;JJogin:

Haiku Contest Winners!

see page 3

inside:

OPINION
Darmohray: Value Added

TECHNOLOGY

Kereliuk: introducing Voice Over Internet Protocol
Technology

SECURITY

Farrow: Musings

SYSADMIN
Haskins: ISPadmin: Managing and Providing ISP Services
Moskowitz: “Eat Your Own Dog Food*

PROGRAMMING
McCluskey: Using C# Properties and Static Members

Flynt: The Tcish Spot: Client Server Sockets
Turoff: Practical Perl: Using Object Factories

THE BOOKWORM

CONFERENCE REPORTS
USENIX Annual Technical Conference 2003
15th Annual FIRST Conference

THE USENIX MAGAZINE

October 2003 e volume 28 « number 5

USENIX

The Advanced Computing Systems Association

STOP MONITORING
YOUR MONITORS.

THE AGE OF AGENTLESS
IS HERE.

10 DAY FREE TRIAL. chances are your agent-based monitoring system

has become a monitored system — monitored by you. It's a relationship you just
don't have time for. It's time to go agentless. SiteScope from Mercury Interactive
constantly monitors your systems, alerting you the instant a problem pops up.
And because it's agentless, maintenance aggravations are kept to a minimum.

Download a full version of SiteScope for a free 10 day trial. ®
(il MERCURY

www.sitescope.com/trial . INTERACTIVE

©2003 Mercury Interactive Corporation. Mercury Interactive and the Mercury

logo are or d trademarks of Mercury Interactive
Corporation in the United States and/or select foreign countries

contents

o
;logm: Vol. 28, #5, October 2003

;login: is the official magazine of the USENIX
Association.

slogin: (ISSN 1044-6397) is published
bi-monthly by the USENIX Association,
2560 Ninth Street, Suite 215, Berkeley, CA
94710.

$80 of each member’s annual dues is for an
annual subscription to ;login:. Subscriptions for
nonmembers are $110 per year.

Periodicals postage paid at Berkeley, CA, and
additional offices.

POSTMASTER: Send address changes to
slogin:, USENIX Association, 2560 Ninth Street,
Suite 215, Berkeley, CA 94710.

©2003 USENIX Association. USENIX is a regis-
tered trademark of the USENIX Association.
Many of the designations used by manufactur-
ers and sellers to distinguish their products are
claimed as trademarks, USENIX acknowledges
all trademarks herein. Where those designa-
tions appear in this publication and USENIX is
aware of a trademark claim, the designations
have been printed in caps or initial caps.

Cover: The Portland State Aerospace

Society’s display in the Exhibit Hall for

USENIX '03.

10

14
18

20
23
29

33
34

35
36

37
58

MOTD gy Ros KotLsTap
Results of the First Haiku Contest

OPINION
Value Added 8y Tina DARMOHRAY

TECHNOLOGY

Introducing Voice Over Internet Protocol Technology 8y Ryan KERELIUK

SECURITY

Musings 8y Rik FARROW

SYSADMIN
ISPadmin: Managing and Providing ISP Services 8y ROBERT D. HASKINS
“Eat Your Own Dog Food" 8y Abam Moskowirz

PROGRAMMING

Using C# Properties and Static Members 8y Gren McCrLuskey
The Tclsh Spot: Client Server Sockets sy CLiF FLynr

Practical Perl: Using Object Factories 8y ADAM TUROFF

BOOK REVIEWS AND HISTORY
The Bookworm 8y PETeR H. SALUS
Networking Anniversaries 8y Perer H. SALUS

USENIX NEWS
2004 USENIX Nominating Committee sy Dan Geer
Membership News 8y TARA MULLIGAN

CONFERENCE REPORTS
USENIX Annual Technical Conference 2003
15th Annual FIRST Conference

Mot

by Rob Kolstad

Dr. Rob Kolstad has
long served as editor of
;login:. He is also head
coach of the USENIX-
sponsored USA Com-
puting Olympiad.

<kolstad@usenix.org>

News from All Over

On the SAGE front, I am excited to announce SAGE’s biggest
current news: the largest reported barrier to joining SAGE has
fallen. SAGE and USENIX dues are now separated! Anyone can
join USENIX for $110/year; anyone can join SAGE for $40/year
—and there is no longer a requirement for membership in
USENIX as a prerequisite for membership in SAGE. If you’re in
the computer administration world, please urge your friends
and associates to join. (See page 36 for details.)

One of the benefits of SAGE membership is access to the results
of the annual salary survey. This year’s survey was the largest yet
(we teamed with SANS and Sys Admin, with almost 10,000 par-
ticipants). Results are now posted on the SAGE Web site. Enjoy!

You probably know that USENIX (this year along with SANYS)
sponsors the USA Computing Olympiad, the premier high
school computing competition (and I am the head coach). Goals
including encouragement of careers in computing, in addition
to identification and recognition of outstanding programmers.

In 2003, Don Piele (long-time USACO director) hosted the
international programming championships (the “International
Olympiad on Informatics”) at his institutional home, the Uni-
versity of Wisconsin—Parkside. Fully 75 countries competed
(about 300 competitors) in the week-long event held August
16th-23rd which included 10 hours of grueling programming
competition.

For the first time ever, the USA team tied for highest honors,
with two gold medals (for juniors Alex Schwendner and Tiankai
Liu) and two silver medals (for junior Anders Kaseorg and MIT-
bound Timothy Abbott). Being the host country, a second team
also competed for honor and earned scores that otherwise would
have earned medals. Only one senior is graduating this year, so
we’ve got great chances for next year, as well. Best of all, the
competition was run flawlessly for the first time, with no glitches
or major protests. Congratulations to the competitors, coaches,
and organizers.

As I type this, the master copies of the LISA Conference pro-
ceedings are printed and shortly to be sent to the publisher. The
subjects range across the spectrum from Alva Couch’s new the-
ory work to Josh Simon’s and Liza Weissler’s super practical doc-
ument repository implementation.

A new “lunch with the speakers” program will widen access to
presenters, who will appear at informal tables in the courtyard
shortly after their talks for lunch (or, in the case of afternoon
presenters, late-afternoon drinks). Yet another reason why LISA
is the premier conference for administrators.

Several topics are appearing on my radar this month, and space
won’t permit me to write 650 words about all of them. They are
interesting enough, though, that I hope you’ll think about them
and let me know if you hear report-worthy developments. They
are presented here in no particular order.

Some Predict the Death of the Internet

I'm hearing more pundits (including some traditionally associ-
ated with the USENIX community) bemoaning current Internet
problems. Of course, the recent worms/viruses have done noth-
ing to help, but spam and the general noise level (including pop-
up ads for browsers) has prompted ever more to suggest that the
usefulness of email and the Web is declining. Some suggest that
solutions involving balkanization (creation of smaller [sub-]nets
that serve specific [potentially distributed] communities) is the
only answer. I imagine that will happen anyway, but more as an
addition than as a partition.

Some Predict Quicker Rise of Linux

Pundits, Information Week, and of course the vocal evangelists
are saying that Linux will rise to become a/the dominant operat-
ing system. Larger corporations (who really do move most of the
money in the IT world) are now in the “when” phase of Linux
deployments rather than the “if” phase, according to Information
Week magazine polls and others. Why mention this now?
Because the security issues are really pushing management to
understand what’s going on in the machine rooms, performance
and usability are now seen as assets, and the SCO lawsuit is pro-
viding publicity and visibility to Linux. Regrettably, the rise of
Linux means the death-knell for the BSD line.

Mixed Predictions on Future Job Markets

While outsourcing comments led all others in the free-format
section of the salary survey, many on the Net also voice concern
about future careers in IT, administration, software, etc. New
criticisms are appearing that academic education is diverging
from the needs of industry. The worries include: lack of curricu-
lum relevance means college graduates are not as employable,
industry will have to step in to make its own program (which
will surely be more focused on the near term), enrollments in

Vol. 28, No. 5 ;login:

traditional programs will drop even more (they’re already way down from highs dur-
ing the dot-com boom), and foreign outsourcing will drive anyone still interested into

other careers, anyway.

More next time.

Results of the First Haiku Contest

Two months ago, I asked people to send
me haiku about the Internet. What a fab-
ulous set of entries I received! I culled
them down to some of the best, shown
below. Thanks to all who wrote; the topic
of the next contest is at the end of this
article.

Matthew W. Hurlburt’s first entry worked
in a sort of anthropomorphism, raising
the specter of digital isolation:

Alone in my room
Digitally connected
To others like me

Matthew also sent a more traditional
haiku, that included both technology and
a season:

Like a Spring rainstorm
The server stops and restarts
Over and over

Steve C. Johnson submitted several snip-
pets; here are my favorites:

Innocent action
violates segmentation
it’s a null pointer

For systems admin
Professional adventure
come visit LISA

UNIX eternal
From PDP-11
To my PDA

Edward Chrzanowski sent in an interest-
ing set of haiku where changing spacing
or single letters makes for new haiku with
new meanings. Consider changing “infi-
nite” to “in finite” or changing “wander”
to “wonder”:

October 2003 ;login:

Stateless I wander
My passage HTTP
Infinite roaming

My favorite of Tobias J. Kreidl’s submis-
sions ended with a twist, a sort of apoca-
lyptic tone:

Slipping though a pipe
Bits propagate through routers
Filling us with fright

One of John Sellens’s entries sported a
similar theme:

Contemplating bits
Intrusion detection works
Machine is now owned

My favorite (though it’s really hard to
choose!) was Heather Fox’s more tradi-
tional entry, with its digital, emotional,
and outdoor themes:

Shooting stars of bytes
breathing ether in and out
this world has no sun

Heather wins the first haiku author polo
shirt.

This was great fun!

Let’s try for another topic. Compose a
haiku that reveals the joys or frustrations
that surround the process of developing
scripts or programs. Send it to
haiku@usenix.org.

Haiku are little three line poems with five
syllables in the first line, seven in the sec-
ond line, and five more in the last line.
Syllabic stresses (accents) are not impor-
tant. The brief haiku captures a thought,
a moment, a scene, or a vision. The best
haiku amplify insight or even cause an
“Aha!” or epiphany. Many haiku tradi-
tionally describe the seasons of the year.

EDITORIAL STAFF
EDITOR:
Rob Kolstad kolstad@usenix.org

CONTRIBUTING EDITOR:
Tina Darmohray tmd@usenix.org

MANAGING EDITOR:
Alain Hénon ah@usenix.org

Cory EDITOR:
Steve Gilmartin
PROOFREADER

jel jel@usenix.org

TYPESETTER:
Festina Lente

MEMBERSHIP, PUBLICATIONS,

AND CONFERENCES
USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710
Phone: 510 528 8649
FAX: 510 548 5738
Email: office@usenix.org
login@usenix.org
conference@usenix.org
WWW: http://www.usenix.org
http://www.sage.org

by Tina
Darmohray

Tina Darmohray,
contributing editor
of ;login:, is a com-
puter security and
networking consult-
ant. She was a
founding member of
SAGE. She is cur-
rently a Director of
USENIX.

tmd@usenix.org

F

opinion
Value Added

| was fortunate to land in a soup-to-nuts project the first job | had out of col-
lege. | had everything to learn and there was at least one of everyone to learn
from. We had scientists, kernel coders, application programmers, database pro-
grammers and administrators, documentation specialists, system administrators,
networking and telecom jockeys, and so on. Despite all the different flavors of
computer professionals on the project, | noticed one universal theme: Those who
understood the whole picture were the most valuable.

Since I had everything to learn and didn’t have a particular specialty yet, I benefited
from every person on the project. While there, I did some programming, project man-
agement, technical training, documentation, and database and system administration.
I was like a sponge, and there was free-flowing knowledge running steadily through-
out the hallways and conference rooms of that project. I did my best to come up to
speed on my own, but when I had questions there were always folks to go to for
answers. There was so much to learn and, luckily, so many really good people willing
to let me learn from them.

As I came out from under my initial input overload, I began to notice that I wasn’t the
only staffer who sought help from colleagues. In fact, there was information exchange
going on for everyone, regardless of their experience or seniority. After a while I
noticed a trend, though: There were some folks who were the top question-answerers,
and it was almost as if an unofficial org chart was reflecting it. It was these folks whom
the experienced staff went to when they had questions. And it was these same people
who had the last word in meetings and to whom everyone deferred when the strategic
decisions were being made.

Since their authority was clear, though not official or necessarily aligning with a title of
“manager,” I began to assess what it was they had in common. Were they the scientists
on the project? The kernel programmers? Soon I realized that it wasn’t their profession
or title which they had in common but their body of knowledge. In every case these
local sages were the people who knew more than just their area of specialty. For the
programmers, that meant they knew the kernel as well as the applications and net-
working. For the network folks, it was the guy who could talk with the kernel pro-
grammers. For the sysadmins, it was the one who could administer the network
applications as well as the local machine, and for the database folks it was the person
who understood the OS and its administration, too.

In every case, these people were able to bridge the gap to their peers. On this particular
project, which drew on so many different disciplines, those who could do so were key.
But I've observed this type of employee is always key, no matter where they work. It’s
like they are translators in the tower of Babel, the hub of a communications wheel. For
their ability to do and understand more than one thing, they are more valuable and
more utilized than their peers.

Thinking back 20 years, I realize that additional value hasn’t changed. The people who
understand the way things work, top to bottom, are still the most valuable and influ-
ential folks on any project. In this economy, being that person may mean you keep
your job or get the next one. Take every opportunity to broaden your body of knowl-
edge; not only will you bring added value to your project, you'll also add value to your
resume.

Vol. 28, No. 5 ;login:

introducing voice
over Internet
protocol technology

Overly optimistic marketing during the so-called communications revolution
has given voice over Internet protocol (VolP) technology the stigma of
being the next big thing that never materializes. I'll risk the same mistake by
suggesting that VolP is emerging as a viable Internet application.

Key VolIP Drivers
Broadly speaking, three factors will motivate the adoption of VoIP:

m Reduced ownership and operational costs
= Simplification
= A roadmap for building next-generation services

Operational cost is paramount. Long distance charges are the first and most obvious
expense. Skeptics suggest that VoIP has missed its window because of fierce competi-
tion in the long distance market, but the market continues to grow, so the window
remains open. Furthermore, even a few cents a minute is far more expensive than uti-
lizing an otherwise unused — and already paid for — resource.

Personnel costs also add up. Most companies large enough to have their own private
branch exchange (PBX) are staffed with a telecom group. Since VoIP is premised on
open, interoperable standards, telephone services become an application more akin to
running an HTTP server than a traditional phone system. One is able, then, to leverage
the competencies of an IT networking group and invest resources there, which is
attractive given the versatility of those staff.

Security is a feature that one gets “for free” with VoIP. VoIP is secured in the same way
as other Internet services: by minimizing attack vectors, using strong authentication,
and protecting important servers with a firewall. On the management front, IP phones
can often be configured using DHCP and TFTP, for instance, which exploits services
that usually exist already.

Simplification might save money directly but is a benefit in its own right. VoIP con-
verges voice and networking, reducing the number of service providers a company
must deal with. (Of course, ’'m not predicting the death of the public switched tele-
phone network or PSTN in the short or medium term.) On one hand, ISPs offer
straightforward billing plans for bit pipes. On the other, VoIP empowers people to take
control of the server infrastructure that telcos use to extract complex fees for every
move/add/change operation.

The most important simplification, though, concerns the phones themselves. If VoIP is
really just another Internet application, then are phones even required? So-called hard
phones are available to recreate the experience of using a regular phone, but soft
clients, ordinary PC applications that run on desktop computers, are making inroads.
In time soft clients will dominate.

VoIP will offer new features over legacy phone systems, namely rich media and conver-
gent integration. Rich media rejects the assumption that a communications channel
spans only one medium (e.g., audio). Instead, voice, video, and text can be shared
simultaneously. VoIP protocol engineers, particularly those with the Internet Engi-

October 2003 ;login: VOICE OVER INTERNET PROTOCOL TECHNOLOGY

by Ryan Kereliuk
Ryan Kereliuk is a
contract developer
focusing on systems
and network soft-
ware ranging from
device drivers to pro-
tocol stacks. He
holds a master's
degree in CS from
the University of
Alberta.

ryker@ryker.org

o TECHNOLOGY

Estimates suggest that VolP
can save 30% over conven-
tional telecom rollouts after
accounting for long distance
charges, personnel, servers,

and phones.

neering Task Force (IETF), have shown tremendous commitment to generality, so
today’s protocols are equipped to help people communicate in whichever ways serve
them best.

Convergent integration — unified messaging — suggests that voice mail and faxes
should, like email, be accessible using any device connected anywhere on the Internet.
This unification might even extend to integrating VoIP software into customer rela-
tionship management suites or e-commerce applications.

The case for VoIP is closely tied to cost as well as potential new services. Estimates sug-
gest that VoIP can save 30% over conventional telecom rollouts after accounting for
long distance charges, personnel, servers, and phones.

Thinking About Deployment

A VoIP project, not surprisingly, begins with a requirements analysis that informs the
trade-offs faced at every stage of the decision-making process. Key areas for considera-
tion include cost, network requirements, protocol selection, client and server hardware
and software, impact on existing infrastructure, and migration paths.

Regardless of the underlying technology, certain questions govern subsequent choices
and, in the end, serve as evaluation criteria for any deployment. Three that deserve
consideration are:

= System utilization
= Interoperability
= Quality

Utilization refers to the capacity of a given system and is related to the numbers of
active and potential users: How many VoIP endpoints will be connected, and what
percentage of those will be active at any one time? Interoperability is concerned with
which users can connect with one another: Is the system meant for internal use only or
for use with external parties? In the latter case, are external parties reached by using
some (possibly different) VoIP protocol or by using a gateway to the PSTN? Finally,
unlike legacy phone systems, VoIP offers the opportunity to trade quality for other
benefits. What sort of quality do users expect in terms of system availability and media
fidelity?

Call quality is governed by the codec in use, assuming the network transport is able to
keep up. The term codec is familiarly expanded to coder/decoder but, these days, com-
pressor/decompresser is an equally valid meaning. Different media codecs require dif-
ferent network resources but also provide different levels of quality. The G.711 codec,
for example, provides quality equal to conventional telephone systems at a rate of
64Kbps. G.729A, by contrast, needs 8Kbps of bandwidth but sacrifices quality. There is
no substitute for making test calls with different codecs, but my subjective impression
is that G.729A offers a quality markedly better than cellular telephone service. Choos-
ing a codec or building a model of codec usage is of great importance to resource
planning. Simplistically, the codec bandwidth can be multiplied by the number of
active users or voice paths to compute bandwidth needs.

A bandwidth number in hand, one can begin shopping for network service. Often for-
gotten, though, is that bandwidth is just one measure of a network. Latency, jitter,
quality of service (QoS), and availability are other important considerations. VoIP sys-
tems are particularly sensitive to latency, which distorts the flow of conversation,
because changes in speaking order are politely signaled by silence. High latency has the

Vol. 28, No. 5 ;login:

effect of making multiple parties think the channel is open to new speakers — which of Any VoIP im pleme ntation
course results in a collision. A rough rule of thumb is that end-to-end latency should

not exceed 250 milliseconds, but this number should be minimized. Jitter is a measure needs to mesh with existin g
of the difference in inter-packet latency between packets leaving the sender and arriv-
ing at the receiver. Introduced by network elements, jitter can cause increased packet
loss or perceptible delays, so its minimization is very desirable. infrastructure.

security policies and

Making guarantees about bandwidth, latency, and jitter — QoS in networking parlance
—is a hard problem that is not adequately solved in contemporary networks. These
days, poor man’s quality of service is achieved by overprovisioning, a very basic but
effective technique. In summary, if one is outfitting a new location with network ser-
vice or is changing service providers, it is a good time to ask harder questions than one
might have in the past. Learn about a provider’s reliability by interviewing existing
customers, get comfortable with their problem-tracking and resolution procedures,
and sign a service level agreement (SLA) that captures the important requirements.

Media codecs have direct implications for bandwidth. By contrast, calls are set up and
torn down with a signaling protocol that is comparatively lightweight. When it comes
to signaling, one is able to choose from a wide selection: Megaco, H.323, SKINNY,
MGCP, SIP, etc. (to name a few); a comparative examination of these different proto-
cols is beyond the scope of this article. The only protocol I work with today is the
IETF’s Session Initiation Protocol (SIP), which I strongly recommend to anyone
implementing VoIP.

The signaling protocol one selects will obviously affect choices to do with client and
server software and, to a lesser extent, client and server hardware. For SIP, many server
choices are available, including high-quality open source and commercial packages. In
terms of hardware, a good rule of thumb is that the machine used for an organization’s
corporate HTTP server is comparable to the machine needed to run SIP services.

On the client side, choosing between soft clients and hard clients is a key decision. Soft
clients tend to be less expensive (or free), offer more features, and integrate more
organically with existing desktop software. The downside, if there is one, is a learning
curve similar to deploying any new application. Hard phones, predictably, offer a user
experience that in most cases is identical or slightly improved over regular telephone
handsets.

Regardless of the particular protocol choice, the infrastructure associated with deploy-
ing VoIP will be impacted. Hard phones, for example, don’t reuse the resources allo-
cated for existing PC desktops. When deploying hard phones, additional switch ports
are required for each endpoint, more cabling may be needed, and routers are a factor if
additional subnets are required.

Nodes (whether hard phones or desktops) configured with RFC 1918 private IP
addresses will have issues communicating with people beyond the nearest network
address translation (NAT) boundary. SIP, for example, includes routing information
inside IP packet payloads, which means that vanilla translation systems do not work.
Like FTP, it will be some time before NAT-enabled firewall devices are smart enough to
rewrite these packets with appropriate translated address information. In the mean-
time, options include using public IP addresses for SIP endpoints or using a SIP-spe-
cific application-level gateway that is able to reconcile addresses inside SIP packets.

Lastly, any VoIP implementation needs to mesh with existing security policies and
infrastructure. This might mean adjustments to deployed security systems such as fire-

October 2003 ;login: VOICE OVER INTERNET PROTOCOL TECHNOLOGY

e TECHNOLOGY

walls and RADIUS servers. VoIP security is particularly important, especially consider-
ing that authorized users can often access expensive resources such as PSTN lines
through a gateway.

Finally, finding a migration path will be of key importance if one already has a signifi-
cant investment in legacy phone technology or cares about reaching PSTN users. PBX
users are best advised to contact their PBX vendor, as some vendors have VoIP options
in the form of line cards for existing equipment. If PSTN connectivity is needed for a
VoIP installation, a variety of choices are available in a variety of sizes. Running a T'1
line to a VoIP-enabled router, for example, allows 24 simultaneous calls to be gated to
the PSTN. On a smaller scale, some routers can take a module implementing a foreign
exchange office (FXO) interface, which connects one or two lines to a telco. In short,
telephony companies are sensitive to migration issues, and solutions are generally
available.

An Example Implementation

Building out a VoIP network is not as complex as it might seem. In this section I will
give a high-level description of one setup I've used that addresses some different
requirements. This scenario describes the VoIP solution for a multi-office distributed
company.

In this deployment, remote offices are connected to the Internet using business-grade
DSL lines. When using this class of network connection, one generally doesn’t have the
influence necessary to negotiate a favorable service level agreement, but the good news
is that these links are more than adequate for serving small satellite offices. The central
corporate phone system is served by a VoIP-dedicated one-megabit link with an SLA
guaranteeing latencies of 70 milliseconds or less to other predefined points on the
Internet. This is a connection capable of serving 12 calls with G.711 or 42 calls with
G.729A, though both codecs are used in practice.

This example uses the SIP signaling protocol exclusively, with a hodgepodge of differ-
ent servers and clients. In terms of servers, for example, remote offices utilize open
source SIP proxies, including VOCAL and SIP Express Router (SER), while the head-
quarters uses a commercial SIP server that supports unified messaging functions. The
clients deployed vary widely, because the organization is a software development firm
in which developers are permitted to use the client of their choice. Typically, however,
desks are equipped with hard phones such as Cisco 7960 handsets, while roaming
users use soft clients such as Microsoft’s Messenger product.

The reality is that VoIP is not currently sufficient to reach all potential business part-
ners and customers. In this deployment, then, PSTN connectivity is supplied using
Cisco routers. One satellite office uses a Cisco 2600 router equipped with an FXO
module to connect two lines to the PSTN for local dialing. Headquarters, however,
uses a Cisco 3600 router with a T1 interface card to provide PSTN direct dial numbers
into 24 different VoIP endpoints. By terminating these latter PSTN lines at SIP phones,
some of them remote, the organization achieves the effect of virtualizing its geograph-
ically distributed operations at the head office. Both PSTN compatibility systems work
very well.

On Timing

There is no question that VoIP represents a major paradigm shift. The legacy teleph-
ony model is very strong and thus will not be unseated easily — and change will not
happen all at once even in an environment of enthusiastic adoption. So when, then?

Vol. 28, No. 5 ;login:

Before I say when, let me describe how. The value of a communications medium cor-
relates with the number of users reachable using that medium, so the adoption rate
will accelerate due to what economists call a network effect. This is developing in a
couple of ways.

First, trends in the service provider sector augur well for the emergence of VoIP. We’re
presently seeing major telecommunication providers size up the next generation of
services. Looking to the competitive long distance market, we already see more agile
providers using IP links to traffic international PSTN calls, thus gaining a competitive
edge.

There is a new breed of company, those offering local and long distance telephone ser-
vice using VoIP technology. Vonage, for instance, offers flat-rate local and long dis-
tance calling in the United States, with the option of choosing a phone number from
several American area codes. Early entrants like Vonage are aiming to capture business
and consumer customers who aren’t in a position to manage their own server-side
infrastructure or PSTN interconnectivity. This parallels managed Web services, which
coincided with the growth of that technology.

Second, consumers, too, are seeing new reasons for VoIP, including the sort of man-
aged services just described. Other reasons include network access and software avail-
ability. As anecdotal evidence, I've been broadband connected for over five years, and
among my friends, family, and coworkers this is universal (although Canada is a bit
ahead of the curve on this technology). And, now, inexpensive VoIP software is widely
available to leverage such connections. By the time this article is printed, Microsoft, the
desktop juggernaut, will have released the latest version of their Windows XP Messen-
ger program, which includes a complete SIP client. This enhancement, to be released
in version five at Microsoft’s Windows Update site, means that over 17 million PCs are
potential VoIP nodes using the SIP protocol.

Remember the network effect? Within 36 months it will be possible to satisfy a healthy
percentage of one’s calling needs, both personal and professional, using VoIP.

Conclusion

It has been the intent of this article to raise consciousness about VoIP, a technology
that has been rightly considered imaginary. I use VoIP systems every day for my tele-
phone needs, so, to me, they hold great promise. 'm convinced that VoIP is, at once,
both a solution for next-generation communications and a challenge for IT depart-
ments, so it would be wise to keep VoIP in mind. The good news is that people com-
fortable with networking and Internet services will catch on to VoIP very quickly.

In a future article, I will focus on the Session Initiation Protocol for VoIP. In that arti-
cle, I'll look at some of the lower-level nuts-and-bolts related to implementing SIP ser-
vices. I'll describe the different actors in a SIP system, with examples drawing on open
source SIP applications. SIP is just an application protocol that runs on the Internet,
so, as developers, we can contemplate writing new and interesting phone services with-
out investing huge amounts of time learning proprietary protocols. To that end, we’ll
take a tour of one open source application built on an open source SIP stack.

SELECTED POINTERS
http://www.voip-calculator.com/— An online
script to calculate network requirements based
on anticipated utilization.

http://www.vovida.org/ — An open source com-
munity site that offers a variety of VoIP soft-
ware including the VOCAL SIP proxy.

http://www.iptel.org/ — Makers of the SIP
Express Router proxy server and providers of
personal SIP hosting services.

http://pulver.com/fwd/ — A free SIP service
provider that currently connects over 40,000
users.

http://www.microsoft.com/windowsxp/
windowsmessenger/ — Watch here for the new
Windows XP Messenger or download the old
Messenger 4.7, which is also SIP compatible.

http://www.vonage.com/ — A service provider
offering SIP services with interconnection to
the PSTN.

http://www.resiprocate.org/ — An open source
SIP stack optimized for speed.

http://www.asteriskpbx.org/ — An open source,
multi-protocol PBX suite for Linux.

http://www.xten.com/ — Xten offers the lite ver-
sion of their SIP soft phone as a free download.

http://www.sipphone.com/ — A SIP provider that
sells hard phones for use with its free service.

October 2003 ;login: VOICE OVER INTERNET PROTOCOL TECHNOLOGY

e TECHNOLOGY

10

by Rik Farrow

Rik Farrow provides
UNIX and Internet
security consulting
and training. He is
the author of UNIX
System Security and
System Administra-
tor's Guide to System
V.

rik@spirit.com

musIings

In my last column, | waxed enthusiastic about how superior Windows was when
it came to the ease of writing keystroke sniffers. While there are hundreds more
keystroke sniffers for Windows, | have since learned of a new one that runs on
Linux (2.2 and 2.4 kernels), Solaris, and OpenBSD.

I was talking to Ed Balas, after being grabbed by Lance Spitzer and dragged over to a
table staffed by the Honeynet Project at the 2003 BlackHat conference in Las Vegas. Ed
explained to me that he was a “generalist, not a specialist,” and had just finished writ-
ing, then porting, a kernel module that is designed for use in GenII Honeynet, which
he is writing about for the December 2003 annual security issue of ;login:.

The original honeynets relied on packet sniffing, and that can be a problem when the
first thing the attacker does is download and install a version of SSH. Now, everything
that gets downloaded can travel across an encrypted link. And attackers have started to
encrypt their tools on UNIX systems, something that has been done for a while with
Windows trojans and viruses, so static analysis becomes much more difficult. But if
the honeypot can capture all keystrokes, the potential for useful research becomes
much greater for the honeypot owner.

Sebec2 (see http://project.honeynet.org/papers/honeynet/tools/index.html) hooks into
the read entry in the kernel’s system call table, so that anything that a program reads,
whether it be a file or a command line, gets captured. That means that any encryption
keys or passwords that an attacker uses will be recorded. Sebec2 then creates its own IP
packets and writes them directly to the NIC device driver. Most applications that cre-
ate their own packets (e.g., hping) write to a raw socket, and that makes it possible for
snort or tcpdump to capture the packet before it gets written to the device driver. But
Sebec2 prevents the packets from being detected by any application-level process — in
fact, by anything other that a kernel module like Sebec2 itself. The server end of
Sebec? still sniffs the network to collect the packets.

As Ed described his new tool, I couldn’t help but think that this would make a great
rootkit. Sebec2, unlike xkey (see my August 2003 Musings), also reports the application
that requested the read(), so an eavesdropper gets a much clearer picture than with
xkey. And Sebec is listed as a rootkit at chkrootkit.org. Like many other security tools,
the potential is there for both good and dark uses.

I also heard about a really interesting study done by Cisco employees. They decided to
take a closer look at the myths surrounding BGP vulnerabilities. When someone
claims to be able to “bring down the Internet in a half hour,” they would be referring
to flaws either in the routers or in the core routing infrastructure, and that means BGP.
Matthew Franz and Sean Convery first presented their results (publicly) at NANOG
and subsequently at the BlackHat conference. You can read their presentation at
http://www.nanog.org/mtg-0306/pdf/franz.pdyf.

I wrote about the potential for “bad things happening” to BGP back in April of 2002,
and nothing has changed since then. True, there are now two proposals for adding
security to BGP updates, when before there was only one. But S-BGP (Secure-BGP)
requires a PKI, the signing of routes by the originating router, and the checking of sig-
natures by the router receiving the update: http://www.ietf.org/internet-drafts/draft-
clynn-s-bgp-protocol-01.txt.

I heard complaints about this concept from many people, who pointed out that han-
dling public key encryption was not something router CPUs could manage while still

Vol. 28, No. 5 ;login:

getting useful work done. The S-BGP proponents do not consider this an issue, but if
you do use BGP, and S-BGP becomes mandatory, plan on updating the core of your
router so it will include the extra processing power necessary. The router company ver-
sion is called SOBGP, or Secure Origin BGP, and differs in that it uses a decentralized
certificate management system and relies on RADIUS servers (or something that does
not involve the router’s CPU) to handle public key encryption: http://www.ietf.org/
internet-drafts/draft-ng-sobgp-bgp-extensions-01.txt.

Convery and Franz decided to take a hard look at the FUD surrounding BGP by creat-
ing attack trees, then trying out each branch to see if any of these attacks was actually
something to worry about. Recall, if you would, that BGP neighbors, or peers, keep a
TCP connection going at all times. Once a minute, they exchange keep-alive messages,
or they might send routing updates to their neighbors. If this TCP connection (to port
179) goes down, each router strives to recreate it quickly while also sending out
updates reporting that the routes they know of that travel through the neighboring
router are all invalid. That information percolates across the Internet, forcing any
router with a complete set of BGP routes to recalculate its routing tables. In Convery
and Franz’s attack tree, this leads to two branches: disrupt the TCP connection or
insert phony routes (you can read the papers or presentation for much more detail).

So they tried disrupting the TCP connections between seven different products/imple-
mentations that all support BGP. And failed. They also tried hijacking BGP connec-
tions. BGP neighbors can use MD5 authentication that gets included as a TCP option,
and if this is used, hijacking means guessing the shared secret. But hijacking also
means being able to sniff communication between BGP neighbors, which are often
connected using a link dedicated to that purpose. The short answer is that hijacking a
connection could be done if MD5 authentication is not used, and the connection can
be sniffed.

They also attempted inserting an update when MD5 was not used, and this resulted in
an ACK storm (since the receiving system has sent an acknowledgment for a packet
that the sending system has never heard of), with the eventual result that the connec-
tion gets reset after five minutes. But during that five minutes, the phony routes spread
through the Internet (unless blocked by BGP route filtering, but that’s another story).

They tried fuzz testing using BGP messages in attempts to crash BGP; four flaws were
found in 1200 attempts, and three of those worked only if received from a valid peer
and/or valid AS. The fuzz testing included sending messages that varied from totally
random data to up to eight valid fields followed by random data. So the implementa-
tions appeared to be fairly robust.

The most interesting test that Convery and Franz carried out was to use traceroute to
120,000 destinations, one for each CIDR block in the Internet, in an attempt to map
out all the routers that might be BGP speakers. With a list of 115,466 IP addresses
ready, they then tried SYN probes against each address, to ports 22, 23, 80, and 179
(SSH, Telnet, HTTP, and BGP). In theory, any access to administrative ports by “out-
siders” should be filtered or ignored. In practice, 14.5% of all routers responded to at
least one of the three administrative ports, SSH, Telnet, or HTTP.

They concluded, based on other tests not mentioned here, that the best way to disrupt
the Internet is to take over one or more routers and have them distribute misleading
routes. If a trusted router gets compromised, signed updates (if these are eventually
approved) would still be trusted. Misconfigured routers are, they concluded, a much
bigger issue at present than problems with BGP.

October 2003 ;login: MUSINGS

Misconfigured routers are . . .

a much bigger issue at
present than problems with
BGP.

SECURITY

11

12

Each vulnerability stretches
way back in time, to much
earlier versions, yet is still
present in the Windows
Server 2003.

July 2003 also brought with it announcements of several new buffer overflow vulnera-
bilities in Windows. One announcement affected all versions of Windows from 95 up
to Server 2003 (CA-2003-14 or MS03-023) and the module that handles Rich Text
within HTML. The other involved only NT through Windows Server 2003, and
requires access to port 135 TCP or UDP (CA-2003-16/19 or MS03-026). Windows
Server 2003 is supposed to be the most secure version of Windows, so the existence of
these vulnerabilities was considered an embarrassment for Microsoft. But I noticed
something other than simple embarrassment in these vulnerabilities.

Each vulnerability stretches way back in time, to much earlier versions, yet is still pres-
ent in the Windows Server 2003. What that tells me is that Windows Server 2003 is still
using code left over from the earliest days of Windows with a TCP/IP stack (the RTF-
HTML bug) or from the earliest days of NT. I have always thought one of the biggest
issues with Windows systems is the amount of legacy code each version contains, cru-
cial to maintaining backwards compatibility. Microsoft built all of Server 2003 with
stack canaries, similar to the StackGuard canaries for Linux, but these servers are still
vulnerable.

One reason is that stack canaries can only guard against stack overflows, not heap
overflows. An even better reason is that some mistakes in code are so subtle that code
analysis by programmers and by special tools will not catch them. The heap overflow
found in Sendmail in March of 2003 was a good example, as understanding the source
code meant single-stepping through it, a laborious process.

I got a chance to read most of Secure Coding, a new O’Reilly book by Mark Graff and
Ken van Wyk, both currently with CERT. Secure Coding is about principles and prac-
tices, and it provides little in terms of code examples (and most examples are the mis-
takes, not solutions). Their goal is not to write a programming guide, since other
people have done that well, but instead to share their years of experience with vulnera-
bilities. Problems offered go beyond programming mistakes, such as the all-too-fre-
quent buffer overflows, to design and operational mistakes.

They do include some great examples of failures and of good design. I liked their
explanation of how one could log in to some rlogin servers using the login name -froot
and get a root prompt with no password (a problem that occurred because rlogind
calls the login program without checking the provided login name). Or how
[etc/passwd file fragments started showing up in Solaris tar files in a new release. It
turned out that some heap memory had just been freed, and then reallocated as the
buffer used when writing out tape blocks, and that memory had previously been used
in password file reading functions (getpwent()). Both of these issues are problems in
composition — that is, neither occurred on its own, but required a combination or
sequence of events for the bug to assert itself. In the case of tar, some code had been
removed, moving the freeing of the memory used by getpwent() closer to the malloc()
used for tar’s block buffers. Who would have ever guessed (much less figured this out)
before it was discovered the hard way.

Secure Coding is a relatively short book (177 pages), but not an easy one. It really
helped me to understand why I was never a great programmer — my programming
style was more prototyping than design. Prototyping was loads of fun, as I would occa-
sionally knock together example programs thousands of lines long in a day when I was
teaching people how to use a graphics library. I was proud that I could get such a mon-
strosity to compile, link, and actually demonstrate potential solutions to the problems
the client had. But the real problem arose after I left, when the client decided not to

Vol. 28, No. 5 ;login:

toss those thousands of lines of disorganized code, but instead to use it as a starting
point for their application. Note that what I was doing was gluing together many short
example applications, not writing fresh (but unorganized) code.

Graff and van Wyk provide methodologies and questions that you can use in architec-
ture, design, implementation, and operation. Having read their book, I finally recog-
nized that secure coding cannot be taught as an isolated subject but needs to be woven
into every area of software instruction. I certainly recommend this book if you have
anything to do with software (beyond just running off-the-shelf apps), as security is
important and not something that can be taken lightly (or worse, something that you
can just expect will happen organically, without careful thought).

As I finish writing this column, I am also getting ready to leave for the USENIX Secu-
rity Symposium in Washington, DC, something I have been looking forward to for
months. BlackHat is interesting, and some research does show up there, such as the
Cisco presentation. BlackHat led off this year with a presentation by David Litchfield,
who, in his pre-conference notes, planned on explaining the differences between
exploits in Linux and Windows using stack-based buffer overflows in Oracle 97’s XDB
as the example. Instead, he chose to talk about the much more current issue of the
overflows in Windows RPC.

Litchfield certainly knows his stuff, that being the internals of Windows and Linux
executables and libraries. Although his presentation was disjointed, he did manage to
take the audience through a code debugging session of MS RPC, showing where the
problem occurs and how it can be exploited. He could not demonstrate an exploit for
Server 2003, which LSD claims to have written but not released (yet). But he did have
parts of his audience absolutely mesmerized.

A group of Microsoft employees were sitting in the front of the room, furiously taking
notes. Litchfield described how the stack overflow protection works in Server 2003 and
suggested methods for evading it, something LSD appears to have done.

This vulnerability in MS server products has great potential for worm writers, as the
MS-Blaster worm and its variants have shown. Microsoft, having been slammed by
Slammer, had adopted a much less tolerant view of people who fail to patch their sys-
tems. Everyone within Microsoft was given a deadline to install the patch for MS03-
026. If they failed to do so by the deadline, their network connection would be
disabled. I asked a friendly Microsoft employee exactly what that meant, and he told
me that internal security was aggressively scanning for the vulnerability, and would
turn off the switch port of anyone not patched by the deadline. Also, anyone logging in
remotely would also be tested before their authentication could be completed. Wise
moves. Apparently, Microsoft’s customers did not take the issue seriously enough, as
MS-Blaster has been moderately successful, although paling in comparison with the
SoBig.F virus. When will they ever learn?

October 2003 ;login: MUSINGS

| finally recognized that
secure coding cannot be
taught as an isolated subject
but needs to be woven into
every area of software

instruction.

SECURITY

13

by Robert Haskins

Robert D. Haskins is
an independent con-
sultant specializing
in the Internet Ser-
vice Provider (ISP)
industry.

rhaskins@usenix.org

14

ISPadmin

Managing and Providing ISP Services

Introduction

In this edition of ISPadmin, I look at ways service providers manage and
provide mail, Web, dialup, and other types of services to their customers. If
| were bringing up any service provider type of business from scratch today,
ISPMan (or a similar, usually custom-built package) would be at the core,
along with an appropriate billing system.

Background

In most smaller “legacy” ISPs, shell scripts are used to provision services ordered by
the customer. These scripts are custom written and driven by the “legacy” billing sys-
tem. Such provisioning applications tend to take on a life of their own, causing a major
maintenance headache for the ISP. For example, each time the provider offers a new
type or classification of service, the custom provisioning system must be modified to
include this new service. Also, when a new system is added, the provisioning system
must be modified to include this new system. When the business model changes, there
is a high likelihood that the provisioning system will also need to be changed.

There are many operational issues as well. For example, non-LDAP-enabled systems
(smaller providers who use stand-alone files for enabling dialup (RADIUS) accounts)
experience a short amount of downtime when the RADIUS service is reloaded after
updating the user list. Also, there is always a possibility the service won’t start up cor-
rectly when the associated RADIUS daemon is reloaded after adding a user to the
stand-alone file.

Most larger service provider operations have resorted to writing custom scripts for this
purpose. However, for a smaller provider (and even for larger ones just starting out),
an application like ISPMan is a better option. While somewhat constrained by the
inherent design in any application, it is written in Perl so the provider can add func-
tionality if need be.

Open Source Solutions

Several open source systems manage and provide ISP services. Vishwakarma, perhaps
the oldest service provider management system, doesn’t appear to have been modified
in the past three years. It has a lot of the functionality that an ISP would require, such
as virtual email, Web-hosting management, and reseller support, and it has an LDAP
directory to tie everything together. However, it appears to have several pieces missing.
The biggest holes would be lack of a distributed model for back-end services, in addi-
tion to quota support. However, it is certainly worth a look. It is released under the
GNU GPL.

Another system in the same vein is a package called “vhost” (virtual host), which is
also released under the GNU GPL. It has much of the same functionality as ISPMan,
with support for virtual email and Web sites. However, its biggest drawback is the lack
of an LDAP directory, which would allow a distributed model for enabling back-end
services. Hopefully, this is an area of focus for future development. Imagine how the
growing ISP would have to throw out the vhost system when they ran out of spare
cycles on their existing hardware! It would be much easier, and more cost efficient, to
simply add machines to the cluster in order to add capacity.

Vol. 28, No.5 ;login:

Commercial Solutions

There are a number of commercial products in this space. Most companies have prod-
ucts in the “virtual server” space as well, which allows a service provider to make (and
sell) multiple virtual servers out of one “real” server. (The best known open source vir-
tual server project is vserver.) Many of these commercial products are based upon
open source components for their back-end services. Some commercial solutions even
manage Microsoft-based products such as Exchange and Windows Server 2000. (As an
aside, if you are looking for an open source Exchange replacement, the SAGE members
list had a great discussion on the topic back in June 2003.)

The obvious benefit of a commercial solution is the improved support one should get
utilizing such a product. Given the level of support available in open source applica-
tions such as ISPMan, such differences are decreasing by the day. However, commercial
implementations might be useful in certain environments and are certainly worth
investigating.

What Is ISPMan?

ISPMan consists of a collection of back-end services (all utilizing an LDAP directory
for user information) and a set of custom Perl programs to manage those services.
Like the other open source ISP managers, it is has been released under the GNU GPL.
The major applications ISPMan uses to provide services to end users include:

» Postfix (mail exchange)

» Cyrus IMAP (POP3/IMAP subscriber access)
= Apache 1.x (Web services)

BIND 8/9 (name services)

PureFTP (FTP access)

OpenLDAP 2.x (directory services)
FreeRADIUS (RADIUS services)

Horde IMP (Webmail)

The system is scalable, and redundant with appropriate additional hardware. It con-
tains a Web interface for management/provisioning, as well as a command line inter-
face for provisioning accounts via automated mechanisms (e.g., through the service
providers billing system) and for other tasks. Any function that can be performed via
the Web interface is available via the command line interface on any node in the clus-
ter! It is worthwhile noting that the developers of ISPMan plan on implementing a
Simple Object Access Protocol (SOAP) interface for easier integration into the billing
system, and other required interfaces as well.

ISPMan has a very nice “reseller” feature, where the ability to add/change/delete ser-
vices can be delegated to others (e.g., a wholesaler setting up a reseller to sell dialup
accounts, Web hosting, etc.). Also, this interface could be used for a large enterprise,
where the central IT department gave access to people in each division to add email or
dialup accounts, perhaps even under their own subdomains (or completely different
domains). This is discussed in “How an Enterprise Might Use ISPMan,” below.

How ISPMan Works

The basis of ISPMan is, of course, the LDAP directory. Where standard attributes don’t
exist, ISPMan defines its own schema that defines the data structure the ISPMan appli-
cations use to communicate between cluster members (e.g., the location of a user’s
mailbox), and for communications with machines outside the cluster (e.g., DNS data).

October 2003 ;login: ISPADMIN

SYSADMIN

15

A user record, for example, has the following basic attributes (the schema source is in
parentheses):

uid (cosine.schema)
uidNumber (nis.schema)
homeDirectory (nis.schema)
userPassword (core.schema)

ISPMan currently makes use of the following schemas (the source is in parentheses):

core.schema (openldap)

cosine.schema (openldap)

nis.schema (openldap)

misc.schema (openldap)
inetorgperson.schema (openldap)
dnszone.schema (from bind9_sdb)
pureftpd.schema (from pureftpd)
ISPMan.schema (ISPMan)
RADIUS-LDAPv3.schema (from FreeRadius)

Each server in the ISPMan cluster runs the “ISPMan-agent” daemon. Its purpose is to
communicate tasks to the LDAP server to execute. For example, if a node running the
Web user interface manager has a request to add a user, the request gets communicated
via the ISPMan-agent interface to the appropriate servers, which, in turn, provision the
user on the appropriate servers. Some of the tasks it can perform are the following:

create mailbox

set mailbox quota
delete mailbox

create home directory
delete home directory

ISPMan Installation

As with many projects, the most important piece for a complicated installation like
ISPMan is to plan appropriately. Some questions you should ask when planning a
project like this include:

= What types of services do I want to offer?

= What equipment can I dedicate to this project?

= How much redundancy do I want?

= What level of high availability am I willing to pay for (99.9%, 99.99%, etc.)?

= How many subscribers do I want the initial system sized for? How many
subscribers do I think I will have in six months? In 12 months?

= Which machines will have what function?

» What is the interface into my billing system?

» Are there any other interfaces required for add-on services, such as hosting MS
Exchange services?

= Do I have resellers selling my services? What are their requirements?

ISPMan itself is relatively straightforward to install. However, due to the complex
nature of these installations, the details are left as an “exercise for the reader.”

Vol. 28, No. 5 ;login:

Additional components such as antivirus and anti-spam functionality can be added.
These can be provisioned as optional additional services in order to build incremental
revenue for the provider.

How an Enterprise Might Use ISPMan

The “holy grail” that ISPMan solves for the enterprise would be the “single sign on”
problem. The single sign on would essentially be the employee’s LDAP directory entry
in the ISPMan application. This would be used for user authentication for every appli-

cation in the enterprise that required it. It could also be used for a centralized “address
book” if so desired.

In addition, ISPMan could be used to provision and provide email and dialup services
for an enterprise. In fact, the reseller capability would be a nifty way to enable divi-
sions of a large organization to add their own accounts, on their own subdomain or
even in conjunction with an entirely different domain! The central IT organization
would enable IT or division employees to manage their own subset of accounts sepa-
rate from the rest of the organization.

ISPMan could be combined with something like Bynari’s InsightServer to provide cal-
endaring, scheduling, contact-list management, etc., for a total enterprise solution at a
fraction of the price of MS Exchange or Lotus Notes. The added bonus is that the solu-
tion is based on open protocols, utilizing the same “standard” interface (MS Outlook).
Bynari even offers an add-on Web client that emulates much of the functionality of the
MS Outlook client. While not for every enterprise, certainly the price alone makes it
worth looking into.

I wish to thank Atif Ghaffar for his input into this article. Next time, please join me for
another installment of ISPadmin. In the meantime, I look forward to hearing your
feedback!

REFERENCES

Amavis: http://www.amavis.org/

Apache: http://httpd.apache.org/

Bynari InsightServer: http://www.bynari.net/
Clam Anti-Virus: http://clamav.elektrapro.com/

Cyrus IMAP server:
http://asg. Web.cmu.edu/cyrus/imapd/

Ensim: http://www.ensim.com/
FreeRADIUS: http://www.freeradius.org/
Horde IMP: http://www.horde.org/imp/

H-sphere:
http://www.psoft.net/h_sphere2_info.html

Introduction to ISPMan written by the author,
Atif Ghaffar: http://www.linuxfocus.org/
English/September2000/articlel73.shtml

ISC BIND: http://www.isc.org/products/BIND/
ISPMan home page: http://www.ISPMan.org/
Lotus Notes: http://www.lotus.com/

Managing ISPMan’s logs:
http://nakedape.cc/wiki/index.cgi/
ISPManLogStats

MS Exchange:
http://www.microsoft.com/exchange/

MS Outlook:
http://www.microsoft.com/office/outlook/
default.asp

OpenAntiVirus: http://www.openantivirus.org/
OpenLDAP: http://www.openldap.org/

Postfix: http://www.postfix.org/

ProFTPD: http://proftpd.linux.co.uk/
PureFTPd: http://www.pureftpd.org/

SAGE members list archive:
http://sageweb.sage.org/resources/mailarchive/
sage-members-archive/

Neil Schneider’s write-up on installing ISPMan:

http://www.linuxgeek.net/ISPMan/

SOAP: http://www.w3.0rg/TR/SOAP/
SpamAssassin: http://au.spamassassin.org/
Sphera: http://www.sphera.com/

vhost: http://www.chaogic.com/vhost/
Virtuozzo: http://www.sw-soft.com/

Vishwakarma:
http://www.kandalaya.com/vishwakarma.shtml

vserver:
http://www.solucorp.qc.ca/miscprj/s_context.hc

October 2003 ;login: ISPADMIN

SYSADMIN

17

by Adam Moskowitz

Adam Moskowitz is a
system administrator,
programmer, manager
of system administra-
tors, certified barbecue
judge, and author of
the recently published
SAGE Short Topics
booklet Budgeting for
SysAdmins.

adamm@menlo.com

18

“eat your own
dog food”

You've no doubt heard this phrase before; you've probably even used it
once or twice. As a system administrator, do you eat your own dog food?
From the exact same can as your users? If not, why not?

In the late 1980s, years before the “dog food” phrase was ever uttered, I worked in
Encore Computer Corporation’s software development group. Not only did the oper-
ating system developers have to use the latest version of UMAX (our multiprocessor
port of 4.3BSD), everyone in the group did, too. Talk about a good use of peer pres-
sure! I can’t prove that this practice actually improved the quality of our software, but
when a user reported that something was broken, we tended to believe them, usually
because we had already discovered the problem for ourselves.

When a user says, “Foo is broken,” I think the worst possible response a system admin-
istrator can give is, “It works for me.” It’s even worse when the sysadmin is on a differ-
ent hardware platform than most users, running a different operating system, and
using a different shell. Eating your own dog food won’t stop you from giving such a
bad answer, but it at least mitigates your “sin.” On the other hand, I think users find it
comforting when your response is, “Yes, I've noticed this, too; 'm already working on
fixing it.” Eat your own dog food often enough and this is likely to become your usual
response.

Here’s how I think the concept should apply to system administrators:

First, use the same hardware platform and operating system as your users. If there are
several, and it’s not feasible to give every sysadmin in the group one of every platform,
spread them evenly throughout the group. Apply the same patches to your machine as
you apply to users’ machines: no more and no fewer. Upgrade the OS on your machine
no more than one day before you upgrade users’ machines.

The obvious complaint at this point is usually, “But I have to test new patches/operat-
ing systems/whatever somewhere before we put them in production.” Yes, you do, and
that’s what test machines are for. Treat your desktop system as a production (user)
machine and do your testing elsewhere.

Next, shells: These are very personal things, and one’s setting is even more so. I've
always believed that an organization should support a (limited) number of shells, but
to the greatest extent possible allow users to run whatever shell they want. By “sup-
port” I mean that an effort will be made to make sure that all supported programs run
on each of the supported shells, and problems in this area will be investigated (and,
one hopes, fixed) by the appropriate part of the IT organization. In an ideal world,
users will be able to run all supported programs with an empty shell rc file, because
the system-wide default file will contain all the required settings. If that’s not possible,
new users should be given an rc file that looks something like this:

Uncomment the next line if you plan to run ABC
. Jetc/rcfiles/abc
Uncomment the next line if you plan to run DEF
. /etc/rcfiles/def

I know it would be folly to suggest that system administrators be forced to use the
same shell(s) as users. Instead, I propose that there be a test account for every shell,
either without an rc file or with the same one given to new users. If it contains lines
like those shown above, uncomment them as appropriate to test a given problem (or

Vol. 28, No.5 ;login:

to match the users’ settings), then comment them out again when youre done. Here’s a
concrete example of what [mean:

joesixc:*:99901:23:CSH test account:/home/joesixb:/bin/csh
joesixk:*:99902:23:KSH test account:/home/joesixk:/bin/ksh
joesixs:*:99903:23:SH test account:/home/joesixs:/bin/sh

(I once worked on a project where “Joe Sixpack” was the name we gave to our target
customer.)

If a user reports that something isn’t working, and it isn’t something obvious like a
malformed command, log in to the appropriate account on the affected machine,
modify the rc file as necessary, and only then try to duplicate the user’s problem. If,
after trying all this, it still “works for you,” say to the user: “I can’t seem to duplicate the
problem, I'll have to come to your office and work with you to figure out why you're
having the problem.”

If you write tools, for use either by users or your fellow system administrators, you
should make it a point to use those tools and not the underlying “raw” commands (if
such commands exist). For example, I once wrote a set of Perl scripts to manipulate
DN files without having to use an editor, and some very simple Web forms to call
those scripts using CGI. The other UNIX admins used the command line version, and
the Windows and Macintosh guys used the Web forms; the idea was to allow anyone in
the group to make DNS changes without having to worry (too much) about the per-
snickety file formats. Even though there were three of us in the group who were per-
fectly capable of editing the files by hand (and getting it right, at least most of the
time), the agreement was that we would always use the tools I had written.

There were several interesting results from this “experiment”: First, the number of
times DNS broke because one of the senior admins had edited the files by hand and
gotten them wrong (or forgot to increment the serial number) dropped significantly.
Second, we found several bugs in the tools that the junior people wouldn’t have dis-
covered for a while (if ever). Third, we came up with several modifications to the tools
that made them even more useful to the junior staff.

Clearly, eating my own dog food not only helped improve the quality of the tool I had
written, it actually helped me reduce the number of mistakes I made while doing my
job. That is, after all, the reason for writing such tools in the first place — but what good
are they if you don’t use them?

There are other ways in which the “dog food” concept can be applied to system admin-
istration, but I trust that you can figure them out for yourself.

October 2003 ;login: “EAT YOUR OWN DOG FOOD”

If you write tools, for use
either by users or your fellow
system administrators, you
should make it a point to use
those tools and not the

underlying “raw" commands.

SYSADMIN

19

using C

properties

and static members

by Glen
McCluskey

Glen McCluskey is a
consultant with 20
years of experience
and has focused on
programming lan-
guages since 1988.
He specializes in Java
and C++ perfor-
mance, testing, and
technical documen-
tation areas.

glenm@glenmccl.com

In this column we're going to continue our examination
of the C# programming language, and look at two par-
ticular features of C# classes.

We'll start by considering the use of properties, which are kind
of a hybrid between data fields and methods. We’ll then go on
and look at static class members.

Properties

Imagine that youre developing a C# class, and that class will
have a data field that represents a calendar year. The field is set
by the constructor and validated to ensure that the year is 1800
or later. You also want the ability to change the year after the
fact, in existing objects of the class.

Here’s some C# code that illustrates this approach:
using System;

public class Prop1 {
private int year;

public Prop1(int y) {
SetYear(y);
}

public int GetYear() {
return year;

}
private const int MINYEAR = 1800;

public void SetYear(int y) {
if (y < MINYEAR)
throw new ArgumentException("year <" +
MINYEAR);
year = vy;
}

public class TestProp1 {
public static void Main() {
Prop1 p = new Prop1(1956);
Console.WriteLine("year #1 =" + p.GetYear());

//p.year = 1977;
p.SetYear(1977);
Console.WriteLine("year #2 =" + p.GetYear());

}

The year field is private, meaning that it cannot be set directly
from outside of the class (see the commented line in Main). If
the field is made public, then there’s no way to validate a new
value that is set. The field is instead changed via the SetYear
method, and the proposed new value is checked in this method.

This approach is very common and works pretty well, but it’s a
little tedious to use, with every private field requiring a pair of
get/set access methods.

C# offers another approach to solving this problem, using what
are called properties. A property looks like a data field in an
object, but access is controlled via internal get/set methods. The
property can be made public and accessed like a field, but there
is a layer of control that allows the class designer to interpose
specific processing when the property is accessed.

Let’s look at an example:
using System;

public class Prop2 {
private int year;

private const int MINYEAR = 1800;

public int Year {
get {
return year;
}
set {
if (value < MINYEAR)
throw new ArgumentException("year < " +
MINYEAR);
year = value;
}
}

public Prop2(int y) {
Year = vy;
}
}

public class TestProp2 {
public static void Main() {
Prop2 p = new Prop2(1956);
Console.WriteLine("year #1 =" + p.Year);

Vol. 28, No. 5 ;login:

p.Year = -1977;
Console.WriteLine("year #2 =" + p.Year);
}
}

There’s still a private year field in this code, but also a public
property “Year.” The property can be thought of as a “virtual
field” It’s treated like a data field when you're programming
with the class, but there are hooks such that the class can con-
trol what happens when the property’s value is retrieved or set.

In the example above, when the property value is retrieved, the
private year field’s value is returned. When the property is set,
the proposed new value, represented by the keyword value, is
first checked to ensure that it’s at least 1800. Then the private
field is set.

Properties enable simple field access from a programmer’s per-
spective while, at the same time, supporting data hiding so that
access to private data can be controlled.

Global Variables and Static Members

C# requires that all data fields be part of a class. This restriction
leads to an obvious question: How do you implement global
variables, variables that can be accessed from anywhere in your
application? Using such variables is not always a good idea, but
we’re going to assume that you really do want them for some
purpose.

To answer this question, we need to consider what is meant by
the concept of static class members. Normally, you define a class
and then create instances or objects of the class. For example, a
Point class that represents X,Y points will have various
instances, such as one that represents the point 25,35. The X,Y
values in the instance are called instance members.

A static member can be thought of as belonging to the class
itself, and not to its instances. For example, a static data field is
shared across all instances of a class. There may be one or a mil-
lion instances of the class in a running application, but there
will still be only one copy of the static data for the class.

Static members can be used to implement the equivalent of
global variables. Here’s an example:

/I file #1

public class Globals {
private Globals() {}

100;
200;

public static int glob1
public static int glob2

}
/] file #2

October 2003 ;login:

USING C# PROPERTIES AND STATIC MEMBERS

using System;

public class TestGlobals {
public static void Main() {
//Globals g = new Globals();

Globals.glob1 = 500;
Globals.glob2 = 600;

Console.WriteLine("glob1
Console.WriteLine("glob2

" + Globals.glob1);
" + Globals.glob2);

}

Globals is a class with two public static data members. They can
be referenced by qualifying the member names with “Globals.”
Globals also has a private constructor, which cannot be called
from outside the class. Defining a private constructor means
that no instances of the class can be created. In other words, the
class is used simply as a packaging vehicle for static data mem-
bers.

This same approach can be used for packaging static methods,
such as methods that represent self-contained mathematical
functions and that have no meaning as conventional methods
that operate on class instances. Let’s look at an example:

using System;

public class CircleFuncs {
private CircleFuncs() {}

public static double GetCircumference(double r) {
return 2.0 * Math.Pl *r;
}

public static double GetArea(double r) {
return Math.Pl * r * r;
1
}

public class TestCircleFuncs {
public static void Main() {
double radius = 10.0;

Console.WriteLine("circumference = " +
CircleFuncs.GetCircumference(radius));

Console.WriteLine("area = " +
CircleFuncs.GetArea(radius));

}

CircleFuncs is a class that groups together some methods used
to calculate properties of a circle, such as its circumference and
area.

Note that the Main method, the entry point to a C# application,
is static. It’s part of a class — in the example above, the class Test-
CircleFuncs —but it doesn’t operate on instances of TestCircle-

Funcs.

PROGRAMMING

21

22

Constants

Constants are closely related to static members. If you're doing
C# programming, how do you define groups of constants for
use in your program? Let’s look at a couple of examples that
illustrate some of the techniques that are available:

using System;
enum Color {RED = 1, GREEN = 2, BLUE = 3}

public class Const {
private Const() {}

public const string RED = "red",
public const string GREEN = "green”;
public const string BLUE = "blue”;

}

public class TestConst {
public static void Main() {

Console.WriteLine("Color.GREEN =" +
Color.GREEN);

Console.WriteLine("Color.GREEN as int value =" +
(int)Color.GREEN);

Console.WriteLine("Const.GREEN =" +
Const.GREEN);

}

In this first example, we use an enumerated type, very similar to
what C and C++ offer. This approach works as you would
expect, but is suitable only for integral types.

The Const class shows how to define a group of string con-
stants. A private constructor is once again used, so that no
instances of the Const class can be created. The fields are
marked as Const, which means that they’re static and cannot be
changed after initialization.

When you run this program, the output is:

Color.GREEN = GREEN
Color.GREEN as int value = 2
Const.GREEN = green

Here’s another slightly more complicated example:
using System;

public class Primes {
public const uint NUMPRIMES = 10;
public static readonly uint[] PRIMES;

private Primes() {}

private static bool IsPrime(uint p) {
if (p <=2)
return p == 2;
if (p % 2 ==0)
return false;

uint last = (uint)Math.Sqgrt(p);
for (uinti=3;i<=last; i +=2) {
if (p % i==0)
return false;
}
return true;

}

static Primes() {
PRIMES = new uint[NUMPRIMES];
uint currvalue = 1;
for (uinti = 0; i < NUMPRIMES; i++) {
while (!IsPrime(currvalue))
currvalue++;
PRIMESIi] = currvalue++;

}

public class TestPrimes {
public static void Main() {
Console.Write("primes = ");
for (uinti = 0; i < Primes.NUMPRIMES; i++)
Console.Write(Primes.PRIMESIi] + " ");
Console.WriteLinel();

}

In this example, we want to compute a table of prime numbers.
We want the table to be constant and thus not mutable after it’s

initialized, but at the same time, we’d like to compute the values
in the table at runtime, rather than actually listing them out (2,

3,5,7,11,...) in the source code.

There are a couple of techniques that we use to implement this
approach. We mark the PRIMES array as static and read-only.
The read-only qualifier means that the array can be modified in
the constructor, but not afterwards.

We also use a static constructor, which is called when the static
data members for the Primes class are initialized. The class has
both an instance constructor, which is private and used to disal-
low creation of class instances, and a static constructor, used to
initialize the PRIMES field.

The output of this program is:
primes =2357 11 1317 19 23 29

In future columns we’ll start looking at some broader issues
with classes, such as programming with interfaces and abstract
classes.

Vol. 28, No. 5 ;login:

the tclsh spot

by Clif Flynt

Clif Flynt is president
of Noumena Corp.,
which offers training
and consulting ser-
vices for Tcl/Tk and
Internet applications.
He is the author of
Tcl/Tk for Real Pro-
grammers and the
TclTutor instruction
Eackage. He has

een programming
computers since
1970 and a Tcl advo-
cate since 1994.

clif@cflynt.com

Client Server Sockets

Previous Tclsh Spot articles described techniques for
generating IP packets to simulate an attack on a fire-
wall, while the last Tclsh Spot article described using the
Expect extension to monitor a remote system'’s log files.
This article will start to explore techniques for coordi-
nating the attack-and-monitor activities for a firewall
exerciser.

Several software architecture options exist for a system like this.
The two obvious ones are a single application with attacking
and monitoring subsections and a set of cooperating applica-
tions where each application provides a subset of the function-
ality.

A single application is conceptually simpler, since there’s no
need for interprocess communications. On the other hand,
dealing with multiple sections that can require attention at
undefined intervals is nearly as complex as interprocess com-
munication. The real problem with a single application archi-
tecture in this case is that it limits the system to a single
hardware platform. The validation application may need to run
attacks and monitors from multiple sets of hardware.

Given that there will be multiple independent processes, the
next question is whether they should be peers or operate in a
master-slave relationship. If all the processes were identical, it
would make sense to run a peer relationship. For a system
where each child task has a different purpose, a peer relation-
ship would mean that each child would need to know how to
communicate with every different type of application. With a
master-slave architecture, only the master needs to know how to
talk to many types of applications, and the individual applica-

tions only need to know how to talk to the master. This allows
the slave tasks to be simpler applications.

The last choice is whether to control the slave applications using
command line arguments, pipes, or sockets. Again, the need to
run on multiple sets of hardware drives the design to a socket-
based client-server architecture.

Using the Tcl socket command to coordinate multiple tasks is
fairly simple. The Tcl TCP socket implementation is possibly
the easiest-to-use socket package available, and the callback
mechanism used to service clients makes it easy for a server to
interact with several active clients simultaneously.

Tcl uses a channel abstraction for I/O. A channel is a handle
that references a source or destination for a stream of bytes. A
Tcl channel is similar to the FILE pointer in C, abstracted a bit
higher to include pipes and sockets.

We open either a client or server socket with Tcl’s socket com-
mand. A client-side socket is slightly simpler, so we’ll look at
that first.

Syntax: socket Zoptions? host port
socket Open a client socket connection.

Zoptions? Options to specify the behavior of the socket.
-myaddr addr Defines the address (as a name or
number) of the client side of the
socket. This can be used to specify
which of several Ethernet interfaces
to use, and is not necessary if the
client machine has only one network
interface.
Defines the port number for the
server side to open. If this is not sup-
plied, then a port is assigned at ran-
dom from the available ports.
Causes the socket command to
return immediately, whether the
connection has been completed or

-myport port

-async

not.
host The host to open a connection to. May be a name or
a numeric IP address.
port The number of the port to open a connection to on

the host machine.
The socket command will return a channel which can be used
with the puts and gets commands to send and receive data
from the channel.

As a quick test of a Tcl client, we might write the code shown
below, expecting to see the beginnings of a Sendmail conversa-
tion.

October 2003 ;login: THE TCLSH SPOT

PROGRAMMING

23

24

set smtpSocket [socket 127.0.0.1 25]
set input [gets $smtpSocket]

puts "READ 1: $input"

puts $smtpSocket "helo foo@bar.baz"
set input [gets $smtpSocket]

puts "READ 2: $input"

Unfortunately, this won’t quite work. This script generates a
single line of output and then hangs:

READ 1: 220 vlad.cflynt.com ESMTP Sendmail
8.11.6/8.11.6; Tue, 5 Aug 2003 20:48:36 -0400

By default, Tcl channels use buffered I/O. The example above
just hangs forever with the string “helo foo@bar.baz” sitting in
the client socket’s output buffer, while the Sendmail server waits
for input.

Tcl provides two solutions to this dilemma: the flush com-
mand, which will flush a buftfer, or the fconfigure command,
which allows an application to modify the behavior of a chan-
nel.

The simplest way to solve the problem is to follow each puts
with a flush command. This works fine on small programs but
gets cumbersome on larger projects.

Syntax: flush channelld

flush Flush the output buffer of a buffered channel.

channelld The channel to flush.

For example:

set smtpSocket [socket 127.0.0.1 25]
set input [gets $smtpSocket]
puts "READ 1: $input"

puts $smtpSocket "helo foo@bar.baz"
flush $smtpSocket

set input [gets $smtpSocket]
puts "READ 2: $input"

This generates the expected output of a simple conversation:

READ 1: 220 vlad.cflynt.com ESMTP Sendmail
8.11.6/8.11.6; Tue, 5 Aug 2003 20:48:36 -0400

READ 2: 501 5.0.0 Invalid domain name

The better way to solve the buffered I/O problem is to figure out
what style of buffering best suits your application and configure
the channel to use that buffering. For a challenge/response type
interaction, this is probably line buffering; a character-based
interactive application (like Telnet) would use no buffering,
while an application moving lots of data (like an HTTP dae-
mon) would use fully buffered 1/O.

Syntax: fconfigure channelld name? ?value?

fconfigure Configure the behavior of a channel.
channelld The channel to modify.
name The name of a configuration field which includes:

If set true (the default
mode), a Tcl program will
block on a gets, or read
until data is available. If set
false, gets, read, puts, flush,
and close commands will
not block.

The newValue argument
may be set to:

full: The channel will use
buffered I/0O.

line: The buffer will be
flushed whenever a
full line is received.

-blocking boolean

-buffering newValue

none: The channel will
flush whenever char-
acters are received.

By using fconfigure to set the buffering to line mode, we don’t
need the flush after each puts command.

set smtpSocket [socket 127.0.0.1 25]
fconfigure $smtpSocket -buffering line

set input [gets $smtpSocket]
puts "READ 1: $input"

puts $smtpSocket "helo example.com”

set input [gets $smtpSocket]
puts "READ 2: $input"

This script generates output resembling this:

READ 1: 220 vlad.cflynt.com ESMTP Sendmail
8.11.6/8.11.6; Tue, 5 Aug 2003 20:51:34 -0400

READ 2: 250 vlad.cflynt.com Hello localhost [127.0.0.1],
pleased to meet you

A server-side socket is a little different. Rather than opening a
connection to another system, a server waits until a client
requests a connection to a particular port. When a client
requests a connection, a new port is assigned for the conversa-
tion, and a callback script defined in the socket -server com-
mand is evaluated.

Syntax: socket -server procedureName ?options? port
socket

-server Open a socket to watch for connections from clients.

Vol. 28, No. 5 ;login:

procedureName A procedure to evaluate when a connection
attempt occurs. This procedure will be called
with three arguments:
= The channel to use for communication
with the client.
m The IP address of the client.
» The port number used by the client.

2options? Options to specify the behavior of the socket.
-myaddr addr Defines the address (as a name
or number) to be watched for
connections. This is not neces-
sary if the client machine has
only one network interface.
port The number of the port to watch for connec-
tions.

The code to establish a server-side socket looks like this:
socket -server openConnection $port

The script that gets evaluated when a socket is opened (in this
case, the openConnection procedure) does whatever setup is
required. This might include client validation, opening connec-
tions to databases, configuring the socket for asynchronous
read/write access, etc.

The script has three arguments appended to it before being
evaluated: the handle for the new channel, the IP address of the
client, and the port assigned to the client’s socket.

A simple server to report the current time and close the connec-
tion looks like this:

#!/usr/local/bin/wish
socket -server openConnection 12345

proc openConnection {channel ip port} {
puts $channel [clock format [clock seconds]]
close $channel

}

This will open a connection, but doesn’t do anything useful. A
more useful server would interact with the client. The server
could use the blocking gets command to wait for input, but
while this paradigm works with single-client applications like
Sendmail, it won’t work with multiple clients, any of which
might require service at any time.

Tcl supports both the linear-program flow used with a block-
until-data-is-ready model, and an event-driven flow, which can
be used with a multiple simultaneous session model.

The fileevent command defines a script to evaluate when data
becomes available. Using fileevent guarantees that data will be

October 2003 ;login: THE TCLSH SPOT

available to read when the script is called, thus the application
never blocks.

Syntax: fileevent channel direction ?script?
fileevent Defines a script to evaluate when a channel
readable or writable event occurs.

channel The channel identifier returned by open or
socket.

direction Defines whether the script should be evalu-
ated when data becomes available (readable)
or when the channel can accept data
(writable).

7script? If provided, this is the script to evaluate when
the channel event occurs. If this argument is
not present, Tcl returns any previously
defined script for this file event.

Setting up a file event is commonly done on the server side
within the openConnection script, and on a client side, imme-

diately after opening the socket.
Server side sample openConnection with fileevent

proc openConnection {channel ip port} {
fileevent $channel readable [list processLine $channel]
fconfigure $channel -buffering line

}

Client sample open socket with fileevent

set Client(sock) [socket 127.0.0.1 12345]
fileevent $Client(sock) readable "processLine $Client(sock)"

The last “Tclsh Spot” article described using expect to auto-
mate examining a log file. We can use the challResp procedure
from that example to build a client that will automate verifying
an FTP server.

The challResp procedure provides a framework for
challenge/response interactions:

H#t## R R R
proc challResp {pattern response info}—

Hold a single interchange challenge/response conversation.
Arguments

pattern: The pattern to wait for as a challenge.

response: The response to this pattern.

info: Identifying information about this interac-
tion for use with exception reporting.

#

Results

proc challResp {pattern response info} {
global spawn_id
expect {
$pattern {exp_send "$response\n'}

PROGRAMMING

25

26

timeout {error "Timeout at $info" "Timeout at $info"}
eof {error "Eof at $info" "Eof at $info"}
}
return "OK"
}

We could automate this FTP login conversation:

$< ftp 192.168.90.222

Connected to 192.168.90.222.

220 vmware2.cflynt.com FTP server (Version
wWu-2.6.2-5) ready.

Name (192.168.90.222:clif): anonymous

331 Guest login ok, send your complete e-mail address
as password.

Password:

230 Guest login ok, access restrictions apply.

with this code:

spawn ftp 192.168.99.99

challResp "Name" anonymous "Name prompt"

challResp "word:" foo@example.com "Password prompt"
challResp "Guest login ok" " " "FTP application prompt"

If there is no FTP server running on 192.168.99.99, a timeout
error will be generated with the string Name prompt, and if
anonymous logins are not supported, the error will include the
string FTP application prompt. If anonymous logins are sup-
ported, no error will be generated.

This can be expanded and generalized into a procedure that
keeps a list of arguments for challResp in a list, and iterates
over them until the arguments are used up, or an error is
thrown:

R R
proc runTest {}—
Runan FTP login test
Arguments
NONE
Results
Returns a list of result (Success/Fail) and optional
failure message.
#
proc runTest {} {
global Client spawn_id errorinfo
set errorinfo "

spawn ftp $Client(IP)

set conversations {
"Name" "$Client(User)" "Name prompt"
‘word:" "$Client(Passwd)" "Password prompt"
"Guest login ok" {} "FTP application prompt"

}

foreach {challenge response msg} $conversations {

set fail [catch {challResp $challenge [subst
$response] $msg} result]
if {$fail} {break;}
}

array set lookup {0 "Success" 1 "Fail"}

puts $Client(output) [list RESULT: $lookup($fail)
$result]

}

By using the associative array Client to hold the IP address,
username, and password, it is easy to run multiple tests with
code like this:

array set Client {IP 192.168.99.99 User badlP Passwd
badPasswd}

runTest

array set Client {IP 192.168.90.222 User goodUser
Passwd goodPasswd}

runTest

This set of code would create a stand-alone application with a
hardcoded set of tests. The script would iterate through the tests
and exit.

We can convert this into a client-server application by adding a
procedure to process the data that’s read from the server and a
few lines to open and configure the socket. The problem with
this is that the script would open the socket, send an initial
“Hello,” and then reach the end of the script and exit.

The vwait command is the solution to this problem. The vwait
command causes a script to wait until a variable changes value.
The interpreter pauses at the vwait command and enters the
event loop, processing events until the variable is assigned a new
value. After this the interpreter continues evaluating the com-

mands in the script.
Syntax: vwait varName
varName The variable name to watch. The script fol-
lowing the vwait command will be evaluated

after the variable’s value is modified.

The simplest way to process the data from the server is to have
the server always send Tcl commands, which can be evaluated
in the client using Tcl’s eval command.

The eval command concatenates a set of strings into a single
string, and passes it to the command evaluation section of the
interpreter, just as lines in a script are evaluated.

Syntax: eval string1 ?string2...?

string* Strings that will compose a command.

proc processlLine {channel} {
global Client

Vol. 28, No. 5 ;login:

set len [gets $channel line]

if {{eof $channell} {
close $channel
return

}
eval $line

}

set Client(output) [socket 127.0.0.1 23456]
fileevent $Client(output) readable "processLine
$Client(output)"

fconfigure $Client(output) -buffering line
Let the server know we're open for business.
puts $Client(output) ready

set Client(done) 0
vwait Client(done)

The server will send the client data like this:

array set Client {IP 192.168.99.99 User badIP Passwd
badPasswd}
runTest

When the client receives data, the fileevent command causes
the processLine procedure to be evaluated, which reads a line
from the socket and evaluates it.

Notice the eof test after the gets. This will catch the spurious
read event generated by most TCP stacks when the other end of
a socket closes.

The server end of this pair includes a list of tests to run and
three procedures to coordinate the tests:

openConnection
Accepts new client connections.
processLine
Reads data from the client. Displays results and calls
runTest to start the next test in the client.
runTest
Sends the commands to the client.

The list of tests can simply be an identifier and a set of array
indices and values to be sent to the client:

set Server(tests) {

{{bad address } {IP 192.168.90.223 User badlP
Passwd badPasswd}}

{{bad username} {IP 192.168.90.222 User badUser
Passwd badPasswd}}

{{good username} {IP 192.168.90.222 User goodUser
Passwd goodPasswd}}

{{fanonymous/badPasswd} {IP 192.168.90.222 User
anonymous Passwd badPasswd}}

October 2003 ;login: THE TCLSH SPOT

{{fanonymous/goodpwd} {IP 192.168.90.222 User
anonymous Passwd foo@bar.com}}

}

The openConnection procedure registers the fileevent script to
evaluate whenever the client sends data, configures the channel
to be line buffered, and initializes a counter to step through the
tests for this client.

Note how this procedure uses an associative array index with
two fields to distinguish the test counts for connections from
different clients. Using multiple fields in an array index pro-
vides the same functionality in Tcl as multiple dimensioned
arrays provide in C and FORTRAN.

proc openConnection {channel ip port} {
global Server
fileevent $channel readable [list processLine $channel]
fconfigure $channel -buffering line

initialize the test counter
set Server($channel.testNum) 0
}

The processLine procedure starts the same as the client’s
processLine procedure by reading a line of data and checking
for an EOF condition.

The server does a rudimentary parse, looking to see if a line
starts with the phrase “RESULT”. If the line starts with
“RESULT”, it’s displayed. Once data is read, the runTest proce-
dure is invoked.

proc processLine {channel} {
global Server

set len [gets $channel line]

if {leof $channell} {
close $channel
unset Server($channel.testNum)
return

}

if {[string first RESULT $line] == 0} {
puts "$Server(descript): $line"

}

runTest $channel

}

Finally, the runTest procedure checks to see whether there are
valid tests to be run. If there are, it sends the appropriate Tcl
commands to the client and updates the counter.

proc runTest {channel} {
global Server

if {$Server($channel.testNum) = [llength
$Server(tests)]} {

PROGRAMMING

27

28

puts $channel {set Client(done) 1}
} else {
foreach {Server(descript) params}\

[lindex $Server(tests) $Server($channel.testNum)] {}
puts $channel "array set Client [list $params]"
puts $channel "runTest"
incr Server($channel.testNum)

}

This pair of procedures implements a simple test framework
that can be run with different sets of data to characterize an
FTP server. It’s not sufficient to handle characterizing a firewall,
but it’s getting closer.

Sending scripts to the client to evaluate is a technique used by
agent-style applications. This technique supports a great deal of
customization at runtime. Tcl’s eval command creates safe
sandboxed interpreters, which makes it an excellent choice for
exploring agent style applications.

The next “Tclsh Spot” article will look at building a server-
agent architecture to perform more tests. As usual, the complete
code that was described in this article is available from
http://www.noucorp.com.

Vol. 28, No. 5 ;login:

practical per

by Adam Turoff

Adam is a consultant
who specializes in
using Perl to manage
big data. He is a
long-time Perl Mon-

er, a technical editor
or The Perl Review,
and a frequent pre-
senter at Perl confer-
ences.

ziggy@panix.com

Using Object Factories

In my last column, I demonstrated how to clean up a CGI
form-building program by refactoring it and using a hierarchy
of modules. Each module inherited from a common applica-
tion-specific Field module and implemented specialized behav-
iors to produce a specific kind of CGI form field. This time, I
revisit the same problem and examine a different solution —
object factories and factory methods.

One of the best features of Perl is the principle of TMTOWTDI:
“There’s More Than One Way to Do It.” Even if you have only a
passing familiarity with Perl, you can use it to automate a
tedious task or write a small program to get your job done. You
can approach Perl as a shell programmer, or as a C or Java pro-
grammer, and still get your job done.

However, Perl is a rich language unlike any other. While you are
free to use idioms from shell, C, or Java to accomplish your task,
using Perl idioms can help you do it faster and with less effort.
My last column took a Java-flavored approach to cleaning up a
CGI program. In this column, I'll look at a more Perl-flavored
approach that’s easier to write, maintain, and extend.

Many Ways to Do It

Consider the problem from the last column: a CGI program
that needs to create an HTML form. The simple and straight-
forward approach is to use the CGl.pm HTML-building func-
tions to build a Web page one piece at a time:

#!/usr/bin/perl -Tw

use strict;
use CGI gw(:standard);

print header('text/html');
print start_html("Test Page");

print start_form();
print popup_menuf...);

October 2003 ;login: PRACTICAL PERL

print submit(), reset();
print end_form();

print end_html();

While that approach is easy to write and easy to understand, it
is also awkward and cumbersome. It is a simple translation of
HTML syntax into Perl statements for building a static Web
page. Modifying and debugging this program will be more diffi-
cult than necessary — programmers will need to keep a mental
model of the HTML page in mind while modifying code that
uses Perl syntax. Adding dynamic features to selectively display
some components will turn this simple program into some-
thing complex very quickly.

The above fragment deals with two primary tasks: building the
Web page, and building the form components. In my experi-
ence, the first part of this program is static and unchanging,
while the second part is more dynamic. Therefore, the program
can be simplified by separating the static HTML-building parts
from the more dynamic form-building parts.

One way to simplify the form-building part of this program is
to describe an HTML form with a list of hashes. Each hash in
this list represents a single form field. Building an HTML form
involves processing these field descriptions and converting them
into HTML form fields as necessary. The full Web page is then
created by combining the static HTML elements with these
dynamically generated form fields. A program written this way
might look something like this:

#1/usr/bin/perl -Tw
use strict;
use CGI gw(:standard);

my @fields = (
{
-name => "name’,
-label=> "Name",
-size=>50,
-maxlength=>50,
-procedure=>\&CGl::textfield,
1,
more fields here
);

my @rows;
foreach my $row (@fields) {
my $sub = $row->{"-procedure’};
push (@rows, Tr(td($row->{-label}),
td($sub->(% $row))));

PROGRAMMING

29

print start_form(),
table(@rows),
submit(), reset(),
end_form();

While this approach is a step forward, it does have problems.
The format for the field descriptions found in the @fields array
are undocumented. They are values that will be passed to a
CGl.pm function like CGl::textfield, but that knowledge is
hidden dozens or hundreds of lines away in the body of the
foreach loop.

This approach also leads to a lot of duplicated information. The
-name and -label components contain similar values. Instead,
one could easily be derived from the other, reducing an oppor-
tunity for bugs to creep in.

Ideally, these field objects should be simple to create and use.
One way to do that is to create a group of Field modules to ease
the process of defining fields to build an HTML form. Here is
an example of what that might look like, taken from the last
column:

#1/usr/bin/perl -Tw

use strict;
use Field; ## pull in all the Field::* packages
use CGI gw(:standard);

my @fields = (
new Field::Text('Name'),
more fields here

);

my @rows;
foreach my $field (@fields) {

push (@rows, $field->display_row());
}

print start_form(),
table(@rows),
submit(), reset(),
end_form();

In this example, the interface for building a Web page is much
cleaner. Creating the @fields list is done by creating a series of
objects that are defined by the Field module. Each object con-
structor uses sensible defaults and requires a minimal amount
of information. Later on, the dynamic HTML form field gener-
ation is accomplished by calling the display_row method on
each field object in turn.

The Problem with Inheritance

The interface provided by the Field::* modules certainly sim-
plifies the job of creating a dynamic Web form. It works by
using a core Field class and subclasses like Field::Text to con-
struct specific field types:

package Field;
use strict;

use CGI gw(:standard);

sub init_field {
my $self = shift;
my %params = @_;

Assign the key/value pairs for this object

while(my ($key, $value) = each %params) {
$self->{$key} = $value;

}

Create the field name from the text label

my $name = "\L$self->{-label}";

$name =~ s/ /_/g;

$self->{-name} = $name;

return $self;

}

sub display_row {
my $self = shift;
my $sub = $self->{-procedure};

return Tr(td($self->{-label}), td($sub->(% $self)));
}

package Field::Text;
use base 'Field’;
use CGlI;

sub new {
my $class = shift;
my $label = shift;
Create an object
my $self = bless {}, $class;
Finish initialization

$self->init_field(-label => $label,
-size => 50,
-maxlength => 50,
-procedure =>\&CGl::textfield);

}

Field types that display multiple values share similar behaviors.
The Field::Group module helps to define field types like radio
groups and checkbox groups:

package Field::Group;
use base 'Field’;

Vol. 28, No. 5 ;login:

sub init_group {

my $self = shift;

my $procedure = shift;

my $label = shift;

my @values =@_;

$self->init(-label => $label,
-procedure => $procedure,
-values => \@values);

}

package Field::RadioGroup;
use base 'Field::Group’;
use CGl;

sub new {
my $class = shift;

my $self = bless {}, $class;
$self->init_group(\&CGl::radio_group, @_);
}

package Field::CheckboxGroup;
use base 'Field::Group’;
use CGl;
sub new {
my $class = shift;

my $self = bless {}, $class;
$self->init_group(\&CGl::checkbox_group, @_);
}

Although this module hierarchy does aid in creating dynamic
HTML forms, it has a Java-flavored design that leads to overly
complex Perl code. In order to define three types of fields, five
classes are required in a hierarchy that is three levels deep.

Extending this library isn’t difficult, but it is cumbersome. Each
HTML form field type requires a new class definition. Each
class definition contains a package declaration, a use base dec-
laration, and a constructor method. While none of these
requirements are particularly odious, they obscure the intent:
identifying the differences between textboxes, radio groups,
checkbox groups, and other HTML form fields.

Using Object Factories

Looking at the code for the Field modules, there are two pri-
mary tasks that need to be solved: creating and displaying field
objects. The process of creating fields is handled by a series of
constructor functions, and the process of displaying fields is
handled by the display_row() method in the Field class.

Each type of field object is created by a different method.
Textbox objects are created by the constructor of the Field::Text
class, radio group objects are created by the constructor of the
Field::RadioGroup class, and so on. But there’s very little differ-

October 2003 ;login: PRACTICAL PERL

ence between these objects. In fact, the only real differences
between these objects are in the data they store.

Because there are no behavioral differences between these
objects, there’s no necessity to create multiple class definitions.
In fact, all of these objects could be created through different
methods in a single class. After all, there’s nothing special about
object constructors in Perl — they’re just class methods that hap-
pen to create objects.

Refactoring the code to take advantage of this observation, we
can replace the entire class hierarchy with two classes: one to
display fields and one to create field objects. The new Field class
is very easy to write; it contains all of the behaviors shared
across field objects. Currently, this is only the display_row()
method, and a basic constructor:

package Field;
use CGI gw(:standard);

sub new {
return bless {}, __ PACKAGE__;
}

sub display_row {

my $self = shift;

my $sub = $self->{-procedure};

return Tr(td($self->{-label}), td($sub->(% $self)));
}

The rest of the magic is in an object factory class, a class that
exists to create other objects. This class, FieldFactory, contains
the methods for creating and customizing new Field objects,
init_field() and init_group(). The init_field() method handles the
bulk of the initialization and customization of a new Field
object, while the init_group() method handles tasks common to
initializing group fields.

Here’s the start of the FieldFactory class. These two methods are
almost exactly the same as the previous versions. The main dif-
ference is that the init_field() method customizes a new object,
$obj, not the current object, $self (now a FieldFactory object):

package FieldFactory;
use CGlI;

sub new {
return bless {}, __ PACKAGE__;
}

sub init_field {
my $self = shift;
my %params = @_;
my $obj = new Field;

Assign the key/value pairs for this object
while(my ($key, $value) = each %params) {

PROGRAMMING

31

$obj->{$key} = $value;
}

Create the field name from the text label
my $name = "\L$self->{-label}";

$name =~ s/ /_/g;

$obj->{-name} = $name;

return $obj;

sub init_group {

my $self = shift;

my $procedure = shift;

my $label = shift;

my @values =@_;

$self->init_field(
-label => $label,
-procedure => $procedure,
-values => \@values);

}

The remainder of the FieldFactory class is composed of factory
methods which call these two init methods to create Field
objects. Here is the factory method that creates textbox fields. It
is almost identical to the old Field::Text constructor:

sub textbox {
my $self = shift;
my $label = shift;

return $self->init_field(

-label => $label,

-size => 50,

-maxlength => 50,

-procedure =>\&CGl::textfield);

}

The real benefit comes from adding new factory methods. Here
are a few more which create radio groups, checkbox groups, and
pop-up menus. Note that all we need here is the code. The
extraneous package declarations and other magic incantations
are no longer necessary:

sub radio_group{
my $self = shift;
$self->init_field_group(\&CGl::radio_group, @_);
}

sub checkbox_group{
my $self = shift;
$self->init_field_group(\&CGl::checkbox_group, @_);
}

sub popup_menu {
my $self = shift;
$self->init_field_group(\&CGl::popup_menu, @_);

With these changes to the Field module, the CGI program needs
some minor changes. First, we have to create a FieldFactory
object. Next, the constructor calls to create form fields need to
be replaced with method calls on the factory object. The
updated code looks something like this:

#!/usr/bin/perl -wT

use strict;
use Field;
use FieldFactory;

my $factory = new FieldFactory;

my @fields = (
$factory->textbox('Name'),

);
my @rows;
foreach my $field (@fields) {

push (@rows, $field->display_row());
}

print start_form(),
table(@rows),
submit(), reset(),
end_form();

Conclusion

This program demonstrates there’s always more than one way
to do it. Simple and straightforward programs may be easy

to write initially, but they can lead to readability and maintain-
ability problems later on as they grow. Cleaning up with ad hoc
data structures can help some areas of a program and hurt
others.

Restructuring programs to use modules is a very big win, and
there’s more than one way to factor out common code into
modules. One common technique is to create a hierarchy of
classes to solve a problem. Another is to create an object factory
instead of a class hierarchy to describe differences between
objects. Each technique has its benefits and its uses. In this
example, using an object factory helped simplify the implemen-
tation of an application-specific module with very little impact
on the main of the program.

Vol. 28, No. 5 ;login:

the boo

by Peter H. Salus

Peter H. Salus is a
member of the ACM,
the Early English Text
Society, and the Trol-
lope Society, and is a
life member of the
American Oriental
Society. He is Editorial |
Director at Matrix.net.
He owns neither a dog
nor a cat.

peter@netpedant.com

For about six months or so I’ve been
reading the same book, or actually, parts
of the same book, some of them several
times. This is because I’ve been reading
The Art of UNIX Programming as Eric
Raymond’s been writing it. And it has
gotten better and better as a variety of
folks — including (alphabetically) Ken
Arnold, Steve Bellovin, Steve Johnson,
Doug Mcllroy, Henry Spencer, and Ken
Thompson — have put in their two cents
(and, in several cases, at least a dime).

If you are an experienced user of things
UNIX-y, you'll really enjoy Raymond’s
work. If you're a newbie, you may have
to really think about much of it; and if
you’re in the middle, you can taste,
savor, and enjoy.

I’ll assume that most of my readers are
mid- to high-level. If so, the best place to
begin this valuable book is at Appendix
D, “Rootless Root.” The first time I read
it, I laughed so hard I got hiccups. Once
you've read that, you might want to go
to pp. 35-38 (in Chapter 1), because
everything that I think of as important is
encapsulated there. Raymond has ren-
dered Mcllroy’s, Pike’s, and Thompson’s
versions of the UNIX philosophy into a
set of bullets, which might well be put
on a wall near every hacker’s screen.

Rather than take you through all of Ray-
mond’s valuable pages, let me just
remark on how good certain pieces are,
like the 20 pages of OS comparisons; the
chapters on languages (and mini-lan-
guages), editors, and tools are extraordi-
nary.

Ocotber 2003 ;login:

wOorm

There are things I disagree with, but
anyone can cavil at anything. This is a
wonderful must-have. Buy one as soon
as you can.

And thank you, Eric.
More OS Stuff

Last year I read and enjoyed Lucas’
Absolute BSD, which was on FreeBSD.
Lucas has now produced a (smaller)
tome called Absolutely OpenBSD. If
you're really into security and excessively
paranoid, OpenBSD is the system for
you. And as it’s not an “easy” system,
Lucas’ new book is much needed. I espe-
cially enjoyed the sections on installa-
tion and configuration and on building
firewalls with pf.

Gagné’s Moving to Linux is a straightfor-
ward exposition of just how a non-
hacker PC user can get rid of “the Blue
Screen of Death.” If you have a friend, a
co-worker, a significant other, or a rela-
tive who periodically screams, sighs,
bursts into tears, or asks for help, here’s
the simple solution. It comes with a
bootable CD of Knoppix, Klaus Knop-
per’s variant of Debian.

With Linux Security Cookbook, Barrett et
al. have done a nice job in presenting a
lot of security tools and techniques in a
brief book (barely over 300 pages). 'm
disappointed at the paucity of refer-
ences, but the information that’s actually
here is first-rate.

The second edition of Linux in a Nut-
shell has lived near my desk for four-
and-a-half years. The new fourth edition
has just supplanted it. The fourth edi-
tion is 1.5 times the size of the second. It
seems to be more than 1.5 times as use-
ful.

Bruce Perens, the former Debian project
leader, is series editor for a slew of open
source books from Prentice Hall. I've
read Intrusion Detection with SNORT
and The Linux Development Platform,
and they are of an extremely high qual-

BOOKS REVIEWED IN THIS COLUMN

THE ART OF UNIX PROGRAMMING

ErRiC S. RAYMOND
Boston, MA: Addison-Wesley, 2003.
Pp. 550. ISBN 0-131-142901-9.

ABSOLUTELY OPENBSD

MICHAEL W. LucaAs
San Francisco, CA: No Starch, 2003.
Pp. 528. ISBN 1-886411-99-9.

MOVING TO LINUX

MARCEL GAGNE
Boston, MA: Addison-Wesley, 2003.
Pp. 348. ISBN 0-321-15998-5.

LINUX SECURITY COOKBOOK

DANIEL J. BARRETT ET AL.
Sebastopol, CA: O'Reilly, 2003.
Pp. 308. ISBN 0-596-00391-9.

LINUX IN A NUTSHELL, 4TH ED.

ELLEN SIEVER ET AL.
Sebastopol, CA: O'Reilly, 2003.
Pp. 928. ISBN 0-596-00482-6.

INTRUSION DETECTION WITH SNORT

RAFEEQ UR REHMAN
Upper Saddle River, NJ: Prentice Hall, 2003.
Pp. 256. ISBN 0-13-140733-3.

THE LINUX DEVELOPMENT PLAT-

FORM

RAFEEQ UR REHMAN AND CHRISTOPHER PAUL
Upper Saddle River, NJ: Prentice Hall, 2003.
Pp. 320 + CD-ROM. ISBN 0-13-009115-4.

TCL/TK: A DEVELOPER'S GUIDE, 2D

ED.

CLIF FLYNT
San Francisco, CA: Morgan Kaufmann, 2003.
Pp. 758. ISBN 1-55860-802-8.

PRACTICAL PROGRAMMING IN

TCL/TK, 4TH ED.

BRENT WELCH ET AL.
Upper Saddle River, NJ: Prentice Hall, 2003.
Pp. 877 + CD-ROM. ISBN 0-13-038560-3.

33

34

ity. I trust the other volumes will be as
good. The snort volume provides a
number of useful scripts to enable you
to integrate snort with Apache, PHP, etc.
The Development Platform does an
excellent job of limning just how to go
about building a Linux development
environment. It’s accompanied by a use-
ful CD.

Tcl Me

I've been a Tcl fan for a long time. And I
admit that I am a friend both of Clif
Flynt and of Brent Welch. I liked both
books when they first came out. Flynt’s
has improved somewhat for this second
edition — and those of you who read his
column in ;login: will understand where
much of it has come from. Welch’s book
has changed tremendously since the first
edition nearly a decade ago. But so has
Tcl since I first came in contact with it in
1989 or 1990. Tcl is a really fine script-
ing language, and these books will
enable you to use many enhancements,
internationalization, and the toolkits.

Networking
Anniversaries

by Peter H. Salus
peter@netpedant.com

As we close in on the end of 2003, I want
to point out the various and sundry
“Net” anniversaries this year has brought
us.

In 1968, BBN received the contract to
build and deploy a packet-switching net-
work of four nodes.

In 1973 (30 years ago), the ARPANET
was made up of 35 hosts; by the end of
the year, Bob Metcalfe felt it necessary to
warn about security problems (RFC 602,
“The Stockings Were Hung by the
Chimney with Care”).

A decade later, the Net had grown to 575
hosts and the DCA-enforced switch to
TCP/IP had been announced. A mere
five years later (1988), there were 60,000
hosts. That’s only 15 years ago. Right
now, my best guess is that the Internet is
at 300 million hosts.

In October 1983, there were 78
email/news links in the UK being fed
from UKC by Peter Collinson. Also in
1983, EARN was created — a European
version of BITNET. (And while I'm talk-
ing about these things, it was early in
1984 that Jun Murai initiated JUNET in
Japan.)

FIDONET was also created in 1983.

IBM’s VNET grew to 1001 when
Reykjavik was connected in 1983.

Networking was barely a teenager, but
had become a raging success all over the
world.

Moving on, in 1988 the NSFNET T1
backbone became operational
(1.544Mbps!). Five years later, in 1993,
both PSINet and AlterNet deployed T3
backbones. And DARPA became ARPA,
again.

Vol. 28, No. 5 ;login:

USENIX news

USENIX MEMBER BENEFITS
As a member of the USENIX Association,
you receive the following benefits:

FREE SUBSCRIPTION TO ;/ogin:, the Association's
magazine, published six times a year, featur-
ing technical articles, system administration
articles, tips and techniques, practical
columns on such topics as security, Tcl, Perl,
Java, and operating systems, book reviews,
and summaries of sessions at USENIX con-
ferences.

Access 10 ;login: online from October 1997
to last month: www.usenix.org/
publications/login/.

AccEss To PAPERS from the USENIX Confer-
ences online starting with 1993
www.usenix.org/publications/library/proceedings/

THE RIGHT TO VOTE on matters affecting the
Association, its bylaws, election of its direc-
tors and officers.

DiscouNTs on registration fees for all
USENIX conferences.

DiscounTs on the purchase of proceedings
and CD-ROMS from USENIX conferences.

SPECIAL DISCOUNTS on a variety of products,
books, software, and periodicals. See
<http://www.usenix.org/membership/
specialdisc.html> for details.

FOR MORE INFORMATION
REGARDING MEMBERSHIP OR
BENEFITS, PLEASE SEE
http://www.usenix.org/

membership/

OR CONTACT
office@usenix.org
Phone: 510 528 8649

2004 USENIX
Nominating
Committee

by Dan Geer

Chair, Nominating
Committee

geer@atstake.com

It is time for you to think about the next
round of elections for the Board of
Directors and for Officers of USENIX.

USENIX has eight board members: four
are officers (President, Vice President,
Treasurer, and Secretary) and four are
board members at large. All stand for
election every two years.

Organizations like USENIX have a diffi-
cult trade-off: Renewing their leadership
by officially recognizing the candidates
most likely to build the organization
versus the free-for-all. The risk of the
former is self-perpetuation of the offi-
cers more than the organization; the risk

USENIX BOARD OF DIRECTORS
Communicate directly with the USENIX Board
of Directors by writing to board@usenix.org.

PRESIDENT:

Marshall Kirk McKusick, kirk@usenix.org
VICE PRESIDENT:

Michael B. Jones, mike@usenix.org
SECRETARY:

Peter Honeyman, honey@usenix.org
TREASURER:

Lois Bennett, lois@usenix.org

of the latter is election due to name
recognition rather than skill, thus lead-
ing to irretrievable mistakes born of
inexperience. In the case of the problem
of self-perpetuation, the solution is term
limits, and USENIX indeed has them
(http://www.usenix.org/about/bylaws.
html#art4). In the case of the problem of
getting well known but inappropriate
candidates, the solution is a Nominating
Committee, and USENIX indeed has
one of those (http://www.usenix.org/
about/bylaws.html#art7). None of this is
magic—democracy is messy, after all.

Having the right leaders for their time is
hard to predict, but you have to try.
More than anything else, it is short-term
essential that there are enough good
candidates to choose amongst: some
new and some familiar, spread over all of
USENIX’s sub-specialties, a history of
both devotion and delivery to the orga-
nization, and the room to maneuver
their private life to make USENIX a pri-
ority. At the same time, it is long-term
essential that the best potential officers
be gotten onto the Board, so that next
set of Officers can be chosen from those
with prior experience at the Board level.
In other words, some new Board mem-
bers every two years is a good thing,
along with a convincing set of Officers
known for their prior accomplishment
to be ready to take leadership roles.

DIRECTORS:
Tina Darmohray, tina@usenix.org
John Gilmore, john@usenix.org
Jon “maddog” Hall, maddog@usenix.org
Avi Rubin, avi@usenix.org

EXECUTIVE DIRECTOR:
Ellie Young, ellie@usenix.org

USENIX News

Vol. 28, No. 5 jlegin: 35

36

The Nominating Committee Chair is
appointed by the sitting Board. I am that
Chair this time around. The Nominating
Committee must be both knowledgeable
and wise, and must be willing to forego
office themselves. That Committee will
be announced shortly. I will choose
them and we will make recommenda-
tions both for Board members at large
and for Officers. We will do our best and
we will very much hope you follow our
advice, as by the time we are done we
will believe in our decisions.

If you are considering offering yourself
for election by petition, please keep in
mind that the Board of USENIX is real
work, never trivial, and a great place to
make a difference. You should have
pluck, vision, the ability to work with
others, and a thorough sense of some
topic area that USENIX covers. You
should be goal- rather than process-
oriented, have a sense of humor, and
be fond of the idea that you get more
accomplished if you don’t care who gets
the credit.

Send suggestions for nominees, com-
ments on existing Board members, or
just plain questions to me: geer@usenix.org.
Speaking as a former Board member
and Officer, I can tell you that being on
the Board of USENIX is absolutely, posi-
tively worth the effort.

MEMBERSHIP
NEWS

SAGE Dues

You may now join SAGE for $40! While
it is no longer required that you be a
member of USENIX to be a member of
SAGE, we hope you will remain or
become a member of both organiza-
tions. Member support allows us to con-
tinue to offer some of the most highly
respected conferences and publications
in the industry.

Please review the benefits and dues
structure listed below and on our Web

site : http://www.usenix.org/membership/.

We will have an electronic membership
renewal process in place by this Fall.
Please look for renewal notices sent to
you via email.

USENIX Membership Benefits

INDIVIDUALS AND STUDENTS

MEMBERSHIP
» Access to the latest USENIX Con-

ference Proceedings on the

USENIX Web site: http://www.

usenix.org/publications/library/

proceedings/

Free subscription to ;login: - the

Association’s magazine, published

six times a year, bringing you tech-

nical features, summaries of

USENIX conferences, system

administration tips, reports on var-

ious Standards activities, and book

reviews. ;login: is sent in print, and

is available online a month later to

all current USENIX members

+ Discounts on technical sessions reg-
istration fees at all USENIX-spon-
sored and co-sponsored events

+ Discounts on USENIX Conference
Proceedings and CD-ROM:s

+ The right to vote on matters affect-
ing the Association

*+ Savings on books, journals, and
software from cooperating publish-
ers

*+ 15% off subscription to The Linux
Journal

+ 20% off O’Reilly & Associates pub-
lications

+ $10 off subscription to Sys Admin

+ 20% discount off No Starch Press
books

INSTITUTIONAL MEMBERSHIP
(EDUCATIONAL, CORPORATE, AND
SUPPORTING)
s Includes all of the benefits of an
Individual membership, plus:

"

» All USENIX Conference Proceed-
ings in a downloadable format to
your server, so that staff and stu-
dents at your institution have any-
time access to all papers from our
events

Supporting Members also receive:

*» A free ad in ;login: once during the
membership term

10% discount on sponsorship and
exhibit fees at USENIX events

Ten member-priced conference reg-
istrations for your company staff
during the membership term

Your name and URL listed on our
Supporting Members Web site, as
well as acknowledgment in printed
materials for events and in all issues
of ;login:

SAGE Membership BENEFITS
» Access to the members-only area of
SAGEweDb, which offers Web-based
services, including employment
and job placement services, a
speakers bureau, a mentoring pro-
gram, and a discussion site:
http://www.sageweb.sage.org
The ability to join SAGE-only elec-
tronic mailing lists
The Annual System Administration
Salary Survey
Discount on the registration fee for
the annual LISA Conference
The most recent “Short Topic in
Systems Administration” series
booklet — practical publications
covering system administration
issues and techniques, with online
access to all booklets:
http://sageweb.sage.org/resources/
publications/short_topics.html
The right to vote for the SAGE
Executive Committee and on other
SAGE matters
A Code of Ethics for System
Administrators, suitable for
framing

-

-

-

-

-

-

-

-

-

Vol. 28, No. 5 ;login:

This issue's reports focus on The
USENIX Annual Technical Conference
and on the 15th Annual FIRST Confer-

ence.

OUR THANKS TO THE SUMMARIZERS:

FOR USENIX ATC ‘03
William Acosta
Raya Budrevich

Francis Manoj David
Rik Farrow

Shashi Guruprasad
Hai Huang

James Nugent
Manish Prasad
Peter Salus
Benjamin A. Schmit

Wenguang Wang

FOR FAST 2003
Anne Bennett

October 2003 ;login:

conference reports

USENIX Annual Technical
Conference

June 9-14, 2003
San Antonio, Texas

AWARDS

The USENIX Lifetime Achievement
Award (the Flame) was given to Rick
Adams for implementing Serial Line IP
(SLIP) and founding UUNET, thereby
making the Internet widely accessible. In
1982 Rick ran the first international
UUCP email link at the machine seismo
(owned by the Center for Seismic Stud-
ies in Northern Virginia), which evolved
into the first (UUCP-based) UUNET. He
maintained “B” News (at one time the
most popular Usenet News transport),
wrote the first implementation of SLIP
(Serial Line IP), and defined the first
protocol for running TCP/IP over ordi-
nary serial ports (in particular, dial-up
modems). The SLIP protocol was super-
seded, years later, by PPP, which is still in
use. Rick founded a nonprofit telecom-
munications company, UUNET, to
reduce the cost of uucp mail and net-
news, particularly for rural sites in
America. (UUNET was founded with a
$50,000 loan from the USENIX Associa-
tion, which was subsequently repaid.)
UUNET became an official gateway
between UUCP mail and Internet email,
as well as between North America and
Europe. It hosted many related services,
such as Internet FTP access for its
UUCP clients and the comp.sources.
unix archives. Rick spun out a for-profit
company, UUNET Technologies, which
was the second ISP in the United States.
The for-profit company bought the
assets of the nonprofit, repaying it with a
share of the profits over the years. The
nonprofit has spent that money for
many UNIX-related charitable causes
over the years, such as supporting the
Internet Software Consortium. The for-
profit ISP became a multi-billion-dollar
company and was merged with MFS

USENIX ATC ‘03

(Metro Fiber Systems, a wide-area opti-
cal-networking company), MCI, and
then Worldcom, rising to challenge the
largest telecommunications companies
in America. He is co-author of /%@:: A
Directory of Electronic Mail Addressing &
Networks, published by O’Reilly Books.
He is also co-author of RFC-850, the
Standard for Interchange of USENET
Messages, which was updated to become
RFC 1036 in 1987.

The Software Tools User Group (STUG)
award recognizes significant contribu-
tions to the community that reflect the
spirit and character demonstrated by
those who came together in the STUG.
Recipients of the annual STUG award
conspicuously exhibit a contribution to
the reusable code-base available to all
and/or the provision of a significant,
enabling technology directly to users in
a widely available form.

The 2003 award was given to CVS (the
Concurrent Versioning System) and its
four main authors, Dick Grune, Brian
Berliner, Jeff Polk, and Jim Klingmon.
Without CVS, it wouldn’t be possible for
any number of people to work on the
same code without interfering with each
other. It can be argued that without
remote-collaboration tools such as CVS,
most of the larger free and open source
software that is available today could not
have existed. While individuals can pro-
duce significant software, collaborative
methods are often needed for complex
and wide-ranging projects.

Dick Grune: The original author of the
CVS shell script, written in July 1986,
Dick is also credited with many of the
CVS conflict resolution algorithms. He
developed the script at the Free Univer-
sity of Amsterdam (Vrije Universiteit),
where he teaches principles of program-
ming languages and compiler construc-
tion. He was involved in constructing
Algol 68 compilers in the 1970s and par-
ticipated in the Amsterdam Compiler

CONFERENCE REPORTS

37

38

Kit in the 1980s. He is co-author of three
books: Programming Language
Essentials, Modern Compiler Design, and
Parsing Techniques: A Practical Guide.

Brian Berliner: Coder and designer of
the first translation of the CVS scripts to
the C language, in April 1989, Brian
based his design on the original work
done by Dick Grune.

Jeff Polk: Jeff rewrote most of the code
of CVS 1.2. He made just about every-
thing dynamic (by using malloc), added
a generic hashed list manager, rewrote
the modules’ database parsing in a com-
patible but extended way, generalized
directory hierarchy recursion for virtu-
ally all the commands, generalized the
loginfo file to be used for pre-commit
checks and commit templates, wrote a
new and flexible RCS parser, fixed an
uncountable number of bugs, and
helped in the design of future CVS fea-
tures.

Jim Kingdon: While at Cygnus, in 1993
Jim made the first remote CVS, which
ran over TCP or rsh or kerberos’d rsh,
and eventually over TCP/IP. The
remote-CVS protocol enabled real use of
CVS by the open source community;
before remote CVS, everyone had to log
in to a central server, copy their patches
there, etc. Some years later, Jim formed
Cyclic, a company which offered CVS
support and development.

KEYNOTE ADDRESS
Neal Stephenson

Summarized by Peter H. Salus

Neal Stephenson — sci-fi author extraor-
dinaire of The Big U (part funny, part
silly, but worth it), Snow Crash, and
Cryptonomicon, among others — began
his keynote by remarking that Bertrand
Russell and Stephen Jay Gould didn’t
rewrite: they had “no delete key.”

He then discussed at length Antonio
Damasio’s Descartes’ Error (1994), which

concerns “how the brain works.” In case
you don’t recall, Descartes separated
mind and body; Damasio — and, by
extension, Stephenson — think this
wrong. The separation actually dates
back to Plato, and Stephenson sees it as
the difference between Spock and libido
(Kirk or Bones).

Stephenson went on to talk of his pro-
duction of The Big U (1984), his first
opus, his creation of “steaming moun-
tains of crap,” resulting in a process of
cutting and distillation. He analogized
this with coding and with “distilling
whiskey from beer.”

When we execute there is a “foreground
process” and a “background process”
which goes on “all the time.” That back-
ground process needs space to do what
it does — “which is a mystery” What we
have is “a faculty of maintaining the
entire stream all the time, while access-
ing it only bit-by-bit at a time.”

Stephenson feels that we should “kick
down the Platonic model.” He is force-
fully against PowerPoint.

“T use a fountain pen,” he remarked, and
went on to say that he does not use
“smileys.” He thinks Larry Wall came up
with something in Perl because there’s
“more than one way to do something.”

Stephenson returned to Damasio and
cited Einstein’s “clear images,” which are
“visual and muscular,” though he admit-
ted that he wasn’t certain what Einstein
meant by “muscular” (I'd guess “vigor-
ous” or “forceful” would be the appro-

priate gloss: the German is “kraeftig.”)

Mathematical entities can be combined
in an infinite number of useless forms,
Stephenson said, but they are capable of
leading us to mathematical truth.
“Invention is choice.”

Down with Plato or Descartes: “We pos-
sess an emotional marking system.”

“I'm going to make no thunderous pro-
nouncements,” Stephenson pronounced.
“Novelists, or coders, or philosophers, or
paleontologists don’t go on churning
out masses of filterable stuff, but succeed
by doing it right the first time.

“What we do is a much more physical
kind of work and emotional kind of
work than is believed. Pressure to just
churn out lines of code will not lead to
good things in the end.”

Yep.

INVITED TALKS

ENGINEERING REUSABLE SOFTWARE LIBRARIES
Kiem-Phong Vo, AT&T Labs — Research
Summarized by Wenguang Wang
Phong Vo has 20 years of experience
building general purpose software
libraries, which cover a wide range of
computing areas such as I/O, memory
allocation, container data types, and
data transforming. In this talk, he
showed how to build efficient, flexible,
and portable software libraries using the
discipline and method architecture.

Vo first pointed out that traditional
standard software libraries such as mal-
loc, stdio, curses, and libc have many
problems. For example, malloc frag-
ments memory; many container data
types have multiple incompatible inter-
faces; inconsistent and inadequate inter-
faces are common; programmers often
resort to hacks around problem areas,
which cause problems in maintenance,
porting, and performance.

Vo then discussed the characteristics of
ideal standard libraries. These libraries
should have good standard interfaces;
address unsatisfied needs; be easy to
configure, use, and upgrade; and, most
importantly, have decent performance.
These libraries should enable applica-
tions to tailor algorithms for specific
needs and simplify library composition
to optimize resource usage. Vo argued

Vol. 28, No. 5 jlogin:

that with these ideal libraries in hand,
programmers could focus on writing
libraries instead of writing programs,
since a program consists of libraries plus
the application specifics. The productiv-

USENIX '03 Reception

ity of programming should increase due
to the maximal library reuse and mini-
mal special code.

In traditional software libraries, the han-
dle plus operations model is often used,
where the handle represents resources
and the operations define resource man-
agement functions. Although this model
can address immediate needs and is easy
to use, it causes the problems discussed
above. To address these limitations, Vo
presented the discipline and method
architecture (D&M), which was used
when he developed the Vmallocg, Sfio,
Cdt, and Vcodex libraries with other
researchers.

Vo used the Vmalloc library as an exam-
ple to demonstrate the D&M architec-
ture. Vmalloc is a popular memory
allocation library used to replace the
standard malloc interface. In Vmalloc, a
discipline defines the type of memory
and the event handling of memory allo-
cation. Typical disciplines include heap
and shared memory. Programmers can
define their own disciplines to extend
the type of memory. A method in Vmal-
loc defines the memory-allocation pol-

October 2003 ;login:

icy. Typical methods include Vmpool,
which allocates objects of the same size;
Vmbest, which allocates objects based
on a best-fit policy; and Vmlast, which
allocates memory for a complex struc-
ture and releases all
objects together in con-
stant time.

These methods are pre-
defined in the library
and cannot be extended

| by programmers. They
can be selected dynami-
cally by environment
variables. For example,
after the VMDEBUG
environment variable is
set to 1, Vmalloc uses the
debugging-enabled
methods instead of the
default-efficient meth-
ods for memory allocation, which allows
various memory allocation problems to
be detected automatically. This feature
makes the debugging and the profiling
of applications very easy whenever
needed.

Vo then used the Vcodex library to show
how to design a D&M library. The
Vcodex library can transform data using
compression/decompression, data dif-
ferencing, encryption/decryption, etc.
Designing a D&M library requires deter-
mining resource types and general oper-
ations, characterizing resources in a
general discipline interface, and captur-
ing algorithms/resource management in
methods. In Vcodex, bytestream is iden-
tified as a resource type (i.e., discipline).
All data-transforming operations (com-
pression/decompression, encryption/
decryption, etc.) are different methods
since they all change some set of bytes to
produce other bytes.

All the D&M libraries discussed in this

talk (Sfio, Cdt, Vmalloc, Vcodex) can be
downloaded from http://www.research.
att.com/sw/tools. The AST OpenSource

USENIX ATC ‘03

software collection built on top of some
of these libraries is available at http://
www.research.att.com/sw/download.

THE CONVERGENCE OF UBIQuUITY: THE
FUTURE OF WIRELESS NETWORK SECURITY
William A. Arbaugh, University of
Maryland at College Park

Summarized by Rik Farrow

Bill Arbaugh, who often works in the
wireless arena, started off his talk with a
joke (I wish I would remember to do
that). He showed slides of Free Software,
Free Willy, Free Kevin, Free Martha, Free
Wireless, and even Free Beer. But what
Arbaugh really wanted to talk about was
the past, present, and future of wireless
security.

Hotspots are a part of the present of
wireless networks. You can find maps of
wireless networks, collected by war driv-
ing, for most large American cities, and
some of these networks are open, requir-
ing no authorization or encryption key.
Arbaugh postulated that your next gen-
eration cell phone will work over wire-
less networks when possible, and fall
back on slower, but more ubiquitous,
cell phone technology when necessary.
As you walk out of a hotspot talking on
your cell phone, it will switch transpar-
ently from the Internet to the cellular
network. Arbaugh quipped that the poor
sound quality provided by cell phones
has made short breaks in communica-
tion and occasional garbling expected in
phone calls, and that will make Internet
use more acceptable.

The ghost of wireless security past is
WEP, or Wired Equivalent Privacy.
Arbaugh described the author of WEP
as being in hiding, having created a
cryptographic protocol that failed in
every imaginable way.

The present of wireless security is Wi-Fi
Protected Access (WPA). WPA bolts on

over existing hardware and solves some

of the problems inherent in WEP. For

CONFERENCE REPORTS

39

40

example, keys will change with each
packet sent, and packet integrity will
actually work, due to a different set of
algorithms (TKIP). Stronger access con-
trol (unlike the MAC addresses used by
WEP) is included. WPA2 will follow,
require hardware changes, and support
AES.

Alas, WPA does not solve the current
denial-of-service issues. Arbaugh
demonstrated this by sending manage-
ment packets (which are never
encrypted or authenticated), which
knocked people off the room’s wireless
channels.

Arbaugh’s future includes smaller
devices, with the transparent transition-
ing between hotspots and cellular men-
tioned earlier, IPv6 addresses and
routing, and always-on connections. All
devices will need personal firewalls in
addition to anti-virus — not that that will
protect users from the management
back doors that already exist in many
cell phones today.

Obviously, we are in for a lot of sur-
prises, and interesting work, in the
future of wireless.

INTELLECTUAL PROPERTY IN AN AGE
OF COMMERCE: CORE ISSUES IN THE
SCO / LiNnux IP Suit

Chris DiBona, Damage Studios
Summarized by James Nugent

Chris DiBona gave a highly informal
discussion-format talk on the SCO v.
IBM suit and what it may mean. Jon
Hall and Don Marti (Linux Journal) also
participated in a semi-panel format.

First, a general discussion of the issue is
in order. On March 6, 2003, SCO filed a
suit alleging that IBM had stolen some
code from them and placed it in the
Linux kernel; they asked for $1 billion
[now $3 billion — ed.] in damages. This
was supposedly done as part of Project
Monterey , a joint effort involving SCO,
IBM, and other companies to produce

an enterprise UNIX OS for the [A-64.
SCO has indicated that they may go after
large-scale users of Linux and mailed
letters to that effect to 1500 companies.
Even if IBM is exonerated, it is not clear
that this would prevent SCO from
bringing suits against other companies.
This is a problem for small companies,
which lack the money for a well organ-
ized legal defense.

Several legal issues were brought up.
One of them, an obscure legal ruling
from the late 1800s involving the sale of
a pregnant cow when neither the seller
nor the buyer knew this fact, may be
used to allow SCO to continue, despite
their releasing Linux code under the
GPL.

SCO has not yet divulged in June where
the proprietary code is. A panel of peo-
ple from the open source community is
forming to look at the code under a very
restrictive NDA, thus making the panel
of questionable value.

Jon Hall brought up the point that a
comparison of the SCO and Linux code
is insufficient, since code could have
been inherited from a multitude of
other places, such as BSD.

The impact of this suit on the future is
unclear, although it could affect the will-
ingness of companies to share code.

How 10 BUILD AN INSECURE SYSTEM OuT
OF PERFECTLY GOOD CRYPTOGRAPHY
Radia Perlman, Sun Microsystems
Laboratories

Summarized by Rik Farrow

Radia Perlman always seems like she is
having a great time, and this talk was no
exception. She selected cryptography
bloopers from a much larger collection
than she could present during one talk.
She began with an email system based
on a one-time pad. One-time pads are
the strongest, most secure way of
encrypting data, provided the pads
themselves are kept secure and are used

correctly. In the example she described,
the email system used the pads with the
XOR operation two times too many,
making it possible to extract the pads
from each message (and decrypt the
messages as well).

One of Perlman’s personal pet peeves is
screensavers. When her screen goes
blank, she immediately assumes that her
screensaver has kicked in, and types her
password. Of course, while this might be
the case, a power-saving feature might
have just blanked the screen, so if you
see a weird set of characters in an email
from her, it just might have been a pass-
word that she just had to change.

Perlman lambasted systems such as one
where whenever you change your pass-
word, it gets emailed back to you. Or an
SSL-protected online site that emails you
back a receipt that includes your credit
card information.

Perlman also contrasted secret and pub-
lic keys. One big reason for Kerberos,
quipped Perlman, was the cost of public
key licenses. Kerberos requires a direc-
tory that must always be available and
securely hold everyone’s secrets. Public
keys no longer have the onerous license
fee but require Public Key Infrastruc-
tures instead.

She described the four types of PKIs:
monopoly, oligarchy, anarchy, and bot-
tom-up. In monopoly, everyone pays
Verisign to play. In oligarchy, 80 or more
vendors all have self-signed keys in all
browsers, with no mechanism for revo-
cation. In anarchy, we use the PGP
model, which scales poorly. Bottom-up
appeared the most reasonable, in which
each organization has its own certifica-
tion authority (CA), and organizations
sign the certificates for the CAs they
need to work with.

Perlman went on to rant about the
craziness in the SSL certificate scheme
(use of X.509), the “300 content-free

Vol. 28, No. 5 jlogin:

pages of ISAKMP framework” for IPSec,
and her top-ten favorite list of people
and things that get in the way of better
security. During the question and
answer period, a manager begged her to
lobby for better security, but Perlman
stated that the world just doesn’t care
enough.

ALTERNATIVE TOP-LEVEL DOMAINS
(AKA THE GAME OF THE NAME)

Steve Hotz, New.net
Summarized by Shashi Guruprasad

Steve Hotz, the CTO of New.net, gave
one of the most controversial talks of
this year’s USENIX ATC. This was evi-
dent from the audience’s hostility and
bitter reactions, including a spate of pro-
fanities hurled at New.net and a few
even directed at the speaker himself.
New.net is a domain name registrar
offering consumers a large number of
new and alternative top-level domains
(TLDs) — e.g., .family, .kids, .shop — that
are not ratified by the Internet Corpora-
tion for Assigned Names and Numbers,
or ICANN, a technical coordination
body composed of a broad coalition of
the Internet’s business, technical, aca-
demic, and user communities. Among
other things, ICANN is responsible for
assignment of domain names.

New.net’s position is that additional
TLDs provide more choices and richer
naming schemes and that a market for
them exists. Currently, there is no real
Internet directory and nothing to fill the
gap between whois and search engines.
An artificial scarcity exists and has not
been mitigated by ICANN. The speaker
repeatedly stressed that this is not the
most important problem that needs
solving in the Internet but just a place
where a market exists. Some of the issues
in new TLDs were: how many, Internet
stability, trademarks, who will control
them, and, finally, where does the money
($1 billion per year) go? New.net’s per-
spective is that no single organization

October 2003 ;login:

should dictate policy but that these
issues should be decided by the market.

The approach that New.net has taken
does not involve configuration pains for
ISPs or individuals and is backward
compatible with the existing system.
New.net domains can be enabled either
(1) via recursives that rely on US gov-
ernment root servers but augment with
New.net domains, or (2) through user
machines that have the New.net client
plug-in (which still relies on the US gov-
ernment root servers). New.net cur-
rently offers 88 new domains. They
currently have 150 million customers in
total. They have tied up with five out of
the top seven US-based ISPs and with
many worldwide. The speaker also men-
tioned that their efforts to talk to
ICANN and other organizations have
not succeeded. They also avoid conflict-
ing TLDs with ICANN or country-code
TLDs. However, it remains to be seen if
ICANN will break the Internet by
launching conflicting TLDs. New.net
also plans to partner with other alterna-
tive TLD providers that may bid on
TLDs with ICANN, such as .kids or
.golf. Some of the big companies such as
Microsoft, AOL, AT&T, Verisign, and
Nokia are potential new TLD providers.
However, New.net is not really making
an effort in this direction. The reality of
“breaking the root” will occur only if
multiple non-cooperating businesses
promote competing namespaces. The
last point was that New.net has been
operational for the past two years, yet
the Internet is not broken.

During the Q&A, one person expressed
the wish that New.net would fail.
Another mentioned that New.net has
broken the fundamental principle of a
single consistent naming system wher-
ever you go. Someone else said he
believed that things would break only if
there was significant adoption. Another
person asked how it matters whether
there is a .usenix or usenix.org. The
answer was that it is not a necessity but a

matter of choice or desire that some
people would like to have. An important
counterpoint that came up was how to
handle Uniform Domain-Name Dis-
pute-Resolution Policy (UDRP) when
numerous TLDs exist. For example, how
would they deal with someone wanting
to open up a .boycott or .sucks domain
with organization names in it for people
to criticize companies. It would also be
harder to enforce anti-cybersquatting
laws. To the speaker’s position that we
need a consortium rather than one
organization, one person responded that
ICANN was the consortium. Lastly, it
was pointed out that New.net names will
be invalid if DNS security extensions are
implemented.

MODELING THE INTERNET

Harry DeLano and Peter H. Salus, Matrix
NetSystems

Summarized by William Acosta

As the Internet continues to grow, it
becomes harder to represent the net-
work graphically using a geographical
model. Such representations of the net-
work lack the ability to visually express
such details as the location of the “big
pipes,” peering relations, and routing
information. To illustrate the increasing
complexity of the visual models of the
Internet, the speakers presented a his-
tory of “maps” of the Internet, starting
with the earliest known maps of
ARPANET from 1969 and continuing
with the geographical maps through the
1970s and 1980s that included the first
satellite links to both Hawaii and Europe
and the integration of multiple networks
like Usenet to form what is now know as
the Internet.

One of the fundamental questions that
modeling attempts to answer is, how
does the Internet behave? This question
can be broken down into several compo-
nents: What are the nodes and their con-
nections? How can the Internet be
visualized? How can its health be moni-
tored? How can we detect and respond
to events? Some of the techniques used

USENIX ATC ‘03

CONFERENCE REPORTS

41

42

for measurement analysis include the
traceroute program, BGP information,
and DNS data. Similarly, tools such as
ping and the Internet Weather Report
[now discontinued - ed.] are used for
monitoring the “health” of the Internet.
However, these tools are not perfect. As
an example, the speakers noted that
traceroute does not accurately reflect the
existence of multiple parallel paths to
some destination.

The speakers discussed several projects
(from Lumeta, CAIDA, MIDS) which
analyze and track certain sets of Internet
information. In particular, the speakers
showed the Internet averages of latency,
packet loss, and reachability observed
during events like the September 11,
2001, terrorist attacks and the April
Fools’ Virus, to demonstrate how these
tools tracked the effect these events had
on the Internet. Additionally, the speak-
ers discussed tools, such as Graphviz
from AT&T Labs and Walrus from
CAIDA, that help visualize the topology
of the Internet.

Currently, data collection is subjective
and performed in an ad hoc manner.
Additionally, the data sets obtained lack
context and may be incomplete. As an
example, it was noted that paths from
traceroute and BGP data contain incon-
sistencies. The speakers suggested that
data collection needs to be more objec-
tive and that the interpretation of the
results deserves more scrutiny. To this
end, the speakers suggested the forma-
tion of an international body patterned
after the Centers for Disease Control
that would both monitor the health of
the Internet and be able to respond to
events such as disasters and virus out-
breaks.

During the Q&A session, John Quarter-
man asked what are the fixed points
(analogous to cities on traditional road
maps) of Internet maps? Suggestions
from attendees included using Internet
exchanges and the root nameservers.

Someone pointed out that maps of the
physical world are backed by a physical
reality that is less mutable than the
Internet. This prompted the question of
whether we need better mapping sci-
ence. Other issues raised during the
Q&A included a discussion on the scala-
bility of current measurement tools and
the limitation on probing large numbers
of hosts frequently.

URLs

CAIDA: http://www.caida.org/

Graphviz: http://www.research.att.com/
sw/tools/graphviz/

Lumeta: http://www.lumeta.com/

MIDS: http://average.matrix.net/

Rocketfuel: http://www.cs.washington.
edu/research/networking/rocketfuel/

NANOTECHNOLOGY: As HARDWARE
BECOMES SOFTWARE

J. Storrs Hall, Institute for Molecular
Manufacturing

Summarized by Francis Manoj David

What is nanotechnology? It is the con-
struction of self-replicating machines
with atomic precision. Molecular manu-
facturing is actually a better term to
describe this process. The manufactur-
ing process is not straightforward.
Because of their size it is not possible to
just pick atoms and place them together.
A molecule can be used as a handle to
move the atom to the desired site. A
bond-forming chemical reaction is used
to fuse the atom to the rest of the struc-
ture.

Self-replication is a key requirement for
nanomachines. This results in a sophisti-
cated product with exponential growth
in capital because of the 100% reinvest-
ment. A parts assembly robot is used to
build other robots. Just like a car factory,
pipelining and convergent assembly
lines are used to speed up the process.

Josh went on to illustrate applications of
this technology. Nanomachines can be
built to simulate molecules. One such
design is “utility fog.” These machines

can “hold hands” with each other to
form larger objects. By controlling the
direction of the “hand-holding,” one can
create solids, liquids, or gases. Control of
such machines requires nanocomputers.
Nanocomputers, however, cannot be
programmed using the usual techniques.
The energy required to erase a bit,
though small, is very significant at such
small scales. Thus, these nanocomputers
need to be programmed using reversible
programming techniques that avoid
erasing bits.

Flying cars are now possible. Airflow can
be controlled over the skin of the car.
Negative drag gives all the required
thrust. Thus, the car can be sleek and
elegant. Instant houses? At bacterial
replication speeds, nanorobots can turn
a pile of dirt into a house. However,
there exists the problem of runaway
nanorobots. There are several means to
control these nanorobots. Removal of
fuel can stop replication. Also, a fixed
supply of replication unit kernels can
control the replication.

Other interesting applications include
thin skins that can insulate and protect
humans. These skins can be so thin that
they wrap around a single strand of hair,
providing air management and sweat
management! Respirocytes are yet
another design for small nanomachines
that function like red blood cells. They
can store and release oxygen in the
bloodstream as and when necessary.
Space travel can also be made cheaper by
the construction of an extremely tall
platform using artificial diamonds. Thus
nanotechnology has tremendous poten-
tial for the future of humankind.

URLs: http://www.imm.org/Parts/

http://discuss.foresight.org/~josh/

http://www.losthighways.org/radebaugh.
html

http://www.moller.com/

Vol. 28, No. 5 jlogin:

TECHNICAL SESSIONS -
GENERAL TRACK

ADMINISTRATION MAGIC
Summarized by Francis Manoj David

UNDO FOR OPERATORS: BUILDING AN
UNDOABLE EMAIL STORE

Aaron B. Brown and David A.
Patterson, University of California at
Berkeley

This won the General Track Best Paper
award. Human error is the primary bar-
rier to building dependable systems. A
small mistake such as misconfiguring an
email virus scanner can result in lots of
lost email. This damage could be pre-
vented if operators were able to undo
their mistakes. This paper presents an
implementation of undo capabilities for
an email distribution system.

Three Rs — rewind, repair, and replay —
are necessary to achieve such capabili-
ties. Rewind brings back a system to a
time in the past, repair fixes the mistake,
and replay ensures that new information
is not lost. Paradoxes can arise during a
replay, though. This is because the sys-
tem might make changes to message
bodies or restore missing email to a
mailbox. To explain this to the user,
explanatory emails are sent.

The architecture for the undoable email
store consists of rewindable storage and
a proxy that intercepts user events. All
user events are encoded as “verbs” which
are logged. An undo manager is used to
control all undo operations. Studies with
a Java implementation show that the
time and space overheads are not signifi-
cant. Responding to a question at the
end of the presentation, Aaron also clar-
ified that the explanatory messages
themselves are not treated as user events
and hence no verbs are generated for
them.

October 2003 ;login:

ROLE CLASSIFICATION OF HOSTS WITHIN
ENTERPRISE NETWORKS BASED ON CONNEC-
TION PATTERNS

Godfrey Tan, John Guttag, and Frans
Kaashoek, MIT; Massimiliano Poletto,
Mazu Networks

This paper presents methods to auto-
matically group hosts in a network
based on their communication patterns.
Grouping of hosts can simplify network
management and can also detect anom-
alous conditions. For example, a devel-
oper’s machine behaving like a mana-
ger’s machine would be interesting
information to an administrator.

The proposed scheme uses probe hard-
ware to sniff all network traffic. A cen-
tral aggregator then collects the infor-
mation from all the probes. It is respon-
sible for maintaining a “neighbor rela-
tionship” between hosts that commun-
icate regularly. Groups are then identi-
fied based on host similarities. Similarity
is defined as the number of common
neighbors. Group formation is treated
as a graph theory problem. Each node in
the graph is a host and each edge with
weight e represents the fact that there are
e common neighbors between the hosts.
For a given value of similarity, say k, a k-
neighborhood graph is constructed with
edges of weight k. Bi-connected compo-
nents in this k-neighborhood graph are
considered separate groups. Special cases
are used when the graph is a tree. Groups
can also be merged into a larger group
based on group similarities. For more
details on this, please refer to the paper.

The effectiveness of this scheme has
been studied by comparing the groups
generated automatically with groups of
hosts determined by system administra-
tors. Results of this study show that the
groups extracted automatically closely
match the desired groups. This scheme
shows that automatic role classification
of hosts based on their communication
patterns is feasible. Mazu Network’s
PowerSecure software now incorporates

refined versions of most of the algo-
rithms described in this paper.

A COOPERATIVE INTERNET BACKUP SCHEME
Mark Lillibridge, Hewlett-Packard Labs;
Sameh Elnikety, Rice University;
Andrew Birrell, Mike Burrows, and
Michael Isard, Microsoft Research
Backup service providers on the Internet
are costly. This paper describes a scheme
by which individual computers on the
Internet can cooperate to back up each
other’s data. Each computer uses a set of
partners to store its backup data. In
return, it holds part of each partner’s
backup data. By making redundant
copies of the backup on multiple com-
puters, a high level of reliability is
obtained. Thus, inexpensive backups can
be obtained.

The backup scheme depends upon
cooperation between hosts. There are
always bound to be hosts that refuse to
cooperate. In its basic form, this scheme
has several pitfalls. Hosts may promise
to hold data and not keep their word.
This is discouraged by several mecha-
nisms, including periodic challenges to
ensure that partners are cooperating and
a novel method called “disk-space wast-
ing” designed to make cheating unprof-
itable. Attacks aimed at disrupting the
service are also possible in the basic
scheme. The paper outlines some solu-
tions to prevent these attacks as well.

Results from an initial prototype show
that these techniques are feasible as far
as performance is concerned. The costs
involved are also quite low compared to
other Internet backup options.

USENIX ATC ‘03

CONFERENCE REPORTS

43

44

POWER
Summarized by Hai Huang

CURRENTCY: A UNIFYING ABSTRACTION FOR
EXPRESSING ENERGY MANAGEMENT POLICIES
Heng Zeng, Carla S. Ellis, Alvin R. Lebeck,
and Amin Vahdat, Duke University

A system-level energy management
technique is discussed. Energy is classi-
fied as yet another resource that can be
managed by the operating system. An
energy quota is allocated to each process
periodically, and when each process
accesses an energy-consuming hardware
device (e.g., disk, CPU, network inter-
face), it is charged the amount of energy
that was spent accessing the device.
When all its energy quota is spent, it
cannot execute further until the operat-
ing system replenishes its quota. The
authors were able to show that the sys-
tem is able to achieve desired runtime, if
it is possible, with a high success rate. By
managing the energy quota of each
application, it is easy to suppress the
execution of the less important tasks,
while giving more energy to the more
important ones to keep the system run-
ning longer when the energy supply is
low.

DESIGN AND IMPLEMENTATION OF POWER-
AWARE VIRTUAL MEMORY

Hai Huang, Padmanabhan Pillai, and
Kang G. Shin, University of Michigan

A novel technique to reduce the power
dissipation in the DRAM was presented.
As workloads become more data-cen-
tric, more energy is spent to sustain the
ever-growing DRAM in systems. The
intuitive basis of current power-man-
agement technology is that processes
execute one at a time, and when each is
executing, it only uses a small fraction of
the total system memory. By figuring
out the memory nodes each process
uses, energy can be saved by putting
unused memory nodes into a low energy
state. Proactively allocating physical
pages to minimize the number of mem-

ory nodes each process uses creates
opportunities to power off a large per-
centage of nodes in the system, thereby
saving a significant amount of energy.
The authors introduced other tech-
niques — library aggregation and page
migration — to achieve energy savings.
These techniques are compatible with
various DRAM architectures, including
SDR, DDR, and RDRAM.

GET VIRTUAL
Summarized by Hai Huang

OPERATING SYSTEM SUPPORT FOR VIRTUAL
MACHINES

Samuel T. King, George W. Dunlap, and
Peter M. Chen, University of Michigan
The authors describe several techniques
to reduce the virtualization overhead
associated with type II virtual-machine
monitors (VMM) so they can achieve
performance similar to type I VMMs. In
their experiments, they used UMLinux
as the guest operating system. One of
the techniques they use to improve per-
formance is to move the VMM from the
user-space to the kernel, so they can
avoid high-overhead ptrace calls and
reduce the number of context switches
when guest system calls/signals are
invoked. Other techniques include the
use of segmentation registers to reduce
overhead of guest user-to-system and
guest system-to-user boundary crossing,
and the use of multiple address spaces
for the virtual machine to reduce the
guest user-to-user switching overhead.
The performance of their system was
comparable to that achieved by VMware
Workstation.

A MuLTI-USER VIRTUAL MACHINE
Grzegorz Czajkowski and Laurent
Daynés, Sun Microsystems; Ben Titzer,
Purdue University

This paper describes the implementa-
tion of adding multi-user capability in a
multi-tasking virtual machine (MVM).
A MVM allows a user to execute multi-
ple processes in the same Java Virtual

Machine (JVM), and by sharing
resources among these processes, it
reduces resource consumption and
improves overall performance. Multi-
user MVM takes this a step further and
allows multiple users to safely execute
different processes on the same MVM.
As if executing in a traditional OS,
processes, files, and other resources
belonging to the same user will not be
illegally accessed by another user. MVM-
2 extends MVM by having a separate
instance of Jlogin per user session to
manage user identity, environment, and
other access control information. It was
shown that for a typical workload,
MVM-2 only incurs a small perform-
ance overhead over MVM, while provid-
ing a safe multi-user environment.

NEEDLES AND HAYSTACKS
Summarized by Wenguang Wang

A Locic FILE SYSTEM

Yoann Padioleau and Olivier Ridoux,
IRISA / University of Rennes

Organizing information using the hier-
archical paradigm, as is done by tradi-
tional file systems, can provide naviga-
tion functions but is rigid in that an
object can only be reached via one path.
The Boolean query paradigm used by
search engines provides flexible key-
word-based search capability but lacks a
navigation mechanism. In this talk,
Yoann Padioleau presented a logic file
system (LISFS) based on the Boolean
query paradigm but extended to provide
navigation. Each file in LISFS is associ-
ated with a conjunction of properties of
interest. The directories are used to rep-
resent properties. One can navigate in
LISFS by giving the desired or undesired
properties as directory names.

A prototype of LISFS has been imple-
mented by the authors. The data struc-
ture of the current implementation is
optimized for searching and navigation.
It is somewhat slow for file and property
creation. The performance experiments

Vol. 28, No. 5 jlogin:

of the prototype showed efficient navi-
gation execution but 4 to 34 times
longer creation time than ext2. The disk
space overhead is 2-5KB per file, given
50 properties. A prototype of LISFS and
more information on this project can be
downloaded at http://www.irisa.fr/LIS.

APPLICATION-SPECIFIC DELTA-ENCODING VIA
RESEMBLANCE DETECTION

Fred Douglis and Arun lyengar, IBM T.J.

Watson Research Center
Delta-encoding is a data-compressing
method that represents an object using
its difference relative to a similar object.
In this talk, Fred Douglis showed how to
use delta-encoding to compress a set of
files without specific knowledge of these
files in advance. Unlike previous
approaches, the resemblance between
files is detected dynamically.

Ted Hayelka, Jim Larson, and Bart Massey enjoying the
USENIX Reception

Douglis first explained how to detect
resemblance between objects. The Rabin
fingerprints are used to compute hashes
of overlapping sequences of bytes in a
file. A subset of these fingerprints (i.e.,
features) are used to represent the file.
Files sharing many features would,
hopefully, have similar contents.

After two objects are detected as similar,
delta-encoding is applied to compress
the objects. The authors evaluated a
number of parameters of this approach.

October 2003 ;login:

They found that delta-encoding using
Rabin fingerprints can improve on sim-
ple compression by up to a factor of two,
depending on workload. A small frac-
tion of objects can potentially account
for a large portion of the space and
bandwidth savings. More importantly,
when multiple files match the same
number of features, any file can be used
as a good base for computing delta.

OPPORTUNISTIC USE OF CONTENT
ADDRESSABLE STORAGE FOR DISTRIBUTED
FILE SYSTEMS

Niraj Tolia, Mahadev Satyanarayanan,
Carnegie Mellon University and Intel
Research Pittsburgh; Michael Kozuch,
Brad Karp, Intel Research Pittsburgh;
Thomas Bressoud, Denison University
and Intel Research Pittsburgh; Adrian
Perrig, Carnegie Mellon University

A distributed file system
on WAN is often slow.
Niraj Tolia presented
their work on building a
distributed file system,
called CASPER, which
exploits the readily avail-
able Content Address-
able Storage (CAS) to
cache the objects in a
remote server so that the
read traffic through
WAN can be reduced.

File recipes, which are
the file content hashes
that describe the data
blocks composing the file, are computed
for each file and stored in the server.
When a client wants to read a large file,
it first fetches the recipes of this file from
the server. The client then uses these
recipes as keys to search the file blocks in
CAS. If a block is found, the client
retrieves it from CAS; otherwise, the
client reads it from the server. The client
finally reconstitutes the full file content
using these blocks. The experimental
results of CASPER showed that when
client-server bandwidth is low, CASPER

USENIX ATC ‘03

achieves a significant reduction of run-
time when reading large files from the
server, given that a significant portion of
the file blocks can be found in the CAS.

CHANGE IS CONSTANT
Summarized by Shashi Guruprasad

SYSTEM SUPPORT FOR ONLINE
RECONFIGURATION

Craig A.N. Soules, Gregory R. Ganger,
Carnegie Mellon University; Jonathan
Appavoo, Michael Stumm, and Kevin
Hui, University of Toronto; Robert W.
Wisniewski, Dilma Da Silva, Orran
Krieger, Marc Auslander, Michal
Ostrowski, Bryan Rosenburg, and Jimi
Xenidis, IBM T.J. Watson Research
Center

Craig Soules spoke about their work to
extend and replace active OS compo-
nents to perform an online reconfigura-
tion. OSes are complex pieces of
software that are required to work under
a variety of hardware resources and
usage patterns. To overcome this prob-
lem of one size fits all, OSes are required
to be tuned with the right set of compo-
nents to work well under many demand-
ing conditions. The need to bring down
the system in order to reconfigure it is
costly in terms of availability, human
time, and lost system state. The goal is to
perform such online reconfiguration
with minimal overhead. Implementing
this in a traditional OS is difficult
because of unstructured component
boundaries, and thus it is hard to back-
fit new code. An object-oriented OS
such as IBM’s K42 is a suitable fit and is
used for this purpose.

To support online reconfiguration, com-
ponent boundaries must be clearly
defined, external references to the com-
ponent must be updated, state transfer
mechanisms must be defined between
the components being replaced, and
components should be quiesced during
reconfiguration so as to avoid state cor-
ruption. An object translation (indirec-

CONFERENCE REPORTS

45

46

tion) table approach is used to take care
of external references. Components han-
dle their own state transfers, since the
states of different components vary. An
interposition phase interposes a media-
tor around an existing object that is
being reconfigured. The mediator per-
forms the hot-swapping of the object in
three phases: forward, block, and trans-
fer. It uses a thread-generation mecha-
nism to detect active calls, and
eventually blocks new calls and thus
detects when a quiescent state is
reached. Once new calls are blocked, the
new object is hot-swapped and a state
transfer is initiated. After this process,
the mediator is detached, the old com-
ponent is destroyed, and all new calls
directly occur on the new component.

The performance overhead was around
500 CPU cycles for the interposition
phase and 4000 cycles for the hot-swap-
ping phase on an IBM RS/6000 24
600Mhz Power-PC CPU-based server.
Two benchmarks, Postmark and SDET,
were used for the evaluation. Several
well-known adaptive algorithms per-
formed the online reconfiguration to
demonstrate the utility. Some of the
open issues include coordinated swap-
ping and recovery from broken compo-
nents that replace working ones.

CHECKPOINTS OF GUI-BASED APPLICATIONS
Victor C. Zandy and Barton P. Miller,
University of Wisconsin

Victor Zandy talked about transparently
migrating the GUI (X Windows)
belonging to unmodified applications
between hosts without premeditation, a
system that he calls “guievict.” GUI repli-
cation as well as process migration is
also possible using this system. Some of
the related work such as VNC or xmove
needs premeditation and uses proxies to
achieve GUI migration.

The interesting part of the system is the
use of program-editing techniques to
introduce new code into a running

application to achieve the goal. A tool
with an architecture-independent API
known as Dyninst is used for “hijacking”
an application. It’s easier to hijack a
dynamically linked library than a stati-
cally linked one, which requires intro-
ducing the dynamic linker code into the
application’s process space. In order to
achieve a high level of transparency, the
system tries to automatically determine
the original X-server host so as to redi-
rect communication to the new X-
server. This is achieved by enumerating
the process’s socket descriptors that are
communicating with a peer port that
falls in the well-known X-server port
range. This could fail, however, if tun-
neling is used, and is remedied by trying
to determine the right socket by a brute-
force approach which involves connect-
ing with every port that the application
is already connected to. A user could
also explicitly provide this information.
Another step in the process is to find a
suitable point in the X message stream
s0 as not to corrupt or miss any mes-
sage. This is performed by walking
through the process stack in search of X
library stub functions and, if any exist,
repeating the operation after a timeout.
A limitation of this approach currently
is that it does not work with stripped
statically linked binaries, for which alter-
nate mechanisms are being worked out.
The last step is to retrieve the list of GUI
resources that exist on the source X-
server and re-create them on the target
X-server. X-fonts present a problem
because of lack of enough state on the
application side to determine the font
names. The current solution is to
retrieve all fonts and match the font
geometry with the ones being used. This
hideously slow approach will likely be
solved with client-side fonts in the
future. Currently, this overhead is miti-
gated in subsequent requests by caching
font data.

URL:
http://www.cs.wisc.edu/~zandy/guievict/

CUP: CONTROLLED UPDATE PROPAGATION
IN PEER-TO-PEER NETWORKS

Mema Roussopoulos and Mary Baker,
Stanford University

Mema Roussopoulos presented work
addressing the problem of reducing
search query latency in peer-to-peer
(P2P) systems. Search queries are a per-
formance bottleneck in both structured
(Chord, CAN, Pastry, Tapestry) and
unstructured (Gnutella, Freenet) P2P
systems. Recent work has used caching
of metadata that is returned in response
to these queries at intermediate nodes
along the path and is referred to as Path
Caching with Expiration (PCX). PCX
mechanisms are only a partial solution,
as there is no maintenance of the caches
along the path.

CUP addresses this problem by having
asynchronous propagation of metadata
updates with independent local node
policies rather than global ones. It is
independent of the underlying search
algorithm and uses incentive-based poli-
cies. A node propagates an update only if
it has an incentive to do so. For example,
a node would be willing to receive
updates as long as there are queries for a
particular piece of metadata, since the
node would have to propagate the query
further if it did not maintain the cache
locally. Two policies are defined, proba-
bilistic and history-based. Separate logi-
cal query and update channels are
maintained and queries are coalesced.
The number of overlay round-trip hops
for queries to come back with answers
starting from the originator is used as a
metric for the cost of a query. Miss cost
is defined as the total number of hops
incurred by all misses. As long as the dif-
ference in miss costs between PCX and
CUP is larger than the overhead of
update propagation, CUP recovers its
cost.

The Stanford Narses P2P flow-simulator
is used to evaluate the algorithm with a
variety of cut-off policies, network scales

Vol. 28, No. 5 jlogin:

and topologies, outgoing update capac-
ity, and query arrival distributions.
Based on their model, CUP recovers its
cost by a factor of 2 to 300 under a vari-
ety of workloads described in detail in
the paper. The various cut-off policies
have comparable performance when the
query rates are high, while second-
chance history-based policy is better
with low query rates.

SECURITY MECHANISMS
Summarized by Rik Farrow

THE DEesSIGN OF THE OPENBSD
CRYPTOGRAPHIC FRAMEWORK

Angelos D. Keromytis, Columbia
University; Jason L. Wright and Theo de
Raadt, OpenBSD Project

Angelos Keromytis described the ratio-
nale and mechanisms behind the API
created within OpenBSD, and adopted
by FreeBSD and NetBSD, for integrating
hardware cryptographic devices. The
basic concept was to provide an abstrac-
tion layer so that programs and kernel
routines could ignore the differences
between devices, or even the lack of a
device. Previous implementations could
stall the CPU waiting for a device to
respond.

Within the kernel, three functions han-
dle creating, dispatching, and freeing a
crypto_session. The dispatch call
includes a callback parameter, so that
the crypto device can progress asynchro-
nously. Out in user-land, /dev/crypto
provides a uniform entry point, con-
trolled via sysctl() calls. The current ver-
sion of OpenBSD Cryptographic
Framework (OCF) is synchronous at the
user level.

Another big goal of OCF beyond trans-
parency is performance. The new API
does add overhead, but in systems with
hardware cryptographic devices it
improves performance because the
hardware devices can operate in parallel
with the CPU. Future work includes

October 2003 ;login:

smarter load balancing, algorithm
chaining within the kernel thread, using
the second processor as a cryptographic
device in dual-processor systems, and
minimizing copying overhead.

NCRYPTFS: A SECURE AND CONVENIENT
CRYPTOGRAPHIC FILE SYSTEM

Charles P. Wright, Michael C. Martino,
and Erez Zadok, Stony Brook University
Charles Wright presented this paper by
explaining motivation (providing pro-
tection to data) and describing prior
work. He mentioned that Matt Blaze’s
CFS suffered from network and data
copy overhead, and I watched Blaze, just
a few rows ahead of me, sit up a bit
straighter at that statement. Wright also
mentioned TCFS, Microsoft’s EFS
(which does not work over a network),
Cryptfs, a proof of concept by the same
authors, BestCrypt (commercial), and
StegFS.

Design goals include strong encryption;
convenience for users, system adminis-
trators, and programmers; and perform-
ance. NCryptfs has three sets of players:
system administrators, who set up
NCryptfs through mounts but do not
hold keys; owners, who hold encryption
keys; and others, called readers and writ-
ers, to whom access is delegated by own-
ers. All keys are stored using a long-term
key, and each owner uses a passphrase
(currently) to authenticate and access
his or her own keys.

Borrowing from Blaze’s CFS, NCryptfs
also uses an attach to set up encrypted
directories for owners. An attach is like a
lightweight user-mode mount that,
unlike a regular mount, cannot hide files
or directories under a mount point.
Only data gets encrypted, not the meta-
data, so any underlying store can be
used (local disk, NFS, or CIFS). In an
interesting addition to this scheme,
owners may delegate their access to indi-
viduals and to arbitrary groups, simply
by adding authorizations for several
individuals. And this delegation can

USENIX ATC ‘03

even override permissions found in the
underlying file system (when mounted
with VFS bypass permission).

NCryptfs outperformed CFS, TCFS, but
not BestCrypt in the Am-utils bench-
mark. In an I/O-intensive benchmark,
NCryptfs was fastest. Future work
includes better key management, lock-
box mode, centralized key servers, and
threshold secret serving.

Matt Blaze was on his feet even before
Wright finished. Blaze asked if Wright
was sure he didn’t have the CFS and
TCFS performance reversed? Wright
said that they fixed some problems with
TCEFS that had a performance impact.
All three crypto file systems were using
Blowfish, but had different overhead
outside of encryption.

Marc Stavely asked, Why not use under-
lying file system checks? Wright said that
there are no ACLs on lower-level file sys-
tems, and that their ACLs provide the
key needed to read/write files.

A BINARY REWRITING DEFENSE AGAINST
STACK-BASED BUFFER OVERFLOW ATTACKS
Manish Prasad and Tzi-cker Chiueh,
Stony Brook University

Manish Prasad explained that the goal
was to instrument a program to defend
against stack-based buffer overflow
attacks without having access to the
source. There are tools available, such as
Etch, that can perform binary code
translations, but the authors are not
aware of any that perform return
address defense (RAD) based on binary
rewriting.

The authors use both linear instruction
disassembly and control flow analysis.
Because Intel processors use variable-
length instructions, and 248 out of 256
bytes are legitimate starting points for
instructions, linear analysis has real
problems distinguishing code from data.
The authors then follow with a second
pass, starting with the code’s entry point

CONFERENCE REPORTS

47

48

(as found in the program header), and
following all function calls and
branches. Even here there are problems,
as GUI-based applications tend to use
callbacks instead of direct function calls.

RAD replaces the prologue and epilogue
of functions with its own instructions,
storing the return address during the
call and checking it when the function
returns. They instrumented several
Microsoft applications, and estimate
that they missed less than 1% of func-
tions. When used against open source
Windows applications, such as gzip and
Waet, they obtained similar results, but
not with Apache, which includes func-
tions without any absolute addresses
(called from tables).

Overhead for an instrumented binary
varied 1-4%, and a test of an exploit
against an RAD-protected version of
winhlp32.exe worked. Prahad ended his
last slide with a note: I'm looking for
work! One person asked if safe lan-
guages would help. Prahad answered
that that is the best solution. A person
from CERT asked about how RAD han-
dles detected changes. Prahad said that
the program exits.

FAST SERVERS
Summarized by Manish Prasad

KERNEL SUPPORT FOR FASTER WEB PROXIES
Marcel-Catalin Rosu and Daniela Rosu,
IBM T.J. Watson Research Center

The paper addresses the challenges in
Web proxy design that arise out of a
large number of TCP connections. Han-
dling a large number of network con-
nections causes the proxy server to incur
huge overheads due to context switches
and user/kernel data copies. The paper
presents two mechanisms to ameliorate
this overhead, namely, user-level con-
nection tracking and data-stream splic-
ing.

User-level connection tracking allows an
application to coordinate its non-block-

ing I/O operations with significantly
fewer system calls. It is implemented by
exposing certain elements of a connec-
tion’s state to user-space over a piece of
memory shared between kernel and
user-land. The amount of shared mem-
ory required is just a small fraction of a
typical Web server main memory (1MB,
for application with 65K concurrent
connections, 16 bytes per connection).
The authors implemented a user-level
select() wrapper called uselect(), which
reads from the shared memory area
whenever possible, and calls select()
only when the required information is
not available in user-space.

The other mechanism proposed is data-
stream splicing, which allows forwarding
of data between server and client
streams from within the kernel, thus
reducing a lot of data-copy and context-
switching overhead. The two connec-
tions (to client and to server) are spliced
at the socket level. The novel features in
this mechanism are support for request
pipelining and persistent connections,
content caching decoupled from client
aborts, and efficient splicing even for
short transfers.

The proposed mechanisms were evalu-
ated on a testbed comprising commod-
ity hardware. Experiments were done
using the Squid proxy server and bench-
marked using PolyGraph. The speaker
presented CPU utilization results for dif-
ferent request rates for a benchmark
biased toward small files, which showed
best overhead reduction with a combi-
nation of uselect and splicing. Splicing
achieved very good results for large
objects. Also, the proxy hit response
times showed substantial reductions
using a combination of uselect and
splice (10-30%). However, the miss
response times reduced only by about
0.5 to 1.3% using the same combination.

MULTIPROCESSOR SUPPORT FOR
EVENT-DRIVEN PROGRAMS

Nickolai Zeldovich, Stanford University;
Alexander Yip, Frank Dabek, Frans
Kaashoek, and Robert T. Morris, MIT;
David Mazieres, New York University
The contribution of this paper is liba-
sync-smp, a library that allows event-
driven applications to take advantage of
multiprocessors by running code for
event handlers in parallel. Typically,
event-driven programs are structured as
a collection of callback functions which
a main loop calls as I/O events occur.
However, to execute callbacks concur-
rently on a multiprocessor requires run-
ning multiple copies of the application
or fine-grained synchronization.

This paper maps this problem to graph-
coloring by allowing the programmer to
choose a color for each callback, so that
callbacks with the same color are never
executed concurrently. Thus, event-
driven servers can get more juice out of
a multiprocessor machine with minor
modifications in code. As proof of con-
cept, they modified the SFS file server
(about 90 lines of changed code out of a
total of about 12,000), and observed that
the modified version on a four-CPU
server ran 2.5 times as fast as an unmod-
ified SFS server running on one CPU.
Further improvements were observed in
task-processing rates with thread-affin-
ity optimizations.

BIG DATA
Summarized by Manish Prasad

SENECA: REMOTE MIRRORING DONE WRITE
Minwen Ji, Alistair Veitch, and John
Wilkes, Hewlett-Packard Labs

Minwen Ji presented Seneca, a prototype
remote-mirroring storage system. A pri-
mary contribution of the paper is a
comprehensive taxonomy of design
choices for remote mirroring over vari-
ous axes: fault-coverage (component-
failure tolerance), degree of synchron-
ization (divergence), update propagation

Vol. 28, No. 5 jlogin:

and acknowledgment, and location of
data duplication. They also classify
related work in the area, based on their
taxonomy.

The second contribution of the paper is
the design of a robust asynchronous
remote-mirroring protocol that sup-
ports write coalescing, asynchronous
propagation, and in-order delivery and
that provides resilience to many kinds
and sequences of failures, low network
bandwidth demands, and low (and tun-
able) data loss. The principal goal of
Seneca’s design is to make the data avail-
able and keep each copy consistent
despite disk array failures, Seneca box
failures, network failures, and both tem-
porary and permanent site outages. Its
levels of fallback divergence modes are
time-bounded, log-space-bounded, and
unbounded. Updates are propagated
either atomically in order, asynchronous
batched, or out of order. In Seneca, the
data duplication is done in the duplexed
SAN appliance.

Seneca’s correctness is verified using a
simulator which “approximates” the I/O
automaton model. One of the key goals
of performance evaluation experiments
is to answer the question as to how
much network bandwidth can be saved
by delaying I/Os (asynchrony) and coa-
lescing writes. Results show that sub-
stantial reductions in WAN traffic
(5-40%) were observed for a batch size
of 30 seconds.

EvicTION-BASED CACHE PLACEMENT FOR
STORAGE CACHES

Zhifeng Chen and Yuanyuan Zhou, Uni-
versity of lllinois at Urbana-Champaign;
Kai Li, Princeton University

The work addresses the problem of
cache placement (not replacement) in
the context of buffer cache management
for lower-level caches (resident on the
back-end storage server) in a multi-level
storage hierarchy (client-file server-disk
array). Cache placement typically fol-

October 2003 ;login:

lows an access-based policy, which
places a block into a cache when this
block is accessed, so that the block that
resides in the upper-level cache is also
contained in the lower-level cache.
While this might be essential when
upper-level caches are significantly
smaller than the lower-level caches, it’s
not quite so important in a storage
cache hierarchy where storage-server
and file-server (storage client) caches are
comparable in size. An eviction-based
strategy places a block in the cache only
when it is evicted from an upper level.

The paper uses idle distance as a metric
for evaluating the effectiveness of a
cache-placement policy. Idle distance is
the period of time the block resides in
the cache without being accessed. A bet-
ter cache-placement policy will have
lower average idle distances. The paper
presents real-world storage-access traces,
which reveal that eviction-based strate-
gies show lower average idle distances
than access-based policies. The speaker
presented simulation results comparing
the two placement policies as applied in
combination with various cache-
replacement strategies (LRU, frequency
based, 2Q, MQ), which showed that the
eviction-based strategy always per-
formed better.

The work proposes a mechanism to
transparently obtain eviction informa-
tion from client buffer caches, which is
nontrivial because a client buffer cache
always silently evicts a clean page and
only writes out dirty pages to the back-
end storage system. The main idea is to
maintain a mapping between buffer
addresses and the disk block that it
houses, so that by intercepting read/
write I/O operations, any changes
detected in the mapping can be attrib-
uted to the block being evicted from the
cache. Evaluation on real systems
showed a 22% improvement in cache hit
ratios and a 20% improvement in the
transaction rate.

FAsT, ScALABLE Disk IMAGING WITH FRISBEE
Mike Hibler, Leigh Stoller, Jay Lepreau,
Robert Ricci, and Chad Barb, University
of Utah

Robert Ricci talked about Frisbee, a pro-
totype disk-imaging system from Utah.
The paper motivates the use of raw disk
imaging over differential update which
operates above the file system. Advan-
tages offered by disk imaging include
generality across file systems, robustness
to file-system corruption, and speed.
Disk imaging, however, is low on band-
width efficiency. Frisbee (derived from
“flying disks”) incorporates file-system-
aware data compression, data segmenta-
tion, and a custom application-level
reliable multicast protocol.

The talk proceeded with a description of
the Emulab environment, where the
prototype was built and tested, which
comprises a cluster of 168 commodity
PCs. Being a time-shared setup (in the
true sense of the term), every user has
root access to all machines in the cluster.
This necessitates returning the cluster
nodes to a known state with change of
users. Thus a system like Frisbee turns
out to be a compelling requirement in
an environment like Emulab.

Frisbee was evaluated for scalability with
an increasing number of cluster nodes
(from 1 to 80). Experiments were also
conducted to evaluate scalability in the
presence of various percentages of
packet loss. Frisbee has been in produc-
tion use for over 18 months. Speed was
reported as the single most attractive
feature of Frisbee, being able to write
50GB of data to 80 disks in 34 seconds.
On this note Ricci quoted colleague
Mike Hibler: “Earlier I could go for
lunch while the disk reloads, but now I
can’t even make it to the bathroom!”

USENIX ATC ‘03

CONFERENCE REPORTS

49

50

FREENIX TRACK
NETWORK SERVICES

IMPLEMENTATION OF A MODERN WEB
SEARCH ENGINE CLUSTER

Maxim Lifantsev and Tzi-cker Chiueh,
Stony Brook University

Summarized by William Acosta

The authors presented the design and
analysis of Yuntis, a prototype for a scal-
able and extensible Web search engine.
The design of Yuntis attempts to provide
performance by using an event-driven
model with one main thread of execu-
tion and “select”-like functionality to
avoid the context-switching overhead of
a multi-threaded design. Similarly, Yun-
tis employs custom disk data storage and
intra-cluster communication mecha-
nisms.

The overall process of creating the
search database involves crawling the
network to retrieve documents, which
are compressed and stored upon suc-
cessful retrieval. A page quality score is
iteratively computed, keywords are
extracted, and an index is created of the
extracted phrases. The prototype imple-
mentation consists of 12 cluster nodes
and a data set of 4 million crawled
pages, with statistics and information
stored in 121 separate data tables. The
content is partitioned over the entire
cluster. Future work includes workload
balancing of the cluster, scalability
improvements, and fault-tolerance
mechanisms.

URL: http://www.ecsl.cs.sunysb.edu/
yuntis/

MAIL
Summarized by Raya Budrevich

ASK: AcTive SPAM KILLER

Marco Paganini

Currently, there are three main preven-
tion approaches to the problem of
unwanted commercial email: real-time
black hole lists, keyword identification,

and distributed anti-spam networks.
Each of these methods has many draw-
backs, however, including high percent-
ages of false negatives. ASK proposes a
new solution to the problem by using a
challenge-authentication model. It
applies authentication to the email with-
out interpreting the content and focuses
on validating the senders rather than the
message; this approach is highly effec-
tive, since spammers use fake addresses
to hide their identity. The system con-
sists of three lists: white, ignore, and
black. When a message is received into a
waiting queue, a confirmation is sent to
the sender, and once a confirmation is
received the message is moved into the
in-box and the email address of the
sender is added to the white list; there-
after, a confirmation from that sender
will not be required.

There are a few specific issues that the
software deals with. In order to catch
spammers who impersonate the owner,
a “mailkey” can be added to one’s own
mail. To avoid mail loops, the software
keeps the last few emails (the number is
variable) in a FIFO queue and checks
whether a message occurs more than
once. It is also possible to send com-
mands to configure the queue remotely.
A limitation of the software is dealing
with bounces: The software cannot dis-
tinguish between real and spam bounces
without accessing the MTA. Another
issue that needs to be addressed is that
simple challenges can be defeated with a
smart auto-responder.

LEARNING SPAM: SIMPLE TECHNIQUES FOR
FREELY AVAILABLE SOFTWARE

Bart Massey, Raya Budrevich, Scott
Long, Mick Thomure, Portland State
University

Today there are many approaches to the
problem of spam, including black/white
lists, laws, and automated filtering,
which includes feature recognition and
classification; these methods can all
work together. Feature detection

involves extracting information from the
header and body of the message. For
example, SpamAssassin uses hand-coded
features with linear weights combined
with threshold values. More sophisti-
cated techniques include information
gain and clustering. The simplest format
of features is binary, works on all algo-
rithms, and is robust. There are a wide
variety of machine-learning techniques.
The authors chose techniques that were
simple, popular, and educational. The
general description of machine learning
involves gathering a large number of
training instances, measuring statistical
properties with respect to a feature set,
classifying target instances, and, finally,
measuring the accuracy of the classifica-
tion.

Bart Massey described five different
techniques for mail classification, focus-
ing on only a few. The most simple is the
minimal Hamming Distance Voting.
Here a message is compared against the
messages in the corpus to determine its
classification; the classification time for
this method is huge and it is necessary
to have a large variety in the data. The
simplest neural net is a single neuron
call perceptron, but a more complex
neural net works even better. Basically,
features are given as input and the net-
work’s output provides the classification.
There is a need for a representative data
set. Tests were run on different corpora,
personal messages, and synthetic data.
There were enough different characteris-
tics to make a difference. The complex
neural network seemed to have the best
results, with <1% false positives and
1-3% false negatives. Even humans can-
not achieve 0% misclassification rates.
Machine learning is a key aspect of the
filtering.

Vol. 28, No. 5 jlogin:

NETWORK PROTOCOLS
Summarized by Benjamin A. Schmit

Network Programming for
the Rest of Us

Glyph Lefkowitz, Twisted Matrix Labs;
Itamar Shtull-Trauring, Zoteca

Itamar Shtull-Trauring started the first
talk by comparing network program-
ming to driving a car: An automatic
transmission frees the driver from hav-
ing to make low-level choices, at the
possible cost of some performance. Sim-
ilarly, programmers who want to do
networking without caring for peak per-
formance should use a networking
toolkit.

The main design goal for the Twisted
networking framework was providing a
cross-platform solution that still allows
access to platform-specific features. It is
written in Python, a high-level language
that helps beginners avoid common pro-
gramming errors by providing, for
example, automatic boundary checking.
The framework is built around an event
loop and allows programmers to easily
add even complex services such as a Web
server to their programs.

In order to show how the Twisted
framework can help a programmer
speed up development, Conch, an SSH
application, was implemented. The
implementation contains 5000 lines of
code written by a single person, as com-
pared to 64,000 lines by 84 people in the
case of OpenSSH. The framework is
available for download from http://www.
twistedmatrix.com/ and was released
under the LGPL.

IN-PLACE RsYNC: FILE SYNCHRONIZATION
FOR MOBILE AND WIRELESS DEVICES
David Rasch and Randal Burns, Johns
Hopkins University

David Rasch identified the space require-
ment of rsync as a major problem for
mobile and wireless devices with little
storage capacity. Without this restric-

October 2003 ;login:

tion, rsync would be a good tool for syn-
chronization with mobile devices. With
the approach presented, the update of a
file can be done in place, without the
creation of a temporary work copy.

A problem that needed to be solved,
however, was that data necessary for
later rsync commands should not be
overwritten by earlier ones (as he
explained, rsync does its work by trying
to find blocks from the old file some-
where in the new file). The solution here
is the creation of a dependency graph;
though it might contain cycles, these are
broken up by retransmitting data over-
written by earlier commands, for which
two algorithms are implemented.

The benchmarks, which update files typ-
ically used on handheld computers,
show that there is very little difference in
performance as compared to the original
rsync implementation. The new algo-
rithm, however, needs more main mem-
ory for calculating the dependency
graph. This problem can be solved by
introducing windowing, which is not yet
implemented.

NFS TRicks AND BENCHMARKING TRAPS
Daniel Ellard and Margo Seltzer,
Harvard University

The initial research goal of this paper
was to improve the performance of an
NES server by optimizing its read-ahead
caching strategy. Daniel Ellard pointed
out that 5-10% of the NFS requests
arrive at the server in the wrong order,
which could hinder it from doing read-
ahead properly.

The benchmarks designed to measure
performance improvements showed an
unusually large amount of variance.
This was caused mainly by the fact that
modern hard disks have different data
transmission rates at different physical
areas. New benchmarks that took this
into account still showed problems, this
time located within the FreeBSD operat-

USENIX ATC ‘03

ing system, where a hashtable had been
designed too small for today’s require-
ments.

After these problems were solved, the
authors improved the NFS server per-
formance by introducing cursors, which
made the server able to recognize several
concurrent file reads. On a heavily
loaded NFS server, these optimizations
speed up file requests by a factor of up
to 2.4.

BIOS AND VIRTUAL DEVICES
Summarized by Shashi Guruprasad

FLEXIBILITY IN ROM: A STACKABLE OPEN
SOuRrce BIOS

Adam Agnew, Adam Sulmicki, William
Arbaugh, University of Maryland at
College Park; Ronald Minnich, Los
Alamos National Labs

This won the Best Student Paper award.
Adam Agnew presented the first open
source PC BIOS that could boot any
modern OS. They leveraged earlier work
in Linux BIOS, which could only boot
Linux. Unlike Linux, some of the OSes
rely on services such as video, hard
drive, memory sizing, and a PCI table
provided by legacy BIOSes. Therefore
Linux BIOS could not directly boot
these OSes. Legacy BIOSes do a poor job
of setting up a PC, requiring modern
OSes such as Linux to redo some of the
tasks, increasing bootstrap latency. The
advantages of using Linux BIOS are
numerous: (1) dramatic increase in boot
speed — for example, they have achieved
arecord of a three-second boot — the
main bottleneck is the time required to
bring the IDE hard drive spin to normal
operational speed; (2) small size — an
image size of 36KB uncompressed offers
scope for more powerful tools to be part
of BIOS; (3) open source — it’s easily
debuggable and royalty free and saves
motherboard manufacturers $3-$5 per
PC in royalties; (4) remote administra-
tion is possible via console support.

CONFERENCE REPORTS

51

52

The proposed solution employs a com-
bination of Linux BIOS and Bochs x86
emulator, using a custom wrapper func-
tionality known as Adhesive Loader
(ADLO), whixh doesn’t require the
Bochs emulator to be modified. The
Bochs emulator has excellent PC BIOS
interrupt support, and using an existing
mechanism avoided maintaining more
software. Together, these provide the
missing legacy BIOS support except for
the Video BIOS, which is extracted from
the Video ROM and packaged along
with the above to complete the BIOS.
One of the advantages of such a solution
is that different components can be
stacked, leading to different configura-
tions, of bootloaders, for example, or
more sophisticated tools in the BIOS,
such as console support.

Possible future work was discussed,
which included TCPA, console over
other devices such as USB, authenticated
booting, virtual machine/virtual
machine monitor support in BIOS,
transparent encrypted storage, and
transparent backup and intrusion detec-
tion that cannot be turned off. There
was also a demonstration of a quick-
booting Windows 2000 OS. During the
Q&A, someone asked about menu-based
configuration support. The answer was
that currently no configuration support
is present and it is necessary to re-flash.

URLs:
http://www.missl.cs.umd.edu/
http://Linuxbios.org/
http://bochs.sourceforge.net/

CONSOLE OVER ETHERNET

Mike Kistler, Eric van Hensbergen, and
Freeman Rawson, IBM Austin Research
Laboratory

Eric van Hensbergen talked about con-
sole support over an Ethernet device.
Traditional forms of console support are
through the serial devices that are aggre-
gated through KVM switches in clusters.
The main problem with serial console is

in supporting denser clusters that have
more machines per rack where it is nec-
essary to support only the most essential
of the I/O interfaces for reducing both
space requirements and the heat dissipa-
tion of each machine. An example of
such a cluster that researchers in the
IBM Austin lab built is known as a
superdense server with 200-300 x86
servers in a 42U rack. These servers
already support an Ethernet interface
and have no room for serial ports on the
board.

Two different solutions for console over
Ethernet were developed. The first solu-
tion, which is a TCP/IP-based Linux
console named “etherconsole,” uses a
kernel interface to the socket library to
send and receive console messages
instead of performing low-level device
operations on the serial device. A major
downside of this approach is that con-
sole support is possible only after
TCP/IP initialization. Problems that
occur before this phase will not be
reported on the console and, therefore,
debugging such problems is difficult. A
second solution involves the use of link
layer networking, that is, the sending of
console messages using raw Ethernet
frames with a special Ethernet type and
a broadcast Ethernet address. At the
receiving end, a program captures these
frames and provides the console output.
A combined approach was then used for
console support: the link-layer approach
until DHCP is performed, and the
TCP/IP approach afterwards.

Security issues were discussed. The pos-
sibility of break-ins and denial-of-ser-
vice is increased when the console is
available over the network. The sug-
gested solutions included a separate pri-
vate network for console and switch
VLAN support. The latter does not
address denial-of-service. This was inte-
grated with Linux BIOS into custom
firmware at IBM and allowed full system
administration and debugging. Some
future areas of research in this area were

better BIOS integration, serial port emu-
lation, and frame-buffer emulation for
OSes that do not support character-
based consoles.

IMPLEMENTING CLONABLE NETWORK STACKS
IN THE FREEBSD KERNEL

Marko Zec, University of Zagreb

Virtual hosting, network simulation, and
advanced VPN provisioning require
support for multiple protocol stacks on
the same physical host. This paper
focuses on the design, implementation,
and performance of an experimental
clonable network stack in the FreeBSD
kernel. By separate stacks, the author
means independent states — routing
tables, interfaces, and firewall rules —
rather than independent protocol code.
In other words, this work does not sup-
port the creation of a separate protocol
stack that is not already supported by
the OS. Virtualizing a network stack for
the above applications is a more light-
weight alternative to a traditional virtual
machine.

The key design goals were: API/ABI
(Application Binary Interface) compati-
bility and low or negligible performance
overhead. A naive approach to imple-
ment clonable stacks is to add an array
dimension to the kernel networking data
structures. Such an approach, however,
increases the amount of kernel code
modification. Instead, the approach used
was to group the kernel data structures
that maintain the state of the network
stack together and provide access
through an additional level of indirec-
tion. This grouping is termed a “virtual
image” and has an instance of network
stack associated with it. Virtual images
are organized in a hierarchy similar to
the UNIX process hierarchy that helps in
binding unmodified programs to differ-
ent network stacks.

There was also a discussion on the
implementation of CPU load and usage
accounting/limiting per virtual image,

Vol. 28, No. 5 jlogin:

which helps in resource management
and avoids receive livelock. The per-
formance degradation is hardly notice-
able, around 3.5% lower than an
unmodified kernel where the test system
had one active network stack among 128
stack instances. In some tests, the per-
formance improved slightly (5.7%) due
to better locality of kernel network stack
variables which led to higher CPU cache
hits.

URL: http://www.tel.fer.hr/zec/BSD/
vimage/index.html

FILE SYSTEMS
Summarized by Manish Prasad

STARFISH: HIGHLY AVAILABLE BLOCK
STORAGE

Eran Gabber, Jeff Fellin, Michael Flaster,
Fengrui Gu, Bruce Hillyer, Wee Teck
Ng, Banu Ozden, and Elizabeth Shriver,
Lucent Technologies, Bell Labs

Michael Flaster presented this FREENIX
award paper. The principal contribution
was the dissemination of a replicated
block storage system to the open source
community, built from commodity
servers running FreeBSD, connected by
standard high-speed IP networking gear.
StarFish is not a distributed file system.
It assumes a single-owner scenario and
thus doesn’t deal with issues resulting
from multiple writers.

StarFish architecture comprises a com-
modity server with an appropriate SCSI
or FC controller, called host element
(HE), which helps the client host access
data from a set of storage elements (SEs)
that talk to the HE using TCP/IP. An SE
forms a single unit of replication. The
SEs could be connected to the HE via
either a dedicated link or the Internet.
Writes to StarFish are considered to be
complete on receiving ACKs from all the
SEs that form the required quorum.

The presenter projected steadfast relia-
bility as the unique selling point of
StarFish and presented in detail how it

October 2003 ;login:

behaves when things go wrong, like
restarting an out-of-date SE or the fail-
ure of an HE (manual failover), and also
how the HE ensures that a quorum of
SEs are in sync when one SE happens to
be slower than the other.

Finally, the author presented some inter-
esting experimental results for read and
write availability against various quo-
rum sizes and arrived at a quorum size
of two and a set of three replicating SEs
as a recommended configuration to
achieve good read and write availability.
He concluded that SEs not in quorum
could be connected over the Internet,
thus eliminating the need for a dedi-
cated high-bandwidth low-latency link.

SECURE AND FLEXIBLE GLOBAL FILE SHARING
Stefan Miltchev, Jonathan M. Smith,
Sotiris loannidis, University of Pennsyl-
vania; Vassilis Prevelakis, Drexel Uni-
versity; John loannidis, AT&T Labs —
Research; Angelos D. Keromytis,
Columbia University

Stefan Miltchev presented this work on
authentication in network file systems.
The paper presents Distributed Creden-
tial FileSystem (DisCFS), which uses
trust management credentials to
“directly authorize actions rather than
divide the authorization task into
authentication and access control” and
“to identify files being stored; users; and
conditions under which their file access
is allowed.” DisCFS is intended to
address the weaknesses of existing file
access control mechanisms, which are
either too coarse-grained (e.g., Web,
FTP) or are unsuitable for use across
administrative domains (e.g., NES).

DisCFS uses a direct binding between a
public key and a set of authorizations. A
user can delegate trust to another, which
results in creation of a chain of trust,
similar to systems like SPKI. Only a sub-
set of privileges may be delegated to
another user, making privilege escalation
impossible. DisCFS can be implemented

USENIX ATC ‘03

over any existing mechanism of data
exchange (NFS, HTTP, FTP) and can
leverage existing IPSec infrastructure for
secure client-file server communication.

The experimental platform comprised a
set of machines with modest hardware
running OpenBSD. Measurements using
Bonnie micro-benchmark showed that
write throughput was comparable to
that of NFSv2, although read through-
put was observed to be lower than NFS.
The Postmark benchmark, representing
a heavy workload of small files, was used
for versions of DisCFS without any
security and with and without credential
caching.

The talk concluded with a discussion of
future work, the most noteworthy con-
cerning implementation of access con-
trol beyond permission bits and
avoiding the use of inode numbers as
file handles because of security holes
created by inode number reuse.

THE CRYPTOGRAPHIC Disk DRIVER

Roland C. Dowdeswell, NetBSD Project;
John loannidis, AT&T Labs — Research
Dowdeswell presented the Crypto-
Graphic Disk Driver (CGD), “a pseudo-
device driver that sits below the buffer
cache and provides an encrypted view of
an underlying raw partition.” CGD tar-
gets the problems arising from laptops
and other portables “growing legs” and
vanishing from public places! Here,
“protection of data from other concur-
rent users is not essential, but protection
against loss or theft is important.”

Due to its positioning in the I/O stack
(just above the disk driver), it is com-
pletely transparent to file systems. Some
of the goals of the work are to maintain
good performance while providing ade-
quate security, ease of use, and seamless
integration into the OS release. The in-
kernel driver supports an ioctl interface
to attach CGD to an underlying disk
device or partition and configure the

CONFERENCE REPORTS

53

54

required parameters such as encryption
algorithm, key length, IV method, etc.
They define a modular framework for
adding cryptographic algorithms.

The driver was evaluated on DEC Per-
sonal Workstation 500a, Pentium
4-based PC, and an IBM Thinkpad
600E. Results were presented for read-
and-write throughput for various block
sizes, comparing various encryption
algorithms — Blowfish, AES, and 3DES —
against unencrypted I/O. As expected,
encrypted I/O throughput edges closer
to raw I/O with the increase in block
size. The talk concluded with a discus-
sion of future work, which included
addressing the problem of key revoca-
tion and leveraging hardware crypto-
graphic accelerators to achieve better
performance.

X WINDOW SYSTEM
Summarized by James Nugent

XSTROKE: FULL-SCREEN GESTURE
RECOGNITION FOR X

Carl D. Worth, University of Southern
California

The goal of Xstroke is to provide full-
screen gesture recognition for X Win-
dows. A gesture is recognized and is
passed to the system as a keystroke or a
series of keystrokes. The focus is on
handheld devices, so it is important that
the entire screen can be used for recog-
nition, unlike some systems that have a
special “gesture area.” The size and loca-
tion of the gesture are also important.
Finally, the gesture “draws” on the screen
with a transparent color, thus allowing
the gesture to be seen as it is made, but
not to obscure data beneath.

One difficulty is toggling gesture recog-
nition on and off. Several approaches
were discussed, but none was ideal. The
Recognizer is a 3x3 grid based on the
bounding box of the stroke. A grid has
the problem that similar strokes may
look different near corners; thus regular

expressions were used to recognize the
strings of grid numbers that defined a
stroke. An additional problem is that if
the device is held tilted, strokes will also
be tilted. The solution to this is that the
common horizontal strokes (backspace
and space) were used to reorient the grid
when one was recognized. One nice fea-
ture is that tilting the device enough to
cause incorrect recognition produces
garbage characters, alerting the user to
correct the problem with backspace.
More information and software are
available at http://www.xstroke.org.

MATcHBOX: WINDOW MANAGEMENT NOT
FOR THE DESKkTOP

Matthew Allum, OpenedHand Ltd.

Matchbox is an X Window manager
designed for small devices that have low
memory, no keyboard, and limited CPU
power. Matchbox is designed to be
small, fast, flexible, and configurable. It
has some restrictions specific to its envi-
ronment: Only a single full-screen app is
supported at a time, and applications
cannot resize windows or make windows
larger than the screen. A toolbar/virtual
keyboard is always visible.

Matchbox’s focus is on providing win-
dow management that is also compliant
with standards, most notably the ICCCM
standards. Matchbox is themeable, has
runtime and compile-time configura-
tion options, and is extensible via plug-
ins. It also has a PDA-style app launcher.

X WINDOW SYSTEM NETWORK
PERFORMANCE

Keith Packard and James Gettys,
Cambridge Research Laboratory, HP
Labs

Several X clients were set up to talk to an
X server attached to a passive packet-
monitoring tool and then to low-band-
width X (LBX) and SSH proxies with a
NISTNet router. (NISTNet is capable of
producing a variety of delay/bandwidth-
limited network conditions.) The xplot
performance visualization tool was used

to understand the raw packet data. The
usefulness of this tool is difficult to
overemphasize; it allows the network
trace to be examined in detail and prob-
lem areas to be picked out easily.

The LBX proxy uses application-specific
compression to reduce the size of
requests. In general, LBX was found to
be of very little utility in a modern set-
ting: some of the requests it can com-
press are obsolete, plus bandwidth for X
requests is now a problem only for large
image files. SSH’s gzip compression, in
fact, was found to be superior in almost
all cases.

In general, latency dominates band-
width, and most of the latency comes
from synchronous requests. Many of
these can be eliminated by batching
them, as with internAtom requests
(already done by some toolkits). Finally,
restructuring applications can reduce
the effects of latency. Image files were
found to be the dominant reason for
bandwidth usage. It was suggested that
using original image formats, which are
usually compressed, would be helpful.

Client-side fonts were also studied; they
had the effect of significantly reducing
the round trips and, hence, application
startup time. Bandwidth usage is about
the same, although compressing the
glyphs for transport would reduce this.

EXPERIENCES
Summarized by Raya Budrevich

BuiLDING A WIRELESS COMMUNITY NET-
WORK IN THE NETHERLANDS

Rudi van Drunen, Dirk-Willem van
Gulik, Jasper Koolhaas, Huub
Schuurmans, and Marten Vijn, Wireless
Leiden Foundation

The purpose is to provide free wireless
access in historical cities in the Nether-
lands. The technology uses 802.11b with
three available concurrent channels
without interference. The network is on
ISM band, shared with ham radio,

Vol. 28, No. 5 jlogin:

microwave, and vehicle ID. It is an IPv4
network with a private address space,
routing by OSPF, with ISC-DHCP and
ISC-DNS; the network is transparent to
the user and provides no user-level secu-
rity.

Currently, there is a 20km? outdoor cov-
erage for the city of Leiden, 20+ nodes,
300 private users, and three proxies to
connect to the Internet; many local
schools and libraries are also connected.
There is a need to find free locations for
the antennas, since there is no funding
to pay rental fees. At every site the
strength of the other nodes and the
interference are measured. Network sim-
ulation software is used to determine the
construction of all sites.

A node consists of multiple antennas
with donated PCs or embedded systems.
The systems run FreeBSD because it is
stable, single distribution, and tagged
release. Industry-standard wireless cards
are used.

The wireless network is available freely
to all inhabitants of Leiden. The Wireless
Leiden Foundation is a nonprofit organ-
ization that tries to create strong con-
nections with schools and universities.
The network has many uses, such as P2P,
gaming, and VPN. On any given day,
about 100 users are connected.

Community acceptance, project man-
agement, and interference were the main
problems facing the project.

OPENCM: EARLY EXPERIENCES AND LESSONS
LEARNED

Jonathan S. Shapiro, John Vanderburgh,
and Jack Lloyd, Johns Hopkins
University

OpenCM is a new configuration-man-
agement system that uses cryptographic
authentication and high integrity. The
architecture uses cryptographic naming,
and the content of a configuration file is
a DAG; every revision is a pointer to the
root of the DAG. If we use crypto hashes

October 2003 ;login:

for the pointers and sign the revision
records, we get end-to-end integrity and
auditability. SSL is used as the authenti-
cation technology. Because of the per-
missions setup of the system, anony-
mous access is easy and convenient.

Currently authentication and integrity
work well. During the last two years
there have been only three breaches. The
hazards include OpenSSL bugs yielding
an unreliable transport. Boehm-GC
flaws yield leaked memory and regular
server hangs.

Several decisions, during implementa-
tion, that seemed plausible led to errors
later on:

1. Using a texty format for debugging —
This cost 30% more space and didn’t
compress, and file systems didn’t respect
cases. Therefore one should plan ahead
for binary format.

2. Server-side integrity checks — Files
might be damaged when they reach the
server. The server needs to serialize/
deserialize, which leads to the server
knowing the object schema.

3. Build a simple file-based store first —
One file per object was stored, using gzip
to compress, but in switching to binary
format, it was discovered that 60% of
the files were less than 500 bytes.

4, Build an event-driven server — Used
non-blocking I/O and an event loop,
which simplified the code and the server
but caused problems with SSL.

5. Use GC and exception handling —
This was well engineered for memory
management but has many platform
dependencies, leaks memory in large
objects, and doesn’t work on OpenSSL.

To fix GC and exceptions a new manage-
ment, GC_SCOPEs, is introduced. Cur-
rently, schema issues described in the
paper are all fixed in the development
branch. There’s still a need to modify
storage format and replace Boehm-GC

with a portable application-specific col-
lection strategy.

FREE SOFTWARE AND HIGH-POWER
ROCKETRY: THE PORTLAND STATE AEROSPACE
SOCIETY

James Perkins, Andrew Greenberg,
Jamey Sharp, David Cassard, and Bart
Massey, Portland State University

The research group consists of under-
graduate and graduate students in sci-
ence and engineering at Portland State
University, people in local industry, and
local aerospace enthusiasts. The current
model reached 3.6km; the next-genera-
tion model will leave the atmosphere.
The goal is to put nanosatellites in orbit.

The active guidance computer on the
rocket determines the rocket’s current
position, heading, and course; the com-
puter then steers the rocket to keep it on
course. In order to determine this infor-
mation the computer uses several sen-
sors: GPS, inertial measurement unit
(IMU), magnetometers, and pressure
and optical sensors.

The launch tower is used to launch the
rocket, view rocket status, and send
emergency commands to the rocket. The
on-board system includes the flight soft-
ware avionics firmware.

It was difficult to decide which embed-
ded operating system to use. There were
several candidates but RedHat’s eCos
was selected. It has all of the needed cri-
teria: RT, POSIX, free for use, small.

Commercial OEM GPS boards don’t
work because of their software limita-
tions in determining acceleration veloc-
ity and altitude. GPL-licensed firmware
for GPS receivers uses eCos. Differential
GPS base station and receiver provide
precision timing and altitude determina-
tions.

Future work includes creating an
enhanced inertial measurement unit,
developing next-generation navigation
algorithms, investigating loose coupling

USENIX ATC ‘03

CONFERENCE REPORTS

55

56

of IMU and GPS, GPS aiding of the
IMU unit, deep coupling of IMU/GPS
and other sensors, and adding a steer-
able hybrid motor.

PRIVILEGE MANAGEMENT
Summarized by Benjamin A. Schmit

POSIX Access CONTROL LisTs ON LiNux
Andreas Gruenbacher, SuSE Linux AG

The POSIX.1 access permission model is
not always sufficient, especially when
interacting with Windows clients via
SAMBA. The abandoned standard
POSIX.1e (the last draft, 17, is available
to the public) is taken as the basis of
most ACL implementations.

In the Linux implementation, which has
become an official part of the 2.5 kernel
version, access permissions (read, write,
and execute) can be granted to the
owner, named users, the owning group,
named groups, and others. A mask is
used to retain backward compatibility
for non-ACL-aware applications.
Default permissions make it possible to
inherit permissions that were set at
directory level.

The Linux ACL implementation can be
used for ACL-aware network protocols,
the most important ones being NFS
(only version 4) and CIFS (formerly
SMB). Since these two protocols imple-
ment ACLs in a different way, a mapping
needs to be done here. The Linux imple-
mentation does not support granting
somebody other than the owner the
ability to change permissions.

PRIVMAN: A LIBRARY FOR PARTITIONING
APPLICATIONS

Douglas Kilpatrick, Network Associates
Laboratories

In this talk, Douglas Kilpatrick described
the Privman privilege management
library. Some UNIX applications make
use of privileges that normal users can’t
acquire and, therefore, run with root
privileges because UNIX does not yet

support relinquishing access privileges.
This is no problem as long as the appli-
cations do not contain any bugs (which
could lead to root privileges for any local
user).

Privman is implemented as a user-space
library which mirrors some calls to the
libc as well as some system calls. A pro-
gram linked to the library starts by fork-
ing into a privileged server and a client
that gives up all its access privileges.
When the client needs to make a privi-
leged call, it contacts the server on a
pipe. The server than decides, based on a
policy file, whether the access should be
granted.

The main advantage to Privman is that
few changes need to be added to the
source code. The overhead induced by
the wrapper calls can be huge for a sin-
gle system call, but because these calls
occur rarely, the performance of a typi-
cal application decreases by only about
5%. Privman has been used to adapt
OpenSSH and wu-ftpd for privilege
management.

THE TRUSTEDBSD MAC FRAMEWORK:
ExTENSIBLE KERNEL Access CONTROL FOR
FreeBSD 5.0

Robert Watson, Wayne Morrison, and
Chris Vance, Network Associates
Laboratories; Brian Feldman, FreeBSD
Project

In his dense talk, Robert Watson
explained the implementation of the
Mandatory Access Control system
within FreeBSD 5.x. The MAC frame-
work is implemented partly within the
kernel, partly in user-space. Common
applications require more than just the
standard UNIX security mechanisms.
Operating system support for access
control is important; without it, applica-
tions would have to cope with several
different security mechanisms, the result
being mostly an intersection of the indi-
vidual permissions.

For MAGC, the FreeBSD kernel has been
extended by additional events. MAC-
aware applications register their interest
in some events, then get these events,
and possibly de-register afterward.
Access policies are divided into adapta-
tions of traditional access policies, tradi-
tional MAC policies, and new ones like a
port of the SELinux FLASK policy to
FreeBSD.

The main benefit of MAC is that the
source code does not have to be modi-
fied to use it. The implementation still
lacks support for multi-threaded appli-
cations and multi-threaded kernel
threads. Also, object labeling within the
kernel currently decreases performance,
which could be solved by introducing a
cache.

KERNEL
Summarized by Francis Manoj David

UsING READ-CoPY-UPDATE TECHNIQUES
FOR SYSTEM V IPC IN THE LiNux 2.5
KERNEL

Andrea Arcangeli, SUSE; Mingming
Cao, Paul McKenney, and Dipankar
Sarma, IBM

Locking and synchronization are
extremely important tools in multi-
threaded environments. Atomic incre-
ment, the key to locking, is possible on
current CPUs. However, newer proces-
sors (like the Pentium 4) consume sig-
nificantly more cycles than older
processors during a single atomic incre-
ment. This is because the whole pipeline
needs to be flushed, and this is an
expensive operation. For data that is
read-only, paying this penalty is unrea-
sonable.

Read-Copy-Update (RCU) is a tech-
nique that “allows lock-free read-only
access to data structures that are concur-
rently modified on SMP systems.” To
illustrate RCU concepts, let us look at an
example. In a linked list, deletion of an
element and traversal of the list cannot
happen simultaneously. This is because

Vol. 28, No. 5 jlogin:

the traversal code might reference a
pointer that is freed by the deletion
code. The RCU-based solution is to
defer the freeing of the pointer until it is
certain that no other code is traversing
the list. The paper references a couple of
more efficient solutions to this problem.

The authors have successfully applied
RCU techniques for semaphore data
structures in the Linux 2.5 kernel. There
is a dynamic array called ipc_ids that
needs to be traversed for all semaphore
operations. This array is protected by a
global lock. This design prevents sema-
phore operations from proceeding in
parallel. Using RCU, the global lock was
eliminated and deferred deletion of
semaphores was implemented. The total
number of new lines of code added to
the semaphore implementation was only
151. Micro-benchmarks show very good
results. In the future, the authors plan to
use RCU to optimize more code in the
kernel. The current code is available
under the GPL license.

URLs:
http://www.rdrop.com/users/paulmck
http://sourceforge.net/projects/lse

AN IMPLEMENTATION OF USER-LEVEL
RESTARTABLE ATOMIC SEQUENCES ON THE
NeTBSD OPERATING SYSTEM

Gregory McGarry

A Restartable Atomic Sequence (RAS) is
a mechanism used to efficiently imple-
ment atomic operations on uniprocessor
systems. It was designed to provide
atomic operations on processors that
don’t provide them. On processors that
do provide them, RAS increases proces-
sor performance.

System calls are one option when it
comes to performing atomic operations
for user threads. This emulates memory-
interlocked instructions. However, this
comes with a large overhead. RAS is a
better solution to this problem. An RAS
is basically some code that provides

October 2003 ;login:

some primitive like test and set or incre-
ment a variable (e.g., count++ in C). In
order to guarantee that this code is
called atomically, a user thread should
not be preempted in the middle of this
code. If it does get preempted, then the
code needs to be restarted. This restart-
ing would ensure that the operation is
performed atomically.

RAS has been implemented for the
NetBSD OS. The user thread registers
the entry and exit points of the RAS
with the kernel. Whenever there is a
context switch, the kernel checks to see
whether the execution was in the middle
of the RAS, and if it was, the RAS is
restarted when the thread returns. Thus,
atomic operations are provided. Also,
one cannot write arbitrary code for RAS
and expect things to work correctly. An
RAS should have the following proper-
ties. It should have a single entry and
exit point, should not modify shared
data, and should not invoke any func-
tions. This ensures that, on restarting the
sequence, the thread is restored to a cor-
rect state. Thus, the responsibility for
getting things to work correctly is shared
between the kernel and the user thread.

The user interface to the system is simi-
lar to that provided by mmap. RASes are
registered with the kernel. The kernel
checks for such sequences in the
cpu_switch function and restarts
sequences if necessary. Performance
studies show that this approach is better
than the syscall approach. RAS is cur-
rently transparently used in the NetBSD
pthread library for uniprocessor
machines.

USENIX ATC ‘03

PROVIDING A LiINux APl ON THE SCALABLE
K42 KeRNEL

Jonathan Appavoo, University of
Toronto; Marc Auslander, Dilma Da
Silva, David Edelsohn, Orran Krieger,
Michal Ostrowski, Bryan Rosenburg,
Robert W. Wisniewski, and Jimi Xeni-
dis, IBM T.J. Watson Research Center
K42 is a new research OS kernel
designed to be highly scalable and exten-
sible and written in object-oriented
style. It also supports online reconfigu-
ration of kernel services. K42 pushes a
lot of usual kernel functionality into
user-space, enabling efficient IPC. Also,
global data and locks are avoided in
order to improve performance.

The motivation for this work was to run
all standard Linux programs on K42,
thus increasing the number of applica-
tions available to those working with
K42. This paper describes the challenges
that the authors faced in providing the
Linux API on K42. Linux processes were
supported by mapping them to K42
processes. A K42 process called the
ProcessLinuxServer maintains these
relationships. Fork was implemented by
placing most of the code in user-space.
The file descriptor table was lazily repli-
cated for performance reasons. For sig-
nals, all state was kept in the client. To
provide a Linux environment, a new ver-
sion of glibc, targeted toward K42, was
compiled. Exec was also implemented
in user-space. This involves an unload
operation followed by a reload opera-
tion. Namespace resolution for files was
also implemented in user-space. The
entire Linux emulation layer was pro-
vided by a modified Linux kernel, with
K42 as the target architecture. Currently,
the project has a fully functional imple-
mentation for 64-bit architectures and is
available for download under the LGPL
license.

URL: http://www.research.ibm.com/K42/

CONFERENCE REPORTS

57

58

15th Annual Computer
Security Incident Handling
(FIRST) Conference

OTt1AWA, CANADA
JuNE 22-27, 2003

Summarized by Anne Bennett

The Forum of Incident Response and
Security Teams (FIRST) is a global
organization whose aim is to facilitate
the sharing of security-related informa-
tion and to foster cooperation in the
effective prevention and detection of,
and recovery from, computer security
incidents. It holds several technical col-
loquia each year open to members only,
and one annual conference which is
open to all.

TUTORIALS

NETWORK FORENSICS
E. Larry Lidz, University of Chicago

Looking at problems from the network:
Often, we don’t have access to the
machine we suspect of being involved in
a compromise (the machine is physically
inaccessible, it belongs to a student,
etc.). Network audit logs can save the
day: If we are able to go back and show
where a problem came from, we can
quickly resolve the problem. Also, if it is
necessary to turn over evidence to
authorities, it can be legally easy to turn
over network audit logs, which tend not
to contain confidential information,
whereas it can be really tricky to turn
over the hard drives of compromised
machines (because confidential infor-
mation must be protected).

The speaker gave a crash course on
TCP/IP, connection establishment and
termination, IP addresses and network
masks, and well-known ports.

Why use network audit logs if we already
have one or more of an IDS (Intrusion
Detection System), the ability to do sys-
tem forensics later, the ability to sniff
traffic as needed, or firewall logs?

= IDS: IDS logs only known suspi-
cious traffic, but we often need
complete logs. Also, some kinds of
suspicious packets cannot be
logged: Out-of-sequence FINs can
“turn off” IDS monitoring for a
connection, and too many frag-
ments can overwhelm an IDS.

» System forensics: A compromised
system has often had its data
altered, attempts to fix the problem
may have destroyed data, and the
intruder may not have written any-
thing to disk.

» Sniffers: Often it is too late to turn
on the sniffer — the problem has
already happened. Also, because the
entire packet is logged instead of
just the header info, disk consump-
tion is massive and there are more
serious privacy issues.

» Firewalls: Usually they do not con-
tain as much information as audit
logs (except in the special case of
application firewalls).

All of the above have their place, but it is
still useful to have network audit logs to
help investigate break-ins, to determine
how our network is being used for both
legitimate and illegitimate purposes, and
to get a picture of “normal” use of the
network. Also, the network audit logs
are (or should be!) on a trusted, hard-
ened system, so their information is
quite reliable.

Well-known audit log systems:

» Cisco NetFlow logs straight from
Cisco (and some other vendors’)
routers and switches (can impact
performance). These logs are easy to
search.

= Argus logs from the spanning port
of a switch and is able to log packet
contents if desired. Argus is a free
product, and there is a more DoS-
resistant and featureful related com-
mercial product named Gargoyle.

Active probing (port scanning), though
useful during investigations, may tip off
an intruder that you have noticed them.
Make sure you have the authority to
scan any machine you want to probe.

Some useful tools are:

= nmap: finds open ports, O/S finger-
printing.

= nc: text communication with tcp
port.

® pnscan: a massively parallel scan-
ner, can grab banners, even pass text
to the port, but can sometimes miss
hosts because of timeout problems.

= rpcinfo: identifies RPC services
running.

= smbclient: NetBIOS info, comes
with Samba.

m dcetest: like rpcinfo but for DCE
services.

= ibnet: can craft specific packets.

It is extremely important to keep system
logs in a trusted place (central log
server) and watch them for unusual
activity.

We were shown examples of how Net-
Flow and Argus are used to investigate
incidents. For example, a bunch of
Solaris hosts were reported to be com-
promised. The investigators picked a rel-
atively “quiet” one (fewer logs to look
through) and found out that something
had scanned it for port 111 and con-
nected to ttdbserver. Then another host
had connected to port 1524 (which was
later determined to be a back-door port)
and rsh’d to a machine on the same net-
work as the original “scanner” (this was
interpreted to mean that the victim was
downloading a rootkit); then IRC traffic
started up.

This analysis suggests that to find addi-
tional compromised machines, there are
a few things that can be looked for: suc-
cessful connections to port 1524 locally,
local machines rshing to the same offsite
machine, and, possibly, IRC traffic

Vol. 28, No. 5 jlogin:

(unless there is lots of legitimate IRC
traffic). Ideally, you should cross-corre-
late multiple sources for better reliabil-
ity, and, of course, hand-verify hosts
likely to have been compromised.

Hints on what to look for in network
logs when investigating an incident:

» When was the first traffic to a back
door (first successful connection to
a port which previously had no traf-
fic)?

» When did IRC traffic start?

m Was there a sudden increase in traf-
fic on a given machine?

» Did unexpected traffic start shortly
after a connection to a service run-
ning on the machine?

= Once a back-door port has been
found, what machines connected to
it?

These techniques proved useful for
Slammer Worm cases (where the symp-
toms were that the external net died and
several internal routers crashed; Cisco
reported a network-wide DDoS) and in
cases of a specific compromise. The ini-
tial Slammer analysis and identification
of an initial set of Slammer-compro-
mised machines was done in 15 min-
utes!

Note: There are now tools (e.g., softflow)
to send flow logs off from UNIX
machines which are acting as routers.

SECURE CODING: PRINCIPLES AND PRACTICES
Kenneth R. van Wyk, Tekmark
Technology Risk Management, USA;
Mark G. Graff

The intention of the authors of the
O’Reilly book of the same name was not
to give tons of source code examples
but, rather, to give programmers the
ability to think clearly about secure cod-
ing. When we build bridges, we don’t
make trucks drive over it, see if it col-
lapses, then if it does, move on to
“bridge v.1.1.” We need a similar per-
spective for the construction of software.

October 2003 ;login:

Van Wyk strongly emphasized a mind-
set that needs to be adopted to have any
chance of creating reasonably secure
software. Try to look at your software
from the point of view of an attacker:
how can it be subverted? With that in
mind, it is possible to apply a set of
architectural principles and make sure
that the proposed design respects those
principles, such as: restrict privileges
granted, assign responsibility to individ-
uals (make sure that actions can be
traced back to their originators), log suf-
ficiently well that events can be recon-
structed, and fail safely.

We were given examples of risk-assess-
ment questions and broad categories of
risk mitigation strategies, including
avoiding the risk by removing the cause
or the consequence, limiting the risk by
detecting and responding to problems,
transferring the risk to another party
(e.g., by buying insurance), and assum-
ing the risk (being prepared to deal with
the consequences of a problem).

When maintaining or modifying exist-
ing software, be aware of the design
intent and the security model of the
original, otherwise you risk introducing
problems you have no idea about.

Near the end of the presentation, we
were given some specific coding tips.
The fairly low emphasis on this issue in
the presentation maps well onto the
amount of time that should be devoted
to the implementation of a project, ver-
sus planning and design, which should
receive the lion’s share of time. Most of
those coding tips ought to be well-
known by now!

Finally, don’t neglect the environment in
which the code will be used: Secure the
OS and network, monitor logs, keep up
to date with patches, and so on. And, of
course, don’t forget to test every compo-
nent and test at every stage: Your envi-
ronment changes. Automate your
testing.

Creating a National Alerting and
Reporting Service

Nienke van den Berg, GOVCERT.NL, the
Netherlands; Jeffrey Carpenter,
CERT/CC, Carnegie Mellon University,
USA; Graham Ingram, AusCERT,
Australia

The Internet is no longer just an aca-
demic and research network, but has
become part of a national social and
economic infrastructure. Governments
are starting to look to national CSIRTSs
to help keep the Net viable as such an
infrastructure. Entering a “national pic-
ture” has raised legal, process, alerting
(info provided to the public), and
reporting (info received from the pub-
lic) issues for existing (and new) CSIRTs.

In deciding when to issue an alert, you
should evaluate the particular vulnera-
bility or event based on its technical
impact (a.k.a. objective impact — the
probability of technical and economic
damage) and on its social impact (a.k.a.
subjective impact — the perception of
safety, influenced by the likelihood of
media exposure).

How to provide alerts: Web (need a
good content management system),
email (lists can get quite large), mass
media, and SMS.

Not all of these are used for each alert:
There is a decision matrix that maps
technical and social impacts onto a
“media mix” (set of channels through
which the alert is sent). A communica-
tions advisor is used to ensure that alerts
are “not too technical” when they are
aimed at the general public.

Email alerts are PGP-signed, of course,
but since the general public may not be
in a position to check the signature, it
helps to have a very well-publicized Web
site address to reduce the chances that
an impostor could hijack (forge) the dis-
tribution channel.

15TH ANNUAL FIRST CONFERENCE

CONFERENCE REPORTS

59

60

Here are some questions to ask in decid-
ing what is worthy of advisories: What is
the current threat posed by this vulnera-
bility? How bad would it be if the vul-
nerability were publicly known? if the
vulnerability were publicly known and
being exploited? How bad is the incident
already? How much worse can it get?

CERT/CC has developed formal metrics
to rank vulnerabilities according to the
severity of the impact on a “typical” site;
these metrics involve questions with
numerical answers by which a weighted
total is computed. This metric is used to
help decide whether the problem justi-
fies an email advisory or whether it is
sufficient to post the info to the Web
site. The metric is also used to decide
which issues to work on first. The ques-
tions involve the ease of exploitation of
the vulnerability, how widely known the
vulnerability is, the risk to the Internet
infrastructure, and how many systems
would be affected and the severity of this
impact.

CERT/CC has also developed formal
metrics to rank incidents (as opposed to
vulnerabilities). With respect to incident
activity relating to a particular vulnera-
bility, CERT/CC differentiates between
current activity and potential additional
activity, not counting what has hap-
pened so far (exploitation of a vulnera-
bility), in order to determine the goals of
any action.

CERT/CC also adds a “uniqueness fac-
tor” so that they don’t issue multiple
advisories or incident notes on the same
subject, even if related-incident activity
continues.

To evaluate current impact, questions
are asked about how many people
and/or machines are affected, at how
many unique sites, what the importance
of the systems affected is, what the
impact during and after the actual activ-
ity is, and how complicated the attack
method is.

To evaluate potential (additional)
impact, questions involve how many
people and/or machines are affected by
the vulnerability, the importance of the
systems, how rapidly the problem is
spreading, and how complicated the
attack method is (i.e., how many people
could write an exploit, therefore how
likely the exploit is to appear soon).

To set up an alerting service you need
money; an operational CSIRT (center of
operations); systems for Web service,
Web content management, email list
management, and project and office
management; and technical, communi-
cation, and legal expertise. Legal issues
must be addressed (general terms and
conditions of service, privacy policy and
disclaimers, contracts and service level
agreements), PR must be handled, and
internal processes must be clear.

The purpose of a reporting service (e.g.,
AusCERT) is to collect, process, and
analyze computer security incident
reports and share sanitized aggregate
reporting with an appropriate audience.
This should provide meaningful intelli-
gence about trends and modus operandi
with respect to network attack activity.

The goals of the service are to promote
the use of mitigation strategies, raise
awareness of computer security issues,
keep people up-to-date with threat
activity and trends, provide information
about attack data which they would oth-
erwise not be able to obtain, and provide
value-added analysis of this data.

Any reporting service must be able to
protect the data of the reporters (and
reassure them that this will indeed be
the case). However, a reporting system as
a black hole is not a good idea: People
are motivated to provide data by having
access to sanitized and/or aggregated
data and statistics.

It is important to have a clear workflow
for the reporting process, not least
because it forces you to make sure that

your stated goals are in fact being
addressed in your processes. Also, pri-
vacy considerations dictate that you
must have guidelines about what infor-
mation is communicated to whom and
under what conditions. Finally, the
process makes clear what resources are
needed to do the work.

AusCERT described their complex
reporting service system. First of all, it
was necessary to collect incident data
online; the alternative of a call center
staffed by 40 or so people was simply
not viable. In terms of security, the last
thing a CSIRT wants is to have the press
report that the CSIRT suffered an intru-
sion! It is equally important to keep data
segregated, so that one reporter does not
have access to data submitted by another
reporter. The automated response sys-
tem must automatically do triage on the
incoming data: If something is reported
for the first time, it probably requires
human attention. The system must
assign “threads” to incidents so that cor-
respondence and actions on a particular
incident can be correlated.

The types of requirements that must be
met in order to set up a reporting service
are the same as for an alerting service,
but the actual contents are different.
Most CSIRTS need to use a Web form to
collect data in order to automate the
process, including the initial analysis of
incoming reports. The system must scale
very well. A worm might result in thou-
sands of reports from the general public,
for example, but if there is a new and
dangerous exploit nestled in among
these thousands, the system must
quickly pick it out for human attention.
It must also be possible to quickly
change the Web form to respond to
emerging issues; for example, a new type
of incident might require the collection
of a new category of data.

How to handle anonymous reports?
AusCERT accepts and stores anonymous

Vol. 28, No. 5 jlogin:

reports, but takes no action unless they
can later be correlated with reports from
validated sources. Don’t forget to try to
collect consent from reporters with
respect to sharing confidential informa-
tion with specific bodies when needed.
Arrange to refuse or otherwise deal with
certain types of reports that are not
computer-related or where liability
would be an issue — reports of pure
criminal activity such as murders, for
example, are not wanted in a computer
security incident reporting scheme.
Reports of cybercrime accompanied by a
refusal to release information to law
enforcement authorities should also be
discouraged or refused.

Alerting and reporting services tips and
tricks. Share knowledge and expertise
with other CSIRTS; integrate the alerting
and reporting activities with the
processes of the CSIRT; do alerting first
to build credibility for later report col-
lection; keep close contact with target
groups to improve the quality of the
alerts; start a newsletter service for peo-
ple who are not specifically interested in
alerts; and establish good national press
contacts in case escalation is needed.

INTRODUCTION TO ADVISORIES
Andrew Cormack, UKERNA, UK
1. Why do vulnerabilities happen?

= Laws of nature: Because computer
networks are complex systems, they
will certainly contain errors, some
of which will have security implica-
tions.

» Customer demands: People ask for
computers which are “easy” to use;
rarely do they demand computers
which are “safe” to use. Therefore,
vendors sell systems with everything
turned on. When Sun tried the
opposite, they received many “non-
working” returns! And while users
will turn on what they need, they
will rarely bother to turn off ser-
vices they don’t need.

October 2003 ;login:

= Vendor pressures: Vendors are
under economic pressure to ship
new features fast, with the result
that testing is incomplete. Testing
for security (the absence of unin-
tended functionality) is harder than
testing for intended functionality.

2. Sources of information about vulner-
abilities:

= Incident reports are clearly a reli-
able indication that there is a prob-
lem! However, the information
obtained may have been obscured
by the attackers and may be hard to
interpret.

» Full-disclosure communities (e.g.,
BugTraq): Often the information is
up to date but the quality is vari-
able, and there is more emphasis on
problems than on solutions.

» Crackers (via published tools): The
information is very current, but
malware has to be handled with
extreme care, since it may contain
additional attacks aside from the
attack it claims to be performing. It
can be difficult to extract good
information from the tools; reverse
engineering is required.

» Vendors: Information can be of
very good quality, but vendors can
be very slow, and, because of com-
peting motives, the information
may be incomplete or may under-
state the impact of the problem.

» Commercial services such as anti-
virus vendors, ISS, etc.: The quality
of the information is generally high,
and their advisories usually come
out before the vendors’ advisories.
However, there may be restrictions
on distribution, and, again, compet-
ing motives may affect the informa-
tion, for example, by overstating the
impact in order to sell their services.

m Other CSIRTSs have similar motiva-
tions as us and are generally trust-
worthy. But there may be restric-
tions on distribution of the infor-

15TH ANNUAL FIRST CONFERENCE:

mation. In addition, CSIRTs may be
slow, depending on their policies
and on the resources available to
them.

Clearly, not all information is equal, so it
helps to use multiple sources to ensure
speed, reliability, and completeness. You
should verify this information by corre-
lating the information from indepen-
dent sources, testing for yourself, and
using the trustworthiness of the source
as a criterion.

3. CSIRT tasks with respect to vulnera-
bilities:

» Planning: Plan in advance how to
use information for the benefit of
your constituency and minimize
harm; there’s no point in sending
out an advisory that says, “There’s a
problem but there’s nothing you
can do.”

= Distribution: Simply pass on exist-
ing information, perhaps translat-
ing to a local language or sending
only information that is relevant to
a particular constituency.

» Interpretation: This can involve
gathering information from multi-
ple sources but, most importantly,
interpreting the information to suit
it to the skill level or common plat-
forms for your community, and/or
adding your own introduction to
place the information in context.
When writing an advisory, list the
important information in the first
paragraph: who is vulnerable,
whether the problem is exploitable
remotely, what the damage is, and
the immediacy of the threat. Then
discuss how to fix the problem,
mentioning any side effects of the
fixes. IEEE 1044 describes ways to
describe software anomalies in
something like these terms.

» Investigation: Be clear about why
you are investigating a problem: to
better understand the problem?

CONFERENCE REPORTS

61

62

because you intend to notify the
vendor? to check or create patches
and workarounds? You can investi-
gate based on incident artifacts
(e.g., files left on a compromised
machine), source code if available,
or test systems (which are not on a
public network!).

= Coordination: This refers to work-
ing with vendors to resolve a prob-
lem. This can be tricky; trust must
be built and is easy to lose, and the
motivations of the parties may
compete. Vendors don’t want bad
publicity, but our constituency
needs patches to prevent incidents,
and so do other sites. (But will any
publicity of our efforts increase the
risks to those other sites?)

The presenter is a partner in the TRAN-
SITS project, a European initiative to
provide training on issues related to the
provision of CSIRT services, and has
documented the mechanics of how to
write an advisory. The relevant links are,
respectively:

http://www.ist-transits.org/
http://www.ja.net/documents/
gn_advisories.pdf

ADVISORIES

Michael Caudill, Cisco Systems Ltd, UK
At Cisco, an advisory usually starts with
some kind of notification of “bad news”
from an independent researcher or a
customer. It is a good idea for the ven-
dor to send some kind of response
within 24 hours, because otherwise the
person will feel that their message has
not been heard/read; Caudill recom-
mended using a PGP-signed reply. Nev-
ertheless, vulnerability reporters should
keep in mind that the vendor may be
working different office hours, have dif-
ferent national holidays, or be a small
shop that has only one person receiving
vulnerabilities, so it is reasonable to
allow a week or so for the vendor to
respond.

Once the vendor has received and
acknowledged a vulnerability report, it
needs to reproduce and verify the prob-
lem: What exactly is the problem? Deter-
mine workarounds, and whether they
are effective and feasible. Find the fix.
Determine whether other vendors are
affected. Determine if the problem
deserves an advisory, based on ease of
exploit, impact, and so on.

The “reproduction and fixing” stage may
take from a few hours to a few weeks,
depending on how much information
the vendor has, the complexity of the
setup, and, of course, the difficulty of
debugging. Also, teams may be small
and working on other cases already.

The advisory is the vendor’s official
response to notification of the vulnera-
bility. It is best to prepare the advisory
before you need it, in case events force
you to publish prematurely. Use an
informative title, the status (draft,
interim, final), the date in GMT, a sum-
mary to be read by management and by
techies to determine whether the advi-
sory applies to them at all.

Other information that should appear in
the advisory: which hardware and soft-
ware models are and are not affected;
specific configurations that are affected
if applicable; what causes the problem;
the symptoms of the problem (crash,
performance slowdown, etc.); the actual
consequences (unauthorized access,
DoS, information leak, etc.); who dis-
covered the problem (give credit where
due); whether the problem is being
exploited, including the names of
known exploit tools where applicable;
links to other advisories; CVE number.
Determine what language(s) should be
used in the advisory.

Obtaining the actual bug fix from devel-
opers can be difficult, because of the
commercial pressures to provide fea-
tures they are under.

If other vendors are affected, either
notify them directly (especially if the
number is small) or hand off to a CSIRT
coordination center of some kind to deal
with contacting the other vendors.

When the fix arrives, check it, and do
regression testing to make sure that the
fix doesn’t break anything else (unless
the fix is really trivial). Before releasing
all this, make sure, if the fix will require
a hardware upgrade, that this hardware
is available through the normal chan-
nels.

Finish off the advisory with information
about the migration path and how to
obtain fixed hardware or software. Run
the early copy past developers; legal spe-
cialists, including export control people
for crypto; the PR department; and
selected groups of technical people — for
example, the original reporter of the
vulnerability.

Decide when to publish the advisory. Do
we have to wait for other vendors? What
day of the week is it in other parts of the
world? (Of course, if there is active

exploitation, release as soon as possible.)

The advisory should use a vendor-
independent format (text, HTML, PDF)
and should be cryptographically signed.
It makes sense to release an advisory
internally first so that, for example, tech
support knows what the customers are
calling about! However, take into
account the possibility of leaks, so pre-
release only on a need-to-know basis,
and/or don’t allow much lead time; peo-
ple need to prepare themselves, but too
much time will increase the likelihood of
leaks.

Once released, the advisory (at least the
version on the Web) needs to be kept up
to date; there may be corrections and
additional information. When making
changes, it is a good idea to update the
revision number and keep a revision his-
tory so that people can decide whether
they need to re-read the document.

Vol. 28, No. 5 jlogin:

KEYNOTE

A GLoBAL CULTURE OF SECURITY

Marcus H. Sachs, US Department of
Homeland Security, USA

A “culture of security” is developing
around the world which involves every-
one, IT people and end users alike, and
which is parallel to the “safety mind-set”
that makes us wear seat belts in cars. The
use of computers and networks puts any
country at risk; that vulnerability must
first be recognized before it can be
addressed. In the early 1980s, AT&T
ceased to have a telecommunications
monopoly. Since then, the US telecom-
munications network is no longer
domestic, terrestrial, and circuit-switched;
there is a diversity of circuit- and
packet-switched technology, terrestrial,
satellite, and wireless, supporting voice,
data, and other communications.

In the late 1990s, a military study deter-
mined that the Department of Defense
could be reached from the Internet, and
could be attacked through that route.
Somehow, that information was at the
time considered to be of only theoretical
interest. A few months later, DOD com-
puters became the subject of Net-based
attacks. That got the attention of the
leadership, and a task force was created
to coordinate the defense of digital net-
works. At the end of that decade, there
was a lot of cybercentric effort because
of the impending Y2K, though for a
while physical sectors of the infrastruc-
ture were somewhat neglected.

September 11, 2001, made it clear that
the “physical” sector ought not to be
ignored. When the two towers of the
World Trade Center and some adjacent
buildings were destroyed, the telecom-
munications redundancy that had been
provided for the New York Stock
Exchange turned out to be inadequate.
Although connectivity had been pur-
chased from several different companies,
using several physical routes and going

October 2003 ;login:

to two separate central offices, purchases
and mergers among those companies
had had the result that most of the
“redundant” connectivity went through
the same fiber bundles to the same C.O.
In most large cities, telephones are con-
nected to a single C.O., with little redun-
dancy. On September 11, phone service
in New York basically failed. Interest-
ingly, people were still able to use the
Internet to communicate. It was also
found that the co-location of the various
different utilities (water, gas, steam, elec-
trical power) constituted a vulnerability.

The US government decided that “secu-
rity” had been divided into too many lit-
tle offices; the Department of Homeland
Security was created to bring these func-
tions under one umbrella. This depart-
ment published two major documents
in February 2003: “The National Strat-
egy to Secure Cyberspace” and “The
National Strategy for the Physical Pro-
tection of Critical Infrastructures and
Key Assets,” which are available from
http://www.whitehouse.gov/homeland/.
The Cyberspace Strategy is intended to
be modular and to change as needed.

Why is it important to secure cyber-
space? The USA is fully dependent on
cyberspace, and the range of threats is
huge, from script kiddies to nation-
states. Recommendations include
addressing vulnerabilities, as opposed to
threats, because threats are constant and
everywhere. Also, the government alone
cannot secure cyberspace — individuals
and industry must participate. The
speaker went on to list and describe
many initiatives being taken by the US
government, and he listed requirements
for a secure Internet: accountable
addressing (such as IPv6); dependable
network services (routing, DNS); trust-
worthy software; authenticated user
services (Web, email); a working public
key infrastructure; networks built to be
secure from the start, not as an after-
thought; the adoption of “best prac-

tices”; protection of and from “clueless
users” making mistakes; the certification
of network engineers; a mechanism for
information sharing about computer
security; and agreements between
nations with respect to cybercrime.

TECHNICAL SESSIONS

WORST FEARS/WORKINGS OF A WORM
Roelof Temmingh, Sense Post, South
Africa

There are over 1 million networked
computers on Earth. The Internet covers
not just the Western world, though the
vast majority of connected computers
are in the Western world, and Internet-
based services include not only email
and the Web, though those are the major
services. Most of the computers are run-
ning Microsoft products. About 90% of
Web servers run either Apache or IIS,
and 96% of browsers are MSIE. The
state of security ofn those products is
not reassuring. Many vulnerabilities
have been revealed in the past few years
and have been exploited by some of the
major worms. In fact, while the recent
worms have exploited previously known
vulnerabilities, most had no direct mali-
cious payload or had an effect limited to
DoS, and in most cases only a small per-
centage of targeted hosts were infected;
nevertheless, their effect was large.

What, then, is the worst-case scenario?
Imagine a group of 15 or so program-
mers working for six months in isola-

tion.

Phase 0: Perform reconnaissance work
(scanning) to find vulnerable Web
servers (assume that we have prepared
an exploit for an as-yet-unpublished
vulnerability that will break Apache and
IIS). Pick the 1000 busiest servers.

Phase 1: First we stealthily infect a thou-
sand machines that are important, high-
traffic Web servers (e.g., CNN). These
“master servers” have huge log files and
are constantly under attack anyway, so

15TH ANNUAL FIRST CONFERENCE:

CONFERENCE REPORTS

63

64

our attack has a better chance of
remaining undetected, which is very
important at this point. The code we
inject into our victim “master servers”
does DNS lookups of random names
using DNS servers on predetermined
controller hosts, and the return values of
these DNS lookups contain commands
for the master servers to execute. We
send each master 1/1000 of the list of IP
addresses of all vulnerable Web servers
as determined during phase 0.

Phase 2: We now infect as many
machines as we can, still stealthily. We
send a signal to each master to inject
attack code into random Web pages (but
not the home page) of the Web server it
has infected. Therefore, when a browser
downloads that page, it also downloads
the client version of the attack code.
Using these “client servers,” we do recon-
naissance on the networks they are on
(possibly internal networks not directly
connected to the Internet), remove any
antiviral software, collect any passwords
we can find, and take control of any
infrastructural machines (such as
routers) that we can.

Phase 3: In a “pre-meltdown” phase, at a
predetermined time (because communi-
cation with infected clients may be
impossible), all “clients” look for vulner-
able Web servers on the inside of that
network and infect them so that they too
will now carry the “browser worm,” at
least for the next three hours. At the
same time, all “masters” carry out the
infection of their predetermined lists of
externally connected vulnerable Web
servers.

Three hours after the above (which is
short enough that it is unlikely that
human intervention can take place in
time to stop the process), the “clients”
start destroying the local machine and
network; they send DoS packets to any
hosts that could not be infected, insert
random bytes into data and text files of

all kinds, corrupt or destroy the BIOS,
and pop up a box asking users to call
their local help desks, thus swamping
the help resources and perhaps even the
phone lines. At the same time, the “mas-
ters” remove all Web content, and start
DDoSing Microsoft and Apache (to
inhibit their supplying any patches), the
root DNS servers, and random other
sites.

Long-term data destruction (e.g., of data
on backups) was also discussed, but it is
a bit more involved.

The results of such a worm would effec-
tively be total chaos. To prevent such a
worm from succeeding, several measures
should be taken:

» DMZ: Isolate outside-facing Web
servers; don’t allow machines in the
DMZ to make connections to the
inside.

= Tight filtering: A Web server should
never initiate connections. If it is
unable to initiate Web connections,
it cannot spread a worm that way,
even if it is itself infected.

= Internal segmentation: In case part
of the organization gets infected
anyway, the other parts are pro-
tected if the internal network is seg-
mented by packet filters.

w Filter any third parties that have
connectivity to your network.

= Use personal firewalls on user PCs
as a last line of defense.

AUTOMATIC EXCHANGE OF INCIDENT-
RELATED DATA AND ITS APPLICATION IN
CSIRT OPERATIONS

Klaus-Peter Kossakowski, Presecure
Consulting GmbH, Germany
eCSIRT.net has a project whose goals are
to improve the exchange of incident-
related data and to foster improved
cooperation among CSIRTs. For this, all
groups involved have to agree on the
meanings of words so that statistics are
meaningful and a shared knowledge
base is possible. The project also

includes the provision of actual services
related to this information, including
“out-of-Internet” alerting so that infor-
mation can get through even when the
Internet is non-functional.

A code of conduct binds the participants
in the information exchange, and covers
issues of cooperation, protection of
intellectual property rights and confi-
dential data, and contributions to the
goals of the project.

The common language is based on IETF
initiatives Intrusion Detection Message
Exchange Format, or IDMEF (to send
attack information directly from the
sensors), and Incident Object Descrip-
tion Exchange Format, or IODEF (for
local CSIRTs to send a more high-level
view of an incident). A Web form will
allow constituents who don’t yet support
IODEEF to send IODEEF objects. IODEF
will also be used to send information to
local CSIRTs. IDMEF incident data can
be included within IODEF incident
descriptions.

eCSIRT.net has a clearinghouse func-
tion, to share as much information as
legally can be shared; this is a low-prior-
ity task which occurs after incidents are
closed, at which point they can be
processed for statistical purposes. The
output will be tailored to the recipient,
where participating CSIRTs will get
more detailed information, and the gen-
eral public will get just an overview.

Three types of statistical information
will be collected:

» Type 1 data are related to the work-
load of each CSIRT: number of
attacks reported; false positives; sys-
tems attacked and affected; time
spent analyzing, responding, docu-
menting; and so on.

» Type 2 data concern incidents
themselves. This information will
be aggregated, and any identifying

Vol. 28, No. 5 jlogin:

information removed before it is
presented to anyone.

= Type 3 data pertain to Internet
events (which are not necessarily
intrusions). These events will be
monitored using automated tech-
niques such as Argus (traffic moni-
tor), honeypots, and so on. The
event information will be accessible
to constituents via HTTPS and user
certificates.

The incident (type 2) information is
highly controversial, because of trust
and confidentiality issues; these issues
are being addressed. There is potential
that type 3 (event) information could
have online processing resulting in alerts
that can be sent to constituents.

There is technology to send out
encrypted mail, to make phone calls and
faxes, and so on. The idea is to free
humans to analyze problems instead of
tying them up in the mechanics of the
transferring and storing of information.

Request Tracker for Incident Response

John Green, JANET-CERT, UK; Jesse
Vincent, Best Practical Solutions, USA

RTIR is a tool for incident handling,
which claims to be usable, cross-plat-
form, open source, extensible, securable,
and supported.

RT (the base software for RTIR) was
designed to track issues of any kind. It
gets used for bug tracking, help desk and
customer service, network operation, “to
do” lists, and so on. In its bare form, it
does get used for incident response, but
it is not ideal for this use. It is Web-
based, and the client side is designed to
work with just about any browser.

RTIR is an extension to RT, which uses
the designed extension mechanisms; so,
for example, it is possible to upgrade RT
without having to “repatch” the exten-
sion. It is possible to add functionality,
change the user interface, and so on. It

October 2003 ;login:

should be run using HTTPS to improve
security.

RTIR adds these functions to RT:

= An “incident” object ties together
the various reports that might come
in about a single incident and vari-
ous actions such as blocking net-
works and performing investigations.

= Incident response team—specific
workflows, for example, automati-
cally opening incidents to notify the
people responsible for each of a list
of IP addresses about a vulnerability
discovered while scanning.

= “Clicky” metadata extraction and
tracking (to get more information
about IP addresses through such
utilities as whois, traceroute, etc.).

= Integration of whois information.

= Separate email threads for separate
conversations about different tasks
or components of the event.

= High-level overviews.

m Better searching tailored to inci-
dents so that multiple events can be
correlated.

= Simple scriptable actions.

» New reporting functions.

More information can be obtained from
http://www.bestpractical.com/.

COMMUNICATION IN SOFTWARE
VULNERABILITY PROCESS

Tiina Havana, Juha Roning, University
of Oulu, Finland

Reporting software vulnerabilities is
central to software development, but the
communication process is problematic.
In 2002, a study was done where vulner-
ability reporters and the receivers of
such reports were questioned. Recipients
reported contacting reporters more than
the reporters believed that they were
contacted.

The values and beliefs of the two parties
differ. While they agree on the impor-
tance of security, precision and accuracy,
and non-malfeasance (avoiding harm to
others), reporters value public benefit

15TH ANNUAL FIRST CONFERENCE

and the public’s right to know more
than do the receivers, while the receivers
place a higher premium than do the
reporters on the avoidance of “FUD”
(fear, uncertainty, and doubt).

Only just over half of the receivers
passed on the bug information to their
developers to prevent further occur-
rences of that type of bug.

One-third of the receiving organizations
have a proactive publicity strategy for
cases where there is a publicity crisis
concerning vulnerabilities in their prod-
ucts, and one-third of them have PR
personnel who are familiar with vulner-
ability issues and who have direct media
contacts.

The vulnerability-reporting communi-
cation seems too often to be one-way;
two-way symmetrical communication is
needed. A dialog between the parties
would improve mutual understanding,
and vulnerability reporting policies
would also be helpful.

PANEL DISCUSSION

Ask THE EXPERTS

Cory Cohen, CERT/CC, Carnegie Mel-
lon University, USA; Robert Hensing,
Microsoft, USA; Michael Warfield, ISS,
USA; moderator: Roger Safian,
Northwestern University, USA

Q: Concerning Microsoft’s recent acqui-
sition of an anti-virus product vendor, is
Microsoft planning to automate anti-
virus download-and-security-patch
management into the same agent?

Rob: Microsoft is working on an anti-
virus product of its own. It is also work-
ing with VIA (the Virus Information
Alliance), and working on other secu-
rity-related services geared toward home
users. I cannot comment on the details.

Q: In the case of an organization with
no real security other than that provided
by volunteers, what “glory words” can be
presented to financial folks to persuade

CONFERENCE REPORTS

65

66

them to devote resources to a security
team?

Rob: To justify an IRT, use threat model-
ing: What am I trying to protect? What
is it worth? A model called STRIDE
(Spoofing, Tampering, Repudiation,
Information Disclosure, Damage Poten-
tial, and Exploitability) assigns dollar
values to each of the named items.
Chapter 4 in Writing Secure Code walks
through the STRIDE model.

Andrew Cormack: Universities don’t
work on dollars and cents — list assets,
liability.

Q: For home users and the general pub-
lic, a major problem is spam. Break-ins
on DSL-connected hosts are often moti-
vated by the desire to install spam distri-
bution agents. Various government
organizations are interested in stopping
this because it costs a lot of money. As
security people, should we do something
radical to the email infrastructure to
address this issue?

Mike: Honeynet analysis of scanning for
open proxies (squid, socks) shows that
these scans are done mostly by spam-
mers wanting to inject their spam. These
guys have crossed the line at that point
into illegal activities, therefore prosecu-
tions need to be done. Spammers are
trying to sell something, so they must
leave ways to track them back. Our
responsibility as security people consists
of hardening email systems, implement-
ing authentication between servers, and
locking down open relays.

Cory: The growth of really usable cryp-
tography could help. Membership in
mailing lists should require use of cryp-
tography to participate in them.

Roger Safian: The issues of someone
abusing your resources versus someone
just sending spam should be kept sepa-
rate.

Rob: Technical approaches to this
problem are seen here at conferences.

Microsoft is chasing spammers legally’
We need high-profile prosecutions to
discourage this type of activity.
Microsoft is suing 13 spammers, of
which 11 are in the USA and 2 are in the
UK. 60% of mail coming to Hotmalil is
spam!

Q: Lots of spam is fraud (eBay fraud,
trying to get credit card information).

Mike: eBay and Pay-Pal frauds get much
press coverage, but those make up less
than 1/10 of a percent of the incoming
spam, while one-third of it is for Viagra
and other “personal enhancement” (!)
technologies. Prosecutions need to pro-
ceed on the fraud front; this type of
activity must become unprofitable.

Q: Regarding security advisories, is there
any chance that advisory formats will
converge so that automated means can
be used to disseminate them, or their
existence, to our constituents?

Mike: Advisory formats are evolving, but
no wholesale conversion to a single
common format should be expected. We
may see two or three different versions
of the same information (text, Web,
XML), of which XML is most amenable
to automated processing. But advisories
must go through marketing and PR
departments, which are less amenable to
technical standards!

Cory: We are open to exploring stan-
dardized formats, but this is less impor-
tant for advisories. We are more
interested in a standard format for the
exchange of vulnerability information,
which can then be customized with text
for advisories.

Rob: Microsoft released two new bul-
letins just today. After the advisories
have gone through the legal people, they
are mangled! If a standards body were to
come up with a standard format for
advisories, I would encourage Microsoft
to probably play along. But Microsoft
bulletins are already huge; a list of mini-
mal information would be helpful.

Q: We have seen suspicious packets with
a fixed window size. These were dis-
counted by CERT/CC, while ISS went
further and gave meaningful data. Give
us some idea of your internal processes.

Mike: ISS got caught with its pants
down on this one. We had noticed pecu-
liar traffic, deferred looking into it for a
week, then looked into it after incident
reports had appeared in various other
sources. At that point, we started
detailed investigations, which are still in
progress [as of 06/25/03], but postings
have been made.

Rob: We [Microsoft] saw the traffic. No
one could figure out its origin, and this
caused great concern: Was it the first big
kernel-mode Windows worm? [It turns
out that this is probably not the case.]

Mike: This is a classic example of the
fact that our business gets interesting
with the words “I never saw it do that
before!”

Q: What are the pros and cons of proto-
col- and signature-based IDSes? What
are some of your favorite IDSes?

Cory: As a member of CERT/CC, I have
no favorites, but we did some research
on IDSes to assess their ability to really
describe vulnerabilities using signature
languages. We were disappointed about
what could be done to really describe
vulnerabilities. A lot of signature-based
systems could not describe a recent Ker-
beros vulnerability, for example. There-
fore, I have doubts about signature-
based systems.

Mike: Marketing people want us to
believe that the two kinds are very dif-
ferent. Protocol-based engines need
more horsepower. Therefore it makes
sense to try for the cheaper signature-
based methods first to skim off 80% of
the problem; then do protocol analysis
to catch more; then, finally, there’s the
holy grail of “anomaly detection,” which
does not really exist yet. Each technique

Vol. 28, No. 5 jlogin:

has its own domain of applicability; all
of them should be used.

Rob: I’'m more interested in host-based
than network-based IDSes; the OS needs
to get more intelligent. Tripwire, for
example.

Q: Are there signature development
classes, tips on developing signatures?

Mike: Get in good with the Snort guys,
who are doing it all the time on our
mailing list.

Cory: I found it difficult to match up
individual signatures from various sys-
tems.

Roger Safian: We just completed testing
eight IDSes of multiple kinds. All had
plusses and minuses. Sales people are
overzealous in their claims.

Q: What about intrusion prevention
technology?

Mike: I have similar comments as for
“protocol versus signature”: there is a
big area of overlap between technolo-
gies, and fuzzy definitions of them.
Many vendors talk about putting things
in midstream and blocking based on
findings. There are concerns about false
positives; we need a bit more track
record on these devices.

Rob: Intrusion prevention is another
way to say “host hardening”: You can’t
attack what isn’t there! I've been told
that Windows listens on too many ports,
that we cannot turn the services off. But
Win2K has IPSec, which can be used to
block access to ports.

Roger Safian: SANS cornered Gartner. It
turns out that intrusion detection
devices that are actually deployed are
generally not used to block traffic!

October 2003 ;login:

KEYNOTE

THE EUROPEAN INITIATIVES IN NETWORK AND
INFORMATION SECURITY

Andrea Servida, Information Society
Directorate of the European
Commission, Belgium

Why Europe needs to act on security:
75% of European companies had no
security strategy in 2002. It seems that
underestimating core business risks is
responsible for the low level of IT secu-
rity investment in most European com-
panies; there is a lack of awareness of the
issues. The paradigm for security is
changing from “security through obscu-
rity” to “security in openness,” but this
openness and sharing of resources is a
challenge to manage.

Toward a European-integrated approach
to security: International cooperation is
needed and is occurring in the following
areas:

= Economic, business, and social
aspects of security in an informa-
tion society: These include business
opportunities and growth, individ-
ual issues such as privacy and the
protection of minors, dealing with
the digital divide, and long-term
preservation of knowledge and cul-
ture.

m Cybercrime, “homeland” security.

= External security and defense.

= Security research.

The role of the Commission: The Euro-
pean Commission proposes and orches-
trates the development of a regulatory
framework, for example governing elec-
tronic signatures, data protection in
electronic communications (consent to
collection of data, use of cookies), infor-
mation, and network security. The Com-
mission also launches policy initiatives,
in particular to promote the develop-
ment of various technologies or
approaches.

eEurope 2005 and ENISA (European
Network and Information Security

Agency): eEurope 2005 build on the
progress made by eEurope 2002: Inter-
net penetration in houses has doubled
since then, there is a telecommunica-
tions framework in place, and there is a
very fast research backbone network.
There are projects which affect CSIRTS,
such as the European Information Secu-
rity Program, which aims at providing
SMEs with the IT security solutions
needed to develop their e-commerce
business. eE2005 aims to:

» Establish a cybersecurity task force
by mid-2003. ENISA is not itself a
CSIRT, but would have a facilitat-
ing role, coordinating existing
capabilities and resources in mem-
ber states.

» Develop a “culture of security” by
the end of 2005 (develop good
practice and standards).

» Secure communications between
public services.

Ambient intelligence (wearable comput-
ers, computers inside our bodies) raises
new security issues. Today’s technologies
are already pervasive and intrusive, and
have huge interdependencies which are
not being managed well. The challenge
for tomorrow is to develop a respectful
approach; the ethics of privacy will be a
key element in an information society.

TECHNICAL SESSIONS

INTRODUCTION OF THE APCERT: NEw
Forum FOR CSIRTSs IN AsIA PACIFIC

Yurie Ito, JPCERT/CC, Japan

There is now a new forum for coopera-
tion among CSIRTs in the Asia Pacific
region: APCERT.

Most CSIRTs in the AP region do direct
incident handling and coordination as
well as issue warnings and alerts, techni-
cal bulletins, and so on. However, there
is little participation from IRTs in indus-
try. Many CSIRTS in the AP region do
communicate directly with each other,
to share observations, data, and techni-
cal information and to contact sites
involved in an incident. While there are

15TH ANNUAL FIRST CONFERENCE

CONFERENCE REPORTS

67

68

commonalities between the various
CSIRTs, such as a narrow block of time
zones and IP address blocks, there are
differences in the technological maturity
of the various participants.

There was a desire to coordinate the
interaction between the AP CSIRTs. A
working group was formed in 1997,
whose core members were three large
teams: CERTCC-KR, SingCERT, and
JPCERT/CC. Over the years, it was
decided to create APCERT, which was
established in February 2003. Its objec-
tives:

» Share security information among
members.

» Handle security issues on a
regional basis.

» Support the establishment of
CSIRTs in countries not yet covered
by such services.

» Collaborate with other regional
frameworks, such as FIRST and TF-
CERT.

There are currently 15 full members.
APCERT’s activities include an annual
conference (APSIRC), and working
groups on accreditation rules for
APCERT membership, on training and
communications for CSIRTs, and on
financing the APCERT effort.

The APCERT involves other players,
such as users, system integrators and
operators, regulatory bodies, the insur-
ance industry, law enforcement, and the
technology development and engineer-
ing communities. It encourages these
players to cooperate and communicate
with each other; it facilitates mutual
trust and information sharing.

PRIVACY INCIDENTS ON THE RISE: TAXON-
OMY AND RESPONSE

Lance Hayden, Cisco Systems Inc., USA
What is privacy? As incident responders,
we are called upon to take a “first
responder” approach to privacy
breaches, whether or not the direct

causal link to computer security inci-
dents is evident.

What is under attack? There is an evolu-
tion away from “computer security,”
where we are protecting information but
we don’t necessarily need to know what
information it is we are protecting. We
are now realizing that this information
has a meaning, and can be used to cause
serious damage to people and institu-
tions. Attackers break into systems in
general because they are looking for
information; privacy is an extension of
what CSIRTs have been doing as part of
their jobs.

Identity theft is turning into one of the
most prevalent crimes of this century.
Criminals need anonymity (in the form
of an identity other than their own), and
stealing an existing identity that has a
history is much more useful to them
than creating a fake identity, which can
be found to have “popped into exis-
tence” recently and can therefore be
flagged as fake. This has implications
beyond someone losing money from a
stolen credit card, and we can expect
civil and criminal liabilities for
“enablers.”

As the concept of “computer security”
has evolved to “information security”
and then to “privacy,” the people respon-
sible for working on securing that infor-
mation have grown to include not only
sysadmins, but also CIOs and, finally,
individuals, who must safeguard their
own information. There is a plethora of
laws affecting privacy at the national and
local levels.

The author suggested four basic cate-
gories (a taxonomy) of privacy breaches:

= Malicious attack: often preceded by
security breach

» Process breakdown: security
processes fail to protect

» Human or system error: not mali-
cious, but still damaging

» Other

The following item apparently appeared
on Slashdot the day of the presentation:
The Palo Alto Unified School District
had a wireless network which was not
secured properly. A reporter for the Palo
Alto Weekly parked in the parking lot
and was able to pick up, for each stu-
dent, full names and addresses, pictures,
and in one case a psychological evalua-
tion. While this could be characterized
as a malicious attack, in fact errors in
system configuration made the task of
obtaining this information trivial.

The speaker described several more pri-
vacy breach cases, including one in
which used computers were sold with
their disks incompletely wiped, so that
personal information about hospital
patients (for example) was compro-
mised.

Recommendations: Be prepared for the
implications of privacy breaches. Apply
not only deductive reasoning (what hap-
pened to cause this breach?), but also
inductive reasoning (anticipating the
impact of information loss).

HoNEYNETS AppLIED TO THE CSIRT
SCENARIO

Cristine Hoepers, Klaus Steding-Jessen,
and Antonio Montes, NIC BR Security
Office, Brazil

The Brazilian CSIRT set up a honeynet
with the objectives of monitoring cur-
rent attacks and intrusions, collecting
data about opportunistic (“script-kid-
die”-type) activity, developing new
tools, and evaluating the usefulness of
honeynets to CSIRTs. Requirements for
the honeynet included low cost and reli-
ability, as well as a high-quality data
control mechanism. The team also
wanted to make sure that it could pre-
vent the use of the honeynet as a launch-
ing platform to attack other sites.
Therefore, free software was used, and
data was stored in “libpcap” format to
facilitate its analysis with existing tools.

Vol. 28, No. 5 jlogin:

This team’s honeynet started operations
in late March 2002.

The honeynet’s topology includes an
administrative network, whose func-
tions are to prevent outgoing attacks, to
log activity, and to store artifacts and
disk images of the honeypots. The hon-
eypot segment includes several honey-
pots running different OSes.

Technologies used to control outgoing
data (to prevent attacks from within the
honeynet) include firewall rules (e.g., to
block spoofed packets), outgoing traffic
normalization (to discard invalid pack-
ets), a tool called “sessionlimit” (which
can limit outgoing traffic based on fairly
sophisticated state-based rules), band-
width limitation to prevent DoS attacks
from the honeynet, and an outgoing fil-
ter (“hogwash”) to block traffic based on
contents. Alerts and summaries are pro-
duced to report on activity in the hon-
eynet.

Activities seen in the past year included
lots of IRC traffic, a lot of worm activity
(some new worms were captured), and
denial-of-service attempts. Several new
rootkits and exploit tools were captured.
Statistics were produced on the top
scanned ports (FTP, SSH, Telnet, and
portmap were at the top). Also, many
scans for open relays and open proxies
were seen on ports 25, 1080, 3128, and
8080.

Worm activity concentrated on ports 80,
443, and 1433. There is still a lot of
Nimda and Code Red activity, which
means that many compromised hosts
are still active!

The origin of the problematic traffic was
graphed by country; for most cases, the
US was at the top, though not in as large
proportion as the US’s presence on the
Net. Back-door access and language of
IRC conversations point to Romania as a
major source of malicious activity.

October 2003 ;login:

By maintaining a honeynet, a CSIRT can
provide an additional source of data to
help understand what’s going on in a
particular set of incidents, and can pin-
point and notify compromised machines
of constituents if they show up in the
honeynet logs. This work is also a great
source of training material for log and
artifact analysis and forensic methods,
and can be used to capture attack tools
that would otherwise be only in the vic-
tim host’s memory, since it is possible to
capture full network traffic on the hon-
eynet.

AN INTERNET ATTACK SIMULATOR USING THE
EXTENSIONS OF SSFNET

Eul-Gyu Im, Jung-Taek Seo, and Cheol-
Won Lee, National Security Research
Institute, Republic of Korea

Because of the increase in Internet
attacks, there is great demand for
research on them and their effects. How-
ever, it is not always possible to study the
attacks on a production network, for
obvious reasons. This is why network
simulators are useful.

SSFNet (Scalable Simulation Frame-
work, network module) is a freely avail-
able network simulation tool which has
a process-based discrete event-oriented
kernel. The authors added extensions to
SSFNet: a firewall and a packet manipu-
lator. They then performed experiments
with this setup; for example, they simu-
lated a “smurf” attack in a network of
13,000 clients, 40 servers, and 270
routers, and were able to show the
degradation of ping response times as a
function of the number of subnets par-
ticipating in the attack; it turns out that
response times degrade drastically when
12 or more subnets are involved in the
attack.

PoLicy-BASED CONFIGURATION OF
DisTrRIBUTED IDS

Olaf Gellert, Presecure Consulting
GmbH, Germany

IDS is a security component which
monitors system events for unwanted
behavior, using the following methods:

= Anomaly detection: As a first step,
the IDS gathers statistics about
normal behavior, and as a second
step, it generates alerts on unusual
behavior.

» Misuse detection: The IDS com-
pares events against patterns of
known attacks.

There are different kinds of sensors:

m Network sensors (NIDS) are com-
ponents which inspect network
traffic. One sensor per subnet is
needed, and there is no feedback
from hosts.

» Host sensors (HIDS) require one or
more sensors (one per host), but
they permit direct access to infor-
mation.

An IDS also needs analyzing compo-
nents to collect the data from the sen-
sors, to take action on logged data, and
to compile statistics. Management con-
soles are the front-end for visualization
of logged data.

All IDSes suffer from false positives, false
negatives, and often offer no explanation
of an anomaly. With distributed IDSes, a
large amount of generated data adds up:
It’s important to correlate all alerts for
one attack into one single alert. With
lots of sensors, the problem of configur-
ing all those sensors becomes significant.

There is a diversity of different specifica-
tion formalisms used for the configura-
tion of IDSes, and different types
describe different events. There are also
configuration differences, even among
several sensors of the same type,
depending on their placement. In addi-
tion, anomaly-based sensors require fre-

15TH ANNUAL FIRST CONFERENCE:

CONFERENCE REPORTS

69

70

quent updates to their attack-recogni-
tion signatures.

There are several possible solutions to
this configuration complexity, including
some unacceptable solutions such as
using only one vendor and/or only one
type of sensor. There have been attempts
to specify a single configuration lan-
guage for all types of sensors, but this
does not solve the problem of different
configurations being required based on
each sensor’s placement within the net-
work. The speaker suggested a solution:
specify only a policy and generate rules
automatically based on this policy.

The policy description suggested con-
tains users, hosts, services, access by
source/destination, and restrictions
based on these combinations. In addi-
tion, one needs a database of rule sets to
describe known attacks (for signature-
based IDSes), a database of assets (exist-
ing systems, installed software), and a
network topology database of some kind
(not implemented yet).

A policy is used to generate a rule out-
line (a description of allowed services),
based on which we use the asset data-
base to generate rule specifications for
each IDS based on their placement.
Finally, we use the contents of the signa-
ture database (where applicable) to gen-
erate particular rules for each sensor. We
can also set the severity for sets of
events: for example, distinguishing
between “alert for this event” and “just
collect stats on this event.”

The results of this work suggest that it is
possible to configure all sensors cen-
trally. Specific rules for each sensor
reduce the number of false positives, and
we see improved accuracy on the sever-
ity of alerts; it becomes easier to update
the rules. A side benefit is that the assets
database can be used for other purposes.

The maintenance of the asset database
takes time, though this maintenance

could be supported by automatic
processes, using the output of the IDS,
for example, or using scanning tools.
Actual updates might still require man-
ual confirmation, as might the signature
database, though in that case the IDS
vendors can help. Some unresolved
problems: how to update rules without
restarting sensors? how to introduce
advanced topology information?

The status of this work: A tool to config-
ure [Ptables and Cisco access lists now
exists (written in awk), and nearly com-
pleted work in object-oriented Perl is
being done for handling subset-of-pol-
icy objects.

THE STEALTH FILE INTEGRITY CHECKER
Frank Brokken, University of
Groningen, the Netherlands

STEALTH (SSH-based Trust Enforce-
ment Acquired through a Locally
Trusted Host) is a file integrity scanner
that has the advantage of being stealthy.

STEALTH’s mission is to ensure the
security of our computers (integrity,
availability, confidentiality of informa-
tion stored). Intruders may modify the
integrity of the information on a host;
our lines of defense include denying
access when an intrusion attempt is
detected, keeping software patches up-
to-date, monitoring system logs, and,
finally, knowing when relevant informa-
tion is altered. This last is the goal of a
file integrity checker.

File integrity checkers work by creating a
“fingerprint” of the current state of a
host, then detecting modifications of
that fingerprint. The problem with the
traditional approach of storing the fin-
gerprint on the monitored computer
itself is that the fingerprint itself is
therefore vulnerable to intruders. The
usual solution, to keep this state on
read-only media, makes updating the
fingerprint difficult or costly. The solu-
tion is to store the fingerprint on
another computer, out of reach of the

intruder, but in easy reach of the sysad-
min.

The stealth “master” itself is not con-
nected to the outside Internet, but can
make SSH connections to its monitored
clients. The fingerprint is stored by the
monitor; there are no logs on the clients.

STEALTH itself uses standard software
like “find” and “md5sum,” so it is highly
flexible and adaptable. The timing of
STEALTH runs is unpredictable.
Because the actual file signature calcula-
tions occur on the client, the monitor
can be any old hardware; resource
requirements are small. STEALTH can
be obtained at ftp://ftp.rug.nl/contrib/
frank/software/linux/stealth/.

KEYNOTE

CYBER SECURITY IN CANADA
James Harlick, OCIPEP, Canada

Canada created OCIPEP (Office of Crit-
ical Infrastructure Protection and Emer-
gency Preparedness) in February 2001 to
enhance the safety and security of Cana-
dians in their physical and cyber envi-
ronments. The mandate has two
components:

» Protection of critical infrastructure:
physical and cyber components of
the energy, utilities, communica-
tions, services, safety, and govern-
ment sectors

= Emergency preparedness for all
kinds of emergencies

Currently, the critical information struc-
ture is highly interdependent and has
numerous vulnerabilities (e.g., a worm
knocked out 911 service in part of the
US because they were using VoIP).
Canada has pledged itself to be the most
connected nation on earth by 2006,
which puts its infrastructure at great
risk.

Canada’s cyber-security framework con-
tains four ways to reduce risks:

Vol. 28, No. 5 jlogin:

» Strengthen policy framework: Gov-
ernment departments and agencies
are required to report cyber-threats
and incidents to OCIPEP, and a
framework is created to support
information sharing and protection
among various jurisdictions.

= Enhance readiness and response:
protect (issue alerts and advi-
sories), detect (coordinate identifi-
cation and analysis), respond
(establish incident response cen-
ters), and recover (provide incident
impact analysis, technical assis-
tance).

» Build capacities: This includes
training and education (CSIRT
training, training on malicious
code analysis, IDS data analysis,
assessment of vulnerabilities) and
R&D (coordination with funding
councils of the government, direct
research projects).

» Build partnerships: It is necessary
for partnerships to be formed
internally, among the federal and
provincial governments as well as
critical infrastructure owners and
operators, and externally, with
other governments and CSIRTs.
Already there is a daily “health
check” information exchange
between OCIPEP and the
provinces, and there is a weekly
conference call with critical infra-
structure owners and operators in
the private sector.

TECHNICAL SESSIONS

MuLTI-LEVEL MONITORING AND DETECTION
SysTems (MMDS)

Madhavi Latha Kaniganti, D. Dasgupta,
J. Gomez, F. Gonzalez et al., University
of Memphis, USA

The presenter described an intrusion
detection system (MMDS) which is an
agent-based approach to monitoring
and detecting attacks. The design is a
hierarchy of specialized agents, with a
fuzzy decision support system used to

October 2003 ;login:

generate rules for attack detection. There
are four types of agent:

= Manager agent: coordinates work
and information flow.

= Monitor agent: gets information
from sensors (a monitor agent
should run on each host being
monitored).

» Decision agent: uses information to
decide what to do.

= Action agent: generates alerts and
heartbeats. There is a GUI that can
show graphs of various measured
parameters.

The decision agent, which is the heart of
the system, is based on fuzzy logic (fuzzy
sets with “degrees of set membership”
between 0 and 1). Instead of hand-coded
fuzzy rules, rules are generated automat-
ically by “training” the decision agent
with genetic algorithms, under normal
conditions and attack conditions.

Parameters monitored by MMDS
include network activity (sent and
received bytes and packets), user activity
(logins, failed logins, number of users
logged in), process information (total
number of processes, number of root-
owned processes, and number processes
in various states), system parameters
(physical and virtual memory in use),
and MAC-level network data (sequence
numbers).

Once the decision agent had been
trained to recognize three attacks (SSH
hack, nmap scan, and MAC spoofing on
a wireless network), the researchers
claimed very good results for detecting
those attacks under test conditions.

FIRE YOUR FIREWALL

Jan Meijer, Hans Trompert,
SURFnet/CERT-NL, the Netherlands
The speaker’s intention was to show that
firewalls cause more problems than they
solve (which is not to say that anyone
has the right solution). The Internet (in
2002) was composed of 11,000 networks

with 34,000 peerings, yet despite this
complexity, it works! The use of firewalls
tends to interfere with the proper func-
tioning of the Net in many ways.

Firewalls break the Internet by miscon-
figuration. For example, Path MTU dis-
covery, which permits the fragmentation
of packets where necessary so they can
reach a network with a “smaller” MTU,
depends on particular ICMP control
messages getting through — yet people
do filter them (by filtering “all ICMP”).
Other examples where a misconfigured
firewall breaks things include jumbo
frames, fragmentation, and certain
applications, such as FTP, IRC, H323,
IPSec, IPv6, and multicast.

Another reason firewalls break things is
the added complexity they introduce:
Because communication is no longer
“end-to-end,” it becomes difficult to find
errors. Things no longer “just work” a
lot of the time. The increased number of
machines, people, and procedures
involved means more opportunity for
things to go wrong.

The time spent working around firewalls
is time wasted (and sometimes work-
arounds are not available). For example,
H323 videoconferencing requires four
extra machines to work through a fire-
wall!

Firewalls are single points of failure and
will, of course, contain errors (since they
are developed using the same processes
used for other software!), and yet we
place our trust in them.

Firewalls limit network speed by creat-
ing a bottleneck: Will firewalls, especially
those which must traverse the protocol
stack, keep up as networks speed up?

Firewalls consume scarce resources by
requiring staff, equipment, time, and
money to acquire and maintain. On a
related matter, firewalls create bureau-
cracy: policy, carefully kept rules, lots of
administration.

15TH ANNUAL FIRST CONFERENCE

CONFERENCE REPORTS

71

72

Firewalls create a false sense of security:
There is usually traffic which works
around or tunnels through the firewall
(for example VPNs), and lots of traffic
on legitimate protocols (email, Web) is
still dangerous. Firewalls provide no
denial-of-service protection. Too many
configurations filter only inbound traf-
fic; in this case, a “call-back tunnel” will
get around the “problem,” and local
users do set these up. Even if there is a
firewall, it is still necessary to patch, use
end-to-end encrypted communications,
switch off unneeded services, etc., meas-
ures which are too often neglected when
there’s a firewall.

INCIDENT RESPONSE AND THE ROLE OF LAW
ENFORCEMENT

Kimberly Kiefer, Computer Crime and
Intellectual Property Section of the US
Department of Justice

The CCIPS, a 30-attorney section within
the Criminal Division of the US Depart-
ment of Justice, prosecutes computer
crime and criminal intellectual property
(IP) cases, trains and counsels agents
and prosecutors, develops policy on
computer crime and IP, provides input
on legislation, and represents the USA
on international bodies which address
computer crime and IP issues.

Security incidents are generally under-
detected and underreported. Some rea-
sons for not reporting incidents include

the fear of negative publicity and com-
petitive disadvantage, uncertainty as to
whether law enforcement is interested or
able to deal with the crime, not wanting
to “challenge” crackers, and not knowing
who to call or what is worth reporting.
The speaker reassured us that law
enforcement tries to be discrete with
information and does not seize victims’
computers; the victim does not lose con-
trol but, rather, is consulted closely. Also,
the number of law enforcement agencies
able to deal with computer crime issues
has increased at all levels in the US.

There have been some success stories —
for example, the successful prosecution
of Mafiaboy (DDoS) and the Melissa
virus author.

We are encouraged to report incidents
even if the damages do not meet the
police’s criteria for investigation, because
our incident may be linked to others,
which collectively do meet the require-
ment.

Tips on cooperating with law enforce-
ment:

m Keep detailed notes and logs,
including records that will quantify
the damages caused by the incident.

= Set up contacts with law enforce-
ment before an incident occurs.

Vol. 28, No. 5 jlogin:

Fgl\Eazis s g |

Get the Message.

Take control of your company's email gateway with ® Enterprise-scale SMTP fitering for AIX, FreeBSD, HP-UX,
PureMessage by ActiveState, the SMTP-filtering solution that Linux, and Solaris

stops up to 98% of spam, protects your network from viruses, * Precise, logical, Sieve-based policy management

AICriignees jyaur effiall policies. * Customizable anti-spam rules that leverage the open-ended

f a REGEXP- ine
See why ActiveState is a LinuxWorld Award double winner. powerota A

Visit our booth at LISA or go to www.ActiveState.com to leam ¢ Automatic or manual tuning of anti-spam technology
why PureMessage means real control of your email. * Comprehensive logging, reporting, and quarantine interfaces

W OEENCE g
o

PUREMESSAGE by ActiveState

1.866.541.3182 WWW.ACTIVESTATE.COM/PUREMESSAGE

© 2003 ActiveState Corporation. All rights reserved. ActiveState and PureMessage are trademarks of ActiveState Corporation. All other marks are property of their respective owners

CoAdvisor

coad. measurement-factory.com

let us complain.

BEFORE YOUR USERS DO

iiinhiased testing of HTTP infermediaries with hundrads of real-world and RFC-2616 iest cases.

TaeE MeasureMENT FacToRrY:

@
;login:
, []
USENIX Association

2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER

Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES
RIDE ALONG ENCLOSED

	motd
	darmohra
	kereliuk
	farrow
	haskins
	moskowitz
	mccluskey
	flynt
	turoff
	books
	usenixnews
	usenix03
	first

