
O C T O B E R 2 0 0 9 V O L U M E 3 4 N U M B E R 5

T H E U S E N I X M A G A Z I N E

The Advanced Computing
Systems Association

OPINION Musings	 2
R i k Fa R Row

sysadmIN Hey!	I	Have	to	Install	and	Maintain		
	 This	Crap	Too,	Ya	Know!	 6

T h o m a s a . L i m o n ce L L i

XFS:	The	Big	Storage	File		System	for	Linux	 10
ch R i sTo ph h e L Lwi g

Fixing	on	a	Standard	Language		
for	UNIX	Manuals	 19
k R i sTa p s Dz̆ o n s o n s

fIle systems Perspective:	Semantic	Data	Management		
	 for	the	Home	 24

B R a n D o n sa L m o n , sT e v e n w. s ch L o sse R ,
L o R R i e Fa i T h cR a n o R , a n D
g R eg o Ry R . g a n g e R

PrOgrammINg Migration	to	Multicore:	Tools	That	Can	Help	 32
Ta sn e em g . B Ru Tch

Hardware Chips	and	Static	Electricity	 42
Ru D i va n D Ru n e n

COlumNs Practical	Perl	Tools:	Scratch	the		Webapp	Itch		
	 with	CGI::Application,	Part	2	 49

Dav i D n . B L a n k- e D e L m a n

Pete’s	All	Things	Sun:		
VMware	vSphere	4	vs.	Microsoft	Hyper-V	R2	 58
pe T e R Ba e R g a Lv i n

iVoyeur:	Packet-Level,	Per-User		
Network	Access	Control	and	Monitoring	 68
Dav e J o se ph se n

/dev/random	 73
Ro B e R T g . F e R R e L L

bOOk revIews Book	Reviews	 76
e L i z a B e T h z wi ck y e T a L .

useNIx NOtes Nominating	Committee	for	2010		
	 USENIX	Board	of	Directors	 79

Summary	of	USENIX	Board	of	Directors		
Actions	 79
e L L i e yo u n g

CONfereNCes 2009	USENIX	Annual	Technical		
	 Conference	Reports	 81

Report	on	the	Workshop	on	Hot	Topics	in		
Cloud	Computing	(HotCloud	’09)	 100

Report	on	BSDCan	2009:	The	Technical		
BSD	Conference	 107

oct09covers.indd 1 9.4.09 10:19:48 AM

Upcoming Events

For a complete list of all USENIX & USENIX co-sponsored events,
see http://www.usenix.org/events.

23rd Large InstaLLatIon system admInIstratIon
ConferenCe (LIsa ’09)
Sponsored by USENIX and SAGE in cooperation with
LOPSA and SNIA

November 1–6, 2009, bALTImore, mD
http://www.usenix.org/lisa09

symposIum on Computer-Human InteraCtIon
for management of InformatIon teCHnoLogy
(CHImIt ’09)
Sponsored by ACM in association with USENIX

November 7–8, 2009, bALTImore, mD
http://www.chimit09.org/

aCm/IfIp/usenIX 10tH InternatIonaL
mIddLeware ConferenCe

Nov. 30–Dec. 4, 2009, UrbANA chAmpAIgN, IL
http://middleware2009.cs.uiuc.edu/

fIrst usenIX worksHop on sustaInabLe
InformatIon teCHnoLogy (sustaInIt ’10)
Co-located with FAST ’10

febrUAry 22, 2010, SAN JoSe, cA
http://www.usenix.org/sustainit10
Submissions due: November 9, 2009

8tH usenIX ConferenCe on fILe and storage
teCHnoLogIes (fast ’10)
Sponsored by USENIX in cooperation with ACM SIGOPS

febrUAry 23–26, 2010, SAN JoSe, cA
http://www.usenix.org/fast10

3rd usenIX worksHop on Large-sCaLe
eXpLoIts and emergent tHreats (Leet ’10)
Co-located with NSDI ’10

AprIL 27, 2010, SAN JoSe, cA
http://www.usenix.org/leet10
Submissions due: February 25, 2010

2010 Internet network management
worksHop (Inm ’10)
Co-located with NSDI ’10

AprIL 27, 2010, SAN JoSe, cA
http://www.usenix.org/inm10
Paper registration due: November 30, 2009

7tH usenIX symposIum on networked systems
desIgn and ImpLementatIon (nsdI ’10)
Sponsored by USENIX in cooperation with ACM SIGCOMM and
ACM SIGOPS

AprIL 28–30, 2010, SAN JoSe, cA
http://www.usenix.org/nsdi10

2nd usenIX worksHop on Hot topICs In
paraLLeLIsm (Hotpar ’10)

JUNe 14–15, 2010, berkeLey, cA
http://www.usenix.org/hotpar10
Submissions due: January 24, 2010

2010 usenIX annuaL teCHnICaL ConferenCe
(usenIX ’10)

JUNe 23–25, 2010, boSToN, mA
http://www.usenix.org/usenix10
Submissions due: January 11, 2010

usenIX ConferenCe on web appLICatIon
deveLopment (webapps ’10)

JUNe 23–25, 2010, boSToN, mA
http://www.usenix.org/webapps10
Submissions due: January 11, 2010

19tH usenIX seCurIty symposIum
(usenIX seCurIty ’10)

AUgUST 11–13, 2010, wAShINgToN, Dc

9tH usenIX symposIum on operatIng systems
desIgn and ImpLementatIon (osdI ’10)

ocTober 4–6, 2010, vANcoUver, bc, cANADA

oct09covers.indd 2 9.4.09 10:19:48 AM

; LO G I N : O c tO b e r 20 0 9 A rtI cLe t ItLe 1

contents

Ed i to r
Rik Farrow
rik@usenix.org

M a n agi n g Ed i to r
Jane-Ellen Long
jel@usenix.org

Co p y Ed i to r
Steve Gilmartin
proofshop@usenix.org

pro d u C t i o n
Jane-Ellen Long
Casey Henderson
Jennifer Peterson

t y pEsE t t Er
Star Type
startype@comcast.net

usEn i X a ss o Ci at i o n
2560 Ninth Street,
Suite 215, Berkeley,
California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

http://www.usenix.org
http://www.sage.org

;login: is the official
magazine of the
USENIX Association.

;login: (ISSN 1044-6397) is
published bi-monthly by the
USENIX Association, 2560
Ninth Street, Suite 215,
 Berkeley, CA 94710.

$90 of each member’s annual
dues is for an annual sub-
scription to ;login:. Subscrip-
tions for nonmembers are
$125 per year.

Periodicals postage paid at
Berkeley, CA, and additional
offices.

POSTMASTER: Send address
changes to ;login:,
USENIX Association,
2560 Ninth Street,
Suite 215, Berkeley,
CA 94710.

©2009 USENIX Association

USENIX is a registered trade-
mark of the USENIX Associa-
tion. Many of the designations
used by manufacturers and
sellers to distinguish their
products are claimed as trade-
marks. USENIX acknowledges
all trademarks herein. Where
those designations appear in
this publication and USENIX
is aware of a trademark claim,
the designations have been
printed in caps or initial caps.

V O L . 3 4 , # 5 , O c t O b e r 2 0 0 9

OPINION Musings 2
r I k FA r rOw

sysadmIN Hey! I Have to Install and Maintain
This Crap Too, Ya Know! 6
t h O m A s A . L I m O N ce L L I

XFS: The Big Storage File System for Linux 10
ch r I stO ph h e L LwI G

Fixing on a Standard Language
for UNIX Manuals 19
k r I stA p s Dz̆ O N s O N s

fIle systems Perspective: Semantic Data Management
for the Home 24
b r A N D O N sA L m O N , st e v e N w. s ch L O sse r ,
L O r r I e FA I t h cr A N O r , A N D
G r eG O ry r . G A N G e r

PrOgrammINg Migration to Multicore: Tools That Can Help 32
tA sN e em G . b ru tch

Hardware Chips and Static Electricity 42
ru D I vA N D ru N e N

COlumNs Practical Perl Tools: Scratch the Webapp Itch
with CGI::Application, Part 2 49
DAv I D N . b L A N k- e D e L m A N

Pete’s All Things Sun:
VMware vSphere 4 vs. Microsoft Hyper-V R2 58
pe t e r bA e r G A Lv I N

iVoyeur: Packet-Level, Per-User
Network Access Control and Monitoring 68
DAv e J O se ph se N

/dev/random 73
rO b e r t G . F e r r e L L

bOOk revIews Book Reviews 76
e L I z A b e t h z wI ck y e t A L .

useNIx NOtes Nominating Committee for 2010
USENIX Board of Directors 79

Summary of USENIX Board of Directors
Actions 79
e L L I e yO u N G

CONfereNCes 2009 USENIX Annual Technical
Conference Reports 81

Report on the Workshop on Hot Topics in
Cloud Computing (HotCloud ’09) 100

Report on BSDCan 2009: The Technical
BSD Conference 107

Login_articlesOCTOBER_09_final.indd 1 9.4.09 12:02:29 PM

2 ; LO G I N : vO L . 3 4, N O. 5

R i k F a R R o w

musings
Rik is the Editor of ;login:.

rik@usenix.org

I c a n s e e d a r k , o m I n o u s c l o u d s
out my office window. It’s been unusu-
ally dry here, although not nearly as dry as
Robert Ferrell’s home base, San Antonio.
Perhaps the clouds I see will produce some
much needed rain.

But it’s not rain clouds, or the lack of them, that
has sysadmins concerned these days. Instead, it’s
cloud computing that worries many. Cloud com-
puting appears to be storming over the IT world,
replacing local servers with ones somewhere “out
there.” If cloud computing takes over, many fear
another wave of sysadmin job losses.

Appropriate use of cloud computing can save
money as well as be more energy efficient. And,
since it’s the latest buzzword, every boss is won-
dering when his IT department will move “into the
cloud,” if only so that he can tell his golfing bud-
dies about it.

I have my own worries about cloud computing,
concerns over the security of data that will be
stored and processed in the cloud. And I am not
alone, either.

HotCloud

The HotCloud workshop summaries are included
in this issue. I suggest reading these excellent sum-
maries, in particular the report of the panel dis-
cussion in which Stefan Savage discusses some
security concerns. Savage, like many others,
pointed out that data stored off-site gets different
US legal treatment from data stored on premises.
A subpoena, something a judge must approve, may
be required for access to some data stored off-site
(Stored Communications Act [1]). Unless a cloud
provider can guarantee that data will not be stored
outside of the EU, and particularly not in the US,
European Union users cannot use that cloud pro-
vider to store any confidential data.

Savage also pointed out that unless you are using
Infrastructure as a Service (IaaS), you are relying
on the cloud provider for privacy, storage availabil-
ity, integrity, durability, and retention limits. Sav-
age told of a cloud provider that lost client data,
and the client had no recourse for the recovery of
that data or for damages due to its loss.

Before I read the HotCloud summary, someone I
know asked about the security of cloud comput-
ing and I came up with a different set of concerns.
First, when you run your own servers, you con-

Login_articlesOCTOBER_09_final.indd 2 9.4.09 12:02:29 PM

trol (or fail to control) the physical security of your servers. You have access
to network infrastructure, file and backup storage, and servers themselves.
Physical security is the base for computer security, and cloud computing
turns this over to someone else.

You might be thinking that won’t be a problem. After all, cloud server farms
do have physical security, and will in many cases be able to arrange for bet-
ter physical security than your organization could afford. But this brings
about another dark idea. You do not get to hire the people running the cloud
server farm, including those whose job it is to replace dead servers or drives
in the hot, noisy racks.

You also lose the ability to monitor and log network traffic outside the
hosted “server.” Even if you don’t routinely log traffic, you probably have had
to do it when debugging a server on which performance suddenly dropped
for no apparent reason. Running a tool like Argus [2] to collect connection
logs is not only a good debugging tool, but also great for security audits. But
in the cloud you have to hope your provider will do this for you. Right. A
good cloud provider will keep logs, but sharing them with you will be diffi-
cult, because those logs reveal information about other hosted servers.

And your firewall will be included within the server, not outside it. You
likely remember the mantra security in depth, but you no longer have an
outside where you can put the firewall. An attacker who can elevate privi-
leges can delete all logs (or perhaps just rm -rf everything), and you will no
longer have a second source of logs outside the affected server. Unless you
wisely have been saving logs locally, and not in the cloud, you will have lost
your logs as well.

While few sites perform real forensics after an incident, your ability to look
at drives after an incident will be gone too. Even if you want to find those
deleted log files, one of the easiest things to do with disk forensics tools such
as Sleuthkit [3], your deleted files really will be gone.

Even the little blinky lights on networking equipment that let you know that
there are still packets reaching your server will be gone.

Virtual World

Servers in the cloud are hosted with other servers, sitting on top of VMs.
The vendors of virtual machine monitor (VMM) solutions do their best to
prevent exploits that can escape the boundaries of the virtual machine into
the VMM, but it has happened. I just learned of an incident last week where
a hosted server was properly secured, but another hosted server on the same
hardware was exploited. The attacker then exploited the VMM and wiped
all the other systems hosted under it, including the one properly secured.
Of course, there are no disks handy where someone could perform forensics
and prove this, but my acquaintance has been kicked out by his hosting pro-
vider for “attracting trouble.”

Most server hardware today runs Intel or AMD processors, and these pro-
cessors were not designed with virtualization in mind. These processors
do have extensions to support virtualization, but these are for performance
more than security. Real hardware support for virtual machines means that
virtual machines are segregated using hardware beyond the memory man-
agement mechanisms (MM) used today. MM was designed to segregate pro-
cesses, not virtual machines, but this is how it is being used today.

I published a column about virtualization security one year ago [4], and that
column is still good reading today.

; LO G I N : O c tO b e r 20 0 9 musI N Gs 3

Login_articlesOCTOBER_09_final.indd 3 9.4.09 12:02:29 PM

4 ; LO G I N : vO L . 3 4, N O. 5

Virtualization certainly has its place. But if you care about the confidentiality
of your data or are legally required to provide auditable, secure data store,
you should not be moving into the cloud.

The Lineup

We start this issue with an article by Tom Limoncelli about software. Well,
not quite, as Tom expounds on design decisions that fail to take into consid-
eration installation, debugging, and maintenance as they affect the system
administrators who manage this software.

Christoph Hellwig describes XFS, one of the file systems supported by
Linux versions. During FAST ’09, I overheard someone asking a Linux ven-
dor why there needed to be more than one file system type, and I felt more
than a little embarrassed. Hellwig explains how XFS is different from the
default Linux file systems and when it should be used, and he provides some
performance graphs to back up his assertions.

Kristaps Džonsons makes a strong case for creating better documentation.
Džonsons says that mdoc comes closest to meeting his set of criteria for
good documentation. He includes both syntactic regularity and semantic en-
capsulation, so that machines can interpret data and so that the documenta-
tion also works better for its human users.

Brandon Salmon and his co-authors have also written about file systems
but take a very different perspective from Hellwig’s. Salmon points out that
users look at file systems very differently from the way software engineers
and sysadmins do. iTunes, for example, groups music in its GUI very differ-
ently from how it lives in the hierarchically organized file systems where the
data is actually stored. Perspective, their project, leverages semantic informa-
tion for data management for home systems that includes intelligent file mi-
gration and backup.

Tasneem Brutch has written a survey of tools useful for compiling, profiling,
and debugging programs destined for multicore systems. Parallel program-
ming is hard, but there are a growing number of tools designed to make the
task easier; Brutch does a great job of covering available tools, both open
source and commercial.

Rudi Van Drunen continues his hardware series by discussing the trouble
with static. Did you know that before you can even feel a static discharge the
voltage has reached 3,000 volts? Rudi explains the sources of static, graphi-
cally shows the effects of static when frying microscopic circuitry, then cov-
ers countermeasures.

David Blank-Edelman completes his exposition of the Perl Web application
framework, CGI::Application, begun in the August issue. He certainly makes
things look easy.

Pete Galvin has written an extensive comparison of two new virtualization
systems, VMware vSphere and Microsoft’s Hyper-V (release 2). Pete, who has
previously compared different Solaris-specific forms of virtualization [5],
does a thorough job of comparing these two new offerings.

Dave Josephsen reveals a solution to authorized access using OpenVPN,
OpenLDAP, and PF that he built in-house with a coworker. You can find
the sources for the glue that makes this very cool system work in the online
;login: at http://www.usenix.org/publications/login/2009-10/.

Robert Ferrell appears to be just as fond of cloud computing as I am, but has
a very different manner of expressing his feelings.

Login_articlesOCTOBER_09_final.indd 4 9.4.09 12:02:30 PM

; LO G I N : O c tO b e r 20 0 9 musI N Gs 5

Elizabeth Zwicky has reviewed the second edition of David Blank-Edelman’s
Automating System Administration with Perl in her usual style. She also de-
scribes a second book, on leadership, as “mostly painless.” Then Dave Jo-
sephsen covers a book on the Android programming environment, followed
by Brandon Ching on a book on OpenSolaris.

For summaries, we begin with the 2009 Annual Technical Conference, fol-
lowed by the excellent summary of HotCloud written by Alva Couch and
Kiran-Kumar Muniswamy-Reddy. Finally, we were fortunate to get some
summaries from BSDCan, compiled by Royce Williams.

Those dark clouds I was watching never did produce any rain, unfortu-
nately. And I suspect that everyone rushing into cloud computing will look
back in one or two years and wonder why they were so eager to put most of
their IT infrastructure, and precious data, into the cloud.

referenCes

[1] EFF on the Stored Communications Act: http://ilt.eff.org/index.php/
Privacy:_Stored_Communications_Act.

[2] Argus network audit and analysis: http://www.qosient.com/argus/.

[3] Sleuthkit and Autopsy open source forensics tools: http://www.sleuthkit
.org/.

[4] Rik Farrow, “Musings,” ;login:, October 2008, vol. 33, no. 5: http://
www.usenix.org/publications/login/2008-10/openpdfs/musings.pdf.

[5] Peter Galvin, “Solaris Virtualizations,” ;login:, April 2009, vol. 34, no. 2:
http://www.usenix.org/publications/login/2009-04/pdfs/galvin.pdf.

Login_articlesOCTOBER_09_final.indd 5 9.4.09 12:02:30 PM

6	 ; LO G I N : 	VO L . 	3 4, 	N O. 	5

T h o m a s a . L i m o n c e L L i

Hey! I have to install
and maintain this
crap too, ya know!
Thomas A. Limoncelli has written or co-written
four books, including Time Management for System
Administrators (O’Reilly) and The Practice of System
and Network Administration (Addison-Wesley). He is
a system administrator at Google in NYC and blogs
at http://EverythingSysadmin.com.

tal+usenix@everythingsysadmin.com

A s u r e s i g n t h At s y s A d m i n s A r e
misunderstood and undervalued is that
many otherwise great products are difficult
to install, maintain, or troubleshoot. Any
sysadmin can tell if the installation pro-
cess was designed as an afterthought. Any
sysadmin can point to a variety of . . . I’ll be
polite and say “design decisions” that make
a product difficult to install or completely
and utterly impossible to troubleshoot.

A person purchasing a product is focused on the
features and benefits and the salesperson is focused
on closing the deal. If the topic of installation does
come up, a user thinks, “Who cares! My sysadmin
will install it for me!” as if such services are free.
Ironically, it is the same non-technical executive
who dismisses installation and upkeep as if they
are “free” who might complain that IT costs are too
high and go on a quest to kill IT spending. But I
digress.

Installation Woes

I can understand why a product might be difficult
to install. It is hard enough to write software, and
with the shortage of software developers it seems
perfectly reasonable that the installation script be-
comes an afterthought, possibly given to a low-
ranking developer. The person purchasing the
product usually requires certain features, and ease
of installation is not a consideration during the
procurement process. However, my ability to install
a product affects my willingness to purchase more
of the product.

At a previous job, we were able to massively deploy
SGIs because their IRIX operating system installa-
tion could be automated. This made it a no-brainer
to encourage use of SGIs. When SGI announced
they were moving to the Windows operating sys-
tem, our first question was whether our fully au-
tomated Windows installation system [1] could be
adapted to their new hardware. We were told in no
uncertain terms that this would not be possible for
technical reasons related to their custom firmware.
We never purchased any of those machines. While
SGI’s collapse can’t be attributed to this one mis-
step, it did seem to be a symptom of a company
that was losing touch with its customers.

Login_articlesOCTOBER_09_final.indd 6 9.8.09 1:23:09 PM

; LO G I N : O c tO b e r 20 0 9 h e y ! I h Av e tO I N stA LL A N D m A I NtA I N th I s cr A p tO O, yA k N Ow ! 7

Maintenance

Ongoing maintenance and upkeep have similar issues. There have been
misguided attempts at making UNIX system administration easier by add-
ing GUIs. A GUI is not automatically easier than command-line tools. Some
GUIs get in the way. IBM famously layered a complicated set of commands
on top of AIX and layered a complicated GUI on top of that. However, they
did two things right. First, their “please wait” icon was adorable. Second,
when selecting an action one could always press a function key to reveal
the shell command line that was about to be executed. If you had to make
the same change on 1,000 machines you did not have to mouse through
the same clicks 1,000 times. You simply revealed the command and wrote a
shell script to run that command on each machine. Much better.

Although I have not directly used ZFS, I am in awe of the attention paid to
making the command line so simple [2]. It takes many times more effort to
make a command do the right thing all the time than to simply add more
options that an experienced sysadmin will know when to use. Similarly,
anyone can add a new button to a GUI, but it takes serious investment of re-
sources to improve the system so that the new button isn’t needed.

Perfect Products

I’ve talked with product managers about why their product is the speed-
bump that slows me down when troubleshooting a problem that is buried
in a network of 150 devices from 15 different companies. In the old days
vendors would tell us, “That’s why you should buy everything from one ven-
dor—us!” In today’s multi-platform arena we’re told, “Our goal is to make
our product so easy to use you don’t need to debug it.”

I’m sure that last sentence made you cringe. You get it.

Even a bug-free product requires the ability to troubleshoot problems, be-
cause the problems may not be directly related to that product. Imagine an
Ethernet switch that is operating perfectly but a user’s workstation is not
seeing any network connectivity. The ability for a sysadmin to be able to
check the status of the connection and verify settings is important in trou-
bleshooting problems like this. Why would anyone make this task difficult?
Ah yes, I remember what the product manager said. If the product is perfect
it doesn’t need troubleshooting.

I’ve explained to product managers that GUIs are bad when they prevent the
basic principles of system administration: change management, automated
auditing, backups, and unfettered troubleshooting. We have practices and
methodologies we need to implement! Don’t get in our way!

The more enlightened product managers understand that the easier it is to
automate the installation of their product, the easier it is for me to buy a lot
of their product. The more enlightened product managers understand that
an ASCII configuration file can be checked in to Subversion, audited by a
Perl script, or even generated automagically from a makefile. Sadly, those
product managers are rare.

One would think that companies would be investing millions of dollars in
research to make sure their products are beloved by sysadmins. This, how-
ever, can become a fool’s errand.

It costs a lot of money to add features to make a product exceptionally easy
to install, maintain, and troubleshoot. In fact, these features may be more
difficult than features of the product itself. There are more edge cases and

Login_articlesOCTOBER_09_final.indd 7 9.4.09 12:02:30 PM

8 ; LO G I N : vO L . 3 4, N O. 5

strange situations one must plan for. One may have a good relationship with
the direct users of the software, but with the sysadmin organization hidden
behind them? That’s a lot to ask for. A product manager is expected to know
a lot about a product and the industry that uses the product, but knowledge
of sysadmin change management, auditing, backups, and such? How can we
expect them to know such things when the sysadmin community finds itself
at a loss for common terminology and design patterns?

A company could go out of business spending time on these features with
very little payback. Enabling software so that a sysadmin can maintain zil-
lions of installations requires specialized expertise, which is expensive to
acquire. Scaling software to meet the needs of a single large customer has
little payback, especially when such effort could go toward features that at-
tract new customers with less elephantine needs. Spending resources there
while your competitor spends money on slick color schemes and spinning
icons leads to bankruptcy. In the security world this results in a marketplace
where shoddy products are common and the truly great products can’t get
started [3].

Such features do pay off when customers pay attention to the total cost of
ownership (TCO), especially as part of the purchase process. A product that
saves money in one area but costs more in maintenance is soon detected
when TCO is the focus. The truth is that for most products, operations are
more expensive than acquisition. We buy a product once, but it runs hun-
dreds, if not millions, of times. The cost of a hard disk is 20 percent of the
cost of providing storage. The remaining 80 percent is consumed by control-
lers, backup systems, backup media, and other often hidden costs [4].

These operations would be less expensive if product houses could rely on a
couple of basic rules of thumb or design patterns to carry them through the
process. Shrink-wrapped software already benefits from this: By using com-
mon installers they leverage years of experience in getting installation right.
As a bonus, commercial software installer kits have APIs to permit auto-
mated installs. Open source systems benefit from the user of Autoconf [5]
and similar systems.

The solution is more research. More published research will result in a
broader array of solutions. It enlarges our toolbox. It makes the world a bet-
ter place.

I like to think that somewhere out there is a group of researchers studying
this kind of thing. I imagine that they find sysadmins who volunteer to be
videotaped as they do their job. I imagine the researchers (or their gradu-
ate students) poring over those tapes as they try to understand our strange
ways. I imagine Dian Fossey studying not Gorillas in the Mist but Sysad-
mins at the Keyboard.

These researchers do exist.

I’ve seen them.

For the past two years they’ve met and exchanged ideas at a conference
called CHIMIT (Computer-Human Interaction for Management of IT).

Some of them actually videotape sysadmins and examine what is it about
products that makes our jobs more difficult and what makes them better.

My favorite moment was watching a researcher describing his observation of
a sysadmin during the heat of a real outage. The sysadmin closed the fire-
wall’s GUI and connected to the command-line interface twice, each time in
a different window. In one the sysadmin kept repeating a command to out-
put some debugging information. In the other he typed commands to fix the

Login_articlesOCTOBER_09_final.indd 8 9.4.09 12:02:30 PM

; LO G I N : O c tO b e r 20 0 9 h e y ! I h Av e tO I N stA LL A N D m A I NtA I N th I s cr A p tO O, yA k N Ow ! 9

problems. This was something the GUI would never have let him do without
risking carpel tunnel syndrome. The researcher beamed as he explained the
paradigm we were witnessing. He sounded like he had been lucky enough to
catch the Loch Ness Monster on film, but what he had captured was some-
thing more valuable: photographic evidence of why sysadmins hate GUIs!

The person sitting next to me sighed and said, “Oh my god. Is that why no-
body uses the GUI we spend millions to develop?” I nodded and smiled. The
other sysadmins in the audience did too.

I love this conference.

These researchers study people like me and it makes the world a better
place.

More than researchers attend. Sysadmins make up a large part of the audi-
ence.

The organizers point out that the conference is “an emerging area intersect-
ing the practice and science of systems management, human computer in-
teraction, and service sciences.” They welcome participation from all these
diverse fields.

This year CHIMIT will be in Baltimore, MD, November 7–9, immediately
following LISA ’09, which by an amazing coincidence is also in Baltimore,
MD, on November 1–6.

Mark the dates on your calendar. See http://www.chimit09.org (and, of
course, http://www.usenix.org/lisa09) for more information.

Will you be there? I know I will.

referenCes

[1] Fullmer and Levine, “AutoInstall for NT: Complete NT Installation Over
the Network”: http://www.usenix.org/publications/library/proceedings/
lisa-nt98/fulmer.html.

[2] Sun Microsystems, “Solaris ZFS: Simplified Administration”: http://
www.sun.com/software/solaris/ds/zfs.jsp#4.

[3] Schneier, B., “A Security Market for Lemons,” April 2007: http://
www.schneier.com/blog/archives/2007/04/a_security_mark.html.

[4] Thomas A. Limoncelli, Christina J. Hogan, Strata R. Chalup, The Practice
of System and Network Administration, 2nd edition (Addison-Wesley Profes-
sional, 2007), Chapter 25.

[5] GNU Project, Free Software Foundation, Autoconf: http://www.gnu.org/
software/autoconf/.

Login_articlesOCTOBER_09_final.indd 9 9.4.09 12:02:30 PM

10 ; LO G I N : vO L . 3 4, N O. 5

c h R i s T o p h h e L L w i g

XFS: the big
storage file
 system for Linux
Christoph Hellwig is a freelancer providing
consulting, training, and, last but not least,
contract programming for Linux storage and
file systems. He has been working on Linux
file systems since 2001 and is one of the
most widely known developers in this area.

hch@lst.de

X F s I s a F I l e s y s t e m t h at w a s d e -
signed from day one for computer systems
with large numbers of CPUs and large disk
arrays. It focuses on supporting large files
and good streaming I/O performance. It also
has some interesting administrative features
not supported by other Linux file systems.
This article gives some background infor-
mation on why XFS was created and how it
differs from the familiar Linux file systems.
You may discover that XFS is just what your
project needs instead of making do with the
default Linux file system.

BaCkground and HIsTory

For years the standard Linux file system was ext2,
a straightforward Berkeley FFS derivative. At the
end of the 1990s, several competitors suddenly ap-
peared to fill the gap for a file system providing
fast crash recovery and transactional integrity for
metadata. The clear winner in mainstream Linux is
ext3, which added journaling on top of ext2 with-
out many additional changes [7].

XFS has been less well known to many average
Linux users but has always been the state of the art
at the very high end. XFS itself did not originate on
Linux but was first released on IRIX, a UNIX vari-
ant for SGI workstations and servers, in December
1994, almost 15 years ago. Starting in 1999, XFS
was ported to Linux as part of SGI’s push to use
Linux and Intel’s Itanium processors as the way
forward for its high-end supercomputing systems.
Designed from the start for large multiprocessor
systems and disk arrays [1] rather than for small,
single-disk consumer workstations, it was for a
long time positioned above the mainstream Linux
market. Today even low-end workstations with a
small number of CPU cores and disks come close
to the limits of ext3 (see Table 1). While there is
another adaption of the FFS concept called ext4
under development to mitigate these limits to a cer-
tain extent, it seems as though basic FFS design is
close to maxed out.

To address these limits, ext3 is evolving into ext4
by incorporating features pioneered by XFS such
as delayed allocations and extents. Even with these
improvements taking the basic FFS design as far
as it can go, it is difficult to match the scalability
limits of XFS, which has been designed for large
storage systems from day one. In a few years, btrfs,
a new file system initiated by Oracle, will mature
from development status to hopefully become the

Login_articlesOCTOBER_09_final.indd 10 9.4.09 12:02:30 PM

; LO G I N : O c tO b e r 20 0 9 XFs : th e b I G stO r AG e F I Le system FO r L I N uX 11

new standard file system. As a new design that includes advanced manage-
ment and self-healing features, btrfs will compete heavily with XFS on the
lower end of the XFS market, but we will have to see how well it does on the
extreme high end.

Today XFS is used by many well-known institutions, with CERN and Fer-
milab managing petabytes of storage for scientific experiments using XFS,
and kernel.org serving the source code to the Linux kernel and many other
projects from XFS file systems.

Limit ext3 ext4 XFS

max file system size 16 TiB 16 TiB 16 EiB

max file size 2 TiB 16 TiB 8 EiB

max extent size 4 kiB 128 MiB 8 GiB

max extended attribute size 4 kiB 4 kiB 64 kiB

max inode number 232 232 264

(All numbers assume the maximum 4 kiB block size on x86 Linux systems.)

t a b L e 1 : F i L e s y s t e m L i m i t s F O r X F s , e X t 3 a n d e X t4

space allocation and Management

Each XFS file system is partitioned into regions called allocation groups
(AGs). Allocation groups are somewhat similar to the block groups in ext3,
but AGs are typically much larger than block groups and are used for scal-
ability and parallelism rather than disk locality. Allocation groups are typi-
cally sized between 0.5 and 4 gigabytes and keep the size of the XFS data
structures in a range where they can operate efficiently and in parallel [2].

Historical UNIX file systems, including ext3, use linear bitmaps to track free
space, which is inefficient especially for larger contiguous allocations. XFS
instead uses a pair of B+ trees in each allocation group. Each entry in the B+
tree nodes consists of a start block and length pair describing a free-space
region. The first B+ tree is indexed by the starting block of the free region,
and the other is indexed by the length of the free region. This double index-
ing allows the allocator to consider two goals for new data placement: local-
ity to existing file data, and best fit into free space.

A similar extent concept is used for tracking the disk blocks assigned to
each file. In addition to the start block on disk and the length of the con-
tiguous range, the extent descriptor also contains two additional fields. The
first one is the logical offset into the file, which allows for efficient sparse file
support by skipping ranges that do not have blocks allocated to them. The
second one is a simple one-bit flag to mark an extent as unwritten, a concept
that will be explained later in this article.

For most files, a simple linear array of extent descriptors is embedded into
the inode, avoiding additional metadata blocks and management overhead.
For very large files or files containing many holes, the number of extents can
be too large to fit directly into the inode.

In this case, extents are tracked by another B+ tree with its root in the
inode. This tree is indexed by the offset into the file, which allows an extent
descriptor for a given file offset to be found quickly, with no linear search
overhead. Figure 1, showing the time needed to remove a large file such
as an HD video or virtual machine image, demonstrates how management
overhead can be reduced by using extents.

Login_articlesOCTOBER_09_final.indd 11 9.4.09 12:02:30 PM

12 ; LO G I N : vO L . 3 4, N O. 5

F i g u r e 1 : t i m e s p e n t r e m O V i n g a V e r y L a r g e F i L e

Inodes and extended attributes

The XFS inode consists of three parts: the inode core, the data fork, and
the optional attribute fork. The inode core contains traditional UNIX inode
metadata such as owner and group, number of blocks, timestamps, and a
few XFS-specific additions such as project ID. The data fork contains the
previously mentioned extent descriptors or the root of the extent map. The
optional attribute fork contains the so-called extended attributes. The con-
cept of extended attributes is not part of the Posix file system interface but
is supported by all modern operating systems and file systems with slightly
differing semantics. In Linux, extended attributes are simple name/value
pairs assigned to a file that can be listed and read or written one attribute at
a time. Extended attributes are used internally by Linux to implement access
control lists (ACLs) and labels for SELinux, but they can also be used for
storing arbitrary user metadata [3].

The attribute fork in XFS can either store extended attributes directly in
the inode if the space required for the attributes is small enough, or use the
same scheme of extent descriptors as described for the file data above to
point to additional disk blocks. This allows XFS to support extended attri-
bute sizes up to 64 kilobytes, while most other Linux file systems are lim-
ited to the size of a single disk block.

The size of the inode core is fixed, and the data and attribute forks share the
remaining space in the inode, which is determined by the inode size chosen
at file system creation time, ranging from 256 to 2048 bytes. For file systems
that extensively use ACLs (e.g., for Windows file shares exported by Samba)
or for file systems making extensive use of extended attributes, choosing a
larger inode size can provide performance improvements, because this extra
data can be stored in the inode and does not require reading additional data
blocks.

Inodes in XFS are dynamically allocated, which means that, unlike many
other Linux file systems, their location and number are not determined at
mkfs time. This means that there is no need to predict the expected num-

Login_articlesOCTOBER_09_final.indd 12 9.4.09 12:02:31 PM

; LO G I N : O c tO b e r 20 0 9 XFs : th e b I G stO r AG e F I Le system FO r L I N uX 13

ber of inodes when creating the file system, with the possibility of under- or
overprovision. Because every block in the file system can now possibly con-
tain inodes, an additional data structure is needed to keep track of inode lo-
cations and allocations. For this, each allocation group contains another B+
tree tracking the inodes allocated within it.

Because of this, XFS uses a sparse inode number scheme where inode num-
bers encode the location of the inode on disk. While this has advantages
when looking up inodes, it also means that for large file systems, inode
numbers can easily exceed the range encodable by a 32-bit integer. Despite
Linux’s having supported 64-bit-wide inode numbers for over 10 years,
many user-space applications on 32-bit systems still cannot accommodate
large inode numbers. Thus by default XFS limits the allocation of inodes to
the first allocation groups, in order to ensure all inode numbers fit into 32
bits. This can have a significant performance impact, however, and can be
disabled with the inode64 mount option.

directories

XFS supports two major forms of directories. If a directory contains only a
few entries and is small enough to fit into the inode, a simple unsorted lin-
ear format can store all data inside the inode’s data fork. The advantage of
this format is that no external block is used and access to the directory is
extremely fast, since it will already be completely cached in memory once
it is accessed. Linear algorithms, however, do not scale to large directories
with millions of entries. XFS thus again uses B+ trees to manage large di-
rectories. Compared to simple hashing schemes such as the htree option in
ext3 and ext4, a full B+ tree provides better ordering of readdir results and
allows for returning unused blocks to the space allocator when a directory
shrinks. The much improved ordering of readdir results can be seen in Fig-
ure 2, which compares the read rates of files in readdir order in a directory
with 100,000 entries.

F i g u r e 2 : c O m p a r i s O n O F r e a d i n g a L a r g e (1 0 0 , 0 0 0 e n t r y)
 d i r e c t O r y, t h e n r e a d i n g e a c h F i L e

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

R
at

e
(F

ile
s/

s)

Reading 100.000 4kiB files in readdir order
Seagate ST373454SS SATA disk

XFS
ext4
ext3

Login_articlesOCTOBER_09_final.indd 13 9.4.09 12:02:33 PM

14 ; LO G I N : vO L . 3 4, N O. 5

I/o scalability

From day one, XFS has been designed to deal with high-performance disk
subsystems, especially striped disk arrays with large aggregated bandwidth.
When XFS was designed, “high performance” meant a few hundred mega-
bytes per second, but 15 years later XFS still keeps up with aggregated
bandwidth in the tens of gigabytes per second for a single file system in-
stance [4].

To keep a RAID array busy, the file system should submit I/O requests that
are large enough to span all disks in the array. In addition, I/O requests
should be aligned to stripe boundaries where possible, to avoid read-modify-
write cycles for common usage patterns. Because a single I/O can only be as
large as a contiguous range of blocks, it is critical that files are allocated as
contiguously as possible, to allow large I/O requests to be sent to the storage.
The key to achieving large contiguous regions is a method known as “de-
layed allocation.” In delayed allocation, specific disk locations are not chosen
when a buffered write is submitted; only in-memory reservations take place.
Actual disk blocks are not chosen by the allocator until the data is sent to
disk due to memory pressure, periodic write-backs, or an explicit sync re-
quest. With delayed allocation, there is a much better approximation of the
actual size of the file when deciding about the block placement on disk. In
the best case the whole file may be in memory and can be allocated in one
contiguous region. In practice XFS tends to allocate contiguous regions of
50 to 100 GiB when performing large sequential I/O, even when multiple
threads write to the file system at the same time [4].

While delayed allocations help with random write workloads if sufficiently
large contiguous regions are filled before the flush to disk, there are still
many workloads where this is not the case. To avoid fragmentation in patho-
logical cases with random writes filling up a file very slowly (such as some
HPC workloads or BitTorrent clients), XFS allows preallocation of blocks on
disk to a file before actually writing to it. The preallocation just assigns data
blocks to a file without touching the block contents. To avoid security prob-
lems with exposing stale data, preallocated extents are marked as unwritten,
and any read from them will return zeros. Once data is written to unwritten
extents, they are converted to normal extents, which incurs minimal perfor-
mance overhead compared to a write to a normal allocated extent.

Figures 3 and 4 show some performance enhancement when XFS is com-
pared to ext3, the old Linux standard file system, and to ext4, which adds
delayed allocations and extents to it for sequential I/O workloads. On the
other hand, Figure 5 shows that the performance for completely random I/O
is not only really bad but also doesn’t profit much from the XFS features.

direct I/o

XFS provides a feature, called direct I/O, that provides the semantics of a
UNIX raw device inside the file system namespace. Reads and writes to a
file opened for direct I/O bypass the kernel file cache and go directly from
the user buffer to the underlying I/O hardware. Bypassing the file cache of-
fers the application full control over the I/O request size and caching policy.
Avoiding the copy into the kernel address space reduces the CPU utilization
for large I/O requests significantly. Thus direct I/O allows applications such
as databases, which were traditionally using raw devices, to operate within
the file system hierarchy.

Login_articlesOCTOBER_09_final.indd 14 9.4.09 12:02:33 PM

; LO G I N : O c tO b e r 20 0 9 XFs : th e b I G stO r AG e F I Le system FO r L I N uX 15

F i g u r e 3 : c O m p a r i n g b L O c k d e V i c e , X F s , e X t4 , a n d e X t 3 w h e n
w r i t i n g a 1 0 g b F i L e

F i g u r e 4 : c O m p a r i n g s e q u e n t i a L i / O p e r F O r m a n c e b e t w e e n
X F s , e X t4 , a n d e X t 3

 0

 100

 200

 300

 400

 500

 600

 700

direct
buffered

Th
ro

ug
hp

ut
 (M

iB
/s

)

Streaming write performance - 10GB file
RAID 0 of 6 Seagate ST373454SS SATA disks

block device
XFS
ext4
ext3

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

read, 4 threads

read, 8 threads

read, 16 threads

write, 4 threads

write, 8 threads

write, 16 threads

Th
ro

ug
hp

ut
 (M

iB
/s

)

Tiobench sequential I/O performance - 4GiB working set
Seagate ST373454SS SATA disk

XFS
ext4
ext3

Login_articlesOCTOBER_09_final.indd 15 9.4.09 12:02:34 PM

16 ; LO G I N : vO L . 3 4, N O. 5

F i g u r e 5 : c O m p a r i n g r a n d O m i / O p e r F O r m a n c e b e t w e e n X F s ,
e X t4 , a n d e X t 3

Direct I/O has been adopted by all major Linux file systems, but the support
outside of XFS is rather limited. While XFS guarantees the uncached I/O
behavior under all circumstances, other file systems fall back to buffered I/O
for many non-trivial cases such as appending writes, hole filling, or writing
into preallocated blocks. A major semantic difference between direct I/O and
buffered I/O in XFS is that XFS allows multiple parallel writers to files using
direct I/O, instead of imposing the single-writer limit specified in Posix for
buffered I/O. Serialization of I/O requests hitting the same region is left to
the application, and thus allows databases to access a table in a single file in
parallel from multiple threads or processes.

Crash recovery

For today’s large file systems, a full file system check on an unclean shut-
down is not acceptable because it would take too long. To avoid the require-
ment for regular file system checks, XFS uses a write-ahead logging scheme
that enables atomic updates of the file system. XFS only logs structural up-
dates to the file system metadata, but not the actual user data, for which the
Posix file system interface does not provide useful atomicity guarantees.

XFS logs every update to the file system data structures and does not batch
changes from multiple transactions into a single log write, as is done by
ext3. This means that XFS must write significantly more data to the log in
case a single metadata structure gets modified again and again in short se-
quence (e.g., removing a large number of small files). To mitigate the impact
of log writes to the system performance, an external log device can be used.
With an external log the additional seeks on the main device are reduced,
and the log can use the full sequential performance of the log device.

Unfortunately, transaction logging does not help to protect against hard-
ware-induced errors. To deal with these problems, XFS has an offline file
system checking and repair tool called xfs_repair. To deal with the ever
growing disk sizes and worsening seek rates, xfs_repair has undergone a
major overhaul in the past few years to perform efficient read-ahead and
caching and to make use of multiple processors in SMP systems [6].

 0

 0.5

 1

 1.5

 2

 2.5

 3

read, 4 threads

read, 8 threads

read, 16 threads

write, 4 threads

write, 8 threads

write, 16 threads

Th
ro

ug
hp

ut
 (M

iB
/s

)

Tiobench random I/O performance - 4GiB working set
Seagate ST373454SS SATA disk

XFS
ext4
ext3

Login_articlesOCTOBER_09_final.indd 16 9.4.09 12:02:36 PM

; LO G I N : O c tO b e r 20 0 9 XFs : th e b I G stO r AG e F I Le system FO r L I N uX 17

disk Quotas

XFS provides an enhanced implementation of the BSD disk quotas. It sup-
ports the normal soft and hard limits for disk space usage and number of
inodes as an integral part of the file system. Both the per-user and per-group
quotas supported in BSD and other Linux file systems are supported. In ad-
dition to group quotas, XFS alternatively can support project quotas, where
a project is an arbitrary integer identifier assigned by the system adminis-
trator. The project quota mechanism in XFS is used to implement directory
tree quota, where a specified directory and all of the files and subdirectories
below it are restricted to using a subset of the available space in the file sys-
tem. For example, the sequence below restricts the size of the log files in
/var/log to 1 gigabyte of space:

mount -o prjquota /dev/sda6 /var

echo 42:/var/log >> /etc/projects
echo logfiles:42 >> /etc/projid
xfs_quota -x -c ‘project -s logfiles’ /var
xfs_quota -x -c ‘limit -p bhard=1g logfiles’ /var

Another enhancement in the XFS quota implementation is that the quota
subsystem distinguishes between quota accounting and quota enforcement.
Quota accounting must be turned on during mount time, while quota en-
forcement can be turned on and off at runtime. Using an XFS file system
with quota accounting but no enforcement provides an efficient way to mon-
itor disk usage. For this reason, XFS also accounts (but never enforces) quo-
tas usage for the superuser.

The xfs_quota command [8] seen in the example above offers full access to
all features in the XFS quota implementation. In addition, the standard BSD
quota and edquota tools can be used to administer basic quota functionality.

day-to-day use

A file system in use should be boring and mostly invisible to the system ad-
ministrator and user. But to get to that state the file system must first be cre-
ated. An XFS file system is created with the mkfs.xfs command, which is
trivial to use:

mkfs.xfs /dev/vg00/scratch
meta-data =/dev/vg00/scratch isize=256 agcount=4, agsize=1245184 blks
 = sectsz=512 attr=2
data = bsize=4096 blocks=4980736, imaxpct=25
 = sunit=0 swidth=0 blks
naming =version 2 bsize=4096 ascii-ci=0
log =internal log bsize=4096 blocks=2560, version=2
 = sectsz=512 sunit=0 blks, lazy-count=0
realtime =none extsz=4096 blocks=0, rtextents=0

As seen above, the mkfs.xfs command returns the geometry information
for the file system to make sure all parameters are set correctly. There are
not many parameters that must be manually set for normal use. For soft-
ware RAID arrays, XFS already extracts the proper stripe size and alignment
parameters from the underlying device, but if that is not possible (e.g., for
hardware RAID controllers), the parameters can be set manually. The follow-
ing example creates a file system aligned correctly for a RAID5 array with
8+1 disks and a stripe unit of 256 kiB:

mkfs.xfs -d su=256k,sw=8 /dev/sdf

Login_articlesOCTOBER_09_final.indd 17 9.4.09 12:02:36 PM

18 ; LO G I N : vO L . 3 4, N O. 5

Other interesting options include using an external log device and changing
the inode size. The example below creates a file system with 2 kiB-sized in-
odes and an external log device:

mkfs.xfs -i size=2048 -l logdev=/dev/vg00/logdev /dev/vg00/home

For more details, see the mkfs.xfs man page and the XFS training material
[5].

A command worth note is xfs_fsr. FSR stands for file system reorganizer
and is the XFS equivalent to the Windows defrag tool. It allows defragmen-
tion of the extent lists of all files in a file system and can be run in back-
ground from cron. It may also be used on a single file.

Although all normal backup applications can be used for XFS file systems,
the xfsdump command is specifically designed for XFS backup. Unlike tra-
ditional dump tools such as dumpe2fs for ext2 and ext3, xfsdump uses a
special API to perform I/O based on file handles similar to those used in the
NFS over the wire protocol. That way, xfsdump does not suffer from the in-
consistent device snapshots on the raw block device that plague traditional
dump tools. The xfsdump command can perform backups to regular files
and tapes on local and remote systems, and it supports incremental backups
with a sophisticated inventory management system.

XFS file systems can be grown while mounted using the xfs_growfs com-
mand, but there is not yet the ability to shrink.

Conclusion

This article gave a quick overview of the features of XFS, the Linux file sys-
tem for large storage systems. I hope it clearly explains why Linux needs a
file system that differs from the default and also shows the benefits of a file
system designed for large storage from day one.

aCknoWLedgMenTs

I would like to thank Eric Sandeen for reviewing this article carefully.

referenCes

[1] Adam Sweeney et al., “Scalability in the XFS File System,” Proceedings
of the USENIX 1996 Annual Technical Conference.

[2] Silicon Graphics Inc., XFS Filesystem Structure, 2nd edition,
http://oss.sgi.com/projects/xfs/papers/xfs_filesystem_structure.pdf.

[3] Linux attr(5) man page: http://linux.die.net/man/5/attr.

[4] Dave Chinner and Jeremy Higdon, “Exploring High Bandwidth File-
systems on Large Systems,” Proceedings of the Ottawa Linux Symposium 2006:
http://oss.sgi.com/projects/xfs/papers/ols2006/ols-2006-paper.pdf.

[5] Silicon Graphics Inc., XFS Overview and Internals: http://oss.sgi.com/
projects/xfs/training/index.html.

[6] Dave Chinner and Barry Naujok, Fixing XFS Filesystems Faster: http://
mirror.linux.org.au/pub/linux.conf.au/2008/slides/135-fixing_xfs_faster.pdf.

[7] Dr. Stephen Tweedie, “EXT3, Journaling Filesystem,” transcript of a pre-
sentation at the Ottawa Linux Symposium 2000: http://olstrans.sourceforge.
net/release/OLS2000-ext3/OLS2000-ext3.html.

[8] xfs_quota(8)—Linux manpage: http://linux.die.net/man/8/xfs_quota.

Login_articlesOCTOBER_09_final.indd 18 9.4.09 12:02:36 PM

; LO G I N : O c tO b e r 20 0 9 F IXI N G O N A stA N DA rD L A N GuAG e FO r u N IX m A N uA L s 19

k R i s Ta p s D z̆ o n s o n s

fixing on a
standard language
for UNIX manuals
Kristaps Dz̆onsons is a graduate student
in theoretical computer science at KTH/CSC.
He also writes open source software, such
as mdocml (mandoc), sysjail, and the mult
forks of OpenBSD and NetBSD, with the
BSD.lv Project.

kristaps@bsd.lv

“a u n I X u t I l I t y w I t h p o o r d o c u -
mentation is of no utility at all.” When
sitting down to document utilities and file
formats, devices, system calls, and games,
there are many UNIX manual formats to
choose from, each suffering from limita-
tions.

In this article I survey the cadre of formats and
propose fixing on a standard, a format optimally
serving readers and writers. I begin by defining the
applicable environment, where manuals are writ-
ten and read, then enumerate criteria for a standard
within that space. Among the formats surveyed, I
determine that mdoc suffers the fewest limitations.
mdoc is popular in BSD UNIX, but it is available
pre-installed on any modern UNIX system, from
GNU/Linux to Mac OS X to OpenSolaris.

First, it’s important to ask: Why doesn’t a stan-
dard already exist? In short, the current spread
of formats—diverse as it may be—is good enough.
UNIX users, programmers, and administrators tol-
erate the menagerie so long as the output of the
man utility is roughly consistent. I propose that the
benefits of fixing on a standard, from consistent
authorship to powerful analytical tools, stipulate
only a minimal burden of change: policy creation,
education of authors, and slow migration from sub-
standard formats.

The troff Condition

We generally associate the man utility with docu-
mentation, but, internally, it only locates manu-
als, invokes an output formatter, then pages to
the screen. This formatter constitutes the primary
mechanism of manual production. UNIX systems
overwhelmingly use troff [2] as a formatter, usually
in the form of a modern implementation such as
GNU troff (groff) [3], or Heirloom troff [4]. I’ll refer
to “troff” as a stand-in term for any of these imple-
mentations.

I define a format as reasonable only if it’s accepted
by troff with specific, documented utility for for-
matting UNIX manuals. A format is semi-reasonable
if it’s indirectly accepted—losslessly transformed
into an accepted form by an existing intermedi-
ate translation utility. In this study, I consider only
reasonable and semi-reasonable formats.

An example of an unreasonable format is HTML,
which is neither accepted by troff, losslessly trans-
latable, nor has a UNIX manual mode. The panoply

Login_articlesOCTOBER_09_final.indd 19 9.4.09 12:02:36 PM

20 ; LO G I N : vO L . 3 4, N O. 5

of common word-processing formats, such as the Open Document Format
and Rich Text Format, are similarly unreasonable.

The roff me, ms, and mm macro packages, while accepted by troff and occa-
sionally used for older manuals, are not considered as having a specific util-
ity for UNIX manuals; thus, I consider them unreasonable. texinfo [5], while
being used for general documentation, is also not specifically used for UNIX
manuals and is therefore unreasonable.

Criteria

I define the set of standardization criteria as follows: structural readability,
such that end users are presented with structurally consistent output be-
tween manuals; syntactic regularity, such that machines may disambiguously
scan and parse input; and a rich semantic encapsulation for meaningful ma-
chine interpretation of contextual data.

We’re comfortable with conventional man output: margin widths, text deco-
rations, and so on. Structural readability stipulates consistent output given
a heterogeneous set of input documents. Syntactic regularity is both a for-
mal term, regarding grammar, and a subjective one, regarding the writer’s
ease of composition. In this article, I focus on the former: input languages
must be reliably machine-parseable. Lastly, semantic encapsulation requires
the annotation of information. Meaningful manual terms, such as function
prototypes and cross-links, must be disambiguously annotated, as machines
cannot reliably classify context in unstructured text.

By fixing on a language that meets these criteria, we guarantee maximum,
meaningful exposure of our manual, and we expand the end user’s docu-
mentation tool set—these days, necessarily constrained by the chaos of
volatile conventions and irregular formats—with sophisticated tools for
cross-referencing, formatting, and so on.

survey: man and Pod

troff accepts the “roff” type-setting language as input; however, direct usage
of roff has been eclipsed by the use of macro packages simplifying the lan-
guage—macros, like procedural functions, are a roff language feature allow-
ing complex macro blocks to be referenced by a simple call. troff internally
replaces these macros with roff during a pre-processing phase.

The man macro package became the first common format for creating UNIX
manuals (predated by the mm and me packages) and established the back-
space-encoded, 78-column display style enjoyed to this day.

.SH SYNOPSIS

.B find
[\fB\-dHhLXx\fR]

F i g u r e 1 : F r a g m e n t O F F i n d m a n u a L s y n O p s i s s e c t i O n a s
 F O r m a t t e d w i t h m a n

The fragment in Figure 1 illustrates a manual’s synopsis section: the SH
macro (all roff macros appear on lines beginning with the ‘.’ control char-
acter) indicates section titles, and B applies a boldface type to its argument.
The argument string is bracketed by boldface character escapes. In general,
man macros describe the presentation of terms.

Login_articlesOCTOBER_09_final.indd 20 9.4.09 12:02:36 PM

; LO G I N : O c tO b e r 20 0 9 F IXI N G O N A stA N DA rD L A N GuAG e FO r u N IX m A N uA L s 21

==head1 SYNOPSIS

B<find> S<[B<-dHhLXx>]>

F i g u r e 2 : F r a g m e n t O F F i n d m a n u a L s y n O p s i s s e c t i O n a s
 F O r m a t t e d w i t h p O d

The man format also forms the basis for the Perl “POD” (Plain Old Docu-
mentation) language, illustrated in Figure 2. POD, like man, is a presenta-
tion format.

survey: mdoc

The other roff manual-formatting macro package is mdoc, which, beyond
sharing common ancestry, is fundamentally different from man. Instead of
annotating presentation, mdoc semantically annotates its terms. In Figure 3,
for example, Op indicates an option string, usually displayed as enclosed in
brackets, followed by a series of flags offset by the Fl macro. The proper pre-
sentation of these macros is managed by the formatter.

.Sh SYNOPSIS

.Nm find

.Op Fl dHhLXx

F i g u r e 3 : F r a g m e n t O F F i n d m a n u a L s y n O p s i s s e c t i O n a s
 F O r m a t t e d w i t h m d O c

Both man and mdoc are accepted natively by troff. POD is the default format
for embedding manuals in Perl documents, and it translates directly into
man with the perlpod utility for indirect acceptance by troff.

survey: docBook

The DocBook [6] suite, like troff, is a general-purpose typesetter. Un-
like troff, its input language, also called “DocBook,” is based on XML (his-
torically, SGML). DocBook has a schema for annotating UNIX manuals,
illustrated in Figure 4, translating into man with docbook2x and docbook-
to-man for further compilation by troff.

<refsynopsisdiv>
 <cmdsynopsis>
 <command>find</command>
 <arg choice=“opt”>
 <option>dHhLXx</option>
 </arg>
 </cmdsynopsis>
</refsynopsisdiv>

F i g u r e 4 : F r a g m e n t O F F i n d m a n u a L s y n O p s i s s e c t i O n a s
 F O r m a t t e d w i t h d O c b O O k

The necessary complexity of processing XML demands a significant infra-
structure of compilers and schemas to correctly transform materials. doc-
book-to-man (which operates only on SGML DocBook) requires an SGML
parser, the appropriate DTD files, and a driving script. Importantly, existing
tools for translation only produce man-lossy transition from semantically en-
coded to presentation-encoded documents.

Login_articlesOCTOBER_09_final.indd 21 9.4.09 12:02:36 PM

22 ; LO G I N : vO L . 3 4, N O. 5

evaluation

The criteria described earlier in this article were structural readability, syn-
tactic regularity, and semantic encapsulation. I noted that these criteria only
apply to reasonable or semi-reasonable formats.

By virtue of being directly accepted by troff, mdoc and man are both emi-
nently reasonable. DocBook and POD, on the other hand, require special-
ized utilities to translate input into man. Although these utilities must in
general be downloaded and installed, their popularity makes them readily
available on most systems, and thus they are semi-reasonable.

The matter of structural readability may be reduced to the author’s level of
influence on presentation. DocBook and mdoc manage presentation, while
man and POD must be styled by the author. Given a non-uniform distribu-
tion of authors, it’s safe to say that mdoc and DocBook satisfy readability
more readily than the presentation languages. In other words, an author’s
control over function prototype styling will almost certainly produce varied
output.

Syntactic regularity is both grammatical and structural. DocBook, by vir-
tue of XML, follows a context-free grammar (upon combination with the tag
schema); mdoc, man, and POD are context-sensitive. The matter of struc-
tural regularity, on the other hand, is largely subjective; some prefer the
terseness of roff macros, while others prefer more descriptive DocBook tags.

In general, it’s safe to say that DocBook’s context-free foundationspromotes
its syntactic regularity above the others. The matter of structural regularity,
while important, remains a subjective matter.

The last criterion, semantic encapsulation, is by far the most significant in
terms of meaningful analysis of data. POD and man, as with any presenta-
tion language, are semantically opaque: beyond using heuristic analysis, the
content of these manuals is closed to machine interpretation.

\fIvoid\fP \fBexit\fP *(lp\fIint\fP*(rp

F i g u r e 5 : F u n c t i O n p r O t O t y p e e n c O d e d i n m a n

DocBook and mdoc, however, are rich with semantic meaning; by careful
analysis of the parse tree, machines can cross-link references, group terms,
and perform many other useful operations. Figures 5 and 6 illustrate presen-
tation and semantic encapsulation, respectively.

.Ft intmax_t

.Fn imaxabs ”intmax_t j”

F i g u r e 6 : F u n c t i O n p r O t O t y p e e n c O d e d i n m d O c

As noted earlier, DocBook’s translation tools don’t currently produce mdoc,
which amounts to a lossy transform. Thus, while DocBook itself may be se-
mantically rich, its intermediate format, and thus troff input, is not.

The format fitting all criteria with the fewest limitations is mdoc, featuring a
reasonable, semantically rich language for manual data annotation. The lossy
translation of DocBook to man, as well as its requirement of downloading
additional processing tools, render it substandard.

The man and POD formats, as presentation languages, are opaque to ma-
chine interpretation. I consider this an insurmountable limitation, since it
prohibits meaningful analysis of manual data.

Login_articlesOCTOBER_09_final.indd 22 9.4.09 12:02:36 PM

; LO G I N : O c tO b e r 20 0 9 F IXI N G O N A stA N DA rD L A N GuAG e FO r u N IX m A N uA L s 23

adoption

The hindrance of mdoc’s widespread adoption is as much due to its poor
exposure beyond the BSD UNIX community as to the limited semantic func-
tionality of its popular compiler, groff.

Documentation for the mdoc format is, at this time, constrained to tem-
plates, the formidable mdoc.samples manual distributed with most BSD
UNIX operating systems, and the minimal mdoc manual in general UNIX
systems. Furthermore, unlike man, which exports few macros, the complex-
ity of mdoc, with well over 100 available macros, makes introductory refer-
ence materials critical.

Although serving to format mdoc manuals for regular output, groff offers no
semantic-recognition features: for example, HTML output (via grohtml) cor-
rectly cross-referencing manual references. This is a matter of groff ’s design,
which internally translates mdoc into a presentation-based intermediate
form, thus losing the semantic annotations of the input.

Fortunately, groff ’s limitations are being addressed by the mandoc [1] util-
ity, which exports a regular syntax tree of mdoc input (and man, within the
limitations of presentation encoding) for analysis. The issues of good intro-
ductory documentation and exposure, unfortunately, remain unsatisfied.

Conclusion

By using mdoc to write manuals, powerful documentation analysis is made
considerably easier—arguably, by using man, POD, or a similar presentation
format, meaningful analysis isn’t possible at all. This is demonstrated by the
total lack of manual analysis beyond the man, apropos, and whatis utilities,
and various patchwork presentation services (such as man.cgi [7] and man-
2web [8]) in use today. Attractive, cross-referenced hypertext references, sec-
tion-by-section querying of local manual sets, and other possibilities arise by
fixing on mdoc, possibilities hindered by the preponderance of presentation-
based, opaque languages.

referenCes

[1] mdocml: http://mdocml.bsd.lv.

[2] troff: http://www.troff.org.

[3] groff: http://www.gnu.org/software/groff/.

[4] heirloom: http://heirloom.sf.net/doctools.html.

[5] texinfo: http://www.gnu.org/software/texinfo/.

[6] docbook: http://www.docbook.org.

[7] mancgi: http://www.freebsd.org/cgi/man.cgi/help.html.

[8] man2web: http://man2web.sf.net.

Login_articlesOCTOBER_09_final.indd 23 9.4.09 12:02:36 PM

24 ; LO G I N : vO L . 3 4, N O. 5

B R a n D o n s a L m o n , s T e v e n w .
s c h L o s s e R , L o R R i e F a i T h c R a n o R ,
a n D g R e g o R y R . g a n g e R

perspective:
semantic data
 management for
the home
Brandon Salmon is finishing his PhD at
Carnegie Mellon and will be joining Tin-
tri in the fall. He is interested in bringing
user-centered design techniques, which
have been so effective at improving
the usability of user interfaces, to bear
on system architectures, making them
easier to understand and more accom-
modating of users’ social systems.

bsalmon@cs.stanford.edu

Steve Schlosser received his PhD from
Carnegie Mellon University in 2004,
studying the use of alternative storage
technologies in computer systems. He
was a senior researcher at Intel Research
Pittsburgh from 2004 to 2009 and is now
a member of the technical staff at Avere
Systems.

schlos@averesys.com

Lorrie Faith Cranor is an associate profes-
sor of computer science and of engi-
neering and public policy at Carnegie
Mellon University, where she is director
of the CyLab Usable Privacy and Security
Laboratory (CUPS). See http://lorrie.
cranor.org/.

lorrie@cmu.edu

Greg Ganger is a professor of electrical
and computer engineering at Carnegie
Mellon University and the director of
the Parallel Data Lab (PDL). His broad
research interests in computer systems
includes storage, OS, security, and dis-
tributed systems.

ganger@ece.cmu.edu

d I s t r I b u t e d s t o r a g e I s c o m I n g
home. An increasing number of home and
personal electronic devices create, use, and
display digitized forms of music, images,
and videos, as well as more conventional
files (e.g., financial records and contact
lists). In-home networks enable these de-
vices to communicate, and a variety of de-
vice-specific and datatype-specific tools are
emerging. The transition to digital homes
gives exciting new capabilities to users, but
it also makes them responsible for admin-
istration tasks which in other settings are
usually handled by dedicated professionals.

It is unclear that traditional data management prac-
tices will work for “normal people” reluctant to put
time into administration. For example, most home
users are accustomed to semantic organization (via
applications such as iTunes) when accessing their
data for daily use, but are forced by filesystem de-
sign to use a hierarchy when managing this same
data.

We present the Perspective distributed file system,
part of an expedition into this new domain for dis-
tributed storage. You can think of Perspective as in
“Seeing many views, one gains Perspective.” One
focus of Perspective is simplifying data manage-
ment tasks for home users. For example, Perspec-
tive’s design allows home users to manage their
data using the same semantic primitives they uti-
lize for daily access. As with previous expeditions
into new computing paradigms, it is in order to
gain experience that we are building and utilizing
a system representing the vision. In this case, how-
ever, the researchers are not representative of the
user population. Most users will be non-technical
people who just want to use the system but must
(grudgingly) deal with administration tasks or live
with the consequences. Thus, organized user stud-
ies will be required as complements to systems ex-
perimentation.

Perspective’s design is motivated by a contextual
analysis and early deployment experiences [3]. Our
interactions with users have made clear the need
for decentralization, selective replication, and sup-
port for device mobility and dynamic membership.
An intriguing lesson is that home users rarely or-
ganize and access their data via traditional hierar-
chical naming—usually they do so based on data
attributes. Computing researchers have long talked

Login_articlesOCTOBER_09_final.indd 24 9.4.09 12:02:37 PM

; LO G I N : O c tO b e r 20 0 9 pe r spec tI v e : sem A NtI c DAtA m A N AG em e Nt FO r th e h Om e 25

about attribute-based data navigation (e.g., semantic file systems [1]), while
continuing to use directory hierarchies. However, users of home and per-
sonal storage live it. Popular interfaces (e.g., iTunes, iPhoto, and even drop-
down lists of recently opened Word documents) allow users to navigate file
collections via attributes such as publisher-provided metadata, extracted
keywords, and date/time. Usually, files are still stored in underlying hierar-
chical file systems, but users often are insulated from naming at that level
and are oblivious to where in the namespace given files end up.

Users have readily adopted these higher-level navigation interfaces, leading
to a proliferation of semantic data location tools. In contrast, the abstractions
provided by file systems for managing files have remained tightly tied to hi-
erarchical namespaces. For example, most tools require that specific subtrees
be identified, by name or by “volumes” containing them, in order to perform
replica management tasks, such as partitioning data across computers for ca-
pacity management or specifying that multiple copies of certain data be kept
for reliability. Since home users double as their own system administrators,
this disconnect between interface styles (semantic for data access activities
and hierarchical for management tasks) naturally creates difficulties.

The Perspective distributed file system allows a collection of devices to share
storage without requiring a central server. Each device holds a subset of the
data and can access data stored on any other (currently connected) device.
However, Perspective does not restrict the subset stored on each device to
traditional volumes or subtrees. To correct the disconnect between seman-
tic data access and hierarchical replica management, Perspective replaces the
traditional volume abstraction with a new primitive we call a view. A view is
a compact description of a set of files, expressed much like a search query,
and a device on which that data should be stored. For example, one view
might be “all files with type=music and artist=Beatles stored on Liz’s iPod” and
another “all files with owner=Liz stored on Liz’s laptop.” Each device participat-
ing in Perspective maintains and publishes one or more views to describe
the files it stores. Perspective ensures that any file that matches a view will
eventually be stored on the device named in the view.

Since views describe sets of files using the same attribute-based style as
users’ other tools, view-based management is easier than hierarchical file
management. A user can see what is stored where, in a human-readable
fashion, by examining the set of views in the system. She can control rep-
lication and data placement by changing the views of one or more devices.
Views allow sets of files to overlap and to be described independently of
namespace structure, removing the need for users to worry about applica-
tion-internal file naming decisions or difficult volume boundaries. Semantic
management can also be useful for local management tasks, such as setting
file attributes and security, as well as for replica management. In addition
to anecdotal experiences, an extensive lab study confirms that view-based
management is easier for users than volume-based management [4].

Our Perspective prototype is a user-level file system which runs on Linux
and OS X. In our deployments, Perspective provides normal file storage as
well as being the backing store for iTunes and MythTV in one household
and in our research environment lounge.

storage for the Home

The home is different from an enterprise. Most notably, there are no sys-
admins—household members generally deal with administration (or don’t)
themselves. The users also interact with their home storage differently, since

Login_articlesOCTOBER_09_final.indd 25 9.4.09 12:02:37 PM

26 ; LO G I N : vO L . 3 4, N O. 5

most of it is for convenience and enjoyment rather than employment. How-
ever, much of the data stored in home systems, such as family photos, is
both important and irreplaceable, so home storage systems must provide
high levels of reliability in spite of lax management practices. Not surpris-
ingly, we believe that home storage’s unique requirements would be best
served by a design different from enterprise storage. This section outlines in-
sights gained from studying use of storage in real homes and design features
suggested by them.

WHaT users WanT

A contextual analysis is an HCI research technique that provides a wealth of
in situ data, perspectives, and real-world anecdotes on the use of technology.
It consists of interviews conducted in the context of the environment under
study. To better understand home storage, we extensively interviewed all
members of eight households (24 people total) in their homes and with all of
their storage devices present. We have also gathered experiences from early
deployments in real homes. This section lists some guiding insights (with
more detailed information available in technical reports [3]).

Decentralized and dynamic: The users in our study employed a wide vari-
ety of computers and devices. While it was not uncommon for them to have
a set of primary devices at any given point in time, the set changed rapidly,
the boundaries between the devices were porous, and different data was
“homed” on different devices with no central server. One household had
set up a home server, at one point, but did not re-establish it when they up-
graded the machine due to setup complexity.

Money matters: While the cost of storage continues to decrease, our inter-
views showed that cost remains a critical concern for home users (note that
our studies were conducted well before the fall 2008 economic crisis). While
the same is true of enterprises, home storage rarely has a clear “return on
investment,” and the cost is instead balanced against other needs (e.g., new
shoes for the kids) or other forms of enjoyment. Thus, users replicate selec-
tively, and many adopted cumbersome data management strategies to save
money.

Semantic naming: Most users navigated their data via attribute-based nam-
ing schemes provided by applications such as iPhoto, iTunes, and the like.
Of course, these applications stored the content in files in the underlying hi-
erarchical file system, but users rarely knew where. This disconnect created
problems when they needed to make manual copies or configure backup/
synchronization tools.

Need to feel in control: Many approaches to manageability in the home tout
automation as the answer. While automation is needed, the users expressed
a need to understand and sometimes control the decisions being made. For
example, only 2 of the 14 users who backed up data used backup tools. The
most commonly cited reason was that they did not understand what the tool
was doing and, thus, found it more difficult to use the tool than to do the
task by hand.

Infrequent, explicit data placement: Only 2 of 24 users had devices on
which they regularly placed data in anticipation of needs in the near future.
Instead, most users decided on a type of data that belonged on a device (e.g.,
“all my music” or “files for this semester”) and rarely revisited these deci-
sions—usually only when prompted by environmental changes. Many did
regularly copy new files matching each device’s data criteria onto it.

Login_articlesOCTOBER_09_final.indd 26 9.4.09 12:02:37 PM

; LO G I N : O c tO b e r 20 0 9 pe r spec tI v e : sem A NtI c DAtA m A N AG em e Nt FO r th e h Om e 27

desIgnIng HoMe sTorage

From the insights above, we extract guidance that has informed our design
of Perspective.

Peer-to-peer architecture: While centralization can be appealing from a sys-
tem simplicity standpoint and has been a key feature in many distributed
file systems, it seems to be a non-starter with home users. Not only do many
users struggle with the concept of managing a central server, many will be
unwilling to invest the money necessary to build a server with sufficient ca-
pacity and reliability. We believe that a decentralized, peer-to-peer architec-
ture more cleanly matches the realities we encountered in our contextual
analysis.

Single class of replicas: Many previous systems have differentiated between
two classes: permanent replicas stored on server devices and temporary rep-
licas stored on client devices (e.g., to provide mobility) [5, 2]. While this dis-
tinction can simplify system design, it introduces extra complexity for users
and prevents users from utilizing the capacity on client devices for reliabil-
ity, which can be important for cost-conscious home consumers. Having
only a single replica class removes the client-server distinction from the us-
er’s perception and allows all peers to contribute capacity to reliability.

Semantic naming for management: Using the same type of naming for
both data access and management should be much easier for users who
serve as their own administrators. Since home storage users have chosen se-
mantic interfaces for data navigation, replica management tools should be
adapted accordingly—users should be able to specify replica management
policies applied to sets of files identified by semantic naming.

In theory, applications could limit the mismatch by aligning the underly-
ing hierarchy to the application representation, but this alternative seems
untenable in practice. It would limit the number of attributes that could be
handled, lock the data into a representation for a particular application, and
force the user to sort data in the way the application desires. Worse, for data
shared across applications, vendors would have to agree on a common un-
derlying namespace organization.

Rule-based data placement: Users want to be able to specify file types (e.g.,
“Jerry’s music files”) that should be stored on particular devices. The system
should allow such rules to be expressed by users and enforced by the sys-
tem as new files are created. In addition to helping users to get the right data
onto the right devices, such support will help users to express specific repli-
cation rules at the right granularity to balance their reliability and cost goals.

Transparent automation: Automation can simplify storage management, but
many home users (like enterprise sysadmins) insist on understanding and
being able to affect the decisions made. By having automation tools use the
same flexible semantic naming schemes as users do normally, it should be
possible to create interfaces that express human-readable policy descriptions
and allow users to understand automated decisions.

Perspective architecture

Perspective is a distributed file system designed for home users. It is decen-
tralized, enables any device to store and access any data, and allows deci-
sions about what is stored where to be expressed or viewed semantically.

Perspective provides flexible and comprehensible file organization through
the use of views. A view is a concise description of the data stored on a given

Login_articlesOCTOBER_09_final.indd 27 9.4.09 12:02:37 PM

28 ; LO G I N : vO L . 3 4, N O. 5

device. Each view describes a particular set of data, defined by a semantic
query, and a device on which the data is stored. A view-based replica man-
agement system guarantees that any object that matches the view query will
eventually be stored on the device named in the view.

We envision views serving as the connection between management tools and
the storage infrastructure. Users can set policies through management tools,
such as the one described in Figure 1, from any device in the system at any
time. Tools implement these changes by manipulating views, and the under-
lying infrastructure (Perspective) in turn enforces those policies by keeping
files in sync among the devices according to the views. Views provide a clear
division point between tools that allow users to manage data replicas and
the underlying file system that implements the policies.

A primary contribution of Perspective is the use of semantic queries to man-
age the replication of data. Specifically, it allows the system to provide accessi-
bility and reliability guarantees over semantic, partially replicated data. This
builds on previous semantic systems that used queries to locate data and hi-
erarchies to manage data.

View-based management enables the design points outlined above. Views
provide a primitive allowing users to specify meaningful rule-based place-
ment policies. Because views are semantic, they unify the naming used for
data access and data management. Views are also defined in a human-un-
derstandable fashion, providing a basis for transparent automation. Perspec-
tive provides data reliability using views without restricting their flexibility,
allowing it to use a single replica class.

The Perspective prototype is implemented in C++ and runs at user-level
using FUSE to connect with the system. It currently runs on both Linux and
Macintosh OS X. Perspective stores file data in files in a repository on the
machine’s local file system and metadata in a SQLite database with an XML
wrapper.

A user study evaluation using this prototype shows that, by supporting se-
mantic management, Perspective can simplify important management tasks
for end users. View-based management allowed up to six times as many
users to complete management tasks correctly than traditional hierarchical
systems did [4].

PLaCIng fILe rePLICas

In Perspective, the views control the distribution of data among the devices
in the system. When a file is created or updated, Perspective checks the at-
tributes of the file against the current list of views in the system and sends
an update message to each device with a view that contains that file. Each
device can then independently pull a copy of the update.

When a device, A, receives an update message from another device, B, it
checks that the updated file does, indeed, match one or more views that
A has registered. If the file does match, then A applies the update from B.
If there is no match, which can occur if the attributes of a file are updated
such that it is no longer covered by a view, then A ensures that there is no
replica of the file stored locally.

This simple protocol automatically places new files, and also keeps current
files up to date according to the current views in the system. Perspective’s
protocols ensure that this property holds in the face of disconnection, device
addition, and device failure, without requiring any centralized control. Per-

Login_articlesOCTOBER_09_final.indd 28 9.4.09 12:02:37 PM

; LO G I N : O c tO b e r 20 0 9 pe r spec tI v e : sem A NtI c DAtA m A N AG em e Nt FO r th e h Om e 29

spective’s protocols also ensure that files and updates are never lost due to
view changes [4].

Each device is represented by a file in the file system that describes the de-
vice and its characteristics. Views themselves are also represented by files.
Each device registers a view for all device and view files to ensure they are
replicated on all participating devices. This allows applications to manage
views through the standard file system interfaces, even if not all devices are
currently present.

VIeW-Based daTa ManageMenT

In this subsection, we present three scenarios to illustrate view-based man-
agement. Each scenario assumes an interface that allows users to manipulate
views. While we envision systems containing a number of tools and inter-
faces, Figure 1 shows the interface we currently provide Perspective users.

F i g u r e 1 : a s c r e e n s h O t O F t h e V i e w m a n a g e r g u i . O n t h e L e F t
a r e F i L e s , g r O u p e d u s i n g F a c e t e d m e t a d a t a . a c r O s s t h e t O p
a r e d e V i c e s . e a c h s q u a r e s h O w s w h e t h e r t h e F i L e s i n t h e r O w
a r e s t O r e d O n t h e d e V i c e i n t h e c O L u m n .

Traveling: Harry is visiting Sally at her house and would like to play a new
U2 album for her. Before leaving, he checks the views defined on his wire-
less music player and notices that the songs are not stored on the device,
although he can play them from his laptop, where they are currently stored.
He asks the music player to pull a copy of all U2 songs, which the player
does by creating a new view for this data. When the synchronization is com-
plete, the file system marks the view as complete, and the music player in-
forms Harry.

He takes the music player over to Sally’s house. Because the views on his
music player are defined only for his household, and the views on Sally’s de-

Login_articlesOCTOBER_09_final.indd 29 9.4.09 12:02:37 PM

30 ; LO G I N : vO L . 3 4, N O. 5

vices for her household, no files are synchronized. But queries for “all music”
initiated from Sally’s digital stereo can see the music files on Harry’s music
player, so while he is visiting they can listen to the new U2 album from Har-
ry’s music player on Sally’s nice stereo speakers.

Crash: Mike’s young nephew Oliver accidentally pushes the family desktop
off the desk onto the floor and breaks it. Mike and his wife Carol have each
configured the system to store their files both on their respective laptops and
on the desktop, so their data is safe. When they set up the replacement com-
puter, a setup tool pulls the device objects and views from other household
devices. The setup tool gives them the option to replace an old device with
this computer, and they choose the old desktop from the list of devices. The
tool then creates views on the device that match the views on the old desk-
top and deletes the device object for the old computer. The data from Mike
and Carol’s laptops is transferred to the new desktop in the background over
the weekend.

Short on space: Marge is trying to finish a project for work on her home
laptop. While she is working, a capacity automation tool on her laptop
alerts her that the laptop is short on space. It recommends that files created
over two years ago be moved to the family desktop, which has spare space.
Marge, who is busy with her project, decides to allow the capacity tool to
make the change. She later decides to keep her older files on the external
hard drive instead, and makes the change using a view-editing interface on
the desktop.

Conclusion

Home users struggle with replica management tasks that are normally han-
dled by professional administrators in other environments. Perspective pro-
vides distributed storage for the home with a new approach to data location
management: the view. Views simplify replica management tasks for home
storage users, allowing them to use the same attribute-based naming style
for such tasks as for their regular data navigation.

aCknoWLedgMenTs

We thank Rob Reeder, Jay Melican, and Jay Hasbrouck for helping with the
users studies. We also thank the members and companies of the PDL Con-
sortium (including APC, Cisco, DataDomain, EMC, Facebook, Google, HP,
Hitachi, IBM, Intel, LSI, Microsoft, NetApp, Oracle, Seagate, Sun, Symantec,
and VMware) for their interest, insights, feedback, and support. This mate-
rial is based on research sponsored in part by the National Science Foun-
dation, via grants #CNS-0326453 and #CNS-0831407, and by the Army
Research Office, under agreement number DAAD19-02-1-0389. Brandon
Salmon is supported in part by an Intel Fellowship.

referenCes

[1] David K. Gifford, Pierre Jouvelot, Mark A. Sheldon, and James W.
O’Toole Jr., “Semantic File Systems,” Operating Systems Review 25(5):
16–25, 1991: http://reference.kfupm.edu.sa/content/s/e/semantic_file
_systems__50646.pdf.

[2] Daniel Peek and Jason Flinn, “EnsemBlue: Integrating Distributed Stor-
age and Consumer Electronics,” Symposium on Operating Systems Design and

Login_articlesOCTOBER_09_final.indd 30 9.4.09 12:02:37 PM

; LO G I N : O c tO b e r 20 0 9 pe r spec tI v e : sem A NtI c DAtA m A N AG em e Nt FO r th e h Om e 31

Implementation (OSDI), USENIX Association, 2006: http://www.cs.ubc.ca/
labs/dsg/Sem_Winter_2007/ensemblue.pdf.

[3] Brandon Salmon, Frank Hady, and Jay Melican, “Learning to Share:
A Study of Sharing Among Home Storage Devices,” Technical Report
CMU-PDL-07-107, Carnegie Mellon University, October 2007: http://
www.pdl.cmu.edu/PDL-FTP/Storage/CMU-PDL-07-107.pdf.

[4] Brandon Salmon, Steven W. Schlosser, Lorrie Faith Cranor, and Gregory
R. Ganger, “Perspective: Semantic Data Management for the Home,” Proceed-
ings of the 7th USENIX Conference on File and Storage Technologies (FAST ’09),
USENIX Association, 2009: http://www.usenix.org/events/fast09/tech/full_
papers/salmon/salmon.pdf.

[5] M. Satyanarayanan, “The Evolution of Coda,” ACM Transactions on Com-
puter Systems, 20(2): 85–124, May 2002: http://www.cs.cmu.edu/~satya/
docdir/p85-satyanarayanan.pdf.

Thanks to usenIX and sage Corporate supporters
usenIX Patrons
Google
Microsoft Research

usenIX Benefactors
Hewlett-Packard
IBM
Infosys
Linux Pro Magazine
NetApp
Sun Microsystems
VMware

usenIX & sage Partners
Ajava Systems, Inc.
BigFix
DigiCert® SSL Certification
FOTO SEARCH Stock Footage and
Stock Photography
Splunk
SpringSource
Zenoss

usenIX Partners
Cambridge Computer Services, Inc.
GroundWork Open Source Solutions
Xirrus

sage Partner
MSB Associates

Login_articlesOCTOBER_09_final.indd 31 9.4.09 12:02:37 PM

32 ; LO G I N : vO L . 3 4, N O. 5

Ta s n e e m g . B R u T c h

migration to
multicore: tools
that can help
Tasneem Brutch is a Senior Staff Engineer at
Samsung Research in San Jose, CA. She holds
a BS in Computer Science and Engineering,
a Master’s in Computer Science, and a PhD
in Computer Engineering from Texas A&M
University. She was awarded a USENIX schol-
arship for her Ph.D. research. She has 12 years
of industry experience, working as Senior
Engineer and Architect at Hewlett-Packard
and Intel.

t.brutch@samsung.com

t h e a d v e n t o F m a n y c o r e s y s t e m s
requires that programmers understand
how to design, write, and debug parallel
programs effectively. Writing and debug-
ging parallel programs has never been easy,
but there are many tools that can help with
this process. In this article I provide a survey
of useful tools and resources for multi-
threaded applications.

Multiple threads are said to execute concurrently
when they are interleaved on a single hardware re-
source, which limits the overall maximum perfor-
mance gains from threading. When multi-threaded
applications run simultaneously on different hard-
ware, threads in an application are said to execute
in parallel. To achieve software parallelism, hard-
ware must be able to support simultaneous and in-
dependent execution of threads [1].

Performance gains through parallelism are propor-
tional to effective partitioning of software work-
loads across available resources while minimizing
inter-component dependencies. Performance is im-
pacted by issues such as communication overhead,
synchronization among threads, load balancing,
and scalability as the number of cores changes.

It is recommended that performance bottlenecks
which impact both serial and parallel applications
be removed prior to parallelizing an application.
This includes optimizing existing serial applica-
tions for the multicore memory hierarchy prior to
parallelization.

A number of tools can be used to assist with the
migration of sequential applications to multicore
platforms. This article focuses on tools for C and
C++ programming languages in Windows and
Linux environments. Most of the tools noted here
are open source or built on top of open source
tools. The discussion is intended to be a start-
ing point and is not comprehensive of all available
tools. Figure 1 provides a high-level view of various
categories of tools and the workflow between them
[2]. Tool categories identified in the figure are dis-
cussed in this article.

Threading aPIs

First, I include a brief discussion of threading APIs,
as the choice of APIs may affect the selection of
tools. A number of open source multi-threading
programming APIs are available for both shared
memory and distributed memory systems.

Login_articlesOCTOBER_09_final.indd 32 9.4.09 12:02:37 PM

; LO G I N : O c tO b e r 20 0 9 m I G r AtI O N tO mu LtI cO re : tO O L s th At c A N h e Lp 33

F i g u r e 1 : c at e g O r i e s O F t O O L s a n d t h e w O r k F L O w b e t w e e n t h e m

MuLTI-THreadIng aPIs for sHared MeMory sysTeMs

OpenMP (Open Multi-Processing) is a multi-threading API, which consists
of a set of compiler directives, library routines, and runtime environment
variables, and is available for C, C++, and Fortran. Data may be labeled as
either shared or private. The OpenMP memory model allows all threads to
access globally shared memory. Private data is only accessible by the own-
ing thread. Synchronization is mostly implicit, and data transfer is transpar-
ent to the programmer. OpenMP employs a fork-join execution model and
requires an OpenMP-compatible compiler and thread-safe library runtime
routines [3], [4].

Pthreads (POSIX Threads) is defined in the ANSI/IEEE POSIX 1003.1-
1995 standard. It is a set of C language programming types and proce-
dure calls which do not require special compiler support. The header file
pthread.h needs to be included. Pthreads uses a shared memory model, that
is, the same address space is shared by all threads in a process, making in-
ter-thread communication very efficient. Each thread also has its own pri-
vate data. Programmers are responsible for synchronizing access to globally
shared data. Pthreads is now the standard interface for Linux, and pthreads-
win32 is available for Windows [5].

GNU Pth (GNU Portable Threads) is a less commonly used POSIX/
ANSI-C–based library. It uses non-preemptive, priority-based scheduling
for multi-threading in event-based applications. All threads execute in the
server application’s common address space. Each thread has its own pro-
gram counter, signal mask, runtime stack, and errno variable. Threads can
wait on events such as asynchronous signals, elapsed timers, pending I/O on
file descriptors, pending I/O on message ports, customized callback func-
tions, and thread and process termination. A Pthreads emulation API is also
optionally available [6].

Threading Building Blocks (TBB) is a C++ template library that consists of
data structures and algorithms for accessing multiple processors. Operations
are treated as tasks, by specifying threading functionality in terms of logi-

Login_articlesOCTOBER_09_final.indd 33 9.4.09 12:02:37 PM

34 ; LO G I N : vO L . 3 4, N O. 5

cal tasks, as opposed to physical threads. TBB emphasizes data parallel pro-
gramming [7].

MuLTI-THreadIng on dIsTrIBuTed MeMory sysTeMs

Message Passing Interface (MPI) is a library specification for message pass-
ing on massively parallel machines and workstation clusters which supports
point-to-point and collective communication. Operations in MPI are ex-
pressed as functions. The MPI standard originally targeted distributed mem-
ory systems, but now MPI implementations for SMP/NUMA architectures are
also available. The programmer is responsible for identification of parallel-
ism and its implementation using MPI constructs. Objects called “communi-
cators” and “groups” define communication between processes [8] [9].

PLaTforM-sPeCIfIC MuLTI-THreadIng aPIs

Open Computing Language (OpenCL) is a C-based framework for pragmas
for general-purpose parallel programming across heterogeneous platforms. It
is a subset of ISO C99 with language extensions. The specification includes
a language for writing kernels and APIs for defining and controlling a plat-
form, and it provides online or offline compilation and build of compute
kernel executables. It includes a platform-layer API for hardware abstraction
and a runtime API for executing compute kernels and managing resources.
It uses task-based and data-based parallelism, and implements a relaxed-
consistency, shared memory model [10].

Compilers and Compiler-Based Instrumentation

A number of C and C++ compilers are available to programmers for compil-
ing applications using OpenMP and Pthread APIs. Information about se-
lection of appropriate options for OpenMP and Pthreads and inclusion of
appropriate include files can be obtained from their documentation.

Figure 1 illustrates various stages of compiler-based instrumentation. Code
may be modified by the compiler for generating trace information. Instru-
mentation may be source-to-source, static binary, or dynamic. Source-to-
source instrumentation modifies source code prior to pre-processing and
compilation. In static binary instrumentation the compiled binary code is
modified prior to execution [11].

static Code analyzers

Static code analyzers help detect issues beyond the limits of runtime coverage
which may not have been reachable by functional test coverage. Static code
analysis is done on the source code without executing the application, re-
quiring any instrumentation of the code, or developing test cases. Potential
errors are detected by modeling software applications using the source code.
These models can be analyzed for behavioral characteristics. Static analy-
sis exhaustively explores all execution paths, inclusive of all data ranges,
to ensure correctness properties, such as absence of deadlock and livelock.
Static analyzers cannot model absolute (wall-clock) time but can model rela-
tive time and temporal ordering. A directed control flow graph is developed,
built on the program’s syntax tree. The constraints associated with vari-
ables are assigned to the nodes of the tree. Nodes represent program points,
and the flow of control is represented by edges. Typical errors detected by
using analysis based on a control flow graph include: illegal number or type

Login_articlesOCTOBER_09_final.indd 34 9.4.09 12:02:37 PM

; LO G I N : O c tO b e r 20 0 9 m I G r AtI O N tO mu LtI cO re : tO O L s th At c A N h e Lp 35

of arguments, non-terminating loops, inaccessible code, uninitialized vari-
ables and pointers, out-of-bound array indices, and illegal pointer access to
a variable or structure. Due to the large number of possible interleavings in
a multi-threaded application, model checking is computationally expensive
and limited in its applicability [11].

The use of static code analyzers helps maintain code quality. Their integra-
tion in the build process is recommended to help identify potential issues
earlier on in the development process.

Berkeley Lazy Abstraction Verification Tool (BLAST) is a software model
checker for C programs. It is used to check that software satisfies the be-
havioral properties of its interface. It constructs an abstract model, which
is model checked for safety properties. Given a temporal safety property for
a C program, BLAST attempts to statically prove that it either satisfies the
safety property or demonstrates an execution path that is in violation of the
property. It uses lazy predicate abstraction and interpolation-based predicate
discovery to construct, explore, and refine abstractions of the program state
space. BLAST is platform independent and has been tested on Intel x86/
Linux and Intel x86/Microsoft Windows with Cygwin. BLAST was released
under the Modified BSD license [12].

debuggers

Enhanced complexity of multi-threaded applications results from a number
of factors, such as non-deterministic thread scheduling and preemption, and
dependencies between control flow and data [11]. Non-deterministic execu-
tion of multiple instruction streams from runtime thread scheduling and
context switching generally stems from the operating system’s scheduler. The
use of debuggers themselves may mask issues caused by thread interactions,
such as deadlocks and race conditions. Factors such as thread priority, pro-
cessor affinity, thread execution state, and starvation time can affect the re-
sources and execution of threads.

A number of approaches are available for debugging concurrent systems, in-
cluding traditional debugging, and event-based debugging. Traditional de-
bugging, or breakpoint debugging, has been applied to parallel programs,
where one sequential debugger per parallel process is used. These debug-
gers can provide only limited information when several processes interact.
Event-based or monitoring debuggers provide some replay functionality for
multi-threaded applications, but can result in high overhead. Debuggers may
display control flow, using several approaches, such as textual presentation
of data, time process diagrams, or animation of program execution [13].

The use of a threading API may impact the selection of a debugger. Using
OpenMP, for example, requires the use of an OpenMP-aware debugger,
which can access information such as constructs and types of OpenMP vari-
ables (private, shared, thread private) after threaded code generation.

dynamic Binary Instrumentation (dBI)

Dynamic binary instrumentation analyzes the runtime behavior of a binary
application by injecting instrumentation code which executes as part of the
application instruction stream. It is used to gain insight into application be-
havior during execution. As opposed to static binary analysis, which ex-
haustively exercises all code paths, DBI explores only executed code paths.
DBIs may be classified as either lightweight or heavyweight. A lightweight DBI
uses architecture-specific instruction stream and state, while a heavyweight

Login_articlesOCTOBER_09_final.indd 35 9.4.09 12:02:38 PM

36 ; LO G I N : vO L . 3 4, N O. 5

DBI utilizes an abstraction of the instruction stream and state. Lightweight
DBIs are not as portable across architectures as heavyweight DBIs. Valgrind
[22], which is discussed later, is an example of a heavyweight DBI, and Pin
[24], also discussed in this article, is an example of a lightweight DBI.

Profiling and Performance analysis

Profilers are useful for both single- and multi-threaded applications. They
facilitate optimization of program decomposition and efficient utilization of
system resources by inspecting the behavior of a running program and help-
ing to detect and prevent issues that can impact performance and execution.
Issues encountered in multi-threaded applications include:

Large number of threads, leading to increased overhead from thread startup ■■

and termination [1].
Overhead from concurrent threads exceeding the number of hardware ■■

resources available [1].
Contention for cache usage resulting from the large number of concurrent ■■

threads attempting to use the cache [1].
Contention for memory use among threads for their respective stack and ■■

private data structure use [1].
Thread convoying, whereby multiple software threads wait to acquire a ■■

lock [1].
Data races occurring when two concurrent threads perform conflicting ac-■■

cesses and no explicit mechanism is implemented to prevent accesses from
being simultaneous [14].
Locking hierarchies causing deadlocks, which result in all threads being ■■

blocked and each thread waiting on an action by another thread [11].
Livelocks (similar to deadlocks except that the processes/threads involved ■■

constantly change with respect to one another, with neither one being able
to progress) can occur with some algorithms, where all processes/threads
detect and try to recover from a deadlock, repeatedly triggering the dead-
lock detection algorithm [1].

Approaches to profiling can be identified as either active or passive. Com-
piler-based probe insertion is an example of active profiling, where execu-
tion behavior is recorded using callbacks to the trace collection engine. In
passive profiling, control flow and execution state are inspected using ex-
ternal entities, such as a probe or a modified runtime environment. Passive
profiling may require specialized tracing hardware and, in general, does not
require modification of the measured system [11].

Data may be gathered by a profiler using a number of methods. Event-based
profilers utilize sampling based on the occurrence of processor events. Sta-
tistical profilers use sampling to look into the program counter at regular
intervals, using operating system interrupts. Instrumenting profilers insert ad-
ditional instructions into the application to collect information. On some
platforms, instrumentation may be supported in hardware using a machine
instruction. Simulator or hypervisor-based data collection selectively collects
data by running the application under an instruction set simulator or hyper-
visor.

Profilers may also be classified based on their output. Flat profilers show av-
erage call times, with no associated callee or context information. Call-graph
profilers show call times, function frequencies, and call chains.

Profilers can provide behavioral data only for control paths that are actually
executed. Execution of all relevant paths requires multiple runs of the appli-
cation, with good code coverage. Code coverage can be improved using care-

Login_articlesOCTOBER_09_final.indd 36 9.4.09 12:02:38 PM

; LO G I N : O c tO b e r 20 0 9 m I G r AtI O N tO mu LtI cO re : tO O L s th At c A N h e Lp 37

fully selected input data and artificial fault injection. Fine-grained behavioral
data from a running system can be coupled with offline analysis.

Profilers may not be portable across architectures, as they may require spe-
cial hardware support. Others may focus only on user-space applications. A
profiler may be designed to focus on analyzing the utilization of one or more
system resources, such as call stack sampling, thread profiling, cache profil-
ing, memory profiling, and heap profiling. Profilers can include aspects of
absolute (wall-clock) time in their analysis [11].

OProfile is a profiling and performance monitoring tool for Linux on a
number of architectures, including x86, AMD Athlon, AMD64, and ARM.
It provides system-wide profiling, with a typical overhead of 1% to 8%, and
includes a number of utilities. It consists of a kernel driver and a daemon for
collecting sample data. OProfile uses CPU hardware performance counters
for system-wide profiling, which includes hardware and software interrupt
handlers, kernel and kernel modules, shared libraries, and applications [15].

DTrace is a dynamic tracing framework created by Sun Microsystems. It is
now available for a number of operating systems, including Linux. It can be
used to get an overview of the running system and is used for tuning and
troubleshooting kernel and application issues on production systems, in real
time. It allows dynamic modification of the OS kernel and user processes to
record additional data from locations of interest using “probes.” A probe is a
location or activity with which DTrace can bind a request to perform a set of
actions: for example, the recording of a stack trace. The source code for this
tool has been released under the Common Development and Distribution
License (CDDL) [16].

GNU Linux Trace Toolkit next generation (LTTng) is a static and dy-
namic tracer that supports C and C++ on Linux (and any language that can
call C). It is supported on x86, PowerPC 32/64, ARMv7, OMAP3, sparc64,
and s390. LTTng is available as a kernel patch, along with a tool chain (ltt-
control), which looks at process blocking, context switches, and execution
time. It can be used for performance analysis on parallel and real-time sys-
tems. LTTV is a viewing and analysis program designed to handle huge
traces. Tracers record large amounts of events in a system, generally at a
much lower level than logging, and are generally designed to handle large
amounts of data [17].

CodeAnalyst by AMD is a source code profiler for x86-based platforms with
AMD microprocessors that is available for Linux and Windows environ-
ments. It has been built on top of the OProfile Linux tool for data collection,
and provides graphical and command line interfaces for code profiling, in-
cluding time-based and event-based profiling, thread analysis, and pipeline
simulation [18].

data Visualization

Visualization of profile data facilitates the comprehensibility of data and en-
hances its usability. A number of tools provide a standard interface for vi-
sualization of different types. Gnuplot is a portable, command-line–driven,
interactive data and function plotting utility. It is copyrighted but can be
freely distributed [19]. Graphviz is open source graph visualization software,
which can be used to represent structural information as diagrams of ab-
stract graphs and networks [20].

Login_articlesOCTOBER_09_final.indd 37 9.4.09 12:02:38 PM

38 ; LO G I N : vO L . 3 4, N O. 5

dynamic Program analysis

Dynamic program analysis is done by executing programs built either on
actual hardware or on a virtual processor. Dynamic analysis checks program
properties at runtime, and it generally identifies the problem source much
faster than extensive stress testing does. Issues can be detected much more
precisely, using code instrumentation and analysis of memory operations.
These tools are generally easy to automate, with a low rate of false positives.
For dynamic testing to be effective the test input has to be selected to exer-
cise proper code coverage.

Valgrind is an instrumentation framework for building dynamic analy-
sis tools. It is available for x86/Linux, AMD64/Linux, PPC32/Linux, and
PPC64/Linux. Work on versions of Valgrind for x86/Mac OS X and AMD64/
Mac OS X is currently underway. The Valgrind framework is divided into
three main areas: core and guest maintenance (coregrind), translation and
instrumentation (LibVex), and user instrumentation libraries [21]. Valgrind
tools are used for detecting memory management and threading issues, and
for application profiling [22]. Helgrind, Memcheck, Cachegrind, and Massif
are some of the tools included in Valgrind’s tool suite:

Helgrind is a thread debugger to detect data races in multi-threaded ap-
plications. It detects memory locations accessed by multiple Pthreads that
are lacking consistent synchronization.

Memcheck is used to detect memory management–related issues for C
and C++.

Cachegrind provides cache profiling and simulation of L1, D1, and L2
caches. Callgrind extends Cachegrind to provide visualization informa-
tion about callgraphs.

Massif performs detailed heap profiling by taking regular snapshots of
a program’s heap, to help identify parts of the program contributing to
most memory allocations.

DynInst allows dynamic insertion of code in a running program. It uses dy-
namic instrumentation to allow modification of programs during execution,
without re-compilation, re-linking, and re-execution. DynInst was released
by the Paradyn Parallel Tools Project and has been used by applications such
as performance measurement tools, correctness debuggers, execution drive
simulations, and computational steering. The recent release of DynInst sup-
ports PowerPC (AIX), SPARC (Solaris), x86 (Linux), x86 (Windows), and
ia64 (Linux) [23].

Pin from Intel is a framework for building program analysis tools using dy-
namic instrumentation. It is an example of dynamic compilation targeting
a VM which uses the same ISA as the underlying host [11]. It is an open
source tool and does runtime binary instrumentation of Linux applications,
whereby arbitrary C/C++ code can be injected at arbitrary places in the ex-
ecutable. Pin APIs allow context information, such as register contents, to be
passed to the injected code as parameters. Any registers overwritten by the
injected code are restored by Pin. It also relocates registers, in-lines instru-
mentation, and caches previously modified code to improve performance.
The Pin architecture consists of a virtual machine (VM), a code cache, and
an instrumentation API, which can be invoked by custom plugin utilities
called Pintools. The VM consists of a Just-in-Time (JIT) compiler, an emula-
tion unit, and a dispatcher. Instructions, such as system calls, which cannot
be executed directly are intercepted by the emulator. The dispatcher checks

Login_articlesOCTOBER_09_final.indd 38 9.4.09 12:02:38 PM

; LO G I N : O c tO b e r 20 0 9 m I G r AtI O N tO mu LtI cO re : tO O L s th At c A N h e Lp 39

for the next code region in the code cache. If it is not present in the code
cache, it is generated by the JIT compiler [24], [25], [26].

active Testing

Active testing consists of two phases. Static and dynamic code analyzers are
first used to identify concurrency-related issues, such as atomicity violations,
data races, and deadlock. This information is then provided as input to the
scheduler to minimize false positives from the concurrency issues identified
during the static and dynamic code analysis. The tool CalFuzzer uses this
approach.

CalFuzzer provides an extensible active testing framework for implement-
ing predictive dynamic analysis to identify program statements with poten-
tial concurrency issues, and it allows implementation of custom schedulers,
called active checkers, for active testing of concurrency-related issues [27].

system-Wide Performance data Collection

In addition to problem partitioning and load balancing, programmers need
access to systemwide resource usage data, as well as the ability to relate it
to application performance. Availability of standardized APIs can facilitate
access to such low-level system data by profilers and performance analyz-
ers. PAPI is one such attempt at an API for accessing hardware performance
counters.

The Performance Application Programming Interface (PAPI) project at the
University of Tennessee defines an API for accessing hardware performance
counters, which exist as a small set of registers for counting events. Moni-
toring the processor-performance counters enables correlation between ap-
plication code and its mapping to the underlying hardware architecture and
is used in performance analysis, modeling, and tuning. Tools that use PAPI
include PerlSuite, HPCToolkit, and VProf. PAPI is available for a number of
environments and platforms, including Linux, on SiCortex, Cell, AMD Ath-
lon/Opteron, Intel Pentium, Itanium, Core 2, and, for Solaris, UltraSparc [28].

Conclusion

The increased complexity of multi-threaded parallel programming on mul-
ticore platforms requires more visibility into program behavior and neces-
sitates the use of tools that can support programmers in migrating existing
sequential applications to multicore platforms. This article presents a survey
of different categories of tools, their characteristics, and the workflow be-
tween them. Most of the tools discussed are open source, or built on top of
open source tools, for C and C++.

aCknoWLedgMenTs

I would like to thank Sungdo Moon from Samsung and ;login: editor Rik
Farrow for their review of the article and valuable suggestions.

referenCes

[1] Shameem Akhter, Jason Roberts, Multi-Core Programming: Increasing
 Performance through Software Multithreading (Intel Press, 2006).

Login_articlesOCTOBER_09_final.indd 39 9.4.09 12:02:38 PM

40 ; LO G I N : vO L . 3 4, N O. 5

[2] H. Wen, S. Sbaraglia, S. Saleem, I. Chung, G. Cong, D. Klepacki, “A Pro-
ductivity Centered Tools Framework for Application Performance Tuning,”
Proceedings of the Fourth International Conference on the Quantitative Evaluation
of Systems, Sept. 2007.

[3] “OpenMP API Specification for Parallel Programming”: http://
openmp.org/wp/.

[4] “GNU OpenMP (GOMP) Project”: http://gcc.gnu.org/projects/gomp/.

[5] Lawrence Livermore National Lab, “POSIX Threads Programming”:
https://computing.llnl.gov/tutorials/pthreads/.

[6] Ralf S. Engelschall, “GNU Portable Threads,” June 2006: http://
www.gnu.org/software/pth/.

[7] Intel, “Threading Building Blocks 2.2 for Open Source”: http://
www.threadingbuildingblocks.org/.

[8] Message Passing Interface Forum, “MPI: A Message-Passing Interface
Standard, version 2.1,” June 2008: http://www.mpi-forum.org/docs/
mpi21-report.pdf.

[9] Message Passing Interface (MPI) standard Web site: http://www.mcs
.anl.gov/research/projects/mpi/.

[10] Khronos Group, “Open-CL, the Open Standard for Parallel Program-
ming of Heterogeneous Systems”: http://www.khronos.org/opencl/.

[11] Daniel G. Waddington, Nilabja Roy, Douglas C. Schmidt, “Dynamic
Analysis and Profiling of Multi-Threaded Systems,” 2007: http://
www.cs.wustl.edu/~schmidt/PDF/DSIS_Chapter_Waddington.pdf.

[12] Thomas A. Henzinger, Dirk Beyer, Rupak Majumdar, Ranjit Jhala,
“BLAST: Berkeley Lazy Abstraction Software Verification Tool”: http://
mtc.epfl.ch/software-tools/blast/.

[13] Yusen Li, Feng Wang, Gang Wang, Xiaoguang Liu, Jing Liu, “MKtrace:
An Innovative Debugging Tool for Multi-Threaded Programs on Multiproces-
sor Systems,” Proceedings of the 14th Asia Pacific Software Engineering Confer-
ence, 2007.

[14] Liqiang Wang, Scott D. Stoller, “Runtime Analysis of Atomicity for
 Multithreaded Programs,” Proceedings of the IEEE Transactions on Software
 Engineering, Feb. 2006.

[15] OProfile Web site: http://oprofile.sourceforge.net/about/.

[16] Sun Microsystems, “Solaris Dynamic Tracing Guide,” Dec. 2007:
http://wikis.sun.com/display/DTrace/Documentation.

[17] GNU Linux Trace Toolkit next generation (LTTng) Project Web site:
http://ltt.polymtl.ca/.

[18] AMD, “CodeAnalyst Performance Analyzer”: http://developer.amd.com/
CPU/CODEANALYST/Pages/default.aspx.

[19] Gnuplot Web site: http://www.gnuplot.info/.

[20] Graphviz graph visualization software Web site: http://www.graphviz
.org/.

[21] Daniel Robson, Peter Strazdins, “Parallelization of the Valgrind Dy-
namic Binary Instrumentation Framework,” Proceedings of the International
Symposium on Parallel and Distributed Processing with Applications, 2008.

[22] Valgrind Web site: http://valgrind.org/.

Login_articlesOCTOBER_09_final.indd 40 9.4.09 12:02:38 PM

; LO G I N : O c tO b e r 20 0 9 m I G r AtI O N tO mu LtI cO re : tO O L s th At c A N h e Lp 41

[23] DynInst by the Paradyn Parallel Tools Project: http://www.dyninst.org/.

[24] Pin Web site: http://www.pintool.org/.

[25] “Pin: A Framework for Building Program Analysis Tools using Dynamic
Instrumentation”: http://www.cc.gatech.edu/~ntclark/8803f08/notes/pin.pdf.

[26] Steven Wallace, Kim Hazelwood, “SuperPin: Parallelizing Dynamic In-
strumentation for Real-Time Performance,” Proceedings of the International
Symposium on Code Generation and Optimization, 2007.

[27] Pallavi Joshi, Mayur Naik, Chang-Seo Park, Koushik Sen, “CalFuzzer:
An Extensible Active Testing Framework for Concurrent Programs,” Proceed-
ings of the 21st International Conference on Computer Aided Verification, 2009:
http://berkeley.intel-research.net/mnaik/pubs/cav09/paper.pdf.

[28] Performance Application Programming Interface (PAPI) Web site:
http://icl.cs.utk.edu/papi/.

Login_articlesOCTOBER_09_final.indd 41 9.4.09 12:02:38 PM

42 ; LO G I N : vO L . 3 4, N O. 5

R u D i v a n D R u n e n

chips and static
electricity
Rudi Van Drunen is a senior UNIX systems
consultant with Competa IT B.V. in The
Netherlands. He also has his own consulting
company, Xlexit Technology, doing low-level
hardware-oriented jobs.

rudi-usenix@xlexit.com

t h e r e I s a lw ay s a w h o l e l o t o F
discussion about the effects and dangers of
static electricity for electronics. In this ar-
ticle I will try to explain the issues involved
with static electricity, the myths connected
to the phenomenon, the dangers for your
systems, and how to avoid them.

Static electricity has been known for a very long
time. In the seventeenth century, people began to
build machines to generate static electricity artifi-
cially. Benjamin Franklin demonstrated the effect
of static electricity with his famous kite experi-
ment in a lightning storm. As lightning is a form
of electrostatic discharge on a very large scale, you
can imagine what discharges on a small scale can
do to the sub-micron–sized patterns on a chip. To
explain just this effect, I first have to describe the
way chips (i.e., integrated circuits) are built and
then describe the properties of electrostatic dis-
charge (ESD) and their impact on the chips. The
last part of this article describes the measures you
can take to minimize the damage to your hardware
due to ESD.

Chips

A chip, or, better, an integrated circuit, is a device
built out of transistors that are created in different
forms of silicon on a silicon substrate (a wafer). The
different forms of silicon are the N type, with an
extra electron in the shell around the molecule, and
the P type, where the shell is short one electron.

A transistor is an electronic element that can ac-
tively control the flow of current. A simple transis-
tor has three terminals: an input, an output, and a
control terminal. If you apply a voltage to the con-
trol terminal, you turn on or off the “switch” be-
tween the input and the output of the transistor.
The current flowing is many times larger than the
current you need to control the switch/gate. That is
why it is said that transistors can amplify current.

There are a number of different transistors. The
current amplification type (that actually needs a
current on the control terminal) is called a bipo-
lar transistor, whereas others that just need a static
voltage (an electric field) to switch current on or off
are called field effect transistors. Field effect tran-
sistors are commonly used to build digital logic in-
tegrated circuits, as found in your computers.

A field effect transistor (FET) is created on a chip
by virtually building a channel in a well of P-type
silicon in the substrate. This channel is the “con-

Login_articlesOCTOBER_09_final.indd 42 9.4.09 12:02:38 PM

; LO G I N : O c tO b e r 20 0 9 ch I p s A N D stAtI c e Lec trI cIt y 43

ductor” for the current (electrons) that will flow through when switched on.
Then a very thin insulating layer on top of the channel separates the gate or
control electrode from the current channel. When voltage is applied to that
electrode, an electric field is formed within the channel, preventing the cur-
rent from flowing through (see Figure 1).

F i g u r e 1 : O p e r a t i O n O F a m O s F e t t r a n s i s t O r

The type of insulation between the gate and the channel is related to the
name of the device. Most current logic chips are fabricated using a MOSFET
technology (Metal Oxide Semiconductor Field Effect Transistor).

Typically, a transistor on a chip takes about 3 units of space, where a unit of
space is related to the technology the chip manufacturer uses. State-of-the-
art manufacturers are now able to make 15 nm patterns, resulting in a tran-
sistor size of 45 nm (1 nm equals approximately 0.000000004 inch).

The transistors are interconnected by conductors in different layers, often
made out of metal (see Figure 2). These transistor circuits form basic logic
elements that build functional blocks.

Creating those patterns on a piece of silicon is a very complex lithographic
and chemical process which takes place in multi-million-dollar clean rooms
and takes a complete article to describe.

F i g u r e 2 : s c h e m a t i c d r a w i n g O F a s i n g L e t r a n s i s t O r e L e m e n t
a n d i n t e r c O n n e c t s b e t w e e n t h e e L e m e n t s (s O u r c e : i n t e L)

Login_articlesOCTOBER_09_final.indd 43 9.4.09 12:02:40 PM

44 ; LO G I N : vO L . 3 4, N O. 5

A logic chip is composed of functional blocks (counters, adders, etc.). These
blocks can be described by functions that then are implemented on the chip
level by a number of transistors. A modern, high-end CPU contains about
2,300,000,000 transistors (an 8-core Nehalem-EX server processor from
Intel). Figure 3 shows an example of the patterns on a chip.

F i g u r e 3 . a d i e p h O t O g r a p h O F a 4 - c O r e n e h a L e m p r O c e s s O r
(s O u r c e : i n t e L)

design of a Chip

Nowadays, the design process of a digital integrated circuit is comparable to
writing a piece of software. The functional requirements are implemented
using a hardware design language such as VHDL or VeriLog. The VHDL
code then is simulated to verify functionality. Once approved, the code is
run through a silicon compiler that generates the actual chip artwork for the
lithographic process.

To verify the functionality on the physical hardware level, there are chips
containing programmable arrays of logic blocs, where the VHDL program
is used to make interconnects between standard blocks. These chips (field-
programmable gate arrays [FPGAs]) can be used as an intermediary (verify,
prototype) stage before the actual production of custom silicon. Although
far less dense than full custom chips, these devices can be the solution for
smaller series or prototyping.

As you might imagine, those tiny traces on a chip and tiny insulating lay-
ers are extremely fragile and susceptible to overvoltage or overcurrent. Both
overvoltage and overcurrent on the chip can be the result of an electrostatic
discharge.

static electricity: Charging

Static electricity can be thought of as a difference in the electrical charge be-
tween two (non-conductive) bodies. This electrical charge is often the result
of a friction between two substances. That friction will lead to exchange of
loosely coupled electrons from the one substance to the other. One part will
become negatively charged (with an excess of electrons), while the other part
will become positively charged (with fewer electrons). This process of charg-

Login_articlesOCTOBER_09_final.indd 44 9.4.09 12:02:40 PM

; LO G I N : O c tO b e r 20 0 9 ch I p s A N D stAtI c e Lec trI cIt y 45

ing is called triboelectrification and is the most common way that static
charges are built up.

In addition, a strong electric field in the neighborhood (e.g., the high voltage
of a CRT tube) can separate electrons in a body, and this builds up a charge
on components, a process known as inductive charging. The net charge of
the complete device will not change, but it now has regions of excess posi-
tive and negative charge. Touching these regions with a tool that has a neu-
tral charge will result in an ESD.

The last method of charging a body is conductive charging, where there is
physical contact between a charged body and a body with a different poten-
tial. The charge will transfer from one body to the other, leaving them both
equally electrically charged.

The difference in charge that builds up can be big—many thousands of
volts. The charge depends on the materials and the friction between them.
For example, lightning, a discharge of static electricity that is built up by
friction between clouds, can reach 100,000 volts.

static electricity: discharging

Discharge of electrostatic charges can be achieved by having the charge
bleed off to ground. This can occur slowly and with a low current (due to
high impedance to ground) or quickly with higher current with a direct con-
tact: for example, you can charge your body by walking over nylon carpet
and then discharged by touching a grounded object (e.g., a door knob).

Another form of discharging is corona discharge. This effect occurs only
when working with very high electric fields and high voltage charges. The
high voltage creates a high electric field around the charged object. When
a grounded object enters the field, the difference in charge is so high that a
spark occurs on the sharp edges of the object (where the field has the high-
est density). A spark is triggered when the electric field strength exceeds ap-
proximately 4–30kV/cm.

Problems

Static discharge will both apply a very high voltage on a chip and, as the
charge is flowing away, impose a high current through the sensitive semi-
conductor. Due to the high voltage and the high current, problems on the
chip can occur. Traces (connections) between transistors can be burned
away completely, and partially destroyed traces can eventually lead to fail-
ure. These problems will emerge later in the component’s life, when traces
that are partially cut by the discharge fail completely due to heat because
they are thinner now, causing the same current in the chip to heat up much
faster in operation. A device can be subjected to a number of weak ESD
pulses, with each successive pulse further degrading a device until, finally,
there is a catastrophic failure. There is no known practical way to screen for
walking-wounded devices. Figures 4 and 5 show some of the serious issues
that can occur due to an ESD pulse on a chip.

Latch-up

Another problem that can occur on a chip that is hit by a relatively mild
ESD that does no physical harm is what is called “latch-up.” This is an ef-
fect caused by unwanted structures that are on the chip as a result of other

Login_articlesOCTOBER_09_final.indd 45 9.4.09 12:02:40 PM

46 ; LO G I N : vO L . 3 4, N O. 5

structures. Design and placement of transistors on a chip should avoid this,
but often they cannot be avoided, or only at high chip area-cost. These
structures form stray semiconductors that are triggered by out-of-bound
voltage spikes (not only ESD, but also power supply spikes, especially when
turning on the power supply) and can prevent other transistors from work-
ing once triggered. Power-cycling the device restores the chip to its default
state.

F i g u r e 4 : i n t e r c O n n e c t b u r n e d a w a y (s O u r c e : b u n n i e ,
h t t p : / / w w w . b u n n i e s t u d i O s . c O m / b L O g , w i t h p e r m i s s i O n)

F i g u r e 5 : s e r i O u s d e F O r m a t i O n O F c h i p p a t t e r n t h r O u g h
e s d (s O u r c e : b u n n i e , h t t p : / / w w w . b u n n i e s t u d i O s . c O m / b L O g ,
w i t h p e r m i s s i O n)

How Much?

Often ESD leaves no trace whatsoever. You often do not feel, hear, or see
anything, but there is a discharge that may harm your systems. The table
below shows the voltage that is related to the ESD vs. the traces it shows.

Feel static discharge > 3000 volts

Hear static discharge > 6000 volts

See static discharge (spark) > 9000 volts

Protection

Almost all chips have diodes and other measures built into their design to
protect against static discharges on the leads by bleeding them off, but they

Login_articlesOCTOBER_09_final.indd 46 9.4.09 12:02:40 PM

; LO G I N : O c tO b e r 20 0 9 ch I p s A N D stAtI c e Lec trI cIt y 47

cannot protect against all static discharges. And some chips cannot have
these protections since the chips’ functionality would be affected by them.
Examples of this are very low-voltage and low-current chips, radio front
ends, and analog or touch devices.

The first measure in ESD protection is to minimize the buildup of static
electricity; the less charge there is, the less likely that it will harm your elec-
tronics. Often this is done by being careful not to use materials and fabrics
in the environment that build up static electricity easily, such as nylon cloth-
ing and nylon carpet. Friction between nylon and almost any other material
will quickly produce static charge. It would be useful to post warning signs
in work areas and rooms where you have your equipment operating. The
more conductive the material is, the less static buildup you will face.

Another factor in the buildup of static electricity is relative humidity. This
is especially true in winter (or in the summer in desertlike areas). With low
humidity comes low air conductance, so static charges are not able to leak to
earth and will build up fast, making dangerous electrostatic charges about
10 times more likely to occur than in humid air. Other problems can occur
if you run your systems in a data center that has too low relative humidity;
the airflow within some systems can cause buildup of static electricity on
the components in the machine.

A third measure is trying to let the static charge bleed away to ground or
at least have your system on the same charge level as the operator or your
tools. This can be accomplished by using a wristband when operating and
fixing internals of your systems. The wristband will ease out the potential
that your body holds to the potential the machine is on. In the wristband
cable there is a resistor to prevent high currents and sparks when connect-
ing the wire.

Practical Tips

The following are practical tips to minimize the damage due to ESD.

Be aware of clothing, footwear, and carpets. These are by far the most ■■

likely cause of charge buildup on your body. There are special conductive
(enhanced with carbon particles) garments, shoes, furniture, and carpets.
Avoid nylon in all cases. The non-conductive wheels of office chairs can be
pretty nasty, too.
When handling equipment, always touch both the grounded machine and ■■

the rack to be sure that all are at the same level.
Keep your hardware grounded at all times, to prevent buildup of electro-■■

static charges. You can do that by keeping the chassis grounded by a small
wire and alligator clips or keeping the chassis physically connected to the
grounded rack.
Be careful with styrofoam. Do not let pieces of packing foam get close to ■■

the printed circuit board. Some manufacturers use styrofoam that has con-
ductive particles in it, which has less static buildup.
Use grounding wristbands and connect them to the earth/chassis.■■

Leave components in their ESD-protective carriers as long as possible. ■■

If you need to have them on your desk, sometimes the back of a mouse
mat has conductive rubber, so it is wise to leave them on the mat before
handling. Also, components that you remove from your machine need to
be protected.
If you need to ship ESD devices, use ESD-protective bags or wrap them in ■■

aluminum foil and put them in an antistatic plastic bag. Note that if there
is a battery on the board you should not use aluminum foil, as you may
short-circuit things.

Login_articlesOCTOBER_09_final.indd 47 9.4.09 12:02:40 PM

48 ; LO G I N : vO L . 3 4, N O. 5

If the humidity in the room drops below 30%, use an air humidifier or ■■

adjust your air-conditioning systems accordingly.

If something ESD-related happens and you notice that there is a static dis-
charge, either by feeling it or noticing a spark, mark the components and
machine that you think might be affected so that you can relate problems
with these devices or components later to this event.

Conclusion

Integrated circuits of all sorts are susceptible to ESD. When handling de-
vices, you should always be aware that ESD pulses can occur and should
minimize the likelihood of it. Chips can be seriously impaired, even without
a visible spark, resulting in problems later on. There are a number of simple
measures to take to prevent static buildup and ESD.

aCknoWLedgMenTs

Thanks go to Rik Farrow for the comments on the initial draft of this article
and to Intel Corp and Bunnie Studios LLC for providing the imagery. A last
word of thanks goes to Competa IT, my employer, for giving me the freedom
to write this article.

Login_articlesOCTOBER_09_final.indd 48 9.4.09 12:02:41 PM

; LO G I N : O c tO b e r 20 0 9 pr Ac tI c A L pe rL tO O L s : cG I : : A ppLI c AtI O N , pA rt 2 49

D a v i D n . B L a n k - e D e L m a n

practical Perl tools:
scratch the webapp itch with
CGI::Application, part 2

David N. Blank-Edelman is the director of
technology at the Northeastern University
College of Computer and Information Sci-
ence and the author of the O’Reilly book
Automating System Administration with
Perl (the second edition of the Otter book),
available at purveyors of fine dead trees
everywhere. He has spent the past 24+ years
as a system/network administrator in large
multi-platform environments, including
Brandeis University, Cambridge Technology
Group, and the MIT Media Laboratory. He
was the program chair of the LISA ’05 confer-
ence and one of the LISA ’06 Invited Talks
co-chairs.

dnb@ccs.neu.edu

l a s t t I m e , w e h a d t h e p l e a s u r e o F
exploring the basics of a Web applica-
tion framework called CGI::Application
(CGI::App). I appreciate this particular pack-
age because it hits a certain sweet spot in
terms of its complexity/learning curve and
power. In this column we’ll finish up our
exploration by looking at a few of the more
powerful extensions to the framework that
can really give it some oomph.

Quick review

Let’s do a really quick review of how CGI::App
works, so that we can build on what we’ve learned
so far. CGI::App is predicated on the notion of “run
modes.” When you are first starting out, it is easi-
est to map “run mode” to “Web page” in your head.
You write a piece of code (i.e., a subroutine) that
will be responsible for producing the HTML for
that page and returning it as a scalar value.

To switch from one run mode to another using the
classic CGI::App method, the first run mode pro-
duces an HTML page containing a form or a URL
to follow. This form or link provides the name of
the destination run mode in a hidden field (for
POSTs) or as a parameter (for GETs). CGI::App
looks at the incoming request and determines
which run mode to call based on that info. If this
sounds too cumbersome or too Web 1.0-ish, you
can improve on this method by using the module
CGI::Application::Plugin::Dispatch. We won’t see an
example here, but C::A::P::Dispatch lets you encode
the run mode in the path used to call the script
using clean, REST-y URLs.

Constructing a Web application using CGI::App
consists of:

Writing a bunch of run mode subroutines to 1.
generate Web pages.
Placing them in a file to be loaded as a Perl 2.
module (with a little OOP pixie dust sprinkled
on top).
Writing a separate three-line instance script that 3.
loads this module and sets things in motion (this
is actually the script that gets called by the Web
server directly).

If the CGI::App basics seem easy to grasp, then
the mental model CGI::App presents is working
for you. Other Perl frameworks like Catalyst seem,
at least at first glance, to be more complex (al-
though Dave Rolsky’s excellent blog post at http://
blog.urth.org/2009/07/what-is-catalyst-really.html

Login_articlesOCTOBER_09_final.indd 49 9.4.09 12:02:41 PM

50 ; LO G I N : vO L . 3 4, N O. 5

shows this is mostly a PR problem), so perhaps something with this level of
simplicity will appeal to you. If it does, then read on, because we’re going
to show a few features/plugin modules that can pump up the volume while
mostly leaving this simplicity intact.

Working with Templates

The first and perhaps the most significant feature is the support for templat-
ing available in vanilla CGI::App. If you’ve ever had to construct a Web site
or webapp that involved several pages, you’ve probably already done at least
a basic form of templating, because you needed all of the pages to have some
common elements such as headers and footers. Perhaps your code looked
something like:

$webpage = $header;
$webpage =. generate_the_actual_content();
$webpage =. $footer;

Perl has had various template modules of varying complexity available since
the Mesozoic era. Most are predicated on the notion that you’ll write content
that includes some special tokens or markup which is later replaced with
real data by the templating engine. For example:

<html>
<head><title><TMPL_VAR NAME=PAGETITLE></title></head>
<body>
 <p>Dear <TMPL_VAR NAME=FULLNAME>:</p>
 <p>Get it <a href=”<TMPL_VAR NAME=BOOKURL>”>here!</p>
</body>
</html>

The right Perl code, when called with that document, will spit out the docu-
ment with all of the <TMPL_VAR NAME={something}> mentions replaced
with the contents of the named variable. The good news is that CGI::App
has this code built in. Out of the box it supports HTML::Template, which
uses templates like the one above. It can also use other templating engines
(e.g., Template Toolkit), but for this column we’ll stick with the built-in sup-
port.

To use HTML::Template from within a CGI::App application, you first tell it
where to find the templates it will use. This is most commonly done in one
of the global initialization subroutines for an application like cgiapp_init:

sub cgiapp_init{
 my $self = shift;
 $self->tmpl_path(‘/path/to/your/templates’);
}

Once the webapp knows where to find templates, it can load them for pro-
cessing using the load_tmpl() method. Once loaded, we can replace the
<TMPL_VAR> tokens with their values using a set of param() method calls
and then produce the final result using output(). Here’s an example run
mode showing all of these steps:

sub welcome_doc : Runmode {
 my $self = shift;

 # die_on_bad_params set to 0 tells HTML::Template to avoid getting huffy
 # if we attempt to replace a parameter that doesn’t exist in the template.
 # This will come in handy in the next section of this column.
 my $template = $self->load_tmpl(‘begin.tmpl’, die_on_bad_params => 0);

Login_articlesOCTOBER_09_final.indd 50 9.4.09 12:02:41 PM

; LO G I N : O c tO b e r 20 0 9 pr Ac tI c A L pe rL tO O L s : cG I : : A ppLI c AtI O N , pA rt 2 51

 $template->param(PAGETITLE => ‘Welcome Page’);
 $template->param(FULLNAME => ‘Mr. Mxyzptlk’);
 $template->param(BOOKURL=>
 ‘http://oreilly.com/catalog/9780596006396/’);
 return $template->output();

This is easier and more flexible than the method we saw in the first column
of using CGI.pm methods to construct pages. As a related aside, I should
point out that there is nothing (the name notwithstanding) that requires you
to generate HTML using HTML::Template templates. In the last sizable we-
bapp I built, I used the built-in HTML::Template support to have the webapp
generate custom shell scripts that could be run separately from the webapp.
At some point you start to realize that all the world’s a template.

CgI::app Plugins

Now let’s move into the territory of CGI::App enhancements provided by
various plugin modules. I’d like to highlight three of them and then finish
up with a small example that demonstrates everything we’ve talked about in
these two articles. CGI::Application::Plugin::ValidateRM is the first plugin I’d
like to mention.

CgI::aPPLICaTIon::PLugIn::VaLIdaTerM

Any decent Web application will validate its input. If your form asks for a
phone number, the users need to be told they’ve done something wrong
if they type in a set of letters (PEnnsylvania 6-5000 notwithstanding).
You can block input errors via JavaScript before they are submitted, but
for Perl programmers without JavaScript experience, it’s probably easier
to validate the input server-side with a module like Data::FormValidator.
C::A::P::ValidateRM lets you hook Data::FormValidator into CGI::App in a
relatively easy-to-use fashion. First we’ll look at how Data::FormValidator is
called and then at how C::A::P::ValidateRM lets us use it in a CGI::App con-
text.

Data::FormValidator expects to receive an “input profile.” The input profile
specifies which fields are optional/required, any constraints on the field, fil-
ters to run on the input before checking, and what to do about errors. Here’s
an example input profile:

{ required=> [qw(inputfirstname inputlastname)],
 filters => [‘trim’],
 constraint_methods => {
 inputfirstname => qr/^[A-Z]+[A-Za-z-’.]{1,25}$/,
 inputlastname => qr/^[A-Z]+[A-Za-z-’.]{1,25}$/,
 },
 msgs => {
 any_errors => ‘err__’,
 prefix => ‘err_’,
 },
}

Before validation is attempted, all fields are filtered, so leading and trail-
ing whitespace is trimmed using a built-in filter (Data::FormValidator has a
number of others). This profile expects there to be two required fields. Those
fields have to be composed of one to twenty-five alpha characters (plus a few
punctuation characters), specified here as regexps. We are using a custom
constraint here, but Data::FormValidator::Constraint has a number of preset

Login_articlesOCTOBER_09_final.indd 51 9.4.09 12:02:41 PM

52 ; LO G I N : vO L . 3 4, N O. 5

constraints such as “ip_address,” “email,” and “american_phone” you could
use—you don’t need to roll your own.

And, finally, in the input profile, we specify how validation results (mes-
sages, or msgs for short) will be reported. In the example above, we ask that
something called err__ be set if there are any validation errors at all and that
the error messages for each failed validation be returned using the conven-
tion err_{fieldname} (i.e., err_inputfirstname and err_inputlastname). Look-
ing at how these validation results are used is a good segue to how forms are
validated within CGI::App.

With C::A::P::ValidateRM, we use a method called check_rm():

use CGI::Application::Plugin::ValidateRM
 (qw/check_rm check_rm_error_page/);

in some run mode subroutine...
my $results = $self->check_rm(
 ‘get_basic_info’,
 {required=> [qw(inputfirstname inputlastname)],
 ... # same stuff as above
 }
) || return $self->check_rm_error_page();

The check_rm() method takes a “return run mode” and an input profile. If
the input profile turns up any validation errors, the return run mode speci-
fied in the first argument will be called to produce an error page. This error
page is returned instead of any HTML the run mode would normally gener-
ate.

The parts of the validation handling are starting to come together, so let’s re-
view and see what we are missing. When CGI::App enters a run mode, vali-
dation code checks that the input sent to that run mode (e.g., posted from a
form) is valid. If it isn’t, CGI::App calls the return run mode (usually the run
mode we just came from) and asks it to produce an HTML error page so that
the user can try resubmitting. How does a run mode actually generate an
error page? That’s the last part we have to cover.

First, each run mode is passed a hash reference as a second argument if it
is being called as a return run mode. This hash reference contains the vali-
dation error messages mentioned earlier. To make use of them via the tem-
plating already discussed, we add a line to each run mode to insert the
validation results into the document being generated:

sub welcome_doc : Runmode {
 my $self = shift;
 my $errs = shift;

 ... # do the stuff for this run mode including load_tmpl()
 $template->param($errs) if ref $errs;
}

The bold line above inserts the error information into our template. We’ll
need a slightly more sophisticated template to incorporate these error mes-
sages:

<html>
<head><title><TMPL_VAR NAME=PAGETITLE></title></head>
<body>
 <!-- TMPL_IF NAME=”err__” -->
 <p> Some data in your form was missing or invalid. </p>
 <!-- /TMPL_IF -->

Login_articlesOCTOBER_09_final.indd 52 9.4.09 12:02:41 PM

; LO G I N : O c tO b e r 20 0 9 pr Ac tI c A L pe rL tO O L s : cG I : : A ppLI c AtI O N , pA rt 2 53

<form method=”POST”>
 <input type=”hidden” name=”rm”value=”next_runmode” />
 First Name: <input type=”text” size=30 name=”inputfirstname”/>
 <TMPL_VAR NAME=”err_inputfirstname”>

 Last Name:</label> <input type=”text” size=30 name=”inputlastname”/>
 <TMPL_VAR NAME=”err_inputlastname”>
 <input type=”submit” name=”submit” value=”Submit” />
</form>

</body>
</html>

This sample introduces the TMPL_IF syntax from HTML::Template. If the
named parameter is present it will output the contents of the tag. In our
validation input profile we specified that we wanted err_ _ _ set if any er-
rors were encountered. Here’s where that pays off. The other addition to our
standard template is the use of TMPL_VAR NAME=“err_ {fieldname}”
tags. These will get replaced with field-specific error messages (by default,
CSS-styled in bold red text). The end result of all this fuss is that your we-
bapp will accept input via a form, validate that input using a pretty powerful
specification (worse case: written in Perl itself), and automatically spit out an
error form with the valid information still filled in and any validation errors
flagged with pretty error messages. All of that can be done with much less
code than you’d normally need if you were writing it yourself.

That’s the (considerable) positive side of using C::A::P::ValidateRM. The hid-
den negative side of using this plugin that isn’t explicitly mentioned in any
of the documentation is the increased complexity validation like this can
add to each of your run mode subroutines. Before, your code path might
have been super simple—you enter each run mode, do your work, and move
on to the next run mode—but now you might have a second entry path into
each run mode to handle validation errors. If you’ve written the run mode
code to expect to run only once per session/user, any situation where the
webapp doubles back on itself can complicate lots of things. It certainly can
make debugging the application a little harder. Caveat coder.

CgI::aPPLICaTIon::PLugIn::sessIon

The next plugin we are going to see requires considerably less background to
cover. CGI::Application::Plugin::Session lets you use the handy CGI::Session
module easily from within CGI::App. Because HTTP is a stateless proto-
col, a Web programmer has to do a bit of work in concert with the user’s
browser to present the illusion that the user is operating within a “session.”
CGI::Session handles all of the behind-the-scenes plumbing for that (cook-
ies, session caches and expiry, etc.). Using all of this power becomes really
easy thanks to CGI::Application::Plugin::Session:

use CGI::Application::Plugin::Session;

sub run_mode_A : Runmode {
 my $self = shift;

 $self->session->param(‘some_parameter’ => ‘some value to store’);
}

sub run_mode_B : Runmode {
 my $self = shift;
 $some_value = $self->session->param(‘some_parameter’);
}

Login_articlesOCTOBER_09_final.indd 53 9.4.09 12:02:41 PM

54 ; LO G I N : vO L . 3 4, N O. 5

In the example above, the two run modes share a piece of information called
“some_parameter” by storing and retrieving it as a session parameter. Nei-
ther run mode has to know just how that magic takes place behind the
scenes. You can tweak just how this is done, e.g., what database is used for
persistent storage, via CGI::Session setup arguments called from the plugin.

CgI::aPPLICaTIon::PLugIn::dBH

Our last CGI::App plugin for this column is another door opener.
CGI::Application::Plugin::DBH makes it easy to bring the power of Tim
Bunce’s fundamental database-independent interface (DBI) package into your
webapp. If your webapp needs to work with data found in an SQL database,
C::A::P::DBH provides an efficient way to do it. The key efficiency this plugin
provides is “lazy loading”; the plugin is smart enough not to spin up a data-
base connection unless the specific run mode in play needs it.

To use C::A::P::DBH, you describe the DBI connection in the CGI::App ini-
tialization routine:

use CGI::Application::Plugin::DBH (qw/dbh_config dbh/);

sub cgiapp_init {
 my $self = shift;

 $self->dbh_config({standard DBI connect() arguments});
}

If you’d prefer to keep the configuration information in your instance script,
arguably a better place for it, there’s an alternative syntax mentioned in the
documentation.

With your database configuration specified, the other run mode subroutines
can make use of a DBI database handle:

sub lookup_data {
 my $self = shift;

 my $data = $self->dbh->selectrow_arrayref(qq{SELECT name,uid
 FROM users});
 # ... do something with $data->[0] and $data->[1]
}

C::A::P::DBH lets you use named DBI database handles if your webapp has a
need for connections to multiple databases.

sample Code

So let’s put this all together into a toy webapp that demonstrates everything
we’ve talked about in both parts of this series. We’re going to look at the
code in an outside-in fashion. The first piece of code a user executes is the
instance script. This is the script that is called when we go to http://www
.server.com/LoginExample.cgi:

use strict;
use lib ‘/path/to/webapps/lib’;

use LoginExample;

my $app = LoginExample->new();
$app->run();

Login_articlesOCTOBER_09_final.indd 54 9.4.09 12:02:41 PM

; LO G I N : O c tO b e r 20 0 9 pr Ac tI c A L pe rL tO O L s : cG I : : A ppLI c AtI O N , pA rt 2 55

This super-simple script just spins up the application module and its run
mode subroutines. That’s a fairly sizable file (LoginExample.pm). Here it is
in its entirety:

use strict;

package LoginExample;
use base ‘CGI::Application’;
use CGI::Application::Plugin::AutoRunmode;
use CGI::Application::Plugin::Session;
use CGI::Application::Plugin::DBH (qw/dbh_config dbh/);
use CGI::Application::Plugin::ValidateRM (qw/check_rm
 check_rm_error_page/);
use Data::FormValidator::Constraints (qw/FV_length_between email/);

Configure the database connection and the location of the templates
sub cgiapp_init {
 my $self = shift;
 $self->dbh_config(“dbi:SQLite:dbname=loginex.sqlite”, “”, “”);
 $self->tmpl_path(‘templates’);
}

The initial run mode displays a form and handles another pass
through the form should it not be filled out correctly. It also
stashes the time the script was first run by the user in a session object
sub get_userinfo : StartRunmode {
 my $self = shift;
 my $errs = shift;

 $self->session->param(‘starttime’ => time)
 unless $self->session->param(‘starttime’);

 my $template = $self->load_tmpl(‘getuser.tmpl’,
 die_on_bad_params => 0);

 # if we’re showing errors from validation
 $template->param($errs) if ref $errs;

 return $template->output();
}

First test to make sure it has received valid output. If it has, query a
database and the session object for other fields and display the info
via a simple template
 my $self = shift;

 # Validate input from getuser_info’s form
 my $results = $self->check_rm(
 ‘get_userinfo’,
 { required => [qw/fullname email/],
 filters => [‘trim’],
 constraint_methods => {
 fullname => FV_length_between(1, 50),
 email => email(),
 },
 msgs => {
 any_errors => ‘err__’,
 prefix => ‘err_’,
 },
 }
) || return $self->check_rm_error_page();

Login_articlesOCTOBER_09_final.indd 55 9.4.09 12:02:41 PM

56 ; LO G I N : vO L . 3 4, N O. 5

 my $template
 = $self->load_tmpl(‘showuser.tmpl’, die_on_bad_params => 0);

 my $email = $self->query->param(‘email’);

 my $idnumber = $self->dbh->selectrow_array(
 qq{SELECT idnumber FROM users WHERE email = \”$email\”});

 $template->param(FULLNAME => $self->query->param(‘fullname’));
 $template->param(EMAIL => $email);
 $template->param(IDNUMBER => $idnumber);
 $template->param(
 STARTTIME => scalar localtime $self->session->param(‘starttime’));

 $self->session->delete();
 $self->session->flush();

 return $template->output();
}

1;

After the modules are loaded, we perform all of our initialization work by
configuring the database handle and template directory. Next come the two
run modes for this module: get_userinfo and show_userinfo. The first run
mode uses a template to display a two-field form (we’ll see the template in
just a moment) to collect information from the user. In the process, it makes
note of the time the run mode was first entered by squirreling away that
value in a session object. This run mode also handles a redisplay of that
form should the user not provide valid information.

The second run mode, show_userinfo, checks the input it has been passed
from get_userinfo. If the input is not valid, it creates an error page by call-
ing get_userinfo again. If the input is valid, it retrieves info from the form
parameters ($self->query->param()), an SQLite database (via DBI), and
the session object ($self->session->param()). This information is inserted
into a template, the session object is disposed of, and CGI::App is handed
output to display.

To see what is displayed for each run mode, let’s look at the two templates.
Here’s getuser.tmpl:

<html>
<head><title>Login Example </title></head>
<body>

 <!-- TMPL_IF NAME=”err__” -->
 <p> Some data in your form was missing or invalid. </p>
 <!-- /TMPL_IF -->

<form method=”POST”>
<input type=”hidden” name=”rm” value=”show_userinfo” />
Full Name: <input type=”text” size=30 name=”fullname”/>
<TMPL_VAR NAME=”err_fullname”>

Email: <input type=”text” size=30 name=”email”/>
<TMPL_VAR NAME=”err_email”>

<input type=”submit” name=”submit” value=”Submit” />
</form>
</body>
</html>

Login_articlesOCTOBER_09_final.indd 56 9.4.09 12:02:41 PM

; LO G I N : O c tO b e r 20 0 9 pr Ac tI c A L pe rL tO O L s : cG I : : A ppLI c AtI O N , pA rt 2 57

and here’s showuser.tmpl:

<html>
<head><title>Login Example </title></head>
<body>
 Full Name: <TMPL_VAR NAME=FULLNAME>

 Email: <TMPL_VAR NAME=EMAIL>

 ID: <TMPL_VAR NAME=IDNUMBER>

 Started: <TMPL_VAR NAME=STARTTIME>
</body>
</html>

Leftovers

We’re very out of room (it’s amazing how fast you can use up 140 charac-
ters), so let me just say that there are a number of CGI::App plugins you’ll
definitely want to explore if you decide to start building Web applications
with it. The best place to start is to look at the “bundled” version being pro-
duced (search CPAN for “Titanium”) to have all of the current “best prac-
tices” CGI::App plugins at your fingertips. Beyond that, search CPAN for
“CGI::Application::Plugin” for a plethora of choices. Have fun writing web-
apps (perhaps for the first time) with CGI::Application. Take care, and I’ll
see you next time.

Login_articlesOCTOBER_09_final.indd 57 9.4.09 12:02:41 PM

58 ; LO G I N : vO L . 3 4, N O. 5

p e T e R B a e R g a Lv i n

Pete’s all things Sun:
VMware vSphere 4 vs.
Microsoft Hyper-V R2

Peter Baer Galvin is the chief technolo-
gist for Corporate Technologies, a premier
systems integrator and VAR (www.cptech.
com). Before that, Peter was the systems
manager for Brown University’s Computer
Science Department. He has written articles
and columns for many publications and is
co-author of the Operating Systems Concepts
and Applied Operating Systems Concepts
textbooks. As a consultant and trainer, Peter
teaches tutorials and gives talks on security
and system administration worldwide. Peter
blogs at http://www.galvin.info and twit-
ters as “PeterGalvin.”

pbg@cptech.com

l o n g g o n e a r e t h e d ay s w h e n “ s u n
Microsystems” meant only Solaris on SPARC.
Sun is pushing hard to be a platform pro-
vider for multiple operating systems, as well
as a provider of their own Solaris operat-
ing system. In some ways this column is a
continuation of my April column (;login:
April 2009, Volume 34, Number 2), which
contained a virtualization guide. That col-
umn discussed the virtualization offerings
created by Sun. This column explores the
rich, controversial, and important terrain
of two of the market leaders in virtualiza-
tion, VMware and Microsoft. The topic is not
Sun-specific but is probably of interest to
many Sun customers. The Sun x86 servers
are certified to run VMware and Windows,
as well as Solaris and Linux. In my experi-
ence, Sun x86 servers, especially the x4600
with its eight sockets and quad-core CPUs,
make excellent virtualization servers. The
question then becomes, which virtualiza-
tion technology to run? OpenSolaris has Xen
built in, but many sites want mainstream
and well-tested solutions. That brings us to
the two contenders discussed in the re-
mainder of this column.

VMware is certainly the company one thinks of
when “virtualization” is mentioned, and for good
reason. They have the largest market share of vir-
tualization solutions, have had products available
for many years, and are leading the way to the vir-
tualized data center through their product features
and best practices. Microsoft gets everyone’s atten-
tion when they enter a market, and although late to
the game, they are attacking it fiercely by including
virtualization in Windows Server. The question on
many minds is, “Which is better?” or even “Is Hy-
per-V good enough?” In this column I’ll discuss the
features of the latest server virtualization offerings
from both companies—VMware vSphere 4 was
recently announced and is already shipping, and
Microsoft Hyper-V R2 is part of Windows Server
2008 R2, which is currently in beta test and ex-
pected to ship in October. Along with features, the
discussion must also include (list) pricing, because
much of Microsoft’s push is based on the lower cost
of Hyper-V.

Login_articlesOCTOBER_09_final.indd 58 9.4.09 12:02:42 PM

; LO G I N : O c tO b e r 20 0 9 pe te’s A LL th I N Gs su N : vsph e re 4 vs. h y pe r-v r 2 59

VMware vsphere 4

vSphere 4 is the name of a suite of products from VMware consisting of the ESX and
ESXi type 1 hypervisors installed on servers and the vCenter Server administration
software. The important features of vSphere 4 include:

Distributed Resource Scheduler (DRS): aggregates resources across one or ■■

more compute clusters and dynamically allocates them to VMs based on
business logic.
Distributed Power Management (DPM): automates energy efficiency in DRS ■■

clusters by optimizing power consumption.
Virtual Machine File System (VMFS): clustered file system, shares storage ■■

among cluster nodes.
Thin Provisioning: dynamic allocation of storage as needed.■■

Virtual Switch: provides advanced networking features per guest on a host.■■

vNetwork Distributed Switch: simplifies provisioning, control, and admin-■■

istration of VM networking.
vMotion: live migration of VMs across servers in a cluster with no disrup-■■

tion or loss of service.
Storage vMotion: relocates virtual disks among storage resources within a ■■

cluster (but not between clusters).
High Availability (HA): automated restart (within minutes) of VMs on other ■■

cluster nodes in the event of server failure.
Fault Tolerance: a second VM mirrors a primary one in lockstep, providing ■■

continued operation if the first VM or its hardware fails (but limits VMs to
only 1 vCPU, and use of many other features not allowed).
Data Recovery: agentless backup of VMs (for small environments).■■

vShield Zones: creates and enforces security zones that are maintained even ■■

during vMotion.
VMsafe: enables the use of third-party security products within VMs.■■

vApp: logical collection of components of an application, described via ■■

OFV format.
Site Recovery Manager (SRM): automates DR failover between sites and ■■

failover testing, via integration with networking and storage components.

Both VMware vSphere 4 and Microsoft Hyper-V manage multiple hosts as
clusters of resources. A cluster is the entity into which a VM is deployed.
Cluster resources are allocated to VMs. VMware, through vMotion, can move
VMs among hosts in a cluster. If a cluster node fails, the VMs that were run-
ning on that node can be automatically restarted on another node in that
cluster. Cluster hosts share access to storage to allow this functionality. Note
that vSphere has no native ability to replicate storage between clusters (such
as to a DR site) but, instead, integrates with replication provided by storage
vendors (which are usually licensed features of the storage arrays).

There is no standard benchmark of virtualization performance currently
available, although the SPEC organization is working on one. VMware has
published their own VMmark benchmar, but, because it includes in its
testing the performance of Linux running on more than one core and be-
cause Hyper-V does not support Linux beyond one core, there is no way to
run that test across both virtualization technologies. This lack of standard
benchmarks leaves it up to a given site to run tests to determine perfor-
mance differences. I expect that VMware is more efficient in terms of CPU
and memory use, but have not yet proved that via testing.

Pricing of software can be complicated, and virtualization solutions are no
exception. Table 1 compares the flavors of VMware vSphere and their list
prices.

Login_articlesOCTOBER_09_final.indd 59 9.4.09 12:02:42 PM

60 ; LO G I N : vO L . 3 4, N O. 5

t a b L e 1 : V m w a r e V s p h e r e c O m p a r i s O n s

To these product costs must be added any operating system licenses and ap-
plication licenses. Also needed is a license for one or more copies of vCenter
Server: the “Standard” version has no host limits, can link to other vCenter
Servers for consolidated management, and includes “Orchestrator,” a VM-
ware automation tool. It costs $4,995. The more limited “Foundation” ver-
sion costs $1,495 and is limited to 3 ESX hosts. ESXi itself can be run free
of charge, but optional maintenance can add $495 per year to its cost. Of
course many sites execute a site license agreement with VMware, greatly re-
ducing the per-processor cost. In general, a site license for vSphere or any
operating systems is not an unlimited license; rather, it is a discount based
on a volume purchase of licenses. A “true up” occurs periodically in which
the number of instances in use is calculated and the total cost to the site tal-
lied.

Microsoft Hyper-V r2

Microsoft Hyper-V R2 is at the time of this writing in “release candidate”
form in Windows Server 2008 R2. Microsoft claims that half of its infra-
structure is currently virtualized (via Hyper-V presumably), so clearly Mi-
crosoft feels that it is ready for production use. But because it is in release
candidate form, it is difficult to draw conclusions about its use in the field,
production deployments, and even final features and performance.

Hyper-V is Microsoft’s virtualization layer, the technology that allows virtual
machines to run within Windows, just as ESX and ESXi are VMware’s. Hy-
per-V is simply a feature of Windows Server. Technically it is a “type 2” hy-
pervisor, as virtual machines run under a host operating system and not just
a hypervisor. However, this line is blurry, as ESX also includes a Linux com-
ponent in its host operating system. According to Microsoft, they provide a

Specification Standard Advanced Enterprise Enterprise Plus

Cores per CPU Up to 6 12 12 12

Virtual cores
(per guest)

4 4 4 8

RAM 256GB 256GB 256GB Unlimited

Failover 0 16 16 16

Consolidation Hypervisor, agent,
thin provisioning,
 update manager, VCB

Hypervisor, agent,
thin provisioning,
 update manager, VCB

Hypervisor, agent,
thin provisioning,
 update manager, VCB

Hypervisor, agent,
thin provisioning,
 update manager, VCB

Availability HA HA, live migra-
tion, fault tolerance,
vShield zones, data
recovery

HA, live migra-
tion, fault tolerance,
vShield zones, data
recovery

HA, live migra-
tion, fault tolerance,
vShield zones, data
recovery

Automated resource
management

DRS, DPM, storage
vMotion

DRS, DPM, storage
vMotion

Simplified operations 3rd-party multi-
pathing, distributed
switch, host profiles

Cost $795 per processor $2,245 per processor $2,875 per processor $3,495 per processor

Login_articlesOCTOBER_09_final.indd 60 9.4.09 12:02:42 PM

; LO G I N : O c tO b e r 20 0 9 pe te’s A LL th I N Gs su N : vsph e re 4 vs. h y pe r-v r 2 61

thin type 1 hypervisor layer that runs alongside the full Windows Server
software. In their implementation, device drivers have low latency access to
the hardware, and therefore type 1-like performance.

Hyper-V is part of the complete virtualization solution from Microsoft. The
associated management component is Microsoft System Center, the software
generally used by Microsoft infrastructure shops to manage their Windows
Server deployments. A new add-in to SC is SCVMM—Microsoft System
Center Virtual Machine Manager. SCVMM is able to manage not only Hyper-
V-hosted guests but also Virtual Server, VMware Server, and VMware ESX
and GSX guests. SVCMM works well in conjunction with the other standard
components of System Center, such as the Configuration Manager and Op-
erations Manager. This tight integration is a boon to sites that already make
use of those other tools.

SCVMM has a host of features, making it a fairly complete manager in Mi-
crosoft environments. For example, it will intelligently place VMs onto the
hosts with the most available resources, based on the resource needs of the
VMs in question. Also included are physical-to-virtual (P-to-V) tools to take
a physical server and generate a virtual machine image from it, and a vir-
tual-to-physical (V-to-P) tool that does the reverse. P-to-V is the way most
sites generate their first VMs, capturing existing systems and virtualizing
them. The utility of V-to-P should not be overlooked, however. It can be
useful for debugging, to test whether virtualization is causing the problem
or whether it is virtualization independent. It can also be useful for perfor-
mance testing. Finally, it ensures that even if an application has been virtu-
alized, there is a back-out plan if that virtualization results in insufficiency.

Other useful features include the full scriptability of SCVMM actions via
the standard PowerShell tools. Scripting enables repeatability and transport-
ability—for example, a library of scripts that create and manage virtual ma-
chines can be copied between sites to allow uniformity and administration
efficiency.

A Hyper-V cluster provides high-availability functionality by restarting VMs
on other cluster nodes if a node fails. Hyper-V R1 has a “Quick Motion” fea-
ture that allows a VM to be moved between cluster hosts, but it lacks Vmo-
tion’s ability to do the move “instantly” (in less than a second). Because the
move can take several seconds, network connections to the VM can fail dur-
ing the move with resulting impact to production uptime. Quick Motion
greatly diminishes an administrator’s ability to manage resource use in a Hy-
per-V cluster. A running VM cannot be moved to another server seamlessly.
If a server needs maintenance, for example, moving the VMs to another
server is a downtime event. Hyper-V R2 has a feature called Live Migration
that should address this issue and put it on a par with vMotion.

The features available to Windows administrators depend on the version of
Windows being used. The available versions include Web, Foundation, Stan-
dard, Enterprise, and Datacenter. There is also an Itanium version that does
not support Hyper-V, as well as an HPC version. Fundamentally, Enterprise,
Datacenter, and Standard can include Hyper-V, but there are also versions of
those operating system flavors that do not include it. A Server Core version
of Enterprise, Datacenter, and Standard includes all the functionality but
without the GUI. This version is intended for headless servers, decreasing
the size of the installation and installation time.

Table 2 shows the Windows Server 2008 R2 versions, features, and limits.

Login_articlesOCTOBER_09_final.indd 61 9.4.09 12:02:42 PM

62 ; LO G I N : vO L . 3 4, N O. 5

t a b L e 2 : w i n d O w s s e r V e r 2 0 0 9 r 2 c O m p a r i s O n s

Again, application licenses must be added to these costs, as well as the
cost for non-Windows guests and any Windows guests beyond the number
granted with the OS license.

“Virtual Image Use Rights” determines how many Windows Server guest
virtual machines can be created when the given operating system is the
host. Unlimited guests are allowed, but only a limited number of Win-
dows Server guests are granted in the license. Windows Server 2008 Stan-
dard Edition can have one Windows Server guest VM, Enterprise can have
four Windows Server guests, and Datacenter is limited only by available re-
sources. The Windows Server license includes the use of Windows Server as
a guest under Hyper-V on that system.

You can use the various flavors of Windows as guests, depending on licens-
ing terms.

Windows 2008 without Hyper-V can be a guest and can use 1, 2, or 4 ■■

virtual CPUs.
Windows 2003 can use 1 or 2 virtual CPUs.■■

Windows 2000 can use 1 virtual CPU.■■

SUSE Enterprise Linux can use 1 virtual CPU.■■

Windows Vista can use 1 or 2 virtual CPUs.■■

Windows XP can use 1 virtual CPU (although Windows XP Professional ■■

with SP3 and XP Professional x64 Edition can use 2 virtual CPUs).

Note that Red Hat and Microsoft have announced a joint support agreement.
RHEL will be supported as a guest within Hyper-V, and Windows Server
2008 will be supported within RHEL guest VMs. As of this writing, neither
of those options is available for production use.

There is no Microsoft equivalent of ESXi—rather, Windows is installed as
well as Hyper-V, with Windows being the virtual machine manager (VMM).
The minimum installation of Windows Server Core plus Hyper-V takes
2.6GB of disk space. The more complete Windows Server releases take even
more space. ESXi takes 70–100MB of disk space.

A Hyper-V VM consists of a configuration file, the image file (in VHD for-
mat), saved state files, and differencing disks (AVHDs). Hyper-V supports
full snapshot functions, including creation, deletion, and merging. Merging
is needed if snapshots that depend on other snapshots are deleted. Snapshots
are just block differences. Each snapshot refers to the previous snapshot and
just records differences. If a snapshot is deleted, other snapshots may de-

Specification Standard Enterprise Datacenter

X86 sockets (up to 32 cores) 4 8 32

X64 sockets (up to 64 cores) 4 8 64

X86 RAM 4GB 64GB 64GB

X64 RAM 32GB 2TB 2TB

Failover cluster nodes 0 16 16

client access licenses (CALs) included 5 25 0

Cross-file replication (DFS-R) No Yes Yes

Virtual Image Use Rights 1 4 Unlimited

Cost $999 per host $3,999 per host $2,999 per processor

Login_articlesOCTOBER_09_final.indd 62 9.4.09 12:02:42 PM

; LO G I N : O c tO b e r 20 0 9 pe te’s A LL th I N Gs su N : vsph e re 4 vs. h y pe r-v r 2 63

pend on some blocks in that snapshot, and those blocks must be merged
into the remaining snapshots. However, merging snapshots is only possible
when a virtual machine is halted. The other snapshot commands may be
done on live VMs.

Comparison

Table 3 compares all the major features and resource limits of vSphere 4
and Hyper-V.

Aspect VMware vSphere 4 Microsoft Hyper-V R2

Host

CPUs supported Recent AMD, Intel Recent AMD, Intel

CPU cores supported 64 64

Memory supported 1TB 2TB

I/O devices supported IDE, SCSI, SAS, SATA, FC, 1Gb and
10Gb Ethernet, iSCSI, NFS, FCOE,
Infiniband

IDE, SCSI, SAS, SATA, FC, 1Gb and
10Gb Ethernet, iSCSI, CIFS, FCOE,
Infiniband

Memory optimization Over-commit, transparent page shar-
ing, ballooning, large-memory pages

Dynamic memory allocation

Platform support Fewer vendors More vendors

Supported storage of guest VMs Direct, SAN, NAS, iSCSI Direct, SAN, iSCSI

Number of nodes in a cluster 32 nodes if < 40 VMs per node 16

Guest

Operating systems supported Asainux, CentOS, Debian, FreeBSD,
OS/2, Solaris 10, SCO OpenServer,
SCO Unixware, Windows Server,
RHEL, SUSE, MS-DOS, Netware

Windows Server, Vista, XP, SUSE
Linux

Operating systems tools provided
|(per OS)

Yes, for most guests Yes, for most guests

virtual CPUs supported 8 4

guests per host 256 running 512 (192 running)

Amount virtual memory 256GB 64GB

Virtual NICs 10 Yes, limit unknown

of snapshots 32 per VM 50 per VM

Types of guests supported 32-bit, 64-bit, simultaneously 32-bit, 64-bit, simultaneously

Ability to hot-add disk images and
external storage

Yes Virtual SCSI devices only, not IDE

Features

VM move Live Live

Direct I/O VMDirectPath I/O —

VM synchronization With limits (1 vCPU, many features
disabled)

No

Login_articlesOCTOBER_09_final.indd 63 9.4.09 12:02:42 PM

64 ; LO G I N : vO L . 3 4, N O. 5

t a b L e 3 : V s p h e r e 4 a n d h y p e r - V c O m p a r i s O n s

The list of functions, features, and limits needs to be compared with the
needs of a data center. Applying that filter, it could be the case that, for a
given deployment or environment, the two options analyzed here are equiv-
alent. For example, the two offerings are relatively the same for a site need-
ing to virtualize Windows Server 2008 on a host with 8 processors, 64
cores, 256GB of memory, needing 4 vCPUs per guest, 8 guests, live migra-
tion, H/A, and storage management. Comparisons of cost should also be
considered.

To use VMware to accomplish this task, the list price cost would be $2,245
per socket for vSphere advanced, plus $1,495 for vCenter Server Foundation,

Directly boot from VM image Only if ESXi installed Yes

P to V Included Included

V to P Included Included

HA via clustering and failover Yes Yes

Replication Integration with 3rd-party storage
products

Yes (DFS-R)

Performance monitoring Yes, vCenter Server Yes, SC Operations Manager

Network features Virtual switch, VLAN tagging, Net-
work vMotion, Network traffic shaper,
IPv6, CDP, NIC teaming

Standard Windows Server 2008
features

Storage features Thin provisioning, consumption-
based monitoring, reports and topol-
ogy maps, LUN discovery, adaptive
block sizing, storage vMotion

Standard Windows Server 2008
features

Patching of guests vCenter Update Manager (both run-
ning and halted guests, Windows and
some Unix)

Standard Windows Server 2008
features for booted Windows guests,
Offline Machine Servicing Tool for
halted Windows guests

Security Layer 2 security policies, vShield, VM-
safe 3rd party security products

Native firewall, 3rd party security
products

Backups Native via VMware Data Recovery,
Support from major vendors

Native, Support from major vendors

Resource management Yes, many options Yes, some options

Physical server power on / off as
needed

Via VMware DRS, DPM No

ISV support Strong Strong

VM format conversion VMware workstation, Linux, VHD VHD, VMDK

Market share (new orders, Q2 2008,
IDC)

44% 23%

Performance VMMark results published (no indus-
try standard benchmark exists)

None published

Cost See VMware section Included with some Windows Server
2008 editions, see Hyper-V section

Login_articlesOCTOBER_09_final.indd 64 9.4.09 12:02:42 PM

; LO G I N : O c tO b e r 20 0 9 pe te’s A LL th I N Gs su N : vsph e re 4 vs. h y pe r-v r 2 65

plus 8 Windows Server 2008 Standard (no Hyper-V) licenses at $971 each,
for a total of $27,223.

To use Windows Server 2008 with Hyper-V to accomplish the same task, the
list price cost would be $3,999 for Windows Server 2008 Enterprise (grant-
ing 4 guest licenses), plus System Center at $1,497 (although that is already
in place at many Windows sites), plus 4 Window Server Standard licenses
(for the other 4 guests), for a total of $9,376. Note that this pricing could
change if Microsoft changes its licensing terms with the release of Windows
Server 2008 RC and SVCMM R2.

There are some similarities and many differences between the features of
these two offerings. In many cases, a shortcoming can be redressed by add-
ing a third-party tool to an infrastructure. There are many such tools to
chose from, but adding a tool brings with it added complexities, training
needs, maintenance efforts, and so on. Also, consider that the virtualization
market is very dynamic. Consider that Virtual Iron was an early entry into
the virtualization market, but its purchasers were left without any options to
expand its use when Oracle purchased the company and decided to termi-
nate sales, even to existing Virtual Iron customers.

Further, datacenter managers, while determining the total cost of virtual-
izing an environment, need also to consider the impact of virtualization on
the entire facility. Virtualization will likely:

Decrease the number of physical servers.■■

Increase the per-physical-server cost.■■

Increase the number of OS instances (“virtual server sprawl”).■■

Decrease overall power and cooling costs.■■

Increase power and cooling needed per rack containing virtualization ■■

infrastructure.
Increase network throughput needed per rack, possibly resulting in the ■■

need for 10Gb networking.
Increase storage load (where virtual machines are stored).■■

Conclusions

It is likely that hypervisors will be “free.” Whether as a hardware compo-
nent (the hypervisor that ships in the firmware) or as a software component
(a virtual machine engine shipping as a feature of the operating system), the
ability to virtualize will be included. Virtualization will therefore be ubiq-
uitous. A free and ubiquitous feature is difficult for application vendors and
infrastructure managers to ignore.

It is also likely that IT infrastructure will migrate toward “cloud” architec-
tures in which systems and storage are resources that are trivially allocated
and deallocated as needed based on application demand. Some applica-
tions do not lend themselves to cloud technologies, including applications
that scale vertically, as a server grows, rather than horizontally, across serv-
ers. But those applications that can be implemented, monitored, scaled, and
managed via cloud technologies will make the move due to those compel-
ling cloud features and the cloud technologies that leverage virtualization.
Networking likewise will evolve to allow fast access among all resources,
and easier access to resources at remote sites (such as DR sites). Networking
vendors will try to design (and sell) “one connection fits all” infrastructure
in which one networking wire (or two for redundancy) handles all network
and storage traffic.

Login_articlesOCTOBER_09_final.indd 65 9.4.09 12:02:42 PM

66 ; LO G I N : vO L . 3 4, N O. 5

Virtualization of applications will likely become the default, assuming virtu-
alization vendors continue down the path of unifying the VM format.

Application vendors will commit to the vision, first illuminated by VM-
ware, in which an application and its operating system are pre-installed, pre-
configured, and pre-tuned in a virtual machine. That entity would then be
the product shipped by the application vendors, and customers would sim-
ply take the virtual machine and deploy it on their infrastructure. The only
sticking point in this scenario is how operating system vendors license their
products. Sun Microsystems and most versions of Linux already allow free
download and use of their operating systems, with payment made only if
the customer wants to keep the software and get support. It is therefore al-
lowable to ship a virtual machine containing Solaris and the application to
the application’s customer. Other vendors (with the notable exception of Mi-
crosoft) will likely follow suit, to allow their operating system to be bundled
by application vendors.

VMware currently has a clear market and functionality lead, but can they
maintain this lead in the face of competition from established vendors, both
in features and in price? It is likely that they will have to decrease the pre-
mium that data centers have to pay, per CPU socket, to have that socket
managed by VMware software.

Hyper-V market share will grow once R2 is released, because the addition of
the Live Migration feature enables it to solve many more problems, in many
more environments. It will also grow because it is freely included with some
versions of Windows Server, and because it is a Microsoft-supported prod-
uct. Its growth into large data centers will be limited by its scant support for
other operating systems.

Currently, datacenter management would be well served to analyze which
operating systems they are using, and determine from that which virtual-
ization platform to evaluate using. If there are a large number of Windows
Server systems, or a majority of the systems are Windows Server, then Hy-
per-V becomes a tempting direction. However, the newness of Hyper-V R2
dictates that careful testing, including reliability and performance, be done
before any final decisions are made. Certainly its lack of support for Solaris
and most Linux releases will limit its use in many environments. Also, in-
stallation planning should determine which release of Windows Server best
suits the environment and how to deploy that version. VMware posted a
video (see References) comparing the installation time and effort of VMware
ESXi and Windows Server Core to demonstrate how much more work is in-
volved using standard Windows deployment methods.

The costs and complexities of virtualization, from the tools through deploy-
ment and management best practices, are detrimental to datacenter man-
agers. However, many sites are determining that the benefits far outweigh
these issues. These benefits include reduced hardware footprint, power, and
cooling use; improved application management, reliability, and maintainabil-
ity; and easier application deployment and disaster recovery. The variations
in data centers, priorities, applications, and business drivers require each
datacenter management team to evaluate the gains and losses for themselves.

More information about VMware vs. Hyper-V is available in a free (registra-
tion required) white paper available from http://ctistrategy.com. In this white
paper, I expand on the information in this column by providing analysis of
why to virtualize, what to virtualize, more feature details, and a set of next
steps for datacenter managers to consider. Also at ctistrategy.com is a de-
cision guide that allows determination of the likely best virtualization fit
based on site requirements.

Login_articlesOCTOBER_09_final.indd 66 9.4.09 12:02:42 PM

; LO G I N : O c tO b e r 20 0 9 pe te’s A LL th I N Gs su N : vsph e re 4 vs. h y pe r-v r 2 67

random Tidbits

The Oracle purchase of Sun Microsystems, although approved by sharehold-
ers, has not been consummated as of this writing. Certainly Sun will be
changing, whether or not the purchase becomes final. Watch for analysis
and updated product information in future versions of this column.

referenCes

Cio.com, Virtualization Vendors to Watch in 2009: http://www.cio.com/
article/478388/_Virtualization_Vendors_to_Watch_in_.

Comparison of hypervisors by VMware: http://www.vmware.com/
technology/whyvmware/architectures.html#c132894.

Hyper-V Glossary: http://blogs.msdn.com/virtual_pc_guy/archive/
2008/02/25/hyper-v-terminology.aspx.

Computerworld, “Review: Microsoft’s System Center Virtual Machine
 Manager,” October 23, 2008.

Microsoft Hyper-V landing page: http://www.microsoft.com/
windowsserver2008/en/us/hyperv-r2.aspx.

Microsoft Hyper-V supported guests: http://www.microsoft.com/
windowsserver2008/en/us/hyperv-supported-guest-os.aspx.

Microsoft Systems Center pricing: http://www.microsoft.com/systemcenter/
en/us/management-suites.aspx.

Microsoft Windows Server 2008 feature comparison: http://www
.microsoft.com/windowsserver2008/en/us/compare-specs.aspx.

Microsoft Windows Server 2008 price list: http://www.microsoft.com/
windowsserver2008/en/us/pricing.aspx.

Microsoft, “Windows Server 2008 Hyper-V Technical Overview,” January
2008.

David Patterson’s SC08 keynote: http://www.theregister.co.uk/2008/11/26/
patterson_keynote_sc08/.

Red Hat licensing costs: http://www.redhat.com/f/html/partners_us_skulist
.html.

TechAlpha, “Ripple Effects from Virtualization,” March 11, 2009.

VMware pricing: http://www.vmware.com/files/pdf/vsphere_pricing.pdf.

VMware video of installation time of Windows Server Core and VMware
ESXi: http://www.vmware.com/technology/whyvmware/resources/
esxi-hyper-v-installation.html.

VMware vSphere configuration guide: http://www.vmware.com/pdf/
vsphere4/r40/vsp_40_config_max.pdf.

VMware vSphere 4 datasheet: http://www.vmware.com/products/vsphere/.

vSphere glossary: http://pubs.vmware.com/vsp40_e/wwhelp/wwhimpl/
common/html/wwhelp.htm#href=intro/master_glossary.html&single=true.

Windows as a guest operating system: http://technet.microsoft.com/en-us/
library/cc794868%28WS.10%29.aspx.

Windows Virtual PC RC: http://blogs.msdn.com/virtual_pc_guy/.

Login_articlesOCTOBER_09_final.indd 67 9.4.09 12:02:42 PM

68 ; LO G I N : vO L . 3 4, N O. 5

D a v e J o s e p h s e n

iVoyeur: packet-level,
per-user network access
control and monitoring

Dave Josephsen is the author of Building a
Monitoring Infrastructure with Nagios (Pren-
tice Hall PTR, 2007) and is senior systems
engineer at DBG, Inc., where he maintains
a gaggle of geographically dispersed server
farms. He won LISA ’04’s Best Paper award
for his co-authored work on spam mitiga-
tion, and he donates his spare time to the
SourceMage GNU Linux Project.

dave-usenix@skeptech.org

w e wat c h t h e l o g s s c r o l l b y, u s e r s
in the offices surrounding us using VPN to
access specific ports on the specific serv-
ers they need in the server room based on
business roles that apply to them. My mind
shifts down one level. The gateway device
allows them access to the Internet, where
they loop back to the public VPN endpoint
for this building. PKI and LDAP Bind authen-
ticate them to the VPN endpoint, and it
creates packet filter rules for them based
on the outcome of LDAP queries, loads their
rules to the VPN users’ PF anchor, and hands
them routes to privileged internal subnets.
This is the kind of interaction that makes
my frontal lobes buzz. Lots of pieces, lots
of layers. Physical, logical, human, abstract;
lots of things to understand—no, lots of
ways to understand, and we do, because we
built it.

It all fits so well together that it’s hard to see the
pieces now—like these unrelated projects were in-
tended to be subsystems of the whole we’ve cre-
ated. The best systems I’ve built work this way; the
ones that are going to stick to the wall. I imagine
that real scientific discovery feels something like
this. When it’s done and you step back and look at
it, you know that you’ve found the answer to this
particular question, and that when you move on
it will remain. This answer is right, it is truth, and
anything else is a compromise...a kludge.

We sit in silence, lost in thought, mulling details;
routing, schema extensions, NAT, tunnels. What
if . . . no, that’s accounted for. But then what if . . .
no, the design takes care of that too.

Finally my cohort blinks and shakes his head.
“Whose idea was this?”

All I can do is chuckle and shrug. I honestly can’t
remember. The design has been haunting me for
what feels like years, but I can’t say for sure it orig-
inated in my brain. It was a progression. An artifact
of our collective familiarity with these tools, our
familiarity with each other, and our daily carpool
brainstorms. Having a need for a network access
control system probably didn’t hurt, but in reality it
wasn’t much of a catalyst either. Solutions like this
build themselves when they are ready to be built,
and which of us is to blame isn’t important, even

Login_articlesOCTOBER_09_final.indd 68 9.4.09 12:02:43 PM

; LO G I N : O c tO b e r 20 0 9 I vOy eu r : pAck e t- Le v e L N e t wO rk Access cO NtrO L A N D mO N ItO rI N G 69

if it were answerable. This thing scrolling away before us is a product of our
“us-ness,” and also, it’s awesome.

“It’s a pretty good idea,” he says.

“Yeah, not bad,” I reply.

I should pause here for a short disclaimer: The thing I hate and dread about
writing implementation articles is sharing my code. Easy there, Captain
Open Source, I’m not being proprietary corporate guy. The thing I hate
about sharing my code is inviting you, dear reader, into my brain. It’s far
easier to stay on the English composition side of this equation, where a well-
placed semicolon or two might disguise the blathering idiot I truly am (un-
likely, but possible). Sharing source code with the readership of ;login:, on
the other hand, is something like showing up naked to a photography con-
vention. It’s not something to be done lightly if you value the respect of your
peers, and, being painfully aware of that, I wanted to make sure you knew
the code herein is mine. My cohort is innocent in that regard, his kimono
firmly closed as it were.

So, when did this idea coalesce? I don’t know that either, but the imple-
mentation started with a fortuitous network redesign. We moved our head-
quarters in April, which provided us with the opportunity to redesign the
network from the ground up. New numbers, new segments, new provid-
ers—the whole deal. A big part of the redesign was this VPN-based access
control scheme we’d already been kicking around. The idea was that instead
of having an “internal” subnet for our employees, we’d have an untrusted
segment officially referred to as “public.” University administrators are prob-
ably pretty familiar with this idea: I’ve sometimes heard them call it “the hea-
then zone.”

It’s assumed that bad things happen in the heathen zone as a matter of
course, and that the systems within it should be allowed relatively unfettered
(but NATed) access to the Internet and not much else. In our new corporate
network, if a heathen wants to use services that don’t have public external
addresses (POP, printers, etc.), they should do what they’d do at Starbucks—
no, not pretend to read while hoping someone will talk to them, but VPN
in. When they do that, we can give them access to the exact services on the
specific systems they need, and we can tie their traffic to a UID and moni-
tor/log it. The new network was designed with this in mind.

The next step was figuring out an access control scheme (language?). LDAP
was the obvious choice as a database, but how to implement it? We knew we
wanted a very flexible role-based scheme that would scale and make it easy
to optimize for performance during searches by limiting the search base.
We also wanted to be able to consolidate a few other LDAP systems into it
for things like FTP and mail authentication, and even asset control and ma-
chine inventory. I’ve done a lot of things in my professional career, but get-
ting LDAP right the first time isn’t one of them. In fact, I have rarely gotten
a design that I like for more than a few weeks. I’ve also never found a design
that I could move from one company to another. In this case, I think on the
third or fourth try we got something that stuck.

We modified the schema to add a few objects of our own, for things like net-
works, servers, and a role object, with a socket-style “grant” attribute that
specifies host/service tuples. The easiest way to give you a feel for how it
works is to show you what the VPN endpoint does when an employee logs
into it.

Step 1. Given a unique UID, look up the user’s DN:

Login_articlesOCTOBER_09_final.indd 69 9.4.09 12:02:43 PM

70 ; LO G I N : vO L . 3 4, N O. 5

ldapsearch (uid=dave) dn

This yields something like:

uid=dave,ou=foo,ou=bar,dc=dbg,dc=com

Step 2. Given a user’s DN, look up what it’s been granted access to:

ldapsearch (&(member=uid=dave,ou=foo,ou=bar,dc=dbg,dc=com)
(objectclass=dbgRole)) dbgGrants

This returns a list of server/service tuples that look like this:

fooserver.dbg.com:login

Step 3. For each tuple, resolve the IP address and port number:

ldapsearch (&(cn=a.ig05.dc4.dbg.com)(objectclass=dbgNetwork)) dbgAddress

One or more IP addresses in CIDR notation may be returned.

At the moment, there is no service object in LDAP that maps the service to a
port number. This is because the service definition is arguably relative, given
that future consumer programs might use a different port for the same ser-
vice name or might not want them mapped to TCP port numbers at all, and
anyway creating 30,000+ LDAP objects that mostly won’t ever be used just
seems wrong. At the moment, I think it’s better that the consumer applica-
tion interpret the service name (“login” in this example) for itself. On the
VPN gateway we do this with a slightly modified copy of the /etc/services
file.

The VPN endpoint runs OpenBSD, with OpenVPN and the PF (Packet Fil-
ter) firewall. There are three OpenVPN configuration parameters that make
this design possible. The first is actually optional: --auth-user-pass-verify al-
lows us to authenticate the user via LDAP, which saves us from having to
issue new certs every time a heathen forgets its password.

The next two go hand-in-hand: --client-connect and --client-disconnect.
These allow us to call a script of our choosing when a client connects and/or
disconnects, and are pretty much the bailing wire holding this all together.
I wrote a shell script I call VPLDPF (VPN-LDAP-PF) that gets the user’s UID
from OpenVPN as $1, along with a bunch of other interesting variables.
VPLDPF’s job is to perform the necessary LDAP queries to figure out what
hosts/ports the heathen gets access to, translate these into PF rules, and fi-
nally load them into PF. The script is available linked under this article at
http://www.usenix.org/login/2009-10/.

PF’s “anchor” feature makes this sort of automated dynamic firewall configu-
ration safe and easy. Anchors are named sets of filter rules that can be main-
tained and loaded separately from the main PF rule set. VPLDPF uses LDAP
searches to create PF filter rules for every user who logs in and then stores
them in a file named after the user in /etc/pfanchors/vpnusers. Once we’ve
told PF that we’ll be using an anchor called vpnusers by adding anchor ‘vp-
nusers/*’ to /etc/pf.conf, VPLDPF can load, for example, Bob’s rule set:

pfctl -a vpnusers/bob -f /etc/pfanchors/vpnusers/bob

Going into it, I thought the initial population of LDAP was going to be
time-consuming, but the “roles” scheme we came up with didn’t take much
effort,and has made it pretty easy to get very granular permissions on an in-
dividual employee basis. How granular? Let’s take a look at “Bob,” a pretend
employee modeled after a real project manager.

Bob’s DN is:

uid=bob,ou=projectManagement,ou=staff,dc=dbg,dc=com

Login_articlesOCTOBER_09_final.indd 70 9.4.09 12:02:43 PM

; LO G I N : O c tO b e r 20 0 9 I vOy eu r : pAck e t- Le v e L N e t wO rk Access cO NtrO L A N D mO N ItO rI N G 71

Running an ldapsearch for object class dbgRole with Bob’s DN in the mem-
ber attribute, we find that Bob has three roles assigned to him:

dn: cn=employee,ou=roles,dc=dbg,dc=com
dn: cn=HQVPNUser,ou=roles,dc=dbg,dc=com
dn: cn=PM,ou=roles,dc=dbg,dc=com

The employee role contains the following dbgGrants attributes:

dbgGrants: fileServ1.dbg.com:login # a fileserver
dbgGrants: fileServ1.dbg.com:http
dbgGrants: fileServ1.dbg.com:https
dbgGrants: mail.dbg.com:http #an email server
dbgGrants: mail.dbg.com:https
dbgGrants: mail.dbg.com:pop3
dbgGrants: mail.dbg.com:smtp
dbgGrants: mail.dbg.com:xmpp-client #this is the jabber port

The HQVPNUser role contains the following dbgGrants:

dbgGrants: ns.hq.dbg.com:domain

And the PM role contains the following dbgGrants:

dbgGrants: pm.dbg.com:http # the project management server

Using the server name as a CN to resolve the IP address and looking in the
services file for the port, VPLDPF created the following PF rules for Bob:

pass in inet proto tcp from 10.253.21.10 to 10.21.1.2 port = ssh flags S/SA
keep state

pass in inet proto tcp from 10.253.21.10 to 10.21.1.2 port = https flags S/SA
keep state

pass in inet proto tcp from 10.253.21.10 to 10.21.1.2 port = www flags S/SA
keep state

pass in inet proto tcp from 10.253.21.10 to 10.21.64.101 port = https flags S/
SA keep state

pass in inet proto tcp from 10.253.21.10 to 10.21.64.101 port = www flags S/
SA keep state

pass in inet proto udp from 10.253.21.10 to <__automatic_adb98624_0> port
= domain flags S/SA keep state

pass in inet proto tcp from 10.253.21.10 to 10.21.1.4 port = www flags S/SA
keep state

The first thing to note is that the “login” service was translated to port 22.
A different LDAP client program might have used RDP, or “login” might
have been used as a requirement in something like nsswitch.conf if we were
doing LDAP Auth on a Linux box, for example. This is why we choose to in-
terpret the service name in the app instead of in LDAP.

Next, note the weird-looking PF destination address for the DNS rule:
<__automatic_adb98624_0>. This is a dynamic table that was generated for
us by PF. The server object whose CN is ns.hq.dbg.com has multiple address
attributes associated with it. This caused VPLDPF to generate a slew of PF
rules, one per destination address for that server object. When those rules
were loaded into PF, PF saw that everything but the destination address was
redundant, so it optimized these rules down to a single rule by creating a
table for all of ns.hq.dbg.com’s destination addresses. If we wanted to see the
contents of this table, we could ask PF with the command:

pfctl -a vpnusers/bob -t __automatic_adb98624_0 -T show

Login_articlesOCTOBER_09_final.indd 71 9.4.09 12:02:43 PM

72 ; LO G I N : vO L . 3 4, N O. 5

To make it easy to track the current state of things, I wrote another shell
script that parses OpenVPN’s status log for the currently connected users
and runs the pfctl commands necessary to dump the PF details on each of
them. This script, called vpninfo.sh and also available linked under this ar-
ticle at http://www.usenix.org/login/2009-10/, gives the following output for
Bob:

################# bob ######################
localIP: 10.253.21.10, remoteIP: 67.16.87.60:13771
Connected since: Sat Jul 25 17:24:19 2009

PF Rules for user bob
pass in inet proto tcp from 10.253.21.10 to 10.21.1.2 port = ssh flags S/SA

keep state
pass in inet proto tcp from 10.253.21.10 to 10.21.1.2 port = https flags S/SA

keep state
pass in inet proto tcp from 10.253.21.10 to 10.21.1.2 port = www flags S/SA

keep state
pass in inet proto tcp from 10.253.21.10 to 10.21.64.101 port = https flags S/

SA keep state
pass in inet proto tcp from 10.253.21.10 to 10.21.64.101 port = www flags S/

SA keep state
pass in inet proto udp from 10.253.21.10 to <__automatic_adb98624_0> port

= domain flags S/SA keep state
pass in inet proto tcp from 10.253.21.10 to 10.21.1.4 port = www flags S/SA

keep state

PF Dynamic Table Contents for user Bob:

__automatic_adb98624_0
 10.21.0.1
 10.21.16.1
 10.21.32.1
 10.21.48.1
 96.26.18.66

Since users each get their own set of firewall rules, we can associate every
packet they send with their username by, for example, tagging their packets
with their name or logging them to a special pflog interface. We can moni-
tor and otherwise collect usage information on particular heathens with ac-
cess to sensitive systems (Holt-Winters forecasting anyone?), and we get the
happy side effect of encrypting all traffic in the heathen zone that’s destined
for privileged networks, whether the protocols in use are encrypted or not.
These are the sorts of things that make auditors go all giggly. The impact on
our users, most of whom were already used to using VPN from home, was
pretty minimal, and I’m far happier with this than any of the real NAC solu-
tions we’ve tried, though that’s arguably apples and oranges.

As far as caveats go, there are two that spring to mind: First, I wish PF had
an iptables-style log-prefix feature. That would make auditing far easier
(time to delve into PF’s source code perhaps). Second, this solution makes
it somewhat tricky for systems in the privileged networks to reliably initiate
connections to heathen workstations, which may or may not be a problem
in your environment. We have a few people who forward their mail from the
mail system to the smtp daemon on their workstation by way of a .qmail file,
and we’re having to find some workarounds for that. Otherwise, it’s been all
smiles and giggly auditors for us. Whoever’s idea this was, it was not bad at
all.

Take it easy.

Login_articlesOCTOBER_09_final.indd 72 9.4.09 12:02:43 PM

; LO G I N : O c tO b e r 20 0 9 / D e v/ r A N D Om 73

R o B e R T g . F e R R e L L

/dev/random: cloud
computing, or, on
the origin of specie
Robert G. Ferrell is an information security
geek biding his time until that genius grant
finally comes through.

rgferrell@gmail.com

c l o u d c o m p u t I n g I s b a s e d o n t h e
quaint and possibly apocalyptic marketing
strategy that casting your precious data out
to be masticated by strangers you’ll never
meet in a vast cesspool of discombobulated
CPU cycles with no discernible perimeter is
somehow the future of digital processing;
moreover, that this is a future devoutly to be
wished. I take umbrage at this notion (I have
amassed a great store of umbrage over the
years; my wife made me move most of it up
to the attic) and, in the convoluted fashion
of my tribe (Homo sapiens incoherentus),
will attempt to teach you why this is not the
True Path of Digital Enlightenment. I can’t
tell you what the true path is, admittedly,
but I’ll know it when I see it. I’m not seeing
it here.

In the Beginning (cue wavy flashback accompanied
by Also Sprach Zarathustra), computing was accom-
plished in surplus aircraft hangers using relays and
vacuum tubes with conductors so expansive you
could watch the li’l electrons wend their merry way
along the data path. Every so often a couple would
stop and make out in the weeds behind a cathode
and later a sharp-eyed observer might spot a small
family of quarks trailing willy-nilly along after
them. In those days you knew where your bits were
at any given moment, even if you sometimes had to
hail a taxi to get to them.

The next beachhead bravely to be breached was
that of solid-state computing. This miraculous
manifestation of miniaturization shrank the com-
putational playing field from agriculturally sig-
nificant to merely mall-sized. No longer would
vast tracts of virgin old-growth forest need to be
cleared in order to calculate the value of pi to the
next digit. This left vast tracts of virgin old-growth
forest available to be cleared for strip centers and
cardboard-quality housing developments. Lo, there
was much rejoicing, and the gnashing of over-
stuffed wallets filled the crisp morning air.

It is my considered opinion that a significant con-
tributor to the secret underlying the spectacular
success of solid-state electronics lies with the la-
bels given to components thereof. “Zener diode”
is one such example. I mean, how cool a name is
that? Zener, zener, what a weener. Not only do the
devices have great names, many of the terms re-

Login_articlesOCTOBER_09_final.indd 73 9.4.09 12:02:43 PM

74 ; LO G I N : vO L . 3 4, N O. 5

lated to solid-state electronics are masterpieces of technopoetry in their own
right. “Maximum Reverse Standoff Voltage,” “Parasitic Capacitance,” and “Av-
alanche Breakdown” top my list. That last one sounds like a chart-busting
bluegrass album.

Today the process of electronics shrinkage has reached downright ridiculous
proportions. A computer that would have overflowed Yankee Stadium in the
fifties now fits comfortably in the end of a ballpoint pen, with room left over
for an LED flashlight. What has driven this eternal striving for smaller and
faster? Well, money, of course: what else? We just keep pushing the envelope
with more and more processing power in a more and more compact package
because that’s the marketeer-generated perception of What the Public Wants.
At some point the envelope is bound to start pushing back, and then where
will we be? I’ll be out in the pool with an amber ale, if anyone cares.

Practical computing left the gate as mainframes with terminals, glided
smoothly up the ramp to client-server architectures, then took a sharp, al-
beit brief, detour into the thin clients cul-de-sac, veering off at last into a
somewhat uneasy mix of client-server and P2P. As networking grew in so-
phistication, we hooked increasingly greater numbers of systems together in
increasingly complex recipes, with lots of spicy network appliances for color
and texture. Meanwhile, the Internet was gestating in parallel, insinuating
its myriad tentacles into our most secret places like some B horror movie
monster. At first it was just a novelty communications tool, good for tell-
ing co-workers where to meet for lunch and for avoiding actual productivity
with IRC and crude CGI scripts. Then social networking came along, and
with it an incalculable number of distractions from getting anything resem-
bling work done.

All this time, however, we still had the company-owned LAN/MAN/WAN
chugging away doing the corporate computational drudge work while we
sacrificed our brain cells to streaming video and “Which Pathogenic Micro-
organism Are You?” quizzes on Facebook. The Internet may have been cost-
ing Corporate America money indirectly due to lost productivity (assuming
productivity was in the mission statement to begin with), but it wasn’t put-
ting an active squeeze on accounts payable except as an incidental by-prod-
uct of network connectivity.

I and numerous others have known (and decried loudly) from the early
nineties that the Internet would eventually rule all aspects of civilization.
The inflection point toward inevitability came, in my analysis, the day ani-
mated .gifs were released upon an unsuspecting and undefended public. At
that instant the Web (which is really the only part of the Internet that mat-
ters to most users) became a mesmerizing place that could hold the attention
of even/especially the semi-literate. Since dynamic systems tend to take the
path of least resistance, semi-literacy became the baseline toward which all
Web presentations tended and, in reciprocal response, that degenerate intel-
lectual state emerged as the norm. Now we have Flash-only Web sites fea-
turing HD video and 5.1 Surround Sound with no textual content whatever.
Hypertext has gone the way of the ponderous Apatosaurus, to be replaced
by the amphetaminic Apathosaurus, which feeds exclusively on twelve con-
tent-free audiovisuals per minute.

Which brings us, at last, to the Cloud. Clouds, it should be pointed out,
are primarily aerial phenomena: insubstantial, ethereal, and yet capable of
wreaking great havoc. Once inside one, you may have supreme difficulty
finding your way out again. When you do, you may have no idea where you
are or how to get back to where you wanted to be. Cloud computing is like
UDP, except that it’s your entire data stream you’re entrusting to the vagaries

Login_articlesOCTOBER_09_final.indd 74 9.4.09 12:02:43 PM

; LO G I N : O c tO b e r 20 0 9 / D e v/ r A N D Om 75

of the meta-network, not just an odd packet or two. We’ve come full circle:
the whole planet has become our server room and, boy, is the air-condition-
ing bill going to be huge this month. If you think global warming is bad
now . . .

Hey, all you trend slave early-adopter-at-any-cost corporate IT departments
out there: pack your mission-critical data into a bottle, toss it out into the
Humboldt current, and hope it somehow finds the correct destination, is
processed to your specifications, and makes it back to you someday without
being nibbled on by every fish that swims by along the route. Pay us a lot of
money for this privilege. Do it now, or suffer the dire consequences of . . .
um . . . not doing it now.

Heck of a business model.

Login_articlesOCTOBER_09_final.indd 75 9.4.09 12:02:43 PM

76 ; LO G I N : vO L . 3 4, N O. 5

book reviews
e L i z a B e T h z w i c k y, w i T h D a v e
J o s e p h s e n a n D b r a n d o n ch In g

automating system administr a-
tion with perl , second edition
David N. Blank-Edelman

O’Reilly and Associates, 2009. 616 pp.
ISBN 978-0-596-00639-6

This is one of those books that make me wish
I had a time machine, so I could go back and
give it to my past self. I think back to the hours
and hours I spent gritting my teeth and picking
through all sorts of documentation, whimper-
ing, “Why will nobody tell me just the basics
of this stuff, nicely and clearly? Surely if I had
a basic understanding and maybe an example,
I could beat this to death with a Perl program
smoothly and elegantly,” and I hope that the
next person stuck in this situation has a copy of
this book. This book will tell you (among other
things) how to subdue a log file, send mail,
query a router’s status or a database’s contents,
create or delete a user, and find out what’s
going on on a machine, in Perl, on a UNIX-
based or Windows operating system. It’s a gold
mine of information on how to do intermediate
system administration tasks in Perl, and it cov-
ers exactly the sort of things that are frustrating
and time-consuming to figure out for yourself.

There are two classes of things it won’t tell you:
basics and advanced knowledge. It doesn’t give
you the basics of either system administra-
tion or Perl programming. If you need to know
how to name your users, when you should de-
lete a user account, or basics of TCP/IP, you’ll
need to go elsewhere (and it gives suggestions
as to where). Similarly, you should either have
written Perl programs before or be an intrepid
language-learner. It does give you basics of all
sorts of complex topics, like LDAP, SQL, SNMP,

and XML, but not details and not advanced knowl-
edge. The goal here is not to make you a skilled da-
tabase administrator, for instance; it’s to equip you
to bludgeon a database into giving up its secrets in a
competent and workmanlike manner. But there are
plenty of references to places with more information.

Along the way, you’ll pick up a lot of information
about good system administration programming
practice and thought patterns. There’s a nice balance
between instructing the reader on what a clean, el-
egant solution looks like and how to build it, and in-
structing the reader on when a dirty, clunky solution
is the way to go and how to build it.

successful leadership skills
Ken Lawson

Barron’s, 2006. 235 pp.
ISBN 978-0-7641-3246-9

I picked this up because it looked like a non-threat-
ening, easy-to-read introduction to “leadership,”
which is one of those nebulous concepts that is si-
multaneously completely bogus management-speak
and genuinely incredibly important. And, indeed,
this is relatively easy to digest, and it should at least
half-way convince you that something real is being
discussed. But it’s not quite what I was hoping for.

Imagine a course entitled “Successful Leadership
Skills”; now imagine you skip the lectures and read
just the slides. Also imagine that the presenter is
competent but not terribly imaginative, so the slides
do not include any pictures or graphs. This is what
you’d get. It’s a rapid tour of mainstream thinking
about leadership, presented almost entirely in num-
bered lists and written in high-quality business-stan-
dard prose. It is as neutral as possible, clearly trying
to avoid strong points of view.

There are two situations where this book may be use-
ful to you. First, if you want to jump-start your per-
sonal thinking about leadership, you might want to
chew over a few pages at a time as a way of clarifying
what you think. Since the book is not trying to be
particularly persuasive and doesn’t bring a lot of rhe-
torical devices to bear, you are left to bring your own
content in. If you don’t want to do that, you’re un-
likely to learn a lot. But if you want a framework you
can fill in, it will take you a lot further than a book
that’s pushing a particular agenda.

Second, if you want to know what management
thinks about leadership, it’s a concise introduction
to mainstream management beliefs. It will teach you
the relevant buzzwords, what’s supposed to be good,
what’s supposed to be bad, and how the space di-
vides up. That helps a lot when you’re talking cross-

Login_articlesOCTOBER_09_final.indd 76 9.4.09 12:02:43 PM

; LO G I N : O c tO b e r 20 0 9 b O O k re v I e ws 77

culturally to management types. If you happen
to know what particular philosophy your man-
agement subscribes to, you’d probably be better
off researching that, but if you don’t know or
it’s just too painful for you to read, this will give
you a basic conceptual survey. And it’s mostly
painless.

android applic ation develop -
ment : progr amming with the
google sdk
Rick Rogers, John Lombardo, Zigurd Mednieks, and
Blake Meike

O’Reilly, 2009. 334 pp.
ISBN 9780596521479

re v Iewed by dav e J osephsen

I was really excited to hear that there was an
O’Reilly Android book out, and I’m equally ex-
cited to be able to say that it’s exceeding my ex-
pectations at every turn.

I had my doubts when I got my hands on it. It
is by no means a heavy book—just over 300
pages and yet is co-authored by four people. But
true to the adage, this is no book to be judged
by its cover. I found it to be well written and
densely packed with well organized, clearly
conveyed information.

The book has two parts, “Development Kit
Walk-Through” and “Programming Topics.”
I read through all seven chapters of the first
part in linear fashion and was introduced to
Android’s design and the basics of the IDE. If
you’ve ever done mobile Java programming,
you’re probably aware that learning the intrica-
cies of the development environment is at least
one-third of the problem. Most of the trouble
you’ll have early on centers on cross-compiling,
storing and retrieving resources such as strings
and graphical sprites, and resolving library ref-
erences—things that require familiarity with
the IDE to get right (and debugging when what
you get is wrong).

The authors have a great feel for what you want
to know when you’re getting started. At least for
me, they seemed to have an uncanny knack for
providing exactly the right piece of information
just at the moment I started to wonder about
it, and by the end of the first part I felt I had a
pretty good grasp of the architecture. I also had
the IDE installed on my MacBook and Linux
workstation, and a “Hello World” program run-
ning in the emulator on both.

The second part of the book focuses on specific por-
tions of the Android API. Topics include SQLite and
content provider access, GUI views and widgets, and
the mapping and location API. I’ve only read portions
of the second part of the book, because the first part
got me far enough to start work on porting an app
I had written for Sidekick over to Android, but the
chapters I have read in support of that effort are as
well written and informative as those in the first part.

I could probably stop there, but there are a few things
I’d like to give kudos to the authors on. The first is
that they avoid the jargon-heavy language used by so
many authors of Java-related books. They’ve made an
obvious attempt to avoid using heavily Java-centric
language, and as someone who only casually pro-
grams in Java (and avoids it when he can), I appreci-
ate the effort. Second, as someone who doesn’t use
Windows at all, it was great to see the extra effort
they put into being cross-platform, often providing
details for Linux and Mac OS X as well as Windows.

This book isn’t a comprehensive tome of everything
you’ll ever need to know about Android, but it’s a
fantastic primer and, as a supplement to the official
Google documentation, it won’t make the migration
from desk to shelf anytime soon. Good work, guys.

pro opensol aris : a new open
source os for linux developers
and administr ators
Harry J. Foxwell and Christine Tran

Apress, 2009. 280 pp.
ISBN 978-1430218913

re v Iewed by b r a n d o n ch In g

Choosing a development environment for either desk-
top or Web-based application development is gener-
ally a trivial thought experiment. Most experienced
developers have their preferences and generally don’t
deviate much unless a new method or tool becomes
available that better fits their development needs.

The OpenSolaris operating system is attempting to
be that new tool that developers will want to have
around. A community-developed and -driven project
based on the Solaris 10 code base, OpenSolaris is at-
tempting to lure away the growing cadres of Linux-
centric developers and administrators. Touted as a
platform for both desktop application and Web devel-
opment, OpenSolaris is a promising and viable alter-
native to Linux-based development.

In Pro OpenSolaris, Harry Foxwell and Christine
Tran delve into the key features that make OpenSo-
laris an attractive option for developers and adminis-

Login_articlesOCTOBER_09_final.indd 77 9.4.09 12:02:44 PM

78 ; LO G I N : vO L . 3 4, N O. 5

trators. Topics such as the Service Management
Facility, the ZFS file system, and OpenSolaris
virtualization are all covered in sufficient de-
tail. While not an exhaustive text on the topic,
the book is an excellent introduction and start-
ing point for developers not familiar with
OpenSolaris.

The book is broken down into three parts, with
nine chapters in all. The first part offers a gen-
eral introduction to OpenSolaris, including its
history, unique benefits over Linux, a walk-
through installation, and general usability cov-
erage. For most experienced Linux developers,
the first part of this book will probably not be
as valuable as the remaining two. The Open-
Solaris installation follows the general Linux
installation process with the exception of virtu-
alization options which are addressed in greater
detail in Chapter 7. Once installed, the default
GNOME desktop environment should be famil-
iar to most.

Part 2, “Working with OpenSolaris,” is where
the fun really begins. In Chapter 5, Foxwell
and Tran introduce the Service Management
Facility (SMF) of OpenSolaris. Replacing the
familiar /etc/rc* files and methods, the SMF is
a service daemon that is responsible for all ser-
vice management. The authors do an excellent
job of introducing the SMF and its associated
tools, including feature outlines, screenshots,
technical details, and a number of good exam-
ples. Each aspect of the SMF is well covered,
with detailed explanation and demonstrations.
By the end of this chapter, you should be an ex-
pert in the SMF.

In Chapter 6, the authors dive into what I feel
is the most exciting feature of OpenSolaris: the
ZFS file system. As a Web developer, this was
my first exposure to the ZFS and, as in the pre-
vious chapter, Foxwell and Tran do an excellent
job of introducing the technology. The major
features of the ZFS are massive addressable
space (128 bits), active integrity checking, and,
my personal favorite, “nearly unlimited and in-
stantaneous file system snapshots” (p. 103). The
authors relate the system snapshots to Apple

OS X’s Time Machine, but from their descriptions it
seems like a more customizable implementation. As
with the previous chapter, this one is also full of tool
usage details, snapshots, and practical examples.

In Chapter 7, “OpenSolaris and Virtualization,” Fox-
well and Tran present probably the strongest chapter
of the book. Over 40 pages, the authors provide great
detail, background, and examples utilizing OpenSo-
laris-specific virtualization methodologies. Opening
with a great general introduction to virtualization,
the authors proceed to extensive coverage of OpenSo-
laris specific zones and zone management, followed
by an introduction to the xVM hypervisor. Zones are
incredibly powerful ways of managing applications,
and the authors stress the use of zones throughout
the book.

Part 3 takes you through setting up a development
environment in OpenSolaris and an introduction to
a few more OpenSolaris-specific features. Chapter
8 walks you through the installation of an Apache,
MySQL, PHP (AMP) zone. While a seemingly trivial
exercise to Linux natives, the authors cover Open-
Solaris-specific considerations, including package
management, service administration, and default file
locations. The chapter closes with an introduction to
the NetBeans IDE and integration of other third-party
tools and products such as Subversion.

In the book’s final chapter, Foxwell and Tran seem to
touch on a number of remaining OpenSolaris tools
and features that just don’t fit anywhere else. Cover-
age in this chapter includes DTrace for system analy-
sis, the Tracker utility for metadata file searching,
and a few other resources for entertainment and edu-
cational pursuits.

Overall, Pro OpenSolaris is a great introduction to
the features and tools offered by OpenSolaris. While
probably not the most complete guide to implemen-
tation in OpenSolaris, the book is definitely of value
to both Linux desktop and Web developers, as well
as system administrators and information managers.
The writing style is technical yet approachable and
connects topics nicely. As I mentioned, the chapters
on ZFS and virtualization are incredibly strong, and I
would certainly recommend this book to anyone in-
terested in a Linux alternative with cutting-edge fea-
tures and an active community base.

Login_articlesOCTOBER_09_final.indd 78 9.4.09 12:02:44 PM

; LO G I N : O c tO b e r 20 0 9 use N IX N Otes 79

us e n iX m e m b e r b e n e F it s

Members of the USENIX Association
 receive the following benefits:

Free subscrIp tIon to ;login:, the Associa-
tion’s magazine, published six times
a year, featuring technical articles,
system administration articles, tips
and techniques, practical columns
on such topics as security, Perl, net-
works, and operating systems, book
reviews, and summaries of sessions
at USENIX conferences.

access to ; lo gIn : online from October
1997 to this month:
www.usenix.org/publications/login/.

dIscounts on registration fees for all
 USENIX conferences.

specIal dIscounts on a variety of prod-
ucts, books, software, and periodi-
cals: www.usenix.org/membership/
specialdisc.html.

the rIght to vote on matters affecting
the Association, its bylaws, and
election of its directors and officers.

For more InFor m atIon regarding mem-
bership or benefits, please see
www.usenix.org/membership/
or contact office@usenix.org.
Phone: 510-528-8649

us e n iX b Oa r d O F d i r ec tO r s

Communicate directly with the
 USENIX Board of Directors by
writing to board@usenix.org.

President

Clem Cole, Intel
clem@usenix.org

Vice President

Margo Seltzer, Harvard University
margo@usenix.org

secre ta ry

Alva Couch, Tufts University
alva@usenix.org

tre a surer

Brian Noble, University of Michigan
brian@usenix.org

direc tor s

Matt Blaze, University of Pennsylvania
matt@usenix.org

Gerald Carter,
Samba.org/Likewise Software
jerry@usenix.org

Rémy Evard, Novartis
remy@usenix.org

Niels Provos, Google
niels@usenix.org

e xecutiVe direc tor

Ellie Young,
ellie@usenix.org

n Om i n ati n g cOm m it te e FO r
2 01 0 us e n iX b Oa r d O F d i r ec tO r s

The biennial elections of the
USENIX Board of Directors will be
held in early 2010. The USENIX
Board has appointed Rémy Evard
to serve as chair of the Nominating
Committee. The composition of this
committee and instructions on how
to nominate individuals will be sent
to USENIX members electronically
and published on the USENIX Web
site this fall.

USENIX
notes

sum m a ry O F us e n iX b Oa r d O F
d i r ec tO r s ac ti O n s

Ellie Young, Executive Director

Below are some of the actions taken by
the USENIX Association Board of Direc-
tors in the past year.

Awards
The Best Paper Award at OSDI was re-
named in memory of Jay Lepreau.

USENIX is now seeking nominations for
its 2009 SAGE Outstanding Achieve-
ment Award: please send suggestions to
sageawards@usenix.org. We also seek
input on the FLAME and STUG awards
for 2010: send your suggestions to
awards@usenix.org.

Finances
A deficit of $322K was incurred in the
USENIX operating budget for 2008, the
result of lower revenue from training and
conferences in the latter half of the year.
The budget for 2009 projects a deficit of
$500K overall, in anticipation of reduced
revenue from membership and confer-
ences and lower gains on investments.

Member dues were raised by $5 in all
categories except corporate membership.
Registration fees for conferences and
workshops were raised by $10–$15, to
partially cover increased direct expenses.

The Board expressed the need to closely
monitor the downturn in enrollment in
training at USENIX events and to develop
new ideas/services/conferences that will
increase revenue and expand our out-
reach.

For cost savings, the following actions
were taken: (1) standards activities
were suspended in early 2009; (2) some
recently hired USENIX staff were laid off
in early 2009; (3) remuneration for tuto-
rial instructors was reduced slightly. The
USENIX Board expressed their thanks to
the remaining staff for working “smart
and hard.”

Student Grants Program
Program chairs are being encouraged to
seek funding from the NSF for support
of students to attend conferences and are
being asked to help the staff find addi-
tional corporate sponsors.

Login_articlesOCTOBER_09_final.indd 79 9.4.09 12:02:44 PM

80 ; LO G I N : vO L . 3 4, N O. 5

In response to the huge increase in the
number of students applying for grants
and the reduction in corporate spon-
sorship this year, USENIX allocated
$40K to fund students to attend the
2009 USENIX Security Symposium.

USACO
In line with USENIX’s desire to contin-
ue support of K–12 computer science–
related activities, USENIX continued
its support for the USA Computing
Olympiad.

Revamp of the USENIX Office Systems
The USENIX Board allocated sub-
stantial funds for 2009 and 2010 to
revamp the USENIX Web site—includ-
ing a CMS system and a new design
for logos as well as for the site itself—a
new event registration system, and a
new membership database.

Going Green
It was decided that USENIX would
move toward eliminating print for
proceedings publication. Conference
proceedings continue to be published:
that is, they are assigned ISBNs; they
are typeset with page numbers and
running feet; and the title page, table
of contents, and other frontmatter are
created and made accessible online.
The files are available online by session
for attendees before the event (with the
exception of any papers that have to
be kept private until the event). Once
the technical sessions have begun, the
complete proceedings are available
to everyone, both as a tarball and as
individual session files.

Currently, USENIX provides the files
on reusable flash drives as an option
for attendees. Tutorial materials at
LISA ’09 will also be available on flash
drives. We are looking into providing
materials in Kindle format as well.

Conferences
To address a number of questions
and issues that have arisen recently,
USENIX has developed new guidelines
and clarification of the responsibilities
of all event organizers: program chairs,
steering committees, USENIX Board
liaisons, and USENIX staff. The Board
approved a clarification of the state-

ment concerning the confidentiality of
paper submissions.

In an attempt to identify and acknowl-
edge outstanding papers from USENIX
events, program chairs will be encour-
aged to approach suitable journal edi-
tors about inviting select paper authors
to submit an expanded version to their
journal.

Adam Moskowitz was appointed to
serve as program chair for LISA ’09.
A steering committee was formed to
make recommendations about format,
direction, and guidance for the future.

OSDI ’08 had the highest attendance
ever, and the number of co-located
workshops doubled. Remzi Arpaci-
Dusseau and Brad Chen were ap-
pointed to serve as program co-chairs
in 2010.

NSDI ’09 also had its highest atten-
dance, at 254. Miguel Castro and Alex
Snoeren were appointed as program
co-chairs for 2010.

FAST ’09 had a slight dip in atten-
dance, explicable mainly by reduced
corporate travel budgets. Participation
in training, the TaPP workshop, and
the OpenSolaris Summit was excellent.
Kim Keeton and Randal Burns were
appointed program co-chairs for 2010.

A proposal for a workshop on Sus-
tainable Information Technology to
be co-located with FAST in 2010 was
accepted. Erez Zadok and Ethan Miller
will serve as co-chairs.

The first Hot Topics in Parallelism
workshop was held in March, draw-
ing 92 attendees. David Patterson and
Geoff Lowney were appointed as co-
chairs for a second workshop in 2010,
to be held on the Berkeley campus of
the University of California.

After a successful HotOS XII in May,
chaired by Armando Fox, Matt Welsh
was invited to serve as program chair
for the 2011 workshop.

The USENIX Annual Technical Confer-
ence will be reconfigured and rebrand-
ed in 2010. Co-located events such
as the USENIX Annual Tech Refereed
Papers, the new USENIX Conference
on Web Application Development,

HotCloud ’10, and a workshop on
online social networking are but a few
of the exciting programs USENIX will
be offering during this third week in
June in Boston. The traditional tutorial
program will be eliminated. USENIX
is soliciting additional topics of interest
to developers and programmers. Please
contact ellie@usenix.org if you have
additional ideas for that week.

The 18th USENIX Security Symposium
and co-located workshops, held in
Montreal in August, had excellent at-
tendance and were very well received.
Ian Goldberg was appointed program
chair for USENIX Security in 2010
and David Wagner will chair in 2011.
Program co-chairs for EVT/WOTE ’10
were approved as well.

SAGE
Three Short Topics booklets were pub-
lished in 2008. We expect to publish
two in 2009: a booklet on monitoring
environment, networks, and systems,
and a heavily revised Jobs Descrip-
tions booklet, which will contain, for
the first time, a Management series of
job descriptions. Several Short Topics
booklets are now available on Safari
Books Online.

In April 2009, the USENIX Board
approved the settlement proposal re-
garding the lawsuits between AH, Inc.,
LOPSA, and USENIX.

Policy
In response to a general recommenda-
tion from the auditors, the Board of
Directors approved an official policy
on gifts from vendors.

USENIX adopted a policy concerning
retention of electronic communica-
tions.

Member Benefits
All videos from USENIX events are
now immediately available to all
USENIX members, as well as to attend-
ees of the event.

Next Meeting
The next in-person USENIX Board of
Directors meeting will be held Novem-
ber 2, 2009, in Baltimore, MD, during
LISA ’09.

Login_articlesOCTOBER_09_final.indd 80 9.4.09 12:02:44 PM

; LO G I N : O c tO b e r 20 0 9 cO N fe re N ce re p O rt s 81

2009 USENIX Annual Technical Conference
San Diego, CA
June 14–19, 2009

opening rem arks

Summarized by Rik Farrow

After thanking the program committee and the USENIX
staff, co-chairs Geoffrey M. Voelker and Alec Wolman
announced the Best Paper awards: “Satori, Enlightened
Page Sharing” by Grzegorz Miłoś, Derek G. Murray,
Steven Hand, and Michael A. Fetterman, and “Tolerat-
ing File-System Mistakes with EnvyFS,” by Lakshmi N.
Bairavasundaram, Swaminathan Sundararaman, Andrea
C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Next,
Alva Couch, Secretary of the USENIX Board of Directors,
presented the Software Tools User Group Award to Jean-
Loup Gailly and Mark Adler for their work on file com-
pression (see http://www.usenix.org/about/stug.html for
details). Gailly said, “I feel I have received more from the
OS community than I gave,” and Adler then said “Ditto,”
in a couple of the shortest acceptance speeches ever.

Couch then presented the Lifetime Achievement Award
to the late Professor Gerald J. Popek (you can read more
at http://www.usenix.org/about/flame.html). Two of
his past students, Bruce Waller of HP Labs and Geoff
Kuenning of Harvey Mudd College, described Popek’s
long history in CS research, with many contributions in
systems, including the first mention of clusters. Both men
also spoke of Popek’s dedication to his students. Kuen-
ning explained that Popek had taken a long leave from
academia to start Locus Computing, which is why his
name disappeared from publications sometime during
the ’90s.

keynote address

Where Does the Power Go in High-Scale Data Centers?■■

James Hamilton, VP & Distinguished Engineer, Amazon Web
Services

Summarized by Stephen P. Tarzia
(starzia@northwestern.edu)

James Hamilton gave a fresh appraisal of electrical
power’s role as a primary design consideration in data
centers. The fundamental issue is that high-scale data
centers such as those managed by Amazon and Google
are very different from conventional enterprise data
centers. Due to management complexity introduced by
heterogeneity, people costs dominate the total enterprise
datacenter costs. By contrast, a high-scale data center
typically has more than 1000 servers per administrator,
so people costs are almost negligible. In this keynote,
Hamilton outlined the true costs of such data centers as
well as their engineering implications.

conference reports

thaNks tO Our summarIzers

2009 USENIX Annual Technical
Conference . 81
Xu Chen
Rik Farrow
Chris Frost
Ragib Hasan
John McCullough
Kiran-Kumar Muniswamy-Reddy
Abhishek Rajimwale
Alex Rasmussen
Matthew Renzelmann
Stephen P. Tarzia
Michael von Tessin
Wei Zheng

Workshop on Hot Topics in Cloud Computing
(HotCloud ’09) .100
Alva Couch
Kiran-Kumar Muniswamy-Reddy

BSDCan 2009: The Technical BSD
Conference . 107
Royce Williams

login_summariesOCTOBER_09_final.indd 81 9.4.09 10:30:19 AM

82 ; LO G I N : VO L . 3 4, N O. 5

Hamilton gave a total cost analysis for operating a theoreti-
cal 15 megawatt high-scale data center. He showed that
servers accounted for 53% of costs, power and cooling infra-
structure for 23%, and power usage for 19%. Since server
prices are falling, he forecast power-related costs account-
ing for over half of total costs in the future. However, it is
important to note that the majority of power-related costs
are due to infrastructure, not utility charges.

To drive cost-cutting efforts, Hamilton advocated measur-
ing Total Power Usage Efficiency (tPUE), the ratio of total
facility power to power delivered to server components. His
blog, in particular the entry at http://perspectives.mvdirona.
com/2009/06/15/PUEAndTotalPowerUsageEfficiencyTPUE.
aspx, has more details on tPUE. This measure differs from
the traditional metric, PUE, in that it includes energy waste
within IT equipment. In particular, motherboard voltage
regulation circuits and case fans are often unnecessarily
inefficient. He showed all of the steps in the power distribu-
tion chain, which has over 90% end-to-end efficiency.

To get the maximum return from the data center’s power
and cooling infrastructure investment, the operator must
run as many servers on top of that infrastructure as pos-
sible without overloading it during peak periods. To achieve
that, Hamilton suggested a combination of both cooling and
server-utilization optimizations.

Regarding cooling, Hamilton first promoted isolating
hot and cool air flows and running data centers at much
higher temperatures. Hamilton showed that popular server
warranties typically cover equipment that is run at up to
95°F, much hotter than a typical data center. Based on this
observation, Hamilton proposed using outdoor air instead
of AC for cooling. Some worry that airborne particles from
outdoors might damage IT equipment, so detailed studies
are needed to test this and to evaluate filtration techniques.

Finally, Hamilton discussed resource consumption shaping.
This means reducing peak load at the expense of increased
trough load. In other words, smooth out the load curve by
pushing some of the peak workload into idle times. He sug-
gested following the airline industry’s model of overbooking
and then shedding excess load when necessary to maximize
capacity utilization. Hamilton also suggested using the same
load-smoothing approach with links. Further gains can be
had by increasing average server utilization, a figure that is
typically only around 15%.

Rik Farrow asked why datacenter operators don’t have serv-
ers custom-built to work most efficiently in their facility.
Hamilton responded that the big datacenter operators do
work closely with custom design groups in computer manu-
facturing companies. He also mentioned that big-impeller
fans and shared power supplies are typical requests. Can
server traffic can be pushed by hours, since this is what
would be needed to smooth out daily user cycles? There is
lots of work to be done at night, in particular data analysis
and data mining. Still, Hamilton acknowledged that opera-
tors will have to pay for peak-time responsiveness.

Is humidity an issue in the data center at higher tempera-
tures? Everyone fears humidity, but concrete data is lack-
ing. How do networking costs figure into the total and will
ISPs change their pricing model if link utilization increases?
WAN costs were not included in Hamilton’s analysis, but
they are minor: only a few percent. Hamilton was not
prepared to comment on ISP pricing. David Petrow asked
about the role of server water cooling now and in the future.
Hamilton observed that the industry loves density, while
floor space costs are negligible, so water cooling is unneces-
sary. When asked by Dan Klein how to shed light on the
right people to promote his agenda, Hamilton suggested
focusing on those with the biggest R&D budget.

The final two questions returned to server utilization. When
asked for an example of software inefficiency, Hamilton
noted that some software inefficiency must be tolerated,
such as using high-level languages to increase developer
productivity and thus drive innovation. Someone asked how
tPUE included the actual work done. Hamilton acknowl-
edged that it does not, but it is valuable since it is generaliz-
able across different applications and industries. He recom-
mended additional industry-specific calculation of work
done per dollar.

virtualization

Summarized by John McCullough (jmccullo@cs.ucsd.edu)

Satori: Enlightened Page Sharing■■

Grzegorz Miłoś, Derek G. Murray, and Steven Hand, University
of Cambridge Computer Laboratory; Michael A. Fetterman,
NVIDIA Corporation

Awarded Best Paper!

Miłoś described a system to leverage page sharing without
the overheads of VMM page scanning. Memory can be one
of the most limited resources in virtual machines, and in
the common situation of homogeneous virtual machines
there can be a large amount of redundant data. Typical
approaches involve the VMM scanning all pages, creat-
ing fingerprints, and then initiating page sharing. This is a
heavyweight operation whose periodicity is limited. Miłoś
observed that many shared pieces of data arise from I/O de-
vices and that by instrumenting the virtual I/O devices we
can capture that page sharing and avoid periodic scanning.
An additional benefit of this approach is that when using
copy-on-write disk images, VMs can bypass the disk read
and share the data if it is resident in memory elsewhere.
Satori implements I/O-based page sharing behavior in the
Xen hypervisor.

While typical page sharing approaches release pages into a
global pool, Satori credits fractions of the freed pages to the
VMs participating in the sharing. These credits can be taken
from a type of inverted-balloon driver, but to prepare for
share-breaking the VM must maintain a list of volatile pages
that can be evicted at any time. These pages can typically be

login_summariesOCTOBER_09_final.indd 82 9.4.09 10:30:19 AM

; LO G I N : O c tO b e r 20 0 9 cO N fe re N ce re p O rt s 83

used for additional page cache. The system performs well in
general, with less than 1% overhead for random reads and
meta-benchmarks. However, for sequential reads there is a
35% slowdown due to hypercall overheads. Miłoś believes
this overhead can be alleviated through a shared memory
approach. Satori outperforms VMware’s fastest—yet still
infrequent—similarity scans, even though Satori cannot
perform sharing for pages not loaded through I/O, including
the kernel, which is pre-loaded by the hypervisor.

An audience member asked whether the VMs can steal
memory from other machines by reading extra shared
data. Miłoś responded that the machines cannot gain any
additional memory this way. Do the costs of sharing and
detection outweigh the potentially short duration of the
potential sharing? The aggregate of the short-lived sharing
opportunities can still provide a great benefit. Does it make
more sense to explicitly share the page cache? The goal is to
provide the benefits of page sharing with minimal modifica-
tion to the guest operating system. Transcendent memory
implements the shared page-cache behavior.

vNUMA: A Virtual Shared-Memory Multiprocessor■■

Matthew Chapman, The University of New South Wales and
NICTA; Gernot Heiser, The University of New South Wales,
NICTA, and Open Kernel Labs

Chapman observed that when you need more computa-
tional power than a single processor, you typically turn to a
shared memory multiprocessor or a cluster of workstations.
Large shared memory multiprocessing systems are often
very expensive, and workstation clusters are often awkward
to program. Typical approaches that join a workstation
cluster into a single machine image use language-specific
middleware or narrowly supported distributed operat-
ing systems. Chapman proposed vNUMA, where a virtual
machine monitor presents an unmodified operating system
with a single machine image spanning a workstation cluster.

vNUMA addresses a number of challenges in faithfully
reproducing the SMP programming environment. Unlike
many distributed shared memory systems, all data in an
SMP system is shared, including locks, and read-modify-
write and memory-fence behavior must be respected.
Because no particular write invalidation technique is
performant across all access patterns, vNUMA uses an
adaptive protocol selecting among three approaches for par-
ticular memory pages. In one update case, trap-emulation
is required, but a simple write-invalidate is used in most
cases. Chapman showed that vNUMA can out-perform
the distributed shared memory library, Treadmarks, across
compute-intensive HPC benchmarks and that vNUMA
performs comparably to distcc for compilation. However, for
I/O intensive database workloads, vNUMA performs poorly.
Overall, vNUMA provides a single system image for free
with good computation performance.

An audience member asked how devices are handled. Chap-
man responded that the work focused primarily on memory

behavior rather than devices. In the current implementa-
tion, network and disk I/O are routed through node zero.
Future work could introduce striping across nodes and
improve performance.

ShadowNet: A Platform for Rapid and Safe Network ■■

 Evolution
Xu Chen and Z. Morley Mao, University of Michigan; Jacobus
Van der Merwe, AT&T Labs—Research

Chen observed that alternative configurations on carrier-
grade networks can have negative effects. However, exist-
ing modeling and emulation testbeds cannot get the same
fidelity and hardware implementation as the production
network. Chen proposed ShadowNet, a system that provides
a network that is connected to but separate from the pro-
duction network. This provides an environment in between
the lab and the production environment and allows multiple
service trials to run simultaneously, sharing the same physi-
cal resources but in isolation.

ShadowNet is implemented on top of Juniper-based virtual
routers, which are, in turn, attached to a ShadowNet node
hosting virtual machines. Each virtual router provides the
full functionality of the original routers, while connected
to each other and VM instances via a variety of connectiv-
ity options, keeping traffic isolated and routing updates
regulated. At the experimental level, ShadowNet provides
configuration management across experimental configura-
tions. Chen demonstrated that ShadowNet is able to get the
desired bandwidth allocations, although the virtual rout-
ers have some interaction with the other routing elements
under high load. Chen also demonstrated that ShadowNet
can achieve failover to an alternate configuration.

An audience member observed that in PlanetLab-style
deployments it is very easy to add nodes and asked how
feasible it is to add new nodes in ShadowNet. Chen noted
that the controller takes care of adding the nodes and that
they should be easy to add. Do any cloud vendors provide
similar systems? Most cloud infrastructures only provide
the virtual hosts, and ShadowNet has richer networking
support.

invited talk

Teaching Computer Science in the Cloud■■

David J. Malan, Harvard University

Summarized by Matthew Renzelmann (mjr@cs.wisc.edu)

Professor David Malan presented his work on reinvigorating
Harvard’s introductory computer science course, CS 50, in
an effort to increase enrollment in the university’s computer
science program. Enrollment figures for the last decade
and a half showed a significant decline after the dot-com
bubble burst in early 2000. Malan suspects that this decline
stemmed from misconceptions about computer science
and the relatively uninteresting nature of many introduc-

login_summariesOCTOBER_09_final.indd 83 9.4.09 10:30:19 AM

; LO G I N : auGust 20 0 9 cO N fe re N ce re p O rt s 84

tory programming projects (e.g., writing programs with a
command-line interface vs. a GUI).

To make the course more interesting, Malan discussed
using more languages than just C (e.g., PHP) and provid-
ing students with frameworks to write more sophisticated
programs. These frameworks also serve to acquaint students
with reading code. In addition, Malan emphasized the
importance of assigning programming projects that solve
more interesting problems, such as implementing a Vigenère
cipher with arrays or a competition to come up with the
fastest spelling checker.

After outlining his approach to teaching the course, Malan
began discussing the role of cloud computing. Malan’s
goal was to acquire a set of machines with unfettered root
access, which he could then configure for the students in
the course. Although his group examined the possibility of
operating their own cluster, they concluded that because of
limited space, power, and cooling, it would be easier to off-
load everything to Amazon’s EC2 service. In Malan’s experi-
ence, launching a group of virtual machines on EC2 was
much easier than setting up the infrastructure themselves.

Observed benefits of using Amazon’s EC2 cloud infrastruc-
ture for course work were numerous. The number of virtual
machines assigned to the cloud was scalable, and it was
easy to start additional virtual machines during periods
of high activity, such as the night before an assignment
was due. The students found that using the virtual ma-
chines was straightforward because access was available
through the host name cloud.cs50.net. This single host
would pseudo-randomly assign each user to one of the
cloud’s virtual machines.

Using Amazon’s EC2 also involved some costs. Malan esti-
mated a cost of $15/student for the semester, or $5000 in
all, but believed that additional work on his part could
drive this cost down to $2000–$2500. Bandwidth was a
particular concern, because it can be expensive. Learn-
ing EC2’s idiosyncrasies was also troublesome; in the past,
the department’s IT staff took care of infrastructure issues,
but with EC2, the onus was on Malan and his staff to keep
things running smoothly.

One audience member asked whether the term “sprites”
was a spoof or pun after Osterhout’s Sprite research. The
question was in reference to Malan’s use of MIT’s Scratch
programming environment, which used objects called
sprites. Malan replied that the name was entirely courtesy
of MIT’s Media Lab. Someone else pointed out that Malan’s
results showed an increase in course enrollment during the
first week, but it wasn’t clear whether these students were
doing any better later in the course. Malan responded that
there was not yet enough data to answer definitively, but
that there has been an uptick in the number of students
selecting computer science as a major.

net working

Summarized by John McCullough (jmccullo@cs.ucsd.edu)

Design and Implementation of TCP Data Probes for ■■

 Reliable and Metric-Rich Network Path Monitoring
Xiapu Luo, Edmond W.W. Chan, and Rocky K.C. Chang, The
Hong Kong Polytechnic University, Hong Kong

Luo observed that Internet measurement can be very chal-
lenging. ICMP packets frequently have different behavior
and can only measure limited metrics. He introduced One-
Probe, which enables the measurement of TCP-based appli-
cations’ specific behavior and can capture RTT, directional
packet loss, and packet reordering. The current incarnation
operates over HTTP, and the approach should be extensible
to additional TCP-based applications.

OneProbe operates using a pair of probing packets. By
observing the sequence and acknowledgment numbers in
TCP packets and distinguishing TCP data packets and TCP
control packets through packets’ payload size, the responses
can be classified into one of 18 cases to determine reorder-
ing and loss on both forward path and reverse path. Thus,
OneProbe is able to achieve more expressive measurements
against almost any Web server and provide more accurate
results than httping. Luo showed results of latency measure-
ments for the Web servers of the 2008 Olympic Games:
they were able to observe diurnal RTT and loss behavior,
and a significant difference between OneProbe and ICMP
echo result on some paths. See http://www.oneprobe.org for
more information.

An audience member asked how the RTT tests can be accu-
rate for forward and reverse paths while using TCP. Another
audience member inquired about the requirements on the
application protocol. Luo answered that servers must send
back some data packets and that clients need to be able to
send data back to the server.

StrobeLight: Lightweight Availability Mapping and ■■

 Anomaly Detection
James W. Mickens, John R. Douceur, and William J. Bolosky,
Microsoft Research; Brian D. Noble, University of Michigan

Mickens observed that we typically like to know the status
of hosts in our networks. This can sometimes be achieved
using distributed systems or other monitoring mechanisms,
but it requires host modifications and can sometimes lead
to scalability concerns. Mickens introduced StrobeLight, a
system targeted to measuring networks of a few hundred
thousand hosts. StrobeLight simply sends ICMP probes
to every host on the network every 30 seconds, providing
fine-grained fingerprints for availability data. This data can
be used to guide choices in building multicast trees, task
allocation, or identifying misbehaving networks or network
hosts.

StrobeLight was designed to be simple and unintrusive
without requiring infinite scaling. It operates by extracting
the list of hosts from the DNS server and pinging each of
them. The availability data is used to construct a per-subnet

login_summariesOCTOBER_09_final.indd 84 9.4.09 10:30:19 AM

; LO G I N : O c tO b e r 20 0 9 cO N fe re N ce re p O rt s 85

bit-vector where each position represents the availability of
each host. Using a similarity metric, Mickens shows that
most subnets do not change in character over time unless
there is an anomaly. In one case, this assisted in identifying
subnets that lost connectivity, and it can be used in general
to identify routing anomalies such as BGP hijacking. Using
an external wide-area prober, Mickens demonstrates that
the fingerprints are generally similar and that in simulation
they were effective in identifying hijacking attempts.

An audience member asked whether the hijacker could
prevent detection by mimicking the host availability of the
target network. Mickens replied that you’d be relatively
powerless if the attacker could duplicate the availability
profile, but that access to the network availability can be
restricted to designated probers. Overall, the task is chal-
lenging, but StrobeLight is a simple first cut.

Hashing Round-down Prefixes for Rapid Packet ■■

 Classification
Fong Pong, Broadcom Corp.; Nian-Feng Tzeng, Center for Ad-
vanced Computer Studies, University of Louisiana at Lafayette

Pong established the need for fast packet classification that
is both dynamic and compact. Typical approaches use
either decision trees or hash tables. Decision trees can be
tall and take a while to traverse, and the addition or dele-
tion of a rule can necessitate a reconstruction of the entire
tree. Hash-table approaches often require many probes to
determine the correct prefix length and, in some cases, use
supplementary decision trees to select the correct prefix
length. Instead of storing a single address and mask pair at
each entry in the hash table, HaRP (hashing round-down
prefixes) lumps groups of prefixes into sets that can be
searched in parallel. This reduces the number of hash look-
ups and reduces memory requirements.

Because HaRP probes all prefix-group buckets and because
prefixes are transitive, it is possible to load-balance the hash
table by placing shorter prefixes in longer buckets. HaRP
also allows for either source IP hashing or destination IP
hashing. Pong demonstrated results for six rule sets: three
from practice and three artificially enlarged. Although HaRP
does not hash-load-balance quite as well with many short
prefixes, it enables a compact representation that can fit
in cache and overall achieves approximately a 5x speedup.
Data structure updates are much quicker than the several
minutes that can be required for a large decision tree.

An audience member questioned the applicability of rapidly
changing firewall rules. Pong pointed out that in VPN set-
tings there can be frequent creation and deletion of firewall
rules as clients enter and leave the system. Does the order
of rule insertion affect the layout and hash-table load? Their
first cut of choosing the first fit has worked well, and he
also notes that finding the optimal fit is an NP problem.

file and stor age systems

Summarized by Alex Rasmussen (alexras@acm.org)

Tolerating File-System Mistakes with EnvyFS■■

Lakshmi N. Bairavasundaram, NetApp, Inc.; Swaminathan Sun-
dararaman, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau, University of Wisconsin—Madison

Awarded Best Paper!

Swaminathan Sundararaman presented EnvyFS, a file
system based on N-version programming that is designed
to tolerate silent file system failures. Sundararaman argued
that modern file systems are very complex and that this
complexity, combined with the increasing depth of the stack
between the file system and the disk (imposed by virtual-
ization, networked file systems, etc.), admits the possibility
of a wide range of failures, including so-called “fail-silent”
failures in which the file system doesn’t detect an error and
continues to work on the wrong data, causing data corrup-
tion and returning bad data to the user. EnvyFS copes with
fail-silent failures through N-version programming, which
involves executing several different functionally equivalent
programs (in this case, file systems) and using majority
consensus to agree on the federated program’s output. To
reduce the storage and performance overheads imposed by
using several child file systems at once, the authors created
a single-instance store called SubSIST that de-duplicates
data while retaining most of the reliability benefits the N-
version file system provides.

Sundararaman presented several examples of individual
fail-silent errors that resulted in corruption in the ext3 file
system, but that EnvyFS (using ext3, JFS, and ReiserFS as
its child file systems) is able to tolerate. In one case, EnvyFS
masked an ext3 error that would otherwise have caused a
kernel panic.

One audience member wondered whether EnvyFS assumes
that all file systems have the same block size and how En-
vyFS would deal with an extent-oriented file system. Sunda-
raraman replied that EnvyFS assumes 4 KB blocks and that,
if extent-oriented file systems wrote at non-block-aligned
offsets, a more sophisticated scheme such as fingerprinting
would have to be used to identify duplicate blocks. Had the
file system authors had been informed of the bugs uncov-
ered during the evaluation? Yes, they had. Did correlated
failures relate to file systems having copied code from one
another? They had not noticed any instances of code copy-
ing, but different file systems can be chosen to minimize
the presence of duplicate code if such code is observed.

Decentralized Deduplication in SAN Cluster File Systems■■

Austin T. Clements, MIT CSAIL; Irfan Ahmad, Murali Vilayan-
nur, and Jinyuan Li, VMware, Inc.

Austin Clements presented a new method of de-duplication
in storage area networks (SANs). De-duplication prevents
duplicate data from being stored on disk by tracking the
locations of written blocks in an index and bypassing writes

login_summariesOCTOBER_09_final.indd 85 9.4.09 10:30:20 AM

86 ; LO G I N : VO L . 3 4, N O. 5

to disk if the block to be written is already in the index.
Clements asserted that classical methods of de-duplication
do not work well in a decentralized setting due to cache
coherence problems, the need for coordinated allocation of
disk space for new blocks, loss of disk locality on individual
disks, and a shared index structure to which access must be
coordinated using locks.

To solve these problems, the authors have developed DeDe,
which breaks de-duplication into three stages: write moni-
toring, local de-duplication, and cross-host de-duplication.
DeDe can de-duplicate live storage devices out-of-band and
in large batches. The system is designed to minimize con-
tention on the shared index and communication between
hosts, is resilient to stale index information, and improves
access to unique blocks by allowing them to be mutable and
to remain sequential on disk.

The authors evaluated DeDe on a corporate virtual desktop
infrastructure and found that it was able to compress 1.3 TB
of non-zero data to 237 GB while using only 2.7 GB of disk
space for its data structures and causing no additional I/O
overhead.

An audience member wanted to know how effective DeDe
would be if de-duplication were done at the file level as
opposed to the block level. DeDe (and de-duplication in
general) would not be as effective in this case, since the
opportunity for savings decreases as the size of the unit of
replication increases. Might DeDe cause fragmentation and
interfere with linear read-ahead? While any de-duplication
system has these issues to some extent, DeDe suffers less
from these problems, because it keeps blocks in their
sequential location on disk whenever possible and per-
mits in-place updates to blocks without duplicates. Would
certain kinds of access patterns lead to poor performance
with a de-duplication system that uses fixed-size chunking,
as DeDe does? Many systems in this space use variable-size
Rabin fingerprinting to overcome this issue, but Clements
speculated that such fingerprinting is unlikely to be worth
the performance penalty of managing variable-size blocks
in a live, shared file system. What might happen when a lot
of duplicate data is injected into the system suddenly, such
as when all VMs in the network are patched in rapid suc-
cession? Increased duplication would trigger de-duplication
more frequently, but such temporary increases in duplicate
data are hard to deal with in general and some extra storage
space must be allocated to deal with this eventuality.

FlexFS: A Flexible Flash File System for MLC NAND Flash ■■

Memory
Sungjin Lee, Keonsoo Ha, Kangwon Zhang, and Jihong Kim,
Seoul National University, Korea; Junghwan Kim, Samsung
Electronics, Korea

Today’s NAND flash memory comes in two main varieties:
SLC (single-level cell) and MLC (multi-level cell). SLC has
higher performance and lasts longer than MLC, but MLC
has higher capacity. However, MLC flash memory can be

programmed dynamically as either MLC or SLC through
use of a special writing method. Sungjin Lee described
FlexFS, a new file system that combines the performance
of SLC flash with the capacity of MLC flash. It does this
by managing disk blocks as three separate pools for SLC,
MLC, and free blocks. Blocks are dynamically allocated and
migrated between regions in the background. New data is
written to the SLC region and blocks are migrated to the
MLC region in the background as the SLC region becomes
full. FlexFS also takes advantage of idle time to generate
free blocks for the SLC region and avoids migrating “hot”
(recently referenced) pages. In addition, FlexFS’s wear man-
ager controls the rate at which erase operations occur, to
maximize the device’s lifetime.

An audience member wanted to know if FlexFS, which was
targeted at mobile systems, could be applied to large disks,
where capacity is less of an issue, and to environments
where the system could take advantage of write caching.
Lee responded that FlexFS could certainly be extended to
support such environments.

Layering in Provenance Systems■■

Kiran-Kumar Muniswamy-Reddy, Uri Braun, David A. Holland,
Peter Macko, Diana Maclean, Daniel Margo, Margo Seltzer,
and Robin Smogor, Harvard School of Engineering and Applied
Sciences

Provenance is metadata that describes the history of an
object. Such data is useful for scientific reproducibility,
business compliance, and security. Previously, the authors
constructed PASS, which observes file system calls to infer
relationships between objects. However, if an application
such as a Web browser also tracks provenance, no method
exists to link the provenance tracked by the application
with that tracked by the kernel. Kiran-Kumar Muniswamy-
Reddy discussed the Disclosed Provenance API (DPAPI),
through which software that tracks provenance can disclose
that provenance to lower layers of the software stack in a
secure, modular way. DPAPI can pass abstract provenance-
containing objects between programs through use of
opaque handles and has functions to associate provenance
with reads and writes, thus ensuring that provenance is
consistent with the data it describes. Muniswamy-Reddy
then described the use of DPAPI in Kepler (a provenance-
aware workflow engine) that links the Web browser and
the Python interpreter. He concluded with some lessons
learned by the authors in writing DPAPI. Among these
lessons learned are that it is not easy to make applications
provenance-aware and that making platforms provenance-
aware does not necessarily provide provenance awareness to
all applications running on that platform.

One audience member wondered whether there was some
notion of nested provenance, where, for example, each tab
tracks its provenance and the browser tracks the “meta-
provenance” of the collection of tabs. Muniswamy-Reddy
replied that the browser knows where each URL came from
and the chain of URLs the user viewed in the past and so

login_summariesOCTOBER_09_final.indd 86 9.4.09 10:30:20 AM

; LO G I N : O c tO b e r 20 0 9 cO N fe re N ce re p O rt s 87

can do some logical separation within itself, but that the
clarity of the separation isn’t clear. He mentioned that they
are looking at Google Chrome as a better target for DPAPI
than Firefox, due to Chrome’s use of a separate process per
tab. Why is the file system the right location at which to
focus provenance tracking, since the application is so much
more aware of what is actually being done at a high level?
The file system is a single point with which all processes
must eventually interact and, while its provenance is in-
complete, is a piece of the larger provenance puzzle; DPAPI
helps to integrate it with the rest of the software stack.

invited talk

Project SunSPOT■■

Roger Meike, Sun Microsystems

Summarized by Alex Rasmussen (arasmuss@cs.ucsd.edu)

Roger Meike from Sun Labs provided an overview of Sun-
SPOT, Sun’s research and development platform for study-
ing the entire embedded systems software and hardware
stack as part of its Internet of Things Actualized initiative.
SunSPOTs run Java, come equipped with a variety of sen-
sors and affectors, and can communicate with one another
wirelessly. Additionally, the SunSPOT platform comes with
a large number of libraries, and the device itself is modular,
allowing users to install custom or preconfigured sensor
boards to fit their application.

The majority of the talk focused on projects that have used
SunSPOTs. Meike gave examples ranging over several do-
mains, including toys, research-oriented sensor networks for
environmental monitoring, autonomous robots, and art in-
stallations. He also discussed some work that has been done
to build a community around the SunSPOT platform; Meike
believes that allowing the SunSPOT community to largely
integrate itself into existing social networks (through use of
the #spaught Twitter tag, for example), rather than creating
a domain-specific social network, has helped the commu-
nity grow beyond a core group of SunSPOT enthusiasts.

When asked about the weirdest thing anyone has ever done
with a SunSPOT, Meike replied that they once taught a
SunSPOT Morse code and created a translator that would
receive Morse code sent wirelessly by one SunSPOT and
translate it into semaphore.

Meike provided a number of pointers to more information
about the SunSPOT platform. sensor.network.com provides
information about various SunSPOT installations. See http://
sunspotworld.com and http://spots.dev.java.net for more
information about the platform and existing applications.

poster session

Summarized by Chris Frost (chris@frostnet.net) and Rik
 Farrow (rik@usenix.org)

SPROV: A Library for Secure Provenance■■

Ragib Hasan, University of Illinois at Urbana-Champaign; Radu
Sion, Stony Brook University; Marianne Winslett, University of
Illinois at Urbana-Champaign

SPROV, an application-layer library for secure provenance,
intercepts file-system system calls and logs file modifica-
tions and other lineage information. Cryptographic com-
ponents of the provenance chain allow verification of the
integrity of these provenance records at any point in the fu-
ture. This capability allows one to verify the edit history of
a document. For most common real-life workloads, SPROV
imposes runtime overheads of 1–13%. For more informa-
tion see http://www.usenix.org/publications/login/2009-06/
openpdfs/hasan.pdf and http://tinyurl.com/secprov.

Towards a Formally Verifiable Multiprocessor Microkernel■■

Michael von Tessin, NICTA, University of New South Wales

Michael von Tessin presented his work on formal verifica-
tion of the seL4 microkernel. He is working to extend the
completed proofs for the uniprocessor version and make
them work in a multiprocessor setup. To reduce complexity
introduced by concurrency, he identified two orthogonal ap-
proaches: The first is to use one big lock around the kernel
to reduce parallelism. The second is to reduce sharing by
having a multikernel architecture.

Sonar-Based Measurement of User Attention■■

Stephen P. Tarzia, Northwestern University; Robert P. Dick,
University of Michigan/Northwestern University; Peter A. Dinda
and Gokhan Memik, Northwestern University

Stephen Tarzia explained how they are using sonar to moni-
tor user activity. Unlike typical activity monitors, such as
mouse or keyboard event monitoring, sonar can detect if
there is a person sitting in front of a keyboard. The sonar
data is easy to analyze and will be used in power manage-
ment, such as screen dimming.

Including the Network View in Application Response Time ■■

Diagnostics using Netflow
Jochen Kögel, University of Stuttgart

Jochen Kögel presented a use of router-provided flow-level
data, Netflow, to diagnose network issues and their impact
on application response time in global enterprise networks.
Today Netflow data is only used for reporting, accounting,
and security, in part because of its incompleteness caused
by hardware logging limitations. However, Jochen showed
how network round-trip times can be separated from server
response times, how packet loss can be traced to particular
network segments, and how one-way network delays can be
measured with Netflow data.

login_summariesOCTOBER_09_final.indd 87 9.4.09 10:30:20 AM

88 ; LO G I N : VO L . 3 4, N O. 5

Dynamic Resource Management Through Transparent ■■

Interaction Monitoring
Igor Crk, Mingsong Bi, and Chris Gniady, University of Arizona

In this work, the presenters include context while moni-
toring user behavior. Simply monitoring user events, such
as mouse and keyboard events, doesn’t provide enough
information to predict when a hard drive or network inter-
face should be suspended or awakened, or the CPU run at
a slower clock rate. Using the mouse to open a File dialog
suggests that the hard disk should be spun up in anticipa-
tion of a read or write. This work builds on their 2008
USENIX Annual Technical Conference paper (http://www
.usenix.org/event/usenix08/tech/full_papers/crk/crk_html/
index.html).

Software Configuration by the Masses■■

Wei Zheng, Ricardo Bianchini, and Thu D. Nguyen, Rutgers
University

This poster focused on early research trying to help new
users configure our increasingly flexible software systems.
They plan to collect existing users’ configurations and the
corresponding effects (i.e., performance metrics) to auto-
matically recommend configurations for new deployments.
They hope this will help new deployments by determining
the sequence of configurations to try whose values are most
likely to achieve the target performance on the new deploy-
ment in a descending order. They also estimate the number
of experiments for a target performance to enable explicit
tradeoff between performance target and configuration tun-
ing. Open questions include how to obtain existing con-
figurations, how varied configurations are, how to combine
existing configurations with expert data, and how to deal
with software evolution. For more information see http://
vivo.cs.rutgers.edu/.

FlexFS: A Flexible Flash File System for MLC NAND Flash ■■

Memory
Sungjin Lee, Keonsoo Ha, Kangwon Zhang, and Jihong Kim,
Seoul National University; Junghwan Kim, Samsung Electronics

There exist two types of NAND flash in today’s products:
SLC is fast and supports a large number of block erases,
and MLC supports large capacities. FlexFS is a file system
for embedded mobile systems that can use MLC hardware
to provide the benefits of both MLC and SLC flash by
treating the hardware as MLC or SLC on a per flash-block
basis. FlexFS provides the larger capacity of MLC flash to
end users, but strives to write as much data as possible to
SLC flash blocks to maximize I/O performance. FlexFS also
provides a mechanism that mitigates the poor wear char-
acteristics of MLC flash. Their paper was presented during
USENIX Annual Tech ’09 (see above).

Zephyr: Efficient Incremental Reprogramming of Sensor ■■

Nodes using Function Call Indirections and Difference
Computation
Rajesh Krishna Panta, Saurabh Bagchi, and Samuel P. Midkiff,
Purdue University

Zephyr reduces the size of software updates for sensor
nodes with a goal of improving battery life. By updating
using a modified rsync to reduce the amount of program
data required for patching, and using function call indirec-
tion, Zephyr requires much less energy for both network
and flash storage. Panta also presented on Zephyr during
the conference.

distributed systems

Summarized by Kiran-Kumar Muniswamy-Reddy
(kiran@eecs.harvard.edu)

Object Storage on CRAQ: High-Throughput Chain ■■

 Replication for Read-Mostly Workloads
Jeff Terrace and Michael J. Freedman, Princeton University

Internet storage providers have started providing object
storage with eventual consistency semantics. Eventual con-
sistency, said Jeff Terrace, is difficult to program, as it can
return stale data on reads to users. The traditional strong
consistency is easy to program but hard to scale. This work
introduces CRAQ (chain replication with apportioned
queries), a storage system that provides strong consistency
while also ensuring high scale and availability. CRAQ is an
improvement over the chain replication (CR) method. CR
organizes all nodes storing an object in a chain, with the
head of the chain processing writes and the tail of the chain
processing reads. On a write, the head propagates modifica-
tions along the chain and acknowledges the write to users
once the write has propagated to the tail. On a read, the tail
returns the value it has stored for the object, thus ensur-
ing strong consistency. Since all reads are served by the
tail node in CR, the tail can be a potential hotspot. CRAQ
improves on CR by taking advantage of the fact that all the
nodes on the chain have replicas of the data and can serve
read requests. CRAQ uses the following scheme to ensure
strong consistency in the event that reads are issued while
an update is propagating through the chain. Each node that
has dirty data (i.e., data that has not yet been propagated to
the tail) queries the tail for the current version number of
the data and returns that version of the data to the user. The
overhead on the tail in CRAQ is smaller than in CR, due to
the fact that the tail has to reply with metadata, as opposed
to the whole object in CR.

CRAQ can also provide eventual consistency if it is suf-
ficient for the applications, reducing the number of opera-
tions across data centers compared to CR. Since one can
look up objects from any node in the chain in CRAQ, one
can look up objects from the nodes in the local data center,
whereas in CR, one has to send the request to the data cen-
ter that has the tail node. Users can also configure CRAQ in

login_summariesOCTOBER_09_final.indd 88 9.4.09 10:30:20 AM

; LO G I N : O c tO b e r 20 0 9 cO N fe re N ce re p O rt s 89

a variety of ways. For example, to ensure datacenter diver-
sity, users can specify the data centers to be used for a chain
and the chain size in each data center. Terrace presented
evaluation results comparing CRAQ and CR on Emulab: the
results confirm that CRAQ scales better than CR.

One audience member commented that Hadoop could
really use this scheme for appends and requested that the
authors consider contributing this to the Hadoop project.
Sourav Bagchi asked what happens if two separate writes
originated for the same object in two data centers. Terrace
replied that there is a statically defined master data center
that coordinates the writes. How might the system change if
the operations were persistent as opposed to in-memory (as
it is now)? The system would change but the protocol would
still be effective.

Census: Location-Aware Membership Management for ■■

Large-Scale Distributed Systems
James Cowling, Dan R.K. Ports, Barbara Liskov, and Raluca Ada
Popa, MIT CSAIL; Abhijeet Gaikwad, École Centrale Paris

Dan Ports presented Census, a membership service de-
signed to work in wide area locality-aware large-scale
systems—hence, a platform for building large-scale distrib-
uted systems that have to deal with constant churn. Census
divides time into epochs and provides consistent mem-
bership views to all nodes in a single epoch. Many of the
previous membership services were restrictive in that they
provided only partial views of system membership, whereas
Census provides stronger consistent semantics, thus making
applications easier to develop. The basic approach of Census
is to designate one node as a leader. The other nodes then
report any membership changes to the leader, and the
leader aggregates these changes and multicasts the updated
membership to members. In the next epoch, members up-
date their membership views.

In order to reduce load on the leader, Census divides the
nodes into a hierarchical structure based on network coor-
dinate locality of the nodes. The hierarchical structure is
constructed by exploiting the membership knowledge of the
system. Since there is a consistent membership view, nodes
can reconstruct the tree on the fly, and there is no proto-
col overhead even during churn. For very large networks,
nodes are grouped into regions according to their network
coordinates. For such networks, Census makes an excep-
tion, and the membership knowledge of nodes is restricted
to the nodes in their region. Each node has a summary of
membership in other regions. Census uses standard state
replication techniques for fault tolerance and can optionally
deal with Byzantine faults. An evaluation of Census shows
that it imposes low bandwidth overhead per node, reacts
quickly to churn, and scales well.

One audience member questioned whether it is possible for
branches to occur due to two nodes having different views
of the membership tree. Ports replied that there can be
temporal inconsistencies, but the nodes can use the ver-

sion number in each epoch to resolve inconsistencies. Does
Census require nodes to store old versions of the views? It
helps to have a few recent membership views. How does
Virtual Synchrony compare with Census? Ports replied that
Virtual Synchrony was more rigorous, but it is similar to
their scheme. Does the duration of the epoch affect the scal-
ability? If the epoch is small, their scheme can have slightly
higher overhead, but it does not affect scale.

Veracity: Practical Secure Network Coordinates via ■■

 Vote-based Agreements
Micah Sherr, Matt Blaze, and Boon Thau Loo, University of
Pennsylvania

Network coordinates (NC) are a decentralized mechanism
to estimate approximate network distances between hosts
without performing a pairwise measurement. However, NC
systems are easy to manipulate. If 10% of the nodes are
malicious, there is a 4.9x decrease in accuracy, and if 30%
of the nodes are malicious, there is an 11x decrease. Micah
Sherr presented Veracity, a security protection layer for NC
systems. It differs from existing solutions in that it assumes
no triangular invariants, is fully distributed (other schemes
assume a priori trusted nodes), supports dynamic neighbor-
sets, and does not assume temporal locality.

Participants in Veracity are either publishers or investiga-
tors. An investigator is a node that wants to use the pub-
lisher’s coordinate to update its own. When a publisher
returns its coordinate to the investigator, the coordinate is
verified by a set of verification nodes (a deterministic set of
peers of the node) before the investigator uses it. A mali-
cious node that tries to publish incorrect coordinates will
fail this step. After verification, the investigator updates
its own coordinate based on the publisher coordinate and
the RTT between it and the publisher. The publisher can
delay its response to the investigator’s probe and induce an
error in the investigator’s coordinate computation. In the
second step, the investigator updates its coordinate only if
the new coordinate results in an error below a threshold
when computed against a random set of peers. Veracity is
implemented by modifying the Vivaldi implementation that
is packaged with Bamboo. The authors demonstrated the
effectiveness of Veracity under a variety of attacks.

John Dunagan commended Sherr for the thoroughness of
their evaluation, but wondered if random delay is the worst
an attacker can do. Sherr replied that they looked up all at-
tacks in the literature and came up with some of their own
attacks. Further, Sherr agreed that it is hard to assert that
Veracity is resilient against all attacks, so they are trying to
formalize and verify their system. Could jitter on the WAN
affect Veracity? NC systems handle many of these issues.
Veracity doesn’t distinguish between malice and temporary
effects. Veracity does allow users to tweak knobs so that
they can handle corner cases in network behavior.

login_summariesOCTOBER_09_final.indd 89 9.4.09 10:30:20 AM

90 ; LO G I N : VO L . 3 4, N O. 5

kernel de velopment

Summarized by Ragib Hasan (rhasan@uiuc.edu)

Decaf: Moving Device Drivers to a Modern Language■■

Matthew J. Renzelmann and Michael M. Swift, University of
Wisconsin—Madison

Matthew Renzelmann presented Decaf, a tool for moving
device drivers from the kernel to user space. Driver pro-
gramming and debugging are difficult tasks, and complica-
tions can lead to driver unreliability. Renzelmann argued
that writing drivers in type-safe high-level languages such
as Java can alleviate these problems, but may introduce per-
formance degradation. Decaf solves this by moving most of
the driver functionality to user-mode code written in Java,
with a only small amount of code running inside the kernel.
Decaf provides a migration path for porting existing kernel
drivers to user mode. This also makes writing patches easy,
to evolve drivers over time.

Decaf builds on the authors’ previous work on microdrivers,
allowing one to write drivers from scratch and migrate ex-
isting drivers. The programmer annotates legacy drivers and
then uses the tool DriverSlicer to split the driver code into
a nucleus (which runs in kernel mode) and a user-mode li-
brary. The developer can then migrate code from the driver
library to the Java Decaf driver one function at a time. For
example, in porting the ENS1371 sound card driver, Decaf
uses Jeannie to allow C and Java code to be mixed in the
same file. Complex Java/C transfers are handled using
XPC. The authors evaluated Decaf by migrating five exist-
ing drivers, showing that porting most of the functionality
to user-mode Java code can still provide reasonably good
performance.

A member of the audience asked if the authors had stud-
ied the memory overhead. Renzelmann replied that there
is roughly a 3x memory overhead. Since there was no Java
code invoked during the benchmarks, how can the au-
thors be sure that Decaf will correctly handle bugs in the
driver? The Java code did run during driver initialization,
and the only code left in the kernel mode in C is for faster
performance. To a question about refactoring, Renzelmann
mentioned that the object-oriented features of Java allowed
reduction of the code size for the e1000 driver by 6.5 KB.
To a question about the observed bug distributions, Ren-
zelmann referred to their earlier microdrivers study, where
they found bugs to be uniformly distributed between kernel
and user mode. Alan Thai inquired about performance op-
timization, and Renzelmann said that they did not use any
multi-threading or other optimizations. An audience mem-
ber who recently discovered a bug in the e1000 driver asked
if the authors performed any detailed bug analysis. They
had not. How much performance degradation occurred by
rewriting the C driver code into Java? Performance loss was
not substantial, largely because most of the overhead is in
control and in data transfer between user and kernel modes.

Rump File Systems: Kernel Code Reborn■■

Antti Kantee, Helsinki University of Technology

Antti Kantee presented his work on reusing kernel code in
user space. A large portion of the kernel code can be run in
the user mode with no modifications. Reusing kernel code
in user-space applications saves reimplementation time. The
Rump File system runs on NetBSD, where it allows differ-
ent file system codes as user-space processes. The author
defined a Rump as a “runnable userspace meta program,”
i.e., a user-space program which runs kernel code, and a
framework that allows this. The Rump kernel runs inside
the host OS kernel. The author’s goal was to make kernel
development simpler. Currently, kernel developers need
to use user-mode OS, virtual machines, or emulators to
develop and debug kernel code. By allowing unmodified
kernel code to be run from user space, debugging and de-
velopment become easier.

Rump works by using as much kernel code directly as
possible. Rump has two modes: a mounted server mode,
which is transparent to the applications but where mount
privileges are required, and an application library mode,
where the application needs explicit modifications but can
run with no special privileges. Kantee gave an example
scenario in which a corrupt file system on a USB stick can
cause a system crash or have exploits. This can be avoided
by mounting the device as a Rump file system in user space,
thereby isolating the damage to a user-mode process. Rump
also makes kernel debugging easier, as various debuggers
can be used to give even non-experts control over the de-
bugging process. Kantee talked about a Google Summer of
Code project that implemented an application suite provid-
ing mtools-like functionality for all file systems supported
by Rump. He also showed that Rump is maintainable, with
only a small number of Rump breakage commits in the
NetBSD repository.

Is the buffer management layer still kept inside the kernel?
Kantee answered that Rump uses double buffering, with
both the kernel and the application maintaining its own
buffer. However, the double buffering is a temporary work-
around, which Kantee plans to fix. Is it obvious which part
of the interface to port and which one to rewrite? It is not
obvious—it’s mostly gut feeling.

CiAO: An Aspect-Oriented Operating-System Family for ■■

Resource-Constrained Embedded Systems
Daniel Lohmann, Wanja Hofer, and Wolfgang Schröder-
Preikschat, FAU Erlangen—Nuremberg; Jochen Streicher and
Olaf Spinczyk, TU Dortmund

Wolfgang Schröder-Preikschat presented their paper on
using aspect-oriented programming in embedded operating
systems. Embedded operating systems are widely used in
different devices, but to handle different architectures, the
code becomes very complex with the use of #ifdef. In the
eCos operating system, for example, only two lines of fun-
damental code requires 34 lines of ifdef blocks, spread over

login_summariesOCTOBER_09_final.indd 90 9.4.09 10:30:20 AM

; LO G I N : O c tO b e r 20 0 9 cO N fe re N ce re p O rt s 91

seventeen functions and data structures in four implementa-
tion units. This problem, also known as “ifdef hell,” makes
software complex and difficult to maintain. Schröder-
Preikschat argued that aspect-oriented programming (AOP)
can solve this by modularizing cross-cutting concerns.
After a brief introduction to AOP, the presenter showed how
they used AspectC++ (an extension to C++) along with the
source-to-source weaver tools to generate normal C++ code
from a given aspect specification.

AOP can help here by eliminating the ifdefs. They used this
approach in the CiAO system to design configurable embed-
ded-system software. CiAO has loose coupling, visible tran-
sitions, and minimal extensions. Important state transitions
are captured by a point-cut expression in the aspect. The
resulting base system is designed with classes, and most
functionality is provided by optional aspects—extension
aspects, policy aspects, and upcall aspects. Schröder-Preik-
schat gave an example of an extension aspect that uses task
scheduling. For evaluation, he mentioned their collaboration
with Audi and Elektrobit, where they showed that CiAO
runs on a number of microcontroller-based systems. He also
compared CiAO with OSEK. Finally, Schröder-Preikschat
talked about how using aspects for low-level code can break
fragile join points and about other issues related to aspect-
aspect interdependencies, such as join point traceability and
granularity.

Remzi Arpaci-Dusseau from the University of Wisconsin
asked whether the ordering of advice procedures has to be
considered in the structure definitions. Schröder-Preikschat
replied that advice ordering tells in what order the aspects
are going to be intermixed in the source code, and so the
use of a C pointer may cause some problems. Can aspects
be applied at the level of statements? Fine-grained aspect-
oriented programming would require using empty functions
around statements, but there are not very many cases like
that. Sourabh Bagchi from Purdue asked whether using this
will be cost-effective, in terms of the effort spent in defining
aspects, in real-life scenarios. Configurability of a system
will forever be a problem, for example, in the auto industry,
which needs very deterministic behavior from their embed-
ded systems.

invited talk

Towards Designing Usable Languages■■

Matthew Jadud, Allegheny College in Meadville, PA, and
 Christian L. Jacobsen, Untyped Ltd.

Summarized by Michael von Tessin (mtvt@cse.unsw.edu.au)

Edit, compile . . . edit, compile. This tireless cycle dates
back to the 1960s, when the cost of editing and compiling
was substantial.

Despite this by now long-standing interaction between
human and computer, the observable behavior of novice
programmers has only recently been linked with negative

affective states. That’s a fancy way of saying, “We can detect
when students are frustrated.” The short-term goal in this
study is to support the learner with sensible interventions
based on automated observation of their interactions with
the compiler and their environment. The longer-term goal is
to help provide a human-centered foundation for the design
of languages and their environments.

To this end, the language design target is ambitious: paral-
lel languages for robotic control. The authors have built a
small virtual machine to support message-passing parallel
languages (the Transterpreter) and have begun exploring
its use on small, microcontroller-based mobile robotics
platforms. They felt this was good engineering: begin by
exploring, understanding, and reusing well-tested and for-
mally verified languages with a rich 20-year history. They
also thought more people might use the tools if they could
play with them on robots made out of shiny yellow plastic.
In short, this is a story about people trying to do some cool
stuff at the intersection of usability research and the design
and implementation of parallel-programming languages.

BlueJ is a development environment used at the University
of Kent to teach novice students OO programming in Java.
It allows classes, object instances, and invocations to be cre-
ated/executed via a graphical interface. Skeleton code is au-
tomatically created and helps students to start writing code
instead of just presenting them with a blank page. BlueJ
can be used to trace all compiler invocations, i.e., record
the time of invocations and their results (warnings, errors).
Their study covers about 42,000 programs in 2000 sessions
of 120 students over two years. Overall, 56% of all compiler
invocations resulted in a syntax error. The top errors were:
unknown variable, missing semicolon, missing bracket,
unknown method, app. error, illegal start of expression.
They were able to spot compiler error messages that can
completely confuse students and frustrate them.

Midway through the talk, the speakers opened the floor to
questions. If students know their activities are monitored,
does it affect their behavior? They haven’t explicitly looked
at that, but if monitoring makes them think harder before
they hit “compile,” that would be an interesting outcome.
Someone else asked about variation in traces over the
course of a semester. They did see error rates vary and in
the types of errors change as students’ skills evolved.

When teaching parallelism to students, the speakers contin-
ued, they don’t want to use an existing sequential language,
because the compiler doesn’t know how to help students (or
even confuses them). Thus, they have chosen occam, which
is used a lot at the University of Kent. They want learn-
ing parallelism to be fun, but also authentic. “Authentic” in
robotics means that although there is a basic sequence—
sense → think → act—this is never a strict sequence; you
can have multiple inputs (sense), multiple outputs (act), and
multiple tasks/calculations (think phases) running in paral-
lel and interconnected.

login_summariesOCTOBER_09_final.indd 91 9.4.09 10:30:21 AM

92 ; LO G I N : VO L . 3 4, N O. 5

The authors want the ability to reach out to a community
of tinkerers and explorers and the hardware they use in the
classroom to be affordable. A good choice is Arduino (http://
arduino.cc), which only costs $20 and allows you to buy,
download, or build your own software and has a large com-
munity behind it. The authors know that designing a new
language is hard to do well and to get right. On the other
hand, Java was not designed for novice programmers. There
were some good examples (Logo and Lego Mindstorms), but
they eventually want to get rid of the standard edit/compile
cycle.

One speaker said, “In 10 years from now, I don’t want my
son (now 13 weeks) to learn how to program embedded
systems in C. I want tools to be designed for him. So please
engage and have a look at baseplate.org and transterpreter.org.”

There were some concluding questions. Have you contacted
psychologists or other experts in child development? Not
yet. That would be future work and very interesting. What
motivated you to choose occam? Occam has a long British
tradition (Tony Hoare, Bristol) and Kent has a long tradition
in that space. Erlang (which is heavily used in telco) has a
huge runtime, so we moved away from Lego Mindstorms
and started to use occam, which has a very small runtime
and memory footprint.

autom ated m anagement

Summarized by Xu Chen (chenxu@umich.edu)

Automatically Generating Predicates and Solutions for ■■

Configuration Troubleshooting
Ya-Yunn Su, NEC Laboratories America; Jason Flinn, University
of Michigan

Su observed that troubleshooting computing systems is
hard. There have been automated troubleshooting tools
proposed, but they rely on a given set of predicates that
can be used to determine good or bad system states. In this
talk, Su proposed methodologies for automatically generat-
ing predicates. Existing approaches analyze source code
or configuration files, but Su showed that predicates can
be extracted from previous user or expert troubleshooting
behaviors.

A modified shell is used to record human troubleshoot-
ing behavior, including commands executed and resulting
kernel-object modifications, while being unobtrusive to
the users. The basic assumption is that users usually use
repeated commands as predicates, one for recreating the
failure and one for evaluating the troubleshooting outcome.
The results of these repeated commands should be differ-
ent, in terms of exit code, screen output, or kernel objects
modified. Causal dependencies of different commands are
tracked by the modified shell such that the command that
solved the problem can be identified, while pruning unre-
lated commands. To sanitize the user-submitted predicates,

they are ranked according to popularity and merged based
on the associated state delta.

Su demonstrated through a user study with 12 participants
solving four configuration problems that the proposed
method can extract correct predicates, with very few false
positives (wrong predicates). The false positives are intro-
duced because the users did not perform repeated predi-
cates or did not solve the problem.

The audience raised questions regarding how to pinpoint
the exact solution when the user changes a lot of different
things. Su emphasized that their methodology currently
works at kernel object level (e.g., a file). So the exact change
made, such as which line in the file, cannot be determined.
How are generated predicates applied to other environ-
ments? The generated predicates and solutions are canoni-
calized so that they can be applied to different users, as
shown in their prior work, AutoBash.

JustRunIt: Experiment-Based Management of Virtualized ■■

Data Centers
Wei Zheng and Ricardo Bianchini, Rutgers University; G. John
Janakiraman, Jose Renato Santos, and Yoshio Turner, HP Labs

Managing a data center is hard. To predict system behavior
resulting from configuration changes, Zheng proposed an
experiment-based approach called JustRunIt. The assump-
tion is that data centers usually run services in tiers, with
many instances of VMs for each tier. The basic idea is to
create sandboxed VMs to run alongside production VMs
so that different parameters can be explored in the sand-
box without affecting production services. The sandboxed
VMs will be running clones of production VMs. For each
tier, an in-proxy and an out-proxy are used to hand over
to sandboxed VMs the traffic from production VMs. The
management entities usually specify the ranges for different
parameters and some time limit for experiments. JustRunIt
will try to search the parameter space as much as pos-
sible within the time limit. Since the search space is large,
interpolation is used if not all combinations are tested. As
a simple heuristic, JustRunIt prioritizes the combination of
the upper and lower bounds of different parameters.

JustRunIt is implemented in Xen and has been tested on
a cluster of machines running multi-tiered Internet ser-
vices. Evaluation results demonstrate that the overhead of
JustRunIt is small. The accuracy of JustRunIt is very good:
it can accurately predicate production service behavior in
terms of mean response time and throughput.

Zheng presented two usage scenarios in which JustRunIt
was used to estimate the impact of hardware upgrades and
to derive a better resource allocation strategy in the context
of an SLA violation.

Audience members raised several questions. How practi-
cal is JustRunIt when the parameter search space is very
large? Even though JustRunIt can give an accurate estimate
on mean response time, would the variance or exhibited
distribution of response time be accurate as well? How does

login_summariesOCTOBER_09_final.indd 92 9.4.09 10:30:21 AM

; LO G I N : O c tO b e r 20 0 9 cO N fe re N ce re p O rt s 93

JustRunIt compare to some greedy approaches in resource
management, which, for example, just allocate more VMs if
SLA is violated?

vPath: Precise Discovery of Request Processing Paths from ■■

Black-Box Observations of Thread and Network Activities
Byung Chul Tak, Pennsylvania State University; Chunqiang Tang
and Chun Zhang, IBM T.J. Watson Research Center; Sriram
Govindan and Bhuvan Urgaonkar, Pennsylvania State University;
Rong N. Chang, IBM T.J. Watson Research Center

Tak observed that enterprise services are usually multi-
tiered, and a user request usually traverses the system after
being processed by a variety of threads that communicate
with each other. How each request moves through the
system can be characterized by request-processing paths,
which Tak tried to discover in his work. There are two
types of existing approaches: statistical inference, which is
flexible but may not be as accurate; and instrumentation-
based, which is accurate but requires source code.

Tak proposed vPath, which resides in a virtual machine
monitor and thus is transparent to the application running,
yet does not impose too much overhead. vPath identifies the
request-processing path by tracking internal and exter-
nal causality between thread activities within and across
machines. The VMM identifies threads and tracks their TCP
behavior to identify causalities. This is possible because
most commercial applications follow a multi-threaded struc-
ture and synchronous communication patterns. vPath seeks
to demonstrate that the application model can be exploited
to solve the problem of path discovery, presenting a new
direction and paradigm.

Implementation-wise, vPath modifies the Xen VMM to
intercept some system calls made within each VM. For the
related system calls, threads are identified by inspecting the
EBP register, while network socket information is delivered
by hypercalls. For current support, a guest VM needs to be
modified to invoke hypercalls, but in the future such func-
tionality will be merged into the VMM, as Tak pointed out.
While delivering accurate processing-path results, vPath
exhibited about 6% overhead in increased response time
and throughput reduction in a TPC-W test.

There were concerns from the audience about how appli-
cable vPath is to complicated applications whose workload
model deviates from vPath’s assumptions, and about the
benefits vPath could deliver compared to existing inference-
based approaches.

short papers

Summarized by Stephen P. Tarzia (starzia@northwestern.edu)

The Restoration of Early UNIX Artifacts■■

Warren Toomey, Bond University

Warren Toomey described efforts by himself and others
at the UNIX Heritage Society to restore the first edition of
UNIX from 1971. In addition to its historical interest, this

case study serves as a lesson in preserving code for use in
the distant future. Toomey’s story began with the discov-
ery of a printed assembly code listing for the first edition
of UNIX. However, much more than the source code was
needed. Running the code required several reconstructions,
including correcting lines of code, adding peripheral hard-
ware devices to the PDP-11 emulator, and rewriting system
utility binaries.

Toomey observed that although software does not physi-
cally decay like hardware, it cannot run in a vacuum. The
software and hardware environment that it requires is,
of course, constantly evolving. This phenomenon is often
called “bit rot.” The key to preserving code is to preserve
the environment as well. This includes keeping contempo-
rary libraries, compilers, configuration files, hardware (or,
preferably, a hardware emulator), documentation, anecdotes,
and publications.

Toomey reported that a few first-edition UNIX bugs had
been discovered during the restoration and had been jok-
ingly posted as security advisories. An attendee asked how
to best preserve this kind of restoration work. Toomey
encouraged thorough documentation and replication.

Block Management in Solid-State Devices■■

Abhishek Rajimwale, University of Wisconsin, Madison; Vijayan
Prabhakaran and John D. Davis, Microsoft Research, Silicon
Valley

Abhishek Rajimwale presented an analysis of how Solid
State Drive (SSD) characteristics break file systems’ long-
standing assumptions, and he prescribed appropriate
storage-stack changes aimed at improving SSD performance
and longevity. In contrast with conventional, spinning mag-
netic disks, SSDs have low random-access latency, signifi-
cant background activity (for cleaning and wear-leveling),
significant media wear-down, and no seek delay. Addition-
ally, they exhibit write amplification, meaning a small write
results in the entire, much larger, block being rewritten.

Rajimwale and colleagues measured characteristics of sev-
eral different SSD samples, gathered real file-system traces,
and modified the SSD module extension for the DiskSim
(PDL) simulator. He showed results quantifying the above
characteristics and presented three optimizations based on
these results. First, the device should merge write requests
when possible; second, background maintenance opera-
tions should be stalled during high-priority I/O; finally, the
SSD should be prevented from cleaning free disk blocks. To
implement the above performance and longevity optimiza-
tions, Rajimwale called for a richer storage device interface.
In particular, he proposed a higher-level interface such as
object-based storage, to allow the SSD to manage block-level
details itself.

Were there cases when the SSD should provide dynamic
status information to the OS? If cells are being switched be-
tween multi-level (MLC) and single-level (SLC) modes, that
information could be shared with the OS. Do conventional

login_summariesOCTOBER_09_final.indd 93 9.4.09 10:30:21 AM

94 ; LO G I N : VO L . 3 4, N O. 5

RAID disk arrays share the same issues? Rajimwale agreed
that write amplification has also existed in RAID, but
said that the background activity found in RAID (namely,
rebuilding) is relatively infrequent; SSD background activ-
ity may be continuous. Another attendee suggested letting
the OS control low-level block management on the SSD.
Rajimwale agreed that OS control is a viable alternative, but
suggested that, as SSD devices get more complex, internal
control is desired.

Linux Kernel Developer Responses to Static Analysis Bug ■■

Reports
Philip J. Guo and Dawson Engler, Stanford University

Philip J. Guo presented an analysis of Linux kernel develop-
er responses to bug reports generated by the Coverity static
code analysis tool. Their basic goal is to evaluate such tools
and to make them more useful by automatically prioritizing
the thousands of generated bug reports by correlating bug
reports from a single source snapshot to subsequent devel-
oper actions in the bug tracker and repository. Such bugs
are either ignored or triaged, and the assumption was that
developers ignored bugs because they were identified as less
important or meaningful. They found correlations between
triage rate and several factors such as error type, other static
bugs, user-reported bugs, and file age, size, and location.

Guo argued that static analysis is indeed useful. Although
static bugs are shallow in nature, he believes that their cor-
relation results show that developers can be led by static
bugs to deeper bugs. Quoted reactions from kernel develop-
ers support this hypothesis.

The first audience question was whether static-code-analysis
tool use results in fewer bugs over time. Guo responded
that, since the kernel source is growing, it is difficult to de-
termine such trends. Can a code-complexity metric be used
to find deep bugs? Guo supported this idea and pointed out
that static analysis bugs often result from code complexity,
so these ideas are actually complementary. Had the authors
contacted lead kernel developers? Although their developer
quotes were anonymized, some were from veterans.

Hardware Execution Throttling for Multi-core Resource ■■

Management
Xiao Zhang, Sandhya Dwarkadas, and Kai Shen, University of
Rochester

Xiao Zhang presented a new software-based multicore
resource management mechanism called Hardware Execu-
tion Throttling. The general problem is core performance
isolation. Adjacent cores typically share a last-level cache,
so one core can slow down other cores by overusing the
cache. Hardware Execution Throttling cleverly uses two
features of Intel Core-series processors: duty cycle modula-
tion (DCM) and cache prefetcher disabling. These settings
can be quickly adjusted (within a few hundred CPU cycles)
to reduce a core’s shared-cache access rate. This fine-grained
control is their primary contribution relative to previous

mechanisms. Of course, core performance control policy is
a separate problem which this work does not address.

Zhang described a fairness metric for concurrent applica-
tions. This measures the extent to which all applications
are running at the same level of performance. They used a
set of standard benchmark applications to favorably com-
pare Hardware Execution Throttling’s fairness to previous
mechanisms.

An attendee noted that hyper-threading would cause pairs
of threads to be throttled together. Zhang agreed and sug-
gested pressuring CPU vendors for more flexible control.
Would kernel activity on a throttled core be affected? The
kernel could quickly de-throttle that core. Were there
cases in which one of the two CPU features worked better
for throttling? Zhang didn’t have a concrete example, but
reported that DCM has a more predictable effect than dis-
abling prefetching. Responding to another question, Zhang
said performance was not very sensitive to the particular
choice of DCM setting used. Finally, an attendee pointed
out that the throttling policy would have to follow a process
as it migrated to different cores.

invited talk

The Antikythera Mechanism: Hacking with Gears■■

Diomidis Spinellis, Athens University of Economics and Business

Summarized by Ragib Hasan (rhasan@uiuc.edu)

Diomidis Spinellis presented the history and the functional-
ity of the Antikythera Mechanism, an ancient mechanical
computer used for astronomy. Spinellis started with the
history of the discovery of the mechanism. In 1900, Greek
sponge divers on a fishing trip took shelter from a storm
on the island of Antikythera, between the Peloponnese and
Crete. One of the divers found some relics when he dived
near the island. Subsequent archaeological expeditions
found a large number of ancient artifacts, the result of a
shipwreck almost 2000 years ago.

Among these was a heavily corroded bronze object consist-
ing of multiple gears. Initially it was thought to be an as-
tronomical toy. Later, in the 1950s, Derek J. de Solla Price,
a Yale professor, presented a theory that this mechanism
was used to compute the motions of celestial objects. By
studying an X-ray of the object, he created a model of how
it worked using a combination of many intertwined gears.
Price’s model was later found to be incorrect, but it formed
the basis of more thorough studies published in the journal
Nature in 2006 and 2008 (see http://www.antikythera-
mechanism.gr).

A total of 82 fragments of the mechanism are available.
Recently, researchers studied the mechanism using digital
radiographs, X-ray tomography, and a 3D lighting model.
Inscriptions on the mechanism serve as a user manual.
The researchers found that it could calculate days in the
Egyptian calendar. The device could also compute the mo-

login_summariesOCTOBER_09_final.indd 94 9.4.09 10:30:21 AM

; LO G I N : O c tO b e r 20 0 9 cO N fe re N ce re p O rt s 95

tion and phases of the moon and predict solar and lunar
eclipses. As a comparison, Spinellis showed that the equiva-
lent code in BSD’s moon phase program is very complex.
The Antikythera Mechanism used the Metonic calendar and
computed complex astronomical predictions, as well as the
year of the Olympic games.

Spinellis created a complete Squeak EToys emulator for
showing how the mechanism worked. The emulator is
available at http://spinellis.gr/sw/ameso. He demonstrated
the working of the mechanism with animations from his
emulator. Finally, Spinellis pondered the purpose of the
device. He said that we may never know the real purpose of
the tool, but it might have had some political and strategic
value, since prediction of eclipses was important at that
time. This mechanism was too delicate to carry on a ship to
aid in navigation. This could also have been an educational
tool, or simply something someone (possibly an ancient
hacker) built for fun.

A member of the audience asked what was the complexity
of the mechanism compared to other machines. Spinellis
said that no other such mechanism from that time has been
found. Another person remarked that there was a clock
built during the Renaissance to simulate the motion of the
planets, and asked if this could have done the same thing.
Spinellis said experts have posited that, with some gears, it
could have calculated planetary positions too. The mecha-
nism was expensive to build just for moon positions, so it
probably also computed the paths of others celestial bodies.
Did the device have any bugs? The device was designed in
a very clever manner, and there are no bugs in the mecha-
nism.

system op timization

Summarized by Abhishek Rajimwale (abhi@cs.wisc.edu)

Reducing Seek Overhead with Application-Directed ■■

Prefetching
Steve VanDeBogart, Christopher Frost, and Eddie Kohler, UCLA

Steve VanDeBogart addressed the problem in prefetch-
ing arising from non-sequential accesses by applications
in systems using disks. He introduced a new prefetching
algorithm which uses applications’ knowledge of future
accesses and is implemented in the form of a user-space
library called “libprefetch.” libprefetch provides a convenient
application interface, needs little modification to the kernel,
and handles resource sharing.

Steve then presented the details of the intuition behind
libprefetch. He showed that for seeks above 1 MB there is a
very gradual increase in cost; however, reducing seeks larger
than 1 MB to less than 32 KB (on average) can result in sig-
nificant performance gain. He also showed that using larger
reorder buffers greatly helps to reduce average seek cost
as well as number of disk passes. Next, he explained the
libprefetch’s interface, which uses a callback mechanism,

and also talked about how libprefetch solves the problem
of contention in memory by using a TCP-like mechanism
(i.e., additive increase and multiplicative decrease). Finally,
libprefetch showed an up to 20x improvement in some
benchmarks using real applications.

Someone in the audience asked about whether applications
need to use “pread” only to be able to use libprefetch. Steve
clarified that they intercept read, pread, and other vari-
ants. How much gain do the authors expect if they don’t
use spinning disk and use SSDs (or RAID arrays) on these
benchmarks with libprefetch? Disks will still exist as long as
SSDs are expensive; for RAID arrays, it’s possible to extend
this work by pushing information up from RAID arrays
about the layout; as far as direct performance gains on SSDs
are concerned, there may be some gains. What is the gener-
ality of the non-linear relation between seek time and seek
distance, and what are the reasons behind it? Although they
had limited samples of disks in their results, similar results
have been shown in previous works. The reason is due to
rotational latency and seeks. Had they tried to use selec-
tive joins (queries) to see gains? As long as access patterns
are known, performance will improve with libprefetch. For
more information see http://libprefetch.cs.ucla.edu.

Fido: Fast Inter-Virtual-Machine Communication for ■■

 Enterprise Appliances
Anton Burtsev, University of Utah; Kiran Srinivasan, Prashanth
Radhakrishnan, Lakshmi N. Bairavasundaram, Kaladhar
 Voruganti, and Garth R. Goodson, NetApp, Inc.

Fido is targeted to enterprise-class server appliances such as
NAS, with the aim of addressing the main problem of per-
formance in virtualizing NAS in order to exploit the natural
benefits of virtualization. The main insight, Anton Burtsev
said, was to use the relaxed trust model in these appliances
to design fast inter-VM communication by sharing memory
read-only across VMs in the same appliance.

He then detailed how their fast inter-VM communication
works using a large pseudo-global virtual address space and
mapping the address of all VMs in one single large address
space. Transitive zero copy is achieved by mapping the
communicated read-only data into this global virtual ad-
dress space; a shared memory ring is used to pass pointers.
Two interfaces are used to access Fido: MMNet (network
device interface) and MMBlk (block device interface). Anton
then presented some evaluation figures demonstrating that
MMNet outperforms XenLoop and Netfront, sometimes also
outperforming the monolithic kernel due to inefficiencies
in the TCP stack. Further, MMBlk outperforms XenBlk and
also the monolithic kernel due to contention in tmpfs and
ext3. Finally, Anton presented the case study with NAS in
order to give a more realistic performance evaluation. He
showed that with Fido, NAS can be virtualized with little
performance overhead on micro-benchmarks and TPC-C
macro-benchmarks by exploiting pipelined parallelism
between VMs and by eliminating copy and page-mapping
overheads in the critical path.

login_summariesOCTOBER_09_final.indd 95 9.4.09 10:30:21 AM

96 ; LO G I N : VO L . 3 4, N O. 5

An audience member asked what mechanism was used to
reclaim memory that is shared read-only with other VMs.
Anton replied that they didn’t have any special mechanism
to reclaim memory; for TCP they reclaim memory volun-
tarily when the other VM frees it, but for file systems they
have to copy out memory in the other VM. He had already
acknowledged this limitation in his conclusions. Someone
from VMware also expressed concern about using this
relaxed trust model in the face of users pushing malicious
content into servers. Anton suggested that this model is
a required assumption for this work and, at least for the
networking stack, is a reasonable assumption. What are
the benefits of virtualizing NAS if there is no fault isolation
because of the relaxed trust model? VMs are a pragmatic
approach with benefits of migration, cleaner hardware
support, and better isolation with very little performance
overhead. Future work might include implementing some
micro-rebooting technique to provide fault isolation.

STOW: A Spatially and Temporally Optimized Write ■■

 Caching Algorithm
Binny S. Gill and Michael Ko, IBM Almaden Research Center;
Biplob Debnath, University of Minnesota; Wendy Belluomini,
IBM Almaden Research Center

Binny Gill presented a new writ-caching algorithm called
STOW. He explained the need for the algorithm by showing
that the destaging rate from write caches is important apart
from just destaging order. He pointed out that earlier work,
including his own WOW algorithm, had only focused on
destaging order.

Binny presented the intuition behind the new algorithm
in steps. He first pointed out problems with simplistic
techniques for destaging, such as destaging as quickly as
possible or having a fixed destage threshold. He suggested
that destaging with linear thresholding (high and low) is
required to control the destage rate, but even with linear
thresholding, the destaging occurs in spikes due to the long
time spent in sequential and random regions. With this, he
introduced the notion of separating random and sequen-
tial data streams. However, this leads to low throughputs
because mixing sequential and random streams hurts disk
throughput by forcing the disk head to service two separate
regions instead of one. He further explained that this can
be controlled by adding hysteresis to the destages. The last
important thing in the algorithm is to adapt the sizes of
the sequential and random queues to be responsive to the
workload. He then presented a thorough evaluation of his
algorithm, comparing it with CSCAN, LRW, and WOW.
STOW outperforms all the other algorithms in throughput
and response time for both full back-end and partial back-
end experiments. STOW gives an average of 18% improve-
ment over the previous best algorithm (WOW), which is
substantial because of the slow nature of disk I/O improve-
ments in hardware.

Someone asked why adaptation was required with sequen-
tial queues, particularly because there is little temporal

locality with sequential writes. Binny replied that this
adaptation was required for multiple streams. In order to
get maximum throughput, each stream must have some
amount of data to say it’s sequential, for at least a stripe
or two stripes worth of data. So we need to adapt the size
of the sequential queue according to the number of con-
current sequential streams. Why did he choose a simple
hysteresis rather than some more complex mechanism? He
likes to keep things simple so that they are actually used.
He acknowledged that there could be some further gain in
throughput (around 5% more) by using more complicated
mechanisms, but he wouldn’t worry about that more than
the real applications of his work. Could the technique of
using separate queues with hysteresis be used to dynami-
cally adjust the sizes of read and write caches? This was an
open and complex problem he hadn’t dealt with.

web, internet, data center

Summarized by Wei Zheng (wzheng@cs.rutgers.edu)

Black-Box Performance Control for High-Volume ■■

 Non-Interactive Systems
Chunqiang Tang, IBM T.J. Watson Research Center; Sunjit Tara,
IBM Software Group, Tivoli; Rong N. Chang and Chun Zhang,
IBM T.J. Watson Research Center

Chunqiang Tang provided examples of systems that process
requests generated by automated software tools, in addi-
tion to requests generated by interactive users, e.g., Twitter,
Web Crawler, and IT monitoring and management systems.
Systems that have non-interactive workloads generally ben-
efit more from high throughput than from short response
time.

Tang proposed a general black-box performance control
named TCC (throughput-guided concurrency control),
which varies the number of event-processing threads to
maximize throughput. TCC keeps adding more threads and
observes whether throughput increases. After finding peak
throughput, TCC decreases the number of threads so long
as throughput does not decrease significantly. Tang also
described how to measure throughput accurately and ef-
ficiently through sampling and noise removal.

TCC was demonstrated to maximize throughput and control
resource to near-saturate level by analyzing different event-
processing queue models. The control is also evaluated in a
real implementation to demonstrate the scalability of TCC
and its effectiveness under various bottleneck scenarios.
Tang said future work might include applying TCP-style
flow control to general distributed systems. Emphasizing
that performance control for non-interactive systems is an
interesting problem.

Someone asked whether the time to measure throughput
is deterministic. Tang said it is dynamically adjusted. Is
the increase and decrease of thread number by percentage?
Tang said yes. Can TCC deal with multiple pools of threads?

login_summariesOCTOBER_09_final.indd 96 9.4.09 10:30:21 AM

; LO G I N : O c tO b e r 20 0 9 cO N fe re N ce re p O rt s 97

That is a limitation of this approach and should be studied
for future work.

Server Workload Analysis for Power Minimization using ■■

Consolidation
Akshat Verma, Gargi Dasgupta, Tapan Kumar Nayak, Pradipta
De, and Ravi Kothari, IBM India Research Lab

Akshat Verma described the characteristics of the workloads
collected from the Fortune Global 500 over a period of 90
days in 2007. Based on the observation, Verma proposed
two new consolidation methodologies, Correlation-Based
Placement (CBP) and Peak Clustering-Based Placement
(PCP).

The idea behind CBP is to separate positively correlated
applications across servers. However, it cannot capture
both the body and the tail of the workload distribution.
PCP addresses this problem by using two parameters to
decide collocation. The first can be mean or percentile for
body and the second can be a tail-based metric. All corre-
lated peaks will be separated across active servers, and the
off-peak reservation can be equal to the body value. CBP
and PCP are compared against peak-based and mode-based
sizing approaches. The results show PCP consuming as little
power as the mode-based approach while having very few
capacity violations across different application suites.

Someone asked how the power is measured in this work.
Verma responded that the power was calculated from a
model instead of by measurement. Given that dynamic load
balancing/consolidation is popular in industry, how much
room is left for static consolidation? Even in that situation,
PCP will help to decrease the number of migrations. Chun-
qiang Tang from IBM Research asked if other resources are
considered. Verma said no, but believed that PCP can be
extended to deal with other resources.

RCB: A Simple and Practical Framework for Real-time Col-■■

laborative Browsing
Chuan Yue, Zi Chu, and Haining Wang, The College of William
and Mary

Chuan Yue presented RCB, a pure browser-based collabora-
tive browsing framework. A co-browsing host starts RCB-
Agent, a Web browser extension. Later, co-browsing partici-
pants connect to the host using regular Web browsers. Any
of them can visit a Web page and interact there, with all
Web page contents automatically synchronized between the
host and participants.

The authors implemented RCB as a Firefox extension
and evaluated it with real-time performance in LAN and
WAN settings. The results showed that a Web page can be
synchronized between a host and a participant in a reason-
able amount of time. RCB worked with Google Maps and
Amazon Checkout. User studies indicated that most people
like it and tend to continue using it.

The audience responded actively. One person wondered
why RCB is better than screen sharing. Yue pointed out

that RCB puts less stress on bandwidth and secure assur-
ance. Would a password be transmitted to others? RCB can
enforce a policy on the host side. If multiple participants
submit changes simultaneously, what will happen to a Web
page? The host can write a policy to control what action to
perform if multiple changes are received. Will RCB work if
one has limited access to the Internet? As long as a partici-
pant can connect to the host, RCB should work.

invited talk

A Computer Scientist Looks at the Energy Problem■■

Randy H. Katz, University of California, Berkeley

Summarized by Stephen P. Tarzia (starzia@northwestern.edu)

Randy Katz described how his group and others are apply-
ing computing-inspired solutions to the electrical power
piece of the global energy problem. First, he described
computing’s role as a major energy consumer and proposed
strategies increasing efficiency. Second, he addressed electri-
cal generation and distribution. He used the Internet as a
model for how the power grid might be re-engineered as a
more efficient and robust distributed system.

Katz presented an overview of energy sources and sinks in
the US. Currently, most electricity is generated from coal.
Renewable energy sources have severe limitations, so limit-
ing demand is important. For example, the country with
the highest percentage of electricity from renewables is Den-
mark, with only 28%. Looking at IT energy consumption,
Katz referred to the Smart 2020 report, available at http://
smart2020.org. Despite the anticipated invention of new
efficiency technologies, IT power drain is projected to reach
4% of total energy consumption by the year 2020.

Katz also touched on some of the same themes as the key-
note, showing the energy demand breakdown in Internet
data centers and describing some possible optimizations. He
suggested that containerized data centers (racks of servers
built into shipping containers) may be more efficient, since
their internal layout and airflow can be highly optimized.

Power Usage Efficiency (PUE) optimization at the data
center is already approaching optimality, so future optimi-
zations will be within IT equipment. One of Katz’s slogans
is that computers must be made to “do nothing well.” This
goal, also called energy proportionality, means that idle
computers should drain nearly zero current; this is cur-
rently not common. However, Katz showed that low-power
CPUs such as Intel’s Atom are more energy proportional.
Since average server utilization tends to be low, one might
replace each high-power CPU with several slower Atom
CPUs. However, other system components such as RAM,
disk, etc., currently have high idle power consumption, so
optimizing the CPU is not enough.

In the second part of the talk, Katz described his plan for
upgrading the power grid. He drew an extended analogy
with the telephone network’s evolution in the Internet era.

login_summariesOCTOBER_09_final.indd 97 9.4.09 10:30:21 AM

98 ; LO G I N : VO L . 3 4, N O. 5

Because weather variations make renewable energy sources
such as wind and solar both unreliable and distributed in
nature, the need for a power grid upgrade is essential. Like
the Internet, an effective renewable-source grid must have
local buffers (energy stores) and adaptive routing. Energy
storage is tricky. On large scales, one can pump water uphill
or compress gasses. On the small scale, for example in
homes, batteries would work but are expensive. Anticipa-
tory work such as cooling a building earlier in the day can
actually be thought of as a type of energy storage.

Katz proposed building a smart power grid by augmenting
the existing grid with Internet-connected Intelligent Power
Switches (IPSes). He also emphasized that an intelligent
power grid with open access would bring “power to the
people” in both senses of the word; it would allow enter-
prising individuals to contribute excess generated electricity
to the grid.

Rik Farrow asked about energy storage, and Katz noted
that there are many innovative options for energy stor-
age, including using water temperature differentials. He
described storage as an information management problem.
Responding to a question about laptop versus desktop
computer power usage, Katz noted that power management
policies are currently lacking. He would like to see faster
transitions from low-power to operating states and back
again. Alan Thal suggested cooling data centers by building
them underground. Katz responded that people are look-
ing at innovative data center locations and that architects
do have a role to play in the optimization process. Another
attendee noted that room cooling is often overlooked when
calculating the power drain of computers. Katz replied that
PUE measurements in data centers include this and that
significant energy savings can be had by allowing server
rooms to reach higher temperatures (but monitoring them
more carefully). As a follow-up, another attendee noted that
much hardware lacks good air flow, so we may have to lean
on vendors to improve this aspect of their products. Katz
agreed that systems packaging is an issue and mentioned
that the containerized design brings airflow to the forefront
of design.

An attendee asked whether the next optimization step
is choosing what we are willing to compute at all. Katz
acknowledged this as the ultimate goal and a broader chal-
lenge, although it is rarely mentioned. He suggested model-
ing user desires and behavior and then structuring the
entire system to meet those demands.

bugs and soft ware updates

Summarized by Michael von Tessin (mtvt@cse.unsw.edu.au)

The Beauty and the Beast: Vulnerabilities in Red Hat’s ■■

Packages
Stephan Neuhaus, Universita degli Studi di Trento, and Thomas
Zimmermann, Microsoft Research

Stephan Neuhaus explained that they used Red Hat Se-
curity Advisories to determine which Red Hat packages
had vulnerabilities reported. The distribution shows that
two-thirds of all packages didn’t have any vulnerabilities,
whereas the kernel had the highest number of vulnerabili-
ties. They asked if there are package properties that corre-
late with vulnerabilities and found that there were.

If A → B (A depends on B), then A is vulnerable if: (1) A
is in an “insecure domain” (“domain” characterized by de-
pendencies, e.g., “Internet browsers,” “image manipulation
programs”); (2) B is difficult to use securely (e.g., SSL); (3) a
fix in B spills over to A (e.g., a change in the API).

Next they created a dependency subtree of packages, with
each node having an attached risk equal to the number of
packages that depend on this package. They could then find
the “beauties” and the “beasts” by comparing this risk be-
tween a parent and a child in the dependency subtree. If the
risk of the child is significantly higher (p < 0.01) than the
parent’s, that means that the child is the “beast,” and vice
versa. They then used machine learning (Support Vector
Machine, SVM) to predict the future vulnerability of a pack-
age. Their model correctly predicted 10 of the 25 packages
found to have vulnerabilities over the next eight months.
Programmers can use this research to help choose less risky
packages to depend on.

An audience member observed that they looked at binary
packages instead of source packages, which could give them
some strange anomalies when multiple binary packages
are generated from one source package (e.g., OpenOffice).
Stephen admitted that looking at source packages would
make sense as well. Someone wondered whether there was
a correlation vs. causation problem here; instead of imply-
ing vulnerability, might the correlation instead say some-
thing about the carefulness of the programmers in choosing
which packages to use? Neuhaus responded that this was
a good question, but that they tested the model on real
data and were able to successfully predict the future. So
there has to be some truth in it. But even if it came down
to choice of packages, it would still be a useful outcome,
because a programmer would now know which packages a
clever programmer prefers to use. For more information see
http://research.microsoft.com/projects/esm and http://www.
artdecode.de.

login_summariesOCTOBER_09_final.indd 98 9.4.09 10:30:22 AM

; LO G I N : O c tO b e r 20 0 9 cO N fe re N ce re p O rt s 99

Immediate Multi-Threaded Dynamic Software Updates ■■

Using Stack Reconstruction
Kristis Makris and Rida A. Bazzi, Arizona State University

Kristis Makris said that software updates to patch critical
security holes are arriving with increasing frequency and
need to be applied as soon as possible. In a live system,
downtime should be as limited as possible (milliseconds
instead of minutes). This means that the system needs to
be updated dynamically while it is running. In order to do
DSU (Dynamic Software Update), we need to know when a
system is in a state that allows updating and the mapping
that maps old data structures to new data structures. But
this problem is undecidable, i.e., there is no algorithm that
can always find a correct solution.

Many DSU systems allow old and new code to be executed
at the same time (and to use adaptors for accessing data
structures), making it very difficult for users to determine
valid update points. The authors’ work had three design
goals:

1. Atomic update: The entire state of an application has to
be transferred (from old to new representation) in a single
step, before which only old code was running and after
which only new code is running.

2. Transaction safety: In certain cases, you need to execute
a transaction (critical section of code) without allowing up-
dates in between. This means that such code is either fully
executed as old code or as new code, but not mixed.

3. Thread safety: If there are multiple threads sharing a state
(e.g., in a Web server), an “immediate update” is needed.
Immediate means atomic and with bounded delay (no
blocking).

UpStare consists of a compiler, a patch generator, and a
runtime. UpStare saves stack frames, updates global state,
then reconstructs stack frames. Update points can be auto-
matically set or set manually by the user. Thread safety is
implemented by forcing all threads to block in case of an
update request, safely detecting that they are blocked, and
only then performing the update. Overheads during evalu-
ation ranged from 38% to 97% with throughput decreases
of none to 26%. Future work involves moving cold code to
the end of image (improves cache locality), adding runtime
safety checking, using semantic analysis, and updating in-
transit data.

The session chair, John Dunagan, asked the only ques-
tion, wondering about future work that aims to reduce
the amount of user involvement. Couldn’t the opposite be
useful, i.e., to force programmers to annotate their programs
sufficiently? Kristis said that would be a very good idea. It
would help to automatically generate the patches fully, with-
out user involvement (except for the annotations, of course).

Zephyr: Efficient Incremental Reprogramming of Sensor ■■

Nodes using Function Call Indirections and Difference
Computation
Rajesh Krishna Panta, Saurabh Bagchi, and Samuel P. Midkiff,
Purdue University

Rajesh Krishna Panta explained that the goal of this work
is to enable software updates on wireless sensors on the fly
and “in situ.” Because these devices are battery-powered,
reprogramming must be fast and energy-efficient. Their ap-
proach achieves energy efficiency by sending as small a diff
(delta script) as possible to the sensor, which then applies
it to the current code to get the updated code. The compu-
tationally intensive part of this setup is done on the host
(finding the delta script), whereas applying it is straightfor-
ward. They used rsync to calculate a delta script between
the old and the new binary (on byte-level). Because of some
shortcomings, they had to improve rsync quite a lot (e.g.,
merging superblocks).

This approach only works fine if functions in the new bina-
ry have the same addresses as in the old binary; otherwise,
all jump addresses will change, making it very difficult
to find a small binary diff (delta script). Solutions to this
problem include: (1) leaving space after each function to
avoid having to shift parts of the image if functions grow, or
(2) using position-independent code, which is available only
on certain architectures. Their solution uses function call
indirections. All calls are performed into a fixed indirection
table, with each function having its predefined slot which
doesn’t change on updates. Thus, only the contents of the
table change, but all jump addresses in the binary stay the
same. In all benchmarks, Zephyr is multiple times smaller/
faster/more efficient than Deluge or Stream. Future work
is to remove function-call latency (due to indirection table)
by having the loader relocate the binary according to the
indirection table.

Someone pointed out that this is very similar to what a dy-
namic linker has to do (e.g., indirection table). John Duna-
gan asked how often updates are typically needed in a wire-
less sensor environment. Rajesh didn’t have numbers, but
his experience told him that updates occur quite frequently.
Most updates are quite small, e.g., because the environment
changes and sensors might have to be reprogrammed to
behave a little bit differently. Very small bug fixes or very
large updates are rare.

closing session

Third Millennium Problem-Solving: Can New Visualization ■■

and Collaboration Tools Make a Difference?
David Brin, Hugo Award-winning author

Summarized by Rik Farrow (rik@usenix.org)

David Brin introduced himself as an astrophysicist by train-
ing who is also a book author and futurist. Brin headed off

login_summariesOCTOBER_09_final.indd 99 9.4.09 10:30:22 AM

100 ; LO G I N : VO L . 3 4, N O. 5

into his title theme, but quickly took off in several intrigu-
ing directions.

Brin explained that the horns depicted on Moses’ head in
Renaissance paintings weren’t really horns but “lamps on
his brow.” These lamps are, in turn, a metaphor for the
frontal lobes of the human brain that allow us to plan for
the future and “discover the troubles in front of you before
you stumble into the pit.” As a futurist, I have no doubt that
Brin uses his horns a lot.

Brin, like other futurists, is very interested in the singu-
larity, the point when humans have computer-enhanced
intelligence, or strong AI exists. Brin believes that the singu-
larity is approaching within the current generation, due to
the acceleration in technological and social advances that
started in the 15th century with the development of print-
ing presses and glass lenses. Printing presses democratized
knowledge, while glass lenses made it possible to study the
solar system—incidentally uncovering the fact that Earth is
not the center of the universe.

The 18th century brought with it mass literacy, printed
illustrations, and science, or Brin’s memory, vision, and
attention. The 19th-century version of these three themes
were mass education and public libraries, photography and
cinema, and global communication. In the 20th century, we
got computers and databases, television and mass media,
and abstraction and immersion. By sometime in the 21st, we
will have a knowledge mesh, omniveillance (stick-on cam-
eras with IPv6 and one-year batteries) and super immersion.
The acceleration of technology, including Moore’s Law, will
bring about the merger and/or replacement of humans with
post-humans and/or AI.

Brin told us that Internet millionaires, like his distant
cousin Sergey Brin (Google), believe in positive sum games.
The world of the future should not rely on scarcity for worth
but be a world where everyone gains.

Brin spoke on many other topics, one of the strongest being
a plea for CERTs: Community Emergency Response Teams.
Brin pointed out that the many of the most effective re-
sponders during 911 were members of the local community,
and that we need to support training for CERT members as
well as develop P2P communication that will stand up dur-
ing emergencies such as Katrina.

Eventually, Brin slowed down and opened the floor to ques-
tions. Matt Blaze strode to the mike and picked out just one
of the many controversial points Brin had made, that no
online argument has ever been settled. Matt said that he can
count “zillions of times I’ve been personally informed by an
online discussion that I never participated in that prevented
me from spreading wrong information.” Hey, me too, Matt.
Brin feinted by suggesting that we should turn portions of
the Internet into arenas for ideas with rankings by reputa-
tion for the posters. Blaze countered by suggesting that the
Internet may have evolved a generation with better bullshit

detectors. Brin agreed, saying that he still wanted better
tools for discourse.

Stephan Neuhaus disagreed with Brin’s point that gradu-
ate school has forced many people into very narrow and
focused interests and that this was actually harmful. Neu-
haus contended that poor countries really needed to build a
professional class. Brin said that he thinks the Third World
will quickly pass through their own over-professionalization
curve.

You can learn more about David Brin and his thoughts on
his Web site: http://davidbrin.com/.

Workshop on Hot Topics in Cloud Computing
(HotCloud ’09)

San Diego, CA
June 15, 2009

Summarized by Alva Couch (couch@eecs.tufts.edu) and Kiran-
Kumar Muniswamy-Reddy (kiran@eecs.harvard.edu)

Cloud computing remains a “cloudy concept” for many
people. The first USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud ’09) brought together academic and
industry researchers to discuss late-breaking results and
current trends in cloud computing. As in other “hot topics”
conferences, HotCloud papers defined a problem and dis-
cussed a possible solution and preliminary results. Results
ranged from performance of specific management strategies
to designs for new components of cloud infrastructures. Full
papers discussed upcoming research plans in detail, while
short papers described an interesting idea worthy of further
study. HotCloud ’09 included 13 full papers and eight short
papers, resulting in a day packed with new ideas and future
challenges.

The workshop discussed several distinct kinds of clouds
that are distinguished by the kinds of services that they
provide to clients:

Software as a Service (SaaS): clients gain access to specific ■■

software functions (e.g., gmail, Google Maps).
Platform as a Service (PaaS): clients gain access to indi-■■

vidual virtual machines: (e.g., Amazon Web Services,
Eucalyptus).
Infrastructure as a Service (IaaS): clients gain access to ■■

networks of (perhaps physical) machines (e.g., virtual data
centers).

The kind of cloud determines the boundaries between a cli-
ent’s responsibility and the cloud provider’s responsibility.
In SaaS the client uses the application as an exterior entity.
In PaaS the client must load an operating system instance
into a virtual machine, while in IaaS the client might have
to choose, deploy, and manage provisioning software that in
PaaS is part of the service.

Clouds and cloud applications can exhibit (or lack) elasticity,
the ability to dynamically adapt to changing use patterns
by provisioning and decommissioning resources and virtual

login_summariesOCTOBER_09_final.indd 100 9.4.09 10:30:22 AM

; LO G I N : O c tO b e r 20 0 9 cO N fe re N ce re p O rt s 101

instances of servers. In SaaS elasticity is completely invis-
ible to the client; in PaaS the client must enable elasticity by
providing images of virtual instances suitable for replica-
tion; in IaaS the client may be responsible for ensuring
elasticity by choosing, deploying, and managing an elastic-
ity application.

One motivation for “pushing an application into a cloud”
is to reallocate responsibilities and risks from client to pro-
vider. Clouds can be characterized by the kinds of risks the
provider assumes:

Compute clouds■■ provide computational power on de-
mand. The provider assumes responsibility for availability
and reliability of compute servers.
Data clouds■■ provide data persistence and preservation,
where data can include file systems or databases. The pro-
vider assumes responsibility for data availability, integrity,
and persistence.
Service clouds ■■ provide and ensure function of a specific
service. The provider assumes all responsibility for provid-
ing the service.

Of course, many cloud infrastructures provide all of the
above.

Ensuring security and privacy for cloud data is more dif-
ficult than ensuring security and privacy in non-cloud in-
frastructure. Several security and privacy threats repeatedly
arose at HotCloud, including:

Malicious use of privilege: ■■ The maintainers of the cloud
have administrative privilege and thus clandestine access
to client data that they do not own.
Exploitation of co-location:■■ Malicious client applications
can discover confidential information about other clients
whose cloud functions happen to be co-located on the
same physical devices, by employing back-channels, in-
cluding shared use of memory, I/O, cache, or even address
translation buffer behavior.
Limits of legal protection:■■ The Stored Communications
Act (SCA) provides less legal protection against subpoena
for cloud data than for data stored on self-owned hard-
ware.

Thus, cloud clients may assume implicitly that providers are
mitigating risks that may be beyond the providers’ capa-
bilities to mitigate. Many presenters assumed that all data
in a cloud is public, sidestepping these difficulties, while
others specifically considered the difficulties of keeping data
private.

Finally, there was much discussion and controversy over
eventual versus strong consistency in data clouds. In
distributed database theory, a database exhibits strong
consistency if changes to the data store are reflected immedi-
ately in subsequent queries, and eventual consistency if it is
possible that changes will not be reflected in queries until
a later time. Data clouds can likewise exhibit either strong
or eventual consistency. While financial transactions such
as purchases usually require strong consistency (so that

the customer sees a purchase record immediately after a
purchase), eventual consistency is usually acceptable for the
results of a crawler or Web search. But this is a controversial
issue: eventual consistency is “fun for computer scientists,”
but difficult to handle in practice, and leads to bugs in ap-
plications.

cloud pl atforms and architectures

Full Papers
Open Cirrus™ Cloud Computing Testbed: Federated Data ■■

Centers for Open Source Systems and Services Research
Roy Campbell, Indranil Gupta, Michael Heath, and Steven Y. Ko,
University of Illinois at Urbana-Champaign; Michael Kozuch,
Intel Research; Marcel Kunze, KIT, Germany; Thomas Kwan,
Yahoo!; Kevin Lai, HP Labs; Hing Yan Lee, IDA, Singapore;
Martha Lyons and Dejan Milojicic, HP Labs; David O’Hallaron,
Intel Research; Yeng Chai Soh, IDA, Singapore

Open Cirrus is a cloud computing testbed with 11,000
cores, global services, and an open source stack, with nine
sites and a planned size of 20 sites. Objectives of Open
Cirrus include providing a vendor-neutral testbed for cloud
technologies, collecting realistic traces of workload, and
exposing the research community to realistic enterprise
requirements. Infrastructure for Open Cirrus includes
Tashi-provisioning software from Intel, as well as Hadoop
for programming. Open Cirrus is intended to serve as a tes-
tbed for metrics of success for cloud computing and thus to
inform the decision of whether to lease or own cloud infra-
structure. As Open Cirrus is an international infrastructure,
challenges include issues of privacy and legality. Users of
Open Cirrus must develop separate service agreements with
each of the nine international sites. Data privacy is difficult
to guarantee when private data is hosted at foreign sites.

Nebulas: Using Distributed Voluntary Resources to Build ■■

Clouds
Abhishek Chandra and Jon Weissman, University of Minnesota

Nebulas are a form of cloud computing based on volun-
tary cooperation and inspired by the success of edge-node
computing infrastructures such as SETI@home. Voluntary,
loosely coupled clouds based on an edge-node comput-
ing model seem to have several advantages, including an
estimated two orders of magnitude cost difference between
SETI@home and Amazon Elastic Compute Cloud (EC2).
Nebulas, unlike clouds, implement elasticity through use
of excess resources on volunteered distributed hosts. This
leads to low cost, at the price of lower potential perfor-
mance and higher volatility due to dynamic variation in
resource availability. Challenges include coping with het-
erogeneity during deployment, fragility and churn, and data
privacy. Threats to privacy arise both from privileged users
on the volunteered hosts and from back-channels through
co-location of Nebula services.

login_summariesOCTOBER_09_final.indd 101 9.4.09 10:30:22 AM

102 ; LO G I N : VO L . 3 4, N O. 5

Towards Trusted Cloud Computing■■

Nuno Santos, Krishna P. Gummadi, and Rodrigo Rodrigues,
MPI-SWS

Trusted cloud computing refers to a situation in which
data in the cloud—both computed and stored—remains
private and protected from data leaks. One threat to data
privacy is that cloud administrators have privileged access
to virtual machine instances but do not own data contained
in the instances. The cloud provider must be trusted to
provide physical security and to limit physical access to
cloud infrastructure. Software support for trust—which is
effective only in the presence of physical security for cloud
hardware—includes secure booting and remote attestation
of state (i.e., some proof that privacy is being maintained).
Challenges for trusted cloud computing include building
trusted virtual machine monitors (VMMs) based on key
infrastructure provided by trusted platform modules (“TPM
chips”), and providing facilities for secure service migration
without potential exposure of private data.

The Case for Enterprise-Ready Virtual Private Clouds■■

Timothy Wood and Prashant Shenoy, University of Massachu-
setts Amherst; Alexandre Gerber, K.K. Ramakrishnan, and
Jacobus Van der Merwe, AT&T Labs—Research

A virtual private cloud is an “Infrastructure as a Service”
(IaaS) cloud mechanism whereby enterprises can augment
in-house computing resources by renting remote computa-
tion and storage infrastructure transparently, securely, and
flexibly. For IaaS to be practical, legacy applications have to
be able to execute in the cloud without being specifically
aware of where they are executing. Current cloud mecha-
nisms for IaaS are difficult to secure if applications are not
aware that they are running in a cloud, including firewall
configuration. A virtual private cloud (VPC) establishes
secure connections between owned and cloud infrastructure
using dynamically configured layer-2 or layer-3 multi-proto-
col label-switching (MPLS) virtual private networks (VPNs).
Advantages of VPCs include no requirement for end-node
configuration and ability to transparently migrate existing
applications to the cloud. Challenges for VPCs include the
need for virtualized routing infrastructure and for a mecha-
nism to make traditionally static VPN allocation dynamic,
perhaps through Border Gateway Protocol (BGP) signal-
ing. The audience expressed concern that the enterprise is
giving the cloud provider’s administrators privileged access
to their owned infrastructure via VPC connections, thus
increasing the risk of data leaks.

Short Papers
Private Virtual Infrastructure for Cloud Computing■■

F. John Krautheim, University of Maryland, Baltimore County

One way to improve data privacy in a cloud is to utilize
public-key cryptography to secure private information
within virtual machine instances. A locator bot (lobot) is
a virtual cloud appliance that stores an instance’s private
keys and manages the instance that utilizes those keys,

thus allowing applications inside the instance to access
encrypted resources. Lobots are created by a Private Virtual
Infrastructure Factory (PVI factory). Challenges of creating
lobots include how to measure and validate the security of
the fabric in which the lobots execute, as well as protect-
ing against object reuse during object shutdown. Private
data leakage due to co-location of malicious clients might
remain a problem due to persistence of in-memory copies of
decrypted data.

Refactoring Human Roles Solves Systems Problems■■

Jeremy Elson and Jon Howell, Microsoft Research

The success of cloud computing depends on decompos-
ing the task of cloud deployment into human roles with
clearly defined and minimal interfaces. In the same way
that the software industry decoupled the user from the
software developer, new roles in cloud implementation have
the potential to decouple parts of the cloud implementa-
tion process with positive results. The “hardware wrangler”
builds the hardware infrastructure for a cloud, while the
“software integrator” chooses the software and versions
to execute on that hardware. Inappropriate (or perhaps a
better term is “over-specified”) interaction between cloud
client and integrator leads to “DLL hell” in which desired
configurations are impossible to deploy, while inappropriate
interaction between application developer and integrator can
lead to vertical “stovepipe” architecture with minimal reuse.
Challenges include limiting interactions between roles so
that system administration of the result remains practical.

el astic clouds and resource m anagement

Invited Short Presentation
GENI and Cloud Computing■■

Harry Mussman, BBN Technologies

The Global Environment for Network Innovation (GENI) is
an NSF project in support of experiments in network de-
sign. While GENI is not itself a cloud infrastructure, GENI
encourages cloud researchers to build clouds on top of the
GENI infrastructure, which is deeply programmable at a
network level to support networking protocols other than
the Internet. GENI is being developed by 29 teams, both
academic and industrial, and an initial version will be avail-
able for initial experiments in 2009 and fully operational by
2010. GENI asks the cloud community to become involved
by communicating specific needs for cloud research to the
GENI developers.

Full Papers
ElasTraS: An Elastic Transactional Data Store in the Cloud■■

Sudipto Das, Divyakant Agrawal, and Amr El Abbadi, University
of California, Santa Barbara

The Elastic Transactional Data Store (ElasTraS) is a data
storage mechanism that adds distributed transaction pro-
cessing capability to a key/value data storage mechanism.
Distributed transactional storage is implemented via a hier-

login_summariesOCTOBER_09_final.indd 102 9.4.09 10:30:22 AM

; LO G I N : O c tO b e r 20 0 9 cO N fe re N ce re p O rt s 103

archy of transaction managers. “Owning transaction manag-
ers” own key/value mappings, while “high-level transaction
managers” communicate with the “owning managers,” serve
as points of contact, and enhance performance through
caching. Challenges include optimal (geographical) distri-
bution of “owning” and “high-level” transaction managers.

Reflective Control for an Elastic Cloud Application: An ■■

Automated Experiment Workbench
Azbayar Demberel, Jeff Chase, and Shivnath Babu, Duke
 University

A reflective elastic application is a cloud program that can
manipulate its own resource requirements based on detailed
knowledge of resource availability. Reflective applications
can adapt to resource availability, e.g., by deferring com-
putation until resources are more available, and oppor-
tunistically exploit excess resources, e.g., by completing
deferred computations when resources are more available or
cheaper. To understand the needs of reflective applications,
the authors created an experimental workbench that can
measure effects of various resource allocations on behavior
and performance. The output of the workbench is a visual-
ization of the “response surface” that depicts the relation-
ship between input resources and resulting performance.
Response surfaces can be efficiently calculated via sampling
methods that interpolate response in areas where behavior
seems to vary predictably. The audience questioned whether
this approach is cost-effective, because of the relatively high
cost of experimentation in a production environment.

Toward Cloud-based Collaboration Services■■

David Banks, John S. Erickson, and Michael Rhodes, Hewlett-
Packard Labs

Fractal is an open source cloud-based collaboration platform
for public information. In Fractal, multiple “tenants” share
a common cloud and contribute information that Fractal
can coordinate. Fractal streamlines interaction between
cloud information spaces through “extensions” that execute
whenever data is modified and automatically relate data
from different sources. Extensions can create cross-referenc-
es between spaces, including citation, author, and location
lookup, as well as automatic metadata extraction from docu-
ments. Extensions are customized for each tenant. While
“privacy” is not considered, “content pollution” is a problem;
tenants should not be able to alter the behavior of other ten-
ants’ content. Challenges include defining the appropriate
notion of isolation for tenants, at the physical, virtual, and
data levels.

Short Papers
Colocation Games and Their Application to Distributed ■■

Resource Management
Jorge Londoño, Azer Bestavros, and Shang-Hua Teng, Boston
University

The financial feasibility of renting cloud infrastructures can
be improved if cloud clients collaborate (or perhaps collude)
to share resources. In a market where providers provide

fixed-size instances (in memory, storage, and computational
speed), co-location by collaboration between cloud clients
provides financial benefit. For example, two customers
might realize that their applications will “both fit” inside
the same virtual instance of some specific service provider.
Such co-location can be modeled as a strategic game. The
general case of this game has no guarantee of stability,
but considering processes (applications) alone leads to a
guaranteed (and stable) Nash equilibrium state in which no
player can improve personal financial benefit by relocating.
The authors propose that because this co-location game has
a stable result, this kind of co-location should be supported
by location services that help customers find partners, as
well as infrastructure to enable migration.

Virtual Putty: Reshaping the Physical Footprint of Virtual ■■

Machines
Jason Sonnek and Abhishek Chandra, University of Minnesota

Virtual putty refers to a scheme for optimizing the mapping
of virtual applications to physical resources. Each physical
machine is described in terms of resources and location.
Likewise, each virtual instance has a footprint that includes
its static resource needs, dynamic resource utilization pat-
terns, and conflicts with other instances. By matching these
footprints against one another, one can efficiently utilize
physical resources and lower the cost of operations. Chal-
lenges include determining parts of the application foot-
print that are difficult to observe, e.g., dynamic resource
utilization. Someone questioned whether the detail in the
footprint actually does better than a simple greedy mapping
algorithm and asked whether obtaining footprint data might
be too expensive to be cost-effective.

Statistical Machine Learning Makes Automatic Control ■■

Practical for Internet Datacenters
Peter Bodík, Rean Griffith, Charles Sutton, Armando Fox,
Michael Jordan, and David Patterson, University of California,
Berkeley

Current methods for resource allocation in clouds use
simple performance models trained offline, or watermark
methods such as increasing resources when a utilization
watermark has been met (e.g., “when CPU utilization is
greater than 70%, add a core”). It is possible to do better
than these methods with a statistical model of behavior,
learned dynamically via online experimentation. Based on
measurements of end-to-end latency and its variance, a con-
trol policy simulator evaluates different policies and tunes
model parameters to optimize a reward function. In the case
of tuning feedback gain, the model tuning process is shown
experimentally to closely approximate optimal behavior.

login_summariesOCTOBER_09_final.indd 103 9.4.09 10:30:22 AM

104 ; LO G I N : VO L . 3 4, N O. 5

panel

Future Challenges to Cloud Computing■■

Moderator: Amin Vahdat, University of California, San Diego

Panelists: Garth Gibson, Panasas/Carnegie Mellon University;
Stefan Savage, University of California, San Diego; Ben Sigelman,
Google; Rich Wolski, University of California, Santa Barbara/
Eucalyptus Systems

Garth Gibson, “RAID for Clouds”
Garth Gibson questioned whether we have “the answer”
to storage in clouds. He pointed out that common storage
methods triplicate every file block, resulting in a 200% stor-
age overhead. He suggested a strategy, called DiskReduce,
that replaces duplicates with parity blocks to implement
distributed RAID 5. Repair of defective blocks is a back-
ground task deferred to times when storage is otherwise
idle. The strategy is tuned to perform optimally for realistic
file-system contents, where he estimated that 58% of files
use eight blocks or less, and 25% of files fit into a single
block.

Gibson noted that the true necessary complexity of a storage
stack is an unsolved problem and suggested that developing
a definitive understanding of complexity in storage is a chal-
lenge problem worthy of the Turing Award.

Gibson noted that infrastructure management is now in
its third generation. The first generation involved clus-
tering with Beowulf and condor. The second generation
introduced virtualization via VMware and Xen. The third
generation introduced elasticity. In Gibson’s opinion, the
fourth generation will reintroduce time-sharing, in service
agreements for response time.

Gibson also mentioned several general cloud challenges,
including refining the business model, balancing eventual
consistency of data against buggy code that needs strong
consistency, and a need for testing at scale. We need expen-
sive resources that we can safely “crash and trash.”

Stefan Savage, “Are Cloud Privacy and Security Pos-
sible?”

Stefan Savage concentrated on security and availability
issues in third-party computing. While Infrastructure as
a Service (IaaS) clouds leave primary responsibility in the
hands of clients, other models of cloud computing assign re-
sponsibility for computing and storage to some third party.
Implicitly, a cloud client trusts a cloud provider to provide
privacy, as well as storage availability, integrity, durability,
and retention limits. The cloud provider trusts cloud clients
to act in compliance with “acceptable use” policies and to
pay promptly and without contest. There is an implicit (and
perhaps unfounded) expectation that the cloud provider
will monitor clients for appropriate behavior.

Data privacy is a severe problem. A partial solution is
“opaque” storage that is encrypted on disk, but key dis-
tribution and management remains an unsolved problem.
Aside from technical issues, the Stored Communications

Act (SCA) grants third-party data less protection than data
stored at a first-party site, and it is unclear whether the pri-
vacy mechanisms available in clouds are sufficiently strong
to satisfy regulations (e.g., HIPAA and PCI). Much less is
known when cloud and customer are in different countries.

In a technical sense, Savage noted that data privacy is
threatened not only by privileged access, but also by the
existence of side-channels through which one customer
can determine the transient state of another, e.g., determin-
ing transaction volume by observing the timing of cache or
memory flushes, or even via the observed behavior of block
translation buffers. This gives one customer real-time infor-
mation on the state of another that can lead to a competitive
advantage.

Durability of storage has both technical and legal aspects.
How does one “prove” that storage is durable? What hap-
pens in case the cloud business fails? In a recent case, a
cloud provider deleted 4% of customer information irre-
trievably, and the customer had no recourse. A year later
the company went out of business, and in transferring their
data to another company, one-half of all customer informa-
tion was irretrievably lost with no customer recourse.

Another ambiguity is what is meant by availability. How
do you know your provider is a good “steward” of your
data? Cloud providers offer “availability zones” but no one
knows what they mean. Meanwhile, lack of availability is
reimbursed as cost of the service, rather than the cost of the
business loss due to lack of availability. There may be a role
for the insurance industry in mitigating the risks that arise
from this disparity.

Another ambiguity in cloud hosting is the nature of reten-
tion. How does a customer know that deleted data is really
gone? Supposedly deleted data can be subpoenaed, and
the courts have not supported Fifth Amendment rights for
encrypted data.

Cloud computing has inherent risks for both client and
provider. Clients risk corruption/subversion of VM images,
problems of jurisdiction, and inability to verify the pri-
vacy of cloud data. For providers, cloud infrastructure is a
cyber-criminal’s dream world, with plenty of ambiguity and
anonymity behind which to hide. What could be more ideal
for the cyber-criminal than paying for a huge amount of un-
traceable computing infrastructure with a stolen credit card?

Ben Sigelman, “The ‘Elephant in the Datacenter’ and
Cloud Monitoring”

Ben Sigelman discussed the problems of monitoring clouds.
The “elephant in the data center” is that clouds are actually
quite difficult to use. Infrastructure degrades and changes
over time, developers move on, and performance of distrib-
uted applications is counterintuitive when one understands
only the serial version. The failures we observe are only the
subset that is visible, making troubleshooting very difficult.
These are all evidence that the building blocks we are using
for monitoring are wrong. Programming languages haven’t

login_summariesOCTOBER_09_final.indd 104 9.4.09 10:30:23 AM

; LO G I N : O c tO b e r 20 0 9 cO N fe re N ce re p O rt s 105

adapted. The time spent on seemingly trivial tasks is alarm-
ing.

Recent work at Google on monitoring includes distributed
“always-on” event tracing, correlated with low-overhead
counters for performance monitoring and accounting.
Selected events are traced end-to-end, and request-response
times can be broken into components and analyzed in
detail. Implementing this kind of monitoring requires
standardization, including ubiquitous IPC/RPC mechanisms
and control-flow libraries. Monitoring is best considered an
independent platform in the cloud.

Challenges to cloud monitoring include needs for stan-
dardized APIs for monitoring data, as well as ex post facto
accounting. Azure/AppEngine-like systems should expose
detailed performance info for APIs. For accounting purpos-
es, we do not know the cost of a write until after the write
occurs.

Rich Wolski, “The Self-Owned Open-Source Cloud”
Rich Wolski discussed the role of open source in clouds and
the relationship between open source self-owned clouds and
the current “retail sales” model of cloud service purchase.

Current public clouds are based on a “retail sales” model
that quite literally employs the same infrastructure to rent
CPUs as to buy DVDs. Public clouds are dependent on
customer self-service and a concept of “quality-of-service”
that is misnamed a “service-level agreement.” Accountability
between customer and provider is based on e-commerce. A
customer with a problem is treated like a customer who is
dissatisfied with a material purchase.

Meanwhile, management models for clouds are just as valid
in the self-owned data center as in the cloud, and upcom-
ing challenges in data assimilation from ubiquitous sources,
multi-player gaming, and applications for mobile devices re-
quire a new level of infrastructure that is present in clouds
but not present in current self-owned data centers.

One solution to this problem is the self-owned, open source
cloud. Eucalyptus is one of the first enabling technologies
for creating one’s own clouds. Eucalyptus (an elastic utility
computing architecture) is a Linux hosting service that is
simple, extensible, commodity-based, and easy for system
administrators to install and maintain. Using Eucalyptus,
one can emulate first-generation cloud services such as
Amazon Advanced Web Services easily and quickly.

Intended uses of Eucalyptus include cloud research, as well
as homogenization of existing self-owned IT infrastructure.
It is not intended as a replacement for commercial cloud
services, but, rather, as an open prototyping environment
that enables research and open source development.

Challenges of clouds include federation, privacy, cost, and
storage. Federation is a policy mediation problem. “Private”
clouds are actually hybrid clouds with both private and
public information. Cost of cloud services is increasingly
becoming a “first-class” object, in the sense that algorithms

are measuring cost and reacting directly. We have not seen
“the” cloud storage model yet.

A short discussion followed, in which several questions
were raised. Is it even more difficult to have a testbed than
to set up a cloud? Panasas never tested hardware at any-
where near the scale that people are purchasing. Cost and
incentive models are hard to understand. If you do not
believe this, try teaching a cloud computing course to un-
dergraduates. They do not understand that they are spend-
ing money until they “see the bill” for what they did during
the course. What is the Eucalyptus business model? When
one starts a venture-backed company, one bases one’s model
on serving the enterprise. Eucalyptus will develop and sell
customizations that enable enterprise needs.

stor age cloud and appliances

Full Papers
In Search of an API for Scalable File Systems: Under the ■■

Table or Above It?
Swapnil Patil, Garth A. Gibson, Gregory R. Ganger, Julio Lopez,
Milo Polte, Wittawat Tantisiroj, and Lin Xiao, Carnegie Mellon
University

Data-intensive scalable computing (DISC) systems, intended
to process and store massive data sets, have built their own
distributed file systems (e.g., Google File System, Hadoop
Distributed File System [HDFS]). By contrast, cluster file
systems such as the Parallel Virtual File System (PVFS)
have been used to run larger-scale workloads by the High
Performance Community (HPC) community for about a
decade. The authors explore how to evolve the file system
API used by the HPC community so that they can be used
for DISC workloads. The authors propose extending tradi-
tional cluster file systems to expose block layout to applica-
tions, thus allowing applications to co-locate computation
with data. The authors built a lightweight shim layer that
connects Hadoop and PVFS. Through this shim, they added
three functions: read-ahead, co-location of compute with
data, and exposing file block layout to applications. Their
experiments show that PVFS with the shim layer performs
comparably to HDFS. Second, most DISC systems use
databases with weaker semantics than traditional databases
to store and query metadata. The authors propose a mecha-
nism for using the file system with a filtered directory scan
to provide similar functionality.

CloudViews: Communal Data Sharing in Public Clouds■■

Roxana Geambasu, Steven D. Gribble, and Henry M. Levy,
University of Washington

Currently, most Web services store and process their data in
their own data center. For example, Flickr and Picasa have
similar interfaces, but both of them reimplement the soft-
ware stack from the ground up. With the advent of public
cloud services, however, Web services can “rent” themselves
to each other, which is made easier by sharing data among

login_summariesOCTOBER_09_final.indd 105 9.4.09 10:30:23 AM

106 ; LO G I N : VO L . 3 4, N O. 5

co-located services. CloudViews is a storage system that
is designed so that services running on a cloud can share
data with each other. CloudViews provides database-style
views for data sharing between applications. For example,
in CloudViews, a Flickr-like service might create a view that
shares photos to an automatic photo tagging service but not
the ownership information of the photos. The challenges
in such a service include providing a scalable protection
mechanism, query admission control, and QoS for resource
allocation. A member of the audience pointed out that views
are good for read-only data and another member asked how
CloudViews shares metadata between services. The author
replied that both these issues are good material for future
research.

Cloud Analytics: Do We ■■ Really Need to Reinvent the
 Storage Stack?
Rajagopal Ananthanarayanan, Karan Gupta, Prashant Pandey,
Himabindu Pucha, Prasenjit Sarkar, Mansi Shah, and Renu
Tewari, IBM Research

MapReduce workloads are generally executed on Internet-
scale file systems, such as Google File System (GFS), that
do not provide a POSIX interface. The authors explore the
suitability of traditional cluster-based file systems for such
workloads. In particular, they compare HDFS (an open
source implementation of GFS) with IBM’s GPFS cluster
file system. Compared to GPFS, HDFS provides larger data
blocks (on the order of 64MB), allows applications to co-
locate computations with data by exposing block locations
to applications, and provides data availability in case of
node and disk failures.

To verify that they could bridge the gap between HDFS
and GPFS, the authors modified GPFS to expose the block
location information to MapReduce applications. Second,
directly increasing GPFS block size to match that of HDFS
is not feasible, as GPFS internally uses block size to perform
prefetching. Instead, the authors introduce a new construct
called a metablock, which is basically a consecutive set of
(smaller) blocks of a file that are allocated on the same disk.
The small blocks are used internally by GPFS to perform
accounting, prefetching, etc., whereas the larger logical
metablock is exposed to MapReduce applications. With
these changes, the performance of the modified GPFS and
HDFS are comparable. Further, the authors ran experiments
to confirm that metablocks do not hurt the performance of
GPFS for traditional applications. Thus, clustered file sys-
tems, enhanced appropriately, can provide the best of both
the traditional applications and MapReduce workloads.

Short Papers
Constructing and Managing Appliances for Cloud Deploy-■■

ments from Repositories of Reusable Components
Matthew S. Wilson, rPath, Inc.

The usual way to deploy applications is to start with a base
image, install applications, snapshot the image, and then
spin up new instances from snapshots. However, these

snapshots are hard to move from one provider to another.
Automation tools can help, but they require a new setup for
each cloud environment. Instead, Matthew Wilson proposes
handling software configuration management via a version
control system. Dependencies between software components
are encoded by grouping components with the compo-
nents that they require. Once all software is managed and
grouped under version control, one can build deployment
images from these groups. One member of the audience
asked how many companies are using their system. Wil-
son replied that companies can use their rPath software to
do this or can use their rBuilder free online service. About
17,000 projects are using the service, and 50 companies
have downloaded rPath. Another audience member asked
whether they changed the operating system. Wilson replied
that the operating system is changed as little as possible.

Maximizing Efficiency by Trading Storage for Computation■■

Ian F. Adams, Darrell D.E. Long, and Ethan L. Miller, Univer-
sity of California, Santa Cruz; Shankar Pasupathy, NetApp;
Mark W. Storer, Pergamum Systems

The authors argue that instead of storing data that is not
frequently accessed in the cloud, it can be more cost-effi-
cient to regenerate data on demand. For example, instead
of pre-generating various formats of photos (BMP, jpeg, tiff,
etc.), it might be more efficient to store photos in the most
frequently used format and regenerate other formats on
demand. To enable regeneration of data, one needs to record
the inputs, processes, and provenance needed to regener-
ate the data. The decision whether data should be stored
or regenerated is determined by cost-benefit analysis. The
factors to consider in this analysis include data semantics
(i.e., should the exact same data be regenerated or will any
data generated by the same process suffice), the cost of
regenerating data, and the cost of computing in the cloud in
the future.

m ap reduce and cloud applic ations

Full Papers
Mochi: Visual Log-Analysis Based Tools for Debugging ■■

Hadoop
Jiaqi Tan, Xinghao Pan, Soila Kavulya, Rajeev Gandhi, and
Priya Narasimhan, Carnegie Mellon University

Current debugging tools present debugging data at the
wrong level of abstraction to be useful in debugging clouds.
Mochi, instead, expresses MapReduce program execution
in terms of the high-level operations “Map” and “Reduce.”
It extracts views of node behavior with SALSA, correlates
execution traces, and creates a conjoined representation of
control and data flow. Control flow consists of the order in
which operations are executed, while data flow indicates
how the output of one operation is used as an input to oth-
ers. This conjoined representation is visualized in a number
of ways using the R statistics system. The “swimlanes” vi-
sualization shows the extent of map and reduce operations

login_summariesOCTOBER_09_final.indd 106 9.4.09 10:30:23 AM

; LO G I N : O c tO b e r 20 0 9 cO N fe re N ce re p O rt s 107

in time, so that wedged operations can be detected and
addressed. “Realized execution paths” provide a statistical
depiction of time spent in each processor state, while data
flow depictions show how map and reduce functions relate
to one another.

A Common Substrate for Cluster Computing■■

Benjamin Hindman, Andy Konwinski, Matei Zaharia, and Ion
Stoica, University of California, Berkeley

NEXUS is a common substrate level that allows several
cloud frameworks with differing semantics to co-locate in
the same cloud. It can also be used to run several versions
of the same framework in one cloud. NEXUS is extremely
lightweight and attempts to be a “microkernel” for serv-
ing cloud stacks. Performance experiments for a logistic
regression machine-learning algorithm show that running
Hadoop on top of NEXUS is negligibly slower than run-
ning Hadoop alone, but that running the same application
on NEXUS alone is several times faster. Since microkernels
were not successful, an audience member wondered, why
do the authors expect NEXUS to be successful? By the time
microkernels were introduced, there were a number of well-
established players in the operating systems space, but the
cloud is still young and can be changed.

Using Proxies to Accelerate Cloud Applications■■

Jon Weissman and Siddharth Ramakrishnan, University of
 Minnesota, Twin Cities

A proxy can be utilized to speed up access to cloud services
by having superior location or access to relevant resources.
In a PlanetLab experiment, proxies were utilized to access
30 commercial Web services. Response times for 70% of
queries were improved by proxying, with a 20% perfor-
mance improvement on average among these. Proxies excel
when a cloud application accesses multiple others, which
can happen due to specialization of computing infrastruc-
ture or data store, distributed data mining, and mash-ups,
among others. Open questions include whether to proxy
and why, where to optimally locate proxies, and how to
select a proxy from those available. The ability of a proxy to
cache results or perform local computations has not been
explored.

Short Papers
DryadInc: Reusing Work in Large-scale Computations■■

Lucian Popa, University of California, Berkeley; Mihai Budiu,
Yuan Yu, and Michael Isard, Microsoft Research, Silicon Valley

A Dryad job is a directed acyclic graph representing data
flow in a distributed computation, where each vertex is a
computation and each edge represents data flow. A Dryad
job or set of jobs often involves redundant calculation of
the same result several times. “Identical computation” (IDE)
caches and reuses results of repeated computations, while
“incremental merging” (MER) employs a user-crafted com-
putation that incorporates new data into the results of a pre-
vious computation. The cost-effectiveness of IDE and MER

depends on a time/space tradeoff and whether computation
time or cache space is more expensive in context.

Towards Optimizing Hadoop Provisioning in the Cloud■■

Karthik Kambatla and Abhinav Pathak, Purdue University;
Himabindu Pucha, IBM Research Almaden

Hadoop has hundreds of configurable parameters. Current
tools like Hadoop on demand and Cloudera are laborious
to use when parameter tuning. One alternative is controlled
experimentation. Trying a distributed grep with 1, 4, 8, 16,
and 24 map nodes shows diminishing returns after use of 8
map nodes. Thus one can determine an appropriate number
of map nodes by direct experimentation. Someone ques-
tioned the value of such a method given that such experi-
ments would have to be done “at scale” and expensively in
order to guarantee sufficient accuracy.

BSDCan 2009: The Technical BSD Conference
Ottawa, Canada
May 6–9, 2009

Summarized by Royce Williams (royce@tycho.org)

Slides for most of the presentations are available at http://
bsdcan.org/2009/.

keynote address

Thinking about Thinking in Code■■

George V. Neville-Neil, Neville-Neil Consulting

In what he described as “a bit of a rant,” George Neville-Neil
challenged the BSD development community to think about
their work in a different way.

Neville-Neil started by attacking the idea that software de-
velopment is significantly more creative than, for example,
automobile manufacturing. He pointed out that there has
been little true innovation in graphical user interface de-
sign, showing similarities in GUIs ranging from the Xerox
PARC user interface through Mac OS X. He discarded tradi-
tional explanations such as blaming marketing or that users
demand front-end consistency. Even OS internals, he ar-
gued, have not substantially changed and do not fundamen-
tally differ among the major families of operating systems.
He stated that the languages that we work with truly dictate
our work, that features of bad languages (sloppy, unsafe,
confusing) lead to code that follows suit, and that making
programming languages easier has effectively lowered the
quality of code (by lowering the barrier to entry).

In a flurry of frank advice to programmers, Neville-Neil
went on to encourage reading good code, working with
good programmers (rather than poor ones, which he argues
can actually cause your own code to suffer), and refrain-
ing from repeatedly reinventing the wheel by recreating
low-level constructs (like lists, hashes, and other academic
projects). Instead, he suggested reading research papers
discriminatingly, exploring unfamiliar code and languages,

login_summariesOCTOBER_09_final.indd 107 9.4.09 10:30:23 AM

108 ; LO G I N : VO L . 3 4, N O. 5

avoiding too much specialization, and cultivating a willing-
ness to “break things, look stupid, be wrong, learn from
others.” He warned against hubris, not starting projects,
or never finishing them. He pointed out that we all have a
finite amount of time to live, so finding people who will tell
you when your idea is bad so that you can quickly move on
to the next one is very important. In closing, he suggested
seeking to reduce complexity, using visualization tools and
new data organization methods, and working with safe yet
powerful programming languages.

Automating FreeBSD Installations: PXE Booting and ■■

 install.cfg Demystified
Randi Harper, IronPort/Cisco

Randi Harper reviewed some of the common issues with
customizing FreeBSD’s sysinstall configuration (the install
.cfg file) and installing FreeBSD over PXE. A basic walk-
through followed, noting common stumbling blocks along
the way (e.g., that trailing whitespace in the install.cfg file
can cause problems, and that some variables are case-sen-
sitive). Since install.cfg is not well documented, reading the
source was necessary.

Harper covered the entire sysinstall/PXE installation pro-
cess. Steps included setting up the ISC dhcpd package; con-
figuring supporting services (tftp via inetd, NFS); copying
the contents of a FreeBSD installation CD to a staging area;
and using mdconfig to mount the included mfsroot image
in order to customize the install.cfg file within. Customi-
zation options included running in full automatic/unat-
tended mode, specifying a single NIC to use, and optionally
specifying packages to add post-install. The current system
requires that the NIC type used for installation be known in
advance, making it necessary to customize the install.cfg for
different hardware families. Harper is working on adding
support for a list of multiple NICs, tried in succession, to
reduce the number of separate configuration profiles.

During the question period, the topic of how to avoid
building the same system twice was raised. Matt Olander of
ixSystems asked about the feasibility of knowing the MAC
addresses of each system in advance. Harper replied that
such asset management is usually already part of large-scale
deployments. Olander noted that his environment consists
of setting up large groups of systems and then shipping
them to the end customer as quickly as possible, making
such inventory work infeasible. Discussion followed about
keeping a custom text file to incorporate into the dhcpd.
conf file to track “state” (the MACs of successfully built
systems).

GEOM_SCHED: A Framework for Disk Scheduling within ■■

GEOM
Luigi Rizzo and Fabio Checconi, University of Pisa

Luigi Rizzo presented GEOM_SCHED, a disk-scheduling
framework built on GEOM, the FreeBSD storage abstrac-
tion layer. FreeBSD now uses a primitive elevator/C-LOOK-
based scheduler. While there has been previous work on

disk scheduling in FreeBSD, it has not been committed to
the base OS. Rizzo speculated that this might be due to the
previous implementations being device-specific and that
disk schedulers based on the GEOM framework could make
development easier.

In turn, Rizzo examined the merits of each potential loca-
tion to place a disk scheduler (the disk device, the device
driver, and GEOM). He concluded that GEOM is a good
option, because it does not require hardware awareness or
driver modification, provides a single point of control, and
provides for transparent insertion and removal, as well as
runtime reconfiguration.

Another design goal was minimal kernel reconfiguration.
Since GEOM_SCHED is not included in the base FreeBSD
system, the existing implementation dynamically patches
g_io_request() to repurpose some unused fields in the
structure. It is otherwise implemented entirely outside of
the GENERIC kernel as a userland object, a generic kernel
module, and one or more kernel modules.

Rizzo went on to cover the GEOM_SCHED API, basic disk-
scheduling concepts, and his measurement methodology,
especially noting the hazards of measuring disk I/O perfor-
mance when the caching and read-ahead policies used by
drivers and firmware are sometimes not known.

Rizzo’s example scheduler was a straightforward implemen-
tation of round-robin queues, with anticipation (in which
seeks are delayed in case non-seek activity arrives soon
after, and then grouped). He presented the results of his
testing for various workloads. Even with the slight overhead
caused by GEOM, disk performance for multiple greedy
readers was significantly improved. He encouraged others to
start from this basic framework, applying other algorithms
for other workloads. His prototype is available at http://
info.iet.unipi.it/~luigi/FreeBSD/.

Robert Watson asked about the interaction between disk
scheduling and process prioritization, referencing previous
work that showed that particular I/O patterns (such as an
fsck) can suffer in surprising ways when interacting with
process scheduling. Rizzo encouraged further research in
this area.

Getting Started in Free and Open Source■■

Cat Allman and Leslie Hawthorn, Google

Cat Allman and Leslie Hawthorn took turns presenting
ideas in a tag-team fashion. Since there were many in the
audience who were decidedly not new to open source, they
partially adjusted their talk to address how current mem-
bers of open source projects can better understand and at-
tract new contributors.

High points included coming as close as possible to “going
back to being new” (by vicariously mentoring newcomers);
recognizing that thorny problem areas (like bug wrangling)
can be opportunities for ways to participate; understand-
ing that FOSS projects are inherently reputation-based
economies; designating a “newbie wrangler” (either some-

login_summariesOCTOBER_09_final.indd 108 9.4.09 10:30:23 AM

; LO G I N : O c tO b e r 20 0 9 cO N fe re N ce re p O rt s 109

one talented in this area or as a rotating responsibility) to
protect people from burning out on hand-holding; creating
a culture tolerant of failure and mistakes to aid growth; and
not assuming that newcomers who make mistakes early will
remain permanently clueless.

Updates to the the FreeBSD Problem Reporting System■■

Mark Linimon, Lonesome Dove Computing Services

Mark Linimon, primary “bugmeister” for FreeBSD, pro-
posed an initial conceptual prototype to start work toward a
new system of problem reporting (PR) for FreeBSD, work-
ing under a grant from the FreeBSD Foundation. In broad
terms, lessons learned from the current system will be ap-
plied to a temporary prototype to model this new workflow.

Linimon has discovered some specific areas for improve-
ment. Some PR states (e.g., “patched” and “closed”) are
used consistently, while others (“feedback,” “analyzed”) are
overloaded, which has been confusing enough to throttle
PR throughput rates already hampered by resource limita-
tions. Linimon reviewed the workflow categories used by
similar frameworks (Bugzilla, Jira, and Trac) and, based
on that review, has created distinct stages in the model for
triage, submitter coordination, and development work, each
of which can be worked by different people with different
levels of skill.

As presented, there are other opportunities for improve-
ment. Notifications are too broad, and none of the alter-
native systems allow developers to limit notifications to
specific subsystems of interest or specialty. Current category
names were chosen with developers in mind (and can be
misunderstood by submitters). Linimon also identified a
family of PRs that do not fit easily into the current system,
including booting, installation, and performance issues, and
proposed a “Usability” category to group them conceptually.

An emerging property of the recent system was that add-
ing tagging support resulted in people using the relevant
subsystem man pages as tags. Linimon has added a specific
separate field in the prototype that is being populated using
the man page names.

Linimon has chosen Jira as the prototype platform (but
was careful to note that this does not mean that Jira will be
selected). He will be applying these ideas to Jira and seeking
feedback. People interested in helping were directed to the
FreeBSD wiki’s BugBusting page to coordinate.

scrypt: A New Key Derivation Function■■

Colin Percival, Tarsnap

To provide some background, Percival started with an
overview of encryption key derivation functions. KDFs are
commonly used to hash passwords for secure storage and to
generate cryptographic keys. Examples include the classic
DES CRYPT, Poul-Henning Kamp’s iterated MD5 CRYPT,
PBKDF2, and bcrypt.

These (and most other) preceding KDFs have focused on
raising the cost of “dollar-hours” by maximizing the amount

of CPU time required to run. However, well-funded groups
can afford farms of custom dedicated ASICs, each with
thousands of cores optimized for specific cryptographic
operations.

Percival’s tagline for this presentation was “Doing our best
to thwart TLAs with ASICs.” Percival noted that the cost
of an ASIC is roughly matched with its size and that large
amounts of RAM can take up a significant amount of ASIC
space. He reasoned that functions which both require very
large amounts of RAM (“memory-hard” functions) and are
not easily broken down to run in parallel (“sequential”
functions) would increase the required size (and number)
of dedicated ASICs, thereby significantly increasing the cor-
responding cost.

To enable such functions, Percival introduced a provably se-
quential memory-hard problem, ROMix, which fills a hash
table with pseudo-random values and then accesses them in
a pseudo-random order. In the accompanying paper Percival
proves that any algorithm that correctly implements ROMix
will be sequential memory-hard, but in the talk he left a
review of the two-page proof as an exercise for interested
listeners.

Percival then presented scrypt itself, which is a combina-
tion of PBKDF2, an algorithm that solves a given ROMix
problem, HMAC-SHA256, and Daniel J. Bernstein’s Salsa20
cipher to carry out the key derivation while also quickly
requiring large amounts of RAM. Like other KDFs, scrypt
takes parameters that can be used to adjust its costs to run,
so the maximum amount of RAM and maximum time in
seconds can be varied.

In order to illustrate the difference in strength, Percival es-
timated some real-world costs. Since entities in the business
of brute-force attacks do not publish hardware costs, Per-
cival also presented the assumptions he used for comparing
algorithms. He noted that, even if off by orders of magni-
tude, these estimates nevertheless held constant among the
functions and therefore are useful for relative comparisons.

Using the provided numbers and stating the parameters
used (for the functions that take them), Percival compared
DES CRYPT, MD5 (as a reference point, not useful for actual
encryption purposes), MD5 CRYPT, PBKDF2, bcrypt, and
scrypt. For example, an 8-character password with good
entropy, encrypted with scrypt in .1 seconds (good enough
for authentication speeds), will take roughly $4.8M to crack
within one year, while bcrypt would cost only $130K. For
longer times suitable for encrypting data (around 5 sec-
onds), the 8-character costs jump to $4.3M for bcrypt (3.0s)
and $19B for scrypt (3.8s).

While doing research for this work, Percival discovered that
OpenSSL uses simple MD5 hashing as its key derivation
function, and OpenSSH also uses simple MD5 for keyfile
passphrases. This may be of some concern for people who
carry their SSH keys on pocket USB devices.

login_summariesOCTOBER_09_final.indd 109 9.4.09 10:30:23 AM

110 ; LO G I N : VO L . 3 4, N O. 5

During the question period, Brooks Davis asked about the
feasibility of imposing a large per-transaction memory cost
on systems used for high-volume authentication or which
are subject to authentication floods. Percival replied that
the function takes a number of parameters to adjust the
CPU and memory cost of each calculation to fit the target
platform and work load.

Percival’s paper describing scrypt in more detail (including
proofs), the full estimate comparison, and a cross-platform
BSD-licensed implementation of scrypt are all available at
tarsnap.com/scrypt/.

Works in Progress Session (also known as the “lightning ■■

round”)
Chaired by Robert Watson

Colin Percival announced that he is interested in reviving
the project to build concurrency-awareness into the Free-
BSD rc.d system. Now that multicore systems are the norm,
startup times could be significantly improved. Interested
contributors are encouraged to contact Colin.

Scott Ullrich of the pfSense Project outlined features of the
BSD Installer, a proposed unified installer for all BSDs, and
the installer used by Dragonfly BSD and the upcoming ver-
sion of pfSense. Features include a clear separation between
the front end and back end, enabling multiple possible front
ends. Recent work is focusing on adding the remaining
functionality included in FreeBSD’s sysinstall and the PC-
BSD installer, but missing from the BSD installer.

Philip Mullis briefly mentioned a new effort to create an
independent VoIP peering exchange. More information will
eventually be available at nopstn.net.

Zach Loafman of Isilon described kernel fault injection, a
new set of APIs used to insert specific user-controlled er-
rors at particular points in FreeBSD code (“failpoints”). The
APIs include the ability to assign the errors’ probabilities of
occurring or a cap on how many times they occur. Isilon

is using hundreds of these “failpoints” in production, and
Loafman is working to get support for them committed to
FreeBSD.

John Baldwin first gave a status report about the upcoming
FreeBSD 8.0. New features include virtual network stacks,
MIPS support, NFSv4, ECMP (which enables support for
kernel awareness of multiple routing tables and default
routes), virtual wireless access points, a reworked USB
stack, support for 32-bit FreeBSD 8 as a Xen dom-U guest,
and improved Linux binary compatibility. FreeBSD 8.0 is
scheduled for release at the end of August.

Baldwin also talked briefly about extensions to device
mmap() support, largely driven by the memory-mapping
needs of modern GPUs. In the amd64 and i386 ports, this
will be implemented via PAT (Page Attribute Table, required
for good PCI-Express performance) and will pave the way
for an Nvidia amd64 driver for FreeBSD.

John Birrell of Juniper Networks described jbuild, a new
FreeBSD build system that eliminates multiple layers of
redundant dependency calculation, significantly reduc-
ing build times. This is accomplished by front-loading the
master jbuild process with all dependency information from
the build directory.

Doug Rabson presented updates about FreeBSD on Xen. The
included XEN and XENHVM kernel configs in FreeBSD-
current are the best place to start experimenting with para-
virtualization and hardware virtualization, respectively.

Rabson also gave a quick how-to about booting from ZFS
and mapped out his planned future ZFS work, including
teaching the FreeBSD installer about ZFS.

Warner Losh talked about recent progress with the various
flavors of the MIPS port, working on the RMI XLR/XLS,
RMI Alchemy, Cavium Octeon1, and Atheros AR71xx/91xx
chips, using reference boards supplied by various sources.

login_summariesOCTOBER_09_final.indd 110 9.4.09 10:30:23 AM

acmqueue is guided and written by

distinguished and widely known industry experts.

The newly expanded site also offers more content

and unique features such as planetqueue blogs by

queue authors who “unlock” important content from

the ACM Digital Library and provide commentary;

videos; downloadable audio; roundtable

discussions; plus unique acmqueue case studies.

acmqueue provides a critical perspective

on current and emerging technologies by bridging the worlds of journalism and peer review

journals. Its distinguished Editorial Board of experts makes sure that acmqueue's high quality

content dives deep into the technical challenges and critical questions software engineers

should be thinking about.

BLOGS ARTICLES COMMENTARY CASE STUDIES MULTIMEDIA RSSCTO ROUNDTABLES

acmqueue has now moved completely online!

Visit today!

http://queue.acm.org/

acmqueueB-WAd.qxp:Layout 1 4/28/09 3:44 PM Page 1

login_summariesOCTOBER_09_final.indd 111 9.8.09 10:18:31 AM

IEEE Security & Privacy magazine
can help with useful recommendations,

authoritative analysis, and practical
insights for securing your networks,

applications, and systems.

Pick up on best practices and
new developments in our unique mix

of peer-reviewed articles and lively
columns on the security and

privacy issues that matter most.

Unsure about the path forward?

Building dependability, reliability, and trust

Subscribe now for just $32 a year!
www.computer.org/spux1

login_summariesOCTOBER_09_final.indd 112 9.8.09 10:18:33 AM

Project3 1/3/08 12:03 PM Page 1

oct09covers.indd 3 9.4.09 10:19:48 AM

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

Register Today!
23Rd LaRge InsTaLLaTIon
sysTem admInIsTRaTIon
ConfeRenCe
november 1–6, 2009, Baltimore, md

SPONSORED BY

IN COOPERATION
WITH LOPSA & SNIA&

 Discounts Available! http://www.usenix.org/lisa09/lg

Come to LISA ’09 for training and face time with
experts in the sysadmin community.

Topics include: Virtualization, Solaris, Security, Cloud Computing, and more!

Keynote Address by Werner Vogels,
CTO, Amazon.com

oct09covers.indd 4 9.4.09 10:19:48 AM

