
O C T O B E R 2 0 0 8 V O L U M E 3 3 N U M B E R 5

T H E U S E N I X M A G A Z I N E

The Advanced Computing
Systems Association

OPINION Musings	 2
R i k Fa R Row

SySadmIN Solaris	Virtualization	Options	 7
we n j i n H u, To d d d esH a n e , a n d
j e a n n a M aT T H e ws

Benchmarking	Amazon	EC2	for		
High-Performance		Scientific	Computing	 18
e dwa R d wa l k e R

System	Administration	Thermodynamics	 24
a lva l . Co u CH

A	36-User	Asterisk	Installation	 31
Ro b e R T s o l oM o n

Building	Scalable	NTP	Server	Infrastructures		 41
b R a d k n owl es

Reclaim	Disk	Space	by	Shrinking	Files	 49
sa n d e e p sa H o R e

PrOgrammINg Concurrent	Patterns:	Parallels	in	System		
and	Language	Design	 55
ja s o n d u se k

COlumNS Practical	Perl	Tools:	Attachments	 62
dav i d n . b l a n k- e d e l M a n

Pete’s	All	Things	Sun	(PATS):		
Solaris	System	Analysis	102	 68
pe T e R ba e R G a lv i n

iVoyeur:	You	Should	Write	an	NEB	Module.	 74
dav e j o se pH se n

/dev/random	 79
Ro b e R T G . F e R R e l l

StaNdardS Update	on	Standards:		
The	USENIX	Standards	Project	 82
n i Ck sTo u G H To n

bOOk revIewS Book	Reviews	 85
e l i z a b e T H z wi Ck y e T a l .

uSeNIx NOteS Report	on	USACO	 91
Ro b ko l sTa d

Update	on	SAGE	 93
ja n e - e l l e n l o n G

CONfereNCeS 2008	USENIX	Annual	Technical		
Conference	Reports	 95

Third	Workshop	on	Hot	Topics	in		
Autonomic	Computing	Reports	 112

Findings	from	the	First	Annual	File	and		
Storage	Systems	Benchmarking	Workshop	 113

Oct08Covers.indd 1 9/15/08 3:01:01 PM

Upcoming Events

For a complete list of all USENIX & USENIX co-sponsored events,
see http://www.usenix.org/events.

22nd Large InstaLLatIon system admInIstratIon
ConferenCe (LIsa ’08)
Sponsored by USENIX and SAGE

November 9–14, 2008, SaN Diego, Ca, USa
http://www.usenix.org/lisa08

symposIum on Computer Human InteraCtIon
for management of InformatIon teCHnoLogy
(CHImIt ’08)
Sponsored by ACM in association with USENIX

November 14–15, 2008, SaN Diego, Ca, USa
http://www.chimit08.org

aCm/IfIp/usenIX 9tH InternatIonaL
mIddLeware ConferenCe (mIddLeware 2008)

DeCember 1–5, 2008, LeUveN, beLgiUm
http://middleware2008.cs.kuleuven.be

fourtH worksHop on Hot topICs In system
dependabILIty (Hotdep ’08)
Co-located with OSDI ’08

DeCember 7, 2008, SaN Diego, Ca, USa
http://www.usenix.org/hotdep08

fIrst usenIX worksHop on tHe anaLysIs of
system Logs (wasL ’08)
Co-located with OSDI ’08

DeCember 7, 2008, SaN Diego, Ca, USa
http://www.usenix.org/wasl08

worksHop on power aware ComputIng and
systems (Hotpower ’08)
Co-located with OSDI ’08

DeCember 7, 2008, SaN Diego, Ca, USa
http://www.usenix.org/hotpower08

worksHop on supportIng dIversIty In systems
researCH (dIversIty ’08)
Co-located with OSDI ’08

DeCember 7, 2008, SaN Diego, Ca, USa
http://www.usenix.org/diversity08

8tH usenIX symposIum on operatIng systems
desIgn and ImpLementatIon (osdI ’08)
Sponsored by USENIX in cooperation with ACM SIGOPS

DeCember 8–10, 2008, SaN Diego, Ca, USa
http://www.usenix.org/osdi08

fIrst worksHop on I/o vIrtuaLIzatIon
(wIov ’08)
Co-located with OSDI ’08

DeCember 10–11, 2008, SaN Diego, Ca, USa
http://www.usenix.org/wiov08

tHIrd worksHop on taCkLIng Computer
systems probLems wItH maCHIne LearnIng
teCHnIques (sysmL08)
Co-located with OSDI ’08

DeCember 11, 2008, SaN Diego, Ca, USa
http://www.usenix.org/sysml08

1st worksHop on tHe tHeory and praCtICe of
provenanCe (tapp ’09)
Co-located with FAST ’09

FebrUary 23, 2009, SaN FraNCiSCo, Ca, USa
http://www.usenix.org/tapp09
Paper submissions due: December 5, 2008

7tH usenIX ConferenCe on fILe and storage
teCHnoLogIes (fast ’09)
Sponsored by USENIX in cooperation with ACM SIGOPS,
IEEE Mass Storage Systems Technical Committee (MSSTC),
and IEEE TCOS

FebrUary 24–27, 2009, SaN FraNCiSCo, Ca, USa
http://www.usenix.org/fast09

2009 aCm sIgpLan/sIgops InternatIonaL
ConferenCe on vIrtuaL eXeCutIon envIronments
(vee ’09)
Sponsored by ACM SIGPLAN and SIGOPS in cooperation with
USENIX

marCh 11–13, 2009, WaShiNgtoN, D.C., USa
http://www.cs.purdue.edu/vee09/

Oct08Covers.indd 2 9/15/08 3:01:02 PM

; LO G I N : O c tO b e r 20 0 8 A rtI cLe t ItLe 1

contents

Ed i to r
Rik Farrow
rik@usenix.org

M a n agi n g Ed i to r
Jane-Ellen Long
jel@usenix.org

Co p y Ed i to r
David Couzens
proofshop@usenix.org

pro d u C t i o n
Casey Henderson
Jane-Ellen Long
Michele Nelson

t y pEsE t t Er
Star Type
startype@comcast.net

usEn i X a ss o Ci at i o n
2560 Ninth Street,
Suite 215, Berkeley,
California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

http://www.usenix.org
http://www.sage.org

;login: is the official
magazine of the
USENIX Association.

;login: (ISSN 1044-6397) is
published bi-monthly by the
USENIX Association, 2560
Ninth Street, Suite 215,
 Berkeley, CA 94710.

$90 of each member’s annual
dues is for an annual sub-
scription to ;login:. Subscrip-
tions for nonmembers are
$120 per year.

Periodicals postage paid at
Berkeley, CA, and additional
offices.

POSTMASTER: Send address
changes to ;login:,
USENIX Association,
2560 Ninth Street,
Suite 215, Berkeley,
CA 94710.

©2008 USENIX Association

USENIX is a registered trade-
mark of the USENIX Associa-
tion. Many of the designations
used by manufacturers and
sellers to distinguish their
products are claimed as trade-
marks. USENIX acknowledges
all trademarks herein. Where
those designations appear in
this publication and USENIX
is aware of a trademark claim,
the designations have been
printed in caps or initial caps.

V O L . 3 3 , # 5 , O c t O b e r 2 0 0 8

OPINION Musings 2
r I k FA r rOw

SySadmIN Solaris Virtualization Options 7
we N j I N H u, tO d d d esH A N e , A N d
j e A N N A M At t H e ws

Benchmarking Amazon EC2 for
High-Performance Scientific Computing 18
e dwA r d wA L k e r

System Administration Thermodynamics 24
A LvA L . cO u cH

A 36-User Asterisk Installation 31
rO b e r t s O L O M O N

Building Scalable NTP Server Infrastructures 41
b r A d k N OwL es

Reclaim Disk Space by Shrinking Files 49
sA N d e e p sA H O r e

PrOgrammINg Concurrent Patterns: Parallels in System
and Language Design 55
jA s O N d u se k

COlumNS Practical Perl Tools: Attachments 62
dAv I d N . b L A N k- e d e L M A N

Pete’s All Things Sun (PATS):
Solaris System Analysis 102 68
pe t e r bA e r G A Lv I N

iVoyeur: You Should Write an NEB Module. 74
dAv e j O se pH se N

/dev/random 79
rO b e r t G . F e r r e L L

StaNdardS Update on Standards:
The USENIX Standards Project 82
N I ck stO u G H tO N

bOOk revIewS Book Reviews 85
e L I z A b e t H z wI ck y e t A L .

uSeNIx NOteS Report on USACO 91
rO b kO L stA d

Update on SAGE 93
jA N e - e L L e N LO N G

CONfereNCeS 2008 USENIX Annual Technical
Conference Reports 95

Third Workshop on Hot Topics in
Autonomic Computing Reports 112

Findings from the First Annual File and
Storage Systems Benchmarking Workshop 113

Login_OCT08_proof1.indd 1 9/15/08 2:58:41 PM

2 ; LO G I N : vO L . 33, N O. 5

R i k F a R R o w

musings
rik@usenix.org

V i r t u a l i z at i o n i s a l l t h e r a g e
these days. We now have multiple alterna-
tives to both server and desktop virtualiza-
tion software, and virtualization is fast
becoming the new “green.” As I watched the
rush to virtualize unfold, I wondered who
had considered the security implications of
virtualizing servers?

As with many other shiny new technologies, peo-
ple don’t want to poke too deeply into the works
because they might not like what they see. It is
human nature to focus on the good side of things
and to ignore the messy parts for as long as pos-
sible.

Perhaps you are one of those who believe that vir-
tualization makes running servers more secure.
Whether you are or not, I invite you to replicate an
experiment I ran that helps to resolve the security
issues.

You can relax, because the experimental setup is
trivial. I so love running thought experiments for
this reason, even if the outcomes can vary depend-
ing on the hardware or software used to run the
experiment. But enough talk. Let’s get this experi-
ment running!

The Experiment

First, we need a control. For our control, we will
use a modest rack of 15 servers. Each server runs
a single application, as we learned a long time ago
that running a single service per hardware host
supports ease of management, patching, fault isola-
tion, and security.

For our test case, we will take these same 15 serv-
ers and virtualize them. This isn’t a radical idea;
it’s merely the rage these days, as we get to utilize
our systems much more fully. When running serv-
ers on platforms that we outfitted with excess re-
sources because we really didn’t know how much
we needed and overprovisioning is always the safe
bet, we had been wasting resources and energy.
The virtualized servers run nicely on a single, if
built-out, server, and we can migrate any of them
to another virtualization server if they need more
resources.

HypoTHEsis

Okay, now for the hypothesis: Has moving our 15
servers into a single virtualization host made the

Login_OCT08_proof1.indd 2 9/15/08 2:58:42 PM

collection more or less secure? Recall that we simply moved the existing
servers over. We didn’t patch software, replace buggy software, or move to
more secure scripting languages or database services. We just installed the
same software within guest domains. I believe the answer here is obvious,
but I will spell it out just in case: No, the systems are not more secure than
they were. How could they be, as we have not changed anything about the
services they were running, and the supporting software?

If they are not more secure, are they less secure? Consider that we have
added a new software layer, the hypervisor, along with its supporting soft-
ware. As with any other software, the virtualization software itself has bugs,
including security vulnerabilities. You can visit VMware’s security advisory
page [1] to get a feeling for this, or create a search using the words “vulner-
ability” and the name of your favorite virtualization software.

Adding virtualization software increases the attack surface. The attack sur-
face represents what portions of a system are vulnerable to a potential at-
tack; it includes everything from PHP scripts, the Web server, and the
system libraries to the underlying OS. To this stack we have added both the
hypervisor and its supporting software. In the case of VMware, the bare
metal hypervisor, ESX, is 32 megabytes of software. We don’t really know
how many thousands of lines of code go into making up compiled code with
a disk footprint of 32 MB, but surely this took tens of thousands, more likely
hundreds of thousands of lines of code. We know there are bugs in the hy-
pervisor code, as some have been patched already. I believe that adding a
hypervisor must increase the attack surface beyond where we were before
we combined our 15 servers on a single server.

The same will also be true if we decide to use Xen or some other virtualiza-
tion software as our hypervisor. We have added software, and since software
has bugs, the attack surface increases.

ATTAck surfAcE

But let’s examine our experimental setup more carefully, On the one hand,
we have our legacy rack of independent servers; on the other, we have the
virtualized servers, all running on the same hardware. We located our serv-
ers on separate hosts partially as a means of increasing their security, and we
gave that physical isolation up when we virtualized them. Looking at recent
vulnerabilities in virtualization software, we can see that bugs in the hyper-
visor can give a local attacker root or local system access to the entire sys-
tem. Thus, we have given up the protection we once had in isolated systems
by going virtual. An exploit in one virtualized server can provide unfettered
access to all servers, as they are hosted on the same hardware.

There is nothing magic about virtualization. It is merely another OS tech-
nology, newly developed outside the world of IBM mainframes, that suffers
from the vulnerabilities inherent in any software. And, as with any software,
the more features that get added, the greater the potential attack service.
Dan Bernstein’s DNS software is secure largely because it is so featureless.
You cannot bind both an authoritative DNS server and a caching server to
the same IP address with djbdns, and the related simplicity reduces the at-
tack surface.

MigrATion

Did you get the same results running the thought experiment on your hard-
ware that I got on mine? I suspect so, unless adding positive numbers to-

; LO G I N : O c tO b e r 20 0 8 MusI N Gs 3

Login_OCT08_proof1.indd 3 9/15/08 2:58:42 PM

4 ; LO G I N : vO L . 33, N O. 5

gether produces a zero or negative result using your hardware/software
stack. But let’s not stop there, as there are file systems to consider.

I actually first approached the issue of virtualization security from the other
angle: how having virtualization can make services more secure. I imag-
ined an organization that only runs virtualized desktops and pondered how
this would impact patch management. If these desktops get rebooted daily,
then patching a single image overnight means that all desktops get the same
patched image when they reboot the next day. Fantastic!

But that picture presumes that all users run the same software and is overly
optimistic. At best, we have simplified our update procedures to patching
just a handful of desktop images and having assurance that they will be the
only versions used. And we have created a network rush hour by booting all
those virtualized desktops, using networked file servers to do this.

I also wondered about the ability to patch servers by installing the patches
to their disk images. If the disk images are not in use, this is simple to do.
When the images are being used by a guest, the issue is similar to patching
any mounted and in-use file system. Binaries and libraries that are currently
loaded cannot be overwritten, but there are tricks, such as renaming the bi-
nary, that can be used. I will have more to say about disk images later.

One of the cool features promised by virtualization is the ability to migrate
guest operating systems. Suppose a virtualization host doesn’t have the re-
sources to support all of the guests we have installed there? We can simply
“migrate” that system, even without shutting it down! Although this sounds
really cool, consider that we are migrating an entire system over the net-
work. In my darkest thoughts, I have installed a network sniffer and seen
not only the entire guest but also the contents of kernel memory, including
any cached credentials, as the system gets migrated. I suspect that encryp-
tion of guests as they are being migrated is on the drawing boards of virtual-
ization providers, but that is the least of the issue.

One of the cool features of Xen and VMware is that they do use disk images.
You can download these images from the Internet or build them yourself.
If you need to load-balance a Web service by adding a new server, you just
point the guest at the image you prepared earlier and fire it up. Let’s ignore
for the moment the notion that you may have created the disk image months
earlier and not patched it since, as you need to spin it up now. And what
about the disk image itself?

Guest disk images have the marvelous property that they can be mounted
and manipulated just like any other file system. But there is a large differ-
ence here, in that when you mount a disk image, the access controls that
were present under the guest host no longer apply. If you can mount the
disk image, you are root (or an administrator) and now have total access.
This really is no different from having root access to a file server that con-
tains sensitive data or one that is used for network booting of systems. But it
does mean that all these same problems exist in the virtualized world.

When I was learning about Xen, I made a mistake in editing the /etc/fstab
file that prevented a guest from booting (a change in the name of the swap
device). I could have started over and rebuilt the Xen guest, but that would
have taken me many hours and could result in unfixing things I had already
fixed, or the introduction of new mistakes. Instead, I figured out how to use
the losetup command and loop devices to mount the image and edited /etc/
fstab. I’ve done this with VMware images as well [2].

This useful ability to mount disk images implies that it can be used by at-
tackers as well. Access to the root domain, where guest images may be

Login_OCT08_proof1.indd 4 9/15/08 2:58:42 PM

; LO G I N : O c tO b e r 20 0 8 MusI N Gs 5

stored, means access to everything that appears within those images as well.
The hypervisor also has access to the memory granted to guest images, so
there really are no secrets that are not available to the hypervisor. Running
guest images is akin to running software within a debugger and all that that
implies (see Chow et al. [3] for an example).

Lineup

I really don’t want to convince you that running virtualized servers is not a
good idea. I think it is a wave of the future, appearing now, and it is pretty
unstoppable. What I do want to do is suggest that you don’t “drink the Kool-
Aid” that hypes that idea that virtualization is more secure than isolated
servers. Virtualization is not more secure, and it cannot currently be more
secure. Perhaps someday we will have hardware that includes real support
for isolating guests, but that day has not arrived yet (and appears to be un-
comfortably far in the future, beyond the five-year horizon). You can and
should use virtualization and you must be aware of the added vulnerabilities
in doing so.

In that vein, Wenjin Hu, Todd Deshane, and Jeanna Matthews, who are
among the authors of Running Xen, offer us a great explanation and com-
parison of the virtualization possibilities available in Solaris 10. Not only do
they compare these, but they also define the different types of virtualization
possible in a way that will help you understand similar technologies under
Linux or other operating systems. You can also find a book review of Run-
ning Xen in this issue.

Next up, Edward Walker takes a look at cloud computing clusters. Walker
wondered how Amazon’s EC2 cloud computing would compare to a dedi-
cated research cluster in terms of performance, and his benchmarks may
surprise you.

Alva Couch then considers how the laws of thermodynamics apply to sysad-
min. Couch writes about transforming problems through the use of virtual-
ization and explains the tradeoffs involved in so doing.

Robert Solomon presents a case study in setting up Asterisk. Solomon had
set up simpler Asterisk VoIP systems before, but this installation replaces an
aging proprietary one for a medium-sized office with very specific require-
ments. He explains the hardware as well as the Asterisk tweaks necessary to
perform an all-page and to unlock the front office door.

Brad Knowles explains how best to populate your network with your own
NTP servers. NTP will not work well if you configure NTP servers as you
would other servers. Getting the most efficient setup from the perspective of
network traffic and server load is an interesting challenge, as is choosing the
right hardware. In this issue Knowles also gives us a review of The Book of
IMAP.

Sandeep Sahore shares his cfsize program. Sahore wondered why there
weren’t UNIX applications for decreasing the size of files without first split-
ting them or truncating them to zero length, and cfsize is his answer to
these problems.

Jason Dusek examines the problems with concurrency. Dusek became in-
trigued by the mistake of conflating parallelism with concurrency, and he
digs deeply into why concurrency is both a difficult and a currently critical
problem.

David Blank-Edelman explains some of the tools you can use in Perl for han-
dling MIME attachments, offering some concrete examples. Pete Galvin con-

Login_OCT08_proof1.indd 5 9/15/08 2:58:42 PM

6 ; LO G I N : vO L . 33, N O. 5

tinues his thread, started in the August issue, about system analysis. In this
issue, Galvin focuses on Solaris-specific tools that help in analyzing prob-
lems. Dave Josephsen then encourages us to create Event Brokers for Na gios,
providing us with a great example of his own. We have Nick Stoughton ex-
plaining the role the USENIX Association (that is, you) has in certain stan-
dards bodies. Doing this work requires funding, most of it just to cover
travel expenses, and we need to understand this role and decide whether
the organization should continue to support it. I certainly think we should.
Nick’s discussion is followed by more pages than ever of book reviews.

Finally, we have conference reports. The 2008 USENIX Annual Technical
Conference is covered in great detail, followed by reports on Hot Topics in
Autonomic Computing and on Storage and File Systems Benchmarking.

You may have noticed that a lot of this issue is devoted to virtualization. Vir-
tualization is hot, useful, and important, yet, as I suggested above, it comes
with its own share of security problems. Most of these are not new. All that
I ask is that you remain aware that adding another abstraction layer to an
already deep software stack won’t make security problems vanish. Instead,
simple arithmetic suggests that these problems can only increase.

rEfErEncEs

[1] VMware security advisories: http://www.vmware.com/security/
advisories/.

[2] Mounting VMware disk images under Linux: http://legroom.
net/2007/08/05/how-mount-vmware-disk-images-under-linux; http://www
.cromoteca.com/en/blog/mountflatvmwarediskimagesunderlinux/
index.html.

[3] Jim Chow, Tal Garfinkel, and Peter M. Chen, “Decoupling Dynamic Pro-
gram Analysis from Execution in Virtual Environments,” Proceedings of the
2008 USENIX Annual Technical Conference, pp. 1–14: http://www.usenix
.org/events/usenix08/tech/chow.html.

Login_OCT08_proof1.indd 6 9/15/08 2:58:42 PM

w e n j i n H u , T o d d d e s H a n e , a n d
j e a n n a M aT T H e w s

Solaris virtualization
options
Wenjin Hu is a PhD student in Computer Science
at Clarkson University. He focuses on applying
virtualization and file system techniques to provide
security and reliability on the desktop.

huwj@clarkson.edu

Todd Deshane is a PhD student in Engineering
Science at Clarkson University. His current research
deals with using virtualization to provide security
on the desktop.

deshantm@clarkson.edu

Jeanna Neefe Matthews is an associate profes-
sor of Computer Science at Clarkson University in
Potsdam, NY, where she leads an incredible team of
students. She is currently on sabbatical and work-
ing with VMware in Cambridge, MA.

jnm@clarkson.edu

; LO G I N : O c tO b e r 20 0 8 sO L A rI s v I rtuA LIz AtI O N O p tI O N s 7

t h e V i r t u a l i z at i o n o p t i o n s f o r
Solaris have been expanding rapidly. In this
article we discuss three types of virtualiza-
tion systems available in OpenSolaris for
x86: Solaris Containers, Solaris xVM, and
Sun xVM VirtualBox. We include instruc-
tions on how to deploy each solution and
a detailed comparison of the three to help
system administrators and virtualization
fans alike choose the appropriate virtualiza-
tion technology for their needs. Even if you
don’t use Solaris, we do explain the differ-
ences among OS-level virtualization, para-
virtualization, and full-virtualization clearly.

Solaris has included Containers (also called Zones)
since Solaris 10 was released in 2005. Containers
are an operating-system-level virtualization facility,
meaning that the OS itself provides the illusion of
multiple independent systems, each with its own
IP address and file system, all based on the same
base kernel. More recently, support for paravirtu-
alization in the form of Xen (called Sun xVM on
Solaris) has been added and now, with the acquisi-
tion of VirtualBox, full virtualization on Solaris is
also an option. Unlike OS-level virtualization, par-
avirtualization and full virtualization both offer the
ability to run guest operating systems that are dif-
ferent from the underlying OS. Full virtualization
can run unmodified operating systems, whereas
paravirtualization requires targeted changes to
the hardware interface and therefore correspond-
ing changes in the OS source code. As a result,
proprietary operating systems such as Microsoft
Windows can typically only be run on virtualiza-
tion systems that support full virtualization. Some
virtualization systems, such as Xen, require hard-
ware support for virtualization, such as Intel VT or
AMD-V, to support full virtualization.

getting started with solaris containers

In Solaris Containers/Zones, a virtual machine is
called a zone and a zone with resource limitations
is called a container. The basic command to operate
a zone’s configuration file is zonecfg –z newzone.
This will bring up a shell in which you can issue a
variety of commands to manipulate the specified
zone. As shown in Listing 1, you create a zone,
add the attached devices such as add net, set zone
options such as set autoboot=true, display the
configuration, verify the configuration, and finally
commit a zone’s resources, which writes out a

Login_OCT08_proof1.indd 7 9/15/08 2:58:42 PM

8 ; LO G I N : vO L . 33, N O. 5

final configuration file for the zone. You can also use zonecfg to browse the
characteristics of an existing zone and modify it as desired.

zonecfg -z newzone
newzone: No such zone configured
Use ‘create’ to begin configuring a new zone.
zonecfg:newzone> create
zonecfg:newzone> set zonepath=/export/home/newzone
zonecfg:newzone> set autoboot=true
zonecfg:newzone> add net
zonecfg:newzone:net> set address=192.168.16.109
zonecfg:newzone:net> set physical=pcn0
zonecfg:newzone:net> end
zonecfg:newzone> verify
zonecfg:newzone> commit
zonecfg:newzone> exit

L i s t i n g 1 : t h e s t e p s s h O w i n g t h e Z O n e c O n f i g u r a t i O n

Solaris provides a number of options to manage the resources that a zone
can own, including the CPU, the memory, and the number of the pro-
cesses. This is the heart of making a zone into a container with resource
limitations. In Listing 2, we illustrate how to add a variety of restrictions to
our new zone. (These commands are also issued at the zonecfg prompt.)
The capped-cpu command limits the CPU cycles assigned to the zone to
a fourth of one CPU. Similarly, our capped-memory command assigns
the zone 128 MB of memory and 512 MB of swap space. It also guarantees
that 64 MB of the zone’s memory will be resident in physical memory at all
times. Finally, the set max- lwps command illustrates how we can place
limits on things besides physical resources. It limits the number of light-
weight processes in a running zone and is useful for preventing problems
such as fork-bombs from taking down the whole machine.

add capped-cpu
 set ncpus=0.25
end

add capped-memory
 set physical=128M
 set swap=512M
 set locked=64M
end

set max-lwps=175

L i s t i n g 2 : t h e O p t i O n s L i m i t i n g t h e c O n t a i n e r ’ s r e s O u r c e s

Once our new zone is configured, we are ready to instantiate it with the
command zoneadm –z newzone install and then run it with the com-
mand zoneadm –z newzone boot. zoneadm can also be used for other
zone administration functions such as listing the configured zones, install-
ing or uninstalling the zones, and booting, pausing, and halting installed
zones. Listing 3 shows the output of running zoneadm list after installing
our new zone. The parameter –c will display all the configured zones’ infor-
mation; –v will display the detailed information of zones.

zoneadm list -vc
ID NAME STATUS PATH BRAND IP
0 global running / native shared
1 newzone running /export/home/newzone native shared

L i s t i n g 3 : a Z O n e a d m L i s t s h O w i n g a L L Z O n e s

Login_OCT08_proof1.indd 8 9/15/08 2:58:42 PM

; LO G I N : O c tO b e r 20 0 8 sO L A rI s v I rtuA LIz AtI O N O p tI O N s 9

Finally, we are ready to log in to our new zone with the command zlogin
newzone. It will be running the same version of OpenSolaris as the base
operating system, as is required with OS-level virtualization. However, the
zone will behave like a separate system, with its own IP address, its own file
system, and its own set of installed applications.

getting started with solaris xVM

A virtual machine in xVM is called a domain, just as it is in other Xen im-
plementations. Domains are divided into two major categories: paravirtual-
ized (PV) domains and Hardware-assisted Virtual Machine (HVM) domains.
In a PV domain, the hardware abstraction presented to the guest VM is not
identical to the underlying physical hardware; instead, strategic changes are
made to make the system easier to virtualize. To run properly on the para-
virtualized hardware, the guest operating system must be modified to be
aware of these changes. This requires source-code-level changes to the OS
and is therefore rarely available for proprietary operating systems such as
Windows. Two common choices for paravirtualized guest domains are So-
laris and Linux.

In an HVM domain, the hardware abstraction presented to the guest is iden-
tical to the underlying hardware, so any operating system that runs on x86
hardware architecture can be installed. To make this possible, an HVM do-
main relies on special hardware support for virtualization such as Intel V-T
or AMD-V. If your system does not have this hardware support for virtual-
ization, then paravirtualized domains are your only option.

Xen is a virtual machine monitor, called a hypervisor, which intercepts the
guest domain’s system calls. It is necessary to boot the Xen-enabled Solaris
kernel on the physical machine rather than a normal Solaris kernel. Since
Solaris Nevada Version build 75, Xen has been developed and well inte-
grated into Solaris Express Community Edition through a variety of boot
options in the GRUB menu. For example, the standard GRUB menu displays
three choices: Solaris Express Community Edition snv87 X86, Solaris xVM,
and Solaris Failsafe; the second grub option, Solaris xVM, should be chosen.

Xen also relies on a special, privileged domain, called Domain0, and the
Xen control daemon, Xend, for communication between the hypervisor and
the guests. Domain0 is granted the full privileges of managing the guest do-
mains and the physical devices by the Xen hypervisor, similar to a “normal”
Solaris OS instance.

Device drivers can also be fully virtualized or paravirtualized. Even a system
that does full virtualization of the CPU and memory can load paravirtual-
ized drivers to handle external devices such as a disk or network interface.
In a paravirtualized driver, the driver running in the guest operating system
is aware of the hypervisor and explicitly participates in communicating its
requests to domain0 where the real physical device drivers are running. In
a fully virtualized driver, the real device access still occurs on the Domain0
drivers, but the guest driver is unaware of this, so the hypervisor must trap
accesses to I/O space or DMA operations in order to forward them on to the
proper device driver in Domain0. PV drivers have much lower overhead, be-
cause they avoid this expensive process of trapping and forwarding.

Our first step in running Xen guests is to make sure that the hypervisor,
Domain0, and Xend are all running. After Solaris xVM boots up, you can
use the command virsh list as shown in Listing 4 to check whether Domain0
is running.

Login_OCT08_proof1.indd 9 9/15/08 2:58:42 PM

10 ; LO G I N : vO L . 33, N O. 5

virsh list
 Id Name State

 0 Domain-0 running
 110 newSolaris blocked

L i s t i n g 4 : V i r s h L i s t s h O w i n g d O m a i n 0

Next, we check that Xend is running and specify the default network in-
terface in Xend first so that our guest domains are able to set up the virtual
network based on that physical NIC. Xend is wrapped as an application ser-
vice in Solaris. Listing 5 illustrates the use of svccfg and svcadm facilities
to configure and restart Xend. The –s parameter specifies the Xend service;
setprop specifies the Xend configuration options. After making this (or any
change) to the Xend configuration, you can apply the change by refreshing
and restarting Xend as shown. The svcadm facility can be used to enable,
disable, refresh, or restart the Xend service at any time.

svccfg –s xvm/xend setprop config/default-nic=”bge0”
svcadm refresh xvm/xend
svcadm restart xvm/xend

L i s t i n g 5 : t h e s t e p s f O r c O n f i g u r i n g a n d r e s t a r t i n g X e n d

With that, we are ready to create a new guest domain. In this section we
will show three primary examples: a PV Solaris guest domain, a PV Linux
domain, and an HVM Solaris domain. In Solaris, virt-install is a tool used to
create the guest domain images regardless of whether it is PV or HVM. For
example, a paravirtualized Solaris image can be created with the following
command:

virt-install --nographics -n newSolaris --paravirt -f /export/home/newSolaris.\
img -r 1024 -s 30 -l /export/home/sol-nv-b87.iso

where -n is for specifying a domain name to be newSolaris, - -paravirt is
for selecting the mode to be paravirtualized, -f is for specifying the domain
image name newSolaris.img in the path /export/home, - r is for assigning the
domain memory size to be 1024 MB, -s is for creating the domain image
size in gigabytes, and - l is for choosing the installation location. Note that in
Solaris xVM, for paravirtual guests (both Solaris and Linux), the video card
and CD-ROM drivers are not yet fully ported, will not have a graphical win-
dow, and cannot use fully use the CD-ROM. However, we were able to use
an ISO file as the guest CD-ROM during the install of the paravirtual Solaris
guest by using the –l option to specify the ISO location. But for the HVM
guest, the guest can fully use a standard CD-ROM driver within it and then
have a CD-ROM device.

We can also install the guest via a Solaris NFS share on Solaris xVM. If we
use ZFS volumes for the guest disk storage, it should have better perfor-
mance and more reliability than using a file-based image in the Domain0
file system.

After running this command and finishing the normal Solaris Installation
process, you can use virsh list again to see the newSolaris guest domain
running, as illustrated in Listing 4. To access the running domain newSo-
laris, we can use the command virsh console newSolaris. To get out of
the guest domain, the combination key Ctrl+] is needed.

If we wish to save the guest domain’s configuration file for later use, we can
use the virsh tool to write an XML format configuration file when the guest
domain is running, with virsh dumpxml newSolaris > newSolaris.xml.
With the guest domain’s xml configuration file, we can directly boot the

Login_OCT08_proof1.indd 10 9/15/08 2:58:43 PM

; LO G I N : O c tO b e r 20 0 8 sO L A rI s v I rtuA LIz AtI O N O p tI O N s 11

image with the command virsh create newSolaris.xml. Furthermore, we
can use the command virsh shutdown newSolaris to turn off the guest.

Next, we will walk through an example of installing an HVM guest domain.
Before creating the Solaris HVM image, we may need to enable VNC in
Xend, as Listing 6 shows. In the svccfg command shown, 0.0.0.0 indicates
that the VNC server is listening to any IP and passwd should be replaced
with the actual password. If you don’t explicitly set the password, it will de-
fault to the empty string, which is, of course, not secure. If you don’t want
to use VNC for remote access to the guest at all, you can use the command
svccfg -s xvm/xend delprop config /vnc- listen to remove that option and
then refresh and restart Xend as we did earlier.

svccfg -s xvm/xend setprop config/vnc-listen = astring: \”0.0.0.0\”
svccfg -s xvm/xend setprop config/vncpasswd = astring: \”passwd\”

L i s t i n g 6 : V n c s e t u p i n X e n d

Next, we can use virt- install with the - -hvm argument to start an HVM So-
laris guest as, for example:

virt-install -n SolarisHVM --hvm -r 1024 --vnc -f /export/home/SolarisHVM.\
img -s 30 -c /export/home/newbie/sol-nv-b87.iso

Notice that we use almost the same options as we did when creating the
paravirtual Solaris guest; the only differences are - -hvm, which specifies
the guest works in HVM mode, and - -vnc, which specifies that the guest
will have a VNC connection. Also, the argument –c is used for specifying
the virtual CD-ROM rather than –l when installing the paravirtual guest. In
this case, it indicates that the installation is from the ISO file /export/home/
sol-nv-b87.iso and, from the guest’s perspective, the installation is from the
guest CD-ROM. We could install guests based on any other operating sys-
tem, including Windows, in this same manner.

When you run the virt- install command, it will first display a window ask-
ing for a VNC password, which is passwd as we have set up in Xend at the
beginning of the HVM guest setup procedure. The rest of the installation
process will look exactly like installing Solaris on a real machine. As with
the PV guest, we can use the virsh facility to create and shut down the guest
domain.

We used virt- install to create Solaris guests and it’s also possible to use it
to create Linux guests in a similar way. However, for Linux guests there are
some additional options. In this section, we will illustrate the use of one of
these, virt-manager, to install a Linux guest. Refer to our Web site [1] for
additional information on options for Linux guests such as netinstall, isoin-
stall, and cdrom-install.

Virt-manager is a GUI installation and management tool for guest domains.
It provides a GUI tool for the creation of new domains, an integrated VNC
viewer for accessing domains, and other useful tools for the management
of domains and their resources. Virt-manager is available on newer releases
of CentOS and Red Hat Enterprise. It is also available in the latest version
of Solaris now. You can find its icon from menu->All Applications->System
Tools->Virtual Machine Manager. You can also run it as root with the com-
mand virt-manager. It will first display a window asking you to connect to
Xen hypervisor. Single-clicking the “Connect” button will show you the Vir-
tual Machine Manager GUI interface displaying the Domain0 and guest do-
main’s running status and resource usage. Click the “New” button and it will
guide you step by step through the guest creation wizard. It only supports
network installation for paravirtual guests, but both ISO and network instal-

Login_OCT08_proof1.indd 11 9/15/08 2:58:43 PM

12 ; LO G I N : vO L . 33, N O. 5

lations for HVM guests. Here we give an example for creating a paravirtual
CentOS guest.

Virt-manager first asks for the guest domain’s name, which later becomes the
guest domain id and the type of the guest domain (paravirtualized or fully
virtualized). Then, it will request a network path address to the CentOS re-
pository such as http://mirror.clarkson.edu/pub/centos/5/os/i386/. Later, you
will be asked to choose a disk partition or a file to be the guest file system.
If you have not set up a special disk partition for your new guest, a file is
the safest choice. After allocating the memory size and the number of virtual
CPUs, it will go through the normal CentOS network installation process.
Our Web site [1] includes detailed screenshots of the entire process.

getting started with sun xVM VirtualBox

Since VirtualBox was acquired by Solaris only recently, it is not yet automat-
ically installed in Solaris. So the first step is to download VirtualBox from
http://virtualbox.org/wiki/Downloads. To determine which Solaris package
to download (32-bit x86 or 64-bit AMD64), you can use the isainfo com-
mand on your base Solaris system.

The VirtualBox installation package includes two packages: the kernel pack-
age, used to install the Virtual Disk Image (VDI) kernel module, and the
VirtualBox package, which will install the VirtualBox application and GUI
library. Once the proper package is downloaded, use the command pkgadd
to first install the VirtualBox kernel package and then the VirtualBox pack-
age, as illustrated in Listing 7.

pkgadd -G -d VirtualBoxKern-VERSION-OS-BIT.pkg
pkgadd -G –d VirtualBox-VERSION-OS-BIT.pkg
……(package installing message are partly omitted)……
VirtualBox kernel module unloaded
VirtualBox kernel module loaded.
Creating links...
Done.
Installation of <SUNWvbox> was successful.

L i s t i n g 7 : t h e s t e p s f O r i n s t a L L i n g V i r t u a L b O X

Once the packages are installed, simply issue the command VirtualBox so
that the VirtualBox management window will pop up.

One important note for trying all the virtualization systems available on
Solaris is that VirtualBox and Solaris xVM cannot currently operate at the
same time. If you have been running in Solaris xVM, it is necessary to re-
boot the machine and switch to the first option, Solaris, in the GRUB menu.
Otherwise, you will see the error VirtualBox Kernel Driver not Loaded
when you do run the VirtualBox command, because the VirtualBox kernel
has not yet been ported to the Xen kernel.

To create a virtual machine, when you choose the “NEW” button, it will lead
you to the VM installation wizard. VirtualBox can run any guest operating
system including Windows, Linux, and Solaris, or any x86 OS running on it
without any modifications to your guest OS. All of their device drivers will
work normally, with no need to port to the guest OS.

First, you need to choose your VM name and its OS type, then assign the
memory size to the VM (which for normal Solaris installation requires at
least 768 MB). Next, you need to specify the VM disk image. If it is your first
time to create a VirtualBox File image, you have to click the “NEW” but-
ton. You must also specify a file for the disk image. You can either specify

Login_OCT08_proof1.indd 12 9/15/08 2:58:43 PM

; LO G I N : O c tO b e r 20 0 8 sO L A rI s v I rtuA LIz AtI O N O p tI O N s 13

the size of the disk file or set it to grow dynamically over time. A standard
Solaris SXCE requires 12 GB for the image file. If you want to further con-
figure the VM’s devices, you can click the “Settings” button. One important
note is that so far VirtualBox only supports NAT network topology. If you
want to install from the CD, choose the CD-ROM option; there you can click
to mount the CD drive from the host CD-ROM or from a specific ISO image.

Once done, you can simply click the “Start” button to start the VM. The
VM will boot from CD-ROM and the rest of the installation process is the
same as normal Solaris installation. When the virtual machine is created
and booting, VirtualBox will prompt you with a VNC window to display the
screen of the guest VM; you can either click the mouse or press the Enter
key to get into the guest VM. If you want to get out of the VM box, you can
press the right Ctrl key to release yourself from the VM.

In VirtualBox, if you want to run a previously installed VM, you can operate
on the existing vdi files. By default, the VM virtual disk images are stored
in the /root/.VirtualBox/VDI directory. There is a virtual disk manager to
manage them. You can press the combination key Ctrl+D to pop up the disk
manager window. If you already have a system-installed vdi file, you can
press the “Add” button to add the existing VM image into the VirtualBox.
Then you can go through the previous process of creating a new VM proce-
dure to run a VM. But if you want to remove a VM image from VirtualBox,
you need to first Release the image and then Remove it from the virtual
disk manager, because when a disk image is assigned to a VM, VirtualBox
automatically registers it and grants a unique uuid to that VM and image.

comparing containers, xVM, and VirtualBox

Now that we have shown you the basics of getting started with three differ-
ent virtualization options on Solaris, in this section we will present some
comparisons among them.

One important point of comparison is ease of use. In our opinion, the easi-
est to use is VirtualBox. It is fully GUI-guided, straightforward, and simple.
Solaris Containers are also relatively easy to use, especially because they are
so well integrated into Solaris and have such a complete tool chain for con-
figuration and management. However, since they have no GUI interface,
they are better suited to server applications than desktop virtualization. So-
laris xVM is the most complicated, but as more management tools, such as
virt-manager, are extended and integrated into Solaris, the ease of use will
improve.

Of course, ease of use is just one part of the story. It is also important to
consider the features of each system. Containers can only run Solaris guests,
so some common applications of virtualization (e.g., running alternate op-
erating systems) simply won’t work in Containers. Solaris xVM requires the
running guest to be a modified OS and generic virtual device drivers need
to be ported. If the unmodified OS is to run on Solaris xVM, VT or AMD-V
hardware support will be needed on the CPU chip. VirtualBox, however, can
run any type of unmodified guest even without hardware support for virtu-
alization.

In terms of storage, Solaris Zones can either share files with the global zone
or have their own version of files from the global zone. In other words,
zones can use the same library files as the global zone or have older or
newer versions of libraries than the global zone. You should also be aware
that when you change the files in the global zone, you may also affect other
zones that are sharing them. For VirtualBox, the system files in a VM of Vir-

Login_OCT08_proof1.indd 13 9/15/08 2:58:43 PM

14 ; LO G I N : vO L . 33, N O. 5

tualBox are only used by that VM and will not affect other VMs. Each VM is
encapsulated in a separate vdi or vdmk files. However, if sharing is desired,
VirtualBox does have a shared folder option that can mount a base OS di-
rectory to share with the guest. Similar to VirtualBox, in Solaris xVM each
guest’s file system is independently separated either by files or partitions or
disks. Theoretically, we can dynamically add Domain0’s disk or partitions
to the guest domain, sharing with the guest domain. But we do not recom-
mend attempting that, because there is no way to maintain the consistency
of shared files or file systems. The preferred method of sharing files with
xVM guests would be to use a network file server.

For the network topology, in Solaris Zones all zones share the network in-
terface with the global zone’s network interface in a bridged mode. There are
no other network topology choices. Bridging is also currently the only op-
tion available for Solaris xVM guest domains. The routing and NAT topolo-
gies that are available to Xen on Linux are still in development for Solaris.
VirtualBox supports only the NAT topology. This means that there is no way
for an outsider to directly access the VirtualBox VM through the network.
This is a crucial difference for running server VMs.

It is worth noting that, with the Crossbow project, changes in networking
support should be coming for all virtualization systems. Crossbow is a So-
laris network virtualization and flow control solution. It provides universal
network architecture to the virtualization systems described here (Contain-
ers, xVM, and VirtualBox) to manage the flow control of those virtual NICs,
such as bandwidth and packet types. Crossbow is not yet stable but is being
tested as part of SNV build 91.

Finally, a critical aspect of the comparison is performance overhead from
virtualization. A full performance comparison on various types of hardware
and running a wide variety of tests is beyond the scope of this article. Here
we present the results of some simple compilation tests on baseline Solaris
and on each of the virtualization systems. Specifically, we report the time to
compile the Apache Web server.

All our tests are run on Open Solaris Community Express Nevada build 87
(SNV b87) running on a Dell Optiplex (Intel-VT dual-core 2.4-GHz 6600
CPU, with 4 GB memory, a 250-GB disk, and 1-Gb NIC). The guest resource
allocation can be seen in Table 1. Zone is a virtual machine in Solaris, Xen
domU is the virtual machine in Solaris xVM, and VBox VM is the virtual
machine running in VirtualBox.

Container is a zone with resource controls. Here the container is assigned
the limited CPU to be 1 ncpus. If we use zonecfg –z newzone info, we
can see the information in Listing 8. For more complicated resource configu-
ration, you can look at the usage of project and task facilities.

 CPU (dual) Memory Image size Network

Zone - - - Bridged

Container 1 1024M - Bridged

Xen domU 1 1024M 30G Bridged

Vbox VM 1 1024M 30G NAT

t a b L e 1 : V m r e s O u r c e a L L O c a t i O n s f O r e a c h V i r t u a L i Z a t i O n
s y s t e m

Login_OCT08_proof1.indd 14 9/15/08 2:58:43 PM

; LO G I N : O c tO b e r 20 0 8 sO L A rI s v I rtuA LIz AtI O N O p tI O N s 15

zonecfg –z newzone info

capped-cpu:
 [ncpus: 1]
capped-memory:
 physical: 1G
 [swap: 1G]
 [locked: 768M]
rctl:
 name: zone.cpu-cap
 value: (priv=privileged,limit=50,action=deny)
rctl:
 name: zone.max-swap
 value: (priv=privileged,limit=1073741824,action=deny)
rctl:
 name: zone.max-locked-memory
 value: (priv=privileged,limit=805306368,action=deny)
rctl:
 name: zone.max-lwps
 value: (priv=privileged,limit=200,action=deny)

L i s t i n g 8 : t h e r e s O u r c e L i m i t a t i O n f O r t h e b e n c h m a r k e d
c O n t a i n e r

Figure 1 shows the relative overhead of the four virtual machines by a per-
centage of the baseline time to compile httpd. Overall, the zone has the least
overhead compared to the baseline, because it has full access to the whole
global zone’s resources. Its performance is almost as good as the baseline.
The container experiences delay because it is limited to half of the overall
CPU cycles. The Xen guest domain is close to the overhead of the container,
but it consumes substantially more system time. VirtualBox clearly has the
highest overhead (250%). Note that, in our experiment on the same hard-
ware, the overhead of Xen on Linux is less. In general, the overhead of Xen
on Solaris is not necessarily the same as Xen on Linux.

f i g u r e 1 : p e r f O r m a n c e c O m p a r i s O n b y p e r c e n t a g e a g a i n s t
b a s e s O L a r i s s y s t e m c O m p i L e O f a p a c h e

In Figure 2, we find that the container’s sys and user time are almost the
same as the zone’s. But, overall, the container’s total consumed time is al-
most doubled, which indicates that Solaris resource management is ef-
fectively giving the container a limited share of system resources. We
recommend that system administrators use resource management facilities
to avoid some zones’ malicious or greedy resource usage and effect on the

Login_OCT08_proof1.indd 15 9/15/08 2:58:43 PM

16 ; LO G I N : vO L . 33, N O. 5

overall performance of other zones. Although the configurations may be a
little complicated, it is worth taking the time to get it right. One successful
experiment involves running a memory bomb (a loop constantly allocating
and touching additional memory) in the zone and container: The zone leaves
the global zone dead, but although the container suffers from running out of
memory, the global zone is still alive and works well. For more details, refer
to our previous paper [2].

f i g u r e 2 : c O m p a r i n g a r e s O u r c e - L i m i t e d c O n t a i n e r t O a Z O n e

conclusion

Overall, Solaris has offered us a variety of virtualization systems to use: So-
laris Containers, Solaris xVM, and Sun xVM VirtualBox. Each of these has
its own unique advantages. Sun xVM VirtualBox offers full virtualization,
is straightforward to use, and has nice GUI windows, but its performance
overhead is also high and, with an NAT-only network, running servers is
difficult. Still, for easy-to-use desktop virtualization on Solaris, VirtualBox
is probably the best choice. In contrast, Solaris Containers/Zones OS-level
virtualization is targeted at server-level usage. It achieves good performance,
but to make it work properly you need to master the resource management
control tools, which can be somewhat complicated. Containers/Zones also
do not give you a choice of guest operating systems. For fast Solaris servers,
they are likely the best choice. However, if you want a choice of guest op-
erating systems and good performance, then Solaris xVM is likely to be the
best choice. Its performance is comparable with OS-level virtualization, and
it is suitable for both desktop usage and server usage. Solaris xVM can be a
bit complicated to configure, but there are a variety of configuration options,
from GUI to command line, and the available tools continue to improve.

rEfErEncEs

[1] Clarkson Web site for screenshots and documents:
http://www.clarkson.edu/projects/virtualization/solaris/login08.

[2] Quantifying the Performance Isolation Properties of Virtualization
 Systems: http://people.clarkson.edu/~jnm/publications/isolation_ExpCS
_FINALSUBMISSION.pdf.

Login_OCT08_proof1.indd 16 9/15/08 2:58:43 PM

; LO G I N : O c tO b e r 20 0 8 sO L A rI s v I rtuA LIz AtI O N O p tI O N s 17

prAcTicAL rEsourcEs

[1] Wenjin’s blog on Solaris Virtualization Tutorials: http://deepenintocs
.blogspot.com/.

[2] Xen introduction and tutorial: http://runningxen.com/.

[3] Solaris Containers online documentation: http://www.sun.com/
bigadmin/content/zones/.

[4] Solaris xVM: http://opensolaris.org/os/community/xen/.

[5] VirtualBox user manual: http://www.virtualbox.org/wiki/End-user
_documentation.

[6] Crossbow project: http://opensolaris.org/os/project/crossbow/.

Login_OCT08_proof1.indd 17 9/15/08 2:58:43 PM

18 ; LO G I N : vO L . 33, N O. 5

e d w a R d w a l k e R

benchmarking
Amazon EC2 for
high-performance
 scientific computing
Edward Walker is a Research Scientist with the
Texas Advanced Computing Center at the University
of Texas at Austin. He received his PhD from the
University of York (UK) in 1994, and his research
interests include designing fault-tolerant distrib-
uted systems, HPC programming languages, and
user-centric operating/run-time systems.

ewalker544@gmail.com

Benchmark results can be downloaded
from http://www.usenix.org/publications/
login/2008-10/benchmark_results.tgz.

h o w e f f e c t i V e a r e c o m m e r c i a l
cloud computers for high-performance
scientific computing compared to currently
available alternatives? I aim to answer a
specific instance of this question by exam-
ining the performance of Amazon EC2 for
high-performance scientific applications.
I used macro and micro benchmarks to
study the performance of a cluster com-
posed of EC2 high-CPU compute nodes and
compared this against the performance of
a cluster composed of equivalent proces-
sors available to the open scientific research
community. My results show a significant
performance gap in the examined clusters
that system builders, computational sci-
entists, and commercial cloud computing
vendors need to be aware of.

The computer industry is at the cusp of an im-
portant breakthrough in high-performance com-
puting (HPC) services. Commercial vendors such
as IBM, Google, Sun, and Amazon have discov-
ered the monetizing potential of leasing compute
time on nodes managed by their global datacen-
ters to customers on the Internet. In particular,
since August 2006, Amazon has allowed anyone
with a credit card to lease CPUs with their Elastic
Compute Cloud (EC2) service. Amazon provides
the user with a suite of Web-services tools to re-
quest, monitor, and manage any number of virtual
machine instances running on physical compute
nodes in their datacenters. The leased virtual ma-
chine instances provide to the user a highly cus-
tomizable Linux operating system environment,
allowing applications such as Web hosting, distrib-
uted data analysis, and scientific simulations to be
run. Recently, some large physics experiments such
as STAR [1] have also experimented with build-
ing virtual-machine-based clusters using Amazon
EC2 for scientific computation. However, there is
a significant absence of quantitative studies on the
suitability of these cloud computers for HPC appli-
cations.

It is important to note what this article is not
about. This is not an article on the benefits of vir-
tualization or a measurement of its overhead, as
this is extensively covered elsewhere [2]. This is
also not an article evaluating the counterpart on-
line storage service Amazon S3, although a quan-
titative study of this is also critical. Finally, this is

Login_OCT08_proof1.indd 18 9/15/08 2:58:43 PM

; LO G I N : O c tO b e r 20 0 8 b e N cH M A rk I N G A M A zO N ec2 19

not an article examining the cost benefits of using cloud computing in IT
organizations, as this is amplified elsewhere by its more eloquent advocates
[3].

Instead, this article describes my results in using macro and micro bench-
marks to examine the “delta” between clusters composed of currently avail-
able state-of-the-art CPUs from Amazon EC2 versus clusters available to the
HPC scientific community circa 2008. My results were obtained by using
the NAS Parallel Benchmarks to measure the performance of these clusters
for frequently occurring scientific calculations. Also, since the Message-Pass-
ing Interface (MPI) library is an important programming tool used widely in
scientific computing, my results demonstrate the MPI performance in these
clusters by using the mpptest micro benchmark. The article provides a mea-
surement-based yardstick to complement the often hand-waving nature of
expositions concerning cloud computing. As such, I hope it will be of value
to system builders and computational scientists across a broad range of dis-
ciplines to guide their computational choices, as well as to commercial cloud
computing vendors to guide future upgrade opportunities.

Hardware specifications

In our performance evaluation, we compare the performance of a cluster
composed of EC2 compute nodes against an HPC cluster at the National
Center for Supercomputing Applications (NCSA) called Abe. For this bench-
mark study we use the high-CPU extra large instances provided by the EC2
service. A comparison of the hardware specifications of the high-CPU extra
large instances and the NCSA cluster used in this study is shown in Table
1. We verified from information in /proc/cpuinfo in the Linux kernel on
both clusters that the same processor chip sets were used in our comparison
study: dual-socket, quad-core 2.33-GHz Intel Xeon processors.

EC2 High-CPU Cluster NCSA Cluster

Compute Node

7 GB memory, 4 CPU cores
per processor (2.33-GHz
Xeon), 8 CPU per node, 64
bits, 1690 GB storage

8 GB memory, 4 CPU cores
per processor (2.33-GHz
Xeon), 8 CPU per node, 64
bits, 73 GB storage

Network
Interconnect

High I/O performance (spe-
cific interconnect technology
unknown)

Infiniband switch

t a b L e 1 . h a r d w a r e s p e c i f i c a t i O n s O f e c 2 h i g h - c p u i n s t a n c e s
a n d n c s a a b e c L u s t e r .

nAs parallel Benchmark

The NAS Parallel Benchmarks (NPB) [4] comprise a widely used set of pro-
grams designed to evaluate the performance of HPC systems. The core
benchmark consists of eight programs: five parallel kernels and three simu-
lated applications. In aggregate, the benchmark suite mimics the critical
computation and data movement involved in computational fluid dynamics
and other “typical” scientific computation. A summary of the characteristics
of the programs for the Class B version of NPB used in this study is shown
in Table 2.

Login_OCT08_proof1.indd 19 9/15/08 2:58:44 PM

20 ; LO G I N : vO L . 33, N O. 5

The benchmark suite comes in a variety of versions, each using different
parallelizing technologies: OpenMP, MPI, HPF, and Java. In this study we
use the OpenMP [5] version to measure the performance of the eight-CPU
single compute node. We also use the MPI [7] version to characterize the
distributed-memory performance of our clusters.

Program Description Size Memory (Mw)

EP
Embarrassingly parallel Monte
Carlo kernel to compute the solu-
tion of an integral.

230 18

MG
Multigrid kernel to compute
the solution of the 3-D Poisson
 equation.

2563 59

CG
Kernel to compute the smallest ei-
genvalue of a symmetric positive
definite matrix.

75000 97

FT
Kernel to solve a 3-D partial differ-
ential equation using an FFT-based
method.

512 × 2562 162

IS
Parallel sort kernel based on bucket
sort.

225 114

LU
Computational fluid dynamics
 application using symmetric suc-
cessive over-relaxation (SSOR).

1023 122

SP
Computational fluid dynamics ap-
plication using the Beam-Warming
approximate factorization method.

1023 22

BT
Computational fluid dynamics ap-
plication using an implicit solution
method.

1023 96

t a b L e 2 . n p b c L a s s b p r O g r a m c h a r a c t e r i s t i c s

npB-oMp VErsion

We ran the OpenMP version of NPB (NPB3.3-OMP) Class B on a high-CPU
extra large instance and on a compute node on the NCSA cluster. Each com-
pute node provides eight CPU cores (from the dual sockets), so we allowed
the benchmark to schedule up to eight parallel threads for each benchmark
program. On the NCSA cluster and EC2, we compiled the benchmarks
using the Intel compiler with the option flags “-openmp -O3.”

Figure 1 shows the runtimes of each of the programs in the benchmark.
In general we see a performance degradation of approximately 7%–21% for
the programs running on the EC2 nodes compared to running them on the
NCSA cluster compute node. This percentage degradation is shown in the
overlaid line-chart in Figure 1. This is a surprising result; we expected the
performance of the compute nodes to be equivalent.

Login_OCT08_proof1.indd 20 9/15/08 2:58:44 PM

; LO G I N : O c tO b e r 20 0 8 b e N cH M A rk I N G A M A zO N ec2 21

f i g u r e 1 . n p b - O m p (c L a s s b) r u n t i m e s O n 8 c p u s O n e c 2 a n d
n c s a c L u s t e r c O m p u t e n O d e s . O V e r L a i d i s t h e p e r c e n t a g e
p e r f O r m a n c e d e g r a d a t i O n i n t h e e c 2 r u n s .

npB-Mpi VErsion

We ran the MPI version of NPB (NPB3.3-MPI) Class B on multiple com-
pute nodes on the EC2 provisioned cluster and on the NCSA cluster. For
the EC2 provisioned cluster, we requested 4 high-CPU extra large instances,
of 8 CPUs each, for each run. On both the EC2 and NCSA cluster compute
nodes, the benchmarks were compiled with the Intel compiler with option
flag -O3. For the EC2 MPI runs we used the MPICH2 MPI library (1.0.7),
and for the NCSA MPI runs we used the MVAPICH2 MPI library (0.9.8p2).
All the programs were run with 32 CPUs, except BT and SP, which were run
with 16 CPUs.

Figure 2 shows the run times of the benchmark programs. From the results,
we see approximately 40%–1000% performance degradation in the EC2 runs
compared to the NCSA runs. Greater then 200% performance degradation is
seen in the programs CG, FT, IS, IU, and MG. Surprisingly, even EP (embar-
rassingly parallel), where no message-passing communication is performed
during the computation and only a global reduction is performed at the end,
exhibits approximately 50% performance degradation in the EC2 run.

f i g u r e 2 . n p b - m p i (c L a s s b) r u n t i m e s O n 3 2 c p u s O n t h e n c s a
a n d e c 2 c L u s t e r . b t a n d s p w e r e r u n w i t h 1 6 c p u s O n Ly.
O V e r L a i d i s t h e p e r c e n t a g e d e g r a d a t i O n i n t h e e c 2 r u n s .

Login_OCT08_proof1.indd 21 9/15/08 2:58:44 PM

22 ; LO G I N : vO L . 33, N O. 5

Mpi pErforMAncE BEncHMArks

We hypothesize that the Infiniband switch fabric in the NCSA cluster is en-
abling much higher performance for NPB-MPI. However, we want to quan-
titatively understand the message-passing performance difference between
using a scientific cluster with a high-performance networking fabric and a
cluster simply composed of Amazon EC2 compute nodes. The following re-
sults use the mpptest benchmark [5] to characterize the message-passing
performance in the two clusters.

The representative results shown in this article are from the bisection test.
In the bisection test, the complete system is divided into two subsystems,
and the aggregate latency and bandwidth are measured for different message
sizes sent between the two subsystems. In the cases shown, we conducted
the bisection test using 32-CPU MPI jobs.

Figures 3 and 4 show the bisection bandwidth and latency, respectively, for
MPI message sizes from 0 to 1024 bytes. It is clearly seen that message-pass-
ing latencies and bandwidth are an order of magnitude inferior between EC2
compute nodes compared to between compute nodes on the NCSA cluster.
Consequently, substantial improvements can be provided to the HPC scien-
tific community if a high-performance network provisioning solution can be
devised for this problem.

f i g u r e 3 . m p i b a n d w i d t h p e r f O r m a n c e i n t h e m p p t e s t
b e n c h m a r k O n t h e n c s a a n d e c 2 c L u s t e r s

f i g u r e 4 . m p i L a t e n c y p e r f O r m a n c e i n t h e m p p t e s t b e n c h m a r k
O n t h e n c s a a n d e c 2 c L u s t e r s

Login_OCT08_proof1.indd 22 9/15/08 2:58:44 PM

; LO G I N : O c tO b e r 20 0 8 b e N cH M A rk I N G A M A zO N ec2 23

conclusion

The opportunity of using commercial cloud computing services for HPC
is compelling. It unburdens the large majority of computational scientists
from maintaining permanent cluster fixtures, and it encourages free open-
market competition, allowing researchers to pick the best service based on
the price they are willing to pay. However, the delivery of HPC performance
with commercial cloud computing services such as Amazon EC2 is not yet
mature. This article has shown that a performance gap exists between per-
forming HPC computations on a traditional scientific cluster and on an EC2
provisioned scientific cluster. This performance gap is seen not only in the
MPI performance of distributed-memory parallel programs but also in the
single compute node OpenMP performance for shared-memory parallel pro-
grams. For cloud computing to be a viable alternative for the computational
science community, vendors will need to upgrade their service offerings, es-
pecially in the area of high-performance network provisioning, to cater to
this unique class of users.

rEfErEncEs

[1] The STAR experiment: http://www.star.bnl.gov/.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the Art of Virtualization,” ACM
Symposium on Operating System Principles, 2003.

[3] Simson Garfinkel, “Commodity Grid Computing with Amazon’s S3 and
EC2”, ;login:, Feb. 2007.

[4] NAS Parallel Benchmarks: http://www.nas.nasa.gov/Resources/Software/
npb.html.

[5] OpenMP specification: http://openmp.org.

[6] Message-Passing Interface (MPI) specification: http://www.mpi-forum
.org/.

[7] mpptest—Measuring MPI Performance: http://www-unix.mcs.anl.gov/
mpi/mpptest/.

Login_OCT08_proof1.indd 23 9/15/08 2:58:44 PM

24 ; LO G I N : vO L . 33, N O. 5

a lv a l . C o u C H

system
administration
thermodynamics
Alva Couch is an Associate Professor of Computer
Science at Tufts University, where he and his stu-
dents study the theory and practice of network and
system administration. He served as Program Chair
of LISA ’02 and was a recipient of the 2003 SAGE
Outstanding Achievement Award for contributions
to the theory of system administration. He currently
serves as Secretary of the USENIX Board of Directors.

couch@cs.tufts.edu

V i r t u a l i z at i o n p r o V i d e s s e V e r a l
ways to transform the question “Why does
this fail?” into the related question “Is this
fast enough?”

Fellow system administrators, do you find yourself
troubleshooting systems more and enjoying it less?
Do you spend most of your time correcting the
“same old problems”? Are legacy systems millstones
around your neck? Then, from what I can tell, you
are like most system administrators. For those of
you in this situation, I have a controversial mes-
sage: The troubleshooting you are doing now is already
obsolete.

In the following, I will outline techniques for mini-
mizing common kinds of trouble by use of virtu-
alization. Most of these techniques are common
knowledge, and I apologize in advance for stating
the obvious. But, in my experience, many system
administrators of good faith and stronger charac-
ter than my own still endure these various tribu-
lations. This article is written for them because I
think they remain in the majority.

No strategy I am going to suggest actually elimi-
nates trouble. Instead, trouble is transformed into
a hopefully more manageable form. Virtualization
allows one to replace configuration troubleshoot-
ing with performance troubleshooting. One key to
understanding this transformation is to consider it
as part of the “thermodynamics of system admin-
istration.” System administrators, like mechanical
engineers and physicists, have to cope with con-
servation laws, and one thing that is conserved is
trouble. We cannot eliminate trouble, but we can
make choices that transform it into a perhaps more
manageable (and hopefully “user-friendly”) form.

The Three Laws of Thermodynamics

Trouble is a form of entropy, and thus it is subject
to the laws of thermodynamics. Ginsberg once de-
scribed the three laws of thermodynamics as “One
can’t win, one can’t break even, and one can’t get
out of the game.” In system administration terms,
we might restate these laws as follows:

There is no way to prevent trouble.■■

There is no zero-cost way of transforming ■■

trouble into other forms.
Trouble approaches zero only as system use ■■

approaches zero.

The theme of this article is the second law. In sys-
tem administration, as in thermodynamics, one

Login_OCT08_proof1.indd 24 9/15/08 2:58:44 PM

; LO G I N : O c tO b e r 20 0 8 systeM A dM I N I str AtI O N tH e r MO dy N A M I cs 25

can, by applying some energy, transform trouble to a (hopefully) “more con-
venient” form.

As a physical analogy, suppose that you are careening down a hill at high
velocity toward an obstacle. To mitigate this, you can apply a brake, but the
action of applying a brake has its own problems, including heat buildup.
Your action can transform the problem of careening down the hill into the
problem of controlling the heat from a brake, but it helps to know how to
handle heat from the brake before applying it!

In the same way that brakes convert velocity to heat, I will outline several
techniques for transforming configuration issues into performance issues. I
believe that the most powerful tool the system administrator has for dealing
with trouble is architectural design. The proactive system administrator strives
to make trouble easier to handle by employing virtualization to limit the
forms in which trouble arises. When one changes the form of trouble, one may
need new skills to mitigate new kinds of trouble. But if one designs cleverly,
the total time one actually spends, the amount of downtime, and the knowl-
edge needed to cope can all be dramatically reduced.

Minimizing coupling and Maximizing cohesion

Our first two steps borrow principles from software engineering. A good
architectural design minimizes coupling and maximizes cohesion [1]. Two
components are coupled to the extent that they interact; couplings corre-
spond to “things to remember.” By contrast, a cohesive component groups
related functions together inside one entity.

Unnecessary coupling is a major cause of troubleshooting and maintenance
cost. Examples of coupling problems include version skew in libraries and/or
packages, disagreement between two parameter values that should agree, or
conflicting (and thus impossible) requirements for assuring the function of
two co-resident applications.

As a trivial example, it is impossible to install both php4 and php5 Apache
modules at the same time. Such dependencies arise from application require-
ments (e.g., one php4 application and one php5 application that are in-
tended to execute on the same physical server).

The main trick I will use to transform trouble is to trade performance prob-
lems for combinatorial problems. A “combinatorial problem” is an error in
how software is configured or how it interacts with other software, whereas
a “performance problem” is a situation in which an operation executes prop-
erly but perhaps more slowly than might be desired.

For example, one can solve the php4/php5 problem by creating two virtual
operating system instances, each running its own Apache server. One server
includes php4 and the other includes php5. The illusion that both are run-
ning on the same machine can be maintained by making the original ma-
chine into a proxy server.

Segregating services onto distinct components changes the kind of trouble
that can arise for the services. If they are running on separate servers (either
through physical or virtual separation), then the services are prevented from
interacting in ways that co-located services can, so there is absolutely no
problem in supporting php4 on one instance and php5 on the other. But we
may have to maintain, by other means, the illusion that the applications ex-
ecute on the same server (e.g., by some form of service switching). One form
of complexity replaces another.

Login_OCT08_proof1.indd 25 9/15/08 2:58:44 PM

26 ; LO G I N : vO L . 33, N O. 5

It is possible, though, to minimize coupling too much. One should also
strive for cohesion. Two services are cohesive if they interact with a shared
information domain. For example, putting DNS and DHCP on the same
server is (usually) cohesive because both pertain to IP, but co-locating DHCP
and a Web server is (usually) not cohesive, because the information domains
of the two services (usually) overlap very little.

The concepts of coupling and cohesion are borrowed from software engi-
neering but the justifications are perhaps even stronger for system adminis-
tration. In software engineering, coupling between program modules leads
to a need for increased communication between module authors, which delays
software development. In system administration, coupling between compo-
nents leads to a need for increased knowledge on the part of the individual
administrator trying to make them work together, which means more time
spent in initial setup and in troubleshooting the interacting components.

Through use of virtualization, dependency troubleshooting of co-located services
is an obsolete skill, because two software packages that implement services
can be positioned within different (virtual) platforms that cannot “depend”
on one another. The whole process of installing an instance becomes cen-
tered on one application and its needs. But in the latter case, a new form of
trouble can arise, in the form of resource dependencies (e.g., shortage of CPU
cycles or I/O bandwidth among two or more instances). These dependencies
cannot break an application, but they can cause it to execute unexpectedly
slowly. We do not eliminate trouble; we merely transform its nature.

One side effect of using virtualization is that some of the complexities of
configuration management are also obsolete. One thing that makes configu-
ration management difficult is change. In a virtual environment, one can
often afford to build a new server instance while existing server instances
are live, so that one can start afresh whenever a change is needed. This miti-
gates several kinds of configuration management problems.

Exploiting social pressure

A second design guideline is so obvious that many of us might forget it.
Software cannot ever be completely tested. Therefore, it makes sense to de-
sign one’s systems around software environments that others have aggres-
sively utilized and tested, because each application is more likely to have
been thoroughly debugged for those environments than for others. In par-
ticular, bugs resulting from configuration problems (e.g., hidden dependen-
cies) are much less likely to arise in commonly deployed environments. The
simple reason for this is social pressure; the widespread use of a particular
environment means that most bugs for that environment will be discovered,
reported, and, hopefully, repaired. The most common environments for an
application thus naturally become the most tested and functional, because
there is a higher incentive for developers to address the bugs with the wid-
est social exposure. Thus, it is typically much more likely that an applica-
tion will run properly in a vanilla environment (e.g., the default installation
of a Linux distribution) than in a customized one. If problems do arise, it is
more likely that others have seen them before and have already found and
published work-arounds.

By using virtualization one can arrange, much more easily than ever before,
for an application’s environment to be the one with the greatest social foot-
print, because the environment for each application can be chosen indepen-
dently.

Login_OCT08_proof1.indd 26 9/15/08 2:58:44 PM

; LO G I N : O c tO b e r 20 0 8 systeM A dM I N I str AtI O N tH e r MO dy N A M I cs 27

Horror stories about failing to exploit social pressure abound. One should
not adopt software on the bleeding edge unless one expects to bleed along
with it.

For example, our site was one of the first adopters of Sun’s NIS+ directory
service, because it had many neat features we wanted. Unfortunately, it also
had many painful bugs we did not want. What we did not understand or
account for at the outset of this project was the power of social pressure.
NIS+’s deployment footprint never became large enough for the bugs to be
addressed (we heard later that Sun had not used it internally), and we re-
placed NIS+ with LDAP before the problems we encountered were resolved.
By contrast, by possessing an enormous and multi-platform social footprint,
LDAP has been pounded upon by a large number of conscientious users and
has thus been forged by social pressure into a reliable tool.

This is an object lesson in the danger of creativity. Becoming a follower
rather than a leader often involves less pain and suffering. This principle
takes many forms, from avoiding first adoption of a tool to avoiding being
the first to apply a new security patch [2].

It may seem obvious that our jobs as system administrators do not involve
making developers fix their bugs but, instead, require us to provide mecha-
nisms for getting useful work done in the presence of those bugs. Although
we file bug reports as a public service, no system administrator can reason-
ably expect a user to wait for a bug fix. We are instead the masters of the
work-around, not the masters of the software, and if anyone has managed to
make it work, we are expected to know exactly how and why. Again, virtu-
alization allows us to synthesize almost any software environment needed
by an application, without breaking any other one.

softening Hard Boundaries

A third trick in the contemporary system administrator’s arsenal is to use
virtualization to control which attributes of a network are “hard” and which
are “soft.” A hard attribute is an attribute of a system that can only be con-
trolled by a human being, such as the physical location of a machine or the
location of the access point to which it binds. A soft attribute is one that can
be manipulated by setting values of parameters via software and/or automa-
tion.

The easiest example of hard and soft boundaries involves the computing
power of servers. In a non-virtualized environment, the amount of comput-
ing power available to a service is a hard attribute, whereas in a virtualized
environment it can be considered a soft attribute (e.g., a configuration pa-
rameter of the hypervisor). As another example, virtual LANs make the net-
work to which a host is connected a soft attribute, whereas in non-virtual
LANs this is a hard attribute.

The overall purpose of softening a hard boundary is to turn a decision
whose implementation requires major work into one requiring setting pa-
rameters. For example, consider the example above for php4 and php5.
If the two applications are installed on two servers, then changing the re-
sponse time for one application requires rebuilding the service on another
server, but if the applications are virtual instances on one server, changing
response time can be expressed as a parameter change in the hypervisor.

In both of these cases, softening does not eliminate entropy; rather, it trans-
forms it into a new form. Even the very best virtualization strategies exact a
performance penalty, because sharing resources among more than one oper-
ating system takes time (thus invoking the second law).

Login_OCT08_proof1.indd 27 9/15/08 2:58:44 PM

28 ; LO G I N : vO L . 33, N O. 5

Edge cases

Alas, there are always cases in which one cannot straightforwardly eliminate
troubleshooting of combinatorial problems. Mostly this is because the user
explicitly requires several conflicting services to be co-located on the same
device, such as a workstation. Then we are faced with the same old combi-
natorial problems. What to do?

Fortunately, there are several evolving approaches to this problem, all in-
volving advanced forms of virtualization that the system administrator
controls. Operating systems do not represent the only grain at which virtu-
alization can function; one can also virtualize file access, registry access, or
library access for different applications running within one operating system
instance. Some visionaries in the virtualization community believe one will
be able to routinely virtualize the software environment for each application
without virtualizing the underlying operating system. The net result of this
strategy is the same as before but is much lighter in weight; virtualizing the
“open” call has a much lower overhead than virtualizing the whole operating
system.

For example, IBM’s prototype Progressive Deployment System (PDS) [3] vir-
tualizes library and registry access in Windows without virtualizing the
whole operating system. Each application thus executes in a custom envi-
ronment in which registry or library conflicts cannot occur. This is done
without virtualizing the whole operating system, which makes it much less
resource-intensive to use.

understanding resource contention

In all of the examples cited so far, we have transformed entropy arising from
combinatorial conflicts into entropy arising from resource conflicts. In the
first case, we traded speed for combinatorial complexity, preferring a sim-
pler, slower solution to a faster, more complex one. In the second case, we
traded customizability for robustness, preferring a mainstream, well-un-
derstood solution to a perhaps more customized but less-tested option. In
the third case, we traded space and time for flexibility, preferring to control
state via software rather than by rebuilding servers. The good news is that a
few common forms of system failure, including downtime from configura-
tion conflicts, are “virtually” eliminated.

But in system administration, as in thermodynamics, entropy remains. We
have only changed the way it can be expressed. We have ensured that the
various and sundry state machines making up our applications have the
configurations and environmental conditions that they need to react cor-
rectly, but not that resources that they need will be available when they need
them.

Addressing resource conflicts is a very different form of troubleshooting
from those most system administrators are used to. Resource contention is
a “quiet” kind of failure; systems fail “not with a bang, but with a whimper.”
Failures are subtle and sometimes nearly unnoticeable.

But there is also a subtle value shift involved. Virtualization has explicit per-
formance penalties. In eliminating combinatorial issues, we have already de-
parted from the old rubric of making systems function “as fast as possible,”
and we are forced to ask ourselves some difficult questions about what per-
formance is “good enough.” Once we know what is “good enough,” we can
ask ourselves the second question, “What changes will provide performance
that meets that standard?”

Login_OCT08_proof1.indd 28 9/15/08 2:58:45 PM

; LO G I N : O c tO b e r 20 0 8 systeM A dM I N I str AtI O N tH e r MO dy N A M I cs 29

What is Acceptable performance?

Old habits die hard. Most of us are used to squeezing the maximum possible
performance out of our systems, so that the question of what is appropriate
performance never arises. When we use virtualization tricks to invoke inde-
pendence, social pressure, and softness, we trade optimal performance for
robustness. Obviously, it is possible to trade away more performance than is
reasonable. But what is “too much to trade”?

First, we need some reasonable definition of what performance actually
means. There are several possible definitions, all involving some concept of
response time. For a Web site, response time is the time it takes from when
you send a request to when you receive content. For a shell, response time
refers to the time between a key press and the associated change in screen
state. In a batch environment (e.g., accounts payable), response time is the
elapsed time between job submission and job completion.

Second, we need some way of measuring performance. There are many
mechanisms, both direct and indirect. A direct performance measure quan-
tifies what the user sees, whereas an indirect measure is related to, but is not
exactly equivalent to, the user’s experience. Direct measures include bench-
marking and soliciting user feedback; indirect measures include server load,
memory utilization, etc. The latter are functionally related to what the user
sees, but the relationship is not (usually) easy to describe. For example, we
agree that servers with high load averages are “bad,” but “just how high is
bad” depends upon what the user experiences, and not necessarily what the
system administrator sees in the logs.

sLos and sLAs

The next step is to define acceptable performance. Here we can borrow some
terms from autonomic computing and outsourcing. A “Service Level Objec-
tive” (SLO) is a definition of what directly measured performance is “good
enough.” This is usually specified in very high-level terms, as end-to-end re-
sponse time (e.g., “Users should obtain a response from the Web site within
one second”). SLOs are determined by economic analysis of the business
effects of service delays. For example, a few seconds of delay may be cata-
strophic for online stock trading, and it is generally accepted that response
delays in online shopping lead to lost sales.

An SLO may also set different goals for each kind of service or each kind of
client. It is common to refer to clients as “gold,” “silver,” or “bronze” to de-
note priorities for performance. For example, in a hospital, doctors need
“gold” service levels, but for staff not involved in patient care (e.g., billing
personnel), “bronze” response suffices. In the emergency room, an even
higher “platinum” service level may be needed.

SLOs can also embody business strategy. Some analysts believe that in a
sales situation, it is better not to respond at all than to respond slowly. Giving
up on customers who have already waited too long diverts computational
resources away from customers who represent lower sales potential, to cus-
tomers who have not yet been made to wait (and thus represent higher sales
potential). Such a strategy is sometimes called an admission control policy, be-
cause one only “admits” customers to one’s site that one has the resources to
serve in a timely manner and tells the customers whom one expects to expe-
rience long response delays to come back later (because, statistically, if one
does admit them, they are likely to leave before buying anyway) .

By contrast with an SLO, a Service-Level Agreement (SLA) defines not only
desirable objectives but also penalties and incentives in interacting with

Login_OCT08_proof1.indd 29 9/15/08 2:58:45 PM

30 ; LO G I N : vO L . 33, N O. 5

some external client. SLAs are common in defining expectations between a
business and a hosting service. Whereas an SLO might say, “Response time
should be less than one second,” an SLA might add, “Response times over
one second will be billed to the provider at one cent per instance” or “The
provider will be paid one cent more for each request whose response time
is less than one-half second.” Incentives often vary for different kinds of cli-
ents.

The typical use of an SLA is to define interactions between autonomous ser-
vice providers, but system administrators can utilize the concept as a way of
describing service requirements between themselves and their organizations.
In this case:

A service objective is the minimum performance required by manage-■■

ment.
A service penalty (for not meeting the objective) or incentive (for ex-■■

ceeding the objective) can be interpreted in a human context (e.g., raises
and promotions).

The Hard Question

In moving into a new territory it helps to understand the objectives and in-
centives. What is your SLA as a system administrator? If your site is a devel-
opment site, there may not be a strong business reason for quick response
time, so your SLO expectations may be low and your SLA may be unde-
manding, whereas fluidity and deployment agility may be very important
instead. If your site engages in financial trading, there may be sound busi-
ness reasons for your SLO to include high minimum expectations and high
penalties for delays.

This can be a very difficult question to answer, because most managers may
not ever have thought about system administration in this way and may not
be aware of the thermodynamic principles (as outlined in this article) that
give system administrators a choice between manageability and performance.

A new World

Virtualization gives us new choices. The profound impact of those choices is
to trade one property of a system for another. This allows us to architect sys-
tems for robust behavior, effective automation, and autonomic control. But to
reap the benefits, we cannot tune a system to run “as fast as possible,” and
such an objective is now rather meaningless. The job of system administra-
tor has changed, from doing “whatever it takes to make it work,” to making
choices that are “good enough.” Before, we were thinking about cost; now it
is time to concentrate on value.

rEfErEncEs

[1] Roger S. Pressman, “Design Engineering,” in Software Engineering: A Prac-
titioner’s Approach, 6th ed. (New York: McGraw-Hill, 2004), chapter 9.

[2] Steve Beattie, Seth Arnold, Crispin Cowan, Perry Wagle, Chris Wright,
and Adam Shostack, “Timing the Application of Security Patches for Opti-
mal Uptime,” Proc. LISA ’02, USENIX Association, 2002.

[3] Bowen Alpern, Joshua Auerbach, Vasanth Bala, Thomas Frauenhofer,
Todd Mummert, and Michael Pigott, “PDS: A Virtual Execution Environment
for Software Deployment,” Proceedings of the 1st International Conference on
Virtual Execution Environments (VEE ’05), ACM Press, 2005.

Login_OCT08_proof1.indd 30 9/15/08 2:58:45 PM

; LO G I N : O c tO b e r 20 0 8 A 36 - use r A ste rI sk I N stA LL AtI O N 31

R o b e R T s o l o M o n

a 36-user Asterisk
installation
Phone System Administrator is one of several hats
Bob Solomon wears at a medium-sized non-profit in
New York City. He would like to participate in more
Asterisk projects.

bobsol@gmail.com

m y n o n - p r o f i t e m p l o y e r n e e d e d
to replace an aging Toshiba KSU system
because the phones, some of which date
back to the ’80s, were falling apart and the
voicemail’s hard drive was grinding loudly.
I was able to convince management to
replace the system with an Asterisk-based
PBX by promising a lower end cost and the
elimination of vendor lock-in. In this article,
I walk you through the process I followed:
selecting phones, modifying the Asterisk
configuration, and training users.

Asterisk installations of the sort I had done previ-
ously, where Asterisk functioned as an answering
machine or a small office phone system, have been
documented in many places. This installation of-
fered an opportunity to take my Asterisk skills to
the next level. The system supports eight lines, 24
extensions, and over 36 voicemail users.

selecting phones

Originally, I proposed a system utilizing a chan-
nel bank and Aastra 9116 phones. The final design
used Polycom IP430 and IP601 SIP phones. The
keypad and voice quality of a sample 9116 was dis-
appointing in comparison to our existing Toshiba
EKT phones.

Business-quality analog phones are available at
about the same price point as the Polycom SIP
phones that we ultimately selected. To support the
SIP phone the only hardware required is an Ether-
net or, ideally, Power Over Ethernet port. The per
port cost of POE is much less than that of an FXS
(analog phone station) port.

The existing phone system provided voice-first in-
tercom; that is, intercom calls were answered by
the recipient’s phone on speaker phone, without
any action on the part of the recipient. A warning
tone preceded the call so that the recipient knew
when he or she no longer had privacy. An all-page
feature similar to voice-first intercom, but con-
necting to most phones on the system at once, one
way, was also provided. A conversation with man-
agement confirmed the importance of retaining
these features. I tested a sample Polycom IP430.
This phone could handle voice-first calls with bet-
ter sound quality than the existing system. The
keypad feel and sound quality compared favorably
with our existing phones.

Login_OCT08_proof1.indd 31 9/15/08 2:58:45 PM

32 ; LO G I N : vO L . 33, N O. 5

Polycom phones can be configured from the keypad, through an HTML
interface or by XML files, or automatically downloaded by the phone at
bootup. I strongly recommend setting up the Polycom phones to download
their configuration from the Asterisk server rather than configuring the
phones individually. Getting the phones talking with the server’s dhcpd,
(VS)ftpd, and ntpd was a day’s work [1].

infrastructure and Hardware

The Toshiba system used twisted pair, but SIP phones require CAT5 or bet-
ter. I considered and rejected the use of our data network for telecommuni-
cations.

The separate voice network I constructed incorporated a POE switch, elimi-
nating the need for an AC adapter at each phone. This is convenient for the
users and makes the installation of wall phones away from an outlet cleaner
and easier. The voice-only network avoided bottlenecks in the existing data
network and segregated SIP phone registration and ftp configuration traffic,
enhancing security.

I selected a Netgear 24-port POE switch, model FS728TP, based on POE
watts available and price. The fan in this switch was noisy enough that
someone in the adjoining room complained, so I removed the switch from
the rack-mount and placed it on sound insulating material on a rack-mount
shelf.

Asterisk is hosted here on a server built on an Asus TS300-E4/PA4 with a
Xenon dual-core 3070 2.66-GHz processor with 1 GB RAM. Call volume is
about 6,800 calls a month. I can rip a CD on the system for music on hold
during times of heavy call traffic without degradation in voice quality.

Connection to eight POTS lines (FXO) and four FXS ports for analog ex-
tensions is provided by a set of three Sangoma A200 cards with optional
hardware echo cancellation. Echo cancellation is always needed with mod-
ern analog (really digital) voice cards. Hardware echo cancellation is of bet-
ter quality than freely available software offerings, reduces the load on the
CPU, and saves several hours of time tuning settings to eliminate echo. Only
one echo cancellation module is needed per set of Sangoma cards. There
have been no complaints about sound quality on the calls handled using
these cards except for rare reports of echo when someone is using a head-
set. This is resolved by turning down the volume on the extension. Another
advantage of the Sangoma cards is that they do not require a PCI slot with a
unique IRQ per four lines as did the Digium TDM400P cards used on a pre-
vious system. Setting up three TDM400Ps with unique IRQs can take hours
on the wrong motherboard.

The Digium cards have been redesigned and I have no experience with the
new version, TDM410P, which addresses these issues. The Sangoma cards
have noisy FXS or station ports. Most of our extensions are SIP phones, so
the noise has not been a problem here.

Hardware issues

About three weeks after the system went live, while I was away for the week-
end, the system crashed. When I checked the log files, I found that the sys-
tem had crashed at a time when no calls were active. An updatedb cron job
had been running. Within a week, the system crashed again early in the
morning while running a backup. Initially I suspected a failing hard drive.
When the system was taken offline, late at night, memtest86 was run on
a hunch and memory failure was detected [2]. There have been no crashes

Login_OCT08_proof1.indd 32 9/15/08 2:58:45 PM

; LO G I N : O c tO b e r 20 0 8 A 36 - use r A ste rI sk I N stA LL AtI O N 33

since the memory was replaced. Please note that the symptoms of this mem-
ory failure were freezes during disk I/O and md5sum sometimes reporting
bad check sums on good files.

The server was temporarily moved to a physically smaller SATA-only system
that had no Molex power connectors. I spent the night trying to get more
than one Sangoma card to work in the replacement server and learned some
details about the Sangoma A200 card system that are not obvious from the
sales literature, although they are more or less documented on the Sangoma
wiki hardware page [3].

Sangoma A200 cards are assembled into a system consisting of a base card,
daughter cards, and modules using a small backplane. As many as 24 ports
can be installed using one PCI slot. In the case of this system, 12 ports are
provided by a base card, two daughter cards, and six modules (see Figure
1). This assembly of cards uses one PCI slot, but it fills three openings in the
back of the box. An advantage to Sangoma’s system compared to others that
use separate PCI slots for each group of modules is that all channels have
common synchronous clocking [4].

That night, I tried installing the cards in many different configurations and
combinations, but each time I rebooted the server, wancfg_zaptel would de-
tect the cards, but loading the modules with “wanrouter start” would fail
when more than one card was installed. This was because the Sangoma
backplane requires a 12-V connector and the power it supplies even if no
FXS (station) cards are installed.

Ports are numbered according to the backplane slot used, with the lowest
ports in the leftmost slot. If a slot is skipped, there will be a gap in the port
numbers.

The base card can be plugged into any socket in the Sangoma backplane.
Clearance between the cards is acceptable with the base card in any position
but is best when the base card is in the leftmost socket on the backplane.

The next day a co-worker suggested that I locate and remove the defective
memory stick and switch back to the proper server. Service was restored to
all ports while I waited for replacement memory to arrive.

Extensions using Dialplan pattern Matching

I used pattern matching in the dialplan for calls to the extensions, rather
than a macro. In the global section of the dialplan a variable like the ones
shown for extensions 12 and 13 is set for each real extension. To add an ex-
tension, all that must be done to the dialplan is to add another variable like
those here:

x12=Sip/12
x13=Zap/11 ;door phone

Login_OCT08_proof1.indd 33 9/15/08 2:58:45 PM

34 ; LO G I N : vO L . 33, N O. 5

The following dialplan excerpt handles intercom calls placed from an inside
context:

; line below is for voicemail for calling self
exten => _[1-8]X,1,GotoIf($[${CALLERID(num)} =
 ${EXTEN}]?CheckVoiceMail)
; check if there is an extension if not go to voicemail
exten => _[1-8]X,n,GotoIf($[!${EXISTS(${x${EXTEN}})}]?Voicemail)
exten => _[1-8]X,n,SIPAddHeader(Alert-Info: Ring Answer) ; voice first
exten => _[1-8]X,n,Dial(${x${EXTEN}},20,tk)
exten => _[1-8]X,n,Voicemail(${EXTEN},u)
exten => _[1-8]X,n,GotoIf($[${VMSTATUS} = FAILED]?NoVoicemail)
exten => _[1-8]X,n,Hangup()
; “this extension has no voicemail or your message was
; too short”
exten => _[1-8]X,n(NoVoicemail),Playback(cust89)
exten => _[1-8]X,n,Hangup()
exten => _[1-8]X,n(CheckVoiceMail),VoiceMailMain(${EXTEN})
exten => _[1-8]X,n,Hangup()

If the extension matches the caller ID, we check voicemail. The Polycom
phones place a call like this when voicemail is called from the voicemail but-
ton on the phone. If an extension variable does not exist, we go straight to
voicemail, caller side. If voicemail fails, an error message is played to the
caller.

Tuning the system

The Polycom phones were dumbed down and customized. Call forwarding
was disabled in the site Polycom configuration file to prevent abuse by our
users and guests.

<divert>
 <fwd divert.fwd.1.enabled=”0” divert.fwd.2.enabled=”0”
 divert.fwd.3.enabled=”0” divert.fwd.4.enabled=”0”
 divert.fwd.5.enabled=”0” divert.fwd.6.enabled=”0”/>
</divert>

Call waiting was turned off for each extension in sip.conf:

call-limit=1

Calls to the 601s, used by our receptionists, still came through on call wait-
ing. I had to add the following line to the Polycom site configuration file to
get these phones to return a busy signal:

<call call.callsPerLineKey=”1”>

This was important because I wanted calls that come through while the re-
ceptionist is talking to come through on the additional line buttons rather
than as call waiting calls on the first button.

A DND (Do Not Disturb) hard key was added to every Polycom 430. I edited
the site phone configuration file and physically changed a key cap on every
phone:

<keys key.IP_430.32.function.prim=”DoNotDisturb” />

To set up voice first I edited the Polycoms’ configuration and the Asterisk
dialplan. The site-wide Polycom configuration file was modified, providing a
ring class with a ring type of ring-answer [5, 6]:

Login_OCT08_proof1.indd 34 9/15/08 2:58:45 PM

; LO G I N : O c tO b e r 20 0 8 A 36 - use r A ste rI sk I N stA LL AtI O N 35

<alertInfo voIpProt.SIP.alertInfo.1.value=”Ring Answer”
 voIpProt.SIP.alertInfo.1.class=”4”/>
<RING_ANSWER se.rt.4.name=”Ring Answer” se.rt.4.type=”ring-answer”
 se.rt.4.timeout=”1000” se.rt.4.ringer=”11” />

In the dialplan a SIP header must be sent to the phone on a per-call basis to
make that call voice first:

exten => #30,1,SIPAddHeader(Alert-Info: Ring Answer)

Users initiate an all-page by pressing #30, the code used on the previous
system. In the dialplan, this is implemented with the Page command:

exten => #30,n,Page(${ALL_PAGE})

A context for blind transfers is provided and the _ _TRANSFER_CONTEXT
variable set to avoid the blind transfers going through ring-answer: When
testing the system, before this change was made, a transferred call would be
automatically answered and on speaker phone whether the intended recipi-
ent was at her desk or not.

exten => s,n,Set(__TRANSFER_CONTEXT=t_c) ; context for blind transfer

I have not yet found an equivalent solution for supervised transfers. These
transfers are currently set up to go through voice first. Ideally, the first con-
tact, introducing the transfer, would go through voice first. When the re-
ceiving party accepts the call and the transferring party hangs up, the
transferee’s phone should ring.

The Polycoms and Asterisk do not play well where call parking is concerned.
The Polycoms expect the user to provide the parking space number; As-
terisk expects to provide the space number. To use the park feature key on
the Polycoms, the user has to press “more” then “park,” press a bogus ex-
tension number that Asterisk will ignore, and then press park again. If the
phone has more than one line presence, Asterisk calls the user back with
the parking space number, rather than just announcing the number. Users
universally elect to park calls PBX style, dialing a two-digit feature code on
the keypad rather the using the feature on the phone. In this case, all the
user has to do is dial *2 and the system immediately parks the call and an-
nounces the parking space number to the user.

The two-digit park sequence is set in features.conf. I needed to adjust the in-
terdigit timeout to 1,000 ms, a value that works for our users:

[general]
...
;featuredigittimeout = 1000
[featuremap]
...
parkcall => *2 ; Park call (one step parking)

The park key on the Polycom phones requires a callpark extension in the
dialplan.

exten => callpark,1,ParkAndAnnounce(silence/1:pbx-transfer:
 PARKED|120|SIP/
${DIALEDPEERNUMBER}|internal,${DIALEDPEERNUMBER},1)

In either case, parkedcalls must be included in the context:

include => parkedcalls

Login_OCT08_proof1.indd 35 9/15/08 2:58:45 PM

36 ; LO G I N : vO L . 33, N O. 5

Extension Aliasing

When an employee leaves the organization, I am often asked to forward that
employee’s calls to the extension or mailbox of the person taking over the
departed employee’s workload.

Initially, a documented solution could not be found [7]. Experimentation re-
vealed that this can be done with a Goto:

exten => 69,1,Goto(74,1); 69 is an alias for 74

Door intercom and Door Lock control

The old system provided an intercom with a door lock control at the side
door. To implement this feature with Asterisk, I provided a Viking analog
speaker phone, model E-20B, with no dial and an auto answer feature. This
phone looks like an intercom. Calls from this phone start in an immediate
context in the Asterisk dialplan and ring selected extensions automatically.

[door]
; door intercom
exten => s,1,Answer()
exten => s,n,Dial(${DOOR_CALLS},30,tk)
exten => s,n,Playback(silence/1)
exten => s,n,Hangup()

The immediate keyword is set in zapata.conf so that the s extension exe-
cutes without any action other than going off hook when the intercom user
presses “call”:

context=door
immediate=yes
callerid=”Door Intercom”
group=2
signalling = fxo_ks
channel => 11

A Viking door control box, C-2000A, providing a relay for lock control, and
a MIS1C DTMF relay board available from Mike Sandman were considered
for door lock control. I selected the Sandman board because connection is
in parallel with the phone on an available FXS, station, port. The C-2000A
requires an FXO (central office) port and costs four times as much as the
MIS1C. The C-2000A includes a metal case and offers many features that I
did not need here.

To open the door, users press a programmable code while on the door inter-
com call [8]. I added the following line to the incoming context:

exten => 13,1,Goto(13,NoVoicemail)

When callers press the door intercom number, 13, from an outside call they
hear “This extension has no voicemail.” Callers are prevented from calling
the door intercom from outside the building.

Managing Day, night, and Holiday Mode changes

Asterisk configuration is finer-grained then the proprietary systems I have
worked with in the past. The area of day and night call handling provides a
good example of this.

The system plays a different main message depending on whether we are
open, closed for the night, closed for a holiday, or closed on an August Sun-

Login_OCT08_proof1.indd 36 9/15/08 2:58:45 PM

; LO G I N : O c tO b e r 20 0 8 A 36 - use r A ste rI sk I N stA LL AtI O N 37

day. Also, calls to the operator go directly to voicemail when we are closed
for any reason. Management stipulated that these changes in day and night
call handling be automated.

Once per incoming call a global variable MODE is read from the persistent
Asterisk database:

exten => s,n,Set(GLOBAL(MODE)=${DB(vars/MODE)})

The value of this variable has been set to 0 through 3, with 0 representing
open and the positive integers representing various closed states. A main
message is chosen based on the value of the variable:

; set and play the main message day|night|holiday|sunday-in-August
exten => s,n,Set(MSG2PLAY=cust02)
exten => s,n,ExecIf($[${MODE} = 1]|Set|MSG2PLAY=cust03)
exten => s,n,ExecIf($[${MODE} = 2]|Set|MSG2PLAY=cust07)
exten => s,n,ExecIf($[${MODE} = 3]|Set|MSG2PLAY=cust08)
exten => s,n,Background(${MSG2PLAY})

If MODE is true when a caller in the incoming context presses 0 a night
message is played and the Operator extension does not ring:

exten => s,n,GotoIf(${MODE}?oper-night,s,1) ;play night if mode > 0

A cron job, changing the value of MODE in the Asterisk DB, is run at closing
time every day.

night mode, weekday, saturday
30 20 * * mon-fri,sat /usr/sbin/asterisk -rx \
 ‘database put vars MODE 1’ &>/dev/null

At opening time in the morning, cron runs a Perl script that checks for a
holiday and changes the value of MODE accordingly [9]. Luckily, we are
open for business on Easter.

Advantages to this approach are persistence of the MODE variable over a re-
start of Asterisk or even a reboot and control of our schedule with cron and
an easily maintainable Perl script. Holiday determination is made once per
day rather than once per call.

In the event of a mishap, the mode can be changed from any phone, as fol-
lows:

[set-mode]
; “system is in day|night|holiday mode”
exten => s,1,Background(cust9${DB(vars/MODE)})
; “press 0 for day, 1 for night, 2 for h...”
exten => s,n,Background(cust88)
exten => s,n,Waitexten(5)
exten => s,n,Hangup()

exten => _[0-3],1,Set(DB(vars/MODE)=${EXTEN})
; “system is in day|night|holiday mode”
exten => _[0-3],n,Background(cust9${EXTEN})
exten => _[0-3],n,Hangup()

exten => i,1,Background(pbx-invalid)
exten => i,n,Goto(s,1)

Training users

The previous KSU phone system provided presence for six of our outside
lines at each phone. When the organization was smaller, with only three in-

Login_OCT08_proof1.indd 37 9/15/08 2:58:45 PM

38 ; LO G I N : vO L . 33, N O. 5

coming lines, a KSU setup was advantageous because call handling was in-
tuitive. We have had eight lines for many years now and Asterisk provides
for better call handling than could be provided with line buttons on each
phone. Because PBX call handling requires skills that will be new to most
users, training is required for receptionists and others in the front line of
call handling.

I reached an understanding with management about the need for user train-
ing prior to implementation. Management’s cooperation in this area was key
to the success of the project.

Training was provided for about half of our employees one on one and in
small groups. I trained some staff myself and also trained others to train. A
dialplan extension was provided which moves a call from the inside to the
outside context for the purposes of training and testing. Trainings took place
at a desk with two extensions and a cell phone.

Some useful training material was available on the Web, particularly at the
site of the Woods Hole Oceanographic Institution (WHOI). Unfortunately,
these pages have been moved or removed. I customized the material on the
WHOI site and wrote additional material [10].

We use four techniques for handling calls here: supervised and blind trans-
fers, call parking, and exclusive hold.

Blind and supervised transfers were new to our users. In a supervised trans-
fer, the transferee speaks to the recipient before the call is connected. For
nonemergency, nonexecutive calls, a blind transfer to the recipient’s exten-
sion is the best way to handle a call.

On the old system, a call could be placed on hold and a wanderer paged:
“So and So, please pick up a call on line three.” Users are intimidated by call
parking, even though the process is very similar. When a call comes in for a
wanderer, the call is parked and the recipient paged: “So and So, please pick
up a call on 701.”

I got repeated questions about how to forward a voicemail. When I tried this
myself, I found that upon completion of a successful voicemail forward the
system says, “Your message has been saved.” The user is left to wonder if the
transfer has gone through. This prompt can’t be changed because the system
uses it for other purposes.

is an Asterisk system right for your site?

A bare-metal Asterisk installation offers savings in hardware costs over a
proprietary system but adds costs for the time spent in configuration. Pack-
aged four-line, eight-extension turnkey small business phone systems (with-
out phones) are available for under $2,000 [11, 12]. Some of these systems
are Asterisk-based. The server, switch, voice cards, and 24 phones used here
cost $7,200. Components related to cabling and infrastructure cost $2,100.
Twelve weeks of labor went into this project, including planning and re-
search, requisition, premises wiring, system installation, configuration, and
initial training of staff.

Asterisk must be able to provide the features expected by management and
users with a reasonable amount of work. Voice-first intercom was a must-
have feature here. Two-digit extension numbers and some feature codes that
have been in use for over two decades were preserved. A door intercom was
provided. Phones needed to be simple and intuitive to use.

Login_OCT08_proof1.indd 38 9/15/08 2:58:46 PM

; LO G I N : O c tO b e r 20 0 8 A 36 - use r A ste rI sk I N stA LL AtI O N 39

You should have a good idea of what a properly working phone system
sounds and feels like. Experience administering the existing or another sim-
ilar system is a big plus. Compassion for the user experience is important. In
a small to medium-sized business, cabling skills may be handy.

The sustainability of a phone system that is managed by a system adminis-
trator editing files in an organization this size concerns me. I have not inves-
tigated available Asterisk GUI front ends, under the assumption that these
front ends would not be capable of the degree of customization needed here.
Secondary personnel should be trained in the administration of the system
so that changes and failures can be addressed when the primary administra-
tor is not available.

conclusion

Despite concerns about sustainability and a few too many rough edges, this
Asterisk installation has been successful. Users and management are happy
with the system. Sitting at the console and watching three dozen people in-
teract daily with a system running on Patrick Volkerding’s Slackware is sat-
isfying.

resources

The Asterisk beginner would do well to start with the book Asterisk, the Fu-
ture of Telephony [13]. At the Asterisk console, man style information on any
dialplan application or function can be accessed by typing:

fone*CLI> core show application ApPlIcAtIoN ;not case sensitive

or:

fone*CLI> core show function FUNCTION ;must be uppercase

When I need more detail than either of these resources provides, the voip-
info.org Asterisk pages [14] are often helpful. Start with the voice board
vendor’s Web site for installation instructions for both the kernel mod-
ules supporting their boards and Asterisk itself. In the case of the Sangoma
boards used in this project, the Sangoma wiki [15] was very helpful. The As-
terisk Web site [16] provides a good overview of the Asterisk project. If Poly-
com SIP phones are used don’t fail to download the Administrator’s Guide for
the SoundPoint IP/SoundStation IP Family [17].

rEfErEncEs

[1] http://www.voip-info.org/wiki/view/Asterisk%40Home+Handbook
+Wiki+Chapter+7#7221WhychoosePolycomVOIPPhonesbspan.

[2] http://weaversrevenge.com/ast36/burned-out.jpg.

[3] http://wiki.sangoma.com/sangoma-hardware#A200.

[4] http://www.sangoma.com/products_and_solutions/hardware/analog
_telephony/.

[5] http://www.voip-info.org/wiki/index.php?page=Asterisk+cmd+page.

[6] See p. 151 of the Administrator’s Guide for the SoundPoint IP/SoundStation
IP Family: http://www.polycom.com/common/documents/support/setup
_maintenance/products/voice/SoundPointIP_SoundStationIP_AdminGuide
_SIP3_0_Eng_Rev_A.pdf.

[7] http://asterisk-jtapi.sourceforge.net/setup.html.

Login_OCT08_proof1.indd 39 9/15/08 2:58:46 PM

40 ; LO G I N : vO L . 33, N O. 5

[8] http://weaversrevenge.com/ast36/door-buzzer.

[9] http://weaversrevenge.com/ast36/holidays.

[10] http://weaversrevenge.com/ast36/voicemail-crib.odt.

[11] http://shop.talkswitch.com/details/CTTS001184001.asp?.

[12] http://store.digium.com/products.php?category_id=41.

[13] J. Van Meggelen, L. Madsen, and J. Smith, in Asterisk: The Future of
Telephony, Second Edition (Sebastopol, CA: O’Reilly Media, 2007): http://
www.asteriskdocs.org/.

[14] http://www.voip-info.org/wiki/index.php?page=asterisk.

[15] http://wiki.sangoma.com/.

[16] http://www.asterisk.org/.

[17] http://www.polycom.com/common/documents/support/setup
_maintenance/products/voice/SoundPointIP_SoundStationIP
_AdminGuide_SIP3_0_Eng_Rev_A.pdf.

Login_OCT08_proof1.indd 40 9/15/08 2:58:46 PM

; LO G I N : O c tO b e r 20 0 8 bu I Ld I N G sc A L A b Le Ntp se rv e r I N Fr A struc tu res 41

b R a d k n o w l e s

building scalable
NTP server
infrastructures
Brad has been a contributor to the NTP Public
Services Project for over five years, in addition to
working as a UNIX and Internet system administra-
tor for almost two decades, specializing in Internet
email and DNS administration for more than fifteen
years.

knowles@ntp.org

i n t h i s a r t i c l e i d i s c u s s h o w t o
take the concept of a simple NTP service
configuration for a small number of cli-
ents and then expand that to be able to
serve many thousands, tens of thousands,
hundreds of thousands, or even millions of
clients. By choosing the right type of scal-
able service infrastructure, you should be
able to handle a virtually unlimited number
of clients with a relatively small number of
servers, but it will take some work to get
there.

I start out with some discussion about various typi-
cal traps that you might tend to fall into, if you’re
not deeply familiar with the NTP protocol and the
Reference Implementation. I follow that by dis-
cussing the three different major modes of opera-
tion you can choose for your servers, highlighting
weaknesses in each mode and other factors that
need to be considered. Next, I mention some spe-
cific hardware recommendations for good-qual-
ity NTP servers, as well as some warnings about
OS issues, and touch on the subject of “reference
clocks.” Finally, I come to some conclusions about
which modes are the most scalable and under what
circumstances. If you get lost, you may want to
consult the list of NTP-related definitions [1].

I assume that you are already familiar with NTP in
general and building simple NTP server configu-
rations and that you know where the official NTP
documentation is located [2], as well as the unof-
ficial Community Supported Documentation as
made available by the NTP Public Services Project
[3]. You know what the difference is between the
NTPv4 [4] Reference Implementation [5] and the
older NTPv3 [6] clients that may be available from
other sources (e.g., xntpd). You are also assumed
to understand the difference between NTP and
SNTP—the Simple Network Time Protocol [7].

Of course, before a machine can be an NTP server,
it must first be an NTP client. In NTP parlance, the
only difference between a server and a client is that
an NTP server is a machine that has NTP clients
that are depending on it for time, whereas an NTP
client depends on NTP servers but does not have
any other NTP clients depending on it. Any NTP
client is a potential NTP server, and all NTP serv-
ers are also NTP clients. Therefore, I assume that
you already know how to build a robust NTP client
configuration, including things like knowing how
many upstream NTP servers to configure and why

Login_OCT08_proof1.indd 41 9/15/08 2:58:46 PM

42 ; LO G I N : vO L . 33, N O. 5

defining two upstream servers for your client is the worst possible configu-
ration, proper use of the “iburst” keyword, proper use of the “tos minclock”
and “tos minsane” parameters, etc.

common Misconceptions

For people who don’t understand how NTP works, it is very easy to assume
that the way you build a scalable NTP service infrastructure is exactly the
same way you would build a scalable infrastructure for any other kind of
typical Internet application such as Apache or Sendmail.

In other words, throw the biggest, baddest, honkingest, multi-core, multi-
thread, multi-CPU boxes at the problem, and then front-end them with a
whole array of proxy servers, load-balancing switches, and clustering, play-
ing tricks with the network layer to make the same service IP address visible
from a variety of servers, and so on.

For NTP, this is the worst possible thing you could do. NTP is UDP, not
TCP. It does not have a fork()/exec() model of execution. It is single-
threaded and essentially does a huge select() loop on incoming UDP pack-
ets. Doing TCP or a fork()/exec() model of execution would add unnecessary
and unpredictable latency to the process of trying to handle the packets, and
it would defeat the entire purpose of accurate time-serving.

However, NTP is not stateless. In fact, it is about as stateful as you can get
with a UDP protocol, since it tracks both short- and long-term variations
in clock stability for all configured upstream servers, based on the smallest
possible statistical samples of information for each system. None of what you
would think of as the “standard scaling rules” can be applied to NTP.

The goal of NTP is to try to synchronize your system clock to the “One
True Time” known as UTC (Universal Coordinated Time [8]), or at least al-
ways move your system clock closer to UTC, within certain statistical error
boundaries. Since there is one and only one system clock per computer,
you do not want to run more than one NTP daemon on a machine, because
they will both be trying to modify the system clock at the same time and
they will certainly cause the system to be highly unstable, if not frequently
suffering from kernel panics. The Reference Implementation includes code
that works hard to prevent more than one copy of ntpd running at the same
time.

The algorithms inside NTP are extremely sensitive to the most minor
changes, and over the 20+ years they’ve been in development, they have
been tuned to seek out and eliminate the tiniest statistical errors they can
find, whether the variation is short- or long-term. They also need to do loop
detection and elimination, and for that they depend on a one-to-one corre-
spondence between the system clock and the IP address. For multi-homed
machines, this can pose a problem, since they don’t have just one IP address.

All of the NTP algorithms are also built on top of the basic assumption that
if you contact a client or server at a given IP address, it will always be ex-
actly the same machine with exactly the same system clock. So, for example,
playing “anycast” games at the routing layer and making the same IP address
available from multiple servers is a recipe for disaster. The same holds for
using load-balancing switches or clustering.

NTP already has extensive capabilities for doing explicit failover between
multiple upstream servers, and anything you do to try to hide the upstream
servers behind something else will only get you worse reliability and worse
quality of service.

Login_OCT08_proof1.indd 42 9/15/08 2:58:46 PM

; LO G I N : O c tO b e r 20 0 8 bu I Ld I N G sc A L A b Le Ntp se rv e r I N Fr A struc tu res 43

configuration Modes Between servers and clients

There are three basic modes of NTP server configuration that we are con-
cerned with, and a variation on one of those, for a total of four modes of op-
eration.

The simplest mode, “unicast” [9], is the classic client/server configuration
for NTP. That is, each NTP client periodically sends UDP packets on port
123 to the servers they are configured to use, gets UDP responses back,
goes through the NTP algorithms to select which of the designated servers is
“best,” and then tries to synchronize its clock to it. Note that there is no cli-
ent authentication or authorization in the NTP protocol, but you do have the
option to enable cryptographic server authentication to the client.

Unicast mode does have the advantage that it gives the client(s) the best pos-
sible chance for getting good time service from the upstream servers, if the
upstream servers are not overloaded. This is because a unicast-mode client is
involved in a periodic but ongoing long-term bidirectional conversation with
each of the upstream servers, and it is able to gather the maximum amount
of information possible regarding which time server currently has the “best”
time, etc.

Unfortunately, even with good hardware and good configurations on both
sides, the simple version of this type of configuration (without cryptographic
server authentication) may tend to start having problems when handling
more than about 500–1,000 clients per NTP server. Of course, if you have
configured your clients to each use multiple upstream servers, then you
magnify the problem of how many clients hit how many upstream servers.
Overloaded servers start dropping too many queries, too many retransmis-
sions are required, and the servers are providing reduced quality of service
to all clients.

Unicast was the first mode invented oh-so-many years ago, and it should be
supported by all NTP clients. In the official documentation on this mode,
the terminology may differ somewhat from what I have used here but the
concepts are the same. Note that you can build purely hierarchical relation-
ships among the NTP servers themselves, or you can build them as symmet-
ric active/passive peers, but either of these server-to-server infrastructures
still operates in unicast mode [10].

Next, we have “broadcast” mode [11, 12]. The basic concept is that each
client is configured to passively listen for broadcasts from the designated
server(s), go through the NTP algorithms to try to select the best-quality
time server, and then synchronize the clock to that.

However, in this mode the clients will actually operate in unicast mode dur-
ing startup (something called the “startup dance”), and then settle down to
passive listening. The startup dance allows the NTP client to determine what
the “broadcast latency” is between the server and the client and to make
suitable adjustments so that it can make a better determination as to which
of the designated upstream servers is best, which results in the NTP client
getting better-quality time service.

If there is no response from the broadcast server to the unicast packets from
the client during the startup dance, the client will fill in a default value for
the broadcast latency. Alternatively, the server administrator can hard-code
its own choice for broadcast latency. Clients can also be configured to avoid
the startup dance altogether, through the “authdelay” command—in effect,
making them broadcast-only clients.

Login_OCT08_proof1.indd 43 9/15/08 2:58:46 PM

44 ; LO G I N : vO L . 33, N O. 5

Unfortunately, broadcasts don’t cross MAC-layer segments, which means you
end up needing at least one broadcast NTP server on every subnet. This nat-
urally leads to the concept of running a broadcast NTP server on your net-
work gear, which is generally a bad idea and discussed below.

Broadcast mode should be supported even by older NTPv3 clients.

Up next, we have the multicast variant of broadcast mode, the only dif-
ference being that the UDP packets sent by the servers are addressed to a
specific multicast address (defined by IANA to be 224.0.1.1) to which all
multicast clients listen. However, other than the address being different, the
operations are otherwise the same as broadcast mode.

Also note that this requires support at the network level. By default, most
network devices are not set up to support routing multicast traffic, so they
would need to have their configurations updated. Moreover, each multi-
cast server will see packets from all multicast clients during their respective
startup dances, and all clients will see packets from all servers, and again
this will tend to bring problems with congestion, drops, retransmits, etc. As
with broadcast mode, multicast mode should be supported even by older
NTPv3 clients.

With NTPv4, there is a new mode based on multicast networking called
“manycast” [13]. This is an automatic discovery mechanism used by cli-
ents to find their closest server(s). The client sends UDP packets to the con-
figured multicast address, but it starts with a packet TTL of zero, to see
whether there are any manycast servers on the local segment. If the client
doesn’t get a response in a given period of time, it retransmits with a TTL
of one, to see whether there are any manycast servers that are just one hop
away. This process continues until either the TTL is set to the maximum
and no servers ever respond or the client finally discovers and sets up one or
more relationships with servers somewhere on the network.

Manycast mode allows clients to automatically detect their nearest NTP
servers and then set up unicast associations with them. The load will auto-
matically be distributed throughout the infrastructure as you put multicast
servers in strategic places. You will minimize as much as possible the num-
ber of servers that see traffic from too many clients, the number of clients
that will see traffic from too many servers, and the number of router hops
traffic has to cross in order to get from the starting point to the destination.

Of course, manycast has the same problem as multicast, in that it needs sup-
port at the network layer. However, manycast is new with NTPv4, and sup-
port for it will most likely not be found in older NTPv3 clients.

I won’t discuss “pool” mode, since it is intended to allow sites to make better
use of the NTP Pool Project [14] as opposed to helping you set up your own
infrastructure (pool-style or not), and it’s a new enough addition to the sys-
tem that I’m not sure it will be covered by the upcoming NTPv4 RFCs that
the IETF NTP Working Group [4] is putting together.

But assuming your version of the ntpd code is new enough to include this
option, there is official documentation on how you could potentially config-
ure your NTP clients to use the NTP pool [15].

For example, this might be a useful configuration option to use on your NTP
servers to help ensure that they get an adequate number of upstream servers
and a better chance at good-quality time service, even if you don’t configure
any of your own internal NTP clients to make use of the pool.

Login_OCT08_proof1.indd 44 9/15/08 2:58:46 PM

; LO G I N : O c tO b e r 20 0 8 bu I Ld I N G sc A L A b Le Ntp se rv e r I N Fr A struc tu res 45

running nTp servers on network Devices

The concept of running in broadcast mode naturally leads to the idea of peo-
ple running NTP servers right on the networking gear itself. Unfortunately,
although most networking gear has specialized hardware for performing the
important switching and routing functions, noncore functions (such as NTP)
end up getting shunted over to a “general-purpose” processor. Of course,
there’s lots of things that this general-purpose processor is supposed to be
doing in addition to NTP, so you get a competition: the other stuff suffers, or
NTP suffers, or— the most likely outcome—both suffer.

In addition, most network devices have the cheapest possible clock cir-
cuits—even on the really expensive routers where a single line card can cost
a hundred thousand dollars or more. The design of NTP is such that it can
only compensate for a certain amount of error in the underlying clock cir-
cuits before it just gives up. Most network devices tend to have clock circuits
that have so much error inherent in them that they usually run right on the
ragged edge of the amount of error that can be compensated for within the
NTP protocol. As such, you should always configure them to be NTP clients:
they tend to make pretty poor NTP servers even if all the clients are config-
ured to only passively listen to broadcasts.

Moreover, network devices used as broadcast-mode NTP servers prob-
ably won’t support the cryptographic server authentication methods, which
would make them triply poor choices for NTP servers. This issue is also dis-
cussed in the Community Supported Documentation [16].

Lost clock interrupts

With NTP, you don’t ever want to see clock interrupts get lost. This is one of
the fastest ways to kill your NTP accuracy, and it will very likely cause the
NTP daemon to quit completely. There can be many causes of lost clock in-
terrupts, the two most common being hardware problems [17] and OS prob-
lems [18].

When the server is running on complex hardware configurations, you are
likely to see excessive amounts of jitter and other statistical errors in terms
of servicing clock interrupts. For NTP, the more precise and accurate the
servicing of clock interrupts, the better. Typically, this means more simply
configured machines are better—you’ll never have a throughput issue, so
you don’t need to throw in really fast network cards with things such as TCP
Offload Engines, and since the application is single-threaded you’ll never
have a CPU load problem that can be resolved by throwing more CPU cores
at it.

In other words, you can probably throw out every single modern machine
you’ve got.

Indeed, currently one of the best NTP server hardware platforms you can
buy is the Soekris net4501 Single-Board Computer [19]. Poul-Henning Kamp
[20] has done wonders with these boxes, and the official NTP time servers
for Denmark are running on them. These machines are about as dead simple
as you can get, and they can handle hundreds or thousands of clients as eas-
ily as or better than pretty much anything else on the planet [21].

There is a comparable SBC configuration that has become more common in
the pool.ntp.org project. If you go to the Web site [14], you can find out more
about this project, and maybe you can get the current coordinator of the
project, Bjorn Hansen, to send you a link to their alternative configuration.

Login_OCT08_proof1.indd 45 9/15/08 2:58:46 PM

46 ; LO G I N : vO L . 33, N O. 5

Note that pool.ntp.org operates in unicast mode, and by playing games
with DNS-based load balancing and geographically aware names that can
be chosen by the admin of the NTP client (which might also be a local NTP
server), it ends up scaling to handle several million clients across the world.
If the pool were able to operate in manycast mode, I have to believe that this
could reduce server hardware requirements by at least one or two orders of
magnitude.

Then there are the OS configuration issues. In addition to making sure that
the hardware services clock interrupts in a precise and accurate manner, you
need to make sure that the OS is configured to do the same.

Unfortunately, owing to the internal architecture of Windows-based OSes,
the best they can do is ~50 ms accuracy, and for a good-quality NTP server
you really want to get down into the single-digit millisecond ranges, if not
lower.

Likewise, you will also see problems on modern versions of Linux or other
freely available OSes that try to handle 1000 clock interrupts per second
on lower-end hardware (e.g., with kernels configured with “Hz=1000”). On
higher-end hardware that can handle these settings, or where you can tune
the kernel settings to a more appropriate level, you should be able to get
good-quality time service from just about any UNIX or UNIX-like OS avail-
able currently or in the past 20 years. My laptop regularly stays in the sin-
gle-digit millisecond range of accuracy relative to UTC, and it’s not anything
particularly special in this regard.

reference clocks

If you’re running a network of NTP servers, you may want to have one or
more of your own internal “reference clocks” [22] configured so that you can
provide the best quality of time to your clients. This would also give you a
good measure of additional robustness in case your Internet connection goes
down.

NTP actually depends on these external clocks to provide a reference of
UTC against which everything else can be measured. One key measurement
in NTP is your logical distance from your closest refclock: a machine di-
rectly connected to a refclock is operating at Stratum 1 (the refclock itself is
Stratum 0), a machine is Stratum 2 if it is a client of a Stratum 1 server, etc.
The lower your stratum number, the better the quality of time service you
can potentially provide to your clients, if your refclock is good enough.

There are many different types of reference clocks, including GPS-based de-
vices, radio-based equipment (using WWVB, DCF, or one of the other radio
broadcasting stations around the world), rubidium or even cesium-based
atomic clocks, and CDMA or GSM mobile telephone–based equipment.
Heck, you can even use a dial-up modem to connect to a time service via
POTS telephone lines.

I won’t discuss any of them in detail, but as an NTP server administrator the
primary thing you need to know is that they are configured in a way that
is very similar to unicast mode (using the “server” keyword), but instead of
listing a hostname or regular IP address, you use the appropriate pseudo-IP
address in the 127.127.0.0 range. Which specific address you use will vary
depending on which particular refclock you have and which driver it re-
quires.

I will say that GPS-based refclocks are very popular, and if you’re willing
to build them yourself or if you can find someone willing to build one for

Login_OCT08_proof1.indd 46 9/15/08 2:58:46 PM

; LO G I N : O c tO b e r 20 0 8 bu I Ld I N G sc A L A b Le Ntp se rv e r I N Fr A struc tu res 47

you, they can be had for relatively small amounts of money—on the order
of $100 or so. If that’s too expensive, then radio refclocks can be had for as
little as $20, if you’re willing to put in some work or you can find someone
who will do that for you.

Unfortunately, most vendors ship with their standard NTP client/server
software without support compiled in for refclocks. Therefore, if you want
to directly connect one or more of your NTP servers to a refclock, you will
probably have to recompile and reinstall the NTP daemon, ntpd, from the
source code. An alternative would be to buy an appliance that provides both
refclock and NTP Stratum 1 service in a turnkey device, although that can
get expensive. You’ll need to decide which option is right for you.

conclusions

So, this is what we have for the modes of operation we’re concerned about:

Unicast■■

Broadcast■■

Multicast■■

Manycast■■

Generally speaking, multicast and manycast are the most scalable, with dif-
ferent issues that your infrastructure will have to support or deal with.

Multicast mode will allow a smaller number of servers to support a larger
number of clients, but there may tend to be network “storms” of traffic re-
sulting from excessive numbers of clients going through the startup dance
around the same time. (Some randomization is built into the startup process,
but it can only do so much to alleviate load on the server.) You will also get
into issues with too many servers trying to talk on the same multicast chan-
nel at the same time.

Multicast mode also tends to encourage centralizing resources for ease of
management, which will increase the number of router hops that traffic has
to pass through in order to get from the server(s) to the clients and thus will
reduce the quality of the time service provided to the clients. Even if mul-
ticast servers are located in close proximity to their multicast clients, the
clients will not be able to get the best-quality time service, because of the
asymmetric nature of the communications between them and the server, and
once the startup dance is done, they may be unable to adapt to changing
network conditions.

Manycast is still pretty new. The NTP community doesn’t have that much
experience with it yet, but it may require more server(s) to support the same
number of clients. However, since it distributes these servers closer to the
clients and minimizes the number of router hops, it helps to increase the
quality of time service provided and the probability that clients will con-
tinue to obtain tolerable time service in the event that their subnet is tempo-
rarily disconnected from the rest of the world.

Overall, manycast mode is considered to be the most scalable and robust
NTP server infrastructure. Quoting from the official documentation on
manycast:

It is possible and frequently useful to configure a host as both many-
cast client and manycast server. A number of hosts configured this
way and sharing a common multicast group address will automatically
organize themselves in an optimum configuration based on stratum
and synchronization distance.

Login_OCT08_proof1.indd 47 9/15/08 2:58:46 PM

48 ; LO G I N : vO L . 33, N O. 5

If you can’t run multicast or manycast, then your next most scalable option
would be broadcast.

In any event, these more scalable techniques tend to increase the exposure
your time servers and their IP addresses get to the network and therefore to
increase the number of clients dependent on them. That increases the prob-
ability that someone else will want to spoof packets from them, which they
will probably be able to do quite easily since all communications are via
UDP or similar methods.

Therefore, regardless of whether you use broadcast, multicast, or manycast,
you should configure your systems to provide cryptographic server authenti-
cation to their clients, and ideally you should do the same for unicast mode
as well.

rEsourcEs

[1] http://support.ntp.org/bin/view/Support/NTPRelatedDefinitions.

[2] http://www.eecis.udel.edu/~mills/ntp/html/index.html.

[3] http://support.ntp.org/.

[4] http://www.ietf.org/html.charters/ntp-charter.html.

[5] http://support.ntp.org/download.

[6] http://www.ietf.org/rfc/rfc1305.txt?number=1305.

[7] http://www.ietf.org/rfc/rfc2030.txt?number=2030.

[8] http://www.eecis.udel.edu/~mills/y2k.html#utc.

[9] http://www.eecis.udel.edu/~mills/ntp/html/assoc.html#client.

[10] http://www.eecis.udel.edu/~mills/ntp/html/assoc.html#symact.

[11] http://www.eecis.udel.edu/~mills/ntp/html/assoc.html#broad.

[12] http://www.eecis.udel.edu/~mills/ntp/html/manyopt.html#bcst.

[13] http://www.eecis.udel.edu/~mills/ntp/html/manyopt.html#mcst.

[14] http://www.pool.ntp.org/.

[15] http://www.eecis.udel.edu/~mills/ntp/html/manyopt.html#poolt.

[16] http://support.ntp.org/bin/view/Support/
DesigningYourNTPNetwork#Section_5.6.

[17] http://support.ntp.org/bin/view/Support/KnownHardwareIssues.

[18] http://support.ntp.org/bin/view/Support/KnownOsIssues.

[19] http://www.soekris.com/net4501.htm.

[20] http://people.freebsd.org/~phk/.

[21] http://phk.freebsd.dk/soekris/pps/.

[22] http://www.eecis.udel.edu/~mills/ntp/html/refclock.html.

Login_OCT08_proof1.indd 48 9/15/08 2:58:46 PM

; LO G I N : O c tO b e r 20 0 8 recL A I M d I sk spAce by sH rI N k I N G F I Les 49

s a n d e e p s a H o R e

reclaim disk space
by shrinking files
Sandeep Sahore holds a Master’s degree in com-
puter science from the University of Toledo and
has nearly 15 years of experience in the comput-
ing industry. He specializes in low-level and C
programming, systems engineering, and system
performance.

ssahore@yahoo.com

The source for cfsize.c may be found at http://
www.usenix.org/publications/login/2008-10/
cfsize.c.

s y s a d m i n s f r o m t i m e t o t i m e a r e
faced with the problem of reclaiming disk
space, a problem that lurks in the shadows
waiting to buzz the pager into life. The typi-
cal response is either to remove files or to
compress them, or to invoke some combina-
tion of the two approaches. But there are
many situations where the choice is not so
cut-and-dried. Let’s say there is a file fill-
ing up a storage partition that cannot be
removed because its data should be kept for
a rolling window of one year or because its
contents are sensitive or because it is being
held open by a process. In such cases it is
better to shrink the file in size instead of
removing or compressing it.

Having faced such scenarios a countless number
of times I decided to write a program that would
shrink files in size from the beginning or “head.”
This program is called cfsize, which is short for
“change file size”; it is described in detail in the
sections that follow. cfsize is written in the C lan-
guage for the UNIX platform, but it works equally
well on Linux.

The need for cfsize

So what is the need for designing and developing
cfsize, when a standardized utility, csplit, already
exists? Though cfsize and csplit look similar they
are poles apart functionally.

Cfsize was ostensibly designed to change a file
in size by deleting part of its contents from the
“head.” By shrinking the input file in place, it re-
claims space from a file system that is at its thresh-
old limit. Behind the scenes, cfsize siphons off the
data that needs to be kept into a temporary file and
when finished it replaces the input file with the
temporary one. This retains the latest data in the
file while the oldest data is thrown away.

In contrast, csplit makes a copy of the input file
and splits the copy into smaller parts based on
user-specified criteria. The smaller files thus cre-
ated can be concatenated to reproduce the origi-
nal file, since csplit follows “the whole is the sum
of the parts” method. It does not alter or shrink
the original file nor does it reclaim space. In fact,
by creating a copy of the original file, it uses more
space.

Login_OCT08_proof1.indd 49 9/15/08 2:58:47 PM

50 ; LO G I N : vO L . 33, N O. 5

From the preceding discussion it should be clear that cfsize and csplit are
two very different tools. Cfsize reclaims disk space by shrinking files in size,
whereas csplit is mostly an intermediate step of a multi-step process.

Among its lesser-known rivals is the trunc.pl utility written in Perl. A key-
word search for trunc.pl on the Internet pulls up its Web site. It is similar
in functionality to cfsize but uses external UNIX utilities such as tail and
system instead of Perl built-ins, thereby incurring overhead owing to the re-
peated invocation of the fork() and exec () system calls, not to mention from
their small internal buffers. It also takes as its argument a discrete number
of lines instead of the new file size, which makes the calculations for re-
claiming disk space cumbersome. The abstraction provided by trunc.pl is
offset by the performance penalty incurred for shrinking files, especially
large ones.

compilation and Execution

After obtaining the source code, assemble the cfsize executable using an
ANSI C compiler (either cc or gcc) as:

cc cfsize.c -o cfsize

Store the executable in /usr/local/bin or a directory of your choice and in-
voke it without any arguments to obtain usage:

cfsize
usage: cfsize -s filesize[k|m|g] file ...

Cfsize takes the following options, along with a list of files that need to be
reduced in size:

-s filesize[k|m|g]

That is, the new size of the file is in bytes, kilobytes, megabytes, or giga-
bytes, with bytes being the default, as specified, respectively, with no suffix
or with the k, m, or g suffix as shown.

program flow and Design

Conceptually the whole cfsize program can be divided neatly into three dis-
tinct parts:

Parse and process the options given on the command line.■■

Open and read the file(s) supplied on the command line.■■

Shrink the listed file(s) to the specified size.■■

Before diving into an in-depth explanation of its parts, let’s go over the mode
of operation supported by cfsize. As already stated, cfsize chops off the
“head” of the file, implying that the latest entries in the file are kept while
the oldest ones are thrown away. Another way to look at this is to think of
the file being rolled from the top down. When the desired size is reached,
the rolled-up portion is virtually torn off.

pArsE THE coMMAnD-LinE opTions

The cfsize utility takes a single mandatory command-line option -s, which
takes the new size of the file as its argument. The input file is “chopped off”
from the “head” and the program checks whether the new size of the file
has been passed to -s followed by enabling a flag and invoking the getfsz()
routine to calculate the desired size of the file. The flag is checked to see

Login_OCT08_proof1.indd 50 9/15/08 2:58:47 PM

; LO G I N : O c tO b e r 20 0 8 recL A I M d I sk spAce by sH rI N k I N G F I Les 51

whether the mandatory -s switch has been provided on the command line.
If any of these checks evaluates to false the program errors out:

long getfsz(int s, char *sarg)
{
 int c;
 long n = 0;

 while (c = tolower(*sarg)) {
 switch (c)
 {
 case ‘0’: case ‘1’: case ‘2’: case ‘3’: case ‘4’:
 case ‘5’: case ‘6’: case ‘7’: case ‘8’: case ‘9’:
 n = 10 * n + (c - ‘0’);
 break;
 case ‘k’: case ‘m’: case ‘g’:
 if (*(sarg-1) >= ‘0’ && *(sarg-1) <= ‘9’ && !*(sarg+1)) {
 if (c == ‘k’)
 kb++;
 else if (c == ‘m’)
 mb++;
 else if (c == ‘g’)
 gb++;
 }
 else
 fprintf(stderr, “%s: invalid argument to option --
 %c\n”, prog, s), usage(prog);
 break;
 default:
 fprintf(stderr, “%s: invalid argument to option -- %c\n”,
 prog, s), usage(prog);

 }
 ++sarg;
 }
 return n;
}

f i g u r e 1

The getfsz() function listed in Figure 1 ensures that the argument to the
-s option is a valid number. It scans the filesize argument string one char-
acter at a time, converting it into an integer while checking for the presence
of characters that are not numerical. It also figures out whether the file size
reduction is specified in kilobytes, megabytes, or gigabytes. It terminates ab-
normally if the argument string contains any characters outside the accept-
able range.

opEn LisTED fiLEs AnD sHrink To spEcifiED sizE

After processing the options, cfsize moves on to reading the files listed on
the command line. A while loop is used to open, read, and “chop off” the
files from the “head.” It has a built-in safety net to terminate execution of
cfsize if a user mistakenly enters a file size that is greater than the current
size. The size of the file being processed currently is obtained by calling the
stat() library function with the filename as its argument. If the new file size
is more than the current file size, cfsize terminates abnormally. This safety
net prevents the file from being “inflated” instead of being “shrunk.” An

Login_OCT08_proof1.indd 51 9/15/08 2:58:47 PM

52 ; LO G I N : vO L . 33, N O. 5

error is raised if a file cannot be opened, and the program moves on to the
next file in the list until the list of files is exhausted:

void fsplit(long fsz, char *fnam, FILE *fin)
{
 int c;
 FILE *fout;
 long neg = -fsz;

 /* end abnormally if the temp file cannot be created */
 if (!(fout = tmpfile()))
 catcherr(“tmpfile()”);

 /* set file pointer to “neg” bytes from end of current file */
 if (fseek(fin, neg, SEEK_END))
 catcherr(“fseek()”);

 /* go to end of the line to avoid inline file breakage */
 while ((c = getc(fin)) != ‘ \n’)
 ;

 /* move the data that needs to be retained to the temp file */
 while ((c = getc(fin)) != EOF)
 putc(c, fout);

 /* truncate and prepare the current file for writing */
 if (!(fin = fopen(fnam, “w”)))
 catcherr(“Cannot open %s”, fnam);

 /* set file pointer to the beginning of the temp file */
 if (fseek(fout, 0L, SEEK_SET))
 catcherr(“fseek()”);

 /* move the contents of the temp file to the current file */
 while ((c = getc(fout)) != EOF)
 putc(c, fin);

 /* flush buffered writes to the current file by closing it */
 if (fclose(fin))
 catcherr(“Cannot close %s”, fnam);
}

f i g u r e 2

Figure 2 shows fsplit (), the function that is at the heart of cfsize and which
is responsible for shrinking files. It starts by creating a temporary file, using
the tmpfile () function, for storing the data that needs to be retained. Next
it moves the file offset backward from the end of the file, stopping after ex-
actly filesize bytes. The file offset is then advanced to the end of the line
it currently rests in order to prevent in-line file breakage. This implies that
the new size may be the same or less than the file size specified on the com-
mand line. With the file offset poised at the beginning of the line, the data
to be retained is moved to a temporary file. After the data migration is com-
plete, the temporary file replaces the input file. If any one of the system calls
or library functions invoked by fsplit () fails, the program ends abnormally.

Login_OCT08_proof1.indd 52 9/15/08 2:58:47 PM

; LO G I N : O c tO b e r 20 0 8 recL A I M d I sk spAce by sH rI N k I N G F I Les 53

Examples of usage

A good way to get familiar with any tool quickly is to understand how it is
used in common scenarios, and that’s the focus of this section. For example,
the command to “chop off” a file ~25 MB in size from the “head” down to 10
kB would be:

cfsize -s 10240 file.txt

Alternatively, one can use the k (kilobytes) suffix for the file size instead of
bytes:

cfsize -s 10k file.txt

Not just one but many files can be specified on the command line as long as
you do not exceed the maximum allowable number of command-line argu-
ments for the shell. The following command reduces all logfiles in the cur-
rent directory to 2 MB:

cfsize -s 2m *.log

The cfsize utility works on files only. Standard input (STDIN) has no mean-
ing to cfsize and commands like the following should not be used because
the program abends:

cat file.txt | cfsize -s 10k
cfsize -s 10k < file.txt

Standard output (STDOUT) also has no meaning to cfsize, since the input
files provided on the command line are modified in situ. Here’s an example
of what not to do:

cfsize -s 50k input.txt > output.txt

This command would reduce input.txt from 250 MB to 50 kB and create a
zero-length output.txt file, which is not what is intended.

Let’s wrap up this section by going over the application of the “end-of-op-
tions” switch. The command to reduce -file from 2 GB to 1 MB would be:

cfsize -s 1m -file
cfsize: illegal option -- f
usage: cfsize -s filesize[k|m|g] file ...

However, cfsize thinks that it is being passed option -f and it terminates ab-
normally, as it recognizes -s as the only valid option. This ambiguity is the
reason why the end-of-options switch - - has been built into cfsize. To cor-
rect this pernicious situation, insert the end-of-options switch into the com-
mand line right before the processing of any files:

cfsize -s 1m -- -file

Bugs and shortcomings

Chopping a file from the “head” needs one important caveat, because of the
way file truncation works. The data that needs to be kept is moved to a tem-
porary file and when the desired file size is reached the original file is re-
placed with the temporary one. This means that the target directory, that is,
the one containing the temporary file, should have enough space to hold the
intermediate data; otherwise the whole operation will fail. Note that permis-
sions on the target directory come into play when cfsize is executed without
superuser privileges. Another point to keep in mind about cfsize is the fact
that it does not support large files, that is, files that are greater than 2 GB. If
it were used on a file bigger than 2 GB, cfsize would terminate.

Login_OCT08_proof1.indd 53 9/15/08 2:58:47 PM

54 ; LO G I N : vO L . 33, N O. 5

Cfsize has been tried and tested on many UNIX and Linux platforms. It is
designed almost exclusively with sysadmins in mind, so while using cfsize,
if anyone comes across a bug or feels that redesigning the algorithm, imple-
menting coding shortcuts, or efficiently using system resources can improve
the program, please contact me via email. Please do the same if any one of
you comes across a tool, besides those mentioned here, that can rival the
claims of cfsize.

conclusions

Cfsize was designed for doing a simple task, that is, reducing the sizes of the
files given on the command line. It provides a much-needed respite from
storage space woes to sysadmins who up to now had to either compress files
or remove them. A third option in the form of a C program named cfsize is
now readily available to all system admins. Future plans for cfsize may in-
clude revising it to support large files.

Login_OCT08_proof1.indd 54 9/15/08 2:58:47 PM

; LO G I N : O c tO b e r 20 0 8 cO N cu rre Nt pAt te rN s 55

j a s o n d u s e k

concurrent patterns:
parallels in system
and language design
Jason Dusek is a systems architect with a self-
funded startup in the Bay Area. His technical
interests include distributed computing, functional
programming, and serialization.

jason.dusek@gmail.com

c o n c u r r e n c y a n d pa r a l l e l i s m a r e
usually discussed together, and they are
both important in reorganizing a program
for execution on multiple cores or multiple
computers. Parallelism asks, “How can we
break a program up into independently exe-
cuting parts?” It is very much in the domain
of compiler writers and library providers, as
the necessary program transformations are
tedious at best. Concurrency asks, “How can
independent programs share a value once
in a while?” It bedevils program designers at
every level—providers of parallelism tool-
kits, operating systems designers, applica-
tion programmers, system administrators
providing distributed network services, and
even folks just trying to sell a few books.

sharing

For programs to share a value, they may both pos-
sess a copy or they may both possess a handle.

If they both have a handle, that is cheapest and
allows them to communicate most efficiently. For
example, with file handles, two applications open-
ing the same file are using less memory than two
applications with one sending a copy to the other.
They also communicate more quickly. However,
handles can result in confusion and danger—for
example, memmapped files. If two programs mem-
map the same file, and the “receiver” is not careful
to close it and reopen it at the right time, one can
very likely crash the receiver by writing into the
memmapped file. The less extreme example of two
database clients overwriting parts of one another’s
changes, resulting in a mutually confusing (but
readable) record, is a more common pitfall of these
handle-based (we’ll call them “shared-memory”) ap-
proaches to concurrency. Down this path lay trans-
actions and locking. There are numerous forms of
locking, the most dreadful being spin-lock, dead-
lock, and live-lock.

When we pass around copies, each process can
pretty much go on its merry way from the point of
copy transfer. As mentioned earlier, this can result
in a great waste of memory. These “message-pass-
ing” strategies are inevitable, though, in network
services—an LDAP server cannot share memory
with its clients; it has to just send them the data. If
we structure all our applications this way, without

Login_OCT08_proof1.indd 55 9/15/08 2:58:47 PM

56 ; LO G I N : vO L . 33, N O. 5

regard to locality, then it is at least consistent, if not efficient. Garbage col-
lection is very important in message-passing architectures, because you cre-
ate a lot of garbage by copying things all over the place. However, a program
is safe from interruption from other programs as long as it does not get (or
request) any messages. The problem of data synchronization can be resolved
through frequent polling or publish-subscribe (possible in LDAP, if you are
brave)—but at least there is some kind of warning, some kind of formal in-
dicator, that a resource has changed.

At this point you may wonder how the two database clients are sharing
memory while the LDAP server and its clients are passing messages? It is re-
ally a matter of where I choose to point the camera. Between the servers and
clients there is message passing—clients make a request and servers send
back a message full of data. Any changes in the server’s data do not affect
the clients at all as long as they don’t ask for updates. Between the two da-
tabase clients, there is shared state—each application writes to the database
and reads from the database to communicate with the other processes. The
difference shows up in where we put the locks—a database locks its tables,
not its socket.

We Don’t need concurrency in programming Languages . . .

It stands to reason (although I cannot prove it) that all models of concur-
rency are explored in systems first and in languages later. Network services
and operating systems offer a kind of parallelism—operating system process,
multiple clients, servers running on distinct machines—and thus invite all
the problems we usually associate with threading and message passing.

Within the *NIX filesystem, as in other shared-memory systems, we need
to protect processes from mutual confusion—we need transactions, locks,
and semaphores. The *NIX filesystem models all three. Through file locking,
multiple POSIX programs protect one another from contradictory updates.
A shared lock allows multiple shared locks to coexist with it, whereas an ex-
clusive lock can only be taken when there are no other locks. When the locks
are advisory—the default for *NIX—the lock is merely a baton, which pro-
cesses can only possess under certain circumstances. These advisory locks
are really semaphores, tokens of resource ownership without enforcement
[1, 2]. In contrast, mandatory locks are true locks—processes block if they
don’t have the right lock. No reads can proceed without some kind of lock,
and writes cannot proceed without a write lock. Often, an operating system
will provide special signals and subscriptions to allow a process to know
that a file is again open for reading, that another process wants to write a
file, and other things. We can see how message passing and shared memory
complement one another [3].

A transaction is a collection of operations on different resources that is per-
formed in an all-or-nothing manner. To perform a transactions in a *NIX
filesystem we must:

Lock the greatest parent of all the files in the transaction and every ■■

subordinate file. (We’ll be waiting a long time to get all those locks in an
active system.)
Recursively copy the greatest parent into a new directory.■■

Perform our changes.■■

Use ■■ mv to atomically overwrite the old greatest parent with the now
updated copy.

Our rather overly generous lock scope has prevented anything from chang-
ing in the meantime.

Login_OCT08_proof1.indd 56 9/15/08 2:58:47 PM

; LO G I N : O c tO b e r 20 0 8 cO N cu rre Nt pAt te rN s 57

Why must we make such a gratuitous copy? Because the filesystem does
not offer a means to atomically mv several files. What if we got halfway
through the mvs and the user sent SIGKILL? Then we’d have left the sys-
tem in an inconsistent state, with no means of recovery. So we have to find
a way to mv all the changes at once, and that means we have to do the copy.
If we had local version control we could be more flexible, simply reverting
changes if there were a failure, while keeping everything exclusively locked
so no other processes could read the corrupt data until the “rollback” is
complete. (Can we be sure reverts never fail?) Although rollbacks are not re-
quired for transactions, we see how they can protect us from over-locking.

As mentioned earlier, *NIX provides “signals,” a form of message passing.
Sockets, a more general and flexible mechanism, allow processes to commu-
nicate with one another by establishing a connection and sending messages
back and forth, which corresponds to the channels of Hoare’s CSP [4, 5]. A
one-way channel is a pipe, both in Hoare’s terminology and in *NIX. Un-
fortunately, *NIX does not allow us to open multiple pipes to a process, so
this is a point where *NIX and Hoare diverge. A named pipe—a FIFO—is
like a mailbox, a well-known place to leave a package for another process.
Unfortunately, FIFOs allow IO interleaving and thus cannot really be used
as mailboxes. But I think you get the idea. So what are signals? Signals are
mailboxes—the kernel knows where to put messages for every process. We
look up its PID to send it a message. Channels, pipes, and mailboxes can
fake one another:

To get a mailbox from channels, the receiver should simply aggregate all ■■

messages from every sender regardless of the channel they came in on.
To get channels from mailboxes, we must always send a “return address”
as part of the message. The receiver, when reading the messages, uses
the return address to know which connection it is handling and where
to return results.
To get a pipe from a channel, only send messages in one direction. To ■■

get a channel from pipes, we need two pipes, one in either direction.
The sender and the receiver must have the sense to keep the pipes
together.
To get pipes from mailboxes, we can ■■ multiplex the mailbox. Once again,
we use the “return address,” but this time, we only use the return ad-
dress to tell us where the message came from, not how to send it back.

Insofar as they work, *NIX concurrency features support a strategy of com-
posing concurrent systems from operating system processes. This is nice in
so many ways—the file system handles garbage collection and caching, the
scheduler distributes processes over the hardware, and programs in mul-
tiple languages can share resources and concurrency model. However, *NIX
file locking is brittle, and the only out-of-the-box message-passing model is
channels, by way of sockets. *NIX turns out not to be the best platform for
an application that is looking for operating-system-level concurrency—but a
search for an alternative leads us far afield.

Bell Labs’ Plan 9, an evolution of UNIX with some of the original UNIX
team on board, offers pipes in the sense of Hoare’s CSP. Through resource
multiplexing, the same name in the filesystem refers to different resources
for different processes, converting a FIFO to a pipe to avert the IO interleav-
ing that bedevils *NIX FIFOs [6]. We could probably emulate this system on
any other *NIX, using bind mounts, union mounts, and pipe polling, but it
would not be pretty.

At just about the time of Plan 9’s emergence, Tandem’s NonStop platform
was in decline. NonStop SQL ran on top of the Guardian cluster operating

Login_OCT08_proof1.indd 57 9/15/08 2:58:47 PM

58 ; LO G I N : vO L . 33, N O. 5

system. In Guardian, every resource—every file, even—was a “process” that
could receive messages [7]. Pervasive message passing is the door to easy
clustering. NonStop SQL was able to run transactions across the cluster,
which is a nontrivial task; and Guardian was able to fail over a process from
one machine to another if the need arose [8].

There are numerous “cluster operating systems,” but what they address is
more a matter of resource usage than concurrent design primitives [9–11].
Plan 9 and Guardian are special because they make message-passing tools
available to the application programmer and provide an environment where
those message-passing tools are widely used.

Networks services model a few concurrency patterns not mentioned above.

Multi-view concurrency, which we might call transactional copy-on-write,
is used in some SQL databases and is a long-tested approach to ACIDity. To
read, read. To write, copy everything you wish to read or write, prepare the
changeset, and the database will apply it if (only if) nothing that was read
has been written since, and nothing that was written has been read or writ-
ten since [12–14].

IRC is an example of a publish-subscribe message-passing service. We sub-
scribe to the channel and receive change sets to the channel—messages—
as they arrive. There is no way to pull “the” channel, though—and so we
sometimes miss messages, to the amusement of all [15]. In contrast, Open-
LDAP offers publish-subscribe messaging as an optimization on the shared-
memory model. A client subscribes to an LDAP subtree and, as changes are
made, they are forwarded [16]. However, there is one true tree—the tree on
the LDAP server—and we can synchronize with it to ensure our copy is cor-
rect [17].

. . . But We Like it

Even when operating-system-level concurrency works, there’s some mne-
monic load in handling it. Network-service-level concurrency is in some
sense simpler, but it also handles less—process management is delegated to
the operating system. Concurrent programming languages specify an entire
concurrent system: resources and a model for their use, as well as processes
and a means of creating them.

Language-level concurrency has tended toward message passing. Early ver-
sions of Smalltalk were distinctively message-passing, and Carl Hewitt,
the founder of the “Actors model,” was inspired by Smalltalk [18]. More re-
cent message-passing languages include Stackless Python, used to imple-
ment the massively multiplayer game EVE [19]; Limbo, a project by the team
that worked on Plan 9 [20]; and Erlang [20]. The former two are channel
languages, whereas Erlang is a mailbox language. MPI, a message-passing
library and runtime for C, Java, C++, O’Caml, and Fortran, brings message-
passing to languages that do not have it natively [21, 22]. Shared memory is
an unusual paradigm at the language level.

Erlang, a Message-passing Language

Erlang, superficially similar to Prolog, makes RPC a language primitive. Pro-
cesses (function calls) can send messages, listen for messages, and access
their present PID. They perform message sending and nonconcurrent things
(e.g., math and string handling and ASN.1 parsing) until they hit a receive
statement, which is rather like a case statement, only with no argument. The
argument is implicit—the next message in the mailbox. After a message is

Login_OCT08_proof1.indd 58 9/15/08 2:58:47 PM

; LO G I N : O c tO b e r 20 0 8 cO N cu rre Nt pAt te rN s 59

handled, the executing function may call itself or another function recur-
sively, or it may do nothing, which ends the process.

Erlang processes run within instances of the Erlang virtual machine, called
nodes. Nodes are clustered to form applications that run on several ma-
chines at once. Although Erlang is often called a functional programming
language, this is missing the point. Erlang offers easy IPC, a notion of pro-
cess hierarchy and identity, rapid process spawning, and excellent libraries
for process control and monitoring. Erlang is what the shell could have been.

Processes register with a cross-node name server so that they can offer
named services to other processes. Processes are “linked” to other processes
in the sense that a parent is made aware of the linkee’s exit status. The com-
bination of global name registry and linking allows us to implement reli-
able services in the face of “fail fast” behavior. Processes are arranged with
a monitor—an error handler—linked to a worker. The worker runs a func-
tion that registers itself for the global name and then calls the main function
that handles requests and recursively calls itself over and over. The monitor
hangs out. If the server process dies, the monitor receives a signal to that ef-
fect and recalls the function.

The special thing about Erlang is not that we can write programs this way,
but that we write every program this way. Programs are collections of com-
municating services in Erlang, not a main thread of execution with subrou-
tines (at least, not on the surface.) The innumerable executing threads are
easy to parallelize, because they share no state with one another and thus
can be interrupted and resumed at any time. When we see Erlang trumpeted
as the multi-core solution, that is why.

Erlang’s bias toward concurrent design is perhaps too great. Although the
standard libararies are rich in protocol handlers and design patterns for con-
current applications, the language is weak at string handling and arithmetic.

Haskell’s Approach to shared Memory

Programming languages that offer safe access to shared memory are rare.
Haskell, a purely functional language, offers “Software Transactional Mem-
ory,” which is much like multi-view concurrency in databases.

Haskell’s type system allows it to make very strong guarantees about shared-
memory operations. A pure function is a function that yields the same
answer for the same arguments [e.g., sin(x)] whereas an impure function—
hereafter a procedure—returns different things depending on the context
[e.g., gettime()].

How do we perform input and output and get the time of day in a purely
functional language? It turns out that there is a “pure view” of these impure
operations. The principle is not hard to understand—values from impure
functions are wrapped in a special container—so gettime does not return
an Int; it returns an IO Int, an Int within the IO container.

A pure function, even when it shares state with another pure function, is not
allowed to mutate it. It is immaterial in which order we evaluate the pure
functions, so long as we evaluate calls that a function depends on before
evaluating the function itself. This no-mutation property makes paralleliza-
tion easy, and the Haskell compiler takes advantage of that.

So we have all these functions, and they are likely to execute at any time.
They do not have process identifiers, and there is no global registry of
names. How do these functions communicate? One means, an early one, was
to in fact brand every concurrent function with IO and force it to operate on

Login_OCT08_proof1.indd 59 9/15/08 2:58:47 PM

60 ; LO G I N : vO L . 33, N O. 5

references. This brings us all the problems of shared memory and none of
the solutions; it also forces the compiler to be as paranoid about code access-
ing references as it is about code accessing the filesystem or network. The
Glasgow Haskell Compiler project later introduced a new container, STM,
which is specifically for operations that work on a large global store of values
[24]. A procedure that executes within STM creates a log of its reads and
writes. When the procedure ends, the log is checked to ensure that none of
the values have changed since the procedure read them. As long as the reads
are okay, the writes in the log are committed. If they are not okay, the proce-
dure retries until it works (including forever).

STM offers true fine-grained transactions on a runtime system that can run
millions of threads, but there are no provisions for clustering or process
hierarchy. This is in some sense inevitable; shared memory systems don’t
dovetail nicely with the network’s natural separation of state across servers.

concurrency and you

Splitting a program into concurrently running parts can simplify design and
always parallelizes the program. Whether this results in a net performance
benefit depends on the overhead of communication.

To take advantage of concurrent design and implicit parallelism, one must
adopt a new way of thinking about program structure, data structures, and
efficiency. In-place update is efficient and natural in sequential computing,
but in concurrent systems it is fraught with peril and obstructs parallelism.
Bolting concurrency onto a sequential language—an imperative language—
leads to inconsistency at best, and so it is understandable that much work in
concurrency has taken place under the declarative tent.

Concurrent Perl would find many users if it existed, and there have been
numerous attempts to bring concurrent programming to C and C++. Con-
currency-friendly languages are unusual languages, bringing more or less of
the functional paradigm with them. Will a new language gain a foothold, or
will we find a way to bring message passing or transactional memory to C?

Perhaps, like object-oriented design, concurrent programming will find wide
use only after it has been integrated with C. Toolkits for parallelism in C,
C++, and Java are certainly catching up, although they are used mostly by
game programmers and authors of scientific visualization software. Lan-
guages used mostly in Web programming and system administration have
not received that kind of attention, and consequently we see the growth of
Erlang in the area of high-availability network services. Niche programming
languages will always have their niche, and it’s likely that mainstream pro-
gramming languages will always have the mainstream.

rEfErEncEs

[1] fcntl man page: fcntl - manipulate file descriptor: http://linux.die.net/
man/2/fcntl.

[2]Semaphores: http://www.ecst.csuchico.edu/~beej/guide/ipc/semaphores
.html.

[3] Andy Walker, “Mandatory File Locking for the Linux Operating System,”
April 15, 1996: http://www.cs.albany.edu/~sdc/Linux/linux/Documentation/
mandatory.txt.

[4] C.A.R. Hoare, “Communicating Sequential Processes: 7.3.2 Multiple
 Buffered Channels,” June 21, 2004: http://www.usingcsp.com/.

Login_OCT08_proof1.indd 60 9/15/08 2:58:48 PM

; LO G I N : O c tO b e r 20 0 8 cO N cu rre Nt pAt te rN s 61

[5] Sean Dorward, Rob Pike, David Leo Presotto, Dennis M. Ritchie, Howard
Trickey, Phil Winterbottom, “The Inferno Operating System”: http://
doc.cat-v.org/inferno/4th_edition/inferno_OS.

[6] Rob Pike, “Rio: Design of a Concurrent Window System,” February 4,
2000: http://herpolhode.com/rob/lec5.pdf.

[7] The Tandem Database Group, “NonStop SQL, a Distributed, High-
Performance, High-Availability Implementation of SQL,” April 1987: http://
www.hpl.hp.com/techreports/tandem/TR-87.4.html.

[8] Wikipedia, Tandem Computers: http://en.wikipedia.org/wiki/Tandem
_Computers#History.

[9]: C. Morin, R. Lottiaux, G. Vallee, P. Gallard, D. Margery, J.-Y. Berthou,
I. Scherson, “Kerrighed and Data Parallelism: Cluster Computing on Single
System Image Operating Systems,” September 2004: http://www.ics.uci.edu/
~schark/cluster04.ps.

[10] Wikipedia, QNX: http://en.wikipedia.org/wiki/QNX.

[11]: Nancy P. Kronenberg, Henry M. Levy, William D. Strecker, “VAXclus-
ters: A Closely-Coupled Distributed System,” May 1986: http://lazowska
.cs.washington.edu/p130-kronenberg.pdf.

[12] Wikipedia, MultiView concurrency control: http://en.wikipedia.org/
wiki/Multiversion_concurrency_control.

[13] David Patrick Reed, “Naming and Synchronization in a Decentralized
Computer System,” September 1978: http://publications.csail.mit.edu/lcs/
specpub.php?id=773.

[14] Philip A. Bernstein and Nathan Goodman, “Concurrency Control in
Distributed Database Systems,” June 1981: http://www.sai.msu.su/ ~megera/
postgres/gist/papers/concurrency/p185-bernstein.pdf.

[15] RFC 1459: IRC Concepts: http://www.irchelp.org/irchelp/rfc/
chapter3.html.

[16] LDAP for Rocket Scientists: Replication refreshAndPersist (Provider
Push): http://www.zytrax.com/books/ldap/ch7/#ol-syncrepl-rap.

[17] LDAP for Rocket Scientists: Replication refreshOnly (Consumer Pull):
http://www.zytrax.com/books/ldap/ch7/#ol-syncrepl-ro.

[18] Alan Kay, “The Early History of Smalltalk: 1972-76—The First Real
Smalltalk: http://gagne.homedns.org/~tgagne/contrib/EarlyHistoryST.html.

[19] About Stackless: http://www.stackless.com/.

[20] Limbo: http://www.vitanuova.com/inferno/limbo.html.

[21] Concurrent programming: http://www.erlang.org/doc/getting_started/
conc_prog.html.

[22] Wikipedia, MPI: http://en.wikipedia.org/wiki/Message_Passing
_Interface.

[23] MPI asics: http://www-unix.mcs.anl.gov/dbpp/text/node96.html.

[24] Simon Peyton Jones, “Beautiful Concurrency,” December 22, 2006:
http://research.microsoft.com/~simonpj/Papers/stm/beautiful.pdf.

Login_OCT08_proof1.indd 61 9/15/08 2:58:48 PM

62 ; LO G I N : vO L . 33, N O. 5

d a v i d n . b l a n k - e d e l M a n

practical Perl tools:
attachments
David N. Blank-Edelman is the Director of Technol-
ogy at the Northeastern University College of Com-
puter and Information Science and the author of
the O’Reilly book Perl for System Administration. He
has spent the past 24+ years as a system/network
administrator in large multi-platform environ-
ments, including Brandeis University, Cambridge
Technology Group, and the MIT Media Laboratory.
He was the program chair of the LISA ’05 conference
and one of the LISA ’06 Invited Talks co-chairs.

dnb@ccs.neu

“From attachment springs grief, from at-
tachment springs fear. From him who is
wholly free from attachment there is no grief,
whence then fear?”

—The Dhammapada: The Buddha’s Path of
 Wisdom, translated from the Pali by Acharya
Buddharakkhita

t h e B u d d h a w a s p r o B a B ly n o t
talking about mail attachments in the
Dhammapada. But there’s enough fear and
loathing around mail attachments that it
would be worthwhile to see whether we can
use Perl to reduce the suffering around this
issue. In this column we’re going to look at
three different tasks related to attachments
and how to work through each using some
precision Perl modules.

Before we get started we first have to understand a
little background information about attachments.
To have an (interoperable) attachment, a mail mes-
sage has to be constructed in a certain way. The
blueprint for how this message is constructed is
defined using the Multipurpose Internet Mail Ex-
tensions (MIME) standards. I say “standards” not
simply to watch Nick Stoughton’s ears perk up (hi,
Nick!) but because it takes at least six documents
to construct this particular snake pit (there are
more):

RFC2045: Multipurpose Internet Mail Exten-■■

sions (MIME) Part One: Format of Internet
Message Bodies, N. Freed and N. Borenstein,
1996.
RFC2046: Multipurpose Internet Mail Exten-■■

sions (MIME) Part Two: Media Types, N. Freed
and N. Borenstein, 1996.
RFC2047: MIME (Multipurpose Internet Mail ■■

Extensions) Part Three: Message Header Ex-
tensions for Non-ASCII Text, K. Moore, 1996.
RFC2077: The Model Primary Content Type ■■

for Multipurpose Internet Mail Extensions, S.
Nelson and C. Parks, 1997.
RFC4288: RFC 4288—Media Type Specifica-■■

tions and Registration Procedures, N. Freed
and J. Klensin, 2005.
RFC4289: Multipurpose Internet Mail Exten-■■

sions (MIME) Part Four: Registration Proce-
dures, N. Freed and J. Klensin, 2005.

Don’t run screaming yet; wait for another para-
graph or two. Let me give you the four-sentence
summary of these documents necessary to under-
stand the rest of the column:

MIME messages are composed of “parts” sur-
rounded by separators in the text. Each part is la-
beled with a type and a subtype to help the mail
client understand what kind of part it is (is it a
picture? a movie? a pdf file? etc.). If a part contains
information that can’t be represented in ASCII (e.g.,
a .jpg or a .pdf file), it is encoded into a format that

Login_OCT08_proof1.indd 62 9/15/08 2:58:48 PM

; LO G I N : O c tO b e r 20 0 8 pr Ac tI c A L pe rL tO O L s : At tAcH M e Nt s 63

can be represented that way. Oh, and for extra special fun, parts of a MIME
message can contain other parts (e.g., you forward someone an entire mail
message as an attachment that itself had attachments).

This doesn’t sound so bad until you start to read the specs and realize that
there are so many edge cases and places where different people can read
the specs in different ways. Add on top of that the beautiful agony of HTML
messages (MIME messages with HTML parts that a mail reader is expected
to display instead of plain text) and you’ll quickly realize why many a mail
client author has gone barking mad.

Hopefully I’ve scared you away with this preface so I can simply copy Lorem
Ipsum text into the rest of the column instead of having to write more about
it. On the off-chance you are still reading, let’s take a look at the first task.

How Do you send Email with Attachments?

Since misery loves company, it makes sense to first figure out how we can
spread the MIME joy. It didn’t used to be this way, but people who program
in Perl are now in the (enviable?) position of having quite a few good mod-
ules for sending email messages with attachments. They fall into roughly
two categories: those that let you play Vulcan and forge the bits yourself and
those that make as many decisions as possible for you so you can wave an
impatient “just do it” hand. We’ll look at examples from both categories. I
should mention that the choice of module for each category is based on my
experience, but I would encourage you to look at the other possible choices.
For example, Mail::Sender, MIME::Lite, MailBox, Mail::Builder, and MIME-
tools all have things going for them that make them worth your consider-
ation.

I’ve become fond of the mail-related modules from the Perl Email Project
(http://emailproject.perl.org/), so the example from the do-it-yourself cat-
egory is Email::MIME::Creator with some help from Email::Send to actually
send the message. Email::MIME::Creator can be considered a bit of an add-
on to the more general-purpose Email::MIME package. It is designed specifi-
cally for the creation of new MIME messages. Let’s see a very simple example
of it in action. The first part of the procedure is to load our modules and
then create the MIME parts we’ll need for the message. In this case we’ll
need a MIME part for the body of the message and another for the picture
we’re going to attach:

use Email::Simple;
use Email::MIME::Creator;
use File::Slurp qw(slurp);
use Email::Send;

my @mimeparts = (
 Email::MIME->create(
 attributes => {
 content_type => 'text/plain',
 charset => 'US-ASCII',
 },
 body => 'Sending mail from ;login: magazine.',
),
 Email::MIME->create(
 attributes => {
 filename => 'picture.gif',
 content_type => 'image/gif',
 encoding => 'base64',

Login_OCT08_proof1.indd 63 9/15/08 2:58:48 PM

64 ; LO G I N : vO L . 33, N O. 5

 name => 'picture.gif',
 },
 body => scalar slurp('picture.gif'),
),
);

Each call to Email : :MIME->create () creates a new MIME part. We need to
specify the MIME attributes and the data for each part. In the second call
above we use File::Slurp to easily set the body field to the contents of the
GIF file being sent.

Once we have the parts made, we create the actual mail message, this time
with an Email : :MIME->create () call that includes the headers for that mes-
sage and an anonymous array with pointers to the MIME parts created in
the previous step:

my $message = Email::MIME->create(
 header => [
 From => 'loginauthor@usenix.org',
 To => 'dnb@usenix.org',
 Subject => 'Email::MIME::Creator demonstration',
],
 parts => [@mimeparts],
);

Email message in hand, we can now use Email::Send to actually send it out
by handing it to the MTA on our machine:

my $sender = Email::Send->new({mailer => 'Sendmail'});
$Email::Send::Sendmail::SENDMAIL = '/usr/lib/sendmail';
$sender->send($message) or die "Unable to send message!\n";

And away it goes . . .

If you don’t want to bother putting together a MIME message part by part,
there are modules such as Email::Stuff available. The name sounds pretty
casual, and so is the module. It lets you send the same kind of message with
just a single line:

use Email::Stuff;

to give the underlying module a clue where to find the MTA binary
$Email::Send::Sendmail::SENDMAIL = '/usr/lib/sendmail';

Email::Stuff->from('loginauthor@usenix.org)
 ->to('dnb@usenix.org')
 ->text_body('Sending mail from ;login magazine.')
 ->attach_file('picture.gif')
 ->send;

And away this message goes . . . Is this easier to use? Sure. But it doesn’t
give you the same level of control as Email::MIME::Creator. This may or may
not be important to you.

How Do you Deal with Attachments you’ve received?

Now that I’ve shown you how to send email with attachments, all of the cool
kids will want to do it too, and soon you’ll be awash in a sea of messages.
Your first idea might be, “Hey, these attachments must all be valuable, how
do I save them all?” To indulge this naive response, we could use one of the
generic MIME processing packages such as Email::MIME or MIME-tools, but

Login_OCT08_proof1.indd 64 9/15/08 2:58:48 PM

; LO G I N : O c tO b e r 20 0 8 pr Ac tI c A L pe rL tO O L s : At tAcH M e Nt s 65

here too there is at least one module that is precisely targeted to the task:
Email::MIME::Attachment::Stripper. Here’s some sample code:

use Email::MIME;
use Email::MIME::Attachment::Stripper;
use File::Slurp qw(slurp write_file);

my $m = Email::MIME->new(scalar slurp 'message.eml');
my $s = Email::MIME::Attachment::Stripper->new($m, \
 'force_filename' => 1);

foreach my $attachment ($s->attachments) {
 write_file($attachment->{filename},
 { buf_ref => \$attachment->{payload} })
 or die "Can't write $attachment->{filename}: $!\n";
}

After loading the modules we parse the email message into an Email::MIME
object. This isn’t strictly necessary, because Email::MIME::Attachment::Strip
per can take other formats if the right module is in place, but I prefer not to
leave that to chance. The Email::MIME object is then fed to Email::MIME::At
tachment::Stripper so it can do its stuff. We give that call an extra argument
of force_filename because we want the module to either extract a filename
from the message or, if the sending client was sloppy and didn’t include one,
to make it up. This is important because the next few lines of code expect to
be able to write to a file with a specific name.

We then ask Email::MIME::Attachment::Stripper to provide a list of the at-
tachments it has found. It returns a list of hashes, with each hash containing
both the information about that attachment and the actual data sent. This
payload gets handed off to File::Slurp’s write_file method and a file is cre-
ated with that information in it.

One quick related aside: The code is very trusting. It takes the name of the
file from data someone else has sent us and is happy to create files with
whatever name it is handed. In general you should make your code a little
less sanguine and have it only allow filenames that pass some sort of vetting
process.

Now, what if you quickly tired of receiving copies of cutepuppy.jpg but
wanted to keep the messages sans their attachments? Email::MIME::Attach-
ment::Stripper has a message() method that will hand you back an Email::
MIME message object that represents the original message without any of
the attachments. That’s one way of going about the task, but I want to show
you another, perhaps more interesting method that gets us a more sophisti-
cated result.

If you’ve ever had to deal with spam from a mail administrator’s perspective,
it is entirely likely that you’ve crossed paths with the open source package
Apache SpamAssassin (http://spamassassin.apache.org/). The basis of this
package is a set of Perl modules called Mail::SpamAssassin(::*). There are
two things that many people don’t know about this module set: (1) It con-
tains a really robust MIME parser (because it has to, since spammers throw
all sorts of malformed data at it); (2) that parser and some other very handy
utility methods can be used for other purposes. If you haven’t read the doc-
umentation for Mail::SpamAssassin::PerMsgStatus yet, you should.

One of the utility methods related to this column is get_decoded_
stripped_body_text_array(). This method (according to the doc) “returns
the message body, with base-64 or quoted-printable encodings decoded, and
non-text parts or non-inline attachments stripped” and “HTML rendered,

Login_OCT08_proof1.indd 65 9/15/08 2:58:48 PM

66 ; LO G I N : vO L . 33, N O. 5

and with whitespace normalized.” If you’ve ever wanted the “essence” of a
message (e.g., for indexing), this method can provide it. It is used like this:

use Mail::SpamAssassin;
use File::Slurp qw(slurp);

my $sa = Mail::SpamAssassin->new();

check_message_text actually attempts to determine the text is spam
my $status = $sa->check_message_text(scalar slurp 'message.eml');

but we need its status response, with which we can:
my $body = $status->get_decoded_stripped_body_text_array();

print @{$body};

How Do you know if an Attachment is, umm, icky?

I suppose there is both a Buddhist and a technical answer to this question.
Let me try to address the latter. Attachments get a bum rap because they are
a major vector for viruses and other malware.

If you want to determine whether an attachment is unsavory, you usually
need to pass it through some other package that tries through a variety of
methods to determine whether it is unpleasant or not. In the open source
world, one very popular package is ClamAV (www.clamav.net). There are
a few Perl packages that are designed to use the ClamAV engine. I’d like to
mention three of them because they each take a different approach, only one
of which may be appropriate for your needs:

ClamAV::Client talks to a running ClamAV daemon for its scans. This ■■

works great if you already are using ClamAV in some fashion or would
like something higher-performing than the next module.
Mail::ClamAV is a Perl wrapper around the ClamAV scanning library ■■

API. This is good if you want your Perl code to actually perform the
scan or need fine-grained control over the options used for a scan. If
your code is going to scan a file and quit each time it is run it is prob-
ably going to be less efficient than ClamAV::Client because it needs to
spin up the ClamAV engine and load the virus database each time. If
your code performs the ClamAV initialization work and then begins to
scan lots of files at a time, it is probably a wash.
File::VirusScan is a “unified interface for virus scanning of files/direc-■■

tories,” according to the documentation. It is a wrapper around quite a
few (13 as of this writing) commercial and open source anti-virus pack-
ages. The same Perl code can scan a file or directory using one or even
several anti-virus engines (in order). This is useful if you plan to use a
battery of anti-virus checkers or if you’d like to write code that isn’t tied
to any one of their APIs.

Here’s an example of using ClamAV::Client to check the attachments we get
back from Email::MIME::Attachment::Stripper:

use Email::MIME;
use Email::MIME::Attachment::Stripper;
use File::Slurp qw(slurp);
use ClamAV::Client;

my $msg = Email::MIME->new(scalar slurp 'message.eml');
my $strip =
 Email::MIME::Attachment::Stripper->new($msg, 'force_filename' => 1);

Login_OCT08_proof1.indd 66 9/15/08 2:58:48 PM

; LO G I N : O c tO b e r 20 0 8 pr Ac tI c A L pe rL tO O L s : At tAcH M e Nt s 67

we can also connect to a ClamAV clamd listening over a TCP socket if we

use different options
my $scan = ClamAV::Client->new(socket_name => '/var/run/clamd-socket');

die "unable to talk to ClamAV daemon"
 unless defined $scan and $scan->ping();

my $ans; # the results back from ClamAV
foreach my $attach ($strip->attachments) {
 $ans = $scan->scan_scalar(\$attach->{payload});
 (defined $ans)
 ? print "$attach->{filename} is infected with $ans!\n"
 : print "$attach->{filename} is clean.\n";
}

The Email::MIME::Attachment::Stripper lines of this code should be famil-
iar from the previous examples. The key new thing we added was the call to
ClamAV::Client’s scan_scalar that passes the contents of a scalar pointed to
by a scalar ref off to a ClamAV daemon for processing. If the answer it gets
back is anything but undef (clean), the code prints the name of the infection
as identified by the daemon.

Now that you know a few ways to evaluate your attachments, it’s time to end
the column. Take care, and I’ll see you next time.

Login_OCT08_proof1.indd 67 9/15/08 2:58:48 PM

68 ; LO G I N : vO L . 33, N O. 5

p e T e R b a e R G a lv i n

Pete’s all things
Sun: Solaris System
Analysis 102
Peter Baer Galvin is the Chief Technologist for Cor-
porate Technologies, a premier systems integrator
and VAR (www.cptech.com). Before that, Peter was
the systems manager for Brown University’s Com-
puter Science Department. He has written articles
and columns for many publications and is coauthor
of the Operating Systems Concepts and Applied Op-
erating Systems Concepts textbooks. As a consultant
and trainer, Peter teaches tutorials and gives talks
on security and system administration worldwide.
Peter blogs at http://pbgalvin.wordpress.com and
twitters as “PeterGalvin.”

pbg@cptech.com

r e c e n t ly i wa s h e l p i n g o u t a f r i e n d,
a CEO at a small business, who had her
main system running without a backup.
As we all know, friends don’t let friends
compute without backups. Given that the
system was an Apple Mac, it was a trivial
matter to attach an external drive and push
the couple of buttons needed to execute a
backup. When I was done she was rather
surprised and asked if that was all there
was to it. Was computer administration
really that easy? After pondering a second
I came up with a fundamental statement
about system administration: It’s easy, ex-
cept when something goes wrong, and then
it can be very, very challenging.

For a sysadmin, a good day can turn into a very
bad day with just a few words: “The system has a
problem.” Such problems, especially ones of per-
formance or reliability, can be difficult to solve. In
fact they can be the most difficult task a sysadmin
performs.

The goal of the previous “Pete’s All Things Sun”
column, “Solaris System Analysis 101,” was to put
a stake in the ground about the first steps that
should be taken when a system has “a problem.”
The hope is that you, the sysadmin reader, will
contribute to it, creating a consensus document.
Given that we live in the time of Web 2.0, a wiki
seemed like the best way to foster contributions,
and that wiki is now live [1]. Please have a look
and contribute your wisdom and knowledge for the
betterment of sysadmin-kind.

That leads us to this column, “Solaris System
Analysis 102.” Once the 101 steps are taken, what
can be done to determine the specific cause of
the problem and fix it? The previous column was
mostly operating-system-independent. Almost all
of the ideas there apply to all operating systems
equally. In this column that will not be the case.
Here, then, are specific steps I use to analyze a So-
laris system and determine the cause of the prob-
lem. Most of these commands are Solaris-specific,
including DTrace code. This column will also be
added to the wiki, allowing you to comment, cor-
rect, and expand. Please do so! In the future, watch
for BoFs and other activities at USENIX confer-
ences about this topic.

Login_OCT08_proof1.indd 68 9/15/08 2:58:48 PM

; LO G I N : O c tO b e r 20 0 8 sO L A rI s systeM A N A LysI s 1 02 69

phase 1: search for the smoking gun

Sometimes the system has a large, easy-to-find problem. In those cases
it would be a shame to spend a lot of time chasing down complex paths.
Rather, the first step is to check for obvious problems with the “usual sus-
pect” commands. The goal of this phase is to narrow the problem area to a
specific aspect of the system.

Solaris System Analysis 101 ended with a list of areas to explore. Here are
some more specifics:

Scan through log files such as /var/adm/messages and via ■■ dmesg. Don’t
ignore anything odd: It could be the canary indicating the problem.
Run ■■ svcs -a to check for services that have failed or are disabled.
Check for full disks or changed mount information via ■■ df and mount.
Run ■■ ifconfig -a and look for any errors; run kstat and read through
the section of output of a given network interface (such as e1000g0) to
check network parameters such as duplex and speed.
Read through /etc/system and look for settings copied from other ■■

systems or left behind during an upgrade. /etc/system should never be
copied or left intact between operating system or application upgrades;
such events should cause an audit of the file for entries to remove or
update. Check the Solaris Tunable Parameters Reference Manual [2]. This
document is updated for every Solaris release. Watch out for system set-
ting recommendations from vendor documents.
Check /etc/projects for any resource management settings that could be ■■

affecting system or application performance.
Check the load average of the system. ■■ uptime shows the 5-, 10-, and
15-minute average number of threads wanting to run on the system.
If those numbers are significantly (two times or more) higher than the
number of cores in the system, users will report “slowness.”
Check the stat commands and look for anomalies. Note that the first set ■■

of output is averages per second since the system booted. The following
sets are averages per second since the previous set of output. As with
all of these commands, understanding the output and the underlying
system is key.
Check ■■ iostat -x 10 and check the svc_t column for large service times
(in milliseconds). Anything above 30 ms can be of concern. Also note
that dividing kilobytes written per second by writes per second pro-
duces the average write size during that period, which can help when
analyzing I/O issues. The same applies to the read values (r/s and kr/s).
Check ■■ mpstat 10: How was processor time spent? Per CPU (each row
being a CPU’s status), what percentage of time was spent in user-land
(running user code) (usr), how much in the kernel (sys), and how
much idle (idl)? Most time should be usr, and any more than a few
percent in the kernel can indicate a problem.
Check ■■ vmstat 10: How many threads are running or want to run (kthr
r), how many are blocked waiting for something (usually I/O) (kthr b),
and how many processes have been swapped out (kthr s)? Swapped
out means that the system was desperately short of memory and booted
entire processes out to disk. That’s bad. Also check page sr, the scan
rate, to see whether the system is short of memory. The larger this
number, the more the system is hunting for memory. Anything above
0 is considered a memory shortage. Memory is orders of magnitude
faster than disk, so any use of disk as virtual memory can cause a system
slowdown.
Check ■■ vmstat -p 10. This shows system-wide memory operations. This
is the place to check whether the system is short on memory and to

Login_OCT08_proof1.indd 69 9/15/08 2:58:49 PM

70 ; LO G I N : vO L . 33, N O. 5

determine which system aspect is using the memory [executable process
pages, anonymous (heap, stack, or malloc) uses, or file system I/O].
Check ■■ prstat. If the problem is simply processes using up CPUs, then
prstat can show which processes those are. What is more difficult is
figuring out what the process is doing and whether it should be doing it.
Check ■■ prstat -Lmp <pid>. This shows detailed state information about
a specific process at the current time. If the process has multiple threads
it shows a row per thread. Columns 3 through 9 (USR through SLP)
add up to 100%, showing the percentage of time the thread spent run-
ning in user mode (USR), in kernel mode (SYS), and so on.
Use ■■ pmap -x <pid>to explore the memory map of a problem process.
Use DTraceToolKit and DTrace scripts to look at specific suspect aspects ■■

of the system.

phase 2: finding the owner of the gun

With the Phase 1 rough data in hand, did you find the problem? User-level
problems are relatively easy. If a process is using too much CPU or memory
and you have the source code, it is now a program development and debug-
ging problem. If the application is well written, then perhaps the only solu-
tion is adding resources to the system to allow the application to match your
performance needs. For home-grown code, be sure to use the latest version
of a given compiler. Also note that Sun’s SunStudio development environ-
ment is now available [3] for free (without support), generates great code,
and has good debugging tools built in, including the DTrace-based D-light
tool and “performance analyzer” functionality. Also, at least with Solaris,
each release usually brings about performance improvements. If you are
running an older version of Solaris, consider the (difficult) step of upgrad-
ing. In addition, Java code is a major component in many applications, and
Java can be difficult to performance-analyze and tune. Try to use the latest
JVM, especially because Java 1.5 adds DTrace support and Java 1.6 automati-
cally optimizes garbage collection.

If the problem is at the system level, then more time (and commands) may
be needed to track down the problem. The good news is that Solaris 10 has
many more tools than previous Solaris releases (and other operating systems
in general) to find and fix these problems.

Some higher-level system areas to consider include:

Are you running the most appropriate scheduler for each system in your ■■

environment? Solaris defaults to time-share scheduling for user pro-
cesses. If your system is a server that doesn’t run general user tasks, then
time-sharing is overkill with more overhead. If you want all processes
on the system to have the same priority (not changing as time-sharing
does based on CPU used and I/O requested), then consider changing to
the much lower-overhead fixed priority scheduler “FX.” Such a change
could buy you 5% or more CPU time. To make FX the default class
execute dispadmin -d FSS. That change is persistent across reboots. To
move current processes from time-sharing to FX, use priocntl -s -c FX
-i class TS.
If the problem involves some processes starving others of resources, ■■

consider implementing the fair-share scheduler and resource manage-
ment. Those can be implemented either for the full system or, more
easily, per-zone when zones (a.k.a. containers) are installed on a system.
There is a lot to resource management and zones, as has been covered
previously in ;login:. The slides from my tutorial on Solaris 10 adminis-

Login_OCT08_proof1.indd 70 9/15/08 2:58:49 PM

; LO G I N : O c tO b e r 20 0 8 sO L A rI s systeM A N A LysI s 1 02 71

tration have all the gory details and are freely available online [4]. There
are links to this and other resources at my blog [5].
If there are high-priority processes on a system, consider “pinning” ■■

them to a set of CPUs. These processes will stay on those CPUs and not
be rescheduled or interrupted. A good time to use this technique is for
database servers or just for the log-writing process of a database. The
Solaris tools to use here are processor sets and process bindings.
Are you using the best-fit page sizes? Having the same sizes of I/O oper-■■

ations from memory through to the physical disk is one key to good I/O
performance. For example, OLTP databases such as Oracle’s frequently
perform I/O in 8-kB chunks. If you format your disks to use 8-kB sec-
tors, I/O will be streamlined. Be sure to take into account the underlying
disk structures (i.e., if you have a SAN, understand the I/O geometry
within the LUNs that are provided). Note that terminology of disk struc-
tures varies, but ZFS calls its I/O chunk the “recordsize.” In this Oracle
example, set a ZFS recordsize to 8 kB, and, for good performance, make
sure that the underlying storage array has RAID sets that are multiples of
8 kB. Jiri Schindler wrote a very in-depth analysis of matching applica-
tion and device I/O patterns in his PhD thesis [6].
Is your I/O well-balanced and spread across enough devices (e.g., disks ■■

and network ports)? In general, I/O is the most likely bottleneck, disk
I/O the most likely I/O culprit, and individual disks the most limiting
I/O device. Any given disk can perform 100 to 200 I/O operations per
second (IOPS). If your system needs to do thousands of IOPS, then you
need tens of disks, well tuned, to provide that I/O. RAID 0+1 and 1+0
are better-performing than RAID 5, so match the RAID level with the
performance needed.
Are you using the best CPU for the workload? Sun has two product ■■

categories: The first includes the “X” and “M” servers, which run a few
threads very fast. The “T” servers are chip multi-threading (CMT) sys-
tems and run lots of threads, but run them rather slowly. An analogy can
help sort out the best uses for these systems. Think of the “X” and “M”
servers as race cars and the “T” servers as trucks. Each has its uses, so
make sure you use the right system for the needed performance. Also,
there are several steps that can be taken to determine whether a “T”
server is right for your applications and to tune these servers. Sun’s Web
site [7] is the best place to start.

As always, benchmarking is the best way to test performance and perfor-
mance changes, if the benchmarking is accurate and repeatable. Watch out
especially for caching effects in benchmark efforts. Caching happens at all
levels of computer systems, so, for example, it is safest to reboot the systems
involved between each benchmark run. Consider, however, that SAN arrays
also have caches, which could invalidate (or at least complicate) benchmark
results.

run forensics on the gun

Once the range of the problem has been narrowed, specific analysis can be
done on the problem area to ferret out the source of the problem. DTrace is a
fabulous tool for this analysis.

The DTraceToolkit provides over 200 prewritten (but unsupported) tools for
getting detailed information about the operation of many areas of the sys-
tem. Get familiar with the tools so they are in your arsenal when needed.
The scripts are well documented and demonstrated online [8], so I won’t re-
peat that information here.

Login_OCT08_proof1.indd 71 9/15/08 2:58:49 PM

72 ; LO G I N : vO L . 33, N O. 5

Beyond the DtraceToolkit, the sky is the limit for delving into system activ-
ity details. For example, here is sample code to graph the time spent in each
system call by each process:

syscall:::entry
/uid != 0/
{
self->tm = timestamp
}
syscall:::return
/self->tm/
{
@[execname, pid, probefunc] = quantize(timestamp - self->tm);
self->tm = 0
}

In another example, processes starting and exiting immediately can be diffi-
cult to spot and can greatly decrease system performance. Find them by the
command line /usr/sbin /dtrace -n ‘proc:::exec {printf(“%s execing %s,
, uid /zone =%d/%s\n”,execname,args [0] ,uid,zonename)} ’.

Another previously hidden performance hit is error management. Detect and
fix failing system calls before moving forward, as that will change your per-
formance picture. A DTraceToolkit tool, errinfo, displays all system call er-
rors.

For I/O, to display files and the I/O being done to them execute /usr/
sbin /dtrace -n ‘io:::start {@ [execname, args [2] ->fi_pathname] =
count() } ’. To determine the block size execute /usr/sbin /dtrace -n ‘io:::
start {@ [execname, args [2] ->fi_pathname] = quantize (args [0] ->b
_bufsize) }.

To determine the level of multi-threading of the applications on the system
execute /usr/sbin /dtrace -n ‘profile:::profile -100hz /pid / {@ [pid, exec-
name] = lquantize (cpu, 0, 512, 1); } ’.

Networking can also be a bottleneck, as even multiple 1-Gb links can be
slower than other system aspects. Even with Solaris 10, network bottlenecks
can be difficult to spot owing to the lack of a DTrace networking provider.
That provider was included in Solaris Nevada build 93, so it should appear
in a future Solaris release. For details see Sun’s wiki [9]. In the meantime a
good tool is nicstat, also available online [10].

If the information in this column helped determine the problem but didn’t
provide a solution to the problem, then it is time to drill down further into
the specific problem area. The resources listed below should help with that.

next Time

If the OpenSolaris Distribution (project Indiana) meets its release goals, then
the first production release will be done before the next issue of ;login:, and
that should a rich topic for the next PATS column.

resources

Very good information for drilling down into each Solaris area of perfor-
mance tuning is available at http://www.solarisinternals.com/wiki/
index.php/Solaris_Internals_and_Performance_FAQ.

A good paper about specific detailed aspects of Solaris performance problem
resolution is “Performance Analysis Using DTrace,” by Benoit Chaffanjon, at

Login_OCT08_proof1.indd 72 9/15/08 2:58:49 PM

; LO G I N : O c tO b e r 20 0 8 sO L A rI s systeM A N A LysI s 1 02 73

http://opensolaris.org/os/project/sdosug/past_meetings/Performance
_Analysis_Using_DTrace.pdf.

rEfErEncEs

[1] http://wiki.sage.org/bin/view/Main/AllThingsSun.

[2] http://docs.sun.com/app/docs/doc/817-0404.

[3] Sun’s SunStudio development environment is available at http://
developers.sun.com/sunstudio/.

[4] http://www.galvin.info/2006-11.s10admin.zip.

[5] http://pbgalvin.wordpress.com.

[6] http://www.pdl.cmu.edu/PDL-FTP/Database/CMU-PDL-03-109.pdf.

[7] http://www.sun.com/bigadmin/topics/coolthreads/.

[8] The best starting point for the toolkit is http://www.brendangregg.com/
dtrace.html.

[9] http://wikis.sun.com/display/DTrace/ip+Provider.

[10] http://www.brendangregg.com/K9Toolkit/nicstat.

Login_OCT08_proof1.indd 73 9/15/08 2:58:49 PM

74 ; LO G I N : vO L . 33, N O. 5

d a v e j o s e p H s e n

iVoyeur: you
should write an
NEB module.
David Josephsen is the author of Building a Monitor-
ing Infrastructure with Nagios (Prentice Hall PTR,
2007) and Senior Systems Engineer at DBG, Inc.,
where he maintains a gaggle of geographically
dispersed server farms. He won LISA ’04’s Best Paper
award for his co-authored work on spam mitigation,
and he donates his spare time to the SourceMage
GNU Linux Project.

dave-usenix@skeptech.org

The Nagios source code can be downloaded
from http://www.usenix.org/publications/
login/2008-10/nagfs.c.

f o u r y e a r s a g o , i at t e n d e d t h e
Nagios BoF at LISA ’04 in San Diego. It was
being thrown by a few employees from
Groundwork, including Taylor Donditch,
the author of fruity. Despite the fact that
the BoF was a day before the tech sessions
started and therefore not on the official
BoF schedule, it was standing room only.
For me this was an amazing contrast from
2001, where I mentioned Nagios in a net-
work monitoring BoF and was met by blank
stares.

In 2004, Nagios 2 was a fairly new beast, and Tay-
lor was excitedly waxing prolific about the Event
Broker interface. That night, all questions to Tay-
lor led back to the Nagios Event Broker. Improved
passive checks? NEB. Scalability problems? NEB.
Goldfish dead? NEB. This was for good reason: The
NEB put a lot of power in the hands of the sysad-
min and promised to eliminate or at least reduce
the myriad influx of Nagios-related Perl kludges on
Nagios Exchange. If you had a problem with Nag-
ios, there was now a correct way to fix it, and that
was to write an NEB module. There was no doubt
in my mind that everyone in that room would
hurry off straightaway and create all sorts of in-
teresting and useful event broker modules. I knew
that by morning a wiki would have appeared some-
where, with 30 or so of them a template for making
your own and a Web comic making fun of people
who used them. For my own part, inspired, I im-
mediately dove into the NEB headers (well, three or
so days later, once I sobered up).

Four years later, the Perl kludges have only grown
in number, whereas the NEB modules are nowhere
to be found. I find this surprising and unfortunate,
because the NEB is an elegant solution, and it has
the potential to help far more sysadmins per line
of code than any script you’ll likely find on Nag-
ios Exchange today. For once, the folks who wrote
the application recognized our need to customize
their program and actually engineered their app
in such a way that it can be fairly easily modified
to suit our needs. Further, the mechanism they’ve
created is as portable as the app itself, and it could
easily do for Nagios what the distros did for Linux.
Today, I can internally modify Nagios to customize
for a particular problem domain and distribute my
customized Nagios in the form of a small piece of
shared-object code that can be switched on or off
by anyone who uses Nagios. That’s cool.

Login_OCT08_proof1.indd 74 9/15/08 2:58:49 PM

; LO G I N : O c tO b e r 20 0 8 you sH O u Ld wrIte A N N e b MO du Le 75

So since Rik tells me this issue will be available at LISA, I’d like to honor the
2004 Nagios BoF by taking some time to explain how the NEB works and
hopefully inspiring some of you to sober up and scratch some of your Nag-
ios itches by writing NEB modules. First, I’ll give a short description of the
architecture, and then we’ll walk through a working NEB module I wrote
called nagfs, which implements a filesystem interface to Nagios. Since I’ll
be using my own code as an example, I’ll be stuck talking about Nagios 2.x
in this article. That’s a bit of a bummer because several very empowering
changes have been made to the architecture in 3.x; perhaps I’ll cover those
in a follow-up next time.

The Event Broker itself is a software layer between Nagios and small, user-
written shared object files called event broker modules. The Event Bro-
ker initializes all of the modules when Nagios first starts, so it knows what
events the modules are interested in. Then it sits around waiting for interest-
ing events to occur, passing out memory handles for each interesting event
to the module that is interested.

NEB modules are shared libraries written in either C or C++. The NEB mod-
ule registers for the types of events it is interested in and provides function
pointers to functions that presumably do things with the events they re-
ceive. Each NEB module is required to have an entry and exit function and,
beyond that, can do pretty much anything it wants. The interesting thing
about this architecture is that Nagios globally scopes just about everything
(by design), so from the perspective of the NEB module, the sky is the limit.

That is to say, because pretty much all the interesting functions and structs
are globally scoped, as long as Nagios’s execution pointer is in the module’s
address space the module has the power to change anything it wants. It can,
for example, insert and remove events from the scheduling queue or turn on
or off notifications or do things such as preempt given check commands or
postprocess returned data from service checks. In a nutshell, anything that
can be changed at runtime can be changed by the module. Strictly speak-
ing, the module need not even register to receive events; upon initialization
the module could schedule its own call-back routines in a timed fashion and
do its job using nothing other than Nagios’s scheduling engine. It could, for
example, wake up every morning and change the value of the day-pager’s
email address, or wake up every 5 seconds and provide state information to
a visualization front-end.

So what sorts of events can a module subscribe to? In Nagios 2.3.1, the ver-
sion of Nagios I’m using as I write this, there are 31 total call-back types,
although some of them are reserved for future use. These constants are de-
fined in nebcallbacks.h, in the “includes” directory of the tarball. Listing 1,
on the next page, contains some of the call-back type constants.

The available callbacks cover every type of event that can happen in Nagios.
An NEB module may register to receive information about any or all of these
event types. Once it initializes all the modules, the Event Broker waits for
events matching the type subscribed to by the module and, upon receiving
one, gives the module information about the event, as well as a handle to the
relevant data structures.

For example, if the module registered for EXTERNAL_COMMAND_DATA,
the Event Broker would notify it every time an external command was in-
serted into the command file. A handle to a struct that defined the com-
mand would accompany the notification. The module could inspect and
optionally change any of the information in the command struct or even
delete it altogether. But enough talk about the architecture; the best way to
learn about the NEB is to see how these modules work in practice.

Login_OCT08_proof1.indd 75 9/15/08 2:58:49 PM

76 ; LO G I N : vO L . 33, N O. 5

NEBCALLBACK_FLAPPING_DATA
NEBCALLBACK_PROGRAM_STATUS_DATA
NEBCALLBACK_HOST_STATUS_DATA
NEBCALLBACK_PROCESS_DATA
NEBCALLBACK_TIMED_EVENT_DATA
NEBCALLBACK_LOG_DATA
NEBCALLBACK_SYSTEM_COMMAND_DATA
NEBCALLBACK_EVENT_HANDLER_DATA
NEBCALLBACK_NOTIFICATION_DATA
NEBCALLBACK_SERVICE_CHECK_DATA
NEBCALLBACK_HOST_CHECK_DATA
NEBCALLBACK_COMMENT_DATA
NEBCALLBACK_SERVICE_STATUS_DATA
NEBCALLBACK_ADAPTIVE_PROGRAM_DATA
NEBCALLBACK_ADAPTIVE_HOST_DATA
NEBCALLBACK_ADAPTIVE_SERVICE_DATA
NEBCALLBACK_EXTERNAL_COMMAND_DATA
NEBCALLBACK_CONTACT_NOTIFICATION_DATA
NEBCALLBACK_ACKNOWLEDGEMENT_DATA
NEBCALLBACK_STATE_CHANGE_DATA

L i s t i n g 1 : s O m e n e b c a L L b a c k t y p e s

Nagfs is a filesystem interface that represents the state of a running Nag-
ios daemon. Each host monitored by Nagios has a directory in the filesys-
tem, and each service on that host has a file. The contents of the file match
the Nagios service state for that service. For example, if the httpd service on
box1 was down, then /usr/share/nagios/status/local/box1/httpd would con-
tain a ‘2’. Most people scrape HTML from the Web interface to get this kind
of info, so you can imagine how handy it is to just be able to do grep -rl 2 /
usr/share /nagios /status / local to find all the services in a critical state in-
stead. Nagfs keeps the filesystem up to date by subscribing to state change
events. Every time a service changes state, the event broker tells nagfs, and
nagfs updates the filesystem immediately. No waiting for an external event_
handler to fire; if Nagios knows about it, so does nagfs.

The complete source code for nagfs is a bit long to print here. If you’d like
to compile it yourself, grab a copy of the source off my blog (www.skeptech.
org/?p=35), from http://www.usenix.org/publications/login/2008-10/nagfs.c,
or from NagiosExchange along with the Nagios source code from nagios.org,
and follow the instructions therein. What we can do is examine some key
portions of the source. Let’s start with the function declarations:

/* Nagfs Functions */
void nagfs_reminder_message(char *);
int nagfs_handle_data(int,void *);
int nagfs_write_service_status(char *, char *, int, int);
int nagfs_write_host_status(char *, int, int);
int nagfs_check_for_softfiles(char *);

An event broker module is only required to have two functions, nebmod-
ule_init and nebmodule_deinit. The function init gets called when our
module is first initialized, and deinit gets called when Nagios quits and
we get unloaded. The functions I’ve declared above are all optional, and I
mostly declare them up front so that the program follows a more linear pro-
gression and is therefore easier to write about. The basic strategy is that our
init function will register for event callbacks and will call nagfs_handle_
data to handle the data we receive from the broker; nagfs_handle_data
will in turn call the other functions as needed to update the filesystem. For

Login_OCT08_proof1.indd 76 9/15/08 2:58:49 PM

; LO G I N : O c tO b e r 20 0 8 you sH O u Ld wrIte A N N e b MO du Le 77

example, it will call write_service_status when a service status change
has occurred and it needs to update the file that corresponds to the service
in the filesystem.

Next is our init function line:

int nebmodule_init(int flags, char *args, nebmodule *handle){

It takes three arguments. The first argument is meant to give you some con-
text about how the module is currently being initialized. I don’t use it in
nagfs. The second argument is a string pointer called args. You may pass ar-
guments to the module using ones found after the module name in the bro-
ker_module directive in your nagios.cfg. If you do so, they will be available
in this args string. The third argument is a handle to the struct that defines
our module. We can use this to refer to ourselves, if, for example, we call a
function that requires a pointer back to us. Actually, this happens right off
the bat when we register with the broker to get some data:

neb_register_callback(NEBCALLBACK_SERVICE_STATUS_DATA,nagfs
_module_handle,0,nagfs_handle_data);
neb_register_callback(NEBCALLBACK_HOST_STATUS_DATA,nagfs
_module_handle,0,nagfs_handle_data);

Ask the broker for events with the neb_register_callback function, which
takes four arguments. The first is a constant that defines what type of events
we’re interested in. These are the same constants as in Listing 1. The second
is our handle, so that the broker can find out what it needs to find out about
us. The third is a priority number. In general, when more than one module
registers for the same type of event, they are executed in the order they are
loaded by the broker on startup. You can override this behavior by specify-
ing a priority number. The last argument is a function pointer to our data
handler function. Our data handler will be the function that actually gets
the event struct and does stuff with it.

There’s not much more interesting here, so let’s skip down to the declaration
line for the handler function:

int nagfs_handle_data(int event_type, void *data){

The data handler must return an exit code in the form of an int and accept
two arguments. The first of these is a constant specifying the event type:
yes, once again, one of the constants specified in Listing 1. The second is a
void pointer, which I’ll get to in a moment.

So why would our event handler need to be passed the event type? The
event handler function should be able to infer the event type, by virtue of
the fact that we specified it when we defined the handler. But notice that we
actually use the same handler function for both event types we are register-
ing for. Thus, when the broker spawns the data handler, it passes the event
type along, just in case the handler has more than one job (as ours does).

The void pointer is a data struct that is passed from the event broker. It’s our
magic smoke—the instantiation of the data we’re actually looking for. It will
be a different type of struct depending on the type of event data the broker
passes us. It’s up to you to typedef the struct into the correct type. You can
find the various types in the broker.c file in the Nagios tarball. Our event
handler uses a switch-case on the value of the constant to decide what kind
of event we’re dealing with. Then it typedefs the data struct accordingly, as
you can see here:

Login_OCT08_proof1.indd 77 9/15/08 2:58:49 PM

78 ; LO G I N : vO L . 33, N O. 5

switch(event_type){

 case NEBCALLBACK_SERVICE_STATUS_DATA:
 ssdata=(nebstruct_service_status_data *)data;

In this case, we’ve gotten service status data, so we’ve typedef’d the struct
into type service_status_data. Now I can dereference information about
the service from the struct. The broker.c file is also handy for finding out
what sorts of data we can dereference from the structs we get from the bro-
ker: stuff like svc->host_name, which I pass to the write functions I found
out about by reading the structs in broker.c.

The rest of the program is pretty self-explanatory. If we get service data, we
pass it to the nagfs_write_service_status function. Host state data goes
to the nagfs_write_host_status function. These functions primarily deal
with directory and file access and error detection (the “boring stuff”).

There are a slew of changes in 3.0 that make the Event Broker even more
powerful. My personal favorite is the addition of custom external com-
mands. Basically, these are commands that you make up and pass in to the
external command file. They are not processed by Nagios (obviously, since
Nagios won’t know what you’re talking about), but they can be detected and
parsed by an event broker module that knows about them, so they’re a great
way to get external (non-Nagios) data to your module.

The moral of the story is that you should totally write an event broker mod-
ule. They’re fun to write (more fun than writing event handlers in Perl
anyway, heh), they’ll help other people out (real people, who haven’t made
exactly the same architectural assumptions you have), and they’re a great ex-
cuse to dig around in the Nagios source, which I promise you, is some of the
most elegant, well-engineered C that you’ll come across in a project of this
size.

Take it easy.

Login_OCT08_proof1.indd 78 9/15/08 2:58:49 PM

; LO G I N : O c tO b e r 20 0 8 / d e v/ r A N d OM 79

R o b e R T G . F e R R e l l

/dev/random
Robert G. Ferrell is an information security geek
biding his time until that genius grant finally comes
through.

rgferrell@gmail.com

w h e n i w a s B u t a w e e l a d d u r i n g
the cosmic groovy ’60s, there were relatively
few tomes flitting about the corner book-
seller that could be considered “self-help”
books: Dale Carnegie’s unforgettable liter-
ary blockbuster How to Win Friends and
Influence People, already a venerable clas-
sic by this time, leaps nimbly to mind. The
rebirth of rampant materialism in the ’80s
provided an ideal breeding ground for a
vast weed patch of personal improvement
guides, and the “me first” ’90s were no less
fecund in this respect. I didn’t mention the
’70s because I was too busy coping with
hormones, college, and the horror that was
disco to pay much attention to what people
were reading.

Even though there’s (thankfully) not a lot left of
the Decade with No Good Name (the oughts? the
zeros?), the self-help pathogen hasn’t really abated
much, although it has embraced additional infec-
tion vectors such as blogs, podcasts, and Webzines.
The bacillus has mutated over the years in response
to economic conditions, however, and now pri-
marily targets victims who are unemployed or just
desperately want to be differently employed. There
have been many millions of words written on how
to find, curry favor with, retain, and slough off un-
wanted jobs, employers, and employees.

The only libations I have quaffed from this virtu-
ally bottomless well of wisdom concern the inter-
view process. I happen to be rather well versed in
the fine art of screwing up interviews, and a fair
portion of that acumen is the direct result of hav-
ing taken some of this pabulum too seriously.

Fortunately, I don’t have to worry about readers
taking what I say here seriously; anyone who does
probably has much greater issues with life than
those that might arise after putting my ersatz ad-
vice into practice. To encourage more people to
seek jobs in the UNIX system administration field,
then, and thereby increase my potential reading
audience, I have painstakingly prepared this list of
potential interview questions, based on my own
experiences, stuff I stole from the Intertubes, and
single-malt Islay–induced hallucinatory medita-
tions. Study well and be prepared for the inexpli-
cable, grasshopper.

Login_OCT08_proof1.indd 79 9/15/08 2:58:50 PM

80 ; LO G I N : vO L . 33, N O. 5

1. If you could choose to install any operating system ever made by Micro-
soft, why would you?

2. Apple’s OS X is based on which of the following?

 a. The Cat in the Hat Comes Back

 b. BSD

 c. LSD

 d. Iron Maiden’s “2 Minutes to Midnight”

 e. Nosferatu: Director’s Cut

3. What is a “shell” and why is there always one in your omelette?

4. The power goes out unexpectedly and you have thirty seconds of reserve
from the UPS you bought on eBay to shut down your UNIX machine
gracefully. Which command would be your best choice?

 a. shutdown -y now

 b. shutdown now | imeanit

 c. perl -p -e “exec(ps | awk ‘{print $1}’ | grep -v PID | kill -9;

 d. boot | halt

5. One of your users sends you an email request to increase her disk quota.
What should you do?

 a. Ignore her and go back to playing Adventure.

 b. Ignore her and go back to playing Nethack.

 c. Pipe her outgoing SMTP traffic to text2voice over the intercom.

 d. SMS a meatlover’s pizza and eat it while you dismantle her
 workstation.

 e. Tell her to fill out a user account modification request in tripli-
cate and email it.

6. Your boss tells you to do something you don’t think is right. How do you
respond?

 a. Pretend you don’t speak the same language.

 b. Suddenly run out of the room holding your stomach.

 c. Tell him you’re on break and offer him a beer from behind the
server rack.

 d. Hold your breath until you pass out.

 e. Ignore him and go back to sending out resumes.

7. The VP of operations calls you into her office to set up iTunes on her new
PC. Which course of action should you take?

 a. Offer to enable IPv6 on her digital picture frame while you’re
there.

 b. Subscribe her to alt.binaries.pictures.erotica.walruses and wall-
paper it.

 c. Set the screensaver to activate after three seconds of idle time
(with a password).

 d. Explain to her that iTunes songs can only be downloaded on a
Mac.

Login_OCT08_proof1.indd 80 9/15/08 2:58:50 PM

; LO G I N : O c tO b e r 20 0 8 / d e v/ r A N d OM 81

8. The Human Resources Director complains that his computer is running
slow. You examine it and discover that a spyware application seems to be
using up all the CPU cycles. Choose the best response:

 a. “I think you’re hosed, dude. Better buy a typewriter.”

 b. “Your operating system has rabies. Hope you had all your shots.”

 c. “What time does that hot HR receptionist get off?”

 d. “See those little black lump things on the motherboard? They’re
PC barnacles.”

 e. “Does the term ‘autoimmunity’ mean anything to you?”

9. Why are there “man” pages but no “woman” pages? Answer in panto-
mime.

10. RC scripts are used during what process?

 a. Flying your 1:25 scale V-22 in the park

 b. Burping the Poincaré conjecture

 c. Starting services at boot time

 d. Convincing the demons of darkness to pass over your simple
hovel

And, last but not least, the question you’re most likely to hear on any given
UNIX sysadmin interview:

How did you learn UNIX?

IRTFMP.

Login_OCT08_proof1.indd 81 9/15/08 2:58:50 PM

82 ; LO G I N : vO L . 33, N O. 5

n i C k s T o u G H T o n

update on standards:
the USENIX
Standards Project
Nick is the USENIX Standards Liaison, representing
USENIX in the POSIX and Programming Language
Standards Committees of ISO and ANSI. When he is
not busy with that, he is a consultant, with over 25
years of experience in developing portable systems
and applications, as well as conformance testing.

nick@usenix.org

u s e n i X h a s B e e n f u n d i n g a c t i V i t i e s
in standards for around 20 years. The orga-
nization has been involved with POSIX since
its inception, as well as with the C and C++
programming languages, the Single UNIX
Specification, the Linux Standard Base, and
several other projects.

Over those 20-odd years, USENIX has gained a
reputation and an esteemed position in the stan-
dards community. We are held up as the primary
champion of free and open source software within
the particular niche of programming language and
operating system standardization.

USENIX holds numerous senior positions on the
various standards committees: secretary to the IEEE
Portable Applications Standards Committee, secre-
tary to the Austin Group, International Representa-
tive for the USA on all POSIX and Linux matters,
co-editor of the C standard, editor of a technical
report for the C committee, editor of the Linux
Standard Base, inter-working group liaison for all
programming languages and POSIX, and chair of
the LSB specification authority, to name just some
of them. And let’s be shameless: although USENIX
holds the positions, since it funds the activities, the
person actually doing all of these jobs is me!

The annual expenditure for this work represents
a sizable proportion of the organization’s Good
Works budget (about 34% of the total, a sizable
proportion of which goes to international travel
expenses). Quite reasonably, the board periodi-
cally reviews where it is spending the organiza-
tion’s money, and at a recent Open Board Meeting
those present were asked if USENIX’s support of
standards activities was really benefiting the mem-
bership.

I believe it is true that the standards that we are
involved in affect in some way or other every sin-
gle member of the organization, every single day
they work. Maybe you never notice, but every key-
stroke you type has been touched by code written
in C. If you are a UNIX user . . . well, the Single
UNIX Specification is one of those standards. It is
a superset of the POSIX standard. The fact that the
same command does the same thing across all ver-
sions of Linux, *BSD, HP/UX, and several other
systems is because there’s a standard. Maybe you
use a GUI . . . probably some C++ there. I regularly
receive questions and comments from members of
various open source communities about POSIX and

Login_OCT08_proof1.indd 82 9/15/08 2:58:50 PM

; LO G I N : O c tO b e r 20 0 8 u pdAte O N stA N dA rds : tH e use N IX stA N dA rds prOj ec t 83

C interpretations that lead me to believe that many of you are not uncon-
scious of the standards you use.

Standards are what make open source software successful. They allow that
software to be ported from environment to environment with ease, freeing
us from having to reinvent the wheel every time we work on a new project.
The Open Source Initiative (OSI) (www.opensource.org) has an “Open Stan-
dards Requirement” (OSR). I’d like to quote some parts of their rationale for
the OSR:

If interoperability is a grand goal as it relates to software, then stan-
dards are the critical tools for achieving this goal. . . . At this point in
time, it has become largely intuitive across the industry and among
users that broad and widely accepted standards are a Good Thing. . . .
The purpose of an open standard is to increase the market for a tech-
nology by enabling potential consumers or suppliers of that technology
to invest in it without having to either pay monopoly rent or fear litiga-
tion on trade secret, copyright, patent, or trademark causes of action.
No standard can properly be described as “open” except to the extent
it achieves these goals.

The industry has learned by experience that the only software-related
standards to fully achieve these goals are those which not only per-
mit but encourage open-source implementations. Open-source imple-
mentations are a quality and honesty check for any open standard that
might be implemented in software, whether an application program-
ming interface, a hardware interface, a file format, a communication
protocol, a specification of user interactions, or any other form of data
interchange and program control.

The standards that USENIX is currently helping to develop and maintain are
all Open Standards by the definitions used by the OSI.

Let’s consider some current projects in which USENIX is involved. POSIX
has just completed a revision (only the third since 1988) that has added a
number of new APIs coming from the open source world (and, in particu-
lar, from glibc). Many hundreds of other issues were addressed at the same
time, and several previously optional features have now been mandated. (An
aside: Optional behavior is a real nuisance to the end-application developer.
If you cannot rely on a particular interface being available, then you have to
code around the possibility that the interface is absent, which bloats your
code and makes maintenance harder. So, getting rid of options is definitely a
Good Thing in my mind.) The POSIX working group (known as the Austin
Group, after their first meeting in that city) is staunchly opposed to inven-
tion. Everything that goes into the standard must be based on widespread
existing practice. Most of the issues that arise are because there is wide-
spread existing practice that implements an API in a different way from that
described in the standard. Much of the new revision has been aimed at re-
moving some of the differences between Linux and UNIX.

The C committee is preparing for its second revision since 1989. Like the
POSIX committee, there is a very strong resistance to invention by the
majority of members. This revision will likely include features such as
attributes for functions, variables, and possibly types, better support for con-
currency (probably including a thread API that is at worst a thin layer over
POSIX pthreads), and other features already supported by most if not all C
compilers in one form or another.

The C++ group is struggling to finish its revision, which will make radi-
cal changes to the language. Unlike C and POSIX, in C++ invention is not

Login_OCT08_proof1.indd 83 9/15/08 2:58:50 PM

84 ; LO G I N : vO L . 33, N O. 5

feared. USENIX has been one of the leading voices in this effort, trying to
ensure implementability and usefulness over cool and sexy with regard to
new features! Again, like C, concurrency support is a major driver.

As a spin-off of the C++ concurrency work, and trying to fill in where the
necessarily platform-neutral aspects of the programming language itself fall
short, a new POSIX/C++ binding working group has just been formed. This
group will be producing an IEEE standard that encapsulates POSIX threads,
file system, and networking (to name just some of the larger features) in C++
objects.

I hope this report helps you to answer for yourself the “Is this a worthwhile
effort?” question raised earlier this year. I’d be interested to hear your opin-
ion.

Login_OCT08_proof1.indd 84 9/15/08 2:58:50 PM

; LO G I N : O c tO b e r 20 0 8 b O O k re v I e ws 85

book reviews
e l i z a b e T H z w i C k y, w i T H b R a d k n o w l e s ,
s a M F. s T o v e R , a n d R i k F a R R o w

better : a surgeon’s notes on
 performance

Atul Gawande

Picador, 2007. 257 pages.
ISBN 978-0-312-42765-8

This is obviously not even vaguely a book about
system administration. I didn’t pick it up intending
to review it. I’m not quite sure why I did pick it up.
However, I ended up mulling over the similarities
between the intractable medical problems it de-
scribes and system administration.

This book is about how medicine improves, and
it points out that the main problems are not tech-
nical, but human: How do you get people to do
things that they should do to prevent long-term
problems but that give them nothing but annoy-
ance in the short term? This is clearly just as appli-
cable to getting your users to comply with security
requirements as it is to getting your doctors to
wash their hands to prevent spreading infection.

I also found a useful moral in the tale of Dr. Sem-
melweiss, who famously figured out that doctors
were spreading infection between women giving
birth, and then didn’t manage to get them to stop.
This turns out not to be a simple story of an un-
heard genius, but the story of somebody who was
technically right, but so annoying and unable to
explain himself that nobody listened. We’ve all
worked with that guy, right?

If you’re looking for some fascinating and useful
concepts to wrap your mind around, and are will-
ing to stretch a little to apply them, I think you’ll
find a good deal of usefulness here.

geekonomics : the real cost of insecure
software

David Rice

Addison-Wesley, 2008. 339 pages.
ISBN 978-0-321-47789-7

Software runs the world and it doesn’t work reli-
ably. This is clearly a bad thing. So why doesn’t
somebody fix it?

This book lays out the forces that keep software
unreliable, explains why open source software isn’t
the cure, and suggests some solutions. There’s an
interesting discussion of licensing for software en-
gineers, which system administrators should find
eerily familiar.

I am reasonably convinced that liability for soft-
ware manufacturers would improve the world.
Every time I think software licensing can’t get
any more absurd, I discover that I am not yet ad-
equately cynical. (Imagine my surprise when I
bought a cookbook with an included CD and dis-
covered that the software license for the CD was
printed on the back side of the book’s paper slip-
cover, where there is normally nothing at all.) I also
appreciated the discussion of the forces that drive
open source toward bloat.

Although I agree with the author, I think he over-
states the case in several places. Software isn’t the
only source of unexpected interactions, and a se-
rious case can be made that better error tolerance
is important entirely separate from software prob-
lems.

yo u r b r a i n : t h e m i s s i n g m a n ua l

Matthew MacDonald

O’Reilly, 2008. 247 pages.
ISBN 978-0-596-51778-6

Popular books on the brain are often minefields
of attractive but inaccurate information. This one
manages to avoid most of the hype and easy faulty
generalizations while providing easy to read and
digest information about the brain. It has useful
tricks without the breathless hype of many popular
books.

In particular, it has a nice clear explanation of what
is known about gender differences and the brain
(none of which is really all that exciting). This is
a nice antidote to a lot of the nuttier stuff going
around. Unfortunately, there aren’t any references,
so you’re pretty much stuck taking the author’s
word for it. Comparing what this says to sources I
trust, that works out OK. But if you don’t happen
to know any neuroscientists to ask, you would have
a hard time figuring out whether this was in fact

Login_OCT08_proof1.indd 85 9/15/08 2:58:50 PM

86 ; LO G I N : vO L . 33, N O. 5

more accurate than some very popular books with
numerous irrelevant footnotes.

eating the it elephant: moving from
greenfield development to brownfield

Richard Hopkins and Kevin Jenkins

IBM Press, 2008. 213 pages.
ISBN: 978-0-13-713012-2

On the face of it, this is the single most relevant
book I’m reviewing this issue. It’s about build-
ing big projects inside an existing IT organization,
where you are having to interface with all the ex-
isting, crufty systems. The analogy with building
on contaminated ground will seem quite apt to
anybody who’s tried to add anything to a mature IT
infrastructure.

Clearly, the authors have worked on many projects
like this and learned painfully. They have a grand
theory of how to deal with the situation, which
they lay out with gripping metaphors. They com-
pare it to other development methodologies and
provide some implementation advice.

However, their theory involves a grand unifying
program, and implementing that program is going
to be a major stumbling block for anybody who
wishes to use the process. Furthermore, the grand
unifying program needs to contain a knowledge
representation of all the parts of the IT infrastruc-
ture. They’re quite correct that having a working
knowledge representation is extremely powerful
and enables all sorts of fun stuff, but they imply
that it’s pretty straightforward for a business ana-
lyst to go from an existing program to an appropri-
ate representation of the objects, relationships, and
constraints (e.g., every account has one and only
one username, every file is owned by one account,
and so on and so forth). It’s not at all a straightfor-
ward matter of discovery and analysis.

This book has interesting ideas for people doing
large development projects that interoperate with
existing systems. For most sites it’s going to be
much the same as better—not an immediate re-
source you can implement, but an intriguing start-
ing place for adaptation.

the book of imap : building a mail server
with courier and cyrus

Peer Heinlein and Peer Hartleben

No Starch Press, 2008. 368 pages.
ISBN 978-1593271770

re V iewed By B r a d K n owl es

For us mail server administrators, there aren’t
many books in print that discuss installing, config-

uring, and operating IMAP mail systems. If you do
a search at your local library or on bookseller Web
sites such as Amazon, you will discover that there’s
only one other book available that is devoted to
the subject—Managing IMAP by Dianna and Kevin
Mullet—published way back in the dark ages of
2000 and now very long in the tooth. There are a
few other books that might give us a single chapter,
and at least one or two other books on program-
ming as it relates to Internet email, but that’s about
it. This is the gap that The Book of IMAP is intended
to fill, specifically for Courier-IMAP and Cyrus.

The book is separated into three standalone parts.
Part One, “How to Set Up and Maintain IMAP
Servers,” discusses topics that are generally appli-
cable to most IMAP servers. Part Two is devoted
to Courier-IMAP, and Part Three is about Cyrus.
There are also three appendix chapters providing
an IMAP command reference, a POP3 command
reference, and a guide to installing from source
code as opposed to binary packages. The last 20 or
so pages are devoted to a fairly extensive index.

The authors clearly work pretty much exclusively
with Linux. Everywhere that they talk about dif-
ferences among specific platforms, they discuss
choices such as SuSE, Red Hat, and Debian/
Ubun tu, and that’s about it. If you can look past
their obviously Linux-oriented nature, you should
be fine.

One thing that really annoyed me about this book
is the occasional misspellings and improper gram-
mar. It is clear that English is not the first language
of the authors, although it is likewise clear that
the authors care a great deal about proper word
usage and sentence structure. This is what makes
it doubly annoying when you run across phrases
such as “However, these combinations cannot be
combined with additional permissions....” There
are also typesetting issues, with paths to files bro-
ken in the middle of a directory name, when they
should be broken at directory separators (e.g., “/”),
or where options to “./configure” should not be bro-
ken across two lines at all.

Chapter 1 starts with a review of protocols and
terms, and Chapter 2 is a step-by-step review of
the POP3 and IMAP protocols. Chapter 3 launches
into the much weightier topic of load distribution
and reliability, starting with load-balancing tech-
nologies (including DNS round-robin, round-robin
via iptables, and Linux Virtual Server), but where is
the discussion of load-balancing switches?

Chapter 3 also covers the subject of IMAP proxies
and mentions one reason why you might want to
run IMAP proxies even if you have only one IMAP
server—certain Webmail IMAP clients are very

Login_OCT08_proof1.indd 86 9/15/08 2:58:50 PM

; LO G I N : O c tO b e r 20 0 8 b O O k re v I e ws 87

poorly behaved and open a separate IMAP connec-
tion for virtually every single user-visible element
on the screen, and caching IMAP proxies help of-
fload much of that work from the back-end IMAP
server. However, this ignores the fact that certain
other IMAP clients are also equally poorly behaved,
a fact we know all too well here at my current em-
ployer. Therefore, anyone anywhere who is running
an IMAP server of any size may potentially benefit
from having a system with a caching IMAP proxy
daemon.

Chapter 4 takes us into the subject of choosing a
filesystem and filesystem tuning for maximum per-
formance, as well as selecting benchmarking and
stress-testing tools to help you during this process.
You guessed it; they only tested ext3fs, ReiserFS,
and XFS, although they do actually mention that
OpenSolaris uses something called ZFS. Fortu-
nately, they at least show the difference that high-
performance disk drives can make, and they talk
about important things such as RAID and NFS,
highlighting various options you may want to look
at to help improve your performance.

Chapter 5 is about potentially useful Webmail cli-
ents, including Squirrelmail and Horde/IMP, and it
goes into more detail about some of the problems
that such clients can cause and why you might
want to use a caching IMAP proxy to help solve
those. The subject of Chapter 6 is migrating IMAP
servers, using tools such as imapsync, pop2imap,
imap_migrate, imapcopy, and imap_tools. This
chapter also talks about converting mailbox for-
mats, changing IMAP folder names, and determin-
ing cleartext passwords—all things that you might
need to worry about if you’re migrating from one
type of IMAP server to another.

With Chapter 7, we get into the second section of
the book, where Peer Heinlein discusses the Cou-
rier-IMAP server itself. He starts by covering the
basics of binary package installation, what gets put
where in the filesystem, initial startup, integrat-
ing Courier with MTAs (postfix, qmail, and Exim),
optimizing the configuration, and what configura-
tion parameters do and where they go. Chapter 8 is
about Maildir as an email storage format, how the
IMAP namespace impacts that, filenames of email
messages, and what flags can be attached to the
files.

Chapter 9 focuses on user data and authentica-
tion and the myriad different ways that can be
achieved, whether through internal-only methods
or tying into external systems such as MySQL,
PostgreSQL, or LDAP, and whether that’s done di-
rectly or via PAM, etc. In this long chapter the

authors try to make sense of all the hash and or-
ganize the information in a reasonable fashion.
Courier-IMAP does not support the full SASL stan-
dard, but it does support enough of it that you can
implement a complete IMAP mail server system.
The advantage here is that the authors have left out
much of the complexity that Cyrus includes with
the SASL Reference Implementation, which has
been a large part of why so many mail admins go
screaming into the night when they hear the term.

Chapter 10 is for Courier administrators and dis-
cusses setting up various different types of shared
folders, setting up quotas, using Courier to build
an IMAP proxy, configuring systems for “push”
IMAP email, and sending emails via IMAP.

Chapter 11 starts the third section of the book,
where Peer Hartleben talks about Cyrus. He begins
with structure and basic configuration, including
installation (binary packages again), optional ad-
ditional tools that are intended to make it much
easier to administrate Cyrus via a WebUI, the
Cyrus hierarchy in the filesystem and permissions,
features and functions, and authentication (SASL),
and then provides a “Quickstart Guide,” which in-
cludes integration with postix.

Chapter 12 takes us into the Cyrus configuration
file, and although it is short, it covers many differ-
ent configuration options that could have a huge
impact on the performance of your server. Chap-
ter 13, on authentication and safeguards, starts
with SSL and TLS encryption, SSL certificates, and
SASL. For SASL, this chapter gets into detail about
how various different modules interact with user
authentication schemes, including /etc/passwd log-
ins, Berkeley DB files, and integration with exter-
nal database systems such as MySQL or LDAP and
through intermediary systems such as PAM, and
with Kerberos.

Chapter 14 covers advanced Cyrus configuration,
including quotas, shared folders and ACLs, virtual
domains, sorting email messages into subdirecto-
ries and the use of hashed directory schemes for
enhanced performance, setting up multiple differ-
ent partitions for users, the Sieve server-side message
filtering language for IMAP servers, integrating
Cyrus with other MTAs, backing up and restoring
user mailbox data, and performance tuning.

Chapter 15 delves into internal structure and mod-
ules, and although this probably isn’t strictly nec-
essary, you learn a lot that may turn out to be
extremely useful regarding which internal modules
do what, what tools are available to do analysis,
maintenance, and repairs, the function of a multi-

Login_OCT08_proof1.indd 87 9/15/08 2:58:51 PM

88 ; LO G I N : vO L . 33, N O. 5

tude of other lesser-known Cyrus tools, and using
the cyradm administration tool.

Chapter 16 details Cyrus at the filesystem level,
focusing on the email directory and the adminis-
tration directory, and we see the function for each
of the main subdirectories in these trees. Finally
Chapter 17 is all about using Cyrus in a cluster,
starting with the cyrus aggregator (a.k.a. “murder,”
as in “a murder of crows”), the front-end servers,
the back-end servers, and the mupdate server, and
ending with a brief discussion of replication.

This book is not perfect, but it’s much better than
what we’ve had to date. On the whole, I agreed
with most of the things the authors wrote, and
where I disagreed with them it was more a matter
of feeling that they didn’t go far enough on a given
topic, as opposed to being flat-out wrong. At least
the authors introduce the reader to a variety of top-
ics in the field that you just don’t find in any other
book having to do with mail system administra-
tion, and they get the reader started down a good
path.

However, this is not a book that does hand-holding
for novices. It will be useful to experienced mail
system administrators, but if you’re not already in
this business and you don’t already know some-
thing of the subject, then you’re going to have a
steeper learning curve.

At the end of the day, my benchmark is whether
or not I would buy the book for myself, if I wasn’t
given a free copy to review. My answer to that
question is most definitely “Yes!”

I’ve had the opportunity over the years to be a
principal person doing the architecture and design
of two fairly large-scale email systems, one using
commercial products based on Cyrus for a large
national ISP and one using purely open-source
software and built around Courier-IMAP for a me-
dium-to-large multinational corporation. How-
ever, I feel that this book has definitely helped me
achieve a better and deeper understanding of these
packages.

I will be taking my heavily marked up copy and
sharing it with my colleagues with whom I help
administer the primary campus mail system for
~50,000 students and ~20,000 faculty and staff
here at the University of Texas at Austin. I’m sure
this will have an impact on our day-to-day admin-
istration of our existing Courier-IMAP based mail
system, as well as influencing our future choices
for whatever our next-generation campus-wide
IMAP server will look like.

And yes, I’m also going to contact the authors and
see whether they’re interested in getting some help
for the second edition.

google hacking for penetration testers,
volume 2

Johnny Long

Syngress, 2007. 448 pp.
ISBN 978-1-59749-176-1

re V iewed By sa m f. stoV er

I don’t know what it is about Johnny Long’s books,
but I just love ’em, and this one is no exception.
Good content, good style, and good humor: what
more could I ask for? Since I hadn’t read Volume
1 (released in 2006), I wasn’t sure what to expect,
but I was definitely pleased with the end product.
Also, I don’t want to detract from the other authors;
it’s apparent that this was a group effort and it was
well done.

The first chapter starts off with Google basics, fol-
lowed by Advanced Operators in Chapter 2. Much
of these two chapters could be familiar to the tech-
savvy, since we all use Google on a daily basis any-
way, right? Chapter 3 is where things start to get
interesting, and it just goes on from there. Not that
each chapter is that much better than the previous,
but each is cool in its own way. Chapter 3 starts
diving into basic Google-hacking methods, with
some solid guesses on what is actually happening
on the back end. Chapter 4 describes how to con-
duct searches to find data inside of different types
of documents, such as databases, log files, and con-
fig files.

Chapter 5 was probably my favorite chapter. As
a whole it addresses data mining using Google
search terms, but it starts with email, phone num-
ber, and domain searches—exactly the kind of
thing you’d want to be able to do if you find your-
self pen-testing a company and need to track down
valuable information about a particular individual
during said engagement. The obvious next step
to this is automation, and although Google does
frown slightly on some types of automation, Chap-
ter 5 walks you around the edges and lets you put
your computer to work without angering the gods.
You’ll see a couple of different scrapers and also be
introduced to Evolution (now called Maltego), an
open source “intelligence”-gathering application.

Chapters 6 and 7 deal with googling for exploits
and “simple security” searches, Chapter 8 shows
some techniques for finding different kinds of Web
servers, portals, and also networking devices, and
Chapter 9 focuses on searching for usernames and

Login_OCT08_proof1.indd 88 9/15/08 2:58:51 PM

; LO G I N : O c tO b e r 20 0 8 b O O k re v I e ws 89

passwords. Chapter 10 goes back to the automa-
tion drawing board and discusses the AJAX Search
API provided by Google. The book rounds out
with about 50 pages of “Google Hacking Showcase”
items in Chapter 11 and ways to protect your assets
from Google hackers in Chapter 12.

All in all, this is a very solid book. There were a
few more grammatical, spelling, and editorial er-
rors than I’d like to see, but the content was good
enough to distract me from the errors and omis-
sions. I’ve been spending a fair amount of time
lately doing engagements in which pen-testing
skills and tools are needed, and I think this book,
even as big as it is, will be a permanent part of the
repertoire.

c r i m e wa r e

Markus Jakobsson and Zulfikar Ramzan

Addison-Wesley Professional, 608 pp.
ISBN 978-0-321-50195-0

re V iewed By sa m f. stoV er

My biggest gripe with this book, and it’s a big one,
is the word “crimeware.” I just can’t buy into that
term, and that makes this a hard book to read at
times. I’m not saying that it isn’t a valid or descrip-
tive term, because it’s both, but it just doesn’t read
or sound right. That said, I think a lot of the con-
tent of the book is really spot on, which is why I
resolved to get over my anti-crimeware attitude,
and I encourage you to do the same if you find that
you’re turned off by the title.

Chapter 1 provides an introduction to the term
“crimeware” and goes into a fair bit of detail on
how different types of malicious software can be
grouped into what the authors have deemed crime-
ware, namely, malware designed for the express
intent of committing criminal acts. This chapter
touches on a lot of different topics and serves to
show how bots, trojans, rootkits, transaction gen-
erators, proxy attacks, and dns cache poisoning
can all be labeled as crimeware. There’s a fair bit of
technical detail present in this chapter, with indi-
cations of more in the following chapters.

The remaining chapters don’t really follow any rec-
ognizable pattern or hierarchy. They were all writ-
ten by different authors and could stand on their
own. (In fact, I believe some of the chapters were
either papers or featured articles in other publica-
tions.) I’m going to focus on the chapters that really
appealed to me, but on the off-chance that what
appealed to me might not be what you are looking
for, I definitely recommend checking this book out

and seeing whether the topics that interest you are
addressed.

Even though I’m not a software engineer by
any stretch, I really enjoyed Chapter 2 by Gary
McGraw, which deals with “A Taxonomy of Coding
Errors.” He has built a whole nomenclature around
coding errors and how they contribute to malware
infection and propagation. Good stuff. Another
chapter I really liked was Chapter 9 on “Virtual
Worlds and Fraud.” I see this as a ripe market for
malicious entrepreneurs, and despite the brevity of
this chapter, it was pretty engaging. Another good
read was Chapter 11, “Online Advertising Fraud,”
which dove into several different mechanisms de-
veloped by bad guys to make money from folks like
Google (and, incidentally, the Google Ad Traffic
Quality Team co-wrote this chapter). The last chap-
ter that really grabbed my attention was “Crime-
ware Business Models,” which discusses how the
bad guys are making money from all this crimi-
nally focused malware.

I think this book takes a reasonably good look at
a very diverse and complex topic. There were defi-
nitely times when I wished there was more detail,
but I guess that’s saying that the topics were in-
teresting enough that I wanted more. As with any
book that collects from a large author pool, there
was a little bit of overlap between certain chapters,
but nothing that I couldn’t overlook. The topics
are interesting, the spelling and grammar are top-
notch, and you can easily bounce around the book
as your fancy takes you. It gets high marks from
me, and I’d definitely be interested if a second edi-
tion were to come out.

running xen : a hands-on guide to the
art of virtualization

Jeanna N. Matthews, Eli M. Dow, Todd Deshane, Wen-
jin Hu, Jeremy Bongio, Patrick F. Wilbur, and Brendan
Johnson

Prentice Hall, 2008. 586 pages.
ISBN 978-0132349666

re V iewed By riK fa rrow

If you read the article in this issue about virtualiza-
tion in Solaris, you will have a good feeling for the
depth of information found in this book, written
by some of the same authors. When I first encoun-
tered Xen, I installed the right kernel, ran precon-
figured guest images, and things just worked. But
as soon as I needed to go beyond the basics, I dis-
covered that running Xen is a complex topic. And
that is where this book comes in.

The authors start with chapters on the basics of
virtualization and the use of a Xen LiveCD, and

Login_OCT08_proof1.indd 89 9/15/08 2:58:51 PM

90 ; LO G I N : vO L . 33, N O. 5

they quickly move on to configuration options for
xend, the interface to the hypervisor that runs in
Domain 0. The book continues to dive deeply into
setting up and running Xen, from prebuilt guest
images to setting up devices that can be accessed
only by a guest domain. I particularly appreciated
the chapter on Xen networking, as the authors do
a good job at explaining the differences among
bridging, routing, and NAT-based networking, as
well as about having completely virtualized net-
working among guests.

There is a lot of information in this book that is
hard to find online, and it is also clear that the
Clarkson University team that wrote this book is
intimately familiar with Xen. I found much to like
about this book. As an editor, I also have some
problems with this book, as there are numerous
little editing mistakes—e.g., sentences repeated
twice, things that are poorly explained, miss-
ing explanations such as how to use a preconfig-
ured guest saved with an .xva file suffix) and other
rough edges. It is as if the authors are so familiar
with Xen that they sometimes fail to communicate
with others who haven’t been breathing and liv-
ing Xen for the past several years. Still, I can rec-
ommend this book as a useful resource to anyone
tasked with managing Xen systems.

the head trip : adventures on the wheel
of consciousness

Jeff Warren

Random House, 2007. 390 pages.
ISBN 978-1-4000-6484-7

re V iewed By riK fa rrow

When I learned that Elizabeth was reviewing Your
Brain: The Missing Manual, I immediately decided

that we needed to contrast that book with another,
less pretentiously titled book. Whereas MacDon-
ald’s book has no references, Warren’s book has
30 pages of them, all neatly listed right before the
index. And although Warren’s book is also about
the brain, its focus is completely different.

Jeff Warren is a freelance producer for the Cana-
dian Broadcasting Company, as well as a freelance
science writer. This combination of avocations
leads to a delightfully yet rigorously written romp
through what he terms “The Wheel of Conscious-
ness.” Warren starts with sleep, offering himself
as an experimental subject to sleep researchers.
He isn’t just doing this for the purpose of writ-
ing this book, but because he is genuinely curious
about his own self. Besides learning the difference
between hypnogogic and hypnopompic dream-
ing (one is quite hallucinogenic in quality, whereas
the other is familiar to anyone who uses a snooze
alarm), I also learned about The Watch, a reverie-
like state that only occurs when you routinely get a
chance to be in bed over eight hours.

Warren also examines waking states, wanting to
enhance his own ability to be in “the zone” as
well as to achieve better focus through the use of
biofeedback training. And then there is the lucid
dreaming workshop, along with the use of a special
device (a topic I don’t want to spoil, as it makes for
good reading).

Much less of a manual, and with much greater
depth, The Head Trip teaches you a lot about your-
self while never failing to entertain.

Login_OCT08_proof1.indd 90 9/15/08 2:58:51 PM

; LO G I N : O c tO b e r 20 0 8 use N IX N Otes 91

USENIX
notes

us e n iX m e m b e r b e n e f it s

Members of the USENIX Association
 receive the following benefits:

free suBscrip tion to ;login:, the Associa-
tion’s magazine, published six times
a year, featuring technical articles,
system administration articles, tips
and techniques, practical columns
on such topics as security, Perl, net-
works, and operating systems, book
reviews, and summaries of sessions
at USENIX conferences.

access to ; lo gin : online from October
1997 to this month:
www.usenix.org/publications/login/.

discounts on registration fees for all
 USENIX conferences.

discounts on the purchase of proceed-
ings and CD-ROMs from USENIX
conferences.

special discounts on a variety of prod-
ucts, books, software, and periodi-
cals: www.usenix.org/membership/
specialdisc.html.

the right to Vote on matters affecting
the Association, its bylaws, and elec-
tion of its directors and officers.

for more infor m ation regarding mem-
bership or benefits, please see
www.usenix.org/membership/
or contact office@usenix.org.
Phone: 510-528-8649

us e n iX b Oa r d O f d i r ec tO r s

Communicate directly with the
 USENIX Board of Directors by
writing to board@usenix.org.

President

Clem Cole, Intel
clem@usenix.org

Vice President

Margo Seltzer, Harvard University
margo@usenix.org

secre ta ry

Alva Couch, Tufts University
alva@usenix.org

tre a surer

Brian Noble, University of Michigan
brian@usenix.org

direc tor s

Matt Blaze, University of Pennsylvania
matt@usenix.org

Gerald Carter,
Samba.org/Likewise Software
jerry@usenix.org

Rémy Evard, Novartis
remy@usenix.org

Niels Provos, Google
niels@usenix.org

e xecutiVe direc tor

Ellie Young,
ellie@usenix.org

usacO r e p O rt

Rob Kolstad, USACO Head Coach

USENIX is one of the principal spon-
sors of the USA Computing Olympiad,
the USACO. USACO fosters computing
for students before they enter univer-
sities, a function of ever-growing im-
portance as the percentage of college
students choosing computer science
as a major hovers at its 20-year low
of 2.2%.

Through a series of six contests, 14
USA students and a single interna-
tional representative earned berths
at the 2008 USAICO, the USA In-
vitational Computing Olympiad, a
grueling seven-day on-site set of six
competitions that culminates in the
announcement of the traveling team
that will represent the United States at
the International Olympiad on Infor-
matics (IOI). This year’s USAICO took
place on the grounds of the Univer-
sity of Wisconsin–Parkside south of
Kenosha, Wisconsin, near the home of
director Dr. Don Piele.

While the name USACO may sug-
gest that the competitions are strictly
for USA students, this is by no means
true. USA students generally compose
a quarter or fewer of the competitors.
In this season’s largest Internet-based
competition (March 2008), 984 stu-
dents vied for a gold medal. Of those,
304 (30.9%) were from China, and
134 (13.6%) were from the USA. Stu-
dents from Belarus (58), Bulgaria (46),
Romania (44), the country of Georgia
(35), Indonesia (33), Poland (25), Iran
(25), and India (25) rounded out the
top 10 of the 61 countries represented
at the contest. Contests are translated
into a number of languages, includ-
ing Chinese, German, Farsi, Georgian,
Indonesian, Polish, Russian, Spanish,
and Turkish.

The three-hour USACO competitions
feature three divisions (Gold, Silver,
and Bronze), which ask competitors
to write algorithmic programs in C,
C++, Pascal, and/or Java. The Bronze
contests set simple tasks that involve
sorting, array manipulation, string
manipulation, and the like. Once a

Login_OCT08_proof1.indd 91 9/15/08 2:58:51 PM

92 ; LO G I N : vO L . 33, N O. 5

student has mastered “flood fill” (e.g.,
given a map of elevations, how big is
a lake that includes square [33, 25]?),
he or she moves to the Silver divi-
sion. Solutions for Silver division tasks
require algorithmic thinking and pro-
gramming: Dijkstra’s algorithm, graph
manipulation, graphic algorithms, and
challenging ad hoc problems that each
have a unique algorithm for solution.

Silver problems often have time con-
straints that become quite challenging
unless the proper programming tech-
nique or algorithm is chosen. Consider
a task involving a triangle of numbers
with five (later, N) levels:

7

3 8

8 1 0

2 7 4 4

4 5 2 6 5

The challenge is to maximize the sum
of numbers chosen by starting at the
top of the triangle and traveling down
the triangle to the bottom row, mov-
ing slightly right or left each time you
descend one row. In the sample above,
the route from 7 to 3 to 8 (on the third
row) to 7 to 5 produces the highest
sum: 30. Almost any first-year com-
puter programmer will sneer at such a
problem and quickly—and correctly—
aver that a recursive solution will be
but a few lines long.

Of course, there’s always a twist. In
this case, the triangle has as many as
100 rows and the time limit is 1.0 sec-
onds in a 2.4 GHz Pentium-based com-
puter. The simple recursive solution
requires 2 1̂00 iterations—that’s 1.27 x
10^30. Even a superfast computer that
can perform 10^9 iterations per second
would require 10^21 seconds—40
quadrillion years—a number that dra-
matically exceeds the one-second time
limit. The trick is to solve the problem
backwards, starting at the bottom row,
enumerating the best set of N – 1 solu-
tions, and working your way back up
to the top. This easily implementable
solution requires O(N^2) time and way
fewer than 10,000 operations for the
100-row triangle.

Silver programmers who demonstrate
the “dynamic programming” algorithm
(named for a math technique, not for
programming) move to the extremely
challenging Gold level. Only 276
folks entered the Gold competition
in the huge March contest. Only 25
(less than 10%) achieved 800 or more
points out of 1000. Here’s the easiest
task from the March Gold division:

At Bessie’s recent birthday party,
she received N (2 <= N <= 100,000;
N%2 == 0) pearls, each painted one
of C different colors (1 <= C <= N).

Upon observing that the number
of pearls N is always even, her cre-
ative juices flowed, and she decided
to pair the pearls so that each pair of
pearls has two different colors.

Knowing that such a set of pair-
ings is always possible for the sup-
plied testcases, help Bessie perform
such a pairing. If there are multiple
ways of creating a pairing, any solu-
tion suffices.

Doesn’t that seem easy? Give it a try!

The June USAICO camp this year
assembled our best finishers in the
half-dozen Internet contests held since
November (an additional qualifying
exam is held in October).

Camp attendees were partitioned into
two sets: those vying to make the IOI
team for the August trip to Egypt and
those training for next year’s team.
Attendees hailed from states across the
continent (along with our international
representative, imported specially to

keep our top competitors challenged).
Thomas Jefferson High School for
Science and Technology in Virginia
supplied a large number of students,
as did their rival, Montgomery Blair
High School in Maryland. Attendees
included: seniors David Benjamin
from Indiana, Artur Dmowski from
New York, Kevin Lee from New Jersey,
Spencer Liang from California, Haitao
Mao from Virginia, and Jacob Stein-
hardt from Virginia; juniors Shravas
Rao from Ohio and Goran Zuzic from
Croatia; sophomores Michael Cohen
from Maryland, Brian Hamrick from
Virginia, Jacob Hurwitz from Mary-
land, Neal Wu from Louisiana, and
Scott Zimmermann from Maryland;
and two younger students, freshman
Wenyu Cao from New Jersey and
talented seventh-grader Daniel Ziegler
from California, who gave the high
schoolers a run for their money. All the
seniors are attending Harvard or MIT
this fall.

Coaches included former IOI champi-
ons Brian Dean from Clemson Univer-
sity, Alex Schwendner from MIT, and
Percy Liang from UC Berkeley, along
with perennial administrators Don
Piele and Rob Kolstad. Coaches super-
vised, taught, deconstructed problems
and solutions, and created the three
problems for each of the ten contests
(different contests for different divi-
sions) of the camp.

Almost every day of the USAICO com-
petition and training camp opened

IOI representatives Brian Hamrick, David Benjamin, Neal Wu, and Jacob Steinhardt

Login_OCT08_proof1.indd 92 9/15/08 2:58:51 PM

; LO G I N : O c tO b e r 20 0 8 use N IX N Otes 93

u pdate O n sag e

Jane-Ellen Long,
SAGE Programs Director

LISA ’08, Nov. 9–14
It’s LISA time again. Join us in San
Diego, CA, November 9–14, 2008, at
the 22nd Large Installation System
Administration Conference. You’ll
find all the information and activities
you’ve come to expect, and more. This
year we’re offering six days of focused
training at a special rate. Choose ei-
ther virtualization—and who doesn’t
need to know more about that, these
days?—or Solaris training from the
experts. Find out more at www.usenix.
org/lisa08/.

SAGE Short Topics Booklets Get Longer
Two new titles, each of nearly 100
pages, have joined the ever-expanding
collection of SAGE Short Topics in
System Administration, carrying on
the tradition of Information from the
Source. The first, LCFG: A Practical Tool
for System Configuration, was written
by—who better?—Paul Anderson, au-
thor of the LCFG tool and also author
of the SAGE booklet on System Configu-
ration. LCFG tells you everything you
need to know to determine whether
this is the right tool for your site and,
if so, how best to deploy it there.

Don’t forget to compare Cfengine, laid
out for you by Cfengine tool author
Mark Burgess in the SAGE title A
System Engineer’s Guide to Host Configu-
ration and Maintenance Using Cfengine,
and the upcoming SAGE booklet on
BCFG, written by, you guessed it,
BCFG tool authors Narayan Desai and
Cory Lueninghoener.

The second of the recent titles, De-
ploying the VMware Infrastructure, is a
collaborative effort by John Arrasjid,
Karthik Balachandran, and Daniel
Conde of VMware and Gary Lamb and
Steve Kaplan of INX. (What were we
saying about the importance of under-
standing virtualization?)

Everyone can preview and order the
booklets online at www.sage.org/pubs/
short_topics.html. SAGE members

with a three- or five-hour contest for
the high-level combatants. After lunch,
contest review commenced, during
which unsolved tasks were van-
quished. Afternoon activities included
ultimate Frisbee, Frisbee golf, min-
iature golf, game programming (two
different games this year, including
one from IBM used at the international
ACM contest), movie night, and swim-
ming. Attendees are busy from break-
fast at 8 a.m. until about 10 p.m.

When the dust settled, four IOI repre-
sentatives were announced, two sopho-
mores and two seniors: Brian Hamrick,
David Benjamin, Neal Wu, and Jacob
Steinhardt. The level of competition
was so high that team membership
was up for grabs until the final five-
hour contest. These four elite students
represented the USA at the 20th IOI in
Mubarrak City, Egypt, August 16–23,
2008. Look for the report in the De-
cember issue of ;login:.

You don’t have to look far to hear
moaning about the lack of perfor-
mance by today’s high school students
(a complaint documented since the
dawn of history). The students at the
USAICO include math champions,
physics aficionados, musicians (coach
Percy Liang also continues to perform
in the world of competitive piano), and
science fair winners (Jacob Steinhardt
was a Silver Medal winner at the pres-
tigious 2007–08 Siemens Competition
in Math, Science & Technology for his
project entitled “Cayley graphs formed
by conjugate generating sets of S_n”).
Croatian competitor Goran Zuzic not
only achieved the highest scores at
our USAICO competition (of course
he can’t represent the USA at the IOI)
but also won his country’s math and
physics competitions as a high school
junior.

USACO competitors grow into techni-
cal community citizens of fine repute:
for example, former competitor and
coach Russ Cox just won his second
Best Paper award at a USENIX confer-
ence. USACO appreciates the support
of USENIX and continues to strive to
build strong students and future tech-
nical leaders and contributors.

can also read and download the full
booklet PDFs.

SAGE Talk
Have you joined ;login: columnist Peter
Baer Galvin’s Wiki on Solaris System
Analysis 101 at wiki.sage.org/bin/view/
Main/AllThingsSun? (What were we
saying about Solaris training?)

Not into Solaris? The SAGE blog is
back, with a series on open source
enterprise monitoring by ;login: author
Matthew Sacks. Comments welcome!

Speaking of joining, visit us on the
SAGE Facebook group: www.sage.org/
facebook. For a more formal group,
join the LinkedIn SAGE group at
www.sage.org/linkedin.

If you’re not subscribed to the sage-
members mailing list, you should be.
To find out why, search the archives at
www.sage.org/lists/mailarchive.html.

Don’t forget to troll around the SAGE
Web site from time to time. Check out
the Recommended Reading and the
Toolbox, and see what else is new on-
line and what SAGE groups meet near
you. (And please let us know if your
group’s not listed.)

Jobs, Jobs, Jobs
In these uncertain times, the SAGE
Jobs Board offers you new opportuni-
ties daily, as well as an ideal site for
posting your own resume. Subscribe
to sage-jobs-offered to learn about
postings the moment they appear.
See www.sage.org/lists/lists.html for
details.

From You to SAGE
Remember, SAGE is not just for you,
it’s by you, the system administration
community. Have you recently had to
figure something out? Write a white
paper and save your fellow sysadmins
some pain. Read a really useful book?
Let us add it to the Recommended
Reading list. Other ideas? Contact
 suggestions@sage.org.

Login_OCT08_proof1.indd 93 9/15/08 2:58:52 PM

The 8th USENIX Symposium on Operating Systems Design and
 Implementation (OSDI ’08) brings together pro fessionals from
academic and industrial backgrounds in what has become a
premier forum for discussing the design, implemen tation, and
implications of systems software.

The 8th USENIX Symposium on
 Operating Systems Design and
 Implementation (OSDI ’08) brings
together pro fessionals from academic
and industrial backgrounds in what has
become a premier forum for discussing
the design, implemen tation, and
implications of systems software.

8TH USENIX SYMPOSIUM
ON OPERATING SYSTEMS
DESIGN AND IMPLEMENTATION
December 8–10, 2008, San Diego, CA

8TH USENIX SYMPOSIUM ON
OPERATING SYSTEMS
DESIGN AND
IMPLEMENTATION
December 8–10, 2008,
San Diego, CA

Save the Date! Save the Date!

www.usenix.org/osdi08/lo www.usenix.org/osdi08/lo

Save the Date!Save the Date!

Fourth Workshop on Hot Topics in
System Dependability (HotDep ’08),
December 7
http://www.usenix.org/hotdep08

First USENIX Workshop on the Analysis
of System Logs (WASL ’08),
December 7
http://www.usenix.org/wasl08

Workshop on Power Aware Computing
and Systems (HotPower ’08),
December 7
http://www.usenix.org/hotpower08

Workshop on Supporting Diversity
in Systems Research (Diversity ’08),
December 7
http://www.usenix.org/diversity08

First Workshop on I/O Virtualization
(WIOV ’08),
December 10–11
http://www.usenix.org/wiov08

Third Workshop on Tackling Computer
 Systems Problems with Machine Learning
Techniques (SysML08),
December 11
http://www.usenix.org/sysml08

The following workshops will be co-located with OSDI ’08:

The following workshops
will be co-located

with OSDI ’08:

Fourth Workshop on Hot Topics in
System Dependability
(HotDep ’08),
December 7
http://www.usenix.org/hotdep08

First USENIX Workshop on
the Analysis of System Logs
(WASL ’08),
December 7
http://www.usenix.org/wasl08

Workshop on Power Aware
Computing and Systems
(HotPower ’08),
December 7
http://www.usenix.org/hotpower08

Workshop on Supporting Diversity
in Systems Research (Diversity ’08),
December 7
http://www.usenix.org/events/
diversity08

First Workshop on I/O Virtualization
(WIOV ’08),
December 10–11
http://www.usenix.org/events/
wiov08

Third Workshop on Tackling
Computer Systems Problems with
Machine Learning Techniques
(SysML08),
December 11
http://www.usenix.org/sysml08

Sponsored by USENIX in cooperation with ACM SIGOPS

Login_OCT08_proof1.indd 94 9/15/08 2:58:54 PM

; LO G I N : O c tO b e r 20 0 8 cO N fe re N ce re p O rt s 95

2008 USENIX Annual Technical Conference
Boston, MA
June 22–27, 2008

virtualization

Summarized by John Krautheim (kraut1@umbc.edu)

n	 Decoupling Dynamic Program Analysis from Execution
in Virtual Environments
Jim Chow, Tal Garfinkel, and Peter M. Chen, VMware

Awarded Best Paper!

Jim Chow described a novel method for software testing
and debugging using a virtual machine (VM) as record-
ing and replay device. The concept is not new, but the
technique presented provides a new tool for the arsenal
of software developers and testers.

Jim points out that one of the main reasons for devel-
oping such a tool is the lack of automated methods in
software development. The team at VMware wanted to
make Dynamic Program Analysis (DPA) more accessible.
DPA is ability to take a running computer program, stop
it, and inspect its state. This technique is very useful for
the programmer; however, existing tools for DPA have a
very high overhead from context swapping, instrumenta-
tion, and analysis, which results in a slowdown on the
order of one hundred times. Therefore, the VMware team
looked for a way to improve this analysis technique with-
out the slowdown from overhead. The solution the team
came up with was to decouple the analysis and execution
by parallelizing the problem with virtual machines. This
allows the target system to run freely in one VM while
the analysis system records and regenerates events on a
separate VM. The hypervisor is used to record all inputs
to the VM under analysis and can start the analysis
machine from the same state and replay instructions. The
analysis system regenerates all the data needed, removing
the overhead from the target system. Since the overhead
of recording is very efficient with virtual machines, the
target system can run at roughly native speed.

To demonstrate the technique, the team developed the
Aftersight system. Aftersight is built on the VMware vir-
tual machine monitor and thus it inherits many proper-
ties of VMs that can be leveraged to solve the problem.
The Aftersight system provides isolation of the target and
analysis system so that the analysis is self-contained and
communication bottlenecks are eliminated. Through par-
allelism, the analysis and the target can run separately,
on multiple cores if available. This allows analysis to go
faster, and multiple analyses may be performed at the
same time. An added side benefit of this parallel play-
back and recording is that ex-post-facto analysis can be
performed on behavior not known at the time of record-
ing, providing the ability to examine events not foreseen

conference reports

thaNks tO Our summarIzers

2008 USENIX Annual Technical
Conference . .95
Tom Clegg
John Krautheim
Varun Marupadi
Kiran-Kumar Muniswamy-Reddy
Matthew Sacks
Zoe Sebepou
Christopher Stewart
Ward Vandewege

Third Workshop on Hot Topics in Autonomic
Computing (HotAC III) . .112
Alva Couch

Findings from the First Annual File and
Storage Systems Benchmarking
Workshop . 113
Darrell D.E. Long
Ethan L. Miller
Avishay Traeger
Erez Zadok

login_summariesOCTOBER2008.indd 95 9/15/08 1:07:41 PM

96 ; LO G I N : VO L . 33, N O. 5

at execution time. The team has used Aftersight to debug
VMware’s own ESX Server, the Linux kernel, and the Putty
secure shell client, finding previously undiscovered bugs in
all three.

The Aftersight system relies on the concepts of heteroge-
neous replay and parallel analysis. Heterogeneous replay
is the ability to record and replay events at the same time,
thus increasing the speed and timeliness of analysis. Paral-
lel analysis allows analysis and system execution simul-
taneously, further increasing the timeliness of the results.
Implementing heterogeneous replay and parallel analysis
presents several technical challenges. First, keeping tar-
get and analysis systems in sync with each other without
slowing the target system down is difficult. The analysis is
typically slower than the target system, and there are times
when the target system must be blocked because of resource
allocation issues. This limitation can be overcome by addi-
tional buffering in the target system and further refinement
and tuning of the analysis system to speed it up. However,
there are situations where the analysis system just cannot
keep up, so additional techniques such as forward caching
and buffering can be applied. Also, the addition of more
processing cores in the system can help offload the analysis
task through further parallelization.

This talk gave several compelling reasons for using dynamic
program analysis and showed how decoupling the execution
and analysis environments can significantly improve pro-
ductivity and effectiveness. The Aftersight system appears
to have many useful applications in the development, test,
and security worlds. The audience was greatly intrigued
and several questions arose on the difference between the
decoupled approach and existing parallel environments.
The difference is at what level the recording and playing
occur. Jim stated that recording at the OS level incurs more
overhead than recording at the hypervisor level.

n	 Protection Strategies for Direct Access to Virtualized I/O
Devices
Paul Willmann, Scott Rixner, and Alan L. Cox, Rice University

Paul Willmann, now with VMware, presented performance
and safety measures of several strategies for access control
to I/O devices from within virtualized environments. Direct
access to I/O devices is required in many datacenter ap-
plications where high throughput performance is needed;
however, access to these devices needs to be controlled to
protect from an untrusted virtual machine (VM) tamper-
ing with or using devices it does not have permission or
privilege to use.

Wallmann presented implementations of protection strate-
gies in both hardware and software, with surprising results.
Hardware implementations utilize an Input Output Memory
Map Unit (IOMMU) to implement single-use mappings,
shared mappings, persistent mappings, and direct mapping
strategies. The software strategy is an implementation of
the single-use mapping that requires the guest OS’s drivers

to register with the virtual machine monitor (VMM) before
access is granted to the device. Both hardware and software
implementations have advantages and disadvantages that
are evaluated in the paper.

The different strategies were evaluated based on perfor-
mance and protection capability in inter-guest and intra-
guest protection categories. Three types of invalid accesses
were evaluated for each strategy and for each category: bad
address, invalid use, and bad device. The results showed
that hardware implementations worked very well and ef-
ficiently for intra-guest protections, but it did not perform
well for inter-guest protection. The software implementation
performed well in all inter-guest protections except for the
bad device case. Additionally, the software method provides
additional protection in the intra-guest invalid use case.

With all the strategies showing very good overall protec-
tion, the biggest differentiator among the various strategies
becomes performance-related. Several benchmarks were
run against the strategies, including a TCP stream, a VoIP
server, and a Web server. The benchmark also tested against
various levels of mapping reuse. The results showed that the
single-use strategy had the highest inter-guest overhead, at
6%–26% of CPU workload; however, significant mapping
reuse can greatly reduce that overhead. Persistent map-
pings showed the highest performance, at only 2%–13%
overhead with nearly 100% reuse. The software implemen-
tation showed better performance than two of the hard-
ware strategies (single-use and shared), with 3%–15% CPU
overhead. The direct-mapped hardware strategy was the
best performer, although it had limited intra-guest protec-
tion capability.

The surprising result is that the software protection strate-
gies utilized in this paper provide performance comparable
to or better than the hardware IOMMU results while still
maintaining strict inter-guest and intra-guest protection.

n	 Bridging the Gap between Software and Hardware Tech-
niques for I/O Virtualization
Jose Renato Santos, Yoshio Turner, and G. (John) Janakiraman,
HP Labs; Ian Pratt, University of Cambridge

Jose Renato Santos’s talk was on improving I/O performance
in virtual machines through combining hardware and
software techniques. In a virtualized environment, physical
devices need to be multiplexed so that each guest virtual
machine (VM) can use the device. This multiplexing can be
handled in software and hardware, each with its advantages
and disadvantages. Software incurs a significant overhead
in managing the device; however, the driver is simplified by
providing a transparent interface as I/O access is handled
by the host OS using a device-specific driver and the guest
can use a standard virtual device driver independent of
the hardware. The hardware approach is more complicated
since the transparency is reduced, requiring each guest VM
to have a device-specific driver; however, the performance
is usually much better.

login_summariesOCTOBER2008.indd 96 9/15/08 1:07:41 PM

; LO G I N : O c tO b e r 20 0 8 cO N fe re N ce re p O rt s 97

The HP Labs research team wanted to reduce the perfor-
mance gap between driver domain model and direct I/O
while maintaining transparency. To do so, they analyzed
the Xen device driver model, focusing on the networking
receive path, and compared the same workload with a direct
I/O approach. They focused on several areas to improve the
performance of the Xen driver. First, they reduced the data
copy cost by keeping all copies between guest and driver
domains on the same CPU to increase cache hits. Next,
they avoided extra data copies by using dedicated NIC
receive queues. Finally, they reduced the cost of the grant
mechanisms, the second highest cost in Xen, by maintain-
ing grants and mappings across multiple accesses. The team
was able to reduce the receive path execution costs for a
conventional NIC by 56%. For devices with multiple hard-
ware receive costs, they were able to achieve performance
near direct hardware I/O while maintaining the benefits of
the Xen driver model. This is a significant improvement in
performance over the original driver domain model in Xen.

By keeping the new multi-queue completely hidden from
the guest and encapsulated in the driver domain, migration
to the new driver is completely transparent to the guest. The
team has stated that the new mechanisms will be updated
in the Xen Netchannel2 in approximately 2–3 months. The
next improvement they plan to make will be to look at
high-bandwidth (i.e., 10 GigE and multiple guests) improve-
ment in the Xen driver.

invited talk

n	 Free and Open Source as Viewed by a Processor Developer
Peter Kronowitt, Intel

Summarized by Ward Vandewege (ward@gnu.org)

Peter Kronowitt’s talk grew from an internal Intel presenta-
tion. He works in the Software Solutions Group, which opti-
mizes software—all sorts of software, ranging from embed-
ded to server. The purpose of the optimization is to ensure
that when the product reaches the marketplace, there is a
complete hardware and software solution.

The traditional software-enabling model at Intel goes
something like this. Intel works with over 12,000 software
companies. Most of these are proprietary, so Intel has to
sign nondisclosure agreements (NDAs). Then engineers are
assigned; they need time to get the work done, and then
Intel has to wait for the market to generate demand in order
to get to a mutually beneficial state for Intel and its partners.

Open source development is very different. Intel feeds
software into the kernel. That software then gets picked
up by community distributions such as Debian, Fedora,
and OpenSuse, and those in turn feed into the products of
Linux companies such as Canonical, RedHat, and Novell.
This is a much more efficient model.

Intel has learned to work more effectively with kernel de-
velopers: In 2001, Alan Cox, a core kernel developer, gave

direct feedback that Intel required many NDAs and was se-
cretive about its hardware, making it very difficult to work
with. Fast forward to 2007 when Alan Cox said that Intel
is one of the most cooperative hardware vendors, providing
good docs, errata, and software such as graphics drivers. In
those six years, Intel has learned and relearned a lot of stuff.

Linux is estimated to be one-third of the market based on
server shipments today. But tracking open source software
(OSS) is very difficult. This is a problem—if Intel can’t tell
what software customers are using, it cannot put its re-
sources in the right place to make sure the hardware works
perfectly. Intel needs to know what software customers are
using and deploying in order to be able to offer a “complete
solution.” Also, OSS is growing three times as fast as propri-
etary software.

Intel has been growing its open source involvement over
the years, starting in 1990 when Linus Torvalds booted
Linux on Intel Architecture for the first time. He was able
to do that because Intel had released detailed specifications
for the Intel Architecture. Since 2003, Intel has become
more visibly active as a contributor to OSS. The following
paragraphs highlight some examples of how Intel has been
working with the OSS community over the years.

The PC BIOS had not changed for over 20 years. Intel
launched the Tiano project to replace it. This was done in
partnership with CollabNet, establishing the extensible
framework interface (EFI) dev kit. From this, Intel learned
how open source can drive industry change.

In 2003 Intel joined other vendors in a virtualization
research project called Xen at Cambridge University in the
UK. In 2004 Intel started contributing a large amount of
code to the open-source project. Today a large ecosystem
exists around virtualization, and Intel has been contribut-
ing to many projects in that space. Xen helped catalyze Intel
feature adoption by vendors of virtualization products.

The telecom industry was a highly proprietary, vertically
integrated industry that overinvested during the dot-com
era. Intel was a founding partner of the Open Source De-
velopment Labs (OSDL), contributing to the kernel and the
Carrier Grade Linux (CGL) specification. When the dot-com
bubble burst, the carriers needed to cut costs, and Intel’s
involvement with CGL helped the Intel Architecture break
into the telco industry.

In the late 1990s, Merced, the Itanium platform, solidified
numerous operating system porting commitments. Intel
worked with many OS vendors and indirectly contributed
to the Linux kernel. Linux and Itanium helped Intel gain
access to the RISC market.

Initially, Intel made Linux kernel contributions via proxy.
This meant that Intel was not very visible as a community
member. After long, difficult internal negotiations on open
sourcing drivers, Intel started contributing code directly to
the kernel. This direct participation in the community has
accelerated Intel technology adoption.

login_summariesOCTOBER2008.indd 97 9/15/08 1:07:41 PM

98 ; LO G I N : VO L . 33, N O. 5

Influencing Java was . . . challenging. Intel, like numerous
other industry players, requested that Sun open source Java.
Eventually, Intel participated in the launch of the Harmony
project with other industry players, including IBM. Har-
mony was a clean-room OSS Java implementation. Eventu-
ally, this encouraged Sun to release an OpenJDK.

More recently, Intel has been working on Moblin, an opti-
mized software stack for Atom-based clients. This software
stack is aimed at mobile Internet devices, netbooks, cars,
etc. See http://moblin.org for more information. Intel also
launched LessWatts.org, an Intel open source project to
make Linux greener.

disk stor age

Summarized by Christopher Stewart
(stewart@cs.rochester.edu)

n	 Idle Read After Write—IRAW
Alma Riska and Erik Riedel, Seagate Research

When users issue writes to a disk, they assume their exact
data has been stored. However, mechanical anomalies can
cause the data actually stored on disk to deviate from the
user’s original data (a.k.a. data corruption). Worse, such
corruption can be silent, causing the user to wrongly believe
their data was correctly written to the disk. Alma Riska
presented Idle Read After Write (IRAW), a low-overhead
approach to detecting silent data corruption. IRAW issues a
disk read for recently written data during periods when the
disk is idle. The data returned by the read is compared to a
cached copy of the actual data the user intended to write to
the disk; if the two differ, appropriate recovery actions are
taken (e.g., retry).

Compared to a standard disk, IRAW improves reliability
by validating writes soon after they occur. An alternative is
to validate each write immediately after it happens (RAW).
RAW improves reliability, but it degrades performance by
placing an additional disk operation on the critical path
of every write. In comparison, IRAW delays the valida-
tion until the disk is idle, and therefore it hides the cost
of the additional read from the end user. IRAW therefore
requires enough idle time for the additional disk operations
to complete. Alma presented empirical evidence from five
disk traces, all of which had more than enough idle time to
perform the delayed reads.

Empirical results using IRAW show that it indeed has low
overhead. One experiment showed that the performance of
an IRAW-enabled disk almost matched that of a standard
disk for a Web server application. Further, IRAW may not
degrade other performance-enhancing disk operations. For
instance, many applications can benefit by enabling IRAW
and idle wait simultaneously. Finally, Alma showed that the
footprint of IRAW in the disk cache was not too large for
today’s disks.

Adam Leventhal from Sun Microsystems asked whether
IRAW could be applied at the filesystem level. Alma said
that it is possible, but the file system will probably be less
effective at identifying true idle time on the disk. Geoph
Keuning from Harvey Mudd College asked whether it was
even important to be concerned with the amount of cache
space dedicated to IRAW, since volatile memory is getting
cheaper. Alma said that one design goal was to make IRAW
practical for today’s disks, which meant keeping the foot-
print below 4–6 MB.

n	 Design Tradeoffs for SSD Performance
Nitin Agrawal, University of Wisconsin—Madison; Vijayan
Prabhakaran, Ted Wobber, John D. Davis, Mark Manasse, and
Rina Panigrahy, Microsoft Research, Silicon Valley

Solid-state disks (SSDs) can perform certain I/O operations
an order of magnitude faster than rotating disks. They have
the potential to revolutionize storage systems. However,
little is known about the limitations of their architecture.
Nitin Agrawal discussed several inherent challenges for
SSD devices and proposes solutions. The analysis is based
on a detailed understanding of the architecture of SSD
devices. For instance, a write to an SSD block requires that
the block’s contents be erased and rewritten. Further, SSD
blocks can only be erased a certain number of times. Such
architectural properties affect the performance and reliabil-
ity of SSDs.

The granularity of writes affects the performance of SSDs.
Specifically, workloads that perform writes to random loca-
tions on disk perform orders of magnitude worse than those
that perform random reads. Empirical evidence showed a
difference of 130 random writes per second compared to al-
most 20,000 random reads per second. Nitin demonstrated
that properly mapping logical pages to physical blocks can
improve the performance of random writes. A second per-
formance challenge faced by SSDs is bandwidth bottlenecks.
Striping and interleaving are good solutions to mitigate
the bandwidth bottleneck by distributing I/O for logical
blocks across multiple channels. Intuitively, this solution
exploits the potential for parallelism in storage access pat-
terns. Finally, SSD blocks wear down after a certain number
of erasures and rewrites. To maximize the lifetime of the
device, Nitin proposed a novel wear-leveling algorithm that
increases the usable lifetime of an SSD by delaying expiry of
any single block.

Jason Flinn from the University of Michigan asked Nitin
about the benefit of wear-leveling, given that the whole
device will wear out eventually anyway. Nitin said that
wear-leveling reduces the long-term cost of SSDs, since the
failure of individual blocks could force a company to pur-
chase a new device when only a small portion of its capac-
ity is unusable. Sean Rhea noted that wear-leveling is most
beneficial for applications that frequently write to only a few
pages but access many pages for reading (i.e., small hot set
and large cold set). Nitin agreed.

login_summariesOCTOBER2008.indd 98 9/15/08 1:07:41 PM

; LO G I N : O c tO b e r 20 0 8 cO N fe re N ce re p O rt s 99

n	 Context-Aware Mechanisms for Reducing Interactive
 Delays of Energy Management in Disks
Igor Crk and Chris Gniady, University of Arizona

Igor began by saying that most disks now support differ-
ent power modes for energy conservation. The disk can be
powered down during idle times to consume less energy
and then spun up to an operational power mode when I/O
requests arrive. In today’s interactive systems, the additional
latency for I/O requests that interrupt idle periods (i.e., the
time for a disk spin-up) is typically seen by the end user
(who then gets miffed and maligns the system as slow and
unresponsive). Igor presented a mechanism to hide spin-up
latency from end users by preemptively changing the disk
to full-power mode before I/O requests happen. The key is
to identify end-user GUI events that signal that a disk I/O is
imminent. When such events happen during an idle period,
the disk can be moved to an operational power mode in an-
ticipation of the impending request. For instance, a mouse
click on a “file open” button may be a good signal that an
I/O request is imminent and the disk should preemptively
be spun up.

Compared to today’s default policy (no preemptive spin-up),
the proposed solution can hide spin-up delays from the end
user. Further, by considering the context of the GUI event,
the proposed solution can achieve better energy conserva-
tion than a naive solution that preemptively spins up after
every mouse click. Context information was collected by
intercepting calls to the X windows server. Specifically, each
X windows event updated a table that tracked the number
of times that the event occurred in a particular context and
the number of times it was followed by I/O. After data was
collected for a long period of time, the event contexts that
were most likely to be followed by disk I/O were tagged
as good predictors. Empirical results show that preemp-
tive action based on the identified predictors does hide the
latency of disk spin-up from end users, while conserving
more energy than a naive approach that does not consider
the context of the event. Further, Igor mentioned that the
proposed system allows users to trade off the latency they
see for more energy conservation by adjusting the threshold
at which an event qualifies as a predictor.

Yu Chen from Fermilab asked whether they were able to
accurately predict disk requests for systems that had a large
file system cache. Igor noted that the difference between file
system requests and disk I/O was a significant challenge. In
the current implementation, they identify the GUI events
likely to cause file system requests and apply a heuristic to
predict disk requests. Christopher Stewart from the Univer-
sity of Rochester noted that user satisfaction, as measured
by Mallik et al. at ASPLOS 2008, could guide the setting of
the threshold that determines when an event qualifies as a
predictor. Igor agreed that the combination of the two works
could be beneficial. However, he noted that GUI events can
predict I/O well in advance, so a combination of the tech-
niques may significantly affect performance.

net work

Summarized by Matthew Sacks
(matthew@matthewsacks.com)

n	 Optimizing TCP Receive Performance
Aravind Menon and Willy Zwaenepoel, EPFL

Aravind Menon demonstrated the ability to improve TCP
performance by focusing on the receive side of the TCP
protocol. Menon argued that receive-side optimizations are
missing, contributing to lesser performance of the TCP pro-
tocol. Linux was used as the demonstration OS for his con-
cepts, although the same principles can be applied to any
operating system. Menon shows that there are two types of
overhead: per-byte optimizations and per-packet optimiza-
tions. Per-packet overhead costs are the primary overhead
contributor on newer CPUs, whereas on older processors
the issue was with per-byte overhead.

Menon presented two types of performance improvements
in his talk: receive aggregation and TCP acknowledgment
offload. Receive aggregation aggregates multiple incoming
network packets into a single host packet accounting for
a 45%–86% increase in performance. Receive aggregation
requires that the packet must be the same TCP connection,
must be in sequence, and must have identical flags and
options. Receive aggregation works best when receiving at
a high rate of transfer. To implement this method in Linux
the network driver must allocate raw packets rather than
sk_buffs.

For acknowledgment offloading, the normal method of gen-
erating ACK packets, by a one-to-one mapping, is replaced
by a template to generate the ACK packets, which in turn
avoids buffer management costs. This must be done at the
device-driver layer. Nonprotocol overhead has the greatest
impact on TCP performance such as buffer management,
and, specifically for the Linux driver, it also processes MAC-
level analysis of each packet.

n	 ConfiDNS: Leveraging Scale and History to Detect
 Compromise
Lindsey Poole and Vivek S. Pai, Princeton University

Lindsey Poole presented a new project called ConfiDNS,
which is based on the CoDNS cooperative DNS resolver
system. CoDNS is a wrapper for local DNS resolution that
allows faster lookups and high availability for DNS lookups.
CoDNS utilizes PlanetLab for ensuring high availability as a
distributed service.

ConfiDNS takes the CoDNS project and addresses the secu-
rity vulnerabilities in CoDNS, which is susceptible to con-
tamination from a single resolver being propagated through-
out the entire system. The way ConfiDNS works is that
when the local resolver fails, it forwards the request to peer
nodes on the PlanetLab network (a feature that was present
in CoDNS). ConfiDNS preserves a history of lookups and
the client can specify policies for DNS lookups.

login_summariesOCTOBER2008.indd 99 9/15/08 1:07:41 PM

100 ; LO G I N : VO L . 33, N O. 5

Another problem encountered with CoDNS is DNS lookups
served by global content distribution networks, which may
return multiple IPs from different locations for the same
hostname. ConfiDNS addresses this problem by implement-
ing a peer agreement algorithm that compares results from
multiple resolutions from different geographic locations and
then returns a result.

ConfiDNS proves that you can improve DNS resolution
performance without compromising security. DNS attacks
on the local system are much easier to carry out. ConfiDNS
protects against attacks such as cache poisoning or spoof-
ing, and it improves performance at the same time.

n	 Large-scale Virtualization in the Emulab Network Testbed
Mike Hibler, Robert Ricci, Leigh Stoller, and Jonathon Duerig,
University of Utah; Shashi Guruprasad, Cisco Systems; Tim
Stack, VMware; Kirk Webb, Morgan Stanley; Jay Lepreau, Uni-
versity of Utah

Emulab, a network testbed at the University of Utah, allows
researchers and engineers the ability to specify a network
topology including server systems to which you have root
access. One of the difficulties that the Emulab maintainers
experienced was a limitation in the amount of hardware
available to them; therefore, a virtual solution for the net-
work and systems was needed to power the Emulab testbed.
One of the requirements of the virtual solution was that
the virtual environment needed to retain the same fidelity
of experiments running on the testbed so that the results
would not be affected. At first FreeBSD jails were used to
address this; however, jails alone were found to fall short in
addressing the issue of network virtualization, so the Emu-
lab team designed a more robust virtualization platform
that expanded on the FreeBSD jail’s limitations.

The team at Emulab implemented a robust network virtu-
alization solution by developing a virtual network interface
device, which is a hybrid encapsulating device and bridg-
ing device. The “veth” interface allows creation of unbound
numbers of Ethernet interfaces, which then communicate
transparently through the switch fabric. Veth devices can
be bridged together or with physical interfaces to create
intra-node and inter-node topologies. In addition to virtual
network interfaces, the Emulab team also had to implement
virtual routing tables that are bound to each jail and virtual
interface based on the Scendaratio and Risso implementa-
tion, which implements multiple IP routing tables to sup-
port multiple VPNs. Also, for the virtual nodes themselves,
the Emulab team designed a resource-packing methodology
called “assign” which “packs” virtual hosts, routers, and
links into as few physical nodes as possible without over-
loading the physical nodes. This method allows up to a 74:1
compression ration of virtual nodes/networks to physical
hosts.

The research done on the Emulab testbed in addressing
these scaling issues with virtual networks and nodes has
enabled the team to scale efficiently while keeping the

same fidelity as strictly physical hardware by using virtual
interfaces and resource packing. The efficiencies achieved
in the Emulab virtualization implementation now allow ex-
periments to be executed on up to 1000 nodes, permitting
powerful simulations without impact onm the fidelity of the
experiments.

invited talk

n	 Millicomputing: The Future in Your Pocket and Your
 Datacenter
Adrian Cockcroft, Netflix, Inc., and Homebrew Mobile Club

Summarized by Tom Clegg (tom@tomclegg.net)

Low-power computing devices such as mobile phones—
which Adrian Cockcroft calls “millicomputers,” because
their power requirements are measured in milliwatts rather
than watts—are increasing in capacity faster than their hun-
dred-watt datacenter counterparts. In this talk, Cockcroft
gave an overview of the current state of low-power technol-
ogy and cheap open hardware in particular, considered
some of the applications that become possible as mobile
devices approach the capacity of personal computers, and
outlined a speculative “enterprise millicomputer architec-
ture” employing thousands of low-cost nodes per rack.

In 2007, the iPhone was notable for running a full Mac OS
rather than a cut-down embedded operating system—it
ships with 700 MB of system software. Clearly, portable
millicomputers such as the iPhone provide a real applica-
tion platform. Cockcroft showed photos of a prototype
“myPhone”—a Linux-based GSM/EDGE phone with many
built-in features and connectivity options, and CPU and
RAM specifications similar to the iPhone. In 2008, the
emergence of Google Android as an open source alternative
to the iPhone platform has generated a lot of developer in-
terest. The highest-performance smart phone hardware will
raise the bar further with 256 MB RAM, 16–64 GB storage,
twice the CPU speed, and faster networking. AT&T plans to
implement HSPA release 7 in 2009, which will deliver speed
“exceeding 20 Mbps” and has a “clear and logical path” to
700-MHz 4G access in the 2010 timeframe, which should
increase speed to nearly 100 Mbps. Meanwhile, short-range
low-power networking is reaching 480 Mbps as Ultra-Wide-
band Wireless USB starts to roll out. Nonvolatile storage is
steadily becoming cheaper, and emerging storage technolo-
gies promise dramatic speed increases in a few years. In the
CPU market, we can expect 1-GHz quad-core processors to
arrive in 2010.

Given the pace of mobile technology advances, the time is
coming into view when pocket devices with wireless dock-
ing can replace laptop computers, just as laptops replaced
desktop computers for many users. Combining workstation
computing power with mobile connectivity, we might see
“life-sharing” applications such as full-time video confer-
encing and virtual world integration. Integrating acces-

login_summariesOCTOBER2008.indd 100 9/15/08 1:07:41 PM

; LO G I N : O c tO b e r 20 0 8 cO N fe re N ce re p O rt s 101

sories such as an accelerometer, compass, and brainwave
reader, we have a system with many possible uses such as
computer-assisted telepathy, ambient presence, immersive
personal relationships, and better ways to monitor and care
for physically disabled people.

In addition to mobile applications, these tiny low-power
computers have potential applications in the datacenter.
They could help reduce power consumption, which is
already a limiting factor in many situations. Cockcroft
presented one possible architecture to demonstrate how
a computing cluster might be constructed using low-cost
mobile device boards. Modules packed onto a 1U enterprise
motherboard yield a fully distributed heat model that is
much easier to cool than a typical server board. Two groups
of seven modules are connected via USB switches to each of
eight gateway/load balancer nodes, each having two gigabit
network interfaces. Thus, each rack unit has a total of 112
CPUs and 28 GB of RAM, consuming 24 W when idle and
160 W at peak power. Adding 8 GB microSDHC cards with
20 MB/s I/O each, we have 896 GB per rack unit of stor-
age with 2240 MB/s I/O. The $14,000 cost of this system is
comparable to a 1U Sun server with similar specifications—
but the millicomputer offers much faster storage I/O with
zero seek time and more network bandwidth, using little
more than half the power.

Software implications of this platform include a small ap-
plication memory limit (256 MB) on par with mainstream
systems from 2001. Management implications include
the need for lightweight monitoring, aggregation tools,
and load balancing. This platform would be well suited
to horizontally scalable applications such as Web content
delivery, legacy applications that could run on five-year-old
machines, storage I/O-intensive applications, and graphical
video walls.

One participant pointed out that the low bandwidth
between nodes could be a serious limitation. Cockcroft
explained that the USB approach was taken to minimize
power consumption, and the CPU power is not enough to
saturate a gigabit network interface in any case. This feature
of the design makes it more suitable for applications with
low IPC demands, such as Web servers. It would also be
possible to use other low-power interconnects, perhaps
based on FPGA technology, which would give better inter-
connect bandwidth. It should also become less of an issue
as RAM size increases. Another participant suggested a
heads-up display with facial recognition software as an in-
teresting mobile application. Cockcroft added that, although
signal processing chips can be a big power drain, many
processing tasks can be postponed until nighttime, when
the device is plugged into a charger and it’s acceptable for it
to get a bit hotter than comfortable pocket temperature. An-
other participant brought up the possible impacts of mobile
technology on the way we interact with services; Cockcroft
referred to “taking the friction out of interactions” with
always-on networking and services such as continuously

updated status tracking. Another participant wondered
whether this mobile power could simply do away with the
role of the data center; Cockcroft offered that, although
there tends to be a pendulum alternating between client and
server focus, there will likely always be a place for central-
ized services, but certainly more can happen in the pocket.

Current information on millicomputing can be found at
http://millicomputing.blogspot.com/.

file and stor age systems

Summarized by Zoe Sebepou (sebepou@ics.forth.gr)

n	 FlexVol: Flexible, Efficient File Volume Virtualization in
WAFL
John K. Edwards, Daniel Ellard, Craig Everhart, Robert Fair,
Eric Hamilton, Andy Kahn, Arkady Kanevsky, James Lentini,
Ashish Prakash, Keith A. Smith, and Edward Zayas, NetApp,
Inc.

John Edwards presented their work on a new level of indi-
rection between physical storage containers (aggregates) and
logical volumes (FlexVol volumes). An aggregate consists of
one or more RAID groups, and its structure resembles that
of a simple file system, keeping the changes made on the
individual FlexVol volumes. The main goal of FlexVol was to
provide new functionality by decoupling the physical device
management from the data management. The decoupling
strategy gives administrators the flexibility to enforce differ-
ent policies on different volumes and to dynamically grow
or shrink the volumes.

The mapping between the virtual block addresses of FlexVol
and the physical addresses used by aggregates requires extra
processing and disk I/O to deal with the address transla-
tion of each indirect block. This challenge is addressed with
two main optimizations: dual block numbers and delayed
block freeing. Block pointers in a FlexVol volume have two
parts: the logical location of the block in the container and
its physical location. In delayed block freeing, free space is
held by the aggregate, not the volumes, so one counts the
number of delayed free blocks and performs a background
cleaning after a specific threshold. These optimizations
help to reduce the overhead and result in at most a small
degradation in the system’s overall performance compared
to traditional volume approaches.

The evaluation of FlexVol was made through the use of
micro-benchmarks, including the comparison of read and
write in sequential and random access patterns. Their
results indicate that FlexVol performance is almost identical
to that of the traditional volumes, and in the worst cases the
performance difference is from 4% to 14% (mostly in ran-
dom cases involving metadata overhead in write operations).
Finally, Edwards provided some insight into the current use
of FlexVol and its services, showing the growing adoption of
FlexVol by their customers.

login_summariesOCTOBER2008.indd 101 9/15/08 1:07:41 PM

102 ; LO G I N : VO L . 33, N O. 5

n	 Fast, Inexpensive Content-Addressed Storage in Foundation
Sean Rhea, Meraki, Inc.; Russ Cox and Alex Pesterev, MIT
CSAIL

Sean Rhea presented Foundation, a preservation system
based on content-addressed storage (CAS) aimed at provid-
ing permanent storage of users’ personal digital artifacts.
Sean pointed out that the increasing use of computers to
store our personal data would lead to the undesired situ-
ation that this data would be unavailable in the future.
Indeed, as software and hardware components depend on
each other to make an application operate and provide the
desired functionality, a user in the future would need to
replicate an entire hardware/software stack in order to view
the old data as it once existed. To overcome this problem,
the authors, inspired by Venti, designed and developed
Foundation. Foundation differs from Venti mostly in that
instead of using an expensive RAID array and high-speed
disks, it only uses an inexpensive USB hard drive, making
the deployment of this system easy and possible for con-
sumer use.

Foundation permanently archives nightly snapshots of a
user’s entire hard disk containing the complete software
stack needed to view the data (with user data and applica-
tion and configuration state of the current system captured
as a single consistent unit). To eliminate the hardware
dependencies, Foundation confines the user environment to
a virtual machine. As in Venti, the use of content-address
storage allows Foundation to have limited storage cost,
actually proportional to the amount of new data, and to
eliminate duplicates through the use of a bloom filter; other
filesystem-based approaches miss this benefit.

The major components of Foundation include the Virtual
Machine Monitor (VMM), the filesystem Snapshot Server
(SMB), the virtual machine archiver, and the CAS layer,
whose main use is to store the archived data on the inex-
pensive external disk and/or replicate it using a remote
FTP server. The users operate on an active virtual machine
which runs on top of the VMM. The VMM stores the state
of the virtual machine in the local filesystem and every
night the virtual machine archiver takes a real-time snap-
shot of the active VM’s state and stores the snapshot in the
CAS layer. The SMB server is used to interpret the archived
disk images and present the snapshots in a synthetic file
tree, accessible by the active VM over the server.

To eliminate several of the problems that appear in similar
systems such as Venti, their proposed solution to reduce
disk seeks is to reduce as much as possible the hash table
lookups. In the case of writing, lookups occur when the
system needs to update a block index and when determin-
ing whether a block has been accessed before. In these cases
Foundation uses a write-back index cache that is flushed
to disk sequentially in large batches. During read opera-
tions, lookups are required in order to map hashes to disk
locations. In this case they start with the list of the original
block’s hashes, they look up each block in the index, and

they read blocks from the data log and restore them to
disk. Moreover, with the use of CAS they take advantage of
the fact that, given a block, CAS gives back an opaque ID.
This allows block locations to be used as IDs, completely
eliminating read-indexing lookups and thus still allowing
for potential duplicate finding using hashing.

For the evaluation of the Foundation system, the authors fo-
cused on the performance of saving and restoring VM snap-
shots. The important metrics taken into consideration were
how long it takes for Foundation to save the VM disk image
and how long it takes to boot old system images and recover
old files from the directory tree. Foundation’s algorithm in
its two modes, by-hash and by-value, was compared against
Venti’s algorithm. The results indicate that Foundation op-
erates efficiently and gives higher read and write throughput
in the majority of the tested cases compared to Venti. Sean
Rhea concluded that Foundation is a consumer-grade CAS
system that requires only a USB drive and can be used not
only as a preservation system but also as an inexpensive
household backup server. Moreover, it can automatically
coalesce duplicate media collections and operates efficiently
without requiring a collision-free hash function.

n	 Adaptive File Transfers for Diverse Environments
Himabindu Pucha, Carnegie Mellon University; Michael Kamin-
sky, Intel Research Pittsburgh; David G. Andersen, Carnegie
Mellon University; Michael A. Kozuch, Intel Research Pittsburgh

Himabindu Pucha described dsync, a file transfer system
that can correctly and efficiently transfer files in a wide
range of scenarios. By choosing to use all the available
resources (the sender, the network peers, and the receiver’s
local disk) and by constantly monitoring recourse usage,
dsync overcomes performance limitations present in other
similar systems such as rsync and peer-to-peer systems
such as BitTorrrent. Although the primary resource used by
dsync is the network, dsync dynamically chooses, if neces-
sary, to spend CPU cycles and disk bandwidth to locate any
relevant data on the receiver’s local file system in order to
enhance performance.

dsync retrieves chunks over the network either from the
sender or from any available peer that has downloaded the
same or similar data. It also makes the optimization to look
at the receiver’s local disk for similar data by spending some
of the system’s CPU resources to compute the hash of data
from the local disk and for scheduling purposes. Specifi-
cally, dsync source divides each file (or file tree) in equal-
sized chunks and by hashing the chunks computes for
each chunk a unique ID. A tree descriptor is then created
describing the file layout in the file tree, the metadata, and
the chunks that belong to each file. So, given a tree descrip-
tor, dsync attempts to fetch the file chunks from several
resources in parallel using the optimal resource at any given
time.

The evaluation of dsync was done for several transfer sce-
narios; results for single receiver (one source—one receiver)

login_summariesOCTOBER2008.indd 102 9/15/08 1:07:41 PM

; LO G I N : O c tO b e r 20 0 8 cO N fe re N ce re p O rt s 103

and multiple receivers (in homogeneous/heterogeneous
environments—PlanetLab nodes) indicate that dsync can
effectively use the available resources in any environment.
Moreover, the back-pressure mechanism allows for optimal
resource selection and the heuristics used quickly and ef-
ficiently locate similar files in real file systems.

One questioner asked whether they have attempted to find a
solution that is globally good, given that resources are to be
shared among several receivers. The answer was that cur-
rently each receiver greedily uses the resources to minimize
its download time, but they would like to look at strategies
that enable cooperation among receivers to improve their
performance.

keynote address :
the par allel revolution has started : are
you part of the solution or part of the
problem ?

David Patterson, Director, U.C. Berkeley Parallel Computing
Laboratory

Summarized by Christopher Stewart (stewart@cs.rochester.
edu)

Patterson began by saying that his speech was motivated
by the revolution under way in computer architecture:
Microprocessors are out; parallel architectures are in. Pat-
terson argued that the design shift from microprocessors
is inevitable, so the systems community would do best by
embracing parallel architectures and finding solutions to the
new challenges they present. “I wake up every day and can’t
believe what is happening in hardware design,” Patterson
said. “We are in a parallel revolution, ready or not, and it is
the end of the way we built microprocessors for the past 40
years.”

Although the end of the microprocessor is inevitable, Pat-
terson noted that the current movement toward parallel
architectures could fail without ever achieving success. In
particular, past companies based on parallel architectures
have all failed. But this time, he argued, the consequences
of failure would likely be more severe and widespread.
Despite the history, Patterson said that he is optimistic that
the parallel revolution could succeed this time, for several
reasons. First, there will not be fast microprocessor alterna-
tives to parallel architectures. Second, the open-source com-
munity will build software that takes advantage of parallel
architectures. Third, emerging software trends (especially
software as a service) are well suited for parallel architec-
tures. Fourth, FPGA chips will decrease the time necessary
to prototype new designs. Finally, necessity is the mother of
innovation.

Of course, Patterson’s optimism was restrained, since many
obstacles must be overcome before the parallel revolution
can be realized. In the remainder of his talk, Patterson
described several challenges, or research themes, as they

relate to the systems community and the approaches being
taken by the Parallel Computing Lab to solve them. The
challenge that he mentioned first is that there is not yet a
“killer app” for parallel architectures. Patterson argued for
an application-centric solution in which researchers take
cues from domain experts. So far, his research group has
identified potential applications such as the re-creation of
3-D sound in ear buds, accelerators for hearing aids, image-
based search, modeling of coronary heart disease, face
recognition, and a parallel Web browser. Adapting single-
threaded applications written in old languages was the next
challenge addressed. Patterson argued that such applica-
tions can be transparently improved by identifying common
design patterns that can be parallelized. Following the lead
of Christopher Alexander’s book A Pattern Language, Patter-
son argued for 13 design patterns, which he called motifs,
that if properly researched could improve performance for a
range of applications.

Patterson’s third discussion point was about the difficulty
of developing parallel software. He advocated a two-layer
approach. The first layer is the efficiency layer, which would
be developed by 10% of the programming population. Soft-
ware at this level consists of smart and lightweight operat-
ing systems, hypervisors, and compilers that automatically
compose and optimize applications. The second layer is
the productivity layer, where novice programmers encode
domain-specific logic in high-level languages.

The fourth challenge was to develop a scalable lightweight
operating system for parallel architectures. Current virtual
machine monitors are a good step in this direction.

Finally, power conservation remains an important issue,
even for parallel architectures. Patterson’s group is using
runtime data on power consumption and performance to
inform compiler-level autotuners, the OS scheduler, and
adaptable software components. This challenge is especially
important for datacenters and handheld devices.

Patterson concluded by urging the systems community to
seize this opportunity to reinvent “the whole hardware/soft-
ware stack.” His parting words were, “Failure is not the sin;
the sin is not trying.”

Andrew Tannenbaum noted that a crash every two months
is not acceptable to most people, yet it seems to be the best
that we can do with sequential programming. Since parallel
programming is harder by at least an order of magnitude,
how will we create software that satisfies user demands
for reliability? Patterson agreed that reliability is an impor-
tant problem for parallel software. He suggested revisiting
software solutions that were proposed for previous parallel
architectures and emphasized that a solution is critical for
the parallel revolution to be successful.

Rik Farrow complimented Patterson’s research agenda and
broad vision. He suggested that the systems community
should also consider redesigning basic primitives, such as
the operating system’s trapping mechanism and methods for

login_summariesOCTOBER2008.indd 103 9/15/08 1:07:41 PM

104 ; LO G I N : VO L . 33, N O. 5

inter-processor communication. Patterson agreed and noted
the need for cooperation between the systems and architec-
ture community in optimizing such primitives.

Jeff Mogul wondered whether Patterson’s approach would
fit the needs of the common developer. In particular, Pat-
terson’s motifs seemed to reflect the patterns in scientific
computing and not necessarily everyday applications.
Patterson argued that the motifs do cover a wide range of
applications. But he noted that motif-based research is just
underway, and the real benefit will be evident as more ap-
plications are developed for parallel architectures.

web and internet services

Summarized by Tom Clegg (tom@tomclegg.net)

n	 Handling Flash Crowds from Your Garage
Jeremy Elson and Jon Howell, Microsoft Research

Jon Howell began by observing that a single server in your
garage can provide enough power to deploy a cool new Web
application and make some money with minimal startup
costs. However, if your service gets popular too suddenly,
the burst of traffic can easily bring down your garage server
completely. Utility computing services make it possible to
accommodate flash crowds cheaply by adding servers on
short notice and turning them off when they’re no longer
needed. Howell presented a survey of techniques for using
utility computing to achieve load balancing and fault toler-
ance for Web services.

The survey covered four basic approaches: storage delivery
networks, HTTP redirection, middlebox load balancing, and
DNS load balancing. Each technique was evaluated using
five criteria: applicability to different types of applications,
limits of scalability, implications for application develop-
ment, response to front-end failure, and response to back-
end failure.

Storage delivery networks are easy to use and are suitable
for serving idle content such as video files. HTTP redirec-
tion works by assigning each client to a single back-end
server. This client-server affinity makes application devel-
opment easier, but it is possible for clients to be bound to
a broken back-end server, and a front-end failure prevents
any new sessions from starting. An experiment with 150
clients and 12 back-end servers resulted in only 2% load on
a single front-end server, suggesting that a single redirec-
tor could handle 7,500 clients. A middlebox load balancer
associates clients with back-end servers by looking at layer
4 (TCP source port number) or layer 7 (HTTP cookie). An
advantage to this technique is that it does not involve the
client’s participation. However, a front-end server failure
is fatal to all sessions. DNS load balancing assigns clients
to back-end servers by selecting and reordering a list of IP
addresses when responding to queries. DNS load balanc-
ing scales very well, but it is complicated by DNS caches,
resolvers, and client software. Experiments showed a huge

variance in failover time on different operating systems,
with the Mac OS X resolver library taking up to 75 seconds
to failover to a second IP address. Also, a significant portion
of clients sort the list of IP addresses and contact the lowest-
numbered server first, thereby defeating the load balanc-
ing system. A hybrid approach might use a static delivery
network for static content and a load-balanced cluster for
active content or use DNS to balance load among several
fault-tolerant middlebox load balancers, which can compen-
sate for the sluggishness of DNS failover.

Howell shared some lessons learned from a CAPTCHA
service (Asirra) and a password reminder service (Inkblot-
Password), both of which handled flash crowds reasonably
well. The CAPTCHA service used DNS load balancing to
select a back-end server, which provides a session ID so that
misdirected queries can be identified and forwarded to the
correct back-end server. Occasional misdirected requests
were forwarded to the correct server. Some requests failed
because of utility computing back-end failures, but users
could simply retry. An attempted denial-of-service attack
was apparently abandoned after it failed to bring down the
service.

One attendee observed that the middlebox and DNS tech-
niques have complementary characteristics; Howell agreed
that it would be worthwhile to evaluate a hybrid approach
using those two techniques. Another question was why DNS
address list sorting didn’t prevent the DNS load balancing
from being effective; Howell noted that Linux accounts for a
relatively small portion of clients and that the DNS servers
could help work around the behavior by returning only a
subset of the full back-end server list to each query. In re-
sponse to another audience question, Howell said he would
be able to make the survey data available to the public.

n	 Remote Profiling of Resource Constraints of Web Servers
Using Mini-Flash Crowds
Pratap Ramamurthy, University of Wisconsin—Madison; Vyas
Sekar, Carnegie Mellon University; Aditya Akella, University
of Wisconsin—Madison; Balachander Krishnamurthy, AT&T
Labs—Research; Anees Shaikh, IBM Research

Most Web servers rely on overprovisioning to handle flash
crowds, because it is difficult to obtain data about server re-
source limitations. Administrators are reluctant to perform
stress tests on production servers, and testbed environments
are often configured so differently that test results would
not be a good indicator of the production Web server’s
performance. Pratap Ramamurthy presented a technique for
measuring resource limitations of a production Web server
without adversely affecting regular usage.

The “mini-flash crowd” service employs a distributed set
of clients, synchronized by a controller, to simulate flash
crowds. The controller conducts a number of experiments,
each designed to test the limitations of a specific resource;
for example, to test network bandwidth, the clients down-
load large static files from the target server. Each experi-

login_summariesOCTOBER2008.indd 104 9/15/08 1:07:42 PM

; LO G I N : O c tO b e r 20 0 8 cO N fe re N ce re p O rt s 105

ment begins by launching a small number of simultaneous
requests and measuring the service’s response time, then
performing further tests with increasing numbers of simul-
taneous clients. The experiment stops when the response
time has increased by a user-configured threshold. This
prevents the experiment from having a detrimental effect on
the real users of the target service.

Before conducting a series of experiments, the controller
crawls the target server and classifies objects by size and
type in order to select appropriate requests for the differ-
ent resource tests. It also measures the round-trip response
time for each client; when conducting tests, it compensates
for the difference between clients so that the target server
receives all of the requests within the shortest possible time
interval. The service was used to test some “cooperating”
target sites, whose administrators were aware of the tests
and made their server logs available to the testers. These
tests were conducted with a 250-ms response time thresh-
old and the results were provided to the service operators;
in some cases the results exposed some unexpected limita-
tions and helped to diagnose known problems. Tests with
a lower response time threshold (100 ms) were conducted
on a number of other public Web sites in the wild. The
results of these tests were categorized according to Quant-
cast popularity rank, which showed that the more popular
sites tend to be better provisioned and accommodate bigger
client loads but that even unpopular servers often have well-
provisioned network connectivity. A survey of phishing sites
showed that their request handling capabilities are similar
to low-end Web sites (ranked 100,000–1,000,000).

In response to a questioner, Ramamurthy said that the MFC
source code will be made available. Another attendee ex-
pressed curiosity about the response time curve beyond the
100-ms threshold. Ramamurthy offered that the relevance
of larger response times depends on the type of application;
for example, longer response times are more important for
a search index than for a binary download site. Another
attendee suggested that the tests cannot be considered “non-
intrusive” if they affect the target service’s response time
enough to be worth measuring. Ramamurthy replied that
the response time increases only for the short time that the
test is being conducted and that 100 ms is a relatively small
impact for testing servers in the wild; in effect, the choice of
response time threshold is a compromise between nonintru-
siveness and the likelihood that the results will be indica-
tive of critical resource constraints. Another questioner
addressed the problem of treating Web servers as “black
boxes”: The profiler might be measuring the performance
of a load balancer more than that of the back-end servers.
Ramamurthy agreed and mentioned that different types of
tests can be developed to make more fine-grained inferences
in the case of a “cooperating” server.

n	 A Dollar from 15 Cents: Cross-Platform Management for
Internet Services
Christopher Stewart, University of Rochester; Terence Kelly and
Alex Zhang, Hewlett-Packard Labs; Kai Shen, University of
Rochester

Internet services are becoming more popular, and the data-
centers that support them are becoming more complex. The
use of multiple hardware and software platforms in a data-
center is commonplace. Multi-platform management can
allow high performance at low cost, but choices tend to be
made on an ad hoc basis because there are too many per-
mutations of configurations to test exhaustively. Christopher
Stewart presented an approach to optimizing performance
using a predictive model which can be calibrated with
readily available data and used to guide server purchasing
decisions and make the best use of multiple platforms in a
heterogeneous environment.

Often, management recommendations must be made with-
out modifying production systems in any way; it is impos-
sible to obtain profiling information using source code
instrumentation and controlled benchmarking. Therefore,
Stewart’s approach relies only on data that is readily avail-
able without touching production systems. It uses trait
models derived from empirical observations of production
systems, together with expert knowledge of the structure
of processors and Internet services. The key principle is
to derive trait models from production data for hard-to-
characterize platform parameters and to use expert knowl-
edge to compose traits for performance prediction. A trait
model characterizes only one aspect of a complex system:
For example, a processor metric such as cache misses can
be predicted from a system configuration variable such as
cache size.

The effectiveness of Stewart’s method was demonstrated by
calibrating a trait model on one processor and using it to
predict application performance characteristics on a system
with a different processor. The calibrations and predictions
were made for three different applications. The model of-
fered superior accuracy over a wide range of request mixes,
compared to commonly used predictors such as bench-
marks and processor clock speed. As well as service time,
it was able to make accurate predictions of total response
time, using a previously developed queueing model which
can be calibrated in production environments. Stewart
discussed potential management applications, including
platform-aware load balancing, in which distributing re-
quests to the platform best configured to their architectural
demands may yield better performance than the typical
weighted round-robin approach.

One attendee asked whether the model’s predictions were
accurate for future performance as well as past performance.
Stewart explained that his method was to use the first half
of a month’s data to calibrate a model, then compare the
resulting prediction against the data from the second half
of the month. He also mentioned that the predictions were

login_summariesOCTOBER2008.indd 105 9/15/08 1:07:42 PM

106 ; LO G I N : VO L . 33, N O. 5

tested against the first half of the month, with favorable
results, although that data was not included in the paper.
Another attendee wondered whether the method would
suffer from the introduction of new architectures, because
of the need to develop new empirical observations and not
having suitable models on hand. Stewart observed that the
trait models are attractive because they can be constructed
cheaply; developing new models for new platforms can be
done quickly enough. Stewart also clarified that the queue
model refers to the application-level queue—users waiting
for responses—not the operating system’s run queue.

invited talk

n	 Xen and the Art of Virtualization Revisited
Ian Pratt, University of Cambridge Computer Laboratory

Summarized by Ward Vandewege (ward@gnu.org)

The Xen project mission is to build the industry standard
open source hypervisor. To maintain Xen’s industry-leading
performance, Xen tries to be first to exploit new hardware
acceleration features and helps operating system vendors to
paravirtualize their operating systems. Security is para-
mount to maintaining Xen’s reputation for stability and
quality. Xen supports multiple CPU types (e.g., x86, ia64,
PowerPC, and ARM, with more to come). With its roots as a
university project, Xen wants to foster innovation and drive
interoperability between Xen and other hypervisors.

Virtualization is hot for a number of reasons. Virtualiza-
tion allows clearing up the mess created by the success of
“scale-out” caused by moving applications from big iron to
x86: the so-called server sprawl with one application per
commodity x86 server, leading to 5%–15% typical CPU
utilization. This is a result of the failure of popular OSes
to provide full configuration isolation, temporal isolation
for performance predictability, strong spatial isolation for
security and reliability, and true backward application
compatibility. With virtualization, old applications can be
run on old OSes instead of relying on less than perfect OS
backwards compatibility.

The first virtualization benefits are server consolidation,
manageability, ease of deployment, and virtual machine
(VM) image portability. Second-generation benefits include
avoiding planned downtime with VM relocation, dynami-
cally rebalancing workloads to meet application SLAs or to
save power, automated systems that monitor hosts and VMs
to keep apps running, and “hardware fault tolerance” with
deterministic replay or checkpointing.

Security of the hypervisor code is obviously very important,
but hypervisors can also improve security in a number of
ways. Hypervisors allow administrative policy enforcement
from outside the OS—for instance: firewalls, IDS, malware
scanning, all running outside of the Xen domU. OSes can
also be hardened with immutable memory. The hypervisor
also shields the OS from hardware complexity by abstract-

ing away the complicated real world with multi-path IO,
high availability, etc. Breaking the bond between the OS
and hardware simplifies application-stack certification:
Application-on-OS, OS-on-hypervisor, and hypervisor-on-
hardware can all be certified more easily, which enables
virtual appliances. Virtual hardware also greatly reduces the
effort to modify or create new OSes. This opens the door to
application-specific OSes, the slimming down and optimiz-
ing of existing OSes, and native execution of applications.
Finally, hypervisors enable hardware vendors to “light up”
new features more rapidly.

Paravirtualization means extending the OS so it is aware
that it is running in a virtualized environment. This is
important for performance, and it can work alongside hard-
ware enhancements found in modern CPUs.

Memory management unit (MMU) virtualization is critical
for performance. It is challenging to make it fast, though,
especially on SMP. Xen supports three MMU virtualization
modes: direct pagetables, virtual pagetables, and hardware-
assisted paging. OS paravirtualization is compulsory for di-
rect pagetables and is optional but very beneficial for virtual
and hardware-assisted paging.

Network interface virtualization is tough to achieve. In ad-
dition to the high packet rate with small batches, data must
typically be copied to the virtual machine when received,
and some applications are latency-sensitive. Xen’s network
IO virtualization has evolved over time to take advantage
of new NIC features. Xen categorizes smart NICs in levels
0 through 3. Level 0 NICs are conventional server NICs,
whereas level 3 ones are more exotic, with very advanced
features. Smarter NICs reduce CPU overhead substantially,
but care must be taken that by using smarter NICs the ben-
efits of VM portability and live relocation are not lost.

Xen Client is a frontier for virtualization: a hypervisor for
client devices. Hypervisors on small computer systems
will allow “embedded IT” virtual appliances that could run
intrusion detection systems, malware detection, remote ac-
cess, backups, etc., independent of the user-facing operating
system.

To conclude: open source software is a great way to get
impact from university research projects. Hypervisors will
become ubiquitous, offering near-zero overhead and being
built into the hardware. Virtualization may enable a new
“golden age” of OS diversity, and it is a really fun area to be
working in!

login_summariesOCTOBER2008.indd 106 9/15/08 1:07:42 PM

; LO G I N : O c tO b e r 20 0 8 cO N fe re N ce re p O rt s 107

workloads and benchm arks

Summarized by Kiran-Kumar Muniswamy-Reddy (kiran@
eecs.harvard.edu)

n	 Measurement and Analysis of Large-Scale Network File
System Workloads
Andrew W. Leung, University of California, Santa Cruz;
Shankar Pasupathy and Garth Goodson, NetApp, Inc.; Ethan L.
Miller, University of California, Santa Cruz

Andrew Leung presented results from a three-month study
of two large-scale CIFS servers at NetApp, the first trace
study that analyzes CIFS servers. One server had a total
storage of 3 TB, with most of it used, and it was deployed in
a corporate datacenter. The other server had a total stor-
age of 28 TB, with 19 TB used, and it was deployed in an
engineering datacenter.

Andrew highlighted some of the interesting findings in
the study. They found that more than 90% of active data
is untouched during the three-month period. The read/
write byte ratio was 2:1, whereas it was 4:1 in past studies.
The number of requests is high during day and low during
the night (as expected). Read/write access patterns have
increased (as workloads have become more write-oriented).
Some 64% of all files are opened only once and 94% of
files are opened fewer than five times, with 50% of reopens
happening within 200 ms of the previous open. Files are
infrequently accessed by more than one client. Even when
they are accessed by more than one client, file sharing is
rarely concurrent and they are mostly read-only.

One member from the audience asked whether they ana-
lyzed how file sizes grew over time. Andrew replied that
they did not analyze this but a significant amount of the
data came in single open/close sets. He then asked about
the average data transfer rate. Andrew replied that the ac-
cess patterns varied a lot from one day to the next and it is
hard to put down a number. In response to a question about
the size of the system they studied, Andrew replied that he
would call it a medium system. The Q&A session ended
with a member of the audience commenting that the results
should be fed back to the spec benchmarks.

n	 Evaluating Distributed Systems: Does Background Traffic
Matter?
Kashi Venkatesh Vishwanath and Amin Vahdat, University of
California, San Diego

Kashi Vishwanath posed the question, “What sort of back-
ground traffic should be used while evaluating distributed
systems?” To answer this, they performed a literature survey
of 35 papers from SIGCOMM, SOSP/OSDI, and NSDI from
2004 to 2007. They found that 25% of the papers did not
use any background traffic to evaluate their system, 15%
used simple models (constant bit rate or Poisson models) to
model their background traffic, 33% employed live deploy-
ments for their measurements, and 25% used complex
models for their measurements. Using their test setup, they

first compared simple models for generating background
traffic and swing to ascertain whether their traffic generator
was responsive and realistic. They concluded that simple
methods can result in significant inaccuracy and that you
need traffic generators that are more realistic. Further, they
evaluated the effect of background traffic on various classes
of applications. They found that Web traffic (HTTP) is
sensitive to the burstiness of background traffic, depend-
ing on the size of the objects being transferred. Multimedia
apps are not very sensitive to traffic burstiness, as they are
designed to tolerate some jitter. Bandwidth estimation tools
are highly sensitive to bursty traffic. Based on these results,
they concluded that applications should be evaluated with
background traffic with a range of characteristics.

Someone from the audience asked whether they went back
and tried to evaluate how their findings would affect the
results from the papers in their literature survey. Kashi re-
plied that they did do that and found that some applications
changed quite a bit with the amount of background traffic.

n	 Cutting Corners: Workbench Automation for Server
 Benchmarking
Piyush Shivam, Sun Microsystems; Varun Marupadi, Jeff Chase,
Thileepan Subramaniam, and Shivnath Babu, Duke University

Piyush Shivam presented this paper. Their goal was to
devise a workbench controller that plans the set of experi-
ments to be run based on some policy, acquires resources
and runs the experiments, and further plans the next set of
experiments to be run based on the results. The challenge
is to do this efficiently (i.e., running as few experiments
as possible) while achieving statistical significance. As an
example they use finding the peak rate on a Linux NFS
server and present various algorithms and policies for doing
this (strawman linear search, search, binary search, linear,
and model guided). Their results show that their automated
workbench controller achieves their goals at lower cost than
scripted approaches that are normally used.

A member of the audience commented that using the
peak load is misleading and that the median case is more
important. He then asked whether they tried varying the
workload mix. Piyush replied that the peak was just an ex-
ample they used in the paper and that you could try varying
the workload mix. Next, Piyush was asked what happens
when the parameter space explodes. Piyush replied that the
response surface method lets you choose only 2% of the
overall possible space.

login_summariesOCTOBER2008.indd 107 9/15/08 1:07:42 PM

108 ; LO G I N : VO L . 33, N O. 5

securit y and bugs

Summarized by Kiran-Kumar Muniswamy-Reddy (kiran@
eecs.harvard.edu)

n	 Vx32: Lightweight User-level Sandboxing on the x86
Bryan Ford and Russ Cox, Massachusetts Institute of Technology

Awarded Best Student Paper!

Russ Cox presented Vx32, a lightweight sandbox for the x86
architecture. Vx32 is not OS- or language-specific, but it
is tied to the x86 architecture. Most x86 OSes don’t use all
segments, and users can create their own segments. Vx32
takes advantage of this and runs the code to be sandboxed
natively in its own segment. But the sandboxed code can
change the segment registers. Vx32 prevents this by using
dynamic instruction translation and rewriting code to a
“safe” form. They evaluated Vx32 by running various bench-
marks and by building four applications. For benchmarks,
the overheads are low when there are no indirect branches
(i.e., no instructions to be translated). The applications that
they built were an archival storage system, an extensible
public-key infrastructure, a port of the Plan 9 OS on top of
a commodity operating system, and a Linux system call jail.
The first two applications have between 30% slowdown to
30% speedup compared to native execution. Linux jail has
an 80% overhead.

A member of audience asked what they planned to do about
64-bit systems as they do not have segmentation registers.
Russ replied that they can switch to a 32-bit mode while
running Vx32’s 32-bit code segments. Next, Russ was asked
whether Vx32 lives in the same segment as the code being
sandboxed. If so, could self-modifying code attack it? Russ
replied that the translated code lives in a different segment
than Vx32. Lastly, Russ was asked how Vx32 was different
from a binary instrumentation tool such as Pin. He replied
that Vx32 is much faster than in Pin; you can either get
performance or safety but not both.

n	 LeakSurvivor: Towards Safely Tolerating Memory Leaks for
Garbage-Collected Languages
Yan Tang, Qi Gao, and Feng Qin, The Ohio State University

Memory leaks can occur even in garbage-collected lan-
guages such as Java and C#. One reason is that programs
keep pointers to objects they don’t use anymore. For long-
running programs, this results in performance degradation
as they take up more and more heap space and eventually
crash the program. Their system, LeakSurvivor, identi-
fies such “potentially leaked” (PL) objects and swaps them
out from both virtual and physical memory. They replace
references to PL with a unique kernel reserved address.
Access to these addresses will result in a swap-in. They also
maintain an index that keeps track of all outgoing point-
ers to an object. They implemented LeakSurvivor on top of
Jikes RVM 2.4.2. They evaluated their system by running
it with programs that had known memory leaks (Eclipse,
Specjbb2000, and Jigsaw). Eclipse and Specjbb survive with

good performance for much longer than they do without
LeakSurvior. Jigsaw, even though it runs for much longer
with LeakSurvior, eventually crashes because their leak
detector could not detect “semantic leaks” present in Jigsaw.
The overhead of LeakSurvivor is low (2.5%) when it is run-
ning programs that don’t have leaks.

In response to whether they can meet QoS guarantees when
they run LeakSurvivor on a Web server, the authors replied
that they currently cannot make performance guarantees.
As to whether they have to save virtual memory for a 64-bit
machine, the authors explained that, in a 64-bit machine,
you have infinite virtual memory and LeakSurvivor might
hurt performance. When asked whether they have any plans
for providing feedback to developers so that developers can
fix their leaks, they admitted that they currently did not
have this functionality. As to whether they had any heuris-
tics for turning LeakSurvivor on and off, the authors replied
that they currently turn it on all the time, but it is not really
hard to add this function.

n	 Perspectives: Improving SSH-style Host Authentication with
Multi-Path Probing
Dan Wendlandt, David G. Andersen, and Adrian Perrig, Carn-
egie Mellon University

Dan Wendlandt presented a method to reduce the vulner-
ability to man-in-the-middle (MITM) attacks of some of the
common protocols such as SSH and HTTPS. SSH’s model
of host authentication is one of “trust-on-first-use,” in which
the user decides whether an unauthenticated key is valid or
not. This and the fact that the user must manually verify the
validity of any key that conflicts with a cached key make
the user very vulnerable to MITM attacks. The Perspectives
approach to mitigate this is to have a bunch of notaries in
the network. Instead of trusting the SSH key, a client can
verify the key from the notaries. The notaries probe ma-
chines on the network and build a record of the keys used
by the services over a period of time.

The notaries provide the client with spatial redundancy
(observation from multiple vantage points) and temporal
redundancy (observation over time). The notaries offer a
better perspective to the clients and enable them to make
better security decisions. Further, the client implements
key-trust policies that trade off between security and avail-
ability; for example, it might accept a key even when the
number of notaries that report a key is less than a quorum.

Someone asked how a client can know how many notaries
are present. Dan replied that the clients can download a
notary list, but he also pointed out that someone accessing
a server that has just been deployed will not get temporal
security. Next, Dan was asked whether Perspectives would
help with the Debian bug. Dan replied that Perspectives will
not help you detect bugs in the OpenSSH implementation.

login_summariesOCTOBER2008.indd 108 9/15/08 1:07:42 PM

; LO G I N : O c tO b e r 20 0 8 cO N fe re N ce re p O rt s 109

n	 Spectator: Detection and Containment of JavaScript Worms
Benjamin Livshits and Weidong Cui, Microsoft Research

Benjamin Livshits proposed a distributed taint mechanism
for detecting and containing Javascript worms. Javascript
worms are hard to find and fix, as Web 2.0 technologies
allow the worms to propagate themselves by generating ap-
propriate HTTP requests. Simple signature-based solutions
are insufficient, as worms are polymorphic. Their idea for
detecting worms is as follows. They tag each page uploaded
on the server. This tag is downloaded to clients whenever
the Web page is downloaded. They also inject Javascript
code so that the tags are propagated at the client side and
are preserved when pages are updated. They look for worms
by checking for long propagating chains. They have an ap-
proximation algorithm that is designed to scale for graphs
containing thousands of nodes. They evaluated Spectator for
scalability and precision by performing a large-scale simula-
tion of MySpace and a real-life case study (on siteframe).

YuanYuan Zhou asked whether the tag should be unique or
whether it can be global. Benjamin replied that it really is
not an issue and that it can be global. YuanYuan then asked
if the tags can be removed by the worms. Benjamin replied
that they generally cannot be removed, as the tags are
HTML, but there are some particular cases of worms where
it can be a problem.

invited talk

Summarized by Zoe Sebepou (sebepou@ics.forth.gr)

n	 Using Hadoop for Webscale Computing
Ajay Anand, Yahoo!

Ajay Anand described their experiences using Apache
Hadoop and what led them to start developing this prod-
uct. He started his talk by stating the problem Yahoo! has
in collecting huge amounts of data, implying petabytes of
storage capacity and a vast number of machines to deal with
the processing of this data in a secure and accurate manner,
while avoiding hardware outages.

Hadoop constitutes an open source implementation of a
Distributed File System (HDFS) and a map-reduce program-
ming model combined in one package. Hadoop is designed
to support many different applications providing them with
the required scalability and reliability, which otherwise
would be extremely costly to implement in each application.
Hadoop is written in Java so it does not require any specific
platform. Its main components are a Distributed File System
based on the architectural characteristics of the Google
File System (GFS) and a Distributed Processing Framework
based on the map-reduce paradigm.

Hadoop architectural characteristics include many unreli-
able commodity servers and one single metadata server,
but it ensures reliability by replicating the data across the
available data servers. Because the system was designed for
the requirements of their environment and in general for

Web-scale applications that make simple sequential access
involving one writer at a time and as a consequence do
not require strict locking features, Hadoop receives perfor-
mance advantages from the simplicity of its design. Indeed,
the core design principle behind Hadoop is to move the
computation as close to the data as possible; processing data
locally is definitely more effective than moving the data
around the network.

HDFS, which is Hadoop’s file system, operates using two
main components: The name nodes keep information about
the files (name, number of replicas, and block location); the
data nodes provide the actual storage of the data. The files
in HDFS are striped across the available data servers and
are being replicated by a settable replication factor to avoid
unavailability resulting from node failures. HDFS keeps
checksums of the data for corruption detection and recov-
ery. Every time someone requires access to a specific file, it
contacts the name nodes and, after obtaining information
about the exact location of the data, it directly acquires the
data from the data nodes. In case of a data-node failure, the
name node detects it by periodically sending heartbeats to
the data nodes. After a failure, the name node chooses a
new data node to store new replicas. With the use of check-
sums, the clients can identify data corrupted by a node
outage and ask some other available data node to serve their
request. However, name-node outage still remains a single
point of failure.

Ajay continued his talk by analyzing the map-reduce tech-
nique used by Hadoop to enhance the system’s performance
by providing efficient data streaming by reducing seeks. The
map-reduce mechanism follows a master-slave architecture.
Specifically, the master, called Jobtracker, is responsible for
accepting the map-reduce jobs submitted by users, assigns
map-reduce tasks to the slaves, called Tasktrackers, and
monitors the tasks and the Tasktrackers’ status in order to
reexecute tasks upon failure. The Tasktrackers run map-
reduce tasks upon instruction from the Jobtracker and man-
age the storage and transmission of intermediate outputs.
Ajay pointed out that some future improvements are still to
be made in the map-reduce mechanism; Yahoo! is currently
working on these issues. He explained that Hadoop still
does not have an advanced scheduling system. The slaves
of the map-reduce framework can manage one or more
jobs running within a set of machines and the mechanism
does work well for dedicated applications; however, in the
presence of shared resources their mechanism would not
be sufficient. Consequently, he described the Pig program-
ming environment, an Apache incubator project initiated by
Yahoo!. Pig is a high-level, easy-to-use dataflow language
used to generate map-reduce jobs and provides extensible
data processing primitives.

Ajay concluded his presentation with the current uses of
Hadoop inside and outside the Yahoo! environment, also
providing measurements depicting the advantages gained by
using the system.

login_summariesOCTOBER2008.indd 109 9/15/08 1:07:42 PM

110 ; LO G I N : VO L . 33, N O. 5

Bar Kenneth from VMware asked whether Yahoo! had con-
sidered exploring the use of virtual machines to solve prob-
lems with loss of data locality in Hadoop. The reply was
that in fact virtualization is an issue they are very interested
in and that they will be exploring this possibility. Moreover,
their goal is to be able in the future to say that the job is the
VM and what they actually want is to be able to replicate
the jobs across the machines.

Rik Farrow wondered, if the name nodes are really criti-
cal for Hadoop, why there is no high availability for them
and why they have yet to develop a mechanism to support
this feature. Ajay answered that this issue is on the list of
their things to do but is not at the top because most of what
they are running are batch jobs and not online operations.
In addition, their main priority is to enhance other things
such as the scheduling mechanism to provide name-node
balancing.

A second question from Rik Farrow was whether Hadoop
has a shared memory architecture. The answer was that it
does not. In fact, each computer node has its own memory
and this memory is not shared across machines.

A questioner from Sun Microsystems asked about the algo-
rithms used for chunking and data distribution, as well as
for the fault-tolerance mechanism and the load balancing of
the data placement in Hadoop. Ajay explained that the basic
concept is to have three replicas, two within a rack and one
outside, to spread things around as much as possible inside
their environment. The same questioner asked about the
communication protocol between the HDFS clients and the
name nodes of Hadoop, wondering whether there is a sepa-
rate path for the metadata communication and the heart-
beat messages. The reply was negative; in Hadoop all the
communication is taking place through the same network,
without any isolated network for metadata purposes.

Another questioner asked about bottlenecks in the network
bandwidth, the disk bandwidth, or the CPU utilization of
their system. The speaker said that at Yahoo! they try to col-
lect data and to do more and more profiling to identify the
bottlenecks. The main bottlenecks already observed are the
network and the memory in the name-node side.

In response to an additional question about how Hadoop
handles a global failure and how things return to normal
again, Ajay replied that Hadoop continues working in the
case of node failures as long as they are not name nodes. To
the final question of how many times and how often they
have to upgrade their system, the answer was that in the
case of upgrade everything has to come down; usually they
upgrade the system once a month, with the whole process
taking less than four hours.

memory and buffer m anagement

Summarized by Varun Marupadi

n	 A Compacting Real-Time Memory Management System
Silviu S. Craciunas, Christoph M. Kirsch, Hannes Payer, Ana
Sokolova, Horst Stadler, and Robert Staudinger, University of
Salzburg

Modern memory managers lack predictability—the time to
allocate a chunk is dependent on the global memory state.
In addition, fragmentation of memory is not dealt with well.
To address these shortcomings, Silviu Craciunus and his
co-authors have developed Compact-fit, a memory manage-
ment system that responds in linear time to the size of the
request and is able to trade off performance for lower levels
of fragmentation.

The system works by dividing objects into differently sized
“classes.” Within each size class, there is allowed to be only
one partially filled page. This allows quick (linear time)
deallocation, since exactly one object needs to be moved per
deallocation. The authors present two implementations—
one actually moves data in physical memory when an
object is freed (the “moving implementation”) and the other
manages an indirection table that allows only table informa-
tion to be changed without moving the data itself. In either
implementation, by increasing the number of pages that
may be partially filled, some performance may be gained at
the expense of more fragmentation.

Experimental evaluation shows that allocation and dealloca-
tion times show good fidelity with the theoretical predic-
tions, but they are slower than existing memory alloca-
tors, owing to the overhead of managing fragmentation.
Compact-fit is able to allocate objects effectively even with
high levels of fragmentation. In response to a question, the
authors said that Compact-fit will not move objects from
one size class to another at the current time.

n	 Prefetching with Adaptive Cache Culling for Striped Disk
Arrays
Sung Hoon Baek and Kyu Ho Park, Korea Advanced Institute of
Science and Technology

Sung Hoon Baek and Kyu Ho Park study the neglected field
of prefetching schemes for striped disk arrays. Prefetching
from striped disks has several new problems, including loss
of expected parallelism owing to short reads, nonsequen-
tial short reads, and the absence of cache management for
prefetched data.

To manage these risks, the authors present Adaptive Stripe
Prefetching (ASP), which uses new schemes for prefetching
an entire stripe when a request for a block comes in, adap-
tive culling of the cache to preferentially evict prefetched
blocks that have not been requested, and an online model
to tune the ratio of prefetched to cached blocks to maximize
the total hit rate.

login_summariesOCTOBER2008.indd 110 9/15/08 1:07:42 PM

; LO G I N : O c tO b e r 20 0 8 cO N fe re N ce re p O rt s 111

The system was evaluated with a variety of benchmarks.
It performs as well or better than any existing prefetching
schemes. A question was raised regarding the performance
of the system in the presence of writes. The response was
that the system is primarily focused on read-heavy work-
loads but should work in the presence of writes as well. It
was also pointed out that one of the benchmarks (Dbench)
simulates a read-write workload.

n	 Context-Aware Prefetching at the Storage Server
Gokul Soundararajan, Madalin Mihailescu, and Cristiana Amza,
University of Toronto

A problem with today’s prefetching schemes is that they
break down under high levels of concurrency because it is
hard to detect access patterns when requests from many
sources are interleaved. To address this, Gokul Soundarara-
jan and his colleagues presented QuickMine, a system that
allows application contexts to be visible to the storage server
so that it can more accurately detect access patterns.

Every block request is tagged with an identifier correspond-
ing to a higher-level application context (Web, database, or
application). It is claimed that this is minimally intrusive
and easy to create for any application. However, it does
require minor modifications to the source code. Mining the
context-tagged requests can generate block correlations for
both sequential and nonsequential accesses. The system was
evaluated by modifying the MySql database to pass context
information and running a number of three-tier Web-based
applications on it. For all benchmarks, the cache miss rate
and latency were drastically reduced by using QuickMine.

In a lively question session, several attendees asked about
extending the work to other contexts. In particular, file-
based storage rather than block-based storage could be dealt
with by using the filename+offset rather than the block
number. Extension to other applications requires only local-
ized instrumentation changes. Extension to other classes
of applications would be more intrusive and is a topic of
ongoing research. Schemes using fuzzy contexts or machine
learning techniques to infer context could be used and are
worth exploring, but Gokul believes context is still neces-
sary, because very different queries follow the same code
path through libraries.

invited talk

Summarized by Matthew Sacks
(matthew@matthewsacks.com)

n	 Google Hacking: Making Competitive Intelligence
Work for You
Tom Bowers

Tom Bowers takes the ideas presented in Johnny Long’s
book Google Hacking and applies the concepts of using
Google as a hacking utility for servers and other machine-
related vulnerabilities to information in and of itself. The
amount of information that can be gathered using the

world’s largest database is astounding. Tom went on to
demonstrate how to gather information about a particular
organization or individual by leveraging unconventional
techniques for using the Google search engine.

By using Google as a utility for competitive intelligence,
one can find out a wealth of information about competitors,
as well as seeing what type of information is being leaked
about the individuals in a company or organization and
the organization itself. 80% of all competitive intelligence
is done through public sources. Also, the U.S. Supreme
court has ruled that information found on Google is public
information.

Tom also presented the basic method for performing com-
petitive intelligence using Google by building a competitive
intelligence profile.

As an example, using Google Earth Pro (which provides
more frequent updates than the standard Google Earth),
Tom can map out a competitor’s facility to determine where
he might be able to gain easy access. From there he could
use wireless scanning techniques to access the competitor’s
data from unsecured wireless networks. Also, using Google
hacking Tom showed that a large majority of Web cams
are available through the public Internet from a standard
Google search!

In this talk Tom revealed the world of competitive intel-
ligence and its primary information-gathering utility: Once
a competitive profile has been built, the job of gathering
additional detailed information becomes rather simple. Most
of the work done in competitive intelligence can be done
from one’s own office or home.

wide-area systems

Summarized by Varun Marupadi (varun@cs.duke.edu)

n	 Free Factories: Unified Infrastructure for Data Intensive
Web Services
Alexander Wait Zaranek, Tom Clegg, Ward Vandewege, and
George M. Church, Harvard University

Alexander Zaranek and his colleagues explained that this
work was initiated to help process the large amounts of data
needed to sequence human genomes. A free factory is a set
of several 12- to 48-node clusters, some of which are co-
located with data-acquisition instruments. The clusters are
connected via relatively slow networks. A free factory runs
freegols, which are application-centric virtual appliances that
run within a free factory. Different users use and develop
different freegols for their particular needs.

A portion of the cluster’s resources is configured as ware-
house instances, which provide processing, cache, and
storage services. The remainder of the resources hosts Xen
virtual machines for hosting freegols. The storage services
within a cluster are implemented as a three-tier hierarchy:

login_summariesOCTOBER2008.indd 111 9/15/08 1:07:42 PM

112 ; LO G I N : VO L . 33, N O. 5

a memory cache, a distributed block cache, and a long-term
archival storage service.

More information can be found at factories.freelogy.org.

n	 Wide-Scale Data Stream Management
Dionysios Logothetis and Kenneth Yocum, University of Califor-
nia, San Diego

Dionysios Logothetis presented Mortar, a platform for
building queries across federated distributed systems. Such
queries are useful for remote debugging, measurement,
application control, and myriad other uses. Mortar allows
operators to aggregate and process data within the net-
work itself, building multiple overlays to process data from
remote sources.

Mortar builds a set of static overlay trees that overlap in
order to tolerate node and network failures. By carefully
building trees, it is possible to generate routes that are
network-aware and resilient at the same time. Mortar avoids
problems arising from static clock skew by using relative
time offsets rather than absolute timestamps. By isolat-
ing data processing from data routing, it is possible to use
aggregate operators that are not idempotent or duplicate-
insensitive. By using multiple static overlay trees, Mortar is
able to make progress when as many as 40% of the nodes
have failed.

Questions were raised about how queries that require
knowing the source of the data could be implemented. Dio-
nysios replied that such queries are problematic because of
the nature of aggregation itself. Other attendees wondered
whether the system might fail from corner cases in the
heuristics and static tree-based routing. Dionysios explained
that the effect of topology on the system has not yet been
fully studied, so it is hard to give a definite answer.

n	 Experiences with Client-based Speculative Remote Display
John R. Lange and Peter A. Dinda, Northwestern University;
Samuel Rossoff, University of Victoria

John Lange presented work on speculatively executing
window events on a remote display. The goal is to reduce
the user-perceived latency when using a remote service. The
predictability of events sent by VNC and Windows Remote
Desktop was presented; VNC appeared to be much more
predictable than RDP. John says that this may be primar-
ily due to the higher level of abstraction that RDP uses,
along with the much lower event rate. A Markov model was
used to predict future events based on past events and user
input. This also allowed control over the tradeoff between
accuracy and latency.

A user study was presented for VNC prediction. Although
not conclusive, the study did show that users are at least
moderately accepting of display errors during mispredic-
tion. A question was asked about what constitutes an error.
John explained that an error may be anything from garbage
on the screen to subtle artifacts in the window. Another at-
tendee asked about overhead. John replied that, after train-

ing, there was almost no CPU overhead but there was some
memory overhead.

Third Workshop on Hot Topics in Autonomic
Computing (HotAC III)

Wheeling, IL
June 2, 2008

Summarized by Alva Couch, Tufts University

The theme of this year’s Hot Autonomic Computing
(HotAC) was “grand challenges of autonomic computing.”
By contrast with two prior iterations of HotAC involving pa-
pers and panels, this year’s HotAC included short presenta-
tions, working groups, and plenty of discussion.

In the morning, selected attendees were given five minutes
each to describe a grand challenge problem in autonomic
computing, how to solve it, and what resources would be
required. Presenters were selected based upon white papers
submitted to the conference organizers in advance. In the
presentations, several themes emerged, including monitor-
ing, composition, applications, and human concerns.

Autonomic systems remain difficult to monitor and the
monitored data remains incomplete. Autonomic system state
remains difficult to characterize and more accurate models
are needed (Salim Hariri, University of Arizona). There is a
need for “adaptive monitoring” that tracks changing needs
(Paul Ward, University of Waterloo), as well as “experiment-
based” control based upon making changes and observing
results (Shivnath Babu, Duke University). The resulting
monitoring infrastructure must be scalable and adaptable
to a changing Internet (Fabián Bustamante, Northwestern
University).

It also remains unclear how to compose different control
systems to control one entity, and how to deal with open-
ness and unexpected events. It remains difficult to compose
or combine autonomic systems (Alva Couch, Tufts Univer-
sity) and to deal with unpredictable behavior. An ideal auto-
nomic system might employ scalable co-ordinated cross-
layer management (Vanish Talwar, HP) in which control
systems are composed vertically from lower-level elements.

Several application domains for autonomic computing were
explored. Empathic autonomic systems (Peter Dinda, North-
western University) optimize for perceived end-user satisfac-
tion. Spatial computing (Jake Beal, MIT CSAIL) requires
new languages and abstractions to control a computing
medium in which computing presence approximates a con-
tinuous medium. Autonomics can help us construct “Green
IT” computing environments (Milan Milankovic, Intel) that
exhibit reduced energy consumption, lower carbon foot-
print, etc. Sensor networks can be managed through a ho-
listic strategy that treats the whole network as a single entity
(Simon Dobson, UC Dublin). P2P networks can benefit from
“sloppy” autonomic control mechanisms that “leave well

login_summariesOCTOBER2008.indd 112 9/15/08 1:07:42 PM

; LO G I N : O c tO b e r 20 0 8 cO N fe re N ce re p O rt s 113

enough alone” and only react when basic objectives are not
met (Guillaume Pierre, VU Amsterdam).

Autonomic systems must also enforce human objectives
(Jeffrey Kephart, IBM). Human goals can conflict and re-
quire competitive—and not simply cooperative—strategies
(Ivana Dusparic, TCD). Human trust of autonomic systems
remains a key problem (John Wilkes, HP).

At the end of the morning’s discussion, the group voted to
study three issues in detail:

Single self-adaptive system challenges: monitoring 	n

and modeling
Multiple self-adaptive system challenges: 	n

composition and openness
Goals, objectives, and trust: the human side of 	n

autonomics
A working group was convened to study each problem. Each
working group met in the afternoon and presented a report;
these are briefly summarized next.

single self -adap tive systems

Single self-adaptive systems can now be built, but system-
atic methods should be developed for building these systems.
Systematic methods require good models for prediction,
control, error detection/fault diagnosis, and optimization.
Models must describe behavior at different time and detail
scales, for different tasks (e.g., energy, error detection) and
for different degrees of accuracy. Models can be self-learned
or provided by expert human engineers. Models should
describe both the system and its environment. Objectives
need to be clearly defined for accountability, performance,
and reliability of self-adaptive systems.

multiple self -adap tive systems

Multiple self-adaptive systems might include systems com-
posed of equipment and software from several vendors, with
limited knowledge of one another, and different adminis-
trative domains and management objectives. These objec-
tives can potentially conflict with regard to performance,
availability, energy efficiency, security, reliability, resource
usage, and resilience. Potential problems include indepen-
dent control systems trying to control the same actuator,
indirect coupling through resource shortages, conflicting
policies for interacting controllers, and invalidated models
resulting from unforeseen interaction. Fully understanding
the problem space is in itself a research issue.

goals, objectives, and trust

At the root of the trust issue for autonomic systems is that
users do not know what they want, nor can they write it
down. Requirements come from users with differing roles,
information needs, and objectives. One potential mecha-
nism for specifying needs is for users to say what they do

not like and incrementally refine policy based upon inter-
actions. Even so, requirements are expected to be incom-
plete and inconsistent. Possible techniques for coping with
this situation include discovering and reporting conflicts
(“asking for help”) and exploring “what if” scenarios with
the user. To ensure trust, systems can be constrained, can
actively reassure users, and can explain their actions.

For more details on the discussions and outcomes of the
workshop, please see http://www.aqualab.cs.northwestern.
edu/HotACIII/program.html.

Findings from the First Annual Storage and File
Systems Benchmarking Workshop

University of California, Santa Cruz
May 19, 2008

Summarized by Avishay Traeger and Erez Zadok, Stony Brook
University; Ethan L. Miller and Darrell D.E. Long, University
of California, Santa Cruz

A growing consensus in the community of file and storage
system researchers and practitioners is that the quality of
benchmarking must be improved significantly. We have
found that there is often too little scientific methodology
or statistical rigor behind current benchmarking, which is
largely done ad hoc. In response, with the goal of improving
the quality of performance evaluation in the field, we held
the Storage and File Systems Benchmarking Workshop on
May 19, 2008, at the University of California, Santa Cruz.
It was sponsored by the Storage Systems Research Center
(SSRC, www.ssrc.ucsc.edu).

This workshop brought together top researchers and
practitioners from industry and academia, representing all
levels of the storage stack, along with statisticians and other
interested parties. The main goals of the workshop were to
educate everyone on the problems at hand and to discuss
possible solutions. Participants presented relevant topics,
and there was much interaction and discussion.

The goal of this effort is improving the scientific and statis-
tical methodologies used. This goal requires little research
in the field, but it does require educating both those who
conduct performance evaluations and those who analyze
results. It also requires program committees and reviewers
to raise the bar on the quality of performance evaluations
in accepted papers. A longer-term goal is to have computer
scientists embrace the rigor of the other sciences. It is essen-
tial to be able to validate the results of others. Without it, it
is meaningless to compare the performance of two systems.
All presentations and slides are available at www.ssrc.ucsc.
edu/wikis/ssrc/BenchmarkingWorkshop08/.

login_summariesOCTOBER2008.indd 113 9/15/08 1:07:42 PM

114 ; LO G I N : VO L . 33, N O. 5

why file and stor age system benchm arking
is difficult

Erez Zadok, the workshop’s chair, began with an overview
of the storage stack, highlighting some complexities that
make benchmarking these systems a difficult task and
providing some examples of poor benchmarking practices.
Some of the factors contributing to the complexity are:

Storage variety: Storage does not consist only of a 	n

single local hard drive. Other types include Logical
Volume Managers (LVMs), RAID, Network-Attached
Storage (NAS), Storage Area Networks (SANs), flash,
object storage, and virtualization.
File system variety: Many types of file systems exist. 	n

Those operating on a local disk can use different
data structures, logging infrastructures, and other
features such as encryption or compression.
Network file systems behave differently from local
ones because of cache effects and network latencies.
They are very common today, and distributed file
systems are becoming even more prevalent.
Operating system variety: Several operating systems 	n

exist, each with different behaviors. In addition,
running OSes in virtual machines is becoming more
common. Finally, even the same OS will behave very
differently depending on the configuration.
The workload: User activity and access patterns are 	n

difficult to accurately characterize and recreate.
Asynchronous activity: Other processes and kernel 	n

threads may also interact with the storage stack and
change the system’s behavior.
Caches: Operating system caches at various levels, 	n

as well as disk caches, can contain recently accessed
data and metadata, which can change the behavior
of the workload.

the current state of file and stor age
system benchm arking

The next presentation was from Avishay Traeger (Stony
Brook University), summarizing his recent article [6]. The
article surveys the benchmarks and methodologies that
were used in file and storage system papers from SOSP,
OSDI, FAST, and USENIX between 1999 and 2007 and
included 415 benchmarks from 106 papers. He also looks
at how testbeds and results were presented and suggests
better benchmarking practices. Some of the findings were
that approximately 47% of the papers did not specify how
many runs were performed, and more than 28% of the
benchmarks ran for less than one minute. In addition, only
about 45% of the papers had some indication of variance
(standard deviation or confidence intervals).

Current Benchmarks
The benchmarks presented at the workshop were IOzone [2]
and SPECsfs [5] (both presented by Don Capps of NetApp)

and FileBench [3] (developed by VMware and Sun Micro-
systems, presented by Spencer Shepler of Sun). In contrast
to benchmarks that are generally used, these benchmarks
provide important improvements. SPECsfs presents new
techniques for scalable workload generation. IOzone and
FileBench can create a variety of user-specified workloads,
which may help to reduce the number of ad hoc bench-
marks that are created and used. Ad hoc benchmarks are
generally small programs that are written for in-house use.
Using popular tools in favor of ad hoc micro-benchmarks
can aid in reproducing and comparing results, as now only
the workload specifications need to be reported, rather than
the source for the entire benchmark. In addition, we would
expect that the more popular tools will have fewer bugs and
operate more correctly.

IOzone is a portable open-source file system benchmark-
ing tool that can produce a wide variety of I/O and, more
recently, metadata workloads. It can produce single or
multiple execution threads and can even run on multiple
nodes. An interesting feature of IOzone is its use of teleme-
try files. IOzone can replicate I/O operations based on a file
containing byte offset, size of transfer, compute delay triplets,
so that it can provide benchmark results from system call
traces. IOzone has been downloaded millions of times,
and it is the first result on Google when searching for “file
system benchmark.” Surprisingly, IOzone was not used in
any of the conference papers surveyed by Traeger et al. In
fact, many researchers publishing in the surveyed confer-
ences have written their own benchmarks which produce
workloads that IOzone can easily produce. We can only
speculate about the reason for this phenomenon at this
point, as we have no hard data, but we believe that this may
be another indication of poor benchmarking practices in the
file and storage system community.

SPECsfs is a file server benchmark that measures both
throughput and response time. SPECsfs was originally cre-
ated to test NFS servers. The latest version, SPECsfs2008,
supports CIFS in addition to NFS. The major changes to
the NFS portion of the benchmark since version 3.0 are
updated I/O size distributions, a new operation mix, and
the dropping of UDP and NFSv2 support. The CIFS portion
is rather different, using a Hidden Markov Model driven by
traces to generate the workload, rather than a predefined
operation mix. The workloads for both NFS and CIFS are
now based on data from many real customers. It is impor-
tant to note that SPECsfs2008 cannot be used to compare
NFS and CIFS servers.

An interesting point that was brought up is that the NFSv4
protocol depends much more on the client’s behavior than
previous versions. To benchmark a complete NFSv4 system,
the client’s behavior should be taken into account. This
means that the method that SPECsfs uses for benchmark-
ing NFSv3 systems would not be applicable to NFSv4 (since
the benchmark crafts its own RPC packets). Any current
benchmark that uses the POSIX interface can send requests

login_summariesOCTOBER2008.indd 114 9/15/08 1:07:43 PM

; LO G I N : O c tO b e r 20 0 8 cO N fe re N ce re p O rt s 115

to an NFSv4 server via a real client, thereby taking the
client’s behavior into account. However, it is up to users to
define what constitutes an appropriate file server workload
for their system; for that, configurable workload generators
such as IOzone and FileBench can be used. In the future,
we hope the community will define one or more standard
fileserver workloads that are generally applicable and revise
them periodically. Of course, additional benchmarks may
be used as well to provide a clear picture of the system’s
performance characteristics.

At times benchmarking applications can be a very difficult
task. For example, properly running up a TPC-C database
benchmark is very expensive and may require several
months of time to set up and run. In addition, we do not
currently know how to extrapolate micro-benchmark re-
sults to reflect the performance of real applications. There-
fore, we need to use macro-benchmarks, which more closely
represent the applications themselves, and build a portfolio
of workload-specific benchmarks. FileBench was developed
as a method of accurately representing more complex file-
based applications, so that the performance impact of a file
system or storage layer can be properly characterized for
specific workload types. It uses a synthetic workload model
to accurately represent the workload and application stack,
including the process model, the I/O types, synchronous
I/Os, and, most importantly, the interlocking between I/Os.
It also provides the framework for operating on statistical
hierarchies of file system trees and high-level file system
objects, including create/delete, traverse directory, and
read/write.

Short-term Goals for Benchmarks
We realize that creating a perfect solution will involve much
research and community involvement. However, there are
steps that we can take now to make benchmarks more accu-
rate and help facilitate comparable and reproducible results.
In terms of accuracy, the benchmark should use accurate
timing in measuring metrics. Eric Anderson (HP Labs) also
pointed out the importance of accurate timing in issuing file
system and I/O requests. It should also be a simple, easy-to-
understand workload. This helps ensure accuracy and also
assists in understanding the results and their implications.
The benchmark should also accurately depict a real-world
scenario if its goal is to do so. How to measure this ac-
curacy, however, is an open problem. Finally, open-source
benchmarks promote openness and allow more people to
inspect the code for correctness. Of course, the code should
not be modified, so that results remain comparable.

In terms of comparable and reproducible results, the
benchmarks should have three main qualities. First, they
should be scalable. Benchmarks may properly exercise the
system at one point in time, but as systems become faster,
the benchmark may no longer be appropriate. For example,
a common benchmark is measuring the time required to
compile some source code (as in the Andrew benchmark).

However, source code that was used for benchmarks several
years ago would fit in a modern system’s cache and there-
fore would not adequately exercise the storage subsystem.
Second, benchmarks should have few dependencies on
libraries and the OS. For example, the Bonnie benchmark
creates a random read pattern by utilizing the system’s
pseudo-random number generator. This causes the read
pattern to change from system to system, which can lead
to different results owing to caching, read-ahead, and disk
locality. Third, it should be cheap, easy to set up, and por-
table, so that it can be used by a large number of people to
benchmark on many systems.

tr aces

Traces are logs of operations that are collected and later
replayed to generate the same workload (if done correctly).
Two problems associated with traces are availability and
replay method.

The availability issue is being addressed by the Storage
Networking Industry Association’s Input/Output Traces,
Tools, and Analysis Technical Work Group (SNIA IOTTA
TWG). Geoff Kuenning of Harvey Mudd College presented
an overview of this working group. They have set up a
repository at http://iotta.snia.org which seeks to archive
traces in a single place using a uniform format with tools to
process them. It also helps to clear up licensing issues for
the traces. The preferred trace format is DataSeries, which
was presented by Eric Anderson of HP Labs. DataSeries is
designed for long-term storage (built-in checksums), is self-
describing, and provides substantial analysis speedups and
moderate space improvements. There are tools available to
convert several other formats to DataSeries, as well as tools
to analyze the trace files.

The problem of replaying traces is partly addressed by But-
tress [1], a high-fidelity I/O benchmark system, which was
also presented by Eric Anderson. This project demonstrates
the importance of accurate issue time for I/O requests and
provides a method for issuing them much more accurately
than before. However, the system is very fragile, and it is
easy to specify open (trace) workloads that are unachiev-
able and get poor results. This is a difficult and important
problem that will require more research.

industry experiences

Several attendees presented their benchmarking experiences
from the industry perspective. First, VMware’s Richard
McDougal, Devaki Kulkarni, and Irfan Ahmad presented
their experiences in benchmarking Virtual Machine (VM)
environments. When benchmarking inside of a virtual
machines, it is important to note that time measurements
and the CPU’s clock cycle counter may be distorted (gener-
ally by around 100 microseconds). This is especially true
when the CPU is fully utilized; it can be mitigated by using

login_summariesOCTOBER2008.indd 115 9/15/08 1:07:43 PM

116 ; LO G I N : VO L . 33, N O. 5

ESX-TOP, which gathers CPU utilization information from
the host, by using the hardware’s clock cycle counter rather
than the virtualized one, or by timing from the host rather
than from inside the VM. For benchmarking ESX servers,
they noted that simple workloads will not suffice, as servers
see different I/O patterns to the same volume, or I/O from
a single application being split among multiple volumes. In
addition, virtual file systems are often specially optimized,
and so standard benchmarks are not always sufficient.

Next, Daniel Ellard from NetApp presented their experi-
ences in benchmarking flash SSDs. Their goal is to perform
measurements on a single device and to extrapolate to
estimate the performance of a large array of devices. These
new devices have characteristics that differ from disks. For
example, flash SSDs implement quasi-file systems, have a
strange layout that is striped across several devices, have
nondeterministic writes, and have drastic aging effects.
NetApp uses what they call micro-workload benchmarks;
these lie somewhere between micro-benchmarks and
macro-benchmarks in terms of complexity. They have
developed a workload generator called Biscuit. The user
defines tasks and these are generated by Biscuit. Biscuit
also supports random variables, as well as telemetry and
trace files.

The next presentation was by Jeff Fuller from Microsoft,
who discussed some of the benchmarking methodologies
used for Windows clients and servers. Fuller’s group per-
forms client application characterization to measure metrics
that end users care about, such as high-level response time.
Their application-level benchmarking allows them to use
the same benchmarks on different platforms and compare
user experiences across platforms. In addition, application-
level workloads are more portable and realistic than lower-
level ones. They also take client idle time (during which
much asynchronous activity happens), as well as bursts of
activity.

Finally, Eric Kustarz from Sun Microsystems discussed ZFS
benchmarking experiences. As ZFS is a rather complex file
system, the Sun group uses a large number of workloads
to obtain a clear picture of its performance. Although they
mainly use FileBench, they also use an assortment of other
benchmarks, including IOzone, Bonnie, SPECsfs, and many
others. They utilize various OpenSolaris tools to locate per-
formance problems, such as Dtrace, Lockstat, fsstat, kstat,
and vmstat.

benchm arking guidelines

The workshop included much discussion about proper
benchmarking and statistical methodologies, and we com-
piled a set of guidelines to consider when evaluating the
performance of a file or storage system.

A performance evaluation should have clear goals. We
recommend posing questions that should be answered by

the evaluation, and then choosing the systems, configura-
tions, and benchmarks to answer them. The benchmarking
process consists of four steps: selecting appropriate bench-
marks, running the benchmarks, analyzing the results, and
reporting the results.

First, hypothesize on what the results should look like,
decide on the appropriate initial state of the system (con-
tents of caches, partition locations, file system aging, etc.),
and create it accurately. When choosing a benchmark, you
should use it for its intended scope. For example, the An-
drew benchmark should not be used as an I/O benchmark,
and Postmark produces an NFS mail server workload. In
addition, create new benchmarks only if existing ones do
not provide the needed features or workload characteristics.
Prefer to extend existing benchmark tools rather than writ-
ing new ones.

When running the benchmarks, we recommend using an
automated system [4, 7] to reduce the possibility of human
error and to ensure that all runs are identical. As many data
points as possible should be collected so that proper statisti-
cal analysis can be performed on the results. For bench-
marks with nonuniform workloads (e.g., a compile bench-
mark), this can be done by running the benchmark multiple
times. For benchmarks with uniform workloads, such as
those that perform a certain number of read operations, it
may be possible to take measurements at regular intervals
during a single run to increase the number of data points
collected. In addition, we recommend measuring the system
only when it is in steady state, by discarding any start-up
and cool-down effects.

For quantities that are additive (e.g., time or bytes sent), the
same estimate of the mean and standard deviation should
be obtained whether many short runs or just a few long
runs are conducted. If a stable workload is measured by
dividing it into many smaller intervals, then the central
limit theorem will typically apply, and thus the distribution
of the mean will be approximately normal; therefore, a con-
fidence interval for the mean can be easily constructed from
estimated standard deviations, even if the distributions of
the individual runs are not themselves normally distributed.
When a run cannot be broken down into multiple subunits
from identical distributions, there is no guarantee about the
distribution of the mean.

The results can now be analyzed. As a first check, ensure
that the distribution of the results is reasonable, and see
whether the results match your expectations. If not, investi-
gate and explain why. It can be useful to examine graphical
summaries, such as histograms or cumulative distribution
functions.

When reporting results, be sure to describe precisely what
was done, to help others to understand the experiments and
allow them to reproduce your results. This includes a com-
plete description of the platform, the benchmark and any
parameters, the source code for the system being tested, and

login_summariesOCTOBER2008.indd 116 9/15/08 1:07:43 PM

; LO G I N : O c tO b e r 20 0 8 cO N fe re N ce re p O rt s 117

the raw benchmark results. Of course, licensing issues may
restrict the distribution of some of this information, but
as much as possible should be provided. In addition, most
publications limit the number of pages available, so we rec-
ommend publishing the information in an online appendix.
We hope that repositories will be created for the long-term
storage of such information. In addition to describing what
was done, explain why the evaluation was done that way.
This helps others to interpret the results.

Report the number of runs performed and include statistical
measurements, such as standard deviations or confidence
intervals, so that others can determine the accuracy of your
results. If you get high standard deviations, it could be an
indication that your distribution is multi-modal (which may
suggest an unstable storage system); in that case, you might
plot your data as a histogram and explain the modality.
Quartiles may also be helpful in describing non-normal
distributions, but you should have at least 30 data points
before using quartiles. In some cases box-plots may be more
suitable than histograms (generally when the number of
data points is large). Note that standard confidence intervals
(based on a normal approximation) are not appropriate for
non-normal distributions.

summ ary

Many interesting and important issues were discussed at
this workshop, and we hope to discuss more topics next
year. These include simulators, tracing technology, aging
effects, and measuring power consumption. In addition, we
would like to discuss how to benchmark distributed and
petabyte-scale systems, as well as virtual machine technolo-
gies. We also discovered that many are not familiar with the
advanced statistical methods required to properly analyze
benchmark results. We hope to discuss some of these meth-
ods as well.

Longer-term research goals were also discussed. One chal-
lenge is how to accurately scale traces so that they stay rel-
evant for longer periods of time. This is important because
a trace is collected once and used for many years. However,
hardware, software, and usage patterns change rapidly,
making the traces outdated almost as soon as they are cap-
tured. Other challenges include how to model an applica-
tion’s behavior as a workload model and how to measure
the accuracy of a given model. Finally, there is a question
of how to compare the results from two benchmarks where
the platforms were different. The answer may lie in virtual
machine technology, but how to do this accurately is an
open question.

This first workshop was an important step in improving
the overall quality of performance evaluations in the file
and storage system community. Participants raised im-
portant issues and discussed potential solutions. We hope
that researchers and practitioners will educate themselves
and improve the quality of their performance evaluations.

Finally, we hope that reviewers will raise the standards for
performance evaluations in conference and journal publica-
tions.

We have been continuing our discussions on our mailing
list, and we plan to publish a more detailed set of bench-
marking guidelines in the future. We have also created a file
and storage system benchmarking portal at http://fsbench.
filesystems.org/. It links to a Wiki containing the agenda
(including slides from the talks) and a list of attendees, sub-
scription information for the mailing list, a Web version of
the benchmarking guidelines, and other resources.

acknowledgments

We would first like to thank all of the attendees of this first
workshop, whose valuable input and enthusiasm helped
make it a success, especially Eric Anderson, Andrew Leung,
and Tim Moore for supplying us with workshop minutes
and Eric Anderson, Don Capps, and Richard McDougall for
their reviews. Thanks are owed to Herbie Lee for his help
with the statistical aspects of this article. Thanks also go
to the Storage Systems Research Center at the University
of California, Santa Cruz, for hosting and sponsoring this
workshop. Some workshop organizers were sponsored in
part by NSF award CCF-0621463 (HECURA).

references

[1] E. Anderson, M. Kallahalla, M. Uysal, and R. Swamina-
than, “Buttress: A Toolkit for Flexible and High Fidelity I/O
Benchmarking,” in Proceedings of the Third USENIX Confer-
ence on File and Storage Technologies (FAST ’04), San Fran-
cisco, CA, March 31–April 2, 2004, pp. 45–58.

[2] Don Capps, IOzone filesystem benchmark, July 2008:
http://www.iozone.org/.

[3] FileBench, July 2008: http://www.solarisinternals.com/
wiki/index.php/FileBench.

[4] P. Shivam, V. Marupadi, J. Chase, T. Subramaniam,
and S. Babu, “Cutting Corners: Workbench Automation for
Server Benchmarking,” in Proceedings of the 2008 USENIX
Annual Technical Conference, Boston, MA, pp. 241–254.

[5] SPEC, SPECsfs2008, July 2008: http://www.spec.org/
sfs2008.

[6] A. Traeger, N. Joukov, C.P. Wright, and E. Zadok, “A
Nine Year Study of File System and Storage Benchmarking,
ACM Transactions on Storage (TOS), 4(2):25-80, (2008).

[7] C.P. Wright, N. Joukov, D. Kulkarni, Y. Miretskiy, and E.
Zadok, “Auto-pilot: A Platform for System Software Bench-
marking,” in Proceedings of the 2005 USENIX Annual Technical
Conference, FREENIX Track, Anaheim, CA, pp. 175-187.

login_summariesOCTOBER2008.indd 117 9/15/08 1:07:43 PM

read()

write()

login_summariesOCTOBER2008.indd 118 9/15/08 1:07:43 PM

IEEE Security & Privacy magazine is THE premier magazine for security professionals.
Read this and other exciting issues!

Check out our Silver Bullet Security Podcast with host Gary McGraw, featuring:

• Bruce Schneier of BT Counterpane • Eugene Spafford of CERIAS •

• Mary Ann Davidson of Oracle • Avi Rubin of Johns Hopkins • and more! •

Silver Bullet sponsored by Cigital and IEEE Security & Privacy
www.computer.org/security/podcasts

Subscribe today for only $29!
www.computer.org/services/nonmem/spbnr

login_summariesOCTOBER2008.indd 119 9/15/08 1:07:43 PM

Project3 1/3/08 12:03 PM Page 1

login_summariesOCTOBER2008.indd 120 9/15/08 1:07:44 PM

IT Roadmap Conference & Expo continues it’s trek in 2008 with a nationwide tour

including new cities,new topics, new speakers and new sponsors! That’s right.

You’ll have a chance to attend one of the multi city events we’ll be offering this year.

You won’t want to miss out on 10 tracks of crucial network technology:

> VIRTUALIZATION

> ENTERPRISE MOBILITY

> NETWORK AND APPLICATION

ACCELERATION

> NAC: NETWORK ACCESS CONTROL

> DATA CENTER INFRASTRUCTURE

AND MANAGEMENT

Complete with case histories from front-line users. Data from industry researchers.

Insights from IT specialists. And embedded within... a tightly-focused, solution

oriented expo of top vendors.

We look forward to seeing you in 2008!

COMING TO A CITY NEAR YOU

IT ROADMAP IN ’08!

INTERESTED IN ATTENDING? INTERESTED IN SPONSORING?

www.networkworld.com/itr2008

What a great opportunity to

network with my IT peers and the

outstanding speakers on the state

of IT.

FRANK CARLSON
TELEHEALTH AND CONFERENCING ENGINEER
NORTHERN COLORADO MEDICAL CENTER

Network World, helped us acquire

new relationships with new vendors,

as well as solidify existing relation-

ships, with existing vendors.

SAJID QURESHI
IT PROCUREMENT AND SERVICE
DELIVERY MANAGER
HITT CONTRACTING, INC.

> SECURITY AND COMPLIANCE

> NETWORK MANAGEMENT, AUTOMATION

& CONTROL

> VOIP, VIDEO AND UNIFIED COMMUNICATIONS

> NEXT GENERATION WAN SERVICES

> SAAS AND CLOUD COMPUTING

SAVE THE DATE! Mark your calendar to attend

DALLAS | Sept 23 SAN FRAN | Nov 17 WASH. DC | Dec 16

ITR ad_pms 220 8/18/08 10:54 AM Page 1

Oct08Covers.indd 3 9/15/08 3:01:02 PM

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES
RIDE ALONG ENCLOSED

Register by October 17, 2008, and save! http://www.usenix.org/lisa08/loo

22ND LARGE INSTALLATION SYSTEM
ADMINISTRATION CONFERENCE

Real world system
administration training

San Diego
CALIFORNIA

November 9–14, 2008

SPONSORED BY

&

6 DAYS OF TRAINING
New! Virtualization Track:•
Xen Hypervisor, VMware ESX 3i,
and security taught by Stephen
Spector, John Arrasjid, Phil Cox,
and more

New! Solaris Track: •
Debugging, administration, and
DTrace taught by James Mauro,
Peter Baer Galvin, Marc Staveley,
and Jeff Victor

Plus classes on Cfengine 3 by •
Mark Burgess , RRDtool by Tobias
Oetiker, and more . . .

3-DAY TECHNICAL PROGRAM
2 tracks of Invited Talks by industry •
leaders on timely topics—live
streaming available!

Refereed papers on topics such •
as configuration management,
parallel systems deployment,
virtualization, and security

Workshops, Guru Is In sessions, •
Birds-of-a-Feather sessions, Work-
in-Progress reports, posters, and
more!

Vendor Exhibition: A showcase of •
the latest commercial innovations

PLENARY SESSIONS
“Reconceptualizing Security,”
by Bruce Schneier, Chief Secu-
rity Technology Officer, BT

“The State of Electronic Voting,
2008,” by David Wagner, Uni-
versity of California, Berkeley

Oct08Covers.indd 4 9/17/08 9:30:42 AM

