
;login:
S P R I N G 2 0 1 6 V O L . 4 1 , N O . 1

Columns
Red/Blue Functions: How Python 3.5’s Async IO
 Creates a Division Among Function
David Beazley

Using RPCs in Go
Kelsey Hightower

Defining Interfaces with Swagger
David N. Blank-Edelman

Getting Beyond the Hero Sysadmin and
Monitoring Silos
Dave Josephsen

Betting on Growth vs Magnitude
Dan Geer

Supporting RFCs and Pondering New Protocols
Robert G. Ferrell

& Filebench: A Flexible Framework
for File System Benchmarking
Vasily Tarasov, Erez Zadok, and Spencer Shepler

& Pivot Tracing: Dynamic Causal
Monitoring for Distributed Systems
Jonathan Mace, Ryan Roelke, and Rodrigo
Fonseca

& Streaming Systems and
Architectures: Kafka, Spark,
Storm, and Flink
Jayant Shekhar and Amandeep Khurana

& BeyondCorp: Design to Deployment
at Google
Barclay Osborn, Justin McWilliams, Betsy Beyer,
and Max Saltonstall

U P C O M I N G E V E N T S

www.usenix.org/youtube

twitter.com/usenix

www.usenix.org/facebook

www.usenix.org/linkedin

www.usenix.org/gplus

NSDI ’16: 13th USENIX Symposium on Networked
Systems Design and Implementation

March 16–18, 2016, Santa Clara, CA, USA
www.usenix.org/nsdi16

Co-located with NSDI ’16
CoolDC ’16: USENIX Workshop on Cool Topics on
Sustainable Data Centers
March 19, 2016
www.usenix.org/cooldc16

SREcon16
April 7–8, 2016, Santa Clara, CA, USA
www.usenix.org/srecon16

USENIX ATC ’16: 2016 USENIX Annual Technical
Conference

June 22–24, 2016, Denver, CO, USA
www.usenix.org/atc16

Co-located with USENIX ATC ’16:
HotCloud ’16: 8th USENIX Workshop on Hot Topics in
Cloud Computing
June 20–21, 2016
www.usenix.org/hotcloud16

HotStorage ’16: 8th USENIX Workshop on Hot Topics in
Storage and File Systems
June 20–21, 2016
www.usenix.org/hotstorage16

SOUPS 2016: Twelfth Symposium on Usable Privacy and
Security
June 22–24, 2016
www.usenix.org/soups2016

SREcon16 Europe
July 11–13, 2016, Dublin, Ireland
www.usenix.org/srecon16europe

USENIX Security ’16: 25th USENIX Security
 Symposium

August 10–12, 2016, Austin, TX, USA
www.usenix.org/sec16

Co-located with USENIX Security ’16
WOOT ’16: 10th USENIX Workshop on Offensive
Technologies
August 8–9, 2016
Submissions due May 17, 2016
www.usenix.org/woot16

CSET ’16: 9th Workshop on Cyber Security
Experimentation and Test
August 8, 2016
Submissions due May 3, 2016
www.usenix.org/cset16

FOCI ’16: 6th USENIX Workshop on Free and Open
Communications on the Internet
August 8, 2016
Submissions due May 19, 2016
www.usenix.org/foci16

ASE ’16: 2016 USENIX Workshop on Advances in Security
Education
August 9, 2016
Submissions due May 3, 2016
www.usenix.org/ase16

HotSec ’16: 2016 USENIX Summit on Hot Topics
in Security
August 9, 2016
www.usenix.org/hotsec16

OSDI ’16: 12th USENIX Symposium on Operating
Systems Design and Implementation

November 2–4, 2016, Savannah, GA, USA
Abstracts due May 3, 2016
www.usenix.org/osdi16

Co-located with OSDI ’16
INFLOW ’16: 4th Workshop on Interactions of NVM/Flash
with Operating Systems and Workloads
November 1, 2016

LISA16
December 4–9, 2016, Boston, MA, USA
Submissions due April 25, 2016
www.usenix.org/lisa16

Co-located with LISA16
SESA ’16: 2016 USENIX Summit for Educators in System
Administration
December 6, 2016

USENIX Journal of Education in System Administration (JESA)
Published in conjunction with SESA
Submissions due August 26, 2016
www.usenix.org/jesa

Do you know about the
USENIX Open Access Policy?

USENIX is the fi rst computing association to off er free and
open access to all of our conferences proceedings and
videos. We stand by our mission to foster excellence and
innovation while supporting research with a prac tical bias.
Your membership fees play a major role in making this
endeavor successful.

Please help us support open access. Renew your USENIX
membership and ask your colleagues to join or renew
today!

www.usenix.org/membership

E D I T O R
Rik Farrow
rik@usenix.org

M A N A G I N G E D I T O R
Michele Nelson
michele@usenix.org

C O P Y E D I T O R S
Steve Gilmartin
Amber Ankerholz

P R O D U C T I O N
Arnold Gatilao
Jasmine Murcia

T Y P E S E T T E R
Star Type
startype@comcast.net

U S E N I X A S S O C I AT I O N
2560 Ninth Street, Suite 215
Berkeley, California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

www.usenix.org

;login: is the official magazine of the USENIX
Association. ;login: (ISSN 1044-6397)
is published quarterly by the USENIX
Association, 2560 Ninth Street, Suite 215,
 Berkeley, CA 94710.

$90 of each member’s annual dues is for
a subscription to ;login:. Subscriptions for
non members are $90 per year. Periodicals
postage paid at Berkeley, CA, and additional
mailing offices.

POSTMASTER: Send address changes to
;login:, USENIX Association, 2560 Ninth Street,
Suite 215, Berkeley, CA 94710.

©2016 USENIX Association
USENIX is a registered trademark of the
USENIX Association. Many of the designa-
tions used by manufacturers and sellers
to distinguish their products are claimed
as trademarks. USENIX acknowledges all
trademarks herein. Where those desig-
nations appear in this publication and
USENIX is aware of a trademark claim,
the designations have been printed in caps
or initial caps.

S P R I N G 2 0 1 6 V O L . 4 1 , N O . 1

E D I T O R I A L
2 Musings Rik Farrow

F I L E S Y S T E M S A N D S T O R A G E
6 Filebench: A Flexible Framework for File System Benchmarking

Vasily Tarasov, Erez Zadok, and Spencer Shepler
14 Streaming Systems and Architectures

Jayant Shekhar and Amandeep Khurana

P R O G R A M M I N G
20 Pivot Tracing: Dynamic Causal Monitoring for Distributed

Systems Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca
26 Interview with Doug McIlroy Rik Farrow

S E C U R I T Y
28 BeyondCorp: Design to Deployment at Google

Barclay Osborn, Justin McWilliams, Betsy Beyer, and Max Saltonstall
36 Talking about Talking about Cybersecurity Games

Mark Gondree, Zachary N J Peterson, and Portia Pusey

N E T W O R K I N G
40 Interview with Lixia Zhang and kc claffy Rik Farrow

S Y S A D M I N
44 A Brief POSIX Advocacy: Shell Script Portability Arnaud Tomeï
48 System Administration in Higher Education Workshop at LISA15

Josh Simon

C O L U M N S
52 Crossing the Asynchronous Divide David Beazley
58 Practical Perl Tools: With Just a Little Bit of a Swagger

David N. Blank-Edelman
63 Modern System Administration with Go and

Remote Procedure Calls (RPC) Kelsey Hightower
68 iVoyeur: We Don’t Need Another Hero Dave Josephsen
72 For Good Measure: Betting on Growth versus Magnitude Dan Geer
76 /dev/random Robert G. Ferrell

B O O K S
78 Book Reviews Mark Lamourine

U S E N I X N O T E S
79 What USENIX Means to Me Daniel V. Klein
80 Refocusing the LISA Community Casey Henderson

2  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

EDITORIALMusings
R I K F A R R O W

Rik is the editor of ;login:.
rik@usenix.org This time around I thought I would write about the future of the Inter-

net. Please note the capital “I,” as that’s what you will find in the
Future Internet Design (FIND) final report [1], where the authors

suggest strategies to the NSF for funding research into networking.

That initial conference took place in 2009 and looked at 49 projects. One outcome of the NSF
NeTS FIND Initiative [2] was to continue funding several of the projects. I was vaguely aware
of this work, but I also wondered how in the world anyone could hope to change the Internet,
the system of networks we’ve all grown to rely upon—really, to depend upon—at this point in
time.

On the economic side, there is the issue of sunk costs: companies have spent billions creating
the network we have today. Then there is conservatism: people have learned (at least enough)
to work with TCP/IP, with all its quirks. And, finally, any new protocols will require hard-
ware support, and that’s the issue I found worried the people whom I talked to about the NSF
project I chose to focus on.

Named Data Networking
I didn’t pick Named Data Networking (NDN) out of a hat. kc claffy had just 45 minutes to
introduce some of the concepts behind this protocol during LISA15 [3], and I had heard
something about NDN earlier. I think it was kc’s mention of the importance of security that
got me interested. If you read the FIND report [1], you will also see that security often gets
mentioned first in lists of desirable new features in future protocols. But NDN is about a lot
more than just supporting security over network traffic.

NDN comes out of research done by Van Jacobson and others at Palo Alto Research Center
(PARC) [4] in 2009. The authors of that paper created a protocol called Content-Centric
Networking (CCN), largely because of the realization that then-current Internet traffic was
mostly about shared content. Today, streaming video (content) makes up close to two-thirds
of all Internet traffic, making the notion of a network focused on content even more relevant.

The NDN researchers started with many of the ideas expressed in the CCN research to cre-
ate a new protocol with similar goals. The very name, Named Data Networking, hints at the
key ideas.

Today’s Internet, based on the Internet Protocol (IP), relies on binary addressing for point-
to-point communication. We start with DNS names, DNS provides the binary addresses
(although we generally think of them as four decimal bytes separated by dots), and commu-
nication is between a pair of endpoints. Point-to-point communication made a lot of sense
in the 1970s, when computers were rare and just connecting a computer to a shared network
required the use of a mini-computer, called Interface Message Processors, IMPs [5], a 16-bit
computer the size of a refrigerator, not including its console. The computers that connected to
the ARPANET were multi-million-dollar machines themselves. You could say that the world
then (just 40 years ago) was very different. Researchers really wanted ways to share data and
remotely log in in those days, and those two goals were the focus for designing TCP/IP.

www.usenix.org S P R I N G 20 16 VO L . 41 , N O. 1 3

EDITORIAL
Musings

Today, over a quarter of the world’s population uses the Internet,
and what they want from it is content. Named data refers to the
requests for data in NDN, called Interests, which look a lot like
URLs in a RESTful interface. Naming is hierarchical, some-
thing that IP addressing has never managed to have, although
IPv6 is better in this regard.

The responses to Interests are called Content, and the data in
Content packets are signed by the source. Having signed data
means you can trust that the data came from the source you are
interested in, even if that data had been cached by a cooperat-
ing router.

Of course, signing relies on there being a secure method for
sharing public keys, and secure sharing of certificates is also
an important part of NDN. NDN plans on using a Web of Trust,
where you have local roots for your own organization, but must
trust other certificate signers for trusting certs from the greater
Internet. The details of this must still be worked out.

The Hard Part
Well, I jest, because there are lots of hard parts. But one of the
things that really caught my attention about this design is how
much more involved routers will be in a network where NDN is
the underlying protocol. In TCP/IP, IP is what network design-
ers call the “thin waist.” What they mean is that one relatively
simple protocol, IP, is what is used to get packets delivered across
the Internet.

NDN’s thin waist are Interests and Content. Routers need to be
able to interpret the names in Interests, decide how to forward
those Interests, keep track of which port Interests arrived on (so
they can return Content via that port), as well as cache Content.
Compared to IP routers, that’s a huge departure from the way
things are currently done.

Since routers replaced gateways (like the IMP, and later Sun
and DEC servers), routers started having special hardware that
supported the fastpath. The fastpath represented the port pair
for a particular route and avoided having to use the much, much
slower router CPU to make routing decisions for each packet.
The fastpath allowed parallel lookups, using Ternary Content
Addressable Memory (TCAM [6]) to route packets. TCAM solved
what was becoming the problem that would “kill” the Internet in
the late ’90s, when the number of routes was doubling every sev-
eral years, requiring four times longer to look up routing infor-
mation for each packet for each doubling in routing table size.

There aren’t any TCAMs for names. In fact, parsing names using
current hardware for routing seems like an impossible task
today. But then, we faced a similar problem just 20 years ago
with IP routing.

There are the other issues that would need to be solved, ones that
we have not been able to solve so far, like a trustworthy means
for distributing public key certificates. X.509 is itself a terrible
protocol—just consider how often libraries for parsing X.509
have resulted in exploits, because X.509 is too ambiguous. We
also have certificate authorities, like Symantec, having its root
certificates banned by Google [7] because of abuse. And that’s
not the only case of CAs behaving as paper mills—producers of
nice certificates for a fee—instead of identity authorities.

NDN runs over a UDP overlay today, but plans are for NDN to
run natively some day. If we ever expect to replace cable with the
Internet, we really need a way to stream popular entertainment,
like sports events, in an efficient manner. And TCP/IP is not
designed for streaming, while NDN would do streaming well,
as its design easily and naturally handles multicasting.

The Lineup
We begin the features in this issue with Filebench, a project
started within Sun Microsystems many years ago for bench-
marking NFS. Vasily Tarasov, Erez Zadok, and Spencer Shepler
explain how to use Filebench for benchmarking file systems.
Filebench does include templates for several common uses, but
the real power in Filebench is your ability to tune the bench-
marks to your particular use cases.

Amandeep Khurana and Jayant Shekhar tell us about different
systems for processing streaming data. They cover Kafka, Spark,
Storm, and Flink, describing the strengths and weakness of
each system, all of which add streaming over Hadoop-related
architectures. Kafka handles data ingestion, where Spark,
Storm, and Flink provide different approaches to analysis.

Jonathan Mace, Rodrigo Fonseca, and Ryan Roelke reprise their
SOSP ’15 award-winning paper about Pivot Tracing. Pivot Trac-
ing adds metadata to requests in distributed systems on-the-fly,
allowing you to monitor and debug these applications, much the
way you would use DTrace or Systemtap on local applications.

I interview Doug McIlroy, who was a manager at Bell Labs when
the UNIX system was being created. Doug is best known for his
work in adding pipes to the UNIX system, but also wrote code
from some tools that we still use today.

Arnaud Tomeï takes a comprehensive look at his experiences
with creating portable shell scripts. While POSIX was all about
creating a standard for UNIX-like features, Tomeï discovered
many places where using features found in the most common
shells and popular commands will get you in trouble when you
try to write one script for multiple *nix systems.

Barclay Osborn, Justin McWilliams, Betsy Beyer, and Max
Saltonstall provide another look at BeyondCorp, Google’s project

4  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

EDITORIAL
Musings

to replace VPNs into sensitive networks with gateways over
encrypted connection to services. Rory Ward and Beyer provided
a view into this project in a December 2014 ;login: article [8], and
the authors update us on how the project has evolved, and what
challenges have been overcome over the intervening year.

Mark Gondree, Zachary N J Peterson, and Portia Pusey share
the work being done surrounding the issues of naming in the
area of gaming for security education. Terms like Capture the
Flag (CTF) have wound up being applied to games that have little
to do with the original notion, and not having a standard termi-
nology for styles of games hurts attempts at using gaming for any
form of computer education that might take advantage of it.

I interviewed Lixia Zhang and kc claffy about NDN, the sub-
ject of this column. I recommend reading this interview and
checking out the resources at the end of it so you can learn more
about NDN. You might even want to try out some of the sample
applications.

Dave Beazley tells us about a problem when using Python 3.5’s
new asyncio functions: you don’t know what other functions
will fail when you start using asyncio functions. Dave deftly
describes this as the red/blue problem and provides some inter-
esting Python function decorators as possible solutions.

David Blank-Edelman wants us to use Swagger, not an exagger-
ated way of walking but a Java-based tool that makes writing
the code for APIs between client and servers a stroll in the park.
Swagger includes code generators for many languages, although
only for the client-side of Perl.

Dave Josephsen doesn’t want you to be a hero. Dave refers spe-
cifically to Brent in the novel The Phoenix Project, the one person
who can solve any problem, and thus the bottleneck to getting
any IT project completed. Dave uses an example to demonstrate
how things should work.

Kelsey Hightower introduces his column on Go for sysadmins,
where he describes how to use RPCs to build a distributed tool
that could be the basis for a monitoring system. Kelsey will be
writing Go columns designed to help system administrators,
and anyone new to Go, take advantage of one of the best-
designed languages.

Dan Geer bets on growth over magnitude. When looking at the
problems you will need to solve, do you choose the ones with the
most current problems or the ones with the fastest growing list
of issues? Dan explains his reasoning behind picking growth.

Robert G. Ferrell, inspired by my look at NDN, considers how
he helped with organizing RFCs in the ’90s, then ponders NDN,
without naming it.

Mark Lamourine has just one book review in this issue. Mark
writes about The Logician and the Engineer: How George Boole
and Claude Shannon Created the Information Age. Like the
author, Paul Nahin, Mark considers Boole and Shannon unsung
heroes (the good kind) in the creation of computers.

In USENIX Notes, Dan Klein tells us why he has worked with
USENIX—as education director, paper author, and now Board
member—for over 25 years.

It has been said that pornography was the driving force behind
the incredible growth of the Internet. During the 1990s, I would
meet with UUnet employees at USENIX conferences and hear
that since the last time we had seen each other, the size of the
Internet had doubled. While I don’t really have any idea whether
this was because of pornography, attempts at streaming football
games might have a similar effect on the introduction of new
protocols in the Internet.

Fortuitously, while I was pondering this column, Bloomberg
published a magazine article about how, if the NFL were to
get serious about live streaming football games [9], they would
need a different Internet. TCP/IP was designed for point-to-
point transfer, not the one-to-many streaming that huge events
require. And entertainment providers like Netflix now dominate
Internet traffic. These uses, and more, could really benefit from
new protocols like NDN.

www.usenix.org S P R I N G 20 16 VO L . 41 , N O. 1 5

EDITORIAL
Musings

Resources
[1] National Science Foundation, “FIND Observer Panel
Report,” April 9, 2009: http://www.nets-find.net/FIND_
report_final.pdf.

[2] NSF NeTS FIND Initiative: http://www.nets-find.net/.

[3] kc claffy, “Named Data Networking”: https://www.usenix.org/
conference/lisa15/conference-program/presentation/claffy.

[4] Van Jacobson, Diana K. Smetters, James D. Thornton,
Michael F. Plass, Nicholas H. Briggs, Rebecca L. Braynard,
“Networking Named Content,” ACM CoNEXT 2009: http://
conferences.sigcomm.org/co-next/2009/papers/Jacobson.pdf.

[5] Interface Message Processor: https://en.wikipedia.org/wiki/
Interface_Message_Processor.

[6] Content Addressable Memory: https://en.wikipedia.org/
wiki/Content-addressable_memory.

[7] Lucian Armasu, “Google to Remove a Symantec Root
Certificate from Chrome and Android,” December 11, 2015,
Tom’s Hardware: http://www.tomshardware.com/news/google-
removes-symantec-root-certificate,30742.html.

[8] Rory Ward and Betsy Beyer, “A New Approach to Enterprise
Security,” ;login:, vol. 39, no. 6, December 2014: https://www.
usenix.org/publications/login/dec14/ward.

[9] Joshua Brustein, “How NFL Thursdays Could Break the
Internet,” Bloomberg Business, December 15, 2015: http://www.
bloomberg.com/news/articles/2015-12-15/how-nfl-thursdays-
could-break-the-internet?cmpid=BBD121515.

6  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

FILE SYSTEMS AND STORAGEFilebench
A Flexible Framework for File System Benchmarking

V A S I L Y T A R A S O V , E R E Z Z A D O K , A N D S P E N C E R S H E P L E R

Vasily Tarasov is a Researcher
at IBM Almaden Research
Center. He started to use
and contribute to Filebench
extensively while working on

his PhD at Stony Brook University. Vasily’s
interests include system performance analysis,
design and implementation of distributed
systems, and efficient I/O stacks for ultra-fast
storage devices. vtarasov@us.ibm.com

Erez Zadok received a PhD
in computer science from
Columbia University in 2001.
He directs the File systems
and Storage Lab (FSL) at the

Computer Science Department at Stony
Brook University, where he joined as faculty
in 2001. His current research interests
include file systems and storage, operating
systems, energy efficiency, performance and
benchmarking, security, and networking.
He received the SUNY Chancellor’s Award
for Excellence in Teaching, the US National
Science Foundation (NSF) CAREER Award, two
NetApp Faculty awards, and two IBM Faculty
awards. ezk@cs.stonybrook.edu

Spencer Shepler is a Private
Cloud Architect at Microsoft.
Prior to Microsoft, Spencer
worked at a failed startup and
before that at Sun Micro-

systems. While at Sun, Spencer worked
on Filebench along with many others and
at his full-time job of bringing NFSv4 to
market. sshepler@microsoft.com

File system benchmarks constitute a crucial part of a storage evalu-
ator’s toolbox. Due to the wide variety of modern workloads and
ever-growing list of storage stack features, modern benchmarks have

become fairly complex tools. This article describes Filebench, one of the most
popular modern file system benchmark tool suites. Using several practi-
cal examples, we demonstrate Filebench’s versatility, expressiveness, and
ease of use. It is our hope that this article will encourage people to use File-
bench to describe their real-life workloads as well as publicly contribute new
workloads.

Filebench is a highly flexible framework for file system and storage benchmarking. The
project started around 2002 inside Sun Microsystems and was open-sourced around 2005. It
is now hosted at sourceforge.net [2] and maintained by the community, centered around the
File systems and Storage Lab (FSL) at Stony Brook University. According to Google Scholar,
Filebench was used in over 500 publications and remains one of the most popular file system
benchmarks both in academia and industry. The popularity of the Filebench framework
comes mainly from the fact that it is shipped with several predefined macro workloads, e.g.,
Web-server, Mail-server, and File-server. This allows users to easily benchmark their file
systems against several sufficiently different workloads with a single tool.

The intrinsic power of Filebench originates, however, not from the included workloads but
rather from its expressive Workload Model Language (WML), which allows users to encode
a wide variety of workloads. We therefore find ourselves disappointed that most users do
not go beyond the predefined workloads and consequently do not utilize the full power of
Filebench. The goal of this article is to educate the community on Filebench’s WML and
demonstrate both its long-standing and recently added features. In addition, we describe best
practices for using Filebench to avoid common beginners’ mistakes.

Basic Functionality
Many existing storage benchmarks (e.g., fio, mdtest, and SPECsfs) hard code the workloads
they generate quite rigidly. A user can specify some basic workload parameters (e.g., I/O
size, number of threads, read/write ratio) but cannot really control the execution flow in
detail. Expressing a workload with a general-purpose programming language (e.g., C/C++
or Python) is another extreme that offers the utmost flexibility but is time-consuming. The
Filebench framework provides a much needed middle ground: high flexibility combined with
the ease of describing a workload.

In Filebench, users define workloads using a Workload Model Language (WML). There are
four main entities in WML: fileset, process, thread, and flowop. Every defined entity must
have a user-assigned name that is mainly used to print per-process and per-thread statis-
tics. A fileset is a named collection of files. To define a fileset, a user specifies its name, path,
number of files, and a few other optional attributes. Listing 1 shows two filesets with 1,000
files of 128 KB size that will be located in the /tmp directory.

www.usenix.org S P R I N G 20 16 VO L . 41 , N O. 1 7

FILE SYSTEMS AND STORAGE
define fileset name=”test1”,path=”/tmp”,

 entries=1000,filesize=128k

define fileset name=”test2”,path=”/tmp”,

 entries=1000,filesize=128k,prealloc=80

Listing 1: Examples of fileset definitions

A Filebench run proceeds in two stages: fileset preallocation and
an actual workload execution. By default, Filebench does not cre-
ate any files in the file system and only allocates enough internal
file entries to accommodate all defined files. To actually create
files, one should specify the percentage of files to precreate with
the prealloc attribute. Listing 1 shows how Filebench precreates
800 files in the fileset test2—80% of 1,000.

The reason for Filebench not to precreate all (or any) files is
that certain workloads include file creates. When a workload-
defined file create operation should be executed, Filebench picks
a non-existent file entry in a fileset and creates the file. The total
number of simultaneously existing files in a fileset can never
exceed the fileset size at any point during a Filebench run. If a
workload tries to create a file but there are no more non-existent
file entries, then an internal Out-of-Resources event is triggered,
which can be interpreted either as an end of the run or an error,
depending on the user’s objective. Consider a WML snippet in
Listing 2 that can be used to measure peak file create rate. At
first, the fileset is empty and the workload starts to create files
in a loop. When the workload tries to create the 10,001st file,
Filebench graciously exits and reports the measurements. This
happens because quit mode is set to firstdone; more informa-
tion on this and other quit modes is described later in this article.
Note that delete operations reduce the number of existing files
and can balance out the file create operations.

set mode quit firstdone

define fileset name=”fcrset”,path=”/tmp”,

 entries=10000,filesize=16k

define process name=”filecreate”,instances=1 {

 thread name=”filecreatethread”,instances=2 {

 flowop createfile name=”crfile”,filesetname=”fcrset”

 flowop closefile name=”clfile”

 }

}

run

Listing 2: WML snippet to measure file create performance

WML processes represent real UNIX processes that are created
by Filebench during the run. Every process consists of one or
more threads representing actual POSIX threads. The attribute
instances=N instructs Filebench to replicate the corresponding
processes and threads N times. Listing 2 defines one process
named filecreate with two identical threads. WML allows
users to define any number of identical or different processes
containing any number of identical or different threads. Listing
3 demonstrates a more complex workload description with five
processes in total. Three processes contain one reader thread
and two writer threads; two other processes contain four identi-
cal threads that create and delete files. All processes and threads
run simultaneously.

define process name=”testprocA”,instances=3 {

 thread name=”reader”,instances=1 {

 flowop openfile name=”readop”,filesetname=”testset”

 flowop readwholefile name=”readop”,iosize=4k

 flowop closefile name=”closeop1”

 }

 thread name=”writer”,instances=2 {

 flowop openfile name=”readop”,filesetname=”testset”

 flowop writewholefile name=”writeop”,iosize=4k

 flowop closefile name=”closeop2”

 }

}

define process name=”testprocB”,instances=2 {

 thread name=”crdelthread”,instances=4 {

 flowop createfile name=”createop”,filesetname=”testset”

 flowop closefile name=”closeop3”

 flowop deletefile name=”deleteop”,filesetname=”testset”

 }

}

Listing 3: Example of defining multiple different processes and threads

Every thread executes a loop of flowops. Flowop is a represen-
tation of a file system operation and is translated to a system
call by Filebench: e.g., the createfile flowop creates a file and
the write flowop writes to a file. Table 1 lists the most common
WML flowops, which cover the majority of operations that real
applications execute against a file system. When Filebench
reaches the last flowop defined in a thread, it jumps to the begin-
ning of the thread definition and executes flowops repeatedly
until a quit condition is met (e.g., requested runtime elapsed).

8  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

FILE SYSTEMS AND STORAGE
Filebench: A Flexible Framework for File System Benchmarking

Flowop Description

openfile
Opens a file. One can specify
a virtual file descriptor to use
in the following flowops.

closefile
Closes a file referenced by a
virtual file descriptor

createfile
Creates a file. One can specify
a virtual file descriptor to use
in the following flowops.

deletefile Deletes a file

read Reads from a file

readwholefile
Reads whole file even if it
requires multiple system calls

write Writes to a file

writewholefile
Writes whole file even if it
requires multiple system calls

appendfile Appends to the end of a file

statfile Invokes stat() on a file

fsync Calls fsync() on a file

Table 1: List of most frequently used flowops. In addition, Filebench sup-
ports a number of directory, asynchronous I/O, synchronization, operation
limiting, and CPU consuming and idling operations.

Filebench uses Virtual File Descriptors (VFDs) to refer to files in
flowops. VFDs are not actual file descriptors returned by open();
instead, users assign VFDs explicitly in openfile and createfile
flowops. Later, these VFDs can be used in flowops that require
a file to operate on. Listing 4 provides an example where the
attribute fd is used to specify two different VFDs. First, the
thread opens one file, assigning it VFD 1 and creates another file
with VFD 2. Then the thread reads from one file and writes to
another, keeping both files open and referring to them by their
VFDs. Finally, both files are closed. This represents a simple
copy workload in WML. Note that VFDs are per-thread entities
in Filebench: a VFD in one thread does not impact an identically
numbered VFD in another thread.

VFDs specified in openfile and createfile must not be opened
prior to the flowops execution. Therefore, in most of the cases
it is necessary to explicitly close VFDs with a closefile flowop.
Other flowops that require a VFD (e.g., read) will open a file
automatically if the corresponding VFD is not opened yet. If the
fd attribute is not specified in a flowop then Filebench assumes
that it is equal to zero. This is a useful convention for a large
class of workloads that keep only one file open at a time (see
Listings 2 and 3). Describing such workloads in WML does not
require specifying the fd attribute, which streamlines the work-
load description further.

When opening a file, Filebench first needs to pick a file from a
fileset. By default this is done by iterating over all file entries in
a fileset. To change this behavior one can use the index attri-
bute that allows one to refer to a specific file in a fileset using
a unique index. In most real cases, instead of using a constant
number for the index, one should use custom variables described
in the following section.

Filebench supports a number of attributes to describe access
patterns. First, one can specify an I/O size with the iosize attri-
bute. Second, one can pick between sequential (default) and ran-
dom accesses. Sequential patterns usually make sense only if a
file is kept open between the flowop executions so that the oper-
ating system can maintain the current position in a file. When
the end of a file is reached, sequential flowops start accessing
the file from the beginning. Third, for random workloads, one
can specify the working set size in a file using the wss attribute.
Finally, direct and synchronous I/Os are supported as well.

The very last line of a WML file usually contains a run or psrun
command. These commands tell Filebench to allocate the
defined filesets, spawn the required number of UNIX processes
and threads, and, finally, start a cycled flowops execution. Both
commands take the duration of the run in seconds as an argu-
ment; the psrun command in addition takes a period with which
to print performance numbers.

To generate a workload described, e.g., in a workload.f WML file
(.f is a traditional extension used by Filebench), one executes
the filebench -f workload.f command. A non-abortive run
terminates under two conditions. First, the run can be time-

set mode quite firstdone

define fileset name=”testfset”,path=”/tmp”,

 entries=10000,filesize=4k,prealloc=50

define process name=”filecopy”,instances=2 {

 thread name=”filecopythread”,instances=2 {

 flowop openfile name=opfile”,

 filesetname=”testfset”,fd=1

 flowop createfile name=”crfile”,

 filesetname=”testfset”,fd=2

 flowop readwholefile name=”rdfile”,

 filesetname=”testfset”,fd=1

 flowop writewholefile name=”wrfile”,

 filesetname=”testfset”,fd=2

 flowop closefile name=”clfile1”,

 filesetname=”testfset”,fd=2

 flowop closefile name=”clfile2”,

 filesetname=”testfset”,fd=1

 }

}

Listing 4: Simple file copying expressed in WML

www.usenix.org S P R I N G 20 16 VO L . 41 , N O. 1 9

FILE SYSTEMS AND STORAGE
Filebench: A Flexible Framework for File System Benchmarking

based; this is the default mode and if the run command does not
have any arguments, then the workload will run for one minute
only. Second, a Filebench run might finish if one or all threads
completed their job. To specify Filebench’s quit mode, a set

mode quit command can be used. In Listing 2, we change the
quit mode to firstdone, which means that whenever one of the
threads runs out of resources (e.g., there are no more non-exis-
tent files to create), Filebench stops. Another scenario is when
a thread explicitly declares that it completed its job using the
finishoncount or finishonbytes flowops. These flowops allow
one to terminate a thread after a specific number of operations
completed (e.g., writes or reads) or a specific number of bytes
were read or written by a thread.

In the end of the run, Filebench prints a number of different met-
rics. The most important one is operations per second. This is
the total number of executed flowop instances (in all processes
and threads) divided by the runtime. For flowops that read and
write data, Filebench also prints the throughput in bytes per
second. Finally, one can measure the average and distribution of
latencies of individual flowops. In addition, Filebench can main-
tain and print statistics per process, per thread, or per flowop.

Long-time Filebench framework users might be surprised that
we described Filebench’s run as a non-interactive experience. In
fact, before version 1.5, Filebench supported interactive runs: a
console in which one could type workloads and execute vari-
ous commands. However, one of the big changes in v1.5 is the
elimination of interactive mode. The majority of experienced
users did not use non-interactive runs. Beginners, on the other
hand, made a lot of systematic mistakes in interactive mode (e.g.,
did not drop caches or remove existing filesets between runs).
In v1.5, therefore, we made a strategic decision not to support
interactive mode. This further helped reduce the total amount of
code to maintain.

Advanced Features
In this section, we highlight some advanced Filebench features.
They were either less known before or were just recently added
in version 1.5. Listing 5 demonstrates most of these features.

Variables
Filebench supports two types of variables: regular and custom.
Variable names, irrespective of their type, are prefixed with a
dollar sign. With a few exceptions, variables can be used instead
of constants in any process, thread, or flowop attribute. Regular
variables hold constant values, are defined with the set keyword,
and are mainly used for convenience. It is considered a good style
to define all parameters of the workload (e.g., I/O sizes or file
numbers) in the beginning of a WML file and then use vari-
ables in the actual workload definition; it also facilitates easier
changes to the workload. Listing 5 demonstrates how the $iosize
regular variable is used to set I/O size.

set $iosize=4k

set $findex=cvar(type=cvar-normal,min=0,max=999,

 parameters=mean:500;sigma:100)

set $off=cvar(type=cvar-triangular,min=0,max=28k,

 parameters=lower:0;upper:28k;mode:16k)

enable lathist

define fileset name=”test”,path=”/tmp”,entries=1000,

 filesize=32k,prealloc=100

eventgen rate=100

define process name=”testproc1” {

 thread name=”reader”,memsize=10m {

 flowop read name=”rdfile”,filesetname=”test”,

 indexed=$findex,offset=$off,iosize=$iosize

 flowop closefile name=”clsfile1”

 flowop block name=”blk”

 }

 thread name=”writer”,memsize=20m {

 flowop write name=”wrfile”,

 filesetname=”test”,iosize=$iosize

 flowop closefile name=”clsfile2”

 flowop opslimit name=”limit”

 }

 thread name=”noio”,memsize=40m {

 flowop hog name=”eatcpu”,value=1000

 flowop delay name=”idle”,value=1

 flowop wakeup name=”wk”,target=”blk”

 }

}

Listing 5: Demonstration of some advanced Filebench features

The use of custom variables (cvar) powerfully enables any File-
bench attribute to follow some statistical distribution. Distribu-
tions are implemented through dynamically loadable libraries
with a simple and well-defined interface that allows users to add
new distributions easily. When Filebench starts, it looks for the
libraries in a certain directory and loads all supported distribu-
tions. We ported the Mtwist package [4] to the custom variables
subsystem; this immediately made Filebench support eight
distributions, and this number is growing.

In Listing 5 the indexed attribute of the rdfile flowop follows
the distribution described by the $findex custom variable. The
$findex variable uses a normal distribution with values bounded
to the 0–999 range. The minimum and maximum bounds are in
sync with the number of files in the fileset here—1,000. Distribu-
tion-specific parameters—mean and standard deviation (sigma)
in case of a normal distribution—are specified with the param-

eters keyword. As we mentioned in the Basic Functionality sec-
tion, Filebench by default picks files from a fileset in a rotating

10  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

FILE SYSTEMS AND STORAGE
Filebench: A Flexible Framework for File System Benchmarking

manner and the indexed attribute can pick specific files. Assign-
ing findex makes Filebench access some files more frequently
than others using a normal distribution from a custom variable.
This simulates a real-world scenario in which some files are
more popular than others.

Earlier Filebench versions actively used the so-called random
variables, which are essentially similar to custom variables.
But we found random variables limiting because the number of
supported distributions was small, and adding more distribu-
tions required significant knowledge of Filebench’s code base. In
version 1.5 we replaced random variables with custom variables
(random variables are still supported for backward compatibility
but will be phased out in the future).

Synchronization Primitives
When a workload is multithreaded, it sometimes makes sense to
emulate the process by which requests from one thread depend
on requests from other threads. For this, Filebench provides
the block, wakeup, semblock, and sempost flowops. They allow
Filebench to block certain threads until other threads complete
the required steps. Listing 5 shows how a reader thread blocks in
every loop until the noio thread wakes it up.

The ability to quickly define multiple processes and synchroni-
zation between them was one of the main requirements during
Filebench framework conception. The task for Sun Microsys-
tems engineers at the time was to improve file system perfor-
mance for a big commercial database. Setting up TPC-C [7],
database, and all of the required hardware was expensive and
time-consuming for an uninvolved file system engineer. The key
for simulating database load on a file system was how log writes
cause generic table updates to block. With this use case in mind,
Filebench’s WML was designed, and a corresponding oltp.f
workload personality was created and then validated against the
real database. Having the Filebench framework and a workload
description in WML gave engineers the time to focus just on the
file system tuning task.

CPU and Memory Consumption
Filebench provides a hog flowop that consumes CPU cycles and
memory bandwidth. Conversely, the flowop delay simulates
idle time between requests. Also, when defining a thread, one
must specify its memory usage with the memsize attribute. Every
thread consumes this amount of memory and performs reads and
writes from it. In Listing 5 the noio thread burns CPU by copying
memory 1,000 times and then sleeps for one second per loop.

Speed Limiting
In many cases one wants to evaluate system behavior under
moderate or low loads (which are quite common in real systems)
instead of measuring peak performance. Filebench supports this

with the flowops iopslimit (limits the rate of data operations
only) and bwlimit (limits the bandwidth). In Listing 5, the reader
thread issues only 100 reads per second (or fewer if the system
cannot fulfill this rate). The command eventgen sets the rate,
which is global for all processes and threads.

Complex Access Patterns
Originally Filebench supported only simple access patterns:
uniformly random and sequential. We added the offset attri-
bute which, in combination with custom variables, allows one to
emulate any distribution of accesses within a file. For example,
for virtualized workloads with big VMDK files, we observed
that some offsets are more popular than others [6]. In Listing 5,
the writer thread accesses file’s offsets following a triangular
distribution.

Latency Distribution
Measuring only the average latency often does not provide
enough information to understand a system’s behavior in detail.
We added latency distribution profiling with the enable lathist

command to Filebench [3].

Composite Flowops
In WML one can define a flowop that is a combination of other
flowops. This is especially useful in cases when one wants to
execute certain group of flowops more frequently than other flo-
wops. The attribute iters can be used to repeat regular or com-
posite flowops. In addition, Filebench’s internal design allows
users to easily implement new flowops in C. We do not provide
examples of composite or user-defined flowops in this article but
offer documentation online [2].

File System Importing
Another upcoming feature in Filebench v1.5 is importing exist-
ing file system trees. Older versions of Filebench could only work
with trees that it generated itself. This new feature allows one to
generate a file system with a third-party tool (e.g., Impressions
[1]), or use a real file system image and run a Filebench workload
against this file system.

Data Generation
Earlier, Filebench versions generated all zeros or some arbi-
trary content for writes. In v1.5, we are introducing the notion
of a datasource, which can be attached to any flowop. Different
datasources can generate different types of data: one controlled
by some entropy, duplicates distribution, file types, etc. This new
feature is especially important for benchmarking modern stor-
age systems that integrate sophisticated data reduction tech-
niques (e.g., deduplication, compression).

www.usenix.org S P R I N G 20 16 VO L . 41 , N O. 1 11

FILE SYSTEMS AND STORAGE
Filebench: A Flexible Framework for File System Benchmarking

Predefined Workloads
It is important to understand that Filebench is merely a frame-
work, and only its combination with a workload description
defines a specific benchmark. The framework comes with a
set of predefined useful workloads that are especially popular
among users. We are often asked about the details of those work-
loads. In this section, we describe the three most frequently used
Filebench workloads: Web-server, File-server, and Mail-server.

What does a simple real Web-server do from the perspective
of a file system? For every HTTP request, it opens one or more
HTML files, reads them completely, and returns their content to
the client. At times it also flushes client-access records to a log
file. Filebench’s Web-server workload description was created
with exactly these assumptions. Every thread opens a file, reads
it in one call, then closes the file. Every 10th read, Filebench’s
Web-server appends a small amount of data to a log file. File
sizes follow a gamma distribution, with an average file size of
16 KB. By default, the Web-server workload is configured with
100 threads and only 1,000 files. As described later in the sec-
tion, it is almost always necessary to increase the number of
files to a more appropriate number.

Filebench’s File-server workload was also designed by envi-
sioning a workload that a simple but real File-server produces
on a file system. Fifty processes represent 50 users. Every user
creates and writes to a file; opens an existing file and appends
to it; then opens another file and reads it completely. Finally, the
user also deletes a file and invokes a stat operation on a file. Such
operation mix represents the most common operations that one
expects from a real File-server. There are 10,000 files of 128 KB
size defined in this workload by default.

The Mail-server workload (called varmail.f) represents a work-
load experienced by a /var/mail directory in a traditional UNIX
system that uses Maildir format (one message per file). When
a user receives an email, a file is created, written, and fsynced.
When the user reads an email, another file is opened, read
completely, marked as read, and fsynced. Sometimes, users also
reread previously read emails. Average email size is defined as
16 KB, and only 16 threads are operating by default.

In addition to the workloads described above, Filebench comes
with OLTP, Video-server, Web-proxy, and NFS-server macro-
workloads and over 40 micro-workloads. It is important to
recognize that workloads observed in specific environments can
be significantly different from what is defined in the included
WML files. This is an intrinsic problem of any benchmark.
The aforementioned workloads are merely an attempt to define
workloads that are logically close to reality and provide common
ground for evaluating different storage systems. We encour-
age the community to analyze their specific workloads, define

them in Filebench’s WML [5], validate the resulting synthetic
workloads against the original workloads, and contribute WML
descriptions to Filebench.

Best Practices
In this section, we share several important considerations when
using the Filebench framework. These considerations originated
from many conversations that we had with Filebench users over
the past seven years.

File system behavior depends heavily on the data-set size. Using
Filebench terminology, performance results depend on the
number and size of files in defined filesets. It is almost always
necessary to adjust fileset size in accordance with the system’s
cache size. For example, the default data-set size for Filebench’s
Web-server workload is set to only 16 MB (1,000 files of 16 KB
size). Such a data set often fits entirely in the memory of the
majority of modern servers; therefore, without adjustments, the
Web-server workload measures the file system’s in-memory per-
formance. If in-memory performance is not the real goal, then
the number of files should be increased so that the total fileset
size is several times larger than the available file system cache.
Specific data set-to-cache ratio varies a lot from one environ-
ment to another.

Similarly, it is important to pick an appropriate duration of an
experiment. By default, timed Filebench workloads run for only
60 seconds, which is not enough time to warm the cache up and
cover multiple cyclic events in the system (e.g., bdflush runs
every 30 seconds in Linux). Our recommendation is to monitor
file system performance and other system metrics (e.g., block
I/O and memory usage) during the run and ensure that the
readings remain stationary for at least ten minutes. We added
a psrun command to Filebench 1.5 that prints performance
numbers periodically. Using these readings, one can plot how
performance depends on time and identify when the system
reaches stable state. Anecdotally, we found that such plots often
allow one to detect and fix mistakes in experimental methodol-
ogy early in the evaluation cycle.

As with any empirical tool, every Filebench-based experiment
should be conducted several times, and some measure of the
results’ stability needs to be calculated (e.g., confidence interval,
standard deviations). To get reproducible results it is impor-
tant to bring the system to an identical state before every run.
Specifically, in a majority of the cases, one needs to warm the
cache up to the same state as it would be after a long run of the
workload. In other words, the frequently accessed part of the
data set (as identified by the storage system) should reside in the
cache. Therefore it is preferable to start the workload’s execu-
tion with a cold cache, wait until the cache warms up under the
workload, and then, if appropriate, report performance for warm

12  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

FILE SYSTEMS AND STORAGE
Filebench: A Flexible Framework for File System Benchmarking

cache only. Note, however, that regardless of whether the cache
is cold or warm, in order to ensure sufficient I/O activity for a file
system benchmark, the workload size should exceed the size of
the system memory (historically it was considered at least 2).

Furthermore, before executing an actual workload, Filebench
first creates filesets, so parts of the filesets might be in memory
before the actual workload runs. This might either benefit or
hurt further workload operations. We recommend to drop caches
between the fileset preallocation and the workload run stages.
To achieve that for standard Linux file systems add

create fileset

system “sync”

system “echo 3 > /proc/sys/vm/drop_caches”

before the run or psrun commands. The system command allows
one to execute arbitrary shell commands from WML.

Users often want to measure file system performance while
varying some workload parameter. A typical example is bench-
marking write or read throughput for different I/O sizes. We
found it convenient to write shell scripts that generate WML
files for different values of the same parameter (I/O size, in this
example). It is also helpful to save any generated .f files along
with the results so that later on one can correlate the results to
the exact workload that was executed.

Future
Filebench is a powerful and very flexible tool for generating file
system workloads. We encourage storage scientists, engineers,
and evaluators to explore the functionalities that Filebench
offers to their fullest. We plan to improve Filebench further to
accommodate changing realities and user requests. Here, in con-
clusion, we only mention major directions of future work.

First, Filebench provides a unique platform for both quick devel-
opment of new workloads and (formal or informal) standard-
ization of workloads that are universally accepted as reflecting
reality. Standardization only makes sense if a broad storage com-
munity is adequately involved. Moreover, we believe the involve-
ment should be continuous rather than one-time because the set of
widespread workloads changes over time. To that end, we plan to
make further efforts to build stronger community and conduct
BoF and similar meetings at storage conferences. We invite
everyone interested in this direction to communicate with us [2].

Second, from the technical side, Filebench currently translates
flowops to POSIX system calls only. However, the internal
design of Filebench is based on flowop engines that map flowops
to specific low-level interfaces. Specifically, we consider add-
ing NFS and Object interfaces to Filebench. With the advent of
very fast storage devices, overheads caused by the benchmark
itself become more visible. In fact, we fixed several performance

issues in Filebench over the last few years. More generally, we
plan to work on the overhead control system that is integrated
into Filebench itself.

Although Filebench already has rudimentary support for distrib-
uted storage systems benchmarking, it is not enough from both
functionality and convenience points of view. We plan to design
and implement features that will make Filebench practical for
distributed system users.

Acknowledgments
We would like to acknowledge several people from the Filebench
community who contributed and continue to contribute to
Filebench: George Amvrosiadis is a devoted Filebench user and
developer who added multiple improvements, with importing the
external file system tree feature being just one of them; Sonam
Mandal and Bill Jannen contributed to duplicated and entropy-
based data generation; Santhosh Kumar is the individual behind
custom variables; and, finally, we borrowed both expertise and
code on statistical distributions from Geoff Kuenning.

References
[1] N. Agrawal, A. C. Arpaci-Dusseau, and R. Arpaci-Dusseau,
“Generating Realistic Impressions for File-System Bench-
marking,” in Proceedings of the Seventh USENIX Conference on
File and Storage Technologies (FAST ’09), 2009.

[2] Filebench: http://filebench.sf.net.

[3] N. Joukov, A. Traeger, R. Iyer, C. P. Wright, and E. Zadok,
“Operating System Profiling via Latency Analysis,” in Pro-
ceedings of the 7th Symposium on Operating Systems Design
and Implementation (OSDI ’06), 2006.

[4] G. Kuenning, Mersenne Twist Pseudorandom Number
Generator Package, 2010: http://lasr.cs.ucla.edu/geoff/mtwist
.html.

[5] V. Tarasov, K. S. Kumar, J. Ma, D. Hildebrand, A. Povzner,
G. Kuenning, and E. Zadok, “Extracting Flexible, Replayable
Models from Large Block Traces,” in Proceedings of the Tenth
USENIX Conference on File and Storage Technologies (FAST
’12), 2012.

[6] V. Tarasov, D. Hildebrand, G. Kuenning, and E. Zadok,
“Virtual Machine Workloads: The Case for New Benchmarks
for NAS,” in Proceedings of the USENIX Conference on File and
 Storage Technologies (FAST ’13), 2013.

[7] Transaction Processing Performance Council, TPC Bench-
mark C, Standard Specification: www.tpc.org/tpcc, 2004.

Calling SREs and Sysadmins

April 7–8, 2016 | Santa Clara, CA, USA
www.usenix.org/srecon16

Register Today!

July 11–13, 2016 | Dublin, Ireland
www.usenix.org/srecon16europe

Call for Participation Now Open!

Dec. 4–9, 2016 | Boston, MA, USA
www.usenix.org/lisa16

Call for Participation Now Open!

14  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

FILE SYSTEMS AND STORAGE

Streaming Systems and Architectures
J A Y A N T S H E K H A R A N D A M A N D E E P K H U R A N A

Over the last few years, we have seen a disruption in the data manage-
ment space. It started with innovation in the data warehousing and
large-scale computing platform world. Now we are seeing a similar

trend in real-time streaming systems. In this article, we survey a few open
source stream processing systems and cover a sample architecture that con-
sists of one or more of these systems, depending on the access patterns.

Data Management Systems
Data management systems have existed for decades and form a very mature industry that we
all know about. Notable vendors playing in this market include Oracle, Microsoft, Tera-
data, IBM—some of the most valuable companies on the planet. Data is at the core of a lot of
businesses, and they spend millions of dollars for systems that make it possible to ingest,
store, analyze, and use data relevant to their customers, channels, and the market. Although
mature, the data management industry is going through a disruption right now. This is being
caused by the explosion of data being created by humans and machines owing to cheaper
and more widespread connectivity. This has given rise to the entire big data movement and a
plethora of open source data management frameworks that allow companies to manage data
more cheaply and in a more scalable and flexible manner.

Data management systems can be broken down into different categories, depending on the
criteria you pick. Databases, file systems, message queues, business intelligence tools are all
part of this ecosystem and serve different purposes inside of a larger architecture that solves
the business problem. One way to categorize these systems is based on whether they handle
data at rest or in motion.

Data at Rest
Systems for data at rest include databases, file systems, processing engines, and grid com-
puting systems. Most architectures for data at rest have a separate storage tier to store raw
data, a compute tier to process or clean up data, and a separate database tier to store and ana-
lyze structured data sets. In some cases a single system might be performing multiple such
functions. That’s not necessarily an ideal architecture from a cost, scale, and performance
perspective, but they do exist out there in the wild.

Data in Motion
Systems for managing data in motion include things like message queues and stream pro-
cessing systems. Architectures for data in motion consist of multiple such systems wired and
working together toward a desired end state. Some solutions are simply to ingest data from
sources that are creating events. Others have a stream processing aspect that writes back
into the same ingestion layer, creating multiple data sets that get ingested into the system
managing data at rest. Others have the stream processing system as part of the ingestion
pipeline so that output is written straight to the system managing data at rest. The stream
processing systems could also have different characteristics and design principles.

Jayant is Principal Solutions
Architect at Cloudera working
with various large and small
companies in various Verticals
on their big data and data

science use cases, architecture, algorithms,
and deployments. For the past 18 months,
his focus has been streaming systems and
predictive analytics. Prior to Cloudera, Jayant
worked at Yahoo and at eBay building big data
and search platforms. jayant@cloudera.com

Amandeep is a Principal
Solutions Architect at Cloudera,
where he works with customers
on strategizing on, architecting,
and developing solutions using

the Hadoop ecosystem. Amandeep has been
involved with several large-scale, complex
deployments and has helped customers design
applications from the ground up as well as
scale and operationalize existing solutions.
Prior to Cloudera, Amandeep worked at
Amazon Web Services. Amandeep is also
the co-author of HBase in Action, a book on
designing applications on HBase.
amansk@gmail.com

www.usenix.org S P R I N G 20 16 VO L . 41 , N O. 1 15

FILE SYSTEMS AND STORAGE
Streaming Systems and Architectures

In this article, we’ll survey a few open source systems that deal
with streaming data and conclude with a section on architec-
tures that consist of one or more of these systems, depending on
the access patterns that the solution is trying to address.

Streaming Systems
There are two types of streaming systems: stream ingestion
systems and stream analytics systems. Stream ingestion sys-
tems are meant to capture and ingest streaming data as it gets
produced, or shortly thereafter, from sources that spew out data.
Stream ingestion systems capture individual or small batches
of payloads at the source and transport them to the destination.
Stream analytics systems, on the other hand, process data as it
streams into the system. Work is done on the payloads as they
become available. It does not necessarily wait for entire batches,
files, or databases to get populated before processing starts.
Stream ingestion systems are typically the source for the stream
analytics systems. After the stream is analyzed, the output could
either be put back into the ingestion system or written to a sys-
tem that handles data at rest. We’ll dive deeper into the following
systems:

1. Kafka, a messaging system that falls under the category of
stream ingestion systems per the criteria above [1].

2. Spark Streaming, a stream processing system that works with
small batches of data as they come in [2].

3. Storm, a stream processing system that works with individual
events as they come in [3].

4. Flink, a distributed stream processing system that builds batch
processing on top of the streaming engine [4].

Kafka
Apache Kafka [1] is a publish-subscribe messaging system; it
is also a distributed, partitioned, replicated commit log ser-
vice. It has been designed to handle high-throughput for writes
and reads of events, handle low-latency delivery of events, and
handle machine failures.

Kafka is usually deployed in a cluster. Each node in the cluster
is called a broker. A single Kafka broker can handle hundreds of
megabytes of reads and writes per second from thousands of cli-
ents. The cluster can be elastically expanded without downtime.

Kafka has a core abstraction called topics, and each message
coming in belongs to a topic. Clients sending messages to Kafka
topics are called producers. Clients that consume data from the
Kafka topics are called consumers. Clients can be implemented
in a programming language of your choice.

Communication between the clients and the Kafka brokers is
done in a language-agnostic binary TCP protocol. There are six
core client request APIs.

The topics are split into pre-defined partitions. Each partition is
an ordered sequence of events that is continuously appended to a
commit log. Each message in a partition is assigned a sequential
event ID. In Figure 1, we have four partitions for the topic. Parti-
tions can reside on different servers, and hence a topic can scale
horizontally. Each partition can be replicated across the brokers
for high availability. Messages are assigned to specific partitions
by the clients and not the Kafka brokers.

Producers can round-robin between the partitions of the topic
when writing to them. If there are too many producers, each pro-
ducer can just write to one randomly chosen partition, resulting
in far fewer connections to each broker.

Partitioning also allows different consumers to process different
parts of data from the topic. For simple load balancing, the client
can round-robin between the different brokers. Consumers can
belong to a consumer group as shown in Figure 1, and each mes-
sage is delivered to one subscribing consumer in the group.

You can batch events when writing to Kafka. This helps to
increase the overall throughput of the system. Batching can also
take place across topics and partitions.

Kafka stores the messages it receives to disk and also replicates
them for fault-tolerance.

Apache Kafka includes Java clients and Scala clients for com-
municating with a Kafka cluster. It ships with a library that can
be used to implement custom consumers and producers.

There are many tools that integrate with Kafka, including Spark
Streaming, Storm, Flume, and Samza.

Spark Streaming
Spark Streaming [2] runs on top of the Spark [5] cluster com-
puting framework. Spark is a batch processing system that
can run in standalone mode or on top of resource management
frameworks like YARN [7] or Mesos [8]. Spark Streaming is

Figure 1: Kafka producers, cluster, partitions, and consumer groups

16  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

FILE SYSTEMS AND STORAGE
Streaming Systems and Architectures

a subcomponent of the Spark project that supports process-
ing microbatches of streams of events as they come in. Spark
Streaming also supports windowing, joining streams with
historical data.

Spark Streaming can ingest data from many sources, including
Kafka, Flume, Kinesis, Twitter, and TCP sockets. It has inher-
ent parallelism built in for ingesting data. The core abstraction
of Spark Streaming is Discretized Streams (DStreams), which
represents a continuous stream of events, created either from
the incoming source or as a result of processing a source stream.
Internally, DStreams consists of multiple Resilient Distributed
Datasets (RDDs) [9], which are a core abstraction of the Spark
project. These RDDs are created based on the time interval
configured in the Spark Streaming application that defines the
frequency with which the data from DStreams will be consumed
by the application. A visual representation of this is shown in
Figure 2.

Spark Streaming processes the data with high-level functions
like map, reduce, join, and window. After processing, the result-
ing data can be saved on stores like HDFS, HBase, Solr, and be
pushed out to be displayed in a dashboard or written back into a
new Kafka topic for consumption later.

When it receives streaming data, Spark Streaming divides the
data into small batches (mini batches). Each batch is stored in an
RDD, and the RDDs are then processed by Spark to generate new
RDDs.

Spark Streaming supports Window Operations, and it allows
us to perform transformations over a sliding window of data. It
takes in the window duration and the sliding interval in which
the window operations are performed.

For Complex Event Processing (CEP), Spark Streaming supports
stream-stream joins. Apart from inner-joins, left, right, and full
outer-joins are supported. Joins over windows of streams are
also supported as are stream-data set joins.

Storm
Apache Storm [3] is an open source project designed for distrib-
uted processing of streaming data at an individual event level.
A Storm deployment consists of primarily two roles: a master
node, called Nimbus, and the worker nodes, called Supervisors.
Nimbus is the orchestrator of the work that happens in a Storm
deployment. Supervisors spin up workers that execute the tasks
on the nodes they are running on. Storm uses Zookeeper under
the hood for the purpose of coordination and storing operational

state. Storing state in Zookeeper allows the Storm processes to
be stateless and also have the ability to restart failed processes
without affecting the health of the cluster.

Streaming applications in Storm are defined by topologies.
These are a logical layout of the computation that the applica-
tion is going to perform for the stream of data coming in. Nodes
in the topology define the processing logic on the data, and links
between the nodes define the movement of data. The fundamental
abstraction in Storm topologies is of a Stream. Streams consist
of tuples of data. Fields in a tuple could be of any type. Storm
processes streams in a distributed manner. The output of this pro-
cessing can be one or more streams or be put back into Kafka or
a storage system or database. Storm provides two primitives to
do the work on these streams—bolts and spouts. You implement
bolts and spouts to create your stream processing application.

A spout is a source of the stream in the Storm topology. It
consumes tuples from a stream, which could be a Kafka topic,
tweets coming from the Twitter API or any other system that is
emitting a stream of events.

A bolt consumes one or more streams from one or more spouts
and does work on it based on the logic you’ve implemented. The
output of a bolt could be another stream that goes into another
bolt for further processing or could be persisted somewhere.
Bolts can do anything from run functions, filter tuples, do
streaming aggregations, do streaming joins, talk to databases,
and more. A network of bolts and spouts make up a Storm topol-
ogy (graphically shown in Figure 4) that is deployed on a cluster
where it gets executed.

A topology keeps running until you terminate it. For each node,
you can set the parallelism and Storm will spawn the required
number of threads. When tasks fail, Storm automatically
restarts them.

Figure 2: DStreams consists of multiple RDDs based on the time interval.

Figure 3: Diagram of Spark Streaming showing Input Data Sources, Spark
DStreams, and Output Stores

www.usenix.org S P R I N G 20 16 VO L . 41 , N O. 1 17

FILE SYSTEMS AND STORAGE
Streaming Systems and Architectures

Storm provides three levels of guarantees for tuples in a stream.

◆◆ At-most-once processing: this mode is the simplest one and
is appropriate in cases where it is required that a tuple be
processed not more than once. Zero processing for a tuple is
possible, which means message loss is acceptable in this case.
If failures happen in this mode, Storm might discard tuples and
not process them at all.

◆◆ At-least-once processing: this mode is where the application
needs tuples to be processed at least one time. This means that
more than once is acceptable. If the operations are idempotent
or a slight inaccuracy in the results of the processing is accept-
able, this mode would work fine.

◆◆ Exactly-once processing: this is a more complex and expensive
level. Typically, an external system like Trident [6] is used for
this guarantee level.

Storm provides users with a simple way to define stream process-
ing topologies with different kinds of configurations. These make
for a compelling way to implement a streaming application. Twit-
ter recently announced a new project (Heron [10]) that learns les-
sons from Storm and is built to be the next generation of Storm.

Apache Flink
Apache Flink, like Spark, is a distributed stream and batch
processing platform. Flink’s core is a streaming dataflow engine
that provides data distribution, communication, and fault toler-
ance for distributed computations over data streams.

Flink uses streams for all workloads—streaming, micro-batch,
and batch. Batch is treated as a finite set of streamed data.

Spark is a batch processing framework that can approximate
stream processing; Flink is primarily a stream processing frame-
work that can look like a batch processor.

At its core, Flink has an abstraction of DataStreams for stream-
ing applications. These represent a stream of events of the
same type created by consuming data from sources like Kafka,
Flume, Twitter, and ZeroMQ. DataStream programs in Flink are

regular programs that implement transformations on streams.
Results may be written out to files, standard output, or sockets.
The execution can happen in a local JVM or on clusters of many
machines. Transformation operations on DataStreams include
Map, FlatMap, Filter, Reduce, Fold, Aggregations, Window,
WindowAll, Window Reduce, Window Fold, Window Join, Win-
dow CoGroup, Split, and some more.

Data streaming applications are executed with continuous,
long-lived operators. Flink provides fault-tolerance via Light-
weight Distributed Snapshots. It is based on Chandy-Lamport
distributed snapshots. Streaming applications can maintain
custom state during their computation. Flink’s checkpointing

mechanism ensures exactly-once semantics for the state in the
presence of failures.

The DataStream API supports functional transformations on
data streams with flexible windows. The user can define the
size of the window and the frequency of reduction or aggregation
calls. Windows can be based on various policies—count, time, and
delta. They can also be mixed in their use. When multiple policies
are used, the strictest one controls the elements in the window.

As an optimization, Flink chains two subsequent transforma-
tions and executes them within the same thread for better
performance. This is done by default if it is possible, and the user
doesn’t have to do anything extra. Flink takes care of finding
the best way of executing a program depending on the input and
operations. For example, for join operations, it chooses between
partitioning and broadcasting the data, between running a sort
merge join and a hybrid hash join.

As you can see, Apache Flink has similar objectives as Apache
Spark but different design principles. Flink is more powerful
based on the design and capabilities since it can handle batch,
micro-batch, and individual event-based processing, all in a
single system. As it stands today, Flink is not as mature a plat-
form as Spark and doesn’t have the same momentum and user
community.

Architectural Patterns
Streaming architectures often consist of multiple systems inte-
grated with each other depending on the desired access patterns.
Custom integrations happen at the following stages of a stream-
ing pipeline.

1. Ingestion points

2. Stream processing output points

There are typically two ingestion point integrations in a typical
architecture: integration of the message queue (Kafka for the
context of this article) with the source system, and integration
of the message queue with the stream processing system (Storm,
Spark Streaming, or Flink for the context of this article).

Figure 4: A Storm topology consisting of bolts and spouts

18  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

FILE SYSTEMS AND STORAGE
Streaming Systems and Architectures

As shown in Figure 5, the first level of integration is between
the streaming event source and Kafka. This is done by writing
Kafka producers that send events to Kafka. The second level
of integration is between Kafka and the downstream stream
processing systems. The stream processing systems consume
events from Kafka, using Kafka consumers, that are written
by the user. The processing systems can also write data back
into Kafka by implementing Kafka producers. They write data
back into Kafka if the output of the stream processing system
needs to be put back into the message queue for asynchronous
consumption by more than one system thereafter. This approach

offers more flexibility and scalability than a tight wiring
between the stream processing system and the downstream
persistence layer.

In Figure 5, a possible access pattern is that Storm consumes
events from Kafka first, does event-level filtering, enrichment,
and alerting, with latencies below 100 ms, and writes the pro-
cessed events back to Kafka in a separate Kafka topic. Thereaf-
ter, a windowing function is implemented in Spark Streaming
that consumes the output of the Storm topology from Kafka.
Kafka becomes the central piece of this architecture where
raw data, intermediate data as well as processed data sets land.
Kafka makes for a good hub for streaming data. In this case, the
output of the windowing function in Spark Streaming is charted
onto graphs and not necessarily persisted anywhere. The filtered
events (that were output by Storm into Kafka) are what go into a
downstream persistence layer like the Hadoop Distributed File
System, Apache HBase, etc. That system would look as shown in
Figure 6.

Flink can handle both access patterns, and the above architec-
ture could look like Figure 7 with Flink, eliminating the need to
have two downstream stream processing engines.

Let’s apply this to a specific (hypothetical) use case—detecting
and flagging fraudulent credit card transactions. The source
streams for this use case would be the following:

◆◆ Transaction information coming in from point-of-sale devices
of the merchant

◆◆ Mobile device location of the customer

For the sake of the discussion, we’ll use the following definition
of a fraudulent transaction. These make up the rules for our
stream processing application.

1. Two or more transactions performed in a span of 10 seconds

2. Transaction amount greater than the previous max done by
the given customer

3. If the mobile device location of the customer is different from
the location of the transaction

Figure 5: Streaming architecture consisting of Kafka, Storm, Spark
 Streaming, and Flink

Figure 6: Streaming access pattern showing Storm processing events first,
with results then processed by Spark Streaming and also persisted

Figure 7: Streaming access pattern showing Flink doing the job of both
Storm and Spark Streaming in the use case

Figure 8: Streaming architecture for detecting fraudulent transactions

www.usenix.org S P R I N G 20 16 VO L . 41 , N O. 1 19

FILE SYSTEMS AND STORAGE
Streaming Systems and Architectures

To solve this use case, we need two kinds of access patterns:

1. Transaction-level processing to detect breach of rules 2 and 3

2. Detection of breach of rule 1 over a period of time, potentially
across multiple transactions

You could implement this architecture as shown in Figure 8.

Note that this is a hypothetical case to show how the different
systems would be used together to solve the complete problem.

Conclusion
More organizations are incorporating streaming in their data
pipelines. We discussed Kafka for stream ingestion and Spark,
Storm, and Flink for stream analytics. Using the right mix of
streaming systems and architectures based on the use case leads
to scalable and successful implementations. We hope this article
provides enough information for you to select, architect, and
start implementing your streaming systems.

References
[1] Apache Kafka—http://kafka.apache.org/.

[2] Apache Spark Streaming—http://spark.apache.org
/streaming/.

[3] Apache Storm—http://storm.apache.org/.

[4] Apache Flink—https://flink.apache.org/.

[5] Apache Spark—https://spark.apache.org/.

[6] Trident—http://storm.apache.org/documentation/Trident
-tutorial.html.

[7] Apache Hadoop YARN—https://hadoop.apache.org/docs
/current/hadoop-yarn/hadoop-yarn-site/YARN.html.

[8] Apache Mesos—http://mesos.apache.org/.

[9] Spark RDDs—http://spark.apache.org/docs/latest
/programming-guide.
html#resilient-distributed-datasets-rdds.

[10] Heron stream processing system by Twitter—https://blog
.twitter.com/2015/flying-faster-with-twitter-heron.

©2016 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. D1705

Short. Smart. Seriously Useful.
Free open source and programming ebooks from O’Reilly.

Looking to stay current with the latest developments in
open source, programming, and software engineering?
We’ve got you covered. Get expert insights and industry
research on topics like Functional Programming in Python,
Open by Design, Software Architecture Patterns, and
Why Rust? Download a couple—or all of them—today.
Did we mention free?

Visit oreilly.com/go/usenix

20  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

PROGRAMMINGPivot Tracing
Dynamic Causal Monitoring for Distributed Systems

J O N A T H A N M A C E , R Y A N R O E L K E , A N D R O D R I G O F O N S E C A

Jonathan Mace is a PhD student
in computer science at Brown
University, advised by Rodrigo
Fonseca. His research interests
include end-to-end tracing,

runtime debugging, and resource management
in distributed systems. jcmace@cs.brown.edu

Ryan Roelke received a master’s
degree in computer science
from Brown University in 2015
and is currently a Software
Engineer at HP Vertica.

rroelke@cs.brown.edu

Rodrigo Fonseca is an
Assistant Professor at Brown
University’s Computer Science
Department. He holds a
PhD from UC Berkeley, and

prior to Brown was a visiting researcher at
Yahoo! Research. He is broadly interested in
networking, distributed systems, and operating
systems. His research involves seeking
better ways to build, operate, and diagnose
distributed systems, including large-scale
Internet systems, cloud computing, and
mobile computing. He is currently working
on dynamic tracing infrastructures for these
systems, on new ways to leverage network
programmability, and on better ways to
manage energy usage in mobile devices.
rfonseca@cs.brown.edu

Pivot Tracing is a monitoring framework for distributed systems that
can seamlessly correlate statistics across applications, components,
and machines at runtime without needing to change or redeploy

system code. Users can define and install monitoring queries on-the-fly to
collect arbitrary statistics from one point in the system while being able to
select, filter, and group by events meaningful at other points in the system.
Pivot Tracing does not correlate cross-component events using expensive
global aggregations, nor does it perform offline analysis. Instead, Pivot
Tracing directly correlates events as they happen by piggybacking metadata
alongside requests as they execute—even across component and machine
boundaries. This gives Pivot Tracing a very low runtime overhead—less than
1% for many cross-component monitoring queries.

Monitoring and Troubleshooting Distributed Systems
Problems in distributed systems are many and varied: component failures due to hardware
errors, software bugs, and misconfiguration; unexpected overload behavior due to hot spots
and aggressive tenants; or simply unrealistic user expectations. Due to designs such as
fault-tolerance and load balancing, the root cause of an issue may not be immediately appar-
ent from its symptoms. However, while troubleshooting distributed systems is inherently
challenging, many of the monitoring and diagnosis tools used today share two fundamental
limitations that further exacerbate the challenge.

One Size Does Not Fit All
First, many tools only record information that is selected a priori at development or deploy-
ment time. Even though there has been great progress in using machine-learning tech-
niques and static analysis to improve the quality of logs, they still carry an inherent tradeoff
between recall and overhead. The choice of what to record must be made a priori, so inevita-
bly the information needed to diagnose an issue might not be reported by the system. Even if
a relevant event is captured in a log message, it can still contain too little information; simi-
larly, performance counters may be too coarse grained or lack the desired filters or groupings.

On the other hand, if a system does expose information relevant to a problem, it is often
buried under a mountain of other irrelevant information, presenting a “needle in a haystack”
problem to users. Any time a user or developer patches a system to add more instrumenta-
tion, they contribute to this information overload. They also potentially add performance
overheads for any monitoring that is enabled by default. Unsurprisingly, developers are resis-
tant to adding additional metrics or groupings, as can be observed in a plethora of unresolved
and rejected issues on Apache’s issue trackers.

Crossing Boundaries
Second, many tools record information in a component- or machine-centric way, making it
difficult to correlate events across these boundaries. Since today’s datacenters typically host
a wide variety of interoperating components and systems, the root cause and symptoms of an

mailto:jcmace@cs.brown.edu

www.usenix.org S P R I N G 20 16 VO L . 41 , N O. 1 21

PROGRAMMING PROGRAMMING
Pivot Tracing: Dynamic Causal Monitoring for Distributed Systems

issue often appear in different processes, machines, and applica-
tion tiers. A user of one application may need to relate informa-
tion from some other dependent application in order to diagnose
problems that span multiple systems. To do this manually is
cumbersome, and in many cases impossible, because it depends
on sufficient execution context having been propagated across
software component and machine boundaries.

Dynamic Instrumentation and Causal Tracing
Pivot Tracing overcomes these challenges by combining two
key techniques: dynamic instrumentation and causal tracing.
Dynamic instrumentation systems, such as DTrace [1], Fay [2],
and SystemTap [6], let users defer until runtime their selec-
tion of information reported by the system. They allow almost
arbitrary instrumentation to be added dynamically at runtime
as needed, and have proven extremely useful in diagnosing
complex and unanticipated system problems. Pivot Tracing
also uses dynamic instrumentation, enabling users to specify
new monitoring queries at runtime. Pivot Tracing queries are
dynamically installed without the need to change or redeploy
code.

Dynamic instrumentation alone does not address the challenge
of correlating events from multiple components. To address
this challenge, Pivot Tracing adapts techniques presented in
the causal tracing literature by systems such as X-Trace [3] and
Dapper [7]. These systems maintain a notion of context that
follows an execution through events, queues, thread pools, files,
caches, and messages between distributed system components.
Likewise, Pivot Tracing propagates a tracing context alongside
requests. Unlike end-to-end tracing, Pivot Tracing does not
record or reconstruct traces of executions for offline analysis.
Instead, its tracing context is a means for propagating a small
amount of state directly along the execution path of requests,
including when they cross component and machine boundaries.

Pivot Tracing
Pivot Tracing exposes these two features by modeling system
events as the tuples of a streaming, distributed data set. Users
can write relational queries about system events using Pivot
Tracing’s LINQ-like query language. Pivot Tracing compiles
queries into instrumentation code and dynamically installs
the code at the sources of events specified in the query. Each
time one of the events occurs, the instrumentation code is also
invoked.

Happened-Before Join
In order to reason about causality between events, Pivot Tracing
introduces a new relational operator, the “happened-before join,”
m ⋈, for joining tuples based on Lamport’s happened-before rela-
tion [4]. For events a and b occurring anywhere in the system, we
say that a happened before b and write a m b if the occurrence
of event a causally preceded the occurrence of event b and they
occurred as part of the execution of the same request. Using the
happened-before join, users can write queries that group and
filter events based on properties of events that causally precede
them in an execution. Pivot Tracing evaluates the happened-
before join by putting partial query state into the tracing contexts
propagated alongside requests. This is an efficient way to evalu-
ate the happened-before join, because it explicitly follows the
happened-before relation. It drastically mitigates the overhead
and scalability issues that would otherwise be required for cor-
relating events globally.

Pivot Tracing in Action
To motivate Pivot Tracing’s design and implementation, we
present a brief example of Pivot Tracing with a monitoring task
in the Hadoop stack. Suppose we are managing a cluster of eight
machines and want to know how disk bandwidth is being used
across the cluster. On these machines, we are simultaneously
running several clients with workloads in HBase, MapReduce,

Figure 1: Six client workloads access the disks on eight cluster machines indirectly via HBase, a distributed database; HDFS, a distributed file system; and
MapReduce, a data processing framework.

Hget 10 kB row lookups in a large HBase table

Hscan 4 MB table scans of a large HBase table

FSread4m Random closed-loop 4 MB HDFS reads

FSread64m Random closed-loop 64 MB HDFS reads

MRsort10g MapReduce sort job on 10 GB of input data

MRsort100g MapReduce sort job on 100 GB of input data

22  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

PROGRAMMING
Pivot Tracing: Dynamic Causal Monitoring for Distributed Systems

and HDFS. It suffices to know that HBase is a distributed data-
base that accesses data through HDFS, a distributed file system.
MapReduce, in addition to accessing data through HDFS, also
accesses the disk directly to perform external sorts and to
shuffle data between tasks. Figure 1 depicts this scenario.

By default, our distributed file system HDFS already tracks
some disk consumption metrics, including disk read throughput
aggregated on each of its DataNodes. To reproduce this metric
with Pivot Tracing, we can define a tracepoint for the method
incrBytesRead(int delta) in the DataNodeMetrics class in
HDFS. A tracepoint is a location in the application source code
where instrumentation can run. We then run the following query
in Pivot Tracing’s LINQ-like query language:

Q1: From incr In DataNodeMetrics.incrBytesRead

GroupBy incr.host

Select incr.host, SUM(incr.delta)

This query causes each machine to aggregate the delta argument
each time incrBytesRead is invoked, grouping by the host name.
Each machine reports its local aggregate every second, from
which we produce the time series in Figure 2a.

Things get more interesting if we wish to measure the HDFS
usage of each of our client applications. HDFS only has visibility
of its direct clients, and thus it only has an aggregate view of all
HBase and all MapReduce clients. At best, applications must
estimate throughput client side. With Pivot Tracing, we define
tracepoints for the client protocols of HDFS (DataTransferProto-

col), HBase (ClientService), and MapReduce (ApplicationClient-

Protocol), and use the name of the client process as the group-by
key for the query. Figure 2b shows the global HDFS read through-
put of each client application, produced by the following query:

Q2: From incr In DataNodeMetrics.incrBytesRead

Join cl In First(ClientProtocols) On cl -> incr

GroupBy cl.procName

Select cl.procName, SUM(incr.delta)

The -> symbol indicates a happened-before join. Pivot Trac-
ing’s implementation will record the process name the first
time the request passes through any client protocol method and
propagate it along the execution. Then, whenever the execution
reaches incrBytesRead on a DataNode, Pivot Tracing will emit
the bytes read or written, grouped by the recorded name. This
query exposes information about client disk throughput that
cannot currently be exposed by HDFS.

Design and Implementation
We opted to implement our Pivot Tracing prototype in Java
in order to easily instrument the aforementioned open source
distributed systems. However, the components of Pivot Tracing
generalize and are not restricted to Java—a query can even span
multiple systems written in different programming languages.
Full support for Pivot Tracing in a system requires two basic
mechanisms: dynamic code injection and causal metadata propa-
gation. For full details of Pivot Tracing’s design and implementa-
tion, we refer the reader to the full paper [5] and project Web site,
http://pivottracing.io/.

Figure 3 presents a high-level overview of how Pivot Tracing
enables queries such as Q2. We will refer to the numbers in the
figure (e.g., ➀) in our description.

Writing Queries
Queries in Pivot Tracing refer to variables exposed by one or
more tracepoints (➀)—places in the system where Pivot Trac-
ing can insert instrumentation. Tracepoints export named
variables that can be accessed by instrumentation. However,
the definitions of tracepoints are not part of the system code
but, rather, instructions on where and how Pivot Tracing can
add instrumentation. Tracepoints in Pivot Tracing are similar
to pointcuts from aspect-oriented programming and can refer
to arbitrary interface/method signature combinations. Pivot
Tracing’s LINQ-like query language supports several typical
operations including projection, selection, grouping, aggregation,
and happened-before join.

Figure 2: In this example, Pivot Tracing dynamically instruments HDFS to expose read throughput grouped by client identifiers from other applications.

www.usenix.org S P R I N G 20 16 VO L . 41 , N O. 1 23

PROGRAMMING
Pivot Tracing: Dynamic Causal Monitoring for Distributed Systems

Compiling Queries
Users submit queries to the Pivot Tracing front-end (➁), which
is responsible for optimizing queries using some simple static
rewriting rules, pushing projection, selection, and aggregation
as close as possible to the source tracepoints. The front-end then
compiles queries into advice, an intermediate representation of
the system-level instrumentation needed to evaluate the query.
Advice specifies the operations to perform at each tracepoint
used in a query.

Installing Queries
The Pivot Tracing front-end distributes advice to local Pivot
Tracing agents running in each process (③). Pivot Tracing
agents are responsible for dynamically instrumenting the run-
ning system so that advice is invoked at tracepoints. The agents
weave advice into tracepoints (➃) by: (1) generating code that
implements the advice operations; (2) configuring the tracepoint
to execute that code and pass its exported variables; (3) activat-
ing the necessary tracepoint at all locations in the system. Later,
requests executing in the system will invoke the installed advice
every time their execution reaches the tracepoint.

Crossing Boundaries
In order to implement the happened-before join, advice invoked
at one tracepoint needs to make information available to advice
invoked at other tracepoints later in a request’s execution. For
example, in Q2, advice at the ClientProtocols tracepoint needs
to make its procName available to later advice invoked at the
DataNodeMetrics tracepoint. This is done through Pivot Trac-
ing’s baggage abstraction, which uses causal metadata propaga-
tion (⑤). Baggage is a per-request container for tuples that is
propagated alongside a request as it traverses thread, applica-
tion, and machine boundaries. At any point in time, advice can
put tuples in the baggage of the current request, and retrieve
tuples that were previously placed in the baggage by other advice.

Evaluating Queries
Advice uses a small instruction set to evaluate queries and maps
directly to the code that local Pivot Tracing agents generate.
Advice operations are as follows: advice can create a tuple from
tracepoint-exported variables (Observe); filter tuples by a predi-
cate (Filter); and output tuples for global aggregation (Emit).
Advice can put tuples in the baggage (Pack) and retrieve tuples
from the baggage (Unpack). Unpacked tuples are joined to the
observed tuples (i.e., if t0 is observed and tu1 and tu2 are unpacked,
then the resulting tuples are t0tu1 and t0tu2). Both Pack and Emit
can group tuples based on matching fields and perform simple
aggregations such as SUM and COUNT.

Query Results
Advice can emit tuples as output of a query using the Emit
instruction (➅). Pivot Tracing first aggregates emitted tuples
locally within each process, then reports results globally at
a regular interval, e.g., once per second (➆). The Pivot Trac-
ing front-end collects and forwards query results to the user
(➇). Process-level aggregation substantially reduces traffic for
emitted tuples; Q2 is reduced from approximately 600 tuples per
second to six tuples per second from host.

Pivot Tracing Example
Recall query Q2 from our earlier Hadoop example:

Q2: From incr In DataNodeMetrics.incrBytesRead

 Join cl In First(ClientProtocols) On cl -> incr

 GroupBy cl.procName

 Select cl.procName, SUM(incr.delta)

Q2 compiles to two advice specifications, A1 and A2, to be
invoked at the ClientProtocols and DataNodeMetrics trace-
points, respectively:

A1: OBSERVE procName A2: UNPACK procName

 PACK procName OBSERVE delta

 EMIT procName, SUM(delta)

When a request invokes any of the ClientProtocols methods,
the instrumented code will invoke advice A1. The advice will
observe the value of the procName variable and pack a tuple into
the request’s baggage, e.g., <procName=“HGet”>. The request
will continue execution, carrying this tuple in its baggage. If the
request subsequently invokes the DataNodeMetrics.incrBytes-

Read method, the instrumented code will invoke advice A2.
The advice will unpack the previously packed procName and
observe the local value of the delta variable, e.g., <delta=10>. The
advice will then join the unpacked procName with the observed
delta and emit the result as output, e.g., <procName=“HGet”,

delta=10>. The output tuple will be aggregated with other tuples
in the process’s Pivot Tracing agent and included in the next
interval’s query results.

Figure 3: Pivot Tracing overview

24  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

PROGRAMMING
Pivot Tracing: Dynamic Causal Monitoring for Distributed Systems

Figure 4 gives a final demonstration of how Pivot Tracing can
group metrics along arbitrary dimensions. It is generated by two
queries similar to Q2 that instrument Java’s FileInputStream
and FileOutputStream, still joining with the client process name.
We show the per-machine, per-application disk read and write
throughput of MRsort10g from the same experiment. This figure
resembles a pivot table, where summing across rows yields
per-machine totals, summing across columns yields per-system
totals, and the bottom-right corner shows the global totals. In
this example, the client application presents a further dimension
along which we could present statistics.

Summary
In this article we gave an overview of how Pivot Tracing can
evaluate cross-component monitoring queries dynamically at
runtime using a combination of dynamic instrumentation and
causal tracing. For full details of Pivot Tracing’s design and
implementation, we refer the reader to the full paper [5] and
project Web site. In our full evaluation, we present several case
studies where we used Pivot Tracing to successfully diagnose
root causes, including real-world issues we encountered in our
cluster. We also evaluate the overheads imposed by Pivot Trac-
ing, including the additional costs of invoking advice and the
overheads of propagating tuples alongside requests at runtime.
Of the examples presented in this article, Q2 only required the
propagation of a single tuple per request, and imposed less than
1% overhead in terms of end-to-end latency on several applica-
tion-level HDFS benchmarks.

Pivot Tracing is the first monitoring system to combine dynamic
instrumentation with causal tracing. Its novel happened-before
join operator fundamentally increases the expressive power
of dynamic instrumentation and the applicability of causal
tracing. Pivot Tracing enables cross-tier analysis between any
interoperating applications, and the overheads of evaluating the
happened-before join are sufficiently low that we believe Pivot
Tracing is suitable for production systems, both for high-level
standing queries and for digging deeper when necessary. Ulti-
mately, its power lies in the uniform and ubiquitous way in which
it integrates monitoring of a heterogeneous distributed system.

References
[1] Bryan Cantrill, Michael W Shapiro, and Adam H Leven-
thal, “Dynamic Instrumentation of Production Systems,” in
Proceedings of the 2004 USENIX Annual Technical Conference
(ATC), 2004, pp. 15–28.

[2] Úlfar Erlingsson, Marcus Peinado, Simon Peter, Mihai
Budiu, and Gloria Mainar-Ruiz, “Fay: Extensible Distributed
Tracing from Kernels to Clusters,” ACM Transactions on
Computer Systems (TOCS), vol. 30, no. 4, 2012.

[3] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott
Shenker, and Ion Stoica, “X-Trace: A Pervasive Network
Tracing Framework,” in Proceedings of the 4th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI), 2007.

[4] Leslie Lamport, “Time, Clocks, and the Ordering of Events
in a Distributed System,” Communications of the ACM, vol. 21,
no. 7, 1978, pp. 558–565.

[5] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca, “Pivot
Tracing: Dynamic Causal Monitoring for Distributed Sys-
tems,” in Proceedings of the 25th ACM Symposium on Operat-
ing Systems Principles (SOSP), 2015.

[6] V. Prasad, W. Cohen, F. C. Eigler, M. Hunt, J. Keniston, and
B. Chen, “Locating System Problems Using Dynamic Instru-
mentation,” in Proceedings of the Ottawa Linux Symposium
(OLS), 2005.

[7] Benjamin H Sigelman, Luiz Andre Barroso, Mike Burrows,
Pat Stephenson, Manoj Plakal, Donald Beaver, Saul Jaspan,
and Chandan Shanbhag, “Dapper, a Large-Scale Distributed
Systems Tracing Infrastructure,” Google Research, 2010.

Figure 4: Pivot table showing disk read and write sparklines for MRsort10g.
Rows group by host machine; columns group by source process. Bottom
row and right column show totals, and bottom-right corner shows grand
total.

ASE ’16: 2016 USENIX Workshop on Advances in
Security Education
August 9, 2016, Austin, TX
Paper submissions due: May 3, 2016
www.usenix.org/ase16

The 2016 USENIX Advances in Security Education Workshop
(ASE ’16) is a new workshop, co-located with the 25th USENIX
Security Symposium, designed to be a top-tier venue for cutting-
edge research, best practices, and experimental curricula in com-
puter security education.

CSET ’16: 9th Workshop on Cyber Security
Experimentation and Test
August 8, 2016, Austin, TX
Submissions due: May 3, 2016
www.usenix.org/cset16

The CSET workshop invites submissions on cyber security evalu-
ation, experimentation, measurement, metrics, data, simulations,
and testbeds.

SOUPS 2016: Twelfth Symposium on Usable Privacy
and Security
June 22-24, 2016, Denver, CO
Poster submissions due: May 16, 2016
Lightning Talks and Demos early submissions due: May 16
www.usenix.org/soups2016

Posters: High-quality poster presentations are an integral part
of SOUPS. We seek poster abstracts describing recent or ongo-
ing research related to usable privacy and security. SOUPS will
include a poster session in which authors will exhibit their post-
ers. Accepted poster abstracts will be distributed to symposium
participants and made available on the symposium Web site. In-
teractive demos alongside posters are welcome and encouraged.
We also welcome authors of recent papers on usable privacy and
security (2015 to 2016) to present their work at the SOUPS poster
session.

Lightning Talks: A continuing feature of SOUPS is a session of
5-minute talks and 5- to 10-minute demos. These could include
emerging hot topics, preliminary research results, practical prob-
lems encountered by end users or industry practitioners, a lesson
learned, a research challenge that could benefit from feedback, a
war story, ongoing research, a success, a failure, a future experi-
ment, tips and tricks, a pitfall to avoid, exciting visualization, new
user interface or interaction paradigm related to security and
privacy. etc. Demo presentations should convey the main idea
of the interface and one or more scenarios or use cases.

WOOT ’16: 10th USENIX Workshop on Offensive
Technologies
August 8-9, 2016, Austin, TX
Submissions due: May 17, 2016
www.usenix.org/woot16

The USENIX Workshop on Offensive Technologies (WOOT) aims
to present a broad picture of offense and its contributions,
bringing together researchers and practitioners in all areas of
computer security. Offensive security has changed from a hobby
to an industry. No longer an exercise for isolated enthusiasts,
offensive security is today a large-scale operation managed by
organized, capitalized actors. Meanwhile, the landscape has
shifted: software used by millions is built by startups less than a
year old, delivered on mobile phones and surveilled by national
signals intelligence agencies.

FOCI ’16: 6th USENIX Workshop on Free and Open
Communications on the Internet
August 10, 2016, Austin, TX
Submissions due: May 19, 2016
www.usenix.org/foci16

The 6th USENIX Workshop on Free and Open Communications
on the Internet (FOCI ’16), to be held on August 8, 2016, seeks to
bring together researchers and practitioners working on means
to study, detect, or circumvent practices that inhibit free and
open communication on the Internet.

www.usenix.org/cfp

Doing research in the security field?
Consider submitting your work to these upcoming events.

26  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

PROGRAMMING

Interview with Doug McIlroy
R I K F A R R O W

Over the years, I’ve had occasion to exchange email with Doug McIlroy.
I always found Doug friendly and have long wanted to interview him.

When I finally got around to asking him, Doug anticipated that I would be inter-
ested in the role he played during the early years of UNIX and pointed me to a document he
wrote in the late ’80s about the research versions of UNIX [1]. The first 15 pages cover a lot of
the early history of UNIX, from 1969 onward, and I really wish I had had this document when
I was first researching UNIX in 1982. Doug answers a lot of questions I had then, as well as
solving some mysteries that I’ve managed to hold on to.

The full title of this work mentions “Annotated Excerpts,” and most of this document is just
that: sections of early UNIX manuals. When I first encountered the UNIX manuals, reading
them all was actually quite possible: there were just two volumes, perhaps a stack of paper
about three inches tall (excluding the binders they were in). By the late ’80s, I recall that Sun
Microsystems would ship two crates of documentation about SunOS: one box full of paper and
the second full of binders, perhaps 20 in all. Things have only gotten more complex since then.

But early UNIX had both a simplicity and an elegance to it that persists even to this day in
the command line tools. And that’s where Doug played some of his biggest roles.

Rik: I read the Research UNIX Reader, and wondered if the v8 and v9 refer to commercial
versions of UNIX called System III and V? I am familiar with v6 and v7 UNIX, with most
people having heard of Lions’ Commentary [2], which was based on v6. And v7 became the
basis for BSD UNIX.

Doug: The research and commercial systems evolved separately after v7, although not with-
out some cross-fertilization. One more research version, v10, was documented before atten-
tion turned to Plan 9 [3]. It is a shame that only some of the good ideas of Plan 9 were adopted
by the UNIX community at large. Networking would be far more transparent had Plan 9’s
inherently distributable architecture caught on.

Rik: You mention that you were a manager, but you were also responsible for writing some
code. While most of what you wrote I don’t recognize, such as your compiler-compiler
(TMG), other tools would likely be familiar to command line users and script writers today,
like echo, tr, and spell.

One thing I noticed about early UNIX tools were the short names. I used to tell people, in a
joking manner, that the reason for the short names was that using Teletypes [4] for command
input encouraged brevity. Even the clock daemon’s name was shortened (from the prefix
chron-) to cron. But I am guessing there are other reasons for short names.

Doug: Typing long names is slow on any keyboard, whether teletype or smartphone. I know of
no other reason for short names. Whatever regret Ken has for quirky contractions like creat
and cron is fully compensated by grep, a euphonious coinage so useful that it made its way
into the OED as both noun and verb.

I can’t help noting that vi commands are even shorter, and are invisible to boot—too cryptic
for the taste of most of us in the UNIX room, who never strayed from ed until sam came along.

Doug McIlroy, now an Adjunct
Professor at Dartmouth, headed
a small computing research
department at Bell Labs.
The department hired great

people to do their thing, combining theory
and practice. Seven of them, including Doug,
have been elected to the National Academy
of Engineering. UNIX was born on his watch.
doug@cs.dartmouth.edu

Rik Farrow is the editor of ;login:.
rik@usenix.org

www.usenix.org S P R I N G 20 16 VO L . 41 , N O. 1 27

PROGRAMMING
Interview with Doug McIlroy

Rik: You also wrote, in the Reader, that the first shell, written
by Ken Thompson and Dennis Ritchie, was very simple as it had
only eight kilobytes of RAM to run in. That sounds very tough,
but that limitation also seems almost unbelievable. I had more
usable memory in the computer I built from a kit in 1979!

Doug: The sheer fun and productivity of UNIX inveigled lucky
people to switch whatever programming they could from the
megabyte address-spaces available in Bell Labs computer
centers to the mere 8K on PDP-11 UNIX, and forced everyone to
distill projects to their essentials [5]. Remember, though, that the
8K was backed by 16K of highly useful operating system—con-
centrated fare that was a far cry from today’s diluted offerings.
What fraction of Linux’s more than 450 system calls do most
users know about, much less use?

Also, 8K was much bigger back then. I just rewrote echo. By
the time it was linked in Cygwin, its 25 machine instructions
had exploded into an 8K (stripped) object file. In early UNIX, it
might have been a few hundred bytes.

What bigger programs could fit in 8K bytes? The assembler,
for one. Also the roff text-formatter—an application used by
secretaries as well as researchers. And B, the ace up Ken’s sleeve.
This word-oriented forerunner of C produced threaded code that
could run with software paging, which in particular allowed B to
recompile itself.

As an aside, I remember the great sense of roominess that the
2KB memory of MIT’s Whirlwind II inspired after experience
with the 24-word data memory of an IBM CPC.

Rik: You also had a large role in the design of pipes, a method for
joining commands, so the output of one command becomes the
input to the next command. Where did the idea of the pipe come
from? And wasn’t the original notation different from the symbol
we use today?

Doug: Pipes came out of an interest in coroutines, which had
fascinated me ever since Bob McClure introduced me to Melvin
Conway’s concept [6]. Coroutine connections look very much
like I/O. This led me to write (in a 1964 Multics document) about
screwing processes together like garden hose. Joe Ossanna
intended to enable reconfigurable interprocess connections in
Multics, but with Bell Labs’ withdrawal from Multics, I believe
that did not come into use.

From time to time I toyed with (unsatisfactory) syntaxes for
connecting processes in a Multics-like shell; and I repeatedly
suggested that UNIX should support direct interprocess I/O.
Eventually, I came up with a concrete proposal for a system call
with the catchy name “pipe,” and a shell syntax (exemplified by
command>command>file) to exploit it. This time Ken responded,
“I’ll do it!”

Ken did it all in one night: creating the system call, teaching the
shell to use it, and fixing programs that previously handled only
named files to also deal with standard input and standard out-
put. Pipes were an instant success. Subsequently, Ken polished
the implementation by introducing the distinctive pipe symbol,
“|”, and revising details of the system call.

Pipes hit a design sweet spot. The world is generally unaware
today (as we were then) of an earlier and more ambitious mecha-
nism for process-to-process I/O. “Communication files” in the
Dartmouth time-sharing system allowed processes to handle
the entire open-file interface. They were used to implement a
few multiuser services. But communication files were too arcane
to make their way into programmers’ mental toolkits and were
never used to enable UNIX-like pipelines. In interprocess I/O,
UNIX simplicity again upstaged elaborate capability.

Confession: besides fussing around for years before finding
a very simple answer, I totally failed to perceive the fact that
connecting processes via pipes is logically more powerful than
via stored serial files. You can replace an intermediate file with
a pipe, but not always vice versa. An interactive session, such
as dc|speak (a talking desk calculator), won’t work if it has to
treasure up all the output of dc before running speak. Bob Morris
pointed this out on the very day pipes first worked. Had Ken and
I been conscious of it, UNIX might have gotten some pipelike
facility—perhaps not so simple—much earlier.

Resources
[1] D. M. McIlroy, “A Research UNIX Reader”: https://archive
.org/details/a_research_unix_reader.

[2] J. Lions, A Commentary on the Sixth Edition UNIX Operat-
ing System, 1977 (out of print): http://www.lemis.com/grog
/Documentation/Lions/book.pdf.

[3] Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena,
Ken Thompson, Howard Trickey, and Phil Winterbottom,
“Plan 9 from Bell Labs,” Computing Systems, vol. 8, no. 3,
Summer 1995: https://www.usenix.org/legacy/publications
/compsystems/1995/sum_pike.pdf.

[4] ASR 33 Teletype Information: http://www.pdp8.net/asr33
/asr33.shtml.

[5] Gerard Holzmann, “Code Inflation,” IEEE Software,
March/April 2015: http://ieeexplore.ieee.org/stamp/stamp
.jsp?arnumber=7057573.

[6] Melvin E. Conway, “Design of a Separable Transition-
Diagram Compiler,” Communications of the ACM, vol. 6, no. 7,
July 1963, pp. 396–408.

28  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

SECURITYBeyondCorp
Design to Deployment at Google

B A R C L A Y O S B O R N , J U S T I N M C W I L L I A M S , B E T S Y B E Y E R ,
A N D M A X S A L T O N S T A L L

Barclay Osborn is a Site
Reliability Engineering Manager
at Google in Los Angeles. He
previously worked at a variety
of software, hardware, and

security startups in San Diego. He holds a BA
in computer science from the University of
California, San Diego. barclay@google.com

Justin McWilliams is a Google
Engineering Manager based in
NYC. Since joining Google in
2006, he has held positions in
IT Support and IT Ops Focused

Software Engineering. He holds a BA from the
University of Michigan, Ann Arbor.
jjm@google.com

Betsy Beyer is a Technical
Writer for Google Site
Reliability Engineering in NYC.
She has previously provided
documentation for Google

Data Center and Hardware Operations
teams. Before moving to New York, Betsy
was a lecturer in technical writing at Stanford
University. She holds degrees from Stanford
and Tulane. bbeyer@google.com

Max Saltonstall is a Program
Manager for Google Corporate
Engineering in New York.
Since joining Google in 2011
he has worked on advertising

products, internal change management,
and IT externalization. He has a degree in
computer science and psychology from Yale.
maxsaltonstall@google.com

The goal of Google’s BeyondCorp initiative is to improve our security
with regard to how employees and devices access internal applica-
tions. Unlike the conventional perimeter security model, BeyondCorp

doesn’t gate access to services and tools based on a user’s physical location
or the originating network; instead, access policies are based on information
about a device, its state, and its associated user. BeyondCorp considers both
internal networks and external networks to be completely untrusted, and
gates access to applications by dynamically asserting and enforcing levels, or
“tiers,” of access.

We present an overview of how Google transitioned from traditional security infrastructure
to the BeyondCorp model and the challenges we faced and the lessons we learned in the pro-
cess. For an architectural discussion of BeyondCorp, see [1].

Overview
As illustrated by Figure 1, the fundamental components of the BeyondCorp system include
the Trust Inferer, Device Inventory Service, Access Control Engine, Access Policy, Gate-
ways, and Resources. The following list defines each term as it is used by BeyondCorp:

◆◆ Access requirements are organized into Trust Tiers representing levels of increasing
sensitivity.

◆◆ Resources are an enumeration of all the applications, services, and infrastructure that are
subject to access control. Resources might include anything from online knowledge bases, to
financial databases, to link-layer connectivity, to lab networks. Each resource is associated
with a minimum trust tier required for access.

◆◆ The Trust Inferer is a system that continuously analyzes and annotates device state. The
system sets the maximum trust tier accessible by the device and assigns the VLAN to be
used by the device on the corporate network. These data are recorded in the Device Inven-
tory Service. Reevaluations are triggered either by state changes or by a failure to receive
updates from a device.

◆◆ The Access Policy is a programmatic representation of the Resources, Trust Tiers, and
other predicates that must be satisfied for successful authorization.

◆◆ The Access Control Engine is a centralized policy enforcement service referenced by each
gateway that provides a binary authorization decision based on the access policy, output of
the Trust Inferer, the resources requested, and real-time credentials.

◆◆ At the heart of this system, the Device Inventory Service continuously collects, process-
es, and publishes changes about the state of known devices.

◆◆ Resources are accessed via Gateways, such as SSH servers, Web proxies, or 802.1x-enabled
networks. Gateways perform authorization actions, such as enforcing a minimum trust tier
or assigning a VLAN.

www.usenix.org S P R I N G 20 16 VO L . 41 , N O. 1 29

SECURITY
BeyondCorp: Design to Deployment at Google

Components of BeyondCorp
Using the components described below, BeyondCorp integrated
various preexisting systems with new systems and components
to enable flexible and granular trust decisions.

Devices and Hosts
An inventory is the primary prerequisite to any inventory-based
access control. Depending on your environment and security
policy, you may need to make a concerted effort to distinguish
between devices and hosts. A device is a collection of physical
or virtual components that act as a computer, whereas a host is
a snapshot of the state of a device at a given point in time. For
example, a device might be a laptop or a mobile phone, while a
host would be the specifics of the operating system and software
running on that device. The Device Inventory Service contains
information on devices, their associated hosts, and trust deci-
sions for both. In the sections below, the generic term “device”
can refer to either a physical device or a host, depending on the
configuration of the access policy. After a basic inventory has
been established, the remainder of the components discussed
below can be deployed as desired in order to provide improved
security, coverage, granularity, latency, and flexibility.

Tiered Access
Trust levels are organized into tiers and assigned to each device
by the Trust Inferer. Each resource is associated with a mini-
mum trust tier required for access. In order to access a given
resource, a device’s trust tier assignment must be equal to or
greater than the resource’s minimum trust tier requirement. To
provide a simplified example, consider the use cases of vari-
ous employees of a catering company: a delivery crew may only
require a low tier of access to retrieve the address of a wedding,

so they don’t need to access more sensitive services like billing
systems.

Assigning the lowest tier of access required to complete a
request has several advantages: it decreases the maintenance
cost associated with highly secured devices (which primarily
entails the costs associated with support and productivity) and
also improves the usability of the device. As a device is allowed
to access more sensitive data, we require more frequent tests of
user presence on the device, so the more we trust a given device,
the shorter-lived its credentials. Therefore, limiting a device’s
trust tier to the minimum access requirement it needs means
that its user is minimally interrupted. We may require installa-
tion of the latest operating system update within a few business
days to retain a high trust tier, whereas devices on lower trust
tiers may have slightly more relaxed timelines.

To provide another example, a laptop that’s centrally managed
by the company but that hasn’t been connected to a network for
some period of time may be out of date. If the operating system
is missing some noncritical patches, trust can be downgraded to
an intermediate tier, allowing access to some business applica-
tions but denying access to others. If a device is missing a critical
security patch, or its antivirus software reports an infection,
it may only be allowed to contact remediation services. On the
furthest end of the spectrum, a known lost or stolen device can
be denied access to all corporate resources.

In addition to providing tier assignments, the Trust Inferer also
supports network segmentation efforts by annotating which
VLANs a device may access. Network segmentation allows us to
restrict access to special networks—lab and test environments,
for example—based on the device state. When a device becomes

Figure 1: Architecture of the BeyondCorp Infrastructure Components

30  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

SECURITY
BeyondCorp: Design to Deployment at Google

untrustworthy, we can assign it to a quarantine network that
provides limited resource access until the device is rehabilitated.

Device Inventory Service
The Device Inventory Service (shown in Figure 2) is a continu-
ously updated pipeline that imports data from a broad range of
sources. Systems management sources might include Active
Directory, Puppet, and Simian. Other on-device agents, configu-
ration management systems, and corporate asset management
systems should also feed into this pipeline. Out-of-band data
sources include vulnerability scanners, certificate authorities,
and network infrastructure elements such as ARP tables. Each
data source sends either full or incremental updates about devices.

Since implementing the initial phases of the Device Inven-
tory Service, we’ve ingested billions of deltas from over 15 data
sources, at a typical rate of about three million per day, totaling
over 80 terabytes. Retaining historical data is essential in allow-
ing us to understand the end-to-end lifecycle of a given device,
track and analyze fleet-wide trends, and perform security audits
and forensic investigations.

Types of Data
Data come in two main flavors: observed and prescribed.

Observed data are programmatically generated and include
items such as the following:

◆◆ The last time a security scan was performed on the device, in
addition to the results of the scan

◆◆ The last-synced policies and timestamp from Active Directory

◆◆ OS version and patch level

◆◆ Any installed software

Prescribed data are manually maintained by IT Operations
and include the following:

◆◆ The assigned owner of the device

◆◆ Users and groups allowed to access the device

◆◆ DNS and DHCP assignments

◆◆ Explicit access to particular VLANs

Explicit assignments are required in cases of insufficient data
or when a client platform isn’t customizable (as is the case for
printers, for example). In contrast to the change rate that char-
acterizes observed data, prescribed data are typically static. We
analyze data from numerous disparate sources to identify cases
where data conflict, as opposed to blindly trusting a single or
small number of systems as truth.

Data Processing

TRANSFORMATION INTO A COMMON DATA FORMAT
Several phases of processing are required to keep the Device
Inventory Service up to date. First, all data must be transformed
into a common data format. Some data sources, such as in-house
or open source solutions, can be tooled to publish changes to the
inventory system on commit. Other sources, particularly those
that are third party, cannot be extended to publish changes and
therefore require periodic polling to obtain updates.

CORRELATION
Once the incoming data are in a common format, all data must
be correlated. During this phase, the data from distinct sources
must be reconciled into unique device-specific records. When
we determine that two existing records describe the same device,
they are combined into a single record. While data correlation may
appear straightforward, in practice it becomes quite complicated
because many data sources don’t share overlapping identifiers.

For example, it may be that the asset management system
stores an asset ID and a device serial number, but disk encryp-
tion escrow stores a hard drive serial number, the certificate

Figure 2: Device Inventory Service

www.usenix.org S P R I N G 20 16 VO L . 41 , N O. 1 31

SECURITY
BeyondCorp: Design to Deployment at Google

authority stores a certificate fingerprint, and an ARP database
stores a MAC address. It may not be clear that deltas from these
individual systems describe the same device until an inven-
tory reporting agent reports several or all of these identifiers
together, at which point the disjoint records can be combined
into a single record.

The question of what, exactly, constitutes a device becomes
even more muddled when you factor in the entire lifecycle, dur-
ing which hard drives, NICs, cases, and motherboards may be
replaced or even swapped among devices. Even more complica-
tions arise if data are manually entered incorrectly.

TRUST EVALUATION
Once the incoming records are merged into an aggregate form,
the Trust Inferer is notified to trigger reevaluation. This analy-
sis references a variety of fields and aggregates the results in
order to assign a trust tier. The Trust Inferer currently refer-
ences dozens of fields, both platform-specific and platform-
agnostic, across various data sources; millions of additional
fields are available for analysis as the system continues to evolve.
For example, to qualify for a high level of trust, we might require
that a device meets all (or more) of the following requirements:

◆◆ Be encrypted

◆◆ Successfully execute all management and configuration agents

◆◆ Install the most recent OS security patches

◆◆ Have a consistent state of data from all input sources

This precomputation reduces the amount of data that must be
pushed to the gateways, as well as the amount of computation

that must be expended at access request time. This step also
allows us to be confident that all of our enforcement gateways
are using a consistent data set. We can make trust changes
even for inactive devices at this stage. For example, in the past,
we denied access for any devices that may have been subject to
Stagefright [2] before such devices could even make an access
request. Precomputation also provides us with an experiment
framework in which we can write pre-commit tests to validate
changes and canary small-percentage changes to the policy or
Trust Inferer without impacting the company as a whole.

Of course, precomputation also has its downsides and can’t be
relied on completely. For example, the access policy may require
real-time two-factor authentication, or accesses originating
from known-malicious netblocks may be restricted. Somewhat
surprisingly, latency between a policy or device state change
and the ability of gateways to enforce this change hasn’t proven
problematic. Our update latency is typically less than a second.
The fact that not all information is available to precompute is a
more substantial concern.

EXCEPTIONS
The Trust Inferer has final say on what trust tier to apply to a
given device. Trust evaluation considers preexisting exceptions
in the Device Inventory Services that allow for overrides to the
general access policy. Exceptions are primarily a mechanism
aimed at reducing the deployment latency of policy changes or
new policy primitives. In these cases, the most expedient course
of action may be to immediately block a particular device that’s
vulnerable to a zero-day exploit before the security scanners
have been updated to look for it, or to permit untrusted devices
to connect to a lab network. Internet of Things devices may
be handled by exceptions and placed in their own trust tier, as
installing and maintaining certificates on these devices could be
infeasible.

Deployment
Initial Rollout
The first phase of the BeyondCorp rollout integrated a sub-
set of gateways with an interim meta-inventory service. This
service comprised a small handful of data sources containing
predominantly prescribed data. We initially implemented an
access policy that mirrored Google’s existing IP-based perimeter
security model, and applied this new policy to untrusted devices,
leaving access enforcement unchanged for devices coming from
privileged networks. This strategy allowed us to safely deploy
various components of the system before it was fully complete
and polished and without disturbing users.

In parallel with this initial rollout, we designed, developed, and
continue to iterate a higher-scale, lower-latency meta-inventory
solution. This Device Inventory Service aggregates data from

Figure 3: The data processing pipeline

32  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

SECURITY
BeyondCorp: Design to Deployment at Google

over 15 sources, ingesting between 30–100 changes per second,
depending on how many devices are actively generating data.
It is replete with trust eligibility annotation and authorization
enforcement for all corporate devices. As the meta-inventory
solution progressed and we obtained more information about
each device, we were able to gradually replace IP-based policies
with trust tier assignments. After we verified the workflows of
lower-tiered devices, we continued to apply fine-grained restric-
tions to higher trust tiers, proceeding to our ultimate goal of
retroactively increasing trust tier requirements for devices and
corporate resources over time.

Given the aforementioned complexity of correlating data from
disparate sources, we decided to use an X.509 certificate as a
persistent device identifier. This certificate provides us with two
core functionalities:

◆◆ If the certificate changes, the device is considered a different
device, even if all other identifiers remain the same.

◆◆ If the certificate is installed on a different device, the correla-
tion logic notices both the certificate collision and the mis-
match in auxiliary identifiers, and degrades the trust tiers in
response.

Thus, the certificate does not remove the necessity of correlation
logic; nor is it sufficient to gain access in and of itself. However, it
does provide a cryptographic GUID which enforcement gate-
ways use to both encrypt traffic and to consistently and uniquely
refer to the device.

Mobile
Because Google seeks to make mobile a first-class platform,
mobile must be able to accomplish the same tasks as other
platforms and therefore requires the same levels of access. It
turns out that deploying a tiered access model tends to be easier
when it comes to mobile as compared to other platforms: mobile
is typically characterized by a lack of legacy protocols and
access methods, as almost all communications are exclusively
HTTP-based. Android devices use cryptographically secured
communications allowing identification of the device in the
device inventory. Note that native applications are subject to the
same authorization enforcement as resources accessed by a Web
browser; this is because API endpoints also live behind proxies
that are integrated with the Access Control Engine.

Legacy and Third-Party Platforms
We determined that legacy and third-party platforms need
a broader set of access methods than we require for mobile
devices. We support the tunneling of arbitrary TCP and UDP
traffic via SSH tunnels and on-client SSL/TLS proxies. How-
ever, gateways only allow tunneled traffic that conforms with
the policies laid out in the Access Control Engine. RADIUS [3] is
one special case: it is also integrated with the device inventory,

but it receives VLAN assignments rather than trust-tier eligibil-
ity semantics from the Trust Inferer. At network connection
time, RADIUS dynamically sets the VLAN by referencing Trust
Inferer assignments using the certificate presented for 802.1x as
the device identifier.

Avoiding User Disruptions
One of our biggest challenges in deploying BeyondCorp was figur-
ing out how to accomplish such a massive undertaking without
disrupting users. In order to craft a strategy, we needed to identify
existing workflows. From the existing workflows, we identified:

◆◆ Which workflows we could make compliant with an unprivi-
leged network

◆◆ Which workflows either permitted more access than desirable
or allowed users to circumvent restrictions that were already
in place

To make these determinations, we followed a two-pronged
approach. We developed a simulation pipeline that examined IP-
level metadata, classified the traffic into services, and applied
our proposed network security policy in our simulated environ-
ment. In addition, we translated the security policy into each
platform’s local firewall configuration language. While on the
corporate network, this measurement allowed us to log traf-
fic metadata destined for Google corporate services that would
cease to function on an unprivileged network. We found some
surprising results, such as services that had supposedly been
decommissioned but were still running with no clear purpose.

After collecting this data, we worked with service owners to
migrate their services to a BeyondCorp-enabled gateway. While
some services were straightforward to migrate, others were
more difficult and required policy exceptions. However, we made
sure that all service owners were held accountable for exceptions
by associating a programmatically enforced owner and expiration
with each exception. As more services are updated and more users
work for extended periods of time without exercising any excep-
tions, the users’ devices can be assigned to an unprivileged VLAN.
With this approach, users of noncompliant applications are not
overly inconvenienced; the pressure is on the service providers
and application developers to configure their services correctly.

The exceptions model has resulted in an increased level of com-
plexity in the BeyondCorp ecosystem, and over time, the answer
to “why was my access denied?” has become less obvious. Given
the inventory data and real-time request data, we need to be
able to ascertain why a specific request failed or succeeded at a
specific point in time. The first layer of our approach in answer-
ing this question has been to craft communications to end users
(warning of potential problems, and how to proceed with self-
remediation or contact support) and to train IT Operations staff.
We also developed a service that can analyze the Trust Inferer’s

www.usenix.org S P R I N G 20 16 VO L . 41 , N O. 1 33

SECURITY
BeyondCorp: Design to Deployment at Google

decision tree and chronological history of events affecting a
device’s trust tier assignment in order to propose steps for reme-
diation. Some problems can be resolved by users themselves,
without engaging support staff with elevated privileges. Users
who have preserved another chain of trust are often able to self-
remediate. For example, if a user believes his or her laptop has
been improperly evaluated but still has a phone at a sufficient
trust tier, we can forward the diagnosis request to the phone for
evaluation.

Challenges and Lessons Learned
Data Quality and Correlation
Poor data quality in asset management can cause devices to
unintentionally loose access to corporate resources. Typos,
transposed identifiers, and missing information are all com-
mon occurrences. Such mistakes may happen when procure-
ment teams receive asset shipments and add the assets to our
systems, or may be due to errors in a manufacturer’s workflow.
Data quality problems also originate quite frequently during
device repairs, when physical parts or components of a device
are replaced or moved between devices. Such issues can corrupt
device records in ways that are difficult to fix without manually
inspecting the device. For example, a single device record might
actually contain data for two unique devices, but automatically
fixing and splitting the data may require physically reconciling
the asset tags and motherboard serial numbers.

The most effective solutions in this arena have been to find local
workflow improvements and automated input validation that
can catch or mitigate human error at input time. Double-entry
accounting helps, but doesn’t catch all cases. However, the need
for highly accurate inventory data in order to make correct trust
evaluations forces a renewed focus on inventory data qual-
ity. Our data are the most accurate they’ve ever been, and this
accuracy has had secondary security benefits. For example, the
percentage of our fleet that is updated with the latest security
patches has increased.

Sparse Data Sets
As mentioned previously, upstream data sources don’t neces-
sarily share overlapping device identifiers. To enumerate a
few potential scenarios: new devices might have asset tags but
no hostnames; the hard drive serial might be associated with
different motherboard serials at different stages in the device
lifecycle; or MAC addresses might collide. A reasonably small set
of heuristics can correlate the majority of deltas from a subset of
data sources. However, in order to drive accuracy closer to 100%,
you need an extremely complex set of heuristics to account for
a seemingly endless number of edge cases. A tiny fraction of
devices with mismatched data can potentially lock hundreds or
even thousands of employees out of applications they need to be

productive. In order to mitigate such scenarios, we monitor and
verify that a set of synthetic records in our production pipeline,
crafted to verify trust evaluation paths, result in the expected
trust tier results.

Pipeline Latency
Since the Device Inventory Service ingests data from several
disparate data sources, each source requires a unique imple-
mentation. Sources that were developed in-house or are based
on open source tools are generally straightforward to extend in
order to asynchronously publish deltas to our existing pipeline.
Other sources must be periodically polled, which requires strik-
ing a balance between frequency of polling and the resulting
server load. Even though delivery to gateways typically takes
less than a second, when polling is required, changes might take
several minutes to register. In addition, pipeline processing can
add latency of its own. Therefore, data propagation needs to be
streamlined.

Communication
Fundamental changes to the security infrastructure can poten-
tially adversely affect the productivity of the entire company’s
workforce. It’s important to communicate the impact, symp-
toms, and available remediation options to users, but it can
be difficult to find the balance between over-communication
and under-communication. Under-communication results
in surprised and confused users, inefficient remediation, and
untenable operational load on the IT support staff. Over-com-
munication is also problematic: change-resistant users tend to
overestimate the impact of changes and attempt to seek unnec-
essary exemptions. Overly frequent communication can also
inure users to potentially impactful changes. Finally, as Google’s
corporate infrastructure is evolving in many unrelated ways,
it’s easy for users to conflate access issues with other ongoing
efforts, which also slows remediation efforts and increases the
operational load on support staff.

Disaster Recovery
Since the composition of the BeyondCorp infrastructure is non-
trivial, and a catastrophic failure could prevent even support
staff from accessing the tools and systems needed for recov-
ery, we built various fail-safes into the system. In addition to
monitoring for potential or manifested unexpected changes in
the assignment of trust tiers, we’ve leveraged some of our exist-
ing disaster recovery practices to help ensure that BeyondCorp
will still function in the event of a catastrophic emergency. Our
disaster recovery protocol relies on a minimal set of dependen-
cies and allows an extremely small subset of privileged main-
tainers to replay an audit log of inventory changes in order to
restore a previously known good state of device inventory state
and trust evaluations. We also have the ability in an emergency

34  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

SECURITY
BeyondCorp: Design to Deployment at Google

to push fine-grained changes to the access policy that allow
maintainers to bootstrap a recovery process.

Next Steps
As with any large-scale effort, some of the challenges we faced
in deploying BeyondCorp were anticipated while others were
not. An increasing number of teams at Google are finding new
and interesting ways to integrate with our systems, providing
us with more detailed and layered protections against malicious
actors. We believe that BeyondCorp has substantially improved
the security posture of Google without sacrificing usability, and
has provided a flexible infrastructure that will allow us to apply
authorization decisions based on policy unencumbered by tech-
nological restrictions. While BeyondCorp has been quite suc-
cessful with Google systems and at Google scale, its principles
and processes are also within the reach of other organizations to
deploy and improve upon.

Resources
[1] Architectural discussion of BeyondCorp: http://research
.google.com/pubs/pub43231.html.

[2] Stagefright: https://en.wikipedia.org/wiki/Stagefright
_(bug).

[3] RADIUS: https://en.wikipedia.org/wiki/RADIUS.

November 2–4, 2016 • Savannah, GA

OSDI ’16: 12th USENIX Symposium on Operating Systems
Design and Implementation

Important Dates
• Abstract registration due: May 3, 2016, 6:00 p.m. EDT

• Complete paper submissions due: May 10, 2016, 6:00 p.m. EDT

• Notification to authors: July 30, 2016

• Final papers due: Tuesday, October 4, 2016, 6:00 p.m. EDT

Program Co-Chairs
Kimberly Keeton, Hewlett Packard Labs
Timothy Roscoe, ETH Zürich

The complete list of symposium organizers is available at
www.usenix.org/osdi16/cfp

Overview
The 12th USENIX Symposium on Operating Systems Design and
Implementation seeks to present innovative, exciting research
in computer systems. OSDI brings together professionals from
academic and industrial backgrounds in a premier forum for dis-
cussing the design, implementation, and implications of systems
software. The OSDI Symposium emphasizes innovative research as
well as quantified or insightful experiences in systems design and
implementation.

OSDI takes a broad view of the systems area and solicits
contributions from many fields of systems practice, includ-
ing, but not limited to, operating systems, file and storage
systems, distributed systems, cloud computing, mobile
systems, secure and reliable systems, systems aspects of big
data, embedded systems, virtualization, networking as it relates
to operating systems, and management and troubleshooting
of complex systems. We also welcome work that explores the
interface to related areas such as computer architecture, net-
working, programming languages, analytics and databases. We
particularly encourage contributions containing highly original
ideas, new approaches, and/or groundbreaking results.

More details and submission instructions are available at
www.usenix.org/osdi16/cfp

We are looking for people with personal experience and ex-
pertise who want to share their knowledge by writing. USENIX
supports many conferences and workshops, and articles about
topics related to any of these subject areas (system administra-
tion, SRE, file systems, storage, networking, distributed systems,
operating systems, and security) are welcome. We will also pub-
lish opinion articles that are relevant to the computer sciences
research community, as well as the system adminstrator and
SRE communities.

Writing is not easy for most of us. Having your writing rejected,
for any reason, is no fun at all. The way to get your articles pub-
lished in ;login:, with the least effort on your part and on the part
of the staff of ;login:, is to submit a proposal to login@usenix.org.

PROPOSALS
In the world of publishing, writing a proposal is nothing new.
If you plan on writing a book, you need to write one chapter,
a proposed table of contents, and the proposal itself and
send the package to a book publisher. Writing the entire
book first is asking for rejection, unless you are a well-known,
popular writer.

;login: proposals are not like paper submission abstracts. We
are not asking you to write a draft of the article as the proposal,
but instead to describe the article you wish to write. There are
some elements that you will want to include in any proposal:

• What’s the topic of the article?

• What type of article is it (case study, tutorial, editorial,
mini-paper, etc.)?

• Who is the intended audience (syadmins, programmers,
security wonks, network admins, etc.)?

• Why does this article need to be read?

• What, if any, non-text elements (illustrations, code,
diagrams, etc.) will be included?

• What is the approximate length of the article?

Start out by answering each of those six questions. In answering
the question about length, the limit for articles is about 3,000
words, and we avoid publishing articles longer than six pages.
We suggest that you try to keep your article between two and
five pages, as this matches the attention span of many people.

The answer to the question about why the article needs to be
read is the place to wax enthusiastic. We do not want marketing,
but your most eloquent explanation of why this article is impor-
tant to the readership of ;login:, which is also the membership
of USENIX.

UNACCEPTABLE ARTICLES
;login: will not publish certain articles. These include but are not
limited to:

• Previously published articles. A piece that has appeared on
your own Web server but has not been posted to USENET
or slashdot is not considered to have been published.

• Marketing pieces of any type. We don’t accept articles
about products. “Marketing” does not include being
enthusiastic about a new tool or software that you can
download for free, and you are encouraged to write case
studies of hardware or software that you helped install
and configure, as long as you are not affiliated with or
paid by the company you are writing about.

• Personal attacks

FORMAT
The initial reading of your article will be done by people using
UNIX systems. Later phases involve Macs, but please send us
text/plain formatted documents for the proposal. Send pro-
posals to login@usenix.org.

The final version can be text/plain, text/html, text/markdown,
LaTex, or Microsoft Word/Libre Office. Illustrations should
be EPS if possible. Vector formats (TIFF, PNG, or JPG) are also
 acceptable, and should be a minimum of 1,200 pixels wide.

DEADLINES
For our publishing deadlines, including the time you can expect
to be asked to read proofs of your article, see the online sched-
ule at www.usenix.org/publications/login/publication_schedule.

COPYRIGHT
You own the copyright to your work and grant USENIX first pub-
lication rights. USENIX owns the copyright on the collection that
is each issue of ;login:. You have control over who may reprint
your text; financial negotiations are a private matter between
you and any reprinter.

Writing for ;login:

36  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

SECURITY

Talking about Talking about
Cybersecurity Games
M A R K G O N D R E E , Z A C H A R Y N J P E T E R S O N , A N D P O R T I A P U S E Y

The recent explosion of cybersecurity games not only reflects a grow-
ing interest in the discipline broadly, but a recognition that these
types of games can be entertaining as well as useful tools for out-

reach and education. However, cybersecurity game terminology—those terms
used to describe or communicate a game’s format, goals, and intended audi-
ence—can be confusing or, at worst, misleading. The result being a potential
to disappoint some players, or worse, misrepresent the discipline and dis-
courage the same populations we intend to attract. The year 2015 marked the
second USENIX Summit on Gaming, Games, and Gamification in Security
Education (3GSE), co-located again with the USENIX Security Symposium.
At the event, we invited a community conversation about terminology for
cybersecurity games. The conversation was the seed of a draft vocabulary
report to be presented to the Cybersecurity Competition Federation for com-
ment and possible adoption. In this article, we summarize some of the issues
arising from that discussion.

Cybersecurity competitions are growing in both popularity and diversity. The Web site
CTFtime [1] reports that there have been an average of 56 events per year since 2013; this
is over one game every week. The International Capture the Flag (iCTF) competition has
seen participation steadily increase, with the past five years averaging more than double the
participation seen in prior years. There are at least three separate US leagues where brack-
eted, regional play culminates in a national competition. DARPA’s Cyber Grand Challenge
is the latest variation; it is “research in CTF form.” During DEFCON 2016, participants will
engage in a technology demonstration in a game format. In the midst of this cybersecurity
game renaissance, we see designers, organizers, and researchers facing a semantic gap when
describing and discussing cyber competitions.

Some terms used to describe cybersecurity games are based on analogy, sometimes stretched
to where the relationship becomes weak: capture the flag (CTF), Jeopardy-style, quiz bowl,
etc. Other terminology is invented but without wide adoption and therefore still evolving in
meaning: e.g., hack-quest, inherit-and-defend, hack-a-thon. Certainly, game format can be a
deciding factor for players, who may be unable to participate in person for non-virtual events,
may be unable to assemble a group for team play, or may be unavailable to engage in a full-
day, synchronous competition. Thus, at the very least, a common lexicon would help players
and teams to identify competitions aligned with their interests and abilities.

Generating such a lexicon is non-trivial, however, as players come to games from different
backgrounds, with various motivations and desired outcomes [3]. Players may be novice
learners seeking to build new skills or practice learned skills. These players may only want
to play if they know solutions or write-ups will be released after the event. Others may want
challenges to persist after the competition, allowing players to complete them outside the
competition or present their solutions to a class or study group. Experts may want harder
challenges to demonstrate skills for bragging rights or increasingly large prizes.

Mark Gondree is a security
researcher with an interest
in cybersecurity games for
education and outreach. With
Zachary Peterson, he co-

founded 3GSE, a USENIX workshop dedicated
to the use of games for security education, and
released [d0x3d!], a board game about network
security to promote interest and literacy in
security topics among young audiences.
Gondree is a Research Professor at the Naval
Postgraduate School in Monterey, CA. 
gondree@gmail.com

Zachary Peterson is an
Assistant Professor of
Computer Science at Cal Poly,
San Luis Obispo. He has a
passion for creating new ways

of engaging students of all ages in computer
security, especially through the use of games
and play. He has co-created numerous non-
digital security games, including [d0x3d!],
a network security board game, and is
co-founder of 3GSE, a USENIX workshop
dedicated to the use of games for security
education. znjp@calpoly.edu

www.usenix.org S P R I N G 20 16 VO L . 41 , N O. 1 37

Portia Pusey provides
educational research and
research development services
for projects that improve
our national preparedness to

protect our digital infrastructure by enriching
the engagement and professional skills of
cybersecurity learners and professionals. Her
research interests center on cybersecurity
competitions as a sport and the potential
of competitions to function as professional
development, learning environments, and
assessment. She specializes in leading the
design, conducting, and performing analysis
of research that strengthens practice in formal
and informal cybersecurity learning situations.
She also designs outreach experiences that
promote cybersecurity careers and awareness
for all k-career stakeholders. She is fluent in
academic and technical jargon and often serves
as a bridge when working with interdisciplinary
academic and professional teams in technical
fields. edrportia@gmail.com

Taxonomies for Cybersecurity Games
No game on its own can possibly satisfy all the demands of every player. Imprecision in com-
municating requirements, outcomes, and mechanics means some players may not be able to
identify games appropriate to their goals. To avoid player disappointment, competition Web
sites sometimes identify both what they are and what they are not, clarifying where estab-
lished language is imprecise and terminology is confusing. The “capture the flag” term has
become especially problematic within the community; it is a powerful descriptor for a wide
audience but too broad for players seeking a specific type of game or experience.

The two factors of cybersecurity games most frequently discussed, either explicitly or
implicitly via comparison, are (1) whether the player will be either attacking or defending a
network, service, or digital asset, and (2) whether the player will be attacking other players.
While these factors are more easily characterized at their extremes, they can be imagined as
a continuum, encompassing the dimensions of task variety and adversary dynamicity (see
Figure 1). Task variety considers the types of knowledge, skills, and abilities players need to
demonstrate during the competition. At one end of task variety are games that mix attack-
defend mechanics with a variety of domain-specific challenges, typically requiring a team
due to complexity and scope; at the other end are games that focus on a narrower variety of
skills, like service hardening or reverse-engineering challenges. At one end of adversary
dynamicity are games featuring pre-created challenges, where the game adversary’s strategy
is “baked” into the competition by the designer; at the other end are games where opposing
players control the game adversary’s strategy, allowing it to be arbitrarily complex and highly
dynamic.

SECURITY
Talking about Talking about Cybersecurity Games

Figure 1: A common but somewhat misleading characterization of cybersecurity games, which ignores a
game’s intended audience, re-playability, and usefulness in an education setting—all identified as mean-
ingful qualities by the security game community.

38  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

SECURITY
Talking about Talking about Cybersecurity Games

Characterizing games along these two dimensions, however,
may be overly simplistic, artificially constraining, and misrep-
resent the quality of the event. Indeed, we believe all the games
identified in Figure 1 are fun, effective, and enjoyable to a variety
of audiences. What’s more, our community discussion at 3GSE
’15 highlighted that players care about many game attributes
beyond these dimensions. Novice players want exercises that
progressively build technical skills and self-efficacy in an envi-
ronment that is unintimidating. Instructors seeking games to
complement the curriculum want challenges that highlight spe-
cific learning objectives and persist after the competition ends,
allowing continued use in the classroom. Designers want to
develop entirely new genres that share and play with traditional
CTF ideas, without fear of mischaracterizing themselves. Nor-
mative, secondary terminology could acknowledge and highlight
these features, when present.

One problem with characterizations of task variety is that
they tend to perpetuate a false dichotomy between attack and
defense. Some games designers feel obligated to limit them-
selves to defense-only skills or sysadmin skill building. This
may encourage some players to participate, communicating that
game skills are relevant to an accessible, well-defined profes-
sion, such as “network security administrator,” compared to the
less understandable profession of “security consultant.” This
may also be to avoid any impression of “hacker training” or oth-
erwise serving as a training ground for unethical skills. Limiting
tasks in this way, however, likely underestimates the value and
mischaracterizes the intent of offensive skills. As with all types
of games, offensive and defensive skills are very related—some
experts claim learning to attack is prerequisite to effectively
defending. Learning to analyze and patch a vulnerable binary
is, perhaps, an improperly structured version of the exercise in
which one analyzes a binary, demonstrates how to exploit it,
and then patches it. Further, characterizing games along this
continuum may underemphasize essential technical and social
skills exercised during the game, such as writing code in a team
(e.g., Build-it, Break-it, Fix-it [3]) or reasoning about game-the-
oretic cost-benefit tradeoffs (e.g., 2011 iCTF’s point-laundering
scoring mechanism [4]).

The problem with characterizations of adversary dynamicity is
that they tend to perpetuate the myth that human opponents are
more dynamic, less predictable, and more skilled than the non-
player adversaries encoded in challenges. Automated systems
can be dynamic and arbitrarily complex. The term “adaptation”
is employed for games where the obstacle is changed to chal-
lenge the player at an appropriate level, creating an experience
of flow. In contrast, player adversaries could be considered
“poorly designed”: they can become distracted, become disen-
gaged, be offline for significant portions of the competition,

be over-skilled (or under-skilled) compared to other players,
etc. The systems performing in DARPA’s Cyber Grand Chal-
lenge are demonstrations, in some ways, comparable to IBM’s
Watson competing on Jeopardy. Their performance may hint,
among other things, at the potential for non-player adversaries
in cybersecurity games. Perhaps, in the future, some of the most
dynamic, educational, fun and challenging experiences may be
Jeopardy-style “beat the expert system” competitions.

One factor of frequent discussion for cybersecurity games is
their potential relationship to education and training. Orga-
nizers are certainly designing in such opportunities, despite
the lack of appropriate terminology. The NSA’s Codebreaker
challenge is one such example. It is a multi-month, online,
Jeopardy-style, reverse-engineering competition where chal-
lenges are parametrized for each player. Correct solutions yield
links confirming completion, making it possible for instructors
to assign the challenges as extra credit and get proof of student
achievement.

One might try to develop a taxonomy characterizing the role
of a cybersecurity game in instruction or its placement within
formal educational curricula; however, to date, games have
yet to evolve into full, online courseware. Instead, it may be
more appropriate to consider cybersecurity games as “informal
learning spaces,” like museums, libraries, and makerspaces [5].
They can be practice spaces for hands-on activities—opening up
opportunities for tinkering, improvisation, failure, and shar-
ing—in an authentic yet safe environment. They can be enrich-
ing virtual environments with embedded opportunities that
teachers may leverage, while avoiding the suggestion that games
supplement instruction or shoulder specific classroom goals.
Just as teachers need to develop strategies to adjust instruction
to get the most out of a field trip, the same may be true for cyber-
security games. Those game designers seeking to curate such an
environment may benefit from lessons learned by other informal
learning spaces. For example, the idea of participatory experi-
ences and co-creative design may help designers evolve the game
in response to individual and community goals [6].

While a community discussion about terminology may appear
pedantic to some, it has highlighted some essential questions
and core values about game objectives (which is, perhaps, a sepa-
rate and similarly controversial subject). The discussion dem-
onstrates the struggles our community faces when presenting
new games to established players, designing games to reach new
players, and interfacing with educators for use in clubs and class-
rooms. It further suggests missing research on who players are and
what they need from the cybersecurity community. Ultimately,
discourse that includes building a common body of terminology
also will help us to be more aware of our values and goals.

www.usenix.org S P R I N G 20 16 VO L . 41 , N O. 1 39

SECURITY
Talking about Talking about Cybersecurity Games

ASE and the Future of 3GSE
In response to the USENIX community’s interest in security
education research, more broadly, the 3GSE workshop has been
expanded and rebranded as the USENIX Workshop on Advances
in Security Education (ASE), a new USENIX workshop designed
to welcome a wider range of contributions to security educa-
tion research. ASE ’16 will be co-located with the 25th USENIX
Security Symposium, to be held in Austin, TX in August. We
hope to see you there!

Acknowledgments
The authors would like to thank the National Science Founda-
tion for their generous contributions to 3GSE, through awards
#1140561 and #1419318.

References
[1] CTFtime: ctftime.org.

[2]Andrew Ruef, Michael Hicks, James Parker, Dave Levin,
Atif Memon, Jandelyn Plane, and Piotr Mardziel, “Build It
Break It: Measuring and Comparing Development Security,”
Proceedings of the USENIX Workshop on Cyber Security Experi-
mentation and Test (CSET), 2015: https://www.usenix.org
/conference/cset15/workshop-program/presentation/ruef.

[3] Masooda Bashir, Jian Ming Colin Wee, April Lambert,
and Boyi Guo, “An Examination of the Vocational and
 Psychological Characteristics of Cybersecurity Competition
Participants,” Proceedings of the USENIX Summit on Gaming,
Games, and Gamification in Security Education (3GSE), 2015:
https://www.usenix.org/conference/3gse15/summit-program
/presentation/bashir.

[4] Yan Shoshitaishvili, Luca Invernizzi, Adam Doupe, and
Giovanni Vigna, “Do You Feel Lucky? A Large-Scale Analysis
of Risk-Rewards Trade-Offs in Cyber Security,” Proceedings of
the 29th Annual ACM Symposium on Applied Computing, 2014.

[5] Andrew Richard Schrock, “‘Education in Disguise’: Culture
of a Hacker and Maker Space,” InterActions: UCLA Journal of
Education and Information Studies, vol. 10, no. 1, 2014.

[6] Nina Simon, The Participatory Museum, Museum 2.0, 2010.

;login: 2016
Publishing Schedule

Issue Article Drafts Due Final Articles Due Columns Due Proofs to Authors Issue Mailing Date

Summer March 14 March 21 March 28 April 28 May 27

Fall June 6 June 13 June 27 August 1 September 1

Winter September 6 September 13 September 20 October 24 November 26

Beginning with this issue, ;login: is taking the next step in its long
history: It will change from a bimonthly to a quarterly schedule, with
four issues per year. Below is the publishing schedule for the rest of 2016.

40  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

NETWORKINGInterview with Lixia Zhang and kc claffy
R I K F A R R O W

Lixia Zhang is a Professor in the
Computer Science Department
of UCLA. She received her PhD
in computer science from MIT,
worked at Xerox PARC as a

member of the research staff before joining
UCLA. She has been leading the Named Data
Networking (NDN) project development since
2010. lixia@cs.ucla.edu

kc claffy is founder and director
of the Center for Applied
Internet Data Analysis (CAIDA),
a resident research scientist of
the San Diego Supercomputer

Center at UC, San Diego, and an Adjunct
Professor in the Computer Science and
Engineering Department at UC, San Diego.
kc@caida.org

Rik Farrow is the editor of ;login.
rik@usenix.org

I first heard about Named Data Networking (NDN) several years ago and
just couldn’t get excited about it. The very notion of replacing the proto-
cols that underpin the Internet appeared to me to be a Sisyphean task—

hopeless, yet time-consuming. Yet today I find myself feeling very differently
about NDN.

When I listened to kc claffy’s talk during LISA15 [1], I learned three things: NDN researchers
have produced working prototypes that solve real problems; NDN secures data itself, instead
of securing communication channels as we do today with TLS; and the way we use TCP/IP
today is nothing at all like the tasks that protocol was designed for. Let’s consider the third
point first.

When TCP/IP was developed in the late ’70s and early ’80s, computers were terribly slow.
Networks were proprietary, which meant that only computers from the same vendor could
communicate over networks. Computers were also tremendously expensive, making the
notion of sharing them across great distances very desirable. The two goals of early sharing
were the ability to log in remotely and upload or download files. With the addition of email
and netnews, that’s exactly what the Internet was used for—until 1994.

Today, over half of Internet traffic is streaming data, with remote login being just a tiny
fraction of all traffic. File copying is still common, although a lot of files are copied using
BitTorrent clients. As soon as I shared my short introduction with kc claffy and Lixia Zhang,
they let me know that I was understating the current state of the Internet.

kc: Yes, and the important bit isn’t that it’s BitTorrent or streaming: the important bit is that
we don’t care exactly where the data comes from, so long as we can verify its provenance and
integrity. So the IP network architecture forces on us something we typically don’t need, a
point-to-point communications abstraction, and denies us something we typically do need:
data integrity/provenance mechanisms.

IP is, without a doubt, not how one would design a network architecture today to serve the
current world’s communication needs.

With respect to Sisyphean task, we recognize the project is no slam dunk, but let’s also not
forget that in the 1980s and even early 1990s, many people, including those employed by
large telecommunications companies in particular, thought that replacing the PSTN (public
switched telephone network) network architecture with something as ephemeral and
unmanageable as a packet-switching architecture was the sort of pipe dream only academics
could afford to pursue. Within 30 years, “impossible” became “inevitable.” A thoroughly pes-
simistic view of this challenge ignores the empirical reality we enjoy every day.

Lixia: Related to the network architecture revolution: one needs to pay attention to the
related device revolution. The proliferation of devices in recent years, most of them mobile,
from cell phones to cars to billions of sensors, makes address configuration management
absolutely intractable. Note that it’s the computer revolution that led to packet switching,
both using computers to do the switching and to connect computers to each other. A network

mailto:lixia@cs.ucla.edu

www.usenix.org S P R I N G 20 16 VO L . 41 , N O. 1 41

NETWORKING
Interview with Lixia Zhang and kc claffy

architecture has to fit the communication needs of the devices,
and applications running on them, that the network connects.

Rik: The people who designed the IP protocols weren’t aware of
the types of security problems that would face the Internet [6].
When computers were rare, and the network paid for by the
Department of Defense, there really wasn’t a lot of concern about
sharing these resources with people who couldn’t be trusted.

NDN researchers have been building applications, on top of
protocols, that are both data-centric and security-aware. I must
admit that it was the addition of security as a major part of NDN
that got my attention. Perhaps the security was there all along
and I just missed it. But now, today, we could really use a network
that includes scalable security as part of the base protocols.

Lixia: Yes, NDN was designed with essential security building
blocks that were neither affordable nor necessary 40 years ago.
The research challenge we are pursuing now is making these
building blocks easy to use by app developers and end users.

Rik: After reading some of the information found on the NDN
site [2], I’d like to know if NDN runs on top of IP and whether the
intention is to run NDN alongside IP or to replace IP altogether.

Lixia: Designed as the new narrow waist of the Internet, NDN
runs over anything that can move packets from one NDN node to
another. Not only IP, but WiFi, Bluetooth, Ethernet, IP, UDP/TCP
tunnels, or even over tin-can link as shown in this old photo [3].

The current NDN testbed runs software on commodity Linux
hosts connected by IP/UDP tunnels, which is exactly how IP
started: running over whatever existing communication infra-
structure, which was telco wires at the time.

Rik: NDN relies on requests, called Interests, which name the
data the client is interested in. Can you tell us more about the
naming scheme?

Lixia: The easiest analogy is the HTTP request: the URL names
the object the browser requests. In a URL, the early part includes
the domain name information, followed by application-specific
information.

URLs are coded with conventions: for example, by default an
HTTP connection uses port 80. NDN namespace structures are
conceptually similar, but the naming conventions matter more
because applications, as well as the network itself, use names to
fetch data. Our work over the last few years has included devel-
oping naming conventions to facilitate both application develop-
ment and automation of signing and verification of data for a few
general classes of applications.

Rik: In NDN, returned data is called Content, and all Content is
signed, which I think is a wonderful idea. But signing relies on

having a secure and manageable method of acquiring the public
keys of the signing parties. How will NDN deal with this?

kc: That is an excellent and essential question, and sometimes
followed by, “You’ve reduced NDN security to a problem we have
utterly failed to solve for any application in TCP/IP: key manage-
ment and distribution!”

But I think the systems and networking administration commu-
nity can appreciate more than most that a data-centric security
approach can convert hard security problems (e.g., host security)
into relatively easier ones (crypto key management). NDN secu-
rity principal investigator Alex Halderman from the University
of Michigan gave a great talk on this last year [4].

Lixia: In a nutshell, securely acquiring the public keys requires
one to first establish trust anchors. Today’s Internet already has
some ways to acquire public keys from trust anchors, i.e., using
CAs (certificate agents/authority) to set up secure communica-
tion channels. There are new ways to build CAs: for example,
DANE (DNS-based Authentication of Named Entities) and Let’s
Encrypt (https://letsencrypt.org/).

NDN is also developing new approaches to trust anchor estab-
lishments, establishing local trust anchors (e.g., the IoT manage-
ment for all UCLA buildings can configure UCLA rootkey as
a trust anchor), and then establishing trusts across local trust
anchors. There was early work in this direction by Rivest (Sim-
ple Distributed Security Infrastructure (SDSI) [5], but today’s
IP architecture did not have easily available building blocks to
realize it. NDN does.

Rik: The design of IP relies on relatively simple routers perform-
ing simple operations—the delivery of a packet to the next hop.
NDN seems to require that routers become a lot more intelligent,
in that not only must they learn routes and maintain state, they
must also intelligently perform caching. Historically, TCP/IP
routers have been like switches—hardware designed to pass
packets out the correct interface quickly—with relatively slow
CPUs to handle routing updates. Will NDN routers require seri-
ous processing support, as well as lots of storage?

Lixia: Another very good question. First, today’s routers are
only simple in textbooks—in the wild, they maintain ridiculous
amounts of state and complexity: MPLS for traffic engineering,
multicast state for multicast, VPN state for private communica-
tions, etc. Why? Because the simple and elegant IP communi-
cations model can no longer meet people’s needs! For example,
delivering CNN news to millions of viewers using point-to-point
connections is clearly inefficient, so people want multicast.
IP’s single best path forwarding can’t make good use of today’s
high-density connectivity, so people want traffic engineering;
communication over the public Internet is not secure, so people
need VPN; and then there is the eternal promise of QoS.

42  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

NETWORKING
Interview with Lixia Zhang and kc claffy

The complexity that has evolved in response to these needs is not
at all elegant. As IP’s simple forwarding capabilities were over-
taken by the world’s needs, people hashed out patch after patch
in a reactive and incremental mode. We have ended up not only
with many states, but many orthogonal states. Each one does its
own job; not only does this not help with other goals, but their
interactions may lead to more complex pictures (e.g., MPLS has
to design solutions for MPLS multicast!).

Stepping up a level to look at the whole picture: it is not a ques-
tion of whether data plane needs state, but what is the right data
plane state that can address everyone’s needs.

The datagram is still the basic unit in packet switched networks.
An NDN router keeps just one forwarding state: the Pending
Interest Table (PIT). Each entry in PIT records one interest
packet that has been forwarded to the next hop(s) and is waiting
for a reply. If another request for the same data arrives (a PIT
hit), the router simply remembers this new interest’s incoming
interface so that it’ll send a copy of data there when the data
arrives. So when the requested data comes back, the router can
measure the throughput and RTT in retrieving data; if the data
does not come back within the expected RTT, the router can
quickly try another neighbor. This router PIT provides per-data-
gram, per-hop state that gives a network the most flexibility to
support a wide variety of functions.

Together with the Content store (cache at each NDN node), the
PIT enables:

1. Loop-free, multipath data retrieval

2. Native support of synchronous and asynchronous multicast
(i.e., servicing requests from multiple consumers that come at
the same time or at different times)

3. Efficient recovery from packet losses (a retransmitted interest
finds the data right after the lossy link)

4. Effective flow balancing (i.e., congestion avoidance by regulat-
ing how fast to forward Interests to each neighbor node)

5. Real-time recovery from network problems, such as link or
node failures (i.e., reducing reliance on slowly converging rout-
ing protocols)

People have been trying for years to achieve every one of the above,
in separation. NDN uses PIT to get them all in a coherent way.

Rik: Many current applications use a push model, like media
streaming or video conferencing, while NDN uses a pull model.
The NDN project team has a video conferencing application,
ndnrtc, as well as a chat application, ChronoChat. Could you
explain how NDN handles these applications using a pull model?

Lixia: The so-called “push model” is only an illusion. There is
never any application that uses only one-way packet push (how
would the sender know anyone received anything?). All com-

munications are about the receivers, what receivers want (the
sender does not gain anything by sending), how well the receiv-
ers get it (flow/congestion control). So a receiver has to want
some data first. For example, when one wants to join a confer-
ence, the receiver sends a request and data will come. That’s how
all today’s conference applications work. Netflix does not stream
a movie to you without your request, nor does Hangout push
video to your laptop before you click join. NDN does per-packet
pulling—that is, one interest pulls one data packet, which leads
to the advantages we talked about earlier.

Rik: The NDN project team has also created prototype applica-
tions for the Internet of Things. I am guessing that naming could
be a great aid in setting up IoT networks. Can you tell us more
about how this works?

Lixia: Yes indeed, NDN’s use of names in building IoT systems is
an ideal fit (as compared to IPv6’s way of using addresses to con-
nect IoT devices). Essentially, each IoT device, when installed,
will get a name based on where it is installed and what it does,
which enables devices to communicate and controllers to send
commands to devices using names directly. NDN’s built-in
security support is also a big plus, as the security solutions for
the wired Internet (TLS) really do not fit the IoT environment
due to multiple factors: communication overhead, computation
complexity, unreliable wireless links, and energy consumption.
One writes IoT applications using meaningful names, so names
are there already; it’s just that today’s Internet protocol stack
requires a lot of IP-address-related overhead before communica-
tion can start.

Rik: I’ve also heard that there is a lot of interest in NDN by big
data communities like meteorology and physics. Why is NDN a
better fit for sharing large amounts of data than TCP/IP?

Lixia: The first and foremost factor in data sharing is data nam-
ing. If everyone names data in some arbitrary way, it won’t be
easy for others to figure out what data is available and where;
one has to build some lookup tables to describe that file named
“foobar” actually contains Los Angeles weather data for January
2016. So even before climate researchers started working with
the NDN team, they already recognized their need for a common
hierarchical naming structure to facilitate data sharing, so LA
weather can be named something like /collectionXX/LA/2016/
jan (the name includes other metainfo too).

Second, we are talking about sharing large amounts of data,
so one certainly wants to fetch data in the most resilient and
efficient manner. Resiliency means data fetching can proceed in
the face of losses and partial failures. FTP cannot do it because
when a TCP connection breaks mid-transfer, everything already
fetched is gone (TCP semantics: a connection either successfully
closed or aborted). In contrast, NDN names data packets, and
every data packet arrived is received; if the current data path

www.usenix.org S P R I N G 20 16 VO L . 41 , N O. 1 43

NETWORKING
Interview with Lixia Zhang and kc claffy

failed, NDN forwarders can quickly and automatically find an
alternative path if any exists. Efficiency means fetching data
from the nearest location where it is available, multicast delivery
with caching—all NDN’s built-in functionality.

Third are data security and integrity. Even if big data may not be
sensitive to privacy issues, big data users care about data integ-
rity and provenance, and both are ensured by NDN’s per data
packet crypto signature. Every data packet is assigned a unique
name, which ensures that everyone gets the same data if they
send requests using the same name.

Rik: Anything else you’d like to say about NDN?

Lixia: We often hear people’s concern about any notion of replac-
ing IP: “See how difficult it has been to roll out IPv6, which is
only a different version of IP, let alone alone a drastically differ-
ent architecture.”

We want to make very clear that NDN won’t change the deployed
IP infrastructure, v4 or v6, in any way. Rolling out IPv6 has been
a challenge precisely because it requires changes to the deployed
IPv4 infrastructure. NDN, on the other hand, simply makes best
use out of IP delivery to move NDN packets, if direct Layer 2
channels are not available. IP got rolled out in the same way over
PSTN.

If people say IP replaced PSTN, that is not because IP ever
attempted to kick PSTN out, but rather because PSTN went off
the stage on its own, as new applications were developed to run
over IP. And all legacy applications (e.g., voice call) eventually
moved over to IP as well, making IP the global communication
infrastructure.

Resources
[1] kc claffy, “A Brief History of a Future Internet: The Named
Data Networking Architecture” (slides), USENIX LISA15:
http://www.caida.org/publications/presentations/2015
/brief_history_future_internet_lisa/brief_history_future
_internet_lisa.pdf.

[2] Home site for NDN: http://named-data.net/; FAQ pages:
http://named-data.net/project/faq/.

[3] Jon Postel, Steve Crocker, and Vint Cerf portray TCP
/IP’s ability to be carried by any media, in 1994: http://www
.internetsociety.org/what-we-do/grants-and-awards/awards
/postel-service-award/photo-gallery.

[4] Alex Halderman, “NDN: A Security Perspective” (slides):
http://named-data.net/wp-content/uploads/2015/06/fiapi
-2015-security-perspective.pdf.

[5] R. Rivest, B. Lampson, “SDSI—A Simple Distributed
 Security Infrastructure”: https://people.csail.mit.edu/rivest
/sdsi10.html.

[6] Craig Timburg, “Net of Insecurity,” Washington Post,
May 30, 2015: http://www.washingtonpost.com/sf/
business/2015/05/30/net-of-insecurity-part-1/.

44  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

SYSADMINA Brief POSIX Advocacy
Shell Script Portability

A R N A U D T O M E Ï

Arnaud Tomeï is a self-taught
system administrator who
first worked for the French
social security administration
as a consultant, where he

discovered portability issues between AIX
and RHEL Linux. He currently works for a
hosting and services company in the south of
France, specializing in Debian GNU/Linux and
OpenBSD, administering 600 systems and the
network. arnaud@tomei.fr

A utomating things is the most important task a system administrator
has to take care of, and the most practical or at least widespread way
to do that is probably by writing shell scripts. But there are many fla-

vors of shell, and their differences are a big concern when you have a hetero-
geneous environment and want to run the same script with the same result
on every machine (that’s what any sane person would expect). One option is
to write POSIX-compliant shell scripts, but even the name might be confus-
ing because POSIX normalizes a lot of UNIX-related things, from system
APIs to standard commands, so I will try to clear things up.

The Bestiary of /bin/sh
One remarkable characteristic of Unixes since their beginning is the separation between the
base system and the command interpreter. Beside architectural considerations, it allowed a
wide diversity of programs to exist, and even to coexist on the same system with the choice
given to the users on which one to use.

The first shell available was not surprisingly developed by Ken Thompson, and while it
remained the default only for a couple of years, it laid the basis for the functionalities we use
today: pipes, redirections, and basic substitutions. It was rapidly improved by Steve Bourne
[1] in 1977 and developed into the now widely known Bourne shell. But another competing
implementation was released in 1978, the C shell, written by Bill Joy to be closer to the C
syntax and to have more interactive features (history, aliases, etc.). Sadly, those two syntaxes
were incompatible.

That’s when the Korn shell emerged; developed by David Korn and announced at the 1983
summer USENIX conference, it was backward-compatible with the Bourne shell syntax and
included a lot of the interactive features from the C shell. Those two main characteristics
made ksh the default shell on many commercial versions of UNIX, and made it widely known
and used. No major alternative shell was written, and a stable base was reached with the
release of ksh88. A new version was shipped in 1993, ksh93, which brought associative arrays
and extensibility of built-in commands. Due to its popularity, the Korn shell has seen a lot of
forks, including the “Public Domain KSH” pdksh, which shipped on OpenSolaris, most of the
open source BSD variants, and even graphic-enabled versions like dtksh [2] and tksh [3].

It took until the late ’80s and the beginning of the ’90s to see two new shells released: bash in
1989 and zsh in 1990. The first was an effort from the GNU Project to have a free software
equivalent of the Bourne shell for the GNU operating system, and the second was a student
project of Paul Falstad’s [4]. They are both backward-compatible with the Bourne shell but
aim at providing more advanced functions and better usability.

A Step by Step Normalization
Back in 1988, the IEEE Computer Society felt the need to standardize tools and APIs to
maintain compatibility between systems and started to write what was going to be com-
monly known as “POSIX,” the IEEE Std 1003.1-1988, or ISO/IEC 9945 standard. This docu-
ment defined very low-level mandatory characteristics of what could be called a UNIX, and

www.usenix.org S P R I N G 20 16 VO L . 41 , N O. 1 45

SYSADMIN
A Brief POSIX Advocacy: Shell Script Portability

was the foundation of what we now know. It was further expanded
to the point where four standards were necessary: POSIX.1,
POSIX.1b, POSIX.1c, and POSIX.2, with even longer official
denominations. The interesting part for our purposes is the 1992
revision (POSIX.2 also known as IEEE Std 1003.2-1992), which
defined the behavior of the shell and the syntax of the scripting
language. This norm is based on what was the most available
shell at the time which, given the time frame, was still ksh88.

All those standards were finally merged as the result of a vendor
consortium (if you thought it was already complex, search for
The Open Group history) into one document in 1994: the Single
UNIX Specification. The standards have since all become avail-
able under the same IEEE Std 1003.1 standard, divided into four
sections. The shell scripting language is defined by the XCU
chapter, along with standard tools (e.g., grep, sed, or cut) with
their options, and those specifications are now maintained both
by the IEEE Computer Society and by The Open Group.

Testing Code Portability
Modern shells like bash, zsh, or ksh will all be able to run POSIX-
compatible scripts with no modifications, but will not fail when
facing nonstandard options or constructs. For example, bash has
a POSIX-compatibility mode that can be triggered in three dif-
ferent ways: calling it directly with the --posix argument, setting
the POSIXLY_CORRECT environment variable, and calling set -o

posix in an interactive session; none of these methods, however,
will cause bash to fail to run a script containing a test between
double brackets, a bash-only construct, or use the -n argument
for echo. Reading the full XCU specification before writing a
script is not even remotely conceivable: the specification’s table
of contents alone is already 4867 lines long (I’m serious) [5].

Although setting the POSIXLY_CORRECT variable will not make
bash behave as a strictly POSIX shell, it will enable other
GNU tools like df or tar to use 512-byte blocks (as specified
by the norm) instead of one kilobyte by default, which might
be useful for a backup script designed to run between Linux
and BSD, for example.

Installing all available shells and running the intended script
with all of them might sound crazy but is a serious option if you
want to look after really specific cases where strict POSIX com-
pliance is not mandatory but portability is.

But for a more generic situation, using a minimal Bourne-
compatible shell is a quicker solution: if you are using Debian or
a derivative you can use dash, which is installed by default now,
or even install posh (Policy-compliant Ordinary SHell) to test
the script against, as they will exit with an error when encoun-
tering a nonstandard syntax. On almost all other systems (e.g.,
AIX, HP-UX, *BSD, and Solaris/Illumos), a ksh derivative will be
available. Since the XCU standard was written when ksh88 was

the most widespread interpreter, chances are that your script
will be well interpreted on most platforms if it runs with ksh:
granted it is ksh88 and this might not be the case on all systems.

One other option, coming again from the Debian project, is the
Perl script checkbashisms [6], originally designed to help the
transition of the default system shell from bash to dash. It allows
for some exceptions by default, as it checks for conformance
against the Debian policy [7] first (which allows echo –n, for
example), but can be forced to be strictly POSIX:

$ checkbashisms --posix duplicate-fronted.sh

possible bashism in duplicate-frontend.sh line 144 (echo -n):

 echo -n “Updating server list ...”

possible bashism in duplicate-frontend.sh line 157 (brace

expansion):

mkdir -p $wwwpath/{www,log,stats}

[...]

checkbashisms has one big limitation, however: it does not
check for external tools and their arguments, which can be
nonportable.

Finally, there is Shellcheck [8], a tool that does a lot more than
just checking portability but also warns you about stylistic
errors, always true conditions, and even possible catastrophic
mistakes (rm $VAR/*). Shellcheck also has an online version with
a form to submit the script if you don’t want to install the Haskell
dependencies required to run Shellcheck.

Built-ins
Some of the errors the previous tools would point out are fre-
quently part of the shell syntax itself, which is often extended for
ease of use, but at the expense of compatibility.

read
The -p option of read is a good example of an extended shell
built-in that is frequently used in interactive scripts to give input
context to the user:

read -p “Enter username: “ username

echo “$username”

On bash or zsh, it would output something like this:

$./test.sh

Enter username: foo

foo

But it will fail on dash, posh, or ksh because -p is not available:

$./test.sh

read: invalid option -- ‘p’

Another nonstandard extension of read is the special vari-
able $REPLY, which contains user input if no variable name is
provided:

46  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

SYSADMIN
A Brief POSIX Advocacy: Shell Script Portability

read -p “Enter username: “

echo “$REPLY”

This code will also fail on other interpreters:

$./test.sh

test.sh:2: read: mandatory argument is missing

A better version of the above examples would be to use printf
and explicitly name the variable:

printf “Enter username: “

read username

Which will give the same output as read -p on all shells.

echo
On the last example given with read, an alternative would have
been to use the following code:

echo -n “Enter username: “

read username

because echo -n does not output a newline. But this option is
not portable either, and interpreters on which it is available
will likely support the -p option of read. Actually, the POSIX
echo does not support any option: as stated by The Open Group,
“Implementations shall not support any options.”

Some operands are supported, however, and a workaround to
suppress the newline would be to insert \c at the end: echo
immediately stops outputting as soon as it reads this operand. But
this method, although POSIX-compliant, is not portable either, at
least with bash and zsh (only when zsh is called as /bin/sh):

$./test.sh

Enter username: \c

foo

Those two interpreters don’t process operands unless echo is fol-
lowed by the -e option, in contradiction with the POSIX specifi-
cation. That’s why it’s often recommended to use printf instead
of echo. A rule of thumb is to use echo only when no option or
operand is needed, or to print only one variable at a time.

getopts
Yes, with an s. Unlike getopt, the platform-dependent imple-
mentation, getopts is well defined and will behave consistently
across different systems, with one big limitation: long options
are not supported.

test
The test built-in, or [], obviously has many useful options, too
many to be listed here, but two of them were deprecated (actually
they were not part of the POSIX norm but of the XSI extension)
and are still in use: the binary operators AND and OR, noted -a
and -o.

[“$foo” = “$bar” -a -f /etc/baz]

[“$foo” = “$bar” -o -f /etc/baz]

Because they were ambiguous, depending on their position in the
expression, and could be confused by user input, they have been
marked obsolescent. Moreover, they could be easily replaced by
the equivalent shell operators: && and ||. Another nonportable
syntax often used is the bash extended test, delimited by double
brackets, which must also be avoided for POSIX scripts.

Don’t Forget the Standard Tools
The shell language on its own would not have met its success
without all the tools it can use to process files and streams. Did
I mention that such tools as grep, sed, and cut are mandatory in
the XCU standard? They are, and their necessary options are
even listed. But we’re used to some options not necessarily being
available on all systems.

cut
I’ve never used this option, but I’ve seen it in others’ scripts a
couple of times, so I guess it is worthy to mention that --output-

delimiter is GNU-specific:

cut -f 1,2 -d ‘:’ --output-delimiter ‘,’ foo

will work with GNU coreutils but will throw an error on other
systems:

cut: unknown option -- -

The alternative in this case is pretty obvious and straightfor-
ward: pipe it to sed.

cut -f 1,2 -d ‘:’ foo | sed -e ‘s/:/,/g’

sed
One really useful flag of sed, the -i option, is sadly not defined,
and that can lead to some surprising errors even on systems
supporting it: for example, a small script I wrote on my Linux
machine to run on my girlfriend’s Mac produced the following:

$./spectro-split.sh lipo-ctrl_1.csv

sed: 1: “lipo-ctrl_1.csv”: invalid command code .

[...]

In the script, sed was used to replace the decimal mark in spec-
trometry raw data, for later analysis by another tool:

sed -i ‘s/,/./g’ $column.txt

With GNU sed, the -i option takes an optional string as a suffix
for a backup copy of the file being edited, but on Mac (and Free-
BSD) the suffix is mandatory even if empty; here the substitution
pattern was misunderstood, so I had to use this more portable
(but still non-POSIX) syntax:

sed -i ‘’ -e ‘s/,/./g’ $column.txt

www.usenix.org S P R I N G 20 16 VO L . 41 , N O. 1 47

SYSADMIN
A Brief POSIX Advocacy: Shell Script Portability

This syntax will run, at least on Linux, Mac, FreeBSD, and
OpenBSD, but it will throw an error on AIX, Solaris, and HP-UX,
whose sed does not know the in-place editing option. An alterna-
tive would be to use perl if available:

perl -pi -e ‘s/,/./g’ $column.txt

Or to rely only on POSIX tools:

sed -e ‘s/,/./g’ $column.txt > $column.txt.new && mv

$column.txt.new $column.txt

This last option might not be prettiest, but it is the most portable
and reliable: it does not require external tools or nonstandard
options, and it actually does the same as the in-place argu-
ment, without risking silent corruption in case of disk space
exhaustion.

sort and uniq
Sort is often used in conjunction with uniq, which can only pro-
cess adjacent lines, and, contrary to most of the previous options
we’ve seen, one of sort’s options is often wrongly thought to be
nonportable although it is perfectly standard and more efficient:

sort -u foo.txt -o bar.txt

which is POSIX-compliant and portable, and is more elegant
than piping the result into uniq before redirecting the output.

Common Mistakes
Table 1 provides a small cheat-sheet to quickly check for the
most common errors in shell scripts:

Conclusion
Even if it requires greater discipline, writing POSIX-compliant
scripts, as well as knowing the syntax and the options of the
tools used, is a good starting point for portability: it will produce
higher quality scripts and, in some marginal cases, might even
lead to better performance by using a limited but optimized
interpretation. Of course, as in the echo example, even with
standards some specific features can interfere, but by sticking
closely to the norm, those situations will be limited and trivial to
correct most of the time.

read -p “Input:” variable The -p option is not portable. Actually, the only POSIX option to read is -r.

read; echo $REPLY The $REPLY special variable is interpreter-specific and is not always available.

echo -n Foo Portable echo does not support any option; printf should be preferred.

sed -i “s/foo/bar/” file Although really useful, this option is not standard and behaves differently depending on the system.

cp /etc/{passwd,shadow} Brace substitutions are commonly used with bash and zsh but are not available on ksh and POSIX.

if [[-e /tmp/random-lock]] Double brackets are bash-specific.

touch /tmp/$RANDOM.tmp The special variable $RANDOM is not available everywhere.

if [$var1 == $var2]
String comparison takes only one equals sign. Moreover, doubling it might be interpreted as a vari-
able (named “=”) assignment, which can’t be done in a test.

foo () { local var1=bar } Scoped variables are not defined by the XCU. The unset routine might be used instead if necessary.

foo=((foo++))
Works only with bash, should be replaced by foo=$((foo+1)) or $((foo=foo+1)) when used in another
expression (for example, ls -l $((foo=foo+1))).

[“$foo” = “$bar” -a -f /etc/baz] Should be replaced by (([“$foo” = “$bar”] && [-f /etc/baz]))

[“$foo” = “$bar” -o -f /etc/baz] Should be replaced by (([“$foo” = “$bar”] || [-f /etc/baz]))

ls -1 ~/foo
Often used in interactive sessions, the tilde should be banned from script as it is not expanded by all
shells.

Table 1: A cheat-sheet with a quick check for the most common errors in shell scripts

Resources
[1] http://www.unix.org/what_is_unix/history_timeline.html.

[2] dtksh was a fork able to manipulate Motif widgets and was
included with the CDE desktop.

[3] tksh, like dtksh, was a fork adding graphic capabilities to
ksh but with the Tk widget toolkit instead of Motif.

[4] http://zsh.sourceforge.net/FAQ/zshfaq01.html.

[5] http://pubs.opengroup.org/onlinepubs/9699919799
/utilities/contents.html.

[6] http://sourceforge.net/projects/checkbaskisms/.

[7] http://www.debian.org/doc/debian-policy/ch-files.html.

[8] http://www.shellcheck.net/about.html.

48  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

SYSADMIN

System Administration in Higher Education
Workshop at LISA15
J O S H S I M O N

The System Administration in Higher Education Workshop asked
what’s different and what’s the same for system administration in
higher education versus industry, including the challenges faced by

practitioners. About half of the attendees worked in central IT at their insti-
tution as opposed to a distributed IT shop such as college (within a univer-
sity) or department level. Most of us were at bigger institutions…or ones that
felt bigger.

Improving Support
Our first topic of discussion was practical ideas for improving support. One manager
reported that he has a team of five engineers and 12 students. Outsourcing work to students
works really well except during finals week. They have about 40 to 50 products in their ser-
vice portfolio, most of which are commercial off-the-shelf products, and half his staff spend
most of their time maintaining them. He wants to move towards a service center model so
that his engineers can be freed up to work on problems more interesting than provisioning
and day-to-day operational tasks. Suggestions included providing self-service access for
faculty and students to do certain provisioning tasks themselves, abstracting the work into
smaller chunks, generalizing (e.g., “students” as opposed to “art students” and “engineering
students”), and retiring obsolete services or combining common services in the portfolio.

Keeping staff engaged by handing off the routine stuff to the help desk helps. What are other
ways to keep staff engaged? Automate (or “provide consistent service delivery for”) the daily-
operations tasks so that people can work on projects instead. Over time, people find their
interests and that’s okay. Another attendee’s organization is stable: employees have been
there for 35 years, so there aren’t a lot of new people. Some people want to be more engaged,
but the institutionalists don’t want people to be engaged because that means the old-timers
would have to change.

In another case, someone is unwilling to disengage when workload says he should. Someone
wants to be the de facto SPOF: he’s holding knowledge and won’t document or disengage or
relinquish tasks. This needs management buy-in and culture change (no one product owner).
There may still be specialization, but information needs to be shared (e.g., SMEs are okay).

An attendee suggested switching jobs and not asking each other for help, doing the routine
tasks, and just using the documentation. Mentoring was raised as another possibility.

How do we measure success and translate that into the right operational changes? Ticketing
systems can provide some metrics. Surveys to faculty (“How’re we doing?”) can be useful,
especially if repeated so that you can measure change over time. Justify new projects or
products by (faculty) demand. What if your goals (“faculty: keep this guy here”) conflict with
the dean’s (“move this FTE to Central”)? If you do surveys, who gets to see the results (raw
data, analysis, future actions or priorities)? Some people wish they got more negative feed-
back than they do, even if it’s “I like this but...”—we’re not perfect.

Josh Simon is a Senior
Systems Administrator for
the University of Michigan’s
College of Literature, Science,
and the Arts. In addition to

higher education, he’s worked for hardware
manufacturers, software companies, and
multinational financial institutions. He’s also a
long-time ;login: contributor. jss@umich.edu

www.usenix.org S P R I N G 20 16 VO L . 41 , N O. 1 49

SYSADMIN
System Administration in Higher Education Workshop at LISA15

Setting Priorities
Our next discussion was on priorities. Other than incident han-
dling, how do you prioritize what’s important? It’s not unique to
higher education but we put a twist on it: there’s no obvious bud-
get bottom line to point to. A lot of institutions of higher learning
care about teaching and research; how do you measure that?

In an ideal world, priorities would be obvious, and management
would help with guidance. Our priorities should align with those
of the college or university, which is usually about teaching and
learning, research, and service, depending on your environment.
Those areas are inherently messy and can’t be planned the way
“build a building” would be (which is messy but in a constrained
way).

Can you abstract priorities to “my faculty, students and staff”?
Not entirely. You still need to plan for end-of-life and capacity
changes. Ask faculty if there’ll be other changes (e.g., Java to C or
whether Eclipse will go away). Remember that priorities may be
different for the group (maintain stable network) and for your-
self (continually learn, teach, and research in your own field).
Regardless of that, you need to make sure things keep working.
Build things to stay stable 24/7 in a one-person shop yet move
technology ahead.

One team has a goal of stability (changing hardware or software
is declined), and they do trouble tickets for issues and weekly
meetings with the researchers for possible future planning.
Another team is cleaning up after years of non-management.

In a department of 21 (plus students) on a four-person infra-
structure team, someone went from taking direction from their
boss into creating a feedback loop—providing ideas for improve-
ment, simplifying workflows, presenting new ways of contribut-
ing (including beyond their own group).

As an ITIL teacher, the business drives the priorities, and it’s
based on urgency and impact in the operational work. Trouble-
ticketing systems are a good start for incident handling.

For another attendee, it varies at the university (research,
teaching, and patient care), college (research and teaching),
department (projects based on survey results as defined by the
director), and team (e.g., infrastructure) levels. Having regular
one-on-one meetings is essential.

Individual priorities are yours regardless. On a professional
basis, what you’re prioritizing needs to align with the rest of your
institution. We need to provide clear advice and recommenda-
tions to senior management for them to draw on in making deci-
sions; we shouldn’t be making decisions at our levels.

You need to be sensitive to the unwritten rules: what about those
with bad histories (e.g., faculty person A has more problems
than another faculty person, or there are HR issues behind

the scenes)? Can VIPs be flagged in the system? If your man-
ager is not setting your priorities, let them know what you are
prioritizing.

We need to set priorities because we don’t have enough
resources. Kanban is a way to organize and prioritize work and
can help with communications (in all directions).

Security
Next we talked about security. Universities aren’t really that
much like businesses. What are the unique aspects of higher ed?
Some can’t say “No” (e.g., “no porn” or “no Netflix”), but some
rate-limiting may be useful.

Someone thought they had a security problem and hired a CISO.
Their only directive is “Security.” Issues of privacy are being
disregarded in the name of security.

Some of the challenges: research institutions have short-
timers—but IT isn’t told when and where they went. How do we
ensure accounts are closed when they should be? What about
when credentials or machines are compromised (and three-let-
ter agencies come for it)? How do you get those with prestigious
awards to choose longer passwords without writing both ID and
password on a sticky note?

Other challenges include personally owned devices (“BYOD”),
application hosting (where the institution provides containers
and infrastructure but the customers build their own inse-
cure front-ends with SQL injection possibilities), worldwide
collaborators (so the institution can’t block countries known
as threats—which won’t work long-term anyway because the
threats move), and senior faculty who don’t want to change what
they’ve been doing.

A policy or advisory group that meets regularly can help write
the policies and make them sane and applicable with buy-in from
the relevant sources. Have the CISO keep the chancellor or execu-
tives quiet until they’re ready to act. Remember that “declare by
edict” often doesn’t work in academia; there’s no boss-employee
relationship here. We don’t have the ability to tell faculty how to
do things; we can make recommendations, but they are respon-
sible for their data.

Some places are trying top-down edicts, and IT is having to
dance around the push-to-centralize. “Academic freedom” is a
red herring: we’re not trying to prevent faculty or researchers
from doing their work. In reality, a “grant” is a contract between
the granting agency and the university and has requirements
that may include security. Some grants have specific security
requirements (including FISMO). One is “You might have to
monitor logs”—but they could use that requirement to justify
it for a Splunk license...to monitor those logs as well as every-
thing else.

50  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

SYSADMIN
System Administration in Higher Education Workshop at LISA15

What’s at risk? Intellectual property of research and the reputa-
tion of the researcher and institution. It seems like the lawyers
and executives are finally catching up to what we understood 15
years ago about how dangerous technology can be. They seem
to be much more interested in a vendor-provided solution or
service, shifting the responsibility and blame (and liability) to
someone else. Is that good or bad?

Some places use a combination of vendor and internal tools,
VLAN segmentation, and SQL injection review. Even with all
those, you have to use them correctly. Remember, though, that
regardless of whether it’s internal or vendor, it’s still your insti-
tution’s name above the fold of The New York Times front page.

There are some types of liability you can’t get away from. Some
have to store SSN, PCI, or PPI somehow. Some business pro-
cesses need to be fixed (e.g., an SSN is needed in one place but
stored in multiple places).

Budget
Our penultimate discussion was about budget. Some places have
an adequate budget overall, some adequately budget for equip-
ment but not for people, and some just don’t adequately budget.

One place is moving towards cloud-based services like AWS.
They also let their Symantec contract expire and moved to
Sophos. They could move from hosting their own to AWS, which
is PCI-compliant. It shifted the expense from capital expendi-
ture (CapEx) to operational (OpEx) and freed up FTE resources
internally. CapEx is almost always easier to justify than OpEx.

Do an honest analysis: Are you the service provider or a service
broker? Can you manage external services? Remember you
may be a customer not a provider. Recommending others’ stuff
instead of your own may be hard. Remember that doing cus-
tomer support is hard when you’re at the mercy of the third-party
provider.

Monitoring and alerting (your internal people) is not necessarily
possible when you’re not the provider. How do you monitor cloud-
based services? (You don’t.) You may or may not have lowered
your users’ service level.

Handing off the “fun” stuff to the cloud and being a service bro-
ker can lead to disengagement of the IT staff. It might save time
and money (at least CapEx), but it loses the staff engagement.
Handing off some stuff to the cloud lets you focus on the stuff
that you’re keeping.

Campus Participation
Our last topic was participation on campus. We generally
advised everyone to get involved on campus-level committees,
both technical and nontechnical. Faculty and staff boundaries
may be problematic but making the connections is very valuable.
There are also off-campus activities like ACM, EduCause, IEEE,
LISA, LOPSA, USENIX, and so on. Find those formal and infor-
mal networking groups that work for you and participate.

XKCD

xkcd.com

Do you have a USENIX Representative
on your university or college campus?

If not, USENIX is interested in having one!

The USENIX Campus Rep Program is a network of representatives at campuses around the world who provide Associa-
tion information to students, and encourage student involvement in USENIX. This is a volunteer program, for which
USENIX is always looking for academics to participate. The program is designed for faculty who directly interact with
students. We fund one representative from a campus at a time. In return for service as a campus representative, we offer
a complimentary membership and other benefits.

A campus rep’s responsibilities include:

■ Maintaining a library (online and in print) of USENIX publications at your university for student use

■ Distributing calls for papers and upcoming event brochures, and re-distributing informational emails from USENIX

■ Encouraging students to apply for travel grants to conferences

■ Providing students who wish to join USENIX with information and applications

■ Helping students to submit research papers to relevant USENIX conferences

■ Providing USENIX with feedback and suggestions on how the organization can better serve students

In return for being our “eyes and ears” on campus, the Campus Representative receives access to the members-only
areas of the USENIX Web site, free conference registration once a year (after one full year of service as a Campus Repre-
sentative), and electronic conference proceedings for downloading onto your campus server so that all students, staff,
and faculty have access.

To qualify as a campus representative, you must:

■ Be full-time faculty or staff at a four-year accredited university

■ Have been a dues-paying member of USENIX for at least one full year in the past

If your campus does not have a representative and you or someone you know would like to represent USENIX on your
campus, please contact the Campus Rep Administrator, campusrep@usenix.org.

www.usenix.org/students

52  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

COLUMNS
The addition of improved support for asynchronous I/O in Python 3

is one of the most significant changes to the Python language since
its inception. However, it also balkanizes the language and libraries

into synchronous and asynchronous factions—neither of which particularly
like to interact with the other. Needless to say, this presents an interesting
challenge for developers writing a program involving I/O. In this article, I
explore the problem of working in an environment of competing I/O models
and whether or not they can be bridged in some way. As a warning, just about
everything in this article is quite possibly a bad idea. Think of it as a thought
experiment.

Pick a Color
I recently read an interesting blog post “What Color Is Your Function?” by Bob Nystrom [1].
I’m going to paraphrase briefly, but imagine a programming language where every function
or method had to be assigned one of two colors, blue or red. Moreover, imagine that the func-
tions were governed by some rules:

◆◆ The way in which you call a function differs according to its color.

◆◆ A red function can only be called by another red function.

◆◆ A blue function can never call a red function.

◆◆ A red function can call a blue function, but unknown bad things might happen.

◆◆ Calling a red function is much more difficult than calling a blue function.

Surely such an environment would lead to madness. What is the deal with those difficult red
functions? In fact, after a bit of coding, you’d probably want to ditch all of the red code and its
weird rules. Yes, you would, except for a few other details:

◆◆ Some library you’re using has been written by someone who loves red functions.

◆◆ Red functions offer some advantages (i.e., concurrency, less memory required, more scal-
ability, better performance, etc.).

Sigh. So, those red functions really are annoying. However, you’re still going to have to deal
with them and their weird rules in some manner.

Although this idea of coloring functions might seem like an invention of evil whimsy, it accu-
rately reflects the emerging reality of asynchronous I/O in Python. Starting in Python 3.5, it
is possible to define asynchronous functions using the async keyword [2]. For example:

async def greeting(name):

 print(‘Hello’, name)

If you define such a function, it can be called from other asynchronous functions using the
await statement.

async def spam():

 await greeting(‘Guido’)

David Beazley is an open
source developer and author of
the Python Essential Reference
(4th Edition, Addison-Wesley,
2009). He is also known as the

creator of Swig (http://www.swig.org) and
Python Lex-Yacc (http://www.dabeaz.com
/ply.html). Beazley is based in Chicago, where
he also teaches a variety of Python courses.
dave@dabeaz.com

Crossing the Asynchronous Divide
D A V I D B E A Z L E Y

www.usenix.org S P R I N G 20 16 VO L . 41 , N O. 1 53

COLUMNS
Crossing the Asynchronous Divide

However, don’t dare call an asynchronous function from normal
Python code or from the interactive prompt—it doesn’t work:

>>> await spam()

 File “<stdin>”, line 1

 await spam()

 ^

SyntaxError: invalid syntax

>>>

You might think that you could make it do something if you take
away the await statement. However, if you do that, you won’t get
an error—instead nothing happens at all.

>>> spam()

<coroutine object spam at 0x101a262b0>

>>>

To get an asynchronous function to run, you have to run it inside
a separate execution context such as an event-loop from the
asyncio library [3].

>>> import asyncio

>>> loop = asyncio.get_event_loop()

>>> loop.run_until_complete(spam())

Hello Guido

>>>

The async functions are clearly the red functions. They have
weird rules and don’t play nicely with other Python code. If
you’re going to use them, there will be consequences. Pick a side.
You’re either with us or against us.

An Example
To better illustrate the divide and to put a more practical face
on the problem, suppose you were writing a network applica-
tion that involved some code for sending JSON-encoded objects.
Maybe your code involved a function such as this:

import json

def send_json(sock, obj):

 data = json.dumps(obj)

 sock.sendall(data.encode(‘utf-8’))

As written here, the function has been written in a synchro-
nous manner. You could use it in a program that uses normal
functions, threads, processes, and other Python features. For
example, this function waits for a connection and sends back a
JSON object in response:

def stest():

 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 s.bind((‘’,25000))

 s.listen(1)

 c,a = s.accept()

 request = {

 ‘msg’: ‘Hello World’,

 ‘data’: ‘x’

 }

 send_json(c, request)

 c.close()

 s.close()

To test this code, run stest() and connect using nc or telnet. You
should see a JSON object sent back.

Now, suppose you wrote an asynchronous version of the stest()
function:

import asyncio

async def atest(loop):

 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 s.bind((‘’,25000))

 s.listen(1)

 s.setblocking(False)

 c,a = await loop.sock_accept(s)

 request = {

 ‘msg’: ‘Hello World’,

 ‘data’: ‘x’

 }

 send_json(c, request) # Dicey! Danger!

 c.close()

 s.close()

loop = asyncio.get_event_loop()

loop.run_until_complete(atest(loop))

In this code, you will notice that the send_json() function is
being called directly. This is allowed by the rules (red functions
can call blue functions). If you test the code, you’ll find that it
even appears to “work.” Well, all except for the hidden time bomb
lurking in the send_json() function.

Time bomb you say? Try changing the request to some large
object like this:

request = {

 ‘msg’: ‘Hello World’,

 ‘data’: ‘x’*10000000

}

54  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

COLUMNS
Crossing the Asynchronous Divide

Now, run the test again. You’ll suddenly find that the program
blows up in your face:

>>> loop.run_until_complete(atest(loop))

Traceback (most recent call last):

 File “<stdin>”, line 1, in <module>

 File “python3.5/asyncio/base_events.py”,

 line 342, in run_until_complete return future.result()

 File “python3.5/asyncio/futures.py”, line

 274, in

 result raise self._exception

 File “python3.5/asyncio/tasks.py”, line 239,

 in _step

 result = coro.send(value)

 File “j.py”, line 32, in atest

 send_object(c, request)

 File “j.py”, line 7, in send_object

 sock.sendall(data.encode(‘utf-8’))

BlockingIOError: [Errno 35] Resource temporarily unavailable

>>>

Silly you—that’s what you get for filling up all of the I/O buffers
in a function that was never safe to use in an asynchronous con-
text. I hope you enjoy your 3:15 a.m. phone call about the whole
compute cluster mysteriously going offline.

Of course, this problem can be fixed by writing a separate
asynchronous implementation of the send_json() function. For
example:

async def send_json(sock, obj):

 loop = asyncio.get_event_loop()

 data = json.dumps(obj)

 await loop.sock_sendall(sock, data.encode(‘utf-8’))

In your asynchronous code, you would then use this function by
executing the following statement:

await send_json(c, request)

It’s almost too simple—except for the fact that it’s actually
horrible.

Interlude: The Horror, the Horror
In the previous example, you can see how the code is forced to
pick an I/O model. Interoperability between the two models isn’t
really possible. If you are writing a general-purpose library, you
might consider supporting both I/O models by simply providing
two different implementations of your code. However, that’s also
a pretty ugly situation to handle. Changes to one implementation
would probably require changes to the other. Working with the
two factions of your library is going to be a constant headache.

If you were working on a larger library or framework, you would
likely find that your code base splits along the synchronous/
asynchronous divide whenever I/O is involved. It would probably
result in a gigantic mess. You might just abandon one of the sides
altogether.

Even if you can manage to hold the whole ball of mud together
in your mind, a library mixing synchronous and asynchronous
code together is fraught with other problems. For example, users
might forget to use the special await syntax in asynchronous calls.
Synchronous calls executed from asynchronous functions may or
may not work—with a variety of unpredictable consequences (e.g.,
blocking the event loop). Debugging would likely be fun.

Thought Experiment: Can You Know Your Color?
Needless to say, working in a mixed synchronous/asynchronous
world has certain difficulties. However, what if functions could
somehow determine the nature of the context in which they were
called? Specifically, what if a function could somehow know
whether it was called asynchronously?

As it turns out, this can be determined with a clever bit of devi-
ous frame hacking. Try defining this function:

import sys

def print_context():

 if sys._getframe(1).f_code.co_flags & 0x80:

 print(‘Asynchronous’)

 else:

 print(‘Synchronous’)

Just from the fact that the function uses a hardwired mysterious
hex constant (0x80), you know that it’s going to be good. Actually,
you might want to ignore that part. However, try it out with this
example:

>>> def foo():

... print_context()

...

>>> foo()

Synchronous

>>> async def bar():

... print_context()

...

>>> import asyncio

>>> loop = asyncio.get_event_loop()

>>> loop.run_until_complete(bar())

Asynchronous

>>>

This is interesting. The function print_context() is a normal
Python function, yet it can determine the nature of the environ-
ment from which it was called. Naturally, this raises further
questions about what might be possible with such information.

www.usenix.org S P R I N G 20 16 VO L . 41 , N O. 1 55

COLUMNS
Crossing the Asynchronous Divide

For example, could you use this in various metaprogramming
features such as decorators? If so, maybe you can change some of
the rules. Maybe you don’t have to play by the rules.

Walled Gardens
Suppose you wanted to more strongly isolate the world of
synchronous and asynchronous functions to prevent errors
and undefined behavior. Here is a decorator that more strictly
enforces the underlying I/O model on the calling context:

from functools import wraps

import sys

import inspect

def strictio(func):

 # Determine if func is an async coroutine

 is_async = inspect.iscoroutinefunction(func)

 @wraps(func)

 def wrapper(*args, **kwargs):

 called_async = sys._getframe(1).f_code.co_flags & 0x80

 if is_async:

 assert called_async, “Can’t call async function here”

 else:

 assert not called_async, “Can’t call sync function here”

 return func(*args, **kwargs)

 return wrapper

To use this decorator, simply apply it to either kind of function:

@strictio

def foo():

 print(‘Synchronous’)

@strictio

async def bar():

 print(‘Asynchronous’)

Attempts to call these functions from the wrong context now
result in an immediate assertion error. For example:

>>> bar()

Traceback (most recent call last):

...

AssertionError: Can’t call async function here

>>>

>>> async def test():

 foo()

>>> import asyncio

>>> loop = asyncio.get_event_loop()

>>> loop.run_until_complete(test())

Traceback (most recent call last):

...

AssertionError: can’t call sync function here

>>>

As you can see, this is an even stronger version of the partisan
rules—crossing the asynchronous divide is simply not allowed.
If you applied this to the earlier send_json() function, you might
have been able to prevent a hidden time bomb from showing up
in your code. So that’s probably a good thing.

Adaptive I/O
Rather than strictly separating the two worlds, another approach
might be to adapt the execution of a function to the current I/O
environment. For example, consider this decorator:

import sys

import inspect

import asyncio

from functools import partial

def adaptiveio(func):

 is_async = inspect.iscoroutinefunction(func)

 @wraps(func)

 def wrapper(*args, **kwargs):

 called_async = sys._getframe(1).f_code.co_flags & 0x80

 if is_async and not called_async:

 # Run an async function in a synchronous context

 loop = asyncio.new_event_loop()

 return loop.run_until_complete(func(*args,

 **kwargs))

 elif not is_async and called_async:

 # Run a sync function in an asynchronous context

 loop = asyncio.get_event_loop()

 return loop.run_in_executor(None, partial(func,

 *args, **kwargs))

 else:

 return func(*args, **kwargs)

 return wrapper

Unlike the previous example, this decorator adapts a function
to the calling context if there is a mismatch. If called from an
asynchronous context, a synchronous function is executed in a
separate thread using loop.run_in_executor(). An asynchro-
nous function called synchronously is executed using an event
loop. Let’s try it:

@adaptiveio

def foo():

 print(‘Synchronous’)

@adaptiveio

async def bar():

 print(‘Asynchronous’)

56  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

COLUMNS
Crossing the Asynchronous Divide

Now, make some calls:

>>> foo()

Synchronous

>>> bar() # Adapted async -> sync

Asynchronous

>>> async def test():

 await foo() # Adapted sync -> async

 await bar()

>>> import asyncio

>>> loop = asyncio.get_event_loop()

>>> loop.run_until_complete(test())

Synchronous

Asynchronous

>>>

A possible benefit of an adapted function is that a single imple-
mentation could be used seamlessly in either a synchronous or
asynchronous context (the function would just “work” regardless
of where you called it). A downside is that the mismatched use
case might suffer a hidden performance penalty of some kind:
for instance, the extra overhead of passing an operation over to
a thread-pool or in creating the event loop. Perhaps the decora-
tor could be extended to issue a warning message if this was a
concern.

A subtle feature of this decorator is that an adapted function
must use the normal calling convention of the current I/O con-
text. So, if you had this function:

@adaptiveio

def send_json(sock, obj):

 data = json.dumps(obj)

 sock.sendall(data.encode(‘utf-8’))

you would use send_json() in synchronous code, and you would
use await send_json() in asynchronous code.

Dual Implementation
Another possible strategy might be to bind separate synchronous
and asynchronous functions to a common name. The following
decorator allows an “awaitable” asynchronous implementation
to be attached to an existing synchronous function.

import sys

import inspect

from functools import wraps

def awaitable(syncfunc):

 def decorate(asyncfunc):

 assert (inspect.iscoroutinefunction(asyncfunc) and

 not inspect.iscoroutinefunction(syncfunc))

 @wraps(asyncfunc)

 def wrapper(*args, **kwargs):

 called_async = sys._getframe(1).f_code.co_flags

 & 0x80

 if called_async:

 return asyncfunc(*args, **kwargs)

 else:

 return syncfunc(*args, **kwargs)

 return wrapper

 return decorate

With this decorator, you write two functions as before, but give
them the same name. The appropriate function is used depend-
ing on the calling context. For example:

>>> def spam():

... print(‘Synchronous’)

...

>>> @awaitable(spam)

... async def spam():

... print(‘Asynchronous’)

...

>>> spam()

Synchronous

>>> async def test():

... await spam()

...

>>> import asyncio

>>> loop = asyncio.get_event_loop()

>>> loop.run_until_complete(test())

Asynchronous

>>>

The main benefit of such an approach is that you could write
code with a uniform API—the same function names would be
used in either synchronous or asynchronous code. Of course, it
doesn’t solve the problem of having repetitive code. For example,
the send_json() function would have two implementations like
this:

def send_json(sock, obj):

 data = json.dumps(obj)

 sock.sendall(data.encode(‘utf-8’))

@awaitable(send_json)

async def send_json(sock, obj):

 loop = asyncio.get_event_loop()

 data = json.dumps(obj)

 await loop.sock_sendall(sock, data.encode(‘utf-8’))

Of course, all of this might just be a bad idea as heads explode
while trying to figure out which function is being called during
debugging. It’s hard to say.

www.usenix.org S P R I N G 20 16 VO L . 41 , N O. 1 57

COLUMNS
Crossing the Asynchronous Divide

Thoughts
At this point, it’s too early to tell how Python’s emerging asyn-
chronous support will play out except that libraries will likely
have to side with one particular approach (asynchronous or
synchronous). It seems possible that various metaprogram-
ming techniques might be able to make the overall environment
slightly more sane: for example, preventing common errors,
adapting code, or making it easier to present a uniform pro-
gramming interface. However, to my knowledge, this is not an
approach being taken at this time.

Somewhere in the middle of this mess are libraries such as
gevent [4]. gevent provides support for asynchronous program-
ming but implements its concurrency at the level of the inter-
preter implementation itself (as a C extension). As a result, there
is no obvious distinction between synchronous and asynchro-
nous code—in fact, the same code can often run in both contexts.
At this time, support for Python 3 in gevent is a bit new, and its
whole approach runs in a different direction from the built-in
asyncio library. Nevertheless, there’s still a distinct possibility
that this approach will prove to be the most sane in light of the
difficulties associated with having code split into asynchronous
and synchronous factions. Saying more about gevent, however,
will need to be the topic of a future article.

In the meantime, if you’re looking for some uncharted waters,
you should definitely take a look at Python’s emerging asynchro-
nous I/O support. May your code be interesting.

References
[1] What Color Is Your Function: http://journal.stuffwithstuff
.com/2015/02/01/what-color-is-your-function.

[2] PEP 0492 - Coroutines with async and await syntax: https://
www.python.org/dev/peps/pep-0492.

[3] asyncio module: https://docs.python.org/3/library/asyncio
.html.

[4] gevent: http://www.gevent.org.

Thanks to Our
USENIX Supporters

USENIX Patrons
Facebook Google Microsoft Research NetApp VMware

USENIX Benefactors
ADMIN magazine Linux Pro Magazine Symantec

Open Access Publishing Partner
PeerJ

58  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

COLUMNS

Practical Perl Tools
With Just a Little Bit of a Swagger

D A V I D N . B L A N K - E D E L M A N

I’ve already come out as an API-phile in this column, so I suspect no one
will be shocked that we’re going to dive into yet another API-related
topic this column. Just like the TV show where you recognize everyone

in the bar (and they all know your name), we’ll be back among old friends like
REST and JSON. The one thing I perhaps should provide a trigger warning for
is we’re going to be mentioning Java in the column. If that’s not your cup of you
know what, then you may want to skip ahead in the magazine. If it is any com-
fort, we won’t see any actual Java code in the column, just a bit of the tooling.

Why Are APIs Important?
Even though this column is a bit of a drinking game where every time I say “API,” you drink,
I don’t think we’ve ever discussed why APIs are important. A (good) API can be seen as a
contract between the person who is writing the code to provide a service and the person who
is writing the code to consume that service. This is true even if that turns out to be the same
person, because all you need is a little time to pass for it to be easy to forget just how two
components were supposed to work together. Essentially the contract says, “If you send me a
request of this form, I promise to respond (ideally with the data that was requested) in a way
that you will expect.” It helps to ensure the principle of least surprise, leading to (more) stable
and reliable software. An API also encourages software authors to think up front about how
pieces of a system should interact. I say “encourages” just because we have all dealt with an
API at one time or another that wasn’t as well defined or thought out as we might like.

APIs also make it possible to write “loosely coupled” components that interact only through
their API, à la the microservices concept that is all the rage. I won’t go into more detail here
about why loosely coupled services make for a better system, but if you haven’t heard that
gospel yet, be sure to take some time to look up “microservices.” I joke, but this idea is super
serious. If you haven’t read Steve Yegge’s post [1] that included Jeff Bezos’ big mandate about
APIs, be sure to do so.

And finally, in an ideal world, part of creating a good API is the process of documenting it
well. A well-documented API makes things better for everyone (the people who wrote it, the
people who use it, the people who are thinking about using it, people who want to learn from
it, and so on). And this is where Swagger comes in.

And Now We Swagger
Here’s how the official Web site [2] defines it:

The goal of Swagger™ is to define a standard, language-agnostic interface to REST
APIs which allows both humans and computers to discover and understand the
capabilities of the service without access to source code, documentation, or through
network traffic inspection. When properly defined via Swagger, a consumer
can understand and interact with the remote service with a minimal amount
of implementation logic. Similar to what interfaces have done for lower-level
programming, Swagger removes the guesswork in calling the service.

David Blank-Edelman is the
Technical Evangelist at Apcera
(the comments/views here
are David’s alone and do not
represent Apcera/Ericsson) .

He has spent close to 30 years in the systems
administration/DevOps/SRE field in large
multiplatform environments including Brandeis
University, Cambridge Technology Group,
MIT Media Laboratory, and Northeastern
University. He is the author of the O’Reilly
Otter book Automating System Administration
with Perl and is a frequent invited speaker/
organizer for conferences in the field. David
is honored to serve on the USENIX Board of
Directors. He prefers to pronounce Evangelist
with a hard ‘g’. dnblankedelman@gmail.com

www.usenix.org S P R I N G 20 16 VO L . 41 , N O. 1 59

COLUMNS
Practical Perl Tools: With Just a Little Bit of a Swagger

Technically speaking - Swagger is a formal
specification surrounded by a large ecosystem of
tools, which includes everything from front-end user
interfaces, low-level code libraries and commercial API
management solutions.

So what does this standard look like? At the moment, you can
write Swagger specifications in either JSON (the original for-
mat) or YAML (recently added). To get a sense of what it actually
looks like, here’s the Hello World-ish sample in YAML format
from the “Getting Started with Swagger—What Is Swagger?”
article on the official Web site:

swagger: “2.0”

info:

 version: “1.0”

 title: “Hello World API”

paths:

 /hello/{user}:

 get:

 description: Returns a greeting to the user!

 parameters:

 - name: user

 in: path

 type: string

 required: true

 description: The name of the user to greet.

 responses:

 200:

 description: Returns the greeting.

 schema:

 type: string

 400:

 description: Invalid characters in “user” were provided.

This defines a REST interface that has exactly one endpoint,
/hello/{user} (as in /hello/rik). The username at the end is
defined to be a required string. If a valid username was given, the
API promises to return a 200 return code (success) followed by
a greeting to that user (in string form). If there is a problem with
the username, an error code (400) is returned.

This by itself, besides being a reasonable documentation format,
isn’t the cool part. The cool part is when you bring the tools
written around the Swagger specification into the picture. Let’s
quickly mention the non-Perl-related tools and then take a look
at how Swagger plays in the Perl space.

Two of the more interesting non-Perl tools are Swagger Editor
(running sample at http://editor.swagger.io/) and Swagger UI
(running sample at http://petstore.swagger.io/). Swagger Editor
lets you compose your YAML or JSON in real time and see how it
will look as a fully formatted (and purdy, they’ve done a nice job

with the design) documentation page generated on the fly. The
editor also has some options for code generation—more on that in
a moment.

Equally interesting is the Swagger UI tool, which generates a
Web application that lets people not only read the documen-
tation, but try API calls right from the documentation page.
If you’ve ever tried something like Google’s API Explorer or
Spotify’s API Console [3] you’ll have a sense of what Swagger UI
provides. And if you haven’t, you really should because they are
both very useful tools.

Generating Code
So now we step closer to the promise of Perl code. It’s cool that
we now have a good format for specifying our REST API. It is
even cooler that we can process that specification and produce
good-looking (and even interactive) documentation. But even
better would be to run that specification through a post-proces-
sor that actually writes the code for us to make use of the speci-
fication. Why is this cool? It means that your API documentation
and your API code won’t get out of sync, because one begets
the other. As an aside before we go deeper into this: I have seen
efforts that allow people to take existing code and generate a
Swagger spec (i.e., go the other way). I think it is cleaner to write
the doc first, but I can see how going in the opposite direction
could be beneficial in certain cases.

There are two kinds of code we could think about generating:
client and server. We’ll look at both separately. If we are continu-
ing our look at “official” tools, we should start with Swagger
Codegen (http://swagger.io/swagger-codegen/). Swagger Code-
gen is primarily meant to produce client code in a wide range of
languages/frameworks from a Swagger spec. It manages this by
making it relatively easy to add your own modules/templates.

At the moment, it knows how to output clients using these
languages/frameworks:

[

 “android”,

 “async-scala”,

 “csharp”,

 “dart”,

 “flash”,

 “java”,

 “objc”,

 “perl”,

 “php”,

 “python”,

 “qt5cpp”,

 “ruby”,

 “scala”,

 “dynamic-html”,

60  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

COLUMNS
Practical Perl Tools: With Just a Little Bit of a Swagger

 “html”,

 “swagger”,

 “swagger-yaml”,

 “swift”,

 “tizen”,

 “typescript-angular”,

 “typescript-node”,

 “akka-scala”,

 “CsharpDotNet2”

]

This is output from the online Codegen tool at https://generator
.swagger.io, essentially a pretty-printed version of the output of:

curl -X GET --header “Accept: application/json”

 “https://generator.swagger.io/api/gen/clients”

To use Swagger Codegen, you have to install a particular version
of Java (7 as of this writing), Apache maven, and the tool itself.
I used homebrew on my Mac to install all of these components,
including Java. Java 7 gets installed in a homebrew-specific
place via its Cask mechanism since downloading that ver-
sion from Oracle’s Web site isn’t easy. All in all, the process of
bringing up the necessary Java toolchain wasn’t as painful as I
expected, but your mileage may vary.

Once you have everything installed, you can process a Swagger
specification. Swagger ships with sample specs (for example,
one based on an API for a pet store because, um, every modern
pet store needs an API, I guess?) and scripts that process them
to generate sample code for each language. Rather than using
that sample spec, let’s stick to the simpler “hello world” example
shown earlier. To process it, we might type something like:

$ swagger-codegen generate -i ./test.yaml -l perl -o perl-test

The output will look something like this:

reading from ./test.yaml

[main] INFO io.swagger.codegen.DefaultCodegen -

 generated operationId helloUserGet

 for Path: get /hello/{user}

writing file /tmp/perl-test/lib/WWW/SwaggerClient/DefaultApi.pm

writing file /tmp/perl-test/lib/WWW/SwaggerClient/ApiClient.pm

writing file /tmp/perl-test/lib/WWW/SwaggerClient/

 Configuration.pm

writing file /tmp/perl-test/lib/WWW/SwaggerClient/Object

 /BaseObject.pm

As you can see, four separate files have been generated to form a
module we can use (WWW::SwaggerClient). Of these, three are
“support” files and one has the code specific to the defined REST
API. That info is in DefaultApi.pm. In it we find the following
code (slightly reformatted to fit on the page):

#

hello_user_get

#

@param string $user The name of the user to greet. (required)

@return string

#

 sub hello_user_get {

 my ($self, %args) = @_;

 # verify the required parameter ’user’ is set

 unless (exists $args{‘user’}) {

 croak(“Missing the required parameter ’user’ when calling

 hello_user_get”);

 }

 # parse inputs

 my $_resource_path =’/hello/{user}’;

 # default format to json

 $_resource_path =~ s/{format}/json/;

 my $_method =’GET’;

 my $query_params = {};

 my $header_params = {};

 my $form_params = {};

 # ‘Accept’ and ‘Content-Type’ header

 my $_header_accept =

 $self->{api_client}->select_header_accept();

 if ($_header_accept) {

 $header_params->{‘Accept’} = $_header_accept;

 }

 $header_params->{‘Content-Type’} =

 $self->{api_client}->select_header_content_type();

 # path params

 if (exists $args{‘user’}) {

 my $_base_variable = “{“ . “user” . “}”;

 my $_base_value =

 $self->{api_client}->to_path_value($args{‘user’});

 $_resource_path =~ s/$_base_variable/$_base_value/g;

 }

 my $_body_data;

 # authentication setting, if any

 my $auth_settings = [];

 # make the API Call

 my $response =

www.usenix.org S P R I N G 20 16 VO L . 41 , N O. 1 61

COLUMNS
Practical Perl Tools: With Just a Little Bit of a Swagger

 $self->{api_client}->call_api($_resource_path,

 $_method,

 $query_params,

 $form_params,

 $header_params,

 $_body_data,

 $auth_settings);

 if (!$response) {

 return;

 }

 my $_response_object =

 $self->{api_client}->deserialize(‘string’, $response);

 return $_response_object;

}

This code is a little gnarly (as are the other files). The generated
code is meant to handle more sophisticated specs, so it looks a
bit like overkill at first glance. It definitely represents a certain
set of opinions and programming choices of the template author.
The generated code includes a bunch of Perl modules you may or
may not have installed (e.g., Log::Any), so be prepared to work a
bit if you are going to use the code right out of the box.

Given all of this, let me highlight one small part of the code
above. In it you can see that it has defined a hello_user_get
subroutine. This is the one you are going to call as a method to
perform the actual call from the Swagger spec. To use all of this,
we would write code like this:

use lib ‘perl-test/lib’;

use WWW::SwaggerClient::DefaultApi;

‘’

my $api = WWW::SwaggerClient::DefaultApi->new();

my $greet = $api->hello_user_get(‘user’ =>’rik’);

If I just run this code from my laptop without any other prepara-
tion, I get the following error:

API Exception(500): Can’t connect to localhost:443 at

perl-test/lib/WWW/SwaggerClient/DefaultApi.pm line 100.

because there is nothing currently listening on my laptop for
connections from a client (i.e., no server). If I ran this under the
debugger, I’d see more detail about what was being attempted
(here’s the key line of the output):

API Exception(500): Can’t connect to localhost:443 at

perl-test/lib/WWW/SwaggerClient/DefaultApi.pm line 100.

 at perl-test/lib/WWW/SwaggerClient/ApiClient.pm line 124.

WWW::SwaggerClient::ApiClient::call_api(WWW::SwaggerClient::

 ApiClient=HASH(0x7fc1339f7d98), “/hello/rik”, “GET”,

 HASH(0x7fc133a76fb0), HASH(0x7fc133a76f98),

 HASH(0x7fc133a76fc8), undef, ARRAY(0x7fc1320083c0))

 called at perl-test/lib/WWW/SwaggerClient/DefaultApi.pm line 100

From this line you can see that it was going to attempt to con-
nect to a server and issue a GET request for the path /hello/rik
just as we’d hoped it would. If you’d like to see a more sophisti-
cated example, I recommend you dissect the sample apps that
come with Swagger Codegen (e.g., the pet store one) to see how it
works. If the generated code isn’t to your liking, you may want to
consider creating a custom plugin that outputs the kind of code
you seek.

Another possibility is to use the module we are about to see for
server code: Swagger2. Swagger2 ships with a Swagger2::Client
module, which lets you write code that looks like this:

use Swagger2::Client;

$ua = Swagger2::Client->generate(“/tmp/test.yaml”);

$ua->base_url->host(“other.server.com”);

yes, this is ugly. If our spec had an operationId parameter,

the name of the method would be based on it instead

$ua->_hello__user_({‘user’=>’rik’})

But let’s move away from the client code possibilities and think
a little bit about the server side of things instead. Swagger Code-
gen has limited support for server code (e.g., it can create server
stubs for NodeJS, Python Flask, Ruby Sinatra, and so on) but
nothing for Perl-based servers. For that we’re going to have to go
a little further off the ranch and use the Swagger2 module.

Probably the easiest path is to use Mojolicious::Plugin::Swagger2,
which ships with the Swagger2 Perl module. With this plugin,
we can use the Mojolicious Web framework we’ve seen in past
columns. If you add code like this to the startup routine of your
Web app:

$app->plugin(Swagger2 =>

 {url => “file:///path/to/test.yaml”});

it will automatically add routes and validation to your Web app
(providing it has operationId info in the spec). The paths defined
in the Swagger spec will automatically become routes that require
the parameters mentioned in the spec. There’s a lovely example
of how this works in the author’s tutorial on his blog [4]. Swag-
ger2 with Mojolicious isn’t the only game in town for Swagger
(for example, there is the REST API framework “raisin” that also
integrates with Swagger), but I think it is a lovely combination.

So with that, I think you’ve got at least a small peek at Swagger
and how it can improve your API life. Take care, and I’ll see you
next time.

62  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

COLUMNS
Practical Perl Tools: With Just a Little Bit of a Swagger

Resources
[1] Steve Yegge’s Google Platform Rant: https://plus.google.com/+RipRowan/posts/eVeouesvaVX.

[2] Swagger: http://swagger.io.

[3] Google’s API explorer: https://developers.google.com/apis-explorer; Spotify’s API Console: https://developer.spotify.com
/web-api/console/.

[4] Mojolicious Swagger2 tutorial: http://thorsen.pm/perl/programming/2015/07/05/mojolicious-swagger2.html.

USENIX Awards
USENIX honors members of the community with two prestigious awards which
recognize public service and technical excellence:

• The USENIX Lifetime Achievement (Flame) Award
• The LISA Award for Outstanding Achievement in System Administration
The winners of these awards are selected by the USENIX Awards Committee.
The USENIX membership may submit nominations for either or both of the
awards to the committee.

The USENIX Lifetime Achievement (Flame) Award
The USENIX Lifetime Achievement Award recognizes and celebrates singular
contributions to the UNIX community in both intellectual achievement and
service that are not recognized in any other forum. The award itself is in the
form of an original glass sculpture called “The Flame,” and in the case of a team
based at a single place, a plaque for the team office.

Details and a list of past recipients are available at www.usenix.org/about/flame.

The LISA Award for Outstanding Achievement in System
Administration
This award goes to someone whose professional contributions to the system
administration community over a number of years merit special recognition.

Details and a list of past recipients are available at www.usenix.org/lisa/
awards/outstanding.

Call for Award Nominations

USENIX requests nominations for
these two awards; they may be from
any member of the community.
 Nominations should be sent to the
Chair of the Awards Committee via
awards@usenix.org at any time. A
nomination should include:

1. Name and contact information
of the person making the
nomination

2. Name(s) and contact information
of the nominee(s)

3. A citation, approximately 100
words long

4. A statement, at most one page
long, on why the candidate(s)
should receive the award

5. Between two and four supporting
letters, no longer than one page
each

www.usenix.org S P R I N G 20 16 VO L . 41 , N O. 1 63

COLUMNS

The datacenter is the new computer and it’s time to look past the UNIX
shell for building tools and utilities. While the programming envi-
ronment outside the shell is different, the UNIX philosophy is still

applicable: the tools and utilities you build should have a single purpose and
support composition through clean inputs and outputs that allow users to
build larger systems and custom workflows.

In the early days of UNIX, stdin and stdout streams allowed us to chain specialized tools and
compose various workflows to suit our needs. For example, processing HTTP logs was as
simple as running the following command:

$ grep ‘html HTTP’ /var/log/apache.log | uniq -c

What an easy way to build a data pipeline with very little code, but there are a few minor
problems. The above solution only works for a single machine running specific versions of
the UNIX utilities used in the pipeline. Running the same command on another flavor of
UNIX is not guaranteed to work, or even worse, might yield different results. On top of every-
thing else, the data between grep and uniq is often unstructured, which means ad hoc text
parsing will be required to extract specific fields before data processing can continue.

To overcome these challenges, a programming language with a little more power, such as
Go, can be used to model data using modern serialization formats such as JSON, which can
improve interoperability between command line tools and services over a network. Expand-
ing beyond a single system does introduce another set of challenges, such as invoking code
over a network and handing failures without introducing too much overhead or complexity.
One way of doing this is to use remote procedure calls (RPCs) between clients and servers.

Go and its robust standard library provide everything you need to build tools ranging from
simple command line utilities to microservices that scale horizontally across a cluster of
machines. The remainder of this article will focus on Go’s native syscall interface, RPC mech-
anisms, and standard libraries you can use to ship robust sysadmin tools in little to no time.

Remote Procedure Calls (RPC)
When creating system administration tools that need to scale beyond a single host, RPC
should be strongly considered. While there are other platforms for building services, I feel
that RPC maps closest to task originated tools built by most system administrators and pro-
vides better performance by avoiding the unnecessary overhead required by protocols such
as HTTP.

What Are Remote Procedure Calls?
As the name implies, RPC is about calling procedures (functions) remotely. RPC aims to
ease the development of client-server applications by reusing native-language semantics
and sharing code between both client and server. The learning curve for RPC is relatively low
because there is no need to learn new ways of interacting with remote services outside of the
native function calling conventions and error handling of the language you’re programming in.

Kelsey Hightower has worn
every hat possible throughout
his career in tech, and enjoys
leadership roles focused on
making things happen and

shipping software. Kelsey is a strong open
source advocate focused on building simple
tools that make people smile. When he is not
slinging Go code, you can catch him giving
technical workshops covering everything from
programming to system administration and
distributed systems.
kelsey.hightower@gmail.com

Modern System Administration with Go and
Remote Procedure Calls (RPC)
K E L S E Y H I G H T O W E R

64  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

COLUMNS
Modern System Administration with Go and Remote Procedure Calls (RPC)

gls: A Distributed ls Service
To demonstrate the simplicity of Go and RPC for system admin-
istration tasks, we are going to reimplement the classic UNIX
tool ls—with a twist. gls is a distributed tool for collecting file
attributes for a given file system on a remote system.

The remainder of this article will walk you through building gls
from the ground up. The source code for gls is hosted on GitHub
[1], but I encourage you to type the commands by hand as you
follow along—of course, this assumes you have a working Go
installation [2].

The gls Package
At the heart of the gls server is the gls package, which holds
common code shared by the gls server and client. Create the gls
package directory under the GOPATH. We’ll get into the details
later, but type exactly what you see here for now:

$ mkdir -p $GOPATH/src/github.com/kelseyhightower/gls

Next, change into the gls package directory and save the follow-
ing code snippet to a file named gls.go:

$ cd $GOPATH/src/github.com/kelseyhightower/gls

$ vim gls.go

package gls

import (

 “os”

 “path/filepath”

)

type Files []File

type File struct {

 Name string

 Size int64

 Mode string

 ModTime string

}

type Ls struct{}

func (ls *Ls) Ls(path *string, files *Files) error {

 root := *path

 err := filepath.Walk(*path, func(path string, info

os.FileInfo, err error) error {

 if err != nil {

 return err

 }

 file := File{

 info.Name(),

 info.Size(),

 info.Mode().String(),

 info.ModTime().Format(“Jan _2 15:04”),

 }

 *files = append(*files, file)

 if info.IsDir() && path != root {

 return filepath.SkipDir

 }

 return nil

 })

 if err != nil {

 return err

 }

 return nil

}

Let’s walk through the gls package to see what’s happening.

First, we declare the gls package and import the os and filepath
packages from the standard library:

package gls

import (

 “os”

 “path/filepath”

)

Next, we define two types, a File type, which holds file metadata,
and a Files type, which holds a list of File objects:

type Files []File

type File struct {

 Name string

 Size int64

 Mode string

 ModTime string

}

Finally, we define the Ls type for the sole purpose of defining
the Ls method, which is responsible for gathering metadata from
files under a specific directory path. For each file found, the
name, size, permissions, and last modified time are captured
and appended to a files list that will ultimately be returned to the
caller.

type Ls struct{}

func (ls *Ls) Ls(path *string, files *Files) error {

 ...

}

There are a couple of things to note here. First, Ls is a method
and not a function. Second, Ls takes two arguments and returns
a single error value. This is not arbitrary, but a requirement of
Go’s RPC support, which provides access to exported methods of
an object over a network. Only methods that meet the following
requirements can be exposed as RPC methods:

www.usenix.org S P R I N G 20 16 VO L . 41 , N O. 1 65

COLUMNS
Modern System Administration with Go and Remote Procedure Calls (RPC)

◆◆ The method’s type is exported.

◆◆ The method is exported.

◆◆ The method has two arguments, both exported (or built-in)
types.

◆◆ The method’s second argument is a pointer.

◆◆ The method has return type error.

In the case of the gls package, the exported type is the Ls struct
and the exported method is the Ls method. In order to meet the
RPC requirements, the Ls method takes two arguments—the
path to search for files, and a pointer to a files list to store file
metadata—and returns a single error value.

In Go, this is not the typical way methods or functions are writ-
ten. If the Ls method was not exposed as a RPC method, then it
would have been written like this:

func (ls *Ls) Ls(path *string) (*Files, error)

The set of constraints imposed by Go’s RPC support may seem
odd at first, but when you think about it, it all makes sense.
Requiring all RPC methods to have a similar signature, two
arguments and a single return value, means it’s much easier to
encode and decode the communication between the client and
server over the network.

Complex arguments can be expressed using a complex type. For
example, if we wanted to include a pattern to limit which files
are inspected by the Ls method, we could use the Options type in
place of the original path argument.

type Options struct {

 Path string

 Pattern string

}

func (ls *Ls) Ls(options *Options, files *Files) error {...}

The gls Server
With the gls package in place, it’s time to create the gls server,
which is responsible for exposing the Ls method from the gls
package over RPC.

Start in the gls package directory created earlier:

$ cd $GOPATH/src/github.com/kelseyhightower/gls

Create a new directory named server to hold the gls server
binary:

$ mkdir server

Next, change into the server directory and save the following
code snippet in a file named main.go.

$ cd server

$ vim main.go

package main

import (

 “log”

 “net”

 “net/rpc”

 “github.com/kelseyhightower/gls”

)

func main() {

 log.Println(“Starting glsd..”)

 ls := new(gls.Ls)

 rpc.Register(ls)

 l, err := net.Listen(“tcp”, “0.0.0.0:8080”)

 if err != nil {

 log.Fatal(err)

 }

 for {

 conn, err := l.Accept()

 if err != nil {

 log.Println(err)

 }

 rpc.ServeConn(conn)

 conn.Close()

 }

}

Let’s quickly walk through what’s going on here. First, we import
a few packages from the Go standard library, including the net/

rpc package, which provides support for exposing methods over
RPC, and the gls package, which holds the definition of the Ls
method.

Before we move on it’s important to note the full name of the
gls package: github.com/kelseyhightower/gls. This name was
chosen to match where the gls package will be hosted on the
Internet—on GitHub under the username kelseyhightower. Go’s
tooling has native support for working with packages hosted
on remote repositories such as GitHub, and it’s common to see
packages named using this convention. The package name is
important: because we cannot simply import “gls”, we must use
the complete import path where the gls package lives in relation
to the GOPATH or our program will fail to compile. Learn more
about Go’s import semantics from the official docs [3].

With the gls package imported, we are ready to export the gls.Ls
method by registering it using the net/rpc package.

ls := new(gls.Ls)

rpc.Register(ls)

66  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

COLUMNS
Modern System Administration with Go and Remote Procedure Calls (RPC)

The rest of the code creates a listener which binds to port 8080
on all available network interfaces and waits for RPC requests
from clients.

The gls Client
The gls client is responsible for making requests to the gls server
and printing the results to stdout. Create the gls client by run-
ning the following commands:

Start in the gls package directory created earlier:

$ cd $GOPATH/src/github.com/kelseyhightower/gls

Create a new directory-named client to hold the gls client binary:

$ mkdir client

Next, change into the client directory and save the following
code snippet in a file named main.go.

$ cd client

$ vim main.go

package main

import (

 “fmt”

 “log”

 “net/rpc”

 “os”

 “github.com/kelseyhightower/gls”

)

func main() {

 client, err := rpc.Dial(“tcp”, “127.0.0.1:8080”)

 if err != nil {

 log.Fatal(err)

 }

 files := make(gls.Files, 0)

 err = client.Call(“Ls.Ls”, os.Args[1], &files)

 if err != nil {

 log.Fatal(err)

 }

 for _, f := range files {

 fmt.Printf(“%s %10d %s %s\n”, f.Mode, f.Size,

f.ModTime, f.Name)

 }

}

As with the gls server, we import a few packages from the stan-
dard library and the gls package, which in the case of the gls cli-
ent provides access to the gls.Files type. Remember the gls.Files
type is defined in the gls package:

package gls

type Files []File

type File struct {

 Name string

 Size int64

 Mode string

 ModTime string

}

In order to communicate with the gls server, we need an RPC
client and must establish an RPC connection:

client, err := rpc.Dial(“tcp”, “127.0.0.1:8080”)

if err != nil {

 log.Fatal(err)

}

Before making the call to the remote Ls method, we must initial-
ize an empty gls.Files slice to hold the results from the gls server:

files := make(gls.Files, 0)

Now we are ready to make our RPC call and print the results.

err = client.Call(“Ls.Ls”, flag.Args()[0], &files)

if err != nil {

 log.Fatal(err)

}

for _, f := range files {

 fmt.Printf(“%s %10d %s %s\n”, f.Mode, f.Size, f.ModTime,

f.Name)

}

Also, notice how we are using the first positional command line
argument identified by flag.Args()[0] as the path argument to
the Ls method. This will allow us to use the gls client binary like
the standard ls UNIX command. For example, to list files in the
tmp directory, we can run the gls client like this:

$ gls /tmp/

The string “/tmp/” will be stored at the first position of the slice
returned by the flag.Args() function.

At this point, we are code complete and are ready to build and
deploy the gls client and server.

Build and Deployment
Now that we have written and understand the code behind the gls
client and server, let’s turn our attention to the build and deploy-
ment process. Go is a compiled language, which means we must
run our source code through a compiler before we can run it.

www.usenix.org S P R I N G 20 16 VO L . 41 , N O. 1 67

COLUMNS
Modern System Administration with Go and Remote Procedure Calls (RPC)

Building the gls client and server is as simple as running the fol-
lowing commands from the gls package directory:

$ cd $GOPATH/src/github.com/kelseyhightower/gls

Build the gls client using the go build command:

$ go build -o gls client/main.go

Build the gls server using the go build command:

$ go build -o glsd server/main.go

Running the above commands results in the following binaries:

gls

glsd

One thing to note about the gls and glsd binaries (and Go bina-
ries in general) is that they are self-contained. This means each
binary can be copied to a similar OS and architecture and be run
without the need to install Go on the target system. In a future
article, I’ll cover how cross-compiling in Go works, which allows
you to develop applications on one platform (Linux) and compile
them to run on another (Windows).

You are now ready to launch the gls server:

$./glsd

2015/12/23 07:50:06 Starting glsd..

At this point the gls server is ready to accept RPC requests on
port 8080.

Open a new terminal window and use gls client to get a directory
listing of your home directory from the gls server:

$./gls ~/

drwx------ 170 Nov 28 20:23 Applications

drwxr-xr-x 102 Dec 20 01:52 Desktop

drwx------ 1122 Dec 20 11:57 Documents

drwx------ 340 Dec 22 11:30 Downloads

...

The gls client is hardcoded to communicate with the gls server
over localhost (127.0.0.1) on port 8080. This is being done
because the gls server is not protected by any form of authen-
tication or encryption such as TLS. In a future article, we will
revisit extending the gls client and server to support encryption,
authentication, and communication over any IP/port combina-
tion using a set of command line flags.

Conclusion
The way we think about computers is changing, and this is the
perfect time to rethink the way we approach systems program-
ming in general. Go has native RPC support and low-level syscall
functionality, which allows us to build enhanced versions of
UNIX classics such as ls or new tools that perform tasks that
meet the challenges of today while leveraging the timeless UNIX
philosophy that has defined computing for decades.

Resources
[1] GitHub for the sources in this column: https://github.com
/kelseyhightower/gls.

[2] Installing Go: https://golang.org/doc/install.

[3] Docs for understanding package paths: https://golang.org
/doc/code.html#PackagePaths.

68  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

COLUMNS

iVoyeur
We Don’t Need Another Hero

D A V E J O S E P H S E N

Dave Josephsen is the
sometime book-authoring
developer evangelist at Librato.
com. His continuing mission: to
help engineers worldwide close

the feedback loop. dave-usenix@skeptech.org

Someone recently asked me this question: “What’s the first thing that
comes to your mind when you hear the word ‘DevOps’?”

A loaded question, I agree, and of course I lied, and made up something about the
“first way.” I mean really, if you want a possibly embarrassing answer to a loaded question,
you really should confront me face-to-face with it in a public place. If the asker of that ques-
tion had done so, I would have had to answer honestly that the first thing I think about when
I hear the word “DevOps” is Brent from The Phoenix Project novel [1].

If you haven’t read it, let me explain: Brent is probably you. The one person who knows how
all the stuff actually works, and who everyone depends on to fix things when they go side-
ways. Brent is a hero. And because the book is about DevOps, and DevOps abhors constraints
and local optimization (in other words, because DevOps hates heroes), Brent is basically a
huge organizational problem.

I was deeply hurt by this plot device on my first reading. In fact, if I hadn’t been trapped on
a plane with nothing else to read, I probably would not have finished The Phoenix Project
because of it, which would have been my loss. It’s just hard to wrap your head around how a
hero like Brent could be bad for the IT organization as a whole (especially when I relate so
strongly to him). As a result, I also had a hard time wrapping my head around the endgame.
Sometimes it seems like all anybody talks about is “improvement-kata” and “getting there.”
What it looks like day-to-day once you’ve arrived is something you almost never hear about.

I write this in the still-warm afterglow of LISA15, where I gave a talk about (surprise)
metrics and monitoring. In that talk, I had two big bones to pick. The first was to attempt to
fill that gap, basically to show off a bit of what the DevOps endgame looks like for operations
folks like ours, who still work to solve real problems day to day. The second was to make the
point that DevOps is mostly still getting “monitoring” wrong, because rather than working
monitoring in to the the rest of the improvement processes they practice, DevOps seems
intent on treating monitoring as a “heroic” discipline. Creating an ever-increasing litany of
new, specialized monitoring categories, which in turn silos the resulting telemetry data in
ways that limit its potential to the rest of the organization.

During the talk, I shared several chat transcripts with diagrams, like the one in Figure 1.
Each of these represented a real problem in several wildly varying contexts that our engi-
neering teams had encountered in the weeks leading up to LISA. My thinking at the time
was that presenting a breadth of different problems instead of a depth of one would better
illustrate the point that, since our monitoring data was not being siloed, it was therefore more
useful than this sort of data is at other shops. It was frustrating to me, however, that I couldn’t
dive as deeply into the actual problems as I would have liked to in the time I had on stage.

So in this issue, I’d like to choose just one of these and dive a little more deeply into it, so you
can really get a solid feel for how our engineers are using the telemetry system in the context
of detecting and tracking imbalances in the system that will eventually lead to catastrophic
outages if left unchecked. It’s a pervasive belief today that metrics are not yet useful for very

www.usenix.org S P R I N G 20 16 VO L . 41 , N O. 1 69

COLUMNS
iVoyeur: We Don’t Need Another Hero

early problem detection of this sort—that advanced aberrant
detection algorithms need to be developed to help in this regard.
I’m going to use the problem depicted in Figure 1, which is also
the first problem I presented in my LISA talk.

Let’s talk for a second about how these graphs even exist, much
less exist in the same system. The first graph is the age-old OPS
CPU graph. We get ours by way of collectd, and I’m sure you
have them too. The second graph was put in place by the data
engineering team because they needed to quantify the amount of
time we lose looking up metric and source names in our various
index DBs. I couldn’t cover in the time I had at LISA what that
means, but here I can spare the space, so let’s digress into that for
just a few paragraphs.

One big problem with designing time-series databases is that
the pattern of reads and writes is very different. If you think
about writing time-series measurements into a database, you’ll
see that we’re writing into columns. That is, if you think about it
like a spreadsheet, you have a column for every second of lapsed
time, and then a row for each metric name. We can only write
one column at a time, because the future hasn’t happened yet, but
we can write to multiple rows in that column at once because we
have many different metrics to track, and all of those numbers
are coming in at once.

But when you read from a time-series data store, you read rows.
That is to say, you’re never interested in a search that gives you a
single data point for every metric you’re tracking at a single point
in time. You always want 60 or 90 seconds’ worth of data for one
metric. So you have to read out rows.

This is usually okay, because in TSDB land, you write a lot more
often than you read, and columnar writes are pretty efficient.
But reads are exquisitely painful. Think about it—as time pro-
gresses, the rows keep getting longer and longer. Soon you need
to search through increasingly gigantic rows in order to isolate
the set of data you need and then extract it. So you wind up spin-
ning cycles in linearly increasing seek time to find and retrieve
your data as the rows grow. Not good.

One way we get around the long-row read problem is with a rotat-
ing row-key. Imagine that, instead of the row being the name of
the metric, it was a number that changes every six hours. That
way, we create a new row for each metric every six hours, and
we store it as a name/number tuple and our seek time never goes
above a certain predictable value.

“Predictable” is something of a keyword there, because really
what row keys buy you is a heap of different kinds of very impor-
tant predictability. With row keys, we know, for example, that

Figure 1: Some internal chat where Ben notices a CPU spike, posts those graphs to the chat, and involves engineers from other areas

70  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

COLUMNS
iVoyeur: We Don’t Need Another Hero

our rows will also always be a predictable size (in bytes), which
is the size of a measurement times the number of measurements
in a row-key interval. From there we can extrapolate how much
data we’ll need to put on the wire for client reads, and how much
storage and processing power our data tier will require. The
point is, we can make really important decisions by relying on
the predictability that row keys provide.

But here’s the problem (well, one problem) with running a shared
storage back-end for a multi-tenant system: users have the power
to name things. So if you think back to how we’re now storing our
data as name/measurement tuples, we no longer have a predict-
ably sized data structure because end-users can create really big
names if they want to.

So when you use a row key to buy predictable computational
quantities in the data tier, you also often have to pay some taxes
in the form of lookup-tables, or indexes if you prefer. In this
example, we’re going to need two indexes, one to keep track of
where in our storage tier a given six-hour block of measurements
is stored (because our rows are named after rotating numbers
now, so we need some way to actually find the right data when a
user asks for 60-minutes of metric:foo), and another to map user-
generated variable-length names into either hashes or some
other unique identifier (so we know what to even search for in
the first index when a user asks for 60 minutes of metric:foo).

Okay, now we know pretty much everything we need to reex-
amine the first problem I shared in my LISA presentation on
metrics. Ben, the Ops guy in that conversation, is tracking what
he considers to be a resource allocation problem. The symptom
Ben is reacting to here is high CPU utilization, which is actually
something of a rarity for us, but it’s also why I included it here
(everybody can relate to a good-ole CPU utilization graph). Our
problems are often CPU bound—that is, a problem in something
we’ve built will often result in high CPU utilization, but it’s rare
for us to discover it by way of a CPU graph.

The second graph is the one we can now fully understand given
our short discussion about time-series data stores above: briefly,
the second graph is timing how long it takes us to perform an
index lookup on a metric. You’ll recall that I said rotating row
keys come at the cost of index tables. Well, you can think of the
second graph here as quantifying the cost of our row-key taxes.
Literally, when we want to retrieve 60 seconds of metric:foo, how
long does it take us to convert “metric:foo” into “ID12345” so we
can use the ID to retrieve the data from the data storage tier?

If you’re asking yourself why we don’t cache this stuff, the
answer is we do. So this problem—the one Ben and Mike are dis-
cussing in chat—is extraordinary for that reason alone. It never
happens except in the event of a cache-miss. And for it to be this
bad, and progress for this length of time, an awful lot of recur-
rent individual cache misses need to happen, and that strongly

implies that we’re encountering a new end-user behavior here.
Either these services don’t work like we think they do (not the
case here), or an end-user is doing something to generate an
inordinate amount of cache-missing index lookups. Problems
like this one are, as you can probably imagine, very interesting to
us. They inevitably teach us something we didn’t already know
about our systems, by showing us either a gap in our understand-
ing or a path through our system that we didn’t anticipate.

I think it’s fair to say that many engineers believe that being
good at Web-operations engineering, or really any kind of high-
availability engineering, means building solid infrastructure
and reacting quickly and effectively to blocking-outages as they
occur. But in my opinion, being really excellent at operations
engineering is 99% about being interested in problems like this
one: problems that are non-blocking, that are not currently caus-
ing anything close to a catastrophic outage. Annoyances really,
but exactly the right sort of annoyance. The annoying little imbal-
ances in the system that teach you something you didn’t know,
or hadn’t anticipated about the thing your organization created.
Problems that you, by definition, can’t actually fix by yourself.

You might be tempted to call it preventive maintenance, but the
big difference between the problem we’re looking at here and
preventative maintenance, in my opinion, is the fact that Ben
can’t solve this problem alone. In fact, I think probably the most
important aspect of this issue—certainly the thing that made me
want to share it with the world—is that Ben the operations hero
can’t solve it by himself. These issues are so important, they are
the bubbling spring from which catastrophic torrents are born
(especially in distributed systems). Like Muhammad Ali said, it’s
always the punch you didn’t see coming that knocks you out, and
this one certainly would have eventually been a knockout punch
if Ben hadn’t seen it coming. The problem is, you need not just
interdisciplinary know-how, and a toolchain to work problems
like this one, but a culture that encourages cooperation over
heroism.

First, Ben needs to know enough about the system and the
monitoring data it generates to even discover that this problem
is there, that it’s worth working on, and what’s causing it. Then
he has to track it—quantify its occurrence long-term over weeks
and months. He needs to understand the nuances of the system
from which it has emerged well enough to even know whom to
work together with. And, finally, he needs the interpersonal
skills to get other engineers involved, as he’s done here, as well as
the toolchain to allow him to easily share the data he’s looking at.

In the snippet, he’s giving Mike, a data engineering guy, a heads
up about it. We can tell they’ve spoken about it before, and the
eventual fix will certainly be a data-engineering endeavor. At the
very bottom, you’ll see that Ben is also working with Jason on
some UI tweaks (our UI is called “spaces”).

www.usenix.org S P R I N G 20 16 VO L . 41 , N O. 1 71

COLUMNS
iVoyeur: We Don’t Need Another Hero

And therein lies the thing about this conversation that really
fascinates me. I’ve been calling this stuff “domain knowledge”
and saying that it’s “interdisciplinary,” but really none of these
notions are so abstract or complex that I can’t understand them
with a few minutes of consideration. It only took me a few hun-
dred words to bring you fully up to speed with respect to index
timing and what that means in our TSDB, and of course we all
know, or can infer, that a user-interface might be able to batch-
query things to avoid a multitude of individual requests, so why,
in the 20 years I’ve been doing operations work, have I never
stepped over that line to work together with other departments
toward a common solution to problems like this one?

One answer is certainly that my monitoring data has always
been trapped in silos. I didn’t have a means of sharing engineer-
ing data with other teams. Just being able to see what the data
engineering team has chosen to measure inside a newly con-
structed service teaches me as an operations engineer an awful
lot about that service. It also provides an opportunity for me to
formulate questions that I can ask those engineers when I see
them at the coffee pot or the bar after-hours. Those conversa-
tions build rapport, and rapport is exactly what you’re seeing
there between Ben and Mike.

Monitoring data shouldn’t belong to anyone, and it certainly
shouldn’t be a magical contraption reserved for a select few
heroes who have bothered to understand how it works. I really
hope this little play-by-play helps illustrate what I mean by that,
and also what I mean when I say we don’t need another hero, we
just need (as always) to let the data be free.

So if you’re a system administrator, or otherwise consider your-
self operations or SRE, try to put yourself in Ben’s shoes. You’re
looking at a CPU spike that correlates to the amount of time it
takes us to run an index lookup on a metric name. I think many
of us wouldn’t have made it that far. Past versions of myself cer-
tainly wouldn’t have made it that far, because I wouldn’t have even
had access to the data that would have allowed me to discover that
correlation. I certainly wouldn’t have had the domain knowledge
about our product to know what that correlation meant.

Anyway, rather than opening a ticket and throwing it over the
fence, Ben personally gets data engineering involved, helps them
help him further understand the problem, and then proceeds
to update them periodically as he sees it reoccur. Together they
establish a pattern of behavior and narrow it to a handful of
customers (that’s the little black box that was redacted from the
chat transcript).

I personally have never made it that far. I’ve never been able to
create a strong enough rapport with engineers outside my own
discipline to be able to work together to understand an issue like
this one. I think my own super-hero-thinking is a huge contrib-
uting factor in this unfortunate truth. Any problem I couldn’t
solve by myself with open source software just wasn’t worth my
time and should be thrown over this or that fence. Made someone
else’s problem. And every time I pulled that rip cord, I gave up
any chance I had of learning about how the things my organiza-
tion cared about actually worked.

But Ben never stops. In fact, looking at the transcript, he takes
it one step further even than that. Well, he reasons, if customers
use our UI to retrieve data from the data tier, then really it’s the
UI that’s triggering all the index-churning. Therefore, it’s pos-
sible that some light UI optimizations might help alleviate part
of this index lookup churn. Maybe index lookups would be faster
if we batched them, or maybe we can pre-fetch them based on
user behavior? I don’t know if those particular optimizations are
what Ben had in mind when he roped in the UI team, but as an
engineer they occur to me as distinct possibilities.

Resource
[1] Gene Kim, Kevin Behr, and George Spafford, The Phoenix
Project: http://itrevolution.com/books/phoenix-project
-devops-book/.

72  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

COLUMNS

W hether you are Werner Heisenberg or Janet Yellen, your field of
study includes measurements of position and velocity and how
they interact. Poor measurements may be unable to nail down

either the one or the other (much less both), but even if only the one is mea-
sured, there is likely to be some prediction that you will be able to make. In
hard-to-measure situations, consistency of error distribution can be your
friend—consistent errors help you to find the message in the body of noisy
data. The reader probably knows all that.

Let’s look at some data where position and velocity have been charted for enough years to get
a feel for what is going on, and then we’ll discuss what use we can make of it.

The (US) Federal Trade Commission has a program known as Sentinel [1]. Quoting its
introduction,

Sentinel is the unique investigative cyber tool that provides members of the
Consumer Sentinel Network with access to millions of consumer complaints.
Consumer Sentinel includes complaints about:

◆○ Identity Theft

◆○ Do-Not-Call Registry violations

◆○ Computers, the Internet, and Online Auctions

◆○ Telemarketing Scams

◆○ Advance-fee Loans and Credit Scams

◆○ Immigration Services

◆○ Sweepstakes, Lotteries, and Prizes

◆○ Business Opportunities and Work-at-Home Schemes

◆○ Health and Weight Loss Products

◆○ Debt Collection, Credit Reports, and Financial Matters

Consumer Sentinel is based on the premise that sharing information can make
law enforcement even more effective. To that end, the Consumer Sentinel Network
provides law enforcement members with access to complaints provided directly to
the Federal Trade Commission by consumers, as well as providing members with
access to complaints shared by data contributors.

What Sentinel then produces are interpretive text reports backed by spreadsheets, all freely
available for aggregate data. Querying the backing database for individual complaints is
limited to law enforcement with a need to know.

For Good Measure
Betting on Growth versus Magnitude

D A N G E E R

Dan Geer is the CISO for
In-Q-Tel and a security
researcher with a quantitative
bent. He has a long history
with the USENIX Association,

including officer positions, program
committees, etc. dan@geer.org

www.usenix.org S P R I N G 20 16 VO L . 41 , N O. 1 73

COLUMNS
For Good Measure: Betting on Growth versus Magnitude

Because the Sentinel data files are categorized enumerations of
consumer complaints, there will be some errors. Let us assume
that the errors are relatively constant over time, which is to say
that trendlines and rank orderings are going to be instructive even
if, say, there is persistent undercounting. The categories of con-
sumer complaints for which we have at least six years of data are

◆◆ Advance Payments for Credit Services

◆◆ Auto-Related Complaints

◆◆ Banks & Lenders

◆◆ Business & Job Opportunities

◆◆ Buyers’ Clubs

◆◆ Charitable Solicitations

◆◆ Computer Equipment & Software

◆◆ Credit Bureaus, Information Furnishers & Report Users

◆◆ Credit Cards

◆◆ Debt Collection

◆◆ Education

◆◆ Foreign Money Offers & Counterfeit Check Scams

◆◆ Grants

◆◆ Health Care

◆◆ Home Repair, Improvement & Products

◆◆ Identity Theft

◆◆ Impostor Scams

◆◆ Internet Auction

◆◆ Internet Services

◆◆ Investment-Related Complaints

◆◆ Magazines & Books

◆◆ Mortgage Foreclosure Relief & Debt Management

◆◆ Office Supplies & Services

◆◆ Prizes, Sweepstakes & Lotteries

◆◆ Real Estate

◆◆ Shop-at-Home & Catalog Sales

◆◆ Tax Preparers

◆◆ Telephone & Mobile Services

◆◆ Television & Electronic Media

◆◆ Travel, Vacations & Timeshare Plans

As of the time of writing, the most recent Sentinel data set
available is for 2014. Let’s think of the number of complaints as
“position” and the rate of growth as “velocity.” Converting both
position and velocity into rank order and graphing them in the
typical high/low quadrant style, we see considerable spread in
Figure 1.

The smallest and slowest growing are in the lower left quadrant,
the biggest and fastest growing are in the upper right quadrant,
etc.; you’ve seen this kind of graph before. The dot closest to the
lower left corner is that for Real Estate, ranked as third smallest
both in numbers of complaints (4,952) and in compound annual
growth rate (or CAGR, which is actually declining at -5%). The
dot closest to the upper right corner is that for Impostor Scams,
ranked third highest in numbers of complaints (276,622) and
first highest in growth rate of complaints (CAGR of 182%). If
you were the person in charge, it is pretty clear that you’d put
more manpower into impostor scams than into real estate fraud.
That’s an easy call.

On the other hand, the dot farthest to the right in the lower
right quadrant is Identity Theft, number one in total complaints
(332,646 in 2014 meaning one every 20 seconds) but with the
eighth-slowest rate of growth (CAGR of not quite 1%). Similarly,
the dot closest to the boundary of the upper left quadrant is Tax
Preparers, fifth smallest in total complaints (6,418) but with
the highest growth rate of all (CAGR of 292%). For this pair of
Identity Theft versus Tax Preparers, which one is more deserv-
ing of investment?

Some readers will look at that graph and ask, “Is there any cor-
relation here?” No, there isn’t—Spearman’s = 0.280, meaning
there is nothing worth talking about, as you can see: one-third
of all categories are well off the diagonal, i.e., categories come
and go, which is no surprise when you have sentient opponents.
Again, where would you put your money when you are in charge?

The three most common complaints are Identity Theft (17.7%),
Debt Collection (15.0%), and Impostor Scams (14.8%), which
together comprise almost half of all complaints. The three fast-
est growing are Tax Preparers (291% CAGR), Impostor Scams

Figure 1: Size versus trajectory spread using the data from Sentinel
 categories with at least six years of data

74  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

COLUMNS
For Good Measure: Betting on Growth versus Magnitude

(182% CAGR), and Telephone and Mobile Services (47% CAGR).
Is it position or velocity—count or CAGR—that tells you where to
put your money?

Suppose the current observed compound annual growth rates
are sustained until 2020. By then, the three most common
complaints would be Impostor Scams #1, Telephone and Mobile
Services #2, and Debt Collection #3. Identity Theft would have
fallen to #6 (behind Banks and Lenders #4 and Auto-Related
Complaints #5). If you imagine that any serious countermeasure
takes, say, five years to actually work, then should we be spending
our money now on the predicted top three in 2020? Or does the
sentient opponent make a five-year plan an exercise as useless as
the Five Year Plans that many national bureaucracies so love?

We are not alone in facing this kind of problem, namely, do you
spend your money (or other scarce resource) to solve problems
you actually have now or to stave off problems you are going to
have later? As the old saying goes, a stitch in time saves nine, so
prevention is likely the better buy, but it is never the easy sell…
When there is not enough vaccine to go around, do you vaccinate
those most likely to soon sicken and die (children, perhaps) or
those most likely to soon become transmission vectors (clinic
workers, perhaps)? In the Middle East, Western governments are
invited to choose between stability and justice. If you choose sta-
bility, then you must reinforce dictators’ grip on power, regardless
of how they treat their people. This was the West’s policy during
the Cold War—and it is Vladimir Putin’s policy today. If, however,
you choose justice, you must side with the crowds trying to throw
off their rulers, even if this triggers the collapse of order [2].

I’ve written over and over on this problem from every different
angle, including the disastrous practice of vendors abandoning
code bases they don’t want to support yet simultaneously refus-
ing to open source the code they are abandoning. Or how many
platforms in common use are provisioned with software that its
maker can no longer build? Or the longer a deployed device stays
deployed, the more likely it is that it cannot be found and the
more certain it is that it cannot be updated if found; should we be
putting money into having a, say, 20-year guarantee for updat-
ability of autonomous devices with network connectivity, or is
the embedding of sensors in damned near everything already
past the point where such decisions are even relevant?

Nassim Taleb (in The Black Swan, for example) argues that when
a distribution is fat-tailed, estimations of parameters based on
historical experience will inevitably mislead, which means

[we are] undergoing a switch between [continuous low
grade volatility] to…the process moving by jumps, with
less and less variations outside of jumps. [3]

As I ponder that, I am more inclined to put my money on iden-
tifying, as best I can, problems that will grow than on problems
that have grown. Easy for me to say, but killing dragons in their
cribs beats dealing with them later on and, by and large, I can
avoid the dragons that are already full size by just not doing the
things that make me look like lunch. If you study the full Sentinel
reports, you’ll see what the demographics that spell “lunch” look
like, such as the order of magnitude greater rate of identity theft
in Miami (340.4 per 100,000 population per year) than in Bis-
marck, ND (27.9 per 100,000 population per year), or how demo-
graphics predict whether it is one’s government benefits or one’s
credit cards that you are most likely to lose to an identity thief.

References
[1] https://www.ftc.gov/enforcement/consumer-sentinel
-network; https://www.ftc.gov/enforcement/consumer
-sentinel-network/reports.

[2] http://www.telegraph.co.uk/news/worldnews/middleeast
/12046082/Tony-Blair-has-learnt-important-lessons-from
-Iraq.-Its-a-shame-no-one-wants-to-listen.html.

[3] N. N. Taleb, “On the Super-Additivity and Estimation
Biases of Quantile Contributions”: www.fooledbyrandomness
.com/longpeace.pdf.

Become a USENIX Supporter and
Reach Your Target Audience

The USENIX Association welcomes industrial sponsorship and offers custom packages
to help you promote your organization, programs, and products to our membership
and con ference attendees.

Whether you are interested in sales, recruiting top talent, or branding to a highly
 targeted audience, we offer key outreach for our sponsors. To learn more about
 becoming a USENIX Supporter, as well as our multiple conference sponsorship
 packages, please contact sponsorship@usenix.org.

Your support of the USENIX Association furthers our goal of fostering technical excel-
lence and innovation in neutral forums. Sponsorship of USENIX keeps our conferences
affordable for all and supports scholarships for students, equal representation of women
and minorities in the computing research community, and the development of open
source technology.

Learn more at:
www.usenix.org/supporter

76  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

COLUMNS

/dev/random
R O B E R T G . F E R R E L L

Lest I give the impression of being some horrible Luddite for what I will
say later in this column, let me tell you a story from the before times.
Way back in the second half of the last decade of the twentieth century

(because saying it that way takes more words than simply writing “the late
1990s,” and that means I have to come up with that much less actual content),
I was involved in the Internet Engineering Task Force. I say “involved” but
mostly what I did was join working groups and then sit in the back wishing
I knew enough about whatever they were talking about to participate in
some meaningful way. I was trying to be dutiful and read all of the drafts as
they came out—or at least as many as I could without suffering debilitating
brain damage. That got to be a little confusing and tedious after a while, so I
decided to organize them a little better.

I created a simple HTML-based interface using tables for sorting and display and stuck it
on a local Apache server. After a while I decided to share this tool with the world just to be a
good netizen, not really expecting many to make use of it. I had also created a couple of the
early MAC address OUI lookup and IANA Assigned Port Number sites. I was fond of that
sort of thing back in the day. Of course, everything was written in Perl and used flat data-
bases exclusively, so scalability was nonexistent; I did all content generation and mainte-
nance manually, but I’d always enjoyed that stuff so it wasn’t a problem…at first.

I called my IETF draft site The Internet Report because the name was sort of catchy and
being a federal government employee I wasn’t allowed to be overly creative or possess a func-
tional imagination. And after all, it was a report on something rather closely connected with
the Internet as an organism. Truth in advertising.

The Report proved to be much more popular than I had anticipated, probably because it
allowed draft monkeys to skim the steady stream of documents coming out of the IETF more
easily. Eventually, after I’d had the site up for a couple of years, the Internet Society took an
interest and started asking me to provide various features and improvements. I really didn’t
have additional time to devote to the project or, in truth, expertise to do a lot more than I
already had, so after a few months of this I suggested they just take the whole thing over,
which they did. It may still be in existence, for all I know. I haven’t looked for it in a number of
years, but I hope it illustrates that I’m not in any way against technology or the Internet.

This issue of ;login: marks a transition from bimonthly to quarterly. Coincidentally, it also
marks my tenth anniversary as a columnist for this august publication. In that decade we
have seen a lot of what I hesitate to call “progress” in regard to the cyberverse. While it has
always been a vast wasteland, the landscape of our shared system of tubes within tubes has
convolved: hundreds of petabytes of cute cat videos, ad hominem pejoratives, memes about
memes about memes, and that execrable monument to self-absorption and bad photography,
the ridiculous selfie.

Robert G. Ferrell is an award-
winning author of humor,
fantasy, and science fiction,
most recently The Tol Chronicles
(www.thetolchronicles.com).

www.usenix.org S P R I N G 20 16 VO L . 41 , N O. 1 77

COLUMNS
/dev/random

Perhaps most significant has been the rise of social media,
towering like a gossip-fueled Godzilla over the Tokyo skyline of
our online existence. We now know far more about everyone on
social media than we do about our neighbors and often even our
own family (unless they happen to be our Facebook friends, too).
Why people feel it incumbent upon themselves to share every
last detail of their daily lives with the entire Internet is quite
frankly beyond my meager comprehension. Not only is social
media an exercise in grossly inflated oversharing, it is an addic-
tion for many people that takes over their lives as surely as will
heroin or gambling or collecting pop culture memorabilia still in
the original packaging.

I know too many people who, were I to suggest that they leave
their phone on the table and go for a walk, would look at me with
the expression of grave concern usually reserved for a friend
suddenly struck mentally ill or react with horror as though I
had asked them to remove an appendage (of their own) with a
rusty steak knife. People are hooked on connectivity, often to
the exclusion of even basic needs such as hygiene. This depen-
dence goes very deep. I have seen grievously injured people
posting about the motor vehicle accident in which they were just
involved as a result of texting while driving, without ever seem-
ingly realizing the two events were inextricably linked. The dis-
comfort of being unable to access the grid even for a short time
is so pronounced that almost no price is too great to pay to avoid
that heinous fate. I don’t know whether this is a fad or the next
inevitable step in our social evolution, but if the latter is the case,
the world portrayed in The Matrix may well be more predictive
documentary than dystopian fiction.

Admittedly, I do carry a smartphone and participate in various
forms of social media, but were I not a novelist with pesky mar-
keting/branding responsibilities to worry about, I would probably
be far less well-connected. I heartily enjoy my sessions of glorious
unplugged solitude, the boundaries of which the latest idiotic
political pronouncement or news of the massive identity theft
du jour cannot penetrate. It’s just me, my meandering thoughts,
and that strange little gray alien who taunts me with encoded
millimeter-wave transmissions from behind trees and shrubs.

It’s not that I am virulently opposed to all manifestations of the
social media demon. I in fact enjoy chatting with my friends
and seeing their little triumphs and challenges chronicled: that
sort of thing is an integral part of what it means to participate
in human society. The idea that we must never be more than a
hair’s breadth distance from the global rete or somehow wither
away does disturb me greatly, however. Breathing and posting
to Instagram are not synonymous, the collective wisdom of the
World Wide Web notwithstanding.

This obsession with constant interaction is, I suppose, a logi-
cal step on the path of human evolution. The science fiction
archetype of the futuristic human with a huge pulsing-veined
cranium is being replaced by one where the giant cranium is
the Internet itself, with humans serving merely as data acqui-
sition nodes, sensors the sole purpose of which is to feed the
insatiable information appetite of our distributed id juggernaut.
Eventually, analysis and retrieval of that information will fade
in importance as mandatory incessant data collection becomes
the goal in and of itself. Machines will not merely control us: they
will define us as a species. In many ways they already do.

Oops, my phone just chirped. Gotta reply to this moron’s com-
ment about my new cat meme video. Later.

78  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

BOOKSBook Reviews
M A R K L A M O U R I N E

The Logician and the Engineer: How George Boole and
Claude Shannon Created the Information Age
Paul J. Nahin
Princeton University Press, 2013, 228 pages
ISBN 978-0-691-15100-7

When I started reading this book, I didn’t know that I would
finish it about the time of George Boole’s 200th birthday, but it
was a nice note. Claude Shannon worked during my lifetime and
probably most of yours. The two of them don’t get the attention
that other luminaries of computing do, but their contributions
rank with Charles Babbage, Ada Lovelace, Alan Turing, and
John von Neumann. In some ways their work is more signifi-
cant because of its cross-over application to physics as well as
computation.

Nahin is a fan of both Boole and Shannon, and in this book
he shows how Shannon’s work built on Boole’s to bring us the
fundamental logical basis for modern computing hardware. He
also wants to help the reader understand the formal results of
their work. In that, he can only be as successful as the reader is
dedicated. He is clear in the introduction that a certain level of
mathematical background will be needed and that the reader will
need to take care to follow along to get the most from the book.

In the first third of the book Nahin offers a brief biography of
both Boole and Shannon. He’s clearly not happy with at least
Shannon’s treatment by some popular modern writers. He takes
a shot at James Gleick in the opening paragraph of the first
chapter, quoting a somewhat disparaging comment about Shan-
non’s sense of humor. Nahin also goes to some lengths later to
highlight some of what would today be known as geeky humor.
Neither biography is particularly deep or insightful, but they do
give a sense of the time and influences on the men.

The middle section considers Boole’s contribution to comput-
ing, the algebra of two-value logic. All of this should be familiar
to anyone who’s studied programming in any formal way. For a
non-programmer, the discussion of De Morgan’s Theorem and
Karnaugh maps will give some sense of how to combine Boolean
operators. Sometimes I think some programmers should remem-
ber how to reduce logical operators.

The last and largest section shows how Shannon picked up
where Boole left off. Electrical relays didn’t exist in Boole’s
time, and transistors were new during Shannon’s career. Nahin
explains how Shannon discovered the way in which Boole’s logic
could be expressed in terms of relays. It was adapted naturally
to electronic circuits. This is something I did learn in college as
part of a computer science course. I’m not sure whether this is
commonly taught as a core course anymore, but if not, this would
be a great section for a curious coder or admin to read. But, while
Shannon’s own work was in computer engineering, the implica-
tions didn’t end there.

Shannon also analyzed the theory of signaling, describing what
it meant to “send a message” in the most fundamental terms.
His goal was to understand the limits of logical expression in
his circuits, where mechanical relays often fail. In the process
he created the field of information theory, which brings together
mathematics, physics, and computation. In combination with
Boole’s binary logic, he produced a way of understanding the
logic of quantum mechanics.

Here I agree with Nahin, that Shannon’s work is underappreci-
ated. While he didn’t set out to found a new mathematical field,
his straightforward inquiry has had an outsized influence, in
both theory and practice, on numerous fields. Nahin’s book
on the contributions of Shannon and Boole is both timely and
overdue.

NOTES

www.usenix.org S P R I N G 20 16 VO L . 41 , N O. 1 79

USENIX Member Benefits
Members of the USENIX Association
 receive the following benefits:

Free subscription to ;login:, the Associa-
tion’s quarterly magazine, featuring techni-
cal articles, system administration articles,
tips and techniques, practical columns on
such topics as security, Perl, networks and
operating systems, and book reviews.

Access to ;login: online from December
1997 to the current issue: www.usenix.org/
publications/login/

Discounts on registration fees for all
 USENIX conferences

Special discounts on a variety of products,
books, software, and periodicals: www.
usenix.org/member-services/discount-
instructions

The right to vote on matters affecting the
Association, its bylaws, and election of its
directors and officers

For more information regarding member-
ship or benefits, please see www.usenix.org/
membership/or contact office@usenix.org.
Phone: 510-528-8649

USENIX Board of Directors
Communicate directly with the USENIX
Board of Directors by writing to
board@usenix.org.

P R E S I D E N T

Brian Noble, University of Michigan
noble@usenix.org

V I C E P R E S I D E N T

John Arrasjid, EMC
johna@usenix.org

S E C R E T A R Y

Carolyn Rowland, National Institute of
Standards and Technology
carolyn@usenix.org

T R E A S U R E R

Kurt Opsahl, Electronic Frontier Foundation
kurt@usenix.org

D I R E C T O R S

Cat Allman, Google
cat@usenix.org

David N. Blank-Edelman, Apcera
dnb@usenix.org

Daniel V. Klein, Google
dan.klein@usenix.org

Hakim Weatherspoon, Cornell University
hakim@usenix.org

E X E C U T I V E D I R E C T O R

Casey Henderson
casey@usenix.org

What USENIX Means to Me
by Daniel V. Klein, USENIX Board

Thirty-five years ago, I attended my first
USENIX conference in Austin, TX. That’s
a date in the previous century, longer ago
than some of my readers have been alive.
 USENIX had only been around for five
years, and Unix itself was less than a decade
old. Dennis Ritchie (and either Ken Thomp-
son or Brian Kernighan, I forget which)
were in attendance, as were other legendary
computer scientists, and I was awed that
they were open, approachable, and willing to
talk with me, a then-young graduate student
with myriad questions.

Dennis is sadly no longer with us, but Ken
and Brian now work “with” me at Google.
USENIX celebrated its 40th anniversary
last year, along with the version of Unix I
started with: V5. The longevity of the Unix
OS is amazing, but even more amazing is
that the CLI looks very similar to (but a lot
snazzier and faster than) that early version.
But if you think that the remainder of this
article is going to consist of reminiscences,
you’re wrong. This article is about the
future.

The past is as dust and the future is not yet
born, and the present is all we can change.
So really what I want to get you to think
about is the promise of the future, based on
the history I have personally witnessed, and
circle back to why my present day continues
to include The USENIX Association, even
after 35 years. It all boils down to this:

Magic, wonder, and play.

Let’s face it, computers are magic. The
phone in my pocket is what we used to refer
to as a supercomputer (except my phone is
substantially more powerful than a Cray
Y-MP). In my graduate student days, we had
dreams and visions of systems that would

80  S P R I N G 20 16 VO L . 41 , N O. 1 www.usenix.org

NOTES

recognize and parse connected speech, see
and analyze images, drive cars, and sift
through vast amounts of data, and today we
have them. We got them through incremen-
tal hard work and information sharing, with
USENIX providing the medium for sharing.
What is yet to come is more magic, more
dreams and visions, and when you attend
USENIX conferences, you get to share those
dreams and hear about the visions that oth-
ers have. And you get it first, because among
other things, USENIX is known for firsts.
This is why, at every conference I attend, for
every proceedings I read, for every invited
talks track I watch, I have a renewed sense
of wonder. I am seeing a hint of the future
with the newest magic for today.

When people ask me what I do for a living, I
often tell them that I am paid to play. Sure,
sometimes the work is hard, the hours long,
but creating software is a game to me. I
often ask myself, “Do they really pay me to
do this?” because that daily sense of wonder
and magic makes my job fun! The more
I contribute, the more I get to appreciate
the work of others, because we share the
benefits of each other’s work. And much of
that sharing is facilitated by USENIX, by
mechanisms pioneered by USENIX and its
members.

Which brings me to the question of “Why
USENIX, and why for 35 years?” Because
we (the Association, its board, staff and
members, the authors and attendees) make
the magic, we share the wonder, and we play
well together. USENIX is not simply about
“open source”; that is only part of the equa-
tion. We are, and in my opinion always have
been, about “open access.” USENIX is about
making everyone’s job easier and more
productive, because we don’t hide our magic,
we show it and share it. Our vast archive of
(often groundbreaking) technical papers is
free and open to the public. Our conferences
reveal new and innovative technologies,
irrespective of corporate, political, or OS
bias. And perhaps most importantly, the
luminaries are still open, approachable, and
willing to talk.

USENIX doesn’t just talk the talk; USE-
NIX walks the walk. And the Association’s
mission statement is and always has been
my mission statement: foster technical
excellence and innovation; support and
disseminate research with a practical bias;
provide a neutral forum for discussion of
technical issues; and encourage comput-
ing outreach into the community at large.
USENIX is something I believe in, whether
as an attendee, an author, a speaker, as staff,
or as a board member. It’s been 35 years and
it’s still fun because I can’t wait to see what
the future will bring. And I know that I’ll see
a lot of that future at a USENIX conference.

Refocusing the LISA Community
by Casey Henderson, USENIX Executive Director

For 24 years, the LISA Special Interest
Group for Sysadmins (LISA SIG, formerly
known as SAGE) has been a resource and
virtual meeting ground for the sysadmin
community at USENIX. Despite its some-
times tumultuous history, dedicated mem-
bers have provided content for Short Topics
books, shared insight with colleagues via
mailing lists, and helped advance the state
of the profession via the creation of the
System Administrators’ Code of Ethics,
contributions to salary surveys, postings
to colleagues via the Jobs Board, and
nominations for the Outstanding Achieve-
ment Award.

With full recognition of this history and
value of the LISA SIG, USENIX has made
the decision to retire it at the end of 2016.
In recent years, our efforts to serve the
sysadmin community have focused on
reengineering and revitalizing the annual
LISA conference to ensure its relevance and
long-term sustainability, as well as creating
and nurturing SREcon for the emerging,
related field of site reliability engineering.
These ongoing efforts have been successful
and well received by the community, so this
is where we are going to focus our energies
to help support the sysadmin community.

The USENIX Board of Directors and staff
did not make this decision lightly. To inform

our deliberation, we convened a committee
comprised of community members to
explore the possible future paths of the SIG.
The committee surveyed SIG members,
analyzed the results, and presented their
recommendations to us. After weighing all
the factors, we determined that the best
path forward is to continue building com-
munity through the LISA conference itself.

LISA SIG resources, including the Short
Topics books and Code of Ethics, will con-
tinue to be available on the USENIX Web
site. All active memberships will continue
to receive the current slate of benefits,
including the LISA conference discount,
through the end of the year.

We look forward to continuing to serve this
community that continues to be an integral
part of USENIX, and hope to see you at
LISA16 in Boston, December 4–9, 2016.

Learn the latest
techniques for better:

• network security
• system management
• troubleshooting
• performance tuning
• virtualization
• cloud computing

on Windows, Linux,
Solaris, and popular
varieties of Unix.

Each issue delivers
technical solutions
to the real-world
problems you face
every day.

REAL SOLUTIONS
FOR REAL NETWORKS

FREE
CD or DVD
in Every Issue!

ORDER ONLINE AT: shop.linuxnewmedia.com

ORDER ONLINE AT: shop.linuxnewmedia.com6 issues per year!

ad_login_admin.indd 1 2/8/16 9:20 AM

2016 USENIX Annual Technical Conference
JUNE 22–24, 2016 • DENVER, CO
www.usenix.org/atc16

USENIX ATC ’16 brings leading systems researchers together for cutting-edge systems research and
unlimited opportunities to gain insight into a variety of must-know topics, including virtualization,
system administration, cloud computing, security, and networking.

Co-located with USENIX ATC ’16:

SOUPS 2016
Twelfth Symposium on Usable
Privacy and Security
JUNE 22–24, 2016
www.usenix.org/soups2016

SOUPS 2016 will bring together
an interdisciplinary group of
researchers and practitioners
in human computer interaction,
security, and privacy. The program
will feature technical papers,
workshops and tutorials, a poster
session, panels and invited talks,
and lightning talks.

HotCloud ’16
8th USENIX Workshop on Hot
Topics in Cloud Computing
JUNE 20–21, 2016
www.usenix.org/hotcloud16

Researchers and practitioners
at HotCloud ’16 share their
perspectives, report on recent
developments, discuss research
in progress, and identify new/
emerging “hot” trends in cloud
computing technologies.

HotStorage ’16
8th USENIX Workshop on Hot
Topics in Storage and File
Systems
JUNE 20–21, 2016
www.usenix.org/hotstorage16

HotStorage ‘16 is an ideal forum
for leading storage systems
researchers to exchange
ideas and discuss the design,
implementation, management,
and evaluation of these systems.

SAVE THE DATE!

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

	Contents
	Musings
	Filebench: A Flexible Framework for File System Benchmarking
	Streaming Systems and Architectures
	Pivot Tracing: Dynamic Causal Monitoring for Distributed Systems
	Interview with Doug McIlroy
	BeyondCorp: Design to Deployment at Google
	Talking about Talking aboutCybersecurity Games
	Interview with Lixia Zhang and ck claffy
	A Brief POSIX Advocacy: Shell Script Portability
	System Administration in Higher Education Workshop at LISA15
	Crossing the Asynchronous Divide
	Practical Perl Tools: With Just a Little Bit of a Swagger
	Modern System Administration with Go and Remote Procedure Calls (RPC)
	iVoyeur: We Don’t Need Another Hero
	For Good Measure: Betting on Growth versus Magnitude
	/dev/random
	Book Reviews
	USENIX Member Benefits
	USENIX Board of Directors
	What USENIX Means to Me
	Refocusing the LISA Community

