avoids doing a COUNT over votes. This is effectively a hand-
rolled “materialized view” of the vote count, but it requires the 
developers to customize the application to update this column 
whenever the vote count changes. In Noria, such hand-tuning 
is unnecessary. Indeed, removing the hand-optimizations from 
the queries, we see a 5x speed-up over MySQL. The difference 
here comes from the fact that by not having to maintain these 
auxiliary values in the base tables (but instead having Noria 
maintain them in the data-flow), we avoid an extra UPDATE query 
and parallelize the update processing.

To quantify how much Noria improves performance over exist-
ing approaches, we choose a single, common query (the join of 
stories with vote counts) and issue that same query against 
a number of common web backend setups. Here, 95% of the 
requests are reads, and 5% are new votes, and we use a simi-
lar, skewed popularity distribution as the real Lobste.rs site 
observes. We benchmark MariaDB; System Z, a commercial 
database that supports materialized views; MariaDB with a 
memcached look-aside cache; “memcached-only,” an unrealistic 
deployment where the application stores vote counts directly in 
memcached without any database interactions; and Noria with 
four-way sharding for parallel processing.

All systems run entirely in-memory to avoid measuring the I/O 
layer performance, and we set the databases to avoid transac-
tions and use the lowest isolation level. Figure 3 again shows 
that Noria performs well: while the database-based systems do 
not scale beyond 200,000 requests/sec, Noria scales all the way 
to 14 million requests/sec. The unrealistic memcached-only 
deployment, for comparison, scales to 8 million requests/sec but 
then saturates the cores of the server.

Figure 2: Noria scales to a 5x higher load than MySQL for the Lobste.rs 
website’s workload while using queries free of hand-tuning (2.5x with the 
Lobste.rs’s developers’ original queries). Solid line shows median; dashed 
is the 95th percentile.

Figure 3: Noria supports 14 million requests/sec for a read-heavy  
(95% reads) workload, while other systems achieve only 200,000 
 requests/sec—with the exception of an unrealistic memcached-only  
setup that does strictly less work but still underperforms Noria.
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Noria outperforms memcached because it uses a more efficient, 
lock-free data structure to serve reads, but this is not fundamen-
tal (memcached could use the same data structure). Noria’s high 
performance comes because reads directly hit the materialized 
view, and because it processes writes efficiently through the 
sharded, partially stateful, incremental data-flow.

When to Use Noria
Noria is designed for web applications that are read-heavy and 
that can tolerate eventual consistency. The ubiquity of caches 
in modern web application stacks suggest that eventual consis-
tency is often sufficient, although we are also working on ideas 
for high-performance transactions on Noria. Noria also obviates 
the need for transactions in some cases. The Lobste.rs develop-
ers, for example, only use transactions to ensure that a story’s 
vote count is incremented atomically with the vote being stored. 
Noria maintains the vote count internally in the data-flow, so 
this transaction is no longer necessary.

Noria primarily targets applications whose working set fits in 
memory when sharded and partitioned across many servers. 
Old records in base tables are only on disk, but applications that 
regularly need to access the full data set (e.g., full-text search) 
would need additional support to work well in Noria.

How to Use Noria
Noria is open-source and available at https://pdos.csail.mit.edu 
/noria. In many cases, you should only need to start up the Noria 
MySQL adapter, point your application at it instead of MySQL, 
and turn off all your caches. Noria will take care of the rest. The 
Noria prototype is research code and still in development, but we 
would like to hear how it works for other people!
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Everything should be made as simple as possible, but no simpler.—Albert Einstein

Distributed systems. Complex systems. Enterprise systems. No matter 
how we’re involved in computing these days, it’s likely we’re working 
on complex or complicated (in the Cynefin sense) problems. In fact, 

even systems that start out simple ultimately become complex through the 
continuing evolution of those systems through architecture changes, code 
deploys, or simply the passage of time (do you remember why you made that 
choice three years prior?). Because this complexity is a naturally occurring 
property of these systems, I choose to use boring technology.

When I say “boring technology,” we should give credit to one of its biggest proponents, Dan 
McKinley (@mcfunley) who wrote: “We should generally pick the smallest set of tech that 
covers our problem domain, and lets us get the job done” [1].

Why do I feel this way? I’ve been doing Operations work for more than 20 years. I’ve worked 
in small startups and big multinationals. I’ve worked on huge monoliths and systems that 
had an undying allegiance to services. Through it all, I’ve encountered complexity. When it’s 
3 a.m. and the pager is blowing up, complexity is not my friend (or yours). Over the years, I’ve 
always tried to advocate for the “smallest set of tech that covers our problem domain.” When 
you’re firefighting and you’re trying to reason about what is wrong, why the Java process 
keeps OOM’ing or why the database connection pool is being exhausted, the last thing you 
want is fancy, magical, technology.

MTTR > MTBF
You may be able to tell, I have a specific bias to the Operations perspective. As site  reliability 
engineering (SRE) has become more prevalent, we can see an emphasis on reliability and 
recovery from failure. In an ideal world, our recovery from failure is instantaneous; the 
customer has no idea there was a failure. Unfortunately, we don’t live in an ideal world, so 
the best we can do is to try to minimize downtime by maximizing our ability to recover from 
failure. Choosing boring technology is a proven technique for making this a reality.

Does your Operations (DevOps, SRE, etc.) really need to deploy multiple Kubernetes clusters 
in order to deploy a single Ruby script? Should we try to write our next service in Erlang 
because we heard it’s “cool,” even though our staff mostly consists of PHP programmers? Bor-
ing technology works well for us because we have more ability to reason about it. If my ability 
to form a mental model of the system I’m working on is hampered by my inability to under-
stand the technology, either because of complexity or obscurity, I’m going to have a bad time. 

Often the main problems with fancy technology is that it is optimized to try to prevent fail-
ures, not recover from failures. Many fancy “enterprise” technologies are created in this way. 
One way to think about this is in terms of horizontal vs. vertical scaling. You are probably in 
good shape if your solution is designed to scale horizontally, where the loss of any single com-
ponent is easily handled by other easily replaceable components with no noticeable effect to 
the customer. If your solution is designed with multiple somethings (power supplies, network 
cards, etc.) within a single component, you may be relying on fancy technology. If you lose 
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one of those systems, where does that leave you? Systems that 
optimize for mean time between failures (MTBF) instead of 
mean time to recovery (MTTR) are prone to what author Nasim 
Taleb calls “black swan events”:

[T]he problem with artificially suppressed volatility 
is not just that the system tends to become extremely 
fragile; it is that, at the same time, it exhibits no visible 
risks…These artificially constrained systems become 
prone to Black Swans. Such environments eventually 
experience massive blowups…catching everyone off 
guard and undoing years of stability or, in almost all 
cases, ending up far worse than they were in their 
initial volatile state. [2]

MTBF-Optimized Infrastructure
What are some examples of complexity evident in MTBF- 
optimized infrastructure? Have you ever configured network 
bonding on a Linux host? How many different modes are there 
for bonding? Six. That means that there are six different ways 
that you could possibly expect that your systems will behave 
in the event a network interface is lost. To what end? Well, to 
protect us from the case where a system could potentially disap-
pear off the network. But is a NIC failure really the only way 
a system could disappear off the network? What about power 
supply failures? What about running out of memory or CPU? 
What about file system corruption? How many different compo-
nents do we want to make redundant in order to guard against a 
system disappearing off the network? How much do we want to 
pay for those systems? Can we really foresee all possible failure 
scenarios?

What if we were to think about it a different way? What if we 
expected that systems would disappear off the network? If we 
design our systems in this way, we’re protected from systems 
disappearing no matter what the reason! Additionally, because 
I’m spending less money per system, I can usually have more of 
them for the same cost. This increases my ability to  tolerate fail-
ure, even multiple failures. This is another problem we often see 
when we try to choose fancy enterprise systems with multiple 
layers of complex protection within a single system. We can’t 
afford many of the components, and thus we are often left with 
only two of something, a primary and a backup. Not only is this 
very inefficient (we’ve paid a lot of money for a system that most 
of the time does absolutely nothing), but in the event of a failure, 
we’re now one failure away from catastrophic failure. Addition-
ally, we’re subject to relying on all that other money we spent on 
our enterprise support contract to deliver the necessary part on 
the 12x5 or 24x7 guaranteed response times as offered by the 
vendor. If the vendor doesn’t have the part, or the power spike 
that blew out the first system comes back, we could be in a very 
bad situation.

Cattle vs. Pets
Instead, we should choose boring technology. If a system goes 
down, the load balancer stops sending it traffic because it’s 
failed its health check, and we replace it with an exact replica. 
We don’t care about an individual system, we care about the 
overall system. Many of you have probably heard of this as 
cattle vs. pets [3]. 

If a pet gets sick, we do what we can to make it better (like call-
ing in enterprise support). If a head of cattle gets sick, we worry 
about the overall health of the herd. While we can’t as readily 
replace one head of cattle, we can readily replace a server, espe-
cially in cloud or cloud-like environments.

As our systems mature and grow, we often see the wisdom of 
being able to control and reason about them in simple ways. This 
use of boring technology doesn’t just have to apply to application 
servers, it can apply to networking or storage as well. Let’s look 
at some examples.

Networking
If we were to look up the DNS information for www.atlassian 
.com (this is just one example), we would notice something 
interesting. 

$ host www.atlassian.com

www.atlassian.com is an alias for pledge-vtm-ash2-prod 

-public-01.atlassian.com.

pledge-vtm-ash2-prod-public-01.atlassian.com is an alias for  

pe-vt-vtmnl-1h5icdrzt7xcp-d84e3144685e1b8d.elb.us-east-1 

.amazonaws.com.

pe-vt-vtmnl-1h5icdrzt7xcp-d84e3144685e1b8d.elb.us-east-1 

.amazonaws.com has address 18.234.32.152

pe-vt-vtmnl-1h5icdrzt7xcp-d84e3144685e1b8d.elb.us-east-1 

.amazonaws.com has address 18.234.32.153

pe-vt-vtmnl-1h5icdrzt7xcp-d84e3144685e1b8d.elb.us-east-1 

.amazonaws.com has address 18.234.32.154

Three IP addresses! That’s strange! If you’ve ever spent any time 
with enterprise-grade networking gear, there is often a “floating 
IP” that can bounce back and forth between two pieces of equip-
ment depending on which is currently responsible for handling 
the traffic (and the other sits idle, despite the fact that we’ve 
paid for it, just in case). That IP address would be presented to 
the world as a single IP. But in this case, we have three. Why? 
Because Amazon has the ability to replace components of its 
load balancers and actually does this with a fair amount of regu-
larity. When they need to upgrade or replace a piece of hardware 
or software, they don’t exercise the HSRP or VRRP sequence for 
shifting traffic to the “other” host. They replace the component 
itself, like cattle.
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Storage
Solving a problem like storage at the level of Facebook could 
be a daunting challenge. If you needed to store all those baby 
pictures, profile pictures, wedding pictures, etc., that could be 
a tough problem. If you were Facebook, you may have started 
out using a number of enterprise class (or Pet) solutions. As a 
matter of fact, this was actually the case, until Haystack [4]. 
You can read the paper yourself, but this is from the conclusion: 
“Haystack provides a fault-tolerant and simple solution to photo 
storage at dramatically less cost and higher throughput than 
a traditional approach using NAS appliances. Furthermore, Hay-
stack is incrementally scalable, a necessary quality as our users 
upload hundreds of millions of photos each week.” Moving to a 
simple solution for the win.

Making Change
This idea of choosing simple (boring) solutions that we can 
reason about more easily may sound appealing at this point. But 
how do we make these changes in our existing organizations? 
How do we get to a point where we have simple recovery that we 
know both works and is well tested and practiced? As Gene Kim 
says of DevOps in “The Three Ways” [5], “repetition and practice 
is the prerequisite to mastery.”

Just as Facebook was happy that their solution was  incrementally 
scalable, the happiest path to making these kinds of changes is 
incremental as well. While we’d all love to have Netflix’s Chaos 
Monkey running in our infrastructure tomorrow, proving all is 
well, that’s as unrealistic as standing up a shiny new Kubernetes 
cluster tomorrow and understanding how to deploy and operate 
it. My favorite method for making change is what we often call 
Crawl-Walk-Run.

Crawl-Walk-Run
We are not born with the ability to run. There is a progression  
we must go through in order to reach that level of mastery (which 
takes repetition and practice!). So it is with maturation of pro-
cesses or architecture when we are adopting boring technology.

Crawl
So how do we get started? How can we “crawl” when moving 
from our fancy enterprise technologies to something simpler? 
The first step is to configure just about everything with code. 
When we say everything, we mean Docker containers, servers, 
network gear, RAID cards, etc. We are trying to configure every-
thing this way. This gives us a number of advantages:

◆◆ If we’re doing infrastructure as code, we can version things, 
because they are in revision control. That means if I ever want 
to know how something was configured on March 22nd, I can 
look that up.

◆◆ That ability also gives me the ability to create representative 
test environments and have confidence that those environ-
ments are configured in the same way as production. If my test 
fails in a representative test environment, I have high confi-
dence it would have failed in production.

◆◆ I also have confidence that any time I have a component of type 
X, it will be configured identically to every other component 
of type X with the “push of a button.” One need look no further 
than the Knight Capital failure [6] to recognize the dangers of 
having differently configured systems that are supposed to be 
identical. Reasoning about multiple possible configurations of 
the same component interacting with each other is extremely 
difficult! Remember our Amazon load balancer example? 
Every time a load balancer component is swapped out, Amazon 
knows exactly how the new component will be configured. 
Every time a new Haystack node is deployed at Facebook, they 
know exactly how it will be configured.

There are many ways to configure things as code. We have 
configuration management tools, and we have config files or 
settings that can be checked into repositories. We can even use 
things like Puppet types and providers to interact with our RAID 
cards or out-of-band management cards to make sure they are 
configured perfectly every time. Many network vendors are now 
offering APIs we can interact with for our network gear to make 
sure they are configured properly.

If your fancy piece of tech does not offer a programmatic way 
of configuration, you are probably not using boring technology 
and have something designed to be manipulated by the messy 
bags of mostly water we call humans. Eliminate those from your 
infrastructure—the component, not the humans!

Walk
Now that we have confidence that our infrastructure will be 
configured properly each and every time (how quickly could you 
rebuild a server that was removed with an exact replica?), we 
are ready to experiment with failure. One relatively easy way to 
accomplish this is with production readiness game days.

In this scenario, before we allow a new service or major infra-
structure component to be deployed to production, we test it to 
learn about failure. How does it fail? What is impacted? How do 
we even know it’s failed? How do we recover?

If repetition and practice are the prerequisite to mastery, then 
we need to have an opportunity for repetition and practice. We 
do this by making a test plan of exactly what we will fail (in 
our representative test environment) and what the expected 
behavior will be. Maybe we will block the DNS servers. Maybe 
we will pull a disk. Maybe we will terminate an instance. There 
are many options. We also need to determine where the test data 
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will come from if required. Copying production data can have 
security implications. Can we use synthetic data? This plan 
should be agreed upon by all the parties involved (Dev, Ops, DBA, 
etc.). Then the plan should be executed. This has a number of 
advantages:

◆◆ No complex systems can ever be “thrown over the wall” to 
Operations for deployment. If there is an unexpected behavior 
during the failure scenarios, the party responsible for fixing 
that behavior will be given as many opportunities as neces-
sary to fix the offending behavior until the game day is declared 
 successful.

◆◆ The folks responsible for remediating failure will have the 
opportunity to practice those remediations! No one wants the 
first time they attempt to recover a failed system to also be the 
first time anyone has ever attempted to recover said system. By 
practicing before production, you have the opportunity to not 
only learn how to do it, but to also ask for clarification, make 
suggestions, improve documentation, etc.

◆◆ We can often discover unintended consequences of the deploy-
ment of the new system. This is why representative test envi-
ronments are so important. We don’t want to discover that our 
database would run out of connections the first time the system 
is activated in production.

◆◆ It reinforces the idea that the availability of our production 
systems is everybody’s responsibility. Not just the people who 
will be woken up in the middle of the night, but the entire team 
responsible for delivery of that component of the infrastructure.

◆◆ It gives us an opportunity to find out where our technology 
is not boring. If, during the game days, we repeatedly have 
problems restoring our systems to the proper state, or under-
standing the failure scenarios, maybe our system is not quite 
as boring as we thought. That is an opportunity to revisit the 
design, and the choices made, and make the necessary adjust-
ments so that we can eliminate single points of failure, fancy 
vendor solutions that never quite live up to their promise, or 
that configuration that everyone could have sworn was in revi-
sion control but in fact was only placed as an unintended side 
effect of some other process.

Run
Once we’ve settled on our boring technology, and have confi-
dence in our infrastructure and ability to detect and remediate 
failures, it’s time to make that a regular part of how we operate. 
Both in participating more regularly in the design phase as well 
as after the system is deployed. This is a great time to get started 
with chaos engineering, a natural progression from the use of 
boring technology.

As Nora Jones said at ReDeploy 2018, “Chaos Engineering isn’t 
done to cause problems; it is done to reveal them” [7]. We already 
know that our systems become more complex over time and 
that the system that we deployed two years ago has changed or 
morphed over time into something that can have many different 
properties than it did when first deployed. How do we ensure 
we can still recover from failures? By continually testing the 
infrastructure to make sure that the result of failures continues 
to be as we expect.

The problems that we will experience in production will become 
problems because complexity is an emergent property of these 
systems. If we expose those problems under controlled circum-
stances (people in the office at their desks, only one variable 
changed at a time, etc.), we will have a much higher likelihood 
of being able to detect and recover quickly, and then work to 
prevent those problems in the future. If we have these problems 
but don’t reveal them, then we are setting ourselves up for Taleb’s 
black swan events that can “catch everyone off guard” and “undo 
years of stability.” That doesn’t sound very boring to me!

Conclusion
When working in our professional roles as SREs, or storage 
administrators, or network engineers, etc., we are often heav-
ily invested in the technology choices we make. Sometimes we 
may want to use some new technology because it’s got a great 
reputation or because a lot of other people are using it. If it is 
not a technology that we understand well, or have the ability to 
understand well, we can often make choices that will cause us 
more problems down the road. 

For that reason, when facing these choices, it is good to remem-
ber to choose boring technology. The complexity will be there, 
there is no running away from that. The systems will grow more 
and more complicated until it’s time for that big refactor, which 
is a recognition that our systems are no longer boring but, rather, 
are collapsing under their own weight of complexity.

But there are ways to minimize those conditions and for us to 
mature our way out of bad situations when we find that we are  
in one. Choose boring technology.
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Anticipating and Dealing with Operational Debt
L A U R A  N O L A N

We are all familiar with the concept of technical debt, the idea that 
over time, software systems become harder to change and main-
tain because of shortcuts taken earlier. An example of technical 

debt is the lack of a comprehensive suite of unit tests (or a flaky test suite). 
Old, unused code that hasn’t been removed is another example. Technical 
debt can occur early in a system’s lifespan as shortcuts are taken in order 
to launch, but most of the time the problem of technical debt gets worse as a 
system ages.  

Operational debt is different. It happens when a system is launched, or experiences rapid 
growth in usage, before operational tasks are automated, leaving them to the system’s human 
operators. In organizations with a focus on automating routine operational tasks, much of 
this is solved over time, leading to less operational debt as a system ages.

Technical debt is like credit card debt—acquired piecemeal over time. Operational debt is 
more like a mortgage: it can be paid down over time leading to ownership of a stable, well-
automated system. However, sometimes people do have problems paying off their mortgages. 
The worst case scenario is a team that ends up with so much operational debt that they don’t 
have cycles to work on fixing it, instead spending most of their time on toil [1]—tactical work 
that doesn’t improve their systems in the long term.

This environment isn’t good for engineers, and teams in this situation will struggle to  
retain staff. 

Types of Operational Debt
There are five main categories of work that, if not automated, lead to operational debt.

One is routine housekeeping that happens on a schedule. This might include taking and vali-
dating backups, updating certificates, and making sure personally identifiable information is 
deleted after a certain time period.

The second is recovery from routine failures like loss of a hard drive, transient network prob-
lems, or a machine restarting.

Another category involves managing change over time. This includes things like performing 
migrations, doing capacity planning, and monitoring for performance regressions.

Many systems involve some routine per-customer work like setting up permissions, quotas, 
or other resources.

Finally, there is non-routine work that scales with your system’s growth. This includes turn-
ing up new instances of your systems, dealing with abusive users, resharding datastores to 
deal with growth, and investigating performance issues on behalf of customers.

Laura Nolan’s background is 
in site reliability engineering, 
software engineering, 
distributed systems, and 
computer science. She wrote 

the “Managing Critical State” chapter in the 
O’Reilly Site Reliability Engineering book and 
was co-chair of SREcon18 Europe/Middle 
East/Africa. Laura is currently enjoying a well-
earned sabbatical (and tinkering with some of 
her own projects) after 15 years in industry, 
most recently at Google.  
laura.nolan@gmail.com



28   S P R I N G 20 19  VO L .  4 4 ,  N O.  1  www.usenix.org

SRE
Anticipating and Dealing with Operational Debt

Operational Debt after Launch
Some amount of operational debt in a newly launched system is 
inevitable. This is for two major reasons. 

The first is unknown unknowns—issues will crop up in produc-
tion that weren’t anticipated, and some of these will need auto-
mation to handle them. For example, take a system where the 
underlying datastore occasionally has replication issues. Some-
times a customer’s changes don’t get reflected everywhere, they 
complain, and someone has to go and unwedge it by hand. There 
are several potential approaches to automating this problem 
away, ranging from fixing the underlying replication issues to 
various bolt-on approaches, but either way, noticing the pattern 
and automating away this sort of problem takes time.

The second reason is that even for routine and anticipated opera-
tional tasks, the development of the core system itself usually 
has to precede development of complex automation. It’s hard to 
automate a process for a system that doesn’t exist yet. 

Managing and Planning for Operational Debt
Operational debt is not inherently bad, but too much of it 
certainly is—again, like mortgage debt. It needs to be planned 
for and managed, particularly when launching a new service, 
instituting a major change to an existing service, or in times of 
fast growth. 

First, track what your team is spending its time on now. If your 
team already has a lot of operational work, it may need to be 
reduced before you can afford to launch something new. At 
Google, SRE teams aim to spend under 50% of their time on 
operational work.

Next, estimate what you’re getting yourself into. For your 
planned system or feature:

◆◆ What are the periodic “housekeeping” tasks?

◆◆ What failures or problems will the system likely encounter 
regularly, and how much work will it be to recover from them?

◆◆ What are the change management tasks?

◆◆ What are the routine per-customer tasks and the likely non-
routine ones?

◆◆ How is the user base likely to grow over time?

◆◆ What is automated already, and how much effort is likely to be 
required to automate the rest?

You should also budget for some unknown unknowns. This is 
technology, after all.

After this exercise, you should have a better idea whether or not 
your team will be able to afford the launch and what needs to be 
automated first so that your team can remain productive.

Zero operational work shouldn’t be your goal. Some tasks aren’t 
worth automating because they’re done infrequently and there 
won’t be a positive return on the investment of time. Some 
operational work is novel, like debugging new problems and 
dealing with outages, and does require human skills. But exces-
sive operational debt is dangerous when it soaks up so many of a 
team’s cycles that they can’t do engineering work.  

Anticipate operational debt, budget for it, and keep your team out 
of operational overload [2].
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Using programming puzzles as part of job applicant interviews has 
become common practice. While interviewing applicants, I’ve 
noticed two patterns in how they go about solving these puzzles.  

In this article, I examine these patterns and detail how programmers in 
 general need to problem solve using the best of both patterns.

The Intuition and the System
In conducting recent job interviews, I’ve met a spate of junior engineer candidates with a 
similar issue: they quickly come up with a pretty good overall idea of the solution to a prob-
lem, and they can write code, but they fail to translate their solution into the code. They 
couldn’t seem to organize the overall idea into components and then, step by step, work 
through the details and interdependencies of those components and sub-components, even 
with intense hinting from my side. 

A bigger problem can always be seen as being composed of smaller, easier problems. The 
easier problems aren’t necessarily easy, but two methods in dealing with them can be helpful: 
First, you can subdivide them further into even simpler problems. Second, as you try to solve 
a problem, you can gain an understanding of why it’s difficult, and this often provides insight 
into solving the problem by avoiding it rather than overcoming it, by subdividing its parent 
problem differently. Not that all problems can be avoided: some things have to be overcome. 
The job applicants could come up with good ideas that solved difficult things that needed to 
be overcome, but they couldn’t build a structure for the whole solution, where they could put 
these good ideas to good use.

To illustrate through an analogy, some time ago I read about an artist who would ask people 
to draw a bicycle from memory and then produce, as an art object, a bicycle based on the 
drawing. The results were art objects because they were completely non-functional. If I were 
to draw a bicycle without thinking, I would also produce something like that. 

By spending some thought, any engineer should be able to reproduce a proper bicycle from 
the general logic: the function of the main components (wheels, steering, seat, pedals, chain) 
and the general considerations of the strength of the frame that shape it. The same logic can 
be used to check that none of the main components were forgotten: for example, if you forget 
about the chain, the pedals would be left disconnected from the rear wheel, so you’d have to 
remember it. Each component might be very non-trivial (the said chain took a long time  
to invent), but once you know the components, it should be impossible to put them in the 
wrong place.

This is something that should be done almost mechanically, with little mental effort. And yet 
these programming candidates could not do it. They tried to do it by intuition, but their intu-
ition was not strong enough to handle a complex problem in one gulp, and they didn’t know 
how to use the systematic approach either. The hints didn’t help much; they didn’t cause the 
right systematic associations.
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Two Skills
There are really two orthogonal skills involved in solving these 
problems: to imagine the whole solution using highly developed 
intuition; to subdivide the problem and work through it itera-
tively, backtracking as necessary. Both are required to be a good 
engineer. A simple problem can be solved by using either of these 
skills alone. But even a moderately complex problem requires 
both skills; it’s too big for intuition to figure out every detail, and 
too non-obvious for the systematic approach to find a good result 
in any reasonable time.

The problem I ask is actually quite difficult, too difficult for a 
perfectly adequate junior-to-mid-level engineer, and I’m not sure 
if I myself would have solved it well some 20 years ago. I know 
that I can solve it now, as it came from my real-life experience 
where I had to solve it really quickly from scratch. So I don’t 
expect a good solution from this category of candidates; for them, 
a so-so solution is plenty good enough. Some of them actually do 
very well, producing a fully completed optimal solution. 

There is a marked difference in how people with the one-sided 
development solve it, depending on which skill is their strong 
one. People with poor intuition and strong systematics produce 
a complete solution that is not very good. People with strong 
intuition and poor systematics get the right overall idea, figuring 
out the conceptual parts that I consider difficult and important 
(that the systematic group never figures out), only to fail miser-
ably to work out all the details necessary to write the code. Not 
that the code doesn’t get produced at all (though sometimes it 
doesn’t), but what gets produced is closer to being an art object 
than working code.

Intuition, the Harder Skill
And that feels like a shame, because intuition is usually consid-
ered the harder skill to develop, requiring more time for devel-
opment and being more rooted in natural ability. So there are 
people who could be good engineers if only they learned how to 
work systematically.

The trouble, I think, is that people are not really taught to do this 
kind of thinking in programming. Books and college courses 
describe the syntax of programming languages and the general 
picture but leave a void between these layers. People may learn 
this on their own from examples and practice. But the examples 
and practice tend to train the intuition, and people are left to 
figure out the systematic approach on their own, and they either 
figure it out or they don’t. It looks like quite a few of the gener-
ally smart people either don’t or take a long time to develop it. 
Yes, there are descriptions of how a problem has to be divided 
into the smaller parts, but they tend to miss the backtracking 
and the iterative redesign, making it look like intuition produces 
the right subdivision in one go. Not to say that there is anything 

wrong with intuition, it’s my favorite thing, but the systematic 
approach allows you to stretch a good deal beyond the immediate 
reach of intuition, and to strengthen future intuition.

I’ve recently seen a question on Quora—”As you gain more 
experience, do you still write code that works but you don’t 
know why?”—and this I think is exactly the difference between 
the intuitive and systematic solutions. Intuition might give you 
some code that works, or that possibly doesn’t. The systematic 
approach lets you verify that what the intuition provided actually 
does what it’s supposed to do and provides the stepping stones 
for the intuition to go further, both to fix what is going wrong and 
to produce more complex multi-leap designs.

Programming is not the only area with this kind of teaching 
problem. I think math has the same issue. The way proofs of 
various theorems are taught is usually not how the authors origi-
nally discovered them. These proofs get edited and adjusted a lot 
to make them look easier to understand. But then the teaching 
aspect of how to create new proofs through systematic trial and 
error gets lost.

Teaching the Two Skills
So how would you teach it? The bicycle example suggests that 
there is probably a general transferable skill too, and this skill 
can be trained by puzzle games like the classic “The Incredible 
Machine,” where the goal is to build a Rube Goldberg contraption 
to accomplish the particular goal from a set of components. As in 
real life, the tasks there might include the extra components that 
look useful but don’t really work out, or provide multiple ways to 
reach the goal. This of course requires that you achieve only one 
exact goal, while in programming you have to solve a whole class 
of related goals that include the corner cases. But this still might 
be a good place to start.

Perhaps the way to do it for programming is by walking through 
the solutions of complex problems, showing step by step how you 
can try the different approaches, follow through their elements, 
try to resolve the observed issues, and use this newly gained 
experience to find easier approaches. There are books built 
around somewhat different but closely related ideas: Program-
ming Pearls and More Programming Pearls by Jon Bentley come 
to mind. The Practice of Programming by Brian Kernighan and 
Rob Pike, and, dare I say, my own The Practice of Parallel Pro-
gramming are other examples.

A Systematic Puzzle
To give an example of what I think needs to be taught, I’ve 
decided to create a programming puzzle based on another, sim-
pler interview problem that I used to use. The required insights 
in that problem are much smaller; it’s much more about the 
systematic approach.
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Since blindly remembering the solution to the problem is of no 
use to anyone, I want instead to show how better solutions can 
be born out of bad solutions. And it’s not just brute force versus 
some ingenious algorithm. All the solutions to this problem are 
essentially brute force, but some of them are better and simpler 
than the others. 

I’m going to start with the worst solution I can think of and then 
gradually show the better solutions. The puzzle for you, the reader, 
is to use the difficulties in these solutions as hints towards better 
solutions that would take you as far ahead as possible.

I wrote those solutions as I would do at an interview, without 
actually compiling and running the code on a computer, so they 
might contain bugs, but hopefully not many bad ones.

The problem is to write a matcher for the very simple regular 
expressions, that include only the operators “.” (any character) 
and “*” (zero or more repetitions of the previous character). The 
“*” is greedy, consuming as many matching characters as possi-
ble. There is no escape character like backslash. The string must 
match completely, as if the regexp implicitly had anchors like “^” 
at the front and “$” at the end. And let’s say that the string is in 
plain ASCII, so we don’t need to bother with the wide characters.

The function declaration in plain C will be:

int match(const char *pattern, const char *text);

It will return 1 if the string matched the pattern and 0 if it didn’t.

Let’s start with the analysis. The first thing to notice about this 
problem is that some patterns in it are impossible to match. The 
“a*a” will never match anything because the greedy “a*” will 
consume all the “a”s, and the second “a” will never encounter a 
match. The same goes for “.*” followed by anything, because “.*” 
will consume everything to the end of the string.

The first solution proceeds in the most complicated way I can 
think of. You might have attended a college course on parsing that 
talked about the finite machine matcher for regular expressions. 
The most unsophisticated approach is to push this way blindly.

Before doing a finite machine, you’d really need to think of the 
state machine graphs you would be building for various regu-
lar expressions. I really could not get this code right until I had 
drawn the graphs.

Here are some examples: “a*b” is shown in Figure 1.

“.*b” (with “any” meaning “everything but \0”) is shown in Figure 
2. This graph would never match anything, because it would 
never get into the final state (X). The FSM for “a*b*c” is shown in 
Figure 3, and “a*.*” in Figure 4.

Each state node of the finite machine graph would be repre-
sented by a dynamically allocated structure that has a plain 
array of the possible exits from that node, one per each character, 
and a flag showing that this node is final.

struct Node {

    Node *exits[256];

    int final;

};

The \0 could be handled as one of the normal exits, pointing 
to the final node. But there really isn’t much point in having a 
separate node just to carry the final flag. It’s easier to just set the 
final flag directly on a node that accepts an \0.

The graphs then become simpler, the graph in Figure 4 becoming 
as shown in Figure 5. 

Since we’re dynamically allocating the nodes, we need to take care 
of freeing them too. And that means taking care of keeping track 
of them while we use them. The inter-node links are no good for 
this purpose, since they branch multiple ways, and some graphs 
might even have some disconnected parts. But we can notice that 
there would always be as many nodes as elements (plain letters or 
starred letters) in the pattern, plus one. So we can just allocate the 
nodes as a single array and then free them as a single array.

This is a good time to stop and think about the question, is there 
really any point in bothering with the nodes? They will be strung 
generally sequentially, just like the original pattern. So why not 
just use the pattern directly? Indeed, this is a simpler approach. 
Time to change gears.

Figure 1: Finite state machine (FSM) for matching “a*b”

Figure 2: FSM for matching “.*b”
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Matching directly by pattern also has harder and easier versions. 
Again, let’s start with the harder version.

The loop will be working in very much the same way as the 
matching loop in the parsed-pattern version (as some textbooks 
would teach) but will read the pattern directly from the string as 
it goes along.

Before writing the code, let’s talk through the logic: as we read 
the next character of the text, we have a pointer to the next pat-
tern element to parse. We parse the pattern element and match 
the text character to it. If the element is \0, we accept \0 and 
stop. If the element is starred and the character matches, we 
return the pattern back to the original position. If the element is 
starred and the character doesn’t match, we try the next element 
from the pattern. If the element is ‘.’, we accept everything but \0. 
If the element is another character, we accept it literally.

bool match(const char *pattern, const char *text) {

    char last_pattern = ‘\0’;

    const char *p = pattern;

    for (const char *t = text; ; t++) {

        while (true) { // for starred sequences in pattern

            char element = *p++;

            if (element == ‘\0’) {

                return *t == ‘\0’;

            }

            if (*p == ‘*’) {

                if (element == ‘.’ && *t != ‘\0’

                || *t == element) { // matched

                    --p; // return to the start of current element

                    break;

                }

                // consume the star before reading the next element

                p++;

                continue;

            }

            if (element == ‘.’ && *t == ‘\0’

            || *t != element) { // didn’t match

                return false;

            }

            break;

        }

    }

    return false; // never reached

}

The inner loop is necessary to handle the sequences of multiple 
starred characters, such as “a*b*c” matching the “c”. If we don’t 
do the loop, “c” would get compared to “a”, and the match will be 
considered failed.

The outer “for” loop here is interesting, without an exit condi-
tion. This is because the ‘\0’ is matched inside the inner loop 
mostly in the same way as the normal characters: (*t != ele-

ment) handles the unexpected ‘\0’ in the same way as any other 
unexpected character. It’s easy to start writing the loop with:

for (const char *t = text; *t != ‘\0’; t++)  {

    ...

}

return element == ‘\0’;

But that would miss the situation where the pattern ends with a 
sequence of starred characters. This is something that is easy to 
miss, but it would be detected by a careful code analysis, a good 
unit test, or by a helpful interviewer. Then the code would need 
to be fixed by either bringing the handling of ‘\0’ entirely into the 
inner loop as I have done here (there is no reason to be afraid of 
the loops that look nonstandard, they can be quite useful) or by 
moving the inner loop into a function and calling it again after 
the main loop (then the function would still have to handle ‘\0’ as 
the next character of the text). The handling of ‘\0’ in the inner 
loop is not that easy to get right; I got it working right with ‘.’ only 
on the second attempt.

Figure 3: FSM for matching “a*b*c” Figure 4: FSM for matching  “a*.*”
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The Value in Being Systematic
This is a good place to talk about how to fix a bug after it has 
been found. I’ve seen the people that are strong on intuition but 
not systematic start semi-randomly changing the spots that 
look vaguely plausible. I’ve literally seen a candidate do three 
wrong changes in a row, hoping every time that the issue will get 
resolved. This is the situation where thinking things through 
systematically really shines. Good questions to start with are, 
what do these values mean and how did their handling in the 
code diverge from this meaning? And then you can proceed to 
“Where did it happen?” and fix the bug. The same candidate, 
after I asked these questions, was able to find and resolve the  
bug on the first attempt in just a few seconds.

Returning to this solution, the problem that it solves is under-
specified. It doesn’t tell you what to do in case the pattern is 
invalid, either starting with a star or containing multiple stars 
in a row. This is by design, to see if the candidate will notice 
this and ask for a clarification, and my answer to this clarifica-
tion question is, “What do you think is reasonable?” to see if the 
candidate is able to enumerate the pros and cons of different 
approaches: either return some error indication or handle it 
silently in some reasonable way. 

I’ve made this solution do the silent handling, simply because 
it’s easier to do in a small code snippet: it treats the “wrong” 
stars as literals. From the caller’s standpoint it might be either 
good or bad: the good is that the caller won’t have to handle the 
errors, and the bad is that the author of the incorrect pattern 
might be surprised by its effect and might never find out that it’s 
incorrect. 

But even this version is not great. The nested loops and re-parsing 
the pattern on each text character are convoluted; I got it right 
only on the second attempt. When the going gets hard, it’s usually 
a good indication that a different approach should be tried.

What should the other approach be? It’s up to your intuition to 
supply the ideas, for that’s its line of work. This is why you need 
both intuition and systematics; one is not enough.

For this problem, it’s much easier to go the other way around, 
iterating through the pattern and consuming the matching char-
acters from the text:

bool match(const char *pattern, const char *text) {

    const char *t = text;

    for (const char *p = pattern; *p != 0; p++) {

        if (p[1] == ‘*’) {

            if (*p == ‘.’) {

                while (*t)

                    ++t;

            } else {

                while (*t == *p)

                    ++t;

            }

            ++p; // adjust to consume the star

        } else if (*p == ‘.’) {

            if (*t++ == 0)

                return false;

        } else {

            if (*t++ != *p)

                return false;

        }

    }

    return *t == 0;

}

This version is much smaller and much easier to follow through. 
It explicitly selects by the type of each pattern element, so each 
one of them has its own code fragment, which avoids spreading 
its logic through the code and mixing it with the logic of the other 
elements. And all this makes the creation of bugs more difficult.

This whole problem is not very imaginative and can be solved 
well by just hammering out the code systematically. But this 
nice, short version contains an item that requires at least a little 
leap of intuition: it looks ahead by two characters, not just one, to 
detect whether the current pattern character is followed by a star. 
It’s not something that’s usually taught, but it makes the code a 
lot easier. As I like to say, it’s not people for the programming pat-
terns, it’s programming patterns for the people. Don’t be afraid to 
step away from a taught pattern if it makes your code better.

This version also has a theoretical foundation: it’s a recursive-
descent LL(1) parser of the text, except that the regular expres-
sions define a non-recursive language, so there is no recursion. 
It really is perfectly per textbook; you’ve just got to pick the right 
textbook! It also parses, not a fixed grammar, but one given in the 
regular expression pattern. So it’s an LL(2) parser of the pattern, 
with the nested LL(1) parsers of the matching substrings in 
the text. The 2 in LL(2) means that we’re looking ahead by two 
characters. The pattern can also be parsed by an LL(1) parser, 
but looking ahead by two characters makes it easier.

Figure 5: The improved FSM from Figure 4
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Conclusion
This is the version that came to mind almost right away when I 
first thought about this problem. But I can’t really say that it just 
popped into my mind out of nowhere. I do size up the different 
approaches in my mind intuitively and try the ones that look 
simpler first. It doesn’t mean that this first estimation is always 
right. Sometimes I go pretty deep with one approach before 
deciding to abandon it and apply the lessons learned to another 
approach. And sometimes this other approach ends up being 
even worse, but the lessons learned there help to get through the 
logjam of the first approach.

So if you start with poor approaches, you can still arrive at better 
ones by listening to the hints that the code gives to you as you 
write it. When you see an easier way to go, use it. You can also 
power through the difficult approaches systematically to the 
successful end, but that tends to be much more difficult than 
switching the approach to an easier one. Intuition and system-
atic logic working hand-in-hand can get you much farther than 
either one of them alone.



www.usenix.org  S P R I N G 20 19  VO L .  4 4 ,  N O.  1 35

MACHINE LEARNINGFrom Data Science to Production ML
Introducing USENIX OpML

N I S H A  T A L A G A L A ,  B H A R A T H  R A M S U N D A R ,  A N D  
S W A M I N A T H A N  S U N D A R A R A M A N

Nisha Talagala is co-founder, 
CTO/VP of Engineering at 
ParallelM, a startup focused on 
production machine learning. 
Nisha has more than 15 years 

of expertise in software, distributed systems, 
machine learning, persistent memory, and 
flash. Nisha earned her PhD at UC Berkeley 
on distributed systems research. Nisha holds 
63 patents in distributed systems, algorithms, 
networking, memory architecture, and 
performance. Nisha is a frequent speaker 
at both industry and academic conferences 
and serves on multiple technical conference 
steering and program committees. She is the 
Program co-chair for OpML ’19.  
nisha@gprof.com

Bharath Ramsundar did his PhD 
in computer science at Stanford 
University where he studied the 
application of deep-learning 
to problems in drug discovery. 

While there, he created the deepchem.io 
open-source drug discovery project and the 
moleculenet.ai benchmark suite. Bharath is 
the co-author of TensorFlow for Deep Learning: 
From Linear Regression to Reinforcement Learning 
and the forthcoming Deep Learning for the 
Life Sciences with O’Reilly Media. As a co-
founder of Computable, Bharath is focused on 
designing the decentralized protocols that will 
unlock data and AI to create the next stage of 
the Internet. bharath.ramsundar@gmail.com

Swaminathan (Swami) Sunda-
raraman is the Lead Architect 
of ParallelM, an early stage 
startup focused on production 
machine learning and deep 

learning. Swami was previously at Fusion-io, 
Inc. and Sandisk Corp. He holds a PhD from 
the University of Wisconsin-Madison.  
swaminathan.sundararaman@gmail.com

In this article we explain the challenges with deploying ML/DL models 
in production and how USENIX OpML can help bring participants for 
different disciplines to address the herculean task of safely managing 

the model life cycle in production.

Machine learning (ML) and its variants such as deep learning (DL) and reinforcement learn-
ing are starting to impact every commercial industry. The 2019 USENIX Conference on 
Operational Machine Learning (OpML ‘19), dedicated to operational machine learning and 
its variants, will focus on the full life cycle of deploying and managing ML into production. 
The goal of the conference is to help develop robust practices for scaling the management 
of models (i.e., artifact of learning from big data) throughout their life cycle. Through such 
practices, we can help organizations transition from manually hand-holding to automated 
management of ML models in production (i.e., ML version of the move in server operations 
from “pets to cattle” [9]).

Having engaged with hundreds of data scientists over the past few years, it was clear to 
us that while generating machine-learning models has become easier, moving them into 
production still remains challenging. It made us carefully think about the question, what is 
making machine learning more accessible on the one hand, but challenging for broad deploy-
ment on the other?

ML technologies have been around for many decades, with intermittent spikes of  activity 
and interest. In the last few years, however, ML and DL technologies have been proven to 
work effectively in real world use cases in many domains. This shift is driven by several 
factors:

◆◆ The Data: Devices from sensors to robots are generating increasing amounts of rich data 
(from simple value time series to images, sound, and video). While the data itself is valu-
able, its ultimate benefit to a business’s bottom line comes from the analytics that extract 
the insights hidden within. While simple data sets (such as streams of individual values) 
can be analyzed via database queries or complex event-processing techniques, the increas-
ing richness of data (multiple correlated mixed type streams, images, sound, video) requires 
more complex ML and DL approaches. The increased volumes of data also enable ML/DL 
algorithms to achieve peak efficiency.

◆◆ The Compute: The ubiquity of high performance commodity computing, driven by both 
massive core count increases in individual CPUs and low-cost cloud computing services, 
have made it possible to match data growth with similarly scalable ML and DL capabilities. 
Hardware innovations such as GPUs, custom FPGAs, and instruction-set support in mod-
ern CPUs have further improved ML algorithm performance, making it practical to train 
using massive data sets [1].

◆◆ The Algorithms: The availability of open source algorithms for ML and DL via libraries for 
analytic engines like Spark, TensorFlow, Caffe, NumPy, scikit-learn [2], just to name a few, 
now offers a massive range of algorithmic techniques for the data scientist sandbox. With 
open source, even the most state-of-the-art algorithms in research are frequently publicly 
available to test, tune, and use, nearly as soon as they are invented.
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These trends addressed the first issues impeding real-world ML 
(the data, the compute, and quality algorithmic implementations). 
The next problem was finding a data scientist to match the spe-
cific business problem and data set to a suitable algorithm. A lot 
has been written about the shortage of data scientists [3]. This 
issue, while real, has been actively addressed in the last several 
years with online data science courses, specialty programs 
in universities for data science, and tools that simplify model 
creation (the democratization of data science) [5]. The latest 
approach to mitigating this problem, AutoML [4], promises to 
automate the process of model creation and selection, making it 
even easier to improve the productivity of a single data scientist.

These trends have also helped generate lots of models. However, 
to be useful for any application, the model has to be deployed in 
production with its outputs (recommendations, classifications, 
etc.) connected to the application that needs it. Deploying, man-
aging, and optimizing ML/DL in production incurs additional 
challenges:

◆◆ Real-World Dynamism: Depending on use case, incoming 
data feeds can change dramatically, possibly beyond what was 
evaluated in the data scientist sandbox. This in turn affects pro-
duction ML behavior in ways that are hard to predict or detect 
via standard production means.

◆◆ Expertise Mismatch: On one side, IT operations administra-
tors are experts in deployment and management of software 
and services in production. On the other side, data scientists 
are experts in the algorithms and associated mathematics. 
Operating ML/DL in production requires the combined skills 
of both groups.

◆◆ Non-Intuitive Complexity: In contrast to other intuitive ana-
lytics like rule-based, relational database or pattern matching 
key-value-based systems (where the output can be predicted 
from the input values), the core of ML/DL algorithms are 
mathematical functions (i.e., models) whose data-dependent 
behavior is not intuitive to most humans.

◆◆ Reproducibility and Diagnostics Challenges: Since ML/DL 
algorithms can be probabilistic in nature, there is no consis-
tently “correct” result. For example, even for the same data 
input, many different outputs are possible depending on what 
recent training occurred and other factors (such as parameters 
used to train a model).

◆◆ Inherent Heterogeneity: Many classes of ML algorithms 
exist (e.g., machine learning, deep learning, reinforcement 
learning), and specialized analytic engines (Spark, TensorFlow, 
PyTorch, containers to train/serve models via Kubernetes) 
have emerged, each excelling at some subset [2]. Practical ML 
solutions frequently combine different algorithmic techniques, 
requiring the production deployment to leverage multiple 
engines. This makes the deployment process even more fragile 
than the current data ingestion and processing pipelines. This 
is uncommon in other application spaces. In databases, for 
example, standardizing on a single type of DB for a workflow 
can be a useful production norm.

The term Cambrian explosion has already been used in several 
contexts to describe the growth of AI [6, 7]. Within this trend, 
what we are seeing now is the explosion of models in the data sci-
entist sandbox, models that cannot be practically used until they 
are able to deliver on their promise in production. As the number 
of data scientists increases, as democratization and AutoML 
tools improve data science productivity, and as compute power 
grows making it easier to test new algorithms in sandbox, more 
and more models will be developed, each one awaiting the move 
into production use.

To help meet this challenge and support the growing community 
of ML researchers and engineers, data scientists, IT and DevOps 
engineers who are working to manage ML in production, several 
of us in industry have worked with USENIX to launch the first 
conference dedicated to Operational Machine Learning (OpML).

The goal of this conference is to bring the research and industry 
technical communities together to develop and bring to practice 
impactful research advances and cutting edge solutions to this 
problem. Unlike existing conferences and workshops, OpML 
will focus on “the final stage of deploying and managing ML into 
production and the subsequent continuous ML/DL lifecycle in 
production.” This covers deployment, automation, orchestration, 
monitoring, diagnostics, compliance, governance, and the chal-
lenges of safely operating and optimizing production systems 
running ML/DL/Advanced algorithms on live data.

OpML will also provide several benefits for industry and aca-
demic participants (please see CFP for details in [8]). Submis-
sions were due on February 15, 2019. 

We invite you to participate in the inaugural OpML conference 
that will be held on May 20, 2019, in Santa Clara, CA, USA. 
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This column is being written in December, which ends another year, 
which brings end of year holiday plans, deadlines (like the one for this 
column), and a chance to challenge yourself to do something different 

before the year is fully out and done.

For my part, over the last few years I’ve had a great time participating in the annual Advent 
of Code (adventofcode.com), which is a great way to take a break from work where you have to 
solve problems on a deadline, and... well, solve problems on a different deadline. But for fun.

It’s a great opportunity to learn more about your preferred language, to try out a new  language, 
or revisit how things work in a language you haven’t used in a while. You can also compare 
notes with others and see how different languages can give you the tools you need (or how 
hard it is to build them from scratch if that’s more to your taste).

For anyone who hasn’t participated in one of these online advent calendars, this one involves 
creating a puzzle around Santa, elves, and a story arc adventure that you are on that gets 
Santa closer to delivering presents for all the good girls and boys. Each day you get a story, a 
problem description, an example of the data and what the results will be of the problem being 
presented (yes, tests), and a data set that’s created for you so that your answer shouldn’t work 
for anyone else (though the solutions should, of course). The answers are usually an integer, 
summing up all the work you’ve done. And you’re rate limited to one answer per minute, so 
you can’t just brute force the answer.

The problems are very much programming puzzler/interview type questions designed to let 
you stretch your computer science legs—data structures, complexity, etc. without having any 
serious stakes—and if you complete the puzzle you move on; it’s all just for a good time. The 
problems are introduced day-by-day, but if you haven’t done the challenge already, you can 
always visit the site as you read this column and participate if you feel like it.

What I enjoy about this is that it is so well executed. Very few programming interviews 
that I’ve seen are as well thought out as the Advent of Code, which speaks volumes for the 
organizers. The organizers have some themes—a variety of problems that require some 
knowledge that may be common in some jobs and problem domains but which in others can 
be novel and outside of the comfort zone.

Big-O Traps
One of the things you notice quickly is that solving the problems naively will lead you to qua-
dratic solutions that will take forever with the size of the input you’re provided. So one of the 
fun parts is getting to think about each particular problem, to think about the big-O charac-
teristics of your code, and realizing your input is large enough to cause your computer to spin 
and struggle uselessly until the heat death of the universe.

These problems often run over familiar themes—some will involve iterating over lists, find-
ing your way around other data structures forward and backward, over and over. As you may 
imagine, if you start with a little bit of bookkeeping, that sometimes turns into a lot of book-
keeping, which is a lot of hassle. When that starts to happen, it’s helpful to step back. When 
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you can, sometimes stepping back includes treating the data like 
streams. In Python this basically means iterators and generators 
are your friends who take away the tedium. What’s interesting 
and disappointing about this great and fun approach is how as 
you get more sophisticated with using iterators, you can some-
times get subtle and surprising behaviors, which aren’t particu-
larly well-documented (at least as far as I’ve seen).

Iterator Side Effects
With all that said, this year’s Advent of Code had me encounter 
one of these side effects, one that I found quite surprising. It is 
simple, but I do think that in real-world usage it would cause 
hard-to-find bugs.

The specific behavior is in the zip() built-in function. If you’ve 
never used it before, it’s sometimes easier to think of as syntac-
tic sugar sprinkled over having to assign multiple variables in a 
loop. It can turn the following somewhat tedious code:

def odious(l1, l2, l3, l4, l5):

    “””each argument is a list”””

    min_len = min(map(len, (l1, l2, l3, l4, l5,)))

    for iteration in range(min_len):

        v1 = l1[iteration]

        v2 = l2[iteration]

        v3 = l3[iteration]

        v4 = l4[iteration]

        v5 = l5[iteration]

        print(f”{v1}, {v2}, {v3}, {v4}, {v5}”)

into something much simpler. This prints each element of the 
lists in the arguments as a group—first, all of the first elements, 
then all of the second elements, etc. The short, zip()-ified way of 
doing this looks like:

def melodious(l1, l2, l3, l4, l5):

    for v1, v2, v3, v4, v5 in zip(l1, l2, l3, l4, l5):

        print(f”{v1}, {v2}, {v3}, {v4}, {v5}”)

Which is still clear and easy to understand. Since zip can work 
with any number of iterables, it’s pretty flexible. It’s been in 
Python since 2.0, and there’s a lot more to read about it in PEP 
201 at https://www.python.org/dev/peps/pep-0201/.

I also found the behavior of iterators interesting. Iterators are 
thoroughly ingrained in Python and feel very natural to use. 
However, they have a very specific definition, and if you want 
to know exactly what that is, I encourage you to read PEP 234: 
https://www.python.org/dev/peps/pep-0234/. 

As I mentioned above, iterators allow us as Python program-
mers to have a potentially lazy stream of items, with only a few 
tradeoffs. On the upside, you can have infinite input that you can 
iterate over easily with for or next(); you can compose them with 
comprehensions and with really cool functions available in the 

itertools module! And iterators have led to generators with yield 
and generator comprehensions. A lot has been written in these 
pages about iterators, generators, co-routines, etc., so I will refer 
anyone interested to the excellent material in past ;login: issues, 
which have gone into a lot of depth and breadth on the matter.

The downside of the tradeoff for how excellent iterators are is 
that we lose some of the flexibility of having a list or a special 
type or class whose position and indexability puts it entirely 
under our control. For an iterator to be useful, we must know 
that we’re going to use it from beginning to end in a linear fash-
ion—no rewinding, arbitrary glances at indexes, etc. In so many 
cases this is not a limitation but is specifically and exactly what 
we want, which is why iterators are so fantastic.

So, with that said, let me talk about the interesting problem  
that I ran into. The code involved looks something like this (in 
Python 3.7):

import itertools

def walk_forward(char_iter):

    “””Consume input_iter, which is an iterator that provides 

    one character at a time. When two characters match the 

    filter criteria, remove them both and break so that the 

    data can be walked backward to see if the new state has 

    affected the keep_list.

    returns a list of characters that we want to keep

    “””

    first_char = next(char_iter)

    keep_list = list()

    for second_char in char_iter:

        result = keep_or_remove(first_char, second_char)

        if not result:

            # Don’t put the result into the keep list

            return keep_list

        keep_list.append(first_char)

        first_char = second_char

    return keep_list

def walk_backward(keep_list, char_iter):

    “””A match has been found, and now we want to know if the 

    combination of the last letter in the keep list, and the 

    first letter in the char_iter could start eliminating each 

    other. Essentially this works from the middle out as long 

    as the characters would be eliminated. Once we find a pair 

    that are keepers, we can exit from here and resume walking 

    forward.

    Returns a list of characters - those that we still want to 

    keep.

    “””

    #Walk the keep_list backward

    first_gen = (x for x in keep_list[-1::-1])  

https://www.python.org/dev/peps/pep-0201/
https://www.python.org/dev/peps/pep-0234/
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    for first, second in zip(first_gen, char_iter):

        result = keep_or_remove(first, second)

        # Return the results in the same order we got them

        if result:  

            return list(itertools.chain([second, first], \

             first_gen])[-1::-1]

This works fine—with a main() function that walks forward 
until there is some elimination, then walks backward, then 
forward, and so on. This should basically work to eliminate pairs 
of letters that match the keep_or_remove() function, which I 
haven’t included here.

The hidden problem in walk_backward is that the use of zip will 
always try to consume the first element from each iterator. So 
when the keep_list is shorter than the remaining contents of 
char_iter (as it is likely to be towards the beginning), every-
thing is fine. However, if it’s the second iterator that becomes 
exhausted, as may happen, then zip will have already consumed 
from the first_gen, and you can’t put it back. So, in this case, 
you may have lost data. It’s only one datapoint, which is exactly 
enough to make people very upset in the right circumstances, 
that is, outside the world of fun puzzles.

Now that we’ve looked at this with some more context, let’s look 
at a simpler reproducer case:

>>> a = (x for x in ‘abcde’)

>>> for first, second in zip(a, ()):

...    print(f”{first}, {second}”)

... 

>>> rest = list(a)

>>> print(f”{rest}”)

[‘b’, ‘c’, ‘d’, ‘e’]

Working Around the Problem
Once I understood the issue, it bothered me because working 
around it made the program harder to read since the obvious 
workaround is tedious. Tedious solutions beg for better ones, 
especially when they’re for fun. However, in this case it also 
led me to wonder why there isn’t already a better solution, and 
maybe a bit about whether my idea of a better solution was in fact 
better at all.

If this were a problem that a lot of people cared about, a PEP on it 
would probably have appeared. I expect that since this is a small 
wart in one tiny part of the language, most people with work 
to do would solve this by avoiding zip, or by not using iterators, 
relying instead on lists or similar types with known, queryable 
lengths and ensuring that these lengths were uniform for each 
argument to zip, which is the sweet spot for a safe and  reliable 
zip. This thought makes me sad because it would be nice if 
Python offered a better way to handle this.

So let’s think about it a bit more and see what comes out of it.

One simple approach to fixing this problem would be to make a 
more robust iterator, and doing that is pretty easy. However, to 
be useful it would require the iterator protocol to be more robust. 
For example, you could envision a new class that allows some 
interrogation, like peeking or, maybe a bit less ambitious, the 
ability to ask whether it’s primed (by which I mean it still may 
have more values in the future) or stopped (StopIteration has 
been raised) without losing a value. 

Unfortunately, these aren’t small self-contained decisions. A 
fundamental thing like altering the behavior of the iterator pro-
tocol would probably, in the worst case, mean that every battery-
included function or expression that consumes an iterator and 
handles StopIteration would have to know that there is this new 
capability, which is now a lot of work with a lot of sharp edges 
ready to poke you.

So let’s just start with the easy part for now, and we can explore 
the harder parts later.

Taking advantage of the iterator protocol, let’s start with a naive 
first try—we’ll write an iterator that lets us ask whether there’s 
more data while otherwise behaving like a regular iterator.

class SnitchIterator(object):

    def __next__(self):

        while True:

            return next(self.iterator)

    def __iter__(self):

        return self

    def __init__(self, src):

        “””Using a source iterator, list, etc. create a new 

        iterator that lets you non-destructively ask if there 

        is a next element or not”””

        self.iterator = iter(src)

    def more(self):

        try:

            res = next(self)

            if res:

                self.iterator = itertools.chain([res], \

                 self.iterator)

                return True

        except StopIteration:

            return False

Now we can ask “Is there more to this?” and get an answer. But 
to solve the earlier problem, we’ll also need a slightly different 
zip function to take advantage of this new feature, or else we’re 
at a dead end. The special-case zip, or snitch_zip, would look 
like this:
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def snitch_zip(*args):

    “””Iterables must be a container, not an iterator. We must 

    be able to go through them more than one time”””

    if False in [‘__iter__’ in dir(it) for it in args]:

        raise TypeError(‘All variables in *args must have \

         __iter__’)

    while True:

        for series in args:

            if not series.more():

                raise StopIteration

        yield [next(series) for series in args]

You can see that creating a modified zip is pretty easy. However, 
this becomes a special case, which detracts from the simplicity 
of the iterator model, is going to perform worse than the built-in 
zip, and will probably have issues that we will cut ourselves on. 
There’s nothing wrong with doing this for yourself when the use 
is appropriate, but it feels like something that, to be useful, would 
be better if it were in the language or at least in the standard 
library.

Doing something like this in the core language might have some 
niche usefulness but would come with the potential to break a 
lot of existing code, or at least make that code confusing. Some 
languages have macros and other practices to enable extending 
existing functionality for experimentation, and Python has at 
least one project that does this as well. If I can, I’ll see if I can get 
zip to work with the SnitchIterator and discuss that next time.

Governance Follow-Up
Also, as a follow-up to the last column, the vote for the new gov-
ernance model for Python has been counted, and PEP 8016, the 
steering council model, has been accepted: https://www.python 
.org/dev/peps/pep-8016/.

This means that the BDFL model will be replaced by a five-
person elected steering committee with the goal of taking care 
of the language, and they will be subject to oversight by the core 
team members—those who actively contribute to the community.

You can see the results of the actual vote at https://discuss 
.python.org/t/python-governance-vote-december-2018-results 
/546.

Again, I encourage anyone interested to follow this process 
closely. 

Happy New Year!

https://www.python.org/dev/peps/pep-8016/
https://www.python.org/dev/peps/pep-8016/
https://discuss.python.org/t/python-governance-vote-december-2018-results/546
https://discuss.python.org/t/python-governance-vote-december-2018-results/546
https://discuss.python.org/t/python-governance-vote-december-2018-results/546
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Practical Perl Tools
So Long and Thanks for All the Fish

D A V I D  N .  B L A N K - E D E L M A N

A fter 12 continuous years of writing this column with only one missed 
month, it is time for this column to shuffle off this mortal coil and 
leave room in ;login: for a different column. 

I am so, so grateful to:

◆◆ You, the reader. It’s been a thrill to be able to talk with you each issue about something 
i nteresting in the land of Perl.

◆◆ USENIX, who gave me the challenge to stretch myself each issue to find that interesting 
topic.

◆◆ The countless authors and contributors in the Perl world that I’ve had the pleasure of 
 writing about. 

You may (or may not) be wondering: just how many Practical Perl Tools columns have been 
published in that 12-year span? I know I was. I thought it might be fitting to show you one last 
Perl program that I wrote to help me find all of the previous columns and also answer this 
question. Ready for one last dance?

For this code, we return to an old friend that has appeared in this column before, 
WWW::Mechanize. This module makes it easy to fetch web pages and parse them for specific 
links. The first part of the code sets up where we are going to pull the information from and 
grabs the first page.

use strict;

use WWW::Mechanize;

use open qw(:std :utf8); # quash warnings due to UTF-8 chars

# where are the issues found?

my $start = ‘https://www.usenix.org/publications/login’;

# for finding my articles

my $name  = ‘blank-edelman|practical-perl-tools’; 

my $mech  = WWW::Mechanize->new;

# fetch the issues page

$mech->get( $start );

That page is both a listing of all of the issues and the root for all of the subsequent pages we 
will want to fetch. In the code we’re going to see, we are careful to only retrieve URLs that 
start with this prefix.

Now let’s find all of the issues we will want to check for an article:

David has over 30 years of 
experience in the systems 
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field in large multiplatform 
environments. He is the 

curator/editor of the O’Reilly Book Seeking 
SRE: Conversations on Running Production 
Systems at Scale and author of the O’Reilly 
Otter Book (Automating Systems Administration 
with Perl). He is a co-founder of the wildly 
popular SREcon conferences hosted globally by 
USENIX. David currently works for Microsoft 
as a senior cloud advocate focusing on site 
reliability engineering.
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 my @issues = $mech->find_all_links(

  tag => “a”,

  url_abs_regex => 

     qr/$start\/[a-z-]+20(0[6-9]|1[0-8])/,

     text_regex => qr/.+/,

 );

The find_all_links() method is doing all of the heavy lifting, but 
we should explain the arguments it is receiving. The “tag” argu-
ment is pretty easy to guess: we’re only looking for the anchor 
HTML tag, things of the form <a href=‘something’>text</a>. 
The next two arguments are a little more obtuse.  

The first, url_abs_regex, is a regular expression meant to only 
find certain links on the page. It serves two purposes in this 
case: only select links that begin with $start, and also limit 
which years will be selected. I happen to know I began writing 
the column in 2006, so it only finds 2006–2009 and 2010–2018.

The text_regex deals with a quirk in the source of the issues 
page. Each issue actually has two anchor tabs, one for the picture 
of the cover, the second is the link for the text name (e.g., “Sum-
mer”). This regex makes sure we only grab one of the two, the 
one that has any characters in the text portion of the URL. This 
means we choose:

     <a href=“/publications/login/spring2018”>Spring</a>

instead of:

       <a href=“/publications/login/spring2018”><img 
src=”https://www.usenix.org/sites/default/files/styles/login 
_thumbnail/public/login/covers/1801_login_cover_170x221 
.png?itok=VBVKlmFO” width=”100px” height=”130” alt=”” /></a>

The end result of the call to find_all_links is a list of 
WWW::Mechanize::Link objects that will point to all of the possible 
issues we’ll want to scan for this column. 

Now let’s iterate over all of the issue links we found:

my $issue_count = 0;

foreach my $issue (@issues){

 $mech->get($issue->url_abs());

 my $article_link = $mech->find_link(

  url_regex=>qr/$name/,

 );

 if (defined $article_link){

  print  $article_link->text() . 

     “:\n” .  

     $article_link->url_abs(),”\n\n”;

     $issue_count++;

 }

}

print “$issue_count issues in total!\n”;

For each issue link we have, we fetch the contents of that link, 
then look for links in that page which could be my column. If we 
find one, we print the name of the column and its URL. 

It would be pretty simple to grab the actual PDF of the column at 
this point if we wanted to create an archive of the content. This 
would consist of another get(), find_link() to locate the PDF on 
the page, get() that URL, and finally a call to save_content() 
to write it to a file. Permit me one last “exercise for the reader” if 
you will.

The output of our code looks like this:

Practical Perl Tools: Top of the Charts:

https://www.usenix.org/publications/login/spring2018 

/blank-edelman

Practical Perl Tools: It’s a Relationship Thing:

https://www.usenix.org/publications/login/summer2018 

/blank-edelman

Practical Perl Tools: GraphQL Is Pretty Good Anyway:

https://www.usenix.org/publications/login/fall-2018 

-vol-43-no-2/blank-edelman

Practical Perl Tools: Off the Charts:

https://www.usenix.org/publications/login/spring2017 

/practical-perl-tools-charts

Practical Perl Tools: Perl on a Plane:

https://www.usenix.org/publications/login/summer2017 

/blank-edelman

...

66 issues in total!

And there’s the answer. Thank you, dear reader, for being with 
me for 66 columns. 

Take care.



44   S P R I N G 20 19  VO L .  4 4 ,  N O.  1  www.usenix.org

COLUMNS

Executing Other Programs in Go
C H R I S  ( M A C )  M C E N I R Y

If you have come to the Go world from bash or another shell language, one 
of the most critical tasks that you will be trying to replicate is calling out 
to other programs. Go has mechanisms in the standard library to accom-

plish this—the os/exec library.

When running an external program, you have to decide how to interact with this. These 
interactions tend to fall into several patterns:

1. Fire and Wait: Run another program, send its output to the terminal, and wait for it to finish.

2. Fire and Forget: Run another program, send its output to the terminal, and do not wait for it.

3. Pipe In: Feed data into the program.

4. Check Out: Check the output or exit code of the program.

5. Replace: Perform some setup, and then replace the current process with the other program.

6. Interact: Start another program and interact back and forth with it.

Each of these patterns is a combination of:

1. What to do with input for the other program?

2. What to do with the other program’s output?

3. Do we need to block until the other program is done or not?

In this article, we’re going to examine each of these interactions in turn with a focus on 
which patterns they use.

Note: These examples are very UNIX and bash focused. As such, the examples will only work 
on limited environments.

The code for these examples can be found at https://github.com/cmceniry/login/ in the 
exec directory. Each example is its own appropriately named subdirectory so that it can be 
executed directly with go run $EXAMPLE.

Fire and Wait
This is the simplest interaction with another process. In this pattern, the input and output 
are of little concern, but we do want to wait until the other program is complete. Its profile 
looks like:

1. Input: supply none (attaches automatically to /dev/null or equivalent)

2. Output: provide back to the attached terminal

3. Block till completion: yes

We begin much like any other Go program—the package declaration, imports, and our main 
func: the main library to include here is the standard library’s os and os/exec components.

Chris (Mac) McEniry is a 
practicing sysadmin responsible 
for running a large e-commerce 
and gaming service. He’s been 
working and developing in 

an operational capacity for 15 years. In his 
free time, he builds tools and thinks about 
efficiency. cmceniry@mit.edu
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firenwait.go: setup.

    package main

    import (

        “os”

        “os/exec”

    )

    func main() {

To begin with the meat of our program, we first invoke the  
exec.Command func. This accepts the invocation of the other 
program as arguments. Go performs standard PATH resolution to 
find the program by name, but in our case, we’re going to invoke 
the /bin/ls command. In addition, we pass exec.Command any 
arguments. For this example, we just want to list out the current 
directory’s outputs.

As a result, we receive back an *exec.Cmd struct which will 
handle all interactions with our called program.

firenwait.go: command.

        c := exec.Command(“/bin/ls”, “.”)

Since we want to display the output of the ls command, we need 
to connect the output of that command with our display. This is 
done by associating the Stdout member of our *exec.Cmd with 
the main Stdout from our current program. The main Stdout is 
available from the main os package.

Note: Stdout, and its accompanying Stderr for error output, is 
an io.Writer interface. Input is covered under Stdin, which is an 
io.Reader interface. If they are not specified by setting Stdout or 
Stdin, they default to nil and will be connected to the /dev 

/null equivalent. We’ll explore using other items that satisfy the 
Reader/Writer interfaces later.

firenwait.go: connectoutput.

        c.Stdout = os.Stdout

With all of the initialization complete, we can Run our pro-
gram. Run will block until the child process completes or fails. 
It returns an error if it is unable to run the other program or if 
the other program fails during execution (gets a non-zero exit 
code). For the example case, we panic for that, or exit normally 
otherwise.

firenwait.go: run.

        err := c.Run()

        if err != nil {

            panic(err)

        }

    }

We can now run our example with go run and see the current 
directory. In this example, we are using $GOPATH/src/github.

com/cmceniry/login as our starting point.

    $ go run exec/firenwait/firenwait.go

    README.md   exec        gofs        hardcode    useldap

Fire and Forget
The second example handles the case where we run a program but 
do not check for what happens to it. This follows the patterns for:

1. Input: supply none

2. Output: provide back to terminal

3. Block till completion: no

This is very similar to the first example. It includes the same 
libraries—plus time for the example. It creates the command the 
same way, and it associates the output in the same way. There 
are only two primary differences.

The first is the specific start of the command -- c.Start() 
instead of c.Run(). Start will begin the other process but will 
return as soon as it begins instead of waiting for it to complete.  
If there’s an issue starting the other process—e.g., command is 
not found—then it will show up as the returned error to Start.

firenforget.go: start.

        err := c.Start()

The second is to reap the child when it exits. Although we’re not 
doing anything with the output, we still need to handle the child 
when it exits. Otherwise, the child can hang around as a zombie 
process. It’s not complete fire and forget—only mostly fire and 
forget.

firenforget.go: wait.

        go func() {

            err := c.Wait()

            if err != nil {

                panic(err)

            }

        }()

The last part is that we hold our program from finishing up for a 
couple of seconds. We want to make sure that our program exits 
after the other program exits. In most cases, there would be some 
other work that would be going on, so we simulate that with just 
a simple Sleep:

firenforget.go: work.

        // Do some other work...

        time.Sleep(2 * time.Second)
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Pipe In
Our next example shows how to provide input to a program. 
As mentioned in the first example, Stdin is an io.Reader, so 
anything that satisfies that interface will work. In this example, 
we’ll use the patterns from our first example—only “Input” is 
different:

1. Input: supplied

2. Output: provide back to terminal

3. Block till completion: yes

The goal of this example is to have the calculating program dc 
perform some arithmetic for us. We’ll be using a strings.Reader 
to provide dc with data. With the following input, dc will calcu-
late the sum of 1 plus 2, print the output, and quit.

    1

    2

    +

    p

    q

The initialization is the same as previous programs, except for 
the addition of the strings package from the standard library.

As with the previous examples, we begin with getting an  
exec.Cmd struct. In this case, we invoke the dc command and 
supply no arguments.

pipein.go: command.

        c := exec.Command(“/usr/bin/dc”)

Next, we connect the inputs and outputs. strings.Reader imple-
ments the io.Reader interface, so we can use it to send a static 
string in as our input. We connect this with the Stdin of our 
command. As before, we connect Stdout of our command with 
the existing terminal Stdout.

pipein.go: io.

        c.Stdin = strings.NewReader(“1\n2\n+\np\nq\n”)

        c.Stdout = os.Stdout

And now we can run dc.

pipein.go: run.

        err := c.Run()

If all works out, we will see the sum as the result:

    $ go run exec/pipein/pipein.go

    3

Check Out
Normally, just running a command and expecting it to behave 
is wishful thinking. We can get some information if there’s an 
issue starting the command, or with Run we can see whether the 
program exited with a non-zero exit code. However, sometimes 
it’s important to know what that return code is or what the pro-
gram returns as output.

In those cases, we need to check the ProcessState after our 
command runs. ProcessState is a very generic struct which 
mainly indicates whether the process is still running or not. For 
detailed information, it has a Sys() member method that returns 
an empty interface whose concrete implementation is very much 
operating system dependent. On UNIX, Sys() returns a syscall 

.WaitStatus that includes the detailed exit code that we’re 
 looking for.

In this example, we’re going to run a command and check its exit 
code. It follows the pattern of:

1. Input: supply none

2. Output: discard except for the exit code

3. Block till completion: yes

The initialization is the same except that, in this case, we must 
include the syscall package of the standard library. We are even 
calling the command in the same way.

checkout.go: command.

        c := exec.Command(“/usr/bin/false”)

        err := c.Run()

Since we expect the failure to return an error, we must handle 
it. We check to see whether it is of the exec.ExitError type and 
handle that separately. Otherwise, we will panic on any other 
error, since that indicates something really unexpected hap-
pened, or exit normally on no error.

checkout.go: result.

        switch err.(type) {

        case *exec.ExitError:

            ws := c.ProcessState.Sys().(syscall.WaitStatus)

            fmt.Printf(“Exited %d\n”, ws.ExitStatus())

        case nil:

            fmt.Printf(“Exited normally\n”)

        default:

            panic(err)

        }

If all goes well, we can see the expected result of an exit code of 1:

    $ go run exec/checkout/checkout.go

    Exited 1
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You can see alternate behaviors by changing the command to 
execute. Try:

◆◆ /usr/bin/true

◆◆ /usr/bin/notfound

Replace
In the Replace interaction, we are largely using the Go program 
as a wrapper. The wrapper will perform some setup and then 
transfer control over to another program. Some examples of use-
ful setups:

◆◆ Set environment variables—configuration parameters

◆◆ Set up file-system structures—working directory, lock files, etc.

◆◆ Check other dependencies—backend database or service—be-
fore starting up the application process

This follows the patterns:

1. Input: handed off

2. Output: handed off

3. Block till completion: no, handed off

Since process replacement is extremely operating system depen-
dent, we’re going to use the syscall package in the standard 
library—same as the previous example. This makes the program 
setup match the last exercise.

From there, we need to make any modifications as part of our 
wrapping action. In this example, we’ll add a single environment 
variable.

replace.go: env.

        env := append(

            os.Environ(),

            “USENIXLOGIN=true”,

        )

From there, instead of using the higher level os/exec package, 
we use the syscall.Exec function directly. For this example, we 
want to spawn a shell with the manipulated environment.

replace.go: handoff.

        syscall.Exec(“/bin/bash”, []string{}, env)

For wrappers as simple as environment manipulations, that is 
the extent of it. We can now use the updated environment.

    $ echo $USENIXLOGIN

    $ go run exec/replace/replace.go

    bash$ echo $USENIXLOGIN

    true

Interact
The last example that we’re going to take a look at involves inter-
acting with the other program. This can be used if you need to 
programmatically interact with other command-line or termi-
nal-based tools. Typically, you will be looking for data or errors 
and responding back into them.

Since this is before the process has exited, we’re going to focus 
our time on manipulating the input and output of the process.

Specifically, in this example, we’re going to:

◆◆ start with the letter “a”,

◆◆ feed it into cat,

◆◆ read the output cat back out,

◆◆ append “b” to the output,

◆◆ feed that back into the same cat process, and

◆◆ repeat for “c”, “d”, and “e”.

Each time through, we’re going to build on the letters that have 
already been supplied, unless we’re finally presented with the 
full string “abcde”.

So far, we’ve been working with the io.Reader and io.Writer 
interfaces of Stdin and Stdout. To be able to provide the continu-
ous feeds, Go provides a way to get pipes for each of these: (*Cmd) 
StdinPipe() and (*Cmd) StdoutPipe(). We’re going to use these 
in this example to aid us.

For the start of our main section, we need to initialize our data 
and our command.

interact.go: vars.

        feed := []string{“a”, “b”, “c”, “d”, “e”, “”}

        c := exec.Command(“/bin/cat”)

After that, we grab the pipes for Stdin and Stdout.

interact.go: stdin,stdout.

        cin, err := c.StdinPipe()

        cout, err := c.StdoutPipe()

We’re going to rely on the bufio package of the standard library 
to more easily support the line and string manipulation that 
works well with cat. To do so, we need to wrap our io.Reader and 
io.Writer with bufio.Scanner and bufio.Writer, respectively.

interact.go: buffer.

        bin := bufio.NewWriter(cin)

        bout := bufio.NewScanner(cout)

With all of the prep work out of the way, we can get the ball roll-
ing with cat. To do so, we need to prime the input with a newline 
and start cat.
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interact.go: prime.

        bin.WriteString(“\n”)

        bin.Flush()

        c.Start()

Next, we’re going to iterate through our data. For each piece, we 
want to gather the cat output and then write back the output 
with our addition.

interact.go: addnprint.

        for _, addition := range feed {

            if !bout.Scan() {

                panic(“ended early”)

            }

            if bout.Text() != “” {

                fmt.Printf(“%s\n”, bout.Text())

            }

            bin.WriteString(bout.Text() + addition + “\n”)

            bin.Flush()

        }

At the end, we want to clean up. Much like with the Fire and For-
get example, we still need to wait for the other process to finish. 
However, since cat will not finish until its input is finished, we 
must first close that.

interact.go: cleanup.

        cin.Close()

        c.Wait()

Now, we can run our program much like the others, and we 
should see our five-letter output:

    $ go run exec/interact/interact.go

    a

    ab

    abc

    abcd

    abcde

Conclusion
One of the most basic functions of any script is to build on other 
programs. It is crucial to be able to both trigger other programs 
with various inputs and to respond to the results of those other 
programs. Although the invocation of these other programs has a 
few more steps in Go versus traditional scripting languages, Go 
allows you to more readily tap into a large corpus of software for 
processing inputs and outputs.

I hope this article has given you confidence to use Go when it is 
appropriate to handle these process interactions, and some ideas 
for how to readily do so.
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If you take any sort of guided tour of Paris, you are likely to hear refer-
ences to “The Great Flood of 1910,” wherein the Seine rose to a depth of 
eight meters above its normal height, buried the city in water, and shut 

down critical infrastructure like freshwater and heating-oil delivery for a 
month.

Rivers have backed up and flooded cities since time out of mind, but this flood makes for 
particularly great data-engineering metaphor fodder because the water never managed to 
overflow the tops of the quay walls lining the river itself. In other words, primary queue car-
dinality was within threshold.

Instead, the city was flooded from below by way of the recently enlarged and fortified sewer 
system that ran from every direction into the Seine. I suppose you could say that the hotpath 
bypassed the queue. Ironically, the infrastructure most prized by city planners, like train sta-
tions and hospitals, which had the best-engineered sewer access, were hit the worst. Their 
basement grates spewed water like the geysers of Yellowstone, rapidly flooding and spilling 
into the streets until the streets themselves became waterways.

In some areas of the city, firefighters used boats to rescue stranded people from second-story 
windows, as engineers constructed a city-wide series of wooden catwalks to enable residents 
to reach shelters and sources of food and fresh water.

Here’s the thing: if you’ve never read anything about the history of Paris, the city was sup-
posedly an untenable mess, until Napoleon III put it into the hands of a gentleman named 
Georges-Eugène Haussmann. “Baron Haussmann” would spend 20 years becoming the most 
unpopular guy in France as he demolished the medieval firetrap the city had been in order to 
singlehandedly re-architect it into the city we more or less recognize as Paris today.

The “grand rearchitecture” of the city included a herculean refactoring of the dense labyrinth 
of pipes, sewers, and tunnels beneath the streets into the most modern and robust sewer sys-
tem in the world. The system provided the city’s freshwater supply, steam heat, and oil pipes 
to power the streetlights, as it simultaneously swept away rainwater and waste. The sewers 
were such a source of pride that bureaucrats of the time used their own pet euphemisms to 
make them sound less like sewers and more like re-election.

Haussmann himself compared them to bodily organs. “The underground galleries,” he said, 
“are an organ of the great city, functioning like an organ of the human body, without seeing 
the light of day; clean and fresh water, light and heat circulate like the various fluids whose 
movement and maintenance serves the life of the body; the secretions are taken away mys-
teriously and don’t disturb the good functioning of the city and without spoiling its beautiful 
exterior.”

It’s fortunate Haussmann died before his miraculous “underground galleries” buried the 
city chest-deep in human waste and river water. Had he been there to see it, I’m sure it would 
have been the facepalm heard around the world. 
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I suspect that anyone who has seriously worked with data 
pipelines or distributed systems can probably relate; an over-
abundance of input can have extreme and unforeseen effects  
on asynchronous processing systems.

The Flow, Part Three
This is the third article in my series about our API-query data 
pipeline, so you, dear reader, could certainly be forgiven not 
knowing just what the heck I’m going on about. Let’s pause, 
therefore, for a moment of reflection. In Figure 1 you can see the 
pipeline in its entirety. 

In my last article, we spoke about the first data transformation, 
which takes place inside Fluentd, to change raw log data into 
structured JSON. We learned about how tags and message rout-
ing works inside Fluentd and about Fluentd’s buffered output 
plugins. I also mentioned that we were using the Prometheus 
plugin to extract some metrics from Fluentd and shared some 
cardinality graphs from our production monitoring system, 
Circonus.

Merely enabling Prometheus in your tdagent.conf, along with 
its outputmonitor plugin, gives you all the visibility you need to 
detect backups inside Fluentd of the sort tour guides in Paris are 
still talking about a century later.

<source>

  @type prometheus

</source>

<source>

  @type prometheus_output_monitor

</source>

Upon restarting td-agent (the Fluentd demon), a wget http://

localhost:24231/metrics will yield myriad stats on every regis-
tered output plugin, like these two counters of messages emitted 
per output plugin (sns and firehose for us):

fluentd_output_status_emit_count{plugin_id=”object:3f86dc5b

80cc”,type=”amazon_sns”} 570277.0

fluentd_output_status_emit_count{plugin_id=”object:3f86d983

3444”,type=”kinesis_firehose”} 10109263509

Fluentd also has a filter type Prometheus plugin, which you can 
use in your routing configuration to extract metrics directly 
from the data as it passes through. We use this to break down the 
cardinality of the various types of API calls that are occurring 
within our Nginx data. Here’s the configuration blurb:

<filter firehose_parsed.**>

  @type prometheus

  <metric>

    name outgoing_msg

    type counter

    desc Outgoing messages

  </metric>

  <labels>

    type ${type}

  </labels>

</filter>

This filter catches all messages tagged with “firehose_parsed” 
and increments a counter metric named “outgoing_msg” 
that—crucially—is labeled with the value of the message’s type 
attribute. In other words, as each message is routed through this 
filter, Fluentd literally uses the value of msg.type to create the 

Figure 1: Sparkpost’s “Internal Event Hose” data pipeline
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Prometheus metric label. Hence, when we wget the reporting 
socket, we get output metrics that break down the cardinality of 
each type of API call our customers are currently making:

...

outgoing_msg{type=”get_sending-domains”} 31190473.0

outgoing_msg{type=”get_subaccounts”} 33089429.0

outgoing_msg{type=”get_webhooks”} 527765630.0

outgoing_msg{type=”auth_request”} 58139133.0

outgoing_msg{type=”get_users”} 144456173.0

outgoing_msg{type=”4xx_error”} 193923362.0

...

In a proper Prometheus shop, we’d be using the Prometheus 
server to slurp up all of these metrics and report on them, but for 
better or worse, our monitoring solution of choice lies in another 
direction, so I wrote a small shell script that performs the polling 
and reformatting. Omitting the error handling, it’s really just 
two lines...

INPUT=$(curl -k -ss -m “${TIMEOUT}” “${URL}”)

echo “${INPUT}” | grep -v ‘^#’ | sed -e ‘s/{.*=”/ /̀’ -e ‘s/”} //’ 

-e ‘s/ //g’ -e ‘s/^fluentd_//’ -e ‘s/`\([^̀ ]\+\)$/ n \1/’

If you squint at it hard enough you’ll see it transforms the output 
into backtick separated lines of the style: outgoing_msg`get 

_sending-domains̀ 31190473.0. I know. Backtick separation. 
Don’t get me started.

When we first architected this data pipeline we carefully read 
up on the various AWS streaming event services, compared their 
limits and tradeoffs against our workload, and decided that SNS 
was the best fit for us. We installed the most popular version of 
the SNS Fluentd plugin, gave it our configuration particulars, 
and watched everything collapse and fail in a Parisian-esque 
epic flood of traffic.

We eventually discovered two overlapping problems. The first, 
which I mentioned in my last article, was the SNS Fluentd plugin 
we found didn’t support buffered output, meaning, among other 
bad things, that it didn’t support threading and completely 
blocked the entire Fluentd process as it tried to f lush 11,000 
messages to SNS every second. 

The second problem was that the SNS service itself doesn’t have 
a bulk-send endpoint, so every message emitted equates to a 
single HTTP connection. It’s surprisingly easy for little details 
like this to be obscured by frameworks and plugins and abstrac-
tion. Engineers who know AWS very well are fond of saying things 
like there are no limits to SNS, and asking around, I heard myriad 
 utopian tales of shops pushing hundreds of thousands of 140-
byte messages per second into SNS without breaking a sweat.

Well, it turns out, the real-world limit on SNS is the number of 
HTTP connections you can reliably make per second from your 
sending instance’s ENI. I’m not really sure what that number is 
(it no doubt varies by instance type), but I’m here to tell you, for 
us, it was smaller than 11,000 divided by three instances.

Rather than attempting to scale up or out, we took a look at AWS 
Kinesis Firehose, which has a bulk-send endpoint capable of 
ingesting batches of over 100 messages in a single HTTP call. 
This was a WAY more efficient and reliable means of feeding 
data into AWS. Bonus, the Fluentd Kinesis plugin is well sup-
ported, buffered, and supports threading.

We experimented with lambdas attached to our firehose to 
transform the JSON log data directly in to Parquet but eventu-
ally decided that we wanted a copy of the data in both JSON and 
Parquet, so we pointed the firehose directly at an S3 bucket. 
Kinesis automatically partitions this data up for us into minute-
sized chunks, ready for Athena to parse through them. 

To make the final hop into columnar data format, we rely on a 
combination of custom-written code, Apache Spark, and AWS 
Glue. Spark’s PySpark (http://spark.apache.org/docs/latest/api/
python/index.html) library makes it simple to sqlContext.read.

json() our JSON data from S3 into a Spark DataFrame (https://
spark.apache.org/docs/latest/sql-programming-guide.html), 
and from there df.write.parquet() it back out to a new S3 bucket 
in Parquet format. We use AWS Glue to schedule our PySpark 
code as an ETL job that runs hourly (five minutes after the hour, 
to give firehose a sufficient buffer of time).

I find it difficult to articulate the extent to which this data has 
enriched my life as an engineer, but I’ll give you an example 
from last week, wherein someone noticed that we appeared to be 
bouncing an order of magnitude more email than normal, which 
everyone found…worrisome.

I first checked whether there was a pattern of increased bounces 
for our top-tier receivers. This sort of thing has happened in the 
past when Gmail, for example, implemented some new, aggres-
sive, and ill-conceived filtering technology. 

select dt, count_if(routing_domain=’gmail.com’) as google,

count_if(routing_domain=’yahoo.com’) as yahoo, 

count_if(routing_domain=’hotmail.com’) as hotmail

from “glue-data-lake-usw2-prd”.eventlog_parquet

WHERE bounce_class=21

AND dt >= ‘2018-09-01’

group by 1;
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With this Athena query, I was able to get a day-by-day break-
down since September 1 of email we bounced to the top three 
providers and verify that we were NOT in fact bouncing more 
mail than normal. This query took three minutes to complete 
and scanned around 100 GB of data (Athena queries cost $5  
per TB scanned). 

What, then, could account for the increase in bounce traffic? 

select count(dt),raw_reason

from “glue-data-lake-usw2-prd”.eventlog_parquet

WHERE bounce_class=21 and dt between ‘2018-10-01’ and  

‘2018-10-21’

group by raw_reason

order by count(td)

LIMIT 10;

select count(dt),raw_reason

from “glue-data-lake-usw2-prd”.eventlog_parquet

WHERE bounce_class=21 and dt > ‘2018-10-21’

group by raw_reason

order by count(td)

LIMIT 10;

With these two queries I was able to enumerate the top 10 reasons 
that email bounced in the period before the change was noted, 
and then again in the period after the change was noted. I dis-
covered that there was indeed a difference between these two 
lists. The first looked like:

454 4.4.4 [internal] no MX or A for domain

554 5.4.4 [internal] Domain Lookup Failed

“550-Requested action not taken: mailbox unavailable

550 invalid DNS MX or A/AAAA resource record”

451 Your domain is not configured to use this MX host.

While the second looked like:

454 4.4.4 [internal] no MX or A for domain

554 5.4.7 [internal] message timeout (exceeded max time, last 

 transfail: 454 4.4.4 [internal] no MX or A for domain)

554 5.4.4 [internal] Domain Lookup Failed

554 5.4.7 [internal] exceeded max time without delivery

As you can see, some new, timeout-related error messages have 
overtaken the first and fourth most common error message in 
the logs. As it turns out, our engineering teams had implemented 
a new suite of error detection code and had miss-classified these 
timeout messages as bounce-class messages, which in turn 
caused a reporting error.

While this particular example turned out to be a false-alarm 
rather than a flood, I think it serves to illustrate how capable our 
new log data pipeline is at helping us deal with the deluge. 

I think that pretty much wraps up my series on our Data Pipeline 
at Sparkpost, and along with it, my overspilling (sorry) of river-
related metaphor. Until next time. 

XKCD xkcd.com
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Type “cybersecurity” into Google Patents, sort by oldest and then 
 newest, and take the top 100 in each list. Keeping in mind that the 
lists include applications as well as grants, Table 1 lists the number  

of entries by country in the respective lists. 

The top three assignees in the oldest list were AT&T/Bell Labs, Computer Security Corpora-
tion, and Westinghouse Electric in that order. The top three assignees in the newest list were 
two Chinese companies, and then IBM. 

But what, you might ask, does this have to do with computer security metrics?

If you come up with a new and improved espresso machine and you wish to derive the 
maximum economic benefit from your invention, the two most frequently used methods 
of protecting your newly hatched intellectual property are applying for a patent or treating 
what is “new, useful, and non-obvious” in your espresso machine as a trade secret. If Table 1 
were about espresso machines, the difference between the oldest and newest columns could 
reasonably be attributed to more companies selecting trade secret protection rather than 
applying for a patent.

That explanation is not as compelling for cybersecurity. A trade secret is “not generally 
known or reasonably ascertainable by others,” but while it is possible that an innovation in 
cybersecurity is intended for use only within a (trade) secret context, this is not the typical 
business case. (This may well be the typical case in governmental and military contexts.) 
Because of the computer security community’s aversion to secret sauce, if the inventor 
wishes to offer the invention in the cybersecurity marketplace, maintaining the protection of 
a trade secret becomes problematic; an enterprise you’d like to convince to license your inno-
vation will want to know how it works, so protection leans more toward applying for a patent 
than toward using a trade secret as it would for that espresso machine. If you are going to 
be forced to reveal the inner workings of the invention in patent application detail, then you 
need to apply for a patent.

But still you ask, what does this have to do with computer security metrics?

Bruce Schneier is quoted on the Wikipedia page about elliptic curve cryptography patents 
(“ECC Patents”) as saying in 2007, “Certicom certainly can claim ownership of ECC. The 
algorithm was developed and patented by the company’s founders, and the patents are well 
written and strong. I don’t like it, but they can claim ownership.” Other companies hold pat-
ents on various cryptographic algorithms; the RSA patents come easily to mind.

More than a few standards discussions have wrestled with the inclusion of patented technol-
ogy. Commercial entities holding a patent in such cases have every incentive to come to fair, 
reasonable and non-discriminatory (FRAND) terms for the use of their technology and thus 
for its use in a standard. Such was the case with both ECC and RSA. But this incentive is 
lacking when it is a governmental or regulatory entity that holds a patent. In this case the use 
of the patented technology can be required independent of any standards deliberations and 
in what may be very unFRANDly terms.

For Good Measure
Patent Activity as a Measure of Cybersecurity Innovation

D A N  G E E R  A N D  S C O T T  G U T H E R Y
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Country Oldest Newest

Belgium 5 

Canada 4 

China 7 76

Denmark 1 

EU/WTO 8 1

Finland 2 

France 8

Germany 9

Great Britain 7 3

Japan 4 2

Korea 1 

Netherlands 2 

Spain 4 

United States 38 18

Table 1: Country sources are consolidating 
geographically
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Figure 1: Digital patents as percentage of total number patents (solid) and 
cybersecurity patents as percentage of digital patents (dashed). All figures 
were drawn using data from http://www.patentsview.org/.

Figure 2a: Digital patents with “attack” in the patent abstract

Figure 2b: Digital patents with “threat” in the patent abstract

COLUMNS
For Good Measure: Patent Activity as a Measure of Cybersecurity Innovation

“OK,” you say, “I do care about the computer security landscape 
and who owns what plots of land, but this is more about the busi-
ness of cybersecurity than about the bits and bytes. Do patent 
numbers have anything interesting to say here?”

Here are some words that appear in the titles of the patents in 
the newest list that don’t appear in the titles in the old list (in 
alphabetical order):

anti-theft, attack, authentication, detection, methods, threat, 
uncloneable

And here’s the other way around, words in the old list titles that 
aren’t in the new list titles:

automatic, electric, filter, lock, switch, signals, transponder, 
telephone

Nothing certain can be deduced from this small sample, but one 
can glimpse a shift away from hardware toward protocols as well 
as a shift from offense toward defense.

Focusing now on granted US patents from 1980 to 2017 and, in 
particular, on the subset of these that have the word “computer” 
or “network” in the patent abstract, we will refer to this sub-
set as digital patents. Within the set of digital patents, we will 
distinguish those whose abstract contains at least one of a list 
of cybersecurity words; we will refer to these as cybersecurity 
patents.

Figure 1 plots by year the ratio of the number of digital patents 
to the total number of patents issued (solid) and the ratio of the 
number of cybersecurity patents to the number of digital patents 
(dashed). One takeaway is that roughly speaking there is as much 
effort going into cybersecurity innovation within the domain of 
computers and networks as there is going into computers and 
networks overall.

Figures 2a and 2b plot by year the number of digital patents that 
have “attack” or “threat,” respectively, in their abstract, together 
with an exponential fit to these counts.

 If these plots were simply measuring the intensity of concern 
regarding attacks on and threats to computers and networks, 
then the exponential fits wouldn’t be at all surprising. But they 
are measuring the number of “new, useful, and non-obvious” 
counters to attacks and threats which, in a world that might be 
thought of as settling into a day-in-and-day-out game of Spy vs. 
Spy, the exponentially growing number of pitches on which the 
game is being played might raise an eyebrow. 

Posting a guard at the gate to check visitors’ papers is a tried 
and true way of separating friend from foe. Figure 3a plots the 
number of appearances of “authentication” (upper/solid) and 
“credential” (lower/dashed) in the patent abstracts, while Figure 
3b plots the number of appearances of “password” (upper/solid) 
and “biometric” (lower/dashed) in the patent abstracts.

Growth here is more linear than exponential of late, but the pro-
liferation of new, useful, and non-obvious ideas is remarkable. 
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Figure 3a: Digital patents with “authentication” and “credential” in the 
patent abstract

Figure 3b: Digital patents with “password” and “biometric” in the patent 
abstract

Figure 5: Inventors per patent: “authentication” (solid) and “biometric” 
(dashed)

Figure 4: Inventors per patent: all patents (solid) and cybersecurity 
 patents (dashed)

COLUMNS
For Good Measure: Patent Activity as a Measure of Cybersecurity Innovation

Of course, that fact that the word “computer” appears in a patent 
abstract does not mean that the patent is about computers, and 
the same holds true for all of the other search terms discussed 
above. Nonetheless, one can safely conclude from this cursory 
analysis of the set of granted patents that inventive genius is ever 
harder at work on the cybersecurity problem.

Figure 4 shows the number of inventors per patent for all US 
patents and for cybersecurity patents. The fact that the number 
of inventors per patent has been growing slowly is well-known, 
and it comes as no surprise that whatever is driving this growth 
applies to cybersecurity patents in toto as well.

Curiously, if we restrict our attention to patents having to do 
with identity, the upward trend disappears. Figure 5 plots by 
year the average number of inventors for digital patents that 
have the word “authentication” (solid) or “biometric” (dashed) in 
their abstract. Roughly speaking, the average number of inven-
tors per patent for patents having to do with identity is constant 
at about two and a half. Whatever it is driving the trend for most 
patents seems to be absent for this highly restricted subset.

The summary so far: where patent applications are coming from 
geographically has consolidated all but completely. Patents are 
probably the only strategy choice for cybersecurity inventors 

because users demand transparency in cybersecurity work much 
more than in other technical fields of endeavor. The subject-mat-
ter focus of cybersecurity patents may be moving toward defense 
(though it is possible that dual-use patents just avoid delineating 
their offensive capabilities). The fraction of all applications that 
are cybersecurity related is rising steeply, fueled by a  growing 
fraction of all applications that are computer related and a 
growing fraction of computer-related applications that are for 
cybersecurity, growth compounded and compounded again. For 
any of these curves to radically change their course would surely 
mean something important. 

We ask whether there really are this many new, useful, and non-
obvious advances in cybersecurity. If there are, is this fast-rising 
tide of cybersecurity patents an unarguable confirmation of an 
equivalently fast-expanding digital attack surface? Or does the 
rising production of cybersecurity patents represent a corre-
spondingly rising appreciation of the level of extant risk; that is 
to say, is society playing furious catch-up ball? Or is it something 
else again? Is it good or not good that while other sectors of the 
technological society require steadily larger and larger teams 
to come up with new, useful, and non-obvious ideas, in cyber-
security the teams are the same small size they have been for  
so long?
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/dev/random
Ambush Computing

R O B E R T  G .  F E R R E L L

I recently read a piece about “ambient computing,” which is the idea that 
the next logical phase of digital evolution is to have computers control-
ling our lives without the nuisance of us having to operate them. I would 

argue that this revolution has already taken its nascent steps. Even a fossil-
ized semi-Luddite like me is a prisoner of the fitness app on my iPhone, for 
example. Gotta get those steps in—and Heaven forbid I should walk down the 
hall without said tracker and so fail to get “credit” for the trip. That app is like 
a jealous lover who insists on monitoring my every move.

I have studiously avoided the frankly terrifying specter of the personal digital assistant who 
listens to—and worse, tries to interpret—every sound I make. I cannot comprehend why 
anyone would voluntarily allow their residence to be bugged while at the same time paying 
for the privilege. These digital Mata Haris with cutesy monikers that sound like European 
commuter compacts or adult film personalities are nothing less than corporate surveillance 
technology of the highest order.

Do you really want the intimate details of your physiology and psychology reduced to mere 
datapoints for the sustenance of invisible robot overlords? I know I don’t. Let us cast our nets 
out into the tepid waters of speculation and see what chimeras we drag in.

The odyssey begins as you’re walking up your front steps. The doorbell camera has found 
a match for your facial features and welcomes you by name, while the porch mat measures 
your gait and mass. The latter data is transmitted to the nearest Bluetooth node, where it is 
made available to other household smart devices so that they may nag you about your bal-
looning weight and sell you plus-sized apparel at the same time.

In the foyer your smart coatrack reminds you that rain is forecast for later in the day. The 
first of several motion detectors scattered about the domicile records your location, direction 
of travel, and velocity, thereby predicting that you are heading for the kitchen and preparing 
it for your arrival. As you enter the room the dishwasher pops open with clean dishes, while 
the icemaker changes cube size and shape according to preferences that its predictive algo-
rithm has deduced from prior encounters. The refrigerator, meanwhile, has rearranged the 
order of frozen entrées in its shelves based on time of day and your prior choices.

The microwave reads the UPC label of your entrée for heating times and ingredients. If it 
concludes the meal contains more sodium or sugar than is good for you, it will sound an 
alarm and even refuse to prepare it. If you employ manual override, it will start running ads 
for dieting products and heart-healthy vitamin supplements.

Your après manger bathroom visit includes a toothbrush that adjusts for tartar buildup and 
any detected gum disease, while the mirror checks for signs of acne, melanoma, eczema, 
receding hairline, and numerous other conditions, offering ads for remedies via text mes-
sage. Your toilet has its own set of sensors, analyzing…well, what you would expect them to 
analyze. It might tell your intelligent pantry to increase the number of high-fiber meals it 
suggests, along with offering ads for same.

Robert G. Ferrell, author of 
The Tol Chronicles, spends 
most of his time writing 
humor, fantasy, and science 
fiction. rgferrell@gmail.com
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Your medicine cabinet has its own two cents to put in, of course. 
Not only does it keep track of prescription medications and 
submit refill requests on your behalf, it offers helpful tips on 
products that purport to control chronic conditions like head-
aches, muscle pain, dizzy spells, and foot odor—the presence of 
which it surmises by your pharmacological habits. If it perceives 
frequent visits to your primary care practitioner, it might tell 
your produce drawer to suggest daily apple consumption.

The home electronic entertainment naturally enumerates your 
behavior in excruciating detail. Every second you spend online 
or streaming to some device is examined, profiled, categorized, 
and exhaustively analyzed. The very best bargains in televisions 
and monitors can be had on models with integrated cameras 
and microphones, ostensibly for your own convenience in the 
quest to share absolutely every moment of your life with friends, 
family, and social media followers, but incidentally also to enable 
even more intrusive surveillance to benefit advertisers. Every-
body wins, right?

Tying this tangled mass of data collection together is a cen-
tral repository or database server. It doesn’t have to be a single 
machine, though: your house is already quite likely a mesh 
network hosting its very own data cloud. Aren’t you special? The 
Internet of Things quite definitely includes your Things. Con-
veniently, you don’t even have to do anything to accomplish this 
web of integration. It just magically happens, like climate change 
and congressional oversight.

Let’s not forget those little buttons all over the house that are 
supposed to order products for you at one touch. What time-
savers they are! No more dreary comparison shopping or coupon 
clipping: simply trust that the button brings you what you need. 
So modern. So monolithic. So antitrustworthy.

Your doorbell, your thermostats, your security system, your 
kitchen appliances, your toiletries, your home entertainment 
system, your telecommunications devices…all of them working 
together to make your life—and the lives of those who want you 
to be unable to avoid their advertising at every turn—easier. 

Since many of these doohickeys phone home on a regular basis, 
you can bet your data makes the same trip in first class accom-
modations. Once comfortably ensconced at the far end, it is pack-
aged and sold to anyone who ponies up the requisite cash. The 
real beauty of this arrangement is that you actually pay for the 
equipment used to spy on you—sometimes even on a recurring 
basis if you’re subscribed to a service connected to it. 

Not that any of this is remotely novel or even recently invented: 
talking consumers into bankrolling their own exploitation is in 
fact a time-honored Madison Avenue tradition. Graduate theses 
have been written on the various techniques for achieving it. 
Careers have been built on it. Mansions, private jets, yachts, and 
even islands have been purchased from its proceeds. Taxes from 
those proceeds have been adroitly evaded. This, then, is the cycle 
of commerce.

I seem to have slid down a slippery slope from ambient comput-
ing to tax fraud, but in my defense, there weren’t many obstruc-
tions. Happy fishbowl consumerism, y’all.
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The Site Reliability Workbook: Practical Ways to 
Implement SRE
Niall Murphy, David Rensin, Betsy Beyer, Kent Kawahara,  
and Stephen Thorne
O’Reilly Media, 2018, 512 pages
ISBN: 978-1-492-02950-2

Reviewed by Rik Farrow

When I think of a workbook, I expect something that contains 
exercises and complements an existing book or course. The Site 
Reliability Workbook fits the second part of that description. 
The authors intended that TSRW expand upon the best-selling 
Site Reliability Engineering, in part because of all the questions 
raised by readers of the first book.

Today, you can find all of the SRE book online, and as TSRW 
relies on that book, there are frequent references to chapters in 
the earlier book, all as bit.ly-shortened URLs. While that’s use-
ful, there are often summaries to the material, and I found that 
all I needed were the summaries to recall enough for the current 
material to make sense.

And instead of exercises, you get examples, case studies, and 
more in-depth descriptions. Right away I could see how use-
ful this was in making the principles described in SRE con-
crete. There is even a chapter on Non-Abstract Large System 
Design, with tangible examples of what the authors, including 
Salim Virji, were teaching during LISA tutorials, a step-by-
step approach to designing a reliable service for monitoring 
AdWords.

There was criticism that SRE, both the practice and the book, 
were something only Google, and a handful of companies like 
it, could take good advantage of. TSRW attempts to dispel those 
objections, largely by including authors outside of Google for 
many of the sections.

You will often find that books written by many authors have 
an uneven writing style. TSRW doesn’t read that way at all: the 
writing remains clear, consistent, and easy-to-read throughout.

As to the argument that SRE is only for large organizations, I 
found myself thinking many times as I read TSRW, “If only I had 
known that 35 years ago.” In the chapter about On-Call, I read 
about many practices that would have made my life easier in my 
first Bay Area job and prevented burnout. I also encountered 
some things I had tried to do, with partial success, in that long 
ago era. In other words, even if you don’t consider yourself an 
SRE, there are definitely things you can learn from this book.

Managing Kubernetes: Operating Kubernetes 
Clusters in the Real World
Brendan Burns and Craig Tracey
O’Reilly Media, 2018, 188 pages
ISBN: 978-1-492-03391-2

Reviewed by Mark Lamourine

Often it seems that sysadmins are forgotten when people are 
writing documentation. It is common to see books for service 
users and for API developers. When it comes to managing ser-
vices, it feels like the first response is to try to write some kind  
of GUI to smooth over the sharp bits and pretend they don’t exist. 
This leaves the sysadmin needing to understand, manage, and 
diagnose complex systems with little guidance but their own 
wits and experience.

Managing Kubernetes won’t solve every sysadmin problem, but it 
does go a long way toward illuminating the dark interior of one of 
the hottest buzzword services of the last few years.

Brendan Burns is one of the three original authors of Kubernetes 
and is still one of the top three contributors. With Craig Tracey, 
he provides the clearest description I’ve seen of the moving parts 
that, together, make a Kubernetes cluster.

Kubernetes is a distributed software container management ser-
vice. That’s quite a mouthful. If you’re not already familiar with 
software containers, you should really start somewhere else. The 
most well-known container runtime system is Docker. There 
are others, but Docker is the BASIC programming language of 
containers. You’ll be back quickly, because standalone contain-
ers have limited value. They come into their own when you start 
combining single-purpose containers into complex applications. 
How you combine them and then deploy them to make working 
services is what Kubernetes is all about.

Kubernetes is itself a (mostly) containerized service, built up 
of a number of cooperating service components. The hosts that 
participate in the clusters are called nodes. All nodes must have a 
container runtime environment such as Docker already installed 
and running.

Some nodes, called head nodes, are special. These run the man-
agement components and provide the brains of the cluster. The 
remainder of the nodes, called worker nodes, run components 
that control local containers and provide network communica-
tions. All of these coordinate by communicating with an API 
service that is distributed across the head nodes.
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The arc of the book is a little different from most. Burns and 
Tracey don’t have the reader attempt an installation until almost 
halfway through, in Chapter 6. Ordinary users would want to get 
started creating containers as soon as possible, but the sysadmin’s 
purpose is to understand what is happening underneath when 
normal users start their work. The authors devote the first half of 
the book to describing the structure that installation will create.

In the second half of the book, the authors walk the reader 
through common operational processes. Many of these are 
concerned with providing and controlling access to the cluster. 
Users interact with the cluster by making requests to the API 
server. The next three chapters detail how user requests are 
validated and accepted.

The authors provide one of the better explanations I’ve read of 
the distinction between authentication, authorization, and what 
they call admission, which I might have called policy. In each 
case, they provide examples of the REST data structures that 
implement the communication protocol. The examples dem-
onstrate the rationale and the structure, but none of them are 
meant to be comprehensive. The authors know that the Kuber-
netes project documentation [1] provides detailed specifications, 
though I do wish they had provided the appropriate links in-line 
with the text.

The final three chapters cover additional operational  concerns: 
networking, monitoring, and disaster recovery. Again, the discus-
sion is meant to give the reader a starting point for understand-
ing what is possible and where to learn more. It is not a run-book 
but, rather, is concerned with architecture and taxonomy. It 
provides references to resources that the reader can use to learn 
and plan for a deployment.

Rather than being an operator’s manual or a comprehensive 
reference, Managing Kubernetes describes the purpose and basic 
configuration of each component and gives the reader a sense 
of the structure and dynamics of Kubernetes as a whole. I have 
noted in other places that it is often very useful to understand 
any technology at least one layer, and preferably two, beneath the 
level where you mean to work. For both operators and architects 
of Kubernetes services, Managing Kubernetes will provide the 
peek beneath the covers.

Learn Git in a Month of Lunches
Rick Umali
Manning Publications, 2015, 352 pages
ISBN: 978-1-617292415

Reviewed by Mark Lamourine

Many authors can’t seem to decide whether they want to write a 
reference or a tutorial, often making their book less than ideal for 
either the beginner or the experienced reader. Rick Umali doesn’t 
make this mistake. He knows he’s writing a book for beginners, 
and Learn Git in a Month of Lunches is ideal for his audience.

Git is well suited to this kind of learning. It is a tool that is used 
by software developers to organize and manage their work. It 
allows them to share their work in a way that makes conflict 
avoidable or at least manageable. It has one purpose and a well-
defined set of operations to accomplish that purpose. Tools like 
this are often learned fitfully, by experience, looking up the sin-
gle solution to a single problem then going back to work. Umali 
has offered a straightforward and complete path for learning to 
use the most important capabilities of Git and the grounding to 
explore and learn more.

Umali, to his credit, dodges several common problems that arise 
from trying to present material in a narrative format. He avoids 
creating a contrived straw-man project. Instead, each chapter 
focuses on just one task or subcommand, and he discusses the 
most common aspects of that task. He does interlace examples 
for the three common platforms, Windows, Mac, and Linux, but 
each example is clearly labeled and distinguished by graphical 
conventions.

He also starts at the true learner’s beginning (after installation) 
by creating an empty local repository. While most work in the 
real world will involve a remote repository, Umali leaves that for 
Chapter 12, well past the halfway point in the book. That first 
half is dedicated to getting comfortable with Git and just manag-
ing files in a repository. I was reminded firmly that all of the 
common operations, committing, cloning, branching, merging, 
and viewing logs are local operations. In every case the pattern 
for a file reference is first a local path that can then be extended 
to a URL by adding a standard prefix.

That said, the next four chapters cover the details of working 
with remote repositories; push, sync, rebase, and a chapter on 
branching conventions and collaborative workflows.

He wraps up with chapters on third-party Git software, working 
with GitHub, and configuration and tuning.

Reference
[1] Kubernetes REST API specification: https://kubernetes.io 
/docs/concepts/overview/kubernetes-api/.

https://kubernetes.io/docs/concepts/overview/kubernetes-api/
https://kubernetes.io/docs/concepts/overview/kubernetes-api/
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The “month of lunches” format limits the size of each chapter. 
This is a good thing. Umali crafts each one so that it is complete 
and self-contained. He encourages readers to spend a bounded 
time reading and then to go away and think and practice on their 
own. No chapter is longer than 20 pages. The longest ones are 
those with a lot of graphics. They either showcase the GUI inter-
face or are concerned with the theory of revision control and so 
use lots of drawings to show the workflow for the reader. I’m not 
a good judge of GUI tools, but the base level introduction Umali 
offers is comparable to the CLI capabilities, and for those who 
like graphical tools it should serve well.

This is a beginner’s book, but I will pass it on with compliments. 
I did pick up a number of tips and ideas that will stick with me.

Gamestorming: A Playbook for Innovators, 
Rulebreakers, and Changemakers
Dave Gray, Sunni Brown, and James Macanufo
O’Reilly Media, 2010, 288 pages
ISBN 978-0596804176

Reviewed by Mark Lamourine

Brainstorming is a term in common use. To me it means going 
somewhere different (even if only in my head), preferably with 
a couple of my most trusted co-workers, presenting a problem I 
have in its broadest terms and then throwing around ideas with-
out judgment or ego until something grabs all of our attention. 
Then we play with a couple of the “best” ideas until we better 
understand the problem, the challenges that remain, and, most 
importantly, what we want to try next. This is a very unstruc-
tured concept, and other people will have a different vision of 
what brainstorming is.

Gamestorming is a book that offers a lot of different ways to 
structure that communal thinking process.

The main idea of Gamestorming is to use the framework of a 
“game” to direct and focus the thinking and sharing process 
in a way that suits the particular goals of the session. A game, 
according to Gray, Brown, and Macanufo, is defined primarily 
by a play space, a set of rules, and a goal. With this loose but clear 
definition, they set out to give the reader a sense of how game 

play in a working context can lead both to the results that might 
elude more conventional planning sessions and to the relevant 
tools to get those results.

Chapters 2 and 3 present that toolbox. A moderator’s job in these 
kinds of planning meetings is to create an environment that will 
promote participation and cooperation. There are any number of 
ways the plan can be derailed. Chapter 2 enumerates 10 “essen-
tials” that are the material needs for a good session. In Chapter 3 
the authors lay out the skills and tactics that a moderator should 
have in order to be able to guide the participants and avoid rat-
holes and pitfalls.

The body of the book is four chapters that are a catalog of core 
games, those for opening, closing, and for exploring an idea 
space. The authors make a clear distinction between games 
meant to start a session and generate lots of wild ideas and 
those that are meant to refine and then focus on one concept  
and come to a close. In longer planning sessions the games  
might be chained together, or they can be played in separate 
 sessions over a longer period of time if needed.

You may have visions of whiteboards and flip charts and multi-
colored sticky notes, and you wouldn’t be wrong. Most of us won’t 
use Gamestorming in day-to-day life as a software developer 
or sysadmin. The subtitle of the book, “A Playbook for Innova-
tors, Rulebreakers, and Changemakers,” feels a bit grandiose to 
me. Many of the games are fairly common in dramatic training, 
especially those aimed at creating group coherence. I suspect 
very little here would be surprising to professional moderators  
or facilitators. 

But we’re not that kind of professionals. I think, used judiciously, 
the ideas here could be helpful to those of us who find ourselves 
in that position despite our inclinations (or our best efforts). 
Sometimes it might be a good thing to shake us out of the stale 
format of our regular planning meetings, standups, or retrospec-
tives. In that case, Gamestorming would be a good resource for 
getting ourselves into the mindset of a facilitator. For the hour or 
so it takes, perhaps a game is a good way to engage a whole team 
on a common problem and uncover a solution no one had thought 
of or felt invited to voice. 
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Members of the USENIX Association 
 receive the following benefits:

Free subscription to ;login:, the Associa-
tion’s quarterly magazine, featuring tech-
nical articles, tips and techniques, book 
 reviews, and practical columns on such top-
ics as security, site reliability engineering, 
Perl, and networks and operating systems

Access to ;login: online from December 
1997 to the current issue: www.usenix.org 
/publications/login/ 

Registration discounts on standard tech-
nical sessions registration fees for selected 
USENIX-sponsored and co-sponsored 
events

The right to vote for board of director can-
didates as well as other matters affecting 
the Association

For more information regarding member-
ship or benefits, please see www.usenix 
.org/membership/, or contact us via email 
 (membership@usenix.org) or telephone 
 (+1 510.528.8649).

USENIX Board of Directors
Communicate directly with the  USENIX 
Board of Directors by writing to 
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P R E S I D E N T

Carolyn Rowland, National Institute of  
Standards and Technology 
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at Urbana-Champaign 
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Angela Demke Brown, University  
of  Toronto 
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Amy Rich, Nuna Inc. 
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E X E C U T I V E  D I R E C T O R

Casey Henderson 
casey@usenix.org

Community Survey: 
Some Answers,  
Some More Questions
Liz Markel, Community 
Engagement Manager

In early fall, USENIX asked its community 
members for their opinions on a variety of 
topics through its Community Survey—
our first survey of its kind since 2013. We 
solicited responses across a variety of media 
including our email newsletter; our social 
media channels including Facebook, Twit-
ter and LinkedIn; the USENIX website and 
blog; and personal outreach. At the conclu-
sion of the response period, more than 1,000 
individuals had taken the time to share their 
thoughts, and we are incredibly appreciative 
of your participation in this process. 

We expect the analysis to be ongoing 
throughout the first half of this year. As  
we mentioned in the opening of the survey, 
we are aiming to:

◆◆ Paint a data-driven picture of the 
 USENIX community.

◆◆ Assess community members’ percep-
tions of the organization.

◆◆ Evaluate membership options and 
 determine what USENIX can do to  
better serve our communities.

◆◆ Gather information that will help 
 USENIX make strategic decisions  
about various timely issues.

To address all of those priorities, we had to 
ask a lot of questions, including inquiring 
about demographics; more on that below. As 
an acknowledgement of the time commit-
ment this survey required, we offered high-
value raffle prizes to six randomly selected 
participants who completed the survey.

Going forward, our plan is to make this sur-
vey an annual opportunity to hear from you 
and to help guide important organizational 

Notice of Annual Meeting
The USENIX Association’s Annual Meeting with the  

membership and the Board of Directors will be held on the  
evening of  Monday, July 8, in Renton, WA, during the week of  

the 2019 USENIX Annual Technical Conference.
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decisions. Did you participate in the survey? 
If not, why not? If there was something that 
prevented you from answering this year, 
please provide your feedback to liz@usenix.
org! We will take into account your input for 
the 2019 edition of this survey. Additionally, 
if you have any other things on your mind, 
you can always share those with me as well.

Why Demographics?
Some respondents wanted to know why 
we cared about demographic data, espe-
cially questions inquiring about gender and 
ethnicity. Demographic data is a way to slice 
and dice responses to other questions that 
help us identify trends that may be related 
to community member attributes such as 
age, gender or ethnicity.

For example, the gender imbalance in 
USENIX’s community is reflective of the 
gender imbalance in the computing systems 
community at large. As part of our mission, 
we’re striving to mitigate this issue through 
offerings like the Women in Advanced 
Computing Birds-of-a-Feather sessions 
at our conferences, and Diversity Grants 
that offer funding for conference travel to 
many under represented groups in the field, 
including but not limited to women. 

By filtering responses to non-demographic 
questions against the gender demographic 
question, we are able to identify specific 
needs from the women in our community, 
and build programs around those needs that 
are more likely to be successful because 
they are in direct response to identified 
needs. As we gather more survey data year 
over year, we can track the overall gender 
balance for USENIX’s community and see 
if we are moving the needle in the right 
direction.

There were some other key questions that 
required demographic data, including the 
following:

Who is in our community now? How is 
our community changing over time?
We’ve discussed the gender question above a 
bit, but there are other defining elements of 
our communities that will directly impact 
how we put our mission into practice. For 

example, think about your career: with re-
spect to networking, knowledge growth, and 
skills development, your needs have likely 
changed over time. Understanding the fields 
in which our community members work, the 
length of time they’ve spent in their areas 
of work, where they are on the spectrum of 
their career’s lifetime, and whether or not 
they’ve pursued advanced degrees is impor-
tant with respect to the content we produce 
for our conferences, as well as the additional 
support we provide for networking and 
professional advancement.

That evolution can also affect how we are 
communicating with you. Do you want more 
or less interaction on social media? How 
valuable is in-person communication for 
you? (Answer according to your responses: 
very valuable, and your responses indicate 
that this does not vary by age!)

Just as your individual career and your 
communications needs have evolved, so too 
have the needs and the face of the larger 
community. With regular surveys and 
year-over-year data, we can stay on top of 
these changes and adjust our programmatic 
offerings accordingly to be as supportive of 
you as possible.

Are we effectively serving those who are 
in our community? 
What about those who might be part of our 
community in the future? We already have 
policies in place like our USENIX Confer-
ence Code of Conduct and Guidelines for 
Speakers that spell out our position on 
harassment (tl;dr: we don’t tolerate it, and 
there is a reporting and enforcement pro-
cess). What other policies are necessary for 
our current and future community members 
to ensure a positive experience for them 
while they are participating in USENIX-
supported activities? With a demographic 
portrait of our community, we can continue 
to create and enforce relevant policies and 
support the growth of the advanced com-
puter systems profession.

Where are you?
USENIX is an international organization, 
and we would like to continue to increase 

Women in Advanced Computing Birds-of-a-
Feather session at LISA18.

LISA18 Program Co-Chairs Rikki Endsley and 
Brendan Gregg deliver their opening remarks.

LISA18 attendees spend some time chatting and 
connecting during a break.

The evening reception at LISA18 included the op-
portunity to screenprint your own shirt.

Denelle Dixon, Mozilla, delivers her Enigma 2019 
talk, “It’s Not ‘Our’ Data: Do We Want to Create 
a World of No Surprises?”
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our international presence via our confer-
ences. We have primarily done this with 
our SREcon events to date, and community 
members are showing up! For example, 
more than 55% of all of the survey respon-
dents who indicated they have attended 
SREcon Europe/Middle East/Africa said 
they reside in one of those regions. For sur-
vey respondents who have attended SREcon 
Asia/Australia, just over 30% identified as 
residents of the region. We are excited about 
the success of these events, and the local re-
sponse, as well as the rich exchange of ideas 
that comes from folks visiting other parts 
of the world and finding out the issues that 
affect particular regions. Questions tied to 
survey participant geography will help us 
consider future conference locations, both 
domestic and international.

Who Are You?
So, who is the USENIX community 
comprised of? While we know that there 
are many communities underneath the 
umbrella of USENIX, we were curious to 
know how you defined those communities 
for yourselves. 

When we designed the survey, we debated 
about how to ask which community you be-
long to: practitioner or academic? Sysadmin 
or SRE? We ended up with two questions: 
one that asked about conference attendance, 
and one that asked respondents to self-
select their areas of work. Our expectation 
was that the responses to these questions 
would be consistent. We also had certain 
expectations about where overlaps of inter-
est and work would occur.

Our very preliminary analysis of these 
responses was surprising. For example, 
many people who identified as LISA 
 attendees and/or sysadmins also identified  
as USENIX Security attendees and/or those 
working in areas related to security, but this 
does not correlate with the profiles of those 
who have registered for USENIX  Security, 
meaning that the two items should be 
mentioned distinctly. How does this overlap 
affect what is happening in industry and 
academia? Can USENIX facilitate produc-

tive collaboration in this area? What does 
this mean for our conference content?

We are asking some more questions of the 
data, but we also want to ask you: how do 
you define the professional community 
you are a part of? Do you consider your-
self part of communities that your work 
supports? How important is engaging with 
that community, and how do you go about 
that engagement? How do you decide which 
conferences to attend? Please send me your 
thoughts: liz@usenix.org.

Food for Thought
Of course, one of the potential (and poten-
tially fun) outcomes of doing research is 
that you wind up with more questions than 
answers. Many of the thoughtful responses 
provided throughout the survey have 
prompted other questions on the following 
topics.

Volunteering
The majority of my professional work for the 
past decade has been alongside committed 
and talented volunteers. When I joined the 
USENIX team, I was immediately im-
pressed by the corps of volunteers involved 
in the organization whose subject matter 
expertise and leadership is a significant 
part of our success.

Conferences are a big part of who USENIX 
is and what we do. Many of you said you 
would be interested in helping at confer-
ences, and I find myself wondering what 
new roles volunteers could fill that would 
enhance attendees’ experiences—especially 
first-time attendees—and create a more 
fulfilling and valuable conference experi-
ence. For example, a conference I recently 
participated in as an attendee asked local 
attendees to volunteer to organize small 
dinners at nearby restaurants. It was an 
opportunity for new attendees to see a bit 
of the city and easily meet people in what 
might have otherwise been an overwhelm-
ing environment. Think back to your first 
time attending a particular conference: did 
you participate in an event like this? How 
did it help your overall event experience? 
If this wasn’t an opportunity, did you wish 

Enigma 2019 Program Co-Chair Franzi Roesner, 
Enigma Steering Committee member Parisa 
Tabriz, and USENIX Executive Director Casey 
Henderson enjoy one of the evening receptions in 
Burlingame.

Max Smeets of Stanford University delivers his 
Enigma 2019 talk, “Countering Adversarial Cyber 
Campaigns.”

Nicholas Weaver of the International  Computer 
Science Institute (ICSI) and University of Cali-
fornia, Berkeley delivers his Enigma 2019 talk, 
“Cryptocurrency: Burn It with Fire.”

Enigma 2019 Student and Diversity Grant 
 Recipients
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there was something like this to help you 
break the ice and make connections? Would 
you like to give back to our current confer-
ence participants and provide a meaningful 
experience? Again, I would love to hear from 
you with your thoughts on these questions, 
and encourage you to reach out to me via 
email, find me at a conference and share 
your feedback, or include your comments on 
a post-conference survey.

For this particular idea of attendee dinners 
to come to fruition, we would need a number 
of things to fall into place—including will-
ing volunteers. While that particular idea 
is germinating, I’d ask you to consider what 
other ideas you have for volunteer-driven 
activities on-site at conferences that would 
improve the conference experience, and that 
you would be willing to lead or participate 
in. Make sure to tell me about them by send-
ing me an email at liz@usenix.org.

Building My Reading List
If you send me your ideas related to confer-
ences, I would love to hear about books, 
blogs, podcasts, e-newsletters, and other 
 resources that I should know about, too! 
Many of you mentioned Wired magazine 
in your survey responses as one of the pub-
lications you frequently read. I’ve combed 
through the back issues of Wired, but I’m 
ready for more in the new year to help me 
better understand the work that you do. 
My goal is twofold: gain more insight into 
your work so that USENIX can serve you 
better, but also understand the relevance of 
your work to the general public, which will 
inform my conversations when advocating 
for USENIX outside of your community.

In the interest of fair exchange, if you send 
me your resource recommendations, I’ll 
leverage my English degree and experience 
serving librarians and will send you some 
book recommendations sure to keep you 
entertained on flights to USENIX confer-
ences. You might also check out the book 
reviews section of ;login: for excellent sug-
gestions, too!

How Are We Doing?
If you’ve read any of my previous USENIX 
Notes entries, you may have noticed my 
genuine enthusiasm for USENIX’s work, 
and my belief that we’re doing some really 
great work, both in terms of the content and 
conference experience we provide.

Respondents to our survey question about 
how we’re doing on fulfillment of our mis-
sion tend to agree with my assessment: on a 
scale of 1 to 4, from (1) needs significant im-
provement to (4) amazing work, we earned 
the following weighted averages for each 
area of our mission:

◆◆ Foster technical excellence and 
 innovation: 3.3

◆◆ Support and disseminate research with  
a practical bias: 3.3

◆◆ Provide a neutral forum for discussion  
of technical issues: 3.2

◆◆ Encourage computing outreach into the 
community at large: 3

This is a great starting point, but there is 
still room for improvement: our perfor-
mance, our ability to meet your needs, our 
communication with you about what we’re 
up to. It gives us a measuring stick as we 
consider where to put our resources and 
creative energy in the coming months.

Several open-ended comments from re-
spondents have me thinking beyond these 
results: many spoke highly of what USENIX 
has to offer and the value we deliver. These 
same respondents also wondered why more 
people aren’t aware of USENIX. The idea of 
USENIX as a “best kept secret in advanced 
computing systems” does have some allure, 
but we’ll be a much greater force for good if 
more people know about our work and get 
involved. How can we accomplish this? How 
can you help?

My inbox is always open: liz@usenix.org.

Bob Lord presents his Enigma 2019 talk, “Mr. 
Lord Goes to Washington, or Applying Security 
outside the Tech World.”

Daniela Seabra Oliveira delivers her Enigma 2019 
talk, “Why Even Experienced and Highly Intel-
ligent Developers Write Vulnerable Code and 
What We Should Do about It.”

Two conferences’ worth of Enigma leadership: 
Franzi Roesner, Ben Adida, and Daniela Seabra 
Oliveira.



SREcon is a gathering of engineers who care deeply about site reliability, systems engineering, and 
working with complex distributed systems at scale. SREcon challenges both those new to the profes-
sion as well as those who have been involved in SRE or related endeavors for years. The conference 
culture is based upon respectful collaboration amongst all participants in the community through 
critical thought, deep technical insights, continuous improvement, and innovation.

SAVE THE DATES!

JUNE 12–14, 2019 • SINGAPORE
www.usenix.org/srecon19asia

OCTOBER 2–4, 2019 • DUBLIN, IRELAND
www.usenix.org/srecon19europe

MARCH 25–27, 2019 • BROOKLYN, NY, USA
www.usenix.org/srecon19americas

Follow us at @SREcon



2019 USENIX Annual 
Technical Conference
JULY 10–12, 2019 • Renton, WA, USA

USENIX ATC ’19 will bring together leading systems researchers for cutting-edge 
systems research and the opportunity to gain insight into a wealth of must-
know topics. 

Program Co-Chairs:
Dahlia Malkhi, VMware Research, and Dan Tsafrir, Technion—Israel Institute of 
Technology & VMware Research

HotStorage ’19: 11th USENIX 
Workshop on Hot Topics in 
Storage and File Systems
July 8–9, 2019
www.usenix.org/hotstorage19

HotCloud ’19: 11th USENIX 
Workshop on Hot Topics in 
Cloud Computing
July 8, 2019
www.usenix.org/hotcloud19

HotEdge ’19: 2nd USENIX 
Workshop on Hot Topics 
in Edge Computing
July 9, 2019
www.usenix.org/hotedge19

ATC ’19
USENIX

www.usenix.org/atc19

Save the Date!

Co-located with USENIX ATC ’19

Registration will open in May 2019.
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