
The Advanced Computing
Systems Association

O P I N I O N Musings
R I K FA R ROW

O S E S Why Some Dead OSes Still Matter
A N D R EY M I RTC H OVS K I A N D L ATC H E SA R I O N KOV

S E C U R I T Y (Digital) Identity 2.0
C AT O K ITA

L A W Hardening Your Systems Against Litigation
A L E X A N D E R M U E NTZ

S Y S A D M I N An Introduction to Logical Domains, Part 2
O C TAV E O RG E RO N

V O I P IP Telephony
H E M A NT S E N GA R

C O L U M N S Practical Perl Tools: Let Me Draw You a Picture
DAV I D B L A N K- E D E L M A N

iVoyeur:Opaque Brews
DAV I D J O S E P H S E N

/dev/random
RO B E RT G . F E R R E L L

S T A N D A R D S Whither C++?
N I C H O L A S M . STO U G HTO N

B O O K R E V I E W S Book Reviews
E L I Z A B E TH Z W I C K Y E T A L .

U S E N I X N O T E S Creating the EVTWorkshop
DA N WA L L AC H

2008 USENIX Nominating Committee
E L L I E YO U N G

Letters to the Editor

C O N F E R E N C E S 2007 USENIX Annual Technical Conference
Linux Symposium 2007

T H E U S E N I X M A G A Z I N E

O C T O B E R 2 0 0 7 V O L U M E 3 2 N U M B E R 5

1ST USENIX WORKSHOP ON LARGE-SCALE
EXPLOITS AND EMERGENT THREATS (LEET ’08)
Co-located with NSDI ’08

APRIL 15, 2008, SAN FRANCISCO, CA, USA

5TH USENIX SYMPOSIUM ON NETWORKED
SYSTEMS DESIGN AND IMPLEMENTATION
(NSDI ’08)
Sponsored by USENIX in cooperation with ACM SIGCOMM
and ACM SIGOPS

APRIL 16–18, 2008, SAN FRANCISCO, CA, USA
http://www.usenix.org/nsdi08
Paper titles and abstracts due: October 2, 2007

2008 USENIX ANNUAL TECHNICAL CONFERENCE
JUNE 22–27, 2008, BOSTON, MA, USA
http://www.usenix.org/usenix08
Paper submissions due: January 7, 2008

2008 USENIX/ACCURATE ELECTRONIC
VOTING TECHNOLOGY WORKSHOP (EVT ’08)
Co-located with USENIX Security ’08

JULY 28–29, 2008, SAN JOSE, CA, USA

3RD USENIX WORKSHOP ON HOT TOPICS IN
SECURITY (HOTSEC ’08)
Co-located with USENIX Security ’08

JULY 29, 2008, SAN JOSE, CA, USA

17TH USENIX SECURITY SYMPOSIUM (USENIX
SECURITY ’08)
JULY 28–AUGUST 1, 2008, SAN JOSE, CA, USA

8TH USENIX SYMPOSIUM ON OPERATING SYS-
TEMS DESIGN AND IMPLEMENTATION (OSDI ’08)
DECEMBER 8–10, 2008, SAN DIEGO, CA, USA

INTERNET MEASUREMENT CONFERENCE 2007
(IMC 2007)
Sponsored by ACM SIGCOMM in cooperation with USENIX

OCTOBER 24–26, 2007, SAN DIEGO, CA, USA
http://www.imconf.net/imc-2007/

21ST LARGE INSTALLATION SYSTEM
ADMINISTRATION CONFERENCE (LISA ’07)
Sponsored by USENIX and SAGE

NOVEMBER 11–16, 2007, DALLAS, TX, USA
http://www.usenix.org/lisa07

ACM/IFIP/USENIX 8TH INTERNATIONAL
MIDDLEWARE CONFERENCE (MIDDLEWARE 2007)
NOVEMBER 26–30, 2007, NEWPORT BEACH, CA, USA
http://middleware2007.ics.uci.edu/

2008 LINUX STORAGE & FILESYSTEM WORKSHOP
(LSF ’08)
Co-located with FAST ’08

FEBRUARY 25–26, 2008, SAN JOSE, CA, USA

6TH USENIX CONFERENCE ON FILE AND STORAGE
TECHNOLOGIES (FAST ’08)
Sponsored by USENIX in cooperation with ACM SIGOPS, IEEE
Mass Storage Systems Technical Committee (MSSTC), and IEEE
TCOS

FEBRUARY 26–29, 2008, SAN JOSE, CA, USA
http://www.usenix.org/fast08

2008 ACM INTERNATIONAL CONFERENCE ON
VIRTUAL EXECUTION ENVIRONMENTS (VEE ’08)
Sponsored by ACM SIGPLAN in cooperation with USENIX

MARCH 5–7, 2008, SEATTLE, WA, USA
http://vee08.cs.tcd.ie

USABLE SECURITY 2008 (USEC ’08)
Co-located with NSDI ’08

APRIL 14, 2008, SAN FRANCISCO, CA, USA

Upcoming Events

For a complete list of all USENIX & USENIX co-sponsored events,
see http://www.usenix.org/events.

contents

OPINION
2 Musings

RIK FARROW

OPERATING SYSTEMS
5 Why Some Dead OSes Still Matter

ANDREY MIRTCHOVSKI AND LATCHESAR IONKOV

SECURITY
13 (Digital) Identity 2.0

CAT OKITA

LAW
21 Hardening Your Systems Against Litigation

ALEXANDER MUENTZ

SYSADMIN
26 An Introduction to Logical Domains, Part 2

OCTAVE ORGERON

VOIP
35 IP Telephony

HEMANT SENGAR

COLUMNS
43 Practical Perl Tools: Let Me Draw You a Picture

DAVID BLANK-EDELMAN

50 iVoyeur:Opaque Brews
DAVID JOSEPHSEN

55 /dev/random
ROBERT G. FERRELL

STANDARDS
58 Whither C++?

NICHOLAS M. STOUGHTON

BOOK REVIEWS
63 Book Reviews

EL IZABETH ZWICKY ET AL .

USENIX NOTES
67 Creating the EVTWorkshop

DAN WALLACH

68 2008 USENIX Nominating Committee
ELL I E YOUNG

68 Letters to the Editor

CONFERENCE REPORTS
70 2007 USENIX Annual Technical Conference
93 Linux Symposium 2007

V O L . 3 2 , # 5 , O C T O B E R 2 0 0 7
E D I TO R

Rik Farrow
rik@usenix.org

M A N AG I N G E D I TO R
Jane-Ellen Long
jel@usenix.org

CO P Y E D I TO R
David Couzens
proofshop@usenix.org

P R O D U C T I O N
Casey Henderson
Jane-Ellen Long

T Y P E S E T T E R
Star Type
startype@comcast.net

USEN IX ASSOC IATION
2560 Ninth Street,
Suite 215, Berkeley,
California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

http://www.usenix.org
http://www.sage.org

;login: is the official
magazine of the
USENIX Association.

;login: (ISSN 1044-6397) is
published bi-monthly by the
USENIX Association, 2560
Ninth Street, Suite 215,
Berkeley, CA 94710.

$85 of each member’s annual
dues is for an annual sub-
scription to ;login:. Subscrip-
tions for nonmembers are
$120 per year.

Periodicals postage paid at
Berkeley, CA, and additional
offices.

POSTMASTER: Send address
changes to ;login:,
USENIX Association,
2560 Ninth Street,
Suite 215, Berkeley,
CA 94710.

©2007 USENIX Association

USENIX is a registered trade-
mark of the USENIX Associa-
tion. Many of the designa-
tions used by manufacturers
and sellers to distinguish their
products are claimed as trade-
marks. USENIX acknowl-
edges all trademarks herein.
Where those designations ap-
pear in this publication and
USENIX is aware of a trade-
mark claim, the designations
have been printed in caps or
initial caps.

2 ; LOG I N : VO L . 3 2 , NO . 5

R I K F A R R O W

musings
rik@usenix.org

Information technology, IT—the branch of
engineering that deals with the use of computers
and telecommunications to retrieve and store and
transmit information.

—wordnet.princeton.edu

WH EN I F I R S T R E AD ON E O F TH I S
issue’s articles, I found myself suggesting to
the author that he not use the term IT. I
wrote back to him, saying that many of the
readers of ;login: are system administrators
and that they don’t consider themselves
part of IT.

Having said that, I wondered how true that is. I
also pondered over my own aversion to being con-
sidered part of IT. The definition of IT appears be-
nign (see sidebar). It even appears to match, in
very broad terms, what it is that system, network,
and security professionals do.

The Priesthood

My earliest vision of IT came with my first visit to a
computer room, sometime about 1961. I had vol-
unteered to work with some “computer” people
(no “IT” people back then) and write a program in
assembly language that would run on a mainframe.
The mainframe itself, in Rockville, MD, was
tremendously impressive, with its many large,
humming cabinets, the washing machine–sized
disks with the intriguingly labeled (in red) “Write
Protect” push buttons, and the CPU itself. I liked
the flashing lights that showed memory addresses
and data values, and it was sort of cool when the IT
guy got the mainframe to play a song through the
console speaker (poorly). But I was just as im-
pressed by the spectacular air conditioning system,
as the air inside the computer room was mar-
velously filtered, cool, and dry.

In 1969, I spent a summer working as an intern for
GE in Bethesda, MD. I was the “software librarian,”
and the only really cool part of my job is that I got
total use of the mainframe, during lunchtime,
about once a week. I learned to boot the main-
frame, starting with binary cards, then a larger
deck of Hollerith-encoded punch cards, then boot-
strapped the terminal concentrator, and finally got
the tape drive, which contained the master copy of
the OS and utilities, going. Once the system was
up, I installed patches, from other nine-track tapes
or from paper tapes, then dumped the patches to
new nine-track tapes for shipment to the other 18
mainframes like this one around the world.

I took every CS course I could at the University of
Maryland, which didn’t even have a CS degree in
those days. Using punch cards, and submitting
jobs that you would not see the results of for at
least 4 hours, and sometimes 20, really helped with

typing discipline, as a single typo was tremendously painful. You would
hand your card deck over to the priesthood who managed the CS depart-
ment’s mainframe, and they would load your deck into the card reader and
then write it to nine-track tapes. The tapes, containing card images, got
loaded on the mainframe, and the jobs would run one at a time. I later
learned that there was some time-sharing going on, but most students were
forced to run batch jobs. (With some 25,000 students and a single computer,
we were fortunate that most were not doing anything with the computer.)

None of these experiences should have left me with negative feelings toward
being part of IT. I did not work with computers my first several years out of
college, because most jobs went to people with experience, and the Vietnam
War had provided large groups of people with real experience, seriously im-
pacting the market for those, like myself, who got college degrees instead of
traumatizing experiences.

When I did get back into computers, it was because the microprocessor had
started appearing in small systems. During the intervening years, DEC had
been producing minicomputers, smaller, cheaper, and much less complex
systems than their mainframe relatives, but even these were scarce. Micro-
computers promised to change all that, making real computers available to
everyone. I could see this clearly in 1978, and I quickly became a part of the
early PC boom in the Bay Area.

Perhaps my aversion to IT came later, when I was working as a sysadmin
consultant. I would have experiences where I would learn about some prob-
lem an IT staff was having and offer to take a look at it. For example, one
company needed to migrate its database from a homebrew version to In-
formix. Both ran on SunOS, but the dump format of the homebrew version
was incompatible with the import format of Informix. I talked to the IT guy
who was struggling with the issue, figured out how the two formats differed,
and wrote a short shell script that managed the conversion. All this took
perhaps an hour.

The IT guy was amazed, saying that he had expected that it would take
weeks of work for the IT department to do what I had done in an hour. I was
perplexed. It really wasn’t that hard, I thought, so what gives? Then I
learned that such occurrences were the norm, and that getting anything
done through the IT department was a bureaucratic nightmare that could
take weeks or months.

Perhaps you can tell me if your own perceptions of IT are at all like mine.
Perhaps you like being part of IT. I really don’t know. I would be happy to
release old, misbegotten perceptions, as the world moves much faster now,
and I imagine that IT projects done by foot-dragging office drudges are now
things of the past.

Lineup

We start out this issue with an article about Plan 9. Although Plan 9 may
have faded from people’s memories, the poster a group of HPC scientists had
during USENIX Annual Tech generated considerable interest, so I thought it
might be time to revisit Plan 9. Andrey Mirtchovski and Latchesar Ionkov
don’t want us to forget the many useful, yet simple, ideas that are part of
Plan 9. In the case of Linux, the Plan 9 communications protocol, p9, has
actually been ported and is still supported today. Plan 9 has much to offer,
especially in the world of HPC, but also to students who need to be exposed
to alternatives to the Linux OS design.

; LOGIN: OCTOBER 2007 MUSINGS 3

Cat Okita writes about Identity 2.0. I had heard Cat speak at LISA’06 and
asked her to update her presentation for this issue. Identity goes beyond
sysadmin, as it is something that affects every citizen of First World coun-
tries, and whose impact continues to expand.

Lex Muentz wants you to get ready for the possibility of litigation, as Feder-
al Rules of Civil Procedure are morphing. These rules govern the handling
of material required to be handed over during civil suits in the U.S. Lex
clearly explains where the legal profession believes the landscape is chang-
ing. His advice on how to cope with electronic evidence will not only save
you time and money but may help your organization avoid stiff fines that
could be levied on you because you weren’t prepared.

Octave Orgeron presents his second article about LDoms, the new Solaris
virtualization capability. Logical Domains run above a hypervisor on some
newer Sun systems, which does limit the number of people who will imme-
diately be using these systems. But the techniques used in LDoms will, I be-
lieve, start appearing on other systems, as we already have other hypervi-
sors, from VMWare and Xen. Octave’s article explains how Sun goes about
installing support, including firmware and software, for the LDoms system.

Hemant Sengar discusses some unsung dangers in VoIP protocols. His con-
cern centers on the protocols used for setting up calls, protocols that can
easily be abused for DDoS attacks and for DoS attacks with amplification.

David Blank-Edelman shows how you can draw pretty pictures, well, uh, di-
agrams, using Perl, and he highlights some easy-to-use libraries. David
Josephsen describes how you can pry out information about what goes on
within Java Virtual Machines. Debugging performance issues within JVMs
requires access within the JVM. David explains tools that you can use to do
this, as well as how to export performance data to your monitoring systems.

We have book reviews, of course, and Robert Ferrell explaining to us why
we need to get rid of DNS. Yes, you heard me, but I will let Robert explain.
Nick Stoughton has written an excellent article about the progress toward a
new C standard.

Dan Wallach tells the story of how the USENIX/ACCURATE Electronic Vot-
ing TechnologyWorkshop came into existence. If you have a new field of in-
terest that you think might fit the workshop model, don’t miss Dan’s short
article in this issue’s “USENIX Notes.”

We have two sets of summaries in this issue: the 2007 USENIX Annual
Technical Conference and the Linux Symposium 2007.

It seems to me that my early experiences with IT did not create the antipa-
thy I grew to feel later. But perhaps things have changed. What’s your take
on it?

4 ; LOG I N : VO L . 3 2 , NO . 5

; LOGIN: OCTOBER 2007 WHY SOME DEAD OSES STI LL MATTER 5

A N D R E Y M I R T C H O V S K I A N D
L A T C H E S A R I O N K O V

why some dead
OSes still matter
AndreyMirtchovski has been a Plan 9 aficionado
since, as an undergraduate student, he found Plan 9’s
Third Release disks hidden in the waste bin of a uni-
versity server room. Since then he has devoted a sig-
nificant amount of time to the system,because it
simply gets things donewith less code.

andrey@lanl.gov

Latchesar Ionkov is a Linux kernel developer responsi-
ble in part for the 9p kernel module,which allows Lin-
ux to speak Plan 9’s 9p protocol. Latchesar has been
instrumental in translating Plan 9’s ideas intomain-
line operating systems such as Linux.

lionkov@lanl.gov

WI TH I T S CU R R EN T LY U NCHA L L E NG ED
ubiquity, the Linux operating system has be-
come the de facto standard research OS in
academia.The consequent waning of gener-
al systems research has been well docu-
mented [2],with the number of alternative
operating systems in existence that signifi-
cantly depart from the UNIX model and
that are actively in development rapidly ap-
proaching zero. In this article we will discuss
one such alternative operating system that
has refused to disappear completely, and we
will attempt to evaluate the features of that
OS that make it suitable as a vehicle in our
research projects and as a research environ-
ment.

We describe and share our experience working
with the “Plan 9 from Bell Labs” operating system.
This article will not attempt to compare the virtues
of this OS with other, well-established systems. In-
stead, we will examine the environment Plan 9
provides as it pertains to researchers in academia,
graduate students, and even undergraduates taking
their first steps in exploring the inner workings of
their first operating system. The goals of Plan 9 are
completely different from those of other free and
open source operating systems: Whereas some aim
to provide a useful UNIX environment and others
are bent on total world domination, Plan 9 aims to
provide a useful research environment for building
distributed software.

Plan 9 from Bell Labs

Plan 9 is a not-so-fresh offering from the same
group at Bell Laboratories that created UNIX. Plan
9 has been in existence for over 18 years, making it
a tad older than the popular free UNIX variants.
The first Plan 9 papers were published in 1990 and
since then there has been a relatively steady stream
of research publications using the OS as their base
[1]. Both the OS and its ideas are active parts in
several current research projects, ranging from
porting it to the largest supercomputer currently in
existence to fitting it into small embedded devices
that can be carried in one’s pockets.

During most of its existence the OS has flourished
within the confines of the lab it was created in, tak-
ing part as the core of most of the research projects
therein. Outside of Bell Labs, however, Plan 9 has

failed to gain widespread adoption. The reasons for this are several and can
mostly be traced to the battle for open source software that raged through-
out the 1990s. The first Plan 9 release was made available to a select few uni-
versities in 1990. A second release, made available in 1995, required exter-
nal organizations and individuals to purchase the OS and manuals at the
prohibitively high cost of $350 for a binary-only license. In 2000, Plan 9
marked its third release, this time as an open source operating system pro-
vided by its creators with all source code and at no cost. (Manuals can still
be purchased separately from Vita Nuova [5], a company in Great Britain
that maintains and distributes the Inferno OS, a cousin of Plan 9.) Unfortu-
nately, the license Plan 9 was released under was slightly restrictive, for ex-
ample requiring users to indemnify the new Bell Labs owner, Lucent, from
any future lawsuits. As expected, this ruffled a few feathers in the free/open
source camp (see Richard Stallman’s article describing the issues with the li-
cense of the OS [3]). The license was completely opened and OSI-approved
by 2002, for the fourth release of Plan 9. Since then the system has moved
from a single release cycle to a continuous-update one, where changes to the
OS and supporting applications are made available immediately, so the OS
release number has not been bumped, even though the system is still being
developed.

In many aspects the Plan 9 operating system was ahead of its time. Its cre-
ators anticipated the level of penetration that networks will have in comput-
ing and aimed to create a distributed environment that provided services to
programs and end users regardless of their physical location as long as they
were connected to the network.

PLAN 9 IS STI LL RELEVANT

Even though Plan 9 has existed for nearly two decades, it still holds some
relevance for today’s operating system landscape. Plan 9 was innovative in
many areas and integrated novel and interesting solutions deeply within the
system, but its relevance does not necessarily stem from the fact that it’s
such a great OS: It is not. Other OSes that came into being about the same
time, such as Amoeba [4], were making even greater leaps into the wild,
containing a multitude of ideas, many of which—such as independent-of-
origin computation, resource pooling, and virtualization—are now becom-
ing much more relevant to computing. Perhaps that very boldness in accept-
ing new concepts in the OS made those systems less practical; most of them
have died from lack of developers and fresh users. Plan 9’s fate is sure to be
the same, as it has a relatively stable community of around several hundred
users, but no new blood is coming in—which is exactly the rationale for this
article.

Impracticality should be an accepted death sentence for every bold new op-
erating system. What is troublesome, however, is that all the ideas coming
from this vast research in distributed operating systems in the early 1990s
have been lost to the new generation of programmers, students, and re-
searchers. Students now entering the system software research and develop-
ment field are faced with the same pool of choices now as they were 20 years
ago: The choice is always among various UNIX offshoots. In fact, for many
undergraduates the deciding factor as to which operating system they will
dedicate their best years has been political, rather than technical: They pick
from the set of free and open source operating systems the one that most
closely matches their moral beliefs. The gap in operating systems and sys-
tem software that was supposed to be filled by all that research in the last
decade before the millennium has been filled by bloated middleware.

6 ; LOG I N : VO L . 3 2 , NO . 5

Plan 9 managed not to be involved in this political game. It came from an
older time when source was closed and, when it had to, it successfully con-
verted, with a few hiccups, to an open model allowing everybody to peruse
its code as they see fit. What is keeping Plan 9 alive is those users who keep
an open eye for problems and an open mind about their solutions. The rea-
son Plan 9 is still relevant even after its user base has dwindled is that the
main purpose for its existence is to explore and to examine problems and
solutions in a networked, distributed environment. We can do so easily and
without much effort because Plan 9 was built on three basic design princi-
ples that cohesively absorb and tie various parts of the system together: sim-
plicity, clarity, and generality.

Simplicity

The initial goal with which Plan 9’s creators set out to develop the system
was to fix the problems that they perceived were inherent in UNIX. The
main task they had to tackle was to simplify the system by peeling off all the
communication layers that had been built on top of the core to handle tasks
never envisioned by its creators, such as networking (sockets) or graphical
user interfaces (X11). Plan 9 presents the programmer with a single protocol
upon which all remote and local communication is based: 9p. The 9p proto-
col allows resources presented by processes locally or remotely to be ac-
cessed as a hierarchy of files and directories (which themselves are files)
with a few standard operations such as open, close, read, write, and stat. The
9p protocol permeates the system fully, with absolutely all communication
except memory access occurring over it.

Besides the fact that 9p allows clients and servers to share resources via a
very simple but effective protocol, 9p has an extra feature that makes it very
appealing to use: It is not transport-dependent. Plan 9 uses the protocol over
TCP, IL, a protocol created by Bell Labs with 9p in mind and without TCP’s
overhead, and RUDP, a reliable UDP offshoot with in-order delivery. In our
work here at LANL we have also written libraries that allow 9p to be trans-
mitted directly over the DMA mechanisms available in the Cell for commu-
nication between its separate processor elements. We are currently working
on a library that allows 9p to be spoken over the PCI-express bus in our
next-generation hybrid supercomputer, which combines Cell accelerator
cards with Opteron hosts.

We must mention that, apart from the simple communication protocol, the
rest of the Plan 9 system is also an exercise in simplicity, in both the number
of lines of code and the number of programs used to accomplish a task. The
Plan 9 kernel for the PC architecture (by far the most used and most devel-
oped) consists of around 90,000 lines of C code, not counting the drivers for
various hardware, plus another 20,000 lines of portable C code, which is
shared among all architectures.

Given that this code is both readable and understandable, it comes as no
surprise that new students are able to pick up Plan 9 rather quickly. Unfor-
tunately, some students, particularly the ones already familiar with other
free and open source operating systems, have expressed distaste for such a
simple system. In our experience, undergraduate students tend to be more
impressed by, even enamored with, graphical bells and whistles and are un-
able to give the system’s simple design proper consideration. Indeed, most
will consider a windowing system implemented in only 7000 lines of code
spartan. What those students miss is that Plan 9’s creators eschewed com-
plexity, which left us with a system that is both easy to understand and easy
to modify.

; LOGIN: OCTOBER 2007 WHY SOME DEAD OSES STI LL MATTER 7

Clarity

The main method of interfacing with other programs is through files. A
client program opens a file served by a process and reads to receive informa-
tion or writes to send information. Plan 9 does not have an equivalent to the
ioctl() system call, which cannot be issued across a network owing to the re-
liance on a local pointer to pass data. Instead, most servers by convention
serve a file named ctl at the top of their hierarchy, which allows clients to
control not only I/O but the general behavior of the servers.

The power of this method of exposed interfaces is enormous, as witnessed
by the following examples, which illustrate how Plan 9’s simple concepts are
tied together into a cohesive environment.

The familiar concept of a UNIX pipe (i.e., a communication path linking a
reader and a writer) is implemented in Plan 9 via a file server: A kernel de-
vice serves a single-level tree containing two files, data and data1. Writes to
data can be read from data1 and vice versa. Moreover, those two files can be
bound anywhere in one’s namespace and even imported from a remote sys-
tem, removing the need for a special tool such as netcat.

Networking in Plan 9 is also implemented as a file server, or, rather, several
different file servers, each corresponding to a specific protocol. Those file
servers are mounted together in /net on a system, and each may serve one or
more subdirectories for each connection to a remote machine. Because Plan
9 directory structures can be served remotely and mounted on a remote ma-
chine (as the next section illustrates), a /net from one server can be used as
the main interface of another. Since most networks nowadays are heteroge-
neous, this concept has mostly been used to provide access to the outside
world to machines hidden on an internal network. One computer will have
two interfaces—an internal one and an external one—with all machines on
the inside that need access to the Internet mounting its external /net. Thus
there is no need for specialized NAT software and packet translation. There
are no extra provisions made to allow one machine to use another’s network
stack; instead, this ability simply comes from the fact that network stack in-
terfaces are presented as files and that files can be imported from remote
computers.

An extension of this idea is a small program called sshnet, which can be
used to import a remote computer’s network interface via a connection se-
cured and encrypted by the SSH protocol. Sshnet imports the remote ma-
chine’s TCP stack and presents it to the local system as a network stack like
all others in /net.

The window managers and graphics subsystem in Plan 9 are also file servers.
The window manager, rio, presents its control and communication interface
in /dev. Those files correspond to the copy/paste buffer (a text file called
snarf) and the whole screen of the display, as well as subdirectories contain-
ing information about each window on the system, including the text typed
in and, indeed, the graphical representation of the window. To take a screen-
shot of one’s desktop, one would simply have to cat /dev/screen. Since
they’re all simply files, naturally one can import another computer’s window
manager files and have local programs draw on a remote screen without any
additional software requirements or tweaks. Furthermore, since they are all
simply files, the window manager can be run recursively in one of its own
windows.

Another example of the benefits of using files is the copy/paste buffer served
by the Plan 9 window manager: It is a simple text file that acts as a buffer for

8 ; LOG I N : VO L . 3 2 , NO . 5

text, keeping whatever is written to it for all readers. Naturally, to communi-
cate with a more sophisticated operating system, this file is not enough. For
example, when running Plan 9 under the Parallels virtual machine emulator
on OS X, one is unable to have text copied on the host system be pasted in
Plan 9. One ingenious solution to this problem is to export the host system’s
copy/paste interface as a file, which can be imported by Plan 9 and mounted
on top of the file served by the window manager, thus being made available
to all programs running within that namespace. The program to complete
all this is a simple 100-liner in C which speaks the 9p protocol on a TCP/IP
socket and knows how to query and set the copy/paste buffer in OS X. It
serves a single root directory with a single file in it, replacing the Plan 9 win-
dow manager with the OS X one. This has proved much easier than having
to create special hooks within both Plan 9 and Parallels to create an internal
interface to the copy/paste buffer hidden from the eyes of user-level pro-
grams.

Generality

In Plan 9 every resource of a system, be it hardware or software, is presented
as a hierarchy of files. The system provides two means of manipulating hier-
archies: mounting a resource and binding two mounted resources together.
These two functions are designed to improve and extend the ability of a Plan
9 user to construct a namespace (or the set of file hierarchies) relative only
to the user’s own interests and uses. In other words, a private view of what is
available on the system (or networks of systems) is available to be cus-
tomized by individual user-level processes on the fly.

Mounting carries the same functionality as it does on UNIX systems and
their descendants: A connection with a local or remote resource is initiated,
the resource is attached to the issuer’s namespace (the directory hierarchy
starting at root), and standard file operations pertaining to the mounted di-
rectory are sent over the connection to the server. In Plan 9, however, a
mount can be accomplished by anyone without requiring superuser privi-
leges and without affecting the file hierarchy of other users. This allows, as
will be shown later, a user to import a remote server’s network interface (à la
VPN) in one terminal on their desktop without affecting any other users on
the system or even programs running in other windows on the same desk-
top. Importing a remotely served file system is trivial: A connection is made
to the remote system, and the file descriptor from that connection is mount-
ed locally. The 9p protocol is designed to handle authentication security
transparently to all programs accessing resources on the system.

Binding in Plan 9 is the ability to join two or more directories together in the
same hierarchy. This does not have a direct analog in UNIX, but it has
turned out to be very useful in Plan 9. It allows one, for example, to build a
source tree in a directory that does not allow the user to write to it, without
having to copy it to a temporary place. In another example, Plan 9 has only
a single directory for binaries, called /bin. When a user logs in, all binaries
for the particular architecture that he or she is using, all scripts (global and
local for that user), and all binaries that the user has installed privately are
bound to /bin. The shell’s equivalent of $PATH in Plan 9 contains only a sin-
gle directory, /bin (see Figure 1).

; LOGIN: OCTOBER 2007 WHY SOME DEAD OSES STI LL MATTER 9

F I G U R E 1 : T H E V A R I O U S D I R E C T O R I E S C O R R E S P O N D I N G T O T H E
PA R T I C U L A R A R C H I T E C T U R E (I N T H I S C A S E , X 8 6) , S H E L L
S C R I P T S (R C) , A N D B I N A R I E S C O M P I L E D L O C A L LY B Y T H E U S E R
A R E B O U N D T O G E T H E R I N A U N I O N D I R E C T O R Y I N T H E O T H E R -
W I S E E M P T Y / B I N , T H E O N LY D I R E C T O R Y T H AT T H E S H E L L
T R A V E R S E S I N I T S P A T H T O F I N D B I N A R I E S O N P L A N 9 .

Perhaps the most striking example of the generality of Plan 9’s ideas and
how they tie together is the cpu command, which is used to connect to re-
mote Plan 9 servers. We are used to thinking about such programs as gate-
ways to remote machines. For example, when we ssh to a server we throw
away everything on the local machine and accept the remote environment as
our own. (The hack to tunnel X11 communications through SSH connec-
tions is the exception that proves the rule.) Plan 9’s cpu command, however,
makes it possible to connect not only two ports but two environments on
two separate machines together. cpu serves the local namespace of the ma-
chine from which it was started under a directory (/mnt/term) on the remote
machine. Since everything in plan 9 is a file, from there a script can auto-
matically bind important files from the local system to where they should be
expected by applications on the remote one. For example, the audio device
is bound from /mnt/term/dev to /dev to allow any remote application to play
audio to the local speakers. The same thing happens with the mouse and
keyboard files and the graphical subsystem; thus any application run on the
remote machine can draw to the local one. You can imagine this being ex-
tended for all devices: Via a simple one-line user command requiring no su-
peruser privileges, one can, for example, print from any machine to a local
printer.

As a consequence, Plan 9 system administrators do not set accounts and
modify access lists for applications; instead, they modify file permissions,
fully aware that if a user has permission to access a particular resource on a
local system, that user can do so from any other computer that can connect
to it.

EXAMPLES OF PLAN 9 IN THE REAL WORLD

The ideas stemming from Plan 9—namely, that all resources should be made
available as files that can be accessed remotely by attaching them (or mount-

10 ; LOG I N : VO L . 3 2 , NO . 5

ing, which is the more widely accepted term) to a user or to a process’s
namespace—have been put in use in various forms here at the Los Alamos
National Laboratory’s Advanced Computing Lab and elsewhere. Once one
becomes acquainted with the system’s simplicity and, dare I say, beauty, it is
not very hard to convert ideas to fit the Plan 9 model of development. This
has saved us a tremendous amount of time in developing and testing new
protocols, implementing clients and servers, measuring performance, and
scaling. The fact that we have based our tool on Plan 9’s ideas, but have not
directly used Plan 9 in some of the cases, is another benefit of Plan 9’s design
ideas and their flexibility: One need not port the entire OS but only one ba-
sic element, the protocol, to allow one to benefit fully from the research that
went into the system. In all cases Plan 9’s ideas have given us the ability to
rethink from the ground up the basic ideas and principles on which our
software was based, redesign it in a new model, and implement something
that, if not much faster than its predecessor, was much simpler to under-
stand and fix. Plan 9, in this case, served only as the “mind expansion”
enzyme to further our work.

Some of our work, which is strongly based on Plan 9’s ideas, includes:

� Xcpu: a job starter for extreme scale clusters. We created Xcpu at
LANL in order to be able to start and control jobs on the next genera-
tion of high-performance computing platforms, which are starting to
appear on the horizon. These machines will consists of tens of thou-
sands of heterogeneous nodes. Xcpu presents a file server interface to
starting jobs on a remote machine. This interface includes a directory
for copying binary and data files; control files for starting, stopping,
and continuing an application; and control files for attaching the appli-
cation to its standard I/O and monitoring its progress remotely.

� CellFS: a new programming model for the Cell Broadband Engine
which allows its accelerated components (also known as SPE units)
to communicate with the host processor and its memory via POSIX-
like file-based operations. Since DMA transfers to the host processor
are encapsulated in 9p, the programmer simply issues an open request
via a library call to access and a read request to fetch data from main
memory.

� KvmFS: via 9p, provides extended access, startup, and control of virtu-
al machines running on compute nodes across the cluster. Again, using
a simple set of file operations, administrators can set up a virtual ma-
chine, transfer its image to a node on the network, start it up, and con-
trol its execution (including migrating it to a third node over the net-
work).

There are numerous other toy programs and prototypes in which we have
found the 9p protocol and the Plan 9 way of thinking, “everything is a file,”
to be of great help in simplifying and breaking down the problem space into
its components. We believe now that the ideas we have learned from Plan 9
are applicable in wide areas of our research.

Conclusions

We are not trying to make the argument that Plan 9 should be considered by
any and all academic researchers and students for their work. However, by
listing here the ideas of Plan 9, we hope to invite students and operating sys-
tems programmers to keep an open eye for ideas and implementations. By
showing what is possible with a little imagination and creativity, we de-
scribed a system that will not be easy to conceive with ideas coming from

; LOGIN: OCTOBER 2007 WHY SOME DEAD OSES STI LL MATTER 11

the single-track mind of the successful, but antiquated, creations in the “real
world.” We invite students and professors to look around and dig deep into
the history of operating systems, especially the ones that never became com-
mercial successes because they were “too far out there.” There is a great deal
of research that went into new operating systems before the world got
locked into commercialization, Plan 9 being only one such example, but
without examining and evaluating those, we’re bound to continue making
one mistake over and over: that of complexity. By building layer upon layer
of interfaces designed to hide and sidestep the shortcomings of the underly-
ing system, we are putting ourselves into the corner of incremental research,
where our goal becomes that of improving what’s already there instead of
throwing it away and replacing it with something better, guided by our ex-
perience and the ideas of others.

REFERENCES

[1] Plan 9 from Bell-Labs papers: http://plan9.bell-labs.com/sys/doc/.

[2] R. Pike, “System Software Research Is Irrelevant”:
http://herpolhode.com/rob/utah2000.pdf.

[3] R. Stallman, “The Problems of the (Earlier) Plan 9 License”:
http://www.gnu.org/philosophy/plan-nine.html.

[4] A.S. Tannenbaum et al., “Experiences with the Amoeba Distributed
Operating System,” Communications of the ACM, vol. 33, pp. 46–63, Dec.
1990.

[5] Vita Nuova: http://www.vitanuova.com.

12 ; LOG I N : VO L . 3 2 , NO . 5

C A T O K I T A

(digital) Identity
2.0
Cat Okita hasmore than 10 years of experience as a
senior systems, security, and network professional in
the financial, Internet,manufacturing and telecom
sectors. Cat has spoken at LISA and Defcon about
identity and reputation, co-chairs the“Managing
Sysadmins”workshop at LISA, and programs for fun,
in her spare time.

cat@reptiles.org

E V E RY BODY “ J U ST KNOWS ” WHAT
identity is—most definitions center around
identity as a“fact of being”or “defining
characteristics”—but when push comes to
shove, identity, like pornography, is very hard
to describe exactly. Is your identity your
name? Your government-issued photo ID?
How you dress?What music you listen to?

What about the digital world? Is your identity your
email address? Web site logins? How many “identi-
ties” do you have? In fact—is it your identity at all,
if it’s controlled and thrown around by other enti-
ties, with or (often) without your knowledge or
permission? (Digital) Identity 2.0 is designed to
change all of this confusion.

Identity 2.0 Is User-centric IdentityManagement

The basic idea behind Identity 2.0 is that it puts
the users in control of their (digital) identity (or
identities—think about the number of logins,
memberships, and nicknames you have) and how
their identity is used, managed, and given out.

“But wait!” you say. “What’s this ‘identity’ thing
anyway? Didn’t you just say it’s impossible to de-
scribe?”

Let’s take a step back and talk about what identity
is—and isn’t. (To get a better idea of some of the is-
sues, see Dick Hardt’s informative and entertaining
OSCON 2005 Keynote talk on Identity 2.0 [1].)

Defining (Digital) Identity

Since we’re talking about computers and programs,
I’m going to narrow our scope a bit and use the
term “digital identity,” rather than “identity,” but
digital identity as we’re going to use it here is more
than just an account name, IM handle, or email ad-
dress. The following serves as a useful definition:

A digital identity is a collection of claims at-
tached to a digital subject (about which we can
then make assertions).

A pithy summary might be:

Digital Subject A:
Claims: TK421, short, stormtrooper.
Assertion: TK421 is a stormtrooper.
Verification: Stormtroopers must be tall—
TK421 is short.
Result: Aren’t you a little short for a
stormtrooper?

; LOGIN: OCTOBER 2007 (DIGITAL) IDENTITY 2 .0 13

Common Problemswith Identity

One of the wonderful things about digital information is that it’s easy to
copy, modify, move around, and destroy—and once a piece of digital infor-
mation’s been let out to the world, it’s pretty much impossible to find out
where it’s gone and who’s doing what with it.

Since it’s so easy to copy digital information—and so hard to keep track of
where digital information has gone—it’s extremely important to know and
limit who has access to what information. Of course it’s much easier to say
that we need to know and limit who has access to what information than it
is to actually find out who has what information about you and determine
how well it’s protected.

In fact, the average G8 citizen is listed in 50–100 databases. Even if each
database knows only a few things about you, combining information can re-
veal things you thought were private. It’s far too easy to picture a world
where Bob’s insurance company decides to change what Bob’s health plan
costs just because they found out that Bob checked out a book about dia-
betes from the library and started to buy diabetic chocolate at the grocery
store—even if he was actually trying to help Alice!

On top of that, who actually owns your information? If we think about med-
ical lab results, do those results belong to you? Your doctor? The lab? Your
(medical) insurance company? Some combination of all of the above? If
that’s the case, who gets to make decisions about sharing that information?

In fact, the usual way that you’d find out about a piece of digital information
in the wrong hands is catastrophic failure—your credit card has been used
to buy cell phone equipment on a different continent, or the government
wants to have a word with you about tax evasion.

Myths About Identity

There are a few common myths that come up as soon as you start discussing
identity—starting with the idea that there’s a single definition for identity
that everybody agrees on.

ONE TRUE NAME

Everybody should have one (and only one) true name/nym. The name
should be unique and identify the individual forever.

This myth usually stems from the naive idea that it’s easy to come up with a
scheme that will give each person One True Name—and that everybody will
cooperate and play by the rules. It also relies on the availability of some sort
of central system to track who owns what True Name and some sort of
mechanism for tracking people down to prevent them from using a True
Name belonging to somebody else.

There are a bunch of problems with this idea, starting with the need for uni-
versal adoption, how to enforce unique identifiers, maintaining privacy, and
what to do if somebody steals or misuses your One True (forever) Name.
And, in the end, should we really care whether a name is unique at all? Most
of us manage to fumble our way through life without having terrible prob-
lems as a result of knowing two people named Dave Smith.

14 ; LOG I N : VO L . 3 2 , NO . 5

ONE TRUE ROOT/REGISTRY

The One True Root/Registry is often found as a close cousin of the One True
Name, and it takes form around the idea that there should be some sort of
global registry for identities, like IP addresses and DNS names. It’s an inter-
esting thought—but the sheer logistics involved in just registering 6.6 bil-
lion people are mind-boggling.

Some of the reasons suggested for the One True Root are:

� It ensures that identities are unique.
� It establishes a universally valid identity.
� It can be used for tracking and legal enforcement.
� It can reduce identity theft.

But who would be trusted to run this global database? What about privacy
concerns and validating (or fixing) information? What should be done
when conflicts arise (as they inevitably will)? These are all hard problems
and completely aside from the intransigent requirement for universal
adoption.

BIOMETRICS WILL SOLVE EVERYTH ING

This is a nice way of saying “If we have your [DNA|iris scan|fingerprint], we
can prove, beyond a doubt, that you’re . . . uh . . . you.” This is all very nice,
but it’s much like saying that you’re never lost, because you always know
where you are. Not only that, but there’s no way to revoke biometric creden-
tials, so once there’s any sort of bad data (No-Fly lists, anyone?) associated
with your biometrics, you’re just plain out of luck.

SoWhat Is User-centric IdentityManagement?

That would be one of the million dollar questions. Stepping back for a mo-
ment, let’s take a look at the types of things that get called “identity manage-
ment,” and then move on to looking at the properties we’d expect to find in
a user-centric identity management system.

There’s a range of things that people mean when they talk about identity
management. Jon Callas helpfully broke down the types of things that get
called “identity management systems” into four main categories:

; LOGIN: OCTOBER 2007 (DIGITAL) IDENTITY 2 .0 15

IM(1): Traditional

� AAA (authentication, authoriza-
tion, accounting)

� Per-device user accounts
� PKI

IM(2): Traditional 2.0 (ways to make
IM(1) easier, but all localized)

� Directory services
� LDAP
� Single sign-on
� NIS/NIS+
� Kerberos

IM(3): Database Management

� Information management
� Metadirectories
� HR information resource man-

agement (phone numbers, titles,
parking spaces, conference room
reservations, etc.)

IM(4): Marketing

� Loyalty programs
� Buying habits
� Targeted selling
� Recommendation systems

All of these systems have a few things in common. They are local. They are
controlled by a single authority, such as an employer or a retailer. Moreover,
information about the user is controlled and managed by an authority other
than the user—in many cases, users may not even know what information
about them is in the system.

WhatProperties ShouldaUser-centric IdentityManagement SystemHave?

If we look at Identity 1.0 management systems, it’s pretty clear that they’re
far from user-centric. In fact, users have little to no control at all over their
information, who has it, and what’s being done with it. This obviously raises
questions about privacy, security, accountability, trust, and manageability.

A number of smart people have written (at length) about the properties a
user-centric identity management system should have. I’m firmly of the
opinion that one of the key properties is usability. It’s been proven time and
time again that people reliably screw up complicated things, so if it’s not
easy for users to manage and understand what’s being done with their infor-
mation, it’s like handing them a genie in a bottle. It’s easy to let the genie out
of the bottle but awfully hard to put the genie back (if you can at all!).

One of the most widely advertised lists of properties for a user-centric iden-
tity management system comes from Kim Cameron of Microsoft. Unfortu-
nately, Kim’s “Laws of Identity” [2] are a miserable failure when we’re talk-
ing about something anybody can understand. Here are his seven laws:

1. User Control and Consent
2. Minimal Disclosure for a Constrained Use
3. Justifiable Parties
4. Directed Identity
5. Pluralism of Operators and Technologies
6. Human Integration
7. Consistent Experience Across Contexts

Dr. Ann Cavoukian [3], Ontario’s Information and Privacy Commissioner,
took Kim’s laws and produced a notably clearer (although still rather long-
winded) interpretation:

1. Personal Control and Consent
2. Minimal Disclosure for Limited Use: Data Minimalization
3. Justifiable Parties: “Need to Know” Access
4. Directed Identity: Protection and Accountability
5. Pluralism of Operators and Technologies: Minimizing Surveillance
6. The Human Face: Understanding Is Key
7. Consistent Experience Across Contexts: Enhanced User Empower-

ment and Control

Ben Laurie [4] of Google produced a nicely succinct set of properties for an
identity management system that are easy to understand and remember and
are a great place to start thinking about what we want from user-centric
identity management:

1. Verifiable
2. Minimal
3. Unlinkable

I always like to make the implicit need for systems that people can use ex-
plicit and add a fourth property to Ben Laurie’s three:

4. Usable

16 ; LOG I N : VO L . 3 2 , NO . 5

What Do These PropertiesMean?

I’ll cheat briefly and use Ben Laurie’s pithy properties and their associated
comments as a starting point.

1. Verifiable: There’s often no point in making a statement unless the re-
lying party has some way of checking whether it is true. Note that
this isn’t always a requirement—I don’t have to prove my address is
mine to Amazon, because it’s up to me where my goods get delivered.
But I may have to prove I’m over 18 to get the alcohol delivered.

In other words, can we prove enough about what you’re claiming to believe
that it’s true enough and, if we can’t, who’s accountable for the bad informa-
tion?

2. Minimal: This is the privacy-preserving bit—I want to tell the relying
party the very least he or she needs to know. I shouldn’t have to re-
veal my date of birth, just prove I’m over 18 somehow.

If we’re going to take control of our identities, we have to start by not hand-
ing everything about ourselves over to anybody who asks. In security terms,
this means deny all and permit selectively. In identity terms, this means
anonymity with selective (and minimal) disclosure.

3. Unlinkable: If the relying party or parties, or other actors in the sys-
tem, can, either on their own or in collusion, link together my vari-
ous assertions, then I’ve blown the minimality requirement out of the
water.

Of course it’s impossible to be either anonymous or selective if it’s easy to
put together a few claims and figure out who you are or what you’ve been
doing. I’m sure everybody’s had the experience of their mom pointing out
that they can’t possibly have gotten mud all over if they stayed inside all day.

4. Usable: If I can’t figure out how to use this system, or it’s easy to do
the wrong thing (whether that’s giving out my information to every-
body or letting somebody steal it), it doesn’t matter how good the
system is at everything else.

In the end, all of this is helpful only if it’s easy to understand, and anybody
can figure out how this whole user-centric identity management thing
works—and do it without losing their identity.

All That Aside,What’s Identity 2.0 Good for, Anyway?

You’d think that Identity 2.0 being user-centric identity management would
mean that it’s all about the user—and you’d be partly right. Identity 2.0 is
definitely about the user, but there’s more than just the user in the mix.

The basic architecture of identity management 2.0 has a user (Digital Sub-
ject) with one or more sets of characteristics (Identities), contacting a serv-
ice provider (Relying Party), to obtain a service, which is authenticated
and/or authorized by an identity management service (Identity Provider) on
behalf of the user.

That means that we’ve got users, service providers, and identity providers,
all of whom have their own vested interests. Eliot’s dad wants to stop having
to remember tons and tons of online user IDs and passwords; MIT wants to
be able to share library logins with Harvard; Dan wants to be able to buy
smut without having to give away his birthday; whitehouse.com wants Dan

; LOGIN: OCTOBER 2007 (DIGITAL) IDENTITY 2 .0 17

to be able to buy smut easily (and without worrying about his privacy or
credit card numbers going missing); the government wants to be able to
identify and serve constituents without violating their civil rights; and
Verisign loves the idea of providing yet another registry service. It sounds
like everybody’s a winner here.

Of course, the big winners in all of this focus on Identity 2.0 are the middle-
men. We’ve got plenty of users and service providers already. The most com-
mon design for implementing Identity 2.0 does a great job of creating new
business for identity providers and middleware brokers.

So,Who’s Doing This Stuff?

We’ve got all of the usual suspects involved—big corporations on their own
or in groups, the free/open source community, standards bodies—and a vari-
ety of interesting implementations.

There’s been a remarkable convergence in the Identity 2.0 space over the
past year. Microsoft’s CardSpace is still holding down one corner. The Liber-
ty Alliance (composed of almost everybody other than Microsoft) has
formed up in another. OpenID is being cheerfully adopted by the Web 2.0
crowd and is also collaborating with Microsoft. And everybody’s using (or at
least supporting) SAML (the OASIS Security Assertion Markup Language).
Table 1 provides a summary of those involved.

18 ; LOG I N : VO L . 3 2 , NO . 5

Other nontraditional players, such as Google, Yahoo!, and Amazon, are also
sneaking into the identity management space, with APIs that enable single
sign-on for their properties or redirect authentication queries to third-party
servers.

T A B L E 1 : P L AY E R S A T A G L A N C E

; LOGIN: OCTOBER 2007 (DIGITAL) IDENTITY 2 .0 19

Verifiable Minimal Unlinkable Usable Comments

Microsoft http://cardspace.netfx3.com/
CardSpace Requires Web Services Trust Language

Yes Yes No ? Typically requires additional middleware

Aimed toward end-user e-commerce

Liberty http://www.projectliberty.org/
Alliance Aimed primarily at enterprise use cases

Yes ? ? ? Single sign-on/logout, permission-based attribute
sharing, circles-of-trust, interoperability certification

Uses SAML

OpenID http://openid.net/

Low/no trust authentication only

Distributed free

? Yes ? Yes Lightweight (by comparison, at least)

Actively in use, primarily with blogs (e.g., Six-Apart,
Wordpress, and a variety of blog software, including
moinmoin, drupal, phpBB, and mediawiki)

Shibboleth http://shibboleth.internet2.edu/

Uses SAML
Yes Yes No Yes Web single sign-on only

Most common in academia

Pubcookie http://www.pubcookie.org/

Yes Yes No Yes Web single sign-on within an organizational domain

Most common in academia

Google Apps http://google-code-updates.blogspot.com/2007/02/
new-apis-for-google-apps.html

Allows authentication to be redirected to a third
party for hosted apps

http://code.google.com/apis/accounts/
AuthForWebApps.html

Allows applications to authenticate against and use
Google services

Yahoo! BBAuth http://developer.yahoo.com/auth/

Allows external Web applications to authenticate
against and use Yahoo! services

SAML http://www.oasis-open.org/committees/tc_home.php
?wg_abbrev=security

AreWeThere Yet?

Is Identity 2.0 mature—or even walking yet? Not really. We’re starting to see
OpenID implementations popping up all over, and there’s enough conver-
gence in the Identity 2.0 space to suggest that we’re starting to hit critical
mass.

Unfortunately, there are still plenty of outstanding questions about security
and why you’d want to trust a third-party identity provider (or providers)
with your information. It’s certainly true that you’d have fewer places where
you’d have to remember passwords (or some other form of authentication),
but that also means that the identity providers become richer targets, and it
certainly makes collusion among providers (or relying parties and
providers) much, much more interesting.

Beyond that, is it really user-centric identity management when you’re still
trusting and relying on third parties to do the right thing? Or is it just rear-
ranging to whom you’ve contracted the outsourcing of your identity?

REFERENCES

[1] Dick Hardt gives the best talk on Identity 2.0:
http://www.identity20.com/media/OSCON2005/.

[2] Kim Cameron, “The Laws of Identity”: http://msdn2.microsoft.com/
en-us/library/ms996456.aspx.

[3] Ann Cavoukian, “7 Laws of Identity”: http://www.ipc.on.ca/images/
Resources/up-7laws_whitepaper.pdf.

[4] Ben Laurie, “Laws of Identity, Revised”: http://www.links.org/?p=222.

20 ; LOG I N : VO L . 3 2 , NO . 5

; LOGIN: OCTOBER 2007 HARDEN ING YOUR SYSTEMS AGAINST L IT IGATION 21

A L E X A N D E R M U E N T Z

hardening your
systems against
litigation
AlexanderMuentz is both a sysadmin (since 1999)
and a lawyer (admitted to the bar in Pennsylvania
and New Jersey). He’d love to be a hacker public de-
fender but has to earn his living helping law firms do
electronic discovery.When he’s not lawgeeking, he
tries to spend timewith his wife and hismotorcycle.
lex@successfulseasons.com

YOU S P EN D ENOUGH T IM E WOR K I NG
in IT, and you’ll go to a conference.You get to
see distant friends and colleagues, get free
stuff, and maybe learn a thing or two.You
come back with a headful of ideas. Some-
times a FUD-wielding salesperson actually
gets you worried and convinces you that
you need to fix something back home.There
are times when it’s justified, and other
times when it’s silly.

The lawyers who represent your organization are
going to their own conferences, and there’s a big
scary thing on their radar. To make your life easier,
I’m going to explain what they’re worried about
and how to prepare your systems for litigation. For
brevity’s sake, I’m lumping technology support
roles such as system administration, network engi-
neering, and user support into “IT.” I’m both an IT
professional and a lawyer, but don’t take this as le-
gal advice.

What’s the big scary thing? Recent amendments to
the Federal Rules of Civil Procedure (FRCP) [1]
have changed what digitally stored information
must be retained and turned over to other parties
to a lawsuit. The FRCP are the ground rules for
civil litigation in federal courts. Generally the
largest and most complex lawsuits are heard in the
federal system, and state court systems tend to
look to the Federal Rules when they modify their
own rules.

Substantial changes to the FRCP are rare, which is
why there’s lots of buzz right now. Every electronic
discovery vendor is out there teaching Continuing
Legal Education classes (CLEs) about what the
new rules are, what they mean, the big scary sanc-
tions, and why you should hire its firm to handle
all the digital aspects of your lawsuit. I’ve been to a
few of these CLEs and taught one of my own, so I
can safely claim that other than forcing lawyers to
sit down and read the rules over lunch, they’re re-
ally not that useful, because no one knows what
the rules truly mean yet.

AQuick Explanation of Judicial Review

Often rules and statutes are intentionally left vague
to keep pace with changing social, economic, or
technological conditions without having to revisit
the basic law. To fill in the gaps in interpretation,
judges look to previous decisions on similar facts,
which may look to even earlier decisions. After a

few iterations of this process, whole new doctrines known as “judicial gloss”
are created to answer any contingency. To fully understand the rule, often
many judicial opinions must be read. This makes our law stable and pre-
dictable, but arcane to the nonlawyer.

There have been so few decisions on these rules that it’s like trying to learn
what’s going to happen in a movie by watching the credits. Unfortunately for
the lawyers, without judicial gloss to guide us, we can only guess at what
they really mean, and that worries us.

And for good reason. Not only are the rules still open to wide interpretation,
but getting it wrong can have serious consequences. For example, the FRCP
now require that a party to a lawsuit make available any Electronically
Stored Information (ESI) that is both “relevant to the claim or defense of any
party” and is not privileged, cumulative, or “reasonably accessible due to
undue burden or cost.” Improperly withholding or destroying discoverable
information can result in sanctions, either monetary or the exclusion of
your side’s favorable evidence. Until the women and men sitting on appeals
courts start handing down opinions in a few years and giving us some more
fleshed-out rules to follow, we will only make educated guesses to protect
our clients. Adding to the anxiety is the generally low level of technological
savvy among lawyers.

FRCP Affects Sysadmins and Other IT Professionals

The FRCP require parties in litigation, or to whom litigation is likely, to
immediately preserve all information under their control that tends to sup-
port their claims or defenses in the lawsuit. Failing to preserve or intention-
ally destroying such information can result in sanctions. Once litigation is
started, all parties must provide either a list of sources and locations of rele-
vant information or the actual information to the other parties in a process
known as discovery. Information, if delivered, must be provided either in the
format originally used in the course of business or in a format agreeable to
both sides. Parties can also request additional disclosures of relevant infor-
mation and can attempt to force the other side to deliver information im-
properly held back. They can also require uninvolved parties to divulge rele-
vant information under their control. Each side also has a duty to inform the
other side if it locates additional relevant information.

Generally, there are few limitations on such disclosures. Information that is
legally privileged, redundant, a trade secret, or classified can be withheld
unless a judge orders its disclosure. Also, a party can claim that the informa-
tion sought is “not reasonably accessible” due to effort or expense relative to
the value of the lawsuit [2]. If the requesting side pushes the issue, it may
get it but be forced to pay costs to make such information usable, such as for
data recovery of damaged media, media or format conversion, or forensic
analysis for deleted files.

Sanctions:The Scary Bits

What the lawyers are really worried about are discovery sanctions. Once liti-
gation is foreseeable, intentionally or negligently destroying discoverable
material can result in monetary or evidentiary sanctions. Monetary sanc-
tions are normally limited to the legal bills expended in forcing the disclo-
sure of discoverable information. Evidentiary sanctions can be uglier. Infor-
mation improperly withheld may be barred from being used in court by the
side that withheld it or may even result in loss of a claim or defense, which

22 ; LOG I N : VO L . 3 2 , NO . 5

can lead to losing the entire lawsuit [3]. There is a “safer harbor” provision
in the FRCP that stipulates that any destruction of discoverable information
resulting from the normal, automatic operations of your systems is not sanc-
tionable. Right now that seems to be only relevant to operations with little
user control—overwriting deleted files, rolling logs, and the like. Human-
controlled but routine procedures such as tape rotation may not be covered
here.

The Definition of “ESI” Is Open to Interpretation

The definition of ESI is intentionally vague, to incorporate any new technol-
ogy, but 99% of e-discovery revolves around email and “edocs.” Email is
what you think it is, and edocs are the entire spectrum of end-user docu-
ments—MS Office files, CAD/CAM files, images, PDFs, and the like. Given
the way in which most discovery is handled at large law firms, I like to call
this the “presumption of printability.” If the file can be printed, they’re most
likely interested in it, because that’s what they’re doing, in one form or an-
other. IT-savvy firms are converting the files to .tiff and using an image data-
base to host them for armies of lawyers to look at each email or document.
But if it’s something not immediately understandable to a human, such as a
database file, or not printable, such as a sound or movie file, the big firms
tend to set them aside unless they have a good reason to look at them.

Few lawyers get creative with their electronic discovery requests. I under-
stand not wanting to demand all of the stored music or movie files on an op-
posing party’s PC (unless you’re the RIAA or MPAA), but many lawyers are
resistant to requesting archived voicemails, IM chat transcripts, and the like.
Every CLE that I’ve seen or taught on this issue has touched on the multi-
tude of potential storage devices, including employees’ home computers,
mp3 players, thumb drives, PDAs, and cell phones.

ESI may even be information that isn’t normally stored at all. A recent feder-
al magistrate’s decision in Colombia Pictures v. Justin Bunnell, commonly
known as the Torrentspy ruling, upheld a litigant’s request to force a Web
site owner to keep and preserve requesting IP addresses when he originally
did not store that information [4]. The responding side failed to prove that
the logging would be unduly burdensome, as it was using Microsoft’s IIS,
which can easily log such information. Lots of people in this field are eagerly
awaiting future rulings to see whether this rule is followed or ignored. Stay
tuned.

How Lawyers Process This Information

A typical large litigation project works in stages. First, the lawyers deter-
mine what information is likely relevant to the litigation and which employ-
ees would have this information. They then collect it from their client and
have armies of lawyers pore over it, both to get an understanding of the facts
of the case and to mark any documents that may be excluded because of le-
gal privilege, trade secret protection, or irrelevance. Once that is done, they
start handing over this information to the other parties to the lawsuit and
start looking at the information given to them by the other parties.

Where You Fit Into All This

Some background is useful to understand what the lawyers really want and
need. You’re important because most of this information is on systems that

; LOGIN: OCTOBER 2007 HARDEN ING YOUR SYSTEMS AGAINST L IT IGATION 23

24 ; LOG I N : VO L . 3 2 , NO . 5

you’re responsible for. You or your group is most capable of collecting and
preserving the data your organization needs. To assist, I’m going to give
some suggestions of what you should be doing, depending on where your
organization is in the litigation process.

STAGE 1 : NORMAL OPERATION—NO FORESEEABLE L IT IGATION

This is the time we like to think of as “project time.” There are no major
fires to put out, so you can think clearly about long-term fixes for issues
such as litigation readiness. I’d recommend getting a handle on all the places
where your organization stores data. Make an inventory of all your worksta-
tions and server shares, both active ones and the obsolete ones on the shelf.
Figure out which users have or had regular access to what workstations,
shares, databases, and other resources. If you’ve got some time and budget,
look into archiving and indexing packages for email and end-user docu-
ments. If you support end users, look into remote control/login packages
that allow you to collect locally stored data and email over a network.

Also, this is the time for you to work out your data retention and destruc-
tion policies. Work them out with everyone involved: the IT staff that imple-
ments and maintains it, as well as the legal and compliance crew that makes
sure it’s compatible with your legal and regulatory environment. Once
you’ve got it all in place, stick to it. If something is supposed to be deleted,
preserved, or destroyed, do so. Surprises during litigation aren’t any fun.

For the desktop support crew, a decommissioning procedure, during which
you index and archive the user files when a workstation or employee moves
on, keeps you free from worrying about trying to find and resurrect obsolete
machines a few years later. Doing the same for server shares that are no
longer active also makes good sense. Having at least one working system
that can read whatever media you chose to store those archives on will also
make your lives easier, unless you like scouring eBay for antiques.

STAGE 2 : REASONABLE L IKEL IHOOD OF L ITIGATION

A bunch of employees just jumped to your largest competitor, maybe with
the products they were developing. Your organization is seriously consider-
ing suing someone. Ideally, your lawyers write up a nice, straightforward
litigation hold memo and circulate it to the IT staff. Now your homework
from Stage 1 pays off. With your list of shares, workstations, and users to
preserve, all you need to do is keep the archives in a safe place, fire off a full
backup of the current affected users, shares, and resources, and run incre-
mental backups until the litigation hold is modified or ended. If you haven’t
prepared, you need to scramble. The legal department will need to send let-
ters to all the affected users asking them to stop deleting relevant documents
and email. You may get asked to enforce this, somehow.

STAGE 3 : L IT IGATION COMMENCES

Someone’s filed suit. First off, the litigation hold may be modified and ex-
panded. Second, you need to start putting all of your relevant ESI into two
categories—easy and hard to produce. Your lawyers are going to want to
know which ESI is expensive and time-consuming to hand over to the other
side, in order to exclude it or force the other side to pay for the extraction.
For each item you’re preserving, come up with a rough estimate of the time
and money it would cost. Be realistic: 4 GB of MS Office files in an end user’s

; LOGIN: OCTOBER 2007 HARDEN ING YOUR SYSTEMS AGAINST L IT IGATION 25

home directory isn’t going to take ten hours and a thousand dollars to pro-
duce, but that crate of 9-track isn’t going to be cheap to convert into some
modern, usable format, either.

Finally, you have to prepare for the “Rule 26” conference. FRCP 26(f) re-
quires parties to sit down and work out a discovery plan. Included in such a
plan is how to handle ESI: what format to give the discoverable information
in, when to supply it, and where to deliver it. Each side should bring an IT
professional who understands what information is sought, what format(s) it
is in, and how difficult it would be to make it available to the other side in
the format requested. This IT pro should also be able to explain technical
concepts in simple, easy-to-understand language without getting frustrated.

If you haven’t prepared for this during Stage 1, get ready for long nights and
stress. I’ve worked a case where the client had no capability for remote archiv-
ing, so I had to travel to four separate cities to personally collect documents
and email. If there had been old workstations or tapes that could have held
discoverable information, I’d probably still be pulling data from them today.

STAGE 4 : HANDING OVER DISCOVERY TO THE LAWYERS

The parties have started to agree on the scope of discovery, so you can go
back to your archives and start pulling out information that complies with
this. Now any indexing or searching capability you have is going to come in
handy. The lawyers may have agreed to hand over any documents or email
that contains a project name, or falls within certain dates, or to specific peo-
ple. The ability to search and to limit the amount of discovery is going to
reduce your legal bill, as the fewer documents your own lawyers have to re-
view, the less billable time. In addition to the delivery of documents, there
may be some assistance you can offer to the legal team in sorting and under-
standing the discovery that’s going to start coming in from the other parties
in the litigation. Having an IT person who knows the people and issues can
only save money and reduce risk. If you can have one person as the “IT liai-
son,” that person can coordinate among the rest of the IT department, the
legal staff, and any consultants you may have hired to help, thereby reduc-
ing time, billable hours, and headaches.

Finally, there may be some additional modifications to the litigation hold
memo. The IT staff should be prepared for last-minute changes, just in case.

In Closing

If you prepare for litigation like any other disaster, you’re going to be far bet-
ter off than if you crossed your fingers and hoped for the best. Knowing
what you have, as well as what you don’t, and having the ability to retrieve it
cheaply and quickly will prevent headaches, save your organization money
and time, and make you a hero to the nontechies.

REFERENCES

[1] Federal Rules of Civil Procedure (2006):
http://www.law.cornell.edu/rules/frcp/.

[2] FRCP 26(b)(2)(b): http://www.law.cornell.edu/rules/frcp/Rule26.htm.

[3] FRCP 37(b)(2)(A),(B): http://www.law.cornell.edu/rules/frcp/Rule37.htm.

[4] Colombia Pictures v. Justin Bunnell, No. CV 06-01093 FMC (C.D. CAL
2007).

26 ; LOG I N : VO L . 3 2 , NO . 5

O C T A V E O R G E R O N

an introduction to
logical domains

PA RT 2 : I N STA L L AT I ON AN D

CON F I GU RAT I ON

Octave Orgeron is a Solaris Systems Engineer and an
OpenSolaris Community Leader. Currently working in
the financial services industry, he also has experience
in the e-commerce,Web hosting,marketing services,
and IT technologymarkets. He specializes in virtual-
ization, provisioning, grid computing, and high avail-
ability.

unixconsole@yahoo.com

I N TH E AUGUST 200 7 I S SU E OF ; LOG I N : ,
I explained the Logical Domains (LDoms)
technology from Sun and what you can do
with it. In this article, I will walk you through
the installation process, explaining key re-
quirements for proper installation, as well
as suggesting choices you should make dur-
ing the process.

Prerequisites

For LDoms to function, you will need the correct
platform, firmware, OS release, patches, and the
Logical Domain Manager software.

Currently, LDoms are only supported on the Ultra-
SPARC T1 (Niagara I) servers, as they are the only
UltraSPARC platform with a hypervisor. You can
find more information about those servers on Sun’s
site [1]. In the future, more platforms will be sup-
ported as the next-generation Niagara II servers are
released.

Each of these servers requires firmware updates to
fully support LDoms [2]. The firmware will update
and enable the hypervisor software that is con-
tained in the ALOM CMT service processor, which
provides the platform lights-out management. In
the installation section, you’ll find an example of
updating the firmware on a Sun Fire T2000.

It is important to have the correct Solaris version to
support LDoms. Without the platform and driver
support, LDoms will not function properly. The
following versions of Solaris are supported:

� Solaris 10 11/06 Update 3 or higher [3]
� Solaris Express Build 57 or higher [4]

Solaris 10 is the commercial version of Solaris and
Solaris Express is a preview of Solaris 11 based on
the OpenSolaris source code. Solaris 10 should be
installed if you require commercial support from
both Sun and third-party vendors. However, Solaris
Express can be utilized when such requirements
are not a concern. Solaris Express provides a pre-
view of developments and features that you will
not find in Solaris 10. In this article, Solaris 10 will
be utilized. When installing the operating system,
it is important to keep in mind that it will become
the control domain for the platform.

With Solaris 10, there are patches required to en-
able full LDoms support. These patches should be
downloaded [2] and installed according to the in-
stallation instructions included with them.

The last component, the Logical Domain Manager (LDM) software bundle
[2], includes the required software packages, installation script, and point-
ers to online resources.

Installation

Once the operating system and any required patches have been installed, the
installation of the firmware and LDM software can begin.

Upgrading the firmware is a multistep process that will require downtime
for your server. The first step is to download the corresponding firmware
patch for your server [2]. The patch will contain a firmware image file, an
installation tool, and some documentation. The installation tool, sysfw-
download, will upload the image to the ALOM CMT service processor. The
following example is based on a Sun Fire T2000 running Solaris 10:

unzip 126399-01.zip
cd 126399-01
./sysfwdownload ./Sun_System_Firmware-6_4_4-Sun_Fire_T2000.bin

.......... (10%).......... (20%).......... (30%).......... (40%).......... (51%)

.......... (61%).......... (71%).......... (81%).......... (92%).......... (100%)

Download completed successfully.

However, this does not upgrade the firmware. It merely uploads it to the
ALOM CMT service processor. To perform the upgrade, you will have to
first shut down the server:

shutdown -y -g0 -i 5 now

Once the server has shut down, you will have to switch to the ALOM CMT
console in order to upgrade the firmware. The console can be reached
through the serial port or through the network management port [5]. It is
important to ensure that the platform key switch is set to NORMAL to en-
able the firmware upgrade. Once that is accomplished, the firmware can be
upgraded with the flashupdate command:

sc> setkeyswitch -y normal
Keyswitch is in the NORMAL position.
sc> flashupdate -s 127.0.0.1

SC Alert: System poweron is disabled.
..
..
......

Update complete. Reset device to use new software.

SC Alert: SC firmware was reloaded
sc> resetsc
Are you sure you want to reset the SC [y/n]? y

Once the ALOM CMT reboots, the firmware upgrade is completed. You will
notice a change in the versions of the hypervisor, OpenBoot PROM, and the
POST diagnostics:

sc> showhost
Host flash versions:
Hypervisor 1.4.1 2007/04/02 16:37
OBP 4.26.1 2007/04/02 16:26
POST 4.26.0 2007/03/26 16:45

; LOGIN: OCTOBER 2007 AN INTRODUCTION TO LOGICAL DOMAINS 27

At this point, the system can be powered on and the operating system booted.

Now that the firmware has been updated, it is time to install the LDM soft-
ware. The software bundle includes the following:

� SUNWldm.v: LDM Software
� SUNWjass: Solaris Security Toolkit (a.k.a. JASS)

The LDM software is fairly small and contained within a single package. It
contains the libraries, configuration daemon, command-line interface, SMF
service, and man pages for the LDM software.

The Solaris Security Toolkit [6] or JASS is a security-hardening framework.
This framework includes configurations that are called drivers. These driv-
ers can disable services, change permissions, lock accounts, enable security
features, etc., in a reproducible manner. The toolkit can easily be extended
and customized for your environment. It is distributed with other Sun prod-
ucts, such as the management software for E25k, to provide recommended
security settings. This is a purely optional component; the LDM software
will function without JASS. However, its addition does provide a consistent
and flexible security framework.

JASS is included with the LDM software bundle to help secure and harden
the primary domain. This is accomplished through the ldm_control-secure
driver, which is specifically designed for the primary domain and its servic-
es. It will disable all unnecessary services, enable many security features,
and lock down access to only SSH.

The LDM software bundle can be installed manually, through Jumpstart, or
through the use of the included install-ldm script. This script is included
with the software bundle to automate the installation. It will present you
with options for hardening the primary domain with JASS. The first option,
“a,” will install the LDM and JASS software with the driver specifically for
the primary domain applied; this is the recommended option. The second
option, “b,” will only install the LDM and JASS software but will not apply
any drivers. The last option, “c,” will install the LDM and JASS software but
give you the option of selecting a driver to apply. Here is a sample installa-
tion session:

Install/install-ldm
Welcome to the LDoms installer.

You are about to install the domain manager package that will enable you to
create, destroy and control other domains on your system. Given the capa-
bilities of the domain manager, you can now change the security configura-
tion of this Solaris instance using the Solaris Security Toolkit.
Select a security profile from this list:
a) Hardened Solaris configuration for LDoms (recommended)
b) Standard Solaris configuration
c) Your custom-defined Solaris security configuration profile
Enter a, b, or c [a]: a
The changes made by selecting this option can be undone through the
Solaris Security Toolkit’s undo feature. This can be done with the
’/opt/SUNWjass/bin/jass-execute -u’ command.

At this point the LDM and JASS software is installed. It is now time to reboot
the primary domain.

28 ; LOG I N : VO L . 3 2 , NO . 5

Configuring the Primary Domain

The primary domain is the first service and the control domain for the plat-
form. Now that all of the prerequisites are installed, it is time to configure
the primary domain. The first step is to ensure that the required SMF servic-
es are running:

svcs -a | grep ldom
online 18:34:15 svc:/ldoms/ldmd:default
online 18:34:15 svc:/ldoms/vntsd:default

The svc:/ldoms/ldmd:default service is responsible for managing the ldmd
daemon, which communicates directly with the hypervisor for configura-
tion and management tasks. The svc:/ldoms/vntsd:default service is respon-
sible for providing the virtual network terminal services through the vntsd
daemon. If these SMF services are not running, enable them with the
svcadm command.

At this point it is good practice to add the following to your $PATH and
$MANPATH shell configuration:

PATH=$PATH:/opt/SUNWldm/bin
MANPATH=$MANPATH:/opt/SUNWldm/man

After all of the prerequisites are installed, all of the resources in the platform
are assigned to the primary domain. This can be verified with the ldm com-
mand:

ldm list
Name State Flags Cons VCPU Memory Util Uptime
primary active -t-cv SP 32 32G 0.6% 1h 13m

As you can see, all 32 VCPUs and 32 GB of memory are assigned to the pri-
mary domain. To enable the creation of other logical domains, resources
must be freed and basic services configured. The primary domain should be
given at least one CPU core, or 4 VCPUs and 2 to 4 GB of memory:

ldm set-mau 1 primary
ldm set-vcpu 4 primary
ldm set-mem 4G primary

In this example, a cryptographic thread of a MAU, 4 VCPUs, and 4 GB of
memory are assigned to the primary domain. For these settings to take ef-
fect, the primary domain must be rebooted. However, before rebooting the
primary domain it is good practice to configure the basic services that will
support the creation of additional logical domains without causing further
reboots.

Creating the virtual console concentrator or VCC service is essential to pro-
viding console access to any logical domains created in the future. Only the
primary domain can be reached directly via the hardware console; all other
logical domains must be reached through the VCC service. When you create
the VCC service, a range of TCP ports must be specified. Each of these ports
can be bound to one LDom and can be accessed through the telnet com-
mand.

ldm add-vcc port-range=5000-5100 primary-vcc0 primary

It is important to note that instances of services or devices can be freely
named. In the example here, our instance of the VCC service is called “pri-
mary-vcc0.” The naming conventions used throughout this article take the
form of <ldom>-<virtual service or device><instance>.

; LOGIN: OCTOBER 2007 AN INTRODUCTION TO LOGICAL DOMAINS 29

All virtual storage is serviced by the virtual disk service (VDS). Only one
VDS can exist for each service or control domain. This service is created
once in the primary domain:

ldm add-vds primary-vds0 primary

The last services to be created are the virtual switches (VSWs); these enable
logical domains to communicate with the physical network. A VSW should
be created for each physical network port on the server. By default the Sun
Fire T2000 is equipped with four embedded gigabit Ethernet ports:

ldm add-vsw net-dev=e1000g0 primary-vsw0 primary
ldm add-vsw net-dev=e1000g1 primary-vsw1 primary
ldm add-vsw net-dev=e1000g2 primary-vsw2 primary
ldm add-vsw net-dev=e1000g3 primary-vsw3 primary

Once the primary domain resources and services are configured, the config-
uration must be stored within the ALOM CMT service processor for the hy-
pervisor to reference. This is accomplished by saving the configuration with
the ldm add-config <name> command. In this example, I have called my cur-
rent in-memory configuration “myconfig”:

ldm list-config
factory-default [current]

ldm add-config myconfig

ldm list-config
factory-default [current]
myconfig [next]

This will dump the configurations we have been entering into the ALOM
CMT service processor and make it the configuration to use on the next re-
boot. Now that the current configuration has been saved, the primary do-
main must be rebooted.

When the primary domain reboots, the configuration will be updated:

ldm list
Name State Flags Cons VCPU Memory Util Uptime
primary active -t-cv SP 4 4G 0.8% 7m

psrinfo -vp
The physical processor has 4 virtual processors (0-3)
UltraSPARC-T1 (cpuid 0 clock 1000 Mhz)

prtdiag -v | grep -i mem
Memory size: 4096 Megabytes

You can verify the configuration of the primary domain and the services we created
with the ldm list-bindings command. Here is an example of the output reduced to
show the key points:

ldm list-bindings
Name: primary
...
Vcpu: 4
...
Mau: 1

mau cpuset (0, 1, 2, 3)
Memory: 4G
...
Vds: primary-vds0
Vcc: primary-vcc0

port-range=5000-5100

30 ; LOG I N : VO L . 3 2 , NO . 5

Vsw: primary-vsw0
...

net-dev=e1000g0
...
Vsw: primary-vsw1
...

net-dev=e1000g1
...
Vsw: primary-vsw2
...

net-dev=e1000g2
...
Vsw: primary-vsw3
...

net-dev=e1000g3
...

As you can see, the VCPU, MAU, memory, VDS, VCC, and VSWs are config-
ured. Now that resources and services are available, you can proceed to the
configuration of your first guest domain.

Configuring a Guest Domain

Guest domains are consumers of virtual devices and services. As such, these
virtual elements must be configured and assigned. Typically, the following
resources would be configured:

� VCPU
� MAU
� Memory
� OpenBoot PROM variables
� Storage
� Networking

To begin this process, the guest domain must be created:

ldm add-domain ldom1

This will create a guest domain called “ldom1.” Resources can now be added
to ldom1, starting with VCPU, MAU, and memory resources:

ldm add-vcpu 4 ldom1
ldm add-mau 1 ldom1
ldm add-memory 4G ldom1

In this example, 4 VCPUs, a MAU, and 4 GB of RAM are allocated. Logi-
cal domains only require at minimum one VCPU, which is one of the 32
threads in the Niagara I processor. There is only one MAU thread for each
CPU core, of which there are eight total on the Niagara I processor. This can
be used to accelerate cryptographic software. Memory can be assigned in
varying sizes, from 8K junks to gigabytes at a time.

Each logical domain has its own instance of the OpenBoot PROM (OBP). As
such, standard variables can be configured as if it were a stand-alone server.
These variables are stored in the hypervisor configuration. These variables
can be defined from within the OBP or through the LDM software.

ldm set-variable auto-boot\?=true ldom1
ldm set-variable local-mac-address\?=true ldom1
ldm set-variable boot-device=/virtual-devices@100/channel-de-
vices@200/disk@0 ldom1

; LOGIN: OCTOBER 2007 AN INTRODUCTION TO LOGICAL DOMAINS 31

This configures the OBP to auto-boot the logical domain, to configure
unique MAC addresses for each network interface, and, finally, to boot off
of the first virtual disk. The path defined for the boot disk uses the default
device path for all logical domains. The disk target is defined by the last
number in the device path.

It’s now time to configure storage for your guest domain. There are several
options for bootable storage with guest domains:

� Local storage
� SAN storage
� Virtual disk images

Local storage consists of physical disks that are not in use by any other logi-
cal domain, including the primary domain. The major limitation in this area
is the limited number of physical disk slots on the current Niagara I product
line. As such, an external storage array or SAN storage may make more
sense.

SAN storage offers greater flexibility and redundancies. It also enables the
ability to move logical domains between physical servers in the data center.

Virtual disk images are sparse files the are created with themkfile command.
These files can be virtualized to function as normal storage. This adds an-
other layer of flexibility, since the virtual disk images can be stored locally,
on SANs, or on NAS.

In this example, two virtual disk images will be created and added to the
VDS service in the primary domain:

mkfile 10g /ldoms/ldom1_vdsk0_10gb.img
mkfile 10g /ldoms/ldom1_vdsk1_10gb.img
ldm add-vdsdev /ldoms/ldom1_vdsk0_10gb.img ldom1-vdsk0@

primary-vds0
ldm add-vdsdev /ldoms/ldom1_vdsk1_10gb.img ldom1-vdsk1@

primary-vds0

If we had wanted to add a SAN device, the command would look like this:

ldm add-vdsdev /dev/dsk/c6t60060160B5681200944\
2F7677A81DB11d0s2 ldom1-vdsk2@primary-vds0

Now that the VDS devices are added, they must be assigned to the guest
domain:

ldm add-vdisk ldom1-vdsk0 ldom1-vdsk0@primary-vds0 ldom1
ldm add-vdisk ldom1-vdsk1 ldom1-vdsk1@primary-vds0 ldom1

An important thing to keep in mind is that any virtual storage device bound
to a guest domain will appear as if it were a locally attached disk. This re-
moves any additional management layers and simplifies the storage stack for
the kernel in the guest domain.

However, it is important to note that virtual storage devices are not present-
ed with SCSI targets to Solaris in guest domains. As such, the device names
will be missing the familiar target in the cXtXdXsX standard and appear as
cXdXsX. For example, a storage device in the control domain may appear as
c4t1d0s0, but in the guest domain it may appear as c0d1s0. The controller
number will be determined by the order in which a VDS device was added to
the guest domain. There can only be one VDS per service domain. By default
the primary domain is the first control and service domain, so all of your
disks will be under controller 0. The disk number is determined by the or-
der in which you add the VDSDEV to the guest domain. In our example,
ldom1-vdsk0 will appear as c0d0s0 and ldom1-vdsk1 will appear as c0d1s0 in

32 ; LOG I N : VO L . 3 2 , NO . 5

the guest domain. This may affect JumpStart configurations, but it does not
affect anything operationally.

Connecting the guest domain to the virtual switches will enable it to com-
municate with your networks. This involves configuring virtual network
ports or VNETs to the VSWs that are connected to your networks. This will
configure a unique MAC address automatically and allow access to the con-
nected physical networks and to any other logical domains connected to the
same VSW. If we name our VNET instances as ldom1-vnet0 and ldom1-vnet1,
we get:

ldm add-vnet ldom1-vnet0 primary-vsw0 ldom1
ldm add-vnet ldom1-vnet1 primary-vsw2 ldom1

These VNET instances will appear, in the order of addition, as vnet0 and
vnet1 to Solaris in the guest domain.

Finally, it is time to commit the configuration and start the guest domain:

ldm bind-domain ldom1
ldm start ldom1

ldm list
Name State Flags Cons VCPU Memory Util Uptime
primary active -t-cv SP 4 4G 0.6% 4h 8m
ldom1 active -t—- 5000 4 4G 0.2% 2m

Now you can connect to the virtual console of your guest domain by using
telnet and the console number specified under the Cons column from above:

telnet localhost 5000
Trying 127.0.0.1...
Connected to localhost.
Escape character is ‘^]’.

Connecting to console “ldom1” in group “ldom1”
Press ~? for control options ..

Sun Fire T200, No Keyboard
Copyright 2007 Sun Microsystems, Inc. All rights reserved.
OpenBoot 4.26.0.build_07, 4096 MB memory available, Serial #66831599.
Ethernet address 0:14:4f:fb:c4:ef, Host ID: 83fbc4ef.

{0} ok

The operating system can now be installed in the guest domain through the
use of JumpStart. Once this is completed, you’ll be able to log in and manage
your guest domain:

$ ssh ldom1
Password:

ldom1:~ $ uname -a
SunOS ldom1 5.10 Generic_125100-04 sun4v sparc SUNW,Sun-Fire-T200

Summary

In this article, you have been given a tutorial on the installation and configu-
ration of logical domains. This tutorial should enable you to explore the use
of LDoms and understand the technology. In the next article, I will discuss
advanced topics and technology limitations. I will also compare the LDom
technology with other virtualization solutions for the Solaris operating sys-
tem.

; LOGIN: OCTOBER 2007 AN INTRODUCTION TO LOGICAL DOMAINS 33

REFERENCES

[1] List of Sun servers that support LDoms: http://www.sun.com/servers/
index.jsp?cat=CoolThreads%20Servers&tab=3&subcat=UltraSPARC%20T1.

[2] Download site for LDM software, platform firmware, and Solaris patch-
es: http://www.sun.com/servers/coolthreads/ldoms/get.jsp.

[3] Download site for Solaris 10:
http://www.sun.com/software/solaris/get.jsp.

[4] Download site for Solaris Express: http://opensolaris.org/os/downloads/.

[5] ALOM CMT service processor documentation: http://docs.sun.com/
source/819-7981-11/index.html.

[6] Solaris Security Toolkit (JASS) site: http://www.sun.com/software/
security/jass/.

34 ; LOG I N : VO L . 3 2 , NO . 5

; LOGIN: OCTOBER 2007 IP TELEPHONY 35

H E M A N T S E N G A R

IP telephony

B EWAR E O F A N EW AND R EADY-

MAD E A RMY O F L E GA L B OT S

Hemant Sengar is the co-founder of the vodasec, a
voice and data security solution provider to carrier
and enterprise networks.His current research inter-
ests are in the area of IP telephony and telecommuni-
cation network security.

hsengar@vodasec.com

VO I C E OV E R I P (VO I P) , B E T T E R KNOWN
as IP telephony, is aggressively being inte-
grated into the economic and social infra-
structure of our lives. But abuse ofVoIP will
lower people’s confidence in this new tech-
nology and ultimately hinder its deploy-
ment. In this article, I expose a new type of
VoIP vulnerability and show how this essen-
tial service can be exploited to launch a
more potent and stealthy distributed de-
nial-of-service (DDoS) attack affecting both
voice and data networks.

IP telephone service providers are moving quickly
from low-scale toll bypass deployments to large-
scale competitive carrier deployments, thus giving
to enterprise networks a choice of supporting a less
expensive, single-network solution rather than
multiple separate networks. Broadband-based resi-
dential customers also switch to IP telephony be-
cause of its convenience and cost-effectiveness. In
contrast to the traditional telephone system (where
the end devices are dumb), the VoIP architecture
pushes intelligence toward the end devices (PCs,
IP phones, etc.), creating an opportunity for many
new services that cannot be envisaged using the
traditional telephone system. This flexibility, cou-
pled with the growing number of subscribers, be-
comes an attractive target to be abused by mali-
cious users.

To break in, attackers may exploit the misconfigu-
ration of devices, the vulnerability of the underly-
ing operating systems, and protocol implementa-
tion flaws. Well-known attacks on data networks
such as worms, viruses, Trojan horses, and denial-
of-service (DoS) attacks can also plague VoIP net-
work devices [1]. Being a time-sensitive service,
VoIP is more susceptible to DoS attacks than other
regular Internet services. An attacker can disrupt
VoIP services by flooding TCP SYN packets, UDP-
based RTP packets, or the SIP-based INVITE,
REGISTER, etc., messages.

However, if we look at past and current events to
identify trends and changes in attacks and targets,
then we find that bot-generated DDoS attacks are
the most imminent threats to VoIP deployments,
as they have been a constant threat to data net-
works.

The success of bot-generated attacks depends upon
two main factors: first, the vastness and diversity of
the army of bots, and, second, the bot’s distribution

over the Internet. Consequently, a bot herder always tries to figure out new
ways (such as through worms, Web links, or email attachments) to recruit
more hosts into this attacking army. However, there is always a risk of get-
ting caught by law-enforcement agencies for breaking into so many comput-
ers. Furthermore, in such digital gang warfare, the rival bot herders may hi-
jack or knock-off these compromised hosts [2], or antivirus scanners may
detect and block bot code. But what if, instead of recruiting and compromis-
ing new hosts, an attacker finds a ready-made new army of legal bots to
launch a more potent and stealthy DDoS attack? This article tries to expose
a design error in VoIP services, particularly SIP and the way the INVITE re-
quest is used without authentication at the recipient’s end of a call. The ex-
ploitation of the benign and useful SIP protocol described here deserves our
interest for the following reasons: (1) it is new and unexploited; (2) it affects
every VoIP telephone, since it is related to the specification rather than the
implementation; (3) ironically, many VoIP security devices can also be vic-
timized; (4) it shows a way that a specification can be maliciously exploited.

Background: SIP-based IP Telephony

Session Initiation Protocol (SIP) [3], a standard signaling protocol for VoIP,
is appropriately called the “SS7 of future telephony” [4]. It is a text-based
application-level protocol to set up, modify, and tear down multimedia ses-
sions with one or more participants. It can also be used to request and deliv-
er presence information as well as instant message sessions. SIP call control
uses Session Description Protocol (SDP) for describing multimedia session
information. SIP messages can be transmitted over UDP or TCP, but general-
ly UDP is preferred over TCP because of its simplicity and lower transmis-
sion delays. However, in some cases, such as the transportation of large SIP
messages or the use of TLS, TCP is the only choice.

S IP ARCH ITECTURE COMPONENTS

SIP identifies two basic types of components, user agents and SIP servers.
End devices (irrespective of being a softphone or hardphone) are considered
user agents (UAs). Each UA is a combination of two entities, the user agent
client (UAC) and the user agent server (UAS). The UAC initiates requests,
whereas UAS receives requests and sends back responses. Consequently,
during a session the UA switches back and forth between a UAC and a UAS.
RFC 3261 [3] describes four types of SIP servers, which are implementa-
tion-dependent logical entities: Location Server, Redirect Server, Registrar
Sever, and Proxy Server.

S IP MESSAGES

SIP development is influenced by two widely used Internet protocols: Hy-
pertext Transfer Protocol (HTTP) and Simple Mail Transfer Protocol
(SMTP). In SIP, network elements exchange messages as a part of the proto-
col to set up a call. These messages are classified in two groups: requests and
responses. SIP requests are also called methods and six of them (INVITE, ACK,
BYE, CANCEL, REGISTER, and OPTIONS) are described in RFC 3261 [3].
Other methods (in separate RFCs) are also proposed as an extension of the
original six methods. Requests are the actions to be taken by UAs or SIP
servers. To reply to a request of a UAC, the UAS or SIP server generates a SIP
response. Each response message is identified by a numeric status code and,

36 ; LOG I N : VO L . 3 2 , NO . 5

depending upon the range of the numeric status code, there are six different
types of responses.

S IP OPERATION

Now we give an example of a typical call setup flow to highlight the usage of
SIP request and response messages between user agents UA-A and UA-B.
Suppose that the UAs belong to two different domains that each has its own
proxy server. UA-A calls UA-B using its SIP phone over the Internet. The
outbound proxy server uses the Domain Name System to locate the inbound
proxy server of the other domain. After obtaining the IP address of the other
proxy server, the outbound proxy server of UA-A sends the INVITE request
to the domain of UA-B. The inbound proxy server consults a location serv-
ice database to find out the current location of UA-B and forwards the IN-
VITE request to UA-B’s SIP phone. Exchanging INVITE/200 OK/ACKmessages
completes the three-way handshake to establish a SIP session [3]. A set of
parameters are exchanged via SIP messages (in the message body using
SDP) between the two endpoints before an RTP-based voice channel is es-
tablished. In general, the path of the media packets is independent of that of
the SIP signaling messages. At the end of the call, UA-B (or UA-A) hangs up
by sending a BYEmessage. Subsequently, UA-A (or UA-B) terminates the
session and sends back a 200 OK response to the BYEmessage. This example
shows the basic functionality of SIP; the detailed description of SIP opera-
tion is in RFC 3261 [3].

S IP DEPLOYMENT—PEERING VS. ISLAND-BASED SOLUTIONS

F I G U R E 1 : I S L A N D - B A S E D S I P V O I P D E P L O YM E N T S

In today’s IP telephony world, many of the IP telephone service providers
(such as Vonage, AT&T Callvantage, and ViaTalk) operate in a partially
closed environment and are connected to each other through the Public
Switched Telephone Network (PSTN), as shown in Figure 1. For example,
let us assume that user A and user B belong to two different VoIP service
providers A and B, respectively. Although the service providers use IP net-
works to connect with their users, still the calls between users A and B are
expected to traverse the PSTN somewhere in the middle. In island-based
VoIP deployments the IP traffic is translated into the SS7 traffic [5] (for
transportation over the PSTN) and then back into the IP traffic. It is expect-
ed that, as VoIP adoption grows, VoIP service providers will interconnect to
each other through peering points. Consequently, the calls between any two
service providers can be routed through the peering point without travers-
ing the PSTN.

; LOGIN: OCTOBER 2007 IP TELEPHONY 37

The Threat Model

In a DDoS attack, a number of compromised hosts are used to launch a
flooding attack against a particular victim. An attacker installs a daemon on
a number of compromised hosts that later on can be requested to start gen-
erating spoofed packets directed toward a particular victim target. The enor-
mous number of packets overwhelms the victim’s resources, rendering the
victim out of service. In the Internet, many network elements such as SIP
proxy servers, Web servers, DNS servers, and routers can be defined as re-
flectors because they always respond to some specific type of requests. The
attackers can abuse these legitimate and uncompromised reflectors to
launch DDoS attacks. The goal of such attacks using reflectors is two-
pronged. First, they are used as stepping-stones,making such attacks more
stealthy so that it is harder to trace back to the actual attacker or real attack-
ing sources. Second, protection becomes difficult, because even if the vic-
timized reflectors are identified, it remains a difficult decision for network
administrators to take them out of service, as many legitimate users will also
be denied service. However, the use of reflectors is not very lucrative, be-
cause a single request generates only one response. Therefore, the number
of compromised hosts required to generate spoofed request messages is still
large. But what if, instead of a single response, there are a number of re-
sponse packets for a single request. Such an effect is known as the amplifica-
tion effect.With the help of reflectors and amplifiers, an attacker can launch a
stealthy and more potent DDoS attack using a single machine without possibly
compromising any other hosts.

EXPLOITATION OF THE CALL SETUP REQUEST (INVITE) MESSAGE

Before discussing the exploitation of an INVITEmessage to achieve both re-
flection and amplification, we describe its message structure and the pur-
pose of various header fields. As shown in Figure 2, the Via header field con-
tains the address where the caller is expecting to receive the response mes-
sages of this request and the From and To header fields contain SIP URIs of
the caller and callee, respectively. The Call-ID is a globally unique identifier
for this call and the Contact field contains direct route information to reach
the caller. The INVITE header fields and message body are separated by a
blank line. The session description (media type, codec, sampling rate, etc.)
are contained in the INVITEmessage body. The connection information field
(i.e., c=) contains media connection information such as the media’s source
IP address that will send the media packets. Similarly, the media information
field (i.e.,m=) contains the media type and the port number.

The exploitation of an INVITEmessage is based on abusing the connection in-
formation field contained in the INVITEmessage body. The SIP proxy server
remains at the INVITE header level and routes this message toward the callee
without inspecting the message body. The callee’s SIP UA parses and inter-
prets the INVITEmessage and records the media IP address and port number
mentioned in the c= andm= fields, respectively. In some cases where the
connection information field contains a nonroutable (private) IP address,
the SIP UA relies on the received parameter of the first Via header field. After
a SIP session is established, the callee sends audio packets toward this media
IP address and port number. By spoofing the connection information field,
an attacker can redirect the media stream toward the spoofed (victim) IP ad-
dress and port number. In the next section, we give some examples of un-
compromised legal bots and the exploitation of the INVITEmessage.

38 ; LOG I N : VO L . 3 2 , NO . 5

F I G U R E 2 : S T R U C T U R E O F A N I N V I T E M E S S A G E

Examples of Legal Bots

CASE I : INTERACTIVE VOICE RESPONSE (IVR) SYSTEM

An interactive voice response (IVR) is a phone technology that allows a
computer to detect voice and touch tones using a normal phone call. The
IVR system can respond with prerecorded or dynamically generated audio
to further direct callers on how to proceed [6]. Both IP and traditional (i.e.,
PSTN) telephone networks are full of IVR systems, in which a user calling
a telephone number is briefly interfaced with an automatic call response
system. The typical usage of IVR includes call centers, bank and credit
card account information systems, air and rail reservation systems, hospi-
tal helplines, and college course registration systems.

F I G U R E 3 : I V R S Y S T E M S A C T I N G A S B O T S

As shown in Figure 3, now imagine an attacker, knowing this vulnerability,
who sends out a few hundred INVITEmessages (while keeping the same me-
dia connection address in the message body) to well-known automatic call
response systems and establishes fake call sessions with them. In response,
the IVR systems flood the victimized connection address with UDP-based
RTP packets. In order to establish a call, an exchange of a few call setup SIP
messages (i.e., INVITE/200 OK/ACK) can result in a few hundreds to thou-

; LOGIN: OCTOBER 2007 IP TELEPHONY 39

sands of RTP packets. Such an attack scenario uses both reflection and am-
plification to make a DDoS attack more potent.

CASE I I : USER’S VOICEMAI L SYSTEM

Sometimes when a callee is busy or is not available to answer a phone call,
the caller is directed to an answering machine or a voicemail system that
plays a greeting message and stores incoming voice messages. An attacker
may send fake call requests with the same media connection address to hun-
dreds or thousands of individual telephone subscribers distributed over the
Internet. The simultaneous playing of individual greeting messages can
overwhelm the link’s bandwidth connecting to the victim.

CASE I I I : USER’S VOICE COMMUNICATION—RTP STREAM

Even if we assume that the callee is not busy and answers a phone call, the
callee’s voice stream (e.g., Hello, hello . . . or some other initial greeting mes-
sage) can be directed to a target machine. As in the previous examples, an
attacker sends fake call requests with the same media connection address to
hundreds or thousands of individual telephone subscribers, and the simulta-
neous response of subscribers can cause a flooding attack on the victim.

CASE IV: SP IT PREVENTION—THE TURING TEST

In many aspects a voice spam is similar to an email spam. The technical
know-how and execution style of email spam can easily be adapted to
launch voice spam attacks. For example, first a voice spammer harvests a
user’s SIP URIs or telephone numbers from the telephone directories or by
using spam bots crawling over the Internet. In the second step, a compro-
mised host is used as a SIP client that sends out call setup request messages.
Finally, in the third step, the established sessions are played with a prere-
corded WAV file. However, voice spam is much more obnoxious and harm-
ful than email spam. The ringing of a telephone at odd times, answering a
spam call, phishing attacks, and the inability to filter spam messages from
voicemail boxes without listening to each one are time-wasting nuisances.

The Internet Engineering Task Force’s informational draft [7] analyzed the
problem of voice spam in the SIP environment, examining various possible
solutions that have been discussed for solving the email spam problem and
considering their applicability to SIP. One such solution is based on the Tur-
ing test, which can distinguish computers from humans. In the context of IP
telephony, machine-generated automated calls can be blocked by applying
an audio Turing test. For example, a call setup request from an unidentified
caller is sent to an IVR system where a caller may be asked to answer a few
questions or to enter some numbers through the keypad. Successful callers
are allowed to go through the SIP proxy server and may also be added to a
white list.

VoIP security products such as NEC’s VoIP SEAL [8] and Sipera Inc.’s IPCS
[9] have implemented audio Turing tests as an important component in
their anti-spam product to separate machine-generated automated calls
from real individuals. However, an attacker may use these devices as reflec-
tors and amplifiers to launch stealthy and more potent DDoS attacks. For
example, to determine the legitimacy of a single spoofed INVITEmessage,
these devices send a few hundred RTP-based audio packets (a 10–20 s audio
test) toward the media connection address of an INVITEmessage. A victim-

40 ; LOG I N : VO L . 3 2 , NO . 5

ized connection address can be flooded with audio packets if an attacker
sends one or two spoofed INVITEmessages (with the same media connection
address) to several such devices distributed over the Internet.

A Real-World Attack Scenario

To demonstrate a possible DDoS attack, we simulated a real-world attack
scenario using IP phones from three different VoIP service providers, name-
ly Vonage, AT&T Callvantage, and ViaTalk. As shown in Figure 4, over the
Internet an attacker captures SIP signaling messages exchanged between
callers and callees of various VoIP service providers that can later be re-
played to launch many different types of DoS attacks toward the subscribers
and the SIP proxy server. Most of these attacks are against an individual sub-
scriber, but the INVITE flooding attack can also be launched against a SIP
proxy server. However, the media source address spoofing attack discussed
in this article is not confined to VoIP systems; rather, it can victimize any
voice or data network element.

F I G U R E 4 : R E A L - W O R L D AT TA C K S C E N A R I O

As shown in Figure 4, the AT&T user talks to both Vonage and ViaTalk cus-
tomers. The SIP signaling messages exchanged between callers and callees
are captured at two locations: location A lies between callers and their out-
bound proxies; similarly, location B lies between callees and their inbound
proxies. At location A, we observed that in order to prevent replay attacks,
each of the service providers challenges INVITEmessages by sending 401
Unauthorized (in the case of AT&T) or 407 Proxy Authentication required
messages that include an MD5 hash of the user’s credential and a “nonce”
value. This can only be defeated if we have the capability of modifying some
header fields (which are not used in MD5 hash computation) and recon-
structing the message in real time or by exploiting the implementation of
some SIP proxy servers that may accept stale nonce values [10]. However, at
location B, there are no such challenge/response messages, leaving the sub-
scribers exposed and vulnerable to abuse. In the sample case study, we ex-
ploit the vulnerable and mostly overlooked location B. The captured incom-
ing INVITEmessages are reconstructed with a spoofed media address and
port number. At a later time, INVITE and ACK signaling messages are
replayed while maintaining the same relative order and time. The callee’s
voice stream (or the playing of the callee’s answering machine) is successful-
ly redirected toward the target host.

; LOGIN: OCTOBER 2007 IP TELEPHONY 41

COULD TH IS ATTACK BE PREVENTED?

We now discuss some of the questions that may arise regarding circumven-
tion of the INVITE exploitation attack described in this article. One could ar-
gue that the attack can be prevented if the SIP user agent server (UAS) cor-
relates first Via and Contact header fields with the connection address (c=)
field of the message body. However, we observe that many services, such as
SIP’s firewall/NAT traversal and anonymity service, rely on a media proxy,
thus forbidding the establishment of a correlation between signaling and
media destinations.

Conclusion

With the growing acceptance of VoIP and the interconnection between SS7
and IP networks, there is a need to secure both network infrastructures and
the protocols used between them. There are many efforts for SIP’s imple-
mentation vulnerability assessment through syntax testing and test-suite
creation. Still, we need to make a thorough revision of the protocol design as
well as its intended use. We hope this article will work as a stimulant and
bring a concerted effort to prevent any design or implementation flaw that
may hinder VoIP deployments or the lowering of IP telephone subscribers’
confidence.

REFERENCES

[1] Tipping Point, “Intrusion Prevention: The Future of VoIP Security,”
white paper, 2005: http://www.tippingpoint.com/solutions_voip.html.

[2] Bob Sullivan, “Virus Gang Warfare Spills onto the Net,” April 2007:
http://redtape.msnbc.com/2007/04/virus_gang_warf.html.

[3] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R.
Sparks, M. Handley, and E. Schooler, SIP: Session Initiation Protocol, RFC
3261, IETF Network Working Group, 2002.

[4] A.B. Johnston, SIP: Understanding the Session Initiation Protocol, 2nd
edition (Norwood, MA: Artech House, 2004).

[5] H. Sengar, R. Dantu, D. Wijesekera, and S. Jajodia, “SS7 Over IP: Signal-
ing Interworking Vulnerabilities,” IEEE Network Magazine, 20(6): 32–41,
November 2006.

[6] Wikipedia Encyclopedia, “Interactive Voice Response,” April 2007:
http://en.wikipedia.org/wiki/Interactive_voice_response.

[7] J. Rosenberg and C. Jennings, “The Session Initiation Protocol (SIP) and
Spam—Work in Progress,” IETF’s SIPPING Group, 2007.

[8] NEC Corporation, “NEC Develops World-Leading Technology to
Prevent IP Phone SPAM,” product news, 2007: http://www.nec.co.jp/
press/en/0701/2602.html.

[9] SIPERA Systems, “Products to Address VoIP Vulnerabilities,” April 2007:
http://www.sipera.com/index.php?action=products,default.

[10] SIPERA Systems, “Some Implementations of SIP Proxy May Honor
Replayed Authentication Credentials,” May 2007: http://www.sipera.com/
index.php?action=resources,threat_advisory& tid=183&.

42 ; LOG I N : VO L . 3 2 , NO . 5

; LOGIN: OCTOBER 2007 PRACTICAL PERL TOOLS: LET ME DRAW YOU A PICTURE 43

D A V I D N . B L A N K - E D E L M A N

practical Perl tools:
let me draw you a
picture
David N. Blank-Edelman is the Director of Technology
at the Northeastern University College of Computer
and Information Science and the author of the
O’Reilly book Perl for System Administration. He has
spent the past 20+ years as a system/network admin-
istrator in largemulti-platform environments, in-
cluding Brandeis University, Cambridge Technology
Group, and theMITMedia Laboratory.He was the
program chair of the LISA ’05 conference and one of
the LISA ’06 Invited Talks co-chairs.

dnb@ccs.neu.edu

A COU P L E O F Y E A R S AGO I H AD TH E
unusual experience of being asked to help
design my office when we moved to a new
building. Interior design is not something
I’ve ever really dabbled in, but I knew one
thing for sure: It had to have as many white-
boards as possible. Readers of this magazine
know that I asked for this not out of some
fetish for white, slick surfaces. For people
like us, drawing often equals thinking.We
also know the value of drawing pictures to
document infrastructure design, network
configurations, data structures, and the lot.

Tools that can make drawing these pictures easier
are great. Tools that will actually automate the
process are even better. We’re going to look at both
kinds of tools in this column. I want to introduce
you to two of my favorite Perl modules: GraphViz
and Graph::Easy.

GraphViz and Graphviz

GraphViz is an easy-to-use Perl module that pro-
vides a wrapper around the graph visualization
package from AT&T. This package contains a num-
ber of programs, which they describe like this:

The Graphviz layout programs take descrip-
tions of graphs in a simple text language, and
make diagrams in several useful formats such
as images and SVG for Web pages, Postscript
for inclusion in PDF or other documents; or
display in an interactive graph browser.
(Graphviz also supports GXL, an XML di-
alect.)

Graphviz has many useful features for con-
crete diagrams, such as options for colors,
fonts, tabular node layouts, line styles, hy-
perlinks, and custom shapes.

To use the Perl module, you will need to make sure
that the Graphviz programs are installed and work-
ing on your machine. You can download the source
code from http://www.graphviz.org if necessary,
but it is pretty likely that there is a Graphviz pack-
age available for your operating system through
your packaging/installation system of choice (.deb,
.rpm, fink/macports, .exe, etc.). From that point on
you can choose to ignore the native Graphviz text
language (DOT) if you’d like and write only Perl
code.

Pedant alert: The name of the AT&T package is

Graphviz; the name of the Perl module that acts as

a wrapper around Graphviz is called GraphViz

(with a capital V). I don’t know why the difference

in capitalization is there; I can only assume it was

an attempt to drive proofreaders batty.

Let’s look at the basics of this Perl code because there isn’t very much be-
yond the basics you’ll ever need to know to use the module effectively.

The first step is to create a GraphViz object. The creation step is rather im-
portant because it is the constructor call (i.e., new()) that determines the for-
mat of the graph. This format is passed in via parameters such as layout, as
in:

my $graph = GraphViz->new(layout => ‘neato’);

This says that the resulting graph will be processed using the neato algo-
rithm. The Graphviz layout program neato creates spring model graphs (i.e.,
the ones that consist of balls attached together by lines, mimicking the old
molecule-building kits you used in chemistry class). Other layout options
include dot (for directed graphs, i.e., trees), twopi (for radial graphs), circo
(for circular graphs), and fdp (for spring model graphs like neato but using a
different algorithm). The figures in this column are created using the default
dot algorithm (i.e., no layout parameter supplied).

By default the GraphViz module will create diagrams with arrows on the
lines connecting the shapes on the graph. This can be changed by specifying
a “directed” parameter whose value is 0 in the new() call. There are a num-
ber of other GraphViz options available in the new() call, so be sure to see
the module’s (and Graphviz’s) documentation.

Once we have a GraphViz object we can start populating the graph. This is
quite simple:

$graph->add_node(‘router’); # “router” is the name of that new node

If we were to ask GraphViz to create the graph at this point we’d get some-
thing quite Zen (see Figure 1).

F I G U R E 1

If after years of making this diagram the center of your meditation practice
you decide the shape should be a box instead of an oval, you would use this
instead:

$graph->add_node(‘router’, shape => ‘box’);

Furthermore, if you’d prefer the picture in Figure 2 instead, a third attribute
would be specified:

$graph->add_node(‘router’, shape => ‘box’,
label => ‘Big Blinky Important Thing’);

F I G U R E 2

See the module documentation for other attributes that can be used to
change how a node is displayed.

Now that you know how to make all of the shapes you want for your dia-
gram, it is time to connect the dots, err, and nodes. That is done by calling
add_edge() for each connection:

add another node first so we have something to connect to
$graph->add_node(‘web server’);

44 ; LOG I N : VO L . 3 2 , NO . 5

connect the node with the name ‘router’ to the node named ‘web server’
$graph->add_edge(‘router’ => ‘web server’);

You probably can guess that there is a panoply of possible optional parame-
ters we can use. For example, if we wanted to label the link between the
router and the Web server with its connection type, that would be:

$graph->add_edge(‘router’ => ‘web server’, label => ‘1000GB-FX’);

which produces the output shown in Figure 3.

F I G U R E 3

Other parameters let us set presentation attributes such as font, arrow size,
and color and give hints to Graphviz about how to lay out the resulting graph.

We now know how to make nodes and how to connect them, but we haven’t
yet seen how to generate a graph that contains those nodes and connections.
There are a number of methods that start with as_ for creating the actual
graph. For example, as_gif() will create a GIF version, as_png() creates a
PNG, as_ps creates Postscript, and so on. GraphViz supports a healthy num-
ber of output formats. It can also do neat tricks such as spitting out HTML
image map tags.

With the as_*methods it is up to you to decide where the requested output
goes. The as_*methods can take filenames, filehandles, references to scalar
variables, and even code references if you want to feed the data to a subrou-
tine. If you don’t specify an argument it just returns the data, so you can say
something like this:

print $graph->as_ps;

to print the generated Postscript file to stdout.

Congratulations! You have now learned everything you need to know to go
off and start making interesting graphs of your own. To help jumpstart your
creative process I’ll show you one of my examples, and then we’ll mention
some GraphViz-related modules that can further spark your imagination.

Here’s some code that attempts to sniff packets off the Net to show you the
connections from hosts on your network to Web servers:

use NetPacket::Ethernet qw(:strip);
use NetPacket::IP qw(:strip);
use NetPacket::TCP;
use Net::PcapUtils;
use GraphViz;

my $filt = “port 80 and tcp[13] = 2”;
my $dev = “en1”;
my %traffic; # for recording the src/dst pairs

die “Unable to perform capture:”
. Net::Pcap::geterr($dev)
. “\n”

; LOGIN: OCTOBER 2007 PRACTICAL PERL TOOLS: LET ME DRAW YOU A PICTURE 45

if (
Net::PcapUtils::loop(
\&grabipandlog,
DEV => $dev,
FILTER => $filt,
NUMPACKETS => 50

)
);

my $g = new GraphViz;

for (keys %traffic) {
my ($src, $dest) = split(/:/);
$g->add_node($src);
$g->add_node($dest);
$g->add_edge($src => $dest);

}
$g->as_jpeg(“fig4.png”);

sub grabipandlog {
my ($arg, $hdr, $pkt) = @_;

my $src = NetPacket::IP->decode(NetPacket::Ethernet::strip($pkt))
->{‘src_ip’};

my $dst = NetPacket::IP->decode(NetPacket::Ethernet::strip($pkt))
->{‘dest_ip’};

$traffic{“$src:$dst”}++;
}

First we load up the modules we’ll use for network sniffing and dissection
plus GraphViz. We set a Berkeley Packet Filter (BPF) filter string to capture
SYN packets (i.e., the start of a TCP/IP conversation) to the HTTP port. We
set the device for capture and start a capture that will continue until it has
received 50 packets. Each time a packet is captured by the filter it will call a
subroutine called grabipandlog(). That subroutine takes each packet apart to
find the source and destination IP addresses. It then stores a record for each
unique source and destination IP address pair encountered.

After the capture has concluded it is a simple to pull all of the connection
records out of traffic, adding a node for each source and destination IP ad-
dress and connecting the two nodes. A graph is generated and written out as
a JPEG file. Figure 4 is a simple example of what this program will draw.

F I G U R E 4

46 ; LOG I N : VO L . 3 2 , NO . 5

192.168.0.3

66.35.250.558.7.217.31 66.35.250.150

If we wanted to, we could make this code a little more complex by:

� thickening or labeling the links between the nodes to indicate amount
of traffic or

� showing an internal vs. external Web server distinction by varying the
node shapes.

Network traffic diagrams are just one application. The GraphViz module
itself comes with several other examples. GraphViz::Data::Grapher and
GraphViz::Data::Structure can help you understand complex Perl data
structures using two different kinds of graphs. Here’s a sample from the
GraphViz::Data::Grapher examples directory:

Given the data structure defined this way:

@d = (“red”,
{ a => [3, 1, 4, 1], b => { q => ‘a’, w => ‘b’}},
“blue”, undef);

GraphViz::Data::Grapher will output the graph shown in Figure 5.

F I G U R E 5

Outside of the GraphViz package, there are cool modules to visualize regular
expressions, database schema, class diagrams, Makefile structures, parser
grammars, XML code, and so on.

Graph::Easy, Baby

I’d like to show you one more package that is similar to GraphViz but is
spiffier in a number of ways. Graph::Easy (which is well documented at
http://bloodgate.com/perl/graph/manual/index.html) works with a similar
idea to that of GraphViz but takes it even further. For example, in addition
to writing Perl code like that we’ve seen for GraphViz, Graph::Easy can in-
put and output data in Graphviz’s native format. Being able to output DOT
files means Graph::Easy can use Graphviz to create graphs in any graphics
format Graphviz supports. Graph::Easy also has a really legible text format it
will happily parse to create a graph. Let’s look at the Perl and the plain-text
method for graph creation.

; LOGIN: OCTOBER 2007 PRACTICAL PERL TOOLS: LET ME DRAW YOU A PICTURE 47

Here’s some sample Perl:

use Graph::Easy

my $graph = Graph::Easy->new();
$graph->add_edge (‘router’, ‘web server’, ‘1000GB-FX’);
print $graph->as_ascii();

This code shows that the general approach for graph specification in Perl is
very similar to our previous examples but is a bit more compact. Note that
we didn’t have to add_node() before creating a connection. We just specified
that there was a link between two nodes called “router” and “web server”
and that this link should be labeled with “1000GB-FX.” Following that
specification is a method call not found in GraphViz: as_ascii(). This pro-
duces an ASCII drawing like the following:

+————+ 1000GB-FX +——————+
| router | —————-> | web server |
+————+ +——————+

If you’ve ever wanted to make an ASCII flowchart for documentation pur-
poses, now you know an easy way to do it.

I could go on and on about the additional graph features Graph::Easy pro-
vides (e.g., multiple links between two nodes, links that loop from a node
back to itself, links that can point to other links, the ability to create links
that fork in two different directions, node groups, more colors and styles,
etc.) but I’d like to get to an even more interesting feature I mentioned earli-
er. Graph::Easy lets you specify graphs using a very easy-to-read text format.

If we wanted to reproduce the simple “two nodes with a link” example that
has dogged our every step in this column, we could write:

[router] — 1000GB-FX —> [web server]

If we decided the picture made more sense with a bidirectional link, it then
becomes:

[router] <— 1000GB-FX —> [web server]

You can specify more complicated pictures equally easily. For example, the
doc shows this example:

[car] { shape: edge; }

[Bonn] — train —> [Berlin] — [car] —> [Ulm]

[rented] —> [car]

which becomes this picture when as_ascii() is printed:

+———+ train +————+ car +——-+
| Bonn | ———-> | Berlin | ————————-> | Ulm |
+———+ +————+ +——-+

^
|
|

+————+
| rented |
+————+

Turning this textual description into a graph for Graph::Easy to generate
and output can be done in one of two ways:

� Use the provided graph-easy utility script.
� Ask Graph::Easy to parse the description using Graph::Easy::Parser:

48 ; LOG I N : VO L . 3 2 , NO . 5

use Graph::Easy::Parser;

my $descript = ‘[router] — 1000GB-FX —> [web server]’;

my $parser = Graph::Easy::Parser->new();
my $graph = $parser->from_text($descript);

print $graph->as_ascii();

Graph::Easy::Parser has a from_file()method if you’d prefer to read the graph
description from a file. See the Graph::Easy::Parser doc for more details.

In parting, I think it is important to mention that the ease and power of
Graph::Easy hasn’t gone unnoticed by other module writers. They’ve created
add-on modules like those mentioned for GraphViz. Here’s my favorite ex-
ample (coincidentally, by the author of Graph::Easy) taken from the mod-
ule’s documentation:

use Devel::Graph;

my $grapher = Devel::Graph->new();

my $graph = $grapher->decompose(\’if ($b == 1) { $a = 9; }’);

print $graph->as_ascii();

This takes in a piece of Perl code and attempts to generate a flowchart that
Graph::Easy can display. Here’s the output:

################
start
################
|
|
v

+———————+
| if ($b == 1) | —+
+———————+ |
| |
| true |
v |
+———————+ |
| $a = 9; | | false
+———————+ |
| |
| |
v |
################ |
end # <+
################

Let’s end with that pretty picture, drawn just for you. Take care, and I’ll see
you next time.

; LOGIN: OCTOBER 2007 PRACTICAL PERL TOOLS: LET ME DRAW YOU A PICTURE 49

D A V I D J O S E P H S E N

iVoyeur:

opaque brews
David Josephsen is the author of Building aMonitor-
ing Infrastructure with Nagios (Prentice Hall PTR,
2007) and Senior Systems Engineer at DBG, Inc.,
where hemaintains a gaggle of geographically dis-
persed server farms.Hewon LISA ’04’s Best Paper
award for his co-authoredwork on spammitigation,
and he donates his spare time to the SourceMage
GNU Linux Project.

dave-usenix@skeptech.org

TH E J AVA S E RV L E T CON TA I N E R MOD E L
is one of the most popular ways to provide
dynamic content to aWeb browser. If you
haven’t had the pleasure of dealing with
one, a “Servlet Container” is what you get
when you combine a smallWeb server with
a Java program called a servlet.The job of
theWeb server is simply to accept HTTP re-
quests from the network.TheWeb server
can do things such as parse host names
from HTTP headers and perform SSL hand-
shakes as any normalWeb server might.

But instead of handling the HTTP requests itself,
this Web server passes them to a program called a
servlet. The servlet then generates some content,
usually in HTML, for the Web server to pass back
to its client. The servlet itself is not a binary pro-
gram but, rather, Java bytecode. It runs inside a
Java Virtual Machine (JVM), which provides a run-
time environment complete with threading, memo-
ry management, much-hyped security, interfaces to
other Java and system functions, and presumably
everything else a servlet could want. There are
quite a few implementations of this model, includ-
ing Apache Tomcat, BEA Weblogic, IBMWeb-
Sphere, and Oracle Application Server, but the ba-
sic idea is the same.

In practice it works pretty well until it doesn’t, and
the complexity introduced by the model makes it
nearly as unpopular among system administrators
as it is loved by Web developers and their man-
agers. The problem from the systems perspective is
the virtual machine. Because the servlet we are try-
ing to troubleshoot or monitor is running inside a
virtual machine, our system tools are rendered use-
less. From the outside, all we can see is the JVM
process itself.

If you have a single Web site running on the JVM,
then the memory footprint of the JVM is pretty
close to the memory footprint of your Web site.
Likewise, the CPU load induced by the JVM is
pretty close to the CPU load of your Web site. But
what if you have five Web sites being vhosted on
your Web server? Now a single JVM is running five
servlets. Which of them is the one hogging your
CPU? Even if you don’t have a problem to diag-
nose, you at least have a capacity planning conun-
drum, but, believe me, it gets worse.

50 ; LOG I N : VO L . 3 2 , NO . 5

Let’s say you do have a problem and it isn’t resource-bound. For example,
the application is hanging, or it is crashing outright at unpredictable times.
Even with a single servlet in the JVM, tools such as strace, dtrace, and sys-
temtap can only be of limited value, because the JVM has its own internal
memory management and thread model. All you can see from the outside is
what the JVM’s doing, and since it allocates most of the resources it needs up
front (including, e.g., its database connection pools), that usually isn’t very
much.

And speaking of hanging and crashing, I’ve been privileged in my short ca-
reer as a Tomcat administrator to see the JVM crash in all sorts of intricate,
fascinating, and unpredictable ways. So I can say from personal experience
that the servlet container model makes for interesting monitoring fodder in
that, short of directly parsing the HTML it returns, it can be difficult to even
define a criteria for “functional” that actually describes a functional servlet
container. So if you need to monitor specific metrics on your applications,
or you’ve ever wondered just what the heck is happening inside that virtual
machine in general, this article will provide some tips, from a systems per-
spective, for penetrating the black box that is the servlet container.

Profiling

Like their non-Java counterparts, JVM system profilers can provide detailed
info on what the JVM is spending its time doing. There are two primary
ways of accomplishing this. The first is by registering for messages from
built-in instrumentation libraries such as the Java Virtual Machine Tool In-
terface [1]. The second is by using a process called byte-code injection,
wherein known byte-code instructions are detected and preempted with
snippets of management-related code. Byte-code injection is more accurate
but is much more expensive. Many profilers exist, but most assume that you
are a developer operating within an IDE such as Eclipse. For a sysadmin try-
ing to debug a problem on a production system, you can’t do much better
than hprof [2].

The tool hprof is a simple, powerful JVM profiler that’s been included in the
JDK since version 5.0. There is nothing to install, and there are no depen-
dencies (well, other than the JVM itself). Simply enable it by passing a -X
switch to your JVM options. If you’re using Tomcat, for example, you would
simply need to add a line similar to:

-Xrunhprof[:options]

to your startup.sh or Tomcat init file. When the program exits, or whenever
the JVM catches a sigquit (kill -3 in UNIX), hprof writes its profiling informa-
tion to a standard text file. It can provide a stack trace of every live thread in
the JVM, heap profiling (what’s using all the memory?), and CPU profiling
(what’s using all the CPU?). It can use either byte-code injection or the Java
Virtual Machine Tool Interface, but in practice the former method incurs
such a heavy performance penalty that it is, in my experience, unusable for
troubleshooting in production environments.

By way of an example, we recently had a problem with several applications
hanging on a production Tomcat system. The application hang was accom-
panied by a CPU spike, so we used hprof to obtain some CPU samples and
clicked around the site until the problem showed up. The CPU profile (near
the bottom of the hprof dump) looked something like this:

; LOGIN: OCTOBER 2007 IVOYEUR: OPAQUE BREWS 51

CPU SAMPLES BEGIN (total = 206138) Tue Jul 24 22:00:30 2007
rank self accum count trace method
1 42.02% 42.02% 180 481612

oracle.jdbc.driver.OracleDriver$1.<init>
2 14.94% 14.94% 30796 478299

java.net.SocketInputStream.socketRead0
3 1.09% 11.09% 22868 495714

java.net.SocketOutputStream.socketWrite0
4 3.94% 3.94% 8116 495716

java.net.SocketOutputStream.socketWrite0
<snip>

The number 1 user of the CPU (at 42%) was the jdbc driver, the glue be-
tween our Java application and its Oracle database backend. The number
listed under the “trace” column is a unique ID with which we can locate and
examine the stack trace of this thread. Toward the top of the hprof dump is
the stack trace in question:

TRACE 481612:

oracle.jdbc.driver.OracleDriver$1.<init>(OracleDriver.java:1425)
oracle.jdbc.driver.OracleDriver.getSystemProperty(OracleDriver.java:1423)
oracle.jdbc.driver.OracleDriver.connect(OracleDriver.java:840)

<snip>

oracle.jdbc.pool.OracleDataSource.getConnection(OracleDataSource.java:165)
pkg.dbgCalls.getConnection(dbgCalls.java:294)
pkg.dbgCalls.getTrackingId(dbgCalls.java:1843)

org.apache.jsp.index_jsp._jspService(index_jsp.java:145

The last line in the stack trace lists the file and, more specifically, the line
number in the file that contains the code that is hogging our CPU. This
problem ended up being caused by an ancient copy of the ojdbc14.jar in the
WEB-INF folder of the application. Not all problems are this cut-and-dried,
and the CPU sampling technique becomes less useful the longer the JVM
operates (which makes troubleshooting problems you can’t reliably replicate
difficult). Also, hprof can’t really provide real-time analysis, and it doesn’t
lend itself to ongoing performance or availability monitoring. Generally,
however, hprof is great at providing really specific information like this on
demand with a manageable overhead, without raising the vulnerability foot-
print of the server, and without installing additional software.

JMX

The JVM itself contains instrumentation code for monitoring and manage-
ment and an API for accessing monitoring and management information in
the form of Java Management Extensions (JMX) [3]. JMX is composed of a
service that brokers monitoring and management requests to the JVM
(called an “mbeans server”) and several connectors, which expose the API
in various forms such as SNMP and RMI (a Java protocol used by JMX-based
monitoring apps). In-house developers can also use the JMX libraries to in-
strument their applications directly; however, the JVM’s instrumentation is
sufficient for most monitoring purposes.

If you didn’t parse much from that last paragraph, I can sympathize. Java
documentation often reminds me of a Frank Herbert book (which is to say,
overly concerned with jargon), so I’ll attempt another explanation (this time
in English). JMX is a direct answer to the problems stated in the opening
paragraphs of this article. It provides a window into the operation of the

52 ; LOG I N : VO L . 3 2 , NO . 5

JVM, and it makes possible such things as a JVM equivalent of the UNIX top
program and much more. Further, the same performance and monitoring
data can be consumed several different ways, including SNMP and RMI
(which makes it possible for a top-like program to monitor a server remote-
ly). When a monitoring vendor says that its app has “Java Integration,” that
probably means they have a home-brew built-in JMX agent of some sort.

In fact, a JVM equivalent of top called Jtop is included with the current JDK
in the demo/management subdirectory. Jtop can give real-time data about
the JVM’s CPU utilization on a per-thread basis. To use it, you must first en-
able JMX in your JVM by passing a couple of command-line switches to
your startup script. Enabling RMI (remote connections) access to your JVM
is a dangerous thing to do. JMX exposes sensitive configuration info such as
user names and passwords, as well as the ability to change just about any-
thing related to the operation of the JVM. So you should follow Sun’s in-
structions [4] for enabling authentication and SSL on your JVM’s RMI con-
nector. The quick, dirty, and highly insecure way to enable JMX is:

-Dcom.sun.management.jmxremote \
-Dcom.sun.management.jmxremote.port=1223 \
-Dcom.sun.management.jmxremote.ssl=false \
-Dcom.sun.management.jmxremote.authenticate=false \

Those switches aren’t specific to Jtop; any RMI-based JMX app will require
them. Jtop is fairly nifty, but it doesn’t even hint at the amount of informa-
tion that JMX exposes about a running JVM. Jconsole [5], however, includ-
ed with the JDK and located in JDK_HOME/bin/jconsole, is a fully function-
al graphical frontend to the JVM. It provides real-time in-depth analysis of a
running JVM’s memory allocation, CPU utilization, run-time parameters,
and stack traces. Jconsole can do everything from providing the exact CPU
and memory utilization of a single thread to adding and deleting accounts
from the tomcat-users.xml. You do incur quite a bit of overhead using it, but
not enough to obviously affect the response time of a running application.

There are several ways to get this info out of JMX and into your monitoring
system. The easiest is perhaps JMX’s SNMP connector [6]. Simply set the
system property for it in the JVM like so:

-Dcom.sun.management.snmp.port=portNum

Then create an ACL file in JRE_HOME/lib/management/snmp.acl (there’s a
sample file: JRE_HOME/lib/management/snmp.acl.template). Once this is
done, the entirety of JMX is exposed via SNMP for your favorite snmp-en-
abled monitoring system to make use of. You may even define traps for trap
collectors and passive monitoring systems.

For Nagios users, there is a check_jmx [7] plug-in that can query the status
of any JMX metric that you see in jconsole. Its syntax is typical of Nagios
plug-ins in general. For example, if you were interested in monitoring the
JVM’s heap you could use:

./check_jmx -U \
service:jmx:rmi:///jndi/rmi://myHost:1223/jmxrmi -O \
java.lang:type=Memory -A HeapMemoryUsage -K used -I HeapMemoryUsage -J \
used -vvvv -w 1000000000 -c 1500000000

Finally, if you’re thinking about rolling your own RMI-based monitoring
script, Sun’s JMX tutorial [8] has plenty of sample code to get you started,
and there’s a great white paper on the subject called “JMX Interoperation
with non-Java Technologies” [9] on Daniel Fuchs’s blog.

; LOGIN: OCTOBER 2007 IVOYEUR: OPAQUE BREWS 53

JMX is not a panacea. It’s still dependent on the JVM itself operating correct-
ly, and that’s a pretty big dependency. It does, however, provide excellent in-
sight into the functioning of an operational JVM, and it’s allowed me to nip a
few problems in the bud before they had the opportunity to destabilize the
JVM, and hey, any visibility is a net gain IMHO.

Take it easy.

REFERENCES

[1] http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/index.html.

[2] http://java.sun.com/developer/technicalArticles/Programming/HPROF.html.

[3] http://java.sun.com/j2se/1.5.0/docs/guide/management/overview.html.

[4] http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html.

[5] http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html.

[6] http://java.sun.com/j2se/1.5.0/docs/guide/management/SNMP.html.

[7] http://www.nagiosexchange.org/Misc.54.0.html?&tx_netnagext_pi1
%5Bp_view%5D=808&tx_netnagext_pi1%5Bpage%5D=20%3A10.

[8] http://java.sun.com/j2se/1.5.0/docs/guide/jmx/tutorial/tutorialTOC.html.

[9] http://java.sun.com/javase/technologies/core/mntr-mgmt/
javamanagement/JSR262_Interop.pdf.

54 ; LOG I N : VO L . 3 2 , NO . 5

; LOGIN: OCTOBER 2007 /DEV/RANDOM 55

R O B E R T G . F E R R E L L

/dev/random
Robert G. Ferrell is an information security geek who
enjoys surfing (the Internet), sashimi (it makes great
bait), and longwalks (to the coffeemachine and
back).

rgferrell@gmail.com

TH I S WHO L E DOMA I N NAME S E RV I C E
business has got me to frettin’. Folks have
been predicting the imminent catastrophic
downfall of the Internet for almost as long
as the masses have been aware there was
such a thing, but if that vile prognostication
ever does come to pass,my money’s on DNS
being the culprit. Despite some of the vitri-
olic rhetoric I’ve seen concerning BIND and
other DNS clients, I don’t think it’s fair to
blame them, either, any more than it’s fair to
blame the jet stream for the untimely de-
mise of your rhododendrons.The real point
of failure here is the IP-address-to-name
mapping scheme itself.

In the early incarnations of the public Internet,
people discovered one by one that if they typed
“foowidgets.com” into their browser they often
found themselves on the Web page for the Foowid-
gets company, like as not replete with rotating ani-
mated gifs and blinking text (after the advent of
Mosaic, anyway). Almost overnight, domain names
became precious commodities; people fell all over
themselves and anyone in their way in the rush to
register names that pertained to their company,
product, service, or person.

Once search engines came along and wormed their
way into our daily routine, the point of this exer-
cise began to slide inexorably toward mootness
(mootitude?). That’s not to say that the competi-
tion for domain names isn’t as fierce as ever, or that
people don’t continue rightly to despise the bot-
tom-feeding slime creatures who buy up names for
which they themselves have no legitimate use, in
the hope of reselling them for outrageous profits.
They do. It is to say, however, that, quite frankly,
the DNS system as it currently exists really isn’t
necessary. (No, that wasn’t a misprint: I just had a
lot of unused commas lying about that I bought on
eBay in a moment of weakness.)

By “really isn’t necessary,” I mean to say it really
isn’t necessary, as in, not essential to the proper
functioning of the Internet. “How,” you may well
ask with a hint of incredulity in your voice, “is that
possible?” “Why,” you indeed will in all probability
now further inquire, “would we keep such an elab-
orate, high-maintenance, high-risk mechanism in
place if it weren’t vitally important?” The answer to
both these questions lies embedded inextricably in
the fundamental architecture of the Internet itself.

Pundits like to explain that DNS exists because remembering dotted quad IP
addresses is too cumbersome and counterintuitive for humans. Here’s why
that’s just a flat-out dumb statement: IPv4 addresses are 12 digits (of which
4 must be <= 2). U.S. domestic phone numbers are 10 digits. I know people
who have dozens of phone numbers memorized. How many of you (other
than network admins) have a dozen or more IP addresses committed to
memory? The fact of the matter is that IP addresses are no more difficult to
remember than phone numbers, but no one’s ever written a hit song featur-
ing one. IP address assignment and telephone number assignment are very
much analogous processes: both involve locating an individual node in a
complex multitiered network environment. Using the directory feature on
your phone is equivalent to performing a DNS lookup in that it matches a
human-friendly name with a network address. This is convenient, yes, but is
it vital to contacting that person via phone? Not while we have both paper
and electronic phone directories to help us out. In many ways, these tools
are like manual search engines for telephone numbers, except you can’t zap
the pop-up ads as easily.

Search engine algorithms have grown so powerful and the tendrils of their
crawler bots so far-reaching that the index page of virtually any domain you
could possibly want to visit is already cached in multiple databases totally
removed from those used for RFC 1034 (et al.) lookups. It wouldn’t take a
great deal of tweaking to make these distributed search engine databases au-
thoritative for domain translation. We could also greatly diminish the com-
petition for scarce names and in the process ruin the business models of do-
main squatters by employing Wikipedia-esque disambiguation pages that al-
low a large number of people to share one domain name. Forget TLDs: They
are instruments of the diabolic and exist primarily to increase the revenue of
domain registrars (another business model that will go belly-up). Besides,
I’m tired of waiting for ICANN to authorize “.duh” and “.wtf.”

How do you go about “registering” a Web presence in this brave new world?
Just put it up with the appropriate tags and labels and tell the major search
engines about it. As soon as their crawlers index the site, you’re on the map.
Anyone who types in a search term related to your business will eventually
find you, the same way they do now. The only real difference will be that
these search terms will be linked directly to an IP address, rather than to a
domain name that then must be translated via DNS. You can find a fair
amount of this sort of thing already in existence, since not everyone with a
Web page has a domain name. You might argue that this gives the search en-
gine companies enormous control over online commerce, but guess what?
That’s already the case. If you don’t believe me, take this simple test:

1. Think of any product or service offered by a company whose name
or URL you don’t have memorized.

2. Go online and try, without the use of any search engine, to locate
someone selling it.

3. Ingest some rich, creamy, artificially flavored trans fat as balm for
your humiliating failure.

Your eConsumerism—nay, your very iExistence—is under the thumb of
Google, and there ain’t much you’re willing to do about it, is there?

If the preceding proposal is too radical for you, here’s a kinder, gentler alter-
native. Right now the DNS root zone system is, to borrow Dan Geer’s word,
monolithic, in that it relies on a baker’s dozen more or less identical root
name servers to point TLD queries in the general direction of the machine
authoritative for a given zone. If these root servers are knocked offline or
otherwise become unreachable, DNS lookups grind to a screeching halt. But

56 ; LOG I N : VO L . 3 2 , NO . 5

what if we distributed the functions of DNS at every level using a BitTorrent-
type model, with many, many copies spread across the Internet? The odds
against damaging or bringing down all of them at once are considerably
higher than in the current failure mode, and as a bonus no single country
could claim sole sovereignty over “the Internet.” The powers that be claim
that’s the case now, but I think we all know deep down that it isn’t in practice.

Oh, heck: /etc/hosts, anyone?

; LOGIN: OCTOBER 2007 /DEV/RANDOM 57

58 ; LOG I N : VO L . 3 2 , NO . 5

N I C H O L A S M . S T O U G H T O N

whither C++?
USENIX Standards Liaison

nick@usenix.org

A S I WROT E I N AN EA R L I E R A RT I C L E ,
revision fever seems to be present in the
various standards committees I work with.
Along with the revision of POSIX and C (not
to mention the possible revision of the Lin-
ux Standard Base), the C++ language stan-
dard is currently being revised.

To state that this is a big project would be a huge
understatement. The working group itself is 3–4
times the size of any other comparable committee,
and the scope of the work it has undertaken is on
the order of 2n. It appears a miracle will be needed
if the end result is to obtain a clean, complete, and
implementable specification in the timeframe they
have set themselves.

Among the major things promised for the new ver-
sion of the language (dubbed “C++0x,” since it is
hoped that the work will be complete in 2009) are:

� Concurrency support, including:
� Concurrency memory model
� Thread-local storage
� Atomic operations
� Thread support library

� Programmer Controlled Garbage Collection
� Concepts

The timetable for this project is also extremely ag-
gressive. Officially, the registration ballot, which
governs the outline of the document, started earlier
this year and has only just completed as I submit
this report. The working group members are busier
than they have ever been, having held two plenary
meetings so far this year, and with another to come
in October. At the October meeting, the committee
members must decide whether they are done writ-
ing the new standard yet or should take another
year to complete it. Given the volume of work, it
would be amazing if the document was ready to be
voted out for final ballot in October, but that is the
plan of record.

Concurrency Support

Concurrency support is a topic I’ve covered in this
column in the past. With the advent of multicore
chips in even cheap desktop systems, the need to
correctly support multiple threads has never been
more apparent. What isn’t so clear is what should
be in the standard once you say “support for con-
currency” is to be included. There are plenty of ex-
isting threading libraries around, of which, in the
C++ space at least, the Boost thread library is prob-
ably the most widely used. There are also many ap-

plications that use these libraries. What the language standard desperately
needs to describe is how the memory model, the low-level atomic data
types, and thread local storage work. It is not a major requirement, at least
in my mind, to have yet another thread library per se. Such a library is pro-
posed to include a new thread-launching API, thread cancellation, mutexes,
condition variables, spin-locks, and the rest.

That would mean that all those existing applications would need to be port-
ed to the new standard library. Multithreaded programming is hard enough
at the best of times; once you have your program working, you are unlikely
to want to rewrite it simply to use the new standardized threads, unless you
are forced to (e.g., because you are using a third-party library that does).

One particular area where the current, nonstandard, threading libraries have
problems is in handling thread cancellation. If a thread is blocked in an I/O
system call (or any blocking system call, for that matter), it is sometimes
convenient to signal that thread to tell it to abandon its wait and give up.
POSIX has a pthread_cancel interface to do exactly that. Once the canceled
thread acts on the cancellation request, it runs its cleanup handlers and dies.
The thread cleanup handlers were designed with C++ exception handling in
mind.

In the Rationale part of POSIX, thread cancellation is explained well:

Many existing threads packages have facilities for canceling an opera-
tion or canceling a thread. These facilities are used for implementing
user requests (such as the CANCEL button in a window-based appli-
cation), for implementing OR parallelism (for example, telling the
other threads to stop working once one thread has found a forced mate
in a parallel chess program), or for implementing the ABORT mecha-
nism in Ada.

POSIX programs traditionally have used the signal mechanism com-
bined with either longjmp() or polling to cancel operations. Many
POSIX programmers have trouble using these facilities to solve their
problems efficiently in a single-threaded process. With the introduc-
tion of threads, these solutions become even more difficult to use.

The main issues with implementing a cancellation facility are specify-
ing the operation to be canceled, cleanly releasing any resources allo-
cated to that operation, controlling when the target notices that it has
been canceled, and defining the interaction between asynchronous
signals and cancellation. . . .

Cancellation Points

Cancellation points are points inside of certain functions where a
thread has to act on any pending cancellation request when cancelabil-
ity is enabled, if the function would block. As with checking for sig-
nals, operations need only check for pending cancellation requests
when the operation is about to block indefinitely.

The idea was considered of allowing implementations to define
whether blocking calls such as read() should be cancellation points. It
was decided that it would adversely affect the design of conforming
applications if blocking calls were not cancellation points because
threads could be left blocked in an uncancellable state.

[from The Institute of Electrical & Electronics Engineers, Inc., and The
Open Group, Draft Standard for Information Technology—Portable Operat-
ing System Interface (POSIX®), 2007]

; LOGIN: OCTOBER 2007 WHITHER C++? 59

The current GCC model is to throw a special sort of exception when a
thread is canceled. The exception is similar to typical C++ exceptions,
except that it cannot be identified or ignored. The thread unwinds the stack,
entering any catch(...) block and destroying objects as needed, until it exits,
where it can be joined by another thread that is waiting. The exception is al-
ways automatically rethrown as necessary after any catch.

The C++ thread proposal wants to add its own thread-cancellation interface.
The proposal at present, however, has nothing to do with thread cancella-
tion as I have just described it (and as everyone is asking for). The proposed
mechanism simply requests that the targeted thread throw an exception at
the next point it notices the request to do so, and blocking system calls are
not mentioned in the list of cancellation points. By calling this thread excep-
tion handling mechanism “cancellation,” everyone is unhappy. It doesn’t in-
terrupt blocked system calls, and it doesn’t terminate the thread. Any excep-
tion handler can “cancel the cancel” by simply catching and not rethrowing
the exception. So it can’t be implemented on top of pthread_cancel, and it
does not serve any useful purpose beyond some sort of interthread commu-
nication mechanism.

But there is so much confusion caused by the terminology that it is proving
very hard to come to consensus. There are those who believe that the C++
committee will be a laughing-stock in the community if it publishes a new
revision of the standard and it does not have a thread API. I believe that it
will be a laughing stock if it does, especially if the revision is anything like
the one currently on the table.

There is also the question of mixed C and C++ applications to deal with in
this case. Many applications use C language libraries, and there is no guar-
antee that C++ exceptions will correctly propagate up the stack through C
stack frames. Exception-based thread cancellation may run into undefined
behavior (e.g., core dumps) in a mixed-language environment. Most mod-
ern C compilers do have a mode to enable exception handling (for instance,
gcc -fexceptions), but there is no guarantee that third-party libraries have
been built this way.

This issue threatens to become a major stumbling block for the entire stan-
dard. It is possible that the standard may end up including a weaker than
necessary thread library that is poorly designed, unimplementable on
POSIX, and of little use to anyone. In fact, with this library included, the ti-
tle of this article might be “Wither C++” instead of “Whither C++.”

Garbage Collection

We’ve all used debugging aids such as Purify or Valgrind to track down
memory leaks. In a well-formed C++ program, it is generally easier to avoid
some of the more obvious memory leaks because of the way objects are de-
stroyed as they go out of scope, and by use of the exception mechanism.

One thing that C++0x promises to bring to the table is the concept of Smart
Pointers. Smart, or Shared, Pointers allow multiple pointers to the same ob-
ject to exist, reference counting the object referred to via the smart pointer.
This prevents the object from being prematurely destroyed, while ensuring
that it does get destroyed once the last shared pointer goes out of scope.

However, this in itself doesn’t cure all the problems of memory manage-
ment. One group is trying to add explicit, programmer-controlled garbage
collection to the language. There is a partially complete, experimental im-
plementation of this, but little or no real programmer experience in using it.

60 ; LOG I N : VO L . 3 2 , NO . 5

It does look as if it might be a good debugging aid, to go with those we al-
ready have, but it is certainly unclear to many that this highly intrusive fea-
ture is worthwhile.

Every single object has a Garbage Collection (GC) attribute: it is either
gc_required or gc_forbidden. Most objects shouldn’t, in the end, care, in
which case they should be gc_safe, which means that it doesn’t matter if GC
runs on this object or not.

A well-written program will gain nothing from GC (and in fact has to pay a
small penalty for it). The real problems come with third-party libraries,
which really should be entirely gc_safe. However, it isn’t possible to have a
program that has a mix of gc_required and gc_forbidden objects. So if a li-
brary chooses one of the required/forbidden attributes, the rest of the pro-
gram (and any other library that is used) must go along with that.

Given the status of the implementation, and the fact that the “standardeze”
has only just been written as I write this, it seems unlikely to me that GC
will make it in. There remain a host of unanswered issues: Should we have
finalizers as well as destructors? (A finalizer is run by the GC to release any
nonmemory resources owned by the object.) Does this feature actually pro-
vide benefit? Will it lead to better or worse programs? One anecdote used
recently related programming experience with GC leading to programs that
“flushed the toilet when they noticed the ice-maker in the freezer was emp-
ty”; both are devices connected to the plumbing, but with no other obvious
connection. Or, in programming terms, “I’m out of file descriptors; let’s try
garbage collection.” GC is entirely about memory resources, and nothing else.

Good Stuff

OK, some of the new features in the language are definitely worth waiting
for. The revision promises to give us variadic templates, r-value references,
constant expressions, better support for generic programming (the “con-
cept” idea currently implemented in ConceptGCC), better operator over-
loading, improved POD types (leading to better integration with C library
functions), explicit virtual functions, strongly typed enums, and most of the
library extensions from TR-1 (except the “Special Math” functions, which
will move to a new, stand-alone International Standard of their own). If you
want to see the details of any of these, go to http://www.open-std.org/jtc1/
sc22/wg21/ and look at the individual papers.

POSIX and C++

On a somewhat separate note, several members of the Austin Group (re-
sponsible for the development and maintenance of POSIX), together with a
good number of the C++ committee members, met independently and
looked at the subject of providing a C++ language binding to POSIX. Other
languages have done this in the past (notably Ada and Fortran), and it has
been helpful. Until now, the answer to how to integrate POSIX facilities into
a C++ program has been simply to use the C language libraries that POSIX
specifies. However, there are numerous issues with this approach, and sever-
al places where POSIX meets C++ in ways that could be (and have been) im-
plemented in a C++ library with C++ type semantics. Thread cancellation is
an obvious candidate here, but the idea reaches across the entire POSIX
range of functions, including such things as networking, file system access,
dynamic libraries, and process control. Until this point, the Austin Group
and C++ committee members have been operating as a Study Group under

; LOGIN: OCTOBER 2007 WHITHER C++? 61

the auspices of IEEE-PASC (the Portable Applications Standards Commit-
tee, the original authors of POSIX). This group has agreed to apply for a new
IEEE project to develop such a language binding. The official name of the
new project is the “POSIX/C++ Language Binding,” but I’ll refer to it as the
“POSIX++” project.

Part of the scope of POSIX++ will be to define the interaction of the C lan-
guage APIs and any C++ instantiation. For example, what is the interaction
between iostreams and file descriptors? What happens if a C library does a
pthread_cancel on a thread that was created in a C++ module?

It is also within the scope of POSIX++ to define new C APIs to allow for
such mixed-language programs and to help C++ library developers imple-
ment the new C++0x library on a POSIX platform.

The POSIX++ project is just starting. If you are interested and want to be in-
volved, please feel free to contact me.

62 ; LOG I N : VO L . 3 2 , NO . 5

book reviews
E L I Z A B E T H Z W I C K Y ,
S A M S T O V E R , A N D R I K F A R R O W

MANAGE IT ! YOUR GUIDE TO MODERN, PRAGMATIC PROJECT

MANAGEMENT

Johanna Rothman
The Pragmatic Bookshelf, 2007. 336 pages.

ISBN 978-0-97897392-4-9

This book is about reality-based project manage-
ment: what you do to try to get a project out the
door, with dignity and on a predictable time line. It
makes a strong argument that the only way to actu-
ally do this is to do some form of incremental
scheduling, where you plan only the stuff you ac-
tually know about. I’m conflicted about this. On
the one hand, I believe it’s true. On the other hand,
there are still organizations that just don’t work
this way, and although the book gives advice on
coping with and subverting these organizations, I
don’t think it would have been sufficient for me
when I was in one.

Manage It! is full of great advice about the realities
of project management. It talks about hallucinating
management, the realities of managing physically
separated teams, and how to get programmers to
provide estimates that mean something. It pushes
heavily for down-and-dirty techniques that use low
technology to represent what you actually know
and that involve gathering real data.

One of my very favorite parts involves actual mea-
surements on how much it costs to fix defects at
various stages of a project. Yes, on the projects
where she measured, it was more expensive to fix
a defect found after release. No, it was not 1000
times as expensive. It was generally more like 32
times as expensive as fixing a defect noticed early
on. The numbers were different for different proj-
ects, and they didn’t go in a straight line. It’s a small
thing, but it speaks to my need for real data. 32

times is bad enough; you don’t need to make up
numbers that say that it’s 1000 times.

The book is aimed at people who have project
management experience. If you’re coming at it
without experience, particularly if you’re at a com-
pany with an entrenched culture different from
the one the author espouses, you may be bewil-
dered by an alluring but not quite comprehensible
description of the promised land of project man-
agement. There are appendixes with lifecycle and
terminology definitions, but they’re probably not
going to suffice for somebody who hasn’t encoun-
tered the terms before. The book is also fairly
loosely organized.

I recommend this book for people with some proj-
ect management experience who want new tech-
niques or to improve their skills. It may also be in-
teresting for new project managers in agile or in-
cremental environments or those who just like
jumping into the deep end.

PRACTICAL PACKET ANALYSIS : US ING WIRESHARK TO SOLVE

REAL-WORLD NETWORK PROBLEMS

Chris Sanders
No Starch Press, 2007. 150 pages.

ISBN 978-1-59327-149-7

It’s hard to think of a more powerful tool for net-
work management than a packet sniffer. A good
packet sniffer makes all the difference; once you
know how to use one, it’s like taking a blindfold
off. Suddenly you can actually see what’s going on!
Unfortunately, the other way it’s like taking a blind-
fold off is that when you first do it, you’re so over-
whelmed with input that you can’t understand a
thing. Many people never get past that point.
There’s a crying need for a book that will move
such people forward.

If you’re the sort of person who used to cheat at
games with a hex editor, this book will give you the
information you need; it’s got a very basic intro-
duction to TCP/IP and higher-level protocols, a
good explanation of how to make a machine able
to see the packets you need and how to install and
use Wireshark (which is the successor to Ethereal),
and a quick run-through of some things you can
do with it.

The introduction to TCP/IP was written with more
practical than theoretical understanding, which is a
polite way of saying that, in point of fact, the au-
thor doesn’t understand what the OSI protocol
stack is, although he does a pretty good job of ex-
plaining its component parts. He states that it’s a
recommendation, not a standard. It’s not even a

; LOGIN: OCTOBER 2007 BOOK REVIEWS 63

64 ; LOG I N : VO L . 3 2 , NO . 5

recommendation; it’s a theoretical model, provid-
ing only a description.

The actual packet analyses vary. Most of them look
reasonable to me, and they give you some exam-
ples of how the tools work. I’m not sure how well
they’ll translate to further uses for somebody who
hasn’t done a lot of work with TCP/IP before. One
of them is downright wrong; it discusses a trace-
route where a router fails to return an acknowledg-
ment. The traceroute slows down at this point,
only to pick up to normal speed when it moves to
the next hop. The author suggests that this shows
that the performance problems on the network are
somehow caused by this router. In fact, it shows
that the router has an odd ICMP configuration, but
there’s no reason to believe that this is more than a
cosmetic problem with traceroute. It isn’t going to
affect anything that doesn’t do ICMP with the
router. It might be a useful clue (for instance, it
might point to a situation where all ICMP was dis-
abled, causing problems with path MTU determi-
nation); it might also be a complete red herring.
There’s no way to tell from the information given.

This book makes a nice starting point for some-
body who knows nothing about TCP/IP network-
ing and wants to get started with packet analysis. It
needs to be supplemented with a good TCP/IP re-
source if you’re really going to get anywhere in the
long term.

L INUX SYSTEM ADMIN ISTRATION

Tom Adelstein and Bill Lubanovic
O’Reilly, 2007. 272 pages.

ISBN 978-0-596-00952-6

I am getting to the point where I am a grizzled
old-timer. As such, I get hostile about statements
such as “For example, with almost every UNIX
distribution, Sendmail is the only choice of mail
transfer agent (MTA).” Fifteen seconds of research
suffices to tell me that Postfix, for example, is
available prepackaged for FreeBSD, NetBSD,
OpenBSD, IRIX, Mac OS X, and Solaris and ships
with NetBSD. I was still young and optimistic
when we started running other mail transfer agents
on UNIX. Without getting into long arguments
about what’s UNIX and what’s not, it’s safe to say
that Linux and UNIX have a strong family resem-
blance that extends to running pretty much the
same applications in most cases.

This resemblance then makes it puzzling that you
can cover Linux system administration in 272
pages, when Essential System Administration takes
1176. Admittedly, Essential System Administration

covers both UNIX and Linux, but given that the
Linux System Administration authors find Linux
more complex and capable than UNIX, it ought to
take up about half the space, or at least a third. The
reason it doesn’t is that the authors concentrate on
installation instructions for specific software pack-
ages. They do provide some explanation of con-
cepts, but not much, and what they do explain is
not always right.

For instance, they start right out by having the
reader install a bunch of services on an Internet-
connected machine, in their default configuration.
To do this, you’d have to be a lot more trusting
than I’d care to be; it’s a big bad Internet out there.
Then, they talk about not logging in as root, but
using su—so they have you create an admin ac-
count, so you can log in as that instead of root.
This completely misses the point of not logging in
as root, which is to log in as an identified individ-
ual user.

Not to obsess about mail, but their discussion of
mail transfer agents confuses a mail transfer agent
and a mail server. People don’t retrieve mail from
mail transfer agents. Mail delivery agents don’t re-
trieve mail from mail transfer agents. The mail
transfer agent shoves the mail somewhere and
leaves it there for the mail delivery agent or the
mail user agent to pick up, with no further involve-
ment. Their discussion of open relaying confuses it
with spam in general, showing an open relay as al-
lowing inbound spam; the problem with open re-
lays is that they pass spam, which is neither in-
bound nor outbound but merely passing through.

And it’s not just mail; the backup chapter advo-
cates writing your own backup scripts, without
discussing any of the risks involved, and then says
that databases “have their quirks” when it comes to
backups without clarifying what those quirks are.
(Their primary quirk is a violent, often fatal, aller-
gy to having files in an inconsistent state, accompa-
nied by behaviors that frequently result in backed-
up files being in such a state. Not knowing this will
probably get you into nasty trouble.)

If you have a solid conceptual background in sys-
tem administration but want a leg up installing a
Linux system, this is an interesting walk-through
of popular alternatives on Debian. If you don’t have
the conceptual background, it’s not very helpful. At
least couple it with a serious system administration
book.

VIRTUAL HONEYPOTS: FROM BOTNET TRACKING TO

INTRUSION DETECTION

Niels Provos and Thorsten Holz
Addison-Wesley Professional, 2007

ISBN 10: 0-321-33632-1; ISBN 13: 978-0-321-33632-3

R E V I E W E D B Y S A M S T O V E R

This book is so good that I haven’t finished it. I’ve
spent so much time actually doing the stuff that I
haven’t even touched a good third of the book. On
the one hand, that limits my ability to give a thor-
ough review, but on the other, I feel confident that
the bits I haven’t read will live up to the part I have
read. OK, enough syrup: let me tell you why I like
this book so much.

The book begins with almost 20 pages of honey-
pot and IP background, which I promptly skipped,
then went back and read because I have a responsi-
bility to my readership. It’s a good thing I did, be-
cause beyond the basic IP review, there’s a very suc-
cinct and appropriate comparison between high-
and low-interaction honeypots. This distinction
permeates the entire book: the sections are divided
between methods and uses for each type. As the
names suggest, the differences deal with the com-
plexity and capability of the honeypot: high-inter-
action systems require more care and feeding but
have the potential to collect different data from
low-interaction. It’s important to note that both
types have their uses: they just allow for different
applications of honeypot technology.

After the background, Chapter 2 jumps right into
high-interaction honeypots and tools such as Q,
Sebek, and Argos. Q is an open source virtual ma-
chine application very reminiscent of VMware. In
fact, the authors walk you through building a vir-
tual machine, using Q, that can be run from the
VMware Player. Sebek is basically a rootkit that
you install on your honeypot to monitor and col-
lect malicious activity. Argos, though, was the gem
of the chapter, in my humble opinion. Argos is a
new tool, developed by researchers from Vrije Uni-
versiteit Amsterdam, which monitors the honeypot
in a way that detects zero-day attacks. Yes, you read
that right, zero-day. Argos is a specific kind of vir-
tual honeypot, built using Q, which marks incom-
ing network traffic data, follows it through system
memory, and, if a buffer overflow occurs, creates a
report and memory dump. Memory dump analysis
has been a longtime hobby of mine, and I think
this is an excellent example of how that kind of
technique can be used to advance the detection of
malicious activity. I was impressed enough with

this tool that I’m going to try to work it into a fu-
ture ;login: article.

After the high-interaction honeypot chapter, the
low-interaction honeypot chapter takes you
through LaBrea, Tiny Honeypot, the Google Hack
Honeypot, and PHP.HoP, which is a “Web-Based
Deception Framework.” Interestingly enough, nei-
ther Honeyd nor Nepenthes is discussed in this
chapter, but, luckily for us, each has its own chap-
ter later in the book. I’m a big fan of Nepenthes as
low-interaction honeypots go, so I was really hap-
py to see a whole chapter devoted to deploying and
managing it. I must admit that I was so busy set-
ting up my Q/Argos setup that I just skimmed over
the low-interaction honeypot chapter, but I do plan
to go back and spend some time setting up some
low-interaction honeypots to see what I can col-
lect. There are definitely some sweet tools in that
arena that I want to learn more about. If your inter-
ests lie in that direction, there’s more than enough
in this book to get you started and keep you busy.

It follows logically that if there are high-interaction
and low-interaction honeypots, there have to be
hybrid systems. Sure enough, Chapter 7 is devoted
to tools such as Collapsar, Potemkin, and RolePlay-
er. Each of these systems tries to balance scalability
and capability in a way that gives options to the
prospective honeypotter who has needs outside of
the strict high- and low-interaction products.

Chapters 8 and 9 deal with honeypots for client-
side attacks and honeypot detection, respectively. I
think the client-side honeypot is definitely an area
of research that needs attention, and this chapter
gives a good intro. After all, you can’t just expect
all the good stuff to happen your way—sometimes
you have to go out there and collect it. Chapter 10
gives five different case studies which walk
through several different compromises, all of
which explore different vectors and targets. Chap-
ter 11 spends some time talking about tracking
botnets, and Chapter 12 deals with using CWSand-
box to analyze malware.

In all, this book is well written, proofed, and edit-
ed. No glaring spelling errors, and the text is con-
cise and to the point. Some of the material, such as
installing Argos, is not for beginners, but some of
the techniques, such as using Q to build a virtual
honeypot, are very accessible to just about anyone.
A truly great find: go buy your copy today.

; LOGIN: OCTOBER 2007 BOOK REVIEWS 65

66 ; LOG I N : VO L . 3 2 , NO . 5

MIN IMAL PERL FOR UNIX AND LINUX PEOPLE

Tim Maher
Manning Publications, 2007. 464 pages.

ISBN 1-932394-50-8

R E V I E W E D B Y R I K F A R R O W

I had wondered just what minimal Perl could be,
ever since I noticed a review about it on Slashdot.
So I tracked down the publisher and got a copy of
my own. I felt that my Perl skills could certainly
use some honing, and I would be motivated to read
and use this book, as long as it worked well.

Maher has done a fine job providing an alternative
path to learning Perl. The “minimal” in the title
has to do with Maher’s choice in how to present the
material, not in the sense of providing the minimal
amount of Perl. Maher starts right out by taking
the reader to the fictional land of Perlistan, where
there appear to be four different languages, but
everyone who lives there can understand each oth-
er. What he is referring to are different styles used
when writing Perl, and his teaching technique is to
stick with a single style that is both efficient to use
and easier to read for, say, a shell programmer.

The mention of UNIX and Linux people in the title
is not gratuitous, as Maher uses comparisons to
the Bourne, Bash, and Korn shells and the grep,
egrep, find, and awk commands to illustrate how
Perl works and how using Perl provides features
that you can’t get from using the shell and com-
mands alone. I found myself learning about new
features of commands (although keep in mind that

I learned how to use grep in 1982), as well as other
tidbits that may not be new to people who learned
Linux/UNIX in the past ten years.

And that’s just a side effect ofMinimal Perl. Maher
does a great job of presenting Perl, from command-
line arguments, one-liners, to scripts. The first part
of the book focuses on comparing Perl features to
those you can have with UNIX commands alone,
and it works very well at helping people who al-
ready know UNIX learn Perl. The second part of
the book works with Perl more as a programming
language: for example, Chapter 10 is about loop-
ing. You might wonder how someone could spend
nine chapters and notmention looping, but consid-
er just the intricacies of regular expressions and
how regular expressions function differently in
sed, grep, and Perl, and you will begin to under-
stand the gentle and thorough path Maher takes.

Maher does discuss using modules (early on, in
fact) and CPAN. Object-oriented programming
barely gets a mention, although the reader gets in-
troduced to the use of objects along the way.

I can recommend the book to people, like myself,
who want a thorough refresher course in Perl. I
imagine this book will work great for those who
have some grounding in UNIX/Linux but don’t yet
know Perl. In particular, if you know someone to
whom you handed the Camel book (Learning Perl,
by R.L. Schwartz) and he or she just didn’t get it,
then tryMinimal Perl. Its simpler approach may
provide just the trick needed.

USENIX
notes

USEN IX BOARD OF DIRECTORS

Communicate directly with the
USENIX Board of Directors by
writing to board@usenix.org.

P R E S I D E NT

Michael B. Jones,
mike@usenix.org

VI C E P R E S I D E NT

Clem Cole,
clem@usenix.org

S E C R E TA RY

Alva Couch,
alva@usenix.org

TR EA S U R E R

Theodore Ts’o,
ted@usenix.org

D I R E C TO R S

Matt Blaze,
matt@usenix.org

Rémy Evard,
remy@usenix.org

Niels Provos,
niels@usenix.org

Margo Seltzer,
margo@usenix.org

CREATING THE EVT WORKSHOP

D A N W A L L A C H
Rice University,
EVT ’06 co-chair

We only just completed the sec-
ond annual USENIX/ACCURATE
Electronic Voting Technology
Workshop alongside the USENIX
Security Symposium, and it’s al-
ready time to start writing the
history of the workshop. My,
how time flies.

EVT began when two good ideas
collided. Alva Couch, working
with the USENIX Board of Direc-
tors, wanted USENIX to have a
voting workshop, which he origi-
nally titled “Verifiable Electronic
Voting.” This idea found its way
to Avi Rubin, who had been
working on the issue and was a
former USENIX board member.
Now, Avi, myself, and a number
of other researchers had found
out that we were about to be
awarded a big grant from the
NSF to study electronic voting
security. Of course, it was still se-
cret and we couldn’t tell anybody
until the NSF made the big an-
nouncement. So we stalled,
knowing full well that one of the
things we promised to the NSF
was to set up a public workshop
on electronic voting. Finally, a
few weeks later, NSF made the
announcement and we got the
workshop rolling.

For readers who have never
worked with the USENIX staff,
it’s hard to appreciate how won-
derful it can be to organize a
USENIX conference. Ellie Young
and her staff really do all the
dirty work. As the first chair of
EVT, my only responsibilities
were managing the program
committee and ultimately deliv-
ering a list of accepted papers. I
didn’t have to worry about rent-
ing space. I didn’t have to worry
about catering or registration fees
or any of that stuff. (Have I men-
tioned that the USENIX staff
rock?)

USEN IX MEMBER BENEF ITS

Members of the USENIX Association
receive the following benefits:

F R E E S U B S C R I P T I ON to ;login:, the Associ-
ation’s magazine, published six times
a year, featuring technical articles,
system administration articles, tips
and techniques, practical columns on
such topics as security, Perl, Java, and
operating systems, book reviews, and
summaries of sessions at USENIX
conferences.

ACC E S S TO ; LOG I N : online from October
1997 to this month:
www.usenix.org/publications/login/.

ACC E S S TO PA P E R S from USENIX confer-
ences online:
www.usenix.org/publications/ li-
brary/proceedings/

TH E R I GH T TO VOT E on matters affecting
the Association, its bylaws, and elec-
tion of its directors and officers.

D I S COUN T S on registration fees for all
USENIX conferences.

D I S COU N T S on the purchase of proceed-
ings and CD-ROMs from USENIX
conferences.

S P E C I A L D I S COUN T S on a variety of prod-
ucts, books, software, and periodi-
cals. For details, see
www.usenix.org/membership
/specialdisc.html.

F O R MOR E I N FO RMAT I ON regarding
membership or benefits, please see
www.usenix.org/membership/
or contact office@usenix.org.
Phone: 510-528-8649

; LOGIN: OCTOBER 2007 USEN IX NOTES 67

So, out went the call for papers,
in came the submissions, and off
to the races went the reviewers
on a compressed timetable. We
decided to do away with paper
proceedings so we could go
cheaper and faster (ah, the deli-
cious irony). In the end, atten-
dees got CD-ROMs and every-
body can find the papers online.
This year, we had the second an-
nual EVT, and with the luxury of
advance publicity, we got many
more submissions than we could
possibly accept, leading some
people to say that we already
need two voting workshops. And
so now I’m working on creating
yet another workshop. Details to
be announced (and history to be
written).

If you have an idea for a new
workshop USENIX might be in-
terested in sponsoring, please
contact workshopproposals@
usenix.org.

2008 USEN IX NOMINATING
COMMITTEE .

E L L I E Y O U N G
The biennial elections of the
USENIX Board of Directors will
be held in early 2008. The
USENIX Board has appointed
Mike Jones to serve as chair of
the Nominating Committee. The
composition of this committee
and instructions on how to nom-
inate individuals are sent to
USENIX members electronically
and published on the USENIX
Web site.

LETTERS TO THE EDITOR

To the editor:

I enjoyed the article, “Some Less-
er-Known Laws of Computer
Science” (August 2007), and in
that spirit wanted to share my
three laws of system design (a
term that, for me, includes both
hardware and software). I have
always been guided by them, but

only wrote them down in 1998
when I found that I was repeat-
ing them too often to junior pro-
grammers who lost sight of why
they were doing what they were
doing in the first place. (I had
thought they were too obvious to
require stating, but I guess I was
wrong.)

So, without further ado, here are
Chessin’s three laws of system
design (with apologies to the es-
tate of Isaac Asimov):

� First Law: Make life easy
for the ultimate end user
of our systems.

� Second Law: Make life
easy for the ISV, except
where to do so conflicts
with the First Law.

� Third Law: Make life easy
for ourselves, except
where to do so conflicts
with the First or Second
Laws.

—Steve Chessin
(steve.chessin@sun.com)

To the editor:

Just read the August 2007 issue,
with your “Musings.” It seems
that ;login: (and many others) is
publishing numerous articles of
which the gist is basically “be-
ware.”

So, how does a suitably paranoid
individual who still wants to get
some computing done actually
get it done? What are the defen-
sive measures, the procedures,
the “safe” software, etc?

I’ve been doing some on-again
off-again research on this topic
for a while, and there doesn’t
seem to be a comprehensive an-
swer. Linux Live CDs are a de-
fense against a large set of at-
tacks, but data continuity (sav-
ing you work for tomorrow) is a
problem. There are still lots of
hazards at the physical and logi-
cal layers.

Is there a small set of resources
out there that could help the in-
dividual computing at home?

—John Lloyd
(jal@mdacorporation.com)

John:

The most dangerous activities
for home users today are brows-
ing the Web and reading email.
I’m not kidding.

The best countermeasure for
Web browsing attacks is to segre-
gate your critical use of the Web
by visiting key sites (banking,
etrading) only from a browser
running in a VM. I do this. I even
use a Live CD image (Linux). No
history, and that is a bother but
also a security measure.

As for email, what I do—run a
very primitive mail client that
cannot execute anything—does-
n’t work for most people. The
problem with email clients is
that they will automatically in-
voke HTML-rendering libraries,
and this makes email into a real
vulnerability. What other suit-
ably paranoid friends do is use
Mac OS X to read their email. I
just got back from USENIX
Security ’07, and noted many
people doing this, asked Bill
Cheswick just how safe he
thought this was, etc. When
Leopard comes out, with some
real security upgrades, I may do
the same thing. But not yet.

—Rik Farrow

To the editor:

Reading your August ’07 editori-
al brought a few things to mind
that might be of interest to you.
First, on labeling URLs as harm-
ful, I recently stumbled across
the Netcraft toolbar, http://
toolbar.netcraft.com/. The idea
is to use the sort of information
that Netcraft monitors to rank a
Web site’s trustworthiness. It
also lets them publish Web site

68 ; LOG I N : VO L . 3 2 , NO . 5

rankings based on those using
the toolbar. See, e.g., http://
toolbar.netcraft.com/stats/
topsites?c=IE#65597.

I also recently saw an article
about how ineffective these
methods of labeling URLs as sus-
picious are: http://www.rsa.com/
rsalabs/cryptobytes/Crypto
Bytes-Winter07.pdf.

That issue of CryptoBytes also
contains an interesting article on
how easy it can be to guess
mother’s maiden names.

Later in the article, you com-
mented on how many users one’s
system has. You mention Apache
as a one-user system. Actually,
there are two choices here. One
is to run Apache (and all the CGI
programs) as one user. The other
is to use suEXEC to run CGI as
different user, making Apache a
multi-user system. There are ad-
vantages to both systems, de-
pending on your model.

A long time ago, I realised that
having lots of “small” users is a
good idea. I was trying to track
an offensive email sent, and I
discovered that it originated
from the “nobody” user on a
UNIX system. There were a bun-
dle of small services that ran as
nobody, and having them all use
the same UID meant that typical
UNIX tools didn’t help track the
problem (i.e., files, process ac-
counting, and syslog messages
all remember UIDs/usernames).
Since then, I try to run each ser-
vice (and indeed, each piece of
each service) as a different UID.
That way, if some “nobody” mis-
behaves, I have a quick way to
find the one that’s the problem.

Finally, your comment on securi-
ty and multiprocessing reminded
me of a paper by Robert Watson
presented at the USENIX WOOT
’07 conference, “Exploiting Con-
currency Vulnerabilities in Sys-
tem Call Wrappers,” viewable at
http://www.usenix.org/events/

woot07/tech/. It explains how se-
curity systems must be careful
not to check data that might be
modified after the check but be-
fore use. Watson demonstrated
that this error can lead to ex-
ploits of a number of systems.

—David Malone (dw-
malone@maths.tcd.ie)

David:

The point I was making is that
most of our systems are, essen-
tially, single-user systems, espe-
cially when you consider that
most systems are desktops. And
even servers, by default, run as
single users, with suEXEC being
the exception, not the rule.

—Rik Farrow

To the editor:

While I disagree with your re-
view ofMyths of Innovation
(Berkun), in the August ’07 issue
(I gave the book a negative one
elsewhere), that’s not the point
of this note.

What I’d like to object to is
the assigning of the “eureka”
moment to Euripides, a Greek
tragedian of the 5th century
B.C. (?480–?406 B.C.), and
depriving Archimedes of Syra-
cuse (~?287–?212 B.C.). As
Archimedes has been called “the
greatest mathematician of his
age,” and he did a vast amount of
engineering work (see E.T. Bell’s
Men of Mathematics [1937, 4th
ed., 1976]), I’m not sure the sto-
ry, which can be found in
Plutarch (~46–127 A.D.), is in-
deed a myth.

—Peter H. Salus, Ph.D. (pe-
ter@netpedant.com)

Peter:

Good point: it’s Archimedes who
should have been credited with
the eureka moment—certainly
not a Greek playwright.

However, I did enjoy the book.
Having worked at many startups,
as well as having listened to lots
of people who had great ideas
that they expected would natu-
rally be accepted and built upon
for the idea’s worth alone, I
thought the book was quite im-
portant for those people to read.

—Rik Farrow

; LOGIN: OCTOBER 2007 USEN IX NOTES 69

2007 USENIX Annual Technical
Conference 70

Andrew Baumann

Francis David

Peter J. Desnoyers

Xiaoning Ding

Rik Farrow

Minas Gjoka

Ramakrishna Kotla

Jan Stoess

Linux Symposium 2007 93
Rick Leir

70 ; L O G I N : V O L . 3 2 , N O . 5

conference reports

TH A N KS TO O U R S U M M A R I Z E R S

2007 USENIX Annual Technical Conference
Santa Clara, CA
June 17–22, 2007

K EY N OTE A D D R E S S

� The Impact of Virtualization on Computing
Systems
Mendel Rosenblum, Stanford University

Summarized by Francis David (fdavid@uiuc.edu)

Mendel Rosenblum began by describing what vir-
tualization means and identified several important
properties that can be attributed to a virtualization
system. Hardware is multiplexed or partitioned
among multiple virtual machines. Isolation and
encapsulation provided by a virtual machine de-
couple it from the hardware and allow for opera-
tions such as suspending and resuming a virtual
machine or migrating it from one physical com-
puter to another.

VMWare Workstation now supports some inter-
esting new functionality. It is possible to record
and play back execution events in a virtual ma-
chine with low overhead, something that may
prove invaluable for debugging systems. Virtual
Infrastructure is yet another product that supports
suspending, migrating, and resuming of virtual
machines. Virtualization fuels a changing view of
hardware in a data center. Compared to a tradi-
tional architecture with individual services tied to
individual machines, virtualization enables a vir-
tual server environment where all physical hard-
ware is pooled together, allowing for quick and
easy reconfiguration of resources available to a
service in response to the load experienced. High
availability is achieved because the loss of a physi-
cal server can be compensated by running virtual
servers on the remaining hardware. Consolidation
of virtual machines onto a minimal set of physical
machines results in significant energy savings, be-
cause the unused physical machines may be pow-
ered down. Most of these features are automati-
cally managed by VMware’s product and are ex-
tremely easy to configure, involving a single check
box in a GUI in most cases.

Modern operating systems have evolved to
achieve the goal of supporting as many applica-
tions as possible while simultaneously providing
security, reliability, manageability, and good per-
formance. These driving forces, together with the
need for innovation, have resulted in complex op-
erating systems. Virtualization technology has re-
sulted in a change in the view of the role of an op-
erating system. An operating system running in a
virtual machine doesn’t need complex hardware

; LO G I N : O C TO B E R 2 0 0 7 CO N F E R E N C E S U M M A R I E S 71

management and does not have to support a broad range
of applications. The OS starts to look like a library that is
bundled together with an application, and these virtual
machines are termed virtual appliances. This concept is ex-
pected to have a big impact on the way software is distrib-
uted. Work on the Terra system at Stanford focuses on
using different operating systems to support different
classes of applications in a virtualized environment. Thus,
virtualization provides us with renewed opportunities to
improve the efficiency, reliability, and security of system
software.

In response to a question about increases in complexity of
the virtual machine monitor because of the need to add
more device drivers into it, Mendel stated that they expect
to build better systems now that they have learned from
past mistakes. Also, exploiting new hardware features such
as an IO-MMU allows VMWare to reduce the number of
drivers that affect the reliability of the system. Andrew
Tanenbaum argued that virtualization technology bears
significant similarity to microkernels. I asked Mendel
whether virtualization has a place in a desktop computer
and whether the need for sharing will result in the break-
down of the barriers erected between virtual machines. He
replied that the significant sharing among applications
today may have been a bad idea to begin with and starting
all over again using virtualization may be a reasonable ap-
proach going forward. Rik Farrow questioned whether
running applications within a VM really provided any ad-
ditional security to the application and whether using a
virtual appliance was the right granularity for a protection
domain. Mendel said that in many cases it is not.

TR I C KS W ITH V I RT UA L M AC H I N E S

Summarized by Francis David (fdavid@uiuc.edu)

Energy Management for Hypervisor-Based Virtual Machines

Jan Stoess, Christian Lang, and Frank Bellosa, University of
Karlsruhe, Germany

Jan Stoess started the presentation by highlighting the im-
portance of energy management in operating systems. Al-
though there are several existing approaches to OS-di-
rected energy management, modern virtual machine (VM)
environments present a unique challenge to energy man-
agement because of their distributed and multilayered soft-
ware stack. A distributed energy accounting scheme is pro-
posed that delegates energy management to a host-level
component and a guest-OS-level component.

The host-level energy manager collects energy usage infor-
mation from all device drivers and tracks energy usage for
individual VMs. The guest OS energy manager uses virtu-
alized energy accounting to provide fine-grained applica-
tion-level energy management. In a prototype implementa-
tion using L4 and paravirtualized Linux guests, energy ac-
counting was performed for the CPU and disk. CPU en-

ergy consumption was estimated by using processor per-
formance counters for various events. A weighted sum of
the various counted events is used to obtain the processor
energy consumption. Disk energy accounting uses a time-
based approach. Request transfer time is used to directly
compute energy usage. Both the CPU and disk energy
models also account for idle usage.

Recursive, request-based energy accounting is used to ac-
curately measure the energy spent by each virtual machine.
This is important because a virtual device may map to
multiple physical devices. For example, energy consump-
tion of a virtual disk is a combination of the energy con-
sumption of the physical disk and the CPU energy con-
sumption of the virtual disk driver. The hypervisor also
supports throttling of CPU allocation and shaping of disk
requests to regulate energy consumption of virtual ma-
chines.

Experiments show that the energy accounting models are
quite accurate and that host-level and guest-level enforce-
ment of energy constraints works well. In the future, Jan
hopes to support fully virtualized systems and multimodal
devices such as multispeed disks.

A member of the audience pointed out that the disk energy
accounting model does not consider spin-up and spin-
down costs. In response to a question about energy con-
straints not resulting in fair sharing of time, Jan stated that
it probably makes more sense to change scheduling algo-
rithms to provide fair and managed sharing of energy
rather than time.

Xenprobes, a Lightweight User-Space Probing Framework
for Xen Virtual Machine

Nguyen Anh Quynh and Kuniyasu Suzaki, National Institute of
Advanced Industrial Science and Technology, Japan

Nguyen Anh Quynh presented research on Xenprobes, a
framework for probing inside virtual machines. The prob-
ing framework is based on the Xen virtualization system
and allows users to register probe handlers for arbitrary in-
struction addresses in a Xen virtual machine. For example,
a handler can be registered for the mkdir system call on a
Linux virtual machine to intercept all such system calls on
the Linux VM.

Xenprobes exploits the debugging architecture of Xen to
inject software breakpoints into the probed VM. Unlike the
Kprobes framework, which is tied to Linux, Xenprobes can
work with any guest OS supported by Xen. Also, probe
handlers can be written in userspace instead of in kernel-
space as required by Kprobes. Two types of probes are sup-
ported. An XProbe is a pair of handlers that are called just
before and just after a probed instruction is executed. It is
possible to register null handlers. XrProbe handlers are in-
voked at the beginning of a function and when it returns.
XrProbes allow for examining function call arguments and
return values. All probes have full access to VM memory.

The probing process starts with probe registration, which
is managed by the framework. Multiple probes at the same
address are supported. Probes can be enabled and disabled
individually and also from within other probe handlers.
All probes are removed when the VM shuts down. Micro-
benchmarks show that injecting probes into a VM causes
a large overhead; the null syscall takes 400 times longer
when using an XrProbe and 180 times longer when using
an XProbe with one handler. A macrobenchmark that ex-
amined the time to decompress the Linux kernel with
probes placed in the mkdir, chmod, and open syscalls has
more reasonable performance. XProbe and XrProbe experi-
ence 6% and 39% increases in execution times, respec-
tively.

A member of the audience pointed out that the code-modi-
fying approach used by the probing framework for break-
points will not support OS code that checksums itself for
verifying integrity.

Virtual Machine Memory Access Tracing with Hypervisor
Exclusive Cache

Pin Lu and Kai Shen, University of Rochester

Pin Lu addressed the issue of estimating the optimal
amount of memory that should be allocated to virtual ma-
chines (VMs). The hypervisor does not normally have ac-
cess to information about memory usage inside a VM. In
order to obtain information about VM memory usage, Pin
advocates that part of the memory that would normally be
allocated to the VM be used as a hypervisor cache of VM
memory. The cache is designed to contain items that are
evicted from the VM memory (exclusive cache). It can be
shown that when using LRU for replacement, the hypervi-
sor cache approach does not incur any extra misses when
compared to the normal allocation of that memory directly
to the VM.

The use of the hypervisor cache enables the use of cache
miss ratio curves for direct memory allocation to virtual
machines. In particular, this scheme allows the determina-
tion of cache miss behavior when using memory sizes that
are less than the current allocation. The memory allocation
to individual VMs is dynamically adjusted, with the objec-
tives of minimizing the geometric mean of each VM’s miss
ratio and ensuring that there is a bounded performance
loss for each VM when being allocated less memory than
its baseline allocation.

The proposed design is not fully transparent, as it requires
that the OS notify the hypervisor when there is a page
eviction from VM memory. Also, there is some overhead
because of page copying and management of the cache. A
prototype system was constructed using the Xen virtual
machine. Experiments show that the throughput degrada-
tion for several non-CPU-bound workloads is less than
20%. Experiments also show that the miss ratio curve pre-
diction is reasonably accurate as well. In a multi-VM ex-
periment, the system correctly reallocates memory to sub-

stantially reduce the systemwide page-miss metric.

Pin compared his work with VMWare’s ESX server.
VMware’s ESX server only estimates the working set size
and uses that measurement to allocate memory. Experi-
ments show that accessing a large segment of memory se-
quentially without any reuse causes ESX server to allocate
large amounts of memory even though the extra memory
allocation does not reduce cache misses.

I N V ITE D TA L K

Life Is Not a State-Machine: The Long Road from Research
to Production

Werner Vogels, VP and CTO, Amazon.com

Summarized by Ramakrishna Kotla (kotla@cs.utexas.edu)

Werner Vogels started this talk by introducing himself as a
“recovering academic,” to emphasize his theme: Why it is
hard to take research ideas into production systems, and
what can be done about it? His talk mainly focused on is-
sues involved in building and deploying large-scale distrib-
uted systems while presenting examples in a wide range of
fields to draw analogies.

Werner noted that incremental scalability is the key to
building and deploying production-grade large-scale dis-
tributed systems such as the one that they have at Ama-
zon.com, which supports seven Web sites with 63 million
customers, 1.1 million active sellers, 240,000 Web service
developers, 14,000 employees, and 20 fulfillment centers.
He defined scalability of a system as the ability to: (1) pro-
vide increased performance with increasing resources;
(2) provide always-on service; (3) handle heterogeneity;
(4) be operationally efficient; (5) be resilient to failures;
and (6) be cost-effective as the system grows.

Werner stressed the point that it is very hard to take re-
search ideas into production, presenting many examples
and explaining the reasons for this problem. He noted that
it usually takes about 20 years before a research idea gets
adopted into mainstream systems—for instance, the
spreadsheet and the Web. He then explained how hyper-
links and markup languages were developed in the mid-
1960s, TCP/IP-based networks came to life in the 1970s,
and it wasn’t until the mid-1990s that the combination of
these three turned into the Internet and Web that we use
today.

He then pointed out several important reasons behind the
slow adoption of research ideas: (1) making unrealistic as-
sumptions about system characteristics and the environ-
ment; (2) not accounting for uncertainty in the real world;
(3) multiple differing research approaches in solving a
problem.

He pointed out that research in the academic world fo-
cuses on the details of the technology itself and is not very
focused on the application context of the technology,

72 ; L O G I N : V O L . 3 2 , N O . 5

; LO G I N : O C TO B E R 2 0 0 7 CO N F E R E N C E S U M M A R I E S 73

which results in slow or no adoption of these ideas in pro-
duction systems. For example, many research approaches
assume failures are uncorrelated, whereas correlated fail-
ures do happen in reality. Next, he explained that many
systems fail to take into account the uncertainty that is
present in large-scale systems that are complex and nonde-
terministic in nature. Finally, he pointed out that having
differing and competing approaches in the research com-
munity makes it harder for system builders to choose the
right approach to solve their problems.

Werner suggested that systems should involve fewer as-
sumptions and explicitly account for uncertainty so that
they can be easily adopted and deployed in real-world ap-
plications. He suggested using Occam’s Razor to select the
approach with fewest assumptions when there are compet-
ing approaches.

Werner Vogels maintains his personal blog at http://www
.allthingsdistributed.com.

N E T WO R K M O N ITO R I N G A N D M A N AG E M E NT

Summarized by Andrew Baumann (an-
drewb@cse.unsw.edu.au)

Hyperion: High Volume Stream Archival for Retrospective
Querying

Peter Desnoyers and Prashant Shenoy, University of Massa-
chusetts

Awarded Best Paper!

Peter Desnoyers presented this paper on Hyperion, a high-
performance packet monitor that keeps a packet history,
enabling new capabilities in network forensics and man-
agement. The primary challenge for the system was han-
dling high packet rates while supporting online querying
and indexing and running on commodity hardware.

To support the unusual workload, which required guaran-
teed write throughput but also included read activity, the
authors implemented a specialized filesystem named
StreamFS. StreamFS is log-structured but does not use a
cleaner; instead, it performs its own data aging simply by
overwriting old data as needed. It also interleaves slower
and faster tracks on the disk to achieve balanced write
speeds.

To support fast querying, Hyperion uses a multilevel index
structure based on signatures. Use of the Bloom filter signa-
ture ensures that signature queries have no false negatives.
Finally, a distributed index layer is provided to distribute
summaries of index data to other nodes, allowing for faster
queries in a multinode network monitoring system.

Benchmarks show that the full system runs on commodity
hardware with negligible packet loss up to 175,000 packets
per second, at which point it became CPU-bound. With
faster hardware, the authors expect to achieve even higher
throughput. The questions that were asked focused mainly
on possible optimizations to and uses for the system.

Load Shedding in Network Monitoring Applications

Pere Barlet-Ros, Technical University of Catalonia; Gianluca
Iannaccone, Intel Research Berkeley; Josep Sanjuàs-Cuxart,
Diego Amores-López, and Josep Solé-Pareta, Technical Univer-
sity of Catalonia

This paper, presented by Pere Barlet-Ros, covered the prob-
lem of how to manage overload in continuous network-
monitoring applications. These applications are difficult to
construct, owing to the unpredictable nature of network
traffic, the increasing processing requirements involved,
and the problem of efficiently handling extreme overload
situations, which is necessary because overprovisioning is
not feasible. The general approach is to shed load when
necessary, to get the best possible quality of query results.

The system they have developed extends Intel’s CoMo
(continuous monitoring), which is a modular passive
monitoring system. Modules may perform any amount of
processing work. The problem is to manage the CPU usage
of the whole system while treating modules as black boxes.
The load-shedding scheme automatically finds correlations
between network traffic features and the CPU usage of
query modules, uses those correlations to predict the CPU
load of future queries, and uses that prediction to guide
load shedding.

About 50 query-agnostic network traffic features are used;
they are lightweight and have a deterministic worst-case
computational cost. A linear regression is performed to
correlate features to observed CPU load. This regression is
expensive to compute, so a feature-selection algorithm is
used to remove irrelevant and redundant predictors, result-
ing in two or three relevant features per query.

Load shedding occurs when the total CPU load predicted
for all queries exceeds the available cycles; each query can
select packet- or hash-based flow sampling when load
shedding is required. Results show that the predictive
load-shedding mechanism is much better than the usual
reactive load-shedding. Future work includes developing
load-shedding techniques for queries that are not robust
against sampling, and applying similar techniques to man-
age memory and disk load. The source code is available
from http://loadshedding.ccaba.upc.edu/.

Configuration Management at Massive Scale: System Design
and Experience

William Enck and Patrick McDaniel, Pennsylvania State Uni-
versity; Subhabrata Sen, Panagiotis Sebos, and Sylke Spoerel,
AT&T Research; Albert Greenberg, Microsoft Research; Sanjay
Rao, Purdue University; William Aiello, University of British
Columbia

William Enck presented this work on managing complex
router configuration files at massive scale, such as at a
large ISP. Precise specifications for individual routers are
hard to create, and the level of complexity can be over-
whelming. This leads to cut-and-paste errors. Current au-
tomated solutions such as network management tools

don’t account for so-called dirty input data, which can re-
sult in a syntactically correct configuration but incorrect
operation. The proposed solution is to use a template lan-
guage to establish consistent device configurations and
to follow an iterative approach, where users validate the
data inputs. This has been implemented in a tool named
PRESTO.

In PRESTO, code snippets for router configuration scripts
are defined in active templates, which are close to the sys-
tem’s native configuration language. However, PRESTO is
also a framework for data modeling. The information used
to evaluate configuration templates is stored in an SQL
database; as well as simple value expansion, template code
can be repeated for multiple database rows, and database
values can also be used as conditions and arguments to
functions. The master template is constructed from a series
of “configlets,” allowing composition of configurations. To
manage the dirty data problem, a two-step architecture al-
lows users to first supply the input data and then validate
the output.

The PRESTO tool is now in use for many applications, and
anecdotal evidence suggests that the two-step process
helped to solve the dirty-data problem. Asked whether a
better router command language would obviate the need
for such a tool, William responded that centralized control
and a multistage process to avoid dirty data would both
still be necessary, and that the use of templates allowed
network architects to select specific optimizations for dif-
ferent situations.

I N V ITE D TA L K

Exploiting Online Games

Gary McGraw, Cigital

Summarized by Jan Stoess (stoess@ira.uka.de)

Gary McGraw described the difficulties of attaining secu-
rity for online games. Because online games are distributed
programs that rely on client-side software, securing them
remains a challenging problem. Gary referred to the prob-
lem as the “trinity of trouble”: online games usually have a
permanent connection to the Internet, they are complex
entities consisting of massively distributed code, and they
typically evolve on the fly in completely unexpected direc-
tions.

Gary emphasized, however, that online games act as a bell-
wether for other distributed systems, since they have a
large and growing user community, and since they have
become a considerable economic factor. World of Warcraft,
the most widely used online game, is typically being
played by hundreds of thousands of users simultaneously.
With eight million registered users worldwide, the revenue
from subscriptions alone already adds up to $1.3 billion,
let alone the price to purchase the game itself. There also
exists a significant middle market for selling transferable

game items such as game weapons or skills. As a result,
cheating and breaking online games has an economic as-
pect, since it allows traders to shortcut the tedious acquisi-
tion of valuable items.

Gary then asked whether discussing exploits publicly was
actually a bad idea, given that it may spread abusable
knowledge, and given that people may suffer from conse-
quences for publicizing exploits, such as Dan Farmer, who
was fired by SGI for releasing the SATAN suite. Gary ar-
gued that such discussion was still necessary, because oth-
erwise the mechanisms to secure online games would be
inefficient. To his own regret, the public is interested
mostly in the breaking of systems, less so in their securing.

Gary then explained that current legislation mostly aims at
counteracting privacy rather than preventing fraud. How-
ever, game-cracking used to be a serious problem and can
nowadays easily be prevented via online verification. The
current laws are therefore inappropriate to counter online
fraud; in fact, game cheating is not even considered illegal.
As a result, game companies typically use end-user license
agreements (EULAs) with special clauses against fraud.
But EULAs are problematic, since no one really reads
them, and since many companies use egregious types of
EULAs, whose conformity with the laws is more than
questionable: Sony’s EULA allows a rootkit to be installed
on the client; Blizzard allows monitoring by means of spy-
ware; Gator even disallows the removal of the software.

Gary then again illustrated the emerging economic impor-
tance of online games: The game market is expected to
grow from $6 billion in 2005 to $12 billion by 2010.
Games have become a field of study for economists, and
there exist exchange rates converting the virtual currency
of online games into real currencies. There also exist thriv-
ing secondary markets, where game items are sold for
prices up to $100,000, and where over half a million Chi-
nese people earn regular income as game item providers,
sleeping in cots near the computer between their work
shifts.

Gary then explained how game cheats work. There are ba-
sically two kinds of techniques, exploits and bots. Exploits
leverage game bugs to induce unintended game behavior
(e.g., teleporting). Bots perform legal inputs but in an au-
tomated fashion, to allow the acquisition of game items
that would otherwise require tedious human interaction.
Simple bots inject keystrokes and mouse movements to
repeatedly perform an action until a certain skill has been
achieved. More complex tools directly read or write mem-
ory locations, inject cheating functionality into system li-
braries, or hijack the game’s system thread to call internal
functions directly. Some state-of-the art tools rely on multi-
ple cores, transparently transferring control from an un-
modified game thread to a modified instance on a different
core.

Gary outlined the way to overcome the security problems
of online games. His approach is founded on three pillars

74 ; L O G I N : V O L . 3 2 , N O . 5

that should govern the design of secure software architec-
tures: a risk management framework, software security
touchpoints, and knowledge. Software security touch-
points denote the phases and points during the software
design process where developers should think how the
system may be exploited. For further reading, Gary re-
ferred to his book, Software Security, published by Addi-
son-Wesley.

In response to a question about why one would use a dual-
core system to exploit a game rather than a kernel debug-
ger, Gary said that programming at user level was less
complex than in-kernel development. Another questioner
wondered whether virtualization could help in preventing
hacking of online games. Gary responded that this may be
the case in the beginning, but eventually there will be ex-
ploits for virtual machine systems. Finally, Gary was asked
where the name “warden” came from in Blizzard. Gary
said that it was named like this in the EULA itself.

P RO G R A M M I N G A B STR AC TI O N S F O R N E T WO R K S E RV I C E S

Summarized by Peter J. Desnoyers (pjd@cs.umass.edu)

Events Can Make Sense

Maxwell Krohn, MIT CSAIL; Eddie Kohler, University of Cali-
fornia, Los Angeles; M. Frans Kaashoek, MIT CSAIL

Maxwell Krohn presented Tame, a new programming
model for event-based applications which attempts to
combine the (relative) ease of programming associated
with thread-based models of concurrency with the power
and responsiveness of events. The primary difficulty in
event-based programming has been termed “stack ripping”
by Adya et al. (USENIX Annual Tech ’02) and was illus-
trated with an example of a simple function with several
blocking operations; putting this in event-based form re-
quired splitting it into a separate function per blocking
point, turning a five-line function into half a screen of
code. Other common operations are difficult to express
with threads; however, an example of performing multiple
blocking operations in parallel was given (with the same
function) and required a full screen of bookkeeping code.

Tame is implemented as a source-to-source translator and
a set of C++ libraries, and it provides a simple set of primi-
tives for high-performance network programming that are
designed to provide the expressiveness and performance of
events, combined with the readability of threaded code.
The four primitive types are events (e = event<>;), wait
blocks (twait{..code..}), variable closures (tvars{..decls..}),
and rendezvous objects (rv = rendezvous<>;). An event can
be triggered (e.trigger();), and a twait block will execute all
the statements within the block and then wait until all
events that were created during block execution have been
triggered. tvar is used to declare heap-based local variables
that will survive across calls to twait. Finally, rendezvous
objects provide finer-grained control over waiting. The ex-

ample given was maintaining a window of outstanding op-
erations, which could be done in a straightforward fashion
using rendezvous.

Results compared Tame with Capriccio, a high-perform-
ance thread package, measuring threaded and Tamed ver-
sions of a small Web server. Throughput was equivalent,
and Tame memory consumption was much lower (3x
physical and 5x virtual), owing to its use of a single stack.
An informal user study of usability was performed by giv-
ing students an assignment where half used Tame and the
other half libasync; Tame users averaged 20% fewer lines
of source and 50% fewer lines of header files. Tame is in
production use in OKWS, an event-based server, and on
the okcupid.com commercial Web site.

Tame was described as continuing Adya et al.’s work on
threads and events and making practical some ideas from
Haskell and Concurrent ML. Other related work included
protothreads, Duff’s device, and the porch checkpointer.
Code is available at www.okws.org, and Eddie Kohler’s
fork can be found at www.read.cs.ucla.edu/tamer.

Greg Minshall asked about several sources of possible pro-
gramming errors (functions returning at wait points and
long twait blocks). The response was that the first was no
worse than the same logic in threads, and the second was
bad programming practice. Another question elicited the
advice that it is a good idea for caller functions always to
create new events to pass to callees. Finally, Oleg Kiselyov
pointed out that Tame events were first-class delimited
continuations, which was related to some issues prevent-
ing exceptions from being used in Tame.

MapJAX: Data Structure Abstractions for Asynchronous
Web Applications

Daniel S. Myers, Jennifer N. Carlisle, James A. Cowling, and
Barbara H. Liskov, MIT CSAIL

Daniel started by explaining how AJAX applications work,
and just how dreadful the programming environment is for
creating a Web application that responds quickly to user
input by fetching server-side data. He then presented Map-
JAX, a language for this purpose implemented as a small
set of Javascript extensions, with source-to-source transla-
tion producing pure Javascript. MapJAX provides threads,
locks, and a simple map object for accessing server-side
data. In addition, for performance MapJAX includes paral-
lel for loops and integrated caching and prefetching of map
data.

The core language object is a read-only key-value map as-
sociated with a server URL, which supplies values to pop-
ulate the map. Values are retrieved on demand and cached.
In addition a user-defined prefetch method can be associ-
ated with a map to provide a list of prefetch keys based on
request history.

After describing the parallel for primitive, pfor, Daniel
pointed out problems with results being returned in arbi-

; LO G I N : O C TO B E R 2 0 0 7 CO N F E R E N C E S U M M A R I E S 75

trary order, and the difficulty of preventing this with locks
without eliminating parallelism. Instead, MapJAX provides
an RLU (reserve/lock/unlock) lock, where each loop of the
pfor can reserve a position in the lock queue and only take
the lock after the blocking call has returned. After a brief
implementation description, the remainder of the talk fo-
cused on two test applications that were implemented both
with MapJAX and manually with standard AJAX tech-
niques—a search/suggest application such as Google Sug-
gest and a map viewer modeled on Google Maps.

Network latency and several different bandwidth levels
(256 to 4096 kb) were provided by dummynet, and la-
tency results were presented. The request/response applica-
tion was very latency-sensitive, with small requests, and
AJAX and MapJAX performances without prefetching were
similar. However, prefetching gave the MapJAX implemen-
tation a significant benefit at higher bandwidths. The map
application was much more bandwidth-intensive (4.8K per
image tile). With prefetching, MapJAX performance was
similar to AJAX at low bandwidth and showed a slight im-
provement at 1 mb/s, but increased to a 20:1 difference in
latency at 4 mb/s.

Related work includes a number of libraries for AJAX de-
velopment, although none of these provides thread or
locking features. The RLU lock appears to be novel in this
work. TAME was also mentioned as being somewhat re-
lated. A number of future enhancements are planned: net-
work speed characterization and adaptive prefetching
based on this, persistent caching on the client, and muta-
ble server-side data structures.

Geoff Kuenning (Harvey Mudd) expressed the concern
that the intriguing RLU lock added another way for pro-
grammers to screw something up (locking) that was al-
ready hard enough. What if you never act on the reserva-
tion? The authors’ reply was that a wait/notify mechanism
might be possible. Mike Swift (University of Wisconsin)
asked whether they had found any painful limitations in
Javascript; they hadn’t, although there were weird imple-
mentation problems such as nested functions being exces-
sively slow.

Sprockets: Safe Extensions for Distributed File Systems

Daniel Peek, Edmund B. Nightingale, and Brett D. Higgins,
University of Michigan; Puspesh Kumar, IIT Kharagpur; Jason
Flinn, University of Michigan

Daniel Peek presented Sprockets, a system for implement-
ing extensions (such as loadable Apache modules) in a
safe fashion, unlike other user-space mechanisms, many of
which seem to require a tradeoff between performance
without safety (using dynamic loading and direct linkage
in the same address space) and safety without performance
(forking isolated processes).

Sprockets was developed to support extensions to the En-
semBlue distributed file system (e.g., to support camera

protocols and MP3 metadata). These can be implemented
by extending a user-space server, but safety was essential
to avoid corrupting the entire distributed file system. The
result is Sprockets, which uses binary rewriting to safely
run extensions within the address space of the invoking
application. Sprockets has three goals: safety, upgradability,
and speed. Extensions should only change state in the core
system via return values, and they cannot cause externally
visible effects. The system must be easy to add to, and ex-
tensions must be easy to implement. Because extensions in
EnsemBlue are often invoked very many times, the per-in-
vocation costs should be minimized.

Existing alternatives were contrasted: direct dynamic load-
ing (fast and totally unsafe), fork and exec (difficult to use
because of IPC, slow, and do not eliminate safety issues re-
sulting from system calls), and fork without exec (easier to
use, but still slow and with syscall safety issues). Sprockets
executes extensions in the invoking process address space,
with no OS intervention, using binary instrumentation. It
uses the Pin tool from Intel and the University of Colorado
(rogue.colorado.edu/pin), which dynamically rewrites code
and caches it. This allows extension code to safely call core
routines, as the core routines will be rewritten and cached
when executed as an extension.

Rewriting is used to validate system calls and their argu-
ments, and to trace memory writes to the core application
address space, keeping a log of these writes so that the
original contents can be restored. To speed up the logging
process, inline checks are added to avoid logging the
sprocket stack and other known safe areas. Sprockets
guards against the following extension bugs: memory
leaks/memory stomping (via log/restore), segfault (via sig-
nal handler), infinite loops (via timer and signal handler),
and mishandled file descriptors (a sprocket can only
read/close files it opened, which are automatically closed
when it finishes). To keep threads from seeing changes
caused by misbehaving sprockets, all application threads
are halted before entering a sprocket.

Evaluation was performed by developing and testing three
different sprockets, as well as some nonsprocket versions.
To test safety, different bugs were injected into the exten-
sions; procedural extensions caused application failure in
all cases, fork with no exec did not catch the bad system
call, and sprockets caught all of them. Measured execution
time for a single extension call was 500 to 750 ns for the
extensions tested, contrasted with 1.5–3 ms for the fork/no
exec versions of the same functionality. This was consid-
ered adequate performance for a system providing strong
safety guarantees.

The first question asked about extensions generating code.
Pin handles this and will happily rewrite and instrument
the generated code. Since Daniel mentioned that Sprockets
was not totally safe against malicious extensions, Andrew
Baumann (University of New South Wales) asked just

76 ; L O G I N : V O L . 3 2 , N O . 5

what they could do; they could try to undermine a mecha-
nism such as the undo log, and this might be preventable
with some additional checks. George Forman (HP) asked
whether a copy-on-write address space could be used for
multiple sprockets. The authors haven’t looked at this but
have considered transactional memory.

I N V ITE D TA L K

Second Life

Rob Lanphier and Mark Lentczner, Linden Lab

Summarized by Xiaoning Ding
(dingxn@cse.ohio-state.edu)

The two speakers introduced Second Life (SL) and demon-
strated its features using an SL avatar. Then the speakers
introduced the architectural changes of the distributed sys-
tem used by SL. Second Life is a metaverse or a virtual
world. The speakers emphasized that SL is not a game, al-
though users may play games in it. SL provides an engine
for users to create content in it.

SL is a big system and is still growing rapidly. To illustrate
how big the system is, the speakers gave the following
numbers. In the system, as many as 100 million SQL
queries are made each day, over 45 TB of data have been
created by the users, the peak bandwidth reaches 10 Gbps,
and 1 PB of traffic is generated each month. The big sys-
tem supports a tremendous number of activities of a large
population. SL has 7.2 million registered accounts, of
which about half a million are active residents. More than
60% of residents in SL participate in content creation. This
is very different from other platforms. For example, most
people read Web pages, but only about 10% of people cre-
ate Web content. People in SL build items, exchange items,
buy and sell items, and have a GDP of 40 million U.S. dol-
lars. SL has its own virtual currency, the Linden dollar
(L$), which is exchangeable for U.S. dollars. There are 1.9
billion Linden dollars in circulation. Some people even
make real money through the virtual world.

The primitive SL system consists of viewers, simulators, a
spaceserver, and a userserver. Viewers comprise client-side
software running on users’ computers. Simulators are
server processes running on machines called sim nodes.
Each simulator simulates one geographic region. When an
avatar moves to a new region, the sim node may be dy-
namically changed. In the architecture, spaceserver han-
dles message routings and userserver handles user logins
and instant messages. The primitive architecture was im-
proved by adopting a central mysql database and a data-
base server, which performs queries for the simulators.
The architecture also introduced an HTTP server and a
mail server to increase the functionality of SL. These two
servers, together with sim nodes and the userserver, were
connected to the central database.

The architecture currently used by SL is similar to the ar-
chitecture just described. The most important change is to
improve the scalability of the database system by cluster-
ing and partitioning. Other changes include the use of an
individual login server to handle user authentication, etc.
In the current architecture, all sim nodes are connected to
the databases. When the sim nodes are in remote physical
locations from the databases, accessing databases becomes
a performance bottleneck. Moreover, a database failure
may affect all sim nodes. In the future, the architecture
will be changed significantly, so that viewers are connected
directly to agent domains and region domains. An agent
domain includes the data storage system and computers
responsible for handling avatars, including their invento-
ries. A region domain includes the data storage system and
computers for simulating the environment and physics of
multiple regions. By using the domains, the data and com-
munications are localized and both scalability and avail-
ability may be increased.

D I STR I B UTE D STO R AG E

Summarized by Xiaoning Ding
(dingxn@cse.ohio-state.edu)

SafeStore: A Durable and Practical Storage System

Ramakrishna Kotla, Lorenzo Alvisi, and Mike Dahlin, The
University of Texas at Austin

Awarded Best Paper!

Ramakrishna presented a distributed storage system called
SafeStore, which is designed to maintain long-term data
durability practically despite a broad range of threats such
as hardware and software faults, operator errors, attacks,
and disasters. SafeStore maintains data durability by apply-
ing fault isolation aggressively. It spreads data redundantly
across multiple autonomous storage service providers
(SSPs) to prevent data loss caused by physical, geographi-
cal, and administrator faults. It restricts the interface be-
tween the data owner and the SSPs to guard data stored at
SSPs against faults at the data owner site. Outsourcing data
storage to SSPs also reduces hardware and administrative
costs by exploiting economies of scale. The challenge of
using SSPs is that the users have only limited or no control
over SSPs. To achieve high end-to-end durability practi-
cally, SafeStore uses the following techniques.

First, it spreads data efficiently across autonomous SSPs
with an informed hierarchical coding scheme. SafeStore
uses both inter-SSP and intra-SSP redundancy; that is, it
first stores data redundantly across different SSPs and then
each SSP replicates data internally. The informed hierarchi-
cal coding scheme deals with the problem of distributing
overall redundancy optimally between inter-SSP and intra-
SSP redundancies. Under the scheme it is assumed that
each SSP exposes a set of redundancy factors it supports
and the data owner can control intra-SSP redundancies by

; LO G I N : O C TO B E R 2 0 0 7 CO N F E R E N C E S U M M A R I E S 77

choosing a factor. The scheme first maximizes inter-SSP re-
dundancy heuristically, by choosing minimal intra-SSP re-
dundancies. Then it distributes the remaining redundan-
cies uniformly across intra-SSP redundancies. The heuris-
tic is based on the intuition that the durability depends
mainly on maximizing inter-SSP redundancy and is only
slightly affected by intra-SSP redundancies. The informed
hierarchical coding scheme can achieve close to optimal
durability.

Second, SafeStore performs an efficient end-to-end audit
mechanism on SSPs. The audit mechanism quickly detects
data losses at SSPs, so that data can be recovered before
unrecoverable loss happens. In the audit mechanism, the
auditor sends the SSP a list of object IDs and a random
challenge. The SSP computes a cryptographic hash on
both the challenge and the data and then sends the infor-
mation back. The auditor randomly spot-checks a portion
of the objects by retrieving the corresponding data and
verifying the cryptographic hash. SafeStore classifies SSPs
into three groups: honest and active SSPs, which verify
data integrity proactively and notify data losses; honest
and passive SSPs, which rely on audit to check data in-
tegrity; and dishonest SSPs, which may lie even if data is
lost. Regular audits detect data losses quickly with passive
SSPs and spot-checks detect dishonest SSPs with high
probability. The audit mechanism is cost-effective because
most of the audit work is offloaded to SSPs and there are
only occasional spot-checks that need data transfers for a
small subset of objects. The audit mechanism provides two
9s or better durability.

The evaluation shows that SafeStore can provide high
durability practically and economically, with cost, avail-
ability, and performance competitive with traditional
systems. More information can be found at
http://www.cs.utexas.edu/~kotla/SafeStore.

POTSHARDS: Secure Long-Term Storage Without
Encryption

Mark W. Storer, Kevin M. Greenan, and Ethan L. Miller,
University of California, Santa Cruz; Kaladhar Voruganti,
Network Appliance

Mark W. Storer presented a secure, long-term storage sys-
tem called POTSHARDS. POTSHARDS provides security
by secret splitting, instead of encryption, which is unsuit-
able for long-term storage because of the difficulties of key
management and updating cryptosystems over long time
periods.

To store data, POTSHARDS breaks the data into n pieces,
called shards, in a way that m out of n shards must be ob-
tained to recover the data and any set of fewer than m
shards contains no information about the data. Then POT-
SHARDS returns the shard IDs to the user and spreads the
shards across multiple independently managed archives.
The user maintains a private index that maps the data to
shards for fast retrievals. Keeping the index private reduces

the threat of inside attackers. To retrieve data, the user
provides shard IDs and authentication information. POT-
SHARDS requests m shards from different archives and re-
builds the data from the shards. Thus the security is en-
forced by hiding shard locations and performing authenti-
cation on multiple independent archives.

POTSHARDS uses approximate pointers to recover data
even if all indices of a user’s data have been lost. Approxi-
mate pointers point to multiple “candidate” shards that
might be the next that can be used to reconstruct the data.
Approximate pointers provide sufficient clues for users to
recover their data by trying only candidates they own.
Meanwhile, the approximate pointers greatly increase the
workload of intruders, because the intruders have to try all
the candidates. POTSHARDS also uses a secure distributed
RAID technique to provide availability and data recovery.

The performance evaluation on a prototype implementa-
tion shows that POTSHARDS can write data at 3 MB/s and
can read data at 5 MB/s, which are acceptable rates for
archiving. The throughputs were tested with 12 clients.
With more clients, POTSHARDS can achieve higher
throughputs.

Dandelion: Cooperative Content Distribution with Robust
Incentives

Michael Sirivianos, Jong Han Park, Xiaowei Yang, and
Stanislaw Jarecki, University of California, Irvine

Michael Sirivianos presented the work of Dandelion, a sys-
tem designed to provide robust incentives for cooperation
in commercial P2P content distribution with sufficient
scalability. The speaker emphasized that Dandelion is not a
distributed storage system.

Although the popular BitTorrent protocol has incorporated
tit-for-tat incentives, it does not encourage seeding and
still allows modified clients to free-ride. With robust in-
centives, Dandelion increases the network’s aggregate up-
load bandwidth by motivating clients to upload even when
they are not interested in the network’s content and by
preventing free-riding.

Dandelion builds a virtual credit system, in which a client
honestly uploading to its peer is rewarded by virtual credit
and a client obtaining the correct content is charged the
same amount of credit. In the system, credit can be re-
deemed for rewards such as discounts or monetary awards;
thus, clients are always encouraged to upload. The system
prevents free-riding because the only way a client can ob-
tain valid content and can earn credit is by paying credit or
uploading valid content, respectively. To prevent client
cheating, Dandelion uses a cryptographic fair exchange
scheme based on symmetric key cryptography, in which
the server acts as the trusted third party mediating the
content exchanges. Thus, Dandelion trades scalability for
robust incentives. To prevent Sybil attacks, Dandelion
maintains only authenticated paid accounts.

78 ; L O G I N : V O L . 3 2 , N O . 5

Michael Sirivianos and his team implemented a prototype
of Dandelion and evaluated it on PlanetLab. With a server
running on normal commodity hardware (dual Pentium D
2.8-GHz CPU and 1 GB RAM) with a moderate network
bandwidth (1 to 5 Mbps), Dandelion can support about
3000 clients downloading 256KB chunks with a rate of
256KB/s. When the network bandwidth is low (less than 4
Mbps), the bandwidth is the bottleneck. When the band-
width is high (larger than 5 Mbps), CPU is the bottleneck.
The evaluation also shows that robust incentives for seed-
ing substantially improve downloading times, especially
for small files, and the performance of Dandelion clients is
comparable to those in BitTorrent.

One member of the audience asked what the differences
between Dandelion’s and eMule’s incentive schemes are.
The presenter responded that eMule peers maintain pair-
wise credit balances and give high service priority to peers
with high credit. This in essence is a tit-for-tat scheme and
has the same weaknesses as BitTorrent’s TFT, i.e., it pro-
vides no incentives for seeding, and it is susceptible to
free-riding.

I N V ITE D TA L K

Specializing General-Purpose Computing: A New Approach
to Designing Clusters for High-Performance Technical
Computing

Win Treese, SiCortex Inc.

Summarized by Jan Stoess (stoess@ira.uka.de)

Win Treese presented SiCortex’s new approach to design-
ing clusters for high-performance computing. Supercom-
puters are often based on specialized hardware and pro-
gramming environments, which are expensive and ob-
structive to rapid innovation. General-purpose computing,
in turn, uses standard software and commodity PCs and
shows an amazing technology curve. However, commodity
PCs are optimized for desktop and server systems rather
than for the specific demands of technical computing. The
challenge is therefore to unite the best of both worlds: to
build a supercomputer that uses general-purpose hardware
and a standard programming environment but that is also
specifically designed for technical supercomputing.

Win presented a brief sketch of the history of supercom-
puting: supercomputers such as Cray, CM1, or BlueGene
are all expensive machines, each with a different program-
ming environment. They place high demands on the skills
of their users and maintainers. Also, supercomputing com-
panies tend to have a hard time generating any income. An
alternative and cheaper model is therefore to take lots of
cheap PCs and cluster them using commodity interconnect
technology such as Ethernet—as was done in the Beowulf
project. Even with optimized interconnects such as Myr-
inet or Infiniband, PC clusters are still cheaper than their
big, specialized brothers.

Typical workloads of supercomputers are climate simula-
tions, mechanical design problems, or life science simula-
tions. The applications usually run for weeks and consume
every available cycle. They tend to operate on huge data
sets in a cache-unfriendly manner, and they place high de-
mands on the communication infrastructure. Programs are
usually written in Fortran, a language that permits many
optimizations to be made during compilation. More re-
cently, Java and Python have become popular as well,
mostly because of the benefits in programming productiv-
ity.

By now, HPTC computing on PC clusters has become a
mainstream phenomenon. Sales of Linux cluster hardware
have reached $6 billion in 2006. The advantages of PC
clusters are their cheap prices for hardware, software, and
interconnects; their support for emerging software stan-
dards such as Linux, MPI, or Fortran; finally, their amazing
technology curve.

However, many challenges remain for PC-based supercom-
puting. Because PCs were originally designed for personal
computing, PC clusters often show little computational ef-
ficiency, have high power consumption, and generate a lot
of heat. Also, the parts are likely to fail and the intercon-
nect is slow. However, software development and standards
play a significant role in the overall costs of a supercom-
puter. A potential way out is, therefore, the replacement of
commodity hardware with a specialized system that still
retains support for the standard cluster programming envi-
ronment.

Win then explained how SiCortex has built such a system.
They aimed to realize a 1,000-node cluster with near-mi-
crosecond communication delay in a cabinet-sized box.
Their main design principle was “logic of power.” Lower
power consumption results in less heat, which, in turn, al-
lows components to be located closer together and inter-
connect wires to be shorter. Reduced heat also increases
the reliability, and reduced power consumption saves en-
ergy during memory stalls. Win introduced two supercom-
puters presently manufactured by SiCortex. The big model,
the SC5832, has a floating-point capacity of 5832 giga-
flops, 972 6-core nodes at 500 MHz each, 7.8 GB of mem-
ory, and roughly 2,900 interconnects. It consumes about
18 KW and fits into a 5x5x6–foot cabinet. The smaller
model, with 648 gigaflops, 108 nodes, and 2 KW power
consumption, fits into a half-width standard 19-inch rack.
The software platform consists of a standard, open-source
Linux environment with support for GCC, Fortran, MPI,
and even Emacs. SiCortex also provides an integrated Lus-
tre file system that can be used for direct-connect storage,
for external storage servers, or even for RAM-based file
systems.

Win concluded with the observation that general comput-
ing techniques and specialized knowledge on supercom-
puting applications can be mixed very well to support

; LO G I N : O C TO B E R 2 0 0 7 CO N F E R E N C E S U M M A R I E S 79

powerful and usable high-performance technical super-
computing.

Someone asked about the price of the systems, and Win
gave ballpark numbers of $200,000 for the small box and
$1.5 to $2 million for the big one. Another question was
how nodes could be replaced on a failure. Win stated that
the hardware was hot-swappable, but the system still
lacked support for software hot-swapping. He noted, how-
ever, that software hot-swapping would be straightforward
to implement. Asked how software could be ported to the
supercomputers, Win responded that single-CPU programs
would need redevelopment to exploit parallelism; other
programs can simply be recompiled for MIPS targets. Win
was asked how the system deals with multicast or broad-
cast messages. He explained that the DMA engines provide
hardware commands to build up broadcast trees efficiently.
Finally, a questioner inquired how jobs are scheduled in
their system. Win said the system ships with a job sched-
uler developed by Lawrence Livermore National Labora-
tory.

DATA A N D I N D E X I N G

Summarized by Peter J. Desnoyers (pjd@cs.umass.edu)

Using Provenance to Aid in Personal File Search

Sam Shah, University of Michigan; Craig A.N. Soules, HP
Labs; Gregory R. Ganger, Carnegie Mellon University; Brian
D. Noble, University of Michigan

Sam Shah presented a system that tracks causal relation-
ships between files in a system to improve desktop search
results. In the first part of the talk he described the ap-
proach taken in this work, comparing it with previous
work; the rest of the talk focused on results from a rigor-
ous usability study with test subjects. Google Desktop and
others use static indexing based solely on file contents;
Soules and Ganger [SOSP ’05], however, have shown that
dynamic information (patterns of use) can be used to re-
order search results and give user-perceived improvement
in search performance. In particular, provenance informa-
tion—indications of which files were referenced to create
another file—can be used to infer relations between files.

The current state of the art for this uses temporal local-
ity—that is, if read(A) is followed by write(B) within a T-
second time window, then A and B are related. This cap-
tures reading an email and then copying it into a text doc-
ument; however, it fails in a number of cases. For example,
one test user kept a CAD application open all day; using
temporal locality inferred relationships between the CAD
files and all other user activities.

The authors instead use causal relationships—A and B are
associated if read(A) and write(B) occur in the same
process, or in two processes with an IPC path during the
intervening interval. Each approach handles some cases
better than others. These relationships are used to create a

DAG (Directed Acyclic Graph) with edges weighted by the
number of relationship events seen, and then a breadth-
first traversal method is used to redistribute relevance
weights returned by static search, resulting in a new
weighting used to order results for the user. Measurement
of both causal and temporal relationships was imple-
mented on win32, using binary rewriting to interpose be-
tween applications and the file system. The search applica-
tion was based on Google Desktop, using the GDI API
with provenance-based reordering of results.

Shah discussed why a typical corpus-based approach to
measuring precision and recall, as used in many informa-
tion retrieval studies, was not appropriate to this applica-
tion. Instead, a real user study over a period of time was
needed. A full randomized controlled trial would be best
but would require too many (300) subjects. Instead, four
techniques (content-only, temporal locality, causality, and
randomizing the results from content-only) were com-
pared against each other using a repeated measures experi-
ment. Twenty-seven non-CS undergraduate test subjects
used the search system for a month, and all queries were
recorded. In a single test session afterward, seven success-
ful queries were chosen (i.e., the user selected at least one
result). For each query the results of the four search algo-
rithms were presented side by side, and the user rated each
on a scale of 1–5.

Causal relationship–enhanced search was found to be rated
somewhat better (17%) than temporal-enhanced search,
temporal was statistically indistinguishable from content-
only search, and randomized results were 36% worse. Shah
speculated that the reason for the superiority of the causal
approach was its improved handling of noise—it added
fewer false relationships. Finally, some performance results
of the tracing overhead and search overhead were given;
they were not sizable but could use some tuning.

Sam closed by expressing the hope that this work would
inspire the OS community to consider user studies in their
own work. He stated that it really wasn’t that painful and
that there were many important insights to be gained.

The first question dealt with trace overhead; more efficient
methods evidently exist and could be used, with some ef-
fort. Another questioner asked about the similarity to Web
search and whether this algorithm would apply there or
page rank would apply here. Sam pointed out that page
rank is based on links that are deliberately created,
whereas this system infers links automatically. Terrence
Kelly asked why there aren’t many proper controlled user
studies; the perception is that it’s hard and that the IRB is a
barrier. Sam stated that it isn’t very painful, but that if you
can get work published with poor studies, there’s little in-
centive for good ones. Mike Abbot asked what happens if
you combine causality and temporal relationship; this is a
topic for future work.

80 ; L O G I N : V O L . 3 2 , N O . 5

Supporting Practical Content-Addressable Caching with
CZIP Compression

KyoungSoo Park and Sunghwan Ihm, Princeton University;
Mic Bowman, Intel Research; Vivek S. Pai, Princeton University

KyoungSoo Park presented CZIP, which uses a compres-
sion scheme based on content-based naming, where blocks
of data are referred to by hashes of their contents. This al-
lows for redundancy elimination, as the same block of data
may be incorporated by reference in multiple locations or
multiple files. It is used in a number of systems, including
LBFS, VBWC, Venti, and others. CZIP defines a format for
encoding and decoding files using content-based naming,
as well as components to easily add this functionality to
existing or new applications.

A number of uses for content-based naming were de-
scribed: file distribution (e.g., a Linux release, where the
contents of the CD ISOs are duplicated in the DVD ISO);
virtual machine (VM) images (e.g., migration), where the
base OS is identical across machines, and uncacheable Web
content, which typically changes slowly and in portions.

CZIP splits a file into chunks, using either a fixed chunk
size or Rabin’s fingerprint, hashing the chunks, and then
representing the file by the sequence of chunk hashes plus
the chunks (possibly compressed) themselves. In network
applications CZIP can be deployed on the server side, the
client side, or both. On the server side, CZIP can either be
used to compress files or for in-memory caching only; on
the client (or proxy) side a range request can be used to
read the header of a CZIP-encoded file, and then only
those chunks not already cached need be retrieved.

CZIP compressed the Fedora Core 6 release by a factor of
2; because of duplication between CD and DVD ISOs,
bzip2 achieved no compression. On data without duplica-
tion (the Wikipedia DB) CZIP gave no compression,
whereas bzip2 gave 4x compression. Apache and MySQL
server VM images showed high overlap (compressibility)
with most parameters, and five VMs used as engineering
desktops for three weeks showed very high (96%–99%)
overlap. Finally, samples taken every 30 minutes of a num-
ber of dynamic Web pages (Google News, CNN, others)
showed data savings of 37% to 90% with CZIP. A CZIP-
aware Apache server serving the Fedora Core 6 distribu-
tion to 100 clients achieved a memory savings of a factor
of 2, resulting in higher throughput as the compressed
working set fit within physical RAM. A content distribu-
tion network (CDN) based on Codeen was shown to de-
crease origin server bandwidth used to one-quarter that of
the non-CZIP version.

A CZIP release at http://codeen.cs.princeton.edu/czip
should be available soon.

Terrence Kelly asked why the authors claim that this tech-
nique can avoid a round-trip delay compared to duplicate
transfer detection (DTD); evidently DTD needs another
RTT to check the checksum, whereas CZIP can avoid the

delay if it expects and gets redundancy. Jason Flinn asked
how useful CZIP is for an individual client, and whether
there were any numbers for its effect on client latency. Al-
though the server gets more benefit, clients could still ben-
efit, and experiments to measure client latency haven’t
been performed yet.

Short Paper: Implementation and Performance Evaluation of
Fuzzy File Block Matching

Bo Han and Pete Keleher, University of Maryland, College
Park

Bo Han presented an evaluation of fuzzy file block match-
ing, an extension to content-addressable storage for effi-
ciently representing small updates to files. Instead of iden-
tifying each block by a single hash, and only substituting
exact matches, a hash vector that can be used to measure
block similarity is produced for each block; error-correct-
ing codes may then be used to “correct” a similar block to
create the desired block. This extends work by Tolia et al.
(USENIX ’03) by providing a replicatable implementation
and performance evaluation.

Files are chunked via Rabin’s fingerprint, and then each
block is described by a “shingleprint.” These are computed
by taking a sliding m-byte window within the block, start-
ing at each byte offset and hashing that window, and then
subsampling the resulting set of hashes by taking the S
hashes with the smallest numerical values. The fuzzy
matching algorithm declares two blocks to be similar if
their prints share T out of S values. An ECC code for each
block is then generated by using a 255/223 Reed-Solomon
code on small parts of the block. Finally, a possible archi-
tecture for using fuzzy matching to maintain and update a
cache was described.

Experiments were performed using the GNU Emacs source
tree versions 20.7 through 21.4, counting how many files
in version N+1 could be recovered from version N plus
ECC information for version N+1. These experiments were
performed for a number of different parameters, including
the sliding window size and the ECC organization.

Related work includes Venti, which uses hashes as block
IDs, REBL, which uses super-fingerprints, TAPER, which
uses Bloom filters, and LBFS. Bo concluded by saying that
the main advantage of fuzzy matching is the possible sav-
ings of network bandwidth and that more experiments
with expanded data sets, ECC codes, and parameter com-
binations were needed, as well as integration of fuzzy
matching into an existing distributed file system.

Terrence Kelly asked whether any evaluation of the effec-
tiveness of this proposal in the wide area would be difficult
because of the need for traces of both requests and replies.
Bo replied that they had only looked at the local version;
future work might examine this, and in that case it might
well be an issue. To a question about hash collisions and
security Bo replied that these may need consideration in
the future as well.

; LO G I N : O C TO B E R 2 0 0 7 CO N F E R E N C E S U M M A R I E S 81

I N V ITE D TA L K

Live Malware Attack!

Paul Ducklin, Sophos

Summarized by Jan Stoess (stoess@ira.uka.de)

Paul Ducklin presented a demonstration of how typical
malware exploits a computer system, and how a malware
analyst can find out the nature and behavior of such mal-
ware. Since malware usually relies on Internet access, an
analyst must provide a “simulated Internet” environment
that causes the exploit to install and activate itself but also
allows monitoring and inspection of how the exploit pro-
ceeds.

Paul presented such a “deductive and analytical” inspec-
tion environment, which consisted of two virtual comput-
ers running within the QEMU simulator on his host lap-
top. The first virtual computer contained a Windows in-
stallation acting as the client, and the second hosted a
Linux instance establishing the “simulated Internet.” The
simulation consisted of a set of tools providing standard
services such as DNS, HTTP, and Mail in a way that client
requests could be monitored and transparently rerouted to
services or files in the control of the malware analyst.

Paul then installed a sample malware program in the Win-
dows client. The program exploits a bug in the library
code processing Windows Meta Files (WMF). The mal-
ware attack occurs via a WMF file embedded in a Web
page. Since the library routine does not check for over-
flows during retrieval, it also copies the malware program
on the stack; it then overwrites the stack return address to
activate the malware code.

Paul then proceeded to inspect the code within the file. It
turned out to be scrambled, and no additional knowledge
could be inferred without installing it into memory. Paul
therefore downloaded the malware again, but this time he
ran the browser within a debugger. In addition, he modi-
fied the malware’s source code to trap into the debugger
after activation. Paul could then single-step the code, to
observe that the next steps would be to download a Trojan
horse rootkit via a SOCKS proxy. Paul executed that root-
kit together with a file system call monitor; he could there-
by determine whether the rootkit had installed itself into
several new files but had also hidden itself from inspection
in the file system.

Paul ended his enjoyable presentation by demonstrating
how the rootkit actually stashed itself. For that purpose,
Paul attached WinDbg, a local kernel debugger, to the
client Windows installation. The malicious driver had
changed the Windows system call table to transparently
rewrite file system access calls in such a way that they
would ignore the newly generated files containing the
rootkit code.

SYSTE M S E C U R IT Y

Summarized by Francis David (fdavid@uiuc.edu)

From Trusted to Secure: Building and Executing Applications
That Enforce System Security

Boniface Hicks, Sandra Rueda, Trent Jaeger, and Patrick
McDaniel, Pennsylvania State University

Boniface Hicks started by pointing out that mandatory ac-
cess control (MAC) works well for naturally separated
processes. Several operating systems use MAC to restrict
the flow of information between processes based on secu-
rity levels. Unfortunately, there are several applications
that defy classification at a security level and are marked as
“trusted” and are allowed complete access to the system.
An example of such an application is a log rotation server
that needs to rotate logs for multiple applications at differ-
ent security levels. The goal of this research is to allow
MAC policies to be enforced within applications as well, in
order to prevent their circumvention by compromising a
trusted application.

To enforce system security policies within applications,
Boniface proposes the use of security-typed languages. An
operating system service called SIESTA has been designed
and built that can enforce SELinux security labels at com-
pile time within applications written in the Jif security-
typed language. The security labels used by the operating
system are tracked within the application and the language
ensures that information flows are in compliance with the
MAC policies. Declassification or downgrading the secu-
rity level of an information flow is also allowed if it is
specified in the policy.

A secure logrotate service and a secure email client were
written to demonstrate this concept. Experiments show
that the performance of these secure applications suffers
some deterioration when compared to native applications.
This overhead is close to 100% for logrotate. Boniface
mentioned that this may be because the Jif code was not
optimized. In his response to a question, he noted that the
system does not avoid covert channels.

From STEM to SEAD: Speculative Execution for Automated
Defense

Michael E. Locasto, Angelos Stavrou, Gabriela F. Cretu, and
Angelos D. Keromytis, Columbia University

Michael Locasto said that self-healing systems are needed
because typical computer defense systems crash the
process that is being protected during an attack. Self-heal-
ing systems provide a less drastic approach to recovering
from an attack. This work extends and addresses some
shortcomings of their previous system for self-healing,
which was called STEM. The new system provides self-
healing capabilities for unmodified binaries without the
need for source code. In STEM, every function is treated as
a transaction that is speculatively executed. Error codes are

82 ; L O G I N : V O L . 3 2 , N O . 5

returned when a problem is detected. The SEAD system
improves on this design by utilizing binary rewriting to
avoid source code modification and recompilation. It also
supports repair policies to customize an application’s re-
sponse to an attack. Virtual proxies are used to ameliorate
the output commit problem, and process behavior profiles
can be created on aspects of data and control flow.

Repair policies can be used to perform better error virtual-
ization and avoid returning incorrect return values. They
also support memory rollback for aborted transactions and
forced modifications to memory. Another advantage of
using repair policies instead of generating and deploying
new code is that a policy can easily be switched off if it
turns out to be incorrect.

Performance evaluations show that although the system
does not have a human-discernable impact when applied
to regular applications, there is a rather significant impact
on an application’s startup time. As part of future work,
Michael is looking at ways to automatically generate repair
policies.

Several members of the audience pointed out that software
vulnerabilities will still exist after the system self-heals and
suggested that it might be better just to fix the code than
to fix bad code with policies. Yet another limitation that
was pointed out was that it is not easy to decide upon the
meaning of return values when there is no access to source
code.

Dynamic Spyware Analysis

Manuel Egele, Christopher Kruegel, and Engin Kirda, Secure
Systems Lab, Technical University Vienna; Heng Yin, Carnegie
Mellon University and College of William and Mary; Dawn
Song, Carnegie Mellon University

Manuel Egele began his presentation by noting that spy-
ware is a growing threat to Internet users. Browser Helper
Objects (BHOs) are widely used to implement spyware and
are the focus of this work. Detection of such spyware
using signature-based techniques misses newer spyware,
and behavior-based techniques are required to detect them.
The system described in the presentation tracks the flow of
sensitive data through the system and observes the behav-
ior of BHOs. For example, URLs that are typed in are con-
sidered sensitive information; the system checks for BHOs
that misuse this information. The system provides compre-
hensive reports about file, network, IPC, and OS actions.

QEMU was modified to enable the tracking of data and
control dependencies. The control dependencies tracking
approach makes use of a control flow graph generated
from disassembled instructions. A browser session of a
user is prerecorded and this captured session is replayed
for analysis of spyware behavior. Experiments show that
the system is effective at detecting and presenting an
analysis of several spyware samples. It was also able to
detect a spyware sample that was not detected by several

commercial products. Manuel noted that running the
analysis using the QEMU emulator caused a factor-of-10
slowdown in execution.

I N V ITE D TA L K

LiveJournal’s Backend Technologies

Brad Fitzpatrick, LiveJournal

Summarized by Peter J. Desnoyers (pjd@cs.umass.edu)

Brad Fitzpatrick described the process of evolving the
LiveJournal implementation from the college hobby proj-
ect for college and high school friends in 1999 to the sys-
tem it is today, with over 10 million accounts. Slides for
this talk (or at least equivalent talks) are available at
http://www.danga.com/words.

LiveJournal combines blogging, forums, social networking,
and aggregation. In its current form it includes the follow-
ing open-source components, all of which evolved as the
system scaled: memcached, mogilefs, perlbal, gearman,
theschwarz, djabberd, and openid.

Brad started by discussing scaling, and in particular he said
that the absolute speed of a solution isn’t as important as
whether it scales linearly—does it run 2x or 10x as fast
when you use 2x or 10x as many servers? If not, you’ll
reach a point where you have to restructure the system to
grow, which they did several times.

LiveJournal started out on a single machine with Apache
and MySQL, and it worked fine until it got slow. The
Apache and MySQL servers were split onto two machines,
which created two points of failure and soon became CPU-
bound on the Apache machine. This was replaced by three
servers with load balancing—a number of solutions were
used, but none was completely satisfactory.

Then it became I/O-bound on the MySQL server, which
was split in two with MySQL replication. This scaled to
twelve mod_perl (application) machines and a MySQL
master with six slaves. Then database writes became the
bottleneck: Each read was handled on one MySQL ma-
chine, but writes were broadcast to the cluster, so all the
MySQL machines were spending all their time writing.

This problem was solved by partitioning the database.
Users map to one of a number of high-availability MySQL
clusters, with a single global master and slave for nonuser
metadata. Each cluster is a high-availability pair using the
DRBD network block driver for shared storage, plus slaves
to add more read capacity.

In the rest of the talk Brad described the components they
had developed.

Memcached is a single cache for everything, running
wherever there is spare memory. It presents a simple dic-
tionary data type with a network API, and the server for a
particular data item is determined by hashing. The main

; LO G I N : O C TO B E R 2 0 0 7 CO N F E R E N C E S U M M A R I E S 83

problem is that you can’t add or remove servers at runtime
without rehashing everything, but this has been solved re-
cently by using consistent hashing.

Perlbal is a “fast, smart, manageable HTTP Web
server/reverse proxy/load balancer.” It has two key fea-
tures: internal redirects, allowing a backend to hand-work
(e.g., serving a large file) back to perlbal without the user
seeing a redirect, and verification of backend connections.

Mogilefs is a simple read-mostly replicated file system,
which, like memcached, can be deployed wherever there
are resources.

Gearman is a distributed job/function call system. Workers
register functions they implement, and callers invoke with
function and arguments encoded as simple strings. Among
the uses mentioned were database connection pooling and
keeping large libraries (e.g., ImageMagick) out of the
mod_perl processes that needed to invoke them.

Theschwartz is sort of like gearman, but instead of being
lightweight and unreliable (i.e., the caller has to wait and
retry if necessary), theschwartz is reliable and can be used
to schedule something and forget it, such as sending email
after updating a page.

Djabberd is needed because the other XMPP servers
weren’t flexible enough to integrate closely with the rest of
LiveJournal (e.g., automatically use the existing LiveJour-
nal user picture as an avatar). It’s lightweight and just
about every function can be hooked.

Ted Ts’o asked several operations questions: Brad guesses
they have 150–200 machines, they still run memcached
anywhere there’s spare memory, and they put disks into
netbooting Web nodes for mogilefs, and both practices
drive operations batty (a recurring theme). They only have
a single data center, but they are expanding into another in
Oakland. In response to a question from Simson Garfinkel
about their multiday outage in 2005, Brad pointed out that
geographic redundancy is much harder and more expen-
sive than redundancy within the same facility.

Although the operations people are scared of it, they use
virtualization (Xen), especially to isolate applications that
might “explode” and use too much memory (ImageMagick
again). Configuration was originally generated from a sin-
gle YAML file; it is being migrated to cfengine. Failures
were discussed; a surprising number were due to other
customers at the same facility pressing the Big Red Button.
This brought up the issue that it’s hard to get a storage
stack to sync properly; for example, often even with bat-
tery-backed RAID cards the disks are running in write-
back mode, and data the DB thinks is committed will be
lost if power goes out.

C LO S E TO TH E H A R DWA R E

Summarized by Andrew Baumann (an-
drewb@cse.unsw.edu.au)

Evaluating Block-level Optimization Through the IO Path

Alma Riska, Seagate Research; James Larkby-Lahet, University
of Pittsburgh; Erik Riedel, Seagate Research

Optimizations in the disk IO path are traditionally thought
to be more effective at high layers (such as the file system)
where more semantic information about requests is avail-
able. However, with advances in modern disk hardware al-
lowing implementation of complex optimizations such as
request reordering, this work presented by Alma Riska
evaluates the impact of performing optimizations at the
disk level. The approach used is based on measurements of
the Postmark benchmark and kernel compiles on Linux,
with variations in the file system, IO scheduler, and disk
drive (with each of the drives used supporting request re-
ordering).

Results show that higher in the IO path, at the file system
and IO scheduler, the focus should be on optimizing the
amount of disk traffic. The best-performing file systems
and IO scheduler algorithms were those that achieved bet-
ter rates in IO workloads. Lower in the IO path, the focus
is on reordering and coalescing requests, which is most ef-
ficiently performed at the disk level.

One particularly interesting result was that under write-
back caching, which is generally assumed to perform bet-
ter than write-through caching, increasing the queue depth
yields inconsistent performance. Under high load the disk
queue fills up, causing more requests to block at the device
driver, which is unaware of the disk’s queue. Write-
through caching with queuing and reordering performs as
well as write-back without queuing, and it doesn’t suffer
from reduced reliability in the case of power failures.

One audience member observed that an advantage of
write-back caches was the ability to merge repeated writes;
however, Alma noted that previous work at the 2006 con-
ference had shown that repeated writes were extremely
rare. She also acknowledged that the performance of write-
through and write-back caching was only equivalent in re-
gard to throughput and that the response time for write-
through caches would be higher.

DiskSeen: Exploiting Disk Layout and Access History to
Enhance I/O Prefetch

Xiaoning Ding, Ohio State University; Song Jiang, Wayne State
University; Feng Chen, Ohio State University; Kei Davis, Los
Alamos National Laboratory; Xiaodong Zhang, Ohio State
University

Xioning Ding presented this work on DiskSeen, a prefetch-
ing scheme that uses knowledge of the disk layout and ac-
cess history information to improve on the performance of

84 ; L O G I N : V O L . 3 2 , N O . 5

traditional file-level prefetching, which can incur nonse-
quential accesses and thus result in excessive seeking.

DiskSeen operates below the file-system level, maintaining
a disk block table storing the access history of logical
block numbers, which it uses to detect sequences for
prefetching. Two types of prefetching are supported: se-
quence-based prefetching, which occurs when eight or
more contiguous blocks are accessed, and history-aware
prefetching, which uses the disk block table to detect and
prefetch historic access trails that may not be contiguous.

A performance evaluation of DiskSeen in Linux shows that
it reduces the time taken for repeated runs of prefetching-
friendly applications by 20%–50%. The time for the first
run of each application is also improved, but not as much,
owing to the lack of history trails in the disk block table.
The performance improvement is greatest for applications,
such as CVS, that access multiple areas of the disk and
thus have the greatest seek overhead. One TPC benchmark
degraded by 10% with DiskSeen; however, the authors
plan to fix this problem with dynamic adjustment of the
timestamp threshold.

Short Paper: A Memory Soft Error Measurement on Produc-
tion Systems

Xin Li, Kai Shen, and Michael C. Huang, University of
Rochester; Lingkun Chu, Ask.com

This study, presented by Xin Li, looked at the frequency of
soft errors, which are transient hardware errors in memory
caused by environmental factors. Previous studies have
suggested error rates in the range of 200–5000 failures in
time (FIT) per megabit; however, there are no results for
modern hardware in a production environment.

This study used several data sources: a server farm at
Ask.com, a number of desktops at the University of
Rochester, and nodes on PlanetLab. Results for the
Ask.com servers were collected from ECC memory error
statistics; results from the other machines were collected
by a user-level application that attempted to detect mem-
ory errors by writing a pattern in memory and checking it
for errors. In total over 300 machines were used; however,
the 70 PlanetLab nodes were only able to allocate 1.5 MB
of free memory in which to look for errors.

The only transient errors found were two in the Ask.com
server farm. This corresponds to an error rate orders of
magnitude lower than previously reported. The study also
unintentionally found some permanent errors (nine errors
in the 212 Ask.com machines). The authors conclude that
the actual transient error rate is much lower than previ-
ously reported, and they speculate that this is due to
changes in hardware layout and a reduction in chip size.
Future work includes further data collection, identifying
error modes that can escape hardware protection, and
studying how real software systems will be affected by
such errors.

I N V ITE D TA L K

MapReduce and Other Building Blocks for Large-Scale Dis-
tributed Systems at Google

Jeffrey Dean, Google

Summarized by Jan Stoess (stoess@ira.uja.de)

Jeffrey Dean gave a presentation on how Google manages
access to the billions of documents available on the Web
and via other Google-provided services such as email, per-
sonal files, its closed database system, broadcast media,
and print services.

Jeffrey explained that his company faces an ever-increasing
computational need, which is driven mainly by three fac-
tors: (1) more queries, from more people using Google and
using them more frequently; (2) more data from the grow-
ing Web community and from new products; (3) the need
for better search results (finding the right information and
finding it faster). Jeffrey then presented three software
projects Google has developed to address the increasing
computational requirements: GFS, MapReduce, and
Bigtable. Following the hardware design philosophy of
Google, the software systems run on a very large number
of commodity machines, which offer a good
price/performance ratio.

The large number of nodes and the huge amount of data
lead to unique requirements for the file system. Google has
therefore developed its own distributed file system, named
GFS. Since Google has control over all applications, li-
braries, and the operating system running on its machines,
it can optimize access to the file system on all levels. A
GFS setup consists of a master server holding the metadata
and multiple chunk servers holding the actual data. Each
file is broken into chunks of 64 MB, each of which is
stored redundantly on multiple chunk servers. The chunk
servers use a standard Linux file system. Currently, Google
stores more than five petabytes of data using GFS.

For processing the data, Google has developed a special
programming environment called MapReduce. A MapRe-
duce program consists of a map function and a reduce
function. The map function extracts relevant information
from each input record and stores it as key/value pairs.
The reduce function then aggregates the intermediate val-
ues, for instance by means of a hash function. As a simple
example, Jeffrey explained how the word frequency of an
input text can be determined with MapReduce. In this case
the map function splits the input at spaces and has the
value “1” for each word. The reduce function sums all val-
ues that have the same key. The MapReduce environment
is implemented as a library that deals with most of the
technical aspects such as the highly parallel and distrib-
uted execution of the algorithm, or the reading and writ-
ing of data. It thus drastically reduces the programming ef-
fort and lets MapReduce users focus on their real goals.
The MapReduce implementation is optimized to be fast,

; LO G I N : O C TO B E R 2 0 0 7 CO N F E R E N C E S U M M A R I E S 85

robust, and scalable; it has been used for many Google ap-
plications such as Google Ads, Froogle, Google Earth, and
Google News. As of June 2006, Google had developed
more than 6000 MapReduce programs.

Finally, commercial database management systems do not
perform well with the amount of data Google has to man-
age. Commercial systems also have high licensing costs.
Furthermore, the special nature of the stored data and the
way of processing it allow for several simplifications and
optimizations compared to full-featured database manage-
ment systems. Google has therefore implemented its own
database management system, called Bigtable. The basic
data model of Bigtable is a distributed multidimensional
sparse map. Each cell is identified by a (row, column, time-
stamp)-triple. A Bigtable for Web pages, for example, can
hold different properties (column) of a Web page located
at a specific URL (row), using multiple versions (time-
stamp). Bigtable is used for several Google products, such
as its Web search and Google Earth.

For more detailed information, Jeffrey referred to
http://labs.google.com/papers.html, a page featuring one
paper for each of the three presented technologies.

N E T WO R K E D SYSTE M S

Summarized by Xiaoning Ding (dingxn@cse.ohio-state.edu)

Addressing Email Loss with SureMail: Measurement,
Design, and Evaluation

Sharad Agarwal and Venkata N. Padmanabhan, Microsoft
Research; Dilip A. Joseph, University of California, Berkeley

The paper addresses the silent email loss problem. In the
paper, a silent email loss is defined as the case in which an
email is never received by the intended email recipient but
neither the sender nor the intended recipient is notified of
the loss. Sharad Agarwal first presented the results of their
measurements on email losses, and then presented their
design of SureMail. SureMail augments the existing SMTP-
based email system by notifying the intended email recipi-
ents about email losses.

Sharad Agarwal and his team performed an experiment to
understand how often legitimate user emails were lost. In
the experiment, many email accounts were used to send
and to receive emails over several months. Then the sent
emails and the received emails were matched to check
email losses. The measurements show a silent email loss
rate ranging from 0.71% to 1.02% and a total email loss
rate ranging from 1.82% to 3.36%. They also compared the
email loss rates for two normal msn.com accounts and two
msn.com accounts with content filters disabled and found
that the accounts with disabled content filters have much
lower loss rates. This indicates that the majority of losses
were from content filters.

Because the measurements show that the existing SMTP-
based email system works most of the time, SureMail is de-
signed, not to replace the existing system, but to augment
it with a separate notification mechanism. A notification is
a short, fixed-format fingerprint of an email. When an
email is sent, the notification is also delivered via an in-
band channel or an out-of-band channel. The in-band
channel uses email headers, and the out-of-band channel
uses separate services such as DHT, Amazon S3, or dedi-
cated notification servers. To prevent spoofing by spam-
mers, SureMail uses a reply-based shared-secret scheme.
The scheme sets up a shared secret based on an email and
its reply between two correspondents, and it uses the
shared secret to authenticate the notifications.

The evaluation on the out-of-band channel shows that
99.9976% of notifications can be delivered successfully at a
very low incremental cost.

Wresting Control from BGP: Scalable Fine-Grained Route
Control

Patrick Verkaik, University of California, San Diego; Dan Pei,
Tom Scholl, and Aman Shaikh, AT&T Labs—Research; Alex C.
Snoeren, University of California, San Diego; Jacobus E. van
der Merwe, AT&T Labs—Research

Patrick Verkaik presented the design and implementation
of IRSCP (Intelligent Route Service Control Point), which
is an architecture enabling flexible route control for inter-
domain traffic without changing existing ISP infrastruc-
ture. IRSCP is the follow-up work on RCP.

In the IRSCP architecture, a route control application uses
external information, such as network condition, to guide
the route selection process in IRSCP. IRSCP communicates
the selected routes to the routers in the ISP network and
in the neighboring ISP network. The route control applica-
tion works at relatively slow rate. To enable IRSCP to
failover instantly in case a route for egress link fails, the
route control application provides IRSCP with an explicit
ranking of egress links for each ISP router. To prevent for-
warding anomalies caused by inconsistent rankings, such
as deflection and looping, IRSCP enforces two simple con-
sistency constraints on the rankings. In a large ISP, IRSCP
communicates with many thousands of routers, and it is
responsible for route decision for each ISP router. There-
fore, IRSCP must be robust and scalable. The paper ad-
dresses the problems by partitioning and distributing the
IRSCP functionality across multiple IRSCP servers.

Patrick Verkaik and his team evaluated IRSCP by connect-
ing IRSCP to an emulated ISP. The results show that IRSCP
is capable of managing the routing load of a large ISP. In
response to a question about whether converging could be
a problem, Patrick Verkaik replied that IRSCP converges
quickly.

86 ; L O G I N : V O L . 3 2 , N O . 5

A Comparison of Structured and Unstructured P2P
Approaches to Heterogeneous Random Peer Selection

Vivek Vishnumurthy and Paul Francis, Cornell University

Vivek Vishnumurthy talked about the heterogeneous peer
selection problem in structured and unstructured P2P net-
works. Heterogeneous peer selection means that peers
with higher capacities should be selected proportionately
more often. To support heterogeneous peer selection,
Vivek and Paul implemented Swaplinks (published at Info-
com 2006) for unstructured P2P networks and adapted
Bamboo DHT, using their extensions to the Karger/Ruhl
load-balancing algorithm for structured P2P networks.
Then they compared the performance of Swaplinks and
the adapted Bamboo DHT (called KRB) in making hetero-
geneous selections based on capacities.

The basic idea of Swaplinks is to build a random graph, in
which each node tries to keep its degree proportional to its
specified capacity. Thus the unbiased fixed-length random
walks on the random graph result in the desired selection
probability. The basic idea of KRB is to adjust peers’ ID
spaces dynamically based on their loads and their capaci-
ties, so that all the peers have close relative loads. The rela-
tive load of a peer in KRB is its load divided by its capacity.

The authors tested Swaplinks by emulating a 1000-node
P2P network on 20 CPUs and evaluated KRB by simulat-
ing a same-scale P2P network. Three conclusions were
drawn from the comparison: (1) Swaplinks makes more
accurate selections than KRB does; (2) KRB’s performance
approaches Swaplinks only under low churn and moderate
capacity distribution; (3) KRB is sensitive to parameters,
and it is harder to set optimal values for the parameters in
KRB than in Swaplinks.

I N V ITE D TA L K

Perfect Data in an Imperfect World

Daniel V. Klein, Consultant

You can find a summary of Dan’s talk in the April 2007
issue of ;login:, in the summaries of LISA ’06.

K E R N E LS

Summarized by Rik Farrow (rik@usenix.org)

Transparent Checkpoint-Restart of Multiple Processes on
Commodity Operating Systems

Oren Laadan and Jason Nieh, Columbia University

Oren Laadan explained that modern applications consist of
multiple processes, so we need a method for capturing
global state. This mechanism should be transparent for
both applications and sysadmins to use, and it should also
not require kernel modifications. Current approaches use
modified libraries (an incomplete solution), modified ker-
nels (which is invasive and difficult to maintain), and the

use of hypervisors (which implies adding an OS layer and
more overheard).

Their approach uses a loadable kernel module that virtual-
izes just the set of processes to be checkpointed, called a
POD, or PrOcess Domain. A POD has a private virtual
namespace and is decoupled from the OS. Checkpointing
uses auxiliary processes with COW (Copy On Write) and
buffers that hold data until it can be committed. Check-
pointed processes can have their data filtered to compress
it, transform data for another OS version, or adjust data
structures. Quiescing a process can be done with SIGSTOP,
forcing a known state with minimal stack synchronization.
A Process Forest is the set of dependent processes, related
either via a parent process or through shared resources all
within the same process group.

Oren showed sample output of the DumpForest algorithm,
which includes information on dead processes as an arti-
fact of the design. He compared the performance of Check-
point to OpenVZ and XEN, showing that checkpoint and
restart times were 3 to 55 times faster than OpenVZ and 5
to 1100 times faster than Xen. Checkpoint times, at 100
ms, were fast enough not to be noticed by a human being.

Warner from Google said that he had worked with check-
point in the early 1990s and wondered about network con-
nections in flight, files, and the fact that some processes
expect to see the same PIDs after restoration. Oren an-
swered that PIDs are virtualized, isolated via POD, so they
don’t change. Filesystem issues are addressed using filesys-
tem snapshotting technology. Network connections that
are inside the POD are easy to handle. For those outside
the POD, we do have a way to move connections if the lag
time is short. We can even restart connections on the other
side transparently. Someone else asked why the perform-
ance is so different than that with the OpenVZ approach.
Oren said they were surprised and puzzled too. In restart,
OpenVZ was always 1 second longer in OpenVZ. For
checkpoint time, they think that teardown and freezing
takes longer. They can freeze a process in 1–3 ms. Phil
Pennock of Google asked what security analysis had been
done and the implications for SUID programs. Oren
replied that you have to trust the image that you are
restarting.

Reboots Are for Hardware: Challenges and Solutions to
Updating an Operating System on the Fly

Andrew Baumann, University of New South Wales and
National ICT Australia; Jonathan Appavoo, Robert W. Wis-
niewski, Dilma Da Silva, and Orran Krieger, IBM T.J. Watson
Research Center; Gernot Heiser, University of New South
Wales and National ICT Australia

Andrew Baumann presented this paper about dynamic up-
dates to the K42 operating system. Previous work exists
for applications but is unsuitable for an OS because of low-
level languages and concurrency issues in the kernel. They
enabled dynamic update by using modularity in the ker-

; LO G I N : O C TO B E R 2 0 0 7 CO N F E R E N C E S U M M A R I E S 87

nel, in contrast to prior work (DynAMOS and LUCOS)
that applies patches by rewriting code on the fly, or Auto-
POD, which uses virtualization. This work fits somewhere
in the middle and uses modules to focus on maintenance
changes.

K42 is a scalable research OS that supports Linux API/ABI,
is object-oriented, and has each resource managed by a set
of object instances. All objects go through an object transla-
tion table (pointers) that allows substitution of objects on
the fly. A dynamic update is just a series of hot swaps, but
you need to replace every module affected. The previous
work on K42 would allow some updating via hot-swapping,
but not those that include changes to interfaces. A total of
58% of changes affect interfaces in K42. They looked at sta-
ble kernel releases of Linux kernels and saw that more than
half of the changes affected interfaces as well.

To support dynamic updates, you write an adaptor that can
rewrite calls via the old interface to support new function
parameters. In testing, the adaptor has 220 cycles of over-
head. First, you update the provider object with an adaptor,
then update the clients of that object so that they use the
new interface, then remove the adaptor. This only works
for backward-compatible changes and accounts for about
80% of the changes to the K42 kernel over its history.

Someone asked, What about the remaining 20% of the
changes? Andrew answered that outside of module code,
such as low-level exception handlers, you can’t use this
technique. But sometimes you can move the change to a
module instead of outside one. Applying a patch produced
a drop of 10% while running ReAIM throughput bench-
mark, with 170 files open. In summary, there is negligible
performance impact and 79% of maintenance changes can
be updated.

In response to Francis David’s question of when it is safe
to apply the patch, Andrew explained that the patch is ap-
plied as a series of hot-swap operations and must achieve
quiescence of the object first, and that makes it safe. Ter-
rence Kelly of HP Labs asked whether it was safe to apply
another patch when another lazy update is in process. If
you applied another patch, it would mark all the objects as
needing updates again, but not break anything.

Short Paper: Exploring Recovery from Operating System
Lockups

Francis M. David, Jeffrey C. Carlyle, and Roy H. Campbell,
University of Illinois at Urbana-Champaign

Francis David started by mentioning that Linux has a
lockup detector that works via a timer interrupt that
checks a timestamp for continual updates via a low-prior-
ity kernel thread. But this mechanism fails if a lockup oc-
curs when interrupts have been disabled. Watchdog timers
present an external alternative, as they can generate a non-
maskable interrupt (NMI) if they time out, forcing the sys-
tem to reboot. However, such reboots mean loss of state,
even though the contents of RAM may still be correct.

Francis pointed out that they did their work on ARM
CPUs that do not include support for NMI.

In their approach, they replace the interrupt handler for
the NMI with code that resets the processor, enables the
MMU, reinitializes the interrupt controller and interrupts,
and then modifies locked-up threads. In Linux, they sim-
ply kill off the offending threads, but in Choices, an ob-
ject-oriented OS, they patch in a call to an exception han-
dler and restart scheduling. If these threads hold locks, the
locks will be released when the threads die. Choices is
fully preemptable, and the patched-in recovery routine
pretends to be a thread that is locked up and calls die(), or
raises a C++ exception so programmers can decide what to
do at this point. For this scheme to work, there must be
valid context via the stack frame of the thread running be-
fore the NMI.

Francis summed up by saying that the best lockup detec-
tion uses both hardware and software detection: hardware
when software cannot work, and software for preemptible
kernel, where hardware cannot detect failure. Their ap-
proach improved recovery in Linux up to 9%, particularly
with preemptive kernels.

Someone from the University of Rochester asked whether
they explored using NMI at all. Francis said that they did,
and their code shows examples of this. They wrote the
code to actually recover from an NMI as well. Ben Leslie of
Open Kernel Labs pointed out that sometimes the state in
the OS has been corrupted. You get one watchdog reset,
and you keep on doing this. Do you need a meta-watch-
dog? Francis’s team didn’t explore corruption issues, or
whether the same issue happens twice. Daniel Peek of the
University of Michigan asked how much of the kernel mal-
function problem this will solve, for example, kernel pan-
ics. If you get a “blue screen,” the OS has detected the
problem. The authors are addressing the lockup problem
when the OS can’t recognize the error. Someone else asked
how often that happens. In the Linux kernel, the majority
of possible bugs were lockup bugs (30% or more bugs
could cause an infinite loop or other problem in Stanford
static code analysis).

I N V ITE D TA L K

Human Computation

Luis von Ahn, Carnegie Mellon University

Summarized by Minas Gjoka (mgjoka@uci.edu)

Luis von Ahn started by defining the term CAPTCHA
(completely automated public Turing test to tell computers
and humans apart) as a program that can distinguish hu-
mans from computers.

Luis gave a basic example of the usefulness of CAPTCHAs
based on a true story in 1999. Slashdot released an online
poll letting its users select the best CS grad school from a
list of six universities. The only safety measure to prevent

88 ; L O G I N : V O L . 3 2 , N O . 5

manipulation of the poll results was to allow one vote per
unique IP. However, in a matter of hours Carnegie Mellon
and MIT students managed to write programs that would
cast thousands of votes into the system. This example
demonstrated the need for a mechanism that will only
allow humans to participate.

Other applications of CAPTCHAs include free email ser-
vices, worms, data collection, prevention of comment
spam in blogs, and dictionary attacks. For example, in free
email services, spammers are prevented from signing up
millions of accounts automatically. One workaround for
spammers is the use of sweatshops, which hire people in
countries with very low wages to solve CAPTCHAs for
them. That incurs a minimum penalty per account cre-
ation for the spammers. Another workaround is to redirect
CAPTCHAs from email service companies to the spam-
mer’s own Web sites, which provide services that attract
many people (e.g., porn sites). In another example, email
addresses can be protected from Web crawlers by using
CAPTCHAs.

One of the main aspects of the presentation is the usage of
CAPTCHAs to perform human computations. A measure
of the amount of human effort produced daily: it is re-
ported that around 60 million CAPTCHAs are solved every
day, with each CAPTCHA taking 10 seconds of human
time. Three programs are presented to make good use of
these wasted “human cycles.”

CAPTCHAs can be used to help in the digitization of old
books. Every scanned image of a word not recognizable by
OCR is used as a CAPTCHA. To confirm the correctness of
the human input, every time a scanned image of a word is
fed into the system it is combined with a known word. If
the answer for the known word is correct then a correct
answer is assumed for the unknown word as well.

A very useful application of CAPTCHAs is to accurately
label images with words. Luis has developed an enjoyable
two-player online game, ESP, which was designed in such
a way that playing the game results in labeling images cor-
rectly, quickly, and for free. At the beginning of the game
the user is paired with another random player and the
same image is shown to the two players. The goal of the
game is to guess descriptions of the image that are identi-
cal for both players, excluding taboos. The two players
cannot communicate in any way with each other and an-
ticheating techniques are provisioned for potential collabo-
rators. Luis notes that this game alone could be used to
label all Google images within a few weeks. In fact Google
offers a similar “Google Image Labeler” service. Those who
liked using the game listed various reasons (e.g., it offers a
special connection with one’s partner, it helps one learn
English, and it gives one a sense of achievement).

PeekaBoom is another entertaining two-player online game
that takes as input labeled images and finds the objects
being labeled. The first player, called Boom, receives an
image and a tag assigned to the image. The second player,

called Peek, has an empty screen. The goal of the game is
to get Peek to guess the tag assigned to the image. Boom
can only reveal part of the picture. In addition to that,
Boom can give hints about what the tag is (e.g., noun,
verb, text in the image).

By combining the region selected for a given object from
different pairs of players in PeekaBoom it is possible to get
the whole outline of the object in 50% of the cases. This
allows the results to be highlighted with boxes inside the
search engine. Another advantage of this segmentation is
that the resulting training set could be used to advance
computer vision research.

In conclusion, the speaker presented a paradigm for deal-
ing with open problems in artificial intelligence. These can
be turned into either a test to differentiate between hu-
mans and computers or a simple game that people can
play online.

In response to a question Luis noted that, after 20 hours of
playing, the gender of a player can be guessed with 98%
accuracy, and the age with 85% accuracy.

S H O RT PA P E R S

Summarized by Andrew Baumann (an-
drewb@cse.unsw.edu.au)

Short Paper: Supporting Multiple OSes with OS Switching

Jun Sun, Dong Zhou, and Steve Longerbeam, DoCoMo USA Labs

Dong Zhou presented this work on a mechanism to switch
between operating systems on shared hardware. Each OS is
assigned a unique range of physical memory and has ex-
clusive access to the hardware when it runs. The switch is
performed when a switch request signal is received; this
can be generated by user action or by events such as timer
expiration or incoming call. The OS in the background is
essentially suspended, it cannot receive interrupts, and
there is no regular time-slicing. The switch operation con-
sists of putting the hardware into a consistent state and
then passing control to the other OS.

OS switching is usually implemented as a modification of
the existing suspend-and-resume support, so relatively lit-
tle code is changed in the operating system. Furthermore,
because each OS runs with direct access to hardware, there
is no slowdown. Limitations of the approach include a lack
of concurrency and no security between the OS instances,
although the latter could be addressed with hardware sup-
port such as ARM TrustZone.

A prototype has been implemented on an ARM9 device,
and a video was shown of the device switching between
Linux and Windows CE in response to a special button
press. Around 100 lines of code were changed in either
OS, and all within the board support packages; most of the
modified code was in the bootloader. Switching from
Linux to Windows CE takes half a second; switching to
Linux takes a second longer, mainly because more devices

; LO G I N : O C TO B E R 2 0 0 7 CO N F E R E N C E S U M M A R I E S 89

were enabled than under Windows CE. The speed of
switching could be improved by not suspending and re-
suming all devices; in the extreme case, a hot switch could
take less than 1 ms.

Short Paper: Cool Job Allocation: Measuring the Power Sav-
ings of Placing Jobs at Cooling-Efficient Locations in the
Data Center

Cullen Bash and George Forman, Hewlett-Packard Labs

The overall goal of this work, which was presented by
both authors, is to reduce the energy used for cooling a
data center. This could offer significant cost-savings, be-
cause the power used for cooling doesn’t scale linearly
with the power used to run the equipment (i.e., a rack
using twice the power may require much more than twice
the power to cool).

Within a data center, some servers can be more efficiently
cooled than others because of the varying recirculation of
hot air, so the overall cooling workload can be reduced by
moving long-running jobs to those servers that are more
efficient to cool and shutting down other servers when
they are idle. The approach of this work is to modify a
scheduler for batch jobs so that the longest-running jobs
are placed on the most cooling-efficient servers.

In this study, part of a data center was physically parti-
tioned, and the power consumed by both hosts and air-
conditioning units was monitored. The results showed that
controlling job placement alone helps, but the greatest
power savings come from combining job placement with
shutdown of idle servers. This reduced power consump-
tion by 33% and could save $1 million per year for HP
data centers. Future work involves incorporating these
techniques into adaptive enterprise software.

Short Paper: Passwords for Everyone: Secure Mnemonic-
based Accessible Authentication

Umut Topkara, Mercan Topkara, and Mikhail J. Atallah,
Purdue University

Umut Topkara presented this work, which aims to develop
a secure authentication mechanism in input-constrained
environments, such as for disabled users. The assumed
input device is a binary switch; in this scenario it is hard
for humans to remember long bit strings, and it should be
possible to initialize passwords with the same input device.
Furthermore, the technique should be secure against dic-
tionary, replay, shoulder-surfing, and phishing attacks.

These problems are solved by the PassWit system, which
also maps well to traditional plain-text passwords, and
thus is compatible with conventional password systems
and input devices. At password initialization time, the user
is given a random mnemonic sentence selected from a
number of word tables. At authentication time, the user is
asked a series of yes/no questions, based on the format
“Does your mnemonic contain one of these words?”

To avoid record/reply attacks, different questions are asked

each time, and to avoid inferring the mnemonic from the
questions that are asked, the questions must be deter-
mined at the beginning using combinatorial group testing.
To protect against spyware, images or CAPTCHA tech-
niques can be used, and the system inherently protects
against phishing, because the mnemonic itself is never en-
tered.

Short Paper: Virtually Shared Displays and User Input
Devices

Grant Wallace and Kai Li, Princeton University

The final paper of the conference, presented by Grant Wal-
lace, covered work on enabling collaboration on shared
displays with multiple input devices, for example, the
Princeton Plasma Physics Lab control room where a large
shared screen is used to allow multiple users to collabo-
rate. Traditional OSes and windowing systems are not ap-
propriate, because they assume the general model of one
user at one display with one set of input devices. The goal
for this new system is to allow multiple user workstations
to connect with each other and the shared display and to
allow the users to seamlessly move cursors and windows
between the workstation and the shared display.

Traditional collaboration systems (such as X and VNC) are
platform-specific, initialization-constrained, support only
one-to-many sharing, or share only at the granularity of an
entire desktop. To address these limitations the Fusion col-
laboration system was developed. It uses a modified VNC
server to allow sharing at the granularity of windows
rather than the desktop, a modified VNC viewer to simul-
taneously display windows from multiple users, a modified
window manager that supports multiple cursors by time-
slicing cursor activity to the system cursor, and a modified
X2X utility that captures input from multiple users.

The system has been deployed in two locations and has re-
ceived very positive user feedback. It enables users to
share and compare windows while providing better per-
formance and privacy than the desktop sharing of normal
VNC. Further details and source code are available at
http://shared-app-vnc.sourceforge.net and http://
multicursor-wm.sourceforge.net.

I N V ITE D TA L K

Warehouse-scale Computers

Luiz André Barroso, Google Inc.

Summarized by Minas Gjoka (mgjoka@uci.edu)

Luiz André Barroso said he intended to describe the char-
acteristics of warehouse-scale computing infrastructure at
Google from the hardware standpoint. Nowadays, ware-
houses are becoming more cost-effective for many compa-
nies, and in the near future new technology advancements
may produce machines that will have properties that need
to be tackled in today’s warehouse-sized computers, such
as thread concurrency, power saving, complexity manage-

90 ; L O G I N : V O L . 3 2 , N O . 5

ment, and fault handling. Thousands of programs in differ-
ent machines should work as a reliable platform running
different services.

The first topic discussed was the programming efficiency
for such systems. The need for parallelism to handle large
amounts of data, heterogeneity, and failure-prone compo-
nents complicates programming. A single programming
system or language may not be enough. Instead Luiz advo-
cated that the solution should be higher-level and use-spe-
cialized building blocks for large-scale distributed systems
such as MapReduce and BigTable.

When building fault-tolerant software, it is important to
guarantee that system interruption does not occur; other-
wise some of the worst performance problems may appear.
Service-level measurements that monitor performance pro-
vide only a partial view. Instead, Google has built a System
Health infrastructure that collects health signals from all
its servers and stores these signals perpetually in time se-
ries. Using this infrastructure, an analysis of hard disk fail-
ures was performed out of detailed signals collected during
a period of nine months from a five-year inventory data-
base. Understanding when such failures occur should, ide-
ally, give a prediction model for failures that would allow
preemptive action. (You can learn more about this project
by reading the Pinheiro et al. paper that appeared at FAST
’07 or the summary that appeared in the June 2007 issue
of ;login:.)

Grouping disks by age did not give conclusive results, be-
cause of the different hard drive model mixtures in the
data. An interesting finding is that temperature has little
impact on the average failure rate. In fact, higher failure
rates are observed at lower temperatures.

Signals were collected from the standard SMART interface
of hard disks, in an effort to build a predictive failure
model. The results showed that only a subset of the
SMART signals are strong indicators of future failures. For
example, drives with scan errors are ten times more likely
to fail. However, the predictive power of SMART signals
seems limited, since almost half of the failures appear un-
predictable when the set of strong indicators is used.

The cost of operation, in terms of energy and maximiza-
tion of utilization, needs to be taken into account for ware-
house building. The former becomes even more important
since, unlike hardware costs, energy prices are increasing.
Luiz mentioned that energy costs (excluding cooling) can
account for up to 20% of the company’s IT budget. Part of
the solution lies in improving the efficiency of power sup-
plies, which ranges from 55% to 70% nowadays, by reduc-
ing conversion losses. It is easy to see that with 55% effi-
ciency the power supply becomes the largest power con-
sumer inside a machine.

The goal of the maximization of utilization is to maximize
the facility usage without exceeding contractual capacity
limits. A six-month power monitoring study was con-

ducted at Google to examine opportunities in power sub-
scriptions. The study included three machine aggregation
levels (rack, power distribution unit, cluster), with each
almost an order of magnitude larger then the previous one.
The analysis showed that at the cluster level the normal-
ized power never exceeded 71%, which leaves room for
more servers to be packed in the warehouse.

Given that current machines usually consume around 50%
of their peak rate at idle mode, simulations for potential
improvements in power consumption behavior were per-
formed. The idea was to assume the availability of active
low-power modes (at most, 5% of peak power). The simu-
lation results showed remarkable improvements for both
peak power and energy at the cluster level. It was sug-
gested that power-saving features be implemented for
other components in addition to the CPU and that a wide
dynamic power range with low consumption at idle mode
be included.

In conclusion, Luiz reiterated the benefits of understand-
ing failures and emphasized the potential for power and
energy efficiency. Most questions wandered around the
issue of power savings.

Information for the climate savers computing initiative
referenced by the speaker can be found at http://www
.climatesaverscomputing.org/.

P L E N A RY C LO S I N G S E S S I O N

Crossing the Digital Divide: The Latest Efforts from One
Laptop per Child

Mary Lou Jepsen, CTO, One Laptop per Child

Summarized by Rik Farrow (rik@usenix.org)

Mary Lou Jepson said that because she has been traveling
so much, promoting One Laptop per Child (OLPC), it is
hard for her to keep track of what time zone she presently
inhabits. Some of her jetlag was apparent in her somewhat
rambling talk, but I still found what she had to say fasci-
nating. You can find transcripts of recent talks by Jepson
at http://www.olpctalks.com/mary_lou_jepsen/ and more
about the hardware of the current version of the laptop,
the XO rev C, at http://wiki.laptop.org/go/Hardware
_specification.

Jepson had been an engineer at Intel specializing in display
technologies. She went to work for OLPC as it was realized
that the single most expensive part of a PC that is designed
to be cheap would be the display. She explained two inno-
vative features of her display design which reduce cost and
power while increasing usability. The first innovation is the
creation of dual-mode display cells. Most LCD displays
rely on backlighting that shines through a color filter, then
through the liquid crystal cell, which is more or less trans-
parent. That means the display focuses on chrominance,
whereas the human eye is actually more sensitive to lumi-
nance. She designed a screen that has greater resolution in

; LO G I N : O C TO B E R 2 0 0 7 CO N F E R E N C E S U M M A R I E S 91

reflective (black-and-white) mode, 200 dots per inch,
which makes the screen very easy to read. A significant
motivation for this design, besides the use of less power
than with backlighting, is that it can store and display
textbooks. Instead of buying textbooks for children, coun-
tries can buy XOs and upload textbooks, which will pay
for the laptop over its expected lifetime. When used with
backlight, the display goes from 1200x900 mono to
800x600 color, and it may use as much as ten times as
much power because of the backlighting.

The other innovation has to do with refreshing the screen
while the CPU is idle. Normally, the CPU must copy data
to refresh the display 30 times per second, but by replacing
the ordinary display controller chip with one that has
memory, the chip takes over refreshes for the CPU, allow-
ing the CPU to sleep until needed.

The XO has other energy-saving innovations, such as the
use of a Marvel WiFi chip that includes part of an ARM
CPU. That means that a laptop can function as part of a
mesh network even when it is otherwise idle, as the Mar-
vel chip handles the processing. The storage is a 1024-MB
NAND flash and 256 MB of RAM. Jepson also showed ex-
amples of robust servers designed to act as both additional
storage and connections to external networks.

The onetime symbol of the laptop, the handcrank, has
been replaced with swivel-up ears that contain the WiFi
antennas. When swiveled down, the ears cover external
connectors, such as USB ports. Power can come from solar
cells or generators, including a salad-spinner design for
hand-charging.

The display itself is gorgeous, and the system is certainly
sturdy. Jepson explained that laptops at a test site in Nige-
ria were breaking after only three months (but had been
expected to last five years). It turns out that the desktops
at the test site are slanted, and the laptops were falling off
the desks onto the concrete floors at the rate of several
times an hour (and continued to work for three months!).
The XO is designed so that it can be repaired locally by
swapping out parts, and extra case screws are included to
replace lost screws.

The laptop runs a version of Linux, and it uses Sugar as
the GUI framework. Software is designed so that the lap-
top can be used by children who cannot yet read. Jepson
told us of a project in India where children taught them-
selves how to read by having some access to computer dis-
plays.

The simple, rugged, low-power, and low-cost design makes
the XO not just an ideal textbook replacement but a desir-
able product in other worldwide markets. I commented to
Jepson that licensing the display and some of the other
technology might be one way of supporting further devel-
opment of the OLPC vision.

Other questioners had darker views of the project. Tristan
Lawrence said that he expected that the laptops will never
reach their intended recipients, suggesting that the govern-
ments will distribute the laptops to better-off city dwellers,
rather than the apparent targets of the project. Jepson an-
swered that they have focused on teaching and designing a
low-power laptop with mesh networking and a usable dis-
play, not on politics. She did mention Bitfrost, the security
used to help prevent theft of laptops. Laptops must be up-
dated with a signed key once every several weeks, or they
will stop working. The laptops can also be remotely dis-
abled if stolen. For more on Bitfrost and the security
model of OLPC, see http://lwn.net/Articles/221052/.

Aarjav Trivedi of Secure Computing said that he is from
India, a country that has so far decided not to buy the lap-
top. Trivedi declared that content is key and wondered if
they had found local content in India. Jepson said that
they have been working with local people to scan books.
Even though India and China have been cool to the proj-
ect so far, half the children in the world live in China and
India.

Quando Lee asked about textbook cost comparisons. Jep-
son answered that, for example, in Brazil, textbooks cost
$20/year, so over its expected five-year lifetime, the XO
pays for itself. Experience in China showed that kids al-
lowed to read anything they wanted learned five times as
many Chinese characters as other children with less to
read. The same person said that textbooks can last more
than five years and that he had used his older brother’s
books. Jepson responded by saying that textbooks cost
$643 per year in Massachusetts.

Marc Fuscinski said that he had visited some site in Sao
Paolo, Brazil, but the kids can’t take the laptops home. Jep-
son says that is certainly true. But in other places kids are
starting a “right to laptop” movement, and in Cambodia,
Thailand, and Nigeria they can take them home.

Someone wondered why the laptop couldn’t last more than
five years. Jepson replied that the LCD will last for half a
million hours in sunlight, but the flash memory has a lim-
ited number of write cycles (because of wear leveling). The
same person asked whether the laptop is recyclable, and
Jepson answered that if a laptop stops working, it can be
given to a post office, where it will be sent to a central
depot for repair or recycling. The entire device is green,
and it costs more to ship it than to recycle it.

George Herbert of Open Software Foundation asked
whether the OLPC planned on frontloading open content.
Jepson’s understanding is that the countries will choose
what content they want on the server. For example, they
ask the participating country to pick the top 100 books ap-
propriate for kids to read, while they provide a Mathemat-
ica lite version, along with reading and drawing tools. Kids
can also program the computers themselves, using Python
or Logo.

92 ; L O G I N : V O L . 3 2 , N O . 5

Warren Henson of Google asked about other plans for
long-term storage and backup. Jepson said that that
sounds like a great thing for Google to do. Right now they
are stuck with the server (a low-power device, sealed with
a hard disk) and aren’t currently addressing that problem,
although Google has provided gmail accounts. In response
to Henson’s mention of alternative projects from other or-
ganizations, Jepson said that they would like to work with
these groups and try every week. When these efforts fail,
the kids lose, in her opinion. Since Jepson spoke, Intel has
announced that they plan to work with OLPC, and Intel is
now listed as a supporter on the laptop.org site.

Linux Symposium 2007

Ottawa, Canada
June 27–30, 2007
Summarized by Rick Leir (rickleir@leirtech.com)

OLS is the conference for Linux kernel programmers,
across the spectrum from embedded to large SMP systems.
It also attracts application programmers and systems ad-
mins. Last year it was co-located with the Kernel Summit,
but not this year. Attendees came from around the world.
For me, travel arrangements were simple: The express city
bus is convenient to me!

There were three tracks concurrent with tutorials, and sev-
eral times I wanted to be in two places at a time. For a
complete schedule see www.linuxsymposium.org/2007/.
For a more detailed summary see www.linux.com/
feature/115608. The attendees included a few hobbyists
and academics, but most people were from companies in-
cluding IBM, Intel, Sony, Red Hat, and AMD.

Jon Corbet gave his yearly Kernel Report. The trend is to-
ward faster major releases. Where these used to be spaced
by years, now they are spaced by months. The release
cycle is more predictable than before, with a merge win-
dow of 2 weeks followed by 6 weeks for stabilization. This
quickly moves changes out to users. Also, distributors
(e.g., Red Hat, Ubuntu) are closer to the mainline. There is
excellent tracking and merging of patches considering the
volume (though some say quality was horrific for 2.6.21).
There is ongoing work on automated testing.

For kernel 2.6.22, there will be:

� A new mac80211 wireless stack
� UBI flash-aware volume management
� An IVTV video tuner driver
� A new CFQ (Complete Fair Queueing) IO sched-

uler
� A firewire stack
� A SLUB memory management allocator

(http://lwn.net/Articles/229984/)

In terms of scalability, SMP with 512 CPUs works well,
and work on locks and page management processes for
larger systems.

For filesystems, Jon observed that disks are getting larger
but not faster, so fsck time can be a problem. New filesys-
tems such as chunkfs and tilefs are more scalable and sub-
divide a disk so that only the active part needs to be fsck’d.
The btrfs filesystem is extent-based, with subvolumes. It
supports snapshot checksumming, online fsck, and faster
fsck. Jon talked about ext4 with its 48-bit block numbers
and use of extents. [Editor’s note: Also see the article in
the June 2007 issue of ;login: about ext4.]

Jon finds reiser4 interesting, but the project is unfortu-
nately stalled because Hans Reiser is no longer able to
work on it. It needs a new champion.

Jon talked about virtualization. It is getting more attention,
as shown by the many related presentations at this confer-
ence (e.g., KVM, lguest, Vserver).

The kernel is unlikely to go to GPL version 3 even if that
was desired, because it is currently licensed with GPL ver-
sion 2 and thousands of contributors would have to be
contacted to make the change.

Jon’s article has summaries of the Symposium and a sum-
mary of the work going into 2.6.22 (see http://lwn.net/
Articles/240402/).

Greg Kroah-Hartman (www.kroah.com) taped to the back
wall a 40-foot-long chart that linked together the people
who have contributed patches. Developers were invited to
sign the chart and about 100, of the 900 people who con-
tributed to the 2.6.22 kernel, did so.

Mike Mason presented SystemTap, a dynamic tracing tool
based on kprobes. Its simple scripting language provides a
safe and flexible way to instrument a Linux system with-
out modifying source code or rebooting.

There was considerable interest in embedded Linux. Robin
Getz (blackfin.uclinux.org/) presented a tutorial on how to
program for embedded systems with no MMU. I can’t do
uclinux justice here, but it seems to be the way to go.

Tim Chen talked about keeping kernel performance from
regressions. He does weekly performance tests on the latest
snapshot, and he occasionally sees large regressions. There
are about 7000 patches per week, so it is not surprising
that there would be problems. The 14 benchmarks include
OLTP, an industry-standard Java business benchmark,
cpu-int, cpu-fp, netperf, volanomark, lmbench, dbench,
iozone, interbench, and httperf. The project is at kernel-
perf.sourceforge.net/.

Arnaldo Carvalho de Melo talked about tools to help opti-
mize kernel data structures. By rearranging the fields in
structures you can avoid “holes” and thereby pack them
into less memory. At times when related fields are close
enough to be in the same cache line, performance im-
proves. The pahole tool analyzes a struct and suggests field
reordering.

; LO G I N : O C TO B E R 2 0 0 7 CO N F E R E N C E S U M M A R I E S 93

Intel sponsored the reception Wednesday evening, and
they demonstrated Ultra Wide Band (UWB) wireless net-
working (480 Mbps) between two laptops. Each was
screening a video from the other’s disk. This is a low-
power technology to conserve battery power and avoid
radio interference while being effective to 30 feet. UWB
will be appearing in products soon.

Leonid Grossman talked about the challenges of 10Gb
Ethernet. The transition to this is turning out to be more
complex than earlier technology cycles. Part of the TCP
stack is offloaded to the NIC TCP Offload Engine (TOE),
so the kernel networking code has to change. I hear from
osdl.org that there are significant problems with this.

Christopher James Lahey talked about Miro, which is a
podcast client. He argues that “culture” is currently ex-
pressed via video, and we need a desktop app to search for
video, display it, and organize channel folders or playlists.
Miro uses Python, Pyrex, Javascript, CSS, and DOM. It
uses some interesting database concepts. See more at
getmiro.com.

Arnd Bergman of IBM talked about the Cell Broadband En-
gine, which is in Sony PS3 and IBM blades. This processor
has the PowerPC Architecture with an L2 cache of 512 KB
and 8 SPUs. The SPU is a co-processor that does fast float-
ing-point math (though not so fast for double precision).
There is a high-bandwidth bus (25 GB) connecting these
processors, using explicit DMA. Each SPU has limited
local memory (in effect, it executes out of its own cache),
and overlay programming is used. Gcc emits DMA re-
quests. Arnd evaluated the pros and cons of this package;
on balance, it comes out very well.

From other sources I hear that the Sony PS3’s Linux sup-
port involves a hypervisor that permits Linux to see only 6
of the SPUs. The NVIDIA video hardware is partly off lim-
its to Linux programmers. Sony wants to interest the Open

Source community in its products and very generously
gave away several PS3s.

Andrew Cagney talked about Frysk, which is a user-level
debugging tool for C and C++. It appears (my impression)
to be as useful as Eclipse while being of considerably
lighter weight. He talked about test-driven development
and described a kernel regression test suite that has been
discovering recent kernel bugs.

Jordan H. Crouse talked about using LinuxBIOS to speed
up boot times and provide a more friendly boot environ-
ment. Be careful loading your motherboard flash memory.

Rusty Russell (ozlabs.org) entertained us with lguest, his
simple virtualization project. He talked about how he went
about coding lguest. He requires the guest OS to be the
same version of Linux as the host, and his system does not
support many of the features touted by the other virtual
server systems, thereby saving much effort. He has my
support!

Marcel Holtmann (bluez.org) talked about the latest Blue-
tooth tools and integration with Linux D-Bus. There was
lots to talk about here, whether you are interested in the
desktop or embedded devices.

Peter Zijlstra talked about the pagecache lock, which is not
scalable. He has a way to avoid using a lock here. He alters
the radix tree in order to support concurrent modifications
of the data structure.

Jon “Maddog” Hall’s ending keynote covered the Linux
Terminal Server Project (LTSP.org) and how it could bene-
fit poorer communities in the developing world. He made
a convincing argument that this project was more practical
than the One Laptop per Child (OLPC) project, and he
showed a photo of himself in a school in Brazil. The termi-
nals are not the VT200 of yore, but diskless Linux systems.

94 ; L O G I N : V O L . 3 2 , N O . 5

Writing is not easy for most of
us. Having your writing
rejected, for any reason, is no
fun at all. The way to get your
articles published in ;login:, with
the least effort on your part and
on the part of the staff of ;login:,
is to submit a proposal first.

P RO P O S A LS

In the world of publishing, writ-
ing a proposal is nothing new. If
you plan on writing a book, you
need to write one chapter, a pro-
posed table of contents, and the
proposal itself and send the
package to a book publisher.
Writing the entire book first is
asking for rejection, unless you
are a well-known, popular
writer.

;login: proposals are not like
paper submission abstracts. We
are not asking you to write a
draft of the article as the pro-
posal, but instead to describe
the article you wish to write.
There are some elements that
you will want to include in any
proposal:

� What’s the topic of the
article?

� What type of article is
it (case study, tutorial,
editorial, mini-paper,
etc.)?

� Who is the intended
audience (syadmins,
programmers, security
wonks, network
admins, etc.)?

� Why does this article
need to be read?

� What, if any, non-text
elements (illustrations,

code, diagrams, etc.)
will be included?

� What is the approxi-
mate length of the arti-
cle?

Start out by answering each of
those six questions. In answer-
ing the question about length,
bear in mind that a page in
;login: is about 600 words. It is
unusual for us to publish a one-
page article or one over eight
pages in length, but it can hap-
pen, and it will, if your article
deserves it. We suggest, how-
ever, that you try to keep your
article between two and five
pages, as this matches the atten-
tion span of many people.

The answer to the question
about why the article needs to
be read is the place to wax
enthusiastic. We do not want
marketing, but your most elo-
quent explanation of why this
article is important to the read-
ership of ;login:, which is also
the membership of USENIX.

U N ACC E P TA B L E A RTI C L E S

;login: will not publish certain
articles. These include but are
not limited to:

� Previously published
articles. A piece that
has appeared on your
own Web server but
not been posted to
USENET or slashdot is
not considered to have
been published.

� Marketing pieces of any
type. We don’t accept
articles about prod-
ucts. “Marketing” does
not include being
enthusiastic about a
new tool or software
that you can download
for free, and you are
encouraged to write
case studies of hard-

ware or software that
you helped install and
configure, as long as
you are not affiliated
with or paid by the
company you are
writing about.

� Personal attacks

F O R M AT

The initial reading of your arti-
cle will be done by people using
UNIX systems. Later phases
involve Macs, but please send us
text/plain formatted documents
for the proposal. Send proposals
to login@usenix.org.

D E A D L I N E S

For our publishing deadlines,
including the time you can
expect to be asked to read proofs
of your article, see the online
schedule at http://www.usenix
.org/publications/login/sched
.html.

CO P Y R I G HT

You own the copyright to your
work and grant USENIX per-
mission to publish it in ;login:
and on the Web. USENIX owns
the copyright on the collection
that is each issue of ;login:.
You have control over who may
reprint your text; financial
negotiations are a private matter
between you and any reprinter.

F O C U S I S S U E S

In the past, there has been only
one focus issue per year, the
December Security edition. In
the future, each issue may have
one or more suggested focuses,
tied either to events that will
happen soon after ;login: has
been delivered or events that
are summarized in that edition.

writing for
;login:

Important Dates
Paper submissions due: Monday, January 7, 2008, 11:59 p.m
PST (hard deadline)

Invited talk proposals due: Friday, February 1, 2008
Notification to authors: Wednesday, March 12, 2008
Final papers due: Tuesday, April 29, 2008
Poster submissions due: Tuesday, May 6, 2008

Program Committee
Program Co-Chairs
Rebecca Isaacs, Microsoft Research
Yuanyuan Zhou, University of Illinois at Urbana-Champaign
Program Committee
Frank Bellosa, University of Karlsruhe, Germany
Jeff Chase, Duke University
Dawson Engler, Stanford University
Jason Flinn, University of Michigan
Keir Fraser, University of Cambridge
Steve Gribble, University of Washington
Liviu Iftode, Rutgers University
Arkady Kanevsky, Network Appliance
Angelos Keromytis, Columbia University
Emre Kıcıman, Microsoft Research
Sam King, University of Illinois at Urbana-Champaign
Jeff Mogul, HP Labs
Erich Nahum, IBM T.J. Watson Research Center
David Presotto, Google
Sean Rhea, Intel Research Berkeley
Erik Riedel, Seagate Research
Timothy Roscoe, ETH Zürich
Mike Swift, University of Wisconsin
John Wilkes, HP Labs
Emmett Witchel, University of Texas
Xiaolan (Catherine) Zhang, IBM T.J. Watson Research Center
Zheng Zhang, Microsoft Research
Poster Session Chairs
Emre Kıcıman, Microsoft Research
Sam King, University of Illinois at Urbana-Champaign

Overview
Authors are invited to submit original and innovative papers
to the Refereed Papers Track of the 2008 USENIX Annual
Technical Conference. We seek high-quality submissions that

further the knowledge and understanding of modern com-
puting systems, with an emphasis on implementations and
experimental results. We encourage papers that break new
ground or present insightful results based on practical experi-
ence. The USENIX conference has a broad scope; specific
topics of interest include but are not limited to:

! Architectural interaction
! Deployment experience
! Distributed and parallel systems
! Embedded systems
! Energy/power management
! File and storage systems
! Networking and network services
! Operating systems
! Reliability, availability, and scalability
! Security, privacy, and trust
! System and network management and troubleshooting
! Usage studies and workload characterization
! Virtualization
! Web technology
! Wireless, sensor, and mobile systems

Best Paper Awards
Cash prizes will be awarded to the best papers at the confer-
ence. Please see the USENIX Compendium of Best Papers
for examples of Best Papers from previous years: http://www
.usenix.org/publications/library/proceedings/best_papers.html.

How to Submit
Authors are required to submit full papers by 11:59 p.m. PST,
Monday, January 7, 2008. This is a hard deadline; no exten-
sions will be given.

All submissions for USENIX ’08 will be electronic, in
PDF format, through the conference Web site. USENIX ’08
will accept two types of papers:

! Regular Full Papers: Submitted papers must be no
longer than 14 single-spaced pages, including figures,
tables, and references, using 10 point font. The first page
of the paper should include the paper title and author
name(s); reviewing is single-blind. Papers longer than 14
pages will not be reviewed. In a good paper, the authors
will have:

June 22–27, 2008 Boston, MA, USA

Announcement and Call for Papers

2008 USENIX Annual Technical Conference
Sponsored by USENIX, The Advanced Computing Systems Association

http://www.usenix.org/usenix08

• Attacked a significant problem
• Devised an interesting and practical solution
• Clearly described what they have and have not

implemented
• Demonstrated the benefits of their solution
• Articulated the advances beyond previous work
• Drawn appropriate conclusions

! Short Papers: Authors with a contribution for which a
full paper is not appropriate may submit short papers of
at most 6 pages, applying the same formatting guide-
lines. Examples of short paper contributions include:

• Original or unconventional ideas at a preliminary
stage of development

• The presentation of interesting results that do not
require a full-length paper, such as negative results
or experimental validation

• Advocacy of a controversial position or fresh
approach

Accepted short papers will be published in the Proceed-
ings and included in the Poster Session, and time will be
provided for brief presentations of these papers.

Specific questions about submissions may be sent to
usenix08chairs@usenix.org.

Simultaneous submission of the same work to multiple
venues, submission of previously published work, and pla-
giarism constitute dishonesty or fraud. USENIX, like other
scientific and technical conferences and journals, prohibits
these practices and may, on the recommendation of a pro-
gram chair, take action against authors who have committed
them. In some cases, program committees may share infor-
mation about submitted papers with other conference chairs
and journal editors to ensure the integrity of papers under
consideration. If a violation of these principles is found,
sanctions may include, but are not limited to, barring the
authors from submitting to or participating in USENIX con-
ferences for a set period, contacting the authors’ institutions,
and publicizing the details of the case.

Note that the above does not preclude the submission of a
regular full paper that overlaps with a previous short paper or
workshop paper. However, any submission that derives from
an earlier workshop paper must provide a significant new
contribution, for example, by providing a more complete
evaluation.

Authors uncertain whether their submission meets
USENIX’s guidelines should contact the program chairs,
usenix08chairs@usenix.org, or the USENIX office,
submissionspolicy@usenix.org.

Papers accompanied by nondisclosure agreements cannot
be accepted. All submissions are held in the highest confi-
dentiality prior to publication in the Proceedings, both as a
matter of policy and in accord with the U.S. Copyright Act
of 1976.

Authors will be notified of paper acceptance or rejection
by Wednesday, March 12, 2008. Accepted papers may be
shepherded by a program committee member. Final papers

must be no longer than 14 pages, formatted in 2 columns,
using 10 point Times Roman type on 12 point leading, in a
text block of 6.5" by 9".
Note regarding registration: One author per accepted

paper will receive a registration discount of $200. USENIX
will offer a complimentary registration upon request.

Poster Session
The poster session, held in conjunction with a reception, will
allow researchers to present recent and ongoing projects. The
poster session is an excellent forum to discuss new ideas and
get useful feedback from the community. The poster submis-
sions should include a brief description of the research
idea(s); the submission must not exceed 2 pages. Accepted
posters will be put on the conference Web site; however, they
will not be printed in the conference Proceedings. Send
poster submissions to session chairs Emre Kıcıman and Sam
King at usenix08posters@usenix.org by Tuesday, May 6,
2008.

Birds-of-a-Feather Sessions (BoFs)
Birds-of-a-Feather sessions (BoFs) are informal gatherings
organized by attendees interested in a particular topic. BoFs
will be held in the evening. BoFs may be scheduled in
advance by emailing bofs@usenix.org. BoFs may also be
scheduled at the conference.

Invited Talks
These survey-style talks given by experts range over many
interesting and timely topics. The Invited Talks track also
may include panel presentations and selections from the best
presentations at recent USENIX conferences.

The Invited Talks Committee welcomes suggestions for
topics and requests proposals for particular talks. In your
proposal, state the main focus, including a brief outline, and
be sure to emphasize why your topic is of general interest to
our community. Please submit proposals via email to
usenix08it@usenix.org by Friday, February 1, 2008.

Training Program
USENIX’s highly respected training program offers inten-
sive, immediately applicable tutorials on topics essential to
the use, development, and administration of advanced com-
puting systems. Skilled instructors, hands-on experts in their
topic areas, present both introductory and advanced tutorials.

To provide the best possible tutorial slate, USENIX con-
tinually solicits proposals for new tutorials. If you are inter-
ested in presenting a tutorial, contact Dan Klein, Training
Program Coordinator, tutorials@usenix.org.

Program and Registration Information
Complete program and registration information will be avail-
able in March 2008 on the USENIX ’08 Web site. If you
would like to receive the latest USENIX conference informa-
tion, please join our mailing list at http://www.usenix.org/
about/mailing.html.

Last Updated: 8/3/07

P RO F E S S O R S , C AMPU S STA F F, A N D STU D EN T S—

DO YOU HAV E A U S EN I X R E P R E S E N TAT I V E ON YOU R CAMPU S ?

I F NOT, U S E N I X I S I N T E R E ST E D I N HAV I NG ON E !

The USENIX Campus Rep Program is a network of representatives at campuses around the
world who provide Association information to students, and encourage student involve-
ment in USENIX. This is a volunteer program, for which USENIX is always looking for aca-
demics to participate. The program is designed for faculty who directly interact with stu-
dents. We fund one representative from a campus at a time. In return for service as a
campus representative, we offer a complimentary membership and other benefits.

A campus rep’s responsibilities include:

� Maintaining a library (online and in print) of USENIX publications at your university for
student use

� Distributing calls for papers and upcoming event brochures, and re-distributing informa-
tional emails from USENIX

� Encouraging students to apply for travel grants to conferences

� Providing students who wish to join USENIX with information and applications

� Helping students to submit research papers to relevant USENIX conferences

� Providing USENIX with feedback and suggestions on how the organization can better
serve students

In return for being our “eyes and ears” on campus, representatives receive a complimentary
membership in USENIX with all membership benefits (except voting rights), and a free
conference registration once a year (after one full year of service as a campus rep).

To qualify as a campus representative, you must:

� Be full-time faculty or staff at a four year accredited university

� Have been a dues-paying member of USENIX for at least one full year in the past

For more information about our Student Programs, see http://www.usenix.org/students

USENIX contact: Anne Dickison, Director of Marketing, anne@usenix.org

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

http://www.usenix.org/lisa07Register by October 19, 2007, and save!

� 6 days of training by experts in their fields
� 3-day technical program

� Keynote Address by John Strassner,Vice President, Autonomic
Networking and Communications, Motorola Research Labs

� Invited talks by industry leaders
� Refereed Papers,Hit the Ground RunningTrack,Guru Is In
Sessions,Workshops, BoFs,WiPs, Posters, andmore!

� Vendor Exhibition
� Andmore!

21ST LARGE INSTALLATION SYSTEM
ADMINISTRATION CONFERENCE

Sponsored by USENIX and SAGE

Online registration
is now open at
www.usenix.org/lisa07

November 11–16, 2007, Dallas, TX

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES
RIDE ALONG ENCLOSED

