
;login:
S P R I N G 2 0 1 7 V O L . 4 2 , N O . 1

Columns
New Python 3.6 Features
David Beazley

Creating, then Graphing, a DB of Modify Times
David N. Blank-Edelman

Cybersecurity Workload Trends
Dan Geer and Eric Jardine

When Not to Be Truthful
Robert G. Ferrell

& The Linux Kernel Self-Protection
Project
Kees Cook

& Interviews with Jeff Mogul and
Amit Levy
Rik Farrow

& How to Write Secure Parsers
Sergey Bratus, Lars Hermerschmidt, Sven M.
Hallberg, Michael E. Locasto, Falcon D. Momot,
Meredith L. Patterson, and Anna Shubina

& Warm Up Your JVMs
 David Lion, Adrian Chiu, Hailong Sun,
Xin Zhuang, Nikola Grcevski, and Ding Yuan

U P C O M I N G E V E N T S

SREcon17 Americas
March 13–14, 2017, San Francisco, CA, USA
www.usenix.org/srecon17americas

NSDI ’17: 14th USENIX Symposium on
Networked Systems Design and
Implementation

Sponsored by USENIX in cooperation with ACM SIGCOMM
and ACM SIGOPS
March 27–29, 2017, Boston, MA, USA
www.usenix.org/nsdi17

SREcon17 Asia/Australia
May 22–24, 2017, Singapore
Submissions due March 6, 2017
www.usenix.org/srecon17asia

USENIX ATC ’17: 2017 USENIX Annual Technical
Conference

July 12–14, 2017, Santa Clara, CA, USA
www.usenix.org/atc17

Co-located with USENIX ATC ’17
SOUPS 2017: Thirteenth Symposium on Usable
Privacy and Security
July 12–14, 2017
www.usenix.org/soups2017

HotCloud ’17: 9th USENIX Workshop
on Hot Topics in Cloud Computing
July 10–11, 2017
Submissions due March 14, 2017
www.usenix.org/hotcloud17

HotStorage ’17: 9th USENIX Workshop
on Hot Topics in Storage and File Systems
July 10–11, 2017
Submissions due March 16, 2017
www.usenix.org/hotstorage17

USENIX Security ’17: 26th USENIX Security
Symposium

August 16–18, 2017, Vancouver, BC, Canada
www.usenix.org/sec17

Co-located with USENIX Security ’17
WOOT ’17: 11th USENIX Workshop on Offensive
Technologies
August 14–15, 2017
Submissions due May 31, 2017
www.usenix.org/woot17

CSET ’17: 10th USENIX Workshop on Cyber
Security Experimentation and Test
August 14, 2017
Submissions due May 2, 2017
www.usenix.org/cset17

FOCI ’17: 7th USENIX Workshop on Free and Open
Communications on the Internet
August 14, 2017
www.usenix.org/foci17

ASE ’17: 2017 USENIX Workshop on Advances
in Security Education
August 16, 2017
Submissions due May 9, 2017
www.usenix.org/ase17

HotSec ’17: 2017 USENIX Summit on Hot Topics
in Security
August 15, 2017
www.usenix.org/hotsec17

SREcon17 Europe/Middle East/Africa
August 30–September 1, 2017, Dublin, Ireland
Submissions due April 12, 2017
www.usenix.org/srecon17europe

LISA17
October 29–November 3, 2017, San Francisco, CA
Submissions due April 24, 2017
www.usenix.org/lisa17

FAST ’18: 16th USENIX Conference on File and
Storage Technologies

February 12–15, 2018, Oakland, CA

Do you know about the
USENIX open access policy?

USENIX is the first computing association to offer free and
open access to all of our conferences proceedings and videos.
We stand by our mission to foster excellence and innovation
while supporting research with a practical bias. Your member-
ship fees play a major role in making this endeavor successful.

Please help us support open access. Renew your USENIX
membership and ask your colleagues to join or renew today!

www.usenix.org/membership

www.usenix.org/facebook

twitter.com/usenix

www.usenix.org/youtube

www.usenix.org/linkedin

www.usenix.org/gplus

E D I T O R
Rik Farrow
rik@usenix.org

M A N A G I N G E D I T O R
Michele Nelson
michele@usenix.org

C O P Y E D I T O R S
Steve Gilmartin
Amber Ankerholz

P R O D U C T I O N
Arnold Gatilao
Jasmine Murcia

T Y P E S E T T E R
Star Type
startype@comcast.net

U S E N I X A S S O C I AT I O N
2560 Ninth Street, Suite 215
Berkeley, California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

www.usenix.org

;login: is the official magazine of the USENIX
Association. ;login: (ISSN 1044-6397)
is published quarterly by the USENIX
Association, 2560 Ninth Street, Suite 215,
 Berkeley, CA 94710.

$90 of each member’s annual dues is for
a subscription to ;login:. Subscriptions for
non members are $90 per year. Periodicals
postage paid at Berkeley, CA, and additional
mailing offices.

POSTMASTER: Send address changes to
;login:, USENIX Association, 2560 Ninth Street,
Suite 215, Berkeley, CA 94710.

©2017 USENIX Association
USENIX is a registered trademark of the
USENIX Association. Many of the designa-
tions used by manufacturers and sellers
to distinguish their products are claimed
as trademarks. USENIX acknowledges all
trademarks herein. Where those desig-
nations appear in this publication and
USENIX is aware of a trademark claim,
the designations have been printed in caps
or initial caps.

C O V E R I L L U S T R AT I O N
Abstract Green Sparkles Background was
created by freevector.com and is distributed
under the Creative Commons Attribution 4.0
license.

S P R I N G 2 0 1 7 V O L . 4 2 , N O . 1

E D I T O R I A L
2 Musings Rik Farrow

O P E R AT I N G S Y S T E M S
4 Operating Systems: Three Easy Pieces Remzi H. Arpaci-Dusseau

8 Teaching Operating Systems with FreeBSD
through Tracing, Analysis, and Experimentation
George V. Neville-Neil and Robert N. M. Watson

14 Linux Kernel Self-Protection Kees Cook

18 Interview with Jeff Mogul Rik Farrow

23 Interview with Amit Levy Rik Farrow

F I L E S Y S T E M S
26 MarFS, a Near-POSIX Interface to Cloud Objects

Jeff Inman, Will Vining, Garrett Ransom, and Gary Grider

P R O G R A M M I N G
32 Curing the Vulnerable Parser: Design Patterns for Secure

Input Handling
Sergey Bratus, Lars Hermerschmidt, Sven M. Hallberg, Michael E. Locasto,
Falcon D. Momot, Meredith L. Patterson, and Anna Shubina

S Y S A D M I N
40 Postmortem Action Items: Plan the Work and Work the Plan

John Lunney, Sue Lueder, and Betsy Beyer

46 Don’t Get Caught in the Cold, Warm Up Your JVM: Understand
and Eliminate JVM Warm-up Overhead in Data-Parallel Systems
David Lion, Adrian Chiu, Hailong Sun, Xin Zhuang, Nikola Grcevski,
and Ding Yuan

C O L U M N S
52 Gleeful Incompatibility David Beazley

57 Practical Perl Tools: Off the Charts David N. Blank-Edelman

63 Cybersecurity Workload Trends Dan Geer and Eric Jardine

68 /dev/random Robert G. Ferrell

B O O K S
70 Book Reviews Mark Lamourine and Rik Farrow

U S E N I X N O T E S
73 Notice of Annual Meeting

73 USENIX Awards

2  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

EDITORIALMusings
R I K F A R R O W

Rik is the editor of ;login:.
rik@usenix.org I was deeply disappointed by the operating systems class I took in 1978.

An advanced CS class, the focus was on IBM mainframe architecture,
and that appeared grossly inappropriate to me. By that time, the Apple II

and the Altair 8080 had been out for a year, and it was obvious to me that the
computers most people used would be changing.
The lab for the class used two Digital Equipment Corporation PDP 11/45s, and students were
supposed to build an operating system, starting with the keyboard driver, proceeding to a file
system, then the ability to load and execute code, all on a mini-computer with a very different
architecture than the mainframe. Oh, and the mainframe didn’t have a file system, and used
Job Control Language for running programs.

In despair, I asked the teaching assistant if there wasn’t something more appropriate to use
as a way of understanding operating systems, and he said there wasn’t. Keep in mind that
AT&T had been licensing UNIX to universities for several years by then, a textbook had been
written about 6th Edition UNIX, and that UNIX ran on DEC mini-computers.

I never finished that class. Competing for time on the lab systems with 200 other students,
when all you could get was one-hour time slots, was too frustrating. I aced the other CS
course I took that year and got a job working for a small embedded systems company, where I
began learning about operating systems.

Computers have gotten a lot more complicated than they were in the seventies. I built my own
computer, from a kit, in 1979. A couple of years later, I wrote my first C program, one that
provided all of the file system features of CP/M [1], and the device driver, in two pages of code.
With only 56 Kb of memory, having an intelligent floppy disk controller, one quite similar to
the one in the DEC mini-computer, made the task simpler.

Today, Linux has more than 120 file systems, designed for different use cases. Device drivers
have gotten more complex, and programmers now have gigabytes of memory to work with. Those
choices are there because certain file systems perform much better for particular workloads.

Even if you are not a programmer, you still need to understand some operating systems
basics. Caskey Dickson, co-chair of LISA17, has been teaching such a class at LISA, and there
are several good books out about operating systems.

In this issue, we are featuring two freely available sources for learning about operating sys-
tems. The first is a three-section online book, with exercises and material for helping instruc-
tors, by Remzi Arpaci-Dusseau and Andrea Arpaci-Dusseau. Their material most closely
follows what I’ve seen in OS textbooks, but their tone is conversational and much less daunting.

The second example comes from classes taught using FreeBSD. George V. Neville-Neil and
Robert N. M. Watson developed this material for three styles of classes: those taught as
college courses, one as a tutorial for BSD conference attendees, and a third as online videos.
Their classes have more pragmatic focuses, with two versions actually using BeagleBone
Black computers running FreeBSD and used for probing the internals of running systems.
Their materials are open source under a BSD-style license.

Either of these would have been much better than using a textbook and having class lec-
tures about a mainframe system that was over 10 years old in 1978 and soon to be usurped.

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 3

EDITORIAL
Musings

While there were certainly good jobs to be had as systems
programmers, as almost anything you did on these computers
required writing assembly language patches, there really weren’t
that many mainframes. Especially when you compare that to the
revolution that was on the horizon.

The Lineup
I’ve already introduced the first two articles, resources for learn-
ing about operating systems, so I’ll move on to the rest.

Kees Cook has written about security improvements to the Linux
kernel. Kees works on the Kernel Self-Protection Project [2], and
he describes a lot of the work that has already been done to make
Linux kernels more difficult to exploit.

I have two interviews for this issue, both systems-related. Jeff
Mogul has done many things in his career, and in this longer
than usual interview, I begin by focusing on what Jeff worked
on when the Internet, and later the Web, was young. We also
discuss research labs and why we have CS proceedings instead
of journals.

I talked with Amit Levy about TockOS. TockOS will replace
 TinyOS, both operating systems for very resource-limited
embedded devices. Amit’s interest in TockOS includes building a
secure system, something the world of IoT desperately needs.

I discovered MarFS from a talk given at SNIA’s SDC conference.
Jeff Inman et al. explain how they built a nearly POSIX front
end for a massively parallel, object file system back end. While
their focus is on HPC, MarFS and the ideas illustrated by their
system can certainly be applied to other large-scale and high
performance storage systems. And the software they developed
is available online.

Sergey Bratus and crew have written about how to parse input
securely. If you’ve ever written any code, including shell scripts,
you likely have noticed how much time you spend on parsing
input. Yet mistakes in parsing input, that often mean accepting
invalid input, lead to the majority of exploits we see in both pro-
grams and operating systems. The authors use their published
work, where they replace the buggy code for an industrial control
system, as examples as they explain how to do this correctly, as
well as how coders usually do this poorly.

In the area of system administration and SRE, Lunney et al.
cover the proper handling of postmortem action items. While
postmortems are now recognized as important methods for
improving the quality and stability of systems, Lunney et al.
explain how they take advantage of the output of postmortems
to drive corrective work.

The final article comes from research published at OSDI. Lion
et al. were examining the performance of popular distributed
systems, like Hadoop and Spark, looking at overhead. They dis-
covered that a large proportion of the time spent running these
applications was wasted on loading and interpreting Java classes

every time another request was made. They produced HotTub,
a version of the JVM, that caches warmed-up JVMs for reuse,
improving the performance of HDFS by 21% and Spark by 33%.

David Beazley has written about what’s new in Python 3.6. Hint:
it’s cool and not at all backwards-compatible with Python 2.

David N. Blank-Edelman pulls off a tour de force by creating
a database from the output of ls -lR, then creates a Web page
and Perl scripts that work with Google Charts, finally creating
a spiffy chart showing the number of files created each month
over many years.

Kelsey Hightower and Dave Josephsen decided not to write for
this issue.

Dan Geer and Eric Jardine examine cybersecurity workload
trends, using the NIST vulnerability workload and data provid-
ing estimates of the number of people working on remediating
vulnerabilities to produce some trend lines.

Robert G. Ferrell has written about being totally truthful, and
creates an example where withholding information has both
good and bad effects.

Mark Lamourine has written three book reviews. The first two
cover books about Angular 2, a framework for writing Web client
applications. The third review is on the third edition of The Prac-
tice of System and Network Administration. I’ve reviewed bunnie
Huang’s book called Hacking Hardware.

During LISA16, someone asked me how I’d become so interested
in security. I replied that security required that I understand
programming, networking, system administration, file systems,
and operating systems, and that I loved having one field cut
across so many other areas of interest. Exploiting computers
is definitely a form of hacking because the successful exploit
requires seeing the system in a manner that the designers of that
system didn’t anticipate. Defending systems also means going
“outside the box,” although I have to concede that the attackers
had, and still have, the upper hand.

While your work focus may not be security, understanding
as much as you can about the operating systems that provide
resources, and hopefully, security to your applications should
only make your work easier.

References
[1] CP/M: https://en.wikipedia.org/wiki/CP/M.

[2] Kernel Self-Protection Project: https://kernsec.org/wiki
/index.php/Kernel_Self_Protection_Project.

4  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

OPERATINGOperating Systems
Three Easy Pieces

R E M Z I H . A R P A C I - D U S S E A U

Remzi H. Arpaci-Dusseau is a
Full Professor in the Computer
Sciences Department at the
University of Wisconsin-
Madison. He co-leads a group

with his wife, Professor Andrea Arpaci-
Dusseau. They have graduated 19 PhD
students in their time at Wisconsin, won
nine Best Paper awards, and some of their
innovations now ship in commercial systems
and are used daily by millions of people. Remzi
has won the SACM Student Choice Professor
of the Year award four times, the Carolyn
Rosner “Excellent Educator” award, and the
UW-Madison Chancellor’s Distinguished
Teaching award. Chapters from a freely
available OS book he and Andrea co-wrote,
found at http://www.ostep.org, have been
downloaded millions of times in the past few
years. remzi@cs.wisc.edu

Back in 2007, a student (call him Student #1) approached me and asked
a simple question: “Do I have to buy the book for this course, or can I
get by without it?” The course was undergraduate operating systems

(called “CS 537” at the University of Wisconsin-Madison). In teaching the
course, I mostly relied upon notes developed by myself and my colleague
Andrea Arpaci-Dusseau, and I still thought it was useful for students to have
something to read outside of class. So I pushed back a little. “Yes, you should.
It’s good for you to have another source for the material. Why don’t you want to
buy it?” The student looked at me sheepishly and said, “Well, I, um, can’t really
afford it.” The book we were using cost over $100, as do many textbooks today.

It was just a small moment, but it led to a big change in how we teach the OS course here at
Wisconsin. Although I didn’t know it at the time, that simple, honest, and slightly heartbreak-
ing comment led to the creation of a free online operating systems textbook called Operat-
ing Systems: Three Easy Pieces (sometimes called OSTEP and available at http://ostep.org).
Chapters of the book have been downloaded millions of times over the past few years, and
hundreds of teachers at various colleges and universities have told me they are using the book
in their classes.

In the rest of this article, I’ll first provide a little more history on how the book developed,
discuss how the book is organized, and make the more general case for free online textbooks;
indeed, I have a strong belief that all textbooks should be made freely available online. I’ll also
discuss some keys to success with such an endeavor and present my thoughts on how publish-
ers might evolve in such a free-textbook world.

History
After the encounter with Student #1, I made a snap decision for the course. “No one is
required to buy a book for this course. Just come to class, take notes, and that will be enough.
Everything you need to know we will cover in class,” I declared. The students smiled. For at
least one day, I was their $100 hero!

But then along came Student #2 and another encounter I will never forget. After a few classes
in this first “no book” semester, this student said, “Professor, I sometimes miss class. For
example, tomorrow, I have an interview that I couldn’t move. And the other day, I overslept—
the class is a bit early in the day for me. So I don’t know what to do for those days that I miss
and have no notes. And I don’t really know anyone else to borrow them from.” Now I was a
little surprised at one of these comments—the class started at 1:00 p.m. that semester. Under-
grads! But the general point hit home: I needed to go beyond the “take notes” approach and
provide more material for them.

And thus I hit upon a simple idea. I usually leave the hour or so after class open to wind down.
Why not put this hour to good use in service of the class? So after each class, if I had the
energy, I would close my door and just write down, in simple text form, what I had just lec-
tured upon in class. Just after class is a great time to do this work: the ideas are fresh in your
head and it is relatively easy to write them down.

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 5

SYSTEMS
I then posted these crude “text-based lecture captures” to the class
Web site. If you’re interested, you can look at them here: http://
pages.cs.wisc.edu/~remzi/Classes/537/Fall2008/notes.html.

Honestly, if we’re going to remain friends, you probably shouldn’t
look these over—they’re a little embarrassing. Just plain text,
no real figures (just some ASCII art), and really very primitive
writings.

Then a funny third thing happened: students started to give me
(unsolicited) feedback on the writing. And, perhaps a little sur-
prisingly, they were quite positive! In the world of academics, you
get a lot of feedback on the work you do, and much of it is nega-
tive—those of you who have ever submitted a paper to a confer-
ence understand what I am talking about. This positive feedback
was a bit like a drug; I wanted more! And so I started to plot how
to take these rough notes and make them into something better.
And that’s what I have tried to do each semester I taught the
class since that time.

Interestingly enough, many upgrades to the book were driven by
student feedback. One student wished there were some better
diagrams and included detailed notes to me on where to place
them on each page, so I spent some time converting ASCII
figures into actual EPS graphics. Another said that the raw text
was a little hard on the eyes, so I started to typeset each chapter
in LaTeX. Some students asked how they could obtain a print
copy, which led me to self-publish the book on Lulu.com; we have
sold thousands of print copies of a book that is available entirely
for free online.

Finally, one student said he would buy a copy if I made a decent
cover (the cover at that time: pure black, just text). I am a sucker
for a sale, so I asked him, “What would you put on it?” He sug-
gested something cool, like a dinosaur. I had to tell him that the
prehistoric beast idea was already taken, but it gave me an idea,
and soon enough I had a comet flying across the cover. We know
what comets can do to dinosaurs, right?

As a result of all of this effort, we are nearing the completion of
what we call a “version 1.0.” The results can be seen at our Web
site, http://ostep.org.

Organizing a Book
One major question we had in putting a book together was how to
organize the material. Of course, you could just have 10–12 chap-
ters and follow the organization of most other OS books, but that

seemed less than interesting. So we started to think about differ-
ent ways of organizing the material into a few major conceptual
themes, and then divide these into short chapters that roughly
matched a lecture or half-lecture on a particular topic.

While teaching from different textbooks, we noticed that most
books introduced threads and processes early on, and thus soon
had to present all thread-related topics, including locks, condi-
tion variables, race conditions, and so forth—all very detailed
and hard material, and all very early in the semester. However,
when we taught the material in this manner, it didn’t quite seem
to work; students didn’t even yet understand what an address
space was, and we were telling them about the differences
between processes (each of which has its own address space) and
threads (which share one address space). So we decided to try
something different.

At this point, the idea arose to organize the course into three
major conceptual pieces: virtualization (which covers CPU
and memory virtualization), concurrency (which introduces
threads, locks, condition variables, and related topics), and
finally persistence (which covers storage devices and file sys-
tems). Within each section, we have a lot of short chapters, each
on one subtopic (e.g., introduction to CPU scheduling, TLBs, or
crash consistency in file systems). While this is a little different
from other books, we’ve found that students make more sense
of the material in this order. And, in this manner, the title of the
book became obvious.

The other advantage of this organization is that it places storage
systems (our research specialty) on equal footing with the other
parts of the material. Some other books relegate file systems and
storage to the very last chapters and thus (in our opinion) spend
too much time on virtualization and concurrency at the cost of
understanding this important subsystem. After all, what is more
important than remembering information for the long term?

One other difference within our approach is that we tend to
emphasize mechanism (and the nuts and bolts of how things
work) more than policy. This decision stems from a personal
belief that learning new policies is relatively easy, but under-
standing the machinery of systems is hard; class should thus
emphasize the hard stuff and leave the easier things for students
to learn later.

6  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

OPERATING SYSTEMS
Operating Systems: Three Easy Pieces

Why Textbooks Should Be Freely Available Online
There are many reasons textbooks should be made freely avail-
able online. Here is a list of some of the big ones:

◆◆ It’s the best way to share information with the most
people. Authors spend so much time creating these books;
why trap the information inside the standard publishing wall?
A casual reader is not going to drop $150 for a book with a few
things inside it they are interested in. Making chapters freely
available for download allows for casual usage among a much
broader group of people.

◆◆ It enables new usage models. No professor would (likely)
dare make a student buy four (expensive) books in order to use
a few chapters from each. When book chapters are available
online for free, this type of new model is readily available. A more
competitive market for specialized sub-books could also arise.

◆◆ It avoids needless revisions. Authors are currently forced to
do a number of silly things because of the way textbook sales
work. If the author does not upgrade the book, students happily
purchase used copies for very little cost; the publishers, unsur-
prisingly, are not happy with this, and thus essentially force
authors to keep making revision after revision. With no such
business model in place, material will get upgraded as needed.

◆◆ It enables chance discovery. Students find resources today
by using search engine tools to browse the Internet or by poking
around Wikipedia pages. Having book chapters available for
free on the Internet makes chance discovery more likely and
possible.

◆◆ It’s free. Making a book free makes it accessible to anyone,
regardless of their financial circumstances (assuming they
have access to the Internet). If we wish to teach the world, we
should make as much information available as inexpensively as
possible to as many people as possible.

Keys to Success
In doing this work, I’ve tried to think about what was essential
to realizing some level of success with writing one’s own book.
Here I list some of these tips for aspiring authors:

◆◆ Develop a class first. A class (for me) is just 30 lectures,
telling one big story (e.g., what is an operating system?) and a
number of smaller stories (e.g., what are virtualization, concur-
rency, persistence?). After being here for some time, Andrea
and I had taught the course repeatedly and refined the message
each time we rotated through. By the end of this development,
we had a pretty good idea of what we wanted to say and how
we wanted to say it. Once you have gone through a class a few
times, writing it all down is much easier.

◆◆ Improve something each time you teach. I found the task of
writing a book daunting—it’s a lot of work! But writing a little
now and then didn’t sound too bad, and I enjoyed it. They say

that the perfect is the enemy of the good, so I just embrace the
fact that although the book will never be perfect, I can make it a
little better each time. This also gives me a new focus each time
I teach the class, which actually makes teaching the same class
more interesting than usual.

◆◆ Make each chapter a separate downloadable unit. There
are many reasons to do so and three particularly important
ones. First, students won’t get overwhelmed by a massive
800-page beast; each chapter, in contrast, is usually short (say
10–20 pages) and thus much less daunting and easier to digest.
Second, short chapters enable better discovery via search
engine and other related means. A person might search for
“semaphores,” and it is much easier to then find the exact chap-
ter instead of searching through a book on operating systems;
similarly, a Wikipedia page on multi-level page tables can point
directly to the right chapter instead of vaguely to an entire
book. Third, parts of the book can be used instead of the whole;
a professor at another institution can pick and choose chapters
from different sources, which would be much harder to do if the
entire book is the only unit of usage.

◆◆ Create homework assignments that are reusable. Book
chapters need homework questions to enable students to
test their own knowledge. The thought of writing some fixed
questions, and then having to update questions regularly, was
a non-starter. As a result, we started using an idea we saw in
Hennessy and Patterson’s Computer Architecture: A Quantita-
tive Approach, which was to create computer programs that
can generate an infinite number of variants to a certain class
of question. In our case, these programs are essentially little
simulators that mimic some aspect of an OS. For example, a
virtual memory simulator might generate a particular con-
figuration (physical memory of size X, a Y-bit virtual address
space) and then ask you to translate certain addresses from
virtual to physical. By adding more simulators over time, you
give students a richer, more interactive way to quiz themselves
about the material.

◆◆ Be responsive to feedback. We actively encourage feedback
from anyone who reads the book and credit them for any fix or
update that arises from their suggestions. Many students have
thus found typos for us, which we have fixed; many professors
and instructors have suggested more substantial changes,
which we have implemented as well. While we can’t accommo-
date every request, we read each one carefully and then decide
what to do. In all cases, we get back to the suggester as quickly
as we can.

◆◆ Realize you don’t have to cover everything. One last point
about making a book: it doesn’t have to be a bible. Use it to spark
a student’s interest and cover most important topics, especially
topics you care about. It’s OK if not everything is covered in a
textbook; rather, what you are giving students is a way to under-

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 7

OPERATING SYSTEMS
Operating Systems: Three Easy Pieces

stand the major pieces and the ability (hopefully) to be able to
fill details in themselves at a later time.

Of course, none of these suggestions are useful without a fair
amount of hard work, for which there is little substitute. But, if
done right, the work is rewarding and spread out, and you get lots
of thanks from people around the world.

Aside: Why Free Doesn’t Mean Open Source
People often say to me, “That’s great you’re doing a free book.
Why isn’t it on GitHub so I can hack on it, too?” My reaction to
that is usually, “Uh, no thanks.” Why so unfriendly, you ask?

The answer: we strongly believe that a book should have a single
voice. This voice communicates one coherent body of knowledge
to the reader. If each chapter were written by different people,
this voice would likely be lost and the experience lessened.
Whatever the model of collaboration, we believe that the impor-
tant thing is that the author or group of authors work hard to
maintain that single voice.

What This Means for Publishers
Probably the biggest change that will occur, should all textbooks
become free, is to the world of publishers, who will find that their
services (in the current form) are not much needed. However,
they could save themselves by doing a number of things.

First, publishers should split out their services and offer parts of
said services to authors. For example, publishers could help with
marketing and advertising of free textbooks. In addition, pub-
lishers could offer editorial services as a separate service. Even
printing could be split off and offered (although they are behind
here, thanks to Lulu.com and other similar services). Instead of
going with one publisher for all of these things, an author could
pick and choose what he or she needs.

Second, publishers should figure out more ways to publish print
copies at low cost. I’ve spoken with publishers who said they
want to do low-cost books, and then turn around and say they
can’t do a book for less than $50 or $60. In contrast, at Lulu.com,
you can print single copies of a book on demand for $20 to $30.
Publishers need to get their costs down and become competitive
in offering low-cost print books. Students still like print, and by
selling both digital and print at low cost and high volume, pub-
lishers could still make money. There seems to be some recalci-
trance in the industry that prevents this.

Conclusion
I strongly believe that textbooks should be free. OSTEP is just
one such book, and is and will always be freely available online
and at a low cost in print forms. But OSTEP is just one book.
There needs to be more! If you are a teacher of a class, think
about what it would take to convert your own personal lecture
notes into something more widely shared. Soon, you might have
a textbook on your hands, and the free textbook revolution can
truly begin!

8  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

OPERATING SYSTEMS

Teaching Operating Systems with FreeBSD
through Tracing, Analysis, and Experimentation
G E O R G E V . N E V I L L E - N E I L A N D R O B E R T N . M . W A T S O N

Many people who study computer science at universities encounter
their first truly large system when studying operating systems.
Until their first OS course, their projects are small, self-contained,

and often written by only one person or a team of three or four. In this article,
we suggest an approach to studying operating systems we have been using with
graduate students and practitioners that involves using a small ARMv7 board
and tracing. All of our materials are available online, with a BSD-like license.

Since the first courses on operating systems were begun back in the 1970s, there have been
three ways in which such classes have been taught. At the undergraduate level, there is the
“trial by fire,” in which students extend or recreate classical elements and forms of OS design,
including kernels, processes, and file systems. In trial-by-fire courses the students are given
a very large system to work with, and they are expected to make small, but measurable,
changes to it. Handing someone a couple million lines of C and expecting them to get some-
thing out of changing a hundred lines of it seems counterintuitive at the least.

The second undergraduate style is the “toy system.” With a toy system the millions of lines
are reduced to some tens of thousands, which makes understanding the system as a whole
easier but severely constrains the types of problems that can be presented, and the lack of
fidelity, as compared to a real, fielded operating system, often means that students do not
learn a great deal about operating systems, or large systems in general. For graduate students,
studying operating systems is done through a research readings course, where students read,
present, discuss, and write about classic research where they are evaluated on a term project
and one or more exams.

For practitioners, those who have already left the university, or those who entered computer
science from other fields, there have been even fewer options. One of the few examples of a
course aimed at practicing software engineers is the series “FreeBSD Kernel Internals” by
Marshall Kirk McKusick, with whom both authors of this article worked on the most recent
edition of The Design and Implementation of the FreeBSD Operating System. In the “FreeBSD
Kernel Internals” courses, students are walked through the internals of the FreeBSD operat-
ing system with a generous amount of code reading and review, but without modifying the
system as part of the course.

For university courses at both the undergraduate and graduate level, we felt there had to be a
middle way where we could use a real-world artifact such as FreeBSD, which is deployed in
products around the world, while making sure the students didn’t get lost in the millions of
lines of code at their disposal.

Deep-Dive Experimentation
Starting in 2014, the authors undertook to build a pair of tightly coupled courses sharing
pedagogy and teaching material. One version is designed for graduate students and taught
by Robert N. M. Watson at the University of Cambridge. The other version is a practitioner
course taught at conferences in industrial settings by George Neville-Neil.

George V. Neville-Neil works
on networking and operating
system code for fun and profit.
He also teaches courses on
various subjects related to

programming. His areas of interest are code
spelunking, operating systems, networking,
and time protocols. He is the coauthor with
Marshall Kirk McKusick and Robert N. M.
Watson of The Design and Implementation of the
FreeBSD Operating System. For over 10 years he
has been the columnist better known as Kode
Vicious. He earned his bachelor’s degree in
computer science at Northeastern University
in Boston, Massachusetts, and is a member of
ACM, the USENIX Association, and IEEE. He is
an avid bicyclist and traveler and currently lives
in New York City. gnn@neville-neil.com

Dr. Robert N. M. Watson is
a University Senior Lecturer
(Associate Professor) in
systems, security, and
architecture at the University

of Cambridge Computer Laboratory; FreeBSD
developer and past core team member;
and member of the FreeBSD Foundation
Board of Directors. He leads a number of
cross-layer research projects spanning
computer architecture, compilers, program
analysis, program transformation, operating
systems, networking, and security. Recent
work includes the Capsicum security model,
MAC Framework used for sandboxing in
systems such as Junos and Apple iOS, CHERI
(CPU with protected memory segments),
and multithreading in the FreeBSD network
stack. He is a coauthor of The Design and
Implementation of the FreeBSD Operating System
(2nd edition). watson@freebsd.org

A version of this article originally appeared in
the FreeBSD Journal, April/May 2016 issue.

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 9

OPERATING SYSTEMS
Teaching Operating Systems with FreeBSD through Tracing, Analysis, and Experimentation

In the deep-dive course, students learn about and analyze
 specific CPU/OS/protocol behaviors using tracing via DTrace
(Figure 1) and the CPU performance counters. Using tracing to
teach mitigates the risk of OS kernel hacking in a short course,
while allowing the students to work on real-world systems rather
than toys. For graduate students, we target research skills and
not just OS design. The deep-dive course is only possible due to
development of integrated tracing and profiling tools, includ-
ing DTrace and Hardware Performance Monitoring Counter
(hwpmc) support present in FreeBSD.

The aims of the graduate course include teaching the method-
ology, skills, and knowledge required to understand and per-
form research on contemporary operating systems by teaching
systems-analysis methodology and practice, exploring real-
world systems artifacts, developing scientific writing skills, and
reading selected original systems research papers.

The course is structured into a series of modules. Cambridge
teaches using eight-week academic terms, providing limited
teaching time compared to US-style 12-to-14-week semesters.
However, students are expected to do substantial work outside
of the classroom, whether in the form of reading, writing, or lab
work. For the Cambridge course, we had six one-hour lectures in
which we covered theory, methodology, architecture, and prac-
tice, as well as five two-hour labs. The labs included 30 minutes
of extra teaching time in the form of short lectures on artifacts,
tools, and practical skills. The rest of the students’ time was
spent doing hands-on measurement and experimentation.

Readings were also assigned, as is common in graduate level
courses, and these included both selected portions of module
texts and historic and contemporary research papers. Students
produced a series of lab reports based on experiments done in
(and out) of labs. The lab reports are meant to refine scientific
writing style to make it suitable for systems research. One
practice run was marked, with detailed feedback given, but not
assessed, while the following two reports were assessed and
made up 50% of the final mark.

Three textbooks were used in the course: The Design and Imple-
mentation of the FreeBSD Operating System (2nd edition) as the
core operating systems textbook; The Art of Computer Systems
Performance Analysis: Techniques for Experimental Design,
Measurement, Simulation, and Modeling, which shows the stu-
dents how to measure and evaluate their lab work; and DTrace:
Dynamic Tracing in Oracle Solaris, Mac OS X and FreeBSD,
covering the use of the DTrace system.

Although many courses are now taught on virtual-machine tech-
nology, we felt it was important to give the students experience
with performance measurement. Instead of equipping a large
room of servers, we decided, instead, to teach with one of the new
and inexpensive embedded boards based around the ARM series
of processors. Initially, we hoped to use the Raspberry Pi as it is
popular, cheap, and designed at the same university at which the
course would first be taught. Unfortunately, the RPi available
at the time did not have proper performance counter support
in hardware due to a feature being left off the system-on-chip
design when it was originally produced.

malloc()

Kernel image

Function
Boundary
Tracing
provider

dtmalloc
provider

DTrace - probe context

dtrace_probe()

DIF
interpreter

(predicates,
actions)

Buffers

Per-script,
per-CPU

buffer pairs

User
dtrace

process

CPU ID FUNCTION:NAME
 0 30408 malloc:entry dtrace 608
 0 30408 malloc:entry dtrace 608
 3 30408 malloc:entry dtrace 120
 3 30408 malloc:entry dtrace 120
 3 30408 malloc:entry dtrace 324
 0 30408 malloc:entry intr 1232
 0 30408 malloc:entry csh 64
 0 30408 malloc:entry csh 3272
 2 30408 malloc:entry csh 80
 2 30408 malloc:entry csh 560

dtrace -n 'fbt::malloc:entry { trace(execname); trace(arg0); }'

dtrace -n 'dtmalloc::temp:malloc /execname=“csh”/ { trace(execname); trace(arg3); }'

CPU ID FUNCTION:NAME
 1 54297 temp:malloc csh 1024
 1 54297 temp:malloc csh 64

dtrace_ioctl()

(copyout())

Userland
dtrace

command

DTrace process DTrace output

copied
out

buffer

Figure 1: DTrace is a critical part of the course’s teaching approach—students trace kernels and applications to understand their performance behavior.
They also need to understand—at a high level—how DTrace works in order to reason about the “probe effect” on their measurements.

10  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

OPERATING SYSTEMS
Teaching Operating Systems with FreeBSD through Tracing, Analysis, and Experimentation

With the RPi out of the running, we chose the BeagleBone Black
(BBB), which is built around a 1 GHz, 32-bit ARM Cortex A-8, a
superscalar processor with MMU and L1/L2 caches. Each stu-
dent had one of these boards on which to do lab work. The BBB
has power, serial console, and network via USB. We provided
the software images on SD cards that formed the base of the
students’ lab work. The software images contain the FreeBSD
operating system, with DTrace and support for the on-board
CPU performance counters, and a set of custom microbench-
marks. The benchmarks are used in the labs and cover areas
such as POSIX I/O, POSIX IPC, and networking over TCP.

Eight Weeks, Three Sections
The eight weeks of the course are broken up into three major
sections. In weeks one and two, there is a broad introduction to
OS kernels and tracing. We want to give the students a feel for
the system they are working on and the tools they’ll be work-
ing with. During these first two weeks, students are assigned
their first lab, in which they are expected to look at POSIX I/O
performance. I/O performance is measured using a synthetic
benchmark we provide in which students look at file block
I/O using a constant total size with a variable buffer size. The
conventional view is that increasing the buffer size will result
in fewer system calls and improved overall performance, but
that is not what the students will find. As buffer sizes grow,
the working set first overflows the last-level cache, preventing
further performance growth, and later exceeds the superpage

size, measurably decreasing performance as page faults require
additional memory zeroing.

The second section, covering weeks three through five, is dedi-
cated to the process model (Figure 2). Because the process model
forms the basis of almost all modern programming systems, it
is a core component of what we want the students to be able to
understand and investigate during the course and afterwards
in their own research. While learning about the process model,
the students are also exposed to their first microarchitectural
measurement lab in which they show the implications of IPC on
L1 and L2 caching. The microarchitectural lab is the first one
that contributes to their final grade.

The last section of the course is given over to networking, spe-
cifically the Transport Control Protocol (TCP, Figure 3). During
weeks six through eight, the students are exposed to the TCP
state machine and also measure the effects of latency on band-
width in data transfers. We’ve moved to an explicit iPython/
Junyper Notebooks framework, hosted on the BBB, to drive
DTrace/PMC experimentation, and provide a consistent data
analysis and presentation framework. This allows the students
to be more productive in focusing on OS internals and analysis.

Challenges and Refinements
The graduate course has been taught twice at Cambridge, and
we have reached out to other universities to talk with them about
adopting the material we have produced. In teaching the course,

1980s 1990s

/bin/dd

heap arena2

libc

/bin/dd /bin/dd

libc

rtldrtld

heap arena1

2000s

/bin/dd

libc

rtld

stack

heap

stack

heap heap

stack1

stack1

stack1

stack1

Figure 2: Students learn not just about the abstract notion of a UNIX “process,” but also the evolution of the approach over the decades: dynamic linking,
multithreading, and contemporary memory allocators such as FreeBSD’s jemalloc.

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 11

OPERATING SYSTEMS
Teaching Operating Systems with FreeBSD through Tracing, Analysis, and Experimentation

we discovered many things that worked, as well as a few chal-
lenges to be overcome as the material is refined. We can confirm
that tracing is a great way to teach complex systems because we
were able to get comprehensive and solid lab reports/analysis
from the students, which was the overall goal of the course.
The students were able to use cache hit vs. system-call rates to
explain IPC performance. They produced TCP time-sequence
plots and graphical versions of the TCP state machine all from
trace output. Their lab reports had real explanations of interest-
ing artifacts, including probe effects, superpages, DUMMYNET
timer effects, and even bugs in DTrace. Our experiment with
using an embedded board platform worked quite well—we could
not have done most of these experiments on VMs. Overall, we
found that the labs were at the right level of difficulty, but that
too many experimental questions led to less focused reports— a
concern addressed in the second round of teaching.

On the technical side, we should have committed to one of R,
Python, or iPython Notebooks for use by the students in doing
their experimental evaluations and write-ups. Having a plethora
of choices meant that there were small problems in each, all of
which had to be solved and which slowed down the students’ prog-

ress. When teaching the course for the first time, there were several
platform bumps, including USB target issues, DTrace for ARMv7
bugs, and the four-argument limitation for DTrace on ARMv7.

Teaching Practitioners
Teaching practitioners differs from teaching university students
in several ways. First, we can assume more background, includ-
ing some knowledge of programming and experience with UNIX.
Second, practitioners often have real problems to solve, which
can lead these students to be more focused and more involved in
the course work. We can’t assume everything, of course, since
most of the students will not have been exposed to kernel inter-
nals or have a deep understanding of corner cases.

Our goals for the practitioner course are to familiarize people
with the tools they will use, including DTrace, and to give them
practical techniques for dealing with their problems. Along the
way we’ll educate them about how the OS works and dispel their
fears of ever understanding it. Contrary to popular belief, educa-
tion is meant to dispel the students’ fear of a topic so that they
can appreciate it more fully and learn it more deeply.

The practitioner’s course is currently two eight-hour days. The
platform is the student’s laptop or a virtual machine. First taught
at AsiaBSDCon 2015, the course was subsequently taught at
AsiaBSDCon 2016 and BSDCan 2016.

Five-Day, 40-Hour Course Hardware or
VM Platform Video Recordings
Like the graduate-level course, this course is broken down into
several sections and follows roughly the same narrative arc.
We start by introducing DTrace using several simple and yet
powerful “one liners.” A DTrace one liner is a single command
that yields an interesting result. This example one-liner displays
every name lookup on the system at runtime.

dtrace -n ’vfs:namei:lookup:entry \

 { printf(“%s”, stringof(arg1));}’

CPU ID FUNCTION:NAME

 2 27847 lookup:entry /bin/ls

 2 27847 lookup:entry /libexec/ld-elf.so.1

 2 27847 lookup:entry /etc

 2 27847 lookup:entry /etc/libmap.conf

 2 27847 lookup:entry /etc/libmap.conf

The major modules are similar to the university course and
cover locking, scheduler, files and the file system, and network-
ing. The material is broken up so that each one-hour lecture is
followed by a 30-minute lab in which students use the VMs on
their laptops to modify examples given during the lectures or
solve a directed problem. Unlike classes where we have access to
hardware, the students do not take any performance measure-
ments with hwpmc(4) since the results would be unreliable and
uninformative.

SYN

SYN / ACK
ACK

DATA / ACK
ACK

DATA / ACK

ACK

FIN / ACK
ACK

FIN / ACK
ACK

CLOSED
CLOSED

SYN SENT

ESTABLISHED

SYN RCVD

ESTABLISHED

FIN WAIT-1

FIN WAIT-2

TIME WAIT

CLOSED

…

CLOSE WAIT

LAST ACK

CLOSED

Node A Node B

DATA / ACK

Figure 3: Labs 3 and 4 of the course require students to track the TCP
state machine and congestion control using DTrace, and to simulate the
effects of latency on TCP behavior using FreeBSD’s DUMMYNET traffic
control facility.

12  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

OPERATING SYSTEMS
Teaching Operating Systems with FreeBSD through Tracing, Analysis, and Experimentation

Having taught the practitioner course several times, we have
learned a few things. Perhaps the most surprising was that the
class really engages the students. Walking around the class
during the labs, we didn’t see a single person checking email or
reading social media—they were actually solving the problems.

The students often came up with novel answers to the problems
presented, and this was only after being exposed to DTrace for
a few hours. Their solutions were interesting enough that we
integrated them back into the teaching during the next section.
Finally, and obvious from the outset, handing a pre-built VM
to the students significantly improves class startup time, with
everyone focused on the task at hand, rather than tweaking their
environment. Since the FreeBSD Project produces VM images
for all the popular VM systems along with each release, it is easy
to have the students pre-load the VM before class, or to hand
them one on a USB stick when they arrive.

It’s All Online!
With the overall success of these courses, we have decided to
put all the material online using a permissive, BSD-like publish-
ing license. The main page can be found at www.teachbsd.org,
and our GitHub repo, which contains all our teaching materials
for both the graduate and practitioner courses, can be found at
https://github.com/teachbsd/course, where you can fork the
material for your own purposes as well as send us pull requests
for new features or any bugs found in the content. The third ver-
sion of the Cambridge course (L41) with the Python lab environ-
ment will be online by May 2017 as the current course wraps up.
We would value your feedback on the course and suggestions for
improvements as well—and please let us know if you are using it
to teach!

HotCloud ’17: 9th USENIX Workshop on Hot Topics
in Cloud Computing
July 10–11, 2017
www.usenix.org/hotcloud17
HotCloud brings together researchers and practitioners from
academia and industry working on cloud computing technolo-
gies to share their perspectives, report on recent developments,
discuss research in progress, and identify new/emerging “hot”
trends in this important area. While cloud computing has gained
traction over the past few years, many challenges remain in the
design, implementation, and deployment of cloud computing.

HotCloud is open to examining all models of cloud comput-
ing, including the scalable management of in-house servers,
remotely hosted Infrastructure-as-a-Service (IaaS), infrastructure
augmented with tools and services that provide Platform-as-a-
Service (PaaS), and Software-as-a-Service (SaaS).

Submissions due: March 14, 2017

HotStorage ’17: 9th USENIX Workshop on Hot Topics
in Storage and File Systems
July 10–11, 2017
www.usenix.org/hotstorage17
The purpose of the HotStorage workshop is to provide a forum
for the cutting edge in storage research, where researchers can
exchange ideas and engage in discussions with their colleagues.
The workshop seeks submissions that explore longer-term chal-
lenges and opportunities for the storage research community.
Submissions should propose new research directions, advocate
non-traditional approaches, or report on noteworthy actual
experience in an emerging area. We particularly value submis-
sions that effectively advocate fresh, unorthodox, unexpected,
controversial, or counterintuitive ideas for advancing the state
of the art.

Submissions will be judged on their originality, technical merit,
topical relevance, and likelihood of leading to insightful discus-
sions that will influence future storage systems research. In
keeping with the goals of the HotStorage workshop, the review
process will heavily favor submissions that are forward looking
and open ended, as opposed to those that summarize mature
work or are intended as a stepping stone to a top-tier conference
publication in the short term.

Submissions due: March 16, 2017

SAVE THE DATE!

2017 USENIX Annual Technical Conference
JULY 12–14, 2017, SANTA CLARA, CA
www.usenix.org/atc17

The 2017 USENIX Annual Technical Conference will bring together leading systems researchers for cutting-edge
systems research and unlimited opportunities to gain insight into a variety of must-know topics, including virtu-
alization, system and network management and troubleshooting, cloud computing, security, privacy, and trust,
mobile and wireless, and more.

Co-located with USENIX ATC ’16:

SOUPS 2017: Thirteenth Symposium on Usable Privacy and Security
JULY 12–14, 2017
www.usenix.org/soups2017

SOUPS 2017 will bring together an interdisciplinary group of researchers and practitioners in human computer interaction,
security, and privacy. The program will feature technical papers, workshops and tutorials, a poster session, panels and
invited talks, and lightning talks.

Co-Located with USENIX ATC ’17

Notice of Annual Meeting
The USENIX Association’s Annual Meeting with the

membership and the Board of Directors will be held on
Thursday, July 13, in Santa Clara, CA, during the

2017 USENIX Annual Technical Conference.

14  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

OPERATING SYSTEMS

Linux Kernel Self-Protection
K E E S C O O K

Kees Cook has been working
with Free Software since
1994, and has been a Debian
Developer since 2007. He
is currently employed as a

software developer by Google, working on
Android, Brillo, and Chrome OS. From 2006
through 2011 he worked for Canonical as
the Ubuntu Security Team’s Tech Lead and
remains on the Ubuntu Technical Board. Before
that, he worked as the lead sysadmin at OSDL
before it became the Linux Foundation. He has
written various utilities, including GOPchop
and Sendpage, and contributes randomly to
other projects, including fun chunks of code
in OpenSSH, Inkscape, Wine, MPlayer, and
Wireshark. Lately, he’s been spending most
of his time focused on security features in the
Linux kernel. kees@outflux.net

R ecent focus on defending the Linux kernel from attack has resulted
in many fundamental self-protections being brought into the
upstream releases across a wide spectrum of kernel internals.

Getting these defenses deployed into the real world means there are fewer
chances for attackers to gain a foothold on systems.

Linux systems have seen significant improvements in security over the last decade. Contain-
ers (with various combinations of namespaces) and mandatory access control policies (like
SELinux) keep walls between groups of processes; privileged processes try to use only fine-
grained capabilities; risky processes confine themselves with seccomp; execution chains
are cryptographically integrity-checked, and the list goes on. This reduction in the attack
surface of user space has resulted in more attention being given to attacks against the Linux
kernel itself. Because the kernel is the mediator for all the mentioned security systems, suc-
cessful exploitation of a flaw in the kernel means all these protections go out the window.

Much recent work has involved providing the Linux kernel with better self-protection.
Although much of the prior security work in the kernel was designed to protect user space
from user space, the Kernel Self-Protection Project [1] focuses instead on protecting the ker-
nel from user space. Many of the ideas and technologies in this project come from the large
PaX and grsecurity (https://grsecurity.net) patches, while others originate from academic
research papers and similar sources. Ultimately, there are two fundamental principles:
eliminate classes of bugs and remove exploitation methods.

Fixing security bugs is important, but there are always more to be found. With the average
lifetime of security bugs being five years [2], kernel development needs to be aimed at elimi-
nating entire classes of bugs instead of playing whack-a-mole. Poor design patterns that lead
to bugs can be exterminated by changing APIs or data structures.

Removing exploitation methods is fundamentally about creating a hostile environment for
an attack. The kernel already runs smoothly day-to-day, but when it hits unexpected situ-
ations, it needs to deal with them gracefully. These situations tend not to affect the regular
operation of the kernel, but leaving them unaddressed makes exploitation easier.

Even redesigning kernel internals so that the criticality of flaws is reduced has a signifi-
cant impact on security. If a bug causes a system to reboot instead of give full control to an
attacker, this is an improvement. The downtime will be annoying, but it sure beats going
weeks not realizing a system was backdoored and then having to perform extensive post-
intrusion forensics.

There has been a steady stream of improvements making their way into the kernel, but the
last three years have seen a number of significant (or at least interesting) protections added
or improved. There isn’t room to cover everything in this article, but what follows are high-
lights spanning a range of areas.

The self-protection technologies in the Linux kernel can be roughly separated into two catego-
ries: probabilistic and deterministic. Understanding the differences between these categories

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 15

OPERATING SYSTEMS
Linux Kernel Self-Protection

helps us evaluate their utility for a given system or organization’s
threat model. After defining what needs to be protected against,
it’s easier to digest what actually addresses the risks.

Probabilistic protections derive their strength from some system
state being unknown to an attacker. They tend to be weaker
than deterministic protections since information exposures can
defeat them. However, they still have very practical real-world
value. They tend to be pragmatic defenses, geared toward giving
an advantage (even if small) to a defender.

Deterministic protections derive their strength from some sys-
tem state that always blocks an attacker. Since these protections
are generally enforced by architectural characteristics of the
system, they cannot be bypassed just by knowing some secret. In
order to disable the protection, an attacker would need to already
have control over the system.

Probabilistic Protections
Two familiar examples of probabilistic protections, present in
user space too, are the stack canary and Address Space Layout
Randomization (ASLR). The stack canary is used to detect
the common flaw of a stack buffer overflow in an effort to kill
this entire class of bug. The protection, however, depends on
the secrecy of the canary value in memory. If this is exposed,
the protection can be bypassed by including the canary in the
overflow. Similarly, ASLR raises the bar for attackers since
they can no longer easily predict where targets are in memory.
If the ASLR offset is exposed, then the memory layout becomes
predictable again.

The Linux kernel has used a stack canary for a very long time.
Recent improvements in the compiler (since GCC v4.9) have
allowed for wider coverage of the stack canary protection, with
-fstack-protector-strong, available in Linux since v3.14 when the
kernel build configuration option CONFIG_CC_STACKPROTECTOR

_STRONG was enabled.

ASLR in the kernel (KASLR) is a contentious issue since there
have been a large number of ways to locally expose the offset.
However, KASLR isn’t limited to just randomizing the position
of the kernel code. Improvements have been made to randomize
the location of otherwise fixed data allocation positions as well.

KASLR still raises the bar for attackers, especially on systems
that run without exposing user space, for example on protocol-
only systems like routers, access points, or similar. An attacker
facing KASLR risks crashing or rebooting their target if they
make a mistake, which leads to very noticeable events from the
perspective of the defender.

KASLR of the kernel code itself is controlled by CONFIG_RANDOM-

IZE_BASE and was introduced on x86 in Linux v3.14, arm64 in
v4.6, and MIPS in v4.7. Other architectures are expected to gain

the feature soon. In the further future, in an effort to address
the weakness to exposures, the hope is to reorganize the kernel
code at boot instead of just shifting it in memory by a single
offset. KASLR of kernel memory is still being worked on, and is
similarly architecture-specific. CONFIG_RANDOMIZE_MEMORY
exists for x86_64 since Linux v4.8, and much of the same effect
is already present on arm64 since v4.6.

Another place for randomization in the kernel is the order of
the kernel’s heap memory layout (not just its base offset). The
introduction of CONFIG_SLAB_FREELIST_RANDOM in v4.7 (for
the SLAB allocator) and v4.8 (for the SLUB allocator) makes it
harder for attackers to build heap-spraying attacks. With this
protection, an attacker has less control over the relationship
between sequential memory allocations (they’re less likely to be
adjacent). If enough memory is allocated, though, the effect of
this protection is diminished. Like KASLR, it raises the bar, if
only a little.

Deterministic Protections
Two familiar examples of deterministic protections, present in
user space too, are read-only memory and bounds-checking. The
read-only memory flag, enforced by the CPU over designated
segments of memory, will block any write attempts made within
the marked regions. For an attacker trying to redirect execution
flow, the less writable memory there is, the less opportunity they
have to make changes to the kernel after they have found a stray
write flaw. Bounds checking similarly restricts the cases where
a stray write flaw may exist to begin with. If every index into
an array is verified to be within the size of the given array, no
amount of an attacker’s wishing will escape the checks.

By far the most fundamental protection in the kernel is correct
memory permissions. This is collected under the poorly named
CONFIG_DEBUG_RODATA [3]. While it was at one time used for
debugging, kernel memory permissions are used to enforce
memory integrity. And while it once only controlled making
read-only data actually read-only, it also now makes sure that
the various safe combinations of memory permissions are in
place: kernel code is executable and read-only, unchanging data
is read-only and not executable, and writable data is (obviously)
writable but additionally not executable. Fundamentally, noth-
ing should ever be both executable and writable: such memory
areas are trivial places attackers could use to gain control.

In the face of proper kernel memory protection, attackers tend
to use user space memory for constructing portions of their
attacks. As a result, the next most fundamental protection is
making sure the kernel doesn’t execute or (unexpectedly) read/
write user space memory. The idea isn’t new that kernel memory
isn’t available to user space (this is the whole point of system
calls), but this protection is the inverse: user space memory isn’t

16  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

OPERATING SYSTEMS
Linux Kernel Self-Protection

available to the kernel. If an attack confuses the kernel into
trying to read or execute memory that lives in user space, it gets
rejected. For example, without this protection it’s trivial for an
attacker to just write the executable portion of their attack in
user space memory, entirely bypassing the permissions that
make sure nothing is writable and executable in kernel memory.

Some models of CPUs have started providing this protection in
hardware (e.g., SMEP and SMAP on x86 since Skylake, and PXN
and PAN on ARM since ARMv8.1), but they are still rare, espe-
cially on server-class systems. Emulating these protections in
software is the next best thing. 32-bit ARM systems can do this
with CONFIG_CPU_SW_DOMAIN_PAN since Linux v4.3, and 64-bit
ARM systems can do this with CONFIG_ARM64_SW_TTBR0_PAN
since Linux v4.10. Unfortunately, as of v4.10, emulation for
SMEP and SMAP was still not available for x86 in the upstream
kernel [4].

The places where the kernel explicitly reads and writes user-
space memory is through its internal calls to, respectively,
copy_from_user() and copy_to_user(). Since these calls
temporarily disable the restriction on the kernel’s access of user-
space memory, they need to be especially well bounds checked.
Bugs here lead to writing past the end of kernel memory buffers,
or exposing kernel memory contents to user space. While some
of the bounds checking already happens at kernel compile time
(especially since v4.8), many checks need to happen at runtime.
The addition of CONFIG_HARDENED_USERCOPY in v4.8 added
many types of object-size bounds checking. For example, copies
performed against kernel heap memory are checked against the
actual size of the object that was allocated, and objects on the
stack are checked that they haven’t spanned stack frames.

The kernel stack itself gained protections on x86 in v4.9 and
arm64 in v4.10. Prior to CONFIG_VMAP_STACK, the kernel stack
was allocated without any guard pages. This meant that when an
attacker was able to write beyond the end of the current kernel
stack, the write would continue on to the next kernel stack,
allowing for the (likely malicious) manipulation of another
process’s stack. With guard pages, these large writes will fail as
soon as they run off the end of the current stack. Introduced at
the same time, the addition of CONFIG_THREAD_INFO_IN_TASK
moves the especially sensitive thread_info structure off the
kernel stack, making an entire class of stack-based attacks
impossible.

Future Work
While not yet in the kernel as of v4.10, another interesting
probabilistic protection that will hopefully arrive soon is struct
randomization [5]. This will randomly reorganize the layout of
commonly attacked memory structures in the kernel. This pro-
tection is less useful on distribution kernels (since the resulting

layout is public), but still makes exploitation more challenging
since an attacker now has to track this layout on a per-distri-
bution and per-kernel-build basis. For organizations that build
their own kernels, this makes attacks much more difficult to
mount because an attacker doesn’t know the layout of the more
sensitive areas of the kernel without also being able to first
gather very specific details through information exposures.

Building on the deterministic memory protection provided by
CONFIG_DEBUG_RODATA, there has been some upstream work to
further reduce the attack surface of the kernel by making more
sensitive data structures read-only [6]. While many structures
can already be easily marked read-only, others need to be written
either once at initialization time or at various rare moments later
on. By providing a way to make these structures read-only dur-
ing the rest of their lifetime, their exposure to an attacker will be
vastly reduced.

Another area under current development, as of v4.10, is protect-
ing the kernel from reference-counting bugs. When there is a
flaw in reference counting, the kernel may free memory that is
still in use, allowing it to get reallocated and overwritten leading
to use-after-free exploits. By detecting that a reference count is
about to overflow [7], an entire class of use-after-free bugs can
be eliminated. The work underway is to create a specific data
type that is protected and only used for reference counting, and
then replace all the existing unsafe instances.

Staying Updated
By far the best way to protect Linux systems (or any systems)
is to keep them up-to-date. This isn’t new advice, but it usually
only takes the form of recommending that all security updates
be installed. While that is absolutely a best practice to adhere
to, it only addresses known flaws. The idea must be taken a step
further: to get the latest kernel self-protection technologies,
systems need to be running the latest Linux kernel.

If products are built using the Linux kernel, they need to be
able to receive the latest kernels as part of their regular update
cycle. This can end up being a fair amount of up-front cost, since
drivers need to be upstreamed and proper automated testing
procedures need to be implemented. The long-term results will
quickly pay dividends since the burden of code maintenance is
shared with upstream and the test environment will catch bugs
as soon as they are introduced instead of months or years later.

If systems are built around a Linux distribution, they need to be
kept upgraded to the latest distribution release. Many distribu-
tions have a “long term support” release that requires waiting a
couple of years or more between upgrades. If, instead, a system
is upgraded to the regular releases that usually come out on a six-
month cycle, they will be much closer to the latest kernel. While
distribution kernels will still lag slightly behind the latest kernel

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 17

OPERATING SYSTEMS
Linux Kernel Self-Protection

release, it’s a reasonable tradeoff to make: the system has a more
current kernel, but it is still supported by the distribution (unlike
rolling your own kernel on top of a distribution).

The work to stay updated tends to be spread thinly across a
longer time frame, rather than stacking up only to be addressed
in bulk every few years. This generally means fewer emergencies
and a smoother planning cycle. Beyond the other benefits of hav-
ing more modern software, it’ll also come with an ever increas-
ing series of defenses designed to stop attacks before they begin.

References
[1] http://kernsec.org/wiki/index.php/Kernel_Self_Protection
_Project.

[2] https://outflux.net/blog/archives/2016/10/18/security
-bug-lifetime/.

[3] Along with CONFIG_DEBUG_SET_MODULE_RONX.

[4] Available in grsecurity via
CONFIG_PAX_MEMORY_UDEREF.

[5] Available in grsecurity via the RANDSTRUCT GCC plugin.

[6] Available in grsecurity via CONFIG_PAX_KERNEXEC
and the CONSTIFY GCC plugin.

[7] Available in grsecurity via CONFIG_PAX_REFCOUNT.

XKCD

xkcd.com

18  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

OPERATING SYSTEMS

Interview with Jeff Mogul
R I K F A R R O W

I’m sure I met Jeff Mogul at a USENIX systems conference, but I can’t
remember which one. I had heard that Jeff was involved with the early
Internet, but later than the groundbreaking work of Internet founders

like Vint Cerf and Bob Kahn. And although I occasionally talked with Jeff,
I knew little about him.

I did suspect he could shed some light on what it was like to manage an Internet connection
in the mid-’80s and to help shape parts of TCP/IP. Jeff had also worked for Digital Equip-
ment Corporation’s (DEC) Western Research Lab. WRL was a small research lab in Palo
Alto that produced a lot of pragmatic work and many papers too.

Rik Farrow: While at Stanford, you wrote several RFCs, including one about Reverse ARP,
that allowed diskless workstations to learn their IP addresses, but also some early work on
subnets. Can you tell us a little about how the Internet, and Stanford’s Internets, appeared in
1984? I think that there are few people who know about early Ethernet and its limitations, as
well as just how small (comparatively) the Internet was in those days.

Jeff Mogul: Actually, I think I had only a minor role in the RARP RFC. The subnet RFCs
(RFCs 917, 919, 922, culminating in RFC 950) were more directly my work; I’m proud that
Jon Postel co-authored that last one with me.

The Internet in 1984 was probably a lot like it was in 1983, at the time of the “TCP Transition”—
I’m sure it had changed, but I don’t remember what changed between 1983 and 1984. How-
ever, the TCP Transition was one of those events one remembers, because January 1, 1983
was the day that the predecessor to IP/TCP, called NCP, was disabled on the ARPANET, and
so anyone who hadn’t gotten TCP working by then would have been unable to send traffic [1].

At any rate, Stanford was connected to the ARPANET via Stanford’s IMP; I think our IMP
was number 11. IMPs had several ports, and so a few large computers could be connected to
each IMP. I vaguely recall some kludges that were used to attach others. We also had an early
“Experimental Ethernet” donated by Xerox PARC, along with a number of Xerox Alto com-
puters. This Ethernet ran at 3 Mbps, and had 8-bit host addresses. Xerox had also developed
a simple internetworking protocol, called PUP (PARC Universal Packet), which added an
8-bit network number, and I believe one could use Altos as routers between PUP networks.
Bill Nowicki and I realized we could use some of the Stanford University Network, or “SUN,”
hardware (this was before Sun Microsystems was started) to build a really simple PUP
router so that we didn’t need to use precious Altos for that.

Once we realized that IP (and TCP) was coming, we needed a way to route IP packets from
the ARPANET (effectively, the backbone of the future Internet) and the Stanford Ether-
nets. This meant installing an IP router at one of the IMP ports. I can’t quite remember the
chronology, but I do remember doing a lot of the work of installing and trying to set up this
router. We used a PDP-11 for hardware, and I am pretty sure that we used J. Noel Chiappa’s “C
gateway” software; people then often used the term “gateway” instead of “router.” I remember
standing in our noisy machine room on lengthy long-distance phone calls to Noel (who was

Jeff Mogul works on fast, cheap,
reliable, and flexible networking
infrastructure for Google. Until
2013, he was a Fellow at HP
Labs, doing research primarily

on computer networks and operating systems
issues for enterprise and cloud computer
systems; previously, he worked at the DEC/
Compaq Western Research Lab. He received
his PhD from Stanford in 1986, an MS from
Stanford in 1980, and an SB from MIT in
1979. He is an ACM Fellow. Jeff is the author
or co-author of several Internet Standards;
he contributed extensively to the HTTP/1.1
specification. He was an Associate Editor of
Internetworking: Research and Experience, and
has been the chair or co-chair of a variety
of conferences and workshops, including
SIGCOMM, OSDI, NSDI, HotOS, and ANCS.
jeffmogul@acm.org

Rik is the editor of ;login:.
rik@usenix.org

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 19

OPERATING SYSTEMS
Interview with Jeff Mogul

many time zones away) trying to debug his code in our router.
That system was named GOLDEN-GATEWAY.STANFORD.EDU
and had the address 10.1.0.11—Net 10 was the ARPANET; Stan-
ford was IMP 11; the router was on port 1 of the IMP.

While fact-checking this, I found an old hosts.txt file [2] that
included this line:

GATEWAY : 10.1.0.11, 36.40.0.62 : STANFORD-GATEWAY : LSI-11/23 :

MOS : IP/GW,GW/DUMB :

The MOS suggests that we were indeed using Noel’s MIT router
software.

At any rate, we also got something working by the TCP Tran-
sition date. I still have the button that Dan Lynch gave out, “I
survived the TCP Transition.” We also connected some of our
BSD-based VAXes to the Ethernet via a card we got from Xerox,
a driver we got from CMU, and some early IP/TCP software we
got from BBN, the builders of the IMPs. I later took the CMU
driver and generalized it in several ways. CMU had included a
rudimentary packet filter in their driver, inspired by some Xerox
Alto code, and I improved it enough to get an SOSP paper out of
the deal [3]. Actually, I think we used the packet filter to imple-
ment PUP on the VAXes, so that might have happened before the
TCP transition.

In those days, “RFC” really did stand for “Request for Com-
ments”; pretty much anyone could write one and get a number
assigned, without any actual review. The reason I wrote the
original subnetting RFC was because the original “classful” IP
addressing system allocated a single Class A network number
to Stanford (36, or what we would call 36.0.0.0/8 once CIDR was
invented). But we already had a bunch of Ethernets (18 according
to RFC 917), so under this scheme we would have needed a lot
more network numbers (one for each Ethernet), and we expected
the number of Ethernets to grow. That would have bloated the
Internet routing tables, still a problem today, even with CIDR.
In those days, router memories were small—PDP11s had a 16-bit
address space—and there wasn’t a lot of spare bandwidth for
exchanging routing updates, especially on the 56 Kbps ARPA-
NET. Stanford was one of only a few Internet sites that actually
had to worry about multiple subnets, which is why we had to
invent the subnetting concept; I also wrote prototype code for
BSD UNIX to implement this.

You asked about how small the Internet was in those days. It
was definitely small in terms of backbone bandwidth (56 Kbps),
the number of hosts (before DNS was invented, there was one
Internet-wide “host table” file that we used to map names to
addresses—I think SRI maintained and distributed it via FTP),
and the number of people. There was a printed book that listed
the name, address, phone, and email address of all known
ARPANET users. And even in 1986 or 1987, people at academic

networking conferences were still trying to figure out whether
the Internet would ever be good for much of anything beyond
email and FTP.

RF: Around 1987, you also wrote a technical report, and gave
talks, about the harmfulness of fragmentation. Why had that
become a problem?

JM: Internets can include different kinds of network technol-
ogy, with different maximum packet sizes (so-called MTUs).
Things are more homogeneous now than they were in the 1980s,
when Ethernet hadn’t quite taken over. At any rate, if you send a
packet that fits within the MTU of the first-hop link, but some
other link on the path has a smaller MTU, the router forwarding
the packet at that point has to “fragment” the packet—divide it
into smaller pieces that can be reassembled later. Several of us,
including myself and also Chris Kent at Purdue (now Chris Kan-
tarjiev) discovered a problem with fragmentation: sometimes
it made TCP almost unusable. Why? Because our primitive
Ethernet interfaces (NICs) could only buffer one or two received
packets, so if packets arrived faster than the kernel could pull
them out of the NIC buffer, some would get lost. This wasn’t a
huge problem for unfragmented packets, since the TCP receiver
would get the first few packets and ACK them, and after a time-
out, the sender would retransmit the rest: not ideal, but there was
always forward progress.

However, when even one fragment of a fragmented packet is
dropped, the receiver cannot reassemble the packet at all, so it is
as if the whole packet were lost. To make matters worse, when
the TCP sender eventually timed out and re-sent the packet, it
would be fragmented again, and lost again with high probabil-
ity, because these fragments generally arrived in bursts. So: no
progress, and TCP users were sad.

This inspired Chris and me to publish a paper at SIGCOMM
about the problem, and I led an IETF working group that (after a
lot of debate) arrived at RFC 1191, defining “Path MTU Discov-
ery”—which worked unless it didn’t, and that’s another long story
that I mostly left for other people to solve.

RF: You worked on TCP, contributing the first open source fire-
wall software, screend, to BSD UNIX. You later worked on the
evolution of packet filtering in BSD, that lead to BPF. If I recall
correctly, ULTRIX (DEC’s UNIX) was based on BSD. Did DEC
use screend as well?

JM: Screend and the packet filter were two mostly separate
things. As I mentioned earlier, I think the original idea for
packet filtering came from Xerox, but I think they used native
code. Rich Rashid and Mike Accetta at CMU were inspired by
that to add an interpreted packet filter to their Ethernet driver;
interpretation (of a really simple instruction set) made it possible
for user-mode programs to provide packet filters that could be

20  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

OPERATING SYSTEMS
Interview with Jeff Mogul

safely interpreted within the kernel. I found it helpful to extend
their filtering language in a variety of ways, and wrote the 1987
SOSP paper [3] describing this. But the so-called CMU-Stanford
Packet Filter language was a rather inefficient stack-based
execution model, and mostly one had to hand-code the filters.
The Berkeley Packet Filter [4] replaced this with a register-style
execution model, and they wrote a compiler for it, so overall it
was much nicer, although I still think I had a cleaner solution for
enabling programs such as tcpdump to put the Ethernet driver
in “promiscuous mode” without having to make these programs
setuid-root…but that’s orthogonal to the interpreter design.

Screend came a few years later. Most of the BSD community
gathered once or twice a year for a BSD summit meeting, and I
believe we were at Berkeley for one of those the day that the Mor-
ris worm was unleashed. Bad timing! While that allowed a lot of
people to focus on stopping the worm, they weren’t able to install
the patches needed.

Suddenly everyone realized that the original vision of the Inter net
as a place where any host could send any packet to any other host
was actually not such a good one. The military had already real-
ized this, and I think they installed “mail gateways” between the
ARPANET and MILNET so that only email could get through;
the rest of us thought that was rather typical of the military
mind. So people started writing what we now call “firewalls.”

I had already worked with Deborah Estrin (then of USC) and
some of her grad students on a cryptographic approach of hers
called “Visa protocols.” With several decades of hindsight,
you could call these “stateless SDN firewalls,” since the Visa
mechanisms used policy controllers separated from the routers.
I believe our paper on this work was published after the Morris
worm, but it was started earlier.

Anyway, at DEC in Palo Alto, Richard Johnsson (and perhaps
others) needed to protect their computers against the Morris
worm (and any copycats) right now, so he hacked a simple fire-
wall into the BSD kernel. I think it either had a hard-coded ACL
table, or perhaps there was a way to update it, but it wasn’t very
flexible or scalable. So I sat down and wrote screend, which did
all of the fancy processing in user-mode code (in that respect,
kind of like the packet-filter idea) and then kept a small cache
of recent decisions in the kernel. It worked pretty well, I got a
USENIX paper [5] out of the idea and helped DEC put it into the
ULTRIX product, from which some colleagues ultimately built a
(small) firewall business around it. I think my code even made it
into the first setup for whitehouse.gov [6].

Yes, DEC’s ULTRIX was very closely based on BSD, but of course
with some DEC-specific additions, testing, documentation, etc.

RF: Right at the point where the Internet was growing exponen-
tially, you worked on HTTP 1.1. What changes were you suggest-
ing to improve the performance of HTTP around the mid-’90s?

JM: The original HTTP protocol would open a new TCP con-
nection for each request, and then close it once the response
was read. This turns out to make things really slow, because
each request had to wait for the TCP handshake, which adds a
network round trip. Network round-trip times (RTTs) are often
tens or even hundreds of milliseconds and are the bane of good
performance. Actually, it often added a lot more delay, because
networks used to lose a lot more packets, and if your SYN was
lost, your TCP had to time out and try again. Timeouts are
usually much longer than RTTs. The other problem with the
request-per-connection model was that each request-response
transaction was serialized behind the previous one.

By making the TCP connections persistent [7], we avoided the setup
costs. But we also enabled the use of “pipelining,” a concept from
computer architecture in which you can have several operations
in flight at once. Since a typical Web page involves lots of HTTP
requests (for images, CSS, etc.), once your browser downloads a
page’s HTML, it typically makes a large number of subsequent
requests from the same server. With pipelining, the browser can
launch a lot of those requests before any of the responses get
back; this effectively allows us to hide all but one RTT.

Various things make persistent connections and pipelining
harder to exploit in practice than we first realized; there are too
many HTTP/1.1 servers that misbehave when asked to pipeline,
so we had to wait for HTTP/2 before it became consistently safe
to use. It took too long, but I think it proved to be a good idea.

RF: After you got your PhD from Stanford, you went to work for
DEC’s Western Research Lab in Palo Alto, California. What was
it like to work in a research lab? Did you have total freedom to
pick what you wanted to work on?

JM: WRL was an unusually wonderful environment. I don’t
think we ever had more than 25–30 researchers, and small
number of other staff, but WRL people not only invented a lot of
cool things at DEC, but many of them have become stars at other
companies. I now work at Google, where many of our technical
leaders started at WRL. Also, WRL hired people who were both
talented and genuinely fun to work with—I have more friends
from WRL than from any other era of my career.

WRL was even smaller when I joined, and it was just getting out
of a narrow focus on building the first practical RISC computers,
called Titans. In many ways, it was an academic environment—
we hired people the same way that universities hire professors,
we published papers, and we solved hard problems. However, we
had more ability than universities to have a large group of people

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 21

OPERATING SYSTEMS
Interview with Jeff Mogul

work on a single system, and we had the resources to build real
hardware.

While many of us tended to look for our own problems to solve,
within the context of the lab’s mission (and we occasionally
agonized over defining a mission statement), one would have
to have been a fool not to remember that our nice salaries and
offices were paid for by a profit-oriented business. WRL people
wanted to change DEC (initially, by trying to convince DEC that
RISC machines would be half as expensive as CISC machines),
and so we tended to focus on solving problems that we thought
the company needed to have solved. Sometimes we were willing
to get ahead of DEC (as with RISC, and much later with Alta-
Vista), but we realized that we needed to do things in a way that
DEC could adopt without having to change lots of things at once.
So, for example, we usually focused on C-based software, while
our sister lab in Palo Alto (SRC, the Systems Research Center)
focused on building clean-slate, top-to-bottom re-designs that
promised much more wonderful results—but were really hard for
DEC to absorb.

As a junior member of the lab, I was encouraged to spend some
time following my own interests, but it was also made clear to
me that I needed to commit substantial time to a project that
contributed to the overall goals of the group. So, for example, my
first major effort was to port the BSD networking stack into the
Titan operating system, Tunix, a rather bizarre combination
of some older BSD UNIX plus a lot of code written in Modula 2.
Anita Borg, who joined WRL at about the same time, did her first
major work on adding demand paging to Tunix.

RF: Any thoughts on the apparent decline of research labs, like
WRL and Bell Labs?

JM: WRL declined rather suddenly. Compaq bought DEC in 1998
and absorbed the three existing research labs (WRL, SRC, and
the Cambridge Research Lab) more or less intact, since Compaq
had never had its own research organization. The Compaq expe-
rience had its good years, but by the end there just wasn’t enough
money to make things work, plus we were under some VPs who
were not ideally suited to running a research organization. HP
bought Compaq in 2002 and incorporated WRL, SRC, and CRL
into HP Labs. Originally the idea was to keep our groups as sepa-
rate parts of HP Labs, but that was unsustainable: while the DEC
labs were fairly generalist, the other HP labs were very topic-
focused, and the other lab directors apparently didn’t like the
idea of keeping our labs around. Shortly after that merger, WRL’s
director left to become an early Google employee, and after a few
months of a rather uninspiring search for another director, HP
dissolved WRL and moved us into the rest of the organization.
To HP’s credit, any WRL person who decided to leave at that
time was compensated as if they had been laid off, and HP was

still generous with layoff packages in 2002. SRC and CRL lasted
somewhat longer.

I stayed at HP Labs for a decade, and for a while it was still a
good place to do corporate research, but there were few upticks
in a general decline. One person in particular did a lot of damage
to the long-term prospects of HP Labs; that’s a complex story,
but I think the bottom line is that it is at best extremely hard to
get value out of a corporate research lab these days, compared to
simply waiting for a startup to invent what you need. The prob-
lem is that the typical reaction is to manage the research orga-
nization more intensely. (“You will innovate or else! And by the
way, here are some stricter rules for how you will be creative.”)
I believe that’s exactly backwards; I think Rick Rashid had it
right when he said that as leader of Microsoft Research, he tried
to ensure that they hired extremely carefully, and then he got
out of the way. My view is that if you hire only researchers who
are smart, who understand what the company needs, and who
are internally motivated to make the company succeed, then a
research lab has some chance of delivering value to the company,
without micro-management from above.

But today, even that might not be enough for a corporate research
lab to compete either with the massive number of startups or
with companies like Google that integrate researchy people into
product groups. And, in any case, once you’ve hired badly, you
end up with an organization full of people who do not self-moti-
vate in the right direction, and then you have to manage them
aggressively, and from that you can never work your way back to
a team of self-motivated, creative people.

The other big problem with corporate research labs is when
the company’s product groups aren’t allowed to reserve some
spare resources, for working collaboratively on tech transfer
with researchers while the technology is still a bit risky. Tech
transfer does still happen to those product groups, but typically
it gets delayed until the group realizes it has to catch up with
competitors. So the research result doesn’t have an effect until
it’s too late to gain a real advantage from it. Researchers can still
have a big impact on products by providing guidance and design
reviews, but when the VP of Research only knows how to claim
success for big-splash inventions, mere expertise-transfer isn’t
visible enough to get support or credit.

HP Labs is still hanging on (now in two separate companies,
after HP split up), and there are still some smart people there,
but with top people quitting every month, I don’t think it will be
interesting for much longer.

I have no direct experience with Bell Labs (or with AT&T Labs
Research), so you should probably ask other people for those
stories.

22  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

OPERATING SYSTEMS
Interview with Jeff Mogul

RF: In 2008, you were involved with a group talking about the
future of system conferences. Did anything actionable come out
of those discussions?

JM: Some discussions never end. I recently joined the NSDI
Steering Committee, and we’re currently in the middle of two
different email threads about how to make systems conferences
work better.

I suspect the discussions about the future of systems confer-
ences started around five minutes into the first SOSP. That is,
over 50 years ago. If two or more systems researchers are sitting
in a bar, or going on a hike, or waiting for a bus, they will prob-
ably start discussing what is wrong with system conferences and
how to fix them. For all I know, snake researchers also sit around
moaning about the sorry state of herpetology conferences…but
systems researchers are a bit weird in that, unlike almost
all other scientific and engineering fields, we often put more
emphasis on conference papers than journal papers, so we might
be unusually interested in how conferences should be organized.

After joining more than my fair share of such BS sessions, and
chairing a few conferences, I thought, “What better way to solve
the problems of computer systems conferences and workshops
than to have a workshop on that?” So I talked USENIX into let-
ting me a run a workshop, WOWCS (Workshop on Organizing
Workshops, Conferences, and Symposia for Computer Systems),
co-located with NSDI ’08, and we got a pretty nice selection of
papers, plus a rousing discussion (which we wrote up as a ;login:
article in August 2008 [8].

People made some interesting proposals, but I haven’t gone back
over the material to see whether any of them bore fruit. There
were a few papers on tools that have become indispensable
(HotCRP and banal). Tom Anderson wrote a follow-up paper
(“Conference Reviewing Considered Harmful” [9]) that pre-
sented some great data showing that PCs should not make their
decisions based on reviewer scores; after that, when I’ve chaired
PCs, I’ve warned people not to argue “we should take paper X
over paper Y because it had a higher average score”—that’s just
amplifying some noise.

Since then, I participated in another workshop debating “publi-
cation culture in computing research” that wasted considerably
more CO2, but I don’t think it led to much change, either.

I think our emphasis in computer systems on conferences is
the worst possible system…except for all of the other ones. In
particular, I think when PC chairs pick well-intentioned PC
members and run a face-to-face PC meeting carefully, the social
structure of the meeting encourages reviewers to discuss papers
with great passion and great integrity, because it’s hard to hide
bad or lazy behavior. I’m not sure how else to get that kind of
combination.

References
[1] Flag day: https://www.internetsociety.org/blog/2013/01/30
-years-tcp-and-ip-everything.

[2] Example of hosts.txt: https://emaillab.jp/pub/hosts
/19840113/HOSTS.TXT.

[3] J. C. Mogul, R. F. Rashid, and M. J. Accetta, “The Packet
Filter: An Efficient Mechanism for User-Level Network
Code,” in Proceedings of the Eleventh ACM Symposium on
Operating Systems Principles (SOSP), 1987, pp. 39–51.

[4] S. McCanne and V. Jacobson, “The BSD Packet Filter: A
New Architecture for User-Level Packet Capture,”in Proceed-
ings of the Winter 1993 USENIX Annual Technical Conference,
pp. 259–269.

[5] J. C. Mogul, “Simple and Flexible Datagram Access Con-
trols for Unix-Based Gateways,” in Proceedings of the Summer
1989 USENIX Technical Conference, pp. 203–221.

[6] Section 1.2 mentions using screend as part of the firewall
for whitehouse.gov: http://www.fwtk.org/fwtk/docs
/documentation.html.

[7] J.C. Mogul. 1995. “The Case for Persistent-Connection
HTTP,” in Proceedings of the Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Commu-
nication (SIGCOMM ’95), pp. 299–313. See also http://www.
hpl.hp.com/techreports/Compaq-DEC/WRL-95-4.pdf.

[8] J. C. Mogul (summarizer), “WOWCS ’08: Workshop on
Organizing Workshops, Conferences, and Symposia for Com-
puter Systems,” ;login:, vol. 33, no. 4 (August 2008; online only):
https://goo.gl/Gv5BPI.

[9] T. Anderson, “Conference Reviewing Considered Harm-
ful,” SIGOPS Oper. Syst. Rev., vol. 43, no. 2 (April 2009), pp.
108–116. See also https://homes.cs.washington.edu/~tom/
support/confreview.pdf.

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 23

OPERATING SYSTEMS

Interview with Amit Levy
R I K F A R R O W

I’d met Amit Levy a couple of times during luncheons at system confer-
ences. Amit is not shy about talking about his projects. I liked hearing
about them, as Amit would clearly tell me about the motivations behind

his projects and answer any questions I had.

So this time after we talked at OSDI ’16, I asked him if I could create a more formal version of
our post-luncheon conversations, and he agreed. In particular, we talked about his work on
Tock using Rust and leveraging type safety.

Rik Farrow: You’ve done a lot of things, including your side-project MemCachier [1], but
you’ve published more about security-related topics. What got you interested in building a
replacement for TinyOS [2]?

Amit Levy: Almost all of my work has had something to do with using type safety as a means
of building secure systems. Even MemCachier really started as a an exercise to learn Go
and with the idea that building a memcached clone in a type-safe language would make it
relatively easy to also build a safe, multi-tenant cache service. So, in that sense, rethinking
the embedded operating system in the context of IoT security was a pretty natural extension
of much of what I’d been working on, just a different application space. For me the exciting
thing about Tock [3] is really figuring out how to provide safety and isolation properties to a
system with extremely limited resources. And the context is allowing IoT platforms to run
untrusted programs.

The actual story is just more coincidental. My roommates and I wanted to build an auto-
matic lock for our front door after we forgot to lock it a couple times and two of our bikes were
stolen. So I started looking into IoT and, particularly, low-power computers and Bluetooth
low energy. Phil Levis was also interested in Bluetooth (for much less frivolous reasons), so
we started reading the spec together and talking about ideas. Eventually, Phil, Prabal Dutta,
and David Culler decided their students should start having weekly phone calls about soft-
ware/hardware co-design, and the need for a replacement for TinyOS just came out of those
weekly phone calls.

RF: You’ve mentioned that Tock will run on a SAM4L processor, which certainly does appear
to be low power, as well as much simpler and much slower (under 100 MHz clock) than what
most systems use. Do platforms like this have any hardware features that support security,
things like memory management or the system call interface?

AL: Yes. Most of the new ARM Cortex-M series microcontrollers (including the SAM4L)
have a feature called a memory protection unit (MPU). The MPU does not provide memory
virtualization (so there is only a single address space) but does enable setting read/write
/execute permission bits on ranges of memory as granular as 16 bytes. In fact, Tock uses the
MPU to enable a limited number of traditional OS processes. ARM also recently released a
specification for TrustZone-M, which has similarities to TrustZone on “application”-grade
ARM processors like the ones in our cell-phones. TrustZone-M has some additional inter-
esting features (like allowing interrupts to trap to untrusted code directly), which could

Amit Levy is a PhD student in
the Department of Computer
Science at Stanford University.
His work focuses on building
pragmatic, secure systems that

increase flexibility for application developers
while preserving end-user control of private
data. amit@amitlevy.com

Rik is the editor of ;login:.
rik@usenix.org

24  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

OPERATING SYSTEMS
Interview with Amit Levy

help increase performance of embedded systems that rely on
hardware protection. I think we’re expecting to see some SoCs
(system-on-chip) with TrustZone-M available in the next couple
of years.

However, there just isn’t enough memory on these microcon-
trollers to use a protection model based on memory isolation
(e.g., processes) as a ubiquitous means of protection in the
system.

In general, though, I think the simplicity of microcontrollers can
be viewed as a hardware security feature. What I mean is that
in many use cases, we also care about hardening embedded sys-
tems against hardware-based side-channel attacks—like timing
and power analysis. TPMs (trusted platform modules), two-fac-
tor authentication devices, and HSMs (hardware security mod-
ules) are a few examples of systems where it’s really important
to mitigate side-channel attacks. To thwart these attacks, it’s
important for the hardware to be simple. Caches, like the TLB on
higher-grade processors, are notoriously leaky.

RF: How does type safety improve security?

AL: Type safety serves two primary roles. It helps program-
mers avoid many common errors like buffer-overflows. When
hardware protection is available, it’s possible to catch some of
these kinds of bugs at runtime. Type safety lets us catch them
at compile time, before we run our program, and saves us from
them when hardware protection isn’t an option.

The second role is that we can leverage type safety to express
really fine-grained security policies. For example, hardware
protection lets me expose only certain regions of memory to
untrusted code—say a memory-mapped I/O register. However,
I have no control over what values are written to that memory.
Type safety lets me restrict the manner in which the untrusted
code uses a region of memory. For example, I can ensure that
only a certain range of values is ever written to a particular
register or that the value was created by a trusted module.
Importantly, the compiled binary looks nearly identical to one
compiled from source code in C that doesn’t have these protec-
tions. There’s nothing particularly magical going on. The type
system just lets the compiler reject code that violates certain
rules, and, in most cases when we’re writing C, we don’t really
want to violate those rules anyway.

RF: So you have some untrusted code, and you can’t distinguish
it from code written in C once it’s compiled. That implies to me
that you can’t rely on type safety here, because the untrusted
code could have been compiled from C, and thus you don’t know
what types it can write to your target memory. I am likely just
missing something here, so could you clear this up?

AL: You’re right, if all you have is a pre-compiled binary, the
type system doesn’t help. You have to be able to compile the code
yourself. In Tock, this is part of what motivates which systems
components go where. Applications, which may even be loaded
by an end user in some cases, typically live in a process. The
process is isolated by hardware protection, so it doesn’t rely on
the type system and a binary is fine. Conversely, components
like peripheral drivers are specific to a hardware platform—my
particular embedded product has a different set of sensors,
actuators, radios, etc. from other embedded products—but don’t
change when I change applications. The system integrator wants
to make sure that if they use a driver for a particular tempera-
ture sensor they found on the Web that it’s not able to leak secret
encryption keys or access other peripherals on the same bus, but
if they can verify safety when they compile the kernel that’s fine.

RF: In some of your work [4], you talk about problems you have
when using Rust. Can you explain?

AL: Rust kind of provides the lowest-level of abstraction you
need to guarantee type safety. This ends up surfacing some fun-
damental safety tradeoffs into the language. One of the simpler
examples is that if you want to use closures-based callbacks
(e.g., as is common in Node.js), you need to dynamically allocate
those closures—they can’t be on the stack or statically allocated.
Most type-safe languages assume that more or less everything
is dynamically allocated, so this is implicit, while in Rust it’s
explicit.

In Tock, we disallow dynamic allocation in the kernel (that’s
a common practice for reliable systems), so this is good for us
because it means we can use closures as long as we can prove to
the compiler that they don’t need to be dynamically allocated.
However, it also means that when we try to adopt common
coding styles from other frameworks that don’t actually work
with our system constraints, we get a compiler error. I think it’s
tempting as a systems builder to look at type-safe languages and
think that they are magic, and so you get to stop thinking about
system constraints. That’s not true. There’s nothing magic about
type safety. It just lets you guarantee things you already knew
how to do.

Unfortunately, I think it’s easy to draw the wrong conclusion
from that paper—that there are drawbacks with Rust that are
artifactual rather than fundamental. There were three issues
that we ran into building Tock in Rust, and all three of them
turned out to be fundamental (or at least nearly fundamental)
and, on balance, were the right design decisions for the language.
There is a great paper by Dan Grossman from 2002 called “Exis-
tential Types for Imperative Languages” [5] that explains this
really well. If you’re going to read our paper, it’s worth reading
that one as well.

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 25

OPERATING SYSTEMS
Interview with Amit Levy

References
[1] MemCachier: https://www.memcachier.com/.

[2] TinyOS: http://tinyos.stanford.edu/tinyos-wiki/index.php
/TinyOS_Documentation_Wiki.

[3] TockOS: http://www.tockos.org/.

[4] A. Levy, M. P. Andersen, B. Campbell, D. Culler, P. Dutta, B.
Ghena, P. Levis, and P. Pannuto, “Ownership Is Theft: Experi-
ences Building an Embedded OS in Rust,” in Proceedings of
the 8th Workshop on Programming Languages and Operating
Systems (PLOS ’15), October 2015: https://sing.stanford.edu
/site/publications/59.

[5]: Dan Grossman, “Existential Types for Imperative Lan-
guages,” in Proceedings of the 11th European Symposium on
Programming Languages and Systems (ESOP ’02), pp. 21–35:
https://homes.cs.washington.edu/~djg/papers/exists_imp.pdf.

http://tinyos.stanford.edu/tinyos-wiki/index.php

26  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

FILE SYSTEMSMarFS, a Near-POSIX Interface to
Cloud Objects
J E F F I N M A N , W I L L V I N I N G , G A R R E T T R A N S O M , A N D G A R Y G R I D E R

Jeff Inman is a Software
Developer in LANL’s High-
Performance Computing
Division, with surprisingly many
decades of research experience

in areas including parallelism, bioinformatics,
GPUs, compilers, embedded computing, and
scalable storage. jti@lanl.gov

Will Vining graduated from the
University of New Mexico with
a bachelor’s degree in computer
science in 2016. He is currently
a graduate student at LANL and

is one of the primary developers for MarFS.
wfvining@lanl.gov

Garrett Ransom is a recent
employee of LANL’s High
Performance Computing
(HPC) Division. As part of the
Infrastructure Team, Garrett

performs system administration and assists
with the development of storage technologies.
gransom@lanl.gov

Gary Grider currently is the
Division Leader of the High
Performance Computing (HPC)
Division at Los Alamos National
Laboratory. Gary is responsible

for all aspects of High Performance Computing
technologies at Los Alamos. ggrider@lanl.gov

The engineering forces driving development of “cloud” storage have
produced resilient, cost-effective storage systems that can scale to
100s of petabytes, with good parallel access and bandwidth. These

features would make a good match for the vast storage needs of High-Perfor-
mance Computing datacenters, but cloud storage gains some of its capability
from its use of HTTP-style Representational State Transfer (REST) seman-
tics, whereas most large datacenters have legacy applications that rely on
POSIX file-system semantics. MarFS is an open-source project at Los Ala-
mos National Laboratory that allows us to present cloud-style object-storage
as a scalable near-POSIX file system. We have also developed a new storage
architecture to improve bandwidth and scalability beyond what’s available
in commodity object stores, while retaining their resilience and economy. In
addition, we present a scheme for scaling the POSIX interface to allow bil-
lions of files in a single directory and trillions of files in total.

HPC Storage Challenges
The issues faced by extreme-scale HPC sites are daunting. We use Parallel File Systems to
store data sets for weeks to months, with sizes in the 100s of terabytes, and bandwidth on
the order of 1 TB/sec. On the other hand, our parallel archives are used to store data forever,
but can only support speeds of 10s of GB/sec. MarFS was designed to provide an economical
middle-ground between the expensive capacity of PFS and the expensive bandwidth of tape,
storing data sets for years, with speeds of 100s of GB/sec.

The supercomputers generating the data that is ultimately stored in MarFS are currently
in the millions of cores, and multiple PBs of memory, and are expected to grow to a billion
cores and 10s of PBs of memory beyond 2020. Applications that produce one file per process
on such machines could produce billions of files, which a user may want to keep in a single
directory. Furthermore, as we push to add value to the data we store, we expect file-oriented
metadata to grow by perhaps orders of magnitude. The goal is for MarFS to easily handle up
to multi-PB-sized data sets, as well as metadata for billions of files in a single directory, and
10s of trillions of files in aggregate.

Modern “cloud” storage systems provide a way to scale data storage well beyond previous
approaches, using sophisticated, highly scalable erasure-coded protection schemes. These
systems would allow us to build very reliable storage systems out of very unreliable (and
therefore inexpensive) disk technologies. The metadata underlying cloud storage is basically
a flat metadata space, which also scales very well. Reliability, economics, and scalability
combine to make this technology appealing to many large-data sites. For HPC, the problem
with these storage systems is that they only provide simple get/put/delete interfaces using
object-names, rather than POSIX file-and-directory semantics (files, directories, ownership,
open/read/write/close, etc.), and most HPC datacenters need to support legacy applications
that rely on POSIX semantics. It became clear from a market survey that other products that
provide POSIX-like access to scalable cloud objects were not designed to handle PB-sized
files, or billions to trillions of files.

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 27

FILE SYSTEMS FILE SYSTEMS
MarFS, a Near-POSIX Interface to Cloud Objects

MarFS is an open-source software technology developed at
LANL to bridge this gap, putting a highly scalable POSIX meta-
data interface on top of highly scalable cloud object systems,
making object storage systems usable by legacy applications.
MarFS scales data capacity and bandwidth by splitting data
across many objects, or even many object systems. For meta-
data, MarFS is designed to scale capacity and bandwidth in two
dimensions. Currently, directory-metadata is scaled by simple
directory decomposition high in the tree. We’ve developed a pro-
totype file-metadata service, where we’ve demonstrated scaling
metadata by sharding it across many file systems, as illustrated
in Figure 1. This metadata sharding is not yet in use in the pro-
duction version of MarFS.

MarFS Implementation Overview
Figure 2 shows the basic components of MarFS. There is a
metadata implementation that handles file and directory struc-
ture, and a data implementation that stores file contents. In the
default metadata implementation, user directories are imple-
mented as regular directories, and user files are represented
as sparse files truncated to the size of the corresponding data,
with hidden extended attributes that hold system metadata (e.g.,
object-ID). This gives us basic POSIX access-control “for free.”

Object-storage systems typically have a range of object-sizes for
which internal storage and/or bandwidth is optimal. When stor-
ing data for files larger than this, we break the data up into dis-
tinct objects (“chunks”), transparent to the user. We refer to such
multi-object files as “multi-files.” Allowing data to be inserted
or deleted in the middle of a multi-file (or to create sparse files)
would require metadata machinery that would compromise the
performance and scalability of parallel accesses. Therefore,
we don’t allow it. This makes us “not quite POSIX,” but we gain
trivial stateless computation of the object-ID and offset corre-
sponding to any logical offset in a file, maintaining efficiency for
parallel reads and writes.

Millions of small files pose another kind of metadata hazard
in that they may invisibly consume significant resources from
the object-store. We work around this by transparently pack-
ing many small files together into a single object, although they
appear to users as distinct files. The packing is done dynami-
cally, during data-ingest, by pftool (discussed below), so the
packed files will typically be found together in a directory
traversal, and are likely to be deleted together, avoiding packed
files with many “holes.” Nevertheless, we are also developing
a repacker, so that multiple “Swiss cheese” packed files can be
repackaged into fewer objects.

/ns.test1
sub.225
dir.17

sub.315

scatter0
scatter1
. . .
scatterk-1. . .

Shard 2

Directory-Metadata File-Metadata

/test1/dir/sub/myfile

/ns.test1
sub.225
dir.17

sub.315

scatter0
scatter1
. . .
scatterk-1. . .

Shard 0

/

/dir

/dir/sub

namespace = test1

(225)

/dir/A/B/sub (315)

(17)

1 2 3

4

/ns.test1
sub.225
dir.17

sub.315

scatter0
scatter1
. . .
scatterk-1. . .

Shard 1

/ns.test1
sub.225
dir.17

sub.315

scatter0
scatter1
. . .
scatterk-1. . .

Shard S-1

. . .

Figure 1: Storing metadata (MD) for a new file having path /test1/dir/
sub/myfile. A directory-MD Server (dMDS) holds directory MD, and a
set of file-MD Servers (fMDS) hold parts of the file MD. (1) The dMDS is
consulted for access-permissions (if not in cache). (2) The dMDS also re-
turns the inode of the leaf directory (e.g., 225). (3) A hash of the file-path,
modulo the number of fMDS shards, selects the shard to hold this file MD.
(4) The file-path hash, modulo number of internal “scatter” directories,
identifies the internal subdirectory for the MD.

Meta-Data Data
(namespace) (repository)

/

dir/

file3file2file1

http://10.10.0.xx:81/bparc/proxy1/a2334ba0f3e...

open
close
write
read
 . . .

put
get
delete

mknod
setxattr
mkdir
opendir

Figure 2: The default metadata scheme uses a regular POSIX file system
to represent files, with object-storage holding file contents. The file system
must support sparse files and extended attributes. Data and metadata
schemes are installed as modular DAL and MDAL implementations,
respectively.

28  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

FILE SYSTEMS
MarFS, a Near-POSIX Interface to Cloud Objects

The internal MarFS data-interface must translate between the
POSIX file-system semantics seen by applications (open/read
/write/close) and the RESTful semantics of an object-store (get
/put/delete). We do this by assigning an ongoing GET or PUT
transaction to a thread at “open”-time (or at the time when data
is first read-from/written-to an object). This thread can block in
the libcurl callbacks that move data on behalf of the transaction.
MarFS read or write requests then provide buffers that allow
the callbacks to unblock for long enough to write data from a
caller’s write-buffer to a PUT, or receive GET data into a caller’s
read-buffer, before blocking again. When object-boundaries are
crossed in a multi-file, MarFS transparently ends one transac-
tion to the old object and begins a new transaction to the corre-
sponding second object. This is depicted in Figure 3.

MarFS is driven by a configuration-file, allowing specification
of details like the layout of namespaces and repositories, object
chunk-sizes, resource quotas, types of access that are enabled,
file systems used for metadata, etc.

Flexibility
Our initial development utilized an object store supporting the
S3 protocol, but we are now in production with a Scality RING,
using Scality’s sproxyd. This protocol eliminates the need for
maintenance of some internal S3 metadata, improving band-
width. However, in our relentless quest for economical capacity
and bandwidth, we have developed an alternative to cloud-style
object-storage, doing our own erasure coding and storing the
coded parts in distinct ZFS pools, which themselves are also
erasure protected, forming a two-tier erasure arrangement.

Intel’s Intelligent Storage Acceleration Library (ISA-L) pro-
vides an efficient implementation of Galois Field erasure code
generation, allowing an arbitrary number of erasure blocks to be
generated for a set of data blocks. Up to that number of corrupted
blocks can then be regenerated from the surviving data and
erasure blocks. We wrapped ISA-L functionality within a utility
library (libne) to provide POSIX-like manipulation of sets of
data and erasure blocks through higher-level open, close, read,
and write functions. For example, data provided to the high-level
write function is subdivided into N blocks. The functions of
ISA-L are applied across the N data blocks to produce E addi-
tional erasure-code blocks, making a “stripe” of N+E blocks. The
stripe is then written across N+E internal files, with one block
per file.

The failure tolerance of the system depends on the number of
erasure blocks produced. Given (N+E) blocks written with libne,
we can survive the complete loss of up to E blocks of any stripe.
If desired, checksums are also calculated across each block,
providing a means of identifying corrupted blocks while reading,
and are stored within either the parts themselves or in their
extended attributes. Both N and E are configurable, allowing for
a customized balancing of the tradeoffs between computation
overhead and reliability.

Should a problem be detected, whether that be in the form of a
corrupted block, offline server, failed disk, or a failed checksum
verification, the erasure utilities will continue to service read
requests by automatically performing regeneration on the fly.
Such reads will also return an error code, indicating the blocks
that are corrupt or missing, but will not attempt to repair the
stored data itself. This approach preserves information about
failures while avoiding interference with other ongoing accesses.

The Data and Metadata Abstraction Layers
(DAL/MDAL)
The desire to experiment with swapping out storage-protocols
leads us to the idea of a Data Abstraction Layer (DAL). This is
an abstract interface to internal RESTful storage functions
(e.g., GET, PUT, and DELETE), which can be implemented and
installed in a modular way, swapping out the storage component
of Figure 2. We have used this approach to provide a new kind of

post

write

write

write

write
wait

read()

EMPTYFULL

File-Handle

libmarfs

wait

install
post

wait

GET

w
r
i
t
e
f
n

curl/aws4c

wait
X

RD

wait
wait

Figure 3: Sequence diagram showing interactions between a user per-
forming a read, a file-handle containing locks, and a thread performing
a GET operation on an object. The GET thread receives callbacks from
libcurl and uses locking to coordinate across multiple read() calls.
The colors of the locks (red/dark gray = FULL and RD, green/light gray =
EMPTY) in the file-handle are represented at the moment marked “X”.
The circle in the file-handle is a pointer to the caller’s read-buffer.

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 29

FILE SYSTEMS
MarFS, a Near-POSIX Interface to Cloud Objects

scalable data-store based on libne, where erasure-coded blocks
are written across a set of independent file systems. This should
allow us to overcome the overhead of the internal communication
and metadata management required of an object-store, improv-
ing our overall storage throughput without compromising reli-
ability. We refer to this architecture as multi-component storage.

We refer to a storage-server and its associated JBODs as a Disk
Scalable Unit (DSU). A DSU holds one or more capacity units,
and each capacity unit hosts an independent ZFS pool. All DSUs
have an identical configuration of capacity units. So, to expand
capacity, one would add an identical new capacity unit to every
DSU. ZFS provides its own erasure encoding and checksum pro-
tection for each data and erasure block, but it remains vulnerable
to large-scale failures. To maximize resilience and bandwidth,
each of the N+E files of a stripe is written to a different DSU, all
on the same-numbered capacity unit. Thus, we can survive the
complete loss of any E DSUs in the set of N+E that hold an object.

The parallel nature of this design allows for independent read
/write operations across each of the ZFS systems, without the
opacity and overhead of an object store. Our expectation is that
this architecture will provide improved bandwidth, with more
than sufficient reliability.

Multi-component (MC) storage is realized as an implementa-
tion of the Data Abstraction Layer, utilizing libne to perform
low-level accesses. The MC DAL depends on a directory tree of
NFS mounts, which groups capacity units (hosting ZFS pools)
into DSUs, and DSUs into pods, as shown in Figure 4. A pod is
just a set of N+E DSUs, where N and E are the parameters of the
erasure coding used in the repository. The blocks of a stripe are
written across a pod, starting at some DSU and wrapping within
the pod.

To reduce the number of files in any one of the internal directo-
ries of the individual storage systems, we add another layer of k
sub-directories (scatter0, scatter1, etc.) inside each ZFS pool.
For a repository that has 3+1 erasure coding, two pods of four
DSUs, and two capacity units per DSU, the directory scaffolding
might look like this:

/repo3+1/pod[0..1]/block[0..3]/cap[0..1]/scatter[0..k-1]/

To determine the location of the blocks for an object, we compute
a hash of the object-ID and use that to fill in the pod and scatter-
directory, in a path-template provided by the MarFS configura-
tion. For new data, computation of the capacity-unit may follow
from policy guidance (e.g., favor newly added capacity, or spread
load in a given ratio) rather than a simple hash. Filling-in these
fields of the scaffolding template produces a new template
(shown below), which is used by libne, along with a starting
block (also computed from the hash), to write the object across
the N+E independent storage systems in the selected pod:

/repo3+1/pod1/block%d/cap1/scatter7/object-id

In stripes where some blocks are all-zero, ZFS can store the zero
blocks much more compactly. By computing the starting block
from the hash, we can ensure that capacity is utilized at roughly
the same rate in each ZFS pool; otherwise, the capacity in block0
might be used up more quickly if a large number of small objects
are created. For access to existing data for which the capacity
unit can’t be predicted from metadata (e.g., from the creation-
date), we will generate a set of paths covering the available
capacity units and issue stat requests to all of them in parallel.

The MC DAL is configurable on per-MarFS-repository basis,
allowing for different storage configurations to be used simulta-
neously. The configurable parameters are the path template, the
number of pods, the erasure parameters (N and E), the number of
capacity units per DSU, and the number of scatter directories in
each capacity unit.

Multi-component storage provides a high level of data integrity
through two layers of erasure coding; data on any individual disk
is recoverable in two decoupled erasure regimes. ZFS allows
recovery of individual blocks, and data-blocks are stored along

dsu0:/zfs0

cap0

dsu0:/zfs1

cap1

dsu0

dsu1:/zfs0

cap0

dsu1:/zfs1

cap1

dsu1

dsu2:/zfs0

cap0

dsu2:/zfs1

cap1

dsu2

client

pod0

/repo/pod0/block0/cap0
/repo/pod0/block0/cap1

/repo/pod0/block1/cap0
/repo/pod0/block1/cap1

/repo/pod0/block2/cap0
/repo/pod0/block2/cap1

Figure 4: NFS mounts and exports supporting the multi-component DAL.
This example shows a single “pod” of 3 DSUs (e.g., N=2, E=1), each having
two capacity units. The capacity units each host a single ZFS file system
which is exported via NFS. On the client, NFS mounts are made to each
of the exports. A stripe of three blocks would be written across the DSUs.
The scatter directories are internal to the ZFS file systems and are not
shown here.

30  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

FILE SYSTEMS
MarFS, a Near-POSIX Interface to Cloud Objects

with erasure-blocks across ZFS pools. Even moderately sized
multi-object files will tend to have objects in all pods. Because
the pods are independent, we could lose E pools from each of the
pods without data loss.

In conjunction with libne, the MC DAL can read through miss-
ing blocks or corrupted data. Errors are detected when an object
is read. When that happens, the object-ID is flagged as degraded
and logged to a file so the object can be rebuilt, either by an
offline program run by an administrator, or by a daemon that is
notified when there is rebuild work to be done.

We also support a Metadata Abstraction Layer (MDAL), allow-
ing modular replacement of the metadata system. This is how we
would swap-in something like the scalable MD system of Figure
1, replacing the metadata implementation in Figure 2.

Metadata Performance
MarFS teammates wrote an MPI application to measure pure
metadata (MD) performance and scalability in the forward-
looking scheme of Figure 1. The goal was to benchmark only
internal MD activity, ignoring any overhead associated with
the persisting of data or metadata. Thus, we installed a “no-op”
DAL that does nothing for data-write operations, and an MDAL
that integrates with the application. Specific MPI ranks acted
as clients, file-MD shards, a directory-MD shard (one instance
only), or as the master. File and directory MD were stored in
tmpfs. Clients performed scripted MD operations, organized by
the master rank.

Using 8800 * 16 cores, and one MPI rank/core, we were able to
create approximately 820M files/sec, and we stored 915 billion
files in a single directory. Because the MD is distributed, and
resides in a broad directory-tree per shard, a stat of any one of
these files can return quickly. We are exploring semantics for
parallel readdir and stat in this model.

Data Performance
Our production hardware uses SMR drives everywhere, and
there has been concern about sustained throughput in this
technology. On an object-storage testbed with 48 DSUs, we were
able to achieve 28.5 GB/sec, for sustained low-level writes. With
production workloads on similar hardware (but with incomplete
JBODs), we are typically seeing less than 15 GB/sec. To support
the pre-tape tier of the storage hierarchy for the new Trinity
supercomputer, this is less-than-hoped-for performance. The
multi-component architecture was developed to boost band-
width, while also increasing reliability.

We are building a new testbed with 12 DSUs. There, we will
debug and benchmark the MC DAL back end in a 10+2 configura-
tion to prepare for a transition to production, where the 48 DSUs
will be treated as four pods of 10+2.

Parallel Data-Movement with pftool

pftool is an open-source tool for moving data in parallel from
one mounted file system to another and is the de facto produc-
tion workhorse for performing data-movement at scale between
storage systems at LANL. Moving data is coordinated by a
scheduler which distributes subtasks to worker processes scat-
tered across a cluster. As workers become idle they are given
new subtasks, including performing one portion of the parallel
traversal of the source-directory tree (returning sets of source-
files for copy/compare as new subtasks) or executing one such
copy/compare subtask. For large files, a copy/compare subtask
can refer to a set of offset+size “chunks” of the large file to be
copied, allowing large individual files to be copied in parallel, as
well. pftool coordinates with file systems to choose this chunk-
size. For MarFS, this means large files are broken into chunks
that match up with back-end objects in a multi-file, and a special
exemption from our sequential-writes-only rule is granted.

The subtasks are executed independently of each other and are
asynchronous with respect to the scheduler. If the overall opera-
tion fails or is cancelled, it can be restarted and will efficiently
resume with any portions of the work that were not previously
performed. The duties of the scheduler are light (dispatching
subtasks from a work-queue), so the scheduler doesn’t become a
bottleneck even at very large scales. The result is a self-balanc-
ing parallel data-movement application.

Future Work
We are exploring several new development paths, including the
MD scalability of Figure 1, pftool extensions to allow cross-site
transport, custom-RDMA protocols to improve storage band-
width, and power management schemes for cold storage.

Acknowledgments
We thank our hard-working teammates. Thanks to Rik Farrow
for helpful comments. This work was done at the Los Alamos
National Laboratory, supported by the US Department of Energy
contract DE-FC02-06ER25750. This publication has been
assigned the LANL identifier LA-UR-16-28952. MarFS can be
downloaded at https://github.com/mar-file-system/marfs. A
commercial product using MarFS has been announced, with Lus-
tre for metadata and SpectraLogic Black Pearl for data storage.

Become a USENIX Supporter and
Reach Your Target Audience

The USENIX Association welcomes industrial sponsorship and offers custom packages
to help you promote your organization, programs, and products to our membership
and con ference attendees.

Whether you are interested in sales, recruiting top talent, or branding to a highly
 targeted audience, we offer key outreach for our sponsors. To learn more about
 becoming a USENIX Supporter, as well as our multiple conference sponsorship
 packages, please contact sponsorship@usenix.org.

Your support of the USENIX Association furthers our goal of fostering technical excel-
lence and innovation in neutral forums. Sponsorship of USENIX keeps our conferences
affordable for all and supports scholarships for students, equal representation of women
and minorities in the computing research community, and the development of open
source technology.

Learn more at:
www.usenix.org/supporter

32  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

PROGRAMMINGCuring the Vulnerable Parser
Design Patterns for Secure Input Handling

S E R G E Y B R A T U S , L A R S H E R M E R S C H M I D T , S V E N M . H A L L B E R G ,
M I C H A E L E . L O C A S T O , F A L C O N D . M O M O T , M E R E D I T H L . P A T T E R S O N ,
A N D A N N A S H U B I N A

Sergey Bratus is a Research
Associate Professor of
Computer Science at
Dartmouth College. He sees
state-of-the-art hacking as a

distinct research and engineering discipline
that, although not yet recognized as such,
harbors deep insights into the nature of
computing. He has a PhD in mathematics from
Northeastern University and worked at BBN
Technologies on natural-language processing
research before coming to Dartmouth.
sergey@cs.dartmouth.edu

Lars Hermerschmidt is currently
working as Information Security
Officer at AXA Konzern AG,
where he is leading software
security activities. He is a PhD

candidate in software engineering at RWTH
Aachen University, where he started to work
on correct unparsers to prevent injections and
on automated security architecture analysis.
hermerschmidt@se-rwth.de

Sven M. Hallberg is a
programmer by passion, a
mathematician by training, and
calls himself an applied scientist
of insecurity by profession. He

contributed large parts to the Hammer parser
library and wrote the DNP3 parser based on it.
He is currently pursuing a doctoral degree at
Hamburg University of Technology, Germany,
where he tries to further apply LangSec
principles to cybernetic systems.
pesco@khjk.org

Programs are full of parsers. Any program statement that touches
input may, in fact, do parsing. When inputs are hostile, ad hoc input
 handling code is notoriously vulnerable. This article is about why

this is the case, how to make it less so, and how to make the hardened parser
protect the rest of the program.

We set out to make a hardened parser for an industrial control protocol known for its com-
plexity and vulnerability of previous implementations: DNP3 [1]. We started with identifying
known design weaknesses and protocol gotchas that resulted in famous parser bugs; we soon
saw common anti-patterns behind them. The lesson from our implementation was twofold:
first, we had to nail down the protocol syntax with precision beyond that of the standard,
and, second, we formulated and followed a design pattern to avoid the gotchas.

We’ve used this approach with other protocols. Our parser construction kit Hammer (https://
github.com/UpstandingHackers/hammer) allows a programmer to express the input’s syn-
tactic specification natively in the same programming language as the rest of the application.
Hammer offers bindings for C, C++, Python, Ruby, Java, .NET, and others, and is suitable for
a wide variety of binary protocols.

Sadly, there is no silver bullet one could implement in a library and simply reuse in every
program to fix unsafe input-handling once and for all. However, we found several design pat-
terns for handling input correctly, and thus making programs resilient against input-based
attacks. In the following sections we describe three of them: the Recognizer, the Most Restric-
tive Input Definition, and the Unparser.

These patterns came from studying famous input-handling code flaws and what made them
that way. Importantly, we found that the problems started with the choice of the input syntax
and format that forced additional complexity on the code. The code flaws were made more
likely by the choices of input structure; in a word, data format doomed the code.

“Don’t trust your input” doesn’t help to write good parsers. First, we need to deal with
the standing advice of “Don’t trust your input.” This advice doesn’t give the programmers any
actionable solution: what to trust, and how to build trust? Without giving developers a recipe
for establishing whether the input is trustworthy, we cannot expect correct software. This is
a design issue, which no amount of penetration testing and patching can fix.

The problem of trust in the data is old. This is what types in programming languages arose
to mitigate: the problem of authenticating the data, as James H. Morris Jr. called it in 1973
[2], before operating on it. We now call it validating the data, although our opponent is not
 Murphy—randomly corrupted data that leads to crashes—but Machiavelli: purposefully
crafted data that leads to state corruption and compromise, aka unexpected computation.

Trustworthy input is input with predictable effects. The goal of input-checking is being
able to predict the input’s effects on the rest of your program. Already, as we speak of checking
the input, we assume that there is a checker separate and distinct from the rest of the code;
we will make this distinction precise in the design patterns discussed below. The standing
advice to validate input implicitly assumes that, if the input is valid, then its effects are predict-
able and do not include unexpected computation; it is safe to pass on to the rest of the program.

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 33

Safety—that is, predictability of execution—comes from the combination of both the input
format and the code checking it being simple and well-structured.

How do we know that reading a file that contains a hundred records is safe? How can we be
sure that the execution is predictable? We’ll have to start with the idea that a single record
can be predictably read, and that the actions required for the reading are repeatable. One way
to do so is to make sure the validity of each record can be judged apart from the contents of
others, and that any objects constructed from it depend only on that record. This means that
the records encode independent objects that follow each other (rather than nesting in each
other). A pattern is allowed to repeat without limit, or up to a certain number of times, but
its structure must be rigid; a pattern cannot contain itself recursively, directly or indirectly.
Then, if it’s safe to call the code that parses a record once, it’s safe to call it repeatedly.

Some nesting of objects in a record is allowed but only in a pre-defined pattern: if we draw
the objects containing each other as a tree, the shape of that tree is rigid except for possible
repetition of a node where that kind of node is allowed. Supposing that each object is parsed
by a separate function, the shape of the call graph is similar to the shape of the tree. This
roughly corresponds to so-called regular syntax (as in regular expressions).

In short, when parsing such regular formats, the answer to “What should I do next?” or “Is
the next part of the input valid?” doesn’t depend on reexamining any previous parts. Thus the
code that works predictably once is sure to work again.

However, not all formats can be so restricted. In HTML or XML, for example, elements can
be nested in elements like themselves to an arbitrary depth. The same is true for file systems
that have directories and for formats that emulate such file systems such as Microsoft’s OLE2.
Other formats, like PDF, have other kinds of container objects that can nest to any depth.

For such formats, whether it is safe to invoke the code that parses an object again and again
may not be predictable, because it could be called under a potentially infinite set of circum-
stances. Should the result depend on the path to the top of the tree of objects or, worse, on the
sibling nodes in that tree, such dependencies may now pile up infinitely. Unlike the regular
case above, the shape of the tree is no longer rigid; much variation in its form can occur. Now
the code needs to foresee a potentially unlimited number of possible paths and histories
after which it gets called; the more its behavior is supposed to depend on reexamining other
objects, the harder it is to get it right (and the harder it is for a programmer to have a succinct
mental model of its behavior that has any predictive power whatsoever).

Thus the simpler the better; and only with the simplest formats can some assurance be
obtained. The simplest syntax patterns are regular and context-free. Context-sensitive pat-
terns are much harder to parse, and the code is much harder to reason about. In fact, such
reasoning poses undecidable or intractable problems for formats that seem fairly intuitive
and straightforward. We refer the reader to [3] and http://langsec.org/ for the theory; here,
we’ll look at the common scenarios of how things go wrong instead.

How Input Handling Goes Wrong
From a certain perspective, input data is “just” a sequence of symbols or bytes. But this
sequence drives the program logic involved in construction and manipulation of some
objects. These objects drive the rest of the program and must do so predictably.

The program should make no assumptions about these objects beyond those that the parser
constructing them validates. If it does, the likely effect of its code working on data it does
not expect will be exploitation. This relationship between the parser’s results and assump-
tions made by the rest of the program is crucial, but the absolute majority of programming

Michael E. Locasto is a Senior
Computer Scientist at SRI
International, where he works
in the Infrastructure Security
Group and leads several

projects dealing with IoT security and secure
energy systems research. He was previously
an Associate Professor at the University of
Calgary and an I3P Fellow at George Mason
University. He is interested in why computer
programs break and how we can get better at
fixing them. michael.locasto@sri.com

Falcon Darkstar Momot is a
Senior Security Consultant
with Leviathan Security
Group. He leads security
reviews and penetration tests

of software and networks at various large
software companies, with an eye to process
improvements. He received a BSc in computer
science from the University of Lethbridge and
is an MS student at Athabasca University.
In his spare time he teaches people how to
use amateur radios and works on a team to
maintain an operational Bell System No. 1
Crossbar. falcon@iridiumlinux.org

Meredith L. Patterson is
the founder of Upstanding
Hackers. She developed the
first language -theoretic defense
against SQL injection in 2005

as a PhD student at the University of Iowa and
has continued expanding the technique ever
since. She lives in Brussels, Belgium.
mlp@upstandinghackers.com

Anna Shubina is a Research
Associate at the Dartmouth
Institute for Security,
Technology, and Society.
She was the operator of

Dartmouth’s Tor node when the Tor network
had about 30 nodes total.
ashubina@cs.dartmouth.edu

PROGRAMMING
Curing the Vulnerable Parser: Design Patterns for Secure Input Handling

34  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

PROGRAMMING
Curing the Vulnerable Parser: Design Patterns for Secure Input Handling

languages do not provide any means of expressing it. Yet it has
multiple ways of going wrong. Either the data’s design is so
complex that it invites bugs, or the programmer misunderstands
the kind of validation that the data needs. Let us look at some of
these examples.

Input too complex for its effects to be predictable. Safety is
predictability. When it’s impossible to predict what the effects of
the input will be (however valid), there is no safety.

Consider the case of Ethereum, a smart contract-based system
that sought to improve on Bitcoin. Ethereum operators like
the decentralized autonomous organization (DAO) accepted
contracts—that is, programs—to run in a virtual environment on
their system; the code was the contract. The program that emptied
the DAO’s bank was a valid Ethereum program; it passed input vali-
dation. Yet it clearly performed unintended computation (creative
theft of funds) and should not have been allowed to run.

Could the DAO have made this determination beforehand, algo-
rithmically? Certainly not; Rice’s theorem says that no general
algorithm for deciding non-trivial properties of general-purpose
programs may exist, and predicting the effects of a program on
a bank such as DAO’s is beyond even “non-trivial”—even the
definition of malice in this context may not be amenable to com-
plete computational expression. We will not dig into this theory
here but will instead appeal to intuition: how easy would it be to
automatically judge what obfuscated program code does before
executing it? A Faustian Ethereum smart contract is hardly
any easier. From the viewpoint of language-theoretic security, a
catastrophic exploit in Ethereum was only a matter of time: one
can only find out what such programs do by running them. By
then it is too late.

Arbitrary depth of nesting vs. regexp-based checking. The
arrangement (ordering and relative location) of objects in input
requires a matching code structure to validate. Famously, regu-
lar expressions do not work for syntactic constructs that allow
arbitrary nesting, such as elements of an HTML or XML docu-
ments or JSON dictionaries. These constructs may contain each
other in any order and to any depth; their basic well-formedness
and conformance to additional format constraints must be vali-
dated at any depth.

Regular expressions (regexps), which many Web applications
erroneously use to check such structures, cannot do it. Regexps
were originally invented to represent finite state machines,
and those are incompatible with arbitrary-depth nesting. Thus
regexps are best suited to checking sequences of objects that
contain and follow each other in a particular order, repeat one
or more times (or zero or more times), but do not infinitely nest;
in other words, a finite state machine has no way of represent-
ing trees that can go arbitrarily deep. One can write a pattern

that nests to some given depth N, but what about an input byte
sequence where objects nest to depth N + 1? The attacker can
craft just such an input and bypass the check.

Although regexp extensions found in modern scripting lan-
guages such as Perl, Python, and Ruby extend the power of their
regexps beyond finite state machines, it is quite hard to write
such patterns and get them right. Put differently, finite state
machines cannot handle recursion well; a stack is needed there,
and stack machines make a different, more powerful class
of automata. Try writing a regexp without back references to
match a string where several kinds of parentheses must nest in
a balanced way. It cannot be done; the same problem arises with
matching nesting XML elements of several kinds.

Perhaps the best known example of this mistake was the buggy
anti-XSS system of Internet Explorer 8. Using regexps to “fix”
supposed XSS led to non-vulnerable HTML pages being rewrit-
ten into vulnerable ones, the fix adding the actual vulnerabilities
[5]. Web app examples of vulnerable checks of (X)HTML snip-
pets are many and varied.

Context sensitivity. The lesson of the previous pitfall—still not
learned by many Web apps—is that judging input must be done
with appropriate algorithmic means, or else the program won’t
be able to tell if the data is even well-formed. But this is not the
only trouble there can be.

Besides being well-formed, objects should only appear where it is
legal for them to appear in the message. Judging this legality can
be troublesome when the rules that determine validity depend
not just on the containing object or message (i.e., the “parent”
of the object we are judging), but on other objects as well, such
as “sibling” objects in that parent or even some others across
protocol layers.

For example, imagine that an object contains a relative time
offset, in a shorter integer field, which is relative to another
object that has the longer absolute value. For the relative value to
appear legally, there has to be an absolute value somewhere pre-
ceding it, and the checker must keep track of this. This situation
actually occurs in DNP3.

A closer-to-home example is nested objects that each include a
length field. Since these lengths specify where each (sub)object
ends (and another begins), all these lengths must agree with
each other, and with the overall length of the message; that may
be a quadratic number of checks on these fields alone!

The infamous Heartbleed bug arose from just such a construct:
the agreement between the length fields of the containing
SSL3_RECORD and the HeartbeatMessage contained in it was not
checked, and the inner length was used to grab the bytes to echo
back. Set that inner length to 65535, and that’s how many bytes

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 35

PROGRAMMING
Curing the Vulnerable Parser: Design Patterns for Secure Input Handling

OpenSSL included, even though the overall message length was
set at a modest four bytes. The GNU TLS Hello message CVE-
2014-3466 similarly took advantage of three nested lengths that
were expected to agree but didn’t get checked.

An older but equally famous example was the 2002 pre-authen-
tication bug in OpenSSH 3.3 exploited by GOBBLES; there, the
lengths of all SSH options would need to sum up to the length
of the packet, and instead overflowed an integer allocation size
variable before the crafted packet could be discarded.

Such formats where validity rules require checking proper-
ties across object boundaries are called context-sensitive. They
require more complex checkers—and are more error-prone.
Indeed, it is violating these relationships that’s first tried by
exploiters: a forgotten check is more likely there and thus an
action on unchecked data that’s not what the code expects.

It’s best to be able to judge an object’s legality based either
just on its own content or on what type its parent object is;
that is, context-free syntax is preferable to the more complex
context-sensitive.

Transformation before validation. Another lesson from
vulnerable ways of handling such a seemingly straightforward
format as XML is that input messages should be checked as they
arrive, without additional transformations, least of all those
driven by the elements of these messages themselves. This has
been a source of famous vulnerabilities with XML entities.

An XML document may include entities, syntactic elements that
will be resolved and replaced, by string substitution, through-
out the body of the document. Substitutions may occur in many
rounds if entities include other entities, which, in turn, will be
parsed and substituted, all before the document can be finally

validated. The simplest consequence of this is that a short docu-
ment can expand to gigabytes in size by using several levels of
entities and repetition, the so-called “billion laughs” attack.

XML entities may also include references to external documents
that need to be fetched and inserted before the input data object
can be constructed and validated. Fetching an XML external
entity (XXE) may already be an undesirable action in and of
itself, and can trigger execution of other code; at the very least it
creates network connections and can exfiltrate files, or even lead
to remote code execution.

It becomes instantly clear that XXEs are trouble when you con-
sider that an action is taken based on input before that input has
been fully validated. XXEs bring actions into the recognition
process, thus breaking the separation between recognition and
processing. By comparison, JSON has no such feature, and JSON
objects are judged as they are received. This may account for an
order of magnitude difference in CVEs related to XML (850 at the
time of this writing, of which 216 are XXE-related) vs. JSON (96).

The shotgun parser. We say we have a shotgun parser where
validation is spread across an implementation, and program
logic grabs data from the input-handling code before the full
data’s correctness is assured. This makes it very hard to follow
the dependencies and assumptions made by the code, which,
in turn, leads to vulnerabilities and unexpected behavior. The
antidote for this is separation of concerns: validation first, then
a clear boundary at which the data has been validated to a clear
specification—and not used before.

But what comes out at that boundary? It is data as objects:
constructed and fully conforming to the definitions of the data
structures to be extracted from input. Reaching in to use them

Figure 1: The Recognizer Pattern for validating raw input and providing it to the business logic: (a) input data flow through the Recognizer Pattern;
(b) the Recognizer Pattern as a UML class diagram

InputDataParser

Handler

handle(InputData d)
error()

InputGrammar CD

Business
Logic

RawInput

36  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

PROGRAMMING
Curing the Vulnerable Parser: Design Patterns for Secure Input Handling

before they are ready is an anti-pattern that resulted in Heart-
bleed (a remote memory leak) and many remote code executions
like the 2002 OpenSSH bug or the GNU TLS Hello bug.

A million-dollar misnomer. Another key misconception about
input data is that it is generally benign but can contain unsafe
elements that should (and can) be “sanitized” or “neutralized.”
The choice of words suggested that having these elements
removed or altered makes the data safe overall.

As a typical result of this (mis)understanding, the input is trans-
formed by filtering it through regexp-based substitutions, where
the regexps match the “bad” syntactic elements and replace
them with some “safe” ones or suppress them.

The problem with this intuition is immediately clear: validity as
predictability of execution is the property of the entire input, not
of a few characters!

Deserialization is parsing, too! It should be clear by now that
deserialization is not a trivial concern to be handled by some
auxiliary code; it is a security boundary. This boundary exists
between every pair of components that communicate outside a
strong typing system or that use different structures to repre-
sent data.

It is the deserialization code’s responsibility to create the
conditions that the rest of the program can trust; otherwise any
assurance of good program behavior is lost. That’s why the prop-
erties of the serialized payload should be as simple as possible to
check and, once checked, reliable enough to ensure predictable
behavior.

Simply put, what a deserializer cannot check, the rest of the code
should not assume. If serialized objects aren’t self-contained and
validatable on their own, the game is already lost; so many Java
deserialization bugs, Python unpickling bugs, Remote Procedure
Call bugs, and so on have turned into exploits.

The Recognizer Design Pattern for Input
Validation
Input validation needs design patterns. Ensuring that input
data is safe to process is a distinct, specialized role for code. As a
matter of program architecture, any specialized code should be
isolated in a dedicated component. Design patterns are a natural
way to express the relationships of this component with others.

The main input-handling pattern we discuss is the Recognizer
Pattern. As a whole, a recognizer has the sole task of accepting
or rejecting input: it enforces the rule of full recognition before
processing. This pattern concentrates the logic responsible for
strictly matching the input’s syntax with the specification and
discarding any inputs that don’t match.

The Recognizer Pattern in Figure 1 describes the relationships
between five main elements: the InputGrammar, the Parser, the
RawInput, the Handler, and the data type representing the input
data within the program (called InputData in Figure 1 (b)). The
locus of the Recognizer Pattern is the Parser. The Parser uses
the InputGrammar as a definition of the valid input syntax. For
input sequences read from the RawInput that comply with that
syntax, the Parser produces a correctly instantiated InputData
object representing the input in the programming language’s
type system. Importantly, the Parser only invokes the handle()
method of the Handler interface after creating InputData
objects. The Handler interface must be implemented by the
“business logic” of the application. This arrangement cleanly
separates the parsing logic from subsequent processing within
the business logic, as the Handler can only access InputData
validated by the Parser. This provides a crucial guarantee to the
remainder of the business logic that the data has been validated
and that such validation is structurally sound (i.e., it cleanly
handles InputData objects nested within each other).

Most Restrictive Input Definition
In order to fully take advantage of this pattern, the input syntax
specification expressed as the Grammar component should have
a minimum of complexity needed to represent input objects. This
point is very important because it openly acknowledges the price
of adopting the Recognizer Pattern. Part of the value of adopt-
ing this approach is that you have a clear idea of what data you
accept, but you give up attempting to accept arbitrarily complex
data. Practically speaking, this means purposeful, thoughtful
subsetting of many protocols, formats, encodings, and com-
mand languages, including eliminating unneeded variability and
introducing determinism and static values. The design principle
for creating predictable programs is to choose the most restrictive
input definition for the purpose of the program; we acknowledge
that it may be challenging to completely articulate the purpose
of the program well enough, and that errors may still exist deeper
in the program logic.

Parser Combinators: Don’t Fear the Grammar!
At the heart of the Recognizer Pattern is keeping the admitted
inputs to a strict definition of valid syntax. Being definite about
the input gives the pattern its power; but how to do so without
undue burden?

Historically, computer scientists wrote such definitions in spe-
cial languages such as Augmented Backus-Naur Form (ABNF).
Unfortunately, that’s one more language—and another set of
tools—for developers to learn; too much investment for handling
what might seem a simple binary format! Moreover, after having
written the input data definitions as a grammar (say, for yacc or
Bison), one would need to write them again, in code, to construct
the actual objects.

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 37

PROGRAMMING
Curing the Vulnerable Parser: Design Patterns for Secure Input Handling

To add to developer confusion, yacc and Bison focus primarily on
compiler construction, not binary parsing. The code they gener-
ate is quite unreadable: it’s a large state machine with none of its
internals named in a way to make sense to humans. Interfacing
processing code with it is hard and has led to many mistakes.

Finally, another concern about grammars is that they have
subtle gotchas to confuse their developers, such as left recur-
sion’s incompatibility with classic LL(k)-parsing algorithms.

Fortunately, the parser combinator style of writing input han-
dling code provides a graceful way around these obstacles. The
parser combinator style of programming defines the grammar
of the input language and implements the recognizer for it at the
same time. Thus it repackages strict grammar constraints on
input in a form much more accessible to developers than do bare
grammars, while retaining all of the rigor and power.

We took the parser combinator approach, and implemented the
Hammer parser construction kit to specifically target parsing
of binary payloads (e.g., describing bit flags and fields that cross
byte boundaries is simple in Hammer, unlike in character-ori-
ented parsing tools). Hammer targets C/C++, where the need for
secure parsing is the strongest, yet modern tools for it (such as
ANTLR) are not available.

Hammer supports hand-writing code that looks like the gram-
mar and captures the definition of the recognized language in
an eminently readable form. However, it does not preclude code
generation. For example, Nail [4], a direct offshoot of Hammer,
comes with a code-generation step.

But didn’t ASN.1 solve this problem? The formidable ASN.1
standard was expected to solve the problem of unambiguously
representing protocol syntax. Separating the syntax from encod-
ing and specifying the encoding rules separately was supposed
to open the way for automatically validating data against specifi-
cation. The security gain from this would be obvious.

In reality, ASN.1 encoding rules and code generation tools cre-
ated enough complexity and confusion to result in a series of
high-profile bugs. The more permissive BER seems to be doing
worse than DER: 45 vs. 26 related entries out of a total 95 ASN.1-
related CVEs (based on a simple keyword search). Overall, the
security record of ASN.1 does not suggest an equivalent security
win for code generation.

Specifying a format with combinators. Here is an excerpt
showing what our parser combinator code looks like. Remember,
under this style everything gets its own parser, even a bit flag.
This may seem excessive, but it truly defines the format from the
ground up, and makes it clear, at every point, what structure is
expected from inputs, and which properties have been checked
and are being checked. Since Hammer targets binary protocols,

it provides primitives for a field containing a given number of
bits, h_bits, and a way to limit such a bit field to a range of pos-
sible integer values, h_int _range.

These individual parsers are connected up to parsers for each
sub-unit of the message with combinators, such as sequencing
(h_sequence, arguments are a NULL-terminated sequence of
constructs that must follow each other), repetition (h_many, h_

many1, h_repeat_n for the same respective meanings as *, + and
{n} in regexps), or alternatives (h_choice).

Let’s build up the parser for a DNP3 application header, which
starts with a four-bit sequence number followed by four single-
bit flags, then a one-byte function code (FC), and is optionally
followed by a 16-bit field called “internal indications” (IIN), of
which two bits are reserved. Whether a payload is a response or
a request is determined by the flag combination. Not all combi-
nations of flags are legal, and IIN is only legal in payloads that
represent protocol responses, not requests. All these dependen-
cies must be checked before the payload can be acted upon—or
else memory corruption awaits.

We start with building up the bits for flags and their allowed
combinations:

bit = h_bits (1, false);

one = h_int_range(bit, 1, 1); // bit constant 1

zro = h_int_range(bit, 0, 0); // bit constant 0

conflags = h_sequence(bit, zro, one, one, NULL); // confirm

reqflags = h_sequence(zro, zro, one, one, NULL); // fin, fir

unsflags = h_sequence(one, one, ign, ign, NULL); // unsolicited

rspflags = h_sequence(zro, bit, bit, bit, NULL); // response

Then comes the start of the header, with its several valid alterna-
tives. The rest are illegal and will be discarded.

seqno = h_bits(4, false /* unsigned */);

conac = h_sequence(seqno, conflags, NULL);

reqac = h_sequence(seqno, reqflags, NULL);

unsac = h_sequence(seqno, unsflags, NULL);

rspac = h_sequence(seqno, rspflags, NULL);

iin = h_sequence(h_repeat_n(bit, 14), reserved (2) , NULL);

...

req_header =

 h_choice(h_sequence(conac, confc, NULL),

 h_sequence(reqac, reqfc, NULL), NULL);

rsp_header =

 h_choice(h_sequence(unsac, unsfc, iin, NULL) ,

 h_sequence(rspac, rspfc, iin, NULL), NULL);

38  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

PROGRAMMING
Curing the Vulnerable Parser: Design Patterns for Secure Input Handling

Not shown here are the parsers for the one-byte function code
field (confc, reqfc, unsfc, and rspfc), which enforce the appropri-
ate value ranges. For example,

fc = h_uint8();

reqfc = h_int_range(fc, 0x01, 0x21);

and so on.

This example shows how the parser combinator-style code
defines the expectations regarding the input precisely and
implements a recognizer for them at the same time. But there’s
more—this recognizer doubles as the constructor of the parsed
objects! For more detail, see [1].

Handling Output: The Unparser Pattern
So far we’ve only considered the case of an adversary that can
directly provide input to a program. However, in interconnected
systems, e.g., a Web server and a database, there are back-end
systems like the database that only process input provided by
the front-end Web server. Nevertheless, unexpected input to the
front end may manipulate its output so that the back end inter-
prets this in a way not intended by the developer. Therefore we
need to discuss how to make back-end systems safe from indi-
rect input attacks, where hostile inputs are passed by another
program. Examples include SQL injection (SQLi) and cross-site
scripting (XSS) and are most common in, but not limited to, text-
based languages like SQL and HTML.

This injection into the output of the front end cannot, gener-
ally speaking, be prevented by the Recognizer at the front end.
The reason is simple: the Recognizer enforced the specification
of the input language; the language expected to be output by a
program is different, and the Recognizer has no information

about it. Hence it cannot reject those inputs that cause problems
in output.

Commonly, textual output is created by concatenating fixed
strings like SQL query parts with program input. Since textual
languages like SQL use special tokens such as quotation marks
to separate data from code, those tokens must be encoded when
used within the program’s output. Otherwise, input might
change the meaning of the created output by using these tokens.
Using templates where variables are replaced by input data, e.g.,
to create HTML, suffers from the same core problem: naïve cre-
ation of output with string concatenation that is not aware of the
string being a language parsed by another program.

A defensive design pattern must encapsulate this awareness. For
creating output and ensuring it is well formed, we developed the
Unparser Pattern shown in Figure 2. Its operation is essentially
reverse to that of the Recognizer: it uses a language specification
(an OutputGrammar) to serialize existing valid objects to that
specification.

Just as the Parser is the only class meant to read from RawInput,
only the Unparser writes output to the RawOutput. Therefore,
creating output from the perspective of the business logic works
by instantiating OutputData objects and filling them with data
without caring whether this data might contain special tokens
of the output language. The Unparser takes these objects and
creates a serialized output. It uses the definition of the Output-
Grammar to ensure tokens possibly contained in the OutputData
are encoded properly.

SQL’s prepared statements interface is a special case of this pat-
tern that had not been generalized to other output languages; we
correct that. Our OutputData class provides an interface similar
in function but more general and strongly typed. More about
unparsers can be found in [6]; McHammerCoder (https://github
.com/McHammerCoder) is our binary unparser kit for Java.

Finally, connecting the Recognizer, Most Restrictive Input
Definition, and Unparser patterns using a business logic that
translates InputData to OutputData results in a Transducer. The
special case when InputGrammar and OutputGrammar are the
same can be employed as a transparent filter at the trust bound-
ary of a system. It acts like a syntactic firewall, improving the
system’s predictability by enforcing a strict input specification.
We implemented this approach in our DNP3 exhaustive syntac-
tic validation proxy and recommend it for other protocols.

CD

Unparser

write(OutputData d)

OutputData

OutputGrammar

Business
Logic

RawOutput

OutputEmitter

Figure 2: The Unparser Pattern for creating valid output illustrated as a
UML class diagram.

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 39

PROGRAMMING
Curing the Vulnerable Parser: Design Patterns for Secure Input Handling

Conclusion
After decades of repeated embarrassing failure, the larger pro-
grammer community accepted that “rolling your own crypto”
was simply the wrong approach; effective cryptography required
using professional tools.

This realization came none too soon, but a bigger realization
awaits: rolling your own parser is just as bad or worse. Faulty
input-handling is a bigger threat to security than faulty crypto,
simply because, as a target, it comes before crypto and leads to
full compromise. Solid design and professional tools are needed,
just as with crypto; otherwise, the insecurity epidemic will
continue.

References
[1] S. Bratus, A. J. Crain, S. M. Hallberg, D. P. Hirsch, M. L.
Patterson, M. Koo, and S. W. Smith, “Implementing a Verti-
cally Hardened DNP3 Control Stack for Power Applica-
tions,” Annual Computer Security Applications Conference
(ACSAC), Industrial Control System Security Workshop
(ICSS), December 2016, Los Angeles, CA.

[2] J. H. Morris, Jr., “Types Are Not Sets,” in Proceedings of the
1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages (POPL ’73), October 1973, pp. 120–124.

[3] L. Sassaman, M. L. Patterson, S. Bratus, M. E. Locasto,
and A. Shubina, “Security Applications of Formal Language
Theory,” IEEE Systems Journal, vol. 7, no. 3, September 2013;
Dartmouth Computer Science Technical Report TR2011-709.

[4] J. Bangert and N. Zeldovich, “Nail: A Practical Tool for
Parsing and Generating Data Formats,” in Proceedings of the
11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’14): https://www.usenix.org/system
/files/conference/osdi14/osdi14-paper-bangert.pdf.

[5] E. V. Nava and D. Lindsay, “Abusing IE8’s XSS Filters,”
2010: http://p42.us/ie8xss/Abusing_IE8s_XSS_Filters.pdf.

[6] L. Hermerschmidt, S. Kugelmann, and B. Rumpe, “Towards
More Security in Data Exchange: Defining Unparsers with
Context-Aware Encoders for Context-Free Grammars,” in
Proceedings of 2015 IEEE Security and Privacy Workshop,
pp. 134–141: http://spw15.langsec.org/.

40  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

SYSADMINPostmortem Action Items
Plan the Work and Work the Plan

J O H N L U N N E Y , S U E L U E D E R , A N D B E T S Y B E Y E R

In the 2016 O’Reilly book Site Reliability Engineering, Google described
our culture of blameless postmortems and recommended that opera-
tionally focused teams and organizations institute a similar culture

of postmortems in their approach to production incidents. A postmortem
is a written record of an incident that details its impact, the actions taken
to mitigate or resolve it, the root cause(s), and the follow-up actions taken
to prevent the incident from recurring. The chapter “Postmortem Culture:
Learning from Failure” describes criteria for deciding when to conduct post-
mortems, some best practices around postmortems, and advice on how to
cultivate a postmortem culture based upon the experience we’ve gained over
the years.

We write postmortems to ensure we achieve a few primary goals:

◆◆ We understand all contributing root causes.

◆◆ The incident is documented for future reference and pattern discovery.

◆◆ We enact effective preventive actions to reduce the likelihood and/or impact (i.e., duration
and/or scope) of recurrence.

We refer to the preventive actions identified during root cause analysis as postmortem action
items, which in aggregate form the postmortem action item plan.

This article addresses the challenges in designing an appropriate action item plan and then
executing that plan. We discuss best practices for developing high-quality action items (AIs)
for a postmortem, plus methods of ensuring these AIs actually get implemented. If the AIs
are not closed out, you are implicitly agreeing that it is acceptable to suffer the exact same
outage again. Furthermore, if you are successful as a service, the outage will be larger the
next time around.

It’s worth noting that Google teams are by no means perfect at formulating and executing
postmortem action items. We still have a lot to learn in this challenging area and are sharing
our approach to give a starting point for discussion throughout the industry.

Action Item Best Practices
Successful AIs require careful thought at both ends of their life cycle: formulation and
follow-through. The following sections detail best practices we’ve cultivated as we continu-
ally refine our methods.

Enacting AIs
Classifying Action Items for Full Coverage
We classify action items by category (Investigate, Mitigate, Repair, Detect, Prevent) to make
sure that the action item plan covers both very short-term and longer-term fixes. Making
sure to consider AIs for each category can inspire simple but effective changes, particularly
around detection (as early detection is often the best way to reduce time to resolution).

John Lunney is a Senior Site
Reliability Engineer at Google
Zürich. His team manages
G Suite, productivity apps
for Enterprise customers. He

holds a degree in computational linguistics
from Trinity College in Dublin, Ireland. Before
Google, he worked on several lexicography
projects for the Irish language.
lunney@google.com

Sue Lueder is a Site Reliability
Program Manager in Google’s
Mountain View office. She’s
part of the team responsible for
disaster testing and readiness,

incident management processes and tools,
and incident analysis. Before Google, Sue
worked as a Systems Engineer in the wireless
and smart energy industries. She has an MS
in organization development from Pepperdine
University and a BS in physics from UCSD.
slueder@google.com

Betsy Beyer is a Technical
Writer for Google Site
Reliability Engineering in NYC.
She has previously provided
documentation for Google

Data Center and Hardware Operations
teams. Before moving to New York, Betsy
was a lecturer in technical writing at Stanford
University. She holds degrees from Stanford
and Tulane. bbeyer@google.com

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 41

SYSADMIN
Postmortem Action Items: Plan the Work and Work the Plan

When an outage has multiple contributing causes, you need a
multi-dimensional action item plan that will address each root
cause and all systems that contributed to the outage.

At a minimum, your postmortem must include AIs to Mitigate
and Prevent future incidents, but it should also include all other
relevant categories listed below. Note that many teams initi-
ate incident investigation and mitigation (bullets one and two)
before conducting the postmortem.

◆◆ Investigate this incident: what happened to cause this incident
and why? Determining the root causes is your ultimate goal.
Examples: logs analysis, diagramming the request path, review-
ing heapdumps

◆◆ Mitigate this incident: what immediate actions can we take to
resolve and manage this specific event?
Examples: rolling back, cherry-picking, pushing configs, commu-
nicating with affected users

◆◆ Repair damage from this incident: how can we resolve imme-
diate or collateral damage from this incident?
Examples: restoring data, fixing machines, removing traffic
 re-routes

◆◆ Detect future incidents: how can we decrease the time to
 accurately detect a similar failure?
Examples: monitoring, alerting, plausibility checks on input/
output

◆◆ Mitigate future incidents: how can we decrease the sever-
ity and/or duration of future incidents like this? how can we
reduce the percent of users affected by this class of failure the
next time it happens?
Examples: graceful degradation; dropping non-critical results;
failing open; augmenting current practices with dashboards,
playbooks, incident management protocols, and/or war rooms

◆◆ Prevent future incidents: how can we prevent a recurrence of
this sort of failure?
Examples: stability improvements in the code base, more
 thorough unit tests, input validation and robustness to error
conditions, provisioning changes-

When filing issues or bugs for these action items, make sure
to use the appropriate classification (bug vs. feature request).
Although this differentiation may seem subjective, in our view,
a bug is a deviation from required behavior, while a feature
request is new required behavior. Typically, you should use the
type your team tracks most strictly (see the later section “Priori-
tizing Action Items “ for more details).

Wording Action Items
The right wording for an AI can make the difference between
easy completion and indefinite delay due to infeasibility and/or
procrastination. A well-crafted AI should manifest the following
properties:

◆◆ Actionable: Phrase each AI as a sentence starting with a verb.
The action should result in a useful outcome, not a process. For
example, “Enumerate the list of critical dependencies” is a good
AI, while “Investigate dependencies” is not.

◆◆ Specific: Define each AI’s scope as narrowly as possible, mak-
ing clear what is and what is not included in the work.

◆◆ Bounded: Word each AI to indicate how to tell when it is fin-
ished, as opposed to leaving the AI open-ended or ongoing.

Table 1 provides examples of poorly worded vs. well-crafted AIs.

Poorly Worded Better

Investigate monitoring for
this scenario.

(Actionable) Add alerting for
all cases where this service
returns >1% errors.

Fix the issue that caused the
outage.

(Specific) Handle invalid
postal code in user address
form input safely.

Make sure engineer checks
that database schema can be
parsed before updating.

(Bounded) Add automated
presubmit check for schema
changes.

Table 1: Examples of action items

We recommend implementing automated fixes when possible, as
opposed to prevention/mitigation that requires ongoing manual
intervention.

Consider grouping AIs either by theme or by team. In addition to
providing a clear organizational or responsibility-focused struc-
ture, this categorization may also help you spot an unbalanced
AI plan (see “Unbalanced Action Item Plans”).

After the post-incident dust settles, don’t be afraid to update a
poorly worded AI to make it more tractable.

Prioritizing Action Items
It’s crucial to properly prioritize action items because the prior-
ity guides future attention each AI will receive. At Google, we
use the following priority levels, based on estimated risk:

◆◆ P0: High risk of unmitigated recurrence of the incident if this AI is
not resolved. Resolving this AI will directly address a root cause.
Resolution will either completely prevent such incidents from
recurring or greatly reduce their impact to a negligible level.

◆◆ P1: Medium risk of unmitigated recurrence of the incident if
this AI is not resolved. Resolving this AI will directly address
the root cause. Resolution will either significantly mitigate the
impact of a recurrence or have a high chance of preventing a
recurrence.

42  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

SYSADMIN
Postmortem Action Items: Plan the Work and Work the Plan

◆◆ P2: Low risk of unmitigated recurrence of the incident if this AI
is not resolved. Resolving this action item will only superficially
mitigate a recurrence of this issue or will address only periph-
eral contributing conditions.

◆◆ P3: Trivial risk of unmitigated recurrence of a similar incident if
this AI is not resolved.

We require every postmortem stemming from a user-visible
event to have at least one P0 or P1 action item. If the outage was
bad enough to disrupt users, it’s important enough to require
high priority follow-up work to avoid or mitigate recurrence.

Figure 1 shows that on average, high priority actions are closed
more quickly than low priority AIs. However, when it comes
to AIs that are still open, priority doesn’t significantly influ-
ence their age—on average, outstanding P1 AIs have been open
almost as long as outstanding P3 AIs. We use this data to imple-
ment initiatives to bring more attention to open actions from
postmortems.

Following Up on AIs
Postmortem Reviews
Many teams at Google that participate in incident response
conduct postmortem review sessions. These reviews are helpful
in bringing key parties together to ensure that the postmortem is
complete and that the action item plan covers required catego-
ries and avoids anti-patterns. Most postmortem reviews have
the following general format:

◆◆ Walkthrough of incident timeline, impact, and root cause:
Include clarifications and address open discussion threads.

◆◆ Review of lessons learned: Discuss updates, additions, and
mappings to action items.

◆◆ Review of action items: Review the checklist (see the Appen-
dix) to make sure AIs have owners, wordings are clear, priori-
ties make sense, and that no category (Investigate, Mitigate,
Repair, Detect, Prevent) is missing.

These reviews should happen soon after an incident so that the
parties involved remember what happened. You can hold reviews
on a small scale with just the impacted team(s), or on a large
scale with many parties and observers.

Action Item Closure Tracking
Encourage action item owners to close AIs that you’ll never have
time to address—don’t keep them around forever. If an AI is
obsolete or infeasible, it just distracts you from the AIs that still
need work.

It’s a good idea to provide periodic visibility into team progress
towards reducing the technical debt identified in postmortems.
Consider adding postmortem action item burndown progress
(that is, AI follow-through) to your regular service or team
reporting. For example, you might build postmortem AI reports
in your bug/issue-tracking system and track these issues against
a closure-time objective, following up with outliers.

In many cases, an action item requires considerable effort and
must fit in with work that’s already scheduled. Keeping an eye
on how long it takes to close out action items on average helps us
identify where slow action item closure leads to additional risk
to reliability.

We actively monitor bug burndown over time. There are multiple
ways to visualize this data. Figure 2 shows how we might track
burndown for a single postmortem. In this example, the team
planned out an action item completion schedule for all 20 actions
to be completed over 21 days. They monitored progress until the
final action item was complete on the 25th day.

Figure 3 shows how we might track AIs across any part of the
organization by measuring the number of postmortem AIs cre-
ated vs. closed by day. The widening distance between the two
lines indicates accumulating technical debt over time, a pattern
that you should seek to avoid.

Figure 1: Time to close out action items

Figure 2: AI burndown for a single postmortem

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 43

SYSADMIN
Postmortem Action Items: Plan the Work and Work the Plan

Executive Focus
You can further shine light on postmortem AI follow-up through
close attention from senior leaders in your organization. We
regularly review postmortems with VPs and Directors to ensure
that high priority postmortems and action items receive the
attention they deserve.

Action Item Anti-Patterns
In reviewing the thousands of postmortems we’ve conducted
at Google over the years, we’ve identified a number of common
deficiencies when it comes to both constructing and handling
action items. The most common shortcoming is lack of follow-up
(and many of our best practices aim to mitigate this problem).

The following section presents several other anti-patterns,
which relate to how we structure or enact postmortem action
items. Our experience shows that if either of these steps goes
wrong, no amount of follow-up will help because vague or mis-
leading AIs can’t be completed.

Structuring AIs
Unbalanced Action Item Plan
If your postmortem action item plan contains only long-term,
unrealistic, or infeasible actions, it’s likely that you won’t resolve
any AIs before the next outage hits. On the other hand, a plan
that only includes tactical items and never explores better ways
to architect a more robust system is a missed opportunity to
increase reliability.

Mitigation: Create a balanced action item plan that includes
both:

◆◆ Near-term fixes to prevent/mitigate a similar outage

◆◆ Strategic improvements to the design of implicated systems to
increase reliability

Strike a healthy balance between local/incremental/Band-Aid
solutions and loftier long-term improvements. Covering all the
categories in “Classifying action items” helps in this effort.

Tossing Work “Over the Wall”
An action item plan often requires work from partner
teams in other parts of the organization. Don’t draft and file
action items against other teams without some discussion
with the team that owns the component. Without this dis-
cussion, you’re essentially throwing work over the wall and
hoping that it gets done.

Mitigation: Include partner teams in the postmortem
drafting process. Make sure each owner or team is satisfied
with their assigned action items before publishing the post-
mortem. You might want to discuss the action item plan in
person or via videoconference and ask for commitment to a
resolution time frame. If conflict arises, “Executive focus”
(see the best practice) may help with escalation.

Focusing on Elimination (at the Cost of Mitigation)
It can be tempting to design an action item plan that will elimi-
nate the chance of the incident from ever happening again. Of
course, you should take those actions when appropriate, but you
should also spend time evaluating how to reduce the duration
and impact of the incident—especially if such a fix will take
effect sooner than a potential “elimination fix.”

Mitigation: Take a look at how an incident unfolds and consider
writing detection and mitigation action items that address the
following:

◆◆ Could we have detected the incident sooner?

◆◆ Could we have triaged the impact sooner, leading to a more ap-
propriate incident response?

◆◆ Could we have understood the root cause sooner, leading to
faster rollback?

◆◆ Could the rollback have proceeded faster or more smoothly?

◆◆ Could we have scaled back the initial faulty rollout, thereby
impacting a smaller percentage of users?

Thinking Only of the Current Incident (Missing Patterns)
One of our colleagues appropriated Mark Twain to observe, “We
rarely repeat incidents, but we sometimes have incidents that
rhyme.” If we only consider a given incident in isolation, we may
overfit a specific solution to the incident at hand. We also might
create duplicate actions by missing information about improve-
ments that are underway as part of another postmortem action
item plan. Even worse, we might miss an opportunity to kill two
risks with one stone.

Mitigation: Review postmortems for similar incidents and their
accompanying action items. You might identify an opportunity
to add resources to an action item that’s not getting the attention
it deserves, or an opportunity to collaborate on a new action item
that would help in both types of incidents.

Figure 3: Postmortem AIs created vs. closed, by day

44  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

SYSADMIN
Postmortem Action Items: Plan the Work and Work the Plan

Enacting AIs
Lack of Ownership
The surest way for a postmortem author to ensure that an action
item never gets completed is to leave it without an owner.

Mitigation: Always assign an owner for every action item as it
is enacted, even if that owner’s primary task is to find the best
person for the job (e.g., the Tech Lead for the team responsible
for that product or software). Your issue tracker is an appropriate
place to assign ownership.

Overly Specific Monitoring Changes
With the benefit of hindsight, it’s easy to say we should have
monitored an XYZ-specific signal, which would have alerted us
to the problem before it became a huge incident. However, this
strategy only helps if that very specific failure mode recurs in the
exact same way (which is frequently not the case).

Mitigation: Make the effort count: look for ways to improve
monitoring for a whole class of issues. Preferably, these improve-
ments should target user-focused symptoms rather than internal
metrics. Otherwise, you risk tying alerts to implementation
details.

Fixing Symptoms (Not Root Causes)
Root cause analysis (RCA) is one of the most crucial parts of
a postmortem. The outcome of this analysis should drive the
construction of the action item plan. Shallow RCA limits action
items to impermanent fixes or surface patches to problems.

Mitigation: A thorough RCA is key to defining action items that
will prevent or mitigate future incidents of this nature. Use the
five-whys RCA (or another methodology [2]) to help determine
which contributing causes in the chain your AIs should target.

Blaming Humans (Missing System Fixes)
It’s very rarely productive to think of humans as the ending
“why” in a root cause chain. During an emergency, people are
typically doing the best they can under intense pressure and
when faced with ambiguous data. As a result, what looks like an
obvious point in the cold light of day can be quite non-obvious in
the heat of the moment.

Attributing blame to a specific person or group doesn’t improve
your system or spur development of systematic defenses. The
next time there is an emergency, the hapless on-duty person will
be faced with a similarly difficult problem to solve in real time.
If you trust your engineers to make the best decision given avail-
able information, it’s more helpful to consider an error to be a
failure of the entire system, as opposed to the fault of one or more
humans.

Mitigation: Rather than finger-pointing, it’s much more helpful
to think about:

◆◆ How we can give people better information to make decisions?

◆◆ How we can make our environment, systems, tools, and pro-
cesses more immune to human fallibility?

When you feel tempted to use human error as a root cause, use
a critical eye to avoid one-off fixes. A useful stance is to believe,
“The system should not have been able to fail this way.” Ask
yourself the following questions:

◆◆ How likely is the next person to cause the same problem? Could
a new hire or sleepy SRE at 4 a.m. have made this mistake?
Why did the system let them?

◆◆ Was information flawed, misleading, or poorly presented?
Can we fix that misinformation (preferably through the use of
automation)?

◆◆ Could software have prevented/mitigated this error? Can we
automate this activity so it doesn’t require human intervention?

Fixes Late in the Software Life Cycle (Missing Earlier Chances)
It can be tempting to stop a badly behaving system from impact-
ing users by implementing a check or safeguard at the last step
before changes enter production. For example, you might imple-
ment additional checks right before a config file is pushed to
production but fail to consider adding configuration file coding
standards, automated testing, improved training, or making
sure there are fewer ways to break configuration files in the first
place. The fact that bugs are much more expensive to fix late in
the software life cycle is well understood in the industry [3].

Mitigation: When reviewing the postmortem timeline and
lessons learned, look for ways to address the root cause (and
possibly, the event trigger) as early as possible. The fix might be
the same (e.g., input validation) but applied to the first system as
opposed to the last one.

Conclusion
Years of conducting postmortems at Google have taught us that
there’s no one-size-fits-all approach to conducting this exercise
successfully. However, this accumulation of experience—what
we’ve done right, what we’ve done wrong, and how we’ve iter-
ated to improve—has led to a certain amount of insight, which
we hope can benefit other companies and organizations. We
believe that it’s very important to both construct high quality
postmortem action items and follow up on them in a timely and
comprehensive manner. Only by completing these AIs can we
hope to avoid recurrence of costly and time-consuming produc-
tion incidents.

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 45

SYSADMIN
Postmortem Action Items: Plan the Work and Work the Plan

The checklist appended to this article is a good starting point
if you’re new to conducting postmortems, or perhaps a useful
honing tool for veterans of this process. As we continue to refine
our approach to this imperfect science, we hope to learn equally
valuable lessons from others in the field.

Checklist
Structuring

 Each lesson learned is addressed with at least one AI.

 AI plan is balanced between near-term fixes and strategic
design improvements.

 AIs address both prevention and decreasing resolution
time.

 “Rhyming” incidents and their action plans have been
reviewed.

 No work is tossed “over the wall”: all involved teams are
committed to relevant AIs.

Enacting
 AIs cover the two most critical categories (Mitigate,

 Prevent) + all other relevant categories (Investigate, Repair,
Detect).

 AIs are worded to be actionable, specific, and bounded.

 AIs are prioritized, with at least one P0 or P1 to avoid or
mitigate recurrence.

 All AIs have an owner.

 AIs aren’t overly specific (for example, could you monitor
something more general?).

 Problem is caught as early as possible in the software life
cycle.

 AI plan addresses a root problem (as opposed to just
patching symptoms).

 AIs don’t blame humans (focus instead on automatic sys-
tem detection).

Follow-up
 AI plan is shared with your team, stakeholders, and those

involved in the incident.

 AIs are appropriately filed and tagged/tracked to appear
in your reporting system.

 AI plan was reviewed with an executive or group of leads
for visibility.

 Postmortem and AI plan were reviewed/approved per
team policy.

References
[1] B. Beyer, C. Jones, J. Petoff, and N. Murphy, eds., Site Reli-
ability Engineering (O’Reilly Media, 2016).

[2] More formal methodologies exist for those looking for more
rigor. For example, Ishikawa fishbone diagrams, 8Ds, fault
tree analysis, and failure mode and effects analysis (FMEA).
See https://en.wikipedia.org/wiki/Root_cause_analysis for
more ideas.

[3] J. Leon, “ The True Cost of a Software Bug: Part One,”
Celerity blog, Feb 28, 2015: http://blog.celerity.com/the-true
-cost-of-a-software-bug.

46  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

SYSADMIN

Don’t Get Caught in the Cold, Warm Up Your JVM
Understand and Eliminate JVM Warm-up Overhead in Data-Parallel
Systems

D A V I D L I O N , A D R I A N C H I U , H A I L O N G S U N , X I N Z H U A N G , N I K O L A G R C E V S K I , A N D D I N G Y U A N

Many widely used, latency sensitive, data-parallel distributed
systems, such as HDFS, Hive, and Spark choose to use the Java
Virtual Machine (JVM) despite debate on the overhead of doing

so. By thoroughly studying the JVM performance overhead in the above-
mentioned systems, we found that the warm-up overhead, i.e., class loading
and interpretation of bytecode, is frequently the bottleneck. For example,
even an I/O intensive, 1 GB read on HDFS spends 33% of its execution time in
JVM warm-up, and Spark queries spend an average of 21 seconds in warm-
up. The findings on JVM warm-up overhead reveal a contradiction between
the principle of parallelization, i.e., speeding up long-running jobs by par-
allelizing them into short tasks, and amortizing JVM warm-up overhead
through long tasks. We therefore developed HotTub, a new JVM that reuses
a pool of already warm JVMs across multiple applications. The speed-up
is significant: for example, using HotTub results in up to 1.8x speed-ups for
Spark queries, despite not adhering to the JVM specification in edge cases.

The performance of data-parallel distributed systems has been heavily studied in the past
decade, and numerous improvements have been made to the performance of these systems.
A recent trend is to further process latency sensitive, interactive queries with these systems.
However, there is a lack of understanding of the JVM’s performance implications in these
workloads. Consequently, almost every discussion on the implications of the JVM’s perfor-
mance results in heated debate. For example, the developers of Hypertable, an in-memory
key-value store, use C++ because they believe that the JVM is inherently slow. They also
think that Java is acceptable for Hadoop because “the bulk of the work performed is I/O” [4].
In addition, many believe that as long as the system “scales,” i.e., parallelizes long jobs into
short ones, the overhead of the JVM is not concerning [7].

Our research asks a simple question: what is the performance overhead introduced by the
JVM in latency sensitive data-parallel systems? We answer this by presenting a thorough
analysis of the JVM’s performance behavior when running systems including HDFS, Hive
on Tez, and Spark. We had to carefully instrument the JVM and these applications to under-
stand their performance.

Surprisingly, after multiple iterations of instrumentation, we found that JVM warm-up time,
i.e., time spent in class loading and interpreting bytecode, is a recurring overhead. Specifi-
cally, we made the following three major findings. First, JVM warm-up overhead is signifi-
cant even in I/O intensive workloads. For example, reading a 1 GB file on HDFS from a hard
drive requires JVM to spend 33% of its time in warm-up. In addition, the warm-up time does
not scale but, instead, remains nearly constant. For example, the warm-up time in Spark
queries remains at 21 seconds regardless of the workload scale factor, thus affecting short-
running jobs more. The broader implication is the following:

David Lion is a graduate student
in the Electrical and Computer
Engineering Department of
the University of Toronto. His
research interest is in software

systems and their performance.
david.lion@mail.utoronto.ca

Adrian Chiu is an undergraduate
student in Electrical Engineering
at the University of Toronto.
His research interests are in
operating systems, distributed

systems, and compilers.
adrian.chiu@mail.utoronto.ca

Hailong Sun is an Associate
Professor in the School
of Computer Science and
Engineering at Beihang
University. His research

interests include distributed systems, software
engineering, and crowdsourcing.
sunhl@ece.utoronto.ca

Xin Zhuang is a graduate
student at the University of
Toronto, studying computer
engineering. His research
interest is in software systems.

xin.zhuang@mail.utoronto.ca

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 47

SYSADMIN
Don’t Get Caught in the Cold, Warm Up Your JVM:

Understand and Eliminate JVM Warm-up Overhead in Data-Parallel Systems

There is a contradiction between the principle of parallelization, i.e., speeding up long-running
jobs by parallelizing them into short tasks, and amortizing JVM warm-up overhead through
long tasks.

Finally, the use of complex software stacks aggravates warm-up overhead. A Spark client
loads 19,066 classes executing a query, which is three times more than Hive despite Spark’s
overall latency being shorter. These classes come from a variety of software components
needed by Spark. In practice, applications using more classes also use more unique methods,
which are initially interpreted. This results in increased interpretation time.

To solve the problem, our key observation is that the homogeneity of parallel data-processing
jobs enables a significant reuse rate of warm data, i.e., loaded classes and compiled code,
when shared across different jobs. Accordingly, we designed HotTub, a new drop-in replace-
ment JVM that transparently eliminates warm-up overhead by reusing JVMs from prior
runs. The source code of HotTub and our JVM instrumentations are available at https://
github.com/dsrg-uoft/hottub.

Analysis of JVM Warm-up Overhead
What follows is an in-depth analysis of the JVM warm-up overhead in three data-parallel
systems, namely HDFS, Hive running on Tez and YARN, and Spark SQL running with
Spark. We will show that on each system the JVM warm-up time stays relatively constant.
The HDFS experiment further shows how warm-up can dwarf I/O, while the Spark and
Hive experiments explain the implications of warm-up overhead for parallel computing. All
experiments are performed on an in-house cluster with 10 servers connected via 10 Gbps
interconnect. Each of them has at least 128 GB DDR4 RAM and two 7,200 RPM hard drives.
The server components are long running and fully warmed-up for weeks and have serviced
thousands of trial runs before measurement runs. Details on our study methodology and the
JVM instrumentation can be found in our OSDI paper [5].

HDFS
We implement three different HDFS clients: sequential read; parallel read, with 16 threads,
that runs on a server with 16 cores; and sequential write. We flush the OS buffer cache on all
nodes before each measurement to ensure the workload is I/O bound. Note that interpreter
time does not include I/O time, because I/O is always performed by native libraries.

Figure 1 shows the class loading and interpreter time under different workloads. The aver-
age class loading times are 1.05, 1.55, and 2.21 seconds for sequential read, parallel read, and
sequential write, respectively, while their average interpreter times are 0.74, 0.71, and 0.92
seconds. The warm-up time does not change significantly with different data sizes. The

reason that HDFS write takes the JVM longer to warm up is
that it exercises a more complicated control path and requires
more classes. Parallel read spends less time in the interpreter
than sequential read because its parallelism allows the JVM to
identify the “hot spot” faster.

Figure 2 further shows the significance of warm-up overhead
within the entire job. Short-running jobs are affected the most.
When the data size is under 1 GB, warm-up overhead accounts
for more than 33%, 48%, and 30%, respectively, of the client’s
total execution time in sequential read, parallel read, and
sequential write. According to a study [8] published by Clou-
dera, a vast majority of the real-world Hadoop workloads read
and write less than 1 GB per-job as they parallelize a big job into

Nikola is the VP of Engineering
at Vena Solutions Inc. Prior
to this he worked at the IBM
Compiler Group for 12 years,
most notably as a Technical

Lead for the x86 JIT Optimizer and Code
Generator. He holds a master’s degree in
computer engineering from the University of
St. Cyril and Methodius in Skopje, Macedonia.
grcevski@gmail.com

Ding Yuan is an Assistant
Professor in the Electrical
and Computer Engineering
Department of the University of
Toronto. He works in computer

systems, with a focus on their reliability and
performance. yuan@ece.toronto.edu

 0

 1

 2

 3

 0 2 4 6 8 10

Se
co

nd
s

Size (GB)

cl seq. read
int seq. read
cl par. read

int par. read
cl write

int write

Figure 1: JVM warm-up time in various HDFS workloads. “cl” and “int”
represent class loading and interpretation time, respectively. The x-axis
shows the input file size.

48  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

SYSADMIN
Don’t Get Caught in the Cold, Warm Up Your JVM:
Understand and Eliminate JVM Warm-up Overhead in Data-Parallel Systems

smaller ones. The study further shows that for some customers,
over 60% of their jobs read less than 1 MB from HDFS, whereas
a 1 MB HDFS sequential read spends over 60% of its time in
warm-up.

Next we break down class loading and interpreter time using the
1 GB sequential read as an example. Figure 3 shows the warm-up
time in the entire client read. A majority of the class loading and
interpreter execution occurs before a client contacts a datanode
to start reading.

Further drilling down, Figure 4 shows how warm-up time
dwarfs the datanode’s file I/O time. When the datanode first
receives the read request, it sends a 13-byte ACK to the client,
and immediately proceeds to send data packets of 64 KB using
the sendfile system call. The first sendfile takes noticeably
longer than subsequent ones since the data is read from the hard
drive. However, the client takes even longer (15 ms) to process
the ACK because it is bottlenecked by warm-up time. By the
time the client finishes parsing the ACK, the datanode has
already sent 11 data packets, and thus the I/O time is not even
on the critical path. The client takes another 26 ms to read the
first packet, where it again spends a majority of the time loading
classes and interpreting the computation of the CRC checksum.
By the time the client finishes processing the first three packets,
the datanode has already sent 109 packets. In fact, the datanode
is so fast that the Linux kernel buffer becomes full after the 38th
packet and has to block for 14 ms so that the kernel can adap-
tively increase its buffer size. The client, on the other hand, is
trying to catch up the entire time.

Figure 4 also shows the performance discrepancy between
interpreter and compiled code. Interpreter takes 15 ms to com-
pute the CRC checksum of the first packet, whereas compiled
code only takes 65 μs per-packet.

Break Down Class Loading
The HDFS sequential read takes a total of 1,028 ms to load 2,001
classes. Table 1 shows the breakdown of class loading time.
Reading the class files from the hard drive only takes 170 ms.
Because Java loads classes on demand, loading 2,001 classes is
broken into many small reads: e.g., 276 ms are spent searching
for classes on the classpath, which is a list of file-system loca-
tions. The JVM specification requires the JVM to load the first
class that appears in the classpath in the case of multiple classes
with identical names. Therefore it has to search the classpath
linearly when loading a class. Another 411 ms are spent in define
class, where the JVM parses a class from file into an in-memory
data structure.

Read Search Define Other Total

Time (ms) 170 276 411 171 1,028

Table 1: Breakdown of class loading time

Spark versus Hive
Figure 5 shows the JVM overhead on Spark and Hive. Surpris-
ingly, each query spends an average of 21.0 and 12.6 seconds in
warm-up time on Spark and Hive, respectively. Similar to HDFS,
the warm-up time in both systems does not vary significantly
when data size changes, indicating that its overhead becomes
more significant in well parallelized short-running jobs. For
example, 32% of the Spark query time on 100 GB data size is on
warm-up. In practice, many analytics workloads are short run-
ning. For example, 90% of Facebook’s analytics jobs have under
100 GB input size [1, 2], and a majority of the real-world Hadoop
workloads read and write less than 1 GB per-task [8].

 0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

1 0 2 4 6 8 10

W
ar

m
-u

p
(%

 R
un

tim
e)

Size (GB)

seq. read
seq. write
par. read

Figure 2: The JVM warm-up overhead in HDFS workloads measured as
the percentage of overall job completion time

Client init
File open

Read

 0 1 2 3 4Time (s)

Class loading
Interpreter
Compile/native

Figure 3: Breakdown of sequential HDFS read of 1 GB file

ack
sendfile 1

sendfile 2-38
wait

sendfile 39-109

parse DN ack
read pckt. 1
read pckt. 2
read pckt. 3

 0 10 20 30 40 50Time (ms)

Class loading
Interpreter
Compiled/native

Datanode

Client

Figure 4: Breakdown of the processing of data packets by client and
datanode

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 49

SYSADMIN
Don’t Get Caught in the Cold, Warm Up Your JVM:

Understand and Eliminate JVM Warm-up Overhead in Data-Parallel Systems

Software Layers Aggravate Warm-up Overhead
The difference in the warm-up times between Spark and Hive
is explained by the difference in number of loaded classes. The
Spark client loads an average of 19,066 classes, compared with
Hive client’s 5,855. Consequently, the Spark client takes 6.3
seconds in class loading whereas the Hive client spends 3.7
seconds. A majority of the classes loaded by Spark client come
from 10 third-party libraries, including Hadoop (3,088 classes),
Scala (2,328 classes), and Derby (1,110 classes). Only 3,329 of the
loaded classes are from Spark packaged classes.

A large number of loaded classes also results in a large inter-
preter time. The more classes being loaded, the greater the num-
ber of different methods that are invoked, where each method
has to be interpreted at the beginning. On average, a Spark client
invokes 242,291 unique methods, where 91% of them were never
compiled by JIT-compiler. In comparison, a Hive client only
invokes 113,944 unique methods, while 96% of them were never
JIT-compiled.

Breaking Down Spark’s Warm-up Time
We further drill down into one query (query 13 of BigBench
with scale factor 100) to understand the long warm-up time of
Spark. While different queries exhibit different overall behaviors
and different runtimes, the pattern of JVM warm-up overhead
is similar, as evidenced by the stable warm-up time. Figure 6
shows the breakdown of this query. The query completion time
is 68 seconds: 24.6 seconds are spent on warm-up overhead of
which 12.4 seconds are spent on the client while the other 12.2
seconds come from the executors. Note that a majority of execu-
tors’ class-loading time is not on the critical path: executors are
started immediately after the query is submitted, which allows
executors’ class loading time to be overlapped with the client’s
warm-up time. However, at the beginning of each stage the
executor still suffers from significant warm-up overhead that
comes primarily from interpreter time.

Hive
Hive parallelizes a query using different JVM processes, known
as containers, whereas each container uses only one compu-
tation thread. Therefore within each container the warm-up
overhead has a similar pattern to the HDFS client shown earlier.
Hive and Tez also reuse containers to process tasks of the same
query, and therefore the JVM warm-up overhead can be amor-
tized across the lifetime of a query.

HotTub
The design goal for HotTub is to allow applications to share
the “warm” data, i.e., loaded classes and compiled code, thus
eliminating the warm-up overhead from their executions. Hot-
Tub is implemented by modifying OpenJDK’s HotSpot JVM
and is made to be a drop-in replacement. Users simply replace
java with HotTub and run their Java application with normal
commands.

Figure 7 shows the architecture of HotTub. When java is first
called there are no existing JVMs to reuse, so a new JVM must
be created for the application to run on as it normally would.
Once the application finishes, the JVM must first be reset before
it can be added to a pool of JVMs for later reuse. When there are
JVMs in the pool, a call to java will attempt to find a valid JVM
for reuse. If a JVM is found it will be reinitialized, and then the
application will run on the already warm JVM with nearly zero
warm-up overhead.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

100 300 500 700 1000 2000 3000
Scale Factor (GB)

Ti
m

e
(s

)

Spark

Compiled/native
GC

Interpreter
Class loading

100 300 500 700 1000
Scale Factor (GB) Hive

100 300 500 700 1000
Scale Factor (GB) Hive

Figure 5: JVM overhead on BigBench. Overhead breakdown of queries
from BigBench [3] across different scale factors. Only the 10 shortest
queries from BigBench are analyzed because of our focus on latency-sen-
sitive queries. The scale factor corresponds to the size of input data in GB.
The queries are first grouped by scale factor and then ordered by runtime.
Note that Hive has a larger query time compared to Spark.

Client

Executor

0 6.3 12.4
46.9

59.2
61.5

68

Time (s)

Class loading
Interpreter

Compiled/native

Figure 6: Breakdown of Spark’s execution of query 13. It only shows one
executor (there are a total of 10 executors, one per host). Each horizontal
row represents a thread. The executor uses multiple threads to process this
query. Each thread is used to process three tasks from three different stages.

java

Figure 7: Architecture of HotTub

50  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

SYSADMIN
Don’t Get Caught in the Cold, Warm Up Your JVM:
Understand and Eliminate JVM Warm-up Overhead in Data-Parallel Systems

The main challenge of this process is to ensure that the applica-
tion’s execution on HotTub is consistent with the execution on
an unmodified JVM. Next we discuss some techniques HotTub
uses to ensure consistency. More detailed discussions can be
found in our OSDI paper [5].

Class Consistency
When choosing a JVM to reuse we must make sure any class
that will be reused is the same as the class that would have been
dynamically loaded in a normal execution. To do this HotTub
ensures for a JVM the classpath and classes on the classpath
are the same for both the new application and the previously run
applications. This also ensures there is a large amount of poten-
tial overlap between the new application and the already loaded
classes and compiled code. It is possible to be more strict and
only reuse a JVM if the application is more similar to what was
previously run, but being less strict would not be able to guaran-
tee consistency.

Data Consistency
At the reset phase all stale data is cleaned up off of the criti-
cal path before the JVM is put back in the pool. All application
threads are cleaned up, so there are no more stacks left, and all
file descriptors opened by the application are closed. HotTub
also zeroes out all static data from classes. HotTub now runs
garbage collection to remove all the stale data, but since there
are no root references from the stack at this point, and roots
from static data are all zero, practically all heap data is dead and
collected quickly.

Once a JVM has been chosen to be reused it will perform the
reinitialization phase, which sets the new file descriptors and
runs the class initialization code of all loaded classes to cor-
rectly initialize the static data since it had been previously set to
zero. The order this is done in is important because dependencies
between classes can exist. HotTub maintains the correct order
by recording the order of class initializations when they are first
initialized and replaying the initializations in the same order
before each reuse. There are some limitations to reinitializing
static data, since known bad practices such as class dependence
cycles and real time static initialization dependencies will cause
HotTub to be inconsistent. However, these cases are extremely
uncommon in practice.

Handling Signals and Explicit Exit
HotTub has to handle signals such as SIGTERM and SIGINT
and explicit exit by the application, otherwise it will lose the tar-
get server process from our pool. If the application registers its
own signal handler, HotTub forwards the signal. If SIGKILL is
used or the application exists through a native library, the JVM
will die and cannot be reused.

Privacy Limitation
The use of HotTub raises privacy concerns. HotTub limits reuse
to the same Linux user, as cross-user reuse allows a different
user to execute code with the privileges of the first user. How-
ever, our design still violates the principle “base the protection
mechanisms on permission rather than exclusion” [6]. Although
we carefully clear and reset data from the prior run, an attacker
could still reconstruct the partial execution path of the prior run
via timing channel since previously loaded classes and JIT-com-
piled methods can be seen.

Completion Time (s)
Workload Unmod. HotTub Speed-up

HDFS read 1 MB 2.29 0.08 30.08x

HDFS read 10 MB 2.65 0.14 18.04x

HDFS read 100 MB 2.33 0.41 5.71x

HDFS read 1 GB 7.08 4.26 1.66x

Spark 100 GB best 65.2 36.2 1.80x

Spark 100 GB median 57.8 35.2 1.64x

Spark 100 GB worst 74.8 54.4 1.36x

Spark 3 TB best 66.4 41.4 1.60x

Spark 3 TB median 98.4 73.6 1.34x

Spark 3 TB worst 381.2 330.0 1.16x

Hive 100 GB best 29.0 16.2 1.79x

Hive 100 GB median 38.4 25.0 1.54x

Hive 100 GB worst 206.6 188.4 1.10x

Table 2: Performance improvements by comparing the job completion
time of an unmodified JVM and HotTub. For Spark and Hive we report the
average times of the queries with the, best, median, and worst speed-up
for each data size. Speed-up values were calculated using full-precision
values, not the rounded values shown as completion times in this table.

Performance of HotTub
We conduct a variety of experiments on HotTub in the same
manner as our JVM warm-up performance analysis to evaluate
its performance. Table 2 shows HotTub’s speed-up compared
with an unmodified HotSpot JVM. We ran the same workload
five times on an unmodified JVM and six times on HotTub. We
compared the average runtime of the five unmodified runs with
the average runtime of the five reuse HotTub runs, excluding
the initial warm-up run. For Spark and Hive, we ran the same 10
queries that we used in our study.

The results show that HotTub significantly speeds up the total
execution time. For example, HotTub reduces the average job
completion time of the Spark query with the highest speed-up

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 51

SYSADMIN
Don’t Get Caught in the Cold, Warm Up Your JVM:

Understand and Eliminate JVM Warm-up Overhead in Data-Parallel Systems

by 29 seconds on 100 GB data, and can speed up HDFS 1 MB
read by a factor of 30.08. Among nearly 200 pairs of trials, a job
running in a reused HotTub JVM always completed faster than
an unmodified JVM. Enabling our performance counters, we
observe that indeed HotTub eliminates the warm-up overhead.
In all the experiments, the server JVM spends less than 1% of
the execution time in class loading and interpreter.

In addition to evaluating the speed-up of HotTub in our paper,
we evaluated many other aspects. We also found that the major-
ity of speed-up comes in the first reuse run. When inspecting
hardware performance counters we saw a large reduction in
memory accesses due to avoidance of class loading and inter-
pretation. We found that when reusing JVMs that were warmed
up with a different query than the one being run, HotTub still
achieved similar speed-ups since different jobs still tend to use
similar framework code in these systems. Also, the manage-
ment overhead of HotTub turned out to be low, only adding a few
hundred milliseconds to the critical path.

Conclusion
We started this project curious to understand the JVM’s over-
head on data-parallel systems, driven by the observation that
systems software is increasingly built on top of it. Enabled by
non-trivial JVM instrumentations, we observed the warm-up
overhead and were surprised by the extent of the problem. We
then pivoted our focus on to the warm-up overhead by first pre-
senting an in-depth analysis on three real-world systems. Our

results show the warm-up overhead is significant, bottlenecks
even I/O intensive jobs, increases as jobs become more parallel-
ized and short running, and is aggravated by multi-layered sys-
tems. We further designed HotTub, a drop-in replacement of the
JVM that can eliminate warm-up overhead by amortizing it over
the lifetime of a host. Evaluation shows it can speed up systems
like HDFS, Hive, and Spark, with a best case speed-up of 30.08x.

Acknowledgments
We greatly appreciate the insightful feedback from our anony-
mous OSDI reviewers, our OSDI shepherd Andrea Arpaci-
Dusseau, and Rik Farrow. We thank Yu Luo, Serhei Makarov,
Michael Stumm, Jenny Ren, Kirk Rodrigues, Guangji Xu, Yongle
Zhang, and Xu Zhao for the useful and thought-stimulating
discussions. We thank Yu Luo for setting up and maintaining the
server cluster environment used in our experiments. His help
was invaluable. This research is supported by NSERC Discovery
grant, NetApp Faculty Fellowship, and an NSERC USRA award.
Hailong Sun is supported by National Key Research and Devel-
opment Program of China (2016YFB1000804) and National
Natural Science Foundation of China (61370057).

References
[1] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur,
S. Kandula, S. Shenker, and I. Stoica, “PACMan: Coordinated
Memory Caching for Parallel Jobs,” in Proceedings of the 9th
USENIX Conference on Networked Systems Design and Imple-
mentation (NSDI ’12), 2012: https://www.usenix.org/system
/files/conference/nsdi12/pacman.pdf.

[2] R. Appuswamy, C. Gkantsidis, D. Narayanan, O. Hodson,
and A. Rowstron, “Scale-up vs. Scale-out for Hadoop: Time to
Rethink?” in Proceedings of the 4th Annual Symposium on Cloud
Computing (SOCC ’13), 2013.

[3] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte,
and H.-A. Jacobsen, “Bigbench: Towards an Industry Standard
Benchmark for Big Data Analytics,” in Proceedings of the 2013
ACM SIGMOD International Conference on Management of
Data (SIGMOD ’13), 2013.

[4] Hypertable: “Why We Chose CPP over Java”: https://code
.google.com/p/hypertable/wiki/WhyWeChoseCppOverJava.

[5] D. Lion, A. Chiu, H. Sun, X. Zhuang, N. Grcevski, and D.
Yuan, “Don’t Get Caught in the Cold, Warm Up Your JVM:
Understand and Eliminate JVM Warm-up Overhead in Data-
Parallel Systems,” in Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation (OSDI ’16),
2016: https://www.usenix.org/system/files/conference/osdi16
/osdi16-lion.pdf.

[6] J. H. Saltzer, “Protection and the Control of Information
Sharing in Multics,” Communications of the ACM, vol. 17, no. 7
(1974), pp. 388–402.

[7] “StackOverflow: Is Java Really Slow?”: http://stackoverflow
.com/questions/2163411/is-java-really-slow.

[8] Yanpei Chen, Cloudera, “What Do Real-Life Apache Hadoop
Workloads Look Like?”: http://blog.cloudera.com/blog/2012/09
/what-do-real-life-hadoop-workloads-look-like/.

52  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

COLUMNS
R ecently someone asked me when I thought that Python 2 and Python

3 might converge. They were a bit dismayed when I replied “never.” If
anything, Python 3 is moving farther and farther away from Python

2 at an accelerating pace. As I write this, Python 3.6 is just days from being
released. It is filled with all sorts of interesting new features that you might
want to use if you dare. Of course, you’ll have to give up compatibility with all
prior versions if you do. That said, maybe an upgrade is still worth it for your
personal projects. In this article, I look at a few of the more interesting new
additions. A full list of changes can be found in the “What’s New in Python
3.6” document [1].

But First, Some Reflection
Since my earliest usage of Python, I’ve mostly viewed it as a personal productivity tool. I
write a lot of custom scripts and use it for all sorts of tasks ranging from system administra-
tion to data processing. When I see new features, I think about how I might use them to make
my life easier and more interesting. To be sure, this is a different view than that of a typical
library writer who wants to maintain backwards compatibility with prior versions of Python.
If you’re mainly writing scripts for yourself, it is liberating to free yourself from the con-
straints of backwards compatibility. In this regard, Python 3.6 does not disappoint. However,
if you’re maintaining code for others, everything you’re about to read should be taken with a
grain of caution. So, with that said, let’s begin!

String Formatting
Suppose you had a list of tuples like this

portfolio = [

 (‘IBM’, 50, 91.1),

 (‘MSFT’, 100, 63.45),

 (‘HPE’, 35, 42.75)

]

and you wanted to produce a nicely formatted table. There are many approaches to string
formatting you might take. For example, you could use the classic string formatting operator
(%):

>>> for name, shares, price in portfolio:

... print(‘%10s %10d %10.2f’ % (name, shares, price))

...

 IBM 50 91.10

 MSFT 100 63.45

 HPE 35 42.75

>>>

David Beazley is an open
source developer and author of
the Python Essential Reference
(4th Edition, Addison-Wesley,
2009). He is also known as the

creator of Swig (http://www.swig.org) and
Python Lex-Yacc (http://www.dabeaz.com
/ply.html). Beazley is based in Chicago, where
he also teaches a variety of Python courses.
dave@dabeaz.com

Gleeful Incompatibility
D A V I D B E A Z L E Y

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 53

COLUMNS
Gleeful Incompatibility

Or you could use the more verbose .format() method of strings:

>>> for name, shares, price in portfolio:

... print(‘{:>10s} {:10d} {:10.2f}’.format(name, shares,

price))

...

 IBM 50 91.10

 MSFT 100 63.45

 HPE 35 42.75

>>>

Starting in Python 3.6, you can now use so-called “f-strings” to
accomplish the same thing using far less code:

>>> for name, shares, price in portfolio:

... print(f’{name:>10s} {shares:10d} {price:10.2f}’)

...

 IBM 50 91.10

 MSFT 100 63.45

 HPE 35 42.75

>>>

f-strings are a special declaration of a string literal where
expressions enclosed in braces are evaluated, converted to
strings, and inserted into the resulting string [2]. In the above
example, the name, shares, and price variables are picked up
from the enclosing loop and inserted into the string. There’s no
need to use a special operator or method such as % or .format().

At first glance, it might appear that f-strings are a minor
enhancement of what is already possible with the normal
format() method. For example, format() already allows similar
name substitutions:

>>> ‘{name:>10s} {shares:10d} {price:10.2f}’.

format(name=name, shares=shares, price=price)

‘ HPE 35 42.75’

>>>

However, f-strings allow so much more. The greater power
comes from the fact that nearly arbitrary expressions can be
evaluated in the curly braces. For example, you can invoke meth-
ods and perform math calculations like this:

>>> f’{name.lower():>10s} {shares:10d} {price:10.2f}

{shares*price:10.2f}’

‘ hpe 35 42.75 1496.25’

>>>

That’s pretty neat and possibly rather surprising. For the most
part, any expression can be placed inside the braces. The only
restriction is that it cannot involve the backslash character (\).
So attempts to mix f-strings and regular expressions might be
thwarted. Of course, that’s probably a good thing. Maybe.

Supervising Subclasses
Another interesting feature of Python 3.6 is the ability of a par-
ent class to supervise the creation of child subclasses [3]. This
can be done by providing a new special class method __init_

subclass__(). For example, suppose you have this class:

class Base(object):

 @classmethod

 def __init_subclass__(cls):

 print(‘Base Child’, cls)

 super().__init_subclass__()

Now, if you inherit from the class, you’ll see the method fire:

>>> class A(Base):

... pass

...

Base Child <class ‘__main__.A’>

>>> class B(A):

... pass

...

Base Child <class ‘__main__.B’>

>>>

The use of super() in this example is to account for multiple
inheritance. It allows for all of the parents to participate in the
supervision if they want. For example, if you also had this class:

class Parent(object):

 @classmethod

 def __init_subclass__(cls):

 print(‘Parent Child’, cls)

 super().__init_subclass__()

Now watch what happens with multiple inheritance:

>>> class C(Base, Parent):

... pass

...

Base Child <class ‘__main__.C’>

Parent Child <class ‘__main__.C’>

>>>

Supervising subclasses might seem like a fairly esoteric fea-
ture, but it turns out to be rather useful in a lot of library and
framework code because it can eliminate the need to use more
advanced techniques such as class decorators or metaclasses.
Here’s an example that uses the __init_subclass__() method
to register classes with a dictionary that’s used in a convenience
function.

54  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

COLUMNS
Gleeful Incompatibility

class TableFormatter(object):

 _formats = {}

 @classmethod

 def __init_subclass__(cls):

 cls._formats[cls.name] = cls

def create_formatter(name):

 formatter_cls = TableFormatter._formats.get(name)

 if formatter_cls:

 return formatter_cls()

 else:

 raise RuntimeError(‘Bad format: %s’ % name)

class TextTableFormatter(object):

 name = ‘text’

class CSVTableFormatter(object):

 name = ‘csv’

class HTMLTableFormatter(object):

 name = ‘html’

In this code, the TableFormatter class maintains a registry of
child classes. The create_formatter() function consults the
registry and makes an instance using a short name. For example:

>>> create_formatter(‘csv’)

<__main__.CSVTableFormatter object at 0x10ae9f748>

>>>

There are many other situations where a base class might want
to supervise child classes. We’ll see another example shortly.

Ordering Some (All?) of the Dicts
One of the more dangerously interesting features of Python 3.6
is that there are many situations where dictionaries are now
ordered—preserving the order in which items were inserted. A
dictionary like this

>>> s = { ‘name’: ‘ACME’, ‘shares’: 100, ‘price’: 385.23 }

>>>

now preserves the exact insertion order. This makes it much eas-
ier to turn a dictionary into a list or tuple in a way that respects
the original structure of data. For example:

>>> keys = list(s)

>>> keys

[‘name’, ‘shares’, ‘price’]

>>> row = tuple(s.values())

(‘ACME’, 100, 385.23)

>>> dict(zip(keys, row))

{ ‘name’: ‘ACME’, ‘shares’: 100, ‘price’: 385.23 }

>>>

The fact that order is preserved may simplify a lot of data-han-
dling problems: e.g., preserving the order of data found in files,
JSON objects, and more. So, on the whole, it seems like a nice
feature.

This ordering applies to other dictionary-related functional-
ity. For example, if you write a function involving **kwargs, the
order of the keyword arguments is preserved [4]:

>>> def func(**kwargs):

... print(kwargs)

...

>>> func(spam=1, bar=2, grok=3)

{ ‘spam’: 1, ‘bar’: 2, ‘grok’: 3 }

>>>

Since the order is preserved, it seems to open up more possibili-
ties for interesting functions involving **kwargs. For example,
maybe you want to convert a sequence of lists to dictionaries:

rows = [

 [‘IBM’, ‘50’, ‘91.1’],

 [‘MSFT’, ‘100’, ‘63.45’],

 [‘HPE’, ‘35’, ‘42.75’]

]

def parse_rows(_rows, **columns):

 types = columns.values()

 names = columns.keys()

 for row in _rows:

 yield { name: func(val)

 for name, func, val in zip(names, types, row) }

for r in parse_rows(rows, name=str, shares=int, price=float):

 print(r)

Similarly, modules and classes now capture the definition order
of their contents [5]. This is potentially useful for code that per-
forms various forms of code introspection. For example, you can
iterate over the contents of a class or module in definition order
using a loop like this:

>>> import module

>>> for key, val in vars(module).items():

... print(key, val)

...

>>>

As noted, this is one of the more dangerous features of Python
3.6. Past versions of Python do not guarantee dictionary order-
ing. So, if you rely upon this, know that your code will not work
on any prior version. Also, the ordering seems to be provisional—
meaning that it could be removed or refined in future Python
versions.

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 55

COLUMNS
Gleeful Incompatibility

Annotating All the Things
Since the earliest release of Python 3, it was possible for func-
tions to have annotated arguments. For example:

def add(x:int, y:int) -> int:

 return x + y

The annotations didn’t actually do anything, but served more as
a kind of documentation. Tools could obtain the annotations by
looking at the function’s __annotations__ attribute like this:

>>> add.__annotations__

{‘x’: <class ‘int’>, ‘y’: <class ‘int’>, ‘return’: <class ‘int’>}

>>>

The annotation idea is now extended to class attributes and vari-
ables [6]. For example, you can write a class like this:

class Point:

 x:int

 y:int

 def __init__(self, x, y):

 self.x = x

 self.y = y

Like their function counterparts, the annotations do noth-
ing. They are merely collected in a class __annotations__

attribute.

>>> Point.__annotations__

{‘x’: <class ‘int’>, ‘y’: <class ‘int’>}

>>>

You can also annotate free-floating variables in a module. For
example:

spam.py

x:int = 0

y:int = 1

In this case, they become part of a module level __annota-

tions__ dictionary.

>>> import spam

>>> spam.__annotations__

{‘x’: <class ‘int’>, ‘y’: <class ‘int’>}

>>>

It’s important to note that the annotations don’t change any
aspect of Python’s behavior. They are extra metadata that can
be used by other tools such as frameworks, IDEs, or program
checkers.

Summoning the Genie
Now that we’ve seen a few new features, it’s time to gleefully put
them into practice with something more interesting. How about
a typed tuple object with a silly name?

import operator

class Toople(tuple):

 @classmethod

 def __init_subclass__(subcls):

 types = list(subcls.__annotations__.items())

 @staticmethod

 def __new__(cls, *args):

 if len(args) != len(types):

 raise TypeError(f’Expected {len(types)} args’)

 for val, (name, ty) in zip(args, types):

 if not isinstance(val, ty):

 raise TypeError(f’{name} must be an {ty.

__name__}’)

 return super().__new__(cls, args)

 subcls.__new__ = __new__

 def __repr__(self):

 return f’{subcls.__name__}{super().__repr__()}’

 subcls.__repr__ = __repr__

 # Make properties for the attributes

 for n, name in enumerate(subcls.__annotations__):

 setattr(subcls, name, property(operator.itemgetter(n)))

Good god—f-strings, annotations, subclassing of the tuple
built-in, and an __init_subclass__ method that’s patching
child classes. What is going on here? Obviously, it’s a small bit of
Python 3.6 code that lets you write typed-tuple classes like this:

class Point(Toople):

 x:int

 y:int

class Stock(Toople):

 name:str

 shares:int

 price:float

Check it out:

>>> p = Point(2, 3)

>>> p

Point(2, 3)

>>> p.x

2

>>> p.y

3

56  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

COLUMNS
Gleeful Incompatibility

>>> s = Stock(‘ACME’, 50, 98.23)

>>> s

Stock(‘ACME’, 50, 98.23)

>>> s.name

‘ACME’

>>> s.shares

50

>>>

>>> Stock(‘ACME’, ‘50’, ‘98.23’)

Traceback (most recent call last):

 ...

TypeError: shares must be an int

>>>

Okay, that’s kind of awesome and insane. Don’t try it on anything
earlier than Python 3.6 though. It requires all of the features dis-
cussed including the reliance on newfound dictionary ordering.
In fact, your coworkers might chase you out of the office while
waving flaming staplers and hurling single-serve coffee packets
at you if you put code like that in your current application. Nev-
ertheless, it’s a taste of what might be possible in the Python of
the distant future.

Final Words
Over the last few years, a lot has been said about the Python 2 vs.
Python 3 split. There are those who claim that Python 3 doesn’t
offer much that’s new. Although that might have been true five
years ago, it’s becoming much less so now. In fact, Python 3 has
all sorts of interesting new language features that you might
want to take advantage of (e.g., I haven’t even talked about the
expanded features of async functions that were introduced in
Python 3.5). Python 3.6 pushes all of this to a whole new level.
Frankly, Python 3 has become a lot of fun that rewards curiosity
and an adventurous spirit. If you’re starting a new project, it’s
definitely worth a look.

References
[1] What’s New in Python 3.6: https://docs.python.org/3.6
/whatsnew/3.6.html.

[2] PEP 498—String literal interpolation: https://www.python
.org/dev/peps/pep-0498/.

[3] PEP 487—Simpler customization of class creation: https://
www.python.org/dev/peps/pep-0487/.

[4] PEP 468—Preserving the order of **kwargs in a function:
https://www.python.org/dev/peps/pep-0468/.

[5] PEP 520—Preserving class attribute definition order:
https://www.python.org/dev/peps/pep-0520/.

[6] PEP 526—Syntax for variable annotations: https://www
.python.org/dev/peps/pep-0526/.

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 57

COLUMNS

Practical Perl Tools
Off the Charts

D A V I D N . B L A N K - E D E L M A N

I recently had the pleasure of giving another invited talk to the LISA 2016
audience. Part of preparing that talk involved performing some basic
forensics on a machine that I could no longer directly access. I wanted to

explore how its file systems had changed over time. I like pretty pictures, so
my first goal was to attempt to draw a diagram that represented this evolu-
tion. In this column, we’ll take a look at the code I wrote to achieve this. Just
a warning up front: there are a number of moving parts for the approach I
took (not all of which are Perl), but I’ll do my best to explain all of the plates
that are being spun.

The Best Tool for Storing Data Is a…
When I started out, I wasn’t exactly clear what sort of representation of the data I needed
or even what was the best way to wade through the information I had on hand. I was given
access to a set of directory listings (basically the output of recursive ls -lR {something}

> output commands for the file system with different flags used). The beginning of one of
these files looked like this:

/etc:

total 851

drwxr-xr-x 67 root sys 5120 Sep 19 12:19 .

drwxr-xr-x 39 root root 2048 Jan 8 2016 ..

drwxr-xr-x 2 adm adm 512 May 15 2006 acct

lrwxrwxrwx 1 root root 14 May 15 2006 aliases -> ./mail/aliases

drwxr-xr-x 2 root bin 512 May 5 2009 apache

drwxr-xr-x 2 root bin 512 May 15 2006 appserver

-rw-r--r-- 1 root bin 50 May 15 2006 auto_home

-rw-r--r-- 1 root bin 113 Mar 20 2008 auto_master

-rw-r--r-- 1 root other 47389 Mar 31 2009 bootparams

-rw-r--r-- 1 root other 47389 Mar 31 2009 bootparams.old

-rw-r--r-- 1 root other 47397 Mar 27 2009 bootparams.orig

lrwxrwxrwx 1 root root 18 May 15 2006 chroot -> ../usr/sbin/chroot

-rw-r--r-- 1 root other 314 Jun 15 15:04 coreadm.conf

lrwxrwxrwx 1 root root 16 May 15 006 cron -> ../usr/sbin/cron

drwxr-xr-x 2 root sys 512 Jun 15 15:05 cron.d

My thinking was that if I could get all of this information into a database, it would allow me
to play around with the data through ad hoc queries. The tricky part was parsing the files
because, as you can see above, it is basically a hot mess. The actual directory name itself
appears in a different format before the entries. Some files have explicit years in their dates,
some do not. Some files aren’t even files (in the classic sense), they are links to files or direc-
tories. Whee!

David Blank-Edelman is the
Technical Evangelist at Apcera
(the comments/views here
are David’s alone and do not
represent Apcera/Ericsson) .

He has spent close to 30 years in the systems
administration/DevOps/SRE field in large
multiplatform environments including Brandeis
University, Cambridge Technology Group,
MIT Media Laboratory, and Northeastern
University. He is the author of the O’Reilly
Otter book Automating System Administration
with Perl and is a frequent invited speaker/
organizer for conferences in the field. David
is honored to serve on the USENIX Board of
Directors. He prefers to pronounce Evangelist
with a hard ‘g’.  dnb@usenix.org

58  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

COLUMNS
Practical Perl Tools: Off the Charts

Output like this is notoriously hard to parse as a Web search on
the question will quickly reveal. Much to my delight, it turns out
that a module that attempts to handle this unpleasantness actu-
ally exists called File::Listing. Here’s the code I wrote to use that
module to slurp the contents of a directory listing into a SQLite
database. SQLite was used because of its lightweight nature and
ability to install as part of a single Perl module (DBI::SQLite)
install. This was easier than installing/configuring a database,
its libs, and a separate Perl module before I could make progress.

use strict;

use DBI qw(:sql_types);

my $file = shift;

open my $L, ‘<’, $file or die “Can’t open $file:$!\n”;

my $dir = File::Listing::parse_dir($L, undef, ‘unix’, ‘warn’);

close $L;

my $dbh = DBI->connect(“dbi:SQLite:dbname=$file.db”, “”, “”);

throw an error if something fails so we don’t have to check

the results of every statement and turn off committing the

data to the file on every insert

$dbh->{RaiseError} = 1;

$dbh->{AutoCommit} = 0;

$dbh->do(

 “CREATE TABLE dir (filename text, filetype text, filesize

integer, filetime integer, filemode text)”

);

my $sth = $dbh->prepare(

 “INSERT INTO dir (filename, filetype, filesize, filetime,

filemode) VALUES (?,?,?,?,?)”

);

my $rowcount = 0;

foreach my $listing (@$dir) {

 $sth->execute(@$listing);

 if ($rowcount++ % 1000 == 0) {

 $dbh->commit;

 print STDERR “.”;

 }

}

$dbh->commit;

$dbh->disconnect;

We’ve talked about using DBI (the Perl DataBase Independent)
framework before, so we won’t go into depth about how that part
of this code works. Instead, let me just give a brief summary
of what is going on and mention a few salient points. The first
thing this code does is read in the listing file as specified on the
command line and parse it. The file gets parsed and stored in

memory (the listings I had were only about 30 MB so I could get
away with it).

We then do the DBI magic necessary for “connecting” to a
SQLite database file (creating it if it does not exist—in this case
we use the name of the listing file as the start of that database
file name), create a table called “dir” into which we’ll store the
info, and then start to populate it. We iterate through the parsed
file info we have in memory, inserting the info into the database.
After every 1000 records, we actually commit those inserts to
the file and print a dot to let us know the process is working. We
didn’t have to turn off autocommit and commit explicitly like
this, but we get a wee bit of a performance boost if we do so. After
the script runs we are left with a nice filename.db SQLite file we
can query to our heart’s content.

After much playing around with SQL queries and Web searches
about SQLite SQL queries, I finally hit upon this SQL statement
to do what I needed:

SELECT strftime(‘%Y-%m’, filetime, ‘unixepoch’) yr_mon,count(*)

num_dates FROM dir GROUP BY yr_mon;

It produces results that looks like this:

yr_mon:num_dates

1973-05:1

1992-09:1

1993-04:2

1993-06:1

1993-07:4

1993-08:12

1993-09:4

1993-10:6

1993-11:1

1993-12:1

...

Here we have the number of files created in each of the listed
months (e.g., in August of 1993, 12 files were created). Now all we
have to do is represent this information in a chart.

Google Charts Ho!
I could have fed these results into any number of applications or
services that draw graphs, but I thought it might be fun to learn
how to use Google Charts from Perl. Plus, it had a wide variety of
charts available, so I thought it would be good to hedge my bets.

The tricky thing with Google Charts is it is not meant to run
client-side. We won’t be running a program on local data and
have it spit out a chart. Instead, the process is roughly: you load
a Web page, that Web page loads some Google Chart libraries,
creates the necessary JavaScript objects, makes a call to get
the data for the chart (if it isn’t embedded in the page), and then
asks Google to return the desired chart, which is shown by your

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 59

COLUMNS
Practical Perl Tools: Off the Charts

browser as embedded in the Web page. If that sounds like a little
bit of work, it definitely is (at least the first time you are trying
it). We’ll go slow.

One thing to note here is that in order for this to work, you will
need to load this Web page (and its surprise guest that we’ll get
to in a moment) from a Web server. You can’t just load it from the
File->Open menu items in your browser. Your server doesn’t have
to be anything high-powered (I used Apache via MAMP PRO
running on my laptop to serve the files, but that was just because
it was already handy), but you do need one for Google Charts to
function properly.

The first thing to do is to create the Web page mentioned above.
It is going to have a small amount of HTML and a bunch of
JavaScript. The docs at https://developers.google.com/chart are
really quite good, so you can get very far via simple cut-and-past-
ing even if your JavaScript isn’t so hot (phew). Here’s the .html
page I used (I’ll break it down in a sec):

<head>

 <script type=”text/javascript” src=”https://www.gstatic.com/

charts/loader.js”></script>

 <script type=”text/javascript” src=”//ajax.googleapis.com/

ajax/libs/jquery/1.10.2/jquery.min.js”></script>

 <script type=”text/javascript”>

 google.charts.load(‘current’, {‘packages’:[‘scatter’]});

 google.charts.setOnLoadCallback(drawChart);

 function drawChart () {

 var jsonData = $.ajax({

 url: “get_data.pl?filename=listing.db”,

 dataType: “json”,

 async: false

 }).responseText;

 var data = new google.visualization.

DataTable(jsonData);

 var options = {

 width: 2000,

 height: 700,

 chart: {

 title: ‘File Creation Dates’,

 subtitle: ‘listing’,

 },

 hAxis: {title: ‘Date’},

 vAxis: {title: ‘Number’}

 };

 var chart = new google.charts.Scatter(document.

getElementById(‘scatterchart_material’));

 chart.draw(data, google.charts.Scatter.

convertOptions(options));

 }

 </script>

 </head>

 <body>

 <div id=”scatterchart_material”></div>

 </body>

</html>

Much of the above is straight from the docs, so I’ll just briefly
mention what is going on. It can be a bit of a challenge to read
because most of the listing consists of definitions that get trig-
gered at the right moment. After we load the right libraries and
set up something that will cue the function that does all of the
work after everything is loaded, we define that function draw-

Chart(). In drawChart() we specify how we are going to pull the
data (more on that in a moment), various options on how the
chart should look, what HTML element in the document will
“hold” the resulting chart, followed by a call to actually kick off
the drawing. When the page loads, it will call drawChart() and
we are off to the races.

How Does the Data Get into the Chart?
Yeah, that’s one of the fun questions. The key part was in our
description of how the data should be loaded:

var jsonData = $.ajax({

 url: “get_data.pl? filename=listing.db”,

 dataType: “json”,

 async: false

).responseText;

var data = new google.visualization.DataTable(jsonData);

Google Charts lets you specify the data for a chart inline (i.e.,
you can put JSON right in the .html file), but that only works
for smallish data sets. The chart I was hoping to build had 278
rows of data, so I wasn’t keen on embedding that all in the same
doc. Instead, we’re going make an AJAX call to another URL
(get_data.pl) and ask it to send us the data set. We can then take
those results and put them in the proper object for graphing.

Time for some more Perl. We’ll need a CGI script that will query
our database using the SELECT statement we previously saw
and format the results into the proper JSON output expected by
the Google Charts API. When I heard the requirements “CGI”
and “JSON output,” a couple of the frameworks we’ve seen in
this column before (Mojolicious and Dancer) leapt right to mind.
My choice was cemented when I saw Joel Berger’s excellent blog
post “Some code ports to Mojolicious, just for fun” [1]. It was a
post about porting another person’s work on Google Charts from

60  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

COLUMNS
Practical Perl Tools: Off the Charts

Perl to Mojolicious::Lite. The code we’re about to see is a direct
descendant of Joel’s example with a few fun twists.

Let’s take this task piece by piece. The CGI portion of the script
is only a few lines:

use Mojolicious::Lite;

use DBIx::Connector;

any ‘/’ => sub {

 my $c = shift;

 my $filename = $c->param(‘filename’);

 my $data = $c->get_data($filename);

 $c->render(json => $data);

};

This just says that when a request for the URL
“/?filename=something” comes in we will parse out the
parameter (the file name of the database we’ll be using), the
proper database query will be made and results returned in the
right form, and this will be converted into JSON and sent to the
requester.

More interesting are the two helper functions we will define.
The first is responsible for getting us a safe database handle for
the right SQLite database:

helper db => sub {

 my $filename = $_[1];

 state $db =

 DBIx::Connector->connect(“dbi:SQLite:dbname=$filename”,

‘’, ‘’);

};

By the way, if you haven’t seen DBIx::Connector before (I hadn’t),
it is worth looking up because it is quite spiffy.

Now for the more complex part of the script, a helper that does
the actual query for data and then transforms the results so the
JSON will be correct.

First step, perform the actual query:

helper get_data => sub {

 my $filename = $_[1];

 my $db = shift->db($filename);

 my $query =

“SELECT strftime(‘%Y-%m’, filetime, ‘unixepoch’) yr_mon,count(*)

num_dates FROM dir GROUP BY yr_mon;”;

 my $data = $db->selectall_arrayref($query);

Now for some annoying stuff. Google Charts expects to receive
the data set in a very specific JSON format. This means we’re
going to have to transform the data coming out of the database

in a very particular way such that we match the format expected
when the Perl data structure to JSON conversion is made.

The JSON format Google Charts expects looks like this [2]:

{

 cols: [{id: ‘A’, label: ‘NEW A’, type: ‘string’},

 {id: ‘B’, label: ‘B-label’, type: ‘number’},

 {id: ‘C’, label: ‘C-label’, type: ‘date’}

],

 rows: [{c:[{v: ‘a’},

 {v: 1.0, f: ‘One’},

 {v: new Date(2008, 1, 28, 0, 31, 26), f: ‘2/28/08

12:31 AM’}

]},

 {c:[{v: ‘b’},

 {v: 2.0, f: ‘Two’},

 {v: new Date(2008, 2, 30, 0, 31, 26), f: ‘3/30/08

12:31 AM’}

]},

 {c:[{v: ‘c’},

 {v: 3.0, f: ‘Three’},

 {v: new Date(2008, 3, 30, 0, 31, 26), f: ‘4/30/08

12:31 AM’}

]}

]

}

I’m going to describe this JSON blob in terms of Perl data struc-
tures because I think it will make it easier to understand the Perl
code we are about to see. You can look at this like a hash with two
keys, ‘cols’ and ‘rows’. The cols part is basically a definition of the
contents of the rows that will follow. If it helps, think of this as
the column heading of a spreadsheet followed by a bunch of rows.

The cols portion is constructed from an array that holds three
separate hashes, one for each column being defined. So the first
column has a key of ‘id’ whose value is “A,” a key of “label” whose
value is “NEW A,” and a key of “type” whose value is “string.”
This is how we specify the id of the first column, how it will be
labeled, and what kind of values it will contain.

Here’s how we build our version of that part of the data structure
in Perl:

 my $response->{‘cols’} = [

 { ‘id’ => ‘Date’,

 ‘label’ => ‘date’,

 ‘type’ => ‘string’ },

 { ‘id’ => ‘Count’,

 ‘label’ => ‘count’,

 ‘type’ => ‘number’ },

];

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 61

COLUMNS
Practical Perl Tools: Off the Charts

This code creates a similar array with two hashes in it, one for
each column. We’ll have a column for the date (e.g., “1993-08”)
and the number of files in that time period (“12”).

Now let’s tear apart one of the rows. A row consists of an array of
cells containing values (that makes sense, yes? if just from your
use of spreadsheets).

Here’s an example row (the first one):

rows: [{c:[{v: ‘a’},

 {v: 1.0, f: ‘One’},

 {v: new Date(2008, 1, 28, 0, 31, 26), f: ‘2/28/08

12:31 AM’}

]},

It shows a row that consists of cells containing the values “a,”
“1.0,” and a newly defined date. So, something like this:

|a|1.0|2/28/08 12:31 AM|

Each value is stored in a hash with the key ‘v’ (for value). There is
also another (optional) key ‘f’ in the example above for “format-
ted value” (i.e., how the value should be displayed).

To review:

◆◆ We’re going to create a key called ‘rows’ in the hash we created
above when defining the columns.

◆◆ ‘rows’ will contain an array that holds the hashes defining the
cells in each row.

◆◆ Each cell hash needs to have a single key of ‘c’ to mark it as cell
data.

◆◆ ‘c’ will hold an array of hashes, each representing a cell value.

◆◆ Each hash holding a value will have a key called ‘v’ whose value
is the value for that cell.

Phew! See why I call this annoying? Now let’s take on creating
this in Perl:

 foreach my $row (@$data) {

 my $c->{‘c’} = [map { { ‘v’ => $_ } } @$row];

 push(@{ $response->{‘rows’} }, $c);

 }

It may be a bit surprising to realize all of that rigmarole can be
implemented in just three lines of code. It is probably not sur-
prising that it is three lines of fairly gnarly/compact code. Let’s
unravel it so it all makes sense.

The DBI query we made above

$db->selectall_arrayref($query);’

returns a reference to an array containing the results of our
query:

0 ARRAY(0x7fccb45eaa90)

 0 ARRAY(0x7fccb45ebca0)

 0 ‘1973-05’

 1 1

 1 ARRAY(0x7fccb45eb060)

 0 ‘1992-09’

 1 1

 2 ARRAY(0x7fccb4002c68)

 0 ‘1993-04’

 1 2

 3 ARRAY(0x7fccb45ec880)

 0 ‘1993-06’

 1 1

 4 ARRAY(0x7fccb45ec988)

 0 ‘1993-07’

 1 4

 5 ARRAY(0x7fccb45eb090)

 0 ‘1993-08’

 1 12

As you can see, each array is a row from the results of the query.
Our code is going to iterate over these results, one row/array at a
time:

 foreach my $row (@$data) {

For each value in the results, we’re going to return an anonymous
hash with a key of ‘v’ whose value is the value in the result. Here’s
the part that creates the anonymous hash for a value:

{ ‘v’ => $_ }

That’s for a single value in the results. Here’s how we iterate
over all of the values in the results array, returning anonymous
hashes as we go:

map { { ‘v’ => $_ } } @$row

We collect all of the {v}=something hashes the map{} returns
into an array

[map { { ‘v’ => $_ } } @$row]

and stuff that array into a hash under the key of ‘c’ (representing
the cells of the row):

my $c->{‘c’} = [map { { ‘v’ => $_ } } @$row];

At this point, we now have a hash for the cells of that row. Go us!
We need to store that hash into the array holding all of the rows
of cells, so we append it to that array:

 push(@{ $response->{‘rows’} }, $c);

If you find all of the punctuation in that line confusing, don’t feel
bad. Here’s what’s going on:

$response->{‘rows’}

62  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

COLUMNS
Practical Perl Tools: Off the Charts

$response is a reference to an anonymous hash, which has a key
called ‘rows’. So far so good?

The value for this key is a reference to an anonymous array (the
one that is going to hold all of the row information). We need to
de-reference it to get at the array itself, hence:

@{ $response->{‘rows’} }

Once we’ve done that, we can add this set of cells as another row
in that array:

 push(@{ $response->{‘rows’} }, $c);

And with that, we’ve done the work of retrieving the info from
the database and transforming it into the right data structure.

If that felt a bit painful, I’ll be the first to agree. It took me a while
to build all that up piece by piece. To add insult to injury, well
after I had completed the work I happened to stumble on the
module Data::Google::Visualization::DataTable, which describes
itself as “attempts to hide the gory details of preparing your data
before sending it to a JSON serializer—more specifically, hiding
some of the hoops that have to be jump[ed] through for making
sure your data serializes to the right data types.”

Sigh.

It hadn’t come up during any of my other searches for Google
Chart modules, so I (and now you) learned how to do it the hard
way.

The last step for the CGI script is to translate the data structure
into JSON and send it along to the requester; this happens in
the last line of the script because Mojolicious::Lite makes it this
simple:

any ‘/’ => sub {

 my $c = shift;

 my $filename = $c->param(‘filename’);

 my $data = $c->get_data($filename);

 $c->render(json => $data);

};

If we browse to the page we made, we get the lovely graph shown
in Figure 1.

As I said, there are a number of moving parts. But once you get a
sense of how they all work, you now get to bring to bear all of the
power Google Charts has to offer you. Take care, and I’ll see you
next time.

References
[1] http://blogs.perl.org/users/joel_berger/2013/10/some-
code-ports-to-mojolicious-just-for-fun.html.

[2] Google Visualization API Reference: https://developers.
google.com/chart/interactive/docs/reference.

Figure 1: This chart appears in our browser when we load our Web page, and it all comes together.

http://blogs.perl.org/users/joel_berger/2013/10/some-code-ports-to-mojolicious-just-for-fun.html
http://blogs.perl.org/users/joel_berger/2013/10/some-code-ports-to-mojolicious-just-for-fun.html

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 63

COLUMNS

I became interested in long-term trends because an invention has to make sense in
the world in which it is finished, not the world in which it is started.—Ray Kurzweil

A small bit of statistical wisdom: trend analysis can derive real guid-
ance even when the measurement being examined is subject to con-
sistent (relatively constant) error. Hold that thought…

NIST (the US National Institute of Standards & Technology) has for years collated and
published vulnerability information, with the Common Vulnerability Scoring System
(CVSS) being the best known of NIST’s cybersecurity metrics. CVSS scores are numeric and
calculated by a defined, constant formula [1]. Putting aside that calculation formula, CVSS is
a stable system for which the errors are relatively constant.

From the CVSS data, NIST publishes on a daily basis what it calls a Workload Index, defined
this way [2]:

This [Workload Index] calculates the number of important vulnerabilities that
information technology security operations staff are required to address each day.
The higher the number, the greater the workload and the greater the general risk
represented by the vulnerabilities.

The NVD workload index is calculated using the following equation:

(
 (number of high severity vulnerabilities published within the last 30 days) +
 (number of medium severity vulnerabilities published within the last 30 days/5) +
 (number of low severity vulnerabilities published within the last 30 days/20)
) / 30

The index equation counts five medium severity vulnerabilities as being equal
in weight with 1 high severity vulnerability. It also counts 20 low severity
vulnerabilities as being equal in weight with 1 high severity vulnerability.

Taking the Workload Index to be, just as it says, a composite estimate of the workload
imposed on information technology security operations staff by the changing inventory of
vulnerabilities in the CVSS catalog, we can begin to ask some questions.

The first and most obvious would be simply whether the workload due to known vulner-
abilities is improving (going down) or worsening (going up). In finance, a typical measure of
how a company is doing is “trailing twelve month” income—the income for the twelve-month
period immediately prior to the date of the report. In Figure 1, we show the trailing 12-month
value of the Workload Index over the past decade (overlain with a fitted order-2 polynomial,
and with the X axis crossing the Y at Y=0).

Does that curve tell us anything? It certainly appears that information technology security
operations staff had a few years of declining workload but may now be in a period of rising
workload. One almost imagines a suite of arguments paralleling those about global warming
to break out here—is workload rising or is this just natural variation?

Cybersecurity Workload Trends
D A N G E E R A N D E R I C J A R D I N E

Dan Geer is the CISO for
In-Q-Tel and a security
researcher with a quantitative
bent. He has a long history
with the USENIX Association,

including officer positions, program
committees, etc. dan@geer.org

Eric Jardine is an Assistant
Professor of Political Science
at Virginia Tech and a Fellow
at the Centre for International
Governance Innovation. His
research focuses on issues to

do with measurement and cybersecurity, the
uses and abuses of the Dark Web, and trust
and the Internet ecosystem. ejardine@vt.edu.

64  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

Figure 1: Trailing 12-month Workload Index

Figure 2: Trailing 12-month standard deviation (volatility)

Figure 3B: April 2016

Figure 3A: November 2012

COLUMNS
Cybersecurity Workload Trends

In finance, the measure of variation is called “volatility,” usually
expressed as the trailing 12-month standard deviation. So, in
Figure 2 we show exactly that, the trailing 12-month standard
deviation of the Workload Index (again overlain with a fitted
order-2 polynomial, and with the X axis crossing the Y at Y=0).

We might now ask (ourselves) how strong is the indication that
volatility in the Workload Index is rising? Nassim Taleb, whom
you may know from having read some of his Incerto tetralogy [3],
has characterized a system with rising interconnectedness as
one where a “black swan” event can (will) occur. In particular,
he suggests that our hyper-connected society is “undergoing a
switch between [continuous low grade volatility] to ... the process
moving by jumps, with less and less variations outside of jumps.”
The NVD Workload Index cannot itself answer a conjecture that

serious vulnerabilities are becoming rarer except for the few that
slip through and are found to be more serious than ever. What do
you see in Figure 2?

So what is the meaning of “workload” anyhow? Can we think
of it as interest on technical debt? Does it need some sort of
normalization to be a worthy basis for decision-making? There
is no doubt that the source of risk is dependence, particularly
dependence on the stability of system state, so is this workload
measure, along with other measures, a way to price our depen-
dence? Or is it something else?

Let’s think first about economy-wide effects. The number of
schools offering instruction in cybersecurity has skyrocketed
in the last decade [4]. All those people entering the field should
have the effect of divvying up the workload, shouldn’t they? The
Index of Cyber Security [5] looked at one form of that question,
asking it twice, 40 months apart: “As you look to fill vacancies in
your organization, which of the following describes the status of
the current job market for information security professionals?”

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 65

Figure 4: Workload Index normalized to number of workers Figure 5: Millions of Items on the economy-wide to-do list

COLUMNS
Cybersecurity Workload Trends

Figure 3A shows the answer in November 2012, while Figure 3B
shows the answer in April of 2016.

From the first sample in 2012 to the second in 2016, the idea that
“qualified candidates are difficult or impossible to find” fell by
almost 10 percent. The answer that those frontline security man-
agers gave implies an increasing supply of competent individuals
with whom to share the workload. Can we normalize to that? And
if we do, might that tell us more about the level of cybersecurity
risk from technical vulnerabilities in the economy?

Table 1 shows the yearly average Workload Index number from
2006 to 2015, which can, in turn, be normalized by the US
Bureau of Labor Statistics dataview for the number of workers in
the category “Computer and information systems managers” [6]:

The data in Table 1 is redrawn as a chart in Figure 4, again
overlain with a fitted order-2 polynomial. If you imagine plot-
ting the mean Workload Index onto Figure 4 as well, you would
have a line that declines into 2011, but then increases a fair
amount from there on in. In this case, we see a steady decline
and flattening of the curve when the index is normalized to the
number of workers. Framed in this light, the “workload” posed by
new vulnerabilities has gotten better since 2006 and remained
relatively flat ever since. (Note that BLS data for the preferred
category “Information security analysts” only began in 2011, so
that category cannot yet be used for decadal views.)

Managing a variable amount of risk in a large system is only
partially about the particular risks currently in that system; it is
about the history (and future) of scaling factors as well. Some-

times, from 2006 to 2011, for example, when the mean score on
the Workload Index was declining, one might naturally have
inferred that cyberspace was becoming safer. Should we now
infer that that welcome decline has stopped?

Over the last decade, the number of new graduates entering the
workforce with computer science degrees fell and then rose, as
seen in Table 2.

Those annual graduation numbers, as it turns out, are not cor-
related with the numbers of “Computer and information systems
managers” in the workforce (r = .18), so either there is a lot of
turnover among those jobs or the graduates are going somewhere
else. So we will stick with “Computer and information systems
managers” as our description of who is handling the vulner-
ability workload. But the Workload Index is really about how
much work there is to be done. If we think of the work to be done
as handing each member of the workforce a to-do list, then we
would multiply the workforce count by the Workload Index and
call that a measure of the work pending in the economy at large,
viz., the size of the to-do list in the economy at large. That gets
you Figure 5.

This mathematical manipulation generates an economy-wide
to-do list, but labor markets can be sticky, as evidenced by the
lack of a correlation between new computer science gradu-
ates and computer and information systems managers. This
means that the “real” level of risk in the system might not have
translated over into enough workers to actually handle the daily
updates and patches needed to address the Workload Index. In

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

mean WI 10.79 9.59 8.69 8.96 5.99 5.98 6.51 6.05 7.88 7.65

100K workers  4.01 4.67 4.75 4.71 5.37 5.53 6.05 6.02 6.29 6.52

WI/100K  2.69 2.05 1.83 1.90 1.12 1.08 1.08 1.01 1.25 1.17

Table 1: Workload Index normalized by number of workers

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

54,111 47,480 42,170 38,476 37,992 39,593 43,066 47,406 50,962 55,367

Table 2: Bachelor’s degrees in computer and information sciences

66  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

COLUMNS
Cybersecurity Workload Trends

such a situation of a labor market failure, the formula for the
economy-wide to-do list would be something like Y = Workload
Index * (computer and information systems managers + X),
where X is the number of workers who should be working in the
system but are not due to market lags. X, in a world of imperfect
information and with humans who need to be educated and
trained, would be some positive value—at least until we swing
past the labor market saturation point into a surplus labor
situation.

What would this do to the numbers in Figure 5? If the compo-
nent parts of the product get bigger, so will the resulting to-do
list. Does that look like things are getting tougher? Probably,
which certainly makes the case for automation at some level.

So we are left with the original Workload Index and two trans-
formed measures—the normalized Workload Index per worker
and an economy-wide to-do list—but which of these is “right”?
Which aids and which distorts our understanding of the level
of technical risk in cybersecurity? There is more to be done on
questions of measurement and cybersecurity [7], but the three
measures illuminate three different things and are useful for
different purposes.

First, the Workload Index works. It is consistent in how it mea-
sures vulnerabilities, providing a replicable time-series measure
of the technical problems that plague our systems. The almost
u-shaped structure of the Workload Index between 2006 and
2016 suggests, tentatively at least, that technical vulnerabilities
might be a bit cyclical. That is useful information to have; firms
and the economy can adjust accordingly.

Second, the normalized measure shows that with an expanding
IT workforce, the total technical work per worker in the system
is not too much worse than it was before. These numbers suggest
calm in the face of sensational data breaches that affect millions
(or possibly billions). The average network size that people can
access once they have breached a system is probably getting big-
ger, but this measure suggests that keeping any particular part of
the system secure on a technical front is not yet a mounting task.

Third, the economy-wide to-do list shows how an increasing
worker count and a relatively constant Workload Index can gen-
erate a lot of work overall. These numbers suggest that things are
getting worse, because the economy is exerting so much effort
to keep things afloat. A real trouble here is that more work can
mean more room for error, especially if humans remain at the
forefront. Additionally, opportunity costs are real. Every hour a
worker spends keeping the network safe is an hour which that
person could have spent doing something else, something pro-
ductive rather than protective. At a certain point, the economy-
wide to-do list will get too big, the wasted hours will grow too
large, and we will have to move towards more automation to keep
the networks working and our workers free to do other things.

References
[1] NIST Vulnerability Workload Calculator: nvd.nist.gov
/CVSS/v3-calculator.

[2] NIST Vulnerability Workload Index: nvd.nist.gov/Home
/Workload-Index.cfm.

[3] Nassim Taleb, Incerto tetralogy: Fooled by Randomness,
The Black Swan, The Bed of Procrustes, Antifragile.

[4] Cybersecurity and higher education: digitalguardian.com
/blog/cybersecurity-higher-education-top-cybersecurity
-colleges-and-degrees.

[5] Index of Cyber Security: www.cybersecurityindex.org.

[6] US Bureau of Labor Statistics: www.bls.gov/cps/tables
.htm#charemp.

[7] E. Jardine, “Garbage In, Garbage Out: Measuring the
Effectiveness of Remedial Cybersecurity Policies,” working
paper.

We are looking for people with personal experience and ex-
pertise who want to share their knowledge by writing. USENIX
supports many conferences and workshops, and articles about
topics related to any of these subject areas (system administra-
tion, programming, SRE, file systems, storage, networking, dis-
tributed systems, operating systems, and security) are welcome.
We will also publish opinion articles that are relevant to the
computer sciences research community, as well as the system
adminstrator and SRE communities.

Writing is not easy for most of us. Having your writing rejected,
for any reason, is no fun at all. The way to get your articles pub-
lished in ;login:, with the least effort on your part and on the part
of the staff of ;login:, is to submit a proposal to login@usenix.org.

PROPOSALS
In the world of publishing, writing a proposal is nothing new.
If you plan on writing a book, you need to write one chapter,
a proposed table of contents, and the proposal itself and
send the package to a book publisher. Writing the entire
book first is asking for rejection, unless you are a well-known,
popular writer.

;login: proposals are not like paper submission abstracts. We
are not asking you to write a draft of the article as the proposal,
but instead to describe the article you wish to write. There are
some elements that you will want to include in any proposal:

• What’s the topic of the article?

• What type of article is it (case study, tutorial, editorial,
article based on published paper, etc.)?

• Who is the intended audience (syadmins, programmers,
security wonks, network admins, etc.)?

• Why does this article need to be read?

• What, if any, non-text elements (illustrations, code,
diagrams, etc.) will be included?

• What is the approximate length of the article?

Start out by answering each of those six questions. In answering
the question about length, the limit for articles is about 3,000
words, and we avoid publishing articles longer than six pages.
We suggest that you try to keep your article between two and
five pages, as this matches the attention span of many people.

The answer to the question about why the article needs to be
read is the place to wax enthusiastic. We do not want marketing,
but your most eloquent explanation of why this article is impor-
tant to the readership of ;login:, which is also the membership
of USENIX.

UNACCEPTABLE ARTICLES
;login: will not publish certain articles. These include but are not
limited to:

• Previously published articles. A piece that has appeared on
your own Web server but has not been posted to USENET
or slashdot is not considered to have been published.

• Marketing pieces of any type. We don’t accept articles
about products. “Marketing” does not include being
enthusiastic about a new tool or software that you can
download for free, and you are encouraged to write case
studies of hardware or software that you helped install
and configure, as long as you are not affiliated with or
paid by the company you are writing about.

• Personal attacks

FORMAT
The initial reading of your article will be done by people using
UNIX systems. Later phases involve Macs, but please send us
text/plain formatted documents for the proposal. Send pro-
posals to login@usenix.org.

The final version can be text/plain, text/html, text/markdown,
LaTex, or Microsoft Word/Libre Office. Illustrations should
be EPS if possible. Vector formats (TIFF, PNG, or JPG) are also
 acceptable, and should be a minimum of 1,200 pixels wide.

DEADLINES
For our publishing deadlines, including the time you can expect
to be asked to read proofs of your article, see the online sched-
ule at www.usenix.org/publications/login/publication_schedule.

COPYRIGHT
You own the copyright to your work and grant USENIX first pub-
lication rights. USENIX owns the copyright on the collection that
is each issue of ;login:. You have control over who may reprint
your text; financial negotiations are a private matter between
you and any reprinter.

Writing for ;login:

68  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

COLUMNS

/dev/random
R O B E R T G . F E R R E L L

By the time you read this the shock of Election 2016 will hopefully have
worn off to some extent. I don’t customarily engage in political com-
mentary, even in my life outside ;login:, as people plummet into ad

hominem-laden irrationality at blinding speed in such “discussions.” Irra-
tional arguments make my toes itch, and nothing interferes with developing
a devastatingly clever comeback like having to take your shoes off to claw at
your metatarsal digits.

I only broach the subject because of a single arresting quote, “the information trumps all,”
made in the course of a discussion of whether or not to publicize alleged state-sponsored
hacking in connection with the US election. (Yes, I noticed the apropos transitive verb. I
don’t know whether or not it was intentional.) This ends-justifies-the-means paradigm is,
of course, hardly a new concept. WikiLeaks is founded on it. Since we are in the information
technology business here, it has particular relevance to our pursuits.

At first glance revealing the bare-bones truth about everything might seem a noble under-
taking. I mean, who can make sound decisions in a factual vacuum, right? But I would argue
that from a social, and at times even a technical, perspective having too much truth is as
damaging as having none at all. We each build up comfortable mythologies surrounding the
validity of our cherished institutions and the moral underpinning of our vaunted heroes.
When the blunt truth is laid before us—that our institutions have inherent flaws and our
heroes are subject to human foibles—those mythological foundations crumble and we are left
with nothing much to admire or trust. Is this bald veracity an improvement? Not for me.

I am getting to the “relevant” part. Trust me. I just saw Rogue One and my brain hasn’t yet
made the long journey back from a galaxy far, far away.

We, and by that I mostly mean “some of you,” have spent a great deal of time, effort, and coffee
creating a wide variety of software and hardware tools designed to reveal to us what’s really
going on in our systems and networks. We as systems managers have an insatiable desire for
the real scoop; the bottom line; the raw data; the dank underbelly; the misapplied metaphor.
We tell ourselves we need to know precisely how our systems are performing, and why that’s
the case. But is this really true? Moreover, is conveying that information intact really the best
course of action?

In some cases, I suppose a brutal reckoning is necessary, but I would argue that most of the
time an approximation erring on the side of optimism might be better suited to the work-
place. Submitted for your consideration: you’re running low on disk space. You have two utili-
ties for analyzing this. One shows the average disk usage per node, the other a more granular
absolute user-by-user value. The first tool indicates that the average storage is approaching
quota across the board and that (presuming no extraneous data is being kept) it’s probably
time to spring for more disks, or at least up the quota and have less reserve available. The
other tool demonstrates quite clearly that the only users abusing the quotas are the boss and
his two top assistants. Everyone else is way below the max, but those three users are blowing
out the average egregiously.

Robert G. Ferrell is an award
winning author of humor,
fantasy, and science fiction,
most recently The Tol Chronicles
(www.thetolchronicles.com).

rgferrell@gmail.com

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 69

COLUMNS
/dev/random

You as the sysadmin need to deal with this problem. Which tool’s
results are you going to present to your documentation-crazy
boss in support of your solution? Too much information might
lead to hard feelings at best and unemployment at worst. Sus-
taining your rosy outlook concerning the practices and motiva-
tions of your coworkers has clear advantages here. There are
myriad other instances where this is true.

Once upon a time there was a systems manager named Joan
who was well-loved by all of her users. She had been with the
company for many years and knew everyone’s birthdays, their
children and spouses, and each of their birthdays, too. She went
to all of their parties and social functions. She had them over for
cake, tea, and Canasta. She almost never missed a day of work.
She kept the computers running most of the time.

One day, while this beloved sysadmin was out of the office for
a week attending training, the IT staff member who’d been
assigned to cover her duties was running routine network moni-
toring operations, looking for choke points. She pulled up the
system log aggregator and noticed that the status panel indicat-
ing critical patch installations was showing red. She decided to
investigate further.

The patch management system log showed that all recom-
mended operating system patches had been faithfully installed
enterprise-wide until three months ago, when they’d abruptly
ceased. The weekly reports to senior management, however,
failed to reflect that. This particular company had zero tolerance

for risk. When executive management read the report filed by
the IT team member, they summarily dismissed Joan for profes-
sional negligence that seemingly placed the entire IT landscape
in danger by not installing recommended patches.

Her replacement was ordered to install all the missed patches
immediately. The older switches and firewalls were incompati-
ble with those patches, as Joan had tried in vain to explain before
her dismissal, and this left the network wide open to a variety of
malware as a result. Inept attempts to combat a massive distrib-
uted denial-of-service attack launched by an unscrupulous busi-
ness rival further eroded the once-solid information security
barriers surrounding the network, and repeated ransomware
demands stemming from spearphishing operations eventually
bankrupted the firm entirely.

Notice the consistent negative correlation between full disclo-
sure and longevity of employment in the preceding examples?
The truth really will set you free.

Okay, do I really expect to draw a direct, meaningful comparison
between journalists who sit on a scoop for fear they might unwit-
tingly be doing some foreign potentate’s bidding and a sysadmin
hiding the fact that software patches haven’t been installed in a
timely fashion in order to protect her network from incompatibil-
ity issues? You bet I do. In this post-rational world linear argu-
ments based on logic and deductive reasoning are, like, so passé.

I desperately need to scratch my toes now.

70  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

BOOKSBook Reviews
M A R K L A M O U R I N E A N D R I K F A R R O W

Learning Angular 2
Pablo Deeleman
Packt Publishing 2016, 326 pages
ISBN 978-1-78588-207-4

Reviewed by Mark Lamourine

If there’s one thing I’ve discovered from my attempt to learn
 client-side Web programming, and Angular 2 in particular,
it’s that I’m glad I’m not a Web programmer. Creating a Web
app these days, even with frameworks to standardize many of
the constructs and behaviors, requires the use of at least four
languages (I count JavaScript, HTML, CSS, and templating
as distinct languages). In many cases, one or more of these are
interlaced in a single file. Web design frameworks take some of
the burden by providing a well-defined set of tools for the devel-
oper. Angular is Google’s attempt to create a JavaScript frame-
work to assist in and standardize the creation of single-page
client-side Web applications.

Learning Angular 2 doesn’t really help my impression much.
The book is based on RC1 of Angular 2 and was published in
May 2016. Angular 2 went to first release (2.0) in September,
after six more release candidates. While Google is promising
increment-only releases (using “semantic versioning”), this
doesn’t give me warm fuzzies to start. I was less happy when, on
downloading the sample code from GitHub and trying to follow
the installation process, I found that the required libraries were
already advanced and out of sync with each other. An experi-
enced JavaScript coder and NPM user would have solved this
in moments, but it took me an hour or so merely to get to where I
could start the actual samples in the book.

Once I got past this, the text runs in a fairly typical way. In Chap-
ter 2, Deeleman introduces TypeScript, a superset of ECMA-
Script 6. The language itself is very straightforward. It should
be safe as it is managed by Microsoft and is the source language
that Google selected for Angular 2 itself. But again, I’m a bit
disconcerted by the explanation for the existence of TypeScript,
which is essentially that none of the standards bodies could
agree on what client-side scripting should look like, so Microsoft
took it on themselves to decide. It may be a good thing, and it’s
not Deeleman’s fault in any case, but it doesn’t instill confidence
in a new learner.

Deeleman’s “hello world” example is a Pomodoro timer. He
explains that this is a kind of work-tracking device to help break
down tasks. He guides the reader through the creation of a sim-
ple app in Chapter 3, and the rest of the book extends the applica-

tion with new features. I like how he presents his code samples,
offering a complete file or feature first, then breaking down the
parts and explaining how they interact or relate. I prefer this to
a style that presents small, digestible but apparently unrelated
fragments and then composes them at the end.

There are places where the narrative gets lost, though. Deeleman
states that he expects the reader to have a comprehensive under-
standing of JavaScript, but it feels at times as if he’s presenting
incomplete or circular definitions for terms: “Angular 2 defines
directives as components without views. In fact, a component is
a directive with a view.” But there’s very little time spent on what
a component is and why that is significant.

Deeleman manages to cover the major points and features of
Angular 2: component design, composition, standard direc-
tives (logic for producing and laying out the custom content that
components present), HTML templating language, and client-
server communications. He doesn’t go deep into the theory or
philosophy behind how and why these elements work together
the way they do. His approach is mechanical, but it is effective on
that level.

Packt tends to publish early books, and it seems sometimes that
they spend less effort on editorial work than some of the more
prestigious imprints. In an environment where frameworks
like Angular can come and go in a publishing cycle, this makes
some sense. They provide for a market of readers eager to learn
new things that more conservative publishers might pass over
or miss completely. Having lamented the thin supply of books on
Go, Docker, and Kubernetes, I appreciate what they do. Readers
should be aware, though, of what they are getting.

If you’re an experience client-side Web developer looking for
a self-tutorial on Angular 2 to supplement the documentation
already on line, Learning Angular 2 will serve. Anyone hoping to
learn to design Web apps from scratch will have to work harder
to grasp the context and operations that Deeleman leaves out.

Mastering Angular 2 Components
Gion Kunz
Packt Publishing, 2016, 352 pages
ISBN 978-1-78588-464-1

Reviewed by Mark Lamourine

My first experience learning Angular 2 was a challenge at least in
part because of my own inexperience with client-side Web develop-
ment, but I didn’t want to stop with a single try. My reading of Mas-
tering Angular 2 Components gets the benefit of that experience.

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 71

BOOKS

This book is also based on Angular 2 RC1 and was released in
June 2016, so the same risks apply regarding bit rot as applied
with Learning Angular 2, but I didn’t have any problems prepar-
ing the working environment this time.

Kunz begins by introducing terminology and tooling, and he
spends significant time both defining terms and explaining why
they matter and how they relate. While I understand classes and
decorators from other languages, I appreciated the paragraph or
two he gave to each, explaining how they are defined and used in
TypeScript and how this relates to ECMAScript and JavaScript
standards. I’m still not comforted much by the state of language
development for Web programming, but at least I now better
understand the technical aspects of the decisions.

Kunz alternates well between developer and application user
realms, which clarifies the reasoning and the choices that the
Angular 2 developers made when designing the framework. He
has peppered the text with diagrams to help clarify the relation-
ships between components and directives and how these are
related to views and templates. Chapter 7, “Components for the
User Experience,” makes clear who we are actually writing our
apps for. The composition of complete services, both the pre-
sentation and logic, seems natural and meshes well with Kunz’s
exposition of the language and framework features that Angular
2 provides to the developer.

I especially liked the section which treats CSS and how the CSS
elements are bound back to the HTML to influence the visual
presentation. It is easy for a coder to treat visual presentation
as subsidiary to data structures and logic (I am guilty). Kunz
spends time showing how the design of the templates and data
bindings in Angular 2 components can be influenced by the
intended presentation and why it is important to consider the
presentation hooks during development of the components.

I also appreciated his clear treatment of how data, both input and
output, is bound to HTML template elements. It is an aspect of
Web programming that had confounded me for some time. He
shows how to create structures to present data both as text and
graphically, using both CSS and SVG to create dynamic visual
elements: graphs, charts, sliders, and interactive controls.

The final significant topic that piqued my interest is a section on
the interactions between client and server, including timing and
response mechanisms. While others have described the syntax
necessary to create and respond to triggers and data exchange,
Kunz is the first I have seen to clearly diagram the sequence of
real-time events and communications that result from these
coded elements.

As an experienced developer in other realms, I was comfortable
working through each step of the learning process as presented
by Mastering Angular 2 Components. I think this is one I’m going
to come back to as I work on my own first Web service.

The Practice of System and Network Administration,
Volume 1, 3rd Edition
Tom Limoncelli, Christine Hogan, Strata R. Chalup
Addison-Wesley, 2016, 1168 pages
ISBN 978-0-321-91916-8

Reviewed by Mark Lamourine

It’s been a decade since the release of the second edition of The
Practice of System and Network Administration. In that time, the
character of system administration has changed and expanded
in ways few of us anticipated. Each edition has been a compre-
hensive survey of the aspects of system administration in its era.
Since the release of the second edition, configuration manage-
ment has become commonplace, virtualization has moved from
the desktop to the datacenter and the cloud, software develop-
ment has accepted the tenets of Agile processes, and software
revision control has become a public service. Containers have
been rediscovered, though I don’t think we can see yet what the
results will be. (There is a Volume 2 which deals specifically
with cloud administration. This is not that book.)

From the first, TPoSaNA (I generally avoid acronyms and
abbreviations, but I make an exception for a title this long) has
been an encyclopedia of the profession. It is a welcome anomaly
in the sea of technical tutorials and references. You’re not going
to learn to be a system administrator by reading it, but you can
become a better one by scanning it and then keeping it handy for
those times when you’re not sure what to think or do. More than
once I have pulled it out to show to a colleague or manager when I
have needed an authority to back me up in some point of discus-
sion, and it has proved very useful in educating managers in the
scope of the work their people are expected to do.

The updates start with the table of contents. As an encyclopedia,
it isn’t surprising that this book has as many sections as most
books have chapters (11). Thirty-two of the 56 chapters are new
or updated (indicated by a marker on the title line). I liked the
fact that I could thumb through and so easily find the places I
needed to reread.

In this edition, the authors have dropped their 1st edition conceit
of offering “The Basics,” “The Standard,” and “The Icing” levels
of support for each topic. They still open with a clear discus-
sion of the topic scope and goals, but then use a more conven-
tional approach to the detailed discussion. Often they justify
or illustrate their choices with anecdotes from their own work,
showing how the problems arise in the real world and how they
responded. Every chapter is peppered with references to other
resources and ends with a set of exercises, which are really
prompts for readers to think about what they’ve just read in the
context of their own work environments. This works well to help
readers relate the new ideas to their own work.

72  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

BOOKS

Most people would expect a book on system administration to
include operating system and software installation and con-
figuration management. Many would expect to see guidelines
for help-desk management. I think many (non-sysadmin) people
would be surprised to see power and air-conditioning manage-
ment under the umbrella of system administration. I know I have
welcomed the chapters on how to manage time, not just to do
the job well but to remain sane and happy. I haven’t needed the
chapters on hiring and firing, but I know technical people who
have grown to lead or manage groups of developers or admins
and appreciated it. In a technical field, it’s just not something you
have to think about…until you do.

For people who call themselves system administrators, I
can’t recommend having a handy copy of this third edition of
TPoSaNA highly enough. For managers of system administra-
tors, I recommend it even more highly. If you’ve been in the
profession for long, there’s likely a lot here you already have
heard, but this book is the perfect starting resource for those
times when you or your colleagues find yourself having to extend
yourselves to Get the Job Done.

The Hardware Hacker: Adventures in Making and
Breaking Hardware
Andrew “bunnie” Huang
No Starch Press, 2017, 416 pages
ISBN: 978-1-59327-758-1

Reviewed by Rik Farrow

Based on the title and subtitle of this book, I thought Huang was
writing about, well, hardware hacking. But a lot of the book is
about manufacturing hardware in China for small production
runs. It wasn’t long after I realized that the title poorly describes
the content that I got over my disappointment, however.

bunnie Huang is not just a brilliant hardware designer, he’s a
great writer, too. His style is conversational, clear, and concise,
and I found myself wishing that more people could write like
Huang. He explains that he started visiting factories in China
to support the manufacturing of the Chumby, a dedicated MP3
player with touch screen he designed in the early noughts. Huang
describes just how fascinating he found the mega-bazaars of
Shenzhen, China. But his real focus is the factories, how impor-
tant it is to find the right factory and to communicate clearly
what you want them to do.

Huang uses a bill-of-materials for a bicycle safety light as an
example. While the device just requires eight parts, getting it
manufactured correctly requires an entire page full of detailed
information. Almost as an aside, I learned what RoHS means
(Restriction of Hazardous Substances) and how one region’s
standard can mean safer products for everyone.

Huang’s writing does tend to wander, but always in directions
that I found fascinating. For example, he gets to visit a factory
that makes zippers, starting with zinc/aluminum ingots. He asks
the same question I might have about why one processing line
required a human to align zipper pulls while other lines did not.
The answer is subtle, a tiny tab found on most zippers. Yet this
diversion helps to illustrate an important point about the manu-
facturing process: that what might be important to a designer,
lack of the tiny tabs, causes problems for manufacturing.

Huang uses several of the projects he has worked on to illustrate
the problems that a hardware hacker, intent on actually going
on to produce product runs in the low thousands, will encoun-
ter. One issue is fake parts, parts that appear authentic but are
actually just the casing with no electronics inside. Other issues
appear truly ridiculous but are no less real. When Huang and
a partner required a spiral notebook where the spiral had to be
non-conducting for Chibitronics, the manufacturer didn’t under-
stand what that meant. Huang bought a pair of volt-ohm meters
and taught the manufacturer how to use them to test the spiral
bindings for conductance.

The chapter on fake parts, something that can be a problem
when manufacturing in China, is the closest Huang comes to
hardware hacking in my mind. Huang provides photos of SD
cards, then has them stripped down to the chips hidden inside
the epoxy resin. He does talk about some of his other hardware
designs: for example, the hacker’s laptop he co-designed and
manufactured, but manufacturing is still the largest theme.

Toward the end of the book (Chapter 10), Huang veered off into
an area I felt he couldn’t possible handle: biology and bioinfor-
matics. Huang compares a metabolic diagram to an Apple II
schematic, then imagines DNA and RNA as configuration bits.
I was wrong about this chapter, as Huang manages his com-
parisons brilliantly, using hardware as a way to explain genes,
proteins, and amino acids. He goes on to describe the flu virus
and how it manages to continue to evade vaccine designers using
just 3.2 KB of “data” in its genome.

I found Huang’s book both easy and fun to read. If you are curi-
ous about the manufacturing culture in China, including its own
version of “open source,” I recommend reading this book.

NOTES

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 73

USENIX Member Benefits
Members of the USENIX Association
 receive the following benefits:

Free subscription to ;login:, the Associa-
tion’s quarterly magazine, featuring techni-
cal articles, system administration articles,
tips and techniques, practical columns on
such topics as security, Perl, networks and
operating systems, and book reviews

Access to ;login: online from December
1997 to the current issue: www.usenix.org/
publications/login/

Discounts on registration fees for all
 USENIX conferences

Special discounts on a variety of products,
books, software, and periodicals: www.
usenix.org/member-services/discount-
instructions

The right to vote on matters affecting the
Association, its bylaws, and election of its
directors and officers

For more information regarding member-
ship or benefits, please see www.usenix.org/
membership/or contact office@usenix.org.
Phone: 510-528-8649.

USENIX Board of Directors
Communicate directly with the USENIX
Board of Directors by writing to
board@usenix.org.

P R E S I D E N T

Carolyn Rowland, National Institute of
Standards and Technology
carolyn@usenix.org

V I C E P R E S I D E N T

Hakim Weatherspoon, Cornell University
hakim@usenix.org

S E C R E T A R Y

Michael Bailey, University of Illinois
at Urbana-Champaign
bailey@usenix.org

T R E A S U R E R

Kurt Opsahl, Electronic Frontier Foundation
kurt@usenix.org

D I R E C T O R S

Cat Allman, Google
cat@usenix.org

David N. Blank-Edelman, Apcera
dnb@usenix.org

Angela Demke Brown, University
of Toronto
demke@usenix.org

Daniel V. Klein, Google
dan.klein@usenix.org

E X E C U T I V E D I R E C T O R

Casey Henderson
casey@usenix.org

Notice of
Annual Meeting

The USENIX Association’s
Annual Meeting with the

membership and the Board
of Directors will be held on

Thursday, July 13, in
Santa Clara, CA, during the

2017 USENIX Annual
Technical Conference.

USENIX Awards
USENIX honors members of the community
with two prestigious awards which recog-
nize public service and technical excellence:

• The USENIX Lifetime Achievement
(Flame) Award

• The LISA Award for Outstanding
Achievement in System Administration

The winners of these awards are selected
by the USENIX Awards Committee. The
USENIX membership may submit nomina-
tions for either or both of the awards to the
committee.

Call for Award Nominations
USENIX requests nominations for these
two awards; they may be from any member
of the community. Nominations should be
sent to the Chair of the Awards Commit-
tee via awards@usenix.org at any time. A
nomination should include:

• Name and contact information of the
person making the nomination

• Name(s) and contact information of the
nominee(s)

• A citation, approximately 100 words
long

• A statement, at most one page long, on
why the candidate(s) should receive the
award

• Between two and four supporting let-
ters, no longer than one page each

The USENIX Lifetime Achievement
(Flame) Award
The USENIX Lifetime Achievement Award
recognizes and celebrates singular contri-
butions to the USENIX community in both
intellectual achievement and service that
are not recognized in any other forum. The
award itself is in the form of an original
glass sculpture called “The Flame,” and in
the case of a team based at a single place, a
plaque for the team office.

Details and past recipients can be found at
www.usenix.org/about/flame.

The LISA Award for Outstanding
Achievement in System Administration
This award goes to someone whose profes-
sional contributions to the system adminis-
tration community over a number of years
merit special recognition.

Details and past recipients can be found at
www.usenix.org/lisa/awards/outstanding.

August 14–15, 2017 • Vancouver, BC, Canada

74  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

Announcement and Call for Papers www.usenix.org/woot17/cfp

WOOT ’17: 11th USENIX Workshop
on Offensive Technologies

WOOT ’17 will be co-located with the 26th USENIX Security Symposium
(USENIX Security ’17) and take place August 14–15, 2017.

Important Dates
• Paper submissions due: Wednesday, May 31, 2017, 8:59 p.m. PDT

• Notification to authors: Tuesday, June 27, 2017

• Final papers files due: Tuesday, July 25, 2017

Workshop Organizers
Program Co-Chairs
William Enck, North Carolina State University
Collin Mulliner, Square Inc.

Program Committee
Lorenzo Cavallaro, Royal Holloway University of London
Sandy Clark, University of Pennsylvania
Erinn Clark, FirstLook
Scott Coull, FireEye
Lucas Davi, University of Duisburg-Essen
Razvan Deaconescu, University POLITEHNICA of Bucharest
Manuel Egele, Boston University
Mario Heiderich, Cure53
Alexandros Kapravelos, North Carolina State University
Zach Lanier, Cylance
Per Larsen, University of California, Irvine, and Immunant
Tarjei Mandt, Azimuth Security
Charlie Miller, Uber ATC
Adwait Nadkarni, North Carolina State University
Ben Nell
Christin Pöpper, New York University
Kapil Singh, IBM T. J. Watson Research Center
Julien Vanegue, Bloomberg LP and Cornell University
Ralf-Philipp Weinmann, Comsecuris
Georg Wicherski, CrowdStrike
Glenn Wurster, BlackBerry
Yves Younan, Cisco Talos

Overview
The USENIX Workshop on Offensive Technologies (WOOT) aims to pres-
ent a broad picture of offense and its contributions, bringing together
researchers and practitioners in all areas of computer security. Offen-
sive security has changed from a hobby to an industry. No longer an
exercise for isolated enthusiasts, offensive security is today a large-scale
operation managed by organized, capitalized actors. Meanwhile, the
landscape has shifted: software used by millions is built by startups less
than a year old, delivered on mobile phones and surveilled by national
signals intelligence agencies.

In the field’s infancy, offensive security research was conducted
separately by industry, independent hackers, or in academia. Collabora-
tion between these groups could be difficult. Since 2007, the USENIX
Workshop on Offensive Technologies (WOOT) has aimed to bring those
communities together.

WOOT ’17 will feature a Best Paper Award and a Best Student
Paper Award.

Symposium Topics
Computer security exposes the differences between the actual mech-
anisms of everyday trusted technologies and their models used by de-
velopers, architects, academic researchers, owners, operators, and end
users. While being inherently focused on practice, security also poses
questions such as “what kind of computations trusted systems are and
aren’t capable of?,” which harken back to fundamentals of comput-
ability. State-of-the-art offense explores these questions pragmatically,
gathering material for generalizations that lead to better models and
more trustworthy systems.

WOOT provides a forum for high-quality, peer-reviewed work
discussing tools and techniques for attack. Submissions should reflect
the state of the art in offensive computer security technology, exposing
poorly understood mechanisms, presenting novel attacks, or surveying
the state of offensive operations at scale.

WOOT ’17 accepts papers in both an academic security context and
more applied work that informs the field about the state of security
practice in offensive techniques. The goal for these submissions is to
produce published works that will guide future work in the field. Sub-
missions will be peer reviewed and shepherded as appropriate.

Sponsored by USENIX, the Advanced Computing Systems Association

http://static.usenix.org/

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 75

Submission topics include but are not limited to:
• Vulnerability research

• Offensive applications of formal methods (solvers, symbolic
execution)

• Practical attacks on deployed cryptographic systems and
kleptography

• Offensive aspects of mobile security (including location, pay-
ments, and RF)

• Attacks on content protection and DRM

• Hardware attacks and attacks on the “Internet of Things”

• Internet-scale network reconnaissance

• Application security (web frameworks, distributed databases,
multi-factor authentication)

• Malware design, implementation and analysis

• Vulnerabilities in browser and client-side security (runtimes, JITs,
sandboxing)

• Mass surveillance and attacks against privacy

Workshop Format
The presenters will be authors of accepted papers. There will also be a
keynote speaker and a selection of invited speakers.

Regular Submission
WOOT ’17 welcomes submissions without restrictions of formatting (see
below) or origin. Submissions from academia, independent research-
ers, students, hackers, and industry are welcome. Did you just give a
cool talk in the hot Miami sun at Infiltrate? Got something interesting
planned for Black Hat later this year? This is exactly the type of work
we’d like to see at WOOT ’17. Please submit—it will also give you a
chance to have your work reviewed and to receive suggestions and
comments from some of the best researchers in the world. More formal
academic offensive security papers are also very welcome.

Systemization of Knowledge
Continuing the tradition of past years, WOOT ’17 will be accepting
“Systematization of Knowledge” (SoK) papers. The goal of an SoK paper
is to encourage work that evaluates, systematizes, and contextualizes
existing knowledge. These papers will prove highly valuable to our
community but would not be accepted as refereed papers because
they lack novel research contributions. Suitable papers include survey
papers that provide useful perspectives on major research areas, papers
that support or challenge long-held beliefs with compelling evidence,
or papers that provide an extensive and realistic evaluation of compet-
ing approaches to solving specific problems. Be sure to select “System-
atization of Knowledge paper” in the submissions system to distinguish
it from other paper submissions.

All accepted papers will be available online to registered attendees
prior to the workshop and will be available online to everyone begin-
ning on the first day of the workshop, August 14, 2017. If your paper
should not be published prior to the event, please notify production@
usenix.org.

Submission
Papers must be received by 8:59 p.m. PDT on Wednesday, May 31, 2017.

What to Submit
Submissions should be in PDF format. Apart from this, there is no man-
datory formatting requirement. Even though the submission format is
open, the program committee will have to evaluate the submissions,
and the guidelines below will help the program committee to evaluate
the quality and originality of the submission.

Papers should be succinct but thorough in presenting the work.
The contribution needs to be well motivated, clearly exposed, and
compared to the state of the art. Typical research papers are 4–10 pages

long (not counting bibliography and appendix). Shorter, more focused
papers are encouraged and will be reviewed like any other paper.
Papers whose lengths are incommensurate with their contributions will
be rejected. The submission should be formatted in 2 columns, using
10-point Times Roman type on 12-point leading, in a text block of 6.5”
by 9”. Please number the pages. If possible, use the USENIX Templates
for Conference Papers at https://www.usenix.org/conferences/author-
resources/paper-templates when preparing your paper for submission.

Authors of accepted papers will have to provide a paper for the pro-
ceedings following the above guidelines. A shepherd may be assigned
to ensure the quality of the proceedings version of the paper (but not
to write the paper for the author).

All submissions will be electronic and must be in PDF. Submissions
are single-blind; author names and affiliations should appear on the title
page. Submit papers using the Web form on the WOOT ’17 Web site,
www.usenix.org/woot17/cfp.

Submissions accompanied by non-disclosure agreement forms will
not be considered. Accepted submissions will be treated as confidential
prior to publication on the WOOT ’17 Web site; rejected submissions will
be permanently treated as confidential.

Policies and Contact Information
Simultaneous submission of the same work to multiple competing ven-
ues, submission of previously published work without substantial novel
contributions, or plagiarism constitutes dishonesty or fraud. USENIX, like
other scientific and technical conferences and journals, prohibits these
practices and may take action against authors who have committed
them. See the USENIX Conference Submissions Policy at https://www.
usenix.org/conferences/author-resources/submissions-policy for details.

Note: Work presented at industry conferences, such as Black Hat, is
not considered to have been “previously published” for the purposes
of WOOT ’17. We strongly encourage the submission of such work to
WOOT ’17, particularly work that is well suited to a more formal and
complete treatment in a published, peer-reviewed setting. In your sub-
mission, please do note any previous presentations of the work.

Authors uncertain whether their submission meets USENIX’s guide-
lines should contact the program co-chairs, woot17chairs@usenix.org,
or the USENIX office, submissionspolicy@usenix.org.

Registration for Authors
One author per paper will receive a discount on registration. If the
registration fee poses a significant hardship for the presenting author,
contact conference@usenix.org.

Rev. 2/7/17

76  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

Announcement and Call for Papers www.usenix.org/ase17/cfp

August 15, 2017 • Vancouver, BC, Canada

ASE ’17: 2017 USENIX Workshop on
Advances in Security Education

Sponsored by USENIX, the Advanced Computing Systems Association

ASE ’17 will be co-located with the 26th USENIX Security Symposium
(USENIX Security ’17) and take place August 15, 2017.

Important Dates
• Paper submissions due (full and short papers):

Tuesday, May 9, 2017, 8:59 pm PDT (no extensions)

• Notification to paper authors: Thursday, June 8, 2017

• Lightning Talk abstracts due: Wednesday, June 28, 2017

• Notification about Lightning Talks: Wednesday, July 5, 2017

• Final paper files due: Thursday, July 6, 2017

Workshop Organizers
Program Co-Chairs
Mark Gondree, Sonoma State University
Ashley Podhradsky, Dakota State University

Program Committee
Adam Aviv, US Naval Academy
Rakesh Bobba, Oregon State University
Tom Chothia, University of Birmingham
Kevin Du, Syracuse University
Márk Félegyházi, Budapest University of Technology and Economics
CrySyS Lab
Wai Yi Feng, University of Cambridge
Wu-Chang Feng, Portland State University
Nathan Fisk, University of South Florida
Andreas Haggman, Royal Holloway University of London
Michael Hicks, University of Maryland
Cynthia Irvine, Naval Postgraduate School
Colleen Lewis, Harvey Mudd College
Jelena Mirkovic, University of Southern California Information
Sciences Institute
Zachary N J Peterson, Cal Poly, San Luis Obispo
Portia Pusey, CyberSecurity Competition Federation
Z. Cliffe Schreuders, Leeds Beckett University
Ambareen Siraj, Tennessee Tech University
Richard Weiss, The Evergreen State College

Steering Committee
Adam Aviv, US Naval Academy
Matt Bishop, University of California, Davis
Mark Gondree, Sonoma State University
Zachary N J Peterson, Cal Poly, San Luis Obispo
Giovanni Vigna, University of California, Santa Barbara

Overview
The 2017 USENIX Workshop on Advances in Security Education (ASE ’17)
is co-located with the 26th USENIX Security Symposium and is intended
to be a venue for cutting-edge research, best practices, and experimen-
tal curricula in computer security education.

The workshop welcomes a broad range of paper submissions on the
subject of computer security education in any setting (K-12, undergradu-
ate, graduate, non-traditional students, professional development, and
the general public) with a diversity of goals, including developing or
maturing specific knowledge, skills and abilities (KSAs), or improving
awareness of issues in the cyber domain (e.g., cyber literacy, online
citizenship). ASE is intended to be a venue for educators, designers, and
evaluators to collaborate, share knowledge, improve existing practices,
critically review state of the art, and validate or refute widely held beliefs.

ASE is the evolution of the USENIX Summit on Gaming, Games, and
Gamification (3GSE), expanded to welcome a wider range of contri-
butions to security education research. The broad workshop scope
is intended to attract those already working in this space within the
traditional USENIX Security community, as well as those from other
communities, including education researchers, social scientists, and
practitioners. The workshop attempts to represent, through invited talks,
paper presentations, panels, and tutorials, a variety of approaches and
issues related to security education.

Format
ASE is intended to be a venue for informal collaboration and community-
building. The current program includes:

• A keynote address

• Sessions for full papers; authors accompany these with presenta-
tions at the workshop, with time for follow-up discussion

• Sessions for short papers; authors accompany these with “live
lessons” at the workshop, demonstrating a successful or innovative
lesson, activity, exercise, or tool

• A session for Lightning Talks and community announcements

• A panel discussion exploring popular and/or controversial issues
in security education

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 77

All sessions are intended to stimulate group discussion and impact
future work. We encourage attendees to participate in Lightning Talks,
where they can bring attention to new results, distribute materials, or
make announcements of interest to the education community (new
events, projects, funding opportunities, venues, etc.).

Topics
The core mission of ASE is to disseminate cutting-edge, practitioner-
oriented, computer security education research. Specific topics of
 interest include, but are not limited to:

• Novel pedagogical approaches and experimental curricula

• Outreach and mentorship of groups underrepresented in security

• Education technology research in a security education context

• Tools and techniques for measurement, evaluation, and
assessment

• Frameworks and infrastructures supporting education

• Experiences with standards, certifications, and accreditation

• Security games and competitions

• Extramural and extracurricular education programs

• Experience with alternative teaching modalities for computer
security, including MOOCs, flipped classrooms, peer-instruction
and inquiry-based instruction, and distance learning

• Security education geared toward non-technical audiences

Full Papers
Full paper submissions should be no more than eight pages long
 (excluding references). Full papers are expected to follow style and
 format of a traditional academic format, featuring an abstract, intro-
duction, related work, conclusion and references. As a workshop paper,
these may highlight early work, in-progress work, lessons-learned, posi-
tion papers, or program summaries; however, full papers are intended
do at least one of the following: highlight some technical solution of
merit to the education community, feature some analysis or survey
work of value to the education community, or employ some assessment
based on community-accepted practices for the scholarship of teaching
and learning.

Each full paper will be accompanied by a presentation delivered
at the workshop by one of the paper’s authors (approximately 15–20
minutes in duration).

Short Papers
We are excited to provide educators with a venue to share an exercise,
problem set, activity or tool with the workshop. Short papers supple-
ment these presentations and may take the form of extended abstracts,
stand-alone lesson plans (e.g., featuring learning objectives and related
materials to help educators reproduce the lesson) or technical descrip-
tions to accompany a demo.

Short paper submissions should be between 2–6 pages, but no
more than 6 pages long (including references). At a minimum, short
papers should feature an abstract, introduction, and references, and
the paper’s introduction should contain a summary of what the “live
lesson” at the workshop will demonstrate. Beyond this, short papers
should choose a form that complements their topic. For example, an
in-class activity might provide a lesson plan, learning objectives, activ-
ity description, sample follow-on activities; a software demo might
include a description of its capabilities and a short case study of its prior
use. When appropriate, the paper is encouraged to reference external,
supplemental, and/or multimedia resources. Short papers for lessons, in
particular, may consider paralleling the format of SIGCSE Nifty presen-
tations (http://nifty.stanford.edu/), i.e., letting ASE host all assignment
materials and using the short paper as a brief summary/commentary on
those. All supplemental materials should be submitted with the paper

or otherwise be accessible to reviewers at the time of submission and
throughout the review period.

Each short paper will be accompanied by a “live lesson” delivered at
the workshop by one of the paper’s authors (approximately 15–20 min-
utes in duration), but extra time may be afforded during breaks or after
sessions for continued exploration. Potential “live lessons” include scaf-
folded exercises, abbreviated lessons, tool demonstrations, or classroom
activities (engaging the workshop audience, either as students or fellow
practitioners). They may include a short video of a classroom practice, a
live demo of an instructional technique, an interactive exercise with the
workshop attendees, a technology demonstration, etc.

Lightning Talks
Lightning Talks highlight fresh ideas, unique perspectives, valuable
experiences, and emerging trends in computer security education.
Short talks are five-minute presentations on work and ideas not ready or
suitable for peer-reviewed publication but worth sharing to jump-start
discussion among and solicit feedback from attendees.

Short talk presentations are five minutes in duration with an addi-
tional five minutes for discussion. If you would like to present a short talk
at the event, please email a talk abstract to ase17talks@usenix.org. There
are no length or content requirements for the short talk abstract, but a
few sentences describing what you’d like to do or announce, informally,
is appropriate.

Paper Submissions
Full paper submissions must be no more than eight pages long, exclud-
ing references. Short paper submissions should be no more than six
pages long, including references.

For all submissions, text should be formatted in two columns on
8.5” x 11” paper using 10-point type on 12-point leading (“single-spaced”),
with the text block being no more than 6.5” x 9” deep. Text outside the
6.5” x 9” block will be ignored. Submissions need not be anonymized.
Submissions must be in PDF and must be submitted via the Web sub-
mission form on the ASE ’17 Web site, www.usenix.org/ase17/cfp.

All accepted papers will be available online to registered attendees
before the workshop. If your paper should not be published prior to the
event, please notify production@usenix.org. The papers will be available
online to everyone beginning on the day of the workshop. At least one
author from every accepted paper must attend the workshop and present.

Simultaneous submission of the same work to multiple venues, sub-
mission of previously published work, or plagiarism constitutes dishon-
esty or fraud. USENIX, like other scientific and technical conferences and
journals, prohibits these practices and may take action against authors
who have committed them. See the USENIX Conference Submissions
Policy at www.usenix.org/conferences/submissions-policy for details.
Questions? Contact your program co-chairs, ase17chairs@usenix.org, or
the USENIX office, submissionspolicy@usenix.org.

Papers accompanied by nondisclosure agreement forms will not be
considered. Accepted submissions will be treated as confidential prior to
publication on the USENIX ASE ’17 Web site; rejected submissions will be
permanently treated as confidential.

Rev. 2/7/17

78  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

Sponsored by USENIX, the Advanced Computing Systems Association

Announcement and Call for Papers www.usenix.org/cset17/cfp

August 14, 2016 • Vancouver, BC, Canada

CSET ’17: 10th USENIX Workshop on
Cyber Security Experimentation and Test

CSET ‘17 will be co-located with the 26th USENIX Security Symposium
(USENIX Security ‘17) and take place August 14, 2017.

Important Dates
• Submissions due: Tuesday, May 2, 2017, 11:59 p.m. PDT

(no extensions)

• Notification to authors: Tuesday, June 13, 2017

• Final papers due: Tuesday, July 11, 2017

Workshop Organizers
Program Co-Chairs
José M. Fernandez, École Polytechnique de Montréal
Mathias Payer, Purdue University

Program Committee
John Aycock, University of Calgary
Saurabh Bagchi, Purdue University
Kevin Borgolte, University of California, Santa Barbara
Sergey Bratus, Dartmouth College
Lucas Davi, University of Duisburg-Essen
Sven Dietrich, CUNY John Jay College & The Graduate Center
Brendan Dolan-Gavitt, New York University
Simon Edwards, SE Labs
Sonia Fahmy, Purdue University
Ryan Gerdes, Virginia Tech University
Fanny Lalonde-Lévesque, École Polytechnique de Montréal
Antoine Lemay, École Polytechnique de Montréal
Dave Levin, University of Maryland
Stefan Mangard, TU Graz
Jelena Mirkovic, USC Information Sciences Institute (ISI)
Cristina Nita-Rotaru, Northeastern University
Aravind Prakash, Binghamton University
Anil Somayaji, Carleton University
Peter Stelzhammer, AV-Comparatives
Gianluca Stringhini, University College London
Laura S. Tinnel, SRI International
Erik van der Kouwe, Vrije Universiteit Amsterdam
Chao Zhang, Tsinghua University

Steering Committee
Terry V. Benzel, USC Information Sciences Institute (ISI)
Sean Peisert, University of California, Davis, and Lawrence Berkeley National
Laboratory
Stephen Schwab, USC Information Sciences Institute (ISI)

Overview
The CSET workshop invites submissions on cyber security evaluation,
experimentation, measurement, metrics, data, simulations, and testbeds
for software, hardware, or malware.

The science of cyber security poses significant challenges. For
example, experiments must recreate relevant, realistic features in order
to be meaningful, yet identifying those features and modeling them is
very difficult. Repeatability and measurement accuracy are essential in
any scientific experiment yet hard to achieve in practice. Few security-
relevant datasets are publicly available for research use and little is
understood about what “good datasets” look like. Finally, cyber security
experiments and performance evaluations carry significant risks if not
properly contained and controlled yet often require some degree of
interaction with the larger world in order to be useful.

Addressing all these challenges is fundamental not only for scientific
advancement in the field of Computer Security but also in order to en-
able evidence-based decision making on security products and policies
by industry, government and individual users. Meeting these chal-
lenges requires transformational advances, including understanding the
relationship between scientific method and cyber security evaluation,
advancing capabilities of underlying experimental infrastructure, and
improving data usability.

Topics
Topics of interest include but are not limited to:

• Benchmarks for security: e.g., development and evaluation of
benchmark suites that evaluate certain security metrics

• Research methods for cyber security experiments: e.g., experi-
ences with and discussions of experimental methodologies; ex-
periment design and conduct addressing cybersecurity challenges
for software, hardware, and malware

• Measurement and metrics: e.g., what are useful or valid metrics,
test cases, and benchmarks? How do we know? How does mea-
surement interact with (or interfere with) evaluation?

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 79

• Data sets: e.g., what makes good data sets? How do we know?
How do we compare data sets? How do we collect new ones or
generate derived ones? How do they hold up over time?

• Security product evaluation methodologies: e.g. what product
evaluation methodologies provide more accurate prediction of
real-world performance? How should user-related characteristics
(behaviour, demographics) be modeled for in security product
performance evaluation?

• Simulations and emulations: e.g., what makes good ones? How
do they scale (up or down)?

• Design and planning of cyber security studies: e.g., hypothesis
and research question, study design, data (collection, analysis, and
interpretation), accuracy (validity, precision)

• Ethics of cyber security research: e.g., experiences balancing
stakeholder considerations; frameworks for evaluating the ethics
of cyber security experiments

• Testbeds and experimental infrastructure: e.g., tools for im-
proving speed and fidelity of testbed configuration; sensors for
robust data collection with minimal testbed artifacts; support for
interconnected non-IT systems such as telecommunications or
industrial control

Special note: Papers that primarily focus on computer security educa-
tion are likely a better fit for the 2017 USENIX Workshop on Advances in
Security Education (ASE ’17), also co-located with the USENIX Security
Symposium. Authors of education-centered papers should strongly
consider submitting their work to ASE.

Workshop Format
Because of the complex and open nature of the subject matter, CSET ’17
is designed to be a workshop in the traditional sense. Presentations are
expected to be interactive, and presenters should ensure that sufficient
time is reserved for questions and audience discussion. Audience partici-
pation is encouraged. To ensure a productive workshop environment,
attendance will be limited to 80 participants.

Submission Instructions
Research papers and position papers are welcome as submissions.
Research papers should have a clearly stated methodology including a
hypothesis and experiments designed to prove or disprove the hypoth-
esis. Position papers, particularly those that critique past work, should
present detailed solutions, either proposed or implemented. Submis-
sions that recount experiences (e.g., from experiments or deployments)
are especially desired; these should highlight takeaways and lessons
learned that might help researchers in the future. For all submissions,
the program committee will give greater weight to papers that lend
themselves to interactive discussion among attendees.

Submissions must be no longer than eight pages including all tables,
figures, and references. Text should be formatted in two columns on
8.5”x11” paper using 10-point type on 12-point leading (“single-spaced”),
with the text block being no more than 6.5”x9”. Text outside the 6.5”x9”
block will be ignored. Authors are encouraged to use the LaTeX and
Word guides from the USENIX paper templates page at www.usenix.org/
conferences/author-resources/paper-templates. The review process will
be single-blind; submissions do not need to be anonymized.

All papers must be submitted in PDF format via the Web submission
form on the CSET ’17 Web site, www.usenix.org/cset17/cfp. Please do not
email submissions.

All papers will be available online to registered attendees before the
workshop. If your accepted paper should not be published prior to the
event, please notify production@usenix.org. The papers will be available
online to everyone beginning on the day of the workshop. At least one
author from every accepted paper must attend the workshop and pres-
ent the paper.

Simultaneous submission of the same work to multiple venues, sub-
mission of previously published work, or plagiarism constitutes dishon-
esty or fraud. USENIX, like other scientific and technical conferences and
journals, prohibits these practices and may take action against authors
who have committed them. See the USENIX Conference Submissions
Policy at www.usenix.org/conferences/submissions-policy for details.
Questions? Contact your program co-chairs, cset17chairs@usenix.org, or
the USENIX office, submissions-policy@usenix.org.

Papers accompanied by nondisclosure agreement forms will not be
considered. Accepted submissions will be treated as confidential prior to
publication on the USENIX CSET ‘17 Web site; rejected submissions will
be permanently treated as confidential.

Rev. 2/7/17

80  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

Rev. 1/12/17

17
Preliminary Call for Participation
Sponsored by USENIX, the Advanced Computing Systems Association

LISA17 will take place October 29–November 3, 2017, at the Hyatt Regency in San Francisco.

LISA is the premier conference for operations professionals, where systems engineers, IT operations, SRE practiti oners, and
academic researchers share real-world knowledge about designing, building, and maintaining the critical systems of our
interconnected world.

Industry Call for Participation
We invite both industry leaders and people on the front lines to propose topics that demonstrate the present and future of
operations. LISA submissions should inspire and motivate attendees toward action that improves their day-to-day work as
well as the tech industry as a whole.

LISA encourages submissions from people from a wide range of backgrounds. Our early proposal program allows first-time
submitters and/or submitters of controversial topics to receive feedback and improve their chances for acceptance.

Important Dates
• Early proposals deadline*:

Monday, February 27, 2017, 11:59 pm PST
• Notification to early proposal submitters:

Monday, March 20, 2017
• Standard proposals deadline*:

Monday, April 24, 2017, 11:59 pm PDT
• Notification to standard proposal submitters:

Tuesday, June 13, 2017
* For early proposals, instead of being declined, feedback will be given

so that it can be re-submitted for the main deadline. The standard
deadline provides the opportunity to submit revised proposals, as
well as providing more time for tutorial instructors to create new
content prior to the conference.

Conference Organizers
Program Co-Chairs
Caskey L. Dickson, Microsoft
Connie-Lynne Villani, Grilled Cheese Invitational
Steering Committee
David Blank-Edelman, Apcera
Mark Burgess, Oslo University College
Brendan Gregg, Netflix
Casey Henderson, USENIX Association
Andrew Hume, Ericsson
Amy Rich, Mozilla
Ben Rockwood, Chef Software, Inc.
Carolyn Rowland, National Institute of Standards and
Technology (NIST)
USENIX Tutorials Staff
Natalie DeJarlais, USENIX Association
Rik Farrow, USENIX AssociationTopic Categories

Architecture
• Scalability and Resiliency
• Infrastructure Design
• Machine Learning
• Performance Planning
• Strategic Vision
• On the Horizon

Culture
• Building Dev/Ops Relationships
• Business Communication
• Standards and Regulatory

Compliance
• On-Call Challenges
• Workplace Diversity
• Mentorship, Education, and Training

Engineering
• Dynamic Service Implementation
• Continuous Delivery
• Monitoring and Instrumentation
• Machine and Service Hardening
• Analytics of System Data
• Release Engineering

Proposals We Are Seeking
• Talks: 30 and 45 minute talks, with time for Q&A.
• Mini Tutorials: 90-minute courses teaching practical, immediately applicable skills.
• Tutorials: Half-day or full-day courses taught by experts in the specific topic, preferably with interactive components

such as in-class exercises, breakout sessions, or use of the LISA Lab space.
• Panels: Moderator-led groups of 3–5 experts answering moderator and audience questions on a particular topic
• Vendor-neutral interactive demonstrations of hardware and software use in practical situations for operations

professionals.
All proposal submissions are due by April 24, 2017, 11:59 pm PDT.

www.usenix.org/lisa17/cfp

Learn the latest
techniques for better:

• network security
• system management
• troubleshooting
• performance tuning
• virtualization
• cloud computing

on Windows, Linux,
Solaris, and popular
varieties of Unix.

Each issue delivers
technical solutions
to the real-world
problems you face
every day.

REAL SOLUTIONS
FOR REAL NETWORKS

FREE
CD or DVD
in Every Issue!

ORDER ONLINE AT: shop.linuxnewmedia.com

ORDER ONLINE AT: shop.linuxnewmedia.com6 issues per year!

ad_login_admin.indd 1 2/8/16 9:20 AM

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

www.usenix.org/srecon17asia

SINGAPORE
MAY 22–24, 2017

The inaugural SREcon Asia/Australia is
the seventh SREcon event globally, joining
SREcon Americas and SREcon Europe/Middle
East/Africa as a gathering of engineers who
care deeply about site reliability, systems
engineering, and working with complex
distributed systems at scale.

Register by April 28, 2017, and save!

	Cover
	Upcoming Events
	Contents
	Musings
	Operating Systems: Three Easy Pieces
	Teaching Operating Systems with FreeBSD through Tracing, Analysis, and Experimentation
	Linux Kernel Self-Protection
	Interview with Jeff Mogul
	Interview with Amit Levy
	MarFS, a Near-POSIX Interface to Cloud Objects
	Curing the Vulnerable Parser: Design Patterns for Secure Input Handling
	Postmortem Action Items: Plan the Work and Work the Plan
	Don’t Get Caught in the Cold, Warm Up Your JVM: Understand and Eliminate JVM Warm-up Overhead in Data-Parallel Systems
	Gleeful Incompatibility
	Practical Perl Tools: Off the Charts
	Cybersecurity Workload Trends
	/dev/random
	Book Reviews
	USENIX Notes
	WOOT ’17 Announcement and Call for Papers
	ASE ’17 Announcement and Call for Papers
	CSET ’17 Announcement and Call for Papers
	LISA17 Preliminary Call for Participation

