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As a certified armchair researcher, I settled into my armchair in a dark room, 
watching distant flashes of lightning over the desert landscape surrounding me . 
The scattered storms brought to mind the problem of weather forecasting, or 
rather, the common failings of accurate forecasts beyond the next several days .

Like other High Performance Computing (HPC) problems, weather forecasting 
requires enormous computational resources . The world is a big place, after all, and 
the weather is notoriously fickle . Other HPC problems, such as protein folding and 
fluid dynamics, suffer from similar issues; duplicating nature with a set of proces-
sors is an approximation, at best .

And to make matters worse, the approximations we have today must be performed 
on von Neumann machines .

Fish

Instead of imagining a weather system, as I sit in my armchair I imagine a school 
of fish . I love undersea videos of large schools of fish, light flashing off their bodies 
as they move in coordinated synchrony to ward off predators . These fish are not 
connected by networks, but use simple biological mechanisms that allow them to 
function as a unit—something at which our computers today are not so good .

Shifting focus a bit, I imagine dividing software into three big buckets: control, 
stream processing, and cells . Control software makes the decisions, such as start-
ing other processing, and is characterized by many tests and branches . I visualize 
it as a tangle of threads .

Stream processing is also familiar . We now have powerful GPUs that use pipelines 
of specialized processors to transform a stream of data . We see stream processing 
in simple things, such as playing a movie or an audio recording, as well as in big 
data projects, where clusters of servers filter through data distributed throughout 
the cluster to produce the reduced result . For this, I see streams of data, with pro-
cessors located along the stream like beads on a chain .

But weather forecasting, fluid dynamics, protein modeling, and the modeling of 
nuclear explosions do not fit into either the control or stream paradigms . In my 
mind, they best match cellular automata, where the state of adjacent cells affects 
the transition of a cell to its future state .

In weather modeling, the cells are enormous—on the scale of tens of kilometers . 
Worse still, the cells are three-dimensional, not at all like the classic 2D cellular 
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automata . And, finally, weather is affected by radiation, which will have effects not 
just from adjacent cells, but from the edges of the model—the surface of the earth 
and space itself .

As if weather is not hard enough, imagine dealing with fluid dynamics, such as 
modeling the turbulent flow of air across the wing of an airfoil . Here the cells are 
not boxes sitting on geography, but particles flowing and interacting . What each 
particle does affects its neighbors, and their neighbors, and so on . 

Our computers are designed for control and stream processing, and do quite 
well at this . HPC needs to work with cells or flows or interacting particles, and 
include non-local effects such as radiation . Ideally, our HPC systems would work 
like a school of fish, rearranging themselves into the most efficient formation . 
Instead, we have to work with systems attached to racks, wired into networks, 
and arranged as a fixed grid of processors and memory . No wonder this is a hard 
problem to solve .

The Lineup
We open this issue with an article based on a position paper presented during 
HotPar ’12 . Rob Knauerhase, Romain Cledat, Justin Teller, and Mark Handley 
describe future directions for HPC systems, in particular, replacing the operat-
ing system with something much lighter weight . When one considers that super-
computers have tens of thousands of cores, running a full-fledged OS like Linux 
on each core would be a tremendous waste of resources—and systems such as 
Blue Gene already run much smaller execution engines . Knauerhase et al . explain 
where Intel plans to go—and is already moving—with their new Xeon Phi [1, 2] line 
of coprocessors .

Olivier Bonaventure, Costin Raiciu, and Mark Handley report on MPTCP, an 
extension to TCP that supports multiple paths without changes to client or server 
applications . MPTCP will be useful in datacenters, but also for mobile devices, 
because MPTCP is designed to just work—just like the IP stack we have grown 
accustomed to using . One huge issue in the development of MPTCP was dealing 
with middleboxes, which may modify header information . MPTCP neatly works 
around these issues, in addition to falling back transparently when a link stops 
working .

Kamau Wangũhũ describes VXLAN, a method for extending broadcast networks 
across routed networks . Virtual machines that work together may expect to be 
located on the same broadcast (Layer 2) network, when in reality, they may be 
placed wherever it is currently convenient to instantiate them . VXLAN provides 
transparent tunneling, so that VM instances on other networks appear to be local 
from the point of view of the VM .

Amandeep Khurana has written an introduction to HBase, a database that runs 
over Hadoop . Using HBase requires that people accustomed to using SQL data-
bases rethink how they design their schema, and Khurana clearly provides sugges-
tions for using HBase efficiently .

Stuart Kendrick decided that he should publish the results of his months-long 
study of 10 years of outages . Kendrick has the fortune of having a fairly complete 
record of system and software failures, and he thought that his current position 
demanded that he analyze this data properly . The results may not surprise you; for 
example, software issues lead to the most outages . If you are responsible for main-
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taining many systems plus SLAs simultaneously, I suggest reading Kendrick’s 
analysis, which does contain information useful for starting your own analysis .

Jacob Farmer managed to squeeze in an interview about a new project he and his 
company are working on with Harvard Medical School . The school decided to work 
with Cambridge Technologies to see whether they could do a better job of attaching 
meaning to the files that they were storing or archiving, and Farmer explains what 
this project means to anyone interested in making sense of the vast amounts of 
stored data we deal with these days .

Charles Polisher shared his and his coworkers’ experience with a series of mys-
terious power supply failures in a datacenter . No clear cause ever emerged, but 
Polisher does describe the fixes that may have ended their problems .

David Blank-Edelman takes us down a different path this time . In his August 
’12 column, David described a tool that permits manipulating XML and HTML-
structured data using paths to access that data . This time, David explores Augeas, 
a tool designed specifically for manipulating configuration files using paths . Like 
the XML Path Language, Augeas can make managing configuration files via paths 
much simpler than the standard pattern or field matching approaches .

David Beazley leads us down simultaneous paths in parallel by explaining how 
to use the multiprocessing library in Python . David first provides an example of 
how threads work, then shows how the multiprocessing library actually allows a 
Python program to use all of the cores, instead of the single core permitted by the 
thread library in Python . David ends his column with a simple RPC server .

Dave Josephsen exhibits his usual enthusiasm, this time for a new library called 
0MQ . 0MQ abstracts away a lot of the issues with writing multicast, publish-sub-
scribe, clients, and servers . Dave begins with a simple example of a server written 
using 0MQ, which actually is simpler than writing the same server without this 
library .

Inspired by Charles Polisher’s description of failed power supplies, Robert Ferrell 
takes us on many more paths toward failures . For Robert, power supply failures are 
not sufficient, and he entertains us with other related sources of outages .

Elizabeth Zwicky continues down the path that she has been following toward 
more effective management, starting with two books full of ideas for dealing more 
effectively with team members . Then she takes a look at a book that provides the 
real story of the Macintosh, one without a focus on Steve Jobs, but on what actually 
went on in Silicon Valley garages . She then takes a hard look at a Frederick Brooks 
book and finishes up with a book on IPv6 .

Mark Lamourine reviews two books about Coffeescript . I now have a really good 
idea of exactly what Coffeescript is about, and whether either or both of these 
books would be suitable support for learning this JavaScript replacement .

Evan Teran rounds out our reviews section with an in-depth review of Inside Win-
dows Debugging. Debuggers are critical tools for developers and security geeks like 
Teran, who says that this book demystifies how Microsoft debuggers work .

Finally, we have summaries from the 2012 USENIX Annual Technical Confer-
ence . As always, many of the sessions at USENIX conferences are recorded, and 
these videos and audio recordings appear on the Web as soon as they are processed . 
We plan to start posting summaries online after they have been edited, which 
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means you can read summaries soon after an event instead of waiting until they 
appear in ;login:. Summaries from the Hot Topics in Parallelism workshop and 
Federated Conferences Week are available online now .

The storms I’ve been watching have moved off to the north . From past experi-
ence—and using online weather radar—I know I can see lightning flashes further 
than 40 miles away . I take a deep breath as I settle deeper into my armchair .

I try to imagine a supercomputer as fluid as a school of fish, and I fail . All I can see 
are the racks of servers and bundles of hardwired network cables that make up the 
inside of today’s HPC supercomputers . Even as our technology advances the von 
Neumann designs based on Turing’s mathematics, the problems technology needs 
to solve require something new, something more fluid . Something I am failing to 
imagine .

References

[1] Knight’s Corner (Xeon Phi) uses embedded Linux: http://software .intel .com/
en-us/blogs/2012/06/05/knights-corner-open-source-software-stack/ .

[2] Intel’s Xeon Phi many-core coprocessor: http://www .anandtech .com/show/ 
6017/intel-announces-xeon-phi-family-of-coprocessors-mic-goes-retail/ .
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Introduction

High-performance computing has been on an inexorable march from gigascale to 
tera- and petascale, with many researchers now actively contemplating exascale 
(1018, or a million trillion operations per second) systems . This progression is being 
accelerated by the rapid increase in multi- and many-core processors, which allow 
even greater opportunities for parallelism . Such densities, though, give rise to a 
new cohort of challenges, such as containing system software overhead, dealing 
with large numbers of schedulable entities, and maintaining energy efficiency . 

We are studying software and processor-architectural features that will allow us 
to achieve these goals . We believe that exascale operation will require significant 
out of the box thinking, specifically in terms of the role of operating systems and 
system software . In this article, we describe some of our research into how these 
goals can be achieved . 

Motivation

Historic parallelism has come from banding processors together on a task, either 
in a large distributed system (whether in a grid, cloud, or other HPC/supercom-
puter configurations), a smaller cluster of server nodes, or a number of sockets on 
a motherboard . In each case, there are interesting problems for division of labor, 
interconnect tradeoffs (e .g ., latency, bandwidth), and so forth . Concurrently, the 
microprocessor industry is trending toward many-core processors, uniting an 
increasing number of CPUs inside one processor; indeed, the recently announced 
Intel® Xeon Phi™ coprocessor [11] boasts more than 50 cores on a chip . 

Meanwhile, processor fabrication technology has enabled cores to run at ever-
lower voltages, which has worked out well for some high core count uses (through-
put computing, graphics, etc .); however, even including optimistic public estimates 
of energy-efficiency improvements over time, one can extrapolate that an exascale 
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computer would require at least 500 MW of power, or roughly the output of a small 
nuclear power plant . 

Despite the advances in many-core processor capabilities, we anticipate that 
exascale operation will require a staggering amount of computational resources . 
Such extreme systems will also entail an unprecedented amount of complexity in 
managing the effective coordination and use of resources . In our research, we have 
been exploring how notions of system software—current and old ideas, along with 
some new ideas—should change in order to run an exascale machine effectively . 

Philosophy

In 2010, the Defense Advanced Research Projects Agency (DARPA) generated a 
solicitation for innovative joint-research proposals [3] on extreme-scale systems . 
The DARPA challenges, in addition to performance, included aggressive energy 
efficiency (both in terms of performance/watt and minimizing energy spent on 
intra-system communication), dynamic adaptability (to changes in workload, 
hardware, or external goals), and programmability . Our philosophies, software 
prototypes, and experiments have been strongly influenced by participation in this 
program . 

Our research hypothesis for exascale system software is that a fine-grained, event-
driven execution model with sophisticated observation and adaptation capabilities 
will be key to exascale system software . To this end, we break applications down 
into dataflow-inspired [4] codelets [18], which are invoked by a runtime environ-
ment based on satisfaction of data and control dependencies . Dependencies are 
specified either by the programmer or by a high-level compilation system . 

Extreme-Scale Hardware

Based on current trends and our own hardware research efforts, we anticipate that 
a number of hardware characteristics will be typical of exascale systems . 

As mentioned, in contrast to the previous upward spiral of core speed, industrial 
trends have been producing designs that include a larger number of modest-speed 
processors . Although the optimal arrangement of these cores—number per die, 
die per chip or socket, and so forth—is far from clear, our prototypes assume that 
hardware will (must) provide an efficient—fast, low-latency, low-power—inter-
core communication mechanism . 

Further, we expect that power requirements will require cores that are relatively 
simple, perhaps with shared-ISA heterogeneity to allow different alternatives for 
hardware acceleration . In the same vein, we anticipate that extreme-scale systems 
are all but certain to operate cores at near threshold voltage—with implicit chal-
lenges for reliability—while also allowing for dynamic voltage/frequency scaling 
controlled by system software . 

We predict that the nature of I/O within the system will change . As fabrica-
tion processes and architectures never-endingly drive computation to be less 
expensive, communication will become relatively more expensive . At exascale, 
communication (moving a bit) is likely to be at least as expensive as computation 
(manipulating that bit), which requires a new focus on efficient data placement and 
code/data positioning optimizations from software . 
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Lastly, we foresee changes in memory organization . Power concerns will dictate 
a larger amount of per-core memory, perhaps scratchpad memory, additional 
register files, or various types of cache . Also, there will almost certainly be similar 
structures at a block (grouping of cores) level, and/or at a chip level, and so forth . 
Given the propensity of hardware architects to use fractal designs, replicating 
interconnected structures, our software and hardware prototypes comprehend 
a deep memory hierarchy, with classes of latency/power memories: local, group-
local, neighbor-group-local, and so forth . Such structures provide both challenges 
and opportunities for system software . 

Unsuitability of OS Functions for Exascale

Traditionally, the role of the operating system is to provide a variety of services 
in order to expose a common programming interface to programmers and appli-
cations, irrespective of the underlying hardware . Thus, an OS actively tries to 
abstract away and hide the nature of the hardware . This approach has proven to be 
quite successful, enabling the programmer to focus on the essence of his applica-
tion without worrying about the nitty-gritty of managing hardware devices, mem-
ory, or threads and tasks . Also, this approach enabled programmers to write once 
and run their code unmodified on different generations of processors; however, 
our research has led us to believe that many of the traditional OS functions are in 
the best case suboptimal, and in the worst case directly counter to the energy and 
performance goals we are seeking . To that end, we have become iconoclastic about 
the notion of a traditional operating system for extreme-scale systems and have 
focused on either omitting (avoiding the need for) or simplifying much of the func-
tionality one imagines in an OS . Instead, our research is exploring the development 
of a sophisticated, yet lighter-weight, runtime environment to manage an exascale 
machine . 

Extreme-Scale System Software

In this section, we introduce the programming model we envision for exascale sys-
tems . In the following sections, we will specifically delve into memory and thread 
management . 

Programming Model

Our programming model is heavily inspired by the dataflow-style codelet ideas 
we recently described in [18] . Dating as far back as the late 1980s [4], dataflow 
programming and machines are not new, but we re-examine these ideas in a 
contemporary environment so that we can benefit from both the insights and the 
shortcomings of the prior work . 

The model decomposes traditional tasks into stateless codelets; after a codelet 
finishes, both the code and context can be destroyed safely, thereby conserving 
energy . It includes an explicit description of the dependencies among codelets and 
between codelets and data to allow for better co-location within an extreme-scale 
system . Codelets may additionally be automatically derived from higher-level 
representations, such as Concurrent Collections [12] . 

A key objective of the programming model is to reduce energy consumption by 
facilitating the co-location of data and computation, thereby devoting a larger part 
of the energy available to actual computation (as opposed to merely shuffling data 
around) . Furthermore, explicit data and computation placement will allow high-
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level tools, such as compilers and performance analysis toolkits, to provide the 
runtime with greater insight into the performance and energy usage of a program, 
thereby enabling the programmer to home in on “energy bottlenecks .” 

L E v E R a g I n g  M E Ta - I n F O R M aT I O n

Our research is also investigating means to pass more information from the 
programmer and compiler into the runtime . In a traditional compilation sys-
tem, data available to the compiler (or generated by the compiler’s analyses) is 
not made available to the OS, being largely discarded when the binary is created . 
One example is the tradeoff between code space and loop overhead when a loop is 
unrolled: under different conditions, different versions of the code will have higher 
efficiency . Our research indicates that preserving awareness of tradeoffs like this 
can enable a runtime to more intelligently (co-)locate codelets, increasing per-
formance and saving energy . The compiler can also generate various versions of 
the code, allowing the runtime to choose, based on environmental conditions and 
system goals, which version to run . 

Other metadata will also prove crucial in a heterogeneous system as the codelets 
are able to expose their requirements or preferences in terms of hardware . The 
runtime scheduler then appropriately schedules these codelets, trying to optimize 
for their preferences, available resources, environmental constraints (such as 
temperature in various parts of the chip), and data locality . 

Runtime Environment

Programs written to the model above are executed by a lightweight (relative to 
traditional operating system kernels) runtime environment such as our Intel 
Research Runtime (a component of the nascent Open Community Runtime [17]), or 
commercial alternatives such as the SWARM runtime [15, 5] . The runtime design 
deliberately empowers “hero” programmers by exposing more of the hardware 
features and execution details while still allowing “regular” programmers to write 
correct code . 

The runtime leverages the fine-grained nature of codelets to allow explicit place-
ment of code: for example, allowing a group of codelets which communicate or use 
the same data structures to be topologically grouped together for energy efficiency . 
Absent such direction, it can automatically use tuning hints or observation to 
(re-)locate code throughout the system . In particular, in a heterogeneous environ-
ment, it can select among alternate codelet implementations based on availability 
and proximity of certain cores . Likewise, for data placement, the runtime enables 
direct access to memory features such as DMA and inter-core networks, and can 
autonomously move data closer to code using techniques described below . 

Because our anticipated hardware allows very fine-grained power and clock 
control of cores (clock-gating or changing frequency to save energy, and turning 
off unused hardware), the runtime also manages the overall energy profile of the 
system . Given different external policies (e .g ., “deliver answer as fast as possible 
regardless of energy used” versus “take time to deliver an answer with minimal 
power consumption”) and overall system state (e .g ., voltage-related or perma-
nent core failures), the runtime will turn on or off various parts of the system 
and schedule codelets in accordance with the specified policy . For example, if the 
policy specifies that the end-goal is performance, the runtime would schedule 
everything as fast as it could on the most powerful cores it could find . On the other 
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hand, if energy was a concern, the runtime may turn off certain cores and therefore 
utilize fewer resources . 

S E Pa R aT I O n  O F  C O n T R O L

An important function of the OS is to manage access from user code to hardware 
resources . Traditionally, a kernel runs in a privileged execution mode while user 
code runs with fewer privileges and has specific channels (system calls) to interact 
with the hardware . Implicit in most OS implementations is the need to switch 
between user and kernel modes . This switch incurs overhead which in some cases 
can be very expensive (hundreds of cycles) [16] . For complex exascale machines, 
such overhead (in terms of time, as well as power) is likely to be unsupportable . 

Our system software similarly separates control code and execution code but does 
so in a way that enables us to get rid of many expensive OS functionalities . The 
runtime designates a small number of cores to be “control engines” (CEs), which 
execute the runtime itself in a distributed fashion across the system, and the 
majority to be “execution engines” (XEs) that run user code . 

Our system thus disregards the notion of ring boundaries entirely, choosing 
instead to separate privileges by space rather than by time . Application (user) code 
is only run on XEs, and our control software runs on CEs . This division obviates 
the need for traditional processor “modes” and their associated overhead . Sev-
eral types of security concerns are likewise alleviated; combined with hardware 
features (e .g ., configurable range-checked access control and “locking” to render 
portions of memories immutable) and associated compiler support, our system 
obtains much of the security benefit of user/kernel division . Our simulations 
include hardware support to implement fast and power-efficient communication 
between the XEs and their controlling CE to replace the functionality traditionally 
provided by system calls . 

This division of duties also allows specialization of each core type for power and 
performance as desired . For example, CEs do not need accelerator hardware for 
advanced math, but they may benefit from special low-latency interconnects or 
particular atomic instructions specialized for queue processing . Likewise, depend-
ing on the assumed needs of applications, XEs can contain variably sized floating-
point hardware, optimized implementations of arithmetic and transcendental 
functions, or other hardware (e .g ., encryption logic) as needed . 

a b S E n C E  O F  D E v I C E  D R I v E R S

Since only system code runs on the CEs, there is no need for device drivers in the 
usual sense of the term . If a CE does not directly connect to a peripheral, it can 
forward its request to a CE that does . The system runtime for CEs that do directly 
support devices includes device functions (e .g ., to manage device state, or to 
accommodate special instructions or interfaces) as appropriate . 

A drawback of this approach is the difficulty in supporting a wide array of periph-
erals . However, in the time frame of our research, exascale machines are unlikely 
to be off-the-shelf commodity designs, and their owners are likely to have pro-
grammers or contracts to support hardware upgrades . User-code requests that 
entail peripheral devices are treated as data dependencies by the scheduler and are 
satisfied through runtime code on the CEs . 
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Memory Management

The OS has traditionally abstracted hardware in its memory management, in 
particular through the use of virtual memory, which provides, in part, a contiguous 
address space independent of the underlying hardware . 

Modern OSes rely on virtual memory to provide each individual process with 
its own address space, thereby hiding the details of the backing physical storage 
medium (whether it is RAM or disk) from the programmer and allowing him to 
ignore the issue of code overlay . Virtual memory, however, also comes with two 
major costs: (1) the hardware and energy costs of doing the translation between 
virtual and physical addresses and (2) the loss of visibility into the varying charac-
teristics of the physical memory (distance, energy costs, etc .) . 

The former can be dealt with [6] and is not a focus here; however, the latter is exac-
erbated in exascale systems where physical constraints make it necessary to have 
deep memory hierarchies to be able to simultaneously provide fast memory for data 
actively used by computations as well as very large ones for input and output data . 
The loss of visibility into the memory hierarchy can have drastic energy conse-
quences . For example, without considering the energy required for the memory 
controller, it takes about 75 picoJoules per bit to move data from DRAM while it 
only takes about 0 .5 pJ per bit to move data within the chip . This double-order of 
magnitude difference means that applications and their data must be very care-
fully positioned so that energy may be spent on computation rather than communi-
cation . 

Can Virtual Memory Be Improved to Perform with Exascale?

Virtual memory provides undeniable advantages and, before dismissing it, we 
should consider whether it can be improved to provide better visibility and energy 
efficiency in exascale systems . 

Fundamentally, the important issue is reducing the distance between data and 
computation . At first glance, virtual memory could be modified to provide this 
benefit as it adds a level of indirection (between the virtual address and the 
physical one) . One can imagine a system where this mapping is influenced by the 
closeness of the physical page to the computation . This mapping could, and would, 
dynamically change at runtime as usage of the page changes . For example, sup-
pose there are two cores, C1 and C2, each with its own RAM (M1 and M2) . While 
threads on C1 are accessing a particular virtual page, it could be mapped to M1 
where it is as close as possible to C1 . However, if threads on C1 stop accessing it 
and threads on C2 start accessing it, the virtual page could be remapped to a physi-
cal page on M2 to minimize access costs . 
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a P P L I C aT I O n  F O C u S  v E R S u S  S O F T wa R E  F O C u S

The problem with the above solution is that virtual memory is managed in an 
application-agnostic manner at a granularity that only makes sense from a hard-
ware perspective . In particular, a single page may contain objects that have very 
different access patterns and would ideally be placed in two different physical 
locations . A programmer could force these objects to live in different pages, but 
this could result in huge memory fragmentation . 

Solution:  Make Data Objects First Class Citizens

The solution we are pursuing is to do away with all the memory “support” mecha-
nisms an OS provides and allow the programmer to directly manipulate data-
blocks as first-class entities . Note that HPC programmers are already bypassing 
OS memory support by writing custom allocators that are tuned to a particular 
architecture and paging mechanism . We posit that taking this further is essential 
for exascale computing . 

Conceptually, a data-block is simply a contiguous chunk of memory with metadata 
annotations to allow it to be moved throughout the memory hierarchy . At a high 
level, data-blocks are similar to pages but bear a crucial difference: they are seman-
tically meaningful . In other words, a data-block only contains data that is related 
in a way that makes sense to a particular computation . This is not true for pages 
(especially “huge” pages such as those supported in Linux), which can contain data 
pertinent to different and unrelated computations . 

Note that data-blocks also introduce a level of indirection (since their base address 
in memory can change), but this can be efficiently dealt with in hardware and with 
compiler support . In spite of this additional indirection, the advantages provided 
by using data-blocks in exascale systems are very appealing: 

u Each data object can be precisely placed in memory . 
u As access patterns change, the objects can be moved either by the programmer, 

or automatically by the runtime . This also enables multiple cores to pass the 
same data object to each other (as in a pipeline) and have it optimally placed at 
each stage of the pipeline . 

u Runtime observation systems, with the assistance of hardware, can track ac-
cesses to data objects, thereby enabling optimizations based on access patterns . 

Note that the increased control given to the programmer does not necessarily 
mean that she has to manually manage everything and deal with all the complexi-
ties of fine-grained memory management . We envision a system where a runtime, 
aided by programmer hints or sophisticated observation via hardware perfor-
mance-monitoring units, would optimally move data-blocks so as to reduce the 
energy required to access data . 

Scheduling Management

The threading metaphor is perhaps the only parallel abstraction a modern OS 
exposes to the programmer . However, the scheduling granularity of threads is 
ill-suited for new programming models (namely, our own, as well as others such as 
Cilk, TBB, Habanero, X10, Chapel and Fortress) . 
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Thread Parallelism for Exascale

A traditional OS is responsible for mapping threads to hardware resources and 
context switching them as needed to ensure that they all get equal access to com-
puting resources . While this approach eliminates the need to know the number of 
underlying parallel resources—in line with the OS’s objective to abstract away the 
hardware—emerging parallel programming models rely on being able to precisely 
schedule much smaller-grained tasks and frequently implement a runtime layer 
on top of traditional threads to manage dependencies and the mapping of tasks to 
OS-provided threads . 

These fine-grained schedulers and the OS may have misaligned goals (the OS 
being more concerned about fairness, for example, which may be less of a con-
cern to certain runtimes that may favor critical path execution), and this leads to 
kludges in the runtime to ensure that the OS does not perform “optimizations” that 
harm performance . These hacks include (1) using processor affinity to prevent 
thread migration, and (2) carefully matching the number of OS threads to the num-
ber of hardware-supported threads to avoid context switching among others . The 
latter hack demonstrates that the runtime is actively attempting to break through 
the OS abstraction and trying to get to the underlying hardware characteristic 
(here, the number of hardware threads) . Essentially, the runtime and the program-
mer work very hard to avoid many of the services the OS provides since the goals 
of the OS (fairness in execution, responsiveness, etc .) are not shared by exascale 
programming . 

C O n T E x T  S w I T C h I n g

Specifically, avoiding context switching is paramount in exascale systems since 
the cost of context switching in terms of energy (as well as time) is nontrivial . Fur-
thermore, to reduce the energy needed to access data, extreme-scale systems will 
increase the amount of hardware-provided thread-local storage such as registers 
and private scratchpad memories . In this situation, avoiding context switching 
becomes all the more critical . 

Our program decomposition into small codelets [18] allows us to run a single code-
let per XE without overhead from preserving ephemeral state (swapping registers, 
managing scratchpads, etc .) . Since XEs are plentiful, the scheduling system can 
narrow or widen its scheduling of parallel code according to system state, work-
load, and overall power/performance tradeoff policies . Additionally, as the runtime 
understands that a finishing task’s context is no longer needed, it can put that core 
into a very low-energy (destructive to memory) sleep state . 

Required  Threading Notions

The scheduling of codelets really only requires two notions: affinity and dependen-
cies . 

a F F I n I T Y

A modern OS will provide hooks for threads with the affinity interface expressing 
links between threads and hardware resources . Conversely, our runtime provides 
an interface to define affinity between and among tasks . This approach allows 
the runtime to better understand the relationships among all tasks, such as which 
tasks are related and therefore share data . With this information, the runtime can 
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schedule tasks onto the hardware resources in such a way to increase locality, or to 
optimize for other system operation goals . Furthermore, since the entire pro-
gramming system and runtime are aware of the presence of possibly specialized 
XE hardware, the programmer is able to create specialized tasks to run on that 
specialized hardware . Both the compiler and programmer are also able to generate 
multiple equivalent versions of a task to run more efficiently on a heterogeneous 
computing substrate . 

D E P E n D E n C I E S

Dependency information is also entirely expressed within the runtime’s tasking 
interface . This concept is not novel among runtime interfaces (the TBB task graph 
[10] is one example) . However, our runtime makes this dependency information 
available to the lowest levels of the system software . One particularly exciting 
area we are exploring is how this interfaces with the memory management portion 
of the runtime . As the memory subsystem can see how tasks are related and vice 
versa, the runtime can make better scheduling decisions . For instance, tasks can 
be scheduled to minimize data movement by either relocating data or moving a 
task to execute closer to its data . As all the dependencies are known to the runtime, 
related tasks can be moved at the same time, leading to an overall more efficient 
system . This data-directed scheduling research is an area from which we antici-
pate significant results from our work and that of the broader community-related 
work . Many of the ideas expressed above are admittedly not entirely our inven-
tion, with some having a rich heritage of prior research . Previously, however, these 
ideas were developed separately, independent both of an extreme-scale (hardware, 
software, and energy) focus and of tradeoffs among interesting combinations . As 
process technology and new architectures continue to drive many-core systems 
to unprecedented levels of parallelism, we are reaching a stage where bringing all 
these ideas together in a cohesive system and testing them on real hardware will 
not only help validate them, but also provide concrete solutions to the power-effi-
ciency problems facing the industry . 

Other participants in DARPA’s UHPC program [2] have identified similar con-
cerns for performance and energy efficiency along the lines of what we describe 
here . Current HPC technologies, such as MPI [7, 9] and OpenMP, reflect a large 
software investment and will also need to be improved and scaled to exascale 
machines; what we propose in this article does not preclude these other develop-
ments . Efforts such as Kitten [14] by Sandia National Labs, IBM’s Blue Gene CNK 
[8], and the Barrelfish research OS [1] also aim to support extreme-scale systems 
with varying focus on performance, power, and scalability . 

Conclusion and Future work

We believe that extreme-scale systems are likely to break many of the known and 
beloved design conventions of both hardware and software . Existing challenges for 
performance, power efficiency, adaptability, and programmability will be greatly 
exacerbated when going to exascale operation . Our research, therefore, is pursuing 
some fairly radical concepts with respect to traditional definitions of OS function-
ality . We are taking advantage of hardware and software co-design to experiment 
with separating control and application duties across heterogeneous cores, as well 
as resurrecting prior dataflow-inspired techniques in our codelet execution model . 
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While much work remains to be done, results to date are encouraging . Our simula-
tions show good reduction in the overhead (especially energy) that a traditional OS 
would incur, especially in terms of context-switching and memory management . 
Leveraging prior work, we plan to introduce more dynamic observation features in 
our runtime and hope to further optimize both power and performance by auto-
matically migrating data closer to code and/or code closer to data . 

Exascale computing has become a primary interest throughout industry, aca-
demia, and government . In partnership with both academia and government, 
we are continuing to explore ideas such as those discussed in this article . With 
continued progress, we hope to usher in a new HPC era, in which scientists and 
engineers will have access to a new generation of “extreme-scale” supercomputing 
systems with unprecedented computational power along with supportable energy 
consumption . 
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TCP has remained mostly unchanged for 20 years, even as its uses and the net-
works on which it runs have evolved . Multipath TCP is an evolution of TCP that 
allows it to run over multiple paths transparently to applications . In this article, we 
explain how Multipath TCP works, and why you should want to start using it .

Introduction and Motivation

The Transmission Control Protocol (TCP) is used by the vast majority of applica-
tions to transport their data reliably across the Internet . TCP was designed in 
the 1970s, and neither mobile devices nor computers with many network inter-
faces were an immediate design priority . On the other hand, the TCP designers 
knew that network links could fail, and they chose to decouple the network-layer 
protocols (Internet Protocol) from those of the transport layer (TCP) so that the 
network could reroute packets around failures without affecting TCP connections . 
This ability to reroute packets is largely due to the use of dynamic routing proto-
cols, and their job is made much easier because they don’t need to know anything 
about transport-layer connections .

Today’s networks are multipath: mobile devices have multiple wireless interfaces, 
datacenters have many redundant paths between servers, and multihoming has 
become the norm for big server farms . Meanwhile, TCP is essentially a single-path 
protocol: when a TCP connection is established, the connection is bound to the IP 
addresses of the two communicating hosts . If one of these addresses changes, for 
whatever reason, the connection will fail . In fact, a TCP connection cannot even be 
load balanced across more than one path within the network, because this results 
in packet reordering, and TCP misinterprets this reordering as congestion and 
slows down .

This mismatch between today’s multipath networks and TCP’s single-path design 
creates tangible problems . For instance, if a smartphone’s WiFi loses signal, the 
TCP connections associated with it stall; there is no way to migrate them to other 
working interfaces, such as 3G . This makes mobility a frustrating experience for 
users . Modern datacenters are another example: many paths are available between 
two endpoints, and multipath routing randomly picks one for a particular TCP 
connection . This can cause collisions where multiple flows get placed on the same 
link, thus hurting throughput to such an extent that average throughput is halved 
in some scenarios .
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Multipath TCP (MPTCP) [1, 7, 8] is a major modification to TCP that allows mul-
tiple paths to be used simultaneously by a single transport connection . Multipath 
TCP circumvents the issues mentioned above and several others that affect TCP . 
Changing TCP to use multiple paths is not a new idea; it was originally proposed 
more than 15 years ago by Christian Huitema in the Internet Engineering Task 
Force (IETF), and there have been a half-dozen more proposals since then to 
similar effect . Multipath TCP draws on the experience gathered in previous work, 
and goes further to solve issues of fairness when competing with regular TCP and 
deployment issues as a result of middleboxes in today’s Internet . The Multipath 
TCP protocol has recently been standardized by the IETF, and an implementation 
in the Linux kernel is available today [2] .

Overview of MPTCP Operation 

The design of Multipath TCP has been influenced by many requirements, but there 
are two that stand out: application compatibility and network compatibility . Appli-
cation compatibility implies that applications that today run over TCP should work 
without any change over Multipath TCP . Next, Multipath TCP must operate over 
any Internet path where TCP operates .

Many paths on today’s Internet include middleboxes, such as Network Address 
Translators, firewalls, and various kinds of transparent proxies . Unlike IP rout-
ers, all these devices do know about the TCP connections they forward and affect 
them in special ways . Designing TCP extensions that can safely traverse all these 
middleboxes has proven to be challenging [4] .

Before diving into the details of Multipath TCP, let’s recap the basic operation of 
normal TCP . A connection can be divided into three phases:

u connection establishment
u data transfer
u connection release

A TCP connection starts with a three-way handshake . To open a TCP connection, 
the client sends a SYN (for “synchronize”) packet to the port on which the server 
is listening . The SYN packet contains the source port and initial sequence number 
chosen by the client, and it may contain TCP options that are used to negotiate the 
use of TCP extensions . The server replies with a SYN+ACK packet, acknowledging 
the SYN and providing the server’s initial sequence number and the options that it 
supports . The client acknowledges the SYN+ACK, and the connection is now fully 
established . All subsequent packets in the connection use the IP addresses and 
ports used for the initial handshake . They compose the tuple that uniquely identi-
fies the connection .

After the handshake, the client and the server can send data packets (segments, 
in TCP terminology) . The sequence number is used to delineate the data in the 
different segments, reorder them, and detect losses . The TCP header also contains 
a cumulative acknowledgment, essentially a number that acknowledges received 
data by telling the sender which is the next byte expected by the receiver . Various 
techniques are used by TCP to retransmit the lost segments .

After the data transfer is over, the TCP connection must be closed . A TCP connec-
tion can be closed abruptly if one of the hosts sends a Reset (RST) packet, but the 
usual way to terminate a connection is by using FIN packets . These FIN packets 
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indicate the sequence number of the last byte sent . The connection is terminated 
after the FIN segments have been acknowledged in both directions .

Multipath TCP allows multiple subflows to be set up for a single MPTCP session . 
An MPTCP session starts with an initial subflow, which is similar to a regular 
TCP connection as described above . After the first MPTCP subflow is set up, 
additional subflows can be established . Each additional subflow also looks similar 
to a regular TCP connection, complete with SYN handshake and FIN tear-down, 
but rather than being a separate connection, the subflow is bound into an existing 
MPTCP session . Data for the connection can then be sent over any of the active 
subflows that has the capacity to take it .

To examine Multipath TCP in more detail, let’s consider a simple scenario with a 
smartphone client and a single-homed server . The smartphone has two network 
interfaces: a WiFi interface and a 3G interface . Each has its own IP address . The 
server, being single-homed, has a single IP address . In this environment, Multipath 
TCP would allow an application on the smartphone to use a single TCP connection 
that can use both the WiFi and the 3G interfaces to communicate with the server . 
The application does not need to concern itself with which radio interface is work-
ing best at any instant; MPTCP handles that for the application . In fact, Multipath 
TCP can work when both endpoints are multihomed (in this case, subflows are 
opened between all pairs of “compatible” IP addresses), or even in the case when 
both endpoints are single homed (in this case, different subflows will use different 
port numbers and can be routed differently by multipath routing in the network) . 

Let’s walk through the establishment of an MPTCP connection . Assume that the 
smartphone chooses its 3G interface to open the connection . First the smartphone 
sends a SYN segment to the server . This segment contains the MP_CAPABLE 
TCP option, indicating that the smartphone supports Multipath TCP . This option 
also contains a key that is chosen by the smartphone . The server replies with a 
SYN+ACK segment containing the MP_CAPABLE option and the key chosen by 
the server . The smartphone completes the handshake by sending an ACK segment .

At this point, the Multipath TCP connection is established and the client and 
server can exchange TCP segments via the 3G path . How could the smartphone 
also send data through this Multipath TCP connection over its WiFi interface?  

Naively, the smartphone could simply send some of the packets over the WiFi 
interface; however, most ISPs will drop these packets, as they would have the 
source address of the 3G interface . Perhaps the client could tell the server the IP 
address of the WiFi interface and use that address when it sends over WiFi . Unfor-
tunately, this will rarely work: firewalls and similar stateful middleboxes on the 
WiFi path expect to see a SYN packet before they see data packets . The only solu-
tion that will work reliably is to perform a full SYN handshake on the WiFi path 
before sending any packets that way, so this is what Multipath TCP does . This SYN 
handshake carries the MP_JOIN TCP option, providing enough information to the 
server that it can securely identify the correct connection with which to associate 
this additional subflow . The server replies with MP_JOIN in the SYN+ACK, and 
the new subflow is established .

An important point about Multipath TCP, especially in the context of smart-
phones, is that the set of subflows that are associated with a Multipath TCP 
connection is not fixed . Subflows can be dynamically added and removed from a 
Multipath TCP connection throughout its lifetime, without affecting the byte-
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stream transported on behalf of the application . Multipath TCP also implements 
mechanisms that allow adding and removing new addresses even when an end-
point operates behind a NAT, but we will not detail them here . If the smartphone 
moves to another WiFi network, it will receive a new IP address . At that time, it 
will open a new subflow using its newly allocated address and tell the server that 
its old address is not usable anymore . The server will now send data towards the 
new address . These options allow smartphones to easily move through different 
wireless connections without breaking their Multipath TCP connections [6] .

Assume now that two subflows have been established over WiFi and 3G; the 
smartphone can send and receive data segments over both . Just like TCP, Mul-
tipath TCP provides a bytestream service to the application . In fact, standard 
applications can function over MPTCP without being aware of it—MPTCP pro-
vides the same socket interface as TCP .

Because the two paths will often have different delay characteristics, the data seg-
ments sent over the two subflows will not be received in order . Regular TCP uses 
the sequence number in each TCP packet header to put data back into the original 
order . A simple solution for Multipath TCP would be to reuse this sequence number 
as is . Unfortunately, this simple solution would create problems with some existing 
middleboxes, such as firewalls . On each path, a middlebox would only see half of 
the packets, so it would observe many gaps in the TCP sequence space . Measure-
ments indicate that some middleboxes react in strange ways when faced with gaps 
in TCP sequence numbers . Some discard the out-of-sequence segments, whereas 
others try to update the TCP acknowledgments to “recover” some of the gaps . With 
such middleboxes on a path, Multipath TCP cannot safely send TCP segments with 
gaps in the TCP sequence number space . On the other hand, Multipath TCP also 
cannot send every data segment over all subflows; that would be a waste of resources .

To deal with this problem, Multipath TCP uses its own sequence numbering space . 
Each segment sent by Multipath TCP contains two sequence numbers: the subflow 
sequence number inside the regular TCP header, and an additional data sequence 
number (DSN) carried inside a TCP option . This solution ensures that the seg-
ments sent on any given subflow have consecutive sequence numbers and do not 
upset middleboxes . Multipath TCP can then send some data sequence numbers on 
one path and the remainder on the other path; old middleboxes will ignore the DSN 
option, and it will be used by the Multipath TCP receiver to reorder the bytestream 
before it is given to the receiving application .

Congestion Control 

One of the most important components in TCP is its congestion controller, which 
enables it to adapt its throughput dynamically in response to changing network 
conditions . To perform this functionality, each TCP sender maintains a congestion 
window, which governs the amount of packets that the sender can send without 
waiting for an acknowledgment . The congestion window is updated dynamically, 
growing linearly when there is no congestion and halved when packet loss occurs . 
TCP congestion control ensures fairness: when multiple connections utilize the 
same congested link, each of them will independently converge to the same average 
value of the congestion window . 

What is the equivalent of TCP congestion control for multipath transport? To 
answer this question, we define three goals that multipath congestion control must 
obey . First, we want to ensure fairness to TCP . If several subflows of the same 
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MPTCP connection share a bottleneck link with other TCP connections, MPTCP 
should not get more throughput than TCP . Second, the performance of all the Mul-
tipath TCP subflows together should be at least that of regular TCP on any of the 
paths used by a Multipath TCP connection; this ensures that there is an incentive 
to deploy Multipath TCP . The third, and most important, goal is that Multipath 
TCP should prefer efficient paths, which means it should send more of its traffic on 
paths experiencing less congestion .

Intuitively, this last goal ensures wide-area load balancing of traffic: when a multi-
path connection is using two paths loaded unevenly (see Figure 1), the multipath 
transport will prefer the unloaded path and push most of its traffic there; this will 
decrease the load on the congested link and increase it on the less-congested one . 
If a large enough fraction of flows are multipath, the effect is that congestion will 
spread out evenly across collections of links, creating “resource pools,” links that 
act together as if they are a single, larger-capacity link shared by all flows . 

Multipath TCP congestion control achieves these goals through a series of simple 
changes to the standard TCP congestion control mechanism . Each subflow has its 
own congestion window that is halved when packets are lost, as in standard TCP . 
Resource pooling is implemented in the increase phase of congestion control; here 
Multipath TCP will allow less-congested subflows to increase proportionally more 
than congested ones . Finally, the total increase of Multipath TCP across all of its 
subflows is dynamically chosen in such a way that it achieves goals one and two 
above . More details can be found in [3, 4] .

Implementation and Performance

Next, we briefly cover two of the most compelling use cases for Multipath TCP by 
showing a few evaluation results . We focus on mobile devices and datacenters, but 
note that Multipath TCP can also help in other scenarios . For example, multi-
homed Web servers can perform fine-grained load balancing across their uplinks, 
whereas dual-stack hosts can use both IPv4 and IPv6 within a single Multipath 
TCP connection .

The full Multipath TCP protocol has been implemented in the Linux kernel; its 
congestion controller has also been implemented in the ns2 and htsim network 
simulators . The results presented in this article are from the Linux kernel imple-
mentation, which is available for download at [2] .

Our mobile measurements focus on a typical mode of operation in which the device 
is connected to WiFi, the connection goes down, and the phone switches to 3G . 
Our setup uses a Linux laptop connected to a WiFi and a 3G network, downloading 
a file using HTTP . We compare Multipath TCP with application-layer handover, 
where the application detects the loss of the interface, creates a new connection, 
and uses the HTTP range header to resume the download . Figure 2 shows the 
instantaneous throughputs for Multipath TCP and TCP with application-layer 
handover . The figure shows a smooth handover with Multipath TCP, as data keeps 
flowing despite the interface change . With application-layer handover, there is a 
downtime of three seconds where the transfer stops because the application takes 
time to detect the interface down event and ramp up 3G . In summary, Multipath 
TCP enables unmodified mobile applications to survive interface changes with 
little disruption . A more detailed discussion of the utilization of Multipath TCP in 
WiFi/3G environments may be found in [6] .

Figure 1: (Resource pooling) Two links, 
each with capacity 20 pkts/s. The top link 
is used by a single TCP connection, and the 
bottom link is used by two TCP connections. 
A Multipath TCP connection uses both links. 
Multipath TCP pushes most of its traffic onto 
the less-congested top link, making the two 
links behave like a resource pool of capacity 
40 pkts/s. Capacity is divided equally, with 
each flow having throughput of 10 pkts/s.
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Figure 2: (Mobility) A mobile device is using both its WiFi and 3G interfaces, and then the 
WiFi interface fails. We plot the instantaneous throughputs of Multipath TCP and application-
layer handover. 

Figure 3: (datacenter load balancing) This graph compares standard TCP with two- and four-
flow MPTCP, when tested on an EC2 testbed with 40 instances. Each host uses iperf sequen-
tially to all other hosts. We plot the performance of all flows (x axis) in increasing order of their 
throughputs (y axis). 

Next, we show results from running Multipath TCP in the Amazon EC2 datacen-
ter . Like most datacenters today, EC2 uses a redundant network topology, where 
many paths are available between any pair of endpoints, and where connections 
are placed randomly onto available paths . In EC2, we rented 40 machines (or 
instances) and ran the Multipath TCP kernel . We conducted a simple experiment 
in which every machine tested the throughput sequentially to every other machine 
using first TCP, then Multipath TCP with two and with four subflows . Figure 3 
shows the sorted throughputs measured over 12 hours and demonstrates that Mul-
tipath TCP brings significant improvements compared to TCP in this scenario . 
Because the EC2 network is essentially a black-box to us, we cannot pinpoint the 
root cause for these improvements; however, we have performed a detailed analysis 
of the cases where Multipath TCP can help and why [5] .
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Conclusion

Multipath TCP is the most significant change to TCP in the past 20 years; it 
allows existing TCP applications to achieve better performance and robustness 
over today’s networks, and it has been standardized at the IETF . The Linux kernel 
implementation shows that these benefits can be obtained in practice; however, 
as with any change to TCP, the deployment bar for Multipath TCP is high . Only 
time will tell whether the benefits Multipath TCP brings will outweigh the added 
complexity it produces in the endhost stacks .
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When assembling a cloud infrastructure, you want the flexibility of locating your 
physical resources anywhere in your datacenter . Networks in a datacenter, on 
the other hand, may constrain virtual machine (VM) location due to the need for 
shared Layer 2 connectivity among correspondent virtual machines . VXLAN is an 
overlay network that overcomes this constraint, allowing you to locate your VMs 
anywhere in the datacenter without the network being the limiting factor . In this 
article, I will explain what VXLAN is and how the technology is implemented . 

Scalable networks

One of the biggest infrastructure obstacles faced in building out cloud environ-
ments is providing sufficient numbers of isolated networks for tenants . In addi-
tion, there is a need to decouple the scaling of these networks from the constraints 
imposed by the physical network topology and datacenter network architecture . 
These problems are in no way constrained to cloud-based networking, but are 
exacerbated by the need for large numbers of on-demand and scalable networks 
consumed in cloud environments . A key requirement for cloud networking is the 
need to place VMs anywhere in the datacenter for scaling purposes . This needs 
to be done while maintaining Layer 2 adjacency between these VMs in order for 
them to use the same IP address space . However, this requirement implies that the 
physical networking infrastructure between these communicating VMs should be 
a Layer 2 (broadcast) network .

Enter vxLan

VXLAN, in a nutshell, is an overlay Layer 2 over Layer 3 technology that provides 
physical infrastructure-independent networking to VMs . The motivation behind 
VXLAN overlay networks was to address the scale and isolation needs encoun-
tered in cloud-based infrastructures without imposing any requirements on the 
physical network infrastructure . VXLAN addresses the flexibility and location-
independence requirements of the virtual infrastructure without requiring any 
networking hardware changes .   

In this article, I will concentrate on virtual infrastructure and cloud implementa-
tions, as that is where most of the benefits will come into play today . Figure 1 is a 
key to the icons used in this article .

vxLan
Extending networking to Fit the Cloud
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Figure 1: key to icons used in this article

what Is vxLan

As an overlay Layer 3 network, VXLAN provides physical infrastructure-indepen-
dent networking to VMs . Each overlay network is known as a VXLAN Segment 
and is identified with a 24-bit VXLAN Network Identifier (VNI) . This makes it 
possible to overlay over 16 million networks on a single VXLAN fabric . This is 
illustrated in Figure 2 as a networking fabric overlaid on virtual switches across 
multiple server clusters .

Figure 2: vXlAN fabric overlaid on multiple virtual switches associated with clusters of serv-
ers on different layer 3 networks 

A VXLAN fabric is a homogeneous namespace maintained by a single entity on 
which overlay networks are instantiated . Connectivity between different VXLAN 
fabrics will not be discussed in this article .

The VXLAN fabric uses the networking provided by the virtual switches to inter-
connect the VMs and the VXLAN tunnel endpoints (VTEP) . VXLAN traffic is 
tunneled by VTEPs through the physical Layer 3 network infrastructure to other 
VTEPs . The VTEP is the component of the VXLAN networking stack that encap-
sulates and decapsulates the VXLAN tunnel traffic that is overlaid on the physical 
network as illustrated in Figure 3 . The VTEP is usually implemented as part of the 
hypervisor in order to reduce latency . Each VTEP has knowledge of all the virtual 
machines that it handles and gleans information about virtual machines handled 
by other VTEPs through data plane-based learning . Here, an unknown destination 
MAC frame is transmitted over the multicast group associated with that VXLAN 
segment . When it arrives at the individual VTEPs, they learn the association 
between the VTEP IP address and the VNI + VM MAC address .
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Figure 3: Hosts participating in a vXlAN exchange virtual machine traffic over logical vTEP 
tunnels that are established through a routed IP network.

The VTEP creates point-to-point tunnels between itself and other VTEPs for 
the transport of VXLAN encapsulated traffic . The encapsulated traffic can be 
transported over dedicated transport VLANs or it can share existing VLANs if 
traffic volumes allow . A VTEP does not provide access to the physical network for 
the virtual machines it fronts . Access to networks outside the VXLAN segments 
is provided through the use of a gateway . The simplest use case for a gateway is as 
a Layer 2 bridge between VXLAN and VLAN environments as shown in Figure 4 . 
It is also possible for routers, or Layer 3 switches, to be VXLAN aware so that they 
can forward traffic at Layer 3 .

Figure 4: A vXlAN to vlAN gateway is needed to allow virtual machines on a vXlAN-backed 
network to communicate with nodes outside its layer 2 network.

When a virtual machine is communicating with other virtual machines on its 
Layer 2 network, it is not aware in any way of VXLAN . The original Layer 2 frame 
is encapsulated in an outer UDP packet along with a VXLAN header as illustrated 
in Figure 5 . The VXLAN header contains the VNI (added by the VTEP) that 
identifies which isolation network the packet belongs to . This UDP frame is then 
transported on an IP-based network like any normal IP traffic .
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Figure 5: virtual machines layer 2 packet is encapsulated in a UdP packet after a vXlAN 
header is added to the original packet. This allows the packet to be tunneled in an IP Network.

If the destination virtual machine happens to be on the same virtual switch as the 
source (on the same physical host), then no VXLAN encapsulation happens, and 
the original Layer 2 frame is passed to the destination .

The outer IP packet has the source address of the source VTEP (VTEPS) and the 
destination IP of the destination VTEP (VTEPD) fronting the destination MAC 
address contained in the original Layer 2 frame . VTEPD is discovered when a node 
sends out an ARP looking for the MAC address corresponding to an IP address . If 
VTEPS does not know the IP address of the VTEPD, the following process is fol-
lowed to discover this information:

1 . VNI of the VXLAN segment is matched to its associated multicast address .
2 . ARP request is encapsulated in a multicast packet whose address corresponds to 

the multicast address associated with this VNI .
3 . Multicast packet is received by all VTEPs that have subscribed to this multicast 

address, because they are configured with virtual machines in the VNI .
4 . All VTEPs glean from this multicast packet the IP address of VTEPS and the 

source virtual machine’s MAC address, which are added to local lookup tables .
5 . All VTEPs forward the ARP request to their port group that is associated with 

the VNI in the multicast packet .
6 . The destination virtual machine responds to the ARP request as normal .
7 . VTEPD encapsulates the response and sends out a unicast packet back to 

VTEPS with the ARP response .
8 . VTEPS decapsulates and forwards the packet on to the associated port group .
9 . In the process of decapsulating the packet, VTEPS gleans the destination node’s 

MAC address and VTEPD IP address from the packet and adds them to its local 
lookup tables for future unicast communication .

All unknown destination packets, broadcasts, and multicasts are treated in a simi-
lar manner, by encapsulating them in multicast packets . This makes it possible 
for VXLAN-backed networks to support any type of protocol that rides on top of 
Ethernet, even non IP-based protocols .

VM to VM traffic is encapsulated and sent as unicast traffic between the VTEPs . 
Only unknown, broadcast and multicast traffic is encapsulated and sent out as 
multicast traffic .

IGMP snooping [1] needs to be enabled on the physical switches . This enables the 
physical switches to treat multicast traffic, not like broadcasts, but with a little 
more intelligence . Physical switches with IGMP snooping enabled will filter out 
ports that have not subscribed to multicast traffic, thus reducing the amount of 
data the attached nodes need to process . For IGMP snooping to work, a router, or 
a Layer 3 switch, needs to be configured as an IGMP queryer . The router will send 
regular queries about multicast subscription on the network, spurring responses 
from all the VTEPs about the multicast addresses they are subscribed to . The 
physical switch snoops these responses and uses the information to maintain its 
multicast subscription tables (Figure 6) .
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For VXLAN to work in an environment where VTEPs are not all in the same Layer 
2 network (i .e ., there are routers used for forwarding between the VTEPs which are 
on different Layer 3 networks), multicast routing needs to be enabled across the IP 
network . This is usually done through a protocol like PIM (Protocol-Independent 
Multicast) . 

what Does vxLan buy Me?

VXLAN creates a network abstraction layer over available physical networks . 
With a VXLAN fabric in a datacenter, it is possible to overlay multiple VXLAN-
backed Layer 2 networks all over the datacenter, providing Layer 2 adjacency 
to VMs hosted in the datacenter . This makes it possible to create on-demand 
networks on top of this fabric, allowing unconstrained virtual machine placement 
within the datacenter and, at the same time, affording unencumbered virtual 
machine mobility .

Figure 6: Physical vXlAN topology showing virtual machine connectivity and tunneled 
vXlAN traffic together with regular traffic from a vXlAN to vlAN gateway

There is no requirement in the VXLAN specification (IETF draft [2]) as defined, 
for the nodes on a VXLAN backed Layer 2 network to be virtual . There is a require-
ment though on the physical hosts, or Layer 2 physical switches, for a VXLAN 
stack in order for physical nodes to attach to a VXLAN fabric .
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The number of applications that are being developed to work with large amounts 
of data has been growing rapidly in the recent past . To support this new breed of 
applications, as well as scaling up old applications, several new data management 
systems have been developed . Some call this the big data revolution . A lot of these 
new systems that are being developed are open source and community driven, 
deployed at several large companies . Apache HBase [2] is one such system . It is 
an open source distributed database, modeled around Google Bigtable [5] and is 
becoming an increasingly popular database choice for applications that need fast 
random access to large amounts of data . It is built atop Apache Hadoop [1] and is 
tightly integrated with it .

HBase is very different from traditional relational databases like MySQL, Post-
greSQL, Oracle, etc . in how it’s architected and the features that it provides to the 
applications using it . HBase trades off some of these features for scalability and 
a flexible schema . This also translates into HBase having a very different data 
model . Designing HBase tables is a different ballgame as compared to relational 
database systems . I will introduce you to the basics of HBase table design by 
explaining the data model and build on that by going into the various concepts at 
play in designing HBase tables through an example .

Crash Course on hbase Data Model

HBase’s data model is very different from what you have likely worked with or 
know of in relational databases . As described in the original Bigtable paper, it’s a 
sparse, distributed, persistent multidimensional sorted map, which is indexed by 
a row key, column key, and a timestamp . You’ll hear people refer to it as a key-value 
store, a column-family-oriented database, and sometimes a database storing ver-
sioned maps of maps . All these descriptions are correct . This section touches upon 
these various concepts .

The easiest and most naive way to describe HBase’s data model is in the form of 
tables, consisting of rows and columns . This is likely what you are familiar with in 
relational databases . But that’s where the similarity between RDBMS data models 
and HBase ends . In fact, even the concepts of rows and columns is slightly differ-
ent . To begin, I’ll define some concepts that I’ll later use .

Introduction to hbase Schema Design
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u Table: HBase organizes data into tables . Table names are Strings and composed 
of characters that are safe for use in a file system path .

u Row: Within a table, data is stored according to its row . Rows are identified 
uniquely by their row key . Row keys do not have a data type and are always 
treated as a byte[ ] (byte array) .

u Column Family: Data within a row is grouped by column family . Column 
families also impact the physical arrangement of data stored in HBase . For this 
reason, they must be defined up front and are not easily modified . Every row in a 
table has the same column families, although a row need not store data in all its 
families . Column families are Strings and composed of characters that are safe 
for use in a file system path .

u Column Qualifier: Data within a column family is addressed via its column 
qualifier, or simply, column . Column qualifiers need not be specified in advance . 
Column qualifiers need not be consistent between rows . Like row keys, column 
qualifiers do not have a data type and are always treated as a byte[ ] .

u Cell: A combination of row key, column family, and column qualifier uniquely 
identifies a cell . The data stored in a cell is referred to as that cell’s value . Values 
also do not have a data type and are always treated as a byte[ ] .

u Timestamp: Values within a cell are versioned . Versions are identified by their 
version number, which by default is the timestamp of when the cell was written . 
If a timestamp is not specified during a write, the current timestamp is used . If 
the timestamp is not specified for a read, the latest one is returned . The number 
of cell value versions retained by HBase is configured for each column family . 
The default number of cell versions is three .

A table in HBase would look like Figure 1 .

Figure 1: A table in HBase consisting of two column families, Personal and Office, each having 
two columns. The entity that contains the data is called a cell. The rows are sorted based on 
the row keys.

These concepts are also exposed via the API [3] to clients . HBase’s API for data 
manipulation consists of three primary methods: Get, Put, and Scan . Gets and 
Puts are specific to particular rows and need the row key to be provided . Scans are 
done over a range of rows . The range could be defined by a start and stop row key or 
could be the entire table if no start and stop row keys are defined .

Sometimes, it’s easier to understand the data model as a multidimensional map . 
The first row from the table in Figure 1 has been represented as a multidimen-
sional map in Figure 2 .
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The row key maps to a list of column families, which map to a list of column quali-
fiers, which map to a list of timestamps, each of which map to a value, i .e ., the cell 
itself . If you were to retrieve the item that the row key maps to, you’d get data from 
all the columns back . If you were to retrieve the item that a particular column 
family maps to, you’d get back all the column qualifiers and the associated maps . If 
you were to retrieve the item that a particular column qualifier maps to, you’d get 
all the timestamps and the associated values . HBase optimizes for typical patterns 
and returns only the latest version by default . You can request multiple versions 
as a part of your query . Row keys are the equivalent of primary keys in relational 
database tables . You cannot choose to change which column in an HBase table will 
be the row key after the table has been set up . In other words, the column Name in 
the Personal column family cannot be chosen to become the row key after the data 
has been put into the table .

As mentioned earlier, there are various ways of describing this data model . You can 
view the same thing as if it’s a key-value store (as shown in Figure 3), where the key 
is the row key and the value is the rest of the data in a column . Given that the row 
key is the only way to address a row, that seems befitting . You can also consider 
HBase to be a key-value store where the key is defined as row key, column family, 
column qualifier, timestamp, and the value is the actual data stored in the cell . 
When we go into the details of the underlying storage later, you’ll see that if you 
want to read a particular cell from a given row, you end up reading a chunk of data 
that contains that cell and possibly other cells as well . This representation is also 
how the KeyValue objects in the HBase API and internals are represented . Key is 
formed by [row key, column family, column qualifier, timestamp] and Value is the 
contents of the cell .

Figure 3: HBase table as a key-value store. The key can be considered to be just the row key or 
a combination of the row key, column family, qualifier, timestamp, depending on the cells that 
you are interested in addressing. If all the cells in a row were of interest, the key would be just 
the row key. If only specific cells are of interest, the appropriate column families and qualifiers 
will need to be a part of the key

hbase Table Design Fundamentals

As I highlighted in the previous section, the HBase data model is quite different from 
relational database systems . Designing HBase tables, therefore, involves taking a 
different approach from what works in relational systems . Designing HBase tables 
can be defined as answering the following questions in the context of a use case:

Figure 2: One row in an HBase table represented as a 
multidimensional map



32   ;login: vOl.  37,  NO.  5

1 . What should the row key structure be and what should it contain?
2 . How many column families should the table have?
3 . What data goes into what column family?
4 . How many columns are in each column family?
5 . What should the column names be? Although column names don’t need to be 

defined on table creation, you need to know them when you write or read data .
6 . What information should go into the cells?
7 . How many versions should be stored for each cell?

The most important thing to define in HBase tables is the row-key structure . In 
order to define that effectively, it is important to define the access patterns (read 
as well as write) up front . To define the schema, several properties about HBase’s 
tables have to be taken into account . A quick re-cap:

1 . Indexing is only done based on the Key .
2 . Tables are stored sorted based on the row key . Each region in the table is respon-

sible for a part of the row key space and is identified by the start and end row key . 
The region contains a sorted list of rows from the start key to the end key .

3 . Everything in HBase tables is stored as a byte[ ] . There are no types .
4 . Atomicity is guaranteed only at a row level . There is no atomicity guarantee 

across rows, which means that there are no multi-row transactions .
5 . Column families have to be defined up front at table creation time .
6 . Column qualifiers are dynamic and can be defined at write time . They are stored 

as byte[ ] so you can even put data in them .

A good way to learn these concepts is through an example problem . Let’s try to 
model the Twitter relationships (users following other users) in HBase tables . 
Follower-followed relationships are essentially graphs, and there are specialized 
graph databases that work more efficiently with such data sets . However, this 
particular use case makes for a good example to model in HBase tables and allows 
us to highlight some interesting concepts .

The first step in starting to model tables is to define the access pattern of the 
application . In the context of follower-followed relationships for an application like 
Twitter, the access pattern can be defined as follows:

Read access pattern:

1 . Who does a user follow?
2 . Does a particular user A follow user B?
3 . Who follows a particular user A?

Write access pattern:

1 . User follows a new user .
2 . User unfollows someone they were following .

Let’s consider a few table design options and look at their pros and cons . Start with 
the table design shown in Figure 4 . This table stores a list of users being followed 
by a particular user in a single row, where the row key is the user ID of the follower 
user and each column contains the user ID of the user being followed . A table of 
that design with data would look like Figure 5 .
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Figure 4: HBase table to persist the list of users a particular user is following

Figure 5: A table with sample data for the design shown in Figure 4

This table design works well for the first read pattern that was outlined . It also 
solves the second one, but it’s likely to be expensive if the list of users being fol-
lowed is large and will require iterating through the entire list to answer that ques-
tion . Adding users is slightly tricky in this design . There is no counter being kept 
so there’s no way for you to find out which number the next user should be given 
unless you read the entire row back before adding a user . That’s expensive! A pos-
sible solution is to just keep a counter then and the table will now look like Figure 6 .

Figure 6: A table with sample data for the design shown in Figure 4 but with a counter to keep 
count of the number of users being followed by a given user

Figure 7: Steps required to add a new user to the list of followed users based on the table 
design from Figure 6 
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The design in Figure 6 is incrementally better than the earlier ones but doesn’t 
solve all problems . Unfollowing users is still tricky since you have to read the entire 
row to find out which column you need to delete . It also isn’t ideal for the counts 
since unfollowing will lead to holes . The biggest issue is that to add users, you have 
to implement some sort of transaction logic in the client code since HBase doesn’t 
do transactions for you across rows or across RPC calls . The steps to add users in 
this scheme are shown in Figure 7 .

One of the properties that I mentioned earlier was that the column qualifiers are 
dynamic and are stored as byte[ ] just like the cells . That gives you the ability to put 
arbitrary data in them, which might come to your rescue in this design . Consider 
the table in Figure 8 . In this design, the count is not required, so the addition of 
users becomes less complicated . The unfollowing is also simplified . The cells in 
this case contain just some arbitrary small value and are of no consequence .

Figure 8: The relationship table with the cells now having the followed user’s username as the 
column qualifier and an arbitrary string as the cell value.

This latest design solves almost all the access patterns that we defined . The one 
that’s left is #3 on the read pattern list: who follows a particular user A? In the cur-
rent design, since indexing is only done on the row key, you need to do a full table 
scan to answer this question . This tells you that the followed user should figure in 
the index somehow . There are two ways to solve this problem . First is to just main-
tain another table which contains the reverse list (user and a list of who all follows 
user) . The second is to persist that information in the same table with different row 
keys (remember it’s all byte arrays, and HBase doesn’t care what you put in there) . 
In both cases, you’ll need to materialize that information separately so you can 
access it quickly, without doing large scans .

There are also further optimizations possible in the current table structure . Con-
sider the table shown in Figure 9 . 

Figure 9: The relationship table with the row key containing the follower and the followed user
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There are two things to note in this design: the row key now contains the follower 
and followed user; and the column family name has been shortened to f . The short 
column family name is an unrelated concept and could very well be done in the pre-
vious table as well . It just reduces the I/O load (both disk and network) by reducing 
the data that needs to be read/written from HBase since the family name is a part 
of every KeyValue [4] object that is returned back to the client . The first concept is 
what is more important here . Getting a list of followed users now becomes a short 
Scan instead of a Get operation . There is little performance impact of that as Gets 
are internally implemented as Scans of length 1 . Unfollowing, and answering the 
question “Does A follow B?” become simple delete and get operations, respectively, 
and you don’t need to iterate through the entire list of users in the row in the earlier 
table designs . That’s a significantly cheaper way of answering that question, spe-
cially when the list of followed users is large .

A table with sample data based on this design will look like Figure 10 .

Figure 10: Relationship table based on the design shown in Figure 9 with some sample data

Notice that the row key length is variable across the table . The variation can make 
it difficult to reason about performance since the data being transferred for every 
call to the table is variable . A solution to this problem is using hash values in the 
row keys . That’s an interesting concept in its own regard and has other implica-
tions pertaining to row key design which are beyond the scope of this article . To get 
consistent row key length in the current tables, you can hash the individual user 
IDs and concatenate them, instead of concatenating the user IDs themselves . Since 
you’ll always know the users you are querying for, you can recalculate the hash and 
query the table using the resulting digest values . The table with hash values will 
look like Figure 11 .

Figure 11: Using Md5s as a part of row keys to achieve fixed lengths. This also allows you to 
get rid of the + delimiter that we needed so far. The row keys now consist of fixed length por-
tions, with each user Id being 16 bytes.

This table design allows for effectively answering all the access patterns that we 
outlined earlier .
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Summary

This article covered the basics of HBase schema design . I started with a descrip-
tion of the data model and went on to discuss some of the factors to think about 
while designing HBase tables . There is much more to explore and learn in HBase 
table design which can be built on top of these fundamentals . The key takeaways 
from this article are:

u Row keys are the single most important aspect of an HBase table design and 
determine how your application will interact with the HBase tables . They also 
affect the performance you can extract out of HBase .

u HBase tables are flexible, and you can store anything in the form of byte[ ].
u Store everything with similar access patterns in the same column family .
u Indexing is only done for the Keys . Use this to your advantage .
u Tall tables can potentially allow you faster and simpler operations, but you trade 

off atomicity . Wide tables, where each row has lots of columns, allow for atomi-
city at the row level .

u Think how you can accomplish your access patterns in single API calls rather 
than multiple API calls . HBase does not have cross-row transactions, and you 
want to avoid building that logic in your client code .

u Hashing allows for fixed length keys and better distribution but takes away the 
ordering implied by using strings as keys .

u Column qualifiers can be used to store data, just like the cells themselves .
u The length of the column qualifiers impact the storage footprint since you can 

put data in them . Length also affects the disk and network I/O cost when the data 
is accessed . Be concise .

u The length of the column family name impacts the size of data sent over the wire 
to the client (in KeyValue objects) . Be concise .
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What are the causes of IT service disruption? With access to an email archive 
recording both planned and unplanned events, I figured I could identify ways 
to reduce downtime . This turned out to be neither as easy nor as useful as I had 
hoped: the exercise raised questions but little that was actionable . Still, the path I 
took may help you analyze your own data .

Environment

I work at the Fred Hutchinson Cancer Research Center, a nonprofit biomedical 
research institute specializing in cancer and infectious diseases . I pay attention to 
deep infrastructure: power, cooling, cabling, transport (Ethernet, IP, WiFi, Fibre 
Channel), interstitial services (DNS, DHCP, authentication, directory services), 
email, storage, and file services . These days, I spend my time managing our Prob-
lem Management process and leading Root Cause Analysis efforts . (Yes, the ITIL 
borg is extending its filaments into our brains .)

In the mid-90s, the network team started posting service-affecting incidents, both 
planned and unplanned, to an email list . Over time, more and more departments 
followed suit, and more and more techs subscribed to the list . We’ve refreshed 
that list server over the years, trashing its archives each time . The current archive 
starts in October 2000 .

In our culture, planned downtime goes over well—we negotiate service level agree-
ments (SLAs) with our divisions specifying when we can take down applications; 
we notify users; they modify their work flows to dodge the windows during which 
we are disrupting service; everyone is happy (for some value of happiness) . But 
unplanned downtime is another matter—no one enjoys that, and we invest effort to 
avoid it .

Today, the Center employs 2500 staff with an annual budget of $450 million (85% 
from federal grants and contracts) and has 8000 active Ethernet ports, 11,000 
active IP addresses, 450 KW datacenter cooling, 1 PB+ mass storage, and national 
and international collaborations . Roughly 30% of the end-stations run Windows, 
another 10% Linux, 5% OS X, and the remainder fall into the miscellaneous 
category (IP phones, printers, etc  .  .  . well most of those run Linux, but I want the 
Linux figure to reflect desktops/laptops/servers only) .
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Hutchinson Cancer Research 
Center (FHCRC) in Seattle, 

where he dabbles in troubleshooting, deep 
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The Outages List

Techs send email to this list using a standardized format . In our lingo, all service-
affecting events are called “outages” .

Subject: Exchange 2003 Cluster Issues

Severity: Critical (Unplanned)

Start: Monday, May 7, 2012, 11:58

End: Monday, May 7, 2012, 12:38

Duration: 40 minutes

Scope: Exchange 2003

Description: The HTTPS service on the Exchange cluster crashed, triggering  

 a cluster failover.

User Impact: During this period, all Exchange users were unable to access  

 email.  

 Zimbra users were unaffected.

Technician: [xxx]

Figure 1: Example of an unplanned outage

Subject: H Building Switch Upgrades

Severity: Major (Planned)

Start: Saturday, June 16, 2012, 06:00

End: Saturday, June 16, 2012, 16:00

Duration: 10 hours

Scope: H2 Transport

Description: Currently, Catalyst 4006s provide 10/100 Ethernet to end- 

 stations. We will replace these with newer Catalyst 4510s.

User Impact: All users on H2 will be isolated from the network during this  

 work.  

 Afterward, they will have gigabit connectivity.

Technician: [xxx]

Figure 2: Example of a planned outage

You can’t see this in the template above, but we also categorize outages by window:

Prime Monday – Friday 7am – 6pm

SLA Sunday 8pm – Monday 4am or Wednesday midnight – 4am

Shoulder Any other time

Figure 3: Windows

Yes, that service level agreement (SLA) window looks pretty darn generous  .  .  . we 
can take down services every single week for eight hours straight?! Conceptually, 
yes, but in practice, research institutes live and die by grant applications . Those 
grant applications have submission deadlines, and those deadlines pop up almost 
every week . Thus, most of those SLA windows get blocked .

The severity field has intention glued onto it via parentheses: planned (we intended 
the outage) or unplanned (we were surprised) . Severity itself can contain the fol-
lowing values:
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 Drama Most of the Center for 60+ minutes during prime time
 Critical One or more buildings or divisions
 Major Multiple floors or multiple departments
 Minor One floor or one department
 None No end-user effect

Figure 4: Severities

You might ask why we bother to have a Severity of None—doesn’t sound like an out-
age if the end-user impact was None, right? Well, the motivation is two-fold . First, 
most of us want to be kept informed of changes to the environment (because what 
you change might in fact interfere with something I do), and the outages list serves 
as that forum . Second, we’re trying to flush out errors in our understanding of the 
environment; if I claim that an event did not cause a service disruption and you 
know differently, you’ll tell me (and then I’ll send a correction to Outages) .

Complicated and subjective? Yup .

The Outages Database

So I figured I’d write code to grab the list archives and crawl through them, creat-
ing a database entry for each outage . How hard could this be? After all, we use this 
structured template  .  .  . Ahh, the naiveté and eternal optimism of youth: two weeks 
and 2500 lines of Perl later (the grossest code I’ve ever written), I ran it, took the 
partially processed results, imported into my database, and started scrubbing 
manually . Turns out we don’t follow the template exactly:  I never knew there were 
so many ways to write a date/timestamp, techs twink with the spelling of key 
words regularly, techs tend to send multiple messages describing each outage (the 
first announcing the event, the last announcing the completion of the event, and 
often others in between correcting errors or adding new information)  .  .  . I’ll quit 
whining here .

Furthermore, I wanted a feel for Service and Cause, neither of which is specified in 
the template . I added those during my manual passes .

Service Description
Application End-user facing apps (minus email, MIS, and printing)
Email Exchange, Zimbra, mail relay, spam/malware scrubbers
HPC High Performance Computing
Interstitial DHCP, DNS, NTP, authentication, directory services
MIS Financial Management / Human Resources systems
Power Electricity
Print Print servers
Storage Anything providing file or block services
Transport Ethernet, WiFi, Remote Access, Fibre Channel
Virtualization VMware, Xen
Voice Telephones and pagers

Figure 5: Services

This list reflects the focus of the groups who post to outages . Most of the applica-
tion support groups do not post; I lump their contributions into a single category .
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More interestingly, I wanted to identify the proximate cause of each outage—again, 
not something defined in the template, so I added this during my manual passes, 
interpreting the description field, dusting off memories, and making a judgment 
call .

Cause Description
Cockpit Error Techie mistake (fat finger, config error, bump the power cord)
Design Failure Service didn’t behave as the designer intended
External Services Service provider issue (electric utility, ISP, telecom carrier)
Hardware Failure The magic smoke escaped
Maintenance Patching, database compression, shuffling data, minor fixes
Malware Virus or worm infection
Overload Too much of a good thing
Software Bug Memory leak, unhandled exception, Blue Screen of Death
Testing Validating expected behavior, typically involving  
 high-availability
Unknown Never figured it out
Upgrade Adding major functionality (new gear, major software update)

Figure 6: Causes

There’s a lot of fuzz here . When we popped a ceiling tile trying to trace cables and 
knocked an unsecured electrical wire loose, it triggered an emergency power off 
(EPO) event in our largest datacenter . I categorized the service as Power and the 
cause as Design Failure . I could have categorized the service as Application (every 
application in that datacenter went down) and the cause as Cockpit Error (the 
electrician who installed the EPO circuits intended to screw that wire into place 
but forgot) . I didn’t because I try to push cause down the OSI stack (Power sits a 
whole lot lower than Application), and I try to pick the proximate cause as opposed 
to the root cause: at the moment we popped the ceiling tile, Power did not behave 
according to the datacenter designer’s intent .

Or, to take another example, if the server stayed up, but became too slow to be 
usable on account of too many users, I categorized that as Overload . If the server 
crashed because it ran out of RAM (on account of too many users), I categorized 
that as Software Bug .

Yup, pretty darn subjective .

n O T E S

u External services isn’t really a cause, but since the service provider space is 
opaque to us (did the WAN circuit go down due to human error, an unannounced 
upgrade, or a power event?), we lump them together .

u Hardware Failure lumps together both unplanned events, during which the 
magic smoke escaped, and planned events, during which we replace, say, a disk 
controller which is failing diagnostics but hasn’t actually fried yet .

u Maintenance is driven by patching, mostly Windows patching .
u Testing is driven by the network team, which reboots redundant switches and 

routers monthly .
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Results

I ended up with ~2300 outages [1] spanning the last 11+ years . Is that an under-
count? Definitely . Departments vary in how frequently they report: some use 
Outages rigorously, others not at all . And of the entries in Outages, I threw away 
hundreds which my code didn’t parse or which were too terse for me to categorize 
manually .

Q: How often are we surprised? 
A: We’re surprised half the time.

Planned: 55% Unplanned: 45%

Q: What takes us down? 
A: Software bugs take us down.

For unplanned outages, software bugs are the dominant contributor . And for 
planned outages, a third arise from maintenance, which is driven by patching, i .e ., 
fixing software bugs . 

Planned Unplanned
Cause Proportion Cause Proportion
External Services  2% Cockpit Error 13%
Maintenance 32% External Services  7%
Other 14% Hardware Failure 12%
Testing 11% Other  7%
Upgrade 41% Software Bug 61%

Figure 7: Planned vs. unplanned by cause

Q: When do we go down? 
A: In the middle of the day.

If unplanned outages were to occur at random, regardless of time of day, we would 
predict that some unplanned outages would land during the Prime window (55 
hours/week), most during the Shoulder window (101 hours/week), and a few during 
the SLA window (12 hours/week) . But, in fact, we see that far more land during 
Prime time than we would expect based purely on chance—perhaps because our 
users are exercising the systems and uncovering bugs in the process .

window Predicted Measured 
Prime 33% 67%
Shoulder 60% 31%
SLA  7%  2%

Figure 8: Unplanned outages by window: predicted vs. measured

Q: What causes induce the most pain? 
A: The same causes which induce major and minor pain.

I tried slicing and dicing in other ways but did not uncover new information . For 
example, when focusing just on the most painful events (Drama and Critical), 
causes break down pretty much the same as they did when considering all severities:
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Planned Unplanned
Cause Proportion Cause Proportion
External Services  4% Cockpit Error 17%
Maintenance 30% External Services  9%
Other 12% Hardware Failure  8%
Testing 16% Other 11%
Upgrade 38% Software Bug 55%

Figure 9: Planned vs. unplanned by severity (drama + Critical only)

Q: How often does it hurt a lot? 
A: Severity shows a normal distribution.

We experience a few of the really painful Drama outages and a few outages with no 
end-user effect: most land in the middle .

Planned unplanned
Drama  0%  5%
Critical 16% 19%
Major 46% 35%
Minor 34% 39%
None  4%  2%

Figure 10: Planned vs. unplanned by severity

Q: What breaks most often? 
A: Transport and email are weak spots.

But see caveats below .

Planned unplanned
Application 18% 16%
Email 20% 21%
Other 16% 20%
Storage 14% 8%
Transport 32% 35%

Figure 11: Planned vs.  unplanned by service

Reality Check

Fuzzy Data

Those cute tables with numbers in them look good  .  .  . but as I apply cultural knowl-
edge, I lose confidence . For example, the network team founded the outages list; the 
email team jumped onto the bandwagon shortly thereafter: these two groups have 
been posting the longest and have become ruthless about reporting every event, no 
matter how embarrassing . Furthermore, they have the most mature monitoring 
systems, reporting even minor hiccups . Are Transport and Email our most fragile 
services? Or do they top the list because of cultural factors: habit, conscientious-
ness, visibility?
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Cockpit Error

Reading thousands of descriptions of outages gave me a chance to smile—I remem-
ber many of these events from personal involvement and know each of the techs 
posting to the list . Senior techs tend to acknowledge their errors directly, using 
language like “I fumbled the configuration,”  “I accidentally typed rm –rf * from 
root,” “I broke the Internet connection,” whereas junior techs tend to slide into pas-
sive voice and circuitous language when they describe their errors: “The service 
went down during trouble-shooting,”  “It was discovered that the configuration 
file contained an error,” “On investigation and after analysis, the power cord was 
found to be detached .” Where possible, I flagged the cause as Cockpit Error, but I’m 
confident that I missed plenty . For that matter, I suspect that Cockpit Error leads 
to unreported outages, as techs try paddling up the Nile in their efforts to dodge 
embarrassment . We have a remarkably shame/blame-free environment—as far as 
I know, no tech has ever been fired for making a mistake and causing an outage . In 
fact, management likes to stress that making mistakes is how we learn (yeah, OK, 
sometimes they look a little nervous when they make this point, but still, the senti-
ment is there) . How can we boost the Cockpit Error reporting rate?

who Else Quantifies This Stuff?

A casual search turned up a handful of studies in this space, with variously sized 
data sets (typically 100–1000 incidents spanning 1–5 years) .

Figure 12: Similar surveys

I’m skeptical that I’m comparing apples to apples here—both environments and 
methodologies vary widely . For example, Gray, Kuhn, and Enriquez were all 
analyzing data sets taken from homogeneous systems (Tandem Computers and 
the Public Switched Telephone Network), while Oppenheimer, Offord, and I are 
analyzing heterogeneous environments (Windows/Linux-based systems running 
on IP/Fibre Channel networks) . Or, to take another example, Offord extracts his 
data set from the log of Root Cause Analysis jobs his company has performed for 
customers—not exactly outages but rather long-running problems . In 42% of their 
cases, the problem was fixed by making a configuration change, which I recatego-
rized as Cockpit Error, in order to fit his data into my taxonomy—probably not a 
precise match .

Tentatively, I see all these data sets directing our attention toward software flaws 
and operator fumbles as places for improvement .

Gray [2] Kuhn [3] Enriquez [4] Oppenheimer [5] Offord [6] Kendrick
Published 1990 1997 2002 2003 2011 2012

SP1 SP2 SP3
Cockpit Error 13% 25% 38% 33% 36% 19% 42% 17%
Software 58% 14%  7% 27% 25% 24% 38% 55%
Hardware 18% 19% 30% 25%  4% 10% —  8%
Other 11% 42% 25% 10% 31% 33% 20% 20%

SP = Service Provider
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what to Do?

Software Bugs

For us, our unplanned downtime is driven by Software Bugs (~60%) . We know that 
we lag on patching . When a service fails repeatedly, we’ll investigate and often 
find a patch addressing the issue which the vendor shipped months or years prior . I 
would like to think that if we patched more regularly, we would convert unplanned 
outages into planned outages . Still, this is a tricky area—most of our teams don’t 
have test environments (we are nonprofit after all)—so we test patches by running 
them in production, and as we all know, patches can fix issues we weren’t having 
while introducing new issues . How many unplanned outages would we dodge by 
patching more aggressively?

Testing

Until recently, the network group tested their redundant routers and switches 
monthly, rebooting them in series, analyzing failure, fixing the issues they uncov-
ered (typically Cockpit Errors, e .g ., misconfigurations), working with sysadmins to 
fix misconfigured servers (servers which weren’t configured to take advantage of 
the dual Ethernet switches in datacenters), and helping the security groups buff up 
highly available firewalls . Of our really painful planned outages, Testing contrib-
uted 16% . I would like to think this approach saved us a similar number of really 
painful unplanned outages and thus was a win . On the other hand, testing requires 
substantial staff time . How to quantify the costs and benefits?

Insights

I have been struck by the number of axes on which one can measure an incident . 
Each of the authors I cite developed their own taxonomy . To recap, here’s mine:

Function Our Term Description
Pain Level Severity Drama, Critical, Major, Minor, None
Intention Planned Planned or Unplanned
Time Frame Window Prime, Shoulder, SLA
End-User Impact Service The thing that went down
Proximate Cause Cause What caused the downtime

Figure 13: Taxonomy

I am troubled by how subjective my categorization process is—I made multiple 
passes through the database, recategorizing as I became more familiar with my 
data; nevertheless, I expect that I made inconsistent choices . Also, many outages 
don’t fit the taxonomy cleanly: what to do with a planned outage which incurred 
unplanned consequences? Or an outage which knocked out multiple services? And 
cause remains tricky—an outage has so many causes, how to pick just one?

Still, at the end of the day, I’m headed back to problem management meetings to 
suggest patching and testing as ways to convert unplanned events into planned 
ones .

Doubt is uncomfortable; certainty is absurd. —Voltaire
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Around April 2008, Sierra College (Rocklin, California) had an unusual problem 
in the datacenter . Nobody remembers exactly when and how it started, but server 
power supplies began failing in unusual numbers and patterns . The senior system 
administrator remembers hearing “pop pop pop,” perhaps a second apart, followed 
by the acrid smell of charred electronics . On investigation, the staff discovered 
that three power supplies in three adjacent racks had failed . Thus began a period of 
travail that some College staff find painful to remember .

The datacenter had been relocated to a building that had not previously housed 
a datacenter . Raised flooring was installed, power for a single row of racks was 
provisioned, and two residential air conditioners were installed . Mains power was 
piped in from an adjacent building . This was supplemented with a pair of Chloride 
UPSes, a 50 KW Wacker generator, and a manual transfer switch . As servers were 
added, AC power was extended underfloor with flex armored conduit . There were 
some server power supply failures right after the move, but nothing like when the 
problems started in April .

The datacenter manager recalls that the servers—there were around 35 at the 
time—mostly remained up during the trouble . Most equipment had redundant 
power supplies, and usually the failures were detected in time to swap in a replace-
ment before the other supply failed . To decrease time to replacement, we imple-
mented a continuous ping-sweep using Solar Winds’ IP Sentry utility . This usually 
caught overnight server outages .

The highest estimate given for the total number of failed supplies was around 
50 . At that time the College’s kit was mostly Dell . Dell balked at the high rate of 
replacements, which forced us to begin using third-party replacements . Occasion-
ally a tier-2 server’s second power supply would be shifted to make a tier-1 server’s 
power fully redundant, shifting the risk of a total failure to lower-valued services .

The entire episode lasted a few months . The College’s facilities people, who had 
installed the datacenter power, were not able to determine the cause . They recom-
mended a local electrical contractor to consult on the problem .

A number of issues came to light . It was discovered that the underfloor boxes that 
held the electrical outlets had screws that were a tiny bit too long, which caused 
problems if the face plates were disturbed . The relative humidity was determined 
to be just 9% . This eventually resulted in replacing the residential air conditioners 
with a pair of substantial commercial chillers that also maintain humidity at cor-
rect levels . Apparently, the facilities people and the contractor didn’t agree on the 
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contribution of unbalanced power draw from the legs of the 3-phase circuit, issues 
with power factor, or harmonics . But they did agree that grounding was a problem . 
The addition of 10 to 20 servers over time almost certainly was a contributing factor .

A number of changes were made that together effectively ended the problem . The 
AC service was upgraded to 400 amps . The generator, undersized for its job, was 
replaced with a 100 KW Cummins diesel unit . The transfer switch was replaced 
with an automatic one, and the UPSes were replaced with a much larger pair . 
Grounding rods were driven into the ground, the floor pedestals and racks were 
brazed to large-gauge ground wires, a ground buss bar was installed, and all the 
grounds were connected there .

That was nearly the end of the problems . But in 2011 another (possibly) related 
problem cropped up . Commercial power failed, the UPS began supplying the data-
center, the generator started and stabilized, and the transfer switch attempted to 
shift the load to the generator . But, possibly because of a floating neutral, the UPS 
would not “take” the generator power . Once the batteries ran out, the datacenter 
went dark . The ground was found to be inadequate . New grounding rods were sunk 
and the buss bar was replaced .

What can we learn from all this? First, I suggest careful attention to power, 
especially grounding, when building a datacenter . Second, even under adverse 
circumstances, it is possible to provide relatively reliable services with relatively 
unreliable parts . Which has been the story of automatic computing since its incep-
tion [1] .
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I am always looking for interesting system administration articles, so when Doug 
Hughes told me that Jacob Farmer was working on a project where they tagged, 
that is, added metadata to files stored at the Harvard Medical School, I asked 
Farmer to write an article about their project . Prodding Farmer, in the form of 
emailing him questions, worked much better, as I discovered that even if I called in 
the evening, often Farmer would still be working on the project .

Rik: We heard through the grapevine that Cambridge Computer is doing some kind 
of data management project with Harvard Medical School that involves metadata, 
backups, and data migration . What can you tell us about the project?

Jacob: Indeed, my team is engaged with Harvard Medical School to do some novel 
things with regard to managing unstructured research data . The formal goal is to 
develop a more intimate understanding of how storage resources are consumed 
by various research groups . The folks at HMS feel that they are always reacting to 
storage technology demands . They feel that if they can better understand the needs 
of their researchers, they can be more proactive in providing storage resources . 
Like many data-intensive research organizations, HMS would like to have a 
long-term storage strategy, and that starts by sorting out what they have now and 
measuring the trends . 

Rik: Is this kind of analysis a new service that Cambridge Computer is offering, or 
is this a one-off professional services engagement? 

Jacob: My company has begun to offer this kind of analysis as a service, but what’s 
really going on is that HMS has agreed to be an early adopter for a software product 
that my company is developing, and this project is simply the first of many projects 
that we hope to tackle with the software . About a year ago, I shared my product 
vision with the CIO at Harvard Med School . He really liked the vision and offered 
to be an early adopter/guinea pig . We have been running our software at HMS for 
about a year now across about 500 TB worth of files . 

Rik: Does your software product have a name, and can you tell us in a nutshell what 
the vision is that HMS found so appealing? 

Jacob: The code name for our product is Starfish . Starfish is a platform that 
enables users and applications to associate metadata with files and directories 
in conventional network file systems . The metadata is then used to enable better 
organization, more insightful reports, and to trigger storage management rules . 
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Our basic premise is that traditional file systems do not provide enough insight 
into the files they are storing to allow meaningful reporting or storage manage-
ment policies . Meanwhile, more structured repositories and content management 
systems are too restrictive to be embraced by researchers . Researchers are notori-
ously resistant to efforts by the IT department to put structures and restrictions 
on the way they work . For instance, they resist directory naming conventions, 
seldom delete unneeded files, etc . Nonetheless, institutions need to impose rules 
and structure if they want to have a prayer at managing the explosive volumes of 
data typical of research computing . Our approach is to layer on the metadata and 
rules in an unobtrusive way .  

Rik: That sounds like a very broad vision . What kinds of specific problems do you 
anticipate tackling with Starfish?

Jacob: I break the potential solutions into three top-level categories: IT infrastruc-
ture, curation/collaboration, and governance . When it comes to IT infrastructure, 
conventional solutions for backup, archiving, and tiered storage are all limited by 
the information available in file-system attributes . As such, their policies are not 
very granular, which is why conventional solutions fail when faced with hundreds 
of terabytes and zillions of files . 

I then lump collaboration and curation together, because they both require mean-
ingful metadata . Our software would enable collaboration by organizing files in 
ways that would be meaningful to third parties . As for curation, I don’t anticipate 
that our metadata framework would meet the standards of a digital preservation 
professional, but we enable their mission by providing the lower-level storage 
management functions that their metadata systems do not perform, and we can 
facilitate the handoff from research to formal curation . 

When it comes to governance, the combination of metadata and rules is very 
powerful . For instance, Starfish could be used to isolate files with data involving 
human subjects or export restrictions . Starfish could also be configured to provide 
administration or auditing for data management plans that were committed in a 
grant proposal . 

Rik: Okay, that is a very broad vision . How does one product do all of that in any 
meaningful way? 

Jacob: Admittedly, Starfish can’t do all of these things, but we believe that all of 
these problem areas have some common elements, and Starfish will provide the 
framework for tackling a variety of hard problems with a single foundation . Most 
specifically, you can’t do anything without having better insight into the busi-
ness value of your files . To that end, Starfish provides a framework for associating 
metadata with files and directories . All of this information is incredibly valuable 
from a search and reporting standpoint, but it becomes even more valuable when 
you can do stuff based on the information . 

Rik: Would you say that the project at HMS been a success so far? Do you have any 
data points you can share? 

Jacob: I can certainly share a few highlights . We sampled roughly a half petabyte 
of miscellaneous files . We found that roughly 180 TB had not been touched in more 
than three years . There were roughly 20 TB of files with words such as trash and 
junk in the file name, and another 20 TB with archive in the file name . All told 
about 40% of the total file storage are candidates for being stored on a lower cost 
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tier . We still have to get user buy-in before moving any files, and we believe we have 
work to do to determine the most user-friendly way to migrate those files away and 
put them back if they are ever needed .  

Rik: Just finding that out sounds useful to me . You mentioned that HMS has a 
laundry list of projects that they hope your software will enable . What’s next? 

Jacob: One of our next big projects is to help users visualize the cost of data storage, 
especially as they relate back to projects and grants . One possibility is to use the 
costing data for charge-backs . Another is simply to encourage good citizenship . 
Either way, try to imagine an individual storage consumer being able to visualize 
how much capacity and cost is in each folder in a directory and then having the 
tools to demote and promote files from one tier to another with full visibility into 
the cost implications . That’s the kind of stuff we are hoping to do  . . . and at very 
large scale . 

Rik: I can imagine that a diverse research institute such as Harvard Med has at 
least one of every kind of storage management problem, so are you devoting 100% 
of your efforts on Harvard, or are you branching out with other early adopter cli-
ents? 

Jacob: We have about a dozen installations, mostly in the life sciences, but we also 
have installations in financial services and in semiconductor manufacturing . In 
each case, the client has a specific objective, and we are working together to see 
how Starfish can help them meet the objective . For instance, at Fred Hutchinson 
Cancer Research Center, they are motivated by detailed reporting and by match-
ing storage capacities to grants and projects . At Indiana University Bloomington, 
we are working together to define best practices for facilitating data management 
plans for grant-funded research . At Dana-Farber [Cancer Institute], we are explor-
ing data protection and life-cycle management . Meanwhile, I have some commer-
cial clients tinkering with using metadata to automate pipelines and others trying 
to use their automated pipelines as a way of capturing metadata . 

Rik: You say that you are targeting research institutions . I would think these kinds 
of solutions would benefit any IT department in any industry . How are the needs of 
researchers different from those of traditional enterprise? 

Jacob: Data-intensive research is a good niche for us . First, we have an extensive 
client base, so we are familiar with the problems, and people know us and are 
excited to work with us . Second, research data tends to flow through pipelines that 
really lend themselves to policy-based data management . Typically, there are raw 
data that fit the WORN paradigm: Write Once, Read Never . Then there are inter-
mediate results, which often fit the WORSE paradigm: Write Once, Read Seldom if 
Ever . Then there are final results . Often there are multiple steps in the processes . 
Often there are offshoots of the main research . 

Another interesting twist with researchers is that they are more concerned about 
preserving the old stuff than they are about protecting their most recently created 
files . New files often can be regenerated, but the old files might be needed to sup-
port a publication . For example, if researchers lose data from an experiment they 
ran yesterday, they can re-run the experiment . If they lose data from five years 
ago that formed the basis of the paper they are trying to publish, they might fail 
in their scientific mission . In a bank or insurance company, the business is much 
more concerned about minimizing downtime and preventing even the tiniest loss 
of newly created data .
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Finally, researchers tend to have funky collaboration needs . Your typical enter-
prise only shares files within the enterprise, conforming to the paradigm of LDAP 
and POSIX permissions . Researchers often need to collaborate with other institu-
tions or sometimes isolated users in their same institution . The granting agencies 
seem to be showing favor to programs that involve cross-institutional collabora-
tion . Meanwhile, the granting agencies are mandating that researchers specify in 
their grant proposals what their plan is for retaining data and sharing data with 
interested third parties, which is a daunting problem when you have large data sets 
stored on a NAS behind the firewall .  

Rik: Still, it sounds like this kind of technology could benefit other industries . Why 
limit yourself? 

Jacob: Yes, there are potential applications for our software in other industries, 
but there are plenty of good companies pursuing intelligent file management for 
the traditional enterprise . Meanwhile, research is still a very broad niche . For 
instance, we have a lot of interest coming from libraries and museums . The librar-
ies, museums, and other institutions of cultural preservation have very compre-
hensive metadata management systems for digital content curation, but they lack 
tools that interface with storage devices . For instance, digital librarians love our 
ability to verify the data integrity of their digital objects in an automated and 
audited way . They also like our ability to enable tiered storage and backups . One of 
the really cool things we are looking into is facilitating the data handoff between 
research computing and the libraries .

Rik: I would like to understand a bit more about the technology . For starters, I’m 
having a little trouble visualizing where Starfish sits relative to applications, users, 
and storage devices . It sounds like it would have to sit in the data path .

Jacob: Quite the contrary . Several vendors over the years have tried to virtualize 
file systems with devices that sit in the data path between the storage device and 
the users/applications . Just about all of these vendors died out early because these 
devices introduce latency, complexity, and often impose a least-common denomi-
nator effect on your fancy storage devices . Our model is to sit to the side of the 
storage device for I/O intensive workloads . We will sit in the data path for archival 
or cloud access . 

Rik: If you are out-of-band, how do you control direct access to the files? Do you 
have to lock down the file servers somehow? 

Jacob: You have hit on both our magic and our imperfection . Because we are not in 
the data path, we have to do our best to figure out what happened, where it hap-
pened, and when . Some NAS and file system products can produce a log or post 
events that we can monitor whenever there are changes made to the file system . It 
is also possible for us to learn of file system changes through the GUI or API . Worst 
case, we have to re-crawl the file system from time to time, but the good news is 
that we have a really fast crawler .  

Rik: Okay, but what if a user deletes a bunch of files that are referenced by the 
metadata . How would you prevent that from happening? 

Jacob: We can’t really prevent a user from deleting files on a production file system, 
unless we programmatically modify permissions or apply a read-only flag . If there 
are metadata associated with deleted files, our system can report on the fact that 
the files are now gone . If you are really worried about files getting deleted, then you 
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configure our software to impose a backup policy that puts a copy of the file in a 
safe place . Now if the file is deleted, we can still associate the metadata with the 
backup copy and we can present an option to restore the file back to the production 
file server . 

Rik: So, in summary, it sounds like you are crawling file systems on a regular basis 
and making a big database that tracks each file and directory . Is there any secret 
sauce or unique intellectual property that differentiates you in the marketplace? 

Jacob: Candidly, our software is not doing anything that has not been done before 
by clever sysadmins or programmers around the world . What makes the software 
special is that we engineered enterprise-class software to do all of these things 
robustly and reliably and that scales to handle the capacities and numbers of files 
that you find in big research institutions .   

I will give you an example from one of our early adopters . A few years ago, the 
client’s IT department had written a Perl script to crawl their file systems, make 
a database record for each directory, and then associate directories with various 
engineering projects . The goal was to be able to look up a project in the database 
and see all relevant directories across all file servers and geographies . Similarly, 
they wanted to look up a directory and see what project it was associated with . 
They wrote the software . It worked . But then they grew from a handful of file serv-
ers to hundreds and from a few dozen terabytes to petabytes . The software buckled 
under the load . Then they had some turnover in the IT department, the code was 
abandoned, and now they have no solution to the problem . Our software just drops 
in and gives them the same functionality, just at a larger scale . We could do a whole 
lot more for them, but this is all they need and they can’t seem to find it anywhere 
else other than writing it themselves .  

Rik: When members of the USENIX community think of Cambridge Computer, we 
don’t necessarily think of a software company . Does this project represent a depar-
ture from your traditional business model? 

Jacob: Yes and no . Yes, in that this is the most ambitious software project we have 
ever taken on . We have done software applications before, but typically for very 
niche-y solutions or for developing tools for our field services people to gather met-
rics at our clients’ sites .

That said, I feel that this project is otherwise a natural extension of my day job . 
In my traditional business, I work like a broker or agent . I help my clients narrow 
down and select the right storage technologies for their project . I try to do that 
without bias toward any particular vendors, and I get paid in the form of commis-
sions when the client buys something . When my clients present me with a problem, 
I have all the incentive in the world to help them find the right vendor because that 
vendor will invariably pay me a finder’s fee or commission . Over the past few years, 
my research clients have been presenting me with problems for which I can’t find 
viable solutions, no matter how far and wide I go shopping . After a few years of 
this, I felt the inspiration to make it myself . In other words, I would never have the 
vision or the impetus for this project if I were not talking all day long to research 
institutions about their storage needs . 

Rik: What kinds of resources are you investing in the project? Would you describe 
this as a skunkworks project, or something more formal? 
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Jacob: This is a real engineering effort with a seven-figure budget and full-time 
dedicated employees . My director of engineering is a former client of mine . In his 
past job, he built a SaaS application that provided e-discovery services for large 
legal cases . His system handled several billion files with all kinds of complex 
search and metadata . We are trying to build something similar, except even larger 
scale and for scientists instead of lawyers . 

Rik: Have you considered making the software available as open source to encour-
age wider adoption? 

Jacob: We have not made any decisions with regard to making the code available 
through an open source license . We are committed to openness by exposing a 
comprehensive API, but for now we feel we have to stay focused on building a really 
robust core product . 

Rik: Final question: How can the USENIX community help?

Jacob: Two ways . For starters, we are hiring developers, so everyone please keep 
your ears open for developers who might be a fit for us . We are looking for profes-
sional software engineers with skills in large-scale, big databases, Python, Django, 
storage management, etc . We are also still open to taking on a few more early 
adopters, especially if they are willing to collaborate with us on defining feature 
sets and doing user-acceptance testing .  
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In the last column, we had a lovely visit with the XML Path Language, or XPath, 
followed by a brief look at how to bring its power to bear using Perl . Path-like 
things have been a bit of a leitmotif here over the past few columns, so I thought we 
might want to continue in this direction . This time we’re going to look at a library/
tool that takes this abstraction and puts it to practical use in an interesting way we 
haven’t seen yet . As regular readers of this column will tell you, I loves me a good 
abstraction now and then . Sure do .

Just a quick warning: like last column, the majority of the words will describe the 
tool/API because once you have that all down pat, bringing Perl into the picture is 
both easy and a bit of an anti-climax (until you realized how cool what you just did 
with a single line of code actually is) .

augeas

The tool I have in mind to explore today is called Augeas . Augeas was developed 
under the aegis (oh, it is just raining Greek mythology references today) of the 
Red Hat’s Emerging Technologies group who have sponsored a number of spiffy 
projects . Determining exactly what Augeas is can be tricky because the project site 
[1] describes the tool as:

u An API provided by a C library
u A command line tool to manipulate configuration from the shell (and shell scripts)
u Language bindings to do the same from your favorite scripting language
u Canonical tree representations of common configuration files
u A domain-specific language to describe configuration file formats

Or more concisely, “Augeas is a configuration editing tool . It parses configura-
tion files in their native formats and transforms them into a tree . Configuration 
changes are made by manipulating this tree and saving it back into native config 
files .” 

But that still probably doesn’t make things crystal clear unless you’ve already had 
the itch this is designed to scratch . I think I can demonstrate the problem to you so 
you can see exactly why this particular solution is so lovely . Let’s take a little tour 
together around the /etc directory of your average UNIX root filesystem (kindly 
keep your hands inside the car at all times and don’t forget to stop at the gift shop 
on the way out) .
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First stop, an excerpt from the local hostname to IP address mapping file,  
/etc/hosts::

    127.0.0.1 localhost

    127.0.1.1 precise32

Next some lines from the file that contains the authentication information for all of 
the local users on a machine, /etc/passwd . Here’s an excerpt from the stock Ubuntu 
12 .04 password file::

     root:x:0:0:root:/root:/bin/bash

     daemon:x:1:1:daemon:/usr/sbin:/bin/sh

Here are some lines from the config file for the service that runs commands at a set 
interval or time:

    # m h dom mon dow user    command

    17 * * * * root    cd / && run-parts --report /etc/cron.hourly

    25 6 * * * root  test -x /usr/sbin/anacron || ( cd / && run-parts 

--report /etc/cron.daily )

And finally, a few lines from the config file for the service that rotates log files:

  /var/log/wtmp {

       missingok

       monthly

       create 0664 root utmp

       rotate 1

   }

   /var/log/btmp {

       missingok

       monthly

       create 0660 root utmp

       rotate 1

   }

As much as it might be fun to try and write an entire column just by quoting files, 
I think this is probably enough to make my point . You don’t have to be a seasoned 
sysadmin to see that none of these file formats look the same . And although a 
seasoned sysadmin can read, understand, and write these different formats in her 
or his head, getting a single piece of code to do that is much trickier . I’ve written 
my share of individual pieces of sed/awk/cut/Perl code to parse and rewrite all 
of these formats and more . Many times I’ve had to start from scratch because the 
formats were more different than similar .

Here’s where Augeas comes into the picture . Augeas provides a framework for cre-
ating plugins (which they call lenses, a term I don’t like all that much) that can read 
and write the formats for all of these different kinds of files and many more . When 
Augeas reads in the data from a file, it transforms the data into a tree that you can 
manipulate . When Augeas writes that tree data back out again, the data is written 
in the native format for that file .
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Tree Talk

Just like we had to do some head scratching in my last column about how to go 
from a XML or HTML document to a tree, again I think in behooves us to make 
sure we get the concept . In fact, extra scrutiny is warranted in this case because 
that tree’s construction and manipulation is central to the whole process .

Augeas trees always have at least two children at the top level: /augeas and /files .  
/augeas is a place to find information about augeas operations and configuration . 
Information like which lens is being used to parse a file, any errors reported in that 
parsing, global configuration information, etc . all live in this part of the tree . We’re 
not going to talk about this branch at all in this column, but knowing about it may 
come in handy for you some day .

The branch of the tree that interests us the most is /files, where you can find (you 
guessed it) the configuration data found in your files . If we wanted to see the data 
from the files above, we would look in:

    /files/etc/hosts/

    /files/etc/passwd/

    /files/etc/crontab/

    /files/etc/logrotate.conf/

respectively . This list of paths brings up two interesting points:

1 .  We’ll be referencing our configuration data using its position in the filesystem . 
Why is that so interesting? It is worth noting because it give you a sense of what 
Augeas is not . Augeas is not trying to be an all-encompassing abstraction frame-
work that elides all of the details of how a system is implemented . If you are 
using a system that keeps its hosts file in /var/etc/hosts for some bizarre reason, 
Augeas will not “standardize” the data by putting it in /files/etc/hosts . At best 
Augeas can be taught to use the “hosts” lens when it sees something in /var/etc 
with that name, but it isn’t going to provide a standardized tree independent of 
the underlying filesystem details .

2 .  I left the trailing slash on those paths to pique your curiosity . All of the data  
for each file lives in a sub-tree that starts with the name of the file . From that 
point in the tree, we see a further elaboration of point #1 . The data found in 
the different file branches is represented in a way best suited for each file type . 
Again, pay attention to what Augeas is not doing here; it is not trying to repre-
sent every configuration file format in some uniform tree structure .

To see best what I mean in detail #2, let’s look at the sub-trees from the first two 
files in our list . I’m going to reproduce just the part of the tree related to the lines I 
excerpted above . In /files/etc/hosts, we can see:

   /files/etc/hosts

   /files/etc/hosts/1

   /files/etc/hosts/1/ipaddr = “127.0.0.1”

   /files/etc/hosts/1/canonical = “localhost”

   /files/etc/hosts/2

   /files/etc/hosts/2/ipaddr = “127.0.1.1”

   /files/etc/hosts/2/canonical = “precise32”
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In /files/etc/passwd, we see this:

   /files/etc/passwd

   /files/etc/passwd/root

   /files/etc/passwd/root/password = “x”

   /files/etc/passwd/root/uid = “0”

   /files/etc/passwd/root/gid = “0”

   /files/etc/passwd/root/name = “root”

   /files/etc/passwd/root/home = “/root”

   /files/etc/passwd/root/shell = “/bin/bash”

   /files/etc/passwd/daemon

   /files/etc/passwd/daemon/password = “x”

   /files/etc/passwd/daemon/uid = “1”

   /files/etc/passwd/daemon/gid = “1”

   /files/etc/passwd/daemon/name = “daemon”

   /files/etc/passwd/daemon/home = “/usr/sbin”

   /files/etc/passwd/daemon/shell = “/bin/sh”

Let me draw your attention to one similarity and one difference between the two 
trees . Both file trees have leaves representing the different fields of their respective 
records . For /etc/hosts, you can see a leaf for each IP address; for /etc/passwd, you 
can see a leaf for each uid, gid, shell, etc .

But now a key difference to note: the first file has a sub-tree for every line in the 
file, and the second has a sub-tree for every login name . In the first case, the lens 
author has chosen to let you distinguish the “record” you are working with by line 
number ( . . ./1/ . . .,  . . ./2/ . . ., and so on); in the second case, you would specify the record 
of interest using the login name instead of its place in the file .

Eagle-eyed readers are no doubt thinking, “Hey, everything has been bunnies 
hopping through the meadow so far, but what happens when the records are 
duplicated or a record has multiple leaves of the same type?” Ok, let’s find out . 
Let’s edit our hosts file to have this as the first line:

   127.0.0.1       localhost huey dewey louie

and let’s change /etc/passwd to have two bin accounts (not a good idea, I know):

bin:x:2:2:bin:/bin:/bin/sh

bin:x:22:2:bin:/bin:/bin/sh

Augeas borrows the numeric predicate notation from the XPath playbook to handle 
these cases and creates sub-trees like this:

/files/etc/hosts/1

/files/etc/hosts/1/ipaddr = “127.0.0.1”

/files/etc/hosts/1/canonical = “localhost”

/files/etc/hosts/1/alias[1] = “huey”

/files/etc/hosts/1/alias[2] = “dewey”

/files/etc/hosts/1/alias[3] = “louie”
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and:

/files/etc/passwd/bin[1]

/files/etc/passwd/bin[1]/password = “x”

/files/etc/passwd/bin[1]/uid = “2”

/files/etc/passwd/bin[1]/gid = “2”

/files/etc/passwd/bin[1]/name = “bin”

/files/etc/passwd/bin[1]/home = “/bin”

/files/etc/passwd/bin[1]/shell = “/bin/sh”

/files/etc/passwd/bin[2]

/files/etc/passwd/bin[2]/password = “x”

/files/etc/passwd/bin[2]/uid = “22”

/files/etc/passwd/bin[2]/gid = “2”

/files/etc/passwd/bin[2]/name = “bin”

/files/etc/passwd/bin[2]/home = “/bin”

/files/etc/passwd/bin[2]/shell = “/bin/sh”

This means we will use a number within a square bracket to distinguish which 
branch of the tree we care about . An important thing to note here is Augeas is strict 
about ordering within the tree . Lines from a file go into the tree—and come out of 
it—in the same order they are found in the file .

augeas’ Muse, xPath

So you don’t think the XPath reference a moment ago is unintentional, Augeas lets 
you reference things such as

   /files/etc/passwd/bin[last()]

to get the last bin line from the configuration data . And indeed, we can now bring 
some of the power of XPath’s query capability we saw in the last column to Augeas . 
For example, we could request all of the logins with the bogus shell of /bin/false:

   /files/etc/passwd/*[shell = ‘/bin/false’]

One example from the Augeas documentation (slightly modified):

   /files/etc/hosts/*/ipaddr[../alias=’huey’]

This query finds the IP addresses of the host with the alias huey .

There are a bunch more selection and querying operations you can do using a 
syntax that is a kissing-cousin to XPath . Rather than enumerate them all, I’d like 
to point you to last ;login issue’s Practical Perl Tools column and the Augeas docu-
mentation . Now let’s look at what you can do with everything we’ve discussed so 
far . For instance, what if you could do something you couldn’t do with XPath, such 
as change values and whole records?

Let’s Do It

Changing things sounds pretty spiffy, no? Let’s get at it . The way I recommend 
you start working with Augeas is to install it on a machine using either a pre-built 
package or grab the latest source from github [2] . For build instructions, see the 
HACKING [3] file once you clone the repository .
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Two quick OS X-related warnings as of this writing:

1 .  A key part of Augeas 0 .10 .0, as made available through both Homebrew and 
MacPorts, builds fine but fails as soon as you try to run it . If you want to run 
Augeas on OS X, you’ll have to build from source, which leads to:

2 .  The latest version of Augeas requires a more recent version of Bison than the 
OS X default of 2 .3 . MacPorts can build a compatible Bison version; Homebrew 
mainline does not have that available .

For more details on where to get Augeas, including the language-specific binding 
(Perl is only one of many available), see their download page [4] . You may also 
be able to download the language binding of your choice from the same pre-
built source as your main Augeas distribution . For example, Ubuntu makes the 
libconfig-augeas-perl package available .

The main distribution comes with a nifty command-line tool called augtool, 
which is a great way to play around with Augeas in an interactive setting . One 
hint if you are going to do this: augtool can take a -- root f lag that will chroot() 
it to a directory of your choice . This lets you play with augtool on a directory 
of configuration files mocked up to look like a real root filesystem (one such 
directory comes with the distribution) without worrying about zorching your 
real configuration data . Another good way to experiment is within a throw-away 
virtual machine .

Augtool has built-in help, but mostly you can stick to a few simple commands:

u ls to show an Augeas path (e .g ., ls /files/etc/passwd/bin)
u print to recursively print out the contents of a sub-tree, which is the command I 

used for the previous output
u match to do an XPath-like search on the tree
u set to set a value (more on this later)
u rm to remove an entire sub-tree (e .g ., to remove a line from a config file)
u ins to insert a sub-tree (e .g ., to insert a line into a file)
u save to write the tree data back out to a file with all changes made

Let’s play with a few of these commands . I promised change, so let’s change one of 
the alias values in the first line of the hosts file we were using:

    $ sudo augtool

    augtool> set /files/etc/hosts/1/alias[3] ‘phooey’

    augtool> save

    Saved 1 file(s)

    augtool> quit

    $ grep phooey /etc/hosts

    127.0.0.1 localhost huey dewey phooey

Here we’ve set the third alias value for the first line and confirmed that change 
actually took . Now, let’s deal with that icky duplicate bin entry in /etc/passwd:

   $ sudo augtool

   augtool> rm /files/etc/passwd/bin[2]

   rm : /files/etc/passwd/bin[2] 7

   augtool> save

   Saved 1 file(s)

   augtool> quit

   $ grep bin:x /etc/passwd

   bin:x:2:2:bin:/bin:/bin/sh
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Gone, baby gone . Augtool also has told us the size of the sub-tree we just removed .

Augtool also works for searches like the ones I mentioned above:

   augtool> match /files/etc/passwd/*[shell = ‘/bin/false’]

   /files/etc/passwd/syslog = (none)

   /files/etc/passwd/messagebus = (none)

   /files/etc/passwd/ntp = (none)

   /files/etc/passwd/vboxadd = (none)

   /files/etc/passwd/statd = (none)

The = (none) part of the results is meant to indicate that the nodes selected by 
the query do not have values of their own (i .e ., they are at the top of their respective 
file tree) . Here’s an example where we are asking for something that does contain a 
value:

   augtool> match /files/etc/hosts/*/ipaddr[../alias=’huey’]

   /files/etc/hosts/1/ipaddr = 127.0.0.1

using This from Perl Is going to be Trivial, Right?

Yeah, yeah it is . All of the things we were just doing in augtool look remarkably 
similar using the Config::Augeas Perl module:

   use Config::Augeas;

   my $aug = Config::Augeas->new();

   $aug->set(‘/files/etc/hosts/1/alias[3]’, ‘kablooey’);

   $aug->save;

Or, another example

   use Config::Augeas;

   

   my $aug = Config::Augeas->new();

   my @matches = $aug->match(q{/files/etc/passwd/*[shell = ‘/bin/false’]});

   print join (“\n”,@matches);

yields

   /files/etc/passwd/syslog

   /files/etc/passwd/messagebus

   /files/etc/passwd/ntp

   /files/etc/passwd/vboxadd

Don’t you love it when a plan comes together? Now you have super powers when it 
comes to reading and editing system config files from Perl thanks to Augeas . Take 
care and I’ll see you next time .
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One of the most significant additions to Python’s standard library in recent years 
is the inclusion of the multiprocessing library . First introduced in Python 2 .6, 
multiprocessing is often pitched as an alternative to programming with threads . 
For example, you can launch separate Python interpreters in a subprocess, interact 
with them using pipes and queues, and write programs that work around issues 
such as Python’s Global Interpreter Lock, which limits the execution of Python 
threads to a single CPU core . 

Although multiprocessing has been around for many years, I needed some time to 
wrap my brain around how to use it effectively . Surprisingly, I have found my own 
use differs from those often provided in examples and tutorials . In fact, some of my 
favorite features of this library tend not to be covered at all . 

In this column, I decided to dig into some lesser-known aspects of using the multi-
processing module . 

Multiprocessing basics

To introduce the multiprocessing library, briefly discussing thread programming 
in Python is helpful . Here is a sample of how to launch a simple thread using the 
threading library: 

import time

import threading

def countdown(n):

    while n > 0:

        print “T-minus”, n

        n -= 1

        time.sleep(5)

    print “Blastoff!”

t = threading.Thread(target=countdown, args=(10,))

t.start()

# Go do other processing

...

# Wait for the thread to exit

t.join()
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Granted, this is not a particularly interesting thread example . Threads often want 
to do things, such as communicate with each other . For this, the Queue library 
provides a thread-safe queuing object that can be used to implement various forms 
of producer/consumer problems . For example, a more enterprise-ready countdown 
program might look like this:

import threading

import Queue

import time

def producer(n, q):

    while n > 0:

        q.put(n)

        time.sleep(5)

        n -= 1

    q.put(None)

def consumer(q):

    while True:

        # Get item

        item = q.get()

        if item is None:

            break

        print “T-minus”, item

    print “Blastoff!”

if __name__ == ‘__main__’:

    # Launch threads

    q = Queue.Queue()

    prod_thread = threading.Thread(target=producer, args=(10, q))

    prod_thread.start()

    cons_thread = threading.Thread(target=consumer, args=(q,))

    cons_thread.start()

    cons_thread.join()

But aren’t I supposed to be discussing multiprocessing? Yes, but the above example 
serves as a basic introduction . 

One of the core features of multiprocessing is that it clones the programming 
interface of threads . For instance, if you wanted to make the above program run 
with two separate Python processes instead of using threads, you would write code 
like this: 

import multiprocessing

import time

def producer(n, q):

    while n > 0:

        q.put(n)

        time.sleep(5)

        n -= 1

    q.put(None)
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def consumer(q):

    while True:

        # Get item

        item = q.get()

        if item is None:

            break

        print “T-minus”, item

    print “Blastoff!”

if __name__ == ‘__main__’:

    q = multiprocessing.Queue()

    prod_process = multiprocessing.Process(target=producer, args=(10, q))

    prod_process.start()

    cons_process = multiprocessing.Process(target=consumer, args=(q,))

    cons_process.start()

    cons_process.join()

A Process object represents a forked, independently running copy of the Python 
interpreter . If you view your system’s process viewer while the above program 
is running, you’ll see that three copies of Python are running . As for the shared 
queue, that’s simply a layer over interprocess communication where data is serial-
ized using the pickle library . 

Although this example is simple, multiprocessing provides a whole assortment of 
other low-level primitives, such as pipes, locks, semaphores, events, condition vari-
ables, and so forth, all modeled after similar constructs in the threading library . 
Multiprocessing even provides some constructs for implementing shared-memory 
data structures . 

no! no! no!

From the previous example, you might get the impression that multiprocessing is 
a drop-in replacement for thread programming . That is, you just replace all of your 
thread code with multiprocessing calls and magically your code is now running in 
multiple interpreters using multiple CPUs; this is a common fallacy . In fact, in all 
of the years I’ve used multiprocessing, I don’t think I have ever used it in the man-
ner I just presented . 

The first problem is that one of the most common uses of threads is to write I/O 
handling code in servers . For example, here is a multithreaded TCP server using a 
thread-pool: 

from socket import socket, AF_INET, SOCK_STREAM

from Queue import Queue

from threading import Thread

def echo_server(address, nworkers=16):

    sock = socket(AF_INET, SOCK_STREAM)

    sock.bind(address)

    sock.listen(5)

    

    # Launch workers

    q = Queue(nworkers)
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    for n in range(nworkers):

        t = Thread(target=echo_client, args=(q,))

        t.daemon = True

        t.start()

    # Accept connections and feed to workers

    while True:

        client_sock, addr = sock.accept()

        print “Got connection from”, addr

        q.put(client_sock)

def echo_client(work_q):

    while True:

        client_sock = work_q.get()

        while True:

            msg = client_sock.recv(8192)

            if not msg:

               break

            client_sock.sendall(msg)

        print “Connection closed”

if __name__ == ‘__main__’:

    echo_server((“”,15000))

If you try to change this code to use multiprocessing, the code doesn’t work at all 
because it tries to serialize and pass an open socket across a queue . Because sock-
ets can’t be serialized, this effort fails, so the idea that multiprocessing is a drop-in 
replacement for threads just doesn’t hold water . 

The second problem with the multiprocessing example is that I don’t want to write 
a lot of low-level code . In my experience, when you mess around with Process and 
Queue objects, you eventually make a badly implemented version of a process-
worker pool, which is a feature that multiprocessing already provides . 

MapReduce Parallel Processing with Pools

Instead of viewing multiprocessing as a replacement for threads, view it as a 
library for performing simple parallel computing, especially parallel computing 
that falls into the MapReduce style of processing . 

Suppose you have a directory of gzip-compressed Apache Web server logs: 

logs/

    20120701.log.gz

    20120702.log.gz

    20120703.log.gz

    20120704.log.gz

    20120705.log.gz

    20120706.log.gz

    ...

And each log file contains lines such as: 

124.115.6.12 - - [10/Jul/2012:00:18:50 -0500] “GET /robots.txt HTTP/1.1” 200 71
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210.212.209.67 - - [10/Jul/2012:00:18:51 -0500] “GET /ply/ HTTP/1.0” 200 

11875

210.212.209.67 - - [10/Jul/2012:00:18:51 -0500] “GET /favicon.ico HTTP/1.0” 

404 369

61.135.216.105 - - [10/Jul/2012:00:20:04 -0500] “GET /blog/atom.xml HTTP/1.1” 

304 -

...

This simple script takes the data and identifies all hosts that have accessed the 
robots .txt file: 

# findrobots.py

import gzip

import glob

def find_robots(filename):

    ‘’’

    Find all of the hosts that access robots.txt in a single log file

    ‘’’

    robots = set()

    with gzip.open(filename) as f:

        for line in f:

            fields = line.split()

            if fields[6] == ‘/robots.txt’:

                robots.add(fields[0])

    return robots

def find_all_robots(logdir):

    ‘’’

    Find all hosts across an entire sequence of files

    ‘’’

    files = glob.glob(logdir+”/*.log.gz”)

    all_robots = set()

    for robots in map(find_robots, files):

        all_robots.update(robots)

    return all_robots

if __name__ == ‘__main__’:

    robots = find_all_robots(“logs”)

    for ipaddr in robots:

        print(ipaddr)

The above program is written in the style of MapReduce . The function find_
robots() is mapped across a collection of filenames, and the results are combined 
into a single result—the all_robots set in the find_all_robots() function . 

Suppose you want to modify this program to use multiple CPUs . To do so, simply 
replace the map() operation with a similar operation carried out on a process pool 
from the multiprocessing library . Here is a slightly modified version of the code: 

# findrobots.py

import gzip
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import glob

import multiprocessing

# Process pool (created below)

pool = None

def find_robots(filename):

    ‘’’

    Find all of the hosts that access robots.txt in a single log file

    ‘’’

    robots = set()

    with gzip.open(filename) as f:

        for line in f:

            fields = line.split()

            if fields[6] == ‘/robots.txt’:

                robots.add(fields[0])

    return robots

def find_all_robots(logdir):

    ‘’’

    Find all hosts across and entire sequence of files

    ‘’’

    files = glob.glob(logdir+”/*.log.gz”)

    all_robots = set()

    for robots in pool.map(find_robots, files):

        all_robots.update(robots)

    return all_robots

if __name__ == ‘__main__’:

    pool = multiprocessing.Pool()

    robots = find_all_robots(“logs”)

    for ipaddr in robots:

        print(ipaddr)

If you make these changes, the script produces the same result, but runs about four 
times faster on my machine, which has four CPU cores . The actual performance 
will vary according to the number of CPUs available on your machine . 

using a Pool as a Thread Coprocessor

Another handy aspect of multiprocessing pools is their use when combined with 
thread programming . A well-known limitation of Python thread programming is 
that you can’t take advantage of multiple CPUs because of the Global Interpreter 
Lock (GIL); however, you can often use a pool as a kind of coprocessor for computa-
tionally intensive tasks . 

Consider this slight variation of our network server that does something a bit more 
useful than echoing data—in this case, computing Fibonacci numbers: 

from socket import socket, AF_INET, SOCK_STREAM

from Queue import Queue

from threading import Thread

from multiprocessing import Pool
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pool = None   # (Created below)

# A horribly inefficient implementation of Fibonacci numbers

def fib(n):

    if n < 3:

       return 1

    else:

       return fib(n-1) + fib(n-2)

def fib_client(work_q):

    while True:

        client_sock = work_q.get()

        while True:

            msg = client_sock.recv(32)

            if not msg:

               break

            # Run fib() in a separate process

            n = pool.apply(fib, (int(msg),))

            client_sock.sendall(str(n))

        print “Connection closed”

def fib_server(address, nworkers=16):

    sock = socket(AF_INET, SOCK_STREAM)

    sock.bind(address)

    sock.listen(5)

    

    # Launch workers

    q = Queue(nworkers)

    for n in range(nworkers):

        t = Thread(target=fib_client, args=(q,))

        t.daemon = True

        t.start()

    # Accept connections and feed to workers

    while True:

        client_sock, addr = sock.accept()

        print “Got connection from”, addr

        q.put(client_sock)

if __name__ == ‘__main__’:

    pool = Pool()

    fib_server((“”,15000))

If you run this server, you’ll find that it performs a neat little trick . For each client 
that needs to compute fib(n), the operation is handed off to a pool worker using 
pool .apply() . While the work takes place, the calling thread goes to sleep and waits 
for the result to come back . If multiple client threads make requests, the work is 
handed off to different workers and you’ll find that your server is processing in 
parallel . Under heavy load, the server will take full advantage of every available 
CPU . The fabled GIL is not an issue here because all of the threads spend most of 
their time sleeping . 
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Note that this technique of using a pool as a coprocessor also works well in applica-
tions involving asynchronous I/O (i .e ., code based on select-loops or event han-
dlers), but because of space constraints, you’ll just have to take my word for it . 

Multiprocessing as a Messaging Library

Perhaps the most underrated feature of multiprocessing is its use as a messaging 
library from which you can build simple distributed systems . This functionality 
is almost never mentioned, but you can find it in the multiprocessing .connection 
submodule . 

Setting up a connection between independent processes is easy . The following is 
an example of a simple echo-server: 

# server.py

from multiprocessing.connection import Listener

from threading import Thread

def handle_client(c):

    while True:

        msg = c.recv()

        c.send(msg)

def echo_server(address, authkey):

    server_c = Listener(address, authkey=authkey)

    while True:

        client_c = server_c.accept()

        t = Thread(target=handle_client, args=(client_c,))

        t.daemon = True

        t.start()

if __name__ == ‘__main__’:

     echo_server((“”,16000), “peekaboo”)

Here is an example of how you would connect to the server and send/receive mes-
sages: 

>>> from multiprocessing.connection import Client

>>> c = Client((“localhost”,16000), authkey=”peekaboo”)

>>> c.send(“Hello”)

>>> c.recv()

‘Hello’

>>> c.send([1,2,3,4])

>>> c.recv()

[1, 2, 3, 4]

>>> c.send({‘name’:’Dave’,’email’:’dave@dabeaz.com’})

>>> c.recv()

{‘name’: ‘Dave’, ‘email’: ‘dave@dabeaz.com’}

>>> 

As you can see, this is not just a simple echo-server as with sockets . You can actu-
ally send almost any Python object—including strings, lists, and dictionaries—
back and forth between interpreters . Thus, this connection becomes an easy way 
to pass data structures around . In fact, any data compatible with the pickle module 
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should work . Further, there is even authentication of endpoints involving the auth-
key parameter, which is used to seed a cryptographic HMAC-based authentication 
scheme . 

Although the messaging features of multiprocessing don’t match those found in a 
library such as ZeroMQ (0MQ), you can use the messaging to perform much of the 
same functionality, if you’re willing to write a bit of code . For example, here is a 
server that implements a Remote Procedure Call (RPC):

# rpcserver.py

from multiprocessing.connection import Listener, Client

from threading import Thread

class RPCServer(object):

    def __init__(self, address, authkey):

        self._functions = { }

        self._server_c = Listener(address, authkey=authkey)

    def register_function(self, func):

        self._functions[func.__name__] = func

    def serve_forever(self):

        while True:

            client_c = self._server_c.accept()

            t = Thread(target=self.handle_client, args=(client_c,))

            t.daemon = True

            t.start()

    def handle_client(self, client_c):

        while True:

            func_name, args, kwargs = client_c.recv()

            try:

                r = self._functions[func_name](*args,**kwargs)

                client_c.send(r)

            except Exception as e:

                client_c.send(e)

class RPCProxy(object):

    def __init__(self, address, authkey):

        self._conn = Client(address, authkey=authkey)

    def __getattr__(self, name):

        def do_rpc(*args, **kwargs):

            self._conn.send((name, args, kwargs))

            result = self._conn.recv()

            if isinstance(result, Exception):

                raise result

            return result

        return do_rpc

# Sample usage

if __name__ == ‘__main__’:

    # Remote functions
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    def add(x,y):

        return x+y

    def sub(x,y):

        return x-y

    # Create and run the server

    serv = RPCServer((“localhost”,17000),authkey=”peekaboo”)

    serv.register_function(add)

    serv.register_function(sub)

    serv.serve_forever()

To access this server as a client, in another Python invocation, you would simply do 
this: 

>>> from rserver import RPCProxy

>>> c = RPCProxy((“localhost”,17000), authkey=”peekaboo”)

>>> c.add(2,3)

5

>>> c.sub(2,3)

-1

>>> c.sub([1,2],4)

Traceback (most recent call last):

  File “”, line 1, in 

  File “rpcserver.py”, line 37, in do_rpc

    raise result

TypeError: unsupported operand type(s) for -: ‘list’ and ‘int’

>>> 

Final words

The multiprocessing module is a tool worth keeping in your back pocket . If you are 
performing MapReduce-style data analysis, you can use process pools for simple 
parallel computing . If you are writing programs with threads, pools can be used 
like a coprocessor to offload CPU-intensive tasks . Finally, the messaging features 
of multiprocessing can be used to pass data around between independent Python 
interpreters and build simple distributed systems . 

References
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The very moment that my three-year-old niece picked up the little scrap of PVC 
pipe, I knew what would happen . I saw in my mind’s eye her baseball-bat swing into 
the back of her cousin’s head, and knew it for the inevitable truth as predictably as 
the quadratic formula . As he lay crying on the floor it occurred to me that, being 
what we are, certain objects speak to us . Tools meet the hand and, for better or 
worse, beg to be used . They inspire us to action, but we need not learn to obey them; 
on the contrary, we spend years learning to resist .

Our primordial connection to tools is why there is a store in the mall where I can 
purchase a samurai sword, and it’s why we say things like, “When all you have is 
a hammer, everything looks like a nail .” I think it’s something so deeply ingrained 
in us that it transcends physical objects . That may be presumptions of me, but 
personally, I often encounter software “solutions in want of a problem,” by which 
I mean tools that are just so great I rack my brain trying to come up with a use for 
them .

So when I come across a quote like the following from Jon Gifford, “0MQ is unbe-
lievably cool—if you haven’t got a project that needs it, make one up” [1], I strongly 
relate . I even get excited . I can almost feel this 0MQ whatever-it-is grasped lightly 
in my hand, its weight as substantial as its balance is remarkable . It sings to me, 
and I realize it was made for me, and I for it; together, we are unstoppable . It shows 
me things: things that were, and are yet to be; things to smash; things, in fact, that 
cry out begging to be smashed . Together, we will drive elephants over the Alps, 
cross the Rubicon, defeat the infamous El Guapo and take back what is rightfully 
OURS .

You see how I get . Great tools inspire great deeds, especially if you can find a 
reason to use them, which, it turns out, is the case with 0MQ . But first things first; 
introductions are in order .

0MQ [2] (pronounced “Zero MQ”) is, for lack of a better description, a sort of socket 
library . The goal of the project, briefly stated, is to “connect any code to any code, 
anywhere,” and they’re doing it by providing a simple, cross-platform, language-
agnostic, asynchronous, messaging and concurrency protocol . 0MQ sockets 
automatically handle multiple simultaneous connections, provide fair queueing, 
and cooperate to form scalable multicore applications, using an interface you’re 
already familiar with if you’ve done any socket programming . It is literally easier 
to use than it is to describe, but compared to traditional sockets there are two big 
differences .
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First, compared to conventional sockets, which present a synchronous interface 
to either reliable, connection-oriented byte streams (SOCK_STREAM) or to 
unreliable, connection-less datagrams (SOCK_DGRAM), 0MQ sockets present 
an abstraction of an asynchronous message queue . The specific queueing behavior 
depends on the type of socket chosen by the programmer, but generally speak-
ing, the programmer creates the socket, connects the socket, drops in a message, 
and that’s it . There is no need to deal with the memory management associated 
with stream data on the client-end; 0MQ sockets know the size of the message 
and respond accordingly . Whereas conventional sockets transfer streams of bytes 
or datagrams, 0MQ sockets transparently transfer whole messages, quickly and 
safely .

Second, conventional sockets limit the programmer to one-to-one (two peers), 
many-to-one (many clients, one server), or in some cases one-to-many (multi-
cast) relationships . Most 0MQ sockets (with one exception) can be connected to 
multiple endpoints, while simultaneously accepting incoming connections from 
multiple peers . Peer endpoints in either case may be other hosts on the network, 
other processes on the local machine, or other threads in the same process . The 
exact semantics of the message delivery depend on the type of socket chosen by the 
developer .

As I’ve said, there are several types of 0MQ sockets, each belonging to a “pattern,” 
which corresponds to a style of distributed application framework . The available 
patterns are:

u Request-reply (classic TCP style client-server) 
u Publish-subscribe (multicast, empowered, and simplified)
u Pipeline (think Hadoop style parallel application frameworks)
u Exclusive pair (inter-thread communication)

Sockets belonging to the same pattern are designed to work together to implement 
the pattern . The request-reply pattern, for example, is composed of a request socket 
and a reply socket . An application may use as many different patterns and socket 
types as it needs to accomplish its task, but socket types belonging to different 
patterns generally can’t connect to each other directly . You cannot, for example, 
connect a PULL (pipeline) socket to a PUB (publish-subscribe) endpoint, but you 
could certainly write a single application that used both the publish-subscribe and 
pipeline patterns .

In this article, I’m only going to talk about two patterns, the request-reply, which is 
the most simplistic and therefore ideal for introductory examples, and the publish-
subscribe pattern, which is the pattern that has me wanting to smash things .

The request-reply pattern, illustrated in Figure 1, is used for sending requests from 
a client to one or more instances of a service, and receiving subsequent replies to 
each request sent . Below is a Ruby script that implements a server on port 4242, 
which will wait for input from a 0MQ REQ (request) socket, and will reply with the 
word “foo”:

require ‘rubygems’ 

require ‘ffi-rzmq’

context = ZMQ::Context.new(1) 

socket = context.socket(ZMQ::REP) 

socket.bind(“tcp://*:4242”)

Figure 1: The 0MQ request-reply pattern
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while true do 

request = ‘’  

rc = socket.recv_string(request)  

socket.send_string(“foo”)  

end

In pseudo-code, the server (“responder” in 0MQ parlance):

u creates a socket of type REP (response); 
u binds it to TCP port 4242 on 0 .0 .0 .0/0 ;
u blocks waiting for a connection from a REQ (request socket); 
u responds with the string “foo” once a connection is made (the message sent from 

the client is stored in the ‘request’ variable) .

In the interest of word count, I’m going to keep the code listings to a minimum and 
just tell you that the client program does pretty much exactly the same thing in 
reverse; it:

u creates a socket of type REQ (request); 
u connects it to TCP port 4242 on one or more servers;
u sends a message;
u blocks waiting for a response from the server .

The REQ and REP sockets work in lockstep; the client must send and then receive 
(in a loop, if necessary), and the server must receive and then send . Attempting 
any other sequence generates an error code . The server and client can start in any 
order, and 0MQ transparently handles multiple connections on either side, provid-
ing fair queueing if, for example, one client makes a connection every 500 milli-
seconds and another connects only once every two seconds . The developer is free 
to implement whatever protocol he likes over the connection, binary, or text; 0MQ 
does not know anything about the data you send except its size in bytes .

The publish-subscribe pattern, depicted in Figure 2, is a multicast pattern, used for 
one-to-many distribution of data from a single publisher to multiple subscribers . A 
host wishing to distribute data creates a socket of type PUB, binds it to an address, 
and writes data to it as often as the application demands . A host wishing to receive 
data from the publisher creates a socket of type SUB, and connects it to the server . 
The PUB-SUB socket pair is asynchronous: the client receives in a loop while the 
server sends . Neither socket blocks waiting for the other .

Subscribers may connect to more than one publisher, using one “connect” call each 
time, and the received data will be interleaved on arrival so that no single publisher 
drowns out the others . A publisher that has no connected subscribers will simply  
/dev/null all its messages . Subscribers in a Pub-Sub relationship may specify one 
or more filters to control the content they’re interested in receiving .

Now, if you’re one of the four people who read this column with any regularity 
(hi Mom), I can safely assume that you have a large unruly gaggle of monitoring 
systems that you’ve managed to integrate . I can pretty safely make this assump-
tion because the preponderant quantity of words I devote to this column that 
aren’t dedicated to ranting or poorly disguised fart jokes are devoted to integrat-
ing monitoring tool A with monitoring tool B . That I cannot introduce a new tool 
without talking about how to integrate it with the other tools you’re already using 
is testimony to an interesting fact; namely, that nobody uses a single tool for moni-
toring anymore .

Figure 2: The 0MQ publish-subscribe pattern
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Of course, “nobody” is a lot of somebodys . I’m certainly wrong there . Somebody 
somewhere probably uses one big tool for monitoring, but they’re probably not read-
ing a column that talks about integrating various tools all the time, unless they can’t 
find a better source for ranting and poorly disguised fart jokes (unlikely) . The rest of 
us are using a bunch of tools—this for systems availability, that for router metrics, 
the other for Web analytics  .  .  . you get the point . The tools themselves are beginning 
to reflect this, as each monitoring tool slowly makes the realization that it isn’t the 
center of the universe, that it is, in fact, a piece of a solution to a much larger need .

Five years ago we built tools like Cacti [3], which does everything from metrics 
polling, through data storage and into display—utterly self-contained . Today, we 
build tools like Graphite [4], a powerful display and analysis engine that’s opti-
mized for simplicity of input—built for integration . I gave up on Cacti because it’s a 
dead end: you put SNMP data in, and there it stays forever . I love Graphite, because 
it takes any kind of data from any kind of system and is happy to share it every-
where . Graphite gives me a place to combine and compare the output of systems 
that cannot be made to talk to each other .

But what if we could go a few steps further . Imagine, every monitoring system—
Ganglia [5], sflow [6], Nagios [7] , collectd [8], SNMPd [9], Graphite, etc .—publish-
ing availability data and metrics using 0MQ Pub-Sub . All monitoring and metrics 
data available in a common syntax, using a common, lightweight, fast, message bus 
in a manner that didn’t require a centralized server or single point of failure . Every 
agent could publish data to any collector that was interested all the time, and every 
collector could have access to any data it wanted .

Now there’s a pipe to smack your cousin in the head with . The very fact of 0MQ’s 
existence makes our lack of that pipe seem like hubris and stupidity, although some 
baby-steps have begun in the general direction I’m describing[10, 11] . I suspect the 
real challenge will be in coming up with a standard syntax for describing avail-
ability and metric data and getting a couple of the big players to adopt it . Maybe 
someone should hold a BoF .

Take it easy .
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Fall is in the air, not to mention all over the ground and floating in my new pool . 
With autumn comes cooler weather, which may seem like a blessing in this year of 
record-breaking heat, even for some of you who ordinarily dread the encroachment 
of Jack Frost and his minions . Good thing all those climate scientists who’ve been 
predicting global warming are wrong, eh? Otherwise, this might be a worrying 
trend . In my neck of the scrub brush—San Antonio, Texas—any lessening of the 
thermal oppression is welcomed by all and sundry . 

One of the topics I saw proposed for this month’s issue of the magazine you are 
currently holding concerned self-destructing DC power supplies . The topic got 
me thinking about all of the computers I’ve owned and administered in my life—a 
number that requires scientific notation to express—and their propensity for auto-
lysis . Computers, at least the ones that have dominated my existence for the past 35 
years, tend to experience three fundamental failure modes: insidious, inopportune, 
and incendiary . I3 == bad juju . (Notice that I use two equals signs rather than one, 
which brands me as an authentic coding geek . Pay attention next time .)

Insidious failures are those that happen when you’re not looking, often when the 
computer isn’t even powered up . Main board and memory failures generally fall 
into this category . Many’s the otherwise fair morning, vibrant with the promise of a 
productive day, that has been ruined utterly by a POST failure; serenade of clinical, 
cynical beep codes; or just flat refusal to power up . Those weird, unpredictable errors 
that spring from thermal cycling, transient memory boo-boos, and the infamous 
gremlins in the system are all examples of this genre of frustration-inducing activity .

The inopportune fail mode is for the most part blatant and occurs, as the name 
suggests, in such a manner as to maximize the deleterious consequences . A classic 
example was the Blue Screen of Death (BSOD) fail during Bill Gates’ 1998 COM-
DEX introduction to Windows 98 . For the next four or five years, I giggled every 
time I thought of that . In fact, I’m still giggling . Another member of this genus is 
the computer that locks up just as you are reaching to save an hour’s worth of com-
plex word processing or spreadsheet data . This failure is also known as a TYHO 
(Tear Your Hair Out) error . 

My favorite failures have to be the various BSOD incidents in simulators for mili-
tary aircraft and surface ships . If they happen in real missions, that’s classified and 
I can’t talk about it. 

 “You have a bogey at nine o’clock, Major . Engage him with your missiles!”  
 “Um, I tried that, but first the console said something about a memory  
 read error, then the little hourglass came up . Now it doesn’t respond at all .” 

/dev/random
r o b E r t  g .  f E r r E l l
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 “You’re hit! Bail out! Repeat: bail out! 
 “No can do . It says ‘Action failed. Please see your system administrator.’” 
 “Climb out of the cockpit manually, then .” 
 “Can’t . Canopy interlocks are computer-controlled . Wait…the screen is 
  coming back on . Just in time, too . Hold it…never mind .” 
 “Why? What does it say? 
 “‘It is now safe to turn off your computer.’” 
 “Bummer . Any last words, Major?” 
 “Linux rocks!”

The third—and perhaps least-predictable—failure mode is what I have termed 
incendiary for two reasons: this failure tends to make the failure recipient very 
hot-headed, and it literally can trigger open flames . Although I didn’t actually read 
the DC power supply failure article/proposed article/outline—whatever form and 
degree of completion in which it manifested—I imagine that such an event could 
easily fall within this category of failure . The foremost example that springs to 
mind for me is a PCI graphics card I once owned that decided to fail with a pro-
nounced flourish . First the housing for the fan that cooled the GPU exploded nois-
ily, followed fairly rapidly by a little jet of flame that might have burned down my 
entire house had I not been nearby when it chose to erupt . Using keyboard cleaner 
compressed air, a move that incurs extra geek points, I snuffed out the flame and 
yanked the wreckage out of my mainboard . The scene looked like an appropriately 
scaled aircraft had crashed into the GPU with the loss of all souls; in aircraft 
accident investigation parlance, this would be a CFIS, or Controlled Flight into 
Semiconductor. Since that incident, I have avoided this particular manufacturer 
because I prefer my domicile in the pre-combustion state .

Of course, incendiary doesn’t necessarily have to equate to high temperature . 
Incendiary can also refer to occurrences that by their nature engender anger . 
Not that I wasn’t angry when my video card started spitting fire, but that anger 
was secondary to sheer panic . Other incendiary failures do not result in panic or 
ignition of household furnishings, such as the infamous autocorrect feature that 
has torpedoed nearly every Internet user at one time or another, usually at a most 
unpropitious moment .

Let us, for the sake of exemplification, take a hypothetical situation in which a 
charming young man of good breeding wishes to express gratitude to his mother-
in-law for the thoughtful gift of a pair of booties knitted by her very hand for the 
newborn child of the young man and his wife, the gift-giver’s daughter . As said wife 
is driving the booties home from Mom’s house, the young man composes a short—
but heartfelt—expression of these thanks on his smartphone . “Dear Mom,” he 
types, “Thank you so very much for the booties . Sherry and I love them, and so will 
little Radisson .” Tragically, the smartphone really isn’t, and its dictionary has not 
come pre-loaded with the word booties. The phone decides to auto-correct with a 
word that means seabirds related to the gannet. Mom’s response is outside the scope 
of this treatise and can be found in a companion volume called, “Why Wars Start .”

What about hardware or software failures that don’t fall easily into one of the 
above categories? I happen to have come up with a suitable answer to this question, 
the deeply ingrained wisdom of which, upon sober reflection, should be apparent 
to even the most simple-minded of my readers: Stop engaging in useless hair-split-
ting and get—for the love of all that is good and wholesome and promotes sound 
UNIX-related IT policy—a freaking life .
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This is not a story I was part of, and it’s before I came to 
Silicon Valley, so in some sense it’s not a world I know . And 
yet, at the same time, it is the world I knew then (a time when 
we saved the foam that one of our computers came in because 
it was handy for sleeping on when you had been programming 
too long and needed a nap) . Furthermore, it is also the world 
of the most recent startup I was at . Having the stories told by 
the participants gives this a sense of truth that most tales of 
computing history don’t possess .

This came in (reprinted) for review right around the time 
Steve Jobs died, and I put off looking at it partly because of 
the noise at the time . Although Steve Jobs appears, this is not 
a book about him, and it depicts him with the full complexity 
of feelings that people had at the time .

The Design of Design
Frederick P . Brooks, Jr . 
Addison-Wesley, 2010 . 448 pp .  
ISBN 978-0201362985

I love the author’s classic book The Mythical Man Month 
with a passion, and I was therefore prepared to adore this 
as well . Unfortunately, I did not . It’s nice enough; there are 
interesting insights into a number of things, most of them not 
directly related to programming, and anybody who has used 
JCL is sure to enjoy the discussion of how it came to be the 
worst programming language ever (the author’s description, 
although I wholeheartedly agree) .

If you’re the kind of person who wants to engage in meta-
cognition about the nature of design as an interdisciplinary 
undertaking, this is an interesting resource . If you were hop-
ing for a straightforward sequel to The Mythical Man Month, 
you are liable to be disappointed .

Team geek: a Software Developer’s guide to 
working well with Others
Brian W . Fitzpatrick and Ben Collins-Sussman
O’Reilly, 2012 . 160 pp .  
ISBN 978-1-449-30244-3

The Developer’s Code: what Real Programmers Do 
Ka Wai Cheung 
Pragmatic Bookshelf, 2012 . 141pp .  
ISBN 978-1-934356-79-1

These make a nice pair; each is the programmer’s equivalent 
of a glossy management book, with simple, good advice well 
packaged . Simple ideas are easy to read and easy to believe in 
and sadly very, very hard to implement . I like these ideas a lot .

Team Geek is a unified book in smoothly integrated chapters 
with pictures; Developer’s Code is in short essays . Otherwise, 
they differ primarily as suggested by the subtitles . Team Geek 
is mostly about teamwork, as a team member or team leader; 
Developer’s Code is mostly about subjects that are closer to 
the code itself .

In Team Geek, as always, I disagree with some of the details 
of the specifics (the compliment sandwich, like the direct 
order, has its place; the trick is recognizing that place on the 
rare occasions you encounter it) . But that’s inevitable, and the 
general outlines are spot-on . Most people underestimate the 
importance of being honest and nice .

Revolution in the valley 
Andy Hertzfeld et al . 
O’Reilly, 2005 . 290 pp .  
ISBN 978-1-449-31624-2

The real story of the Macintosh . If you’re at all interested in 
computing history, or “how it was done” stories, you should 
read this . It’s a top-notch job of being as non-fictional as pos-
sible, and it beautifully captures the combination of insanity 
and exhilaration that goes into groundbreaking work .

book Reviews
E l i z a b E t h  z w i C k y ,  w i t h  M a r k  l a M o u r i n E
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CoffeeScript: Accelerated JavaScript Development is not a 
lengthy tome . Burnham states in the preface that readers 
should have at least some experience with JavaScript . It 
might be even more help if they can code Ruby . It is implicit 
that they should have some background in software develop-
ment as well . You’ll see why in a moment .

The opening chapter glosses how to install Node .js and the 
CoffeeScript compiler . It gives an example of how to compile 
CoffeeScript source code to JavaScript . It also shows how to 
run it as an interpreter in interactive mode .

Only three language constructs (writ large) are explicitly 
covered: Functions in Chapter 2, Collections and Iteration in 
Chapter 3, and Classes and Modules in Chapter 4 . Burnham 
relies on the code examples, the reader’s experience, and the 
similarities to Ruby to help the reader along . (There is also a 
Cheat Sheet for JavaScripters in Appendix 3 .) The final two 
chapters discuss using CoffeeScript with JQuery and writing 
server side code with Node .js .

In keeping with the “pragmatic” theme in the Pragmatic 
Programmers series, the preface includes the description 
of a project that is used to illustrate the new concepts . Each 
chapter contains a coding section based on that project . The 
chapters close with a set of example questions designed to 
highlight the problems that most JavaScript programmers 
encounter when learning CoffeeScript .

Burnham provides three appendices to his book . I’ve already 
mentioned the cheat sheet for converting JavaScript con-
structs to CoffeeScript and back . The other two are the anno-
tated answers to the chapter example questions and a section 
listing six different ways to run CoffeeScript .

CoffeeScript is a great introduction to the CoffeeScript lan-
guage for someone who is familiar with and frustrated by the 
warts of JavaScript . It will be a very welcome book for some-
one who must use JavaScript and is comfortable with Ruby .

Programming in CoffeeScript 
Mark Bates
Pearson Education, 2012 . 283 pp .  
ISBN-13: 978-03-2182010-5

If you’re a JavaScript coder, Programming in CoffeeScript 
is meant to sit in a handy place on your desk . The Pearson 
“Developer’s Library” series promises reference works for 
professional developers, and Bates’ book fills the bill .

This is the first book I can remember that has a test for the 
reader in the preface . Bates presents a fragment of JavaScript 
and tells the reader to put the book down and get comfort-

understanding IPv6, Third Edition
Joseph Davies 
Microsoft Corporation, 2012 . 640 pp .  
ISBN 978-0-7356-5914-8

Another case of dashed expectations . I want to like IPv6 . 
I want to understand IPv6 . This is not the book to help a 
person do either . It is a detailed and careful reference work 
for IPv6, particularly on Microsoft platforms . If that’s what 
you need—packet layouts, protocol details, all the relevant 
registry settings—then this is a fine book .

I would recommend skipping the prose, however . This is the 
paragraph, in Chapter 1, at which I gave up:

“One must consider, however, that the Internet, once a 
pseudo-private network connecting educational institu-
tions and United States government agencies, has become 
an indispensable worldwide communications medium that 
is an integral part of increased efficiency and productivity 
for commercial organizations and individuals, and it is now a 
major component of the world’s economic engine . Its growth 
must continue .”

Things get better, but not lighter, when the topic turns to 
protocol details .

—Elizabeth Zwicky

CoffeeScript: accelerated JavaScript Development 
Trevor Burnham
Pragmatic Bookshelf, 2011 . 127 pp . 
ISBN 978-1-93435-678-4 

I hadn’t heard of CoffeeScript until I saw these books on the 
shelf at my local book store . I leafed through them wonder-
ing what kind of cutesy software would have that name and 
found a complete new browser language to replace JavaScript .

CoffeeScript is an attempt to address some of the long-
lamented flaws of the JavaScript syntax . It adopts the design 
philosophy of more recent scripting languages, especially 
Python and Ruby . At the same time, it maintains close ties to 
JavaScript, even allowing in-line JavaScript if needed .

CoffeeScript is actually a translated language . The “com-
piler” produces JavaScript suitable for inclusion in HTML 
pages or for execution by a Node .js interpreter . The trans-
lator is in fact written in CoffeeScript and can execute in 
a browser (both authors explain how, and then why you 
shouldn’t) . More typically, it runs in a Node .js interpreter, and 
the resulting JavaScript output is what is used in production . 
It irks me to call the CoffeeScript interpreter a “compiler,” 
but I will follow CoffeeScript convention in this .
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with CoffeeScript . The structures generally follow Ruby’s 
Rake (which in turn builds on lessons from Maven, Make, 
and others) . Bates provides a nice set of sample tasks and 
then indicates that he generally uses Rake himself .

Because CoffeeScript translates to JavaScript, you can use 
any of the JavaScript unit-test frameworks to test your 
Coffee Script . Bates suggests a framework called Jasmine, 
which is modeled on Ruby’s RSpec and which has native 
 CoffeeScript support .

The book concludes with four chapters in which Bates builds 
a Node .js service on CoffeeScript . By itself this wouldn’t be 
a big deal, but in the process Bates introduces a number of 
other components which will be needed for real applications . 
These include an application framework, database integra-
tion, and client-server communications with both JQuery 
and a CoffeeScript MVC framework named Backbone .js .

Programming in CoffeeScript is a great introduction to the 
CoffeeScript language and development ecosystem . It should 
also get more than its share of dog-earing from regular use .

—Mark Lamourine

able with JavaScript before returning . I think that’s probably 
prudent as well .

The preface also contains the mandatory “How to Install 
CoffeeScript” section, but Bates reduces it to four short para-
graphs in which he explains that he can’t do better in print 
than the writers on the CoffeeScript Web site .

The first half of Programming in CoffeeScript is, as you would 
expect, an exposition of the language syntax and program-
ming constructs . Bates walks thoroughly and methodically 
from a chapter on literals and variables through to classes 
and inheritance . He follows what I think is a fairly new 
convention of combining the traditional chapters on loops 
and arrays into a single chapter entitled “Collections and 
Iterations .” This comes from the Functional Programming 
school, but I find it reasonable to highlight the relationship 
between collections and their most common operations . He 
still includes a chapter on classic logic and control structures 
but again combines them in a way that makes sense to me .

Bates’ explicit reliance on his reader’s prior knowledge lets 
him avoid lengthy expositions that can bog down texts that 
try to teach both a language and the theory of programming . 
This makes for a crisp, smooth read and makes the book 
suited for use as a long-term reference .

Bates also uses the reader’s prior knowledge and the Coffee-
Script compiler’s remarkably clean output to his advantage . 
Every sample of CoffeeScript code in the book is followed by 
the resulting JavaScript code and by the output it generates 
when executed . I can hear the horrified gasps of aging C and 
C++ programmers who have looked under the cover of cpp(1) 
and cfront(1) output and of all those who hate XML because 
they cut their teeth on machine-generated data streams . 
The JavaScript is both nicely formatted and actually maps 
cleanly back to the CoffeeScript source . I’ve tried it myself, 
and it’s not just the result of good typesetting . There are some 
constructs that take an extra look (the section on Binding and 
the -> and => operators at the end of the chapter on Classes 
jumps to mind), but Bates highlights them well and covers 
them in more detail as needed . In general, the samples in both 
languages give the reader a cross-reference which helps to 
clarify both the intent of the example and the proper meaning 
and use of the CoffeeScript language . I learned a few things 
about JavaScript too .

It is in the second half of the book that Bates dives into the 
practicum of using CoffeeScript .

It seems (and I think this is a good thing) that it has become 
accepted that no language is complete without both a unit-
testing framework and some form of task-based build tool . 
Again, CoffeeScript borrows from Ruby . Cake is included 
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Students: grab a grant

Did you know that, with the help of our 
partners, USENIX offers student grants 
to cover USENIX conference and work-
shop registration fees and assist with 
travel and expenses? 

Recently we received a note from 
student grant recipient Roya Ensafi, a 
graduate student in computer science at 
the University of New Mexico . “I want 
to thank you for the USENIX student 
grant . It meant a lot to me,” she writes . 
“Attending conferences are really a 
good opportunity not only to hear cool 
research ideas, but also meet interest-
ing people, which makes it a great break 
from routine research work . Without the 
grant I wouldn’t be able to come there .”

Don’t miss the November 5 student 
grant application deadline for LISA ’12 . 
Get the details at www .usenix .org/ 
conference/lisa12/students, and then 
read “How a USENIX Student Grant Can 
Lead to a Career in Technology” at www .
usenix .org/blog/student-grant-career .

For more news and updates like this, be 
sure to read the monthly USENIX News 
email .

Congratulations to the grant recipients 
who attended USENIX Security ’12!
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2012 USENIX Annual Technical Conference 
(ATC ’12)
Boston, MA 
June 13-15, 2012

Opening Remarks

Summarized by Rik Farrow (rik@usenix.org)
Gernot Heiser (University of New South Wales) opened ATC 
by telling us that there had been 230 paper submissions, up 
by 30% from last year . Forty-one papers were accepted, after 
three reviewing rounds . Gernot reminded the audience that 
both OSDI and HotOS were coming up soon . Then Wilson 
Hsieh (Google) announced the best papers: “Erasure  Coding  
in Windows Azure Storage,” by Cheng Huang et al ., and 
“netmap: A Novel Framework for Fast Packet I/O,” by 
Luigo Rizzo .

Cloud

Summarized by Brian Cho (bcho2@illinois.edu)

Demand-Based Hierarchical QoS Using Storage 
Resource Pools
Ajay Gulati and Ganesha Shanmuganathan, VMware Inc.; Xuechen Zhang, 

Wayne State University; Peter Varman, Rice University

Imagine you are an IT administrator and your CIO asks that 
“all storage requirements be met, and when there is con-
tention, don’t allow the critical VMs to be affected .” To get 
predictable storage performance, you could (1) overprovision, 
(2) use storage vendor products that provide QoS, or (3) pro-
vide QoS in VMs . This work looks at option 3, the goal being 
to provide better isolation and QoS for storage in VMs, using 
storage resource pools .

Ajay Gulati said that existing solutions specify QoS for each 
individual VM, but this level of abstraction has some draw-
backs . Basically, virtual applications can involve multiple 
VMs running on multiple hosts—thus the need for a new 
abstraction, storage resource pools . Ajay reviewed an alloca-
tion model based on controls of reservation, limit, and shares . 

In this issue:

2012 USENIX Annual Technical Conference  82 
Summarized by Rik Farrow, Brian Cho, Wonho Kim,  
Tunji Ruwase, Anshul Gandhi, and Asia Slowinska

For the complete 2012 USENIX Annual Technical   
Conference report and summaries from HotCloud ’12,  
HotPar ’12, HotStorage ’12, and the panel at our first  
Women in Advanced Computing Summit, visit:  
www .usenix .org/publications/login .
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Storage resource pools are placed in a hierarchical tree, with 
resource pools as intermediate nodes, and VMs at the leaves . 
The controls are defined on the pools as well as individual 
VMs . For example, the sales department and marketing 
department can be different resource pools with separately 
defined controls . These controls can be defined per-node, 
depending on parent, and the system can normalize these 
controls across the entire tree . In reality, a single tree is not 
used; rather, the tree is split up per datastore, but this was not 
detailed in the talk .

The system needs to periodically distribute spare resources, 
or restrict contending resources, among children in the tree, 
depending on the current system usage . This is done with 
two-level scheduling—first, split up the LUN queue limit 
between hosts; second, apply the queue limits by setting 
mClock at each VM . This is accomplished by two main steps: 
first, computing the controls per VM, based on demands, and 
second adjusting the per-host LUN queue depth . This is done 
every four seconds in the prototype . A detailed example of 
this on a small tree was presented .

A prototype was built on the ESX hypervisor, involving both 
a user-space module and kernel changes . Experiments were 
done with settings of six and eight VMs running different 
workloads . The results show timelines of throughput (in 
IOPS) per each VM, before and after changes to the controls . 
In summary, the system is able to provide isolation between 
pools, and sharing within pools .

There were no questions following the presentation .

Erasure Coding in Windows Azure Storage
Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder, 

Parikshit Gopalan, Jin Li, and Sergey Yekhanin, Microsoft Corporation

! Awarded Best Paper!

Huseyin Simitci and Cheng Huang presented this paper 
together, with Huseyin starting . In Windows Azure Storage, 
the large scale means failures are the norm rather than the 
exception . In the context of storage, one question is whether 
to use replication or erasure coding (EC) . With replication, 
you just make another copy, while with EC, you add parity . 
On failure, with replication you just read known data, while 
with EC you recreate the data . Both tolerate failure, but EC 
saves space, or can allow improved durability, with the same 
amount of space .

The Windows Azure Storage stream layer is an append-only 
distributed file system . Streams are very large files, split up 
into units of replication called extents . Extents are replicated 
before they reach their target size; once they reach the target, 
they are sealed (become immutable) and then EC is applied 
in place of replication . Previously, they used Reed-Solomon 
6+3 as the conventional erasure coding: a sealed extent is 
split into six pieces, and these are coded into three redundant 
parity pieces . Huseyin concluded his part of the talk with a 
brief overview of practical considerations for EC .

Cheng focused on how Azure further reduces the 1 .5x space 
requirement without sacrificing durability or performance . 
The standard approach to reduce the space requirement is to 
use Reed-Solomon 12+4 to decrease it to 1 .33x . However, this 
makes reading expensive, and many times reconstruction 
happens during the critical path of client reads . It is better to 
achieve 1 .33x overhead while only using six fragments . The 
key observation used to do this is the probability of failures . 
Conventional EC assumes all failures are equal, and the same 
reconstruction cost is paid on failure . However, for cloud 
storage, the probability of a single failure is much higher than 
that for multiple failures . So the approach taken is to make 
single failures more efficient . A 12+2+2 local reconstruction 
code (LRC) was developed . There are two local parities for 
each section of six fragments, and two global parities across 
all 12 fragments . In terms of durability, LRC 12+2+2 can 
recover from all three failures, and 86% of four failures . So 
the durability is between EC 12+4 and 6+3, which is “durable 
enough” for Azure’s purposes .

LRC is tunable . You can tune storage overhead and recon-
struction cost, given a hard requirement of three-replication 
reliability . Both Reed-Solomon and LRC are plotted as 
curves with the axes of reconstruction read cost vs . stor-
age overhead . LRC gives a better curve, and the particular 
variant can be chosen looking at this curve . In the end, Azure 
chose 14+2+2, which, compared to Reed-Solomon 6+3, gives 
a slightly higher reconstruction cost (7 vs . 6) but has a 14% 
space savings, from 1 .5x to 1 .29x . Given the scale of the cloud, 
14% is a significant amount .

Yael Melman, EMC, asked what happens when all three 
failures are in a single group . Cheng clarified that this does 
indeed work for all three failure cases, and that there are 
proofs of this in the paper . Richard Elling, DEY Storage 
Systems, asked how to manage unrecoverable reads . Cheng 
clarified that the failures discussed are storage node failures, 
not disk failures . Hari Subramanian, VMware, asked how to 
deal with entire disk failures . Huseyin answered that data is 
picked up by all remaining servers . Hari asked whether fail-
ing an entire node for a failed disk is less efficient . Huseyin 
clarified that entire nodes are not failed in this case, but 
rather that the granularity of failures considered is indeed 
disks . Someone asked about the construction cost when 
creating parity blocks—particularly the bandwidth cost 
involved . Cheng answered that the entire encoding phase is 
done in the background, not on the critical path . So you have 
the luxury of scheduling them as you like . 

Composable Reliability for Asynchronous Systems
Sunghwan Yoo, Purdue University and HP Labs; Charles Killian, Purdue 

University; Terence Kelly, HP Labs; Hyoun Kyu Cho, HP Labs and 

University of Michigan; Steven Plite, Purdue University

Sunghwan Yoo began with an example using a KV store as 
motivation . He showed that many failures can happen in the 
chain of forwarding a request . The techniques used to miti-
gate these failures are retransmission, sequence numbers, 
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how this applies to waiting forever . Sunghwan said that Ken 
provides fault tolerance for crash-restart failures . Time-
outs could be implemented at a higher layer . Someone asked 
whether Ken can roll back or cancel a transaction . Sunghwan 
answered that Ken can recover to the latest checkpoint .

Multicore

Summarized by Wonho Kim (wonhokim@cs.princeton.edu)

Managing Large Graphs on Multi-Cores with Graph 
Awareness
Vijayan Prabhakaran, Ming Wu, Xuetian Weng, Frank McSherry, Lidong 

Zhou, and Maya Haridasan, Microsoft Research

Vijayan Prabhakaran from MSR presented Grace, an in-
memory transactional graph management systems, which 
can efficiently process large-scale graph-structured data by 
utilizing multicores in machines . 

To exploit multicore parallelism, Grace partitions a given 
graph into smaller subgraphs that can be processed by each 
core separately, combines the results at a synchronization 
barrier, and continues the iteration . Vijayan mentioned that 
many graph algorithms, such as Google’s page-rank, will 
work in this manner . In addition to the graph-specific opti-
mizations, another interesting feature of Grace is supporting 
transactions by creating read-only snapshots .

In the evaluation, he compared the performances of different 
graph partitions . As expected, careful vertex partition leads 
to better performance than random algorithm . However, it 
was interesting that the vertex partitions do not make a dif-
ference when the number of partitions is low because (1) the 
partitions fit within a single chip and (2) the communication 
cost between partitions is very low in this case . Rearrang-
ing vertexes also improves performance by exploiting vertex 
locality in each partition . However, dynamic load-balancing 
among partitions does not improve overall performance .

Alexandra Fedorova, Simon Fraser University, asked about 
creating well-balanced partitions (static) and load balanc-
ing (dynamic) . Grace adjusts the vertexes among the graph 
partitions at runtime to improve overall completion time . 
Vijayan answered that dynamic load-balancing is still 
needed because processing time in each partition is affected 
by multiple factors depending on the algorithms used .

persistent storage, etc . A single development team working 
on the whole system could make an effort to handle failures, 
but what if each component was handled by different teams 
and systems? Guaranteeing global reliability between inde-
pendently developed systems is hard .

This motivates the development of Ken, a crash-restart-tol-
erant protocol for global reliability when composing indepen-
dent components . It makes a crash-restarted node look like a 
slow node . Reliability is provided by using an uncoordinated 
rollback recovery protocol . Composability allows compo-
nents to be written locally and work globally . An event-driven 
framework allows easy programmability—specifically, it is 
transparently applicable to the Mace system . These ideas 
(especially rollback recovery) are not in themselves new; Ken 
is a practical realization of decades of research .

When Ken receives a message from outside, an event loop 
begins—within this handler, the process can send messages 
and make changes to the memory heap . When the handler 
is finished, a commit is done, storing all changes made to a 
checkpoint file . An externalizer continually resends mes-
sages, to mask failures, making them look like slow nodes .

Another example was given, consisting of a seller, buyer, 
auction server, and banking server . If any of these systems 
show crash-restart failures, there are problems . Then Ken 
was illustrated in more detail . A ken_handler() function gets 
executed in a similar way to a main() function . Transaction 
semantics are given within the function . Calling ken_mal-
loc()/ken_set_app_data()/ken_get_app_data() allows use of 
the persistent heap, while ken_send() provides “fire and for-
get” messages . Ken can be used in Mace without any changes . 
Ken provides global masking of failures, and composable 
reliability, while Mace provides distributed protocols, avail-
ability, replication, and handling of permanent failures .

The evaluation consists of micro-benchmarks and an imple-
mentation of Bamboo-DHT on 12 machines . The micro-
benchmarks show that latency and throughput of Ken depend 
on the underlying storage type (disk, no sync, and ramfs) . The 
Bamboo-DHT results show MaceKen has 100% data resil-
iency under correlated failures and rolling restarts, which 
can happen in managed networks . 

Ken and MaceKen are available online: http://ai .eecs .umich 
 .edu/~tpkelly/Ken and http://www .macesystems .org/ 
maceken .

Todd Tannenbaum, University of Wisconsin-Madison, asked 
if Ken messages have leases . He said that when resends 
are hidden, applications may not want to wait forever . For 
example, a seller may not want to wait forever for payment . 
Sunghwan answered that each event works as a transaction, 
so events would not lead to incorrect states . Todd again asked 
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Locking (RCL) executes highly contended critical sections in 
a dedicated server core, which removes atomic instructions 
and reduces cache misses for accessing shared resources . 
RCL requires dedicated cores, so it profiles applications to 
find candidate locks for RCL .

In micro-benchmarks, RCL shows much lower execu-
tion time compared to spin-lock, POSIX, and MCS . It was 
interesting to see that RCL improves the performance even 
in low-contention settings because execution in a dedicated 
core improves locality . RCL also significantly improves the 
performance of existing systems including memcached .

John Griffin from Telecommunication Systems asked what 
was the CPU utilization in the server cores during bench-
marks . Jean-Pierre answered that the server cores are never 
idle; they always check pending critical sections to execute . 
Xiang Song from Shanghai University asked how RCL 
handles nested locks .  RCL puts them in the same server core . 

Packet Processing

Summarized by Wonho Kim (wonhokim@cs.princeton.edu)

The Click2NetFPGA Toolchain
Teemu Rinta-aho and Mika Karlstedt, NomadicLab, Ericsson Research; 

Madhav P. Desai, Indian Institute of Technology (Bombay)

Teemu Rinta-aho presented Click2NetFPGA, a compiler 
toolchain that automatically transforms software (in C++) to 
functional target hardware design (in NetFPGA) .

Although many HLS tools are available, they are not made 
for people who do not understand hardware . Click2NetFPGA 
does not require knowledge in target hardware systems, 
and converts a given Click module to NetFPGA design . The 
talk mainly focused on the prototype implementation . In 
Click2NetFPGA, Click modules and configurations are first 
compiled into LLVM IR, and transformed to VHDL (VHSIC 
hardware description language) modules using AHIR com-
pile developed from IIT Bombay .

The measurement results showed that Click2NetFPGA can 
reach only 1/3 of the line speed (1 Gbps) because of the inef-
ficient translation between NetFPGA and Click data models . 
The presenter introduced their ongoing work on improving 
the performance of resulting hardware . 

In the Q&A session, there was a question about how fast the 
compiled NetFPGA module is compared to the original Click 
software . Teemu answered that it could easily get 1 Gbps on 
a standard PC . Eddie Kohler from Harvard University asked 
what mistakes would be made if people work on similar proj-
ects . Teemu said “ carefully study the source systems,” which 

MemProf: A Memory Profiler for NUMA Multicore 
Systems
Renaud Lachaize, UJF; Baptiste Lepers, CNRS; Vivien Quéma, 

GrenobleINP

Baptiste Lepers from CNRS presented MemProf, a memory 
profiler for NUMA systems that enables application-specific 
memory optimizations by pointing out the causes of remote 
memory accesses .

In NUMA systems, remote memory accesses have lower 
bandwidth and higher latency than accesses within the same 
node . The talk started with showing that many existing 
systems suffer from inefficient remote memory accesses in 
their default settings, and that NUMA optimizations can 
significantly improve their performance . However, existing 
profiles do not point out the causes of remote accesses, which 
is needed for making optimization decisions .

MemProf provides information about thread-object interac-
tions in a given program from the viewpoints of both objects 
and threads . This output is useful for identifying what 
kinds of memory optimizations are needed . An interesting 
example presented in the talk is that the authors significantly 
improved the performance of FaceRec (face-recognition pro-
gram) by more than 40% simply by replicating a matrix that 
is remotely accessed . MemProf tracks the object/thread life 
cycle using kernel hooks, but the overhead is quite low (5%) .

Haibo Chen asked if replicating memory objects could 
increase cache misses . Baptiste answered that such an effect 
was not visible in the experiments and that the replication 
helps reduce remote accesses in a program . Baptiste also 
mentioned that, from MemProf output, users can detect 
different latencies among multiple nodes in NUMA systems . 
A follow-up question was about how MemProf can replicate 
memory objects automatically . Baptiste said that MemProf 
users should know the memory usage in the program because 
replication is possible only when memory is not fully utilized . 
He also mentioned that it would be difficult to optimize a 
program if the program exhibited different memory access 
patterns across executions . He also explained memory access 
patterns in Apache .

Remote Core Locking: Migrating Critical-Section 
Execution to Improve the Performance of Multithreaded 
Applications
Jean-Pierre Lozi, Florian David, Gaël Thomas, Julia Lawall, and Gilles 

Muller, LIP6/INRIA

Jean-Pierre Lozi started by showing that memcached 
performance collapses in manycore systems because lock 
acquisition time in critical sections increases as more cores 
are used . To address the lock contention cost, Remote Core 
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packet processing time in different levels, Luigi showed that 
the three main costs come from dynamic memory allocation, 
system calls, and memory copies . netmap uses preallocated 
and shared buffers to reduce the cost . 

netmap can transmit at line rate on 10 Gbps interfaces while 
receive throughput is sensitive to packet size because of 
hardware limitations in the system (e .g ., cache line) . netmap 
also improved the forwarding performance of Openvswitch 
and Click by modifying them to use netmap . It was interest-
ing to see that netmap-Click in userspace can outperform the 
original Click running in the kernel . 

Monia Ghobadi from the University of Toronto asked about 
inter-arrival times of back-to-back packets . Luigi said 
that packets were generated with no specified rate in the 
 experiments . 

Toward Efficient Querying of Compressed Network 
Payloads
Teryl Taylor, UNC Chapel Hill; Scott E. Coull, RedJack; Fabian Monrose, 

UNC Chapel Hill; John McHugh, RedJack

Teryl Taylor from UNC Chapel Hill presented an interactive 
query system, which can be used for forensic analysis . It is 
challenging to build an interactive query system for network 
traffic because network traffic typically has extremely large 
volumes, multiple attributes, and heterogeneous payloads . 
Teryl presented a solution which was to build a low I/O 
bandwidth storage and query framework by reducing, index-
ing, partitioning data and allowing application-specific data 
schemas . 

In the evaluation, the authors used two data sets: cam-
pus DNS data and campus DNS/HTTP . The query system 
significantly reduced query processing time to sub-minute 
compared to PostgreSQL and SiLK for different query types 
(heavy hitters, partition intensive, and needle in a haystack) .

There was a question about configuring on the fly what to 
store about the payload . Teryl answered that it is possible to 
create/install different versions of payloads . Keith Winstein 
from MIT asked how difficult it is to write a program that 
finds interesting patterns about a given suspect trace . Teryl 
said that using the interactive query system makes a huge 
difference in finding traffic patterns . 

was an interesting answer because Eddie Kohler was the per-
son who wrote the source system, the Click Modular Router .

Building a Power-Proportional Software Router
Luca Niccolini, University of Pisa; Gianluca Iannaccone, RedBow 

Labs; Sylvia Ratnasamy, University of California, Berkeley; Jaideep 

Chandrashekar, Technicolor Labs; Luigi Rizzo, University of Pisa and 

University of California, Berkeley

Luca Niccolini presented a software router that achieves 
energy efficiency by consuming power in proportion to 
incoming rates with a modest increase in latency .

While network devices are typically underutilized, the 
devices are provisioned for peak load . However, the devices 
are power-inefficient and consume 80–90% of maximum 
power, even with no traffic . Luca showed that CPU is the 
biggest power consumer in software routers . The authors 
developed an x86-based software router that adjusts the 
number of active cores and operating frequency based on 
incoming rate to improve energy efficiency . The design of the 
power control algorithm is guided by measurement of power 
consumption in different settings . It was interesting to see 
that running a smaller number of cores at higher frequency 
is more energy-efficient than running more cores at lower 
frequency .

In the evaluation, Luca showed that the new router consumes 
power in proportion to the input workload when running 
IPv4 routing, IPSec, and WAN optimization, saving 50% 
power . The tradeoff is latency, but it is a modest increase (10 
μs) . Another promising result was that the router did not 
incur packet loss or reordering in the experiments .

Someone asked if manipulating packet forwarding tables can 
overload some other cores . Luca answered that it is possible 
but the controller could detect such an event and change 
configuration . Luca also pointed out that reordering did not 
occur, because queue wakeup latency prevented packets in an 
empty queue from forwarding earlier than the other packets . 
Herbert Bos from Vrije University asked about an alternative 
approach, running different applications to different cores at 
different frequencies . This was not considered in the work, 
however . 

netmap: A Novel Framework for Fast Packet I/O
Luigi Rizzo, Università di Pisa, Italy

! Awarded Best Paper!

Luigi Rizzo explored several options for direct packet I/O 
such as socket, memory-mapped buffers, running within the 
kernel, and custom libraries . But these all have issues with 
performance, safety, and flexibility . From measurement of 



 ;login: OCTOBER 2012  Conference Reports   87

solder to attach surface mounts . Steve Byar (NetApp) asked 
about power supplies, and Mark suggested contacting him 
later . Rik Farrow asked whether he had considered using an 
optical mouse as a sensor to gain movement information, 
and Mark said he hadn’t, but didn’t think it would work . Clem 
Cole asked about using stepper motors, and Mark described 
them as “evil,” requiring a separate input for each step . Marc 
Chiarini (Harvard SEAS) asked about making robots like 
Mark’s smaller . Mark pointed out that his robot had an extra 
large, Plexiglas top that he used for scaffolding, to hold things 
like speakers and video cameras which could be removed . 
Marc then asked about the size of the wheels . Mark replied 
that he is using plastic gearing, so the wheels need to have a 
large diameter . Ches asked what tools did Mark wish he’d had 
when he started . Mark said an oscilloscope .

Security 

Summarized by Tunji Ruwase (oor@cs.cmu.edu)

Body Armor for Binaries: Preventing Buffer Overflows 
Without Recompilation 
Asia Slowinska, Vrije Universiteit Amsterdam; Traian Stancescu, Google, 

Inc.; Herbert Bos, Vrije Universiteit Amsterdam

Asia Slowinska presented a tool called BinArmor, that 
hardens C binaries, even without symbol information, 
against buffer overflow attacks against both control-data 
and non control-data . The work was prompted by statistics 
that show that despite its buffer overflow vulnerabilities, 
C still remains the most popular programming language . 
Moreover, current techniques are ineffective for protecting 
binaries (e .g ., legacy code) against buffer overflow attacks . By 
detecting non-control data attacks, BinArmor provides bet-
ter protection than taint analysis, which only detects control 
data attacks . However,  BinArmor is prone to false negatives 
due to its reliance on profiling (as discussed later); i .e ., it can 
miss real attacks . 

To harden a program binary against attacks, BinArmor (1) 
finds the arrays in the program, (2) finds the array accesses, 
and (3) rewrites the binary, with a novel color tracking code, 
for buffer overflow detection . The Howard reverse engineer-
ing tool (presented at NDSS 2011) is used to detect arrays in 
binaries without symbol information . Next, profiling runs 
of the program are used to detect accesses to the detected 
arrays . Coverage issues of profiling lead to the false nega-
tives in  BinArmor . The binary rewrite step assigns match-
ing colors to each pointer and the buffer it references, tracks 
color propagation, and checks that the color of de-referenced 
pointers matches the referenced buffer . Protecting fields 
(and subfields) of C structs requires a more complex coloring 

Plenary

Summarized by Rik Farrow (rik@usenix.org)

Build a Linux-Based Mobile Robotics Platform (for Less 
than $500)
Mark Woodward, Actifio

Mark Woodward told us that he has worked for robotics com-
panies for many years, starting with Denning Mobile Robot-
ics in 1985 . But by then, he had already built his own robot, 
based on a Milton Bradley Bigtrak chassis, a programmable 
tank from 1979 . The Bigtrak had a simple Texas Instruments 
microcontroller, and Mark used this to lead into a discussion 
of CPUs that appeared in later robots, such as Motorola 68K 
and Z80 CPUs, as well as sensors .

Mark wasn’t very excited about the state of commercial 
robotics . He called the Roomba a “Bigtrak with a broom,” the 
Segway as a great example of process control, and self-park-
ing cars as something that sometimes works . He described a 
project he had worked on while at Denning: a robotic security 
guard . When they tried to sell their 1985 $400,000 robot, 
they discovered that watchguard companies preferred to hire 
guards for a lot less . The robot itself was so expensive, thieves 
might elect to steal it and ignore what the robot was guarding .

Mark had brought his own robot with him, and he explained 
the technology he used to build it . For example, it uses a 
smaller form factor motherboard (ITX) for general pro-
cessing, for connection to video cameras, and for running 
text-to-speech processing, so the robot can talk via speakers 
connected to the motherboard . While the motherboard runs 
Linux, Mark prefers to use an Arduino for sensors and for 
motor control . He explained that the motor control was actu-
ally very difficult, as simply measuring how much each wheel 
turns doesn’t actually reflect the movement of the robot, as 
wheels can (and do) slip on many surfaces . The motor control 
uses a Proportional-Integral-Derivative (PID) algorithm, a 
commonly used feedback controller . 

Mark then provided a list of tools useful for building robots 
and other hardware products: temperature controlled solder-
ing iron, oscilloscope (Rigil), benchtop power supplies, as 
well as more mundane items like lawnmower wheels, duct 
tape, tap and dies, wire ties, and PVC pipe . He also recom-
mended the book  The Art of Electronics (Paul Horowitz, 
Winfield Hill), but Clem Cole (Intel) countered that Practical 
Electronics for Inventors (Paul Scherz) is a better and more 
recent book .

Bill Cheswick (Independent) asked how Mark dealt with 
surface mounts, and Mark answered that he didn’t use them . 
Clem mentioned that there are workarounds for flowing 
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In summary, Aeolus tracks information flow within a protec-
tion boundary to ensure that only declassified information 
flows outside the boundary . Aeolus achieves this using three 
concepts: principals (entities with security concerns, e .g ., 
individuals), tags (the security requirements of data), and 
labels (set of tags) . Labels associated with data objects are 
immutable, while threads are associated with principals 
and mutable labels (reflecting accessed data) . Aeolus also 
maintains an authority graph, to ensure that declassification 
(tag removal) is done by authorized principals . Dan fur-
ther discussed Aeolus programming abstractions and Java 
 implementation . 

Evaluations using micro-benchmarks showed that most 
Aeolus operations are within an order of magnitude of Java 
method calls . Moreover, Aeolus imposed a mere 0 .15% over-
head on a financial management service application . The low 
overhead is because the Aeolus operations are infrequent and 
relatively inexpensive . Aeolus is available at http://pmg .csail .
mit .edu/aeolus .

Someone expressed concern about malicious information 
flowing into the system . Dan confirmed that Aeolus in fact 
tracks the integrity of incoming information, and referred the 
audience to the paper for details . Rik Farrow also expressed 
a concern that conventional uses of authority graphs, e .g ., in 
banks, often suffered from untimely updates . Dan observed 
that untimely updates were due to centralized control, thus 
decentralization in Aeolus helped to avoid the problem . 

TreeHouse: JavaScript Sandboxes to Help Web 
Developers Help Themselves
Lon Ingram, The University of Texas at Austin and Waterfall Mobile; 

Michael Walfish, The University of Texas at Austin

Third-party code is extensively used by JavaScript applica-
tions and, allowed to execute with similar privileges, is there-
fore trusted to be safe/correct . Lon Ingram demonstrated 
this was misplaced trust . For example, using a third-party 
widget that had a hyperlink vulnerability for processing 
online payments, he showed how this vulnerability could be 
exploited by an attacker to steal credit card information . He 
then presented TreeHouse, a system that uses sandboxing 
to enable safe use of third-party code in JavaScript applica-
tions .

TreeHouse is implemented in JavaScript, and is therefore 
immediately deployable, as no browser changes are required . 
Moreover, it modifies the Web Worker feature of modern 
browsers to act as containers for running third-party code . 
By transparently interposing on privileged operations, Tree-
House enables flexible control of third-party code . Lon then 
showed how an application can use TreeHouse to implement 

scheme, where fields have multiple colors, to permit the field 
to also be accessed through pointers to the enclosing structs . 

Asia then presented the evaluation of  BinArmor, which 
focused on bug detection effectiveness and performance .  
BinArmor detected buffer overflows in real world applica-
tions, including a previously unknown overflow in the htget 
program . Also, it introduced, at most, a 2x slowdown in real 
world I/O-intensive programs . The nbench benchmark suite, 
which is more compute intensive, had a worst case slowdown 
of 5x, with a 2 .7x average slowdown .

A lively question/answer session ensued, with a session-
leading number (six) of questioners . Bill Cheswick set the 
ball rolling by asking if  BinArmor detected new bugs; Asia 
referred to the htget overflow . Andreas Haeberlen from 
University of Pennsylvania asked how an attacker could 
adapt to  BinArmor . Asia pointed out that the coverage issues 
of the profiling step could be exploited . Larry Stewart asked 
how pointers used by memcpy (and other libc functions) 
were handled by  BinArmor, since these pointers travel 
through many software layers . Asia responded that more 
pointer tracking would be required for that . Julia Lawall 
asked if  BinArmor currently performed any optimizations, 
and suggested bounds-checking optimizations in Java . Asia 
responded that optimizations were future work . Konstantin 
Serebryany from Google asked if Body Amour reported errors 
for libc functions that read a few bytes beyond the buffer . 
Asia clarified that this was not a problem in practice, because 
the granularity of colors in  BinArmor is 4 bytes . Steffen 
Plotner of Amherst College asked if BinArmor could be used 
to protect the Linux kernel . Asia responded that they had  
not tried .

Abstractions for Usable Information Flow Control in 
Aeolus 
Winnie Cheng, IBM Research; Dan R.K. Ports and David Schultz, MIT 

CSAIL; Victoria Popic, Stanford; Aaron Blankstein, Princeton; James 

Cowling and Dorothy Curtis, MIT CSAIL; Liuba Shrira, Brandeis; Barbara 

Liskov, MIT CSAIL

Confidential data, such as credit card information, and 
medical records, are increasingly stored online . Unfortu-
nately, distributed applications that manage such data, are 
often vulnerable to security attacks, resulting in high profile 
data theft . Dan Ports introduced the Aeolus security model, 
which uses decentralized information flow control (DIFC), 
to secure distributed applications against data leaks . Dan 
observed that access control was not flexible enough for this 
purpose, because the objective is to restrict the use, not the 
access, of information . Aeolus describes a graph-based secu-
rity model and programming abstractions for building secure 
distributed applications .
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Cloud Terminal was evaluated with CRE running on a 2 
GHz, 16-core system, with 64 GB RAM, while STT ran on 
a Lenovo W510 laptop . The evaluated applications were 
AbiWord, Evince, Wells Fargo online banking on Firefox, and 
Gmail on Firefox . The applications were found to be quite 
usable, with reasonable display and latency . However, page 
scrolling was sluggish, but Stephen said that this could be 
optimized . In terms of cost, Cloud Terminal could provide 
secure computing services at 5 cents per user per month .

Andreas Haeberlen, University of Pennsylvania, asked if 
client-side resources could be used to improve performance . 
Stephen replied that, while this was possible, it would 
not match the target applications . Someone asked if more 
client-side devices could be supported in STT . Stephen said 
supporting the drivers would increase complexity and thus 
undermine trustworthiness . 

Short Papers: Tools and networking

Summarized by Rik Farrow (rik@usenix.org)

Mosh: An Interactive Remote Shell for Mobile Clients
Keith Winstein and Hari Balakrishnan, MIT Computer Science and 

Artificial Intelligence Laboratory

Keith Winstein gave a lively talk about a mobile shell, Mosh . 
Keith began by saying that everyone uses SSH, but SSH 
uses the wrong abstraction: an octet stream . What you want 
when you use SSH is the most recent state of your screen . 
He joked that today’s network is not like the ARPANET, 
which was much faster . The authors developed SSP, the state 
synchronization protocol, which communicates the differ-
ences between the server’s concept of a screen and the screen 
at the client side . Mosh also displays keystrokes, as well as 
backspace and line kill, immediately, on the user’s terminal, 
underlining characters until the server confirms any local 
updates .

Mosh still uses SSH to authenticate and start up a mosh_
server . When mosh_server starts up, it communicates an 
AES key over SSH before shutting down that connection . 
Mosh_client uses that key in aes-ocb mode, which supplies 
both encryption and an authenticated stream . Neither the 
mosh_server or client run with privileges . Mosh uses UDP 
packets, which means that there is no TCP connection to 
maintain . Using UDP with AES-OCB (AES Offset Codebook 
mode) is what allows the Mosh user to roam . Mosh also man-
ages its own flow control that adapts to network conditions .

Keith finished with a demo comparing SSH and Mosh . When 
the IP address changes, SSH doesn’t even tell us that the con-
nection is dead, Keith said, and that is “most offensive .”

the required security policies for thwarting the attack in the 
motivating example . 

Experimental results showed that Document Object Model 
(DOM) use significantly affected TreeHouse overheads . In 
particular, DOM access can be up to 120k times slower with 
TreeHouse . Also, TreeHouse increases initial page load latency 
by 132–350 ms, on average . Consequently, TreeHouse is not 
suitable for DOM-bound applications or applications with 
a tight load time . Further information about TreeHouse is 
available at github .com/lawnsea/Treehouse and lawnsea@
gmail .com . 

James Mickens from MSR asked whether the prototype 
chain needed to be protected . Lon said that he would have 
to think about it . Konstantin Serebryany from Google asked 
what JavaScript feature would Lon like to change . Lon 
responded that he would like parent code to run child code 
with restricted global symbol access . Steve McCaant from 
UC Berkeley highlighted a regular expression typo in the 
slide, which Lon acknowledged . 

Cloud Terminal: Secure Access to Sensitive Applications 
from Untrusted Systems
Lorenzo Martignoni, University of California, Berkeley; Pongsin 

Poosankam, University of California, Berkeley, and Carnegie Mellon 

University; Matei Zaharia, University of California, Berkeley; Jun Han, 

Carnegie Mellon University; Stephen McCamant, Dawn Song, and Vern 

Paxson, University of California, Berkeley; Adrian Perrig, Carnegie 

Mellon University; Scott Shenker and Ion Stoica, University of California, 

Berkeley

Stephen McCamant presented Cloud Terminal, a system for 
protecting sensitive information on PCs . Cloud Terminal 
assumes that the vulnerabilities in client software stack, 
including the OS, can compromise the confidentiality and 
integrity guarantees offered by prior techniques . Therefore, 
Cloud Terminal proposes a new software architecture for 
secure applications running on untrusted PCs, with a Secure 
Thin Terminal (STT) running on client systems, and remote 
applications in a Cloud Rendering Engine (CRE) VM . As an 
example, Stephen demonstrated how Cloud Terminal allows 
a PC user to perform secure online banking without any 
dependence on the untrusted OS . 

On the client system, STT’s role is to render graphical data 
from the remote application, and forward keyboard and 
mouse events to it . A simple hypervisor, called Microvisor, 
leverages Flicker and Intel TXT to isolate STT from the cli-
ent OS . STT was implemented in 21 .9 KLOC . CRE runs the 
remote application in a VM, and connects to STT via a light-
weight remote frame buffer VNC protocol with SSL security . 
CRE incorporates a number of techniques to provide scal-
ability (support for 100s of application VMs) and security . 
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video, followed by 64 KB blocks using a token bucket to estab-
lish a schedule . Netflix sends out 2-MB bursts, also causing 
periodic spikes . Trickle uses the congestion window to rate 
limit TCP on the server side . Trickle requires changes to the 
server application . Linux already allows setting a per-route 
option called cwnd_clamp, and they wrote a small kernel 
patch to make this option available for each socket .

Monia compared the current YouTube server, ustreamer, 
with Trickle, using data collected over a 15-day period in  
four experiments in Europe and India . Trickle reduced 
retransmissions by 43% . Sending data more slowly also 
affects queueing delay, with roundtrip times (RTTs) lower 
than ustreamer by 28% . She then demonstrated a side-by-
side comparison of ustreamer and Trickle (http://www 
 .cs .toronto .edu/~monia/tcptrickle .html) by downloading 
movie trailers . In the demo, Trickle actually worked faster, 
slowly moving ahead of the display in the ustreamer window 
because of ustreamer packet losses .

Someone from Stanford asked if the connection goes back to 
slow start when the connection is idle . Monia answered that 
since they are using the same connection, the congestion 
window clamp still exists . John Griffinwood (Telecom Com-
munications) wondered whether they saw jitter and whether 
Google had adopted Trickle . Monia answered that Trickle 
dynamically sets the upped bound and readjusts the clamp 
if congestion is encountered . While she was working as an 
intern for Google, they had planned to implement Trickle . 
Someone from AT&T asked whether mobile users also ben-
efit from this . Monia answered yes .

Tolerating Overload Attacks Against Packet Capturing 
Systems 
Antonis Papadogiannakis, FORTH-ICS; Michalis Polychronakis, 

Columbia University; Evangelos P. Markatos, FORTH-ICS

Antonis Papadogiannakis told us that when a packet capture 
system gets overloaded, it randomly drops packets . When a 
system is being used for intrusion detection, random drops 
are not good, as the dropped packets may be important . An 
attacker could even cause the overload by sending packets 
that result in orders of magnitude slower processing, or using 
a simpler but more direct DoS attack . Antonis pointed out 
that existing solutions include over-provisioning, thresholds, 
algorithmic solutions, selective discarding, and ones that 
attempt to reduce the difference between average and worst 
case performance . 

Their solution is to store packets until they can be processed . 
Excess packets are buffered to secondary storage if they don’t 
fit in memory, so all packets will be analyzed . When the ring 
buffer gets full, packets are written to disk . When the ring 

Lois Bennett asked about configuring a firewall to allow 
Mosh, and Keith replied that you need to keep a range of UDP 
ports open, depending on how many simultaneous Mosh ses-
sions you expect . He also said they are working to make Mosh 
more firewall friendly . Someone else wondered how Mosh 
could behave predictively with Gmail, and Keith responded 
that Gmail is actually easier to handle than terminal applica-
tions like Emacs .

The August 2012 issue of ;login: includes an article about Mosh .

TROPIC: Transactional Resource Orchestration 
Platform in the Cloud 
Changbin Liu, University of Pennsylvania; Yun Mao, Xu Chen, and Mary 

F. Fernández, AT&T Labs—Research; Boon Thau Loo, University of 

Pennsylvania; Jacobus E. Van der Merwe, AT&T Labs—Research

Changbin Liu described a problem with how IaaS cloud pro-
viders provision services: if one link in a chain of events fails, 
the entire transaction fails . For example, starting a server 
requires acquiring an IP address, cloning the OS image 
within storage, creating the configuration, and starting the 
VM . The key idea behind TROPIC is that it orchestrates 
transactions with ACID for robustness, durability, and safety . 
TROPIC has a logical layer with a replicated datastore that 
communicates with the physical data model . TROPIC runs 
multiple controllers with a leader and followers . If a step fails, 
TROPIC rolls back to the previous stage, and continues with 
the failure hidden from the user . TROPIC also performs logi-
cal layer simulations to check for constraint violations—for 
example, allocating more memory than the VM host has, or 
using the next hop router as a backup router, the very problem 
that caused the failure of EC2 in April 2011 .

They have an 11k LOC Python implementation which they 
have tested on a mini-Amazon setup deployed on 18 hosts in 
three datacenters . The code is open source, and will be inte-
grated into Open Stack .

Haibo Chen (Shanghai Jiao Tong University) asked how 
they can tell the difference between a true error and excess 
latency . Changin Liu replied that error detection is via error 
message . If the connection hangs for a minute, TROPIC kills 
the connection or terminates it . There is more about error 
handling in the paper .

Trickle: Rate Limiting YouTube Video Streaming
Monia Ghobadi, University of Toronto; Yuchung Cheng, Ankur Jain, and 

Matt Mathis, Google

Monia Ghobadi explained that the way videos are streamed 
by YouTube and Netflix results in bursts of TCP traffic . The 
bursty nature of this traffic causes packet losses and affects 
router queues . YouTube writes the first 30–40 seconds of a 
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Distributed Systems

Summarized by Brian Cho (bcho2@illinois.edu)

A Scalable Server for 3D Metaverses
Ewen Cheslack-Postava, Tahir Azim, Behram F.T. Mistree, and Daniel 

Reiter Horn, Stanford University; Jeff Terrace, Princeton University; 

Philip Levis, Stanford University; Michael J. Freedman, Princeton 

University

Ewen Cheslack-Postava explained that a Metaverse is a 3D 
space, where everything in the space is editable by users . 
There are a wide variety of applications, including games, 
augmented reality, etc . Unfortunately, what you get today is 
not as pretty as artist renderings . Examples of artist ren-
derings were shown, followed by a very spare screen from 
Second Life . The reason Second Life looked so spare was 
because the system won’t display things more than a few 
meters away . A second screen, shown after the user moved a 
few steps shows a much richer world . The problem is that the 
system doesn’t know how to scale, while not sacrificing user 
experience .

These are systems problems . The only way currently to scale 
is to carve the world geographically into separate servers, 
and limit each server to communication with a few neighbor-
ing servers . This work uses the insight that the real world 
scales, and scales by applying real-world constraints to the 
system . Because there is a limited display resolution, they 
use a technique called solid-angle queries . The solid angle 
dictates how large an object appears, and anything with a 
large solid angle should show up . So, for example, mountains 
should show up, even if they are far away . The second thing 
done is to combine objects . The combination of both solid-
angle queries and aggregates is close to ideal .

These techniques are used through a core data structure 
called Largest Bounding Volume Hierarchy (LBVH) tree 
structure, which modifies the Bounding Volume Hierar-
chy (BVH) tree . An example of four objects, in a three-level 
hierarchy was shown . BVH uses spheres that can contain 
objects, and hierarchically combines neighboring spheres 
into ever-larger spheres . The problem with this structure, is 
that to find large objects to display, a long recursive search 
has to be done, and because the spheres overestimate size, it’s 
hard to prune parts of the search . LBVH instead stores the 
largest object in a subtree at interior nodes . Doing this results 
in 75–90% fewer nodes tested . Other techniques are also pre-
sented, showing how to deal effectively with moving objects, 
and redundant queries . Aggregation is applied by storing 
an aggregated object of lower quality on each internal node 
(BVH only stores objects at the nodes) . Queries on LBVH 
across different servers are done efficiently by running large 
queries across machines, and then filtering those for each 
individual query .

buffer has space again, packets are read back and processed . 
If the system running packet capture is also relaying packets, 
this will result in additional latency . But this may not be an 
unreasonable price to pay if you are relying on this system to 
block attacks .

The limitation to their approach are the delays when relay-
ing and the practical limitation of buffering packets to disk . 
They tested their implementation using a modified version of 
libpcap evaluated with Snort, using an algorithmic complex-
ity attack which resulted in an unmodified system losing as 
much as 80% of packets at one million packets per second . 
Their system did not lose any packets at this rate . There were 
no questions .

Enforcing Murphy’s Law for Advance Identification of 
Run-Time Failures 
Zach Miller, Todd Tannenbaum, and Ben Liblit, University of Wisconsin—

Madison 

Zach Miller explained that Murphy causes “bad things” to 
happen to the software under test . Using ptrace, Murphy 
captures all system calls and modifies the returned results . 
Murphy follows POSIX behavior when generating responses, 
so the results should not be that far afield from things that an 
application might be expected to handle properly, such as a 
failed write() system call because of a disk full error . Murphy 
works with any language, is done in user space, and tests 
entire software stacks, since it interposes on system calls 
going to the kernel . 

Murphy found a bug in /bin/true, because the command 
expects read() to succeed . Murphy includes rich constraints, 
such as regex matching, state, mapping file descriptors to 
filenames, and other tricks . Murphy can simulate full disks, 
time going backwards, and other results that are allowed by 
system calls . Murphy keeps a log of all changes it made, and 
this log can be replayed to test fixed code . Murphy can also 
skip through the replay log and suspend the application right 
before the return result that caused a crash .

They found bugs in C, Perl, Python, and OpenSSL in their 
testing . At this point, Murphy only works under 64-bit Linux .

Eddie Kohler (Harvard) wondered, if they find a bug under 
Linux, is it a true bug in other environments? Zach said 
that because Linux is a POSIX-compliant system, bugs 
found there will be true for any POSIX-compliant software . 
Alexander Potapenko (Google) asked about the performance 
overhead . Zach responded that it varied based on the amount 
of system calls made by the application under test . It might 
be as little as six times slower, and as much as 60 times .
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two modes for a repository—it will primarily be in timestamp 
mode, and occasionally switch to locking mode, when coordi-
nated transactions are required . Each transaction is assigned 
a timestamp, and transactions are executed in timestamp 
order . Thus, timestamps define a global order . The challenge 
is how to assign timestamps in a scalable, fault-tolerant way .

For a single repository transaction, the steps of operation are: 
(1) the repository assigns a timestamp, chosen to be higher 
than any previous timestamps; (2) the transaction with the 
timestamp is logged; and (3) the transaction is executed . For 
distributed, independent transactions, repositories addition-
ally vote to determine the highest timestamp . The steps are 
(1) propose, (2) log, (3) vote, (4) pick, and (5) run . The transac-
tion will not execute until it has the lowest timestamp of all 
concurrent transactions . This guarantees a global serial-
ized execution order . Granola provides interoperability with 
coordinated transactions, by requiring repositories to switch 
to lock mode . Locking is required to ensure a vote is not 
invalidated . The protocol is changed to include a preparation 
phase, and the transaction is aborted if there is a conflict . 
The repository can commit transactions out of timestamp 
order . The result will still match the serialized order, even 
if execution happens out of timestamp order (because of the 
nature of transactions) . Repositories throughout the system 
can be in different modes .

Experiments were presented using the TPC-C benchmark . 
Granola scales well . With a higher load of distributed trans-
actions, Granola throughput only goes down to half . This is 
because there is no locking or undo logging .

Marcos Aguilera, Microsoft Research, commented about the 
ambiguity of the terminology for consistency, that it could 
mean either serializability or atomicity . James agreed that 
database and system communities use different terminology . 
Marcos then asked if a change doesn’t touch the entire repos-
itory, if there is a need to switch the entire repository to lock 
mode . James answered that if there were a separate object 
model, this would be possible, but in the system the applica-
tion is just considered a blob, so it is not possible currently .

Timothy Zhu, CMU, asked for suggestions on when to use 
this system . Is it applicable all the time? James said there 
are obvious limitations; when there are failures, you have to 
switch into locking mode, so when you really only want avail-
ability, this isn’t a great system . Timothy asked if the time-
stamps are similar to Lamport clocks . James answered that 
they are basically Lamport clocks, except that voting does not 
take place in Lamport clocks . Also, Granola in fact makes use 
of local system clocks at clients for performance .

Zhiwu Xie, Virginia Tech, asked James to compare Granola 
with the Calvin system . James answered that Calvin has an 
agreement layer that needs all-to-all communication, so they 

An example application, Wiki World, was shown . You can 
automatically find info about objects on Wikipedia . This 
would not be possible in other systems . Many more systems 
challenges at the intersection of systems, graphics, PL, 
databases, etc . are present in this area . An example is audio: 
for instance, playing a distant siren or the combined roar of a 
crowd . More info can be found at http://sirikata .com .

Jon Howell, Microsoft Research, asked what workload was 
used to measure the improvements . Ewen said it is hard 
to collect or generate workloads . What they used were a 
synthetic random workload, and a workload collected from 
Second Life . For their experiments, they tried both work-
loads . Chip Killan, Purdue, asked how direct communication 
is done with aggregate objects . Ewen said that you can’t do 
this with aggregate objects currently, which is a limitation in 
the current system .

Granola: Low-Overhead Distributed Transaction 
Coordination
James Cowling and Barbara Liskov, MIT CSAIL 

James Cowling told us that Granola is an infrastructure for 
building distributed storage applications . It provides strong 
consistency without locking for multiple repositories and 
clients . The unit for an atomic operation chosen is transac-
tions . Why? Because using transactions allows concur-
rency on a single repository to be ignored . Transactions are 
allowed to span multiple repositories, avoiding inconsistency 
between repositories . However, distributed transactions are 
hard . Opting for consistency, e .g ., using two-phase commit, 
results in a high transaction cost . Opting for performance, 
e .g ., providing a weak consistency model, places the burden of 
consistency on application developers, which evidence sug-
gests makes their job difficult .

To allow strong consistency and high performance, for 
at least a large class of transactions, this work provides a 
new transaction model . There are three classes of opera-
tions—first, those that work on a single repository, and then, 
for distributed operations, coordinated and independent 
transactions . Granola specifically optimizes for single and 
distributed independent operations; it provides one-round 
transactions . An example of a distributed independent 
operation was shown: consider transferring $50 between two 
accounts . Each participant must make the same commit/
abort decision . Evidence shows this class of operations is 
common in OLTP workloads . For example, TPC-C can be 
expressed entirely using single or independent transactions .

Granola provides both a client library and a repository 
library, and sits between the clients and repositories . Each 
repository is in fact a replicated state machine . There are 
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by a factor of two . Media access protocols isolate users from 
each other, so this won’t hurt innocent users .

Evaluation was done through a deployment on two buses on 
the MS campus, with trace-driven workloads, and emulation . 
The main result is that performance is improved by 4x . The 
workload was scaled, up to a factor of 8x, to show that losing 
spare capacity is not a major concern . In emulation, it was 
shown that OEC outperforms other loss recovery methods . 
This is because retransmission requires delay, and fixed 
redundancy ECs are not opportunistic .

Philip Levis, Stanford, asked whether fountain codes could 
be used instead . Ratul replied that a challenge in PluriBus 
is that r is dynamic, in addition to being estimated . With 
fountain codes, k of n packets must arrive, which could not be 
guaranteed .

Bradley Andrews, Google, asked whether any actual user 
feedback was collected . Ratul answered there were two main 
reasons that they did not . First, outsourcers who ran the 
actual commute buses didn’t allow changes, so this couldn’t 
be applied to those buses . Second, during the study, a large 
shift to smartphones meant that the demand for Internet 
access on these buses essentially disappeared . Bradley then 
asked whether there was collaboration with wireless carri-
ers . Ratul explained that permission was not asked of wire-
less carriers before the study, but once the study was over, the 
results were shared with carriers .

Masoud Jafavi, USC, asked what the effect of a crowded  
area would be . Ratul replied that experiments were not done 
to quantify this, but the feeling is that any kind of damage 
will not be too large . Rather, the important questions to 
consider are: Do you or do you not have a dedicated channel  
to the cell provider? And how many users can get a channel, 
and how quickly? Ratul commented that PluriBus may hold 
on to the channel for about 200 ms longer, but compared to 
the release timeout of five seconds, this is a small fraction  
of the overall time .

Server-Assisted Latency Management for Wide-Area 
Distributed Systems
Wonho Kim, Princeton University; KyoungSoo Park, KAIST; Vivek S. Pai, 

Princeton University

Wonho Kim presented this work on one-to-many file 
transfer . This may sound like an old problem: e .g ., CDN, P2P, 
Gossip approaches have been around for a while . But these 
typically focus on bandwidth efficiency or delivery odds . The 
focus in this work is on the metric of completion time . This 
requires different strategies . Some motivating use cases are: 
(1) configuration to remote nodes—e .g ., in a CDN; (2) distrib-
uted monitoring—e .g ., coordinating before measurement; and 

have higher latency . He believes there is a potential scalabil-
ity limit because of this, but they showed 100 nodes, which is 
impressive . Calvin’s advantage is that it has more freedom to 
shift transactions around . Granola is constrained, so it relies 
on single-threaded execution .

High-Performance Vehicular Connectivity with 
Opportunistic Erasure Coding
Ratul Mahajan, Jitendra Padhye, Sharad Agarwal, and Brian Zill, 

Microsoft Research

Ratul Mahajan started by asking how many of the audience 
have used Internet access on-board a vehicle . There was 
quite a show of hands . Riders love Internet access—it boosts 
ridership . But performance can be poor, and service provid-
ers don’t have a good grasp on how to improve it . A service 
provider’s support suggested, for example, that the user can-
cel a slow download and retry in approximately five minutes .

Vehicular connectivity uses WWAN links . It’s not the WiFi 
that is bad, but rather that the WWAN connectivity is lossy . 
This is not due to congestion but is just how wireless behaves . 
Two methods to mask losses are retransmission and erasure 
coding (EC) . Retransmissions are not suitable for high delay 
paths . So high-delay should use erasure coding . Existing EC 
methods are capacity-oblivious, meaning there is a fixed 
amount of redundancy . The problem is that this fixed amount 
may be too little or too much, relative to the available capac-
ity . Thus, the main proposal is opportunistic erasure coding 
(OEC)—this uses spare capacity . The challenge is how to 
adapt given highly bursty traffic . Real data from MS com-
muter buses shows that you would have to adapt at very small 
time-scales .

The transmission strategy for OEC is to send EC packets 
if and only if the bottleneck queue is empty . This matches 
“instantaneous” spare capacity and produces no delay for 
data packets . As for the encoding strategy, conventional 
codes are not appropriate . These codes don’t provide grace-
ful degradation when the amount of redundancy provided 
is different from that needed . Thus, OEC is designed with 
greedy encoding . The strategy is that, if the receiver has a 
lot of packets, then EC has a lot of packets . A good property 
that is achieved is that each packet transmission greedily 
maximizes goodput .

PluriBus is OEC applied to moving vehicles . OEC happens 
between the VanProxy (on the moving bus) and LanProxy 
(part of the immobile infrastructure) . Details of how relevant 
parameters are estimated were given . Ratul claimed that the 
aggressive use of spare capacity is not such a bad idea . The 
observation is that the network is not busy all the time using 
timeouts, and this means that network traffic only increases 
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do care, you can specify a new set of nodes, and then run with 
completion ratio set to 1 .0 .

Deduplication

Summarized by Anshul Gandhi (anshulg@cs.cmu.edu)

Generating Realistic Datasets for Deduplication 
Analysis
Vasily Tarasov and Amar Mudrankit, Stony Brook University; Will Buik, 

Harvey Mudd College; Philip Shilane, EMC Corporation; Geoff Kuenning, 

Harvey Mudd College; Erez Zadok, Stony Brook University

Deduplication is the process of eliminating duplicate data 
in a system and has been the focus of a lot of prior work . 
Unfortunately, most of the prior work has looked at differ-
ent data sets, and so it is almost impossible to compare the 
performance of these different deduplication approaches . A 
survey of the data sets used by 33 deduplication papers was 
conducted by the authors and they found that most of the 
data sets were either private (53%), hard to find (14%), or con-
tained less than 1 GB of data (17%) . Thus, there is a need for 
an easily accessible data set with configurable parameters .

In order to create realistic data sets, Vasily Tarasov pre-
sented work to accurately track how file systems mutate over 
time . They do so by observing consecutive snapshots of real 
data sets, combined with a Markov model and multi-dimen-
sional analysis . Comparison with the evolution of real file 
system images shows that the authors’ emulation approach 
very accurately tracks the number of chunks and files over 
time, as well as the number of chunks with a given degree of 
duplication . Importantly, the file system profile sizes gener-
ated by the authors are 200,000 times smaller than the real 
profile sizes . The emulation time is proportional to the size of 
the data set, with a 4 TB data set emulation requiring about 
50 minutes .

Haibo Chen from Shanghai Jiao Tong University asked about 
the differences in numbers between emulation and live file 
systems . Vasily answered that the emulation is a statistical 
process and so there would naturally be differences from 
time to time between emulation and the live system . How-
ever, Vasily felt that the emulation was close enough to the 
live system evolution . Haibo then asked whether the emu-
lation runtime could be reduced by parallelization . Vasily 
agreed that it could; in their current work, scanning the data 
sets is done in parallel, but everything else is serialized, and 
thus, there is potential for parallelization .

(3) developers—e .g ., a long develop-deploy cycle in PlanetLab 
can hurt productivity .

The system developed is LSync . It provides a simple folder 
sync interface . The lessons and contributions are: (1) existing 
systems are suboptimal mainly because they are not favor-
able when there are slow nodes; (2) completion time depends 
on the set of target nodes, so LSync selects the best set of 
nodes; (3) end-to-end transfer can be faster than an over-
lay, because of startup latency, so overlay is used only when 
appropriate; (4) overlay performance changes at short time 
scales, so transfers are adapted while they are taking place . 
Existing systems assume an open client population, so their 
main goals are maximum average performance, maximum 
aggregate throughput, etc . LSync focuses only on internal 
dissemination within a fixed client population . Thus it aims 
to minimize completion time . This time is dominated by  
slow nodes . 

LSync uses server’s spare bandwidth to assist slow nodes . 
The question is how to do this efficiently . First, look at node 
scheduling—either do fast first, or slow first . Intuitively, fast 
first is optimal for mean response time, while slow first gives 
preference to nodes that are expected to be slow . The results 
show that in fast first, slow nodes become a bottleneck at the 
end . Slow first starts slower but ends quicker . But not every 
scenario requires waiting for 100% sync . LSync allows the 
specification of a fraction of nodes, called the target sync 
ratio . LSync integrates node selection with the aforemen-
tioned scheduling .

Leveraging an overlay mesh is scalable, but needs to be care-
ful about startup latency . For small files, only using end-to-
end transfer (E2E) is faster than using an overlay . For large 
files, overlay is faster than E2E . So, LSync should adapt to 
the target ratio, file size, bandwidth, etc . The approach used 
is that LSync monitors the overlay’s startup latency . It splits 
nodes into an overlay group and E2E group, depending on the 
overlay connection speed, and tries to match the completion 
time of both . To deal with overlay performance fluctuation, 
adaptive switching is used .

Evaluation was done on PlanetLab, using multiple CDNs, 
and compared against multiple systems . A dedicated origin 
server was used with 100 Mbps bandwidth . LSync improves 
over other systems, by choosing E2E vs . overlay rates . Less 
variation is shown with adaptive switching .

Jon Howell, Microsoft Research, asked for clarification of 
the target completion ratio—whether or not they care about 
which specific nodes are completed . Wonho answered that 
you can do both . You can simply tune the completion ratio if 
you aren’t concerned which set of nodes are completed . If you 
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Primary Data Deduplication—Large Scale Study and 
System Design
Ahmed El-Shimi, Ran Kalach, Ankit Kumar, Adi Oltean, Jin Li, and 

Sudipta Sengupta, Microsoft Corporation

Sudipta Sengupta and Adi Oltean jointly presented this work, 
which will be part of Windows Server 2012 . Sudipta started 
this presentation, which looks at deduplication in primary 
data, as opposed to the more common case of backup data . 
Primary data deduplication is important because of the 
continuing growth in the size of primary data and because 
this is the number one technology feature that customers 
are looking for when choosing a storage solution . The main 
challenge in primary data deduplication is that it needs to be 
non-intrusive to the workload .

The key design decision made by the authors is to post-process 
deduplication, which helps to schedule deduplication in the 
background when data is not hot . Also, the authors decided to 
use a larger chunk size (80 KB), which helps to reduce meta-
data, and thus reduces deduplication overhead . To compensate 
for the loss in deduplication opportunity due to larger chunk 
sizes, the authors use chunk compression . The authors also 
modify the basic fingerprint-based chunking algorithm to 
reduce the forced chunk boundaries at the maximum chunk 
size and to obtain a more uniform chunk size distribution . 
Lastly, in order to reduce the RAM footprint and the number 
of disk seeks, Adi presented the idea of partitioning the data, 
then performing deduplication on each partition, and, finally, 
reconciling the partitions by deduplicating across them . 
Performance evaluation of this approach reveals that dedupli-
cation throughput is about 25–30 MBps, which is about three 
orders of magnitude higher than previous work . Deduplication 
takes up 30–40% of one core, leaving enough room (assuming 
a manycore server) for serving primary workload .

Haibo Chen from Shanghai Jiao Tong University asked about 
the effects of data corruption on deduplication . Adi replied 
that they have looked at corruption and recovery, but this was 
not part of the paper . Essentially, they ensure that in case of 
a crash, data can be recovered so that the customer has peace 
of mind . Further, if corruption is in the I/O subsystem or the 
bus, it will be isolated .

Languages and Tools

Summarized by Asia Slowinska (asia@few.vu.nl)

Design and Implementation of an Embedded Python 
Run-Time System 
Thomas W. Barr, Rebecca Smith, and Scott Rixner, Rice University

Even though there are dozens of microcontrollers around 
us—e .g ., in cars, appliances, and computer electronics—the 

An Empirical Study of Memory Sharing in Virtual 
Machines
Sean Barker, University of Massachusetts Amherst; Timothy Wood, The 

George Washington University; Prashant Shenoy and Ramesh Sitaraman, 

University of Massachusetts Amherst

Sean Barker presented this work which analyses the poten-
tial of page sharing in virtualized environments . Page 
sharing is a popular memory deduplication technique for 
virtual machines in which duplicate pages are eliminated . 
There has been a lot of prior work in exploiting page sharing 
for deduplication, with recent publications eliminating more 
than 90% of duplicate memory pages . However, the levels of 
sharing typically seen in real-world systems and the factors 
that affect this sharing remain open questions . The goal of 
the authors’ work is to answer such questions .

The authors looked at a wide variety of memory traces, 
including uncontrolled real-world traces as well as con-
trolled, configurable synthetic traces . Results indicate that 
sharing within a single VM (self-sharing) is about 14%, 
whereas sharing between VMs is only about 2% . Thus, 85% 
of the potential for deduplication is within a VM, indicating 
(very interestingly) that page deduplication is quite useful 
even for non-virtualized systems . Further investigation 
revealed that most of the self-sharing (94%) is because of 
shared libraries and heaps . However, the amount of self-shar-
ing is largely impacted by the choice of base OS . Likewise, 
sharing across VMs is also impacted by the base OSes, with 
sharing being significant when the VMs have the same base 
OS as opposed to different base OSes . 

The case study drew a lot of questions from the audience . 
Thomas Barr from Rice University asked whether the 
authors had looked at sharing larger multiples of page sizes . 
Sean answered that they didn’t look much at coarse-grained 
sharing since the amount of sharing in this case was much 
smaller . Ardalan Kangarlou from NetApp asked whether the 
numbers for sharing in prior work were higher because they 
looked at synthetic workloads . Sean replied that the amount 
of sharing depends on the data set, and for the uncontrolled 
data set that he was looking at, the sharing was much lower . 
He urged the audience to look at actual data sets . Someone 
noted that memory contents change from time to time, and 
wondered whether vendors really benefit from sharing .  Sean 
acknowledged that short-lived data is hard to capture, but 
that was a separate issue . Jiannan Ouyang from University 
of Pittsburgh asked about the size of memory footprint in the 
workload . Sean answered that the VMs they used had 2 GB 
of memory (each) on them, and since they had lots of appli-
cations running, he guessed that a good portion of the 2 GB 
memory was being used .



96   ;login: vOl.  37,  NO.  5

for C/C++ programs, which prevents out-of-bounds memory 
accesses and use-after-free bugs . The authors invite others 
to try it out . It is publicly available at http://code .google .
com/p/address-sanitizer/ .  

AddressSanitizer is a compiler-level solution—it instru-
ments the protected program to ensure that memory access 
instructions never read or write, so called, “poisoned” red 
zones . Red zones are small regions of memory (currently 128 
bytes) inserted in-between any two stack, heap, or global 
objects . Since they should never be addressed by the program, 
an access to them indicates an illegal behavior . This policy 
prevents sequential buffer over- and underflows and some of 
the more sophisticated pointer corruption bugs . To deal with 
heap-use-after-free errors, AddressSanitizer marks a freed 
memory region as “poisoned .” Until this region is allocated 
again, any access to it causes an alert . AddressSanitizer uses 
its own tailored instrumentation of malloc and free, which 
keeps a released memory region in “quarantine” for as long as 
possible . By prolonging the period in which the memory buf-
fer is not allocated again, it increases the chances of detect-
ing heap-use-after-free bugs .

AddressSanitizer scales to real-world programs, and the 
developers at Google have been using it for over a year now . 
It has detected over 300 previously unknown bugs in the 
Chromium browser and in third-party libraries, 210 of which 
are heap-use-after-free bugs . The tool has a fair amount 
of overhead—it incurs 73% runtime overhead for the SPEC 
CPU2006 benchmark, and almost none for the I/O intensive 
Chromium browser . 

During his presentation, Serebryany challenged the audi-
ence and hardware companies to attempt an implementation 
of AddressSanitizer in hardware . Rik Farrow asked what 
instruction would have to be added . Serebryany explained 
that a hardware version of the check which is performed on 
memory accesses—to ensure that the accessed memory is not 
poisoned—would be welcome . It would both improve perfor-
mance and reduce the binary size . Since the current imple-
mentation of AddressSanitizer builds on the LLVM compiler 
infrastructure, the next questioner asked if Google plans 
to port it to gcc . Serebryany replied that they have already a 
version which can successfully compile the SPEC CPU2006 
benchmark, but it is not fully fledged yet .

For the complete 2012 USENIX Annual Technical 
 Conference report and summaries from HotCloud ’12,  
HotPar ’12, HotStorage ’12, and the panel at our first  
Women in Advanced Computing Summit, visit:  
www .usenix .org/publications/login .

programming environments and runtime systems for them 
are extremely primitive . As a result, programming these 
devices is difficult . To address these issues, Thomas Barr 
presented Owl, a project which aims to let developers “build 
a toaster in Python .” Owl is a Python development toolchain 
and runtime system for microcontrollers . It also includes an 
interactive development environment, so that a user can con-
nect to a device, and type Python statements to be executed 
immediately . As a result, experimenting with and program-
ming microcontrollers becomes a much simpler task . 

Microcontrollers come with limited resources: e .g ., 64–128 KB 
of SRAM, and up to 512 KB of on-chip flash . These constraints 
require that Python code be executed with low memory and 
speed overheads . During his presentation, Barr discussed 
two of the features of Owl that make this possible . First, he 
explained how a compiled Python memory image is executed 
directly from flash, without copying anything to SRAM . One 
of the challenges here is to represent compound objects in such 
a way that they do not contain references to other objects—
only then can they be used directly without an extra dynamic 
loading step . The next feature concerned native C functions 
that are called from Python to, for example, access peripherals . 
Owl provides a mechanism that wraps the C functions auto-
matically, so that a programmer does not need to bother with 
converting Python objects into C variables, and vice versa . A 
full description of the Owl architecture is in the paper, and the 
authors can be reached at embeddedowl@gmail .com .  

To demonstrate that the Owl system is practical, Barr showed 
a video of an autonomous RC car that uses a controller written 
entirely in Python . The car successfully detected and avoided 
obstacles as it zoomed around a room . A full description of the 
architecture of Owl can be found in the paper, and the authors 
can be reached at embeddedowl@gmail .com .

A questioner wondered how Owl provides access to some sort 
of global notion of time . Barr said that the virtual machine pro-
vides a function call that returns the number of milliseconds 
since the virtual machine booted . Rik Farrow asked how Owl 
makes interacting with peripherals simpler for a programmer . 
Barr explained that the embedded Python interpreter allows 
the programmer to interactively probe the device . Thus it 
becomes easy to tell whether a piece of code works as expected . 

AddressSanitizer: A Fast Address Sanity Checker 
Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and 

Dmitriy Vyukov, Google 

Even though memory corruption bugs have been known 
about and fought for years, no comprehensive tool to detect 
them is available . To address this problem, Konstantin Sere-
bryany presented AddressSanitizer, a memory error detector 
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