
;login:
S P R I N G 2 0 1 9 V O L . 4 4 , N O . 1

Columns
Programming Puzzles and Trouble with
Python’s Zip
Peter Norton

The End of an Era
David N. Blank-Edelman

Executing Binaries from Go
Chris (Mac) McEniry

Monitoring Flow, Part 3
Dave Josephsen

Security Patents by Country and Type
Dan Geer and Scott Guthery

& A POSIX Kernel Written in Go
Cody Cutler, M. Frans Kaashoek,
and Robert Morris

& Pocket for Container Storage
Ana Klimovic, Yawen Wang, Patrick Stuedi,
Animesh Trivedi, Jonas Pfefferle, and
Christos Kozyrakis

& Noria: A Fast, In-Memory Database
Jon Gjengset, Malte Schwarzkopf, Jonathan
Behrens, Lara Timbó Araújo, Martin Ek, Eddie
Kohler, M. Frans Kaashoek, and Robert Morris

& Boring Tech Best for SRE
Dave Mangot

UPCOMING EVENTS
SREcon19 Americas

March 25–27, 2019, Brooklyn, NY, USA
www.usenix.org/srecon19americas

OpML ’19: 2019 USENIX Conference on
Operational Machine Learning

May 20, 2019, Santa Clara, CA, USA
www.usenix.org/opml19

SREcon19 Asia/Australia
June 12–14, 2019, Singapore
www.usenix.org/srecon19asia

2019 USENIX Annual Technical Conference
July 10–12, 2019, Renton, WA, USA
www.usenix.org/atc19

Co-located with USENIX ATC ’19
HotStorage ’19: 11th USENIX Workshop on Hot
Topics in Storage and File Systems
July 8–9, 2019
www.usenix.org/hotstorage19

HotCloud ’19: 11th USENIX Workshop on Hot
Topics in Cloud Computing
July 8, 2019
www.usenix.org/hotcloud19

HotEdge ’19: 2nd USENIX Workshop on Hot Topics
in Edge Computing
July 9, 2019
www.usenix.org/hotedge19

SOUPS 2019: Fifteenth Symposium on Usable
Privacy and Security

August 11–13, 2019, Santa Clara, CA, USA
Co-located with USENIX Security ’19
Submissions for posters and lightning talks due
May 24, 2019
www.usenix.org/soups2019

28th USENIX Security Symposium
August 14–16, 2019, Santa Clara, CA, USA
Co-located with SOUPS 2019
www.usenix.org/sec19

Co-located with USENIX Security ’19
PEPR ’19: 2019 USENIX Conference on Privacy
Engineering Practice and Respect
August 12–13, 2019

WOOT ’19: 13th USENIX Workshop on Offensive
Technologies
August 12–13, 2019
Submissions due May 29, 2019
www.usenix.org/woot19

CSET ’19: 12th USENIX Workshop on Cyber
Security Experimentation and Test
August 12, 2019
Submissions due May 21, 2019
www.usenix.org/cset19

ScAINet ’19: 2019 USENIX Security and AI
Networking Conference
August 12, 2019
Talk submissions due March 28, 2019
www.usenix.org/scainet19

FOCI ’19: 9th USENIX Workshop on Free and Open
Communications on the Internet
August 13, 2019
Submissions due May 23, 2019
www.usenix.org/foci19

HotSec ’19: 2019 USENIX Summit on Hot Topics
in Security
August 13, 2019
Lightning talk submissions due June 10, 2019
www.usenix.org/hotsec19

SREcon19 Europe/Middle East/Africa
October 2–4, 2019, Dublin, Ireland

LISA19
October 28–30, 2019, Portland, OR, USA

Enigma 2020
January 27–29, 2020

FAST ’20: 18th USENIX Conference on File and
Storage Technologies

February 24–27, 2020
Co-located with NSDI ’20
Submissions due September 26, 2019
www.usenix.org/fast20

NSDI ’20: 17th USENIX Symposium on Networked
Systems Design and Implementation

February 25–27, 2020, Santa Clara, CA, USA
Co-located with FAST ’20
Fall paper titles and abstracts due September 12, 2019
www.usenix.org/nsdi20

www.usenix.org/facebook

twitter.com/usenix

www.usenix.org/youtube

www.usenix.org/linkedin

E D I T O R
Rik Farrow
rik@usenix.org

M A N A G I N G E D I T O R
Michele Nelson
michele@usenix.org

C O P Y E D I T O R S
Steve Gilmartin
Amber Ankerholz

P R O D U C T I O N
Arnold Gatilao
Jasmine Murcia

T Y P E S E T T E R
Star Type
startype@comcast.net

U S E N I X A S S O C I AT I O N
2560 Ninth Street, Suite 215
Berkeley, California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

www.usenix.org

;login: is the official magazine of the USENIX
Association. ;login: (ISSN 1044-6397)
is published quarterly by the USENIX
Association, 2560 Ninth Street, Suite 215,
 Berkeley, CA 94710.

$90 of each member’s annual dues is for
a subscription to ;login:. Subscriptions for
non members are $90 per year. Periodicals
postage paid at Berkeley, CA, and additional
mailing offices.

POSTMASTER: Send address changes to
;login:, USENIX Association, 2560 Ninth Street,
Suite 215, Berkeley, CA 94710.

©2019 USENIX Association
USENIX is a registered trademark of the
USENIX Association. Many of the designa-
tions used by manufacturers and sellers
to distinguish their products are claimed
as trademarks. USENIX acknowledges all
trademarks herein. Where those desig-
nations appear in this publication and
USENIX is aware of a trademark claim,
the designations have been printed in caps
or initial caps.

S P R I N G 2 0 1 9 V O L . 4 4 , N O . 1

E D I T O R I A L
2 Musings Rik Farrow

S Y S T E M S
6 The Benefits and Costs of Writing a POSIX Kernel in a

High-Level Language Cody Cutler, M. Frans Kaashoek,
and Robert Morris

11 Pocket: Elastic Ephemeral Storage for Serverless Analytics
Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi,
Jonas Pfefferle, and Christos Kozyrakis

17 Noria: A New Take on Fast Web Application Backends
Jon Gjengset, Malte Schwarzkopf, Jonathan Behrens, Lara Timbó Araújo,
Martin Ek, Eddie Kohler, M. Frans Kaashoek, and Robert Morris

S R E
22 Achieving Reliability with Boring Technology Dave Mangot

27 Anticipating and Dealing with Operational Debt Laura Nolan

P R O G R A M M I N G
29 How to Reinvent the Bicycle Sergey Babkin

M A C H I N E L E A R N I N G
35 From Data Science to Production ML: Introducing USENIX OpML

Nisha Talagala, Bharath Ramsundar, and Swaminathan Sundararaman

C O L U M N S
38 Python Peter Norton

42 Practical Perl Tools: So Long and Thanks for All the Fish
David N. Blank-Edelman

44 Executing Other Programs in Go Chris (Mac) McEniry

49 iVoyeur: Flow 3 Dave Josephsen

53 For Good Measure: Patent Activity as a Measure of Cybersecurity
Innovation Dan Geer and Scott Guthery

56 /dev/random: Ambush Computing Robert G. Ferrell

B O O K S
58 Book Reviews Rik Farrow and Mark Lamourine

U S E N I X N O T E S
61 Notice of Annual Meeting

61 Community Survey: Some Answers, Some More Questions Liz Markel

2  S P R I N G 20 19 VO L . 4 4 , N O. 1 www.usenix.org

EDITORIALMusings
R I K F A R R O W

Rik is the editor of ;login:.
rik@usenix.org In 1983, I wrote one of my first attempts at fiction: a day in the life of a

system administrator. My intent was to provide examples of what system
administrators of UNIX systems typically did: boot the system, check

logs, solve problems with printers or full disks, update software, and back up
the system. These tasks didn’t require a full-time position as there was just
one system to manage. That was my vision at the time, and you can see my
story at [1], scanned from the documentation I wrote.

When I started writing my sysadmin book, I did more research. My first sally into the field
had been based on documentation I was asked to write for systems that were being sold
to organizations that needed a way to have multiple people share that same system, using
terminals. I visited UC Berkeley, where they had four VAXen running BSD, and talked to
 sysadmins there, who had no idea they were acting as sysadmins. They were students tasked
with freeing up disk space, unclogging print queues, backing up, adding or deleting users, in
other words, pretty much what I had imagined sysadmins would be doing. My vision of the
world of sysadmin seemed well-aligned with reality.

For many years after that initial research in 1985, the world of the sysadmin remained
mostly unchanged. Sysadmins were very often chosen from the ranks of Liberal Arts majors
(although no college education was required) because they expressed an interest and willing-
ness to work with UNIX systems or, perhaps, because they were drafted unwillingly to work
on computers, especially anything as arcane as UNIX appeared to be. Not that UNIX had
the corner on weirdness. Based on my own experience by that time, UNIX was refreshingly
consistent and easy to use compared to the Microsoft or IBM systems of the day.

Things had begun to change by the late ’80s, and that change was marked by the creation of
the LISA conference. LISA, or Large Installation System Administration, was founded as a
conference to help those who had so many systems to manage that the older methods of doing
so, sitting at each console and typing away, were no longer sufficient. Over time, the need for
automation led to infrastructure as code, beginning with tools to manage configurations like
CFEngine and NIS [2].

Over the next decade, workstations multiplied like bacteria, covering desktops at most orga-
nizations. These fell into two classes: UNIX systems, because they supported networking,
and PCs running Novell Netware, as Windows didn’t support either file sharing or network-
ing until 1996. Novell featured centralized administration, while those managing fleets of
UNIX workstations had to get creative, and often did so by building their own set of tools. You
could say that we had whole networks of pets (as opposed to cattle [3]) in the ’90s, and each
set of pets was ruled by idiosyncratic tools, largely unportable to other organizations.

Sea Change
What changed everything was yet another startup: Google. Larry Page and Sergey Brin
wanted to create an efficient way to index the Internet. Companies had built indexes mostly
manually up to that time, meaning that you searched through these indexes hoping they
might lead you to the information or product you were really searching for. Page and Brin had

www.usenix.org S P R I N G 20 19 VO L . 4 4 , N O. 1 3

EDITORIAL
Musings

another idea and that was to actually canvas the web, collect all
the pages they could find, then index and rank those pages based
on the data the pages contained and the links that referred to
those pages.

Besides needing serious network bandwidth, Page and Brin also
needed a lot of computing horsepower, and that was seriously
expensive. Their approach was to divide up the task so that a col-
lection of computers could do the job, creating a form of parallel-
ism that was fairly new at the time and terribly common today.

As Google grew, so did their clusters of computers. The service
provided by those clusters also grew over time, so different clus-
ters would be providing different services. But the clusters them-
selves were designed to be pretty interchangeable from the start.
And managing those clusters of Linux systems had also moved
very far away from being the system administrator of a bunch of
desktops and a handful of servers. Google had invented cattle.

Ben Treynor Sloss, VP of Engineering at Google, invented the
term Site Reliability Engineer (SRE). Ben had started out as a
developer who got moved into operations in 2003, and decided to
run his operations team as he would a developer team. Ben also
came up with other important concepts, such as the error bud-
get. That is, if your service-level objective (SLO) is 98.6%, that
remaining 1.4% is your error budget: the amount of time your
team has for updates or handling service outages.

There’s much more to being an SRE, and one of the most impor-
tant concepts, in my opinion, is eliminating toil. Toil is repetitive
work that can be automated away, and SREs are supposed to
spend no more than 50% of their time on operations so they can
spend the rest of the working time on automation. As Sloss has
mentioned, as you grow, your operations may scale exponentially.
But your operations staff cannot scale exponentially. You must
automate.

Even as SRE concepts became more popular, there has been a
lot of pushback: not all organizations are going to be like Google,
Facebook, and LinkedIn, to name a few. But what are most
organizations today doing with their computing infrastructure?
They are moving to the cloud, and if they expect to scale up their
operations, they too will need to behave more like organizations
with SREs.

The Lineup
We open this issue with three articles based on papers presented
at OSDI ’18. There were many more papers at OSDI of course [4],
but I picked these because I liked them and thought they would
be of broad interest to USENIX members.

Cody Cutler, Frans Kaashoek, and Robert Morris wrote an
experimental operating system using Go. Their original goal
had been to see whether language features would be an aid in OS

writing, but the project pivoted toward seeing whether a high-
level language, one with garbage collection, could run popular
applications as fast as Linux could.

The next two articles include open source projects that support
running services in clouds or clusters. Ana Klimovic et al. cre-
ated Pocket as a means for ephemeral storage. Services that need
to quickly store short-lived objects, such as Spark, are poorly
served by the current mix of cloud storage, like S3. Pocket man-
ages a range of storage services that are both faster and cheaper
to use than current offerings.

Jon Gjengset et al. wrote Noria, a database server with an
SQL front end that is not only faster than existing servers, like
MySQL, but also supports much higher loads. Noria is a data-
flow processing system that creates graphs where the vertices
are operators and edges carry updates. Noria is slower to write
but much faster for reads, and fits best when applications have
read-heavy mixes.

While at LISA18, I heard several people talking about boring
tech. That sounds, well, boring, but it’s actually about keeping
your architecture as simple as possible. I met Dave Mangot, who
had presented “Familiar Smells” [5] and stirred up a fair bit of
controversy. Dave agreed to explain his points about how impor-
tant it is to architect your systems and services so that they are
as simple as possible.

Laura Nolan volunteered to write a column about operational
debt. You probably have heard of technical debt. Laura compares
technical debt to credit card debt, but likens operational debt
to a mortgage. Operational debt has to do with having failed to
automate as much of operations as possible and instead having
to waste most of one’s time on toil.

Sergey Babkin offered to write about his experience interview-
ing people for mid-level programming positions. Sergey’s thesis
is that when it comes to solving the programming problems that
often are used during interviews, he sees people using two dif-
ferent approaches. Each approach has its strengths, but they are
best used together rather than in isolation.

Nisha Talagala, Bharath Ramsundar, and Swami Sundarara-
man wrote about the new, one-day OpML conference happen-
ing in May 2019. With the huge surge in interest in machine
learning (ML), they discovered that just as there is a need for AI
specialists, there’s also a growing need for people who can run
ML at scale. ML involves not just AI, but also working with vast
amounts of data as well as other production issues.

Peter Norton explores issues with zip, a function used to create
iterables in Python. Peter had been stretching his skills using
the Advent of Code and, while solving one of the problems,
 uncovered a weakness in how zip works. His workaround,
SnitchZip, is simple, but it won’t be replacing zip.

4  S P R I N G 20 19 VO L . 4 4 , N O. 1 www.usenix.org

EDITORIAL
Musings

David Blank-Edelman is retiring his column after having writ-
ten it 66 times. At least that’s what his final Perl program has
discovered. We thank David for being so generous with his time
over the last 12 years, and sharing his approaches to problem-
solving with a Perl flair.

Mac McEniry shows us how to execute commands from within
a Go program. Mac breaks down the potential usage into groups,
depending on input and output, and whether to wait, forget, pipe-
in, check out, or replace data.

Dave Josephsen expands on the monitoring system for mail
processing at Sparkpost. In Part 3, Dave focuses on detecting
backed-up queues within Fluentd, as well as staying with his
theme on rivers and flow. With the sewers of Paris backing up,
the flows aren’t so fragrant.

Dan Geer and Scott Guthery examine the patterns of patents
granted that relate to cybersecurity. Over time, the preponder-
ance of new patents has shifted from the US and Europe to
Asia, even as the general topics of security-related patents has
changed over a period of decades.

Robert Ferrell discusses the reality of ubiquitous computing.
With everything from online doorbells to toilets, Robert still
manages to leave out automotive systems like OnStar that tell
GM every time you accelerate or stop too quickly. But like the
systems Robert describes, all of the data gathered is for the use
of our corporate overlords.

Mark Lamourine has written three book reviews, covering
 managing Kubernetes, learning Git, and using “gamestorming.”
I reviewed The Site Reliability Workbook, the follow up to Site
Reliability Engineering.

In USENIX Notes, I interview Liz Markel, the new Community
Engagement Manager. You will be seeing Liz, often with her
camera handy, at future USENIX events.

System administration has morphed from managing single serv-
ers to riding herd on fleets of cattle. While there will always be
pets, especially in organizations that are naturally disposed to
being fiefdoms, like many universities, the world has changed.
To be honest, I think many people are glad that they don’t have
to design their own systems for fleet management and that the
tooling has become so much more powerful over time.

References
[1] A Day in the Life of a System Administrator: https://
rikfarrow.com/sysadminday.html.

[2] O. Kirch and T. Dawson, “The Network Information
 System,” Chapter 13 in Linux Network Administrator’s Guide,
2nd Edition (O’Reilly Media, 2000): https://www.oreilly.com
/openbook/linag2/book/ch13.html.

[3] R. Bias, “The History of Pets vs Cattle and How to Use the
Analogy Properly,” September 29, 2016: http://cloudscaling.com
/blog/cloud-computing/the-history-of-pets-vs-cattle/.

[4] OSDI ’18 Technical Sessions: https://www.usenix.org
/conference/osdi18/technical-sessions.

[5] D. Mangot, “Familiar Smells I’ve Detected in Your Systems
Engineering Organization and How to Fix Them,” LISA18:
https://www.usenix.org/conference/lisa18/presentation
/mangot.

https://rikfarrow.com/sysadminday.html
https://rikfarrow.com/sysadminday.html
https://www.oreilly.com/openbook/linag2/book/ch13.html
https://www.oreilly.com/openbook/linag2/book/ch13.html
http://cloudscaling.com/blog/cloud-computing/the-history-of-pets-vs-cattle/
http://cloudscaling.com/blog/cloud-computing/the-history-of-pets-vs-cattle/
https://www.usenix.org/conference/osdi18/technical-sessions
https://www.usenix.org/conference/osdi18/technical-sessions
https://www.usenix.org/conference/lisa18/presentation/mangot
https://www.usenix.org/conference/lisa18/presentation/mangot

Co-located Workshops

13th USENIX Workshop on Offensive Technologies
August 12–13, 2019
Submissions due May 29, 2019
www.usenix.org/woot19

WOOT ’19 aims to present a broad picture of offense and its contributions, bringing together researchers and practitioners in all areas of computer
security. Offensive security has changed from a hobby to an industry. No longer an exercise for isolated enthusiasts, offensive security is today
a large-scale operation managed by organized, capitalized actors. Meanwhile, the landscape has shifted: software used by millions is built by start-
ups less than a year old, delivered on mobile phones and surveilled by national signals intelligence agencies. In the field’s infancy, offensive security
research was conducted separately by industry, independent hackers, or in academia. Collaboration between these groups could be difficult. Since
2007, the USENIX Workshop on Offensive Technologies (WOOT) has aimed to bring those communities together.

12th USENIX Workshop on Cyber Security Experimentation and Test
August 12, 2019
Submissions due May 21, 2019
www.usenix.org/cset19

CSET ’19 invites submissions on cyber security evaluation, experimentation, measurement, metrics, data, simulations, and testbeds. The science
of cyber security poses significant challenges. For example, experiments must recreate relevant, realistic features in order to be meaningful, yet
identifying those features and modeling them is very difficult. Repeatability and measurement accuracy are essential in any scientific experiment,
yet hard to achieve in practice. Few security-relevant datasets are publicly available for research use and little is understood about what “good
datasets” look like. Finally, cyber security experiments and performance evaluations carry significant risks if not properly contained and controlled,
yet often require some degree of interaction with the larger world in order to be useful.

9th USENIX Workshop on Free and Open Communications on the Internet
August 13, 2019
Submissions due May 23, 2019
www.usenix.org/foci19

FOCI ’19 will bring together researchers and practitioners from technology, law, and policy who are working on means to study, detect, or circum-
vent practices that inhibit free and open communications on the Internet.

2019 USENIX Summit on Hot Topics in Security
August 13, 2019
Lightning talk submissions due Monday, June 10, 2019
www.usenix.org/hotsec19

HotSec ’19 aims to bring together researchers across computer security disciplines to discuss the state of the art, with emphasis on future directions
and emerging areas. HotSec is not your traditional security workshop! The day will consist of sessions of lightning talks on emerging work and
positions in security, followed by discussion among attendees. Lightning talks are 5 MINUTES in duration—time limit strictly enforced with a gong!
The format provides a way for lots of individuals to share ideas with others in a quick and more informal way, which will inspire breakout discussion
for the remainder of the day.

Registration will open in May 2019.

SANTA CLARA, CA, USA

ScAINet ’19 will be a single track symposium of cutting edge and thought-inspiring talks covering a wide range of topics in ML/AI by and for security.
The format will be similar to Enigma but with a focus on security and AI. Our goal is to clearly explain emerging challenges, threats, and defenses
at the intersection of machine learning and cybersecurity, and to build a rich and vibrant community which brings academia and industry together
under the same roof. We view diversity as a key enabler for this goal and actively work to ensure that the ScAINet community encourages and
 welcomes participation from all employment sectors, racial and ethnic backgrounds, nationalities, and genders.

2019 USENIX Security and AI Networking Conference
August 12, 2019
Talk proposals due March 28, 2019
www.usenix.org/scainet19

6  S P R I N G 20 19 VO L . 4 4 , N O. 1 www.usenix.org

SYSTEMSThe Benefits and Costs of Writing a POSIX
Kernel in a High-Level Language
C O D Y C U T L E R , M . F R A N S K A A S H O E K , A N D R O B E R T M O R R I S

Cody Cutler is a PhD candidate
in computer science at MIT.
Cody loves baffling bugs,
performance optimization, and
building systems. ccutler@csail.

mit.edu

Frans Kaashoek is the Charles
Piper Professor in MIT’s EECS
department and a member
of CSAIL, where he co-leads
the Parallel and Distributed

Operating Systems Group (http://pdos.csail.
mit.edu/). Frans is a member of the National
Academy of Engineering and the American
Academy of Arts and Sciences, and is the
recipient of the ACM SIGOPS Mark Weiser
award and the 2010 ACM Prize in Computing.
He was a co-founder of Sightpath, Inc. and
Mazu Networks, Inc. His current research
focuses on multicore operating systems and
certification of system software. kaashoek@
mit.edu

Robert Morris is a Professor
of Computer Science at MIT.
rtm@csail.mit.edu

Biscuit is a POSIX-subset operating system kernel for x86_64 CPUs,
which we wrote from scratch over the last four years. Biscuit is a bit
more than a research toy. It can run Nginx and Redis with good per-

formance and has some important operating system features, like multicore
support, kernel-supported threads, a journaled file system, virtual memory,
a TCP/IP stack, and device drivers for AHCI SATA disks and Intel 10 Gb
 network cards. Building Biscuit was a lot of fun and a lot of work.

Unlike most kernels, Biscuit is written in Go instead of C. C is the usual programming lan-
guage choice for kernels because it can deliver high performance via flexible low-level access
to memory and control over memory management (allocation and freeing). But C requires
care and experience to use safely, and even then low-level bugs are common. For example,
in 2017 at least 50 Linux kernel security vulnerabilities were reported that involved buffer
overflow or use-after-free bugs in C code [7].

High-level languages (HLLs) have the potential to eliminate or reduce the impact of some
common classes of bugs, particularly those having to do with memory and type safety. HLLs
can also reduce programmer effort, thanks to automatic memory management, type safety,
support for abstraction, and support for threads and synchronization.

However, OS designers have been skeptical about whether HLLs’ memory management and
abstraction are compatible with high-performance production kernels [9, 10]. Garbage col-
lection (GC), runtime safety checks, and abstraction all cost CPU cycles, and many suspect
that the benefits may not be worth the performance cost. For example, Rust [8] is partially
motivated by the idea that GC cannot be made efficient; instead, the Rust compiler analyzes
the program to partially automate freeing of memory.

Whether or not to use HLLs for kernels, then, requires an investigation of their performance
in that context. There has been little research exploring this question, so we set out to shed a
bit more light on it.

Our first step was to build a new POSIX-subset kernel, called Biscuit, in Go. Biscuit can run
many programs that also run on Linux (after recompilation), so we were able to compare
total application+kernel performance for Biscuit versus Linux. We did this for the Nginx and
Redis servers, both of which make intensive use of the kernel. We found that throughput on
Biscuit was within 10% of throughput on Linux, though this comparison should be taken
with a grain of salt: although we examined both kernels’ code and numerous CPU profiles to
verify that they executed the applications’ system calls in nearly the same way, we cannot
completely rule out the possibility that Linux’s performance was understated due to having
many more features than Biscuit. Nevertheless, we suspect the performance difference
between the two is approximately correct. To better focus on the HLL’s impact on perfor-
mance, we then measured the CPU overhead of Go’s HLL features while running our applica-
tions on Biscuit. The CPU overhead of HLL features was at most 15%, with GC accounting
for up to 3%. We presented these results in detail at the OSDI 2018 conference [11].

www.usenix.org S P R I N G 20 19 VO L . 4 4 , N O. 1 7

SYSTEMS
The Benefits and Costs of Writing a POSIX Kernel in a High-Level Language

Paying a performance cost of 15% for the benefits of an HLL
seems worthwhile in non-performance-critical situations. Simi-
lar tradeoffs regularly occur in existing kernels; for example,
the Linux kernels included in Ubuntu and Debian have several
compile-time features for security and debugging enabled. These
features (hardened user copy, scheduling stats, and ftrace)
reduce performance (by up to 25% in one microbenchmark), but
most people probably don’t disable them. Go has a performance
cost, but it improves both security and programmability.

Readers may wonder why we used Go instead of Rust, given that
Rust has no GC and thus wouldn’t pay GC’s performance price.
We specifically wanted a language with GC in order to explore
whether GC simplifies concurrent code.

In the remainder of the article, we will discuss a few challenges
faced by HLL kernels, some benefits of HLL kernels, and reflect
on our experience building Biscuit.

HLL Kernel Challenges
This section discusses some common concerns about HLLs and
GC in kernels, and outlines what we learned about them while
building Biscuit.

A kernel in Go cannot recover from low-memory situations
since Go does not expose allocation failure. Linux and the
BSDs handle kernel heap RAM exhaustion (“out of memory,” or
OOM) by returning NULL from the allocator; the calling kernel
code must detect and handle the failure. Biscuit can’t do this
because Go implicitly allocates and does not have a way to indi-
cate allocation failure.

Biscuit therefore uses a different approach: each kernel opera-
tion (system call, interrupt, etc.) reserves the maximum amount
of heap RAM that the operation could possibly allocate before
executing the operation. If the reservation isn’t immediately
available, the code waits until it is, after waking a separate
thread that attempts to free heap memory by evicting from
caches and perhaps by killing memory-hogging processes. The
reservation guarantees that all allocations made by the opera-
tion cannot fail and thus no code is needed to detect and handle
their failure. Additionally, since Biscuit waits for memory before
executing the operation and thus while holding no locks, this
approach cannot deadlock, a problem that Linux has struggled
with [2, 3]. The challenging part is deciding how much memory
each operation should reserve.

Fortunately, Go was helpful in overcoming this challenge: it
turns out that it is easy to statically analyze Go code. We used
publicly available static analysis packages to write a tool that
inspects Biscuit’s source and performs an analysis similar to
escape analysis. The tool does most of the work of choosing res-
ervation sizes, with reasonably tight bounds, but some manual
effort is still required.

GC will use too much total CPU. The GC must follow the
pointers in all live heap objects, which typically requires a RAM
fetch per object. If there are millions of objects, the total time
required can be on the order of hundreds of milliseconds. How-
ever, there are a couple of reasons why the CPU cycles used by
the GC in practice is likely to be acceptably low.

Kernel heaps are typically small. Kernel heap objects are usually
small metadata describing resources like files, sockets, virtual
memory mappings, routing table entries, etc. The kernel heap
does not contain large data items, such as user memory pages
or file-cache pages. Few programs cause the kernel to accumu-
late millions of files, sockets, or noncontiguous virtual memory
mappings. Thus the kernel heap typically uses a relatively small
fraction of RAM even if user applications use many gigabytes of
user memory.

To understand kernel heap sizes, we inspected four of MIT’s big
time-sharing machines. All four run Ubuntu Linux, had at least
79 users logged in, and had at least 800 processes with between 9
and 16 GB of total resident memory. The total kernel heap RAM
(the sum of allocated and free kernel heap RAM) was less than
2 GB on each machine. On the OpenBSD desktop machine on
which the first author edited this article, the total resident user
memory is 1.4 GB, but the total kernel heap RAM is less than
170 MB.

One potential source of large kernel heaps is the vnode cache.
Careful eviction of the vnodes may keep the number of kernel
heap objects low without hurting application performance,
depending on the access pattern.

If a large kernel heap is necessary, one can provision extra RAM
to reduce the fraction of CPU time spent in GC. The collector
only has to run when the kernel heap has no free space. Thus
the amount of free heap RAM (and allocation rate) determines
the frequency of GCs: doubling the amount of free heap RAM
halves the frequency of GCs. Therefore, so long as a machine has
enough extra RAM that can be donated to the kernel heap, the
GCs can be made rare enough that total CPU cycles used by GC
will be low.

We suspect that dedicating extra memory to kernel heaps will
often be an acceptable cost: many applications probably wouldn’t
be affected if the RAM available to them or the buffer cache was
decreased by a few hundred megabytes.

Finally, it may be possible to further reduce the CPU overhead
even when there is little free heap RAM by modifying Go’s GC to
be generational. Generational collection is effective at reducing
GC overhead for most programs, and we suspect Biscuit would
benefit from it similarly.

8  S P R I N G 20 19 VO L . 4 4 , N O. 1 www.usenix.org

SYSTEMS
The Benefits and Costs of Writing a POSIX Kernel in a High-Level Language

GC pause times will be too long. Even if the interval between
collections can be made long, the collector must eventually execute.
If the collector causes kernel execution to pause for substantial
periods, it could delay latency-sensitive tasks such as redrawing
a moved mouse pointer or processing an urgent client request.

Go uses a technique called concurrent collection to reduce col-
lection pauses. The main idea is to split the GC work into small
units and interleave them with ordinary execution. The result is
that individual pauses caused by GC will last only for the dura-
tion of a unit of work. There are still two potential problems. One
is that smaller units of GC work are less efficient than larger
ones. The other problem is that spreading collection work out
over time increases the time that write barriers must be active.
Write barriers are code the compiler inserts before each write
that perform bookkeeping if a heap object is written during a col-
lection. Concurrent collection therefore trades decreased pause
times for decreased efficiency.

We measured the pauses caused by Biscuit’s GC while running
a kernel-intensive server, Nginx. The maximum single pause
incurred by kernel GC was 115 microseconds. A given client
request, however, may be delayed by multiple individual pauses.
So we also measured the total accumulated pauses during each
Nginx client request and found that the maximum was 582
microseconds. Such pauses are rare: less than 0.3% of Nginx
requests spent more than 100 microseconds executing GC work.

Some applications can’t tolerate even rare pauses of hundreds
of microseconds, but we suspect that many can. For example,
servers in one Google service had a 99th-percentile latency of 10
milliseconds [4].

The Go compiler will generate slower code than C compilers.
Readily available C compilers have been optimized for decades.
Go’s compiler is comparatively young and must generate addi-
tional instructions for safety checks (bounds checks, nil-pointer
checks, etc.) and write barriers.

We compared the performance of generated code from Go and
GCC by modifying Biscuit and Linux to have near-identical code
paths for two kernel-intensive microbenchmarks, pipe ping-pong,
and zero-fill-on-demand page faults. We found that the Go
versions were 15% and 5% slower than the C versions, respec-
tively. The main reason pipe ping-pong is slower in Go is that it
executes more instructions for safety checks and write barriers.
The performance of the page fault handler in Go is closer to that
of C because the generated instructions are less important: the
main bottlenecks are the fundamental CPU operations of enter-
ing/exiting the kernel and copying the zero page.

Thus, for these two examples of typical kernel code, Go produced
5% to 15% slower executable code than C. For many situations,
this is probably an acceptable price for the increased safety and
programmability of Go.

HLL Kernel Benefits
Increased productivity. One of the main benefits of writing
Biscuit in Go is the increased productivity over C. Unfortunately,
we don’t know a direct way of measuring productivity. Neverthe-
less, we believe Go significantly reduced the effort required to
build Biscuit. Some of our favorite language features are GC’ed
allocation, slices, defer, multi-value returns, closures, strings,
and maps. Individually, none of these features are transforma-
tive, but together they result in significantly simpler code.

HLL features can increase productivity, but we weren’t sure
whether a kernel would be able to make good use of them. We
compared the rate of use of several HLL features in Biscuit to
two other large Go projects, Moby (https://github.com/moby/
moby) and Golang (containing Go’s compiler, runtime, and
standard packages). Each bar in Figure 1 shows the number of
uses of a particular feature per thousands of lines of code in the
indicated project. Biscuit’s use of most of the HLL features is in
line with the other projects.

Memory safety. Manual memory management in C is error-
prone, and the consequences of bugs can be severe: 40 out of the
65 publicly available, execute-code CVEs found in Linux during
2017 were due to manual memory management bugs, and all of
them allow an attacker to execute malicious code in the kernel.
Had this buggy code been written in Biscuit, the GC and runtime
safety checks would have prevented malicious code execution in
all 40 cases.

Figure 1: Uses of Go HLL features in the Git repositories for Biscuit,
 Golang, and Moby per 1,000 lines of code

www.usenix.org S P R I N G 20 19 VO L . 4 4 , N O. 1 9

SYSTEMS
The Benefits and Costs of Writing a POSIX Kernel in a High-Level Language

func serve() {

 buf := new(request_t)

 read_next_request(buf)

 go func() {

 // log_request() occasionally

 // blocks on IO

 log_request(buf)

 }()

 process_request(buf)

}

Listing 1: A simple case where threads share data

Simpler concurrency. Garbage collection makes threaded
sharing of transient heap objects particularly convenient. For
example, consider the request processing code in Listing 1. A
network server calls the serve function to receive and process
the next request. The code calls log_request in a separate
thread in order to prevent file writes from delaying the process-
ing of the request. Each thread accesses buf while logging or
processing. The GC automatically ensures that buf will be freed
only after both threads have finished using it.

In contrast, this style of threaded programming can be awkward
in C, because of the need for code that decides when the last
thread has finished using the object. Consider writing List-
ing 1 in C. The C programmer would allocate buf via malloc.
Neither thread could simply free buf before returning since the
other thread may still be accessing buf. The programmer must
delay the call to free until both threads have finished accessing
buf. One solution would be to embed a reference count in buf,
manipulated with atomic instructions. This is eminently pos-
sible in C but requires more programmer thought than in Go, and
thus more chance of error.

Simpler lock-free sharing. GC is convenient in the above
example, but GC is more than convenient when threads share
data without locks (which is common in optimized kernels [5])
because the resulting code is significantly simpler than in C. In
C, each thread must increase and decrease the corresponding
reference count before and after accessing an object. Forgetting
to increase or decrease a reference count will result in corrupted
or leaked memory. Since threads may concurrently modify the
same reference counter, all modifications must be atomic with
respect to other counter accesses. Furthermore, the reference
counters themselves cannot be stored in the same memory as the
object that they protect, since then a thread may modify freed
memory. Thus the programmer needs to find the counter belong-
ing to each object.

The atomic operations to maintain reference counts can reduce
performance. This is the main reason why Linux uses RCU [5,
6] to safely free memory shared among threads. RCU requires
significantly fewer atomic operations and thus achieves good

performance, but it is not simple to use: code which accesses
memory managed by RCU must follow a list of rules (see https://
www.kernel.org/doc/Documentation/RCU/checklist.txt) and
be surrounded by a special prologue and epilogue. All such code
cannot sleep, schedule, or block in any way, in addition to follow-
ing a few other rules.

GC makes these programming difficulties disappear. Biscuit
code can share heap objects among threads without worrying
about when to free the objects. The reduction of programmer
effort is especially evident in the case of read-lock-free data
structures, which Biscuit uses in its directory cache, routing
table, and network interface table. The result is high performance
with less programmer effort, particularly in the directory cache.

Experience and Reflections
Biscuit was a really exciting project because we had no idea what
to expect of Go. Would Go make optimizing low-level code dif-
ficult or impossible? Can interrupt handlers tolerate GC pauses?
Is a language runtime with its own state and invariants com-
patible with the degree of concurrency kernels have to handle?
When we started, we expected to spend at most a couple of
months on the project and quickly find an indisputable, concrete
reason why a fast kernel could not be built in Go. We did not
expect to end up with a kernel that runs Nginx and Redis on 10
Gb NICs with performance similar to Linux.

The focus of the project wasn’t always performance. At the
beginning, we hoped that Go’s good support for threads and
interthread communication and synchronization would allow
simpler or more powerful designs for kernel code. For example,
we hoped that a kernel in Go could make free use of transient
worker threads to parallelize operations on multicore hardware.
Unfortunately, we found few such situations. As a result, we
switched goals away from exploring new kernel architectures
and towards evaluating the effect of language choice and GC on
performance. Thus the design of Biscuit started to become more
and more traditional and similar to Linux in order to isolate per-
formance differences due to the language as opposed to differing
architectures.

Building an operating system is a huge amount of work, and it
took months before Biscuit could run even the most trivial of
programs. Biscuit currently has 58 system calls, and nearly all of
them are required to run Nginx, Redis, and CMailbench.

As much work as it took to allow Biscuit to run complex pro-
grams, the optimization effort to run the programs well was far
greater. We knew that Linux delivered good performance when
we started, but we were stunned at how much effort it took to
build a kernel whose performance was even within a factor of
two of Linux’s. Getting decent performance required implement-
ing some interesting optimizations: mapping kernel text with

10  S P R I N G 20 19 VO L . 4 4 , N O. 1 www.usenix.org

SYSTEMS
The Benefits and Costs of Writing a POSIX Kernel in a High-Level Language

large pages to reduce iTLB misses, implementing TCP timers
via streamlined timer-wheels, building a directory cache with
store-free lookups that is correct with racing eviction, etc. But
most were less interesting details: reducing lock contention by
dedicating a NIC TX queue to each CPU instead of sharing one
queue among all CPUs, avoiding unnecessary allocations or
function calls, carefully batching TCP ACKs, sometimes using
a linked list instead of an array, etc. Despite the effort, optimiz-
ing Biscuit’s performance was the most fun part of the project
and that’s mainly because it honed our performance debugging
skills. If we had to do it over again, we would write the code to
profile via the CPU performance-monitoring counters as early
as possible; those profiles were by far the most helpful tool for
debugging performance problems.

We are grateful for QEMU [1], which has been a critical tool
for building and testing Biscuit. We were amazed at how little
work it took to get Biscuit to successfully boot on real hardware
despite running it exclusively on QEMU up to that point. Real
hardware did expose a few bugs in Biscuit (E820 memory map
parsing, PCI interrupt routing, and the BIOS’s INT 13h imple-
mentation apparently doesn’t restore the interrupt flag), but it
was generally painless, and that speaks to the quality of QEMU’s
emulation.

Our overall experience has been that building a kernel in Go was
similar to building one in C: good kernel performance is more
about implementing the right optimizations and less about the
choice of programming language. Go didn’t prevent us from
implementing important kernel optimizations, which suggests
that Go is a good choice for kernel programming.

Conclusion
Our experience using Go to implement the Biscuit kernel has been
positive. Go’s high-level language features are helpful in the con-
text of a kernel. Examination of historical Linux kernel bugs due
to C suggests that a type- and memory-safe language such as Go
might avoid real-world bugs or handle them more cleanly than C.
The ability to statically analyze Go helped us implement defenses
against kernel heap exhaustion, a traditionally difficult task.

We measured some of the performance costs of Biscuit’s use
of Go’s HLL features on a set of kernel-intensive benchmarks.
The fraction of CPU time consumed by garbage collection and
safety checks is less than 15%. We compared the performance of
equivalent kernel code paths written in C and Go, finding that
the C version is about 15% faster.

The paper and Biscuit’s code are available at https://pdos.csail.
mit.edu/projects/biscuit.html.

References
[1] QEMU, the FAST! processor emulator, 2018: https://www
.qemu.org.

[2] J. Corbet, “The Too Small to Fail Memory-Allocation Rule,”
LWN.net, December 2014: https://lwn.net/Articles/627419/.

[3] J. Corbet, “Revisiting Too Small to Fail,” LWN.net, May
2017: https://lwn.net/Articles/723317/.

[4] J. Dean and L. A. Barroso, “The Tail at Scale,” Communica-
tions of the ACM, vol. 56, no. 2, February 2013, pp. 74–80.

[5] P. E. McKenney, S. Boyd-Wickizer, and J. Walpole, “RCU
Usage in the Linux Kernel: One Decade Later,” 2012.

[6] P. E. McKenney and J. D. Slingwine, “Read-Copy Update:
Using Execution History to Solve Concurrency Problems,”
in Parallel and Distributed Computing and Systems, 1998, pp.
509–518.

[7] MITRE Corporation, CVE Linux Kernel Vulnerability
 Statistics, 2018: http://www.cvedetails.com/product/47
/Linux-Linux-Kernel.html?vendor id=33.

[8] S. Klabnik and C. Nichols, The Rust Programming Lan-
guage (No Starch, 2018): https://doc.rust-lang.org/book/.

[9] A. S. Tanenbaum, Modern Operating Systems (Pearson
Prentice Hall, 2008), p. 71.

[10] L. Torvalds, On C++, January 2004: http://harmful.cat
-v.org/software/c++/linus.

[11] C. Cutler, M. F. Kaashoek, R. T. Morris, “The Benefits and
Costs of Writing a POSIX Kernel in a High-Level Language,”
in Proceedings of the 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’18), pp. 89–105:
https://www.usenix.org/system/files/osdi18-cutler.pdf.

https://www.qemu.org
https://www.qemu.org
https://lwn.net/Articles/627419/
https://lwn.net/Articles/723317/
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor
https://doc.rust-lang.org/book/
http://harmful.cat-v.org/software/c++/linus
http://harmful.cat-v.org/software/c++/linus
https://www.usenix.org/system/files/osdi18-cutler.pdf

www.usenix.org S P R I N G 20 19 VO L . 4 4 , N O. 1 11

SYSTEMS

Pocket
Elastic Ephemeral Storage for Serverless Analytics

A N A K L I M O V I C , Y A W E N W A N G , P A T R I C K S T U E D I , A N I M E S H T R I V E D I ,
J O N A S P F E F F E R L E , A N D C H R I S T O S K O Z Y R A K I S

Serverless computing platforms are increasingly being used to exploit
massive parallelism and fine-grained billing for interactive analytics
jobs [1–3]. A key challenge is exchanging intermediate data efficiently

between tasks, as serverless tasks are short-lived and stateless. The systems
commonly used to store and exchange intermediate data in serverless jobs
today do not meet the performance, cost, and elasticity requirements of
interactive analytics applications. We present Pocket, a fast, elastic, fully
managed cloud storage service designed for efficient data sharing in server-
less analytics applications. To achieve high performance and cost efficiency,
Pocket leverages multiple storage technologies, right sizes resource alloca-
tions for jobs, and automatically scales cluster resources based on utilization.
The system achieves similar performance to Redis, an in-memory datastore,
while offering automatic, fine-grained scaling and significantly lower cost
for serverless analytics jobs. Pocket is open source software [4].

Serverless Analytics
Serverless platforms like AWS Lambda, Google Cloud Functions, and Azure Functions
enable users to quickly launch thousands of lightweight tasks, as opposed to entire virtual
machines. Cloud providers automatically scale the number of serverless tasks based on
application demands, and users pay only for the resources their tasks consume, at sub-sec-
ond time granularity.

Though serverless computing was initially used for web microservices and IoT applications,
its high elasticity and fine-grain billing make serverless computing appealing for more
complex jobs, such as interactive analytics [1–3]. Analytics jobs typically consist of multiple
stages of execution and require tasks in different stages to exchange data. We refer to the
intermediate data shared between tasks as ephemeral (i.e., short-lived) data. We distinguish
ephemeral data from the initial input and final output data of analytics jobs, which typically
have longer lifetimes.

Traditional analytics frameworks (e.g., Spark) implement ephemeral data sharing with long-
running framework agents buffering data in local storage on each node. In contrast, tasks in
serverless deployments are short-lived, and any data that a task stores locally is lost when a
task exits. Thus, direct communication between tasks is difficult, and the natural approach
to share data is to use remote storage.

For instance, serverless analytics frameworks use object stores (e.g., S3), databases (e.g.,
CouchDB), or distributed caches (e.g., Redis).

Ana Klimovic is a PhD student
at Stanford University advised
by Professor Christos Kozyrakis.
Her research interests are
in computer systems and

computer architecture. She is particularly
interested in improving performance and
resource efficiency for cloud computing. Ana
is a Microsoft Research PhD Fellow, Stanford
Graduate Fellow, and Accel Innovation Scholar.
anakli@stanford.edu

Yawen Wang is a second-
year PhD student advised by
Professor Christos Kozyrakis
at Stanford University. She is
broadly interested in computer

systems and cloud computing. Her current
research focuses on leveraging machine
learning to manage cloud resources more
efficiently. yawenw@stanford.edu

Patrick Stuedi is a researcher
at IBM Research Zurich.
His research interests are
in distributed systems,
networking, and operating

systems. Patrick graduated with a PhD from
ETH Zurich in 2008 and spent two years
(2008–10) as a postdoc at Microsoft Research
Silicon Valley. His work explores how modern
networking and storage hardware can be
exploited in distributed systems. Patrick is the
creator of several open source projects such
as DiSNI (RDMA for Java) and DaRPC (low
latency RPC) and is co-founder of Apache Crail
(Incubating). stu@zurich.ibm.com

12  S P R I N G 20 19 VO L . 4 4 , N O. 1 www.usenix.org

SYSTEMS
Pocket: Elastic Ephemeral Storage for Serverless Analytics

However, existing storage services are not a good fit for sharing ephemeral data in server-
less applications [5]. Popular fully managed cloud storage services, such as Amazon S3, are
designed to store data with high durability and are not optimized for low latency or high elas-
ticity. Distributed key-value stores offer good performance but burden users with managing
the configuration and scale of a storage cluster. Selecting storage resource configurations
for jobs is difficult yet critical for performance and cost efficiency [6]. Figure 1 shows an
example of the performance-cost tradeoff for a serverless video analytics application using
an ephemeral storage cluster configured with different storage technologies (DRAM, Flash,
and disk), number of nodes, compute resources per node, and network bandwidth. Finding
the minimum cost storage cluster configuration that provides optimal performance (e.g., the
bold point in Figure 1) is nontrivial and gets even more difficult with multiple jobs.

Ephemeral Storage Requirements for Serverless Analytics
We study the ephemeral storage requirements of three different types of serverless analyt-
ics applications: distributed software compilation, video object recognition, and MapReduce
sort. Figure 2 shows that ephemeral object size varies from 100s of bytes to 100s of mega-
bytes. Hence, serverless analytics applications require both low latency, which is important
for small object accesses, and high throughput, which is important for large object accesses.
As serverless computing platforms elastically scale the number of tasks based on load, the
ephemeral datastore must also be able to scale up and down automatically to meet dynamic
I/O requirements while minimizing cost. In addition to rightsizing storage cluster resources
based on current load, the system must place data on the right type of storage technology
for each job by taking into account the latency, throughput, and cost tradeoffs of different
technologies.

On the other hand, fault tolerance is not a high requirement for the ephemeral datastore as
the data is short-lived, and application frameworks typically have built-in mechanisms, such
as lineage tracking, that can be used to regenerate ephemeral data. Figure 3 shows the object
lifetime CDF for the three serverless analytics jobs we study. Most ephemeral data objects
only need to be stored for less than 30 seconds.

Animesh Trivedi is a researcher
at IBM Research Zurich. His
interests are in anything
and everything related to
performance, ranging from

multi-core CPUs to distributed environments.
Currently, he is investigating how modern
high-performance network and storage
devices can be leveraged in large-scale data-
processing systems such as Spark, Tensorflow,
and serverless workloads. He is one of the
founding members of the Apache Crail
(Incubating) project. atr@zurich.ibm.com

Jonas Pfefferle is a Software
Engineer at IBM Research
Zurich in the Cloud Storage and
Analytics group. His research
interests are in virtualized

distributed systems and datacenters,
specifically in state-of-the-art network and
storage technologies. Currently, he is working
on exploiting high performance I/O devices
with the focus on remote direct memory
access (RDMA) and non-volatile memory
(NVM) in data processing frameworks like
Spark. Jonas holds a master’s degree in
computer science from ETH Zurich (2014).
jpf@zurich.ibm.com

Christos Kozyrakis is a
Professor in the Departments
of Electrical Engineering and
Computer Science at Stanford
University. His research

interests include resource-efficient cloud
computing, energy-efficient computing and
memory systems for emerging workloads, and
scalable operating systems. Kozyrakis has a
PhD in computer science from the University
of California, Berkeley. He is a Fellow of the
IEEE and ACM. kozyraki@stanford.edu

Figure 1: Example of the performance-cost tradeoff space for a serverless video analytics job using differ-
ent storage technologies and VM types in Amazon EC2 for the ephemeral storage cluster. Data points of
the same storage type represent applications using different numbers of nodes, compute resources, and
network bandwidth.

www.usenix.org S P R I N G 20 19 VO L . 4 4 , N O. 1 13

SYSTEMS
Pocket: Elastic Ephemeral Storage for Serverless Analytics

Ephemeral Storage as a Service
We introduce Pocket, an elastic storage service for ephemeral
data sharing. The system provides high I/O performance while
minimizing cost by leveraging multiple storage technologies
with different performance-cost tradeoffs, rightsizing resource
allocations for jobs, and automatically scaling cluster resources
based on utilization. Pocket is a distributed /tmp for the cloud.

Pocket splits responsibilities across three separate planes: a
control plane that determines data placement policies for jobs,
a metadata plane that manages distributed data placement, and
a metadata-oblivious data plane responsible for storing data.
Pocket scales all three planes independently at fine granularity
based on the current load. The system leverages optional hints
about job characteristics, which can be provided by applica-
tion frameworks or users via Pocket’s API, to allocate the right
storage technology, capacity, bandwidth, and CPU resources for
each job. We intend for cloud operators to run Pocket as a fully
managed storage service and charge users for only the storage
capacity and bandwidth that their tasks consume.

Figure 4 shows Pocket’s system architecture and how a job
interacts with Pocket. To use Pocket, a job starts by register-
ing with a logically centralized controller, which runs the
 control plane logic for Pocket. The controller decides the storage
throughput, capacity, and type of storage technology to allocate
for the job, leveraging any optional hints provided about the job’s
characteristics, such as latency sensitivity and the peak number
of concurrent tasks. The controller decides on a data placement
policy for the job, spinning up additional storage or metadata
nodes if necessary to meet the job’s allocation. The controller
communicates the data-placement policy for the job to metadata
servers, which will enforce data placement by routing client
write requests. After registering with the controller, the job
launches serverless tasks (i.e., lambdas), which issue GET/PUT
requests using Pocket’s client library.

Metadata servers route I/O requests to the appropriate stor-
age nodes based on the job’s data-placement policy determined
upfront by the controller during job registration. By default, a
job’s ephemeral data is deleted when the job deregisters with the
controller. However, Pocket’s API accepts hints to manage data
lifetime. For example, since we find that most ephemeral data is
written and read only once, a user or application framework can
hint to Pocket that an object should be deleted immediately after
it is read, optimizing garbage collection.

In addition to rightsizing resource allocations across multiple
dimensions upfront when jobs register, the controller also con-
tinuously monitors resource utilization in the cluster. Pocket’s
controller adds/removes nodes to keep CPU, storage capacity,
and network bandwidth utilization within a target range. To
balance load in a cluster of changing size, Pocket leverages the
short-lived nature of ephemeral data and serverless jobs. We find
that ephemeral data objects in the serverless applications we
study typically only need to be stored for less than 30 seconds.
Hence, migrating this data to redistribute load when nodes are
added or removed would have high overhead. Instead, Pocket
focuses on steering data for incoming jobs across active and new
storage nodes in the cluster, while allowing nodes that the con-
troller wants to take down to be drained as their data is garbage
collected.

Implementation. Pocket’s implementation leverages several
open-source systems, and Pocket is also open source [4]. The
metadata and data planes are built on top of the Apache Crail
distributed datastore, which is designed for low latency, high
throughput access to data with low durability requirements
[7, 8]. Though Crail is originally designed to leverage RDMA
networks, the system’s modular architecture supports pluggable
RPC libraries and storage tiers. We implement a TCP-based
RPC library for Pocket. Our implementation of Pocket includes
three different storage tiers. The first is a DRAM tier that effi-
ciently serves client requests over TCP connections. The second
tier is an NVMe Flash storage tier. We implement this tier using

Figure 2: Ephemeral data object size CDF for three different serverless
analytics applications. Objects vary widely in size.

Figure 3: Ephemeral data objects have short lifetimes (seconds to
 minutes).

14  S P R I N G 20 19 VO L . 4 4 , N O. 1 www.usenix.org

SYSTEMS
Pocket: Elastic Ephemeral Storage for Serverless Analytics

ReFlex, a software system that enables fast, predictable access
to remote Flash storage over commodity Ethernet networks [9].
The third tier is a generic block storage tier that allows Pocket to
use any block device such as a hard-drive disk or SATA/SAS SSD
with a standard kernel block device driver. We deploy Pocket
storage and metadata servers inside of containers on AWS EC2
machines. We use Kubernetes to orchestrate the containers and
implement autoscaling.

Elastic and Automatic Resource Scaling with
Pocket
We evaluate Pocket with three different serverless analytics
applications: a video analytics application that does object recog-
nition, a MapReduce sort job, and a distributed compilation job
that compiles the source code for cmake. The applications differ
in their degree of parallelism, ephemeral object size distribu-
tion, and throughput requirements. We use AWS Lambda as our
serverless computing platform.

Figure 5 shows how Pocket elastically scales cluster resources
as multiple jobs register and deregister with the controller. In
this experiment, we assume Pocket receives hints about the
capacity and throughput requirements of each job. The first
job is a 10 GB sort requesting 3 GB/s throughput. The second
job does video object recognition, requesting 2.5 GB/s, and the
third job is a different invocation of a 10 GB sort also requesting
3 GB/s. Pocket quickly and automatically scales the allocated
storage bandwidth (dotted line) to meet application throughput
demands (solid line). Application throughput briefly surpasses
the total allocated throughput due to bursty EC2 VM network
bandwidth, which causes a storage node to provide greater than
the anticipated 1 GB/s bandwidth per node for a short period
of time. In this experiment, the controller is configured to
maintain a minimum cluster size of two storage nodes, which
provides 2 GB/s cumulative throughput.

Comparing Pocket to Amazon S3 and Redis
We compare Pocket to two popular storage systems used by
serverless analytics applications today. Amazon S3 is a fully
managed cloud storage service that offers a convenient “server-
less” storage abstraction and cost model in which users pay only
for the capacity and bandwidth their tasks consume. S3 offers
durable storage and is optimized for access to large objects. In
contrast, Redis is a popular key-value store that uses DRAM
to provide high performance. However, users need to manually
select and manage resource configurations for a Redis stor-
age cluster. Although Amazon and Azure offer managed Redis
clusters through their ElastiCache and Redis Cache services,
respectively, they do not automate storage management as
desired by serverless applications. Users must still select
instance types with the appropriate memory and compute and
network resources to match their application requirements.

We first compare job execution time when using Pocket versus
S3 and ElastiCache Redis as the ephemeral datastore. Figure
6 plots the per-task execution time breakdown for a 100 GB
MapReduce sort job, run with 250, 500, and 1000 concurrent
lambdas. The light-gray/orange bars show the time spent fetch-
ing original input data and writing final output data to long-term
S3 storage, while the darker-gray/blue bars compare the time
for ephemeral data I/O, comparing S3, Redis, and Pocket. S3
does not provide sufficient throughput for this I/O-intensive
job, hence in the 250 lambda experiment, each task spends over
three times longer shuffling data when using S3 compared to
Redis or Pocket. When the job is run with 500 or more lambdas,
S3 does not support sufficient request rates. The system returns
errors and advises to reduce the I/O rate. On the other hand,
Pocket provides similar throughput to Redis. In this experiment,
we assume Pocket receives a hint that the job is not sensitive
to latency—hence, Pocket uses NVMe Flash instead of DRAM.
Thus Pocket achieves similar performance to Redis while dra-
matically saving cost.

Figure 4: Pocket system architecture and the steps to register job C, issue
a PUT from a lambda, and deregister the job. The shaded/colored bars on
storage servers show used and allocated resources for all jobs in the cluster.

Figure 5: Pocket dynamically scales cluster resources to meet I/O require-
ments as jobs come and go.

www.usenix.org S P R I N G 20 19 VO L . 4 4 , N O. 1 15

SYSTEMS
Pocket: Elastic Ephemeral Storage for Serverless Analytics

To compare the cost of running jobs using Pocket versus S3
and ElastiCache Redis for ephemeral data sharing, we derive a
fine-grain resource cost model for Pocket based on Amazon EC2
pricing. Our minimum-size Pocket cluster, consisting of one
controller node, one metadata server, and two NVMe Flash stor-
age nodes, costs $1.63 per hour to run on Amazon EC2. How-
ever, Pocket’s fixed cost can be amortized because the system
is designed to support multiple concurrent jobs from one or more
tenants. We intend for Pocket to be operated by a cloud provider
and offered as a storage service with a pay-what-you-use cost
model for users, similar to the cost model of serverless comput-
ing platforms. Hence, for our cost analysis, we derive fine-grain
resource costs, such as the cost of a CPU core and the cost of
each storage technology per GB, based on the prices of various
EC2 instances.

Using this fine-grain resource pricing model for Pocket, we
compare the cost of running the 100 GB sort, video analytics,
and distributed compilation jobs with S3, ElastiCache Redis,
and Pocket. For S3, we assume its GB-month cost is charged
hourly. We base Redis costs on the price of entire VMs, not only
the resources consumed, since ElastiCache Redis clusters are
managed by individual users rather than cloud providers. Pocket
achieves the same performance as Redis for all three jobs while
saving 59% in cost. S3 is still orders of magnitude cheaper.
However, S3’s cloud provider-based cost is not a fair compari-
son to the cloud user-based cost model we use for Pocket and
Redis. Furthermore, while the distributed compilation job has
similar performance with all three ephemeral storage systems
because it saturates CPU resources on serverless tasks, the
execution time is 40 to 65% higher with S3 compared to Pocket
for the video analytics and MapReduce sort jobs. A more detailed
analysis of Pocket’s performance and cost can be found in our
OSDI ’18 paper [10].

Conclusion
General-purpose analytics on serverless infrastructure presents
unique opportunities and challenges for performance, elasticity,
and resource efficiency. We analyzed the challenges associated
with efficient data sharing and presented Pocket, a fully man-
aged ephemeral data storage service. Pocket provides a highly
elastic, cost-effective, and high performance storage solution
for analytics workloads. Pocket achieves these goals using a
strict separation of responsibilities for control, metadata, and
data management. Although we designed Pocket specifically to
enable efficient data sharing in serverless analytics applications,
more generally, Pocket is a distributed temporary datastore that
can be useful for a variety of different cloud applications.

Acknowledgments
We thank our OSDI shepherd, Hakim Weatherspoon, and the
anonymous reviewers for their helpful feedback. We thank
Qian Li, Francisco Romero, Sadjad Fouladi, and Nick Murphy
for insightful technical discussions. This work is supported by
the Stanford Platform Lab, Samsung, and Huawei. Ana Klimovic
is supported by a Stanford Graduate Fellowship. Yawen Wang
is supported by a Stanford Electrical Engineering Department
Fellowship.

Figure 6: Average execution-time breakdown of each task (lambda) in a
100 GB sort job, run with 250, 500, and 1000 concurrent tasks

16  S P R I N G 20 19 VO L . 4 4 , N O. 1 www.usenix.org

SYSTEMS
Pocket: Elastic Ephemeral Storage for Serverless Analytics

References
[1] S. Fouladi, R. S. Wahby, B. Shacklett, K. V. Balasubrama-
niam, W. Zeng, R. Bhalerao, A. Sivaraman, G. Porter, and K.
Winstein, “Encoding, Fast and Slow: Low-Latency Video Pro-
cessing Using Thousands of Tiny Threads,” in Proceedings of
the 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’17), pp. 363–376: https://www.usenix
.org/system/files/conference/nsdi17/nsdi17-fouladi.pdf.

[2] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht,
“Occupy the Cloud: Distributed Computing for the 99%,” in
Proceedings of the Symposium on Cloud Computing (SOCC ’17),
pp. 445–451.

[3] Databricks Serverless, “Next Generation Resource Manage-
 ment for Apache Spark”: https://databricks.com/blog/2017
/06/07/databricks-serverless-next-generation-resource
-management-for-apache-spark.html, 2017.

[4] Pocket: https://github.com/stanford-mast/pocket, 2018.

[5] A. Klimovic, Y. Wang, C. Kozyrakis, P. Stuedi, J. Pfefferle,
and A. Trivedi, “Understanding Ephemeral Storage for Server-
less Analytics,” in Proceedings of the USENIX Annual Technical
Conference (ATC ’18), pp. 789–794: https://www.usenix.org
/system/files/conference/atc18/atc18-klimovic-serverless.pdf.

[6] A. Klimovic, H. Litz, and C. Kozyrakis, “Selecta: Heteroge-
neous Cloud Storage Configuration for Data Analytics,” in Pro-
ceedings of the USENIX Annual Technical Conference (ATC ’18),
pp. 759–773: https://www.usenix.org/system/files/conference
/atc18/atc18-klimovic-selecta.pdf.

[7] P. Stuedi, A. Trivedi, J. Pfefferle, R. Stoica, B. Metzler, N.
Ioannou, and I. Koltsidas, “Crail: A High-Performance I/O
Architecture for Distributed Data Processing,” IEEE Data
Engineering Bulletin 40, pp. 38–49.

[8] Apache Crail (Incubating): https://crail.incubator.apache
.org, 2018.

[9] A. Klimovic, H. Litz, and C. Kozyrakis, “ReFlex: Remote
Flash ≈ Local Flash,” in Proceedings of the 22nd International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS ’17), pp. 345–359.

[10] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle,
C. Kozyrakis, “Pocket: Elastic Ephemeral Storage for Serverless
Analytics,” in Proceedings of the 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’18),
pp. 427–444: https://www.usenix.org/system/files/osdi18
-klimovic.pdf.

www.usenix.org S P R I N G 20 19 VO L . 4 4 , N O. 1 17

SYSTEMS

Noria
A New Take on Fast Web Application Backends

J O N G J E N G S E T , M A L T E S C H W A R Z K O P F , J O N A T H A N B E H R E N S , L A R A T I M B Ó A R A Ú J O ,
M A R T I N E K , E D D I E K O H L E R , M . F R A N S K A A S H O E K , A N D R O B E R T M O R R I S

Noria [2], first presented at OSDI ’18, is a new web application back-
end that delivers the same fast reads as an in-memory cache in front
of the database, but without the application having to manage the

cache. Even better, Noria still accepts SQL queries and allows changes to
the queries without extra effort, just like a database. Noria performs well: it
serves up to 14M requests per second on a single server, and supports a 5x
higher load than carefully hand-tuned queries issued to MySQL.

Writing web applications that tolerate high load is difficult. The reason is that the backend
storage system that the application relies on—typically a relational database, like MySQL—
can easily become a serious bottleneck with many clients. Each page view typically involves
10 or more database queries, which each take up CPU time on the database servers to evalu-
ate. To avoid such slow database interactions and to reduce load on the database, applications
often introduce caches (like memcached or Redis) that store already-computed query results
for fast common case access. These caches, however, impose significant application com-
plexity, because the application must query, invalidate, and maintain them [1]. Surely there
has to be a better way.

Data-Flow for High Performance
At first glance, Noria seems similar to a database because it processes SQL queries. How-
ever, instead of evaluating queries on-the-fly as a traditional database would, the application
registers long-term queries with Noria for repeated use. Queries contain free parameters
that the application specifies when it actually executes its reads, similar to the interface
provided by prepared SQL statements. From the pre-specified queries, Noria constructs a
data-flow graph that continuously and incrementally evaluates the queries when the underly-
ing data changes.

Data-flow processing was initially invented in the 1970s for circuit design but has recently
been adopted for large-scale parallel data-processing in systems like Dryad [4], Naiad [5],
and TensorFlow [6], for example. In data-flow, the system represents computations as a
graph whose vertices are data-flow operators and whose edges carry updates between the
operators. When an operator receives an update on an incoming edge, it processes the update
(possibly consulting internal state that it keeps) and emits zero or more updates of its own on
all its outgoing edges. This graph representation is appealing, as it makes the computation’s
dependencies explicit: update propagation across different edges and processing at differ-
ent vertices can happen in parallel. Therefore, data-flow processing is well-suited to scaling
across multiple CPU cores and servers.

In Noria, the data-flow graph connects classic database tables at its inputs to materialized
views at its leaves. The intervening operators proactively execute the application’s queries for
each change to the tables. Noria generates the data-flow from SQL queries using a process
similar to database query planning. Noria then serves all reads directly from the materialized
views in memory, which makes reads as fast as reading from a cache. When the records in a

Jon Gjengset is a Norwegian
PhD student in the Parallel
and Distributed Operating
Systems group at MIT CSAIL.
He received his bachelor’s

from Bond University, Australia, in 2011, and
his master’s from University College London
in 2013. His primary research focus is on
distributed data-flow systems, though he has
also worked on computer security and wireless
systems. Outside of academia, Jon develops
teaching resources for the Rust programming
language and is a frequent open-source
contributor. jon@thesquareplanet.com

Malte Schwarzkopf is a
postdoctoral associate in the
PDOS (Parallel and Distributed
Operating Systems) group
at MIT CSAIL. His research

focuses on distributed systems, with current
and past work on data-flow systems, query
compilers, cluster scheduling, datacenter
networking, and parallel data processing.
He received both his BA and PhD from the
University of Cambridge, and his research has
won best paper awards from EuroSys (2013)
and NSDI (2015). malte@csail.mit.edu

Jonathan Behrens is a PhD
student in the PDOS group
at MIT. His research centers
around operating systems and
distributed systems, including

Noria and work on OS abstractions to improve
resource utilization. behrensj@mit.edu

18  S P R I N G 20 19 VO L . 4 4 , N O. 1 www.usenix.org

SYSTEMS
Noria: A New Take on Fast Web Application Backends

Lara Araújo is a Software
Engineer at Airbnb working on
large-scale distributed services
and streaming data pipelines.
Before joining Airbnb, Lara

earned a bachelor’s and a master’s degree in
EECS from MIT, focusing on developing secure
datastores for high-performance applications.
Her interests revolve around distributed
systems and different kinds of storage
systems. Lara was born and raised in Fortaleza
and enjoys dancing, bouldering, and reading
books by the ocean. lara.araujo@airbnb.com

Martin Ek studied computer
science at MIT and the
Norwegian University of Science
and Technology. He’s currently
a Software Engineer at Stripe,

where he helps build financial infrastructure for
online businesses. mail@ekmartin.com

Eddie Kohler is a Professor of
Computer Science at Harvard.
He maintains (more or less)
several widely used software
packages, including the Click

modular router and HotCRP, and he edited a
musical score of John Cage’s Indeterminacy.
Twitter: @xexd, kohler@seas.harvard.edu

Frans Kaashoek is the Charles
Piper Professor in MIT’s EECS
department and a member of
CSAIL, where he co-leads the
parallel and distributed operating

systems group (https://pdos.csail.mit.edu/).
Frans is a member of the National Academy
of Engineering and the American Academy of
Arts and Sciences, and is the recipient of the
ACM SIGOPS Mark Weiser award and the 2010
ACM Prize in Computing. He was a co-founder
of Sightpath, Inc. and Mazu Networks, Inc. His
current research focuses on multicore operating
systems and certification of system software.
kaashoek@mit.edu

Robert Morris is a Professor
of Computer Science at MIT.
rtm@csail.mit.edu

table change (e.g., in response to a client insert or update), Noria feeds updates through the
data-flow to modify the materialized views as necessary.

The idea of materialized views has been around for decades, and some commercial and
research databases support them. However, existing implementations lack the flexibility and
performance that web applications require.

Noria’s approach effectively flips the database query model on its head: instead of executing
queries in response to reads, Noria executes them in response to writes. Reads are simple
lookups into materialized state, which makes them (much) faster by moving work from reads
to writes. Modern web applications are generally read-heavy, so this tradeoff makes sense
for them. Furthermore, since Noria takes care of making reads fast even for complex SQL
 queries, the developer no longer needs to write error-prone, complex cache-maintenance
code, or tune their queries for fast execution. They can simply issue the SQL queries they
wish, inline aggregations and all, and Noria does the rest.

An Example: Votes for News Stories
Let’s take a look at how Noria executes a particular SQL query. Figure 1a shows the data-
flow that Noria constructs when given a query that counts the votes for each story in a news
aggregator like Hacker News or Lobste.rs. The query joins with the stories table to retrieve
the story’s details (title, author, etc.). When a client inserts a new vote (let’s say for the story
with the identifier A), an update enters the data-flow at the vertex that corresponds to the
votes table. From there, the data-flow propagates the update to the aggregation vertex below,
which looks up the current vote count for the new vote’s story in the internal state it main-
tains (say, 7). The count then updates the internal state to record that the vote count for that
story is now 8 and emits an update to its children saying that the count for A is now 8, not 7.
This update arrives at the join, which looks up A’s title in stories and produces a new update
that says A, whose title is “Space elevator nearly completed,” now has a vote count of 8, not
7. That update finds its way to the materialized view StoryWithVotes, which Noria updates
appropriately so that any subsequent read from it sees A’s vote count as 8. Here, we say that
StoryWithVotes is keyed by the story’s identifier. In general, the key for a view is dictated by a
set of free parameters in the corresponding SQL query issued by the application.

Figure 1a: Example Noria data-flow for a query that counts the votes for each story in a news aggregator
and incrementally updates the count as new votes arrive (solid). Reads hit materialized view (dashed).

www.usenix.org S P R I N G 20 19 VO L . 4 4 , N O. 1 19

SYSTEMS
Noria: A New Take on Fast Web Application Backends

Making Data-Flow Work for Web Applications
Naively adding new queries and initializing their data-flow state
and materialized views may require Noria to compute a signifi-
cant amount of state for the new query and induce downtime
while it does so. More generally, if Noria always kept all state for
all stateful internal data-flow operators and all its materialized
views, its memory footprint would explode with many queries.
Noria solves this problem by introducing partially stateful data-
flow. This new model in turn enables Noria to support dynamic
materialized views, where the set of queries changes over time
without requiring a system restart.

Dynamic change. Figure 1b shows the data-flow from Figure
1a after the application adds a new Karma query (the shaded gray
region). Karma computes the total votes for all stories posted by
a given user. Notice that the data-flow path for Karma partially
overlaps with that of StoryWithVotes. Noria realizes that it does
not need to recount all the votes but can instead reuse the counts
it already has. When the application first issues the Karma query,
Noria extends the currently running data-flow to also include
the extra data-flow operators needed for the new query and a new
materialized view for Karma. It then initializes the state needed
by stateful data-flow operators and the materialized view before
making the latter available for application reads. Reads of old
views are unaffected by changes to the data-flow, as are writes to
unconnected parts of the data-flow. In combination with partial
state, Noria makes the change instantaneous for writes as well.

Data-flow systems prior to Noria were designed for stream, graph,
and parallel “big data” processing and cannot change the compu-
tation (i.e., queries) without restarting [6]. They must either keep
all computed state in internal operator state and materialized
views or apply windowing to reduce computed state by throwing
away old records. For web applications, neither is acceptable: the
backend cannot be down when queries change, and it must return
complete results rather than ones based only on recent changes.

This brings us back to Noria’s key idea: partially stateful data-
flow. Noria’s data-flow changes on-the-fly in response to query
changes, and it keeps only a subset of state in memory, fetching
missing data on-demand.

Partial state. Noria marks some keys in each data-flow state as
absent and recomputes them only when needed. To support such
recomputation—e.g., when a client reads an absent key from a
materialized view—Noria relies on upqueries through the data-
flow. Upqueries allow a vertex to ask its ancestors to recompute
the absent state the vertex needs in order to serve an application
read. The upstream ancestors respond to an upquery with the
records in their state that match the absent key or keys speci-
fied by the upquery, and the results percolate back down through
the data-flow. Since upqueries allow vertices to recover absent
state, Noria is free to evict infrequently accessed state to save
memory. More importantly, Noria also uses absent state to cre-
ate new materialized views and operators with initially empty
state, relying on upqueries to fill the state on demand. This
allows Noria to adapt to most query changes entirely without
downtime; all that is required is to bring up a set of empty data-
flow operators. Absent state also speeds up regular processing,
as updates for keys that are evicted, or that the application has
never requested, can be discarded early.

Partial state and upqueries are conceptually simple, but mak-
ing them always correct actually requires care. Intuitively, a
partially stateful data-flow is only correct if it always—whether
directly or via upqueries—produces the same result for a client
read that a classic data-flow with full state would have returned.
However, ensuring this in the face of concurrent processing
in the data-flow, and with upqueries that can race with “nor-
mal” updates traveling downstream that themselves may be
contained in the eventual upquery response, is difficult. Noria
ensures this property using a new data-flow model and extra
invariants. Some of the challenges are:

◆◆ How do data-flow operators handle updates that encounter
absent state? Consider the earlier count: if its state for story A
is absent, how can the count operator produce (A, 8) as the
emitted update?

◆◆ How does parallel processing of complex data-flows that fork
and join still ensure that upquery responses always contain all
the updates processed at the queried operator exactly once?

◆◆ How do operators that change the key column handle up-
queries? For example, the sum operator added in Figure 1 may
upquery the join on its incoming edge for a particular user, but
that join is keyed by the story identifier column.

◆◆ How do multi-ancestor operators handle upqueries if state
for the upquery key is available in one ancestor but not in
the other?

Figure 1b: If the application adds another query to compute the “Karma”
score for each user (the total votes received for the user’s stories), Noria
dynamically adds to the running data-flow (dash-dot) the extra operators
and materialized views needed.

20  S P R I N G 20 19 VO L . 4 4 , N O. 1 www.usenix.org

SYSTEMS
Noria: A New Take on Fast Web Application Backends

Our paper [2] gives the invariants that Noria must maintain to
guarantee correct execution and points out what goes wrong if
these invariants are not properly maintained.

Evaluating the Noria Prototype
We implemented Noria in about 60,000 lines of Rust, along with
a MySQL adapter that implements the MySQL binary protocol
and makes Noria appear as a MySQL server to legacy applica-
tions. This way, Noria can support unmodified MySQL applica-
tions that use prepared statements (e.g., through PHP’s PDO
library). Noria supports sharding and partitioning the data-flow
across cores and servers, and stores all base tables durably in
RocksDB [7]. It handles failures in the distributed system by
recreating those parts of the data-flow that a failure affects.

To evaluate Noria’s performance and check that it actually
makes web applications faster and reduces their complexity, we
wrote a workload generator that emulates the real production
workload seen by the news aggregator website Lobste.rs (https://
lobste.rs). Lobste.rs is a Ruby-on-Rails application backed by a
MySQL database, and the Lobste.rs developers carefully hand-
optimized its queries for performance. Our benchmark issues the
same SQL queries as the real Lobste.rs website, with the same
frequency and popularity skew, using the MySQL binary protocol.

We then run that against both MySQL directly (we use MariaDB
v10.1.34, a GPLv2 community fork of MySQL) and against Noria,
on a 16-core Amazon EC2 VM. Figure 2 plots the offered load on
the x-axis (in page views per second; each page issues around ten
queries) and the achieved median and 95th percentile latency
on the y-axis (so lower is better). At the point where each setup
stops scaling—for example, because it saturates the server’s CPU
cores—the latency curve forms a “hockey stick” that shoots up
when the system cannot keep up with the load anymore. The
results indicate that Noria scales to a 2.5x–5x higher load than
the MySQL baseline. For the initial result (blue line with circles,
2.5x improvement), we use the exact same queries as the Lobste
.rs developers.

We then go a step further and remove all manual optimizations
from the queries (line with squares). For example, the original
application keeps upvotes and downvotes columns in the stories
table and updates them on every vote, so that read query evalua-
tion avoids doing a COUNT over votes. This is effectively a hand-
rolled “materialized view” of the vote count, but it requires the
developers to customize the application to update this column
whenever the vote count changes. In Noria, such hand-tuning
is unnecessary. Indeed, removing the hand-optimizations from
the queries, we see a 5x speed-up over MySQL. The difference
here comes from the fact that by not having to maintain these
auxiliary values in the base tables (but instead having Noria
maintain them in the data-flow), we avoid an extra UPDATE query
and parallelize the update processing.

To quantify how much Noria improves performance over exist-
ing approaches, we choose a single, common query (the join of
stories with vote counts) and issue that same query against
a number of common web backend setups. Here, 95% of the
requests are reads, and 5% are new votes, and we use a simi-
lar, skewed popularity distribution as the real Lobste.rs site
observes. We benchmark MariaDB; System Z, a commercial
database that supports materialized views; MariaDB with a
memcached look-aside cache; “memcached-only,” an unrealistic
deployment where the application stores vote counts directly in
memcached without any database interactions; and Noria with
four-way sharding for parallel processing.

All systems run entirely in-memory to avoid measuring the I/O
layer performance, and we set the databases to avoid transac-
tions and use the lowest isolation level. Figure 3 again shows
that Noria performs well: while the database-based systems do
not scale beyond 200,000 requests/sec, Noria scales all the way
to 14 million requests/sec. The unrealistic memcached-only
deployment, for comparison, scales to 8 million requests/sec but
then saturates the cores of the server.

Figure 2: Noria scales to a 5x higher load than MySQL for the Lobste.rs
website’s workload while using queries free of hand-tuning (2.5x with the
Lobste.rs’s developers’ original queries). Solid line shows median; dashed
is the 95th percentile.

Figure 3: Noria supports 14 million requests/sec for a read-heavy
(95% reads) workload, while other systems achieve only 200,000
 requests/sec—with the exception of an unrealistic memcached-only
setup that does strictly less work but still underperforms Noria.

www.usenix.org S P R I N G 20 19 VO L . 4 4 , N O. 1 21

SYSTEMS
Noria: A New Take on Fast Web Application Backends

Noria outperforms memcached because it uses a more efficient,
lock-free data structure to serve reads, but this is not fundamen-
tal (memcached could use the same data structure). Noria’s high
performance comes because reads directly hit the materialized
view, and because it processes writes efficiently through the
sharded, partially stateful, incremental data-flow.

When to Use Noria
Noria is designed for web applications that are read-heavy and
that can tolerate eventual consistency. The ubiquity of caches
in modern web application stacks suggest that eventual consis-
tency is often sufficient, although we are also working on ideas
for high-performance transactions on Noria. Noria also obviates
the need for transactions in some cases. The Lobste.rs develop-
ers, for example, only use transactions to ensure that a story’s
vote count is incremented atomically with the vote being stored.
Noria maintains the vote count internally in the data-flow, so
this transaction is no longer necessary.

Noria primarily targets applications whose working set fits in
memory when sharded and partitioned across many servers.
Old records in base tables are only on disk, but applications that
regularly need to access the full data set (e.g., full-text search)
would need additional support to work well in Noria.

How to Use Noria
Noria is open-source and available at https://pdos.csail.mit.edu
/noria. In many cases, you should only need to start up the Noria
MySQL adapter, point your application at it instead of MySQL,
and turn off all your caches. Noria will take care of the rest. The
Noria prototype is research code and still in development, but we
would like to hear how it works for other people!

References
[1]: J. Mertz and I. Nunes, “Understanding Application-Level
Caching in Web Applications: A Comprehensive Introduction
and Survey of State-of-the-Art Approaches,” in ACM Comput-
ing Surveys, vol. 50, no. 6 (November 2017), pp. 98:1–98:34.

[2]: J. Gjengset, M. Schwarzkopf, J. Behrens, L. T. Araújo,
M. Ek, E. Kohler, M. F. Kaashoek, and R. Morris, “Noria:
Dynamic, Partially-Stateful Data-Flow for High-Performance
Web Applications,” in Proceedings of 13th USENIX Confer-
ence on Operating Systems Design and Implementation (OSDI
’18), pp. 213–231: https://www.usenix.org/conference/osdi18
/presentation/gjengset.

[3] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee,
H. C. Li, R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Staf-
ford, T. Tung, and V. Venkataramani, “Scaling Memcache at
Facebook,” in Proceedings of the 10th USENIX Conference on
Networked Systems Design and Implementation (NSDI ’13),
pp. 385–398: https://www.usenix.org/conference/nsdi13
/technical-sessions/presentation/nishtala.

[4] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
Distributed Data-Parallel Programs from Sequential Build-
ing Blocks,” SIGOPS Operating Systems Review, vol. 41, no. 3
(March 2007), pp. 59–72.

[5] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham,
and M. Abadi, “Naiad: A Timely Dataflow System,” in Pro-
ceedings of the 24th ACM Symposium on Operating Systems
Principles (SOSP ’13), pp. 439–455.

[6] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M.
Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Leven-
berg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker,
V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: A System for Large-Scale Machine Learning,”
in Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation (OSDI ’16). pp. 265–283:
https://www.usenix.org/system/files/conference/osdi16
/osdi16-abadi.pdf.

[7] RocksDB: https://rocksdb.org/.

https://www.usenix.org/conference/osdi18/presentation/gjengset
https://www.usenix.org/conference/osdi18/presentation/gjengset
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/nishtala
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/nishtala
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://rocksdb.org/

22  S P R I N G 20 19 VO L . 4 4 , N O. 1 www.usenix.org

SREAchieving Reliability with Boring Technology
D A V E M A N G O T

Dave Mangot is the author of
Mastering DevOps from Packt
Publishing. Previously, he led
site reliability engineering
(SRE) for the SolarWinds

cloud companies. An accomplished Systems
Engineer with over 20 years’ experience, he
has held positions in various organizations,
from small startups to multinational
corporations such as Cable & Wireless and
Salesforce, from Systems Administrator to
Architect. He has led transformations at
multiple companies in operational maturity
and in a deeper adherence to DevOps thinking.
He enjoys time spent as a mentor, speaker, and
student to so many talented members of the
community. usenix@mangot.com

Everything should be made as simple as possible, but no simpler.—Albert Einstein

Distributed systems. Complex systems. Enterprise systems. No matter
how we’re involved in computing these days, it’s likely we’re working
on complex or complicated (in the Cynefin sense) problems. In fact,

even systems that start out simple ultimately become complex through the
continuing evolution of those systems through architecture changes, code
deploys, or simply the passage of time (do you remember why you made that
choice three years prior?). Because this complexity is a naturally occurring
property of these systems, I choose to use boring technology.

When I say “boring technology,” we should give credit to one of its biggest proponents, Dan
McKinley (@mcfunley) who wrote: “We should generally pick the smallest set of tech that
covers our problem domain, and lets us get the job done” [1].

Why do I feel this way? I’ve been doing Operations work for more than 20 years. I’ve worked
in small startups and big multinationals. I’ve worked on huge monoliths and systems that
had an undying allegiance to services. Through it all, I’ve encountered complexity. When it’s
3 a.m. and the pager is blowing up, complexity is not my friend (or yours). Over the years, I’ve
always tried to advocate for the “smallest set of tech that covers our problem domain.” When
you’re firefighting and you’re trying to reason about what is wrong, why the Java process
keeps OOM’ing or why the database connection pool is being exhausted, the last thing you
want is fancy, magical, technology.

MTTR > MTBF
You may be able to tell, I have a specific bias to the Operations perspective. As site reliability
engineering (SRE) has become more prevalent, we can see an emphasis on reliability and
recovery from failure. In an ideal world, our recovery from failure is instantaneous; the
customer has no idea there was a failure. Unfortunately, we don’t live in an ideal world, so
the best we can do is to try to minimize downtime by maximizing our ability to recover from
failure. Choosing boring technology is a proven technique for making this a reality.

Does your Operations (DevOps, SRE, etc.) really need to deploy multiple Kubernetes clusters
in order to deploy a single Ruby script? Should we try to write our next service in Erlang
because we heard it’s “cool,” even though our staff mostly consists of PHP programmers? Bor-
ing technology works well for us because we have more ability to reason about it. If my ability
to form a mental model of the system I’m working on is hampered by my inability to under-
stand the technology, either because of complexity or obscurity, I’m going to have a bad time.

Often the main problems with fancy technology is that it is optimized to try to prevent fail-
ures, not recover from failures. Many fancy “enterprise” technologies are created in this way.
One way to think about this is in terms of horizontal vs. vertical scaling. You are probably in
good shape if your solution is designed to scale horizontally, where the loss of any single com-
ponent is easily handled by other easily replaceable components with no noticeable effect to
the customer. If your solution is designed with multiple somethings (power supplies, network
cards, etc.) within a single component, you may be relying on fancy technology. If you lose

www.usenix.org S P R I N G 20 19 VO L . 4 4 , N O. 1 23

SRE
Achieving Reliability with Boring Technology

one of those systems, where does that leave you? Systems that
optimize for mean time between failures (MTBF) instead of
mean time to recovery (MTTR) are prone to what author Nasim
Taleb calls “black swan events”:

[T]he problem with artificially suppressed volatility
is not just that the system tends to become extremely
fragile; it is that, at the same time, it exhibits no visible
risks…These artificially constrained systems become
prone to Black Swans. Such environments eventually
experience massive blowups…catching everyone off
guard and undoing years of stability or, in almost all
cases, ending up far worse than they were in their
initial volatile state. [2]

MTBF-Optimized Infrastructure
What are some examples of complexity evident in MTBF-
optimized infrastructure? Have you ever configured network
bonding on a Linux host? How many different modes are there
for bonding? Six. That means that there are six different ways
that you could possibly expect that your systems will behave
in the event a network interface is lost. To what end? Well, to
protect us from the case where a system could potentially disap-
pear off the network. But is a NIC failure really the only way
a system could disappear off the network? What about power
supply failures? What about running out of memory or CPU?
What about file system corruption? How many different compo-
nents do we want to make redundant in order to guard against a
system disappearing off the network? How much do we want to
pay for those systems? Can we really foresee all possible failure
scenarios?

What if we were to think about it a different way? What if we
expected that systems would disappear off the network? If we
design our systems in this way, we’re protected from systems
disappearing no matter what the reason! Additionally, because
I’m spending less money per system, I can usually have more of
them for the same cost. This increases my ability to tolerate fail-
ure, even multiple failures. This is another problem we often see
when we try to choose fancy enterprise systems with multiple
layers of complex protection within a single system. We can’t
afford many of the components, and thus we are often left with
only two of something, a primary and a backup. Not only is this
very inefficient (we’ve paid a lot of money for a system that most
of the time does absolutely nothing), but in the event of a failure,
we’re now one failure away from catastrophic failure. Addition-
ally, we’re subject to relying on all that other money we spent on
our enterprise support contract to deliver the necessary part on
the 12x5 or 24x7 guaranteed response times as offered by the
vendor. If the vendor doesn’t have the part, or the power spike
that blew out the first system comes back, we could be in a very
bad situation.

Cattle vs. Pets
Instead, we should choose boring technology. If a system goes
down, the load balancer stops sending it traffic because it’s
failed its health check, and we replace it with an exact replica.
We don’t care about an individual system, we care about the
overall system. Many of you have probably heard of this as
cattle vs. pets [3].

If a pet gets sick, we do what we can to make it better (like call-
ing in enterprise support). If a head of cattle gets sick, we worry
about the overall health of the herd. While we can’t as readily
replace one head of cattle, we can readily replace a server, espe-
cially in cloud or cloud-like environments.

As our systems mature and grow, we often see the wisdom of
being able to control and reason about them in simple ways. This
use of boring technology doesn’t just have to apply to application
servers, it can apply to networking or storage as well. Let’s look
at some examples.

Networking
If we were to look up the DNS information for www.atlassian
.com (this is just one example), we would notice something
interesting.

$ host www.atlassian.com

www.atlassian.com is an alias for pledge-vtm-ash2-prod

-public-01.atlassian.com.

pledge-vtm-ash2-prod-public-01.atlassian.com is an alias for

pe-vt-vtmnl-1h5icdrzt7xcp-d84e3144685e1b8d.elb.us-east-1

.amazonaws.com.

pe-vt-vtmnl-1h5icdrzt7xcp-d84e3144685e1b8d.elb.us-east-1

.amazonaws.com has address 18.234.32.152

pe-vt-vtmnl-1h5icdrzt7xcp-d84e3144685e1b8d.elb.us-east-1

.amazonaws.com has address 18.234.32.153

pe-vt-vtmnl-1h5icdrzt7xcp-d84e3144685e1b8d.elb.us-east-1

.amazonaws.com has address 18.234.32.154

Three IP addresses! That’s strange! If you’ve ever spent any time
with enterprise-grade networking gear, there is often a “floating
IP” that can bounce back and forth between two pieces of equip-
ment depending on which is currently responsible for handling
the traffic (and the other sits idle, despite the fact that we’ve
paid for it, just in case). That IP address would be presented to
the world as a single IP. But in this case, we have three. Why?
Because Amazon has the ability to replace components of its
load balancers and actually does this with a fair amount of regu-
larity. When they need to upgrade or replace a piece of hardware
or software, they don’t exercise the HSRP or VRRP sequence for
shifting traffic to the “other” host. They replace the component
itself, like cattle.

24  S P R I N G 20 19 VO L . 4 4 , N O. 1 www.usenix.org

SRE
Achieving Reliability with Boring Technology

Storage
Solving a problem like storage at the level of Facebook could
be a daunting challenge. If you needed to store all those baby
pictures, profile pictures, wedding pictures, etc., that could be
a tough problem. If you were Facebook, you may have started
out using a number of enterprise class (or Pet) solutions. As a
matter of fact, this was actually the case, until Haystack [4].
You can read the paper yourself, but this is from the conclusion:
“Haystack provides a fault-tolerant and simple solution to photo
storage at dramatically less cost and higher throughput than
a traditional approach using NAS appliances. Furthermore, Hay-
stack is incrementally scalable, a necessary quality as our users
upload hundreds of millions of photos each week.” Moving to a
simple solution for the win.

Making Change
This idea of choosing simple (boring) solutions that we can
reason about more easily may sound appealing at this point. But
how do we make these changes in our existing organizations?
How do we get to a point where we have simple recovery that we
know both works and is well tested and practiced? As Gene Kim
says of DevOps in “The Three Ways” [5], “repetition and practice
is the prerequisite to mastery.”

Just as Facebook was happy that their solution was incrementally
scalable, the happiest path to making these kinds of changes is
incremental as well. While we’d all love to have Netflix’s Chaos
Monkey running in our infrastructure tomorrow, proving all is
well, that’s as unrealistic as standing up a shiny new Kubernetes
cluster tomorrow and understanding how to deploy and operate
it. My favorite method for making change is what we often call
Crawl-Walk-Run.

Crawl-Walk-Run
We are not born with the ability to run. There is a progression
we must go through in order to reach that level of mastery (which
takes repetition and practice!). So it is with maturation of pro-
cesses or architecture when we are adopting boring technology.

Crawl
So how do we get started? How can we “crawl” when moving
from our fancy enterprise technologies to something simpler?
The first step is to configure just about everything with code.
When we say everything, we mean Docker containers, servers,
network gear, RAID cards, etc. We are trying to configure every-
thing this way. This gives us a number of advantages:

◆◆ If we’re doing infrastructure as code, we can version things,
because they are in revision control. That means if I ever want
to know how something was configured on March 22nd, I can
look that up.

◆◆ That ability also gives me the ability to create representative
test environments and have confidence that those environ-
ments are configured in the same way as production. If my test
fails in a representative test environment, I have high confi-
dence it would have failed in production.

◆◆ I also have confidence that any time I have a component of type
X, it will be configured identically to every other component
of type X with the “push of a button.” One need look no further
than the Knight Capital failure [6] to recognize the dangers of
having differently configured systems that are supposed to be
identical. Reasoning about multiple possible configurations of
the same component interacting with each other is extremely
difficult! Remember our Amazon load balancer example?
Every time a load balancer component is swapped out, Amazon
knows exactly how the new component will be configured.
Every time a new Haystack node is deployed at Facebook, they
know exactly how it will be configured.

There are many ways to configure things as code. We have
configuration management tools, and we have config files or
settings that can be checked into repositories. We can even use
things like Puppet types and providers to interact with our RAID
cards or out-of-band management cards to make sure they are
configured perfectly every time. Many network vendors are now
offering APIs we can interact with for our network gear to make
sure they are configured properly.

If your fancy piece of tech does not offer a programmatic way
of configuration, you are probably not using boring technology
and have something designed to be manipulated by the messy
bags of mostly water we call humans. Eliminate those from your
infrastructure—the component, not the humans!

Walk
Now that we have confidence that our infrastructure will be
configured properly each and every time (how quickly could you
rebuild a server that was removed with an exact replica?), we
are ready to experiment with failure. One relatively easy way to
accomplish this is with production readiness game days.

In this scenario, before we allow a new service or major infra-
structure component to be deployed to production, we test it to
learn about failure. How does it fail? What is impacted? How do
we even know it’s failed? How do we recover?

If repetition and practice are the prerequisite to mastery, then
we need to have an opportunity for repetition and practice. We
do this by making a test plan of exactly what we will fail (in
our representative test environment) and what the expected
behavior will be. Maybe we will block the DNS servers. Maybe
we will pull a disk. Maybe we will terminate an instance. There
are many options. We also need to determine where the test data

www.usenix.org S P R I N G 20 19 VO L . 4 4 , N O. 1 25

SRE
Achieving Reliability with Boring Technology

will come from if required. Copying production data can have
security implications. Can we use synthetic data? This plan
should be agreed upon by all the parties involved (Dev, Ops, DBA,
etc.). Then the plan should be executed. This has a number of
advantages:

◆◆ No complex systems can ever be “thrown over the wall” to
Operations for deployment. If there is an unexpected behavior
during the failure scenarios, the party responsible for fixing
that behavior will be given as many opportunities as neces-
sary to fix the offending behavior until the game day is declared
 successful.

◆◆ The folks responsible for remediating failure will have the
opportunity to practice those remediations! No one wants the
first time they attempt to recover a failed system to also be the
first time anyone has ever attempted to recover said system. By
practicing before production, you have the opportunity to not
only learn how to do it, but to also ask for clarification, make
suggestions, improve documentation, etc.

◆◆ We can often discover unintended consequences of the deploy-
ment of the new system. This is why representative test envi-
ronments are so important. We don’t want to discover that our
database would run out of connections the first time the system
is activated in production.

◆◆ It reinforces the idea that the availability of our production
systems is everybody’s responsibility. Not just the people who
will be woken up in the middle of the night, but the entire team
responsible for delivery of that component of the infrastructure.

◆◆ It gives us an opportunity to find out where our technology
is not boring. If, during the game days, we repeatedly have
problems restoring our systems to the proper state, or under-
standing the failure scenarios, maybe our system is not quite
as boring as we thought. That is an opportunity to revisit the
design, and the choices made, and make the necessary adjust-
ments so that we can eliminate single points of failure, fancy
vendor solutions that never quite live up to their promise, or
that configuration that everyone could have sworn was in revi-
sion control but in fact was only placed as an unintended side
effect of some other process.

Run
Once we’ve settled on our boring technology, and have confi-
dence in our infrastructure and ability to detect and remediate
failures, it’s time to make that a regular part of how we operate.
Both in participating more regularly in the design phase as well
as after the system is deployed. This is a great time to get started
with chaos engineering, a natural progression from the use of
boring technology.

As Nora Jones said at ReDeploy 2018, “Chaos Engineering isn’t
done to cause problems; it is done to reveal them” [7]. We already
know that our systems become more complex over time and
that the system that we deployed two years ago has changed or
morphed over time into something that can have many different
properties than it did when first deployed. How do we ensure
we can still recover from failures? By continually testing the
infrastructure to make sure that the result of failures continues
to be as we expect.

The problems that we will experience in production will become
problems because complexity is an emergent property of these
systems. If we expose those problems under controlled circum-
stances (people in the office at their desks, only one variable
changed at a time, etc.), we will have a much higher likelihood
of being able to detect and recover quickly, and then work to
prevent those problems in the future. If we have these problems
but don’t reveal them, then we are setting ourselves up for Taleb’s
black swan events that can “catch everyone off guard” and “undo
years of stability.” That doesn’t sound very boring to me!

Conclusion
When working in our professional roles as SREs, or storage
administrators, or network engineers, etc., we are often heav-
ily invested in the technology choices we make. Sometimes we
may want to use some new technology because it’s got a great
reputation or because a lot of other people are using it. If it is
not a technology that we understand well, or have the ability to
understand well, we can often make choices that will cause us
more problems down the road.

For that reason, when facing these choices, it is good to remem-
ber to choose boring technology. The complexity will be there,
there is no running away from that. The systems will grow more
and more complicated until it’s time for that big refactor, which
is a recognition that our systems are no longer boring but, rather,
are collapsing under their own weight of complexity.

But there are ways to minimize those conditions and for us to
mature our way out of bad situations when we find that we are
in one. Choose boring technology.

26  S P R I N G 20 19 VO L . 4 4 , N O. 1 www.usenix.org

SRE
Achieving Reliability with Boring Technology

References
[1] http://boringtechnology.club/.

[2] N. Taleb, Antifragile: Things That Gain from Disorder (Ran-
dom House, 2012), p. 105.

[3] R. Bias, “The History of Pets vs Cattle and How to Use the
Analogy Properly,” September 29, 2016: http://cloudscaling.com
/blog/cloud-computing/the-history-of-pets-vs-cattle/.

[4] D. Beaver, S. Kumar, H. C. Li, J. Sobel, P. Vajgel, “Finding a
Needle in Haystack: Facebook’s Photo Storage,” 9th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI ’10): https://www.usenix.org/legacy/event/osdi10/tech
/full_papers/Beaver.pdf.

[5] G. Kim, “The Three Ways: The Principles Underpinning
DevOps,” 2012: https://itrevolution.com/the-three-ways
-principles-underpinning-devops/.

[6] D. Seven, “Knightmare: A DevOps Cautionary Tale”: https://
dougseven.com/2014/04/17/knightmare-a-devops-cautionary
-tale/.

[7] N. Jones, “Chaos Engineering: A Step Towards Resilience”:
https://youtu.be/qyzymLlj9ag?t=399.

2019 USENIX Conference on Operational
Machine Learning

May 20, 2019 • Santa Clara, CA, USA

The 2019 USENIX Conference on Operational Machine Learning (OpML ‘19) provides a forum for both

researchers and industry practitioners to develop and bring impactful research advances and cutting edge

solutions to the pervasive challenges of ML production lifecycle management. ML production lifecycle

is a necessity for wide-scale adoption and deployment of machine learning and deep learning across

industries and for businesses to benefi t from the core ML algorithms and research advances.

Program Co-Chairs:
Bharath Ramsundar, Computable

 Nisha Talagala, ParallelM

Save the Date!

www.usenix.org/opml19

http://boringtechnology.club/
http://cloudscaling.com/blog/cloud-computing/the-history-of-pets-vs-cattle/
http://cloudscaling.com/blog/cloud-computing/the-history-of-pets-vs-cattle/
https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Beaver.pdf
https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Beaver.pdf
https://itrevolution.com/the-three-ways-principles-underpinning-devops/
https://itrevolution.com/the-three-ways-principles-underpinning-devops/
https://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/
https://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/
https://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/
https://youtu.be/qyzymLlj9ag?t=399

www.usenix.org S P R I N G 20 19 VO L . 4 4 , N O. 1 27

SRE

Anticipating and Dealing with Operational Debt
L A U R A N O L A N

We are all familiar with the concept of technical debt, the idea that
over time, software systems become harder to change and main-
tain because of shortcuts taken earlier. An example of technical

debt is the lack of a comprehensive suite of unit tests (or a flaky test suite).
Old, unused code that hasn’t been removed is another example. Technical
debt can occur early in a system’s lifespan as shortcuts are taken in order
to launch, but most of the time the problem of technical debt gets worse as a
system ages.

Operational debt is different. It happens when a system is launched, or experiences rapid
growth in usage, before operational tasks are automated, leaving them to the system’s human
operators. In organizations with a focus on automating routine operational tasks, much of
this is solved over time, leading to less operational debt as a system ages.

Technical debt is like credit card debt—acquired piecemeal over time. Operational debt is
more like a mortgage: it can be paid down over time leading to ownership of a stable, well-
automated system. However, sometimes people do have problems paying off their mortgages.
The worst case scenario is a team that ends up with so much operational debt that they don’t
have cycles to work on fixing it, instead spending most of their time on toil [1]—tactical work
that doesn’t improve their systems in the long term.

This environment isn’t good for engineers, and teams in this situation will struggle to
retain staff.

Types of Operational Debt
There are five main categories of work that, if not automated, lead to operational debt.

One is routine housekeeping that happens on a schedule. This might include taking and vali-
dating backups, updating certificates, and making sure personally identifiable information is
deleted after a certain time period.

The second is recovery from routine failures like loss of a hard drive, transient network prob-
lems, or a machine restarting.

Another category involves managing change over time. This includes things like performing
migrations, doing capacity planning, and monitoring for performance regressions.

Many systems involve some routine per-customer work like setting up permissions, quotas,
or other resources.

Finally, there is non-routine work that scales with your system’s growth. This includes turn-
ing up new instances of your systems, dealing with abusive users, resharding datastores to
deal with growth, and investigating performance issues on behalf of customers.

Laura Nolan’s background is
in site reliability engineering,
software engineering,
distributed systems, and
computer science. She wrote

the “Managing Critical State” chapter in the
O’Reilly Site Reliability Engineering book and
was co-chair of SREcon18 Europe/Middle
East/Africa. Laura is currently enjoying a well-
earned sabbatical (and tinkering with some of
her own projects) after 15 years in industry,
most recently at Google.
laura.nolan@gmail.com

28  S P R I N G 20 19 VO L . 4 4 , N O. 1 www.usenix.org

SRE
Anticipating and Dealing with Operational Debt

Operational Debt after Launch
Some amount of operational debt in a newly launched system is
inevitable. This is for two major reasons.

The first is unknown unknowns—issues will crop up in produc-
tion that weren’t anticipated, and some of these will need auto-
mation to handle them. For example, take a system where the
underlying datastore occasionally has replication issues. Some-
times a customer’s changes don’t get reflected everywhere, they
complain, and someone has to go and unwedge it by hand. There
are several potential approaches to automating this problem
away, ranging from fixing the underlying replication issues to
various bolt-on approaches, but either way, noticing the pattern
and automating away this sort of problem takes time.

The second reason is that even for routine and anticipated opera-
tional tasks, the development of the core system itself usually
has to precede development of complex automation. It’s hard to
automate a process for a system that doesn’t exist yet.

Managing and Planning for Operational Debt
Operational debt is not inherently bad, but too much of it
certainly is—again, like mortgage debt. It needs to be planned
for and managed, particularly when launching a new service,
instituting a major change to an existing service, or in times of
fast growth.

First, track what your team is spending its time on now. If your
team already has a lot of operational work, it may need to be
reduced before you can afford to launch something new. At
Google, SRE teams aim to spend under 50% of their time on
operational work.

Next, estimate what you’re getting yourself into. For your
planned system or feature:

◆◆ What are the periodic “housekeeping” tasks?

◆◆ What failures or problems will the system likely encounter
regularly, and how much work will it be to recover from them?

◆◆ What are the change management tasks?

◆◆ What are the routine per-customer tasks and the likely non-
routine ones?

◆◆ How is the user base likely to grow over time?

◆◆ What is automated already, and how much effort is likely to be
required to automate the rest?

You should also budget for some unknown unknowns. This is
technology, after all.

After this exercise, you should have a better idea whether or not
your team will be able to afford the launch and what needs to be
automated first so that your team can remain productive.

Zero operational work shouldn’t be your goal. Some tasks aren’t
worth automating because they’re done infrequently and there
won’t be a positive return on the investment of time. Some
operational work is novel, like debugging new problems and
dealing with outages, and does require human skills. But exces-
sive operational debt is dangerous when it soaks up so many of a
team’s cycles that they can’t do engineering work.

Anticipate operational debt, budget for it, and keep your team out
of operational overload [2].

References
[1] V. Rau, “Eliminating Toil,” in Site Reliability Engineering
(O’Reilly, 2016): https://landing.google.com/sre/sre-book
/chapters/eliminating-toil/.

[2] R. Bosetti, “Embedding an SRE to Recover from Opera-
tional Overload,” in Site Reliability Engineering (O’Reilly,
2016): https://landing.google.com/sre/sre-book/chapters
/operational-overload/.

https://landing.google.com/sre/sre-book/chapters/eliminating-toil/
https://landing.google.com/sre/sre-book/chapters/eliminating-toil/
https://landing.google.com/sre/sre-book/chapters/operational-overload/
https://landing.google.com/sre/sre-book/chapters/operational-overload/

www.usenix.org S P R I N G 20 19 VO L . 4 4 , N O. 1 29

PROGRAMMINGHow to Reinvent the Bicycle
S E R G E Y B A B K I N

Sergey Babkin has been
employed as a Software
Engineer for well over 20 years.
His work experience includes
SCO, Sybase, Microsoft, and,

currently, Google. He likes to analyze and
improve things. sab123@hotmail.com

Using programming puzzles as part of job applicant interviews has
become common practice. While interviewing applicants, I’ve
noticed two patterns in how they go about solving these puzzles.

In this article, I examine these patterns and detail how programmers in
 general need to problem solve using the best of both patterns.

The Intuition and the System
In conducting recent job interviews, I’ve met a spate of junior engineer candidates with a
similar issue: they quickly come up with a pretty good overall idea of the solution to a prob-
lem, and they can write code, but they fail to translate their solution into the code. They
couldn’t seem to organize the overall idea into components and then, step by step, work
through the details and interdependencies of those components and sub-components, even
with intense hinting from my side.

A bigger problem can always be seen as being composed of smaller, easier problems. The
easier problems aren’t necessarily easy, but two methods in dealing with them can be helpful:
First, you can subdivide them further into even simpler problems. Second, as you try to solve
a problem, you can gain an understanding of why it’s difficult, and this often provides insight
into solving the problem by avoiding it rather than overcoming it, by subdividing its parent
problem differently. Not that all problems can be avoided: some things have to be overcome.
The job applicants could come up with good ideas that solved difficult things that needed to
be overcome, but they couldn’t build a structure for the whole solution, where they could put
these good ideas to good use.

To illustrate through an analogy, some time ago I read about an artist who would ask people
to draw a bicycle from memory and then produce, as an art object, a bicycle based on the
drawing. The results were art objects because they were completely non-functional. If I were
to draw a bicycle without thinking, I would also produce something like that.

By spending some thought, any engineer should be able to reproduce a proper bicycle from
the general logic: the function of the main components (wheels, steering, seat, pedals, chain)
and the general considerations of the strength of the frame that shape it. The same logic can
be used to check that none of the main components were forgotten: for example, if you forget
about the chain, the pedals would be left disconnected from the rear wheel, so you’d have to
remember it. Each component might be very non-trivial (the said chain took a long time
to invent), but once you know the components, it should be impossible to put them in the
wrong place.

This is something that should be done almost mechanically, with little mental effort. And yet
these programming candidates could not do it. They tried to do it by intuition, but their intu-
ition was not strong enough to handle a complex problem in one gulp, and they didn’t know
how to use the systematic approach either. The hints didn’t help much; they didn’t cause the
right systematic associations.

30  S P R I N G 20 19 VO L . 4 4 , N O. 1 www.usenix.org

PROGRAMMING
How to Reinvent the Bicycle

Two Skills
There are really two orthogonal skills involved in solving these
problems: to imagine the whole solution using highly developed
intuition; to subdivide the problem and work through it itera-
tively, backtracking as necessary. Both are required to be a good
engineer. A simple problem can be solved by using either of these
skills alone. But even a moderately complex problem requires
both skills; it’s too big for intuition to figure out every detail, and
too non-obvious for the systematic approach to find a good result
in any reasonable time.

The problem I ask is actually quite difficult, too difficult for a
perfectly adequate junior-to-mid-level engineer, and I’m not sure
if I myself would have solved it well some 20 years ago. I know
that I can solve it now, as it came from my real-life experience
where I had to solve it really quickly from scratch. So I don’t
expect a good solution from this category of candidates; for them,
a so-so solution is plenty good enough. Some of them actually do
very well, producing a fully completed optimal solution.

There is a marked difference in how people with the one-sided
development solve it, depending on which skill is their strong
one. People with poor intuition and strong systematics produce
a complete solution that is not very good. People with strong
intuition and poor systematics get the right overall idea, figuring
out the conceptual parts that I consider difficult and important
(that the systematic group never figures out), only to fail miser-
ably to work out all the details necessary to write the code. Not
that the code doesn’t get produced at all (though sometimes it
doesn’t), but what gets produced is closer to being an art object
than working code.

Intuition, the Harder Skill
And that feels like a shame, because intuition is usually consid-
ered the harder skill to develop, requiring more time for devel-
opment and being more rooted in natural ability. So there are
people who could be good engineers if only they learned how to
work systematically.

The trouble, I think, is that people are not really taught to do this
kind of thinking in programming. Books and college courses
describe the syntax of programming languages and the general
picture but leave a void between these layers. People may learn
this on their own from examples and practice. But the examples
and practice tend to train the intuition, and people are left to
figure out the systematic approach on their own, and they either
figure it out or they don’t. It looks like quite a few of the gener-
ally smart people either don’t or take a long time to develop it.
Yes, there are descriptions of how a problem has to be divided
into the smaller parts, but they tend to miss the backtracking
and the iterative redesign, making it look like intuition produces
the right subdivision in one go. Not to say that there is anything

wrong with intuition, it’s my favorite thing, but the systematic
approach allows you to stretch a good deal beyond the immediate
reach of intuition, and to strengthen future intuition.

I’ve recently seen a question on Quora—”As you gain more
experience, do you still write code that works but you don’t
know why?”—and this I think is exactly the difference between
the intuitive and systematic solutions. Intuition might give you
some code that works, or that possibly doesn’t. The systematic
approach lets you verify that what the intuition provided actually
does what it’s supposed to do and provides the stepping stones
for the intuition to go further, both to fix what is going wrong and
to produce more complex multi-leap designs.

Programming is not the only area with this kind of teaching
problem. I think math has the same issue. The way proofs of
various theorems are taught is usually not how the authors origi-
nally discovered them. These proofs get edited and adjusted a lot
to make them look easier to understand. But then the teaching
aspect of how to create new proofs through systematic trial and
error gets lost.

Teaching the Two Skills
So how would you teach it? The bicycle example suggests that
there is probably a general transferable skill too, and this skill
can be trained by puzzle games like the classic “The Incredible
Machine,” where the goal is to build a Rube Goldberg contraption
to accomplish the particular goal from a set of components. As in
real life, the tasks there might include the extra components that
look useful but don’t really work out, or provide multiple ways to
reach the goal. This of course requires that you achieve only one
exact goal, while in programming you have to solve a whole class
of related goals that include the corner cases. But this still might
be a good place to start.

Perhaps the way to do it for programming is by walking through
the solutions of complex problems, showing step by step how you
can try the different approaches, follow through their elements,
try to resolve the observed issues, and use this newly gained
experience to find easier approaches. There are books built
around somewhat different but closely related ideas: Program-
ming Pearls and More Programming Pearls by Jon Bentley come
to mind. The Practice of Programming by Brian Kernighan and
Rob Pike, and, dare I say, my own The Practice of Parallel Pro-
gramming are other examples.

A Systematic Puzzle
To give an example of what I think needs to be taught, I’ve
decided to create a programming puzzle based on another, sim-
pler interview problem that I used to use. The required insights
in that problem are much smaller; it’s much more about the
systematic approach.

www.usenix.org S P R I N G 20 19 VO L . 4 4 , N O. 1 31

PROGRAMMING
How to Reinvent the Bicycle

Since blindly remembering the solution to the problem is of no
use to anyone, I want instead to show how better solutions can
be born out of bad solutions. And it’s not just brute force versus
some ingenious algorithm. All the solutions to this problem are
essentially brute force, but some of them are better and simpler
than the others.

I’m going to start with the worst solution I can think of and then
gradually show the better solutions. The puzzle for you, the reader,
is to use the difficulties in these solutions as hints towards better
solutions that would take you as far ahead as possible.

I wrote those solutions as I would do at an interview, without
actually compiling and running the code on a computer, so they
might contain bugs, but hopefully not many bad ones.

The problem is to write a matcher for the very simple regular
expressions, that include only the operators “.” (any character)
and “*” (zero or more repetitions of the previous character). The
“*” is greedy, consuming as many matching characters as possi-
ble. There is no escape character like backslash. The string must
match completely, as if the regexp implicitly had anchors like “^”
at the front and “$” at the end. And let’s say that the string is in
plain ASCII, so we don’t need to bother with the wide characters.

The function declaration in plain C will be:

int match(const char *pattern, const char *text);

It will return 1 if the string matched the pattern and 0 if it didn’t.

Let’s start with the analysis. The first thing to notice about this
problem is that some patterns in it are impossible to match. The
“a*a” will never match anything because the greedy “a*” will
consume all the “a”s, and the second “a” will never encounter a
match. The same goes for “.*” followed by anything, because “.*”
will consume everything to the end of the string.

The first solution proceeds in the most complicated way I can
think of. You might have attended a college course on parsing that
talked about the finite machine matcher for regular expressions.
The most unsophisticated approach is to push this way blindly.

Before doing a finite machine, you’d really need to think of the
state machine graphs you would be building for various regu-
lar expressions. I really could not get this code right until I had
drawn the graphs.

Here are some examples: “a*b” is shown in Figure 1.

“.*b” (with “any” meaning “everything but \0”) is shown in Figure
2. This graph would never match anything, because it would
never get into the final state (X). The FSM for “a*b*c” is shown in
Figure 3, and “a*.*” in Figure 4.

Each state node of the finite machine graph would be repre-
sented by a dynamically allocated structure that has a plain
array of the possible exits from that node, one per each character,
and a flag showing that this node is final.

struct Node {

 Node *exits[256];

 int final;

};

The \0 could be handled as one of the normal exits, pointing
to the final node. But there really isn’t much point in having a
separate node just to carry the final flag. It’s easier to just set the
final flag directly on a node that accepts an \0.

The graphs then become simpler, the graph in Figure 4 becoming
as shown in Figure 5.

Since we’re dynamically allocating the nodes, we need to take care
of freeing them too. And that means taking care of keeping track
of them while we use them. The inter-node links are no good for
this purpose, since they branch multiple ways, and some graphs
might even have some disconnected parts. But we can notice that
there would always be as many nodes as elements (plain letters or
starred letters) in the pattern, plus one. So we can just allocate the
nodes as a single array and then free them as a single array.

This is a good time to stop and think about the question, is there
really any point in bothering with the nodes? They will be strung
generally sequentially, just like the original pattern. So why not
just use the pattern directly? Indeed, this is a simpler approach.
Time to change gears.

Figure 1: Finite state machine (FSM) for matching “a*b”

Figure 2: FSM for matching “.*b”

32  S P R I N G 20 19 VO L . 4 4 , N O. 1 www.usenix.org

PROGRAMMING
How to Reinvent the Bicycle

Matching directly by pattern also has harder and easier versions.
Again, let’s start with the harder version.

The loop will be working in very much the same way as the
matching loop in the parsed-pattern version (as some textbooks
would teach) but will read the pattern directly from the string as
it goes along.

Before writing the code, let’s talk through the logic: as we read
the next character of the text, we have a pointer to the next pat-
tern element to parse. We parse the pattern element and match
the text character to it. If the element is \0, we accept \0 and
stop. If the element is starred and the character matches, we
return the pattern back to the original position. If the element is
starred and the character doesn’t match, we try the next element
from the pattern. If the element is ‘.’, we accept everything but \0.
If the element is another character, we accept it literally.

bool match(const char *pattern, const char *text) {

 char last_pattern = ‘\0’;

 const char *p = pattern;

 for (const char *t = text; ; t++) {

 while (true) { // for starred sequences in pattern

 char element = *p++;

 if (element == ‘\0’) {

 return *t == ‘\0’;

 }

 if (*p == ‘*’) {

 if (element == ‘.’ && *t != ‘\0’

 || *t == element) { // matched

 --p; // return to the start of current element

 break;

 }

 // consume the star before reading the next element

 p++;

 continue;

 }

 if (element == ‘.’ && *t == ‘\0’

 || *t != element) { // didn’t match

 return false;

 }

 break;

 }

 }

 return false; // never reached

}

The inner loop is necessary to handle the sequences of multiple
starred characters, such as “a*b*c” matching the “c”. If we don’t
do the loop, “c” would get compared to “a”, and the match will be
considered failed.

The outer “for” loop here is interesting, without an exit condi-
tion. This is because the ‘\0’ is matched inside the inner loop
mostly in the same way as the normal characters: (*t != ele-

ment) handles the unexpected ‘\0’ in the same way as any other
unexpected character. It’s easy to start writing the loop with:

for (const char *t = text; *t != ‘\0’; t++) {

 ...

}

return element == ‘\0’;

But that would miss the situation where the pattern ends with a
sequence of starred characters. This is something that is easy to
miss, but it would be detected by a careful code analysis, a good
unit test, or by a helpful interviewer. Then the code would need
to be fixed by either bringing the handling of ‘\0’ entirely into the
inner loop as I have done here (there is no reason to be afraid of
the loops that look nonstandard, they can be quite useful) or by
moving the inner loop into a function and calling it again after
the main loop (then the function would still have to handle ‘\0’ as
the next character of the text). The handling of ‘\0’ in the inner
loop is not that easy to get right; I got it working right with ‘.’ only
on the second attempt.

Figure 3: FSM for matching “a*b*c” Figure 4: FSM for matching “a*.*”

www.usenix.org S P R I N G 20 19 VO L . 4 4 , N O. 1 33

PROGRAMMING
How to Reinvent the Bicycle

The Value in Being Systematic
This is a good place to talk about how to fix a bug after it has
been found. I’ve seen the people that are strong on intuition but
not systematic start semi-randomly changing the spots that
look vaguely plausible. I’ve literally seen a candidate do three
wrong changes in a row, hoping every time that the issue will get
resolved. This is the situation where thinking things through
systematically really shines. Good questions to start with are,
what do these values mean and how did their handling in the
code diverge from this meaning? And then you can proceed to
“Where did it happen?” and fix the bug. The same candidate,
after I asked these questions, was able to find and resolve the
bug on the first attempt in just a few seconds.

Returning to this solution, the problem that it solves is under-
specified. It doesn’t tell you what to do in case the pattern is
invalid, either starting with a star or containing multiple stars
in a row. This is by design, to see if the candidate will notice
this and ask for a clarification, and my answer to this clarifica-
tion question is, “What do you think is reasonable?” to see if the
candidate is able to enumerate the pros and cons of different
approaches: either return some error indication or handle it
silently in some reasonable way.

I’ve made this solution do the silent handling, simply because
it’s easier to do in a small code snippet: it treats the “wrong”
stars as literals. From the caller’s standpoint it might be either
good or bad: the good is that the caller won’t have to handle the
errors, and the bad is that the author of the incorrect pattern
might be surprised by its effect and might never find out that it’s
incorrect.

But even this version is not great. The nested loops and re-parsing
the pattern on each text character are convoluted; I got it right
only on the second attempt. When the going gets hard, it’s usually
a good indication that a different approach should be tried.

What should the other approach be? It’s up to your intuition to
supply the ideas, for that’s its line of work. This is why you need
both intuition and systematics; one is not enough.

For this problem, it’s much easier to go the other way around,
iterating through the pattern and consuming the matching char-
acters from the text:

bool match(const char *pattern, const char *text) {

 const char *t = text;

 for (const char *p = pattern; *p != 0; p++) {

 if (p[1] == ‘*’) {

 if (*p == ‘.’) {

 while (*t)

 ++t;

 } else {

 while (*t == *p)

 ++t;

 }

 ++p; // adjust to consume the star

 } else if (*p == ‘.’) {

 if (*t++ == 0)

 return false;

 } else {

 if (*t++ != *p)

 return false;

 }

 }

 return *t == 0;

}

This version is much smaller and much easier to follow through.
It explicitly selects by the type of each pattern element, so each
one of them has its own code fragment, which avoids spreading
its logic through the code and mixing it with the logic of the other
elements. And all this makes the creation of bugs more difficult.

This whole problem is not very imaginative and can be solved
well by just hammering out the code systematically. But this
nice, short version contains an item that requires at least a little
leap of intuition: it looks ahead by two characters, not just one, to
detect whether the current pattern character is followed by a star.
It’s not something that’s usually taught, but it makes the code a
lot easier. As I like to say, it’s not people for the programming pat-
terns, it’s programming patterns for the people. Don’t be afraid to
step away from a taught pattern if it makes your code better.

This version also has a theoretical foundation: it’s a recursive-
descent LL(1) parser of the text, except that the regular expres-
sions define a non-recursive language, so there is no recursion.
It really is perfectly per textbook; you’ve just got to pick the right
textbook! It also parses, not a fixed grammar, but one given in the
regular expression pattern. So it’s an LL(2) parser of the pattern,
with the nested LL(1) parsers of the matching substrings in
the text. The 2 in LL(2) means that we’re looking ahead by two
characters. The pattern can also be parsed by an LL(1) parser,
but looking ahead by two characters makes it easier.

Figure 5: The improved FSM from Figure 4

34  S P R I N G 20 19 VO L . 4 4 , N O. 1 www.usenix.org

August 14–16, 2019 • Santa Clara, CA, USA

The 28th USENIX Security Symposium brings together researchers, practitioners, system administrators,
system programmers, and others to share and explore the latest advances in the security and privacy of
computer systems and networks.

The Symposium will span three days, with a technical program including refereed papers, invited talks,
posters, panel discussions, and Birds-of-a-Feather sessions. Co-located workshops will precede the
Symposium on August 12 and 13.

Program Co-Chairs
Nadia Heninger, University of Pennsylvania

Patrick Traynor, University of Florida

Registration will open in May 2019.

Save the Date!

www.usenix.org/sec19

PROGRAMMING
How to Reinvent the Bicycle

Conclusion
This is the version that came to mind almost right away when I
first thought about this problem. But I can’t really say that it just
popped into my mind out of nowhere. I do size up the different
approaches in my mind intuitively and try the ones that look
simpler first. It doesn’t mean that this first estimation is always
right. Sometimes I go pretty deep with one approach before
deciding to abandon it and apply the lessons learned to another
approach. And sometimes this other approach ends up being
even worse, but the lessons learned there help to get through the
logjam of the first approach.

So if you start with poor approaches, you can still arrive at better
ones by listening to the hints that the code gives to you as you
write it. When you see an easier way to go, use it. You can also
power through the difficult approaches systematically to the
successful end, but that tends to be much more difficult than
switching the approach to an easier one. Intuition and system-
atic logic working hand-in-hand can get you much farther than
either one of them alone.

www.usenix.org S P R I N G 20 19 VO L . 4 4 , N O. 1 35

MACHINE LEARNINGFrom Data Science to Production ML
Introducing USENIX OpML

N I S H A T A L A G A L A , B H A R A T H R A M S U N D A R , A N D
S W A M I N A T H A N S U N D A R A R A M A N

Nisha Talagala is co-founder,
CTO/VP of Engineering at
ParallelM, a startup focused on
production machine learning.
Nisha has more than 15 years

of expertise in software, distributed systems,
machine learning, persistent memory, and
flash. Nisha earned her PhD at UC Berkeley
on distributed systems research. Nisha holds
63 patents in distributed systems, algorithms,
networking, memory architecture, and
performance. Nisha is a frequent speaker
at both industry and academic conferences
and serves on multiple technical conference
steering and program committees. She is the
Program co-chair for OpML ’19.
nisha@gprof.com

Bharath Ramsundar did his PhD
in computer science at Stanford
University where he studied the
application of deep-learning
to problems in drug discovery.

While there, he created the deepchem.io
open-source drug discovery project and the
moleculenet.ai benchmark suite. Bharath is
the co-author of TensorFlow for Deep Learning:
From Linear Regression to Reinforcement Learning
and the forthcoming Deep Learning for the
Life Sciences with O’Reilly Media. As a co-
founder of Computable, Bharath is focused on
designing the decentralized protocols that will
unlock data and AI to create the next stage of
the Internet. bharath.ramsundar@gmail.com

Swaminathan (Swami) Sunda-
raraman is the Lead Architect
of ParallelM, an early stage
startup focused on production
machine learning and deep

learning. Swami was previously at Fusion-io,
Inc. and Sandisk Corp. He holds a PhD from
the University of Wisconsin-Madison. 
swaminathan.sundararaman@gmail.com

In this article we explain the challenges with deploying ML/DL models
in production and how USENIX OpML can help bring participants for
different disciplines to address the herculean task of safely managing

the model life cycle in production.

Machine learning (ML) and its variants such as deep learning (DL) and reinforcement learn-
ing are starting to impact every commercial industry. The 2019 USENIX Conference on
Operational Machine Learning (OpML ‘19), dedicated to operational machine learning and
its variants, will focus on the full life cycle of deploying and managing ML into production.
The goal of the conference is to help develop robust practices for scaling the management
of models (i.e., artifact of learning from big data) throughout their life cycle. Through such
practices, we can help organizations transition from manually hand-holding to automated
management of ML models in production (i.e., ML version of the move in server operations
from “pets to cattle” [9]).

Having engaged with hundreds of data scientists over the past few years, it was clear to
us that while generating machine-learning models has become easier, moving them into
production still remains challenging. It made us carefully think about the question, what is
making machine learning more accessible on the one hand, but challenging for broad deploy-
ment on the other?

ML technologies have been around for many decades, with intermittent spikes of activity
and interest. In the last few years, however, ML and DL technologies have been proven to
work effectively in real world use cases in many domains. This shift is driven by several
factors:

◆◆ The Data: Devices from sensors to robots are generating increasing amounts of rich data
(from simple value time series to images, sound, and video). While the data itself is valu-
able, its ultimate benefit to a business’s bottom line comes from the analytics that extract
the insights hidden within. While simple data sets (such as streams of individual values)
can be analyzed via database queries or complex event-processing techniques, the increas-
ing richness of data (multiple correlated mixed type streams, images, sound, video) requires
more complex ML and DL approaches. The increased volumes of data also enable ML/DL
algorithms to achieve peak efficiency.

◆◆ The Compute: The ubiquity of high performance commodity computing, driven by both
massive core count increases in individual CPUs and low-cost cloud computing services,
have made it possible to match data growth with similarly scalable ML and DL capabilities.
Hardware innovations such as GPUs, custom FPGAs, and instruction-set support in mod-
ern CPUs have further improved ML algorithm performance, making it practical to train
using massive data sets [1].

◆◆ The Algorithms: The availability of open source algorithms for ML and DL via libraries for
analytic engines like Spark, TensorFlow, Caffe, NumPy, scikit-learn [2], just to name a few,
now offers a massive range of algorithmic techniques for the data scientist sandbox. With
open source, even the most state-of-the-art algorithms in research are frequently publicly
available to test, tune, and use, nearly as soon as they are invented.

36  S P R I N G 20 19 VO L . 4 4 , N O. 1 www.usenix.org

MACHINE LEARNING
From Data Science to Production ML: Introducing USENIX OpML

These trends addressed the first issues impeding real-world ML
(the data, the compute, and quality algorithmic implementations).
The next problem was finding a data scientist to match the spe-
cific business problem and data set to a suitable algorithm. A lot
has been written about the shortage of data scientists [3]. This
issue, while real, has been actively addressed in the last several
years with online data science courses, specialty programs
in universities for data science, and tools that simplify model
creation (the democratization of data science) [5]. The latest
approach to mitigating this problem, AutoML [4], promises to
automate the process of model creation and selection, making it
even easier to improve the productivity of a single data scientist.

These trends have also helped generate lots of models. However,
to be useful for any application, the model has to be deployed in
production with its outputs (recommendations, classifications,
etc.) connected to the application that needs it. Deploying, man-
aging, and optimizing ML/DL in production incurs additional
challenges:

◆◆ Real-World Dynamism: Depending on use case, incoming
data feeds can change dramatically, possibly beyond what was
evaluated in the data scientist sandbox. This in turn affects pro-
duction ML behavior in ways that are hard to predict or detect
via standard production means.

◆◆ Expertise Mismatch: On one side, IT operations administra-
tors are experts in deployment and management of software
and services in production. On the other side, data scientists
are experts in the algorithms and associated mathematics.
Operating ML/DL in production requires the combined skills
of both groups.

◆◆ Non-Intuitive Complexity: In contrast to other intuitive ana-
lytics like rule-based, relational database or pattern matching
key-value-based systems (where the output can be predicted
from the input values), the core of ML/DL algorithms are
mathematical functions (i.e., models) whose data-dependent
behavior is not intuitive to most humans.

◆◆ Reproducibility and Diagnostics Challenges: Since ML/DL
algorithms can be probabilistic in nature, there is no consis-
tently “correct” result. For example, even for the same data
input, many different outputs are possible depending on what
recent training occurred and other factors (such as parameters
used to train a model).

◆◆ Inherent Heterogeneity: Many classes of ML algorithms
exist (e.g., machine learning, deep learning, reinforcement
learning), and specialized analytic engines (Spark, TensorFlow,
PyTorch, containers to train/serve models via Kubernetes)
have emerged, each excelling at some subset [2]. Practical ML
solutions frequently combine different algorithmic techniques,
requiring the production deployment to leverage multiple
engines. This makes the deployment process even more fragile
than the current data ingestion and processing pipelines. This
is uncommon in other application spaces. In databases, for
example, standardizing on a single type of DB for a workflow
can be a useful production norm.

The term Cambrian explosion has already been used in several
contexts to describe the growth of AI [6, 7]. Within this trend,
what we are seeing now is the explosion of models in the data sci-
entist sandbox, models that cannot be practically used until they
are able to deliver on their promise in production. As the number
of data scientists increases, as democratization and AutoML
tools improve data science productivity, and as compute power
grows making it easier to test new algorithms in sandbox, more
and more models will be developed, each one awaiting the move
into production use.

To help meet this challenge and support the growing community
of ML researchers and engineers, data scientists, IT and DevOps
engineers who are working to manage ML in production, several
of us in industry have worked with USENIX to launch the first
conference dedicated to Operational Machine Learning (OpML).

The goal of this conference is to bring the research and industry
technical communities together to develop and bring to practice
impactful research advances and cutting edge solutions to this
problem. Unlike existing conferences and workshops, OpML
will focus on “the final stage of deploying and managing ML into
production and the subsequent continuous ML/DL lifecycle in
production.” This covers deployment, automation, orchestration,
monitoring, diagnostics, compliance, governance, and the chal-
lenges of safely operating and optimizing production systems
running ML/DL/Advanced algorithms on live data.

OpML will also provide several benefits for industry and aca-
demic participants (please see CFP for details in [8]). Submis-
sions were due on February 15, 2019.

We invite you to participate in the inaugural OpML conference
that will be held on May 20, 2019, in Santa Clara, CA, USA.

www.usenix.org S P R I N G 20 19 VO L . 4 4 , N O. 1 37

MACHINE LEARNING
From Data Science to Production ML: Introducing USENIX OpML

References
[1] “Nvidia Morphs from Graphics and Gaming to AI and Deep
Learning,” ZDNet, September 8, 2017: https://www.zdnet.com/
article/nvidia-morphs-from-graphics-and-gaming-to-ai-and-
deep-learning/.

[2] M. Heller, “Review: The Best Frameworks for Machine
Learning and Deep Learning,” InfoWorld, February 1, 2017:
https://www.infoworld.com/article/3163525/analytics/review-
the-best-frameworks-for-machine-learning-and-deep-learning.
html.

[3] V. Zhang and C. Neimeth, “Three Reasons Why Data Scien-
tist Remains the Top Job in America,” InfoWorld, April 14, 2017:
https://www.infoworld.com/article/3190008/big-data/3-rea-
sons-why-data-scientist-remains-the-top-job-in-america.html.

[4] AutoML: http://www.ml4aad.org/automl/.

[5] M. Dillon, “The Democratization of Data Science and
the Emergence of Citizen Data Scientists,” Daily Califor-
nian, May 26, 2017: http://www.dailycal.org/2017/05/26/
democratization-data-science-emergence-citizen-scientists/.

[6] G. Leopold, “Nvidia CEO Predicts AI ‘Cambrian Explo-
sion,’” HPC Wire, May 25, 2017: https://www.hpcwire.
com/2017/05/25/nvidia-ceo-predicts-ai-cambrian-explosion/.

[7] S. Condon, “Google’s Fei-Fei Li: Vision Is AI’s ‘Killer
App,’” ZDNet, May 19, 2017: https://www.zdnet.com/article/
googles-fei-fei-li-vision-is-ais-killer-app/.

[8] USENIX OpML Call for Participation: https://www.usenix.
org/sites/default/files/opml19_cfp_121319.pdf.

[9] R. Bias, “The History of Pets vs Cattle and How to Use the
Analogy Properly,” September 29, 2016: http://cloudscaling.
com/blog/cloud-computing/the-history-of-pets-vs-cattle/.

Save the Date!

www.usenix.org/soups2019

Fifteenth Symposium on
 Usable Privacy and Security
Co-located with USENIX Security ’19
August 11–13, 2019 • Santa Clara, CA, USA

The Fifteenth Symposium on Usable Privacy and Security (SOUPS 2019)
will bring together an interdisciplinary group of researchers and prac-
titioners in human computer interaction, security, and privacy. The
program will feature technical papers, including replication papers and
systematization of knowledge papers, workshops and tutorials, a poster
session, and lightning talks.

Registration will open in May 2019.

Symposium Organizers
General Chair

Heather Richter Lipford,
University of North Carolina at Charlotte

Technical Papers Co-Chairs
Michelle Mazurek, University of Maryland

Rob Reeder, Google

https://www.infoworld.com/author/Vivian-Zhang/
https://www.infoworld.com/author/Chris-Neimeth/

38  S P R I N G 20 19 VO L . 4 4 , N O. 1 www.usenix.org

COLUMNSPython
P E T E R N O R T O N

This column is being written in December, which ends another year,
which brings end of year holiday plans, deadlines (like the one for this
column), and a chance to challenge yourself to do something different

before the year is fully out and done.

For my part, over the last few years I’ve had a great time participating in the annual Advent
of Code (adventofcode.com), which is a great way to take a break from work where you have to
solve problems on a deadline, and... well, solve problems on a different deadline. But for fun.

It’s a great opportunity to learn more about your preferred language, to try out a new language,
or revisit how things work in a language you haven’t used in a while. You can also compare
notes with others and see how different languages can give you the tools you need (or how
hard it is to build them from scratch if that’s more to your taste).

For anyone who hasn’t participated in one of these online advent calendars, this one involves
creating a puzzle around Santa, elves, and a story arc adventure that you are on that gets
Santa closer to delivering presents for all the good girls and boys. Each day you get a story, a
problem description, an example of the data and what the results will be of the problem being
presented (yes, tests), and a data set that’s created for you so that your answer shouldn’t work
for anyone else (though the solutions should, of course). The answers are usually an integer,
summing up all the work you’ve done. And you’re rate limited to one answer per minute, so
you can’t just brute force the answer.

The problems are very much programming puzzler/interview type questions designed to let
you stretch your computer science legs—data structures, complexity, etc. without having any
serious stakes—and if you complete the puzzle you move on; it’s all just for a good time. The
problems are introduced day-by-day, but if you haven’t done the challenge already, you can
always visit the site as you read this column and participate if you feel like it.

What I enjoy about this is that it is so well executed. Very few programming interviews
that I’ve seen are as well thought out as the Advent of Code, which speaks volumes for the
organizers. The organizers have some themes—a variety of problems that require some
knowledge that may be common in some jobs and problem domains but which in others can
be novel and outside of the comfort zone.

Big-O Traps
One of the things you notice quickly is that solving the problems naively will lead you to qua-
dratic solutions that will take forever with the size of the input you’re provided. So one of the
fun parts is getting to think about each particular problem, to think about the big-O charac-
teristics of your code, and realizing your input is large enough to cause your computer to spin
and struggle uselessly until the heat death of the universe.

These problems often run over familiar themes—some will involve iterating over lists, find-
ing your way around other data structures forward and backward, over and over. As you may
imagine, if you start with a little bit of bookkeeping, that sometimes turns into a lot of book-
keeping, which is a lot of hassle. When that starts to happen, it’s helpful to step back. When

Peter works on automating
cloud environments. He loves
using Python to solve problems.
He has contributed to books
on Linux and Python, helped

with the New York Linux Users Group, and
helped to organize past DevOpsDays NYC
events. In addition to Python, Peter is slowly
improving his knowledge of Rust, Clojure, and
maybe other fun things. Even though he is a
native New Yorker, he is currently living in and
working from home in the northeast of Brazil.
pcnorton@rbox.co.

www.usenix.org S P R I N G 20 19 VO L . 4 4 , N O. 1 39

COLUMNS
Python

you can, sometimes stepping back includes treating the data like
streams. In Python this basically means iterators and generators
are your friends who take away the tedium. What’s interesting
and disappointing about this great and fun approach is how as
you get more sophisticated with using iterators, you can some-
times get subtle and surprising behaviors, which aren’t particu-
larly well-documented (at least as far as I’ve seen).

Iterator Side Effects
With all that said, this year’s Advent of Code had me encounter
one of these side effects, one that I found quite surprising. It is
simple, but I do think that in real-world usage it would cause
hard-to-find bugs.

The specific behavior is in the zip() built-in function. If you’ve
never used it before, it’s sometimes easier to think of as syntac-
tic sugar sprinkled over having to assign multiple variables in a
loop. It can turn the following somewhat tedious code:

def odious(l1, l2, l3, l4, l5):

 “””each argument is a list”””

 min_len = min(map(len, (l1, l2, l3, l4, l5,)))

 for iteration in range(min_len):

 v1 = l1[iteration]

 v2 = l2[iteration]

 v3 = l3[iteration]

 v4 = l4[iteration]

 v5 = l5[iteration]

 print(f”{v1}, {v2}, {v3}, {v4}, {v5}”)

into something much simpler. This prints each element of the
lists in the arguments as a group—first, all of the first elements,
then all of the second elements, etc. The short, zip()-ified way of
doing this looks like:

def melodious(l1, l2, l3, l4, l5):

 for v1, v2, v3, v4, v5 in zip(l1, l2, l3, l4, l5):

 print(f”{v1}, {v2}, {v3}, {v4}, {v5}”)

Which is still clear and easy to understand. Since zip can work
with any number of iterables, it’s pretty flexible. It’s been in
Python since 2.0, and there’s a lot more to read about it in PEP
201 at https://www.python.org/dev/peps/pep-0201/.

I also found the behavior of iterators interesting. Iterators are
thoroughly ingrained in Python and feel very natural to use.
However, they have a very specific definition, and if you want
to know exactly what that is, I encourage you to read PEP 234:
https://www.python.org/dev/peps/pep-0234/.

As I mentioned above, iterators allow us as Python program-
mers to have a potentially lazy stream of items, with only a few
tradeoffs. On the upside, you can have infinite input that you can
iterate over easily with for or next(); you can compose them with
comprehensions and with really cool functions available in the

itertools module! And iterators have led to generators with yield
and generator comprehensions. A lot has been written in these
pages about iterators, generators, co-routines, etc., so I will refer
anyone interested to the excellent material in past ;login: issues,
which have gone into a lot of depth and breadth on the matter.

The downside of the tradeoff for how excellent iterators are is
that we lose some of the flexibility of having a list or a special
type or class whose position and indexability puts it entirely
under our control. For an iterator to be useful, we must know
that we’re going to use it from beginning to end in a linear fash-
ion—no rewinding, arbitrary glances at indexes, etc. In so many
cases this is not a limitation but is specifically and exactly what
we want, which is why iterators are so fantastic.

So, with that said, let me talk about the interesting problem
that I ran into. The code involved looks something like this (in
Python 3.7):

import itertools

def walk_forward(char_iter):

 “””Consume input_iter, which is an iterator that provides

 one character at a time. When two characters match the

 filter criteria, remove them both and break so that the

 data can be walked backward to see if the new state has

 affected the keep_list.

 returns a list of characters that we want to keep

 “””

 first_char = next(char_iter)

 keep_list = list()

 for second_char in char_iter:

 result = keep_or_remove(first_char, second_char)

 if not result:

 # Don’t put the result into the keep list

 return keep_list

 keep_list.append(first_char)

 first_char = second_char

 return keep_list

def walk_backward(keep_list, char_iter):

 “””A match has been found, and now we want to know if the

 combination of the last letter in the keep list, and the

 first letter in the char_iter could start eliminating each

 other. Essentially this works from the middle out as long

 as the characters would be eliminated. Once we find a pair

 that are keepers, we can exit from here and resume walking

 forward.

 Returns a list of characters - those that we still want to

 keep.

 “””

 #Walk the keep_list backward

 first_gen = (x for x in keep_list[-1::-1])

https://www.python.org/dev/peps/pep-0201/
https://www.python.org/dev/peps/pep-0234/

40  S P R I N G 20 19 VO L . 4 4 , N O. 1 www.usenix.org

COLUMNS
Python

 for first, second in zip(first_gen, char_iter):

 result = keep_or_remove(first, second)

 # Return the results in the same order we got them

 if result:

 return list(itertools.chain([second, first], \

 first_gen])[-1::-1]

This works fine—with a main() function that walks forward
until there is some elimination, then walks backward, then
forward, and so on. This should basically work to eliminate pairs
of letters that match the keep_or_remove() function, which I
haven’t included here.

The hidden problem in walk_backward is that the use of zip will
always try to consume the first element from each iterator. So
when the keep_list is shorter than the remaining contents of
char_iter (as it is likely to be towards the beginning), every-
thing is fine. However, if it’s the second iterator that becomes
exhausted, as may happen, then zip will have already consumed
from the first_gen, and you can’t put it back. So, in this case,
you may have lost data. It’s only one datapoint, which is exactly
enough to make people very upset in the right circumstances,
that is, outside the world of fun puzzles.

Now that we’ve looked at this with some more context, let’s look
at a simpler reproducer case:

>>> a = (x for x in ‘abcde’)

>>> for first, second in zip(a, ()):

... print(f”{first}, {second}”)

...

>>> rest = list(a)

>>> print(f”{rest}”)

[‘b’, ‘c’, ‘d’, ‘e’]

Working Around the Problem
Once I understood the issue, it bothered me because working
around it made the program harder to read since the obvious
workaround is tedious. Tedious solutions beg for better ones,
especially when they’re for fun. However, in this case it also
led me to wonder why there isn’t already a better solution, and
maybe a bit about whether my idea of a better solution was in fact
better at all.

If this were a problem that a lot of people cared about, a PEP on it
would probably have appeared. I expect that since this is a small
wart in one tiny part of the language, most people with work
to do would solve this by avoiding zip, or by not using iterators,
relying instead on lists or similar types with known, queryable
lengths and ensuring that these lengths were uniform for each
argument to zip, which is the sweet spot for a safe and reliable
zip. This thought makes me sad because it would be nice if
Python offered a better way to handle this.

So let’s think about it a bit more and see what comes out of it.

One simple approach to fixing this problem would be to make a
more robust iterator, and doing that is pretty easy. However, to
be useful it would require the iterator protocol to be more robust.
For example, you could envision a new class that allows some
interrogation, like peeking or, maybe a bit less ambitious, the
ability to ask whether it’s primed (by which I mean it still may
have more values in the future) or stopped (StopIteration has
been raised) without losing a value.

Unfortunately, these aren’t small self-contained decisions. A
fundamental thing like altering the behavior of the iterator pro-
tocol would probably, in the worst case, mean that every battery-
included function or expression that consumes an iterator and
handles StopIteration would have to know that there is this new
capability, which is now a lot of work with a lot of sharp edges
ready to poke you.

So let’s just start with the easy part for now, and we can explore
the harder parts later.

Taking advantage of the iterator protocol, let’s start with a naive
first try—we’ll write an iterator that lets us ask whether there’s
more data while otherwise behaving like a regular iterator.

class SnitchIterator(object):

 def __next__(self):

 while True:

 return next(self.iterator)

 def __iter__(self):

 return self

 def __init__(self, src):

 “””Using a source iterator, list, etc. create a new

 iterator that lets you non-destructively ask if there

 is a next element or not”””

 self.iterator = iter(src)

 def more(self):

 try:

 res = next(self)

 if res:

 self.iterator = itertools.chain([res], \

 self.iterator)

 return True

 except StopIteration:

 return False

Now we can ask “Is there more to this?” and get an answer. But
to solve the earlier problem, we’ll also need a slightly different
zip function to take advantage of this new feature, or else we’re
at a dead end. The special-case zip, or snitch_zip, would look
like this:

www.usenix.org S P R I N G 20 19 VO L . 4 4 , N O. 1 41

COLUMNS
Python

def snitch_zip(*args):

 “””Iterables must be a container, not an iterator. We must

 be able to go through them more than one time”””

 if False in [‘__iter__’ in dir(it) for it in args]:

 raise TypeError(‘All variables in *args must have \

 __iter__’)

 while True:

 for series in args:

 if not series.more():

 raise StopIteration

 yield [next(series) for series in args]

You can see that creating a modified zip is pretty easy. However,
this becomes a special case, which detracts from the simplicity
of the iterator model, is going to perform worse than the built-in
zip, and will probably have issues that we will cut ourselves on.
There’s nothing wrong with doing this for yourself when the use
is appropriate, but it feels like something that, to be useful, would
be better if it were in the language or at least in the standard
library.

Doing something like this in the core language might have some
niche usefulness but would come with the potential to break a
lot of existing code, or at least make that code confusing. Some
languages have macros and other practices to enable extending
existing functionality for experimentation, and Python has at
least one project that does this as well. If I can, I’ll see if I can get
zip to work with the SnitchIterator and discuss that next time.

Governance Follow-Up
Also, as a follow-up to the last column, the vote for the new gov-
ernance model for Python has been counted, and PEP 8016, the
steering council model, has been accepted: https://www.python
.org/dev/peps/pep-8016/.

This means that the BDFL model will be replaced by a five-
person elected steering committee with the goal of taking care
of the language, and they will be subject to oversight by the core
team members—those who actively contribute to the community.

You can see the results of the actual vote at https://discuss
.python.org/t/python-governance-vote-december-2018-results
/546.

Again, I encourage anyone interested to follow this process
closely.

Happy New Year!

https://www.python.org/dev/peps/pep-8016/
https://www.python.org/dev/peps/pep-8016/
https://discuss.python.org/t/python-governance-vote-december-2018-results/546
https://discuss.python.org/t/python-governance-vote-december-2018-results/546
https://discuss.python.org/t/python-governance-vote-december-2018-results/546

42  S P R I N G 20 19 VO L . 4 4 , N O. 1 www.usenix.org

COLUMNS

Practical Perl Tools
So Long and Thanks for All the Fish

D A V I D N . B L A N K - E D E L M A N

A fter 12 continuous years of writing this column with only one missed
month, it is time for this column to shuffle off this mortal coil and
leave room in ;login: for a different column.

I am so, so grateful to:

◆◆ You, the reader. It’s been a thrill to be able to talk with you each issue about something
i nteresting in the land of Perl.

◆◆ USENIX, who gave me the challenge to stretch myself each issue to find that interesting
topic.

◆◆ The countless authors and contributors in the Perl world that I’ve had the pleasure of
 writing about.

You may (or may not) be wondering: just how many Practical Perl Tools columns have been
published in that 12-year span? I know I was. I thought it might be fitting to show you one last
Perl program that I wrote to help me find all of the previous columns and also answer this
question. Ready for one last dance?

For this code, we return to an old friend that has appeared in this column before,
WWW::Mechanize. This module makes it easy to fetch web pages and parse them for specific
links. The first part of the code sets up where we are going to pull the information from and
grabs the first page.

use strict;

use WWW::Mechanize;

use open qw(:std :utf8); # quash warnings due to UTF-8 chars

where are the issues found?

my $start = ‘https://www.usenix.org/publications/login’;

for finding my articles

my $name = ‘blank-edelman|practical-perl-tools’;

my $mech = WWW::Mechanize->new;

fetch the issues page

$mech->get($start);

That page is both a listing of all of the issues and the root for all of the subsequent pages we
will want to fetch. In the code we’re going to see, we are careful to only retrieve URLs that
start with this prefix.

Now let’s find all of the issues we will want to check for an article:

David has over 30 years of
experience in the systems
administration/DevOps/SRE
field in large multiplatform
environments. He is the

curator/editor of the O’Reilly Book Seeking
SRE: Conversations on Running Production
Systems at Scale and author of the O’Reilly
Otter Book (Automating Systems Administration
with Perl). He is a co-founder of the wildly
popular SREcon conferences hosted globally by
USENIX. David currently works for Microsoft
as a senior cloud advocate focusing on site
reliability engineering.

www.usenix.org S P R I N G 20 19 VO L . 4 4 , N O. 1 43

COLUMNS
Practical Perl Tools: So Long and Thanks for All the Fish

 my @issues = $mech->find_all_links(

 tag => “a”,

 url_abs_regex =>

 qr/$start\/[a-z-]+20(0[6-9]|1[0-8])/,

 text_regex => qr/.+/,

);

The find_all_links() method is doing all of the heavy lifting, but
we should explain the arguments it is receiving. The “tag” argu-
ment is pretty easy to guess: we’re only looking for the anchor
HTML tag, things of the form text.
The next two arguments are a little more obtuse.

The first, url_abs_regex, is a regular expression meant to only
find certain links on the page. It serves two purposes in this
case: only select links that begin with $start, and also limit
which years will be selected. I happen to know I began writing
the column in 2006, so it only finds 2006–2009 and 2010–2018.

The text_regex deals with a quirk in the source of the issues
page. Each issue actually has two anchor tabs, one for the picture
of the cover, the second is the link for the text name (e.g., “Sum-
mer”). This regex makes sure we only grab one of the two, the
one that has any characters in the text portion of the URL. This
means we choose:

 Spring

instead of:

 <img
src=”https://www.usenix.org/sites/default/files/styles/login
_thumbnail/public/login/covers/1801_login_cover_170x221
.png?itok=VBVKlmFO” width=”100px” height=”130” alt=”” />

The end result of the call to find_all_links is a list of
WWW::Mechanize::Link objects that will point to all of the possible
issues we’ll want to scan for this column.

Now let’s iterate over all of the issue links we found:

my $issue_count = 0;

foreach my $issue (@issues){

 $mech->get($issue->url_abs());

 my $article_link = $mech->find_link(

 url_regex=>qr/$name/,

);

 if (defined $article_link){

 print $article_link->text() .

 “:\n” .

 $article_link->url_abs(),”\n\n”;

 $issue_count++;

 }

}

print “$issue_count issues in total!\n”;

For each issue link we have, we fetch the contents of that link,
then look for links in that page which could be my column. If we
find one, we print the name of the column and its URL.

It would be pretty simple to grab the actual PDF of the column at
this point if we wanted to create an archive of the content. This
would consist of another get(), find_link() to locate the PDF on
the page, get() that URL, and finally a call to save_content()
to write it to a file. Permit me one last “exercise for the reader” if
you will.

The output of our code looks like this:

Practical Perl Tools: Top of the Charts:

https://www.usenix.org/publications/login/spring2018

/blank-edelman

Practical Perl Tools: It’s a Relationship Thing:

https://www.usenix.org/publications/login/summer2018

/blank-edelman

Practical Perl Tools: GraphQL Is Pretty Good Anyway:

https://www.usenix.org/publications/login/fall-2018

-vol-43-no-2/blank-edelman

Practical Perl Tools: Off the Charts:

https://www.usenix.org/publications/login/spring2017

/practical-perl-tools-charts

Practical Perl Tools: Perl on a Plane:

https://www.usenix.org/publications/login/summer2017

/blank-edelman

...

66 issues in total!

And there’s the answer. Thank you, dear reader, for being with
me for 66 columns.

Take care.

44  S P R I N G 20 19 VO L . 4 4 , N O. 1 www.usenix.org

COLUMNS

Executing Other Programs in Go
C H R I S (M A C) M C E N I R Y

If you have come to the Go world from bash or another shell language, one
of the most critical tasks that you will be trying to replicate is calling out
to other programs. Go has mechanisms in the standard library to accom-

plish this—the os/exec library.

When running an external program, you have to decide how to interact with this. These
interactions tend to fall into several patterns:

1. Fire and Wait: Run another program, send its output to the terminal, and wait for it to finish.

2. Fire and Forget: Run another program, send its output to the terminal, and do not wait for it.

3. Pipe In: Feed data into the program.

4. Check Out: Check the output or exit code of the program.

5. Replace: Perform some setup, and then replace the current process with the other program.

6. Interact: Start another program and interact back and forth with it.

Each of these patterns is a combination of:

1. What to do with input for the other program?

2. What to do with the other program’s output?

3. Do we need to block until the other program is done or not?

In this article, we’re going to examine each of these interactions in turn with a focus on
which patterns they use.

Note: These examples are very UNIX and bash focused. As such, the examples will only work
on limited environments.

The code for these examples can be found at https://github.com/cmceniry/login/ in the
exec directory. Each example is its own appropriately named subdirectory so that it can be
executed directly with go run $EXAMPLE.

Fire and Wait
This is the simplest interaction with another process. In this pattern, the input and output
are of little concern, but we do want to wait until the other program is complete. Its profile
looks like:

1. Input: supply none (attaches automatically to /dev/null or equivalent)

2. Output: provide back to the attached terminal

3. Block till completion: yes

We begin much like any other Go program—the package declaration, imports, and our main
func: the main library to include here is the standard library’s os and os/exec components.

Chris (Mac) McEniry is a
practicing sysadmin responsible
for running a large e-commerce
and gaming service. He’s been
working and developing in

an operational capacity for 15 years. In his
free time, he builds tools and thinks about
efficiency. cmceniry@mit.edu

www.usenix.org S P R I N G 20 19 VO L . 4 4 , N O. 1 45

COLUMNS
Executing Other Programs in Go

firenwait.go: setup.

 package main

 import (

 “os”

 “os/exec”

)

 func main() {

To begin with the meat of our program, we first invoke the
exec.Command func. This accepts the invocation of the other
program as arguments. Go performs standard PATH resolution to
find the program by name, but in our case, we’re going to invoke
the /bin/ls command. In addition, we pass exec.Command any
arguments. For this example, we just want to list out the current
directory’s outputs.

As a result, we receive back an *exec.Cmd struct which will
handle all interactions with our called program.

firenwait.go: command.

 c := exec.Command(“/bin/ls”, “.”)

Since we want to display the output of the ls command, we need
to connect the output of that command with our display. This is
done by associating the Stdout member of our *exec.Cmd with
the main Stdout from our current program. The main Stdout is
available from the main os package.

Note: Stdout, and its accompanying Stderr for error output, is
an io.Writer interface. Input is covered under Stdin, which is an
io.Reader interface. If they are not specified by setting Stdout or
Stdin, they default to nil and will be connected to the /dev

/null equivalent. We’ll explore using other items that satisfy the
Reader/Writer interfaces later.

firenwait.go: connectoutput.

 c.Stdout = os.Stdout

With all of the initialization complete, we can Run our pro-
gram. Run will block until the child process completes or fails.
It returns an error if it is unable to run the other program or if
the other program fails during execution (gets a non-zero exit
code). For the example case, we panic for that, or exit normally
otherwise.

firenwait.go: run.

 err := c.Run()

 if err != nil {

 panic(err)

 }

 }

We can now run our example with go run and see the current
directory. In this example, we are using $GOPATH/src/github.

com/cmceniry/login as our starting point.

 $ go run exec/firenwait/firenwait.go

 README.md exec gofs hardcode useldap

Fire and Forget
The second example handles the case where we run a program but
do not check for what happens to it. This follows the patterns for:

1. Input: supply none

2. Output: provide back to terminal

3. Block till completion: no

This is very similar to the first example. It includes the same
libraries—plus time for the example. It creates the command the
same way, and it associates the output in the same way. There
are only two primary differences.

The first is the specific start of the command -- c.Start()
instead of c.Run(). Start will begin the other process but will
return as soon as it begins instead of waiting for it to complete.
If there’s an issue starting the other process—e.g., command is
not found—then it will show up as the returned error to Start.

firenforget.go: start.

 err := c.Start()

The second is to reap the child when it exits. Although we’re not
doing anything with the output, we still need to handle the child
when it exits. Otherwise, the child can hang around as a zombie
process. It’s not complete fire and forget—only mostly fire and
forget.

firenforget.go: wait.

 go func() {

 err := c.Wait()

 if err != nil {

 panic(err)

 }

 }()

The last part is that we hold our program from finishing up for a
couple of seconds. We want to make sure that our program exits
after the other program exits. In most cases, there would be some
other work that would be going on, so we simulate that with just
a simple Sleep:

firenforget.go: work.

 // Do some other work...

 time.Sleep(2 * time.Second)

46  S P R I N G 20 19 VO L . 4 4 , N O. 1 www.usenix.org

COLUMNS
Executing Other Programs in Go

Pipe In
Our next example shows how to provide input to a program.
As mentioned in the first example, Stdin is an io.Reader, so
anything that satisfies that interface will work. In this example,
we’ll use the patterns from our first example—only “Input” is
different:

1. Input: supplied

2. Output: provide back to terminal

3. Block till completion: yes

The goal of this example is to have the calculating program dc
perform some arithmetic for us. We’ll be using a strings.Reader
to provide dc with data. With the following input, dc will calcu-
late the sum of 1 plus 2, print the output, and quit.

 1

 2

 +

 p

 q

The initialization is the same as previous programs, except for
the addition of the strings package from the standard library.

As with the previous examples, we begin with getting an
exec.Cmd struct. In this case, we invoke the dc command and
supply no arguments.

pipein.go: command.

 c := exec.Command(“/usr/bin/dc”)

Next, we connect the inputs and outputs. strings.Reader imple-
ments the io.Reader interface, so we can use it to send a static
string in as our input. We connect this with the Stdin of our
command. As before, we connect Stdout of our command with
the existing terminal Stdout.

pipein.go: io.

 c.Stdin = strings.NewReader(“1\n2\n+\np\nq\n”)

 c.Stdout = os.Stdout

And now we can run dc.

pipein.go: run.

 err := c.Run()

If all works out, we will see the sum as the result:

 $ go run exec/pipein/pipein.go

 3

Check Out
Normally, just running a command and expecting it to behave
is wishful thinking. We can get some information if there’s an
issue starting the command, or with Run we can see whether the
program exited with a non-zero exit code. However, sometimes
it’s important to know what that return code is or what the pro-
gram returns as output.

In those cases, we need to check the ProcessState after our
command runs. ProcessState is a very generic struct which
mainly indicates whether the process is still running or not. For
detailed information, it has a Sys() member method that returns
an empty interface whose concrete implementation is very much
operating system dependent. On UNIX, Sys() returns a syscall

.WaitStatus that includes the detailed exit code that we’re
 looking for.

In this example, we’re going to run a command and check its exit
code. It follows the pattern of:

1. Input: supply none

2. Output: discard except for the exit code

3. Block till completion: yes

The initialization is the same except that, in this case, we must
include the syscall package of the standard library. We are even
calling the command in the same way.

checkout.go: command.

 c := exec.Command(“/usr/bin/false”)

 err := c.Run()

Since we expect the failure to return an error, we must handle
it. We check to see whether it is of the exec.ExitError type and
handle that separately. Otherwise, we will panic on any other
error, since that indicates something really unexpected hap-
pened, or exit normally on no error.

checkout.go: result.

 switch err.(type) {

 case *exec.ExitError:

 ws := c.ProcessState.Sys().(syscall.WaitStatus)

 fmt.Printf(“Exited %d\n”, ws.ExitStatus())

 case nil:

 fmt.Printf(“Exited normally\n”)

 default:

 panic(err)

 }

If all goes well, we can see the expected result of an exit code of 1:

 $ go run exec/checkout/checkout.go

 Exited 1

www.usenix.org S P R I N G 20 19 VO L . 4 4 , N O. 1 47

COLUMNS
Executing Other Programs in Go

You can see alternate behaviors by changing the command to
execute. Try:

◆◆ /usr/bin/true

◆◆ /usr/bin/notfound

Replace
In the Replace interaction, we are largely using the Go program
as a wrapper. The wrapper will perform some setup and then
transfer control over to another program. Some examples of use-
ful setups:

◆◆ Set environment variables—configuration parameters

◆◆ Set up file-system structures—working directory, lock files, etc.

◆◆ Check other dependencies—backend database or service—be-
fore starting up the application process

This follows the patterns:

1. Input: handed off

2. Output: handed off

3. Block till completion: no, handed off

Since process replacement is extremely operating system depen-
dent, we’re going to use the syscall package in the standard
library—same as the previous example. This makes the program
setup match the last exercise.

From there, we need to make any modifications as part of our
wrapping action. In this example, we’ll add a single environment
variable.

replace.go: env.

 env := append(

 os.Environ(),

 “USENIXLOGIN=true”,

)

From there, instead of using the higher level os/exec package,
we use the syscall.Exec function directly. For this example, we
want to spawn a shell with the manipulated environment.

replace.go: handoff.

 syscall.Exec(“/bin/bash”, []string{}, env)

For wrappers as simple as environment manipulations, that is
the extent of it. We can now use the updated environment.

 $ echo $USENIXLOGIN

 $ go run exec/replace/replace.go

 bash$ echo $USENIXLOGIN

 true

Interact
The last example that we’re going to take a look at involves inter-
acting with the other program. This can be used if you need to
programmatically interact with other command-line or termi-
nal-based tools. Typically, you will be looking for data or errors
and responding back into them.

Since this is before the process has exited, we’re going to focus
our time on manipulating the input and output of the process.

Specifically, in this example, we’re going to:

◆◆ start with the letter “a”,

◆◆ feed it into cat,

◆◆ read the output cat back out,

◆◆ append “b” to the output,

◆◆ feed that back into the same cat process, and

◆◆ repeat for “c”, “d”, and “e”.

Each time through, we’re going to build on the letters that have
already been supplied, unless we’re finally presented with the
full string “abcde”.

So far, we’ve been working with the io.Reader and io.Writer
interfaces of Stdin and Stdout. To be able to provide the continu-
ous feeds, Go provides a way to get pipes for each of these: (*Cmd)
StdinPipe() and (*Cmd) StdoutPipe(). We’re going to use these
in this example to aid us.

For the start of our main section, we need to initialize our data
and our command.

interact.go: vars.

 feed := []string{“a”, “b”, “c”, “d”, “e”, “”}

 c := exec.Command(“/bin/cat”)

After that, we grab the pipes for Stdin and Stdout.

interact.go: stdin,stdout.

 cin, err := c.StdinPipe()

 cout, err := c.StdoutPipe()

We’re going to rely on the bufio package of the standard library
to more easily support the line and string manipulation that
works well with cat. To do so, we need to wrap our io.Reader and
io.Writer with bufio.Scanner and bufio.Writer, respectively.

interact.go: buffer.

 bin := bufio.NewWriter(cin)

 bout := bufio.NewScanner(cout)

With all of the prep work out of the way, we can get the ball roll-
ing with cat. To do so, we need to prime the input with a newline
and start cat.

48  S P R I N G 20 19 VO L . 4 4 , N O. 1 www.usenix.org

COLUMNS
Executing Other Programs in Go

interact.go: prime.

 bin.WriteString(“\n”)

 bin.Flush()

 c.Start()

Next, we’re going to iterate through our data. For each piece, we
want to gather the cat output and then write back the output
with our addition.

interact.go: addnprint.

 for _, addition := range feed {

 if !bout.Scan() {

 panic(“ended early”)

 }

 if bout.Text() != “” {

 fmt.Printf(“%s\n”, bout.Text())

 }

 bin.WriteString(bout.Text() + addition + “\n”)

 bin.Flush()

 }

At the end, we want to clean up. Much like with the Fire and For-
get example, we still need to wait for the other process to finish.
However, since cat will not finish until its input is finished, we
must first close that.

interact.go: cleanup.

 cin.Close()

 c.Wait()

Now, we can run our program much like the others, and we
should see our five-letter output:

 $ go run exec/interact/interact.go

 a

 ab

 abc

 abcd

 abcde

Conclusion
One of the most basic functions of any script is to build on other
programs. It is crucial to be able to both trigger other programs
with various inputs and to respond to the results of those other
programs. Although the invocation of these other programs has a
few more steps in Go versus traditional scripting languages, Go
allows you to more readily tap into a large corpus of software for
processing inputs and outputs.

I hope this article has given you confidence to use Go when it is
appropriate to handle these process interactions, and some ideas
for how to readily do so.

USENIX Supporters

USENIX Patrons
Bloomberg • Facebook • Google • Microsoft • NetApp

USENIX Benefactors
Amazon • Oracle • Two Sigma • VMware

USENIX Partners
BestVPN.com • Cisco Meraki • Teradactyl • TheBestVPN.com

Open Access Publishing Partner
PeerJ

www.usenix.org S P R I N G 20 19 VO L . 4 4 , N O. 1 49

COLUMNS

iVoyeur
Flow 3

D A V E J O S E P H S E N

Dave Josephsen is a book
author, code developer, and
monitoring expert who works
for Sparkpost. His continuing
mission: to help engineers

worldwide close the feedback loop.
dave-usenix@skeptech.org

If you take any sort of guided tour of Paris, you are likely to hear refer-
ences to “The Great Flood of 1910,” wherein the Seine rose to a depth of
eight meters above its normal height, buried the city in water, and shut

down critical infrastructure like freshwater and heating-oil delivery for a
month.

Rivers have backed up and flooded cities since time out of mind, but this flood makes for
particularly great data-engineering metaphor fodder because the water never managed to
overflow the tops of the quay walls lining the river itself. In other words, primary queue car-
dinality was within threshold.

Instead, the city was flooded from below by way of the recently enlarged and fortified sewer
system that ran from every direction into the Seine. I suppose you could say that the hotpath
bypassed the queue. Ironically, the infrastructure most prized by city planners, like train sta-
tions and hospitals, which had the best-engineered sewer access, were hit the worst. Their
basement grates spewed water like the geysers of Yellowstone, rapidly flooding and spilling
into the streets until the streets themselves became waterways.

In some areas of the city, firefighters used boats to rescue stranded people from second-story
windows, as engineers constructed a city-wide series of wooden catwalks to enable residents
to reach shelters and sources of food and fresh water.

Here’s the thing: if you’ve never read anything about the history of Paris, the city was sup-
posedly an untenable mess, until Napoleon III put it into the hands of a gentleman named
Georges-Eugène Haussmann. “Baron Haussmann” would spend 20 years becoming the most
unpopular guy in France as he demolished the medieval firetrap the city had been in order to
singlehandedly re-architect it into the city we more or less recognize as Paris today.

The “grand rearchitecture” of the city included a herculean refactoring of the dense labyrinth
of pipes, sewers, and tunnels beneath the streets into the most modern and robust sewer sys-
tem in the world. The system provided the city’s freshwater supply, steam heat, and oil pipes
to power the streetlights, as it simultaneously swept away rainwater and waste. The sewers
were such a source of pride that bureaucrats of the time used their own pet euphemisms to
make them sound less like sewers and more like re-election.

Haussmann himself compared them to bodily organs. “The underground galleries,” he said,
“are an organ of the great city, functioning like an organ of the human body, without seeing
the light of day; clean and fresh water, light and heat circulate like the various fluids whose
movement and maintenance serves the life of the body; the secretions are taken away mys-
teriously and don’t disturb the good functioning of the city and without spoiling its beautiful
exterior.”

It’s fortunate Haussmann died before his miraculous “underground galleries” buried the
city chest-deep in human waste and river water. Had he been there to see it, I’m sure it would
have been the facepalm heard around the world.

50  S P R I N G 20 19 VO L . 4 4 , N O. 1 www.usenix.org

COLUMNS
iVoyeur: Flow 3

I suspect that anyone who has seriously worked with data
pipelines or distributed systems can probably relate; an over-
abundance of input can have extreme and unforeseen effects
on asynchronous processing systems.

The Flow, Part Three
This is the third article in my series about our API-query data
pipeline, so you, dear reader, could certainly be forgiven not
knowing just what the heck I’m going on about. Let’s pause,
therefore, for a moment of reflection. In Figure 1 you can see the
pipeline in its entirety.

In my last article, we spoke about the first data transformation,
which takes place inside Fluentd, to change raw log data into
structured JSON. We learned about how tags and message rout-
ing works inside Fluentd and about Fluentd’s buffered output
plugins. I also mentioned that we were using the Prometheus
plugin to extract some metrics from Fluentd and shared some
cardinality graphs from our production monitoring system,
Circonus.

Merely enabling Prometheus in your tdagent.conf, along with
its outputmonitor plugin, gives you all the visibility you need to
detect backups inside Fluentd of the sort tour guides in Paris are
still talking about a century later.

<source>

 @type prometheus

</source>

<source>

 @type prometheus_output_monitor

</source>

Upon restarting td-agent (the Fluentd demon), a wget http://

localhost:24231/metrics will yield myriad stats on every regis-
tered output plugin, like these two counters of messages emitted
per output plugin (sns and firehose for us):

fluentd_output_status_emit_count{plugin_id=”object:3f86dc5b

80cc”,type=”amazon_sns”} 570277.0

fluentd_output_status_emit_count{plugin_id=”object:3f86d983

3444”,type=”kinesis_firehose”} 10109263509

Fluentd also has a filter type Prometheus plugin, which you can
use in your routing configuration to extract metrics directly
from the data as it passes through. We use this to break down the
cardinality of the various types of API calls that are occurring
within our Nginx data. Here’s the configuration blurb:

<filter firehose_parsed.**>

 @type prometheus

 <metric>

 name outgoing_msg

 type counter

 desc Outgoing messages

 </metric>

 <labels>

 type ${type}

 </labels>

</filter>

This filter catches all messages tagged with “firehose_parsed”
and increments a counter metric named “outgoing_msg”
that—crucially—is labeled with the value of the message’s type
attribute. In other words, as each message is routed through this
filter, Fluentd literally uses the value of msg.type to create the

Figure 1: Sparkpost’s “Internal Event Hose” data pipeline

www.usenix.org S P R I N G 20 19 VO L . 4 4 , N O. 1 51

COLUMNS
iVoyeur: Flow 3

Prometheus metric label. Hence, when we wget the reporting
socket, we get output metrics that break down the cardinality of
each type of API call our customers are currently making:

...

outgoing_msg{type=”get_sending-domains”} 31190473.0

outgoing_msg{type=”get_subaccounts”} 33089429.0

outgoing_msg{type=”get_webhooks”} 527765630.0

outgoing_msg{type=”auth_request”} 58139133.0

outgoing_msg{type=”get_users”} 144456173.0

outgoing_msg{type=”4xx_error”} 193923362.0

...

In a proper Prometheus shop, we’d be using the Prometheus
server to slurp up all of these metrics and report on them, but for
better or worse, our monitoring solution of choice lies in another
direction, so I wrote a small shell script that performs the polling
and reformatting. Omitting the error handling, it’s really just
two lines...

INPUT=$(curl -k -ss -m “${TIMEOUT}” “${URL}”)

echo “${INPUT}” | grep -v ‘^#’ | sed -e ‘s/{.*=”/ /̀’ -e ‘s/”} //’

-e ‘s/ //g’ -e ‘s/^fluentd_//’ -e ‘s/`\([^̀]\+\)$/ n \1/’

If you squint at it hard enough you’ll see it transforms the output
into backtick separated lines of the style: outgoing_msg`get

_sending-domains̀ 31190473.0. I know. Backtick separation.
Don’t get me started.

When we first architected this data pipeline we carefully read
up on the various AWS streaming event services, compared their
limits and tradeoffs against our workload, and decided that SNS
was the best fit for us. We installed the most popular version of
the SNS Fluentd plugin, gave it our configuration particulars,
and watched everything collapse and fail in a Parisian-esque
epic flood of traffic.

We eventually discovered two overlapping problems. The first,
which I mentioned in my last article, was the SNS Fluentd plugin
we found didn’t support buffered output, meaning, among other
bad things, that it didn’t support threading and completely
blocked the entire Fluentd process as it tried to f lush 11,000
messages to SNS every second.

The second problem was that the SNS service itself doesn’t have
a bulk-send endpoint, so every message emitted equates to a
single HTTP connection. It’s surprisingly easy for little details
like this to be obscured by frameworks and plugins and abstrac-
tion. Engineers who know AWS very well are fond of saying things
like there are no limits to SNS, and asking around, I heard myriad
 utopian tales of shops pushing hundreds of thousands of 140-
byte messages per second into SNS without breaking a sweat.

Well, it turns out, the real-world limit on SNS is the number of
HTTP connections you can reliably make per second from your
sending instance’s ENI. I’m not really sure what that number is
(it no doubt varies by instance type), but I’m here to tell you, for
us, it was smaller than 11,000 divided by three instances.

Rather than attempting to scale up or out, we took a look at AWS
Kinesis Firehose, which has a bulk-send endpoint capable of
ingesting batches of over 100 messages in a single HTTP call.
This was a WAY more efficient and reliable means of feeding
data into AWS. Bonus, the Fluentd Kinesis plugin is well sup-
ported, buffered, and supports threading.

We experimented with lambdas attached to our firehose to
transform the JSON log data directly in to Parquet but eventu-
ally decided that we wanted a copy of the data in both JSON and
Parquet, so we pointed the firehose directly at an S3 bucket.
Kinesis automatically partitions this data up for us into minute-
sized chunks, ready for Athena to parse through them.

To make the final hop into columnar data format, we rely on a
combination of custom-written code, Apache Spark, and AWS
Glue. Spark’s PySpark (http://spark.apache.org/docs/latest/api/
python/index.html) library makes it simple to sqlContext.read.

json() our JSON data from S3 into a Spark DataFrame (https://
spark.apache.org/docs/latest/sql-programming-guide.html),
and from there df.write.parquet() it back out to a new S3 bucket
in Parquet format. We use AWS Glue to schedule our PySpark
code as an ETL job that runs hourly (five minutes after the hour,
to give firehose a sufficient buffer of time).

I find it difficult to articulate the extent to which this data has
enriched my life as an engineer, but I’ll give you an example
from last week, wherein someone noticed that we appeared to be
bouncing an order of magnitude more email than normal, which
everyone found…worrisome.

I first checked whether there was a pattern of increased bounces
for our top-tier receivers. This sort of thing has happened in the
past when Gmail, for example, implemented some new, aggres-
sive, and ill-conceived filtering technology.

select dt, count_if(routing_domain=’gmail.com’) as google,

count_if(routing_domain=’yahoo.com’) as yahoo,

count_if(routing_domain=’hotmail.com’) as hotmail

from “glue-data-lake-usw2-prd”.eventlog_parquet

WHERE bounce_class=21

AND dt >= ‘2018-09-01’

group by 1;

52  S P R I N G 20 19 VO L . 4 4 , N O. 1 www.usenix.org

COLUMNS
iVoyeur: Flow 3

With this Athena query, I was able to get a day-by-day break-
down since September 1 of email we bounced to the top three
providers and verify that we were NOT in fact bouncing more
mail than normal. This query took three minutes to complete
and scanned around 100 GB of data (Athena queries cost $5
per TB scanned).

What, then, could account for the increase in bounce traffic?

select count(dt),raw_reason

from “glue-data-lake-usw2-prd”.eventlog_parquet

WHERE bounce_class=21 and dt between ‘2018-10-01’ and

‘2018-10-21’

group by raw_reason

order by count(td)

LIMIT 10;

select count(dt),raw_reason

from “glue-data-lake-usw2-prd”.eventlog_parquet

WHERE bounce_class=21 and dt > ‘2018-10-21’

group by raw_reason

order by count(td)

LIMIT 10;

With these two queries I was able to enumerate the top 10 reasons
that email bounced in the period before the change was noted,
and then again in the period after the change was noted. I dis-
covered that there was indeed a difference between these two
lists. The first looked like:

454 4.4.4 [internal] no MX or A for domain

554 5.4.4 [internal] Domain Lookup Failed

“550-Requested action not taken: mailbox unavailable

550 invalid DNS MX or A/AAAA resource record”

451 Your domain is not configured to use this MX host.

While the second looked like:

454 4.4.4 [internal] no MX or A for domain

554 5.4.7 [internal] message timeout (exceeded max time, last

 transfail: 454 4.4.4 [internal] no MX or A for domain)

554 5.4.4 [internal] Domain Lookup Failed

554 5.4.7 [internal] exceeded max time without delivery

As you can see, some new, timeout-related error messages have
overtaken the first and fourth most common error message in
the logs. As it turns out, our engineering teams had implemented
a new suite of error detection code and had miss-classified these
timeout messages as bounce-class messages, which in turn
caused a reporting error.

While this particular example turned out to be a false-alarm
rather than a flood, I think it serves to illustrate how capable our
new log data pipeline is at helping us deal with the deluge.

I think that pretty much wraps up my series on our Data Pipeline
at Sparkpost, and along with it, my overspilling (sorry) of river-
related metaphor. Until next time.

XKCD xkcd.com

www.usenix.org S P R I N G 20 19 VO L . 4 4 , N O. 1 53

COLUMNS

Type “cybersecurity” into Google Patents, sort by oldest and then
 newest, and take the top 100 in each list. Keeping in mind that the
lists include applications as well as grants, Table 1 lists the number

of entries by country in the respective lists.

The top three assignees in the oldest list were AT&T/Bell Labs, Computer Security Corpora-
tion, and Westinghouse Electric in that order. The top three assignees in the newest list were
two Chinese companies, and then IBM.

But what, you might ask, does this have to do with computer security metrics?

If you come up with a new and improved espresso machine and you wish to derive the
maximum economic benefit from your invention, the two most frequently used methods
of protecting your newly hatched intellectual property are applying for a patent or treating
what is “new, useful, and non-obvious” in your espresso machine as a trade secret. If Table 1
were about espresso machines, the difference between the oldest and newest columns could
reasonably be attributed to more companies selecting trade secret protection rather than
applying for a patent.

That explanation is not as compelling for cybersecurity. A trade secret is “not generally
known or reasonably ascertainable by others,” but while it is possible that an innovation in
cybersecurity is intended for use only within a (trade) secret context, this is not the typical
business case. (This may well be the typical case in governmental and military contexts.)
Because of the computer security community’s aversion to secret sauce, if the inventor
wishes to offer the invention in the cybersecurity marketplace, maintaining the protection of
a trade secret becomes problematic; an enterprise you’d like to convince to license your inno-
vation will want to know how it works, so protection leans more toward applying for a patent
than toward using a trade secret as it would for that espresso machine. If you are going to
be forced to reveal the inner workings of the invention in patent application detail, then you
need to apply for a patent.

But still you ask, what does this have to do with computer security metrics?

Bruce Schneier is quoted on the Wikipedia page about elliptic curve cryptography patents
(“ECC Patents”) as saying in 2007, “Certicom certainly can claim ownership of ECC. The
algorithm was developed and patented by the company’s founders, and the patents are well
written and strong. I don’t like it, but they can claim ownership.” Other companies hold pat-
ents on various cryptographic algorithms; the RSA patents come easily to mind.

More than a few standards discussions have wrestled with the inclusion of patented technol-
ogy. Commercial entities holding a patent in such cases have every incentive to come to fair,
reasonable and non-discriminatory (FRAND) terms for the use of their technology and thus
for its use in a standard. Such was the case with both ECC and RSA. But this incentive is
lacking when it is a governmental or regulatory entity that holds a patent. In this case the use
of the patented technology can be required independent of any standards deliberations and
in what may be very unFRANDly terms.

For Good Measure
Patent Activity as a Measure of Cybersecurity Innovation

D A N G E E R A N D S C O T T G U T H E R Y

Dan Geer is the CISO for
In-Q-Tel and a security
researcher with a quantitative
bent. He has a long history
with the USENIX Association,

including officer positions, program
committees, etc. dan@geer.org

Scott Guthery holds over
50 patents for his work in
cybersecurity. He worked for
Bell Laboratories, Schlumberger,
and Microsoft and co-founded

Mobile-Mind with Mary Cronin to build
secure mobile applications for the GSM
SIM. He currently runs Docent Press, which
publishes books on the history of mathematics,
computing, and technology. sbg@acw.com

Country Oldest Newest

Belgium 5

Canada 4

China 7 76

Denmark 1

EU/WTO 8 1

Finland 2

France 8

Germany 9

Great Britain 7 3

Japan 4 2

Korea 1

Netherlands 2

Spain 4

United States 38 18

Table 1: Country sources are consolidating
geographically

54  S P R I N G 20 19 VO L . 4 4 , N O. 1 www.usenix.org

Figure 1: Digital patents as percentage of total number patents (solid) and
cybersecurity patents as percentage of digital patents (dashed). All figures
were drawn using data from http://www.patentsview.org/.

Figure 2a: Digital patents with “attack” in the patent abstract

Figure 2b: Digital patents with “threat” in the patent abstract

COLUMNS
For Good Measure: Patent Activity as a Measure of Cybersecurity Innovation

“OK,” you say, “I do care about the computer security landscape
and who owns what plots of land, but this is more about the busi-
ness of cybersecurity than about the bits and bytes. Do patent
numbers have anything interesting to say here?”

Here are some words that appear in the titles of the patents in
the newest list that don’t appear in the titles in the old list (in
alphabetical order):

anti-theft, attack, authentication, detection, methods, threat,
uncloneable

And here’s the other way around, words in the old list titles that
aren’t in the new list titles:

automatic, electric, filter, lock, switch, signals, transponder,
telephone

Nothing certain can be deduced from this small sample, but one
can glimpse a shift away from hardware toward protocols as well
as a shift from offense toward defense.

Focusing now on granted US patents from 1980 to 2017 and, in
particular, on the subset of these that have the word “computer”
or “network” in the patent abstract, we will refer to this sub-
set as digital patents. Within the set of digital patents, we will
distinguish those whose abstract contains at least one of a list
of cybersecurity words; we will refer to these as cybersecurity
patents.

Figure 1 plots by year the ratio of the number of digital patents
to the total number of patents issued (solid) and the ratio of the
number of cybersecurity patents to the number of digital patents
(dashed). One takeaway is that roughly speaking there is as much
effort going into cybersecurity innovation within the domain of
computers and networks as there is going into computers and
networks overall.

Figures 2a and 2b plot by year the number of digital patents that
have “attack” or “threat,” respectively, in their abstract, together
with an exponential fit to these counts.

 If these plots were simply measuring the intensity of concern
regarding attacks on and threats to computers and networks,
then the exponential fits wouldn’t be at all surprising. But they
are measuring the number of “new, useful, and non-obvious”
counters to attacks and threats which, in a world that might be
thought of as settling into a day-in-and-day-out game of Spy vs.
Spy, the exponentially growing number of pitches on which the
game is being played might raise an eyebrow.

Posting a guard at the gate to check visitors’ papers is a tried
and true way of separating friend from foe. Figure 3a plots the
number of appearances of “authentication” (upper/solid) and
“credential” (lower/dashed) in the patent abstracts, while Figure
3b plots the number of appearances of “password” (upper/solid)
and “biometric” (lower/dashed) in the patent abstracts.

Growth here is more linear than exponential of late, but the pro-
liferation of new, useful, and non-obvious ideas is remarkable.

www.usenix.org S P R I N G 20 19 VO L . 4 4 , N O. 1 55

Figure 3a: Digital patents with “authentication” and “credential” in the
patent abstract

Figure 3b: Digital patents with “password” and “biometric” in the patent
abstract

Figure 5: Inventors per patent: “authentication” (solid) and “biometric”
(dashed)

Figure 4: Inventors per patent: all patents (solid) and cybersecurity
 patents (dashed)

COLUMNS
For Good Measure: Patent Activity as a Measure of Cybersecurity Innovation

Of course, that fact that the word “computer” appears in a patent
abstract does not mean that the patent is about computers, and
the same holds true for all of the other search terms discussed
above. Nonetheless, one can safely conclude from this cursory
analysis of the set of granted patents that inventive genius is ever
harder at work on the cybersecurity problem.

Figure 4 shows the number of inventors per patent for all US
patents and for cybersecurity patents. The fact that the number
of inventors per patent has been growing slowly is well-known,
and it comes as no surprise that whatever is driving this growth
applies to cybersecurity patents in toto as well.

Curiously, if we restrict our attention to patents having to do
with identity, the upward trend disappears. Figure 5 plots by
year the average number of inventors for digital patents that
have the word “authentication” (solid) or “biometric” (dashed) in
their abstract. Roughly speaking, the average number of inven-
tors per patent for patents having to do with identity is constant
at about two and a half. Whatever it is driving the trend for most
patents seems to be absent for this highly restricted subset.

The summary so far: where patent applications are coming from
geographically has consolidated all but completely. Patents are
probably the only strategy choice for cybersecurity inventors

because users demand transparency in cybersecurity work much
more than in other technical fields of endeavor. The subject-mat-
ter focus of cybersecurity patents may be moving toward defense
(though it is possible that dual-use patents just avoid delineating
their offensive capabilities). The fraction of all applications that
are cybersecurity related is rising steeply, fueled by a growing
fraction of all applications that are computer related and a
growing fraction of computer-related applications that are for
cybersecurity, growth compounded and compounded again. For
any of these curves to radically change their course would surely
mean something important.

We ask whether there really are this many new, useful, and non-
obvious advances in cybersecurity. If there are, is this fast-rising
tide of cybersecurity patents an unarguable confirmation of an
equivalently fast-expanding digital attack surface? Or does the
rising production of cybersecurity patents represent a corre-
spondingly rising appreciation of the level of extant risk; that is
to say, is society playing furious catch-up ball? Or is it something
else again? Is it good or not good that while other sectors of the
technological society require steadily larger and larger teams
to come up with new, useful, and non-obvious ideas, in cyber-
security the teams are the same small size they have been for
so long?

56  S P R I N G 20 19 VO L . 4 4 , N O. 1 www.usenix.org

COLUMNS

/dev/random
Ambush Computing

R O B E R T G . F E R R E L L

I recently read a piece about “ambient computing,” which is the idea that
the next logical phase of digital evolution is to have computers control-
ling our lives without the nuisance of us having to operate them. I would

argue that this revolution has already taken its nascent steps. Even a fossil-
ized semi-Luddite like me is a prisoner of the fitness app on my iPhone, for
example. Gotta get those steps in—and Heaven forbid I should walk down the
hall without said tracker and so fail to get “credit” for the trip. That app is like
a jealous lover who insists on monitoring my every move.

I have studiously avoided the frankly terrifying specter of the personal digital assistant who
listens to—and worse, tries to interpret—every sound I make. I cannot comprehend why
anyone would voluntarily allow their residence to be bugged while at the same time paying
for the privilege. These digital Mata Haris with cutesy monikers that sound like European
commuter compacts or adult film personalities are nothing less than corporate surveillance
technology of the highest order.

Do you really want the intimate details of your physiology and psychology reduced to mere
datapoints for the sustenance of invisible robot overlords? I know I don’t. Let us cast our nets
out into the tepid waters of speculation and see what chimeras we drag in.

The odyssey begins as you’re walking up your front steps. The doorbell camera has found
a match for your facial features and welcomes you by name, while the porch mat measures
your gait and mass. The latter data is transmitted to the nearest Bluetooth node, where it is
made available to other household smart devices so that they may nag you about your bal-
looning weight and sell you plus-sized apparel at the same time.

In the foyer your smart coatrack reminds you that rain is forecast for later in the day. The
first of several motion detectors scattered about the domicile records your location, direction
of travel, and velocity, thereby predicting that you are heading for the kitchen and preparing
it for your arrival. As you enter the room the dishwasher pops open with clean dishes, while
the icemaker changes cube size and shape according to preferences that its predictive algo-
rithm has deduced from prior encounters. The refrigerator, meanwhile, has rearranged the
order of frozen entrées in its shelves based on time of day and your prior choices.

The microwave reads the UPC label of your entrée for heating times and ingredients. If it
concludes the meal contains more sodium or sugar than is good for you, it will sound an
alarm and even refuse to prepare it. If you employ manual override, it will start running ads
for dieting products and heart-healthy vitamin supplements.

Your après manger bathroom visit includes a toothbrush that adjusts for tartar buildup and
any detected gum disease, while the mirror checks for signs of acne, melanoma, eczema,
receding hairline, and numerous other conditions, offering ads for remedies via text mes-
sage. Your toilet has its own set of sensors, analyzing…well, what you would expect them to
analyze. It might tell your intelligent pantry to increase the number of high-fiber meals it
suggests, along with offering ads for same.

Robert G. Ferrell, author of
The Tol Chronicles, spends
most of his time writing
humor, fantasy, and science
fiction. rgferrell@gmail.com

www.usenix.org S P R I N G 20 19 VO L . 4 4 , N O. 1 57

COLUMNS
/dev/random: Ambush Computing

Your medicine cabinet has its own two cents to put in, of course.
Not only does it keep track of prescription medications and
submit refill requests on your behalf, it offers helpful tips on
products that purport to control chronic conditions like head-
aches, muscle pain, dizzy spells, and foot odor—the presence of
which it surmises by your pharmacological habits. If it perceives
frequent visits to your primary care practitioner, it might tell
your produce drawer to suggest daily apple consumption.

The home electronic entertainment naturally enumerates your
behavior in excruciating detail. Every second you spend online
or streaming to some device is examined, profiled, categorized,
and exhaustively analyzed. The very best bargains in televisions
and monitors can be had on models with integrated cameras
and microphones, ostensibly for your own convenience in the
quest to share absolutely every moment of your life with friends,
family, and social media followers, but incidentally also to enable
even more intrusive surveillance to benefit advertisers. Every-
body wins, right?

Tying this tangled mass of data collection together is a cen-
tral repository or database server. It doesn’t have to be a single
machine, though: your house is already quite likely a mesh
network hosting its very own data cloud. Aren’t you special? The
Internet of Things quite definitely includes your Things. Con-
veniently, you don’t even have to do anything to accomplish this
web of integration. It just magically happens, like climate change
and congressional oversight.

Let’s not forget those little buttons all over the house that are
supposed to order products for you at one touch. What time-
savers they are! No more dreary comparison shopping or coupon
clipping: simply trust that the button brings you what you need.
So modern. So monolithic. So antitrustworthy.

Your doorbell, your thermostats, your security system, your
kitchen appliances, your toiletries, your home entertainment
system, your telecommunications devices…all of them working
together to make your life—and the lives of those who want you
to be unable to avoid their advertising at every turn—easier.

Since many of these doohickeys phone home on a regular basis,
you can bet your data makes the same trip in first class accom-
modations. Once comfortably ensconced at the far end, it is pack-
aged and sold to anyone who ponies up the requisite cash. The
real beauty of this arrangement is that you actually pay for the
equipment used to spy on you—sometimes even on a recurring
basis if you’re subscribed to a service connected to it.

Not that any of this is remotely novel or even recently invented:
talking consumers into bankrolling their own exploitation is in
fact a time-honored Madison Avenue tradition. Graduate theses
have been written on the various techniques for achieving it.
Careers have been built on it. Mansions, private jets, yachts, and
even islands have been purchased from its proceeds. Taxes from
those proceeds have been adroitly evaded. This, then, is the cycle
of commerce.

I seem to have slid down a slippery slope from ambient comput-
ing to tax fraud, but in my defense, there weren’t many obstruc-
tions. Happy fishbowl consumerism, y’all.

58  S P R I N G 20 19 VO L . 4 4 , N O. 1 www.usenix.org

BOOKSBook Reviews
R I K F A R R O W A N D M A R K L A M O U R I N E

The Site Reliability Workbook: Practical Ways to
Implement SRE
Niall Murphy, David Rensin, Betsy Beyer, Kent Kawahara,
and Stephen Thorne
O’Reilly Media, 2018, 512 pages
ISBN: 978-1-492-02950-2

Reviewed by Rik Farrow

When I think of a workbook, I expect something that contains
exercises and complements an existing book or course. The Site
Reliability Workbook fits the second part of that description.
The authors intended that TSRW expand upon the best-selling
Site Reliability Engineering, in part because of all the questions
raised by readers of the first book.

Today, you can find all of the SRE book online, and as TSRW
relies on that book, there are frequent references to chapters in
the earlier book, all as bit.ly-shortened URLs. While that’s use-
ful, there are often summaries to the material, and I found that
all I needed were the summaries to recall enough for the current
material to make sense.

And instead of exercises, you get examples, case studies, and
more in-depth descriptions. Right away I could see how use-
ful this was in making the principles described in SRE con-
crete. There is even a chapter on Non-Abstract Large System
Design, with tangible examples of what the authors, including
Salim Virji, were teaching during LISA tutorials, a step-by-
step approach to designing a reliable service for monitoring
AdWords.

There was criticism that SRE, both the practice and the book,
were something only Google, and a handful of companies like
it, could take good advantage of. TSRW attempts to dispel those
objections, largely by including authors outside of Google for
many of the sections.

You will often find that books written by many authors have
an uneven writing style. TSRW doesn’t read that way at all: the
writing remains clear, consistent, and easy-to-read throughout.

As to the argument that SRE is only for large organizations, I
found myself thinking many times as I read TSRW, “If only I had
known that 35 years ago.” In the chapter about On-Call, I read
about many practices that would have made my life easier in my
first Bay Area job and prevented burnout. I also encountered
some things I had tried to do, with partial success, in that long
ago era. In other words, even if you don’t consider yourself an
SRE, there are definitely things you can learn from this book.

Managing Kubernetes: Operating Kubernetes
Clusters in the Real World
Brendan Burns and Craig Tracey
O’Reilly Media, 2018, 188 pages
ISBN: 978-1-492-03391-2

Reviewed by Mark Lamourine

Often it seems that sysadmins are forgotten when people are
writing documentation. It is common to see books for service
users and for API developers. When it comes to managing ser-
vices, it feels like the first response is to try to write some kind
of GUI to smooth over the sharp bits and pretend they don’t exist.
This leaves the sysadmin needing to understand, manage, and
diagnose complex systems with little guidance but their own
wits and experience.

Managing Kubernetes won’t solve every sysadmin problem, but it
does go a long way toward illuminating the dark interior of one of
the hottest buzzword services of the last few years.

Brendan Burns is one of the three original authors of Kubernetes
and is still one of the top three contributors. With Craig Tracey,
he provides the clearest description I’ve seen of the moving parts
that, together, make a Kubernetes cluster.

Kubernetes is a distributed software container management ser-
vice. That’s quite a mouthful. If you’re not already familiar with
software containers, you should really start somewhere else. The
most well-known container runtime system is Docker. There
are others, but Docker is the BASIC programming language of
containers. You’ll be back quickly, because standalone contain-
ers have limited value. They come into their own when you start
combining single-purpose containers into complex applications.
How you combine them and then deploy them to make working
services is what Kubernetes is all about.

Kubernetes is itself a (mostly) containerized service, built up
of a number of cooperating service components. The hosts that
participate in the clusters are called nodes. All nodes must have a
container runtime environment such as Docker already installed
and running.

Some nodes, called head nodes, are special. These run the man-
agement components and provide the brains of the cluster. The
remainder of the nodes, called worker nodes, run components
that control local containers and provide network communica-
tions. All of these coordinate by communicating with an API
service that is distributed across the head nodes.

www.usenix.org S P R I N G 20 19 VO L . 4 4 , N O. 1 59

BOOKS

The arc of the book is a little different from most. Burns and
Tracey don’t have the reader attempt an installation until almost
halfway through, in Chapter 6. Ordinary users would want to get
started creating containers as soon as possible, but the sysadmin’s
purpose is to understand what is happening underneath when
normal users start their work. The authors devote the first half of
the book to describing the structure that installation will create.

In the second half of the book, the authors walk the reader
through common operational processes. Many of these are
concerned with providing and controlling access to the cluster.
Users interact with the cluster by making requests to the API
server. The next three chapters detail how user requests are
validated and accepted.

The authors provide one of the better explanations I’ve read of
the distinction between authentication, authorization, and what
they call admission, which I might have called policy. In each
case, they provide examples of the REST data structures that
implement the communication protocol. The examples dem-
onstrate the rationale and the structure, but none of them are
meant to be comprehensive. The authors know that the Kuber-
netes project documentation [1] provides detailed specifications,
though I do wish they had provided the appropriate links in-line
with the text.

The final three chapters cover additional operational concerns:
networking, monitoring, and disaster recovery. Again, the discus-
sion is meant to give the reader a starting point for understand-
ing what is possible and where to learn more. It is not a run-book
but, rather, is concerned with architecture and taxonomy. It
provides references to resources that the reader can use to learn
and plan for a deployment.

Rather than being an operator’s manual or a comprehensive
reference, Managing Kubernetes describes the purpose and basic
configuration of each component and gives the reader a sense
of the structure and dynamics of Kubernetes as a whole. I have
noted in other places that it is often very useful to understand
any technology at least one layer, and preferably two, beneath the
level where you mean to work. For both operators and architects
of Kubernetes services, Managing Kubernetes will provide the
peek beneath the covers.

Learn Git in a Month of Lunches
Rick Umali
Manning Publications, 2015, 352 pages
ISBN: 978-1-617292415

Reviewed by Mark Lamourine

Many authors can’t seem to decide whether they want to write a
reference or a tutorial, often making their book less than ideal for
either the beginner or the experienced reader. Rick Umali doesn’t
make this mistake. He knows he’s writing a book for beginners,
and Learn Git in a Month of Lunches is ideal for his audience.

Git is well suited to this kind of learning. It is a tool that is used
by software developers to organize and manage their work. It
allows them to share their work in a way that makes conflict
avoidable or at least manageable. It has one purpose and a well-
defined set of operations to accomplish that purpose. Tools like
this are often learned fitfully, by experience, looking up the sin-
gle solution to a single problem then going back to work. Umali
has offered a straightforward and complete path for learning to
use the most important capabilities of Git and the grounding to
explore and learn more.

Umali, to his credit, dodges several common problems that arise
from trying to present material in a narrative format. He avoids
creating a contrived straw-man project. Instead, each chapter
focuses on just one task or subcommand, and he discusses the
most common aspects of that task. He does interlace examples
for the three common platforms, Windows, Mac, and Linux, but
each example is clearly labeled and distinguished by graphical
conventions.

He also starts at the true learner’s beginning (after installation)
by creating an empty local repository. While most work in the
real world will involve a remote repository, Umali leaves that for
Chapter 12, well past the halfway point in the book. That first
half is dedicated to getting comfortable with Git and just manag-
ing files in a repository. I was reminded firmly that all of the
common operations, committing, cloning, branching, merging,
and viewing logs are local operations. In every case the pattern
for a file reference is first a local path that can then be extended
to a URL by adding a standard prefix.

That said, the next four chapters cover the details of working
with remote repositories; push, sync, rebase, and a chapter on
branching conventions and collaborative workflows.

He wraps up with chapters on third-party Git software, working
with GitHub, and configuration and tuning.

Reference
[1] Kubernetes REST API specification: https://kubernetes.io
/docs/concepts/overview/kubernetes-api/.

https://kubernetes.io/docs/concepts/overview/kubernetes-api/
https://kubernetes.io/docs/concepts/overview/kubernetes-api/

60  S P R I N G 20 19 VO L . 4 4 , N O. 1 www.usenix.org

BOOKS

The “month of lunches” format limits the size of each chapter.
This is a good thing. Umali crafts each one so that it is complete
and self-contained. He encourages readers to spend a bounded
time reading and then to go away and think and practice on their
own. No chapter is longer than 20 pages. The longest ones are
those with a lot of graphics. They either showcase the GUI inter-
face or are concerned with the theory of revision control and so
use lots of drawings to show the workflow for the reader. I’m not
a good judge of GUI tools, but the base level introduction Umali
offers is comparable to the CLI capabilities, and for those who
like graphical tools it should serve well.

This is a beginner’s book, but I will pass it on with compliments.
I did pick up a number of tips and ideas that will stick with me.

Gamestorming: A Playbook for Innovators,
Rulebreakers, and Changemakers
Dave Gray, Sunni Brown, and James Macanufo
O’Reilly Media, 2010, 288 pages
ISBN 978-0596804176

Reviewed by Mark Lamourine

Brainstorming is a term in common use. To me it means going
somewhere different (even if only in my head), preferably with
a couple of my most trusted co-workers, presenting a problem I
have in its broadest terms and then throwing around ideas with-
out judgment or ego until something grabs all of our attention.
Then we play with a couple of the “best” ideas until we better
understand the problem, the challenges that remain, and, most
importantly, what we want to try next. This is a very unstruc-
tured concept, and other people will have a different vision of
what brainstorming is.

Gamestorming is a book that offers a lot of different ways to
structure that communal thinking process.

The main idea of Gamestorming is to use the framework of a
“game” to direct and focus the thinking and sharing process
in a way that suits the particular goals of the session. A game,
according to Gray, Brown, and Macanufo, is defined primarily
by a play space, a set of rules, and a goal. With this loose but clear
definition, they set out to give the reader a sense of how game

play in a working context can lead both to the results that might
elude more conventional planning sessions and to the relevant
tools to get those results.

Chapters 2 and 3 present that toolbox. A moderator’s job in these
kinds of planning meetings is to create an environment that will
promote participation and cooperation. There are any number of
ways the plan can be derailed. Chapter 2 enumerates 10 “essen-
tials” that are the material needs for a good session. In Chapter 3
the authors lay out the skills and tactics that a moderator should
have in order to be able to guide the participants and avoid rat-
holes and pitfalls.

The body of the book is four chapters that are a catalog of core
games, those for opening, closing, and for exploring an idea
space. The authors make a clear distinction between games
meant to start a session and generate lots of wild ideas and
those that are meant to refine and then focus on one concept
and come to a close. In longer planning sessions the games
might be chained together, or they can be played in separate
 sessions over a longer period of time if needed.

You may have visions of whiteboards and flip charts and multi-
colored sticky notes, and you wouldn’t be wrong. Most of us won’t
use Gamestorming in day-to-day life as a software developer
or sysadmin. The subtitle of the book, “A Playbook for Innova-
tors, Rulebreakers, and Changemakers,” feels a bit grandiose to
me. Many of the games are fairly common in dramatic training,
especially those aimed at creating group coherence. I suspect
very little here would be surprising to professional moderators
or facilitators.

But we’re not that kind of professionals. I think, used judiciously,
the ideas here could be helpful to those of us who find ourselves
in that position despite our inclinations (or our best efforts).
Sometimes it might be a good thing to shake us out of the stale
format of our regular planning meetings, standups, or retrospec-
tives. In that case, Gamestorming would be a good resource for
getting ourselves into the mindset of a facilitator. For the hour or
so it takes, perhaps a game is a good way to engage a whole team
on a common problem and uncover a solution no one had thought
of or felt invited to voice.

NOTES

www.usenix.org S P R I N G 20 19 VO L . 4 4 , N O. 1 61

USENIX Member Benefits
Members of the USENIX Association
 receive the following benefits:

Free subscription to ;login:, the Associa-
tion’s quarterly magazine, featuring tech-
nical articles, tips and techniques, book
 reviews, and practical columns on such top-
ics as security, site reliability engineering,
Perl, and networks and operating systems

Access to ;login: online from December
1997 to the current issue: www.usenix.org
/publications/login/

Registration discounts on standard tech-
nical sessions registration fees for selected
USENIX-sponsored and co-sponsored
events

The right to vote for board of director can-
didates as well as other matters affecting
the Association

For more information regarding member-
ship or benefits, please see www.usenix
.org/membership/, or contact us via email
 (membership@usenix.org) or telephone
 (+1 510.528.8649).

USENIX Board of Directors
Communicate directly with the USENIX
Board of Directors by writing to
board@usenix.org.

P R E S I D E N T

Carolyn Rowland, National Institute of
Standards and Technology
carolyn@usenix.org

V I C E P R E S I D E N T

Hakim Weatherspoon, Cornell University
hakim@usenix.org

S E C R E T A R Y

Michael Bailey, University of Illinois
at Urbana-Champaign
bailey@usenix.org

T R E A S U R E R

Kurt Opsahl, Electronic Frontier Foundation
kurt@usenix.org

D I R E C T O R S

Cat Allman, Google
cat@usenix.org

Kurt Andersen, LinkedIn
kurta@usenix.org

Angela Demke Brown, University
of Toronto
angela@usenix.org

Amy Rich, Nuna Inc.
arr@usenix.org

E X E C U T I V E D I R E C T O R

Casey Henderson
casey@usenix.org

Community Survey:
Some Answers,
Some More Questions
Liz Markel, Community
Engagement Manager

In early fall, USENIX asked its community
members for their opinions on a variety of
topics through its Community Survey—
our first survey of its kind since 2013. We
solicited responses across a variety of media
including our email newsletter; our social
media channels including Facebook, Twit-
ter and LinkedIn; the USENIX website and
blog; and personal outreach. At the conclu-
sion of the response period, more than 1,000
individuals had taken the time to share their
thoughts, and we are incredibly appreciative
of your participation in this process.

We expect the analysis to be ongoing
throughout the first half of this year. As
we mentioned in the opening of the survey,
we are aiming to:

◆◆ Paint a data-driven picture of the
 USENIX community.

◆◆ Assess community members’ percep-
tions of the organization.

◆◆ Evaluate membership options and
 determine what USENIX can do to
better serve our communities.

◆◆ Gather information that will help
 USENIX make strategic decisions
about various timely issues.

To address all of those priorities, we had to
ask a lot of questions, including inquiring
about demographics; more on that below. As
an acknowledgement of the time commit-
ment this survey required, we offered high-
value raffle prizes to six randomly selected
participants who completed the survey.

Going forward, our plan is to make this sur-
vey an annual opportunity to hear from you
and to help guide important organizational

Notice of Annual Meeting
The USENIX Association’s Annual Meeting with the

membership and the Board of Directors will be held on the
evening of Monday, July 8, in Renton, WA, during the week of

the 2019 USENIX Annual Technical Conference.

62  S P R I N G 20 19 VO L . 4 4 , N O. 1 www.usenix.org

NOTES

decisions. Did you participate in the survey?
If not, why not? If there was something that
prevented you from answering this year,
please provide your feedback to liz@usenix.
org! We will take into account your input for
the 2019 edition of this survey. Additionally,
if you have any other things on your mind,
you can always share those with me as well.

Why Demographics?
Some respondents wanted to know why
we cared about demographic data, espe-
cially questions inquiring about gender and
ethnicity. Demographic data is a way to slice
and dice responses to other questions that
help us identify trends that may be related
to community member attributes such as
age, gender or ethnicity.

For example, the gender imbalance in
USENIX’s community is reflective of the
gender imbalance in the computing systems
community at large. As part of our mission,
we’re striving to mitigate this issue through
offerings like the Women in Advanced
Computing Birds-of-a-Feather sessions
at our conferences, and Diversity Grants
that offer funding for conference travel to
many under represented groups in the field,
including but not limited to women.

By filtering responses to non-demographic
questions against the gender demographic
question, we are able to identify specific
needs from the women in our community,
and build programs around those needs that
are more likely to be successful because
they are in direct response to identified
needs. As we gather more survey data year
over year, we can track the overall gender
balance for USENIX’s community and see
if we are moving the needle in the right
direction.

There were some other key questions that
required demographic data, including the
following:

Who is in our community now? How is
our community changing over time?
We’ve discussed the gender question above a
bit, but there are other defining elements of
our communities that will directly impact
how we put our mission into practice. For

example, think about your career: with re-
spect to networking, knowledge growth, and
skills development, your needs have likely
changed over time. Understanding the fields
in which our community members work, the
length of time they’ve spent in their areas
of work, where they are on the spectrum of
their career’s lifetime, and whether or not
they’ve pursued advanced degrees is impor-
tant with respect to the content we produce
for our conferences, as well as the additional
support we provide for networking and
professional advancement.

That evolution can also affect how we are
communicating with you. Do you want more
or less interaction on social media? How
valuable is in-person communication for
you? (Answer according to your responses:
very valuable, and your responses indicate
that this does not vary by age!)

Just as your individual career and your
communications needs have evolved, so too
have the needs and the face of the larger
community. With regular surveys and
year-over-year data, we can stay on top of
these changes and adjust our programmatic
offerings accordingly to be as supportive of
you as possible.

Are we effectively serving those who are
in our community?
What about those who might be part of our
community in the future? We already have
policies in place like our USENIX Confer-
ence Code of Conduct and Guidelines for
Speakers that spell out our position on
harassment (tl;dr: we don’t tolerate it, and
there is a reporting and enforcement pro-
cess). What other policies are necessary for
our current and future community members
to ensure a positive experience for them
while they are participating in USENIX-
supported activities? With a demographic
portrait of our community, we can continue
to create and enforce relevant policies and
support the growth of the advanced com-
puter systems profession.

Where are you?
USENIX is an international organization,
and we would like to continue to increase

Women in Advanced Computing Birds-of-a-
Feather session at LISA18.

LISA18 Program Co-Chairs Rikki Endsley and
Brendan Gregg deliver their opening remarks.

LISA18 attendees spend some time chatting and
connecting during a break.

The evening reception at LISA18 included the op-
portunity to screenprint your own shirt.

Denelle Dixon, Mozilla, delivers her Enigma 2019
talk, “It’s Not ‘Our’ Data: Do We Want to Create
a World of No Surprises?”

www.usenix.org S P R I N G 20 19 VO L . 4 4 , N O. 1 63

NOTES

our international presence via our confer-
ences. We have primarily done this with
our SREcon events to date, and community
members are showing up! For example,
more than 55% of all of the survey respon-
dents who indicated they have attended
SREcon Europe/Middle East/Africa said
they reside in one of those regions. For sur-
vey respondents who have attended SREcon
Asia/Australia, just over 30% identified as
residents of the region. We are excited about
the success of these events, and the local re-
sponse, as well as the rich exchange of ideas
that comes from folks visiting other parts
of the world and finding out the issues that
affect particular regions. Questions tied to
survey participant geography will help us
consider future conference locations, both
domestic and international.

Who Are You?
So, who is the USENIX community
comprised of? While we know that there
are many communities underneath the
umbrella of USENIX, we were curious to
know how you defined those communities
for yourselves.

When we designed the survey, we debated
about how to ask which community you be-
long to: practitioner or academic? Sysadmin
or SRE? We ended up with two questions:
one that asked about conference attendance,
and one that asked respondents to self-
select their areas of work. Our expectation
was that the responses to these questions
would be consistent. We also had certain
expectations about where overlaps of inter-
est and work would occur.

Our very preliminary analysis of these
responses was surprising. For example,
many people who identified as LISA
 attendees and/or sysadmins also identified
as USENIX Security attendees and/or those
working in areas related to security, but this
does not correlate with the profiles of those
who have registered for USENIX Security,
meaning that the two items should be
mentioned distinctly. How does this overlap
affect what is happening in industry and
academia? Can USENIX facilitate produc-

tive collaboration in this area? What does
this mean for our conference content?

We are asking some more questions of the
data, but we also want to ask you: how do
you define the professional community
you are a part of? Do you consider your-
self part of communities that your work
supports? How important is engaging with
that community, and how do you go about
that engagement? How do you decide which
conferences to attend? Please send me your
thoughts: liz@usenix.org.

Food for Thought
Of course, one of the potential (and poten-
tially fun) outcomes of doing research is
that you wind up with more questions than
answers. Many of the thoughtful responses
provided throughout the survey have
prompted other questions on the following
topics.

Volunteering
The majority of my professional work for the
past decade has been alongside committed
and talented volunteers. When I joined the
USENIX team, I was immediately im-
pressed by the corps of volunteers involved
in the organization whose subject matter
expertise and leadership is a significant
part of our success.

Conferences are a big part of who USENIX
is and what we do. Many of you said you
would be interested in helping at confer-
ences, and I find myself wondering what
new roles volunteers could fill that would
enhance attendees’ experiences—especially
first-time attendees—and create a more
fulfilling and valuable conference experi-
ence. For example, a conference I recently
participated in as an attendee asked local
attendees to volunteer to organize small
dinners at nearby restaurants. It was an
opportunity for new attendees to see a bit
of the city and easily meet people in what
might have otherwise been an overwhelm-
ing environment. Think back to your first
time attending a particular conference: did
you participate in an event like this? How
did it help your overall event experience?
If this wasn’t an opportunity, did you wish

Enigma 2019 Program Co-Chair Franzi Roesner,
Enigma Steering Committee member Parisa
Tabriz, and USENIX Executive Director Casey
Henderson enjoy one of the evening receptions in
Burlingame.

Max Smeets of Stanford University delivers his
Enigma 2019 talk, “Countering Adversarial Cyber
Campaigns.”

Nicholas Weaver of the International Computer
Science Institute (ICSI) and University of Cali-
fornia, Berkeley delivers his Enigma 2019 talk,
“Cryptocurrency: Burn It with Fire.”

Enigma 2019 Student and Diversity Grant
 Recipients

64  S P R I N G 20 19 VO L . 4 4 , N O. 1 www.usenix.org

NOTES

there was something like this to help you
break the ice and make connections? Would
you like to give back to our current confer-
ence participants and provide a meaningful
experience? Again, I would love to hear from
you with your thoughts on these questions,
and encourage you to reach out to me via
email, find me at a conference and share
your feedback, or include your comments on
a post-conference survey.

For this particular idea of attendee dinners
to come to fruition, we would need a number
of things to fall into place—including will-
ing volunteers. While that particular idea
is germinating, I’d ask you to consider what
other ideas you have for volunteer-driven
activities on-site at conferences that would
improve the conference experience, and that
you would be willing to lead or participate
in. Make sure to tell me about them by send-
ing me an email at liz@usenix.org.

Building My Reading List
If you send me your ideas related to confer-
ences, I would love to hear about books,
blogs, podcasts, e-newsletters, and other
 resources that I should know about, too!
Many of you mentioned Wired magazine
in your survey responses as one of the pub-
lications you frequently read. I’ve combed
through the back issues of Wired, but I’m
ready for more in the new year to help me
better understand the work that you do.
My goal is twofold: gain more insight into
your work so that USENIX can serve you
better, but also understand the relevance of
your work to the general public, which will
inform my conversations when advocating
for USENIX outside of your community.

In the interest of fair exchange, if you send
me your resource recommendations, I’ll
leverage my English degree and experience
serving librarians and will send you some
book recommendations sure to keep you
entertained on flights to USENIX confer-
ences. You might also check out the book
reviews section of ;login: for excellent sug-
gestions, too!

How Are We Doing?
If you’ve read any of my previous USENIX
Notes entries, you may have noticed my
genuine enthusiasm for USENIX’s work,
and my belief that we’re doing some really
great work, both in terms of the content and
conference experience we provide.

Respondents to our survey question about
how we’re doing on fulfillment of our mis-
sion tend to agree with my assessment: on a
scale of 1 to 4, from (1) needs significant im-
provement to (4) amazing work, we earned
the following weighted averages for each
area of our mission:

◆◆ Foster technical excellence and
 innovation: 3.3

◆◆ Support and disseminate research with
a practical bias: 3.3

◆◆ Provide a neutral forum for discussion
of technical issues: 3.2

◆◆ Encourage computing outreach into the
community at large: 3

This is a great starting point, but there is
still room for improvement: our perfor-
mance, our ability to meet your needs, our
communication with you about what we’re
up to. It gives us a measuring stick as we
consider where to put our resources and
creative energy in the coming months.

Several open-ended comments from re-
spondents have me thinking beyond these
results: many spoke highly of what USENIX
has to offer and the value we deliver. These
same respondents also wondered why more
people aren’t aware of USENIX. The idea of
USENIX as a “best kept secret in advanced
computing systems” does have some allure,
but we’ll be a much greater force for good if
more people know about our work and get
involved. How can we accomplish this? How
can you help?

My inbox is always open: liz@usenix.org.

Bob Lord presents his Enigma 2019 talk, “Mr.
Lord Goes to Washington, or Applying Security
outside the Tech World.”

Daniela Seabra Oliveira delivers her Enigma 2019
talk, “Why Even Experienced and Highly Intel-
ligent Developers Write Vulnerable Code and
What We Should Do about It.”

Two conferences’ worth of Enigma leadership:
Franzi Roesner, Ben Adida, and Daniela Seabra
Oliveira.

SREcon is a gathering of engineers who care deeply about site reliability, systems engineering, and
working with complex distributed systems at scale. SREcon challenges both those new to the profes-
sion as well as those who have been involved in SRE or related endeavors for years. The conference
culture is based upon respectful collaboration amongst all participants in the community through
critical thought, deep technical insights, continuous improvement, and innovation.

SAVE THE DATES!

JUNE 12–14, 2019 • SINGAPORE
www.usenix.org/srecon19asia

OCTOBER 2–4, 2019 • DUBLIN, IRELAND
www.usenix.org/srecon19europe

MARCH 25–27, 2019 • BROOKLYN, NY, USA
www.usenix.org/srecon19americas

Follow us at @SREcon

2019 USENIX Annual
Technical Conference
JULY 10–12, 2019 • Renton, WA, USA

USENIX ATC ’19 will bring together leading systems researchers for cutting-edge
systems research and the opportunity to gain insight into a wealth of must-
know topics.

Program Co-Chairs:
Dahlia Malkhi, VMware Research, and Dan Tsafrir, Technion—Israel Institute of
Technology & VMware Research

HotStorage ’19: 11th USENIX
Workshop on Hot Topics in
Storage and File Systems
July 8–9, 2019
www.usenix.org/hotstorage19

HotCloud ’19: 11th USENIX
Workshop on Hot Topics in
Cloud Computing
July 8, 2019
www.usenix.org/hotcloud19

HotEdge ’19: 2nd USENIX
Workshop on Hot Topics
in Edge Computing
July 9, 2019
www.usenix.org/hotedge19

ATC ’19
USENIX

www.usenix.org/atc19

Save the Date!

Co-located with USENIX ATC ’19

Registration will open in May 2019.

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

	Musings
	The Benefits and Costs of Writing a
POSIX Kernel in a High-Level Language
	Pocket: Elastic Ephemeral Storage for Serverless Analytics
	Noria: A New Take on Fast Web Application Backends
	Achieving Reliability with Boring Technology
	Anticipating and Dealing with Operational Debt
	How to Reinvent the Bicycle
	From Data Science to Production ML: Introducing USENIX OpML
	Introducing USENIX OpML

	Python
	Practical Perl Tools: So Long and Thanks for All the Fish
	Executing Other Programs in Go
	iVoyeur: Flow 3
	For Good Measure: Patent Activity as a Measure of Cybersecurity Innovation
	/dev/random: Ambush Computing
	Book Reviews
	USENIX Notes

