RIK FARROW

PROGRAMMING
STEPHEN C. JOHNSON

MIKE HOWARD

BRAD KNOWLES

TECHNOLOGY
RICHARD MCDOUGALL AND JAMES LAUDON

TIMO SIVONEN

NETWORK
MICHAEL J. FREEDMAN

RIK FARROW

COLUMNS

SYSADMIN I
MARK BURGESS

DAVID BLANK-EDELMAN
ROBERT HASKINS
HEISON CHAK

ROBERT G. FERRELL

BOOK REVIEWS I
ELIZABETH ZWICKY ET AL.

STANDARDS I
NICK STOUGHTON

ANDREW JOSEY

USENIX NOTES I
ROB KOLSTAD

STRATA CHALUP

CONFERENCES I

THE USENIX MAGAZINE

P o
=g

o

USENIX

The Advanced Computing Systems
Association

MSENIX Upcoming Events

INTERNET MEASUREMENT CONFERENCE 2006
(IMC 2006)

Sponsored by ACM SIGCOMM in cooperation with USENIX
OCTOBER 25-27, 2006, Rio DE JANEIRO, BRrAzIL
http://www.imconf.net/imc-2006/

3RD WORKSHOP ON REAL, LARGE DISTRIBUTED
Systems (WORLDS '06)

NOVEMBER 5, 2006, SEATTLE, WA, USA
http://www.usenix.org/worlds06

7TH USENIX Symposium ON OPERATING

SYSTEMS DESIGN AND IMPLEMENTATION

(OSDI '06)

Sponsored by USENIX in cooperation with ACM SIGOPS
NOVEMBER 6-8, 2006, SEATTLE, WA, USA
http://www.usenix.org/osdi06

SECOND WORKSHOP ON HOT TOPICS IN SYSTEM
DePeNDABILITY (HOTDEP '06)

NOVEMBER 8, 2006, SEATTLE, WA, USA
http://www.usenix.org/hotdep06

ACM/IFIP/USENIX 7TH INTERNATIONAL
MIDDLEWARE CONFERENCE

NOV. 27-DEC. 1, 2006, MELBOURNE, AUSTRALIA
http://2006.middleware-conference.org

20TH LARGE INSTALLATION SYSTEM
ADMINISTRATION CONFERENCE (LISA '06)

DECEMBER 3-8, 2006, WasHINGTON, D.C., USA
http://www.usenix.org/lisa06

5TH USENIX CONFERENCE ON FILE AND STORAGE
TecHNoLoGIES (FAST '07)

Sponsored by USENIX in cooperation with ACM SIGOPS, IEEE
Mass Storage Systems Technical Committee, and IEEE TCOS

FEBRUARY 13-16, 2007, SAN Josg, CA, USA
http://www.usenix.org/fast07

1sT Symposium oN CoMPUTER HUMAN
INTERACTION FOR MANAGEMENT OF INFORMATION
TecHNoLoGy (CHIMIT '07)

Sponsored by ACM in cooperation with USENIX
MARCH 30-31, 2007, CAMBRIDGE, MA, USA
http://chimit.cs.tufts.edu

SECOND WORKSHOP ON TACKLING COMPUTER
SYSTEMS PROBLEMS WITH MACHINE LEARNING
TecHNIQUES (SYSML '07)

Co-located with NSDI '07

APRIL 10, 2007, CamBrDIGE, MA, USA

http://www.usenix.org/usenix07
Paper submissions due: November 20, 2006

4TH SYMPOSIUM ON NETWORKED SYSTEMS
DEsIGN AND IMPLEMENTATION (NSDI '07)

Sponsored by USENIX in cooperation with ACM SIGCOMM
and ACM SIGOPS

APRIL 11-13, 2007, CamBriDGE, MA, USA

http://www.usenix.org/nsdi07
Paper submissions due: October 9, 2006

11TH WoORKSHOP ON HoT Torics IN OPERATING
SysTems (HoTOS XI)

Sponsored by USENIX in cooperation with the IEEE Technical
Committee on Operating Systems (TCOS)

MAY 7-9, 2007, SaN Dieco, CA, USA

http://www.usenix.org/hotos07
Paper submissions due: January 4, 2007

THIRD INTERNATIONAL ACM SIGPLAN/SIGOPS
CONFERENCE ON VIRTUAL EXECUTION
ENvIRONMENTS (VEE '07)

Sponsored by ACM SIGPLAN and SIGOPS in cooperation with
USENIX

JUNE 13-15, 2007, SaN Dieco, CA, USA

http://vee07.cs.ucsb.edu
Paper submissions due: February 5, 2007

2007 USENIX ANNUAL TECHNICAL
CONFERENCE
JUNE 17-22, 2007, SANTA CLARA, CA, USA

http://www.usenix.org/usenix07
Paper submissions due: January 9, 2007

For a complete list of all USENIX & USENIX co-sponsored events,

see http://www.usenix.org/events

VOL. 31, #5, OCTOBER 2006

EDITOR
Rik Farrow
rik@usenix.org

MANAGING EDITOR
Jane-Ellen Long
jel@usenix.org

COPY EDITOR
David Couzens
proofshop@usenix.org

PRODUCTION
Lisa Camp de Avalos
Casey Henderson

TYPESETTER
Star Type
startype@comcast.net

USENIX ASSOCIATION
2560 Ninth Street,
Suite 215, Berkeley,
California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

http://www.usenix.org
http://www.sage.org

;login: is the official
magazine of the
USENIX Association.

;login: (ISSN 1044-6397) is
published bi-monthly by the
USENIX Association, 2560
Ninth Street, Suite 215,
Berkeley, CA 94710.

$85 of each member’s annual
dues is for an annual sub-
scription to ;login:. Subscrip-
tions for nonmembers are
$115 per year.

Periodicals postage paid at
Berkeley, CA, and additional
offices.

POSTMASTER: Send address
changes to ;login:,

USENIX Association,

2560 Ninth Street,

Suite 215, Berkeley,

CA 94710.

©2006 USENIX Association.

USENIX is a registered trade-
mark of the USENIX Associa-
tion. Many of the designa-
tions used by manufacturers
and sellers to distinguish their
products are claimed as trade-
marks. USENIX acknowl-
edges all trademarks herein.
Where those designations
appear in this publication and
USENIX is aware of a trade-
mark claim, the designations
have been printed in caps or
initial caps.

OPINION

Musings
RIK FARROW

PROGRAMMING

Algorithms for the 21st Century
STEPHEN C. JOHNSON

Maybe You Should Use Python
MIKE HOWARD

SYSADMIN

25

Configuration Management: Models and Myths. Part
2: Babel, Babble, Toil,and Grammar
MARK BURGESS

[t's About Time...
BRAD KNOWLES

TECHNOLOGY

32

40

Multi-Core Microprocessors Are Here
RICHARD MCDOUGALL AND JAMES LAUDON

Measuring Performance of FreeBSD Disk Encryption
TIMO SIVONEN

NETWORK

46

53

Automating Server Selection with OASIS
MICHAEL J. FREEDMAN

WISPER: Open Source, Long-Distance Wireless
RIK FARROW

COLUMNS

57

65

69

72

Practical Perl Tools: Tie Me Up, Tie Me Down (Part 2)
DAVID BLANK-EDELMAN

ISPadmin: Anti-Spam Roundup
ROBERT HASKINS

Echo in VoIP Systems
HEISON CHAK

/dev/random
ROBERT G. FERRELL

BOOK REVIEWS

75

Book Reviews
ELIZABETH ZWICKY ET AL.

STANDARDS REPORTS

78

80

An Update on Standards: Diary of a Standard Geek
NICK STOUGHTON

Why Get Involved in POSIX?
ANDREW JOSEY

USENIX NOTES

82

83

84

USACO News
ROB KOLSTAD

SAGE Update
STRATA CHALUP

Writing for ;login:
CONFERENCE REPORTS

85
104
107

Annual Tech ‘06
SRUTI 06
EVT 06

RIK FARROW

rik@usenix.org

2 ;LOGIN: VOL. 31, NO. 5

SOME GUY FROM QUALCOMM TOLD
me, during the USENIX Security program
committee party in Vancouver, that he was
amazed that | could come up with so many
columns. Sometimes | wonder about that
too, as | strive not to repeat myself or to
travel down already well-worn paths. Just
like following a rutted road, it is all too easy
to follow the groove.

I've just returned from the USENIX Security con-
ference in Vancouver, the fifteenth such confer-
ence, and, as usual, I find myself depressed. Not
just because the conference, which itself was a lot
of fun, is over, but because not enough has
changed.

True, some students showed how they could build
a simple device that was able to monitor the key-
board serial cable for possible username/password
combinations. The students came up with a
scheme that encoded passwords by varying the
time between keystrokes by 20 milleseconds,
adding some framing, and repeating the same
sequence of timings. If those keystrokes travel
across a network, even as part of an encrypted
SSH connection, they will expose the password.

Isn’t anything safe? No, not really, but there cer-
tainly are ways that we could make things better.
Sitting in on the 2006 USENIX/ACCURATE
Electronic Voting Technology Workshop
(www.usenix.org/events/evt06), I learned that
cryptographic techniques which would make vot-
ing more accurate have existed for many years. In
his presentation, Josh Benaloh of Microsoft Re-
search said that the hard problems in voting, such
as accurately recording votes, accurately counting
those votes, and providing the voter with proof
that her vote was recorded as cast without reveal-
ing the way she voted, are manna to cryptogra-
phers. Give them a difficult problem, and they eat
it up. So now we have a choice of solutions, not
just one. Are we using them? Not in the U.S.

Joseph Lorenzo Hall, a lawyer at UC Berkeley,
suggested that we need to add a new category to
open source licensing—*“open disclosure.” “Open
disclosure” means that vendors maintain both
control of and the license to their software, but
openly disclose the code so that it can be checked
for correctness. This sounds like a great idea,
especially in countries where everything gets done
for a profit, from prisons to hospitals, and even
voting machines. But there are flies in this oint-

ment, as some voting vendors’ code is so ugly that they would likely drop
out of the business sooner than reveal their code. As he said this, I heard
mumblings in the room from people who had actually had permission to
audit DRE (Direct Recording Election) machine code, quietly agreeing
with him about the crappiness of the code used in popular voting
machines.

Another talk really knocked my socks off (yes, I was wearing shoes). Ka-
Ping Yee, also of UC Berkeley, talked about work he had done with David
Wagner, Marti Hearst, and Steve Bellovin to create voting software. They
had split the voting code into two parts: the set of images that represent
the ballots and screens that make up the user interface, and the code that
interprets the voter’s input. Each image, representing a particular contest
for, say, corporate commissioners, can be rendered in advance, tested,
approved, and digitally signed. The logic that ties the images together,
creating a flow from one screen to the next, can also be verfied through
testing. Sounds pretty simple, and it actually is. Instead of the 31,000+
lines of C++ code sitting on top of the Microsoft Foundation Libraries and
Windows CE that’s found in Diebold’s DRE system, Ping and his friends
wrote their functional e-voting software in 293 lines of Python and just a
couple of libraries. Hmmm, seems like that just might be short enough to
audit.

There was much more going on during EVT 2006: read the summaries in
this issue of ;login:. I left knowing that it was definitely possible to create
trustworthy voting systems and that Europe, Australia, India, and other
countries had successfully worked with e-voting systems, but my own
country, the U.S., had decided to stick with systems known to be broken or
ones still sealed in secrecy.

IMumination

There were certainly bright notes during the Security conference: for
instance, Andy Ozment presented a paper showing that code, at least
OpenBSD code, actually has been getting better. He and Stuart Schechter
showed that most of the security problems found in OpenBSD came from
code inherited when OpenBSD was forked from NetBSD. These bugs con-
tinued to be found for many years, while a much smaller amount of new
code was found to contain bugs as well. Finally, a ray of hope, and one that
might apply to other code bases as well.

But I'm still depressed. Unsurprisingly, no new technique for guaranteeing
the security of any computer system appeared. Instead, we are besieged by
growing complexity. Sure, you can still strip down a UNIX, Linux, or BSD
system to its bare minimum and reduce your risk factor enormously. The
version of Linux to be used in the One Laptop per Child (laptop.org) proj-
ect will be extremely stripped-down, as befits an OS designed for a single
hardware target (no extra device drivers) to be used by children, with no
system administration needed. There are still some floppy-disk versions of
UNIX-like operating systems around, and many more that fit into small
(16MB) flash devices. These come close.

But when I run a process listing on a Linux, Mac, or Windows system, 1
am astounded at the number of processes and dismayed at the number of
processes I don't recall enabling or needing. The complexity of desktop
systems has grown along with the apparent need to coddle the user. Oh, I
guess I should write “improve the user’s experience.” While it is true that

automounting a CD and popping open a file browser or music player is a
nice feature, it still represents complexity and provides an attacker with
the ability to execute commands as the currently logged-in user. If you
wonder if this ever happens, just consider the Sony BMG debacle of late
2005, when it was disclosed that millions of Windows systems had a file-
hiding rootkit installed in the name of digital rights management (DRM).
Ed Felten of Princeton provided a great synopsis of why many vendors do
the wrong thing, while Apple has managed to do the right thing with their
DRM. And Felten’s student, Alex Halderman, gave us the details of the
rootkit.

Please do not think that because you use Linux, BSD, or Mac OS X you are
not vulnerable. During Black Hat, a conference occurring simultaneously
with Security ‘06 (too bad), two researchers displayed a wireless hack that
affects most Wi-Fi devices based on Atheros chips and demonstrated it on
Mac OS X Tiger—just because of the perceived security of that OS. No OS
is immune to faults, but some systems will have fewer faults than others.

Lineup

In this issue, we lead off with Steve Johnson. In the June *06 issue of ;login:
I mentioned that Steve had found some surprising performance results
when he experimented with data locality. Keeping often-referenced ele-
ments close together, in structures, has become a mantra in modern pro-
gramming (see Spinellis in the April 2006 ;login:), but Steve clearly shows
that this may not be the best strategy. Programmers (and system design-
ers), take note!

Mike Howard sounds off next with a response to Luke Kanies’s article
(login:, April 2006) about Ruby. Mike considers Python nearly as object-
oriented (completely so in v2) as Ruby, with many of the same features as
Ruby but more maturity.

In the Sysadmin section, Mark Burgess continues his series on configura-
tion management. He is followed by Brad Knowles, who discusses in detail
the state of NTP, providing excellent advice about the appropriate use of
NTP and stratum one and two timeservers.

The Technology section brings something for which I have been searching:
a discussion of CPU and system technology designed to deal with the large
difference between CPU and memory speed. Richard McDougall and James
Laudon write about Sun’s new T1 CPU architecture. In a computing world
dominated by Intel and AMD, Sun has taken a very different tack, reverting
to an earlier processor design, then building an eight-core, multi-threaded
system. The T1 architecture provides some very significant throughput
gains in applications that already have many threads, such as Apache and
Oracle, while using much less power (and producing less waste heat) than
their powerful competitors’ chips. People whose applications match this
processor’s strengths owe it to themselves (and their energy budgets) to
take a close look at this technology.

Timo Sivonen then explores two techniques for using encrypted file sys-
tems within FreeBSD. Timo explains how he tried two GEOM encryption
facilities, GBDE and GELI, and compared their performance, including the
use of different encryption algorithms.

In the Network section, Mike Freedman writes about OASIS, a system for
automating server selection. Like two articles that appeared in the June 06

issue of ;login:, this article is based on a paper that appeared at NSDI "06.
The OASIS system provides ways that clients can be directed to the most
appropriate server. Most systems for choosing the best of a set of replicated
servers choose the closest server, but the OASIS algorithm also takes into
account the current load reported by each server.

I wrote the next article in response to a request from Teus Hagen of NLnet.
Teus thinks that the world needs a project to create a low-cost networking
infrastructure. As I dug into this topic, I could see that while there are
some projects dancing around the edges of this issue, what Teus has in
mind goes much further. This article explores some issues in wireless tech-
nology, using RoofNet as an example, then ends with Teus’s wish list for
this new technology.

David Blank-Edelman has written the second half of column about tie(),
outdoing himself (as usual), while Robert Haskins takes a look at the
world of anti-spam solutions. Heison Chak considers how echo arises in
VoIP. Robert Ferrell is back with another /dev/random column, to be taken
not seriously but certainly thoughtfully. After an excellent selection of
book reviews, two articles about the standards process, and USENIX Notes,
this issue ends with an array of conference reports: 2006 USENIX Annual
Tech, SRUTI ’06, and EVT *06.

The mention of standards reminds me of something I wanted to include in
this Musings. Nick Stoughton’s description of work on the ISO-C commit-
tee sent me to an article by Dennis Ritchie on the birth and early life of the
C programming language. I enjoyed reading Nick’s article, but I equally
appreciated Dennis’s viewpoint on the development of C (and reading
about Steve Johnson’s part in this). You can find this article at http://cm
.bell-labs.com/cm/cs/who/dmr/chist.html.

I will confess that I see some features of the C language very differently
from that of one of its creators. I heard this echoed during USENIX
Security, where one panelist described C as “the best macro-assembler ever
written.” My own view of C is similarly colored, as I found it wonderfully
close to the assembly I was using when I first learned C. But I also like to
call C the programming language for people who write operating systems,
and I hope that the many programmers who don’t write operating systems
will consider writing in strongly typed languages that have bounded arrays
and don’t allow manipulation of pointers. The computing world would be
a much safer place if they did so.

THE ALGORITHMS TAUGHT TO COM-
puter science students haven't changed
all that much in the past several decades,
but the machines these algorithms run on
have changed a great deal. Each of these
algorithms is analyzed and justified based

a.] g OTithm S fOT th e on a model of the machine running the
21 S‘t Ce'ntu-ry algorithm. The analysis is often in terms of

asymptotic behavior (usually described as
the behavior on large problems).

STEPHEN C. JOHNSON

PRESENTED AT THE 2006

This article claims that the machines we run today
do not resemble, in performance, the models
being used to justify traditional algorithms. In
CONFERENCE, BOSTON, MA fact, today’s caches and memory systems seem to
reward sequential memory access, but they may
actually penalize memory patterns that seem to

USENIX ANNUAL TECHNICAL

Steve Johnson spent nearly 20 years at Bell Labs,
where he wrote Yacg, Lint, and the Portable C

Compiler. He served on the USENIX board for 10 have considerable locality of reference. This

years, 4 of them as president. behavior is especially noticeable for the kinds of

scj@yaccman.com very large problems that are driving us to 64-bit
architectures.

Traditional Assumptions

Traditional classes that teach analysis of algo-
rithms and data structures use a model, often an
implicit one, of how an algorithm performs on a
computer. This model often has a uniform memo-
ry model, where loads all take the same time and
stores all take the same time. The cost of making
function calls, allocating memory, doing indexing
computations, and loading and storing values is
often ignored or dismissed as unimportant.

A couple of decades ago, numerical algorithms
were analyzed in terms of FLOPs (floating point
operations). Various schemes were used; some
counted loads and stores, and some treated divide
as more expensive than multiply. Over time, it
became clear that the FLOP count for an algo-
rithm had only the most tenuous connection with
the running time of the algorithm, and the prac-
tice fell into disuse.

I hope to awaken a doubt in you that such tradi-
tional techniques as linked lists, structures, binary
trees, and “divide and conquer” algorithms are
always good for large problems on today’s
machines. Let’s start with some simple measure-
ments. You are encouraged to try this at home on
your own computer.

6 ;LOGIN: VOL. 31, NO. 5

But First,a Word About Time

Most modern computers have CPU cycle counters. These have the advan-
tage that, for desktop machines, they can produce extremely accurate and
repeatable timings. The times in this paper are all obtained using cycle
counters.

However, there are disadvantages. There appears to be no portable way of
turning cycle counts into clock time (e.g., determining the clock speed of
your computer), or even getting at the cycle timer itself. In the case of lap-
tops, the situation is quite bizarre—most laptops run faster when plugged
into the wall than they do when running on batteries. Also, laptops tend to
slow down when they get hot (i.e., when they are doing work!). So run-
ning tests on laptops can be misleading and the data can be quite noisy. All
the data in this paper was gathered from desktop machines.

So please try this at home, but preferably not on a laptop. This article gives
all the code you will need to replicate this data on an Intel-based Linux
system using gcc.

I used a simple C++ class to do the basic timing. There are two methods of
interest: tic and toc. Calling tic reads the cycle counter and saves the value;
calling toc reads the counter again and returns the difference. The CPU
timer class is:

class CYCLES
{
long long var;
public:
CY(void){};
~CY(void){};
void tic(void);
long long toc(void);
|3

static long long int cycle_time;

static void tsc(void)
{
__asm__ volatile ("rdtsc” : "=A"(cycle_time));

}

void CYCLES::tic(void)
{
tscl);
var = cycle_time;

}

long long CYCLES::toc(void)
{
tscl);
return(cycle_time - var);

}

Summing a Million Elements

The first program examines how the process of summing a million double-
precision numbers is affected by the order in which we do the summation.
We can add the numbers sequentially through memory. Or we can add
every other number, then come back and get the numbers we missed on a

second pass. Or we can add every third number, and then make two addi-
tional passes to get the ones we miss. The relevant part of the program is

CYCLES c; // cycle counter
#define N 1000000
double a[N]; // the array to be summed
// initialize a
for(int i=0; i<N; ++i)

alil = 1.0;
double S =0.;
long long t; // the cycle count
// time a sum of stride s
c.tic();
for(int i=0; i<s; ++i)

for(j=i; j<N;j +=s)

S +=aljl;

t = c.toc();

In fact, the data to be presented are the average of 10 runs, covering
strides from 1 to 1040. The cycle counts are normalized so that the stride 1

Array Sum (A64 -g) case is 1.0.

Time

] This example is not as contrived as it may appear to be, since it simulates

| array access patterns in large two-dimensional arrays. For example, stride

] 1000 simulates the reference pattern in a 1000x1000 double-precision

] array where the “bad” dimension varies most rapidly (the “bad” dimension
1 in C is the first one; in FORTRAN and MATLAB it is the second one).

Figure 1 shows the data for an AMD 64-bit processor, when the program is
compiled unoptimized.

Notice that stride 1 is the fastest, as we might expect. But beyond that,

o T 20 30 0 50 60 700 50 00 1000 TIoo there are some unintuitive features of this graph:
Stride

There are periodic “spikes” where the time is 5x or more worse than
unit stride.
Array Sum (A64 -O4) Even small strides are several times worse than unit stride.

The performance gets rapidly worse for small strides, then improves
for much larger ones.

Actually, the spikes, although striking, are probably the feature of these
graphs that is easiest to understand. They probably arise from the way
caches are designed in most modern CPUs. When an address reference is
made, some bits from the middle of that address are used to select a por-
tion of the cache to search for a match, to save time and power. Unfortu-
nately, this means that when the stride is close to a high power of 2, only a
small portion of the available cache space is being used. It is as if the effec-

0 o0 20 0 @0 50 &0 700 800 00 1000 oo tive cache size is a tiny fraction of that available in the unit stride case.
Stride This effect happens, with somewhat different numerology, for each of the
caches (with modern systems having two or three).

What is surprising, especially in the later data, is the magnitude of this
effect.

The graph in Figure 1 involved unoptimized code. If we optimize
(gce -04), we get the graph shown in Figure 2.

Optimization does not change the essential shape or properties of the
curve, although the spikes are a bit higher. This effect is largely the result
of the code for unit stride being a bit faster (recall that the graphs are nor-
malized so that unit stride is 1.0).

Array Reading (A32 -0O4)

We can also collect data on a 32-bit AMD processor (see Figure 3).

Notice that the shape of the curve is similar, but the spikes are closer
together. There is also a strange “hump” around 512, which appeared on
multiple runs (which doesn’t preclude it from being an artifact!). The
unoptimized version of this test on the 32-bit AMD system also had a
hump that was lower and broader. The 64-bit AMD data may show signs
of a smaller hump centered around 1024.

Figure 4 displays the curve for an Intel 32-bit system.

Note that the behavior for small strides is much worse than that of the
AMD machines, but there is no sign of the hump. The spikes are closer
together, probably because the caches are smaller.

Writing Data

Q
E
sl
2f
1k
o I‘J 160 260 30‘0 460 560 BI‘]EI 76D 80‘0 90‘0 m'nn 1100
Stride
Array Reading (132 -O4)
18 T T T T T T 4 4
16
14
12
1
o 10
E
F s
6
4 4
L]
2 J
g 6 160 260 36D 460 560 560 760 BIﬁEI BIAEI 1DED 1100
Stride
Array Writing (A64 -O4)
35
30
25
® 20
E
Lol T
10 o
5 Mk |

0 100 200 300 400 500 600 700 800 900 1000 1100
Stride

We can run a similar test on writing data. In fact, we do not need to initial-
ize the array, so the code is simpler:

CYCLES ¢; /I cycle counter
#define N 1000000
double a[NJ; // the array to be written
long longt; // the cycle count
// time writing N elements with stride s
c.tic();
for(int i=0; i<s; ++i)

for(j=i; j<N;j +=s)

aljl = 1.0;

t = c.tocl);

The results for a 64-bit AMD machine are shown in Figure 5.

At first glance, the data appears smoother (except for the spikes), but this
is an illusion, because the scale is much larger. In this case, the worst
peaks are up to 30x the unit stride times. Once again, the peaks appear at
strides that are powers of 2.

The 32-bit AMD data is shown in Figure 6.

Again the peaks appear at powers of 2, and again they are up to 30x worse
than unit stride. The Intel 32-bit graphs for reading and writing are quite
similar.

Writing Data Repeatedly

Array Writing (A32 -04)
35

30

25

10

st . 4

0 100 200 300 400 500 600 700 800 900 1000 1100
Stride

Time

The programs for summing and writing data are worst-case examples for
cache behavior, because we touch each data element exactly once. We can
also examine what happens when we write data repeatedly. By modifying
our test case slightly, we can write only 1000 elements out of the million-
element array but write each element 1000 times. Once again, we vary the
strides of the 1000 elements. Note that for all strides, only 8000 bytes are
written. The program looks like:

CYCLES ¢; /I cycle counter

#define N 1000000

double a[NJ; // the array to be written
long long t; // the cycle count

// time writing N elements with stride s
// note: N must be bigger than 999*s+1

Array Multiple Writing (A64 -O4)
80— T T 3 T T T T T T T
70

60

50

Time
5

30

20

.
o »MMJMWWLM :

0 100 200 300 400 500 600 700 800 900 1000 1100
Stride

P!

c.tic();
for(int i=0; i<1000; ++i)
for(j=k=0; k<1000; | +=s, ++k)
aljl = 1.0;
t = c.toc();

We can be forgiven for having hoped that this amount of data could fit
comfortably into the caches of all modern machines, but Figure 7 shows
the 64-bit AMD results, and Figure 8 shows the 32-bit AMD results.

Unfortunately, the peaks are still present. Large strides are still worse than
small strides by nearly an order of magnitude. And the size of the peaks is
astonishing, up to 70x.

Data Layout Issues

Array Multiple Writing (A32 -O4)

80

70

60

o hassd
Y

0 100 200 300 400 500 600 700 800 900 1000 1100
Stride

Array/Struct Summing (A64 -g)

Arrays c=a+b a=b+c

10

This data suggests that modern memory systems don'’t actually do much to
improve local references to data unless those references are in fact sequen-
tial. Even rather small strides show significant degradation over the unit
stride case. This rather contradicts the trend in language design to support
structures that place related data together. We can measure the magnitude
of this effect of structures with a similar test. Suppose we wish to do a mil-
lion additions of related elements. We can create three million-element
arrays, and add the corresponding elements. Or we can create a structure
with three elements in it, make a million-element structure array, and loop
through it by doing the additions for each structure in the array. The inner
loop of the programs looks like:

CYCLES ¢;
#define N 1000000
double a[N], bINI, c[NI;
long long t;
for(int i=0; i<N; ++i)
alil = blil = cli] = 1.0; // initialize
c.tic();
for(int i=0; i<N; ++i)
alil = bli] + clil;
t = c.toc();

for the case of three arrays, and

CYCLES ¢;
#define N 1000000
struct three { double a, b, c; } AIN], *p;
long long t;
inti;
for(i=0, p=A; i<N; ++i, ++p)
p->a = p->b = p->c = 1.0; // initialize
c.tic();
for(i=0, p=A; i<N; ++i, ++p)
p->a = p->b + p->c;
t = c.tocl();

for the structure case. Just to see whether the order matters, we can also
measure

p->C = p->a + p->b;

Figure 9 displays the results for the AMD 64-bit machine, with the pro-
grams compiled unoptimized.

14

Array/Struct Summing (A64 -O4)

Arrays

c=a+b

a=b+c

Note that using unit stride with separate arrays is significantly faster than
for the structure cases, by tens of percents. Note also that there is a signifi-
cant difference between the two structure cases, depending on the data
ordering in the structure. If we optimize, we get the results shown in
Figure 10.

Once again, using separate arrays is significantly faster than using struc-
tures. The order of the data in the structure is much less important when
the program is optimized.

Discussion

I have collected too much wrong performance data in my career not to
warn that these data may contain artifacts and noise caused by operating
system tasks and other background computing. More seriously, with just a
few tests we are far from understanding the effect of CPU speed, cache size
and architecture, and memory system architecture on the performance of
even these simple programs. There is enough data, however, to strongly
suggest that modern computer cache/memory systems do not reward locali-
ty of reference, but rather they reward sequential access to data. The data
also suggests that access patterns that jump by powers of 2 can pay a sur-
prisingly large penalty. Those doing two-dimensional fast Fourier trans-
forms (FFTs), for example, where powers of 2 have long been touted as
more efficient than other sizes, may wish to take notice.

I am not trying to suggest that computers have not been designed well for
the typical tasks they perform (e.g., running Apache, Firefox, and Micro-
soft Office). However, with 64-bit computers and terabyte datasets becom-
ing common, computation on datasets that greatly exceed the cache size is
becoming a frequent experience. It is unclear how such data should be
organized for efficient computation, even on single-processor machines.
With multi-core upon us, designing for large datasets gets even more
murky.

It is tempting to think that there is some way to organize data to be effi-
cient on these machines. But this would imply that the system designers
were aware of these issues when the machines were designed. Unfortunate-
ly, that may well not have been the case. History shows that computing
systems are often designed by engineers more motivated by cost, chip and
board area, cooling, and other considerations than programmability. Future
data structure design, especially for large datasets, may well end up de-
pending on the cache and memory sizes, the number of cores, and the
compiler technology available on the target system. “Trial and error” may
have to prevail when designing data structures and algorithms for large-
data applications. The old rules no longer apply.

We can speculate that “large dataset computing” could become a niche
market, similar to the markets for servers and low-power systems. Perhaps
we can work with hardware manufacturers to develop techniques for algo-
rithm and data-structure design that software designers can follow and
hardware manufacturers can efficiently support. Meanwhile, try this at
home, and welcome to a brave new world.

REFERENCES

There is an interesting book by David Loshin, Efficient Memory Program-
ming, that has a lot of material on how caches and memory systems work

1

12

(even though the book dates from 1998). Unfortunately, there’s little
empirical data, and he repeats the old saws about locality of reference.

There is also a field of algorithm design called cache-aware algorithms. The
idea is to develop a family of algorithms to solve a particular problem, and
then choose one that best fits the machine you are running on. Although
this is an effective technique, it begs the question of how we design data
structures to optimize performance for today’s machines. Google “cache
aware algorithm” to learn more than you want to know about this field.

It's worth pointing out that similar issues arose once before in the vector
machine era (1975 to 1990 or so). Vector machines so preferred unit stride
that many powerful compiler techniques were developed to favor unit
stride. It is also notable that most vector machines did not have caches,
since reading and writing long vectors can “blow out” a conventional
cache while getting little benefit thereby.

Here is the detailed information about the machines I used to collect this
data:

The AMD 64-bit data was collected on a dual-processor 2.2 GHz
Athlon 248 system with 1 MB of cache and 2 GB of main memory. The
gcc version was 3.4.5.

The AMD 32-bit data was collected on a three-processor AMD Opteron
250 system running at 1 GHz with 1 MB caches. The gcc version was
3.2.3.

The Intel 32-bit data was collected on a four-processor Xeon system—
each system ran at 3.2 GHz and had a 512K cache. The gcc version was
3.2.3.

MIKE HOWARD

LUKE KANIES’ ARTICLE “WHY YOU
should use Ruby” in the April ;login: [1]
makes some really good points in Ruby’s
favor. While reading the article, | noticed |
could make all the same points for Python.

maybe you should
use Python

Mike Howard came into programming from Systems
Engineering and has been stuck there. He currently
makes his living doing custom software and system
administration for a few small companies.

mike@clove.com

Before getting started, I need to make two things
clear.

First, this is not a criticism of Ruby. I'm not sure
which is better, if either is. The important thing
to me is that the features Luke talked about make
programming easier to do and maintain. They
should be part of any modern language.

I also should explain my feelings about Ruby and
Python: I kind of like Ruby, but don’t plan to do
much coding in it. I've been writing code in Py-
thon for about five or six years now—beginning
with Python 1.5.2. 1 like Python’s terse, clear
style. One thing that attracted me to it to begin
with is the thing that bothers Luke—indentation
is mandatory and syntactically significant. How-
ever, 'm not a Python guru—TI've only written
around 50,000 lines or so.

I was attracted to Ruby because of Rails. I haven’t
written much more than a few thousand lines, but
from what I have seen, its a nice language with a
few more rough edges than Python.

The primary difference I see between the lan-
guages are:

= Their age: Python is a few years older and so
has had more time to be cleaned up.

= The approach of the designers: Python is
aimed at succinct code that tends to have
only one method to do any given task; Ruby
is more of a kitchen-sink language, and so
programmers have many equivalent options.

I think the two languages are converging toward
much the same feature set, but with stylistic dif-
ferences. Python is gradually and carefully adding
things, whereas Ruby is slowly discarding things
that are redundant.

Now let’s get to the points Luke Kanies brought up.

Point 1: In Ruby, Everything Is an Object

;LOGIN: OCTOBER 2006

Python 1.x had two kinds of things: primitives
and objects. Python 2 introduced the “new style
class” and has relentlessly driven the language to
the point where “everything is an object.”

Within Python 2.x, old style classes still exist,
even though for later releases primitives such as

MAYBE YOU SHOULD USE PYTHON 13

integers and strings are now objects. We are told that the journey will be
complete in Python 3.x.

Luke provides this example of how easy it is to get information about an
object in Ruby:

[Class, "“a string”, 15, File.open(”/etc/passwd")].each { |obj|
puts “'%s’ is of type %s"” % [obj, obj.class]

}
Here is essentially the same code in Python:

for x in [object, “string”, 15, file('/etc/passwd’)]:
print “%s is a %s"” % (repr(x), x.__ class__)

which yields

<type ‘object’> is a <type ‘type’'>

‘string’ is a <type ‘str'>

15 is a <type ‘int'>

<open file ‘/etc/passwd’, mode 'r' at 0xb755f4a0> is a <type ‘file'>

Point 2: According to Luke, in Ruby There Are No Operators: All Opera-
tions Are Defined by Functions Associated with the Objects Involved

This was not true of Python 1.x, but it is pretty much true in Python 2.4
and above. As everything becomes “an object,” it will be uniformly true, in
the sense it is in Ruby. That is, all operators in the language are imple-
mented using special methods attached to the operands and if the method
doesn't exist, the interpreter throws an exception.

For example, in Python, x + vy is executed as x.__ add__ (y) or y.__ radd(x)_ .

Point 3: Introspection

Introspection allows you to find information about objects as they are run-
ning. This contrasts sharply with languages in which programs must be
(almost) completely specified at compile time. Both Ruby and Python have
extensive support for inspecting the visible state of everything.

I'll only mention two Python features here: the builtin function dir() and
the __doc__ attribute.

dir(foo) returns a list of all attributes and methods attached to its argument.
That's all there is to it:

dir(1.0)

[abs__ ', '__add__", '__class__ ', '__coerce_ ', '__delattr__", "__
div__ ', '__divmod__ "', '__doc__ ', '__eq__" '__float__ ", '__ floordiv__",
'_ge__ ', '__ getattribute__ ', '__getnewargs__‘,'__gt_ ', '__ hash__ ",
‘init__ ', '__int_ ", "_le_ ', '_long__ "', "_It_ ', '_mod__" "__
mul__','_ne_"' '_neg_"' '_new__','__nonzero__ ', '__pos__ ",

' _pow__','__radd__"‘,'__rdiv__ ", '__rdivmod__"', ‘'__reduce__’, "’
reduce_ex__ ', '__repr__ ', '__rfloordiv__",'__rmod__", ‘"_rmul__", "__
roow__ ", ‘__rsub__ "', '__rtruediv__ ", '__setattr__ ', ‘'__str__ ', '__ sub__
‘' truediv__ ']

The __doc__ attribute contains printable documentation about the object:

print 1.0.__ doc__
float(x) -> floating point number

Convert a string or number to a floating point number, if possible.

Point 4: In Ruby, Many Objects Know How to Iterate Over Themselves

Rather than writing a conventional, imperative programming style loop,
you can say something like this:

object.each { |x| do something with x }

This is a good thing and such facility has been added to the 2.x versions of
Python, with capabilities increasing with each point release. This is a very
light survey of what Python provides.

Python uses the existing for loop syntax similarly to the way that Ruby
uses the each method. The Python for loop looks roughly like this:

for <list of variables> in <arbitary iterator>:
stuff to do

which is equivalent to calling a block of code with parameters set to the
variables in the list. So the Python for is equivalent to Luke’s Ruby code.

Initially, the <arbitary iterator> was any sequence—a list, tuple, or string.
This has been extended in Python 2.x to anything that satisfies the “itera-
tor protocol” (see below).

In addition, several interesting additions to Python make it easier to use
this construction in more compact, yet clear ways.

LIST COMPREHENSIONS

List Comprehensions, added in 2.1, are lists defined by one or more
sequences. List Comprehensions generalized the ideas of map(), zip(), and
friends. For example,

[x*x/2.0 for x in range(1,1000) if x%3 == 0]

GENERATORS

Generators were added in 2.2. A generator looks like a function except that
it contains the keyword yield instead of return. A generator returns an
object that has a next() method. Calling the next method either returns a
value or raises the Stoplteration exception. (Stoplteration is what now
stops the for loop in Python.)

def myrange(bot, top):
while bot < top:

yield bot

bot +=1

for x in myrange(1,20):
whatever

GENERATOR EXPRESSIONS

Generator Expressions, added in 2.4, are essentially lazy list compre-
hensions. That is, a list comprehension realizes the entire list, but a gener-
ator expression just returns the next element. This allows simple iteration
over infinite sequences. To write one, replace the square brackets with
parentheses:

(x*x/2.0 for x in range(1,1000) if x%3 == 0)
(line for x in file('/etc/passwd’) if x[0] I= "#)

ITERATOR PROTOCOL

Iterator Protocol, added in 2.2, is a general method for objects to become
iterators. This provides functionality similar to Ruby’s each method. In
brief, if an object defines two special methods, it can replace the list com-
ponent of a for loop. These methods are:

__iter__ (self), which returns a function that acts as an iterator
next(self), which returns the next item from the object or raises the Sto-
plteration exception

The imminent release of Python 2.5 will continue this trend and promises
support for co-routines by expanding the capabilities of generators and
unifying Python’s exception-handling code.

Iterators are really cool. They make code both compact and easy to under-
stand.

Point 5: Ruby Has Code Blocks

Ruby code blocks are similar to anonymous functions that can be passed
to methods for execution. I say they are similar because the parameters of
a Ruby code block are existing local variables; those local variables are
then used within the block and their values are changed as a result of the
block’s execution [2]. Ruby code blocks can be arguments of methods, can
be assigned to variables, etc.

Python functions can be manipulated similarly. They can be passed to and
returned from functions. They can be assigned to variables. And they can
be executed in loops that are controlled by iterators. Python function
parameters are always local variables, so they are less prone to unintended
side effects.

In Python, def (function definition) is an executable statement that returns
a function. This makes it easy to write closures:

>>> def foo(x):
def tmply):
returny < x
return tmp

>>> a = f0o(10)

>>>a

<function tmp at Oxb7562b1c>
>>> a(4)

True

>>> a(12)

False

Summary

I agree strongly with Luke that the features he outlined in [1] are excellent
features that should be in all modern programming languages. I also agree
that they are good reasons to use Ruby or Python.

REFERENCES

[1] Luke Kanies, “Why You Should Use Ruby,” ;login: (April 2006).

[2] Dave Thomas, Programming Ruby: The Pragmatic Programmers Guide, 2nd
ed. (Pragmatic Programmers, 2005), p. 51. This scope issue is being debated
within the Ruby community and will probably change in some subsequent
release.

[3] See www.python.org for documentation for all releases, as well as the
code. Many features (implemented and proposed) are described in the PEPs.

[4] David M. Beazley, Python, Essential Reference, 3rd ed. (Sams Publishing,
2006).

Join us in Seattle, WA, November 6-8, 2006, for the 7th USENIX Symposium
on Operating Systems Design and Implementation. OSDI brings together
professionals from academic and industrial backgrounds in what has
become a premier forum for discussing the design, implementation,

and implications of systems software. Sessions include: Moy, 9=3, 2009,
Runtime Reliability Mechanisms Bs‘CJHJs‘, 2LA
OS Implementation Strategies
Distributed Storage and Locking
Program Analysis Techniques

And more

See the full program at www.usenix.org/osdi0é6. Don't miss an outstanding
program covering the best systems software research and practice.
Register online by October 16, 2006, and save!

OSDI '06 is co-located with the 3rd USENIX Workshop on Real, Large Distributed Systems
(WORLDS '06), which will take place on November 5. The Second Workshop on Hot Topics
in System Dependability (HotDep '06) will be held on November 8, immediately following
OSDI '06. See www.usenix.org/events for more information and to register online.

17

18

MARK BURGESS

configuration
management:

models and myths

PART 2: BABEL, BABBLE, TOIL,

AND GRAMMAR

Mark Burgess is professor of network and system
administration at Oslo University College, Norway.
He is the author of cfengine and many books and
research papers on system administration.

Mark.Burgess@iu.hio.no

;LOGIN: VOL. 31, NO. 5

TIME TO PUT THE ADMINISTRATIVE
house in order? Then you are going to need
a way of describing that house. Configura-
tion management, as discovered in part 1 of
this series, is the management of resource
patterns. If you can’t communicate a con-
figuration pattern, you certainly can't have
someone create it, verify it, or maintain it.
So, although there are clearly many ways to
build your house of cards, you will need to
learn the language of patterns if you want
to make a bunch of them exactly alike.

Parentheses (and More Parentheses)

Call me not a linguist or a poet by training; my
roots were nurtured in that country on Earth with
surely the worst reputation for knowing foreign
languages (worse even than the United States).
Still, I am uncharacteristically both intrigued and
betaken by language.

(What? “Betaken”? Not a word, you say?
Hmmm . . . stay tuned!)

These days I live in Oslo, in the southern part of
Norway, but I started my life in the northwest of
England. Ironically, this is the part of England
whose culture and language were “impregnated
and borrowed” by Vikings from Norway in early
A.D. The inheritance of that invasion is still there,
to the observant eye and ear.

I lived not far from a charming creek called
Beckinsdale (in Modern Norwegian, Bekk i dal,
meaning “stream in valley”). People still call their
children “bairns” in that part of the world (in
Modern Norwegian, “barn” means “child”).
There are many examples of such glossal cross-
pollination. In fact, the languages of Old English
and Old Norse were so alike that the Vikings and
their victims probably understood each other
quite easily, and today language scholars are often
at pains to determine from which of them certain
words came.

In dialect, I recall verb endings that sounded per-
fectly natural to me: “we’ve meeten, eaten, beaten,
moven, proven.” Surely, these are older forms of
verb endings than in the modern English “we’ve
met, beaten, moved, proved.” (The endings sound
somehow more Germanic, though I am just guess-
ing; I was reminded of them on playing Deep
Purple’s song “Space Truckin’,” where Ian Gillan
sings, “We've meeten all the groovy people . . .”)

It is odd that “eaten” alone has survived in the U.K. (as has, occasionally,
“proven”; “gotten,” however, which has survived in the U.S., is strictly for-
bidden in the U.K. and yet the derivatives “forgotten” and “begotten” are
standard.). Clearly, the rumors of English grammar have been greatly

exaggerated.

What of “betaken”? Why is this not a word? It clearly fits the grammatical
forms. One even says idiomatically “I am rather taken by that” (preferably
with a butler-like inflection) and, of course, there is a similar word “be-
trothed,” which is in the dictionary. In Modern Norwegian it is indeed a
word (“betatt”) and it means exactly “rather taken by,” so I hereby define
the word “betaken.” And who can stop me?

Indeed, language changes regularly and we are inventing new words all
the time, using recognizable patterns. It tends to move from complicated
constructions toward simple regular patterns. If you examine which verbs
are still irregular (or strong) in language, it is those verbs that are most
commonly used (e.g., “to be”). There is a simple reason for this: We only
remember the irregularities if we are using them all the time and they are
strong enough to resist change. In other cases we forget the “correct”
forms and (regularize|regularise) them according to some simple syntactic
pattern. Anyone who has seen the British TV show “Ali G” will know from
his parodical dialect that there are parts of the U.K. where even the verb
“to be” is losing to regularization: “l is, you is, he is . . . , innit.” (Prizes
will be awarded for guessing the last word’s origins.)

In fact we add and change word endings willy-nilly: In the U.S. my least
favorite word at the moment is “provisioning” (which I like to call “provi-
sionizationing”) although “de-plane” is way up there (and it surely means
picking passenger aircraft out of the fur of a cat). These are particularly
nasty examples of “verbing” and “nouning,” especially American phenome-
nonizationings. In the U.K., people have an odd habit of saying “orientat-
ed” instead of “oriented,” fearing possibly that the latter has something to
do with a cultural revolution of cheap shoes, or harks of a country they
never managed to “civilise.” Or, perhaps they are simply so orientitillated
that they feel they must.

At any rate, although there are definite patterns to be seen, clearly human
language is driven by populism and natural selection, not by total logic or
design.

The Chomsky Hierarchy

So much for human language. It seems to have very little to do with struc-
ture or reliability—qualities we are certainly looking for in system adminis-
tration. So let’s get formal.

In the passages in the previous section, I broke several rules of writing
[although ;login:’s copyeditor may have unwittingly “corrected” some of
the more egregious abuses—copy ed.] and made you (the reader) work
harder than is generally allowed in modern literature. I served a plethora
of parenthetical remarks and digressions. I am guessing that you have
noticed these (and that you had no trouble in parsing them) but that they
were a little annoying, since you had to work slightly harder to understand
what I have written. Of course, I was making a point.

The theory of discrete patterns, such as houses of cards or flowerbeds, is
the theory of languages, as initiated by researchers including Noam
Chomsky in the late 1950s and 1960s. For discrete patterns, with symbolic

content, it makes intuitive sense that discrete words and their patterns
might be a good method of description; but when we get to continuous
patterns, such as the curving of a landscape, what words describe the exact
shapes and infinite variations of form? For that we need a different lan-
guage: continuous (differential) mathematics, which we shall not have
time to mention in this episode.

The theory of formal languages assumes that a discrete pattern is formed
from an alphabet of symbols, shapes, colors, etc., much like a pack of
cards; patterns are then classified by measuring the complexity of the sim-
plest mechanism or computer program that could generate the pattern.
The classes of patterns are called formal grammars. Their classifications
and corresponding state-machines are as follows:

Regular languages (finite automata, or finite state machines)
Context-free languages (push-down automata)
Context-sensitive languages (nondeterministic linear bounded
automata)

Recursively enumerable languages (Turing machine)

The syntax of a language is a list of all legal sentences in the language.
Lists are not very helpful to us, though: We have trouble remembering
things by brute force, so we try to identify the repeated patterns and turn
them into rules. These pattern-rule templates are called grammars. The
simplest grammars are the regular grammars, and the patterns they repre-
sent can be modeled by a simple pattern-matching language: regular
expressions.

Regular Expressions

All UNIX users have met (or meeten) regular expressions. They are a well-
known and powerful way of matching text strings. The implementations
we know are stylized enhancements of the regular expressions of language
theory.

A language is said to be regular if it can be constructed from some alphabet
of symbols and satisfies a few basic rules. Let us suppose that we have an
alphabet, A, which contains a finite number of symbols. Those symbols
could be alphabetic, alphanumeric, numeric, glyphs, flowers (as in part 1),
or any arbitrary collection of denumerable symbols. The rules are these:

The empty string and each symbol in the alphabet are regular expres-
sions.
If E1 and E2 are regular expressions, then so is E1E2, i.e., the concate-
nation of the two (e.g., expressions “b,” “e,” “be,” “taken,” and
“betaken”).
If E1 and E2 are regular expressions, then so is the union of the two
(i.e., we allow alternate expressions to be combined in no particular
order). This is written with the vertical bar “|” in most implementa-
tions (e.g., we have (metlmeeten)).
If E is a regular expression then so is E* (repeated instances). Hence
we have acceptable expressions “provision,” “ization,” and “ing” gen-
erating “provisionizationingizationingingingization,” etc. ad lib.
Nothing else is a regular expression.

The Kleene star (*) is a shorthand for the concatenation zero or more

instances of members of a set or expression. This is the parsimonious form
of regular expressions. We'll not delve into implementations for now.

Languages in Configurations

There has been a lot of talk about “configuration languages” as tools for
sorting out UNIX systems: cfengine, LCFG, now Puppet, etc. Rumor has it,
I wrote one of these myself. But don't let this talk of language trick you
back into thinking about these tools. Rather, notice that the very problem
of configuration itself involves language—because it is about describable
patterns. For example, UNIX file permissions form the simplest kind of
regular language. If we take the octal representation, they consist of scalar
states of constant length and a fixed alphabet consisting of the following
“symbols”:

Q=10,1,2,3,4,5,6,7}

It is easy to represent this as a language. It is simply the union of each of
the symbols. That is, if we ignore the foibles of UNIX syntax, then the
entire language is simply written

00010011002|003|004]...|7761777
This is all very well, but so what?

The significance of regular expressions for configuration policy is that
there is a provable equivalence between regular languages and finite state
machines, i.e., the simplest kind of algorithms, using a fixed amount of
memory. This means that regular strings are relatively easy to parse, identi-
ty, and understand. This, at least partly, accounts for their ubiquity in com-
puter software where pattern matching is required.

Regular expressions occur in editors, where searching and replacing is
required, in intrusion-detection and spam-detection software, in all kinds
of policy languages, and on the UNIX command shell (as “globbing”).
They are a central part of Perl, a language designed for pattern extraction
(though Perl is not a regular language). Today, no computer toolbox is
complete without a regular expression library.

Bring on the Toil (Parentheses Again)

In spite of the multifarious uses for regular expressions, they are only the
lowest level of sophistication in the Chomsky hierarchy. The computer lan-
guages we are most familiar with for programming or markup are almost
all context-free languages. Such languages can only be approximated with
finite memory. They contain nested parenthetic structures that require an
extensible stack to process. Here, for instance, are some examples of lan-
guages that use parentheses to identify information by type:

1. <account>
<uname>User1</uname>
<passwd>x7hsk.djt</passwd>
<uid> 100 </uid> ... </account>

2. (account (uname User1) (passwd x7hsk.djt) ...)

If the level of parenthetic nesting in a grammar is not large, we can simu-
late common cases of context-free languages by treating fragments as regu-
lar expressions with balanced pairs of symbols (as anyone who has written
a simple parser will know). This is useful because it means that a simple
finite state machine can make a good attempt at interpreting the string and
this is cheap.

However, to ensure full generality one must go beyond regular language
tools and enter the realm of stack-based tools such as Yacc and Bison for

22

context-free grammars. Each level of the Chomsky hierarchy grows in its
computational complexity (costing us more to parse parenthetic remarks
(as you (no doubt) experienced in my introduction)). The most general
patterns require a full Turing machine (a computer with infinite memory)
to solve.

The trouble with this next level of computation is that it is a drastic step.
It requires a whole new level of sophistication and toil in modeling,
describing, and understanding to master. We want to use higher-grammati-
cal patterns to design, classify, and maintain structures that are context
free. Worse yet, the structures might be inside files, in packet streams,
distributed around a network, or inside a database. The difficulty of going
beyond finite state automata partly explains why pattern-recognition sys-
tems (such as network intrusion detection systems), which obviously need
to deal with parentheses (e.g., TCP-SYN, TCP_FIN), generally do not
record such state, but rather rely on regular expression rules applied as
fragments. This is “doable,” if not optimal.

Data Types and Bases

In configuration management we meet information in a variety of forms.
Lists of values are common. Line-based configuration files are ubiquitous
in UNIX. Windows has a simple key database in its registry. What kinds of
languages do these data form?

Scalar permissions are regular languages.

Lists of regular objects are also regular.

A line-based text file is a list and hence is regular.

Text files containing higher grammars such as XML are context free.

Relational databases have been used to store data almost since computing
began. They add a new twist to the idea of languages, namely that the
words one forms from the basic alphabet of a language (and sometimes
even the symbols of the alphabet) can be classified into types. Consider
Figure 1.

File Search Regex
Base path = <string> Expression = <string>
Regex (name) > Standard = <GNU/Perl/Posix>
Age
Search (/bin,myregex,myage);
Age MyRegex(".*\.exe", "posix");
Age (">=""5" "MINUTES")
Comp=<,>=
Value = <int>
Units = <m/s>

The figure shows the basic idea of a relational database. Certain types of
data are grouped together in tables or records. Such data structures have
eventually ended up in programming languages too, in the form of records,
structs, and now even object-oriented “classes.” The main point of putting
information into a predictable structure is that one imposes a linguistic
discipline on the data. The tables are simple parentheses around a number
of regular language items that are given names. In the first table we have a
string (which is a regular object) with a name “base path,” a “regex,”

which is a new kind of table or parenthetic grouping, and an age, which is
yet another parenthetic grouping. The “regex” has two regular members: a
regular expression (which is a string and is hence also a regular object)
and a label (string or number), which is regular. Similarly, “Age” consists
of a list of three regular objects.

A relational database is therefore a context-free language. SQL is a query
language that uses regular expressions embedded in a table model to locate
data in the database (which has its own context-free language pattern). We
cannot escape from languages or these basic pattern ideas in configuration
management. They recur at all levels.

Data types are a powerful idea. They allow us to distinguish among seem-
ingly equivalent patterns of data and therefore open up a range of flavors
or colors to the flowers in our garden. This is the purpose of having tables
in relational databases: We can group together objects into comparable
clusters. Syntactically, all objects of the same type have the same basic
structure and are therefore comparable, i.e., they form the same subpattern.

Markup

The trouble with databases is that they are not very transparent—they can
only be read with special tools, so it is hard to see the structures in data in
an intuitive way. This is less of a problem in computer programming lan-
guages where class hierarchies are written down in ASCII form. For many,
the answer to this problem has been to adopt XML, a generic markup rep-
resentation for a context-free data structure, which adopts the best of both
worlds. Not only does XML offer a standardized encoding of a context-free
structure, it claims to make it parsable by humans as well as machines.
(Let us say that the rumors of its human-readability have been greatly
exaggerated.)

Every pair of tags in a markup language such as HTML or XML makes a
data type out of the parenthesized region. For example:

The <adj>quick</adj> brown <noun>fox</noun> <verb>jumps</verb>
over the lazy dog.

The current adoration of XML has no real significance as far as problem-
solving goes, but it is interesting that the trend in system design is to move
away from regular line-based data, as is traditional in UNIX and DOS,
toward context-free data. This opens the door to much greater complexity,
with attendant consequences that we shall consider as the series progresses.

Revolution or Regex?

Toil, work, and difficulty relate to grammars or patterns rather than to
symbols. Noah Webster, as a slap in the face to the British, rewrote the
spelling of the American English as a political act after the revolution. (No
doubt my own spellings “colour,” “flavour,” etc., have been magically
transformed into American “color” and “flavor” by the copy editor.
[Indeed—copy ed.]) The adaptation has almost no consequence (except to
annoy self-righteous Brits immensely); many readers hardly even notice
this change. Had Webster altered the grammar of the language, there
would have been serious trouble. But the fact is that, although he obscured
some of its etymology, the basic patterns of the language did not change,
and therefore even the most obtuse of colonialists can still read American
(although Canadians seem totally confused about how they are supposed
to spell).

24

The patterns that we are able to discuss and represent are key to mastering
the problem of configuration management. Many system administration
and management tools try to force users into doing either what the tools
can do or what is considered manageable. By asking users to limit the com-
plexity of their configurations they plump for a reasonable strategy that
strives for predictability. This might be all right in practice, for the time
being, but if we are going to fully understand the problem, we must go
beyond quick fixes. The challenge for any theory of configuration lies in
describing what people really do, not in trying to force people to do some-
thing that is easy to understand.

In the next part of this series, I would like to run through some of the data
models that have been applied to the problem of system management. We
shall ask the following: How can we measure their complexity, and why are
none of them ever really used?

Save the Date!

%I _F__I I .;.IT @1‘ 5th USENIX Conference on File
and Storage Technologies
. ; m February 13-16, 2007 San Jose, CA

Join us in San Jose, CA, February 13-16, 2007, for the latest in file and storage technologies. The 5th USENIX

Conference on File and Storage Technologies (FAST '07) brings together storage system researchers and
practitioners to explore new directions in the design, implementation, evaluation, and deployment of storage

systems. Meet with premier storage system researchers and practitioners for 2.5 days of ground-breaking file

USENIX

and storage information!

BRAD KNOWLES

it’s about time . ..

Brad has been using UNIX and the Internet for over
22 years, doing UNIX and Internet administration for
over 16, and specializing in Internet email and DNS
administration for more than a decade, and he now
considers NTP and the NTP PSP to be his third princi-
pal area of specialty. He has spoken at a number of
major conferences; was on the program committee
for SANE 2000 and SANE 2002; was a reviewer for
the second editions of Sendmail (O'Reilly, 1997), DNS
and BIND (O'Reilly, 1997), and Sendmail Performance
Tuning (Pearson Education, 2002); is currently
involved in writing his own book; is co-authoring a
booklet in the SAGE Short Topics series; and has been
asked to be a reviewer of at least one other technical
book in the field.

brad@stop.mail-abuse.org

;LOGIN: OCTOBER 2006

AFTER 25 YEARS OF DEVELOPMENT
[41], the Network Time Protocol (NTP) is
now firmly established as the standard
cross-platform way to set and maintain
computer clocks on the Internet. Most
modern OSes ship out-of-the-box with
clients for NTP, and many of those are
turned on by default. Most network devices
have NTP clients built-in, and even many
Small Office/Home Office (SoHo) DSL/cable
modems/routers have them turned on by
default. Unfortunately, as adoption spreads,
misconfiguration is becoming more com-
mon, especially vendor misconfiguration.
With misconfiguration comes bad or no
clock synchronization and abuse or even
“vandalism” of a surprisingly small number
of time servers on the Internet.

The purpose of this article is to give you an
update on the status of the protocol itself, the
NTP Public Services Project (where you can get
support for questions you may have regarding
NTP), books and documentation related to NTP,
the Top Five Most Common Problems, lists of
publicly accessible time servers (including the
NTP Server Pool project), time synchronization
“state of practice” on the Internet, the release of
updated “Reference Implementation” code, and
recent developments on NTP server abuse (fol-
lowing David Malone’ article from the April 2006
issue of ;login:). Footnotes used will be in the asr
(alt.sysadmin.recovery) tradition [32, 33].

NTP Working Group

The IETF is in the process of updating the NTP-
related RFCs, specifically working toward an offi-
cial specification for version 4 of the NTP proto-
col (RFC 1035 was published in 1992 and cov-
ered NTPv3).

Toward this end, they have set up an NTP
Working Group (NTPWG) [14]. The mailing lists
are being hosted [15] by the NTP Public Services
Project [26], as well as a TWiki[40]. The NTPWG
page [14] tells us:

A number of topics have been raised as
potential work items for an update to NTP
including support for IPv6, security consid-
erations including authentication, automatic

IT’S ABOUT TIME . .. 25

configuration including possible requirements for DHCP, and algo-
rithm improvements.

If you're interested in helping to shape the future of the NTP protocol or
the NTP implementations, please join the group and give us the benefit of
your experience and views.

NTP Public Services Project

For years, the main site for most things related to NTP was at
www.ntp.org. The ntp.org domain is owned by Dr. David Mills [34, 7], the
Web site is maintained by his students at the University of Delaware and
various members of the “volunteer corps,” and the hardware is managed
by the UDel staff. However, the support services eventually outgrew the
hardware resources available at the host institution and, unfortunately,
began to conflict with their policies.

Thanks to support from the Internet Systems Consortium, most of the
NTP support services have been migrated to the NTP Public Services
Project (NTP PSP) [26], as part of the “Hosted@ISC” programme, which
includes Apache, FreeBSD, KDE, Mozilla, OpenBSD, OpenDarwin,
OpenLDAP, OpenOffice, PostgreSQL, XFree86, kernel.org, and many oth-
ers. Remaining at the ntp.org Web site are the main NTP home page, the
NTP FAQ, the official download site for the source code, and tarballs of
the “Reference Implementation,” as well as continued research and devel-
opment of the protocol and code by Dr. Mills and the “volunteer corps.”

We are very grateful for all the assistance and hardware provided by ISC,
and we’d like to thank all of our other donors as well [30]. A page for
donating to the project has been set up [29], which includes information
on how you can make tax-deductible donations through ISC and links to
information on various pieces of hardware that we lack and hope to be
able to obtain [31].

NTP Documentation

Dr. Mills is the person who originally created the NTP protocol and is
sometimes called “Father Time” [7, 34]. He has recently published his
book on the subject, Computer Network Time Synchronization: The Network
Time Protocol, published by CRC Press (2006). Of course, it’s already been
reviewed on slashdot [8].

The only other dead-tree publication to cover this topic (so far) is Expert
Network Time Protocol: An Experience in Time with NTP by Peter Rybaczyk
(published by Apress, 2005, and reviewed by slashdot [9]).

For online documentation, there are the official pages written and main-
tained by Dr. Mills [10], the NTP FAQ [11], the Community Supported
Documentation (CSD) [12], and many other pages linked from the NTP
PSP Documentation page [13].

Top Five Most Common Problems with NTP (a.k.a. NTP Mini-FAQ)

One of the most common issues I've seen has been something along the
lines of “I've done everything I'm supposed to, and it still doesn’t work!”
Here’s a run-down of common causes:

1. They haven’t punched a hole in their network firewall or host fire-
wall software for bi-directional traffic on UDP port 123.

If you can’t open port 123 for UDP in both directions, then you can't
use the NTP daemon. The ntpdate program can be used with a “-u”
option to tell it to bind to a high-numbered port, which may be
allowed by the firewall configuration, but this sort of option is not
(yet) supported by ntpd.

2. They have unknowingly configured the software to ignore all
responses that are not cryptographically signed.

Hint: The meaning of “notrust” changed between 4.1.x and 4.2.0.
Disable “restrict notrust” unless you really understand what it’s
doing.

3. They may be running with SELinux enabled and not configured to
allow the NTP software to update the system clock, etc.

4. They chose a set of upstream time servers that is not sufficient to
allow the NTP algorithms to work correctly.

Hint: Use either just one or at least three or more, because the person
with two clocks never knows what time it is [35].

In fact, you should use at least four or five upstream clocks if you
want to be able to have one or more of them die or go insane, while
your clock continues to function correctly. More information can be
found in Section 5.3 of the CSD [16].

5. Their time zone is not correctly configured or is not properly dis-
playing daylight savings time. The machine may be doing an ade-
quate job in synchronizing the system clock to the upstream servers,
but the presentation of this information is not correct.

This is not an NTP problem, since NTP operates exclusively in Uni-
versal Coordinated Time (UTC). The conversion from UTC to the
local time zone is considered to be a representation issue for the OS
and is outside the control of the NTP programs.

Make sure your time zone settings are correct in your /etc/localtime
file, the $TZ environment variable, or otherwise as appropriate for
your OS.

If you're having problems with NTP, we've got a whole section of the CSD
devoted to troubleshooting [17] and describing common issues that people
have, especially Section 9.1 on common hardware problems [18] and
Section 9.2 on OS trouble [19]. If you've gone through all the documenta-
tion and you're still having problems, feel free to post on comp.protocols
.time.ntp (which is gatewayed to the mailing list questions@ntp.isc.org
[36]), or come see us on irc at #ntp on irc.freenode.net.

If you decide to use the irc channel, please be aware that there aren’t many
of us in the project and who monitor the channel on a regular basis, so
you might need to wait a while for a response—perhaps several hours, or
even a day or more. The mailing list/newsgroup is probably a better choice,
unless you have a strong requirement for interactive support and you can
afford to wait for it.

Also, if you see anything that could be improved in the CSD, or needs clar-
ification, please feel free to sign up for a TWiki account and then dive right
in to make the changes yourself. There’s no way we can maintain all this
information all by ourselves (in our nonexistent free time), which is why
we created the CSD pages—so that everyone in the community would have
the ability to contribute and correct information found there.

NTP Server Pool

If you are configuring your own NTP clients (or local NTP servers, from
which your clients will be served), you should read the “Rules of

27

28

Engagement” [37], but you should also be aware of three different but
related sets of public time servers. There is the list of public Stratum 1 time
servers [20], which should only be used if you are setting up your own
local NTP server(s) and are going to be serving local clients from it

(them). There is the list of public Stratum 2 time servers [21], which can
be used by individual clients as well as local time servers that will be redis-
tributing time to their own local clients. Then there is the set of servers
that comprise the “NTP Server Pool.” See the NTP PSP Pool Servers page
[22] and the NTP Server Pool Web site [23] for more information on how
the pool works.

The purpose of the NTP Server Pool is not to give you the best possible
time, but instead to help you fill out your list of upstream servers that
should be able to give you a reasonable baseline, from which your
client/server can pick out the best available source.

There are now over 600 public time servers currently available through the
NTP Server Pool (out of more than 700 total defined in the database, about
100 of which are currently not being advertised owing to various prob-
lems), with about 400 (total) in Europe and over 200 (total) in the United
States. However, there is still a desperate need for additional time servers
in the pool for other zones.

As of 24 April 20006, Ask Bjorn Hansen (the current maintainer of the NTP
Server Pool) estimates that there are somewhere between two and six mil-
lion client systems that are using the pool. You can help the project stay
alive by contributing to the pool, if you have a static IP address [24].

Time Synchronization State of Practice

A question came up on the sage-members mailing list about the state of
practice of time synchronization, and wondering why this doesn’t seem to
be more universally deployed at the server and client level.

I can’t speak for the operational practices for most organizations, but I can
say that more and more vendors are enabling NTP or SNTP code out-of-
the-box. With recent versions of Windows, Microsoft ships an SNTP client,
and they provide their own time servers for those clients to connect to.
Apple has provided an NTP client in MacOS X for quite some time, mak-
ing it easy to enable and configure and also providing time servers for
those clients to connect to.

FreeBSD, NetBSD, and most other *BSD implementations not only ship
NTP clients out-of-the-box, but they also enable them by default. Many
Linux distributions are doing the same.

For vendors that configure their clients to use NTP by default, the practice
within the community has been to encourage those vendors to also supply
some time servers for those clients to use, or to configure their DNS in a
particular way to allow them to make use of the servers provided through
the NTP Server Pool project in a way that will minimize negative impact
[38].

However, not all free/libre/open-source systems (FLOSS) platforms have
felt that they have the ability to provide servers directly. Instead, some
FLOSS platforms are actively encouraging their members to help provide
additional machines for the NTP Server Pool. Debian is probably the best
known in this regard, but Red Hat is providing their own Stratum 1 and
Stratum 2 servers (see the aforementioned lists), as well as listing these
machines in the pool.

Poul-Henning Kamp (from the FreeBSD project) runs a couple of
restricted-access Stratum 1 time servers, and thanks to donations of GPS
reference clock hardware from Meinberg, the NTP PSP also hopes to make
available at least two Stratum 1 time servers of their own.

In addition, more vendors are shipping embedded hardware with NTP
enabled, even though some of them make mistakes and misconfigure the
firmware in their devices.

Most dedicated network devices (especially routers) come with NTP
clients built in and can even act as NTP servers (although this may not be
a good idea [25]; see “Sidebar,” p. 30).

At this point, the only observation I can make is that we must tend to get
one of two situations:

1. Many people apparently configure this stuff and do so with relative
ease and don't feel the need to tell anyone. Thus we don'’t hear about
the positive cases.

2. Many other people probably still don’t see the need to have good
time sync on their machines. Thus we don’t even know about the
cases where we never even got considered.

But there were a surprising number of people on the sage-members list
who spoke up and said that, based on their personal experience, network-
wide NTP time synchronization was a much more common thing than you

(or I) might think.

Updated Code

As of the time of this writing, the NTP PSP has recently released version
4.2.2 of the “Reference Implementation” of the NTP protocol [27]. By the
time you see this article, we hope that many vendors will already have
picked up this greatly improved code and incorporated it into the software
they are shipping.

NTP 4.2.0 was released on 15 Oct 2003. Version 4.2.1 has been in develop-
ment since, with many improvements made over the years. Unfortunately,
many vendors have stuck with the “stable” 4.2.0 codebase, instead of
tracking the improvements that have been made in the 4.2.1 development
tree.

This has left many in the community with various known bugs and weak-
nesses that have already been fixed in the source tree, and they have found
themselves in the uncomfortable position of either having to remove the
vendor-provided code and replace that with code based on the source tar-
balls available from the NTP PSP download page [27] or waiting for some-
one to create a binary packaged version for them to download and install.
Both approaches cause configuration management problems.

With the advent of version 4.2.2, we're going to be changing our release
numbering scheme slightly [28], and we hope to be able to release new
versions much more frequently than every few years. For now, we're target-
ing at least two new releases per year.

We are now also creating cryptographic hashes for the source tarballs, and
we hope to start PGP-signing the announcements so that you can be rea-
sonably sure that the code you're downloading is actually the code we
released.

You may be interested to know that we also provide an RSS 2.0 feed of our
current tarball information [39].

29

Sidebar: Time Server Abuse

In the April 2006 issue of ;login: you may have read David Malone’s article
“Unwanted HTTP: Who Has The Time?” [42]. To summarize: there were
thousands of clients worldwide running a program called Tardis, connect-
ing to his server and obtaining a timestamp via HTTP. These clients were
connecting as frequently as once an hour or even once a minute. Traffic
volume was estimated at 30 GB/month, based on the initial data collected
after enabling increased logging.

Although these clients were connecting via HTTP, this is a classic case of
time server abuse by misconfigured clients. Unfortunately, it'’s not the only
case, or even the most recent one.

A better-known case is found at the University of Wisconsin [1], where:

[They were] the recipient of a continuous large scale flood of
inbound Internet traffic destined for one of the campus’ public
Network Time Protocol (NTP) servers. The flood traffic rate was
hundreds-of-thousands of packets-per-second, and hundreds of
megabits-per-second.

Ultimately, all this traffic was discovered to be the fault of misconfigured
NetGear cable/DSL routers with embedded IP addresses as their set of pre-
defined (and nonoverrideable) NTP time servers. At least NetGear was
willing to work with UWisc and Dave Plonka to try to resolve the problem
as well as possible, and the company has made a donation to the university
for their help in locating and helping to get this problem fixed [2].

Just after the April 2006 issue of ;login: came out, another instance of time
server abuse came to the forefront. This time, it was the time server run by
Poul-Henning Kamp at the Danish Internet Exchange, for the benefit of
network providers in Denmark and their customers. Again, the fault lay
with a commercial product with a bad default configuration (in this case,
D-Link cable/DSL routers). However, this time the company took the
notice by Poul-Henning to be an act of extortion, sending their lawyers
after him.

The issue is now supposedly settled [3], so Poul-Henning has taken down
the original notice, but you can still read about the story on other Web
sites [4, 5, 6].

Wikipedia also has a good page on the subject of time server abuse [6],
including a reference to a similar abuse problem that occurred between
SMC and the CSIRO in Australia.

When all is said and done, one question you have to ask yourself is
whether or not you want to be using hardware from a company that
acknowledges the problems that they may accidentally create for others
and works with you to try to resolve them.

What happens when you’re on the other end of that pointy stick and your
servers are being nuked off the Internet? What kind of response do you
want to see from the company that is responsible?

REFERENCES

[1] http://www.cs.wisc.edu/~plonka/netgear-sntp/.
[2] http://www.doit.wisc.edu/news/story.asp?filename=322.
[3] http://people.freebsd.org/~phk/dlink/.

[4] http://yro.slashdot.org/article.pl?sid=06/04/07/1302009.

[5] http://www.lightbluetouchpaper.org/2006/04/07/
when-firmware-attacks-ddos-by-d-link/.

6] http://en.wikipedia.org/wiki/NTP_vandalism.

71 http://www.udel.edu/PR/Messenger/02/1/where.html.

8] http://books.slashdot.org/article.pl?sid=06/05/15/143251.
9] http://books.slashdot.org/article.pl?sid=05/08/16/0344212.
10] http://www.eecis.udel.edu/~mills/ntp/html/index.html.
11] http://www.ntp.org/ntpfaq/NTP-a-faq.htm.

12] http://ntp.isc.org/support.

13] http://mtp.isc.org/doc.

14] http://www.ietf.org/html.charters/ntp-charter.html.

[

[

[

[

[

[

[

[

[

[15] https://lists.ntp.isc.org/mailman/listinfo/ntpwg.

[16] http://ntp.isc.org/bin/view/Support/SelectingOffsiteNTPServers.
[17] http://ntp.isc.org/bin/view/Support/TroubleshootingNTP.
[18] http://ntp.isc.org/bin/view/Support/KnownHardwarelssues.
[19] http://ntp.isc.org/bin/view/Support/KnownOslssues.
[20] http://ntp.isc.org/s].

[21] http://ntp.isc.org/s2.

[22] http://ntp.isc.org/pool.

[23] http://www.pool.ntp.org/.

[24] http://www.pool.ntp.org/join.html.

[

25] http://ntp.isc.org/bin/view/Support/DesigningYourNTPNetwork
#Section_5.6.

26] http://ntp.isc.org/.

27] http://ntp.isc.org/download.

28] http://ntp.isc.org/bin/view/Main/ReleaseNumberingScheme.
29] http://ntp.isc.org/bin/view/Main/DonatingToTheProject.
30] http://ntp.isc.org/bin/view/Main/OurDonors.

31] http://ntp.isc.org/donat.

32] news:alt.sysadmin.recovery.

33] http://www.fags.org/faqs/sysadmin-recovery/index.html.

35] http://www.quotationspage.com/quotes/Segal’s_Law.
36] https://lists.ntp.isc.org/mailman/listinfo/questions.

37] http://ntp.isc.org/bin/view/Servers/RulesOfEngagement.
38] http://www.pool.ntp.org/vendors.html.

39] http://ntp.isc.org/rss/releases.xml.

40] http://ntp.isc.org/ietf.

[
[
[
[
[
[
[
[
[34] http://www.eecis.udel.edu/~mills/bio.html.
[
[
[
[
[
[
[41] http://www.eecis.udel.edu/~mills/database/papers/history.pdf.
[

42] http://www.usenix.org/publications/login/2006-04/pdfs/malone.pdf.

31

32

RICHARD MCDOUGALL AND
JAMES LAUDON

Richard McDougall is a Distinguished Engineer at
Sun Microsystems, specializing in operating systems
technology and systems performance.

richard.mcdougall@sun.com

James Laudon is a Distinguished Engineer and a
Niagara processor line architect at Sun Microsys-
tems. His specialties are hardware multi-threading,
multi-processing, and performance modeling.

james.laudon@sun.com

CMP Implementation Options

A) Conventional B) Simple Chip Mu Riproces sor
CPUCore CPUCore CPUCore
[Regsters | Registers | [Regsters |

C)SharedCacheChip
Multiprocessor

CPUCore CPUCore
I Regsters l I Reg sters I FEGE [REGE FEGE [REGE
Er] Gl [5] Er B[54
[L2 Cache | [L2 Cache |
1 I
Go> G5

THE ADVENT OF SYMMETRIC MULTI-
Processing (SMP) added a new degree of
scalability to computer systems. Rather
than deriving additional performance from
an incrementally faster microprocessor, an
SMP system leverages multiple processors
to obtain large gains in total system per-
formance. Parallelism in software allows
multiple jobs to execute concurrently on
the system, increasing system throughput
accordingly. Given sufficient software paral-
lelism, these systems have proved to scale
to several hundred processors.

More recently, a similar phenomenon is occurring
at the chip level. Rather than pursue diminishing
returns by increasing individual processor per-
formance, manufacturers are producing chips with
multiple processor cores on a single die. For
example, the AMD Opteron and UltraSPARC IV
now provide two entire processor cores per die,
providing almost double the performance of a sin-
gle-core chip. The Sun UltraSPARC T1 (Niagara)
processor packs eight cores onto a single die and
can provide up to eight times the performance of
the dual-core UltraSPARC processors.

There are three main types of multi-core
processors:

Simple multi-core processors have two com-
plete processors placed on the same die or
package (e.g., the dual-core AMD Opteron
processor).

Shared-cache multi-core processors consist of
two complete cores, sharing some levels of
cache, typically Level 2 (L2) or Level 3 (L3)
(e.g., the Sun UltraSPARC IV+ and Intel
Woodcrest processors, which share caches
between two cores).

Multi-threaded multi-core processors have
multiple cores, with multiple threads within
each core (e.g., the Sun UltraSPARC T1).

As processor frequency increases, the amount of
time spent waiting for memory stalls increases.
This means that placing multiple cores on a die
can increase performance, but ultimately multi-
threading in the CPU is critical to overcoming
memory latency stalls. Implementations that use
multi-cores plus hardware threading have recently
proven to give superior performance at much
lower power consumption.

These new multi-core processors are bringing
what was once a large multiprocessor system

down to the chip level, providing a significant level of throughput in a
small package, with extremely low power consumption. In the case of the
Sun UltraSPARC T1 processor with eight cores and four threads per core,
power consumption of the chip is less than 70 watts. We have effectively
reduced the equivalent throughput of a refrigerator-sized server (such as
the Sun E6000 30-way, circa 2000) into a 1U single-processor machine,
using less than 180 watts.

In this article, we’ll contrast the different types of multi-core approaches
and look at the performance advantages and tradeoffs. We will also discuss
the potential implications for systems and application software.

Multi-Core Processors

The latest dual-core AMD Opteron is an example of a multi-core design.

CPU1 The chip has two complete processor cores, sharing a bus to memory. As
shown in the left of Figure 2, it is almost identical to its single-core prede-
L;(’;’Lihe cessor; the second core is a complete duplication of the first, including its
pipeline and caches. From a performance perspective, the chip behaves

much like a dual-processor SMP machine, albeit with some potential con-
tention for memory bandwidth through the shared path to memory. From
a software perspective, the chip appears almost indistinguishable from a
dual-processor system. Software threads are scheduled onto the processor
cores by the operating system—at least two threads are required to keep
both cores busy.

Multi-Threading

Processor designers have found that since most microprocessors spend a
significant amount of time idly waiting for memory, software parallelism
can be leveraged to hide memory latency. Since memory stalls typically
take on the order of 100 processor cycles, a processor pipeline is idle for a
significant amount of time. Table 1 shows the amount of time spent wait-
ing for memory in some typical applications, on 2 GHz processors. For
example, we can see that for a workload such as a Web server, there are
sufficient memory stalls such that the average number of machine cycles is
1.5—2.5 per instruction, resulting in the pipeline waiting for memory up
to 50% of the time.

Waiting Typical Number of Percent of Time
Application Cycles per Instruction for Memory Stalls
Transaction database 3-6 >75%
Web server 1.5-2.5 ~50%
Decision support database 1-1.5 ~10-50%

In Figure 3, we can see that less than 50% of the processor’s pipeline is
actually being used to process instructions; the remainder is spent wait-
ing for memory. By providing additional sets of registers per processor
pipeline, multiple software jobs can be multiplexed onto the pipeline, a
technique known as simultaneous multi-threading (SMT). Threads are
switched on to the pipeline when another blocks or waits on memory, thus
allowing the pipeline to be utilized potentially to its maximum. Figure 4
shows an example with four threads per core. In each core, when a memo-

33

34

ry stall occurs, the pipeline switches to another thread, making good use of
the pipeline while the previous memory stall is fulfilled. The tradeoff is
latency for bandwidth; with enough threads, we can completely hide mem-
ory latency, provided there is enough memory bandwidth for the added
requests. Successful SMT systems typically allow for very high memory
bandwidth from DRAM, as part of their balanced architecture.

Software Thread Compute Cycles —

A
to
Memory Wait Cycles
—
) -~
tc — compute time t

t - memory access ime

e —»t [MG M NG M]

Y

Time

Parallel C ~+—— Compute Cycles
Thread Execution Memory Wait Cycles

Cl M [C] M [€] M |

ICore 4 € M C] M €] M]|
€ M [€] M C| M |
E MI[El M I[E M |
[M [C] M [C M]
ICore 3 C MIE M€l M]

[€ M €] M IC])
€ M [C] M [C] M

€ M J€ M [€] M |

(Core 2 € M €] M [C] M |
€ M€ M€l M »

EMIE MICTM |

=

Processor

[!(!I[d
| M €] M _[C] M
III

Time

(Core 1

SMT has a high return on performance in relation to additional transistor
count. For example, a 50% performance gain may be realized by adding
just 10% more transistors with an SMT approach, in contrast to making
the pipeline more complex, which typically affords a 10% performance
gain for a 100% increase in transistors. Also, implementing multi-core
alone doesn't yield optimal performance—the best design is typically a bal-
ance of multi-core and SMT.

Contrasting the Different Types of Threading

There are three main ways to multi-thread a processor: coarse-grain, verti-
cal, and simultaneous [1].

With coarse-grain threading, a single thread occupies the full resources of
the processor until a long-latency event such as a primary cache miss is

encountered, as shown in Figure 3. At that point, the pipeline is flushed
and another thread starts executing, using the full pipeline resources.
When that new thread hits a long-latency event, it will yield the processor
to either another thread (if more than two are implemented in hardware)
or the first thread (assuming its long-latency event has been satisfied).
Coarse-grain threading has the advantage that it is less of an integral part
of the processor pipeline than either vertical or simultaneous multi-thread-
ing and can more easily be added to existing pipelines. However, coarse-
grain threading has a big disadvantage: the high cost of switching between
threads. When a long-latency event such as a cache miss is encountered,
all the instructions in the pipeline behind the cache miss must be flushed
from the pipeline and execution of the new thread starts filling the pipe-
line. Given the pipeline depth of modern processors—as many as 16 in-
structions in Intel-styled processors—this means a thread switch cost in
the tens of processor cycles. This high switch cost means that coarse-grain
threading cannot be used to hide the effects of short pipeline stalls owing
to dependencies between instructions and even means that the thread-
switching latency will occupy much of the latency of a primary cache
miss/secondary cache hit. As a result, coarse-grain multi-threading has
been primarily used when existing, single-threaded processor designs are
extended to include multi-threading.

The two remaining techniques for threading, vertical threading (VT) and
SMT, switch threads on a much finer granularity (and not surprisingly are
referred to as fine-grained multi-threading). On a processor capable of
multiple instruction issue, an SMT processor can issue instructions from
multiple threads during the same cycle, whereas a VT processor limits
itself to issuing instructions from only one thread each cycle (see Figure
4). On a single-issue processor there is no difference between VT and SMT,
as only one instruction can be issued per cycle, but since there is no issue
of instructions from different threads in the same cycle, single-issue, fine-
grained multi-threaded processors are labeled VT.

Both SMT and VT solve the thread switch latency problem by making the
thread switch decision part of the pipeline. The threading decision is fold-
ed in with the instruction issue logic. Since the issue logic is simply trying
to fill the pipeline with instructions from all of the hardware threads, there
is no penalty associated with switching between threads. However, a little
extra complexity gets added to the issue logic, as it now needs to pick
instructions from multiple ready threads. This additional issue logic com-
plexity is fairly small (certainly much smaller than all the other issue-relat-
ed complexity that is present in a modern superscalar processor) and well
worth it in terms of performance. The advantages of SMT and VT are that
very short pipeline latencies (all the way down to a single cycle) can be
tolerated by executing instructions from other threads between the instruc-
tions with the pipeline dependency.

The ability to switch threads at no cost is the key to enabling the impres-
sive performance of the new processors.

Chip-Level Multi-Threading

A new generation of processors that use Chip-Level Multi-Threading
(CMT) combine multi-core with SMT, thereby providing a large core count
and the ability to extract the maximum performance from each core. The
UltraSPARC T1 is an example of a CMT processor design.

35

36

ULTRASPARC T1

Most people are familiar with the hyperthreaded Intel processors, which
employ SMT. They support two threads in hardware and show modest
gains on some parallel workloads. Given that SMT is the most aggressive
of the three threading schemes, one would expect SMT to deliver the high-
est performance, but in general the performance gains seen from hyper-
threading are small (and sometimes hyperthreading actually leads to per-
formance losses). However, the gains seen from hyperthreading are not
limited by the SMT but more by the memory system, and unfortunately
the Intel hyperthreading implementation delivers a misleading message
about the performance to be gained from fine-grained multi-threading.

The UltraSPARC T1, in contrast, was built from the ground up as a multi-
threaded chip multiprocessor, and each of the eight pipelines employs ver-
tical threading of four hardware threads. The eight pipelines in the
UltraSPARC T1 are short (six stages), and one might be tempted to employ
the slightly simpler coarse-grain threading. However, even on the
UltraSPARC T1, the gains from vertical threading over coarse-grained
multi-threading ended up being substantial. In fact, the very earliest pro-
posals for what became the UltraSPARC T1 employed coarse-grain thread-
ing. Rather quickly, the modest additional complexity of vertical threading
was traded off against its performance gains and the switch to vertical
threading was made. The performance and performance/watt numbers
from the UltraSPARC T1 show that it’s been worth it!

The UltraSPARC T1 processor uses eight cores on a single die. Each core
has four threads sharing a pipeline, an L1 instruction cache, a data cache,
and a memory management unit (MMU).

The UltraSPARC T1 architecture has the following characteristics:

Eight cores, or individual execution pipelines, per chip.

Four hardware threads (strands) or active thread contexts that share a
pipeline in each core. Each cycle of a different hardware strand is
scheduled on the pipeline in round-robin order.

A total of 32 threads per UltraSPARC T1 processor.

A strand that stalls for any reason is switched out and its slot on the
pipeline is given to the next strand automatically. The stalled strand is
inserted back in the queue when the stall is complete.

Cores that are connected by a high-speed, low-latency crossbar in sili-
con. An UltraSPARC T1 processor can be considered SMP on a chip.
Hardware strands that are presented by the operating system as a
processor. For example, Solaris and Linux see each thread as a separate
processor.

Cores that have an instruction cache, a data cache, an instruction
translation-lookaside buffer (iTLB), and a data TLB (dTLB) shared by
the four strands.

Strands defined by a set of unique registers and logic to control state.
A 12-way associative unified L2 on-chip cache. Each hardware strand
shares the entire L2 cache. Historically, the level of associativity we
typically see is around 4 for a non-CMT core, but with 32 strands shar-
ing the L2, larger associativity is critical.

Low-latency Double Data Rate 2 (DDR2) memory to reduce stalls.
Four on-chip memory controllers provide high memory bandwidth
(with a theoretical maximum of 25 gigabytes per second).

An operating system scheduler that schedules TWPs on UltraSPARC
T1 hardware strands. It is the task of the hardware to schedule strands
in the core.

* From sun.com: “Sun Fire T1000 (8 cores,
1 chip) compared to Dell PowerEdge 2850
(4 cores, 2 chips). Results from www.spec
.org as of May 30th 2006. Dell power meas-
urements taken from the Dell Power
Calculator, 03/06/06, posted: http:/wwwl
.us.dell.com/content/topics/topic.aspx/
global/products/pedge/topics/en/config
_calculator?c=us&cs=555&1=en&s=biz.
System configured with 2 x Dual Core
2.8GHz processors, 16GB RAM, 2 x USCSI
disks. Sun Fire T1000 server power con-
sumption taken from measurements made
during the benchmark run.”

A modular arithmetic unit (MAU) for each core that supports modular
multiplication and exponentiation to help accelerate Secure Sockets
Layer (SSL) processing.

The layout of a system implemented with the UltraSPARC T1 processor is
shown in Figure 5 (which, for clarity, does not show the four memory con-
trollers between the L2 cache and the four banks of SDRAM).

DDR-2 SDRAM DDR-2 SDRAM DDR-2 SDRAM DDR-2 SDRAM

A

L2 cache | L2 cache | L2 cache | L2cache |

On-chip cross-bar interconnect FPU

Core | Core |Core |Core |Core | Core | Core |Core
0 1 2 3 4 5 6 7

System Interface
Buffer Switch Core

I UltraSPARC T1 Processor

Bus

The Power Advantages of CMT

More complex pipelines use a significantly larger amount of power for lit-
tle gain in performance. For example, when the clock rate of the Intel
Celeron went from 1.2 GHz to the Pentium 4 at 2.2 GHz, power increased
from 29 to 55 watts, but there was only a 20% performance improvement
(measured using the Business Winstone Benchmark 2001).

Keeping the pipeline simple significantly reduces power consumption. In
aggressive CMT architectures, such as the UltraSPARC T1, power per core
is as low as 8 watts. This is achieved by keeping the pipeline simple, for
example using a single-issue pipeline and eliminating many of the
nonessential pipeline features, such as memory prefetching.

As an example, we can look at the throughput and power consumption of
a typical Web workload, represented by the SPECweb2005 benchmark (see
Table 2). By measuring the ratio of performance against watts consumed,
we can contrast the performance/power efficiency of the system.

UltraSPARC T1 2x Dual Core @ 2.8 GHz
Space (rack units) 1 2
Watts (system) 188 450
Performance 10,466 4850
Performance per watt 55.7 10.8

In this example, the CMT design provides roughly twice the throughput of
the nonthreaded system, at half the power [2].

The Software View of CMT

A very simplistic view of a CMT system is that its software performance is
much like that of an SMP system with the number of processors equal to

37

the number of strands in the chip, each with slightly reduced processing
capability. Software threads are scheduled by the operating system onto
individual hardware threads, and strands are scheduled onto the pipeline
by a hardware scheduler. The number of software threads required to keep
the core busy varies from one to many, depending on the ratio of memory
stalls to compute events.

SINGLE-THREAD PERFORMANCE

Since each hardware thread is sharing the resources of a single processor
core, each thread has some fraction of the core’s overall performance. Thus,
an eight-core chip with thirty-two hardware threads running at 1 GHz may
be somewhat crudely approximated as an SMP system with thirty-two 250
MHz processors. Applications which are single-threaded will see lower per-
formance than that of a processor with a more complex pipeline. The
reduction in performance for single-threaded applications will depend on
whether the application is more memory- or compute-bound, with com-
pute-bound applications showing the largest difference in performance.

CMT LOVES “THROUGHPUT WORKLOADS”

To achieve per-thread performance with a significant increase of through-
put and a reduction in power requires concurrency in the software. Appli-
cations that are server-oriented typically have bountiful amounts of con-
currency. Typically these types of throughput applications are driven by a
large number of connections or users, meaning there is enough natural
concurrency to exploit SMP or CMT systems.

For a throughput-oriented workload with many concurrent requests (such
as a Web server), the marginal increase in response time is virtually negli-
gible, but the increase in system throughput is an order of magnitude over
a non-CMT processor of the same clock speed.

A number of classes of applications benefit directly from the ability to scale
throughput with CMT processors:

Multi-threaded native applications: Multi-threaded applications are
characterized by having a small number of highly threaded processes.
Examples of threaded applications include Lotus Domino or Siebel
CRM.

Multi-process applications: Multi-process applications are character-
ized by the presence of many single-threaded processes. Examples of
multi-process applications include the Oracle database, SAP, and Peo-
pleSoft.

Java applications: Java applications embrace threading in a funda-
mental way. Not only does the Java language greatly facilitate multi-
threaded applications, but the Java Virtual Machine is a multi-threaded
process that provides scheduling and memory management for Java
applications. Java applications that can benefit directly from CMT
resources include application servers such as Sun’s Java Application
Server, BEAs Weblogic, IBM’s Websphere, and the open-source Tomcat
application server. All applications that use a Java 2 Platform, Enter-
prise Edition (J2EE platform) application server can immediately ben-
efit from CMT technology.

Multi-instance applications: Even if an individual application does not
scale to take advantage of a large number of threads, it is still possible
to gain from CMT architecture by running multiple instances of the
application in parallel. If multiple application instances require some

degree of isolation, virtualization technology (for the hardware of the
operating system) can be used to provide each of them with its own
separate and secure environment.

We've spent a great deal of time evaluating server application performance
of CMT architectures; my blog [3] contains a good starting summary of the
results we’ve had.

THOUGHTS ABOUT SOFTWARE SCALING

On a multi-threaded microprocessor, each hardware thread appears to the
operating system as an individual processor. The ability of system and
application software to exploit multiple processors or threads simultane-
ously is becoming more important than ever. As CMT hardware progresses,
software is required to scale accordingly to fully exploit the parallelism of
the chip.

Thus, bringing this degree of parallelism down to the chip level represents
a significant change to the way we think about scaling. Since the cost of a
CMT system is close to that of recent low-end uniprocessor systems, it’s
inevitable that even the cheapest desktops and servers will be highly
threaded. Techniques used to scale application and system software on
large enterprise-level SMP systems will now frequently be leveraged to pro-
vide scalability even for single-chip systems. We need to consider the
effects of the change in the degree of scaling at the low end on the way we
design applications, on which operating system we choose, and on the
techniques we use to deploy applications.

Conclusion

In today’s data centers, power and space are valuable resources. The advan-
tages brought about by CMT are inevitable for optimizing these resources.
The aggressiveness of CMT varies with different system designs; we expect
to see four-core systems from AMD in the near future, UltraSPARC follow-
ons are expected to increase the thread count, and Intel is discussing some
radical multi-core designs. The interesting debate will be about the number
of cores to have and to what degree each approach will utilize vertical
threading within each core to hide memory latency. It’s going to be a fun
time in this space. Stay tuned!

ACKNOWLEDGMENTS

Thanks are owed to Denis Sheahan, Performance Specialist in the
UltraSPARC T1 group for the UltraSPARC T1 specifications, and the PAE
performance group at Sun Microsystems for providing the performance
characterization data of workloads on CMT.

REFERENCES

[1] Jim Laudon’s blog: http://blogs.sun.com/jlaudon.

[2] T1000 Server Benchmarks:
http://www.sun.com/servers/coolthreads/t1000/benchmarks.jsp.

[3] Richard’s Blog: http://blogs.sun.com/rmec.

40

TIMO SIVONEN

measuring perfor-

mance of FreeBSD
disk encryption

Timo Sivonen is a Senior Consultant at International
Network Services (INS). He lives in the U.K. with his
wife and son.

timo.sivonen@ins.com

;LOGIN: VOL. 31, NO. 5

DISK ENCRYPTION IS ONE OF THOSE
services absolutely invaluable to laptop
owners and possibly even suspicious if
used by others. Yet, as with many other
security services, you have to ask yourself
what is the threat you are trying to protect
against or the problem you are trying to
solve.

Low-level disk encryption, which encrypts every-
thing on the raw partition including the file sys-
tem, does keep your files secure if the passphrase
to open the partition is not known. Yet, if the
encryption layer lies below the file system, almost
the only way to create an encrypted backup of an
encrypted file system is to copy the partition to an
image file with dd(1), which is both cumbersome
and inefficient.

In my day job I have to store confidential client
data on my laptop and I have to back the laptop
up regularly. However, data encrypted on the
hard disk must remain encrypted on backups.
Furthermore, I prefer multiple 650 MB encrypted
file systems to one 4 GB volume, since I can back
the smaller volumes up on individual CDs as
opposed to using more cumbersome tapes. Like
everyone else, I also use a flash drive, but instead
of carrying around several flash drives for differ-
ent operating systems, I wanted to consolidate my
flash drives to one and copy files between UNIX
boxes using an encrypted file system without los-
ing UNIX/Windows interoperability offered by
FAT32.

Since version 5, FreeBSD has featured GEOM-
Based Disk Encryption (GBDE). In brief, GBDE

is a software-only disk-encryption service that
uses AES-128 to encrypt the contents of the desig-
nated raw device and the master encryption key

is stored under AES-256. GBDE seemed to offer
exactly what I was looking for except for the fact
that all documentation pointed toward encrypting
raw partitions. However, FreeBSD also has a facili-
ty called md(4), or memory disk, which, among
other things, allows you to read and write image
files as raw devices. Combined with newfs, one

is able to write a file system on the image and
mount it like any other disk device. All that is
required is to set up the GBDE layer on top of md,
write a file system on the GBDE device, and
mount the device.

Setting It Up

The initialization of a new encrypted memory disk is a relatively straight-
forward operation, although a few caveats do exist. (Allocate the image
file, create the memory disk, label the device, initialize the encrypted de-
vice, attach the encrypted device, create the file system on the encrypted
device, and mount it.) The most critical advice is to not enable UFS soft
updates, as these may cause devfs to lock the (GBDE-encrypted) file sys-
tem. In other words, a locked file system is permanently busy and can'’t be
unmounted even in system shutdown, which ultimately may corrupt the
file system. This may not happen if running FreeBSD normally, on bare
metal hardware, but it is certainly possible under VMware. Later in this
text we will discover that not using soft updates has little impact on file
system performance.

A GBDE-encrypted file system is created on a memory disk in seven steps:

1. # dd if=/dev/random of=/home/user/gbdeimg bs=1m count=650
2. # mdconfig -a —t vnode —f /home/user/gbdeimg
md1
bsdlabel —-w md1 auto
4. # gbde init /dev/mdic -L /etc/gbde/gbdeimg.key
Enter new passphrase:
Reenter new passphrase:
5. # gbde attach /dev/md1c —I /etc/gbde/gbdeimg.key
Enter passphrase:
6. # newfs /dev/md1c.bde
7. # mount /dev/md1c.bde /mnt

w

The explanation of each step is as follows:

1. Allocate the disk space by writing 650 MB of random data from
/dev/random to the designated image file.

2. Create the memory disk, through which the disk image will be
accessed. Note that mdconfig(8) will print out the assigned md
device, unless explicitly told which device to use.

3. Label the newly created memory disk to enable creation of the
encryption layer and the file system at a later stage.

4. Initialize the encryption layer. Since the encryption key is specified
separately from the disk image, those really concerned about their
laptop security can save the encryption key(s) on a separate flash
drive, which must be attached and mounted in order to prepare and
mount encrypted partitions.

5. Once the encrypted device has been initialized, it has to be attached
in order to write the file system on the encrypted device. This opera-
tion will also create a new instance of the disk device with the .bde
suffix to denote GBDE encryption. Hence, all file system operations
must be made with the .bde device.

6. Write the file system on the encrypting device (i.e., md1c.bde in the
example that follows). Remember to not enable soft updates, since
devfs may become upset by this. Furthermore, it was discovered that
there may not be any significant performance improvement over UFS
file systems that do not use soft updates.

7. Once a file system has been created, the encrypting device can be
mounted normally. All updates to the file system are written to the
image file, which can be backed up using tar or cpio or burned on a
CD when unmounted and taken off-line.

41

One unhappy discovery in this journey was that an encrypted file system
cannot be attached from read-only media. You can create a memory disk
from a read-only image, and you can mount UFS file systems read-only, but
you cannot attach an encrypted file system if its disk image resides on, for
example, a CD-ROM. This discovery was a slight setback but not critical:
After all, PGP disks formatted with NTFS must be copied from the backup
media to a disk first, since NTFS cannot be mounted read-only either.

Choices and Performance

FreeBSD 6 introduced a new encrypted file system, GELI (GEOM_ELI
cryptographic GEOM class). Unlike GBDE, which is a software-only facili-
ty, GELI utilizes the crypto(4) framework and is able to use encryption
hardware if available.

GELI also gives more choice in algorithm selection and key length.
Whereas GBDE only uses AES-128 for encrypting the disk contents, the
users of GELI can choose from 3DES, AES, and Blowfish with key lengths
of 128 or 256 bits. 3DES has a fixed key length of 192 bits. With this kind
of selection it may seem difficult to choose the right encryption algorithm
and balance security with performance.

To answer these questions and to be able to make educated decisions on
which disk encryption to use, or which algorithm and how long a key to
select, I devised a test plan to give some insight into the performance of
FreeBSD disk encryption. Understanding that the results would be affected
by the type of hardware available, even when executing tests on an other-
wise idle system, one has to accept a certain distribution in results since,
after all, UNIX is a time-sharing operating system and does not guarantee
any throughput time for a command or a system call. My plan was to
measure processing times for write and read operations when writing and
reading a single 100 MB file or writing and reading 100 1-MB files. The
files would only contain random binary data as read from /dev/random.
Hence, the following tests were conceived:

Writing and reading a 100 MB file and 100 1-MB files using GBDE and
GELI on a memory disk.

Writing a 100 MB file and 100 1-MB files using GBDE and GELI/AES-
128 on a raw disk partition. The purpose of this test was to establish
the baseline on what type of throughput one may expect from encrypt-
ing file systems. Without the md layer in the way, one would expect a
visible improvement in performance.

Writing a 100 MB file and 100 1-MB files using GELI on a memory
disk, with a variety of ciphers. The purpose of this test was to compare
the performance of GELI when a cipher other than the default AES-
128 is used.

Each write and read test was repeated three times and an average was cal-
culated to get an approximate time of how long it would take to process an
operation. Since the absolute processing times depend on the underlying
hardware, one should not measure absolute seconds but, instead, compare
approximate processing times among different disk-encryption methods.

The Results

The test system was an IBM ThinkPad T21 laptop with an 850 MHz clock.
The boot disk was a 40 GB Fujitsu MHV2040AH and the test disk was a 6
GB IBM DARA206000 running at 4,200 rpm. The tests were conducted in

multi-user mode by writing files from the boot disk to the test disk and
vice versa. There were no encrypted file systems active on the boot disk.
The tests were made using FreeBSD 6.1.

The most interesting test was to write a 100 MB file of random data and
100 files of 1 MB of random data to a directory. This test was conducted
for GBDE, GELI, and a plain UFS file system on a memory disk. The test
results are illustrated in Figure 1.

08:38.4

07:12.0

05:45.6

o with s/u
04:19.2
m without s/u

02:52.8

01:26.4

00:00.0

Write Write Write Write Write Write
1x100MB 100x1MB 1x100MB 100x1MB 1x100MB 100x1MB

GBDE GELI No Encryption

According to these results, GBDE does not perform very well at all when
writing on a memory disk. In comparison, write performance of GELI is

roughly equivalent to plain UFS on a memory disk. One should also note
that enabling or disabling soft updates makes practically no difference to

performance.

Since results on a memory disk showed a visible difference in performance
between GBDE and GELI, it was measured whether there is any difference
in performance for these two disk-encryption systems when writing on a
raw partition, without using a memory disk layer. The results can be found
in Figure 2.

00:43.2
00:38.9
00:34.6
00:30.2
00:25.9
00:21.6
00:17.3
00:13.0
00:08.6
00:04.3
00:00.0

@ with s/u
m without s/u

Write Write Write Write Write Write
1x100MB 100x1MB 1x100MB 100x1MB 1x100MB 100x1MB

GBDE GELI No Encryption

The results show that GBDE is still visibly slower than GELI but the differ-
ence between the two is no longer as dramatic. However, I am unable to
explain why GBDE performs so poorly with an md device, whereas the
performance difference with GELI on a raw partition is not that significant.

As one would expect, reading from a memory disk is much faster than
writing (Figure 3, next page). There is little difference between GBDE and
GELLI, although GBDE may be slightly slower than GELI or a plain memo-
ry disk. In fact, the results show that on a moderately fast processor the
time spent encrypting or decrypting is negligible compared to the disk
transfer rates.

43

00:10.4

00:08.6

00:06.9
o with s/u

00:05.2)
 without s/u

00:03.5

00:01.7

00:00.0

Read Read Read Read Read Read
1x100MB 100x1MB 1x100MB 100x1MB 1x100MB 100x1MB
GBDE GELI No Encryption

The final test was to measure whether different encryption algorithms or
key lengths would affect the performance of GELI in any way. The pre-
sumption was that AES and Blowfish would probably perform better than
3DES when encryption operations are performed in software. However,
since no crypto hardware was available for the testing, 3DES was likely to
be the worst performer.

The first presumption of performance seemed to be correct when write
times using different ciphers were measured (Figure 4). 3DES-192 was
clearly slower than AES-256 or AES-128 when writing a single 100 MB file
or 100 1-MB files. This result was completely expected, since 3DES has to
do three crypto operations (i.e., encrypt, decrypt, and encrypt again),
whereas AES does only one.

A more interesting observation was the relative performance of AES-128
and AES-256. The processing times of these two were practically the same,
which leads to the conclusion that one might as well use AES-256 with
GELL, since the security benefits of a longer key are much bigger than the
insignificant processing impact the longer key might have.

00:51.8

00:43.2

00:34.6

owith s/u
m without s/u

00:25.9

00:17.3

00:08.6

00:00.0 —
Write Write Write Write Write Write Write Write
1x100MB 100x1MB 1x100MB 100x1MB 1x100MB 100x1MB 1x100MB 100x1MB

3DES-192 AES-128 AES-256 Blowfish-256

The other surprise was the performance of Blowfish 256. I would have
expected Blowfish to be on a par with AES but, interestingly enough, it
seems to fall between 3DES 192 and AES. Unless Blowfish has crypto-
graphic properties that AES does not have, one would be tempted to prefer
AES to Blowfish. However, a test with a larger sample may be required to
determine whether AES actually is faster than Blowfish or whether the
result was only a fluke.

Conclusions

An approach using GBDE- and GELI-encrypted file systems with a memo-
ry disk, md(4), was presented. The advantage of this method is the ability
to create several encrypted file systems of different sizes on a normal UFS
file system. With an encrypted file system of 650 MB it is possible to back
up the encrypted image on a CD and save the contents of the file system in
an encrypted format. Furthermore, assuming that the UFS file system is
large enough, it is possible to create new encrypted file systems and mount
them on an ad-hoc basis.

The relative performance of GBDE and GELI was also discussed. It was
discovered that GBDE is significantly slower than GELI using AES 128 on
a memory disk. GBDE was slightly slower than GELI on a raw disk parti-
tion but there is no major performance difference between the two. This
leads to the conclusion that GBDE is unsuitable for use on a memory disk
and, if used, its use should be limited to removable devices such as flash
drives and floppies.

Since GELI uses the crypto(4) framework and has multiple ciphers, the
relative performance of different ciphers was also measured. No crypto
hardware was available for these tests. It was discovered that AES with a
256-bit encryption key performed as well as AES using a 128-bit key, thus
leading to the conclusion that one should be using the longer key because
of its stronger security.

It was also discovered that AES performed better than Blowfish or 3DES,
thus making it the cipher of choice. This observation may have resulted
from the small sample, and further investigations may be called for.

45

46

MICHAEL J. FREEDMAN

automating server

selection with
OASIS

Michael J. Freedman is a doctoral student at NYU,
currently visiting Stanford University, and received
his M.Eng. and S.B. degrees from MIT. His research
interests are security, distributed systems, and cryp-
tography. He is the author of the Coral Content
Distribution Network (http://www.coralcdn.org/)
and OASIS (http://oasis.coraclcdn.org).

mfreed@cs.nyu.edu

;LOGIN: VOL. 31, NO. 5

OASIS PROVIDES A PUBLICLY AVAIL-
able, locality-aware server-selection infra-
structure. Replicated servers adopting
OASIS each run a small application that
communicates with the OASIS infrastruc-
ture, sharing information about their cur-
rent load levels and their measured net-
work response times to selected IP address-
es. OASIS in turn can redirect unmodified
clients to nearby and/or lightly loaded live
replica servers. In this article, | explain how
OASIS works, provide some performance
analysis, and describe how services can
start using OASIS.

OASIS (Overlay Anycast Service InfraStructure)
has been publicly deployed since November 2005
on PlanetLab [10], a distributed testbed running
at over 300 academic and industry sites. It has
already been adopted by a number of services [1,
2,4,7,8,11, 12]. OASIS supports a variety of
protocols—currently DNS, HTTP, and RPC—that
redirect unmodified clients for server selection
and that expose its geolocation and distance-esti-
mation functionality to OASIS-aware hosts.

This Matters

High-volume Web sites are typically replicated at
multiple locations for performance and availabili-
ty. Content distribution networks amplify a Web
site’s capacity by serving clients through a large
network of Web proxies. File-sharing, instant
messaging, and VoIP systems use rendezvous
servers to bridge hosts behind NATs.

In all of these examples, system designers must
tackle the problem of server selection: After de-
ploying servers at various locations throughout
the Internet, they must now direct clients to ones
that are appropriately nearby or unloaded. Or,
posed more concretely, when accessing a replicat-
ed Web site, from which mirror should a user
download?

This server-selection problem is not merely aca-
demic: The performance and cost of such systems
depend highly on clients’ choice of servers. File
download times can vary greatly based on the
locality and load of the chosen replica. A service
provider’s costs may depend on the load spikes
that the selection mechanism produces, as many

data centers charge customers based on the 95th-percentile bandwidth
usage over all five-minute periods in a month.

Unfortunately, common techniques for replica selection produce subopti-
mal results. Asking human users to select the best replica is both incon-
venient and inaccurate. Round-robin and other primitive DNS techniques
spread load, but do little for network locality.

OASIS, however, can automate the process of selecting nearby and/or light-
ly loaded servers, yet it remains easy to integrate into existing applications.

Architecture

Figure 1 shows OASIS’s two-tier architecture. The system consists of a net-
work of core nodes that help clients select appropriate replicas of various
services. All services employ the same core nodes (which we run as a pub-
lic service); we intend this set of infrastructure nodes to be small enough
and sufficiently reliable so that every core node can know most of the oth-
ers. Replicas (which are deployed by service operators seeking to use
OASIS for server selection) also run OASIS-specific code, both to report

[Ciclent [CoreNode [Replica | their own load and liveness information to the core and to assist the core
with network measurements. Clients need not run any special code to use
OASIS, because the core nodes provide DNS- and HTTP-based redirection
services.

. Service 1

Service 2

Clients

The primary function of the OASIS core is to return a suitable service
replica to a server-selection request. Given that a request only provides
the client’s IP address and the service name (encoded in the domain name
being resolved when using DNS), how does OASIS determine a clients
location, which is needed to discover nearby replicas?

GEOLOCATING IP ADDRESSES

To discover the location of clients, OASIS probes Internet destinations
using the replica servers as vantage points and, in doing so, finds the clos-
est replica. One of OASIS’s main contributions is a set of techniques that
make it practical to measure the entire Internet in advance and therefore
eliminate on-demand probing when clients make requests.

OASIS minimizes probing and reduces its susceptibility to network peculi-
arities by exploiting geographic coordinates as a basis for locality and by
leveraging the locality of the IP prefixes [6] (e.g., NYU has IP prefix
216.165.0.0/17). We assume that every replica knows its own latitude and
longitude, which already provides some information about locality before
any network measurement. Then, in the background, OASIS uses service
replicas as vantage points to probe each IP prefix to discover the replica
with lowest round-trip-time (yet still does so in a manner that minimizes
probing [13]). Finally, OASIS stores the geographic coordinates of the
replica closest to each prefix it maps.

Because the physical location of IP prefixes rarely changes, an accurately
pinpointed network can be safely reprobed infrequently (as rarely as once a
week). Additionally, this approach amortizes bandwidth costs across the
multiple services using OASIS, resulting in an acceptable per-node cost
that only decreases as more services adopt OASIS. Such infrequent, back-
ground probing both reduces the risk of abuse complaints and allows the
system to respond quickly to requests, with no need for on-demand probing.

47

48

Client
requests

App server

i
OASIS server "9

e e e e e !

—»{ DNS

OASIS
core

node

Replica

RESOLVING SERVER-SELECTION REQUESTS

What happens when a client makes a selection request to a core node?
First, a core node maps the client’s IP address to an IP prefix of appropriate
granularity to capture locality properties. It then attempts to map the IP
prefix to geographic coordinates. If successful, OASIS returns the closest
service replicas to that location (unless load-balancing requires further
consideration of load as a primary selection metric). Otherwise, if it cannot
determine the client’s location, it returns random service replicas.

This server-selection process relies on four databases maintained in a dis-
tributed manner by the core: (1) A service table lists all services using
OASIS (and records policy information for each service), (2) a bucketing
table maps IP addresses to prefixes, (3) a proximity table maps prefixes to
coordinates, and (4) one liveness table per service includes all live replicas
belonging to the service and their corresponding information (i.e., coordi-
nates, load, and capacity).

How are these tables managed in a distributed manner? OASIS optimizes
response time by heavily replicating most information. Service, bucketing,
and proximity information need only be weakly consistent; stale informa-
tion only affects system performance, not its correctness. Thus, OASIS uses
gossiping to efficiently disseminate such state—as well as for failure notifi-
cations regarding core nodes—throughout the network.

Replica liveness information, however, must be fresher: DNS resolvers and
Web browsers deal poorly with unavailable replicas, since such client ap-
plications cache stale addresses longer than appropriate. To tolerate replica
failures robustly, replica information is maintained using soft-state: Replicas
periodically send registration messages to core nodes (currently, every 60
seconds). This replica process also regularly connects to the local applica-
tion seeking OASIS service to verify its liveness (i.e., every 15 seconds).
These communications are shown in Figure 2.

OASIS must know most replicas belonging to a service to answer corre-
sponding selection requests. Therefore, OASIS aggregates replica liveness
information for each particular service at a few core nodes known as serv-
ice rendezvous nodes. To provide self-organizing properties within the core,
different sets of core nodes are chosen via consistent hashing [9] to play
the role of rendezvous nodes for each service.

Although all core nodes can map a client’s IP address to geographic coordi-
nates and determine the relevant service policy, when a core node receives
a service request for which it does not play the role of rendezvous node, it
must also send an RPC query to one of the requested service’s rendezvous
nodes. This rendezvous node uses its aggregated list of known replicas to
determine the best-suited replicas for the client. In [5], I describe a variety
of additional optimizations to reduce the load on a service’s rendezvous
nodes for increased scalability.

Evaluation

I now briefly present some wide-area measurements of OASIS on PlanetLab
[10]. This section is meant simply to demonstrate that OASIS can greatly
improve end-to-end latencies and load-balancing for replicated systems.
For a full evaluation of OASIS and a complete explanation of the experi-
ments, please see [5].

Figure 3 shows the end-to-end time for clients to download a Web page
from a domain name being served by OASIS. This time includes a DNS

lookup and the subsequent TCP transfers. Using 250 PlanetLab hosts, we
compare OASIS to a variety of other state-of-the-art and simplistic server-
selection schemes, include using Meridian for on-demand probing [13],
Vivaldi for virtual coordinates [3], and round-robin selection. The median
response time for OASIS is 290% faster than Meridian and 500% faster
than simple round-robin systems. These end-to-end measurements under-
score OASIS’s true performance benefit, coupling fast DNS response time
(by using cached information) with accurate server selection.

100 T

80

60 -

* OASIS (LF) summn |

i OASIS

20

Percent of lookups having latency

Vivaldi
Vivaldi (cached)
RRobin

o i satiliindmes .
10 100 1000 10000 100000
End-to-end download time (milliseconds)

Table 1 shows how OASIS can reduce bandwidth costs associated with
95th-percentile billing. When multiple co-located clients (here, all in
California) make requests against our four distributed Web servers,
OASIS’s load balancing ensures that 95% peak load remains evenly bal-
anced. Purely locality-based selection, in contrast, yields a traffic spike at
the nearest Web server.

Metric California Texas New York Germany
Latency 23.3 0.0 0.0 0.0
Load 9.0 11.3 9.6 9.2

I next describe how services can adopt OASIS to enjoy similar performance
benefits.

Using OASIS

Figure 4 shows various ways in which legacy clients and services can use
OASIS to access a service. In our usage scenarios I use CoralCDN [4], an
open content distribution network we have been running since early 2004.
CoralCDN receives about 25 million requests daily from over 1 million
clients; in fact, it motivated us to build OASIS in the first place to provide
better proxy selection.

A CLIENT’S STEP-BY-STEP BEHAVIOR

The top diagram of Figure 4 shows how to make legacy clients select repli-
cas using DNS redirection. The service provider advertises a domain name
served by OASIS (e.g., coralcdn.nyuld.net). (OASIS currently uses the
domain name .nyuld.net for its core nodes.) When a client looks up that
domain name (Step 1), OASIS first redirects the client’s resolver to a nearby

49

CoralCDN

Replica
Replica Proxy
Proxy /

OASIS

OASIS
core

CoralCDN
Proxy

3: HTTP

OASIS nameserver (by resolving dns.nyuld.net with respect to the clients
IP address and returning the results as NS records). The client’s resolver
caches these nameservers for future accesses. Then the resolver queries
this nearby nameserver (Step 2) to determine the address of nearby, un-
loaded Coral CDN Web proxies (returned as the domain’s A records). This
approach can be accurate, provided that clients are near their resolvers.

The bottom diagram shows an alternative based on application-level HTTP
redirection. Here, the CoralCDN replicas are also clients from OASIS’s
point of view. Each replica connects to a nearby OASIS core node that pro-
vides HTTP service, as selected by DNS redirection for http.nyuld.net (Step
0). When a client connects to a replica (Step 1), that replica queries OASIS
to find a better replica (Step 2), now asking for service by explicitly speci-
fying the client’s IP address in an HTTP query string. Finally, an HTTP
redirect is returned to the client, causing it to contact the selected replica
for service (Step 3). Such an approach does not require that clients be
located near their resolvers in order to achieve accurate locality.

In fact, OASIS supports several variations on this same theme: The Coral-
CDN replica can query the OASIS core using RPC, instead of HTTP. Alter-
natively, the replica’s query can simply ask for the estimated distance be-
tween two IP addresses, which only uses the core’s location database and
does not require that it maintain a service-specific replica state (although
the service itself would then need to maintain liveness information). Fur-
thermore, the HTTP server on core nodes can perform HTTP redirection
for clients themselves, avoiding the need for clients to contact the initial
replica proxy (Step 1).

The rest of this section is devoted to the concrete steps a service operator
needs to perform in order to integrate OASIS into their distributed system.

REGISTERING A SERVICE

A service policy must be registered with the core so that OASIS can handle
its server selection. This policy currently includes a service’s name (e.g.,
coraledn), the number and expiration time of replica addresses returned
per request, and the selection criteria. By default, OASIS selects replicas
based on locality, unless the nearer replica’s load exceeds its capacity. Other
policies support pure locality-based selection or a load-balancing algorithm
meant to reduce costs associated with 95th-percentile billing.

To enable sites to publish their own top-level domain names, OASIS sup-
ports aliases. Thus, in the context of CoralCDN, requests to nyud.net will
be interpreted as coralcdn.nyuld.net or, in the case of the OverCite service
[12], overcite.org gets interpreted as overcite.nyuld.net. To support this
aliasing, however, a server operator must also point the nameserver records
for their top-level domain to some subset of OASIS's nameservers.

DEPLOYING REPLICAS AND INTEGRATING APPLICATIONS

50

On every host running a service application—such as a Coral CDN Web
proxy—the service’s administrator should deploy an OASIS replica. (The
source code is released under the GPLv2 and is available from
http://oasis.coralcdn.org/.) Service replicas should be configured with their
geographic coordinates and, in order to monitor its liveness, the service
name and listening port of their local application.

On the application side, the application (or some stand-alone daemon
monitoring it) simply needs to listen on a TCP server socket on the config-

ured port. Then, when the local OASIS replica connects to the application
(every 15 seconds by default), the application should simply accept the
connection, respond with its application status (a shared secret code for
verification, its current load, and its maximum capacity), and then close
the connection.

We already run OASIS replicas on most PlanetLab hosts [10] as a public
service to the PlanetLab community. Thus, system developers seeking to
deploy their services on PlanetLab need only configure their application to
respond to our local liveness checks and need not deploy replicas them-
selves, as a single OASIS replica can monitor multiple local services and
their applications.

ACCESSING THE SERVER-SELECTION AND GEOLOCATION SERVICE

Once a service’s policy and some of its replicas are registered with the
OASIS core, core nodes can immediately respond to client server-selection
requests. OASIS currently provides DNS, HTTP, and RPC interfaces for
server selection, as shown in Figure 4, above. To access a CoralCDN Web
proxy via DNS redirection, for example, a client need only connect to the
hostname coralcdn.nyuld.net. To use HTTP redirection, the client simply
accesses the URL http://http.nyuld.net:8096/redir.ntml?pol=coralcdn&ip=<ip>,
which causes the client first to discover a nearby core node running an
HTTP proxy (via DNS), then to ask that HTTP proxy for a nearby
CoralCDN replica. The optional query string <ip> performs the request
with respect to that specified IP address, as opposed to the client’s own IP
address.

OASIS exposes additional information through its HTTP and RPC inter-
faces. For example, a client can query OASIS for the geographic coordi-
nates of a particular IP address or the distance between any two such
addresses: http://http.nyuld.net:8096/distance.xml?src=<ip1>&dst=<ip2>.

Output from the HTTP proxy can be either in HTML or XML, the latter
allowing for simple integration with third-party Web services.

Conclusion

OASIS is a global, distributed, server-selection system that allows legacy
clients to find nearby or unloaded replicas of distributed services. Two
main features distinguish OASIS from prior systems. First, OASIS allows
multiple application services to share the selection service. Second, OASIS
avoids any on-demand probing when clients initiate requests by geolocat-
ing all IP prefixes in advance.

Publicly deployed since November 2005, OASIS has already been adopted
by a number of distributed services [1, 2, 4, 7, 8, 11, 12]. Experimental
measurements and third-party experiences suggest that OASIS produces
highly accurate results, ensures server liveness, and provides simple system
integration and client use. For more technical information on OASIS’s
design, evaluation, and integration, as well as relevant source code, please
visit http://oasis.coralcdn.org/.

REFERENCES

[1] E Annexstein, K. Berman, S. Strunjas, and C. Yoshikawa, “Adaptive
Client-Server Load Balancing Using Persistent Demands,” Technical Report
ECECS-TR-2006-06, University of Cincinnati, July 2006.

52

[2] B.-G. Chun, P Wu, H. Weatherspoon, and J. Kubiatowicz, “ChunkCast:
An Anycast Service for Large Content Distribution,” Proceedings of the 5th
International Workshop on Peer-to-Peer Systems (February 2000).

[3] E Dabek, R. Cox, E Kaashoek, and R. Morris, “Vivaldi: A Decentralized
Network Coordinate System,” Proceedings of SIGCOMM (August 2004).

[4] M. J. Freedman, E. Freudenthal, and D. Mazieres, “Democratizing
Content Publication with Coral,” Proceedings of the First Symposium on
Networked Systems Design and Implementation (March 2004).

[5] M. J. Freedman, K. Lakshminarayanan, and D. Mazieres, “OASIS:
Anycast for Any Service,” Proceedings of the 3rd Symposium on Networked
Systems Design and Implementation (May 2006).

[6] M. J. Freedman, M. Vutukuru, N. Feamster, and H. Balakrishnan,
“Geographic Locality of IP Prefixes,” Proceedings of the Internet Measure-
ment Conference (October 2005).

[7] R. Grimm, G. Lichtman, N. Michalakis, A. Elliston, A. Kravetz, J.
Miller, and S. Raza, “Na Kika: Secure Service Execution and Composition
in an Open Edge-side Computing Network,” Proceedings of the 3rd
Symposium on Networked Systems Design and Implementation (May 2006).

[8] D. Joseph, J. Kannan, A. Kubota, K. Lakshminarayanan, I. Stoica, and
K. Wehrle, “OCALA: An Architecture for Supporting Legacy Applications
over Overlays,” Proceedings of the 3rd Symposium on Networked Systems
Design and Implementation (May 2000).

[9] D. Karger, E. Lehman, E Leighton, M. Levine, D. Lewin, and R.
Panigrahy, “Consistent Hashing and Random Trees: Distributed Caching
Protocols for Relieving Hot Spots on the World Wide Web,” in Proceedings
of the Twenty-Ninth Annual ACM Symposium on Theory of Computing (May
1997).

[10] PlanetLab: http://www.planet-lab.org/.

[11] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker,
L. Stoica, and H. Yu, “OpenDHT: A Public DHT Service and Its Uses,”
Proceedings of SIGCOMM (August 2005).

[12] J. Stribling, J. Li, I. Councill, M. E Kaashoek, and R. Morris, “Over-
Cite: A Cooperative Digital Research Library,” Proceedings of the 3rd
Symposium on Networked Systems Design and Implementation (May 2006).

[13] B. Wong, A. Slivkins, and E. G. Sirer, “Meridian: A Lightweight
Network Location Service without Virtual Coordinates,” Proceedings of
SIGCOMM (August 2005).

AS THE DEVELOPED WORLD BECOMES
ever more connected, the developing world
falls ever farther behind. Projects such as
One Laptop per Child (OLPC) seek to bring
W | S P E R: O‘pen low-cost technology to aid in education to

all parts of the world, but you might have
SOUTCE,]Oﬂ 9 - noticed that there is a problem with wire-
d-l Stan ce Wi Te] ess less laptops in, say, central Africa. Where is
the equally low-cost networking infrastruc-
ture required to connect these laptops to
the global Internet?

RIK FARROW

rik@usenix.org

I had considered this question, even as I mused
about the reality of a $100 laptop (laptop.org).
But it wasn't until Teus Hagen, Director of NLnet,
caught up with me during USENIX Annual Tech
’06 in Boston that I began to research the issue.
Hagen had become infused with missionary zeal
to create a new open source project that will, at
the least, look into the prospects of creating soft-
ware and related hardware platforms that will sup-
port low-cost networking.

Although the biggest focus on wireless technology
has been for use in cities, wireless means that less
densely populated areas might quickly become
connected without large expenditures. And the
research into adding free (or nearly free) wireless
in large cities (e.g., projects such as RoofNet in
Cambridge, MA) provide a giant step forward into
creating actual software and hardware designs for
expanding connectivity and communications into
far-flung locations.

The Big Idea

Hagen has labeled his nascent project WISPER, an
obvious play on the English word “whisper.” Just
like the low-powered radios used in Wi-Fi access,
a network of low-powered devices that can be
mass manufactured just might support the devel-
opment of the communications infrastructures in
much of the world. The OLPC project relies on
the same economies of scale, that is, creation of a
single design that can be mass-produced, bringing
down the cost through economies of scale. The
OLPC design does include Wi-Fi that will always
be on (as long as the batteries provide power),
holding out the possibility of a continuous, but
purely local, network. But this type of network
scales poorly. Clearly, something else is needed.

Hagen believes that the WISPER project could
provide the next level of connectivity. While I can
imagine that not all governments are interested in

;LOGIN: OCTOBER 2006 WISPER: OPEN SOURCE, LONG-DISTANCE WIRELESS 53

54

unfettered Internet connectivity, the ability to move beyond a local-only
information base to a global one seems a logical next step—not an easy
step, but certainly one worth exploring.

RoofNet

Perhaps the closest research project to WISPER that I've found so far is the
RoofNet research network [1]. RoofNet involved a small number of sys-
tems (37) set up in a relatively small (and affluent by world standards)
part of Cambridge, MA. Students installed Dell PCs running the RoofNet
software package in the homes or apartments of participants. Installation
included, in most cases, running a coax cable up to an omnidirectional
roof-mounted antenna. In an area of mostly three- to four-story buildings,
these antennas provided good coverage and were much easier to set up
than directional antennas. Most systems were less than half a kilometer away
from other systems, although there were outliers over a kilometer away.

RoofNet connected to the Internet via five gateways. As with the selection
of RoofNet participants, the locations of gateways were more random than
planned, so as a research platform, RoofNet better resembled an organically
grown, rather than a carefully laid-out, wireless network. RoofNet not only
worked but provided a mean bandwidth of 627 kbs and a median of 400
kbs, values that are not bad for an unplanned network using 802.11b as its
wireless base.

The big story in RoofNet was not the hardware, or even that it was done,
but the research that came out of the project. Some findings were not sur-
prising, given prior work. For example, as the number of routing hops in a
mesh network increases, the available bandwidth decreases. If you consider
that someone who is four hops away from a gateway must share the band-
width of intermediate systems with an ever-increasing amount of traffic,
this finding just makes sense. But it makes the notion of large, unplanned
mesh networks sound unworkable if it means that the number of hops
between a client and a gateway must be, say, four or fewer [2].

RoofNet simply avoided the problem of the decrease in bandwidth with the
increase in hop count, because no node was more than five hops from a
gateway. RoofNet did, however, successfully deal with related issues. For
example, traditional routing is based on following the best calculated rout-
ing metrics. Routers typically exchange reachability and response-time data
among themselves and use those metrics to choose the next router to for-
ward packets to. In RoofNet, a hybrid system, ExOR, was used instead for
large file transfers.

All RoofNet Web traffic went through proxies, and these proxies would use
ExOR for transferring the first 90% of large files and traditional routing for
the last 10%. And using EXOR resulted in increases in transfer rates from 40
to 300%, even over single-hop routes. The key to ExOR was that it broadcast
collections of packets, rather than unicasting the packets to the next hop, and
included in this broadcast a manifest of the packets sent [3]. This approach
takes advantage of the vagaries of Wi-Fi, where some packets might skip what
would in traditional routing be the first or even later forwarders, and thus
reach the destination system more quickly. ExOR also increases throughput in
single hops, because it does not use RTS/CTS and has a different method for
handling retransmissions of lost or damaged packets.

RoofNet also used Click [4] for assignment of addresses. Each PC was

assigned an address based on the lower 24 bits of the wireless card’s MAC
address, with the higher 8 bits of the IP address remaining fixed. But each
PC could also act as a router with NAT, so that locally connected systems

would be given an address using DHCP. Because local systems were
assigned private network addresses, participants had access to the Internet,
but not to each other’s systems.

The success of RoofNet is a relevant one, as it used innovative techniques
to get beyond some of the limitations found in 802.11 hardware and stan-
dard IP software. But RoofNet itself is not a model for WISPER, where
there might be many hops between a client and an Internet gateway. Roof-
Net was an experimental testbed.

Out of RoofNet

RoofNet has already produced a spin-off, a new company called Meraki
Networks (meraki.net), which has already designed and produced the
Meraki Mini, a $100 device designed for relaying Wi-Fi traffic. The Mini
includes an Atheros chip that supports 802.11b/g Wi-Fi, an Ethernet port, a
USB port, built-in encryption support, and a MIPs processor that runs a 2.4
Linux kernel. With the addition of some flash memory and SDRAM, the
Mini is a self-contained system (just requiring a power supply) that can
serve as a development platform for more mesh-style networking research.

I talked to John Bicket, the CTO and co-founder of Meraki Networks, and
one of the students who was involved in the RoofNet research, about the
Mini. Although the Mini sounds like the perfect hardware platform for
WISPER, the match is actually far from perfect. Mini is designed to be used
indoors, for example, making it a poor candidate for the environments found
in developing countries. Meraki has aimed the Mini at commercial really
low-cost wireless deployment in a building, such as an apartment building.
Bicket said that the Mini is also designed with use by researchers in mind,
as full documentation and sample device drivers are available. At $100 per
box, the Mini costs just 10% of what each RoofNet node had cost, and less
than many less capable devices used in mesh-network research.

There have been other network devices, such as the Meshcube
(meshcube.org), intended for use in urban mesh networks, but these
devices cost considerably more than the Mini. And none of the existing
devices, or software, really satisfies Teus Hagen’s list of goals.

WISPER

I must confess that it took me a while to understand what Hagen wanted
from a WISPER project. At first, it seemed like all the parts were already in
place—but they really are not, at least not yet. And Hagen has higher
ambitions than a deployment in places where a RoofNet is just an alterna-
tive to several other means of having Internet connectivity. WISPER is real-
ly intended for places where the Internet has not yet penetrated—and not
just physical locations.

Hagen wants WISPER to be a project not only for developing wireless net-
working but also for advancing IPv6. The very addressing issues that
RoofNet neatly dodges need to be attacked head-on, Hagen believes, and a
project like WISPER might be just the ticket. IPv6 was developed to deal
with the shortcomings of IPv4, including the limited address space. But
large-scale deployments of IPv6 remain scarce. And unplanned deploy-
ments, such as an ad hoc arrangement of wireless access points in a type of
a mesh, really require a new way of thinking about addressing.

Hagen’s complete list of goals for WISPER includes:
IP address space solution, IPV6

56

Multi-mesh scaling and answers to throughput issues

Stability

Operating systems other than 2.4 Linux (OpenWRT), such as 2.6,
BSD, or even Minix 3

Configuration and simplicity

Autodynamic configuration

Wi-Fi long distance: a cheaper WIMAX

Standard hardware

Open source code, to allow cooperative development

Free access and free availability

VolP integration (Asterisk)

Misuse measurements

Security aspects (node and user authentication)

Privacy (existing mesh solutions offer no privacy)

A mobile mesh to allow Wi-Fi VoIP as an alternative to cellular phones

Hagen’s wish list is certainly optimistic. But some items, such as auto-con-
figuration, are a must for a device that will be installed and used by a very
nontechnical population. Others, such as VoIP, may at first seem whimsi-
cal, but for parts of the world with little or no communications infrastruc-
ture and high illiteracy rates, the capacity to support voice communica-
tions will actually be very important.

Hagen turns out to be ideally placed for supporting an optimistic and
open-ended project such as WISPER. Hagen is the Director of NLnet, an
organization that came about when early Internet infrastructure in The
Netherlands was sold to a commercial company. NLnet can invest millions
of U.S. dollars per year in launching network projects, projects designed to
become part of the public domain and be totally open source.

At one point in our many email exchanges, Hagen suggested that I liken
WISPER to the old UUCP mail exchange networks. These networks were
very ad hoc, relying on people using their own phone lines and systems to
relay other people’s email messages, files, and USENET postings. The
Internet itself sprang from this very primitive dial-up network. In the same
way, Hagen hopes that WISPER will help spawn the next level of global
connectivity.

If WISPER excites you and you want to participate (or perhaps just com-
ment on what may appear to you to be a “wild-assed scheme”), you can
visit the Wiki at http:/www.nlnet.nl/wifi.

REFERENCES

[1] Papers about the MIT CSAIL RoofNet research project:
http://pdos.csail.mit.edu/roofnet/doku.php?id=publications.

[2] Some comments about mesh networks, including a geometric decrease
in bandwidth as hop counts increase:
http://www.oreillynet.com/pub/a/wireless/2004/01/22/wirelessmesh.html.

[3] Sanjit Biswas and Robert Morris, “Opportunistic Routing in Multi-Hop
Wireless Networks”: http://pdos.csail. mit.edwpapers/roofnet:exor-sigcommoO5/.

[4] Eddie Kohler, Robert Morris, and Massimiliano Poletto, “Modular
Components for Network Address Translation”: http:/pdos.csail.mit.edu/
papers/click-rewriter/.

See also “Wireless Networking in the Developing World,” with handy how-
to info on boosting a Wi-Fi device: http://www.wndw.net/.

DAVID BLANK-EDELMAN

practical Perl tools:
tie me up, tie me
down (part 2)

David N. Blank-Edelman is the Director of Technology
at the Northeastern University College of Computer
and Information Science and the author of the book
Perl for System Administration (O’Reilly, 2000). He has
spent the past 20 years as a system/network admin-
istrator in large multi-platform environments,
including Brandeis University, Cambridge Technology
Group, and the MIT Media Laboratory. He was the
program chair of the LISA "o5 conference and is one
of the LISA 06 Invited Talks co-chairs.

dnb@ccs.neu.edu

WHEN WE LEFT OFF IN THE PREVIOUS
column, | was standing over an anonymous
hash holding a whip. OK, maybe not, but it
did get you to check your back issues of
;login:, no? Actually, we left off with some-
thing much more titillating: the ability to
modify the fundamental nature of how Perl
variables work using modules based on
Perl’s tie() functionality.

At the end of the last column we had just begun
to contemplate the following list of things we
wished a Perl hash could do:

= have elements that would automatically
expire after a certain amount of time had
elapsed

= keep a history of all changes made to it over
time

= restrict the updates that are possible

= always keep track of the top N values or the
rank of the values stored in it

= always return the keys in a sorted order based
on the values in that hash

= transparently encrypt and decrypt itself

= easily store and retrieve multiple values per
key

Let’s take some time to make those wishes (and
more that you didn’t even know you had) come
true, and then we’ll end by discussing how to
create our own tie()-based code.

Expiring Hashes

Hashes with entries that disappear after a certain
time period are easy to construct, thanks to
Tie::Hash::Expire:

use Tie::Hash::Expire;

tie my %hash, ‘Tie::Hash::Expire’, {'expire_ seconds’ => b};
$hash{'magician’} = "Erik Weis’;

$hash{'musicians’} = ['Jalil’, 'Ecstasy’, ‘Grandmaster Dee'l;
$hash{'software’} = 'Side Effects Software’;

print scalar keys %hash; # prints '3’
do something for 6 seconds...
print scalar keys %hash; # prints ‘0’

An interesting twist on this module is
Tie::Hash::Cannabinol, which describes itself as a
“Perl extension for creating hashes that forget
things.” Specifically, the doc says:

Once a hash has been tied to
Tie::Hash::Cannabinol, there is a 25%
chance that it will forget anything that you
tell it immediately and a further 25% chance

;LOGIN: OCTOBER 2006 PRACTICAL PERL TOOLS: TIE ME UP, TIE ME DOWN (PART 2) 57

58

that it won't be able to retrieve any information you ask it for. Any
information that it does return will be pulled at random from its
keys.

Oh, and the return value from exists isn’t to be trusted, either.

To get back on a slightly more even keel, it should be mentioned that
Tie::Scalar:: Timeout or Tie::Scalar::Decay can do similar expiration magic
for scalar variables.

Hashes with a Sense of History

There are two modules that give a hash variable the ability to remember all
changes made over time. Usually when you set a value for a key in a hash,
that value replaces any previous value with no record of there ever having
been a previous value. With Tie::History or Tie::HashHistory, magic takes
place in the background, making it possible to access previous values. For
example, let’s assume we were tracking the price of corned beef. We could
write code that looked like this:

use Tie::History;
my $hobj = tie my %historyhash, Tie::History’;

$historyhash{'cornbeef’} = 1.28;
$hobj->commit;

$historyhash{'cornbeef’} = 1.35;
$hobj->commit;

$historyhash{'cornbeef’} = 1.25;
$hobj->commit;

The initial tie() line creates a special hash called %historyhash and then
returns an object through which the history methods for that hash are con-
trolled. Values for the key cornbeef are set using the standard notation.
Each time we want to remember the state of the hash, we use the control
object ($hobj) to commit it. At this point in the execution of our program,
if we call the getall() method for the hash control object, we'd see:

DB<1> x $hobj->getall

0 ARRAY(0x50bcac)

0 HASH(0x5248cc)
‘cornbeef’ => 1.28

1 HASH(0x53e624)
‘cornbeef’ => 1.35

2 HASH(0x53e660)
‘cornbeef’ => 1.25

There are other methods such as previous(), current(), and get() that allow
you to retrieve the state of %historyhash at a specific point in the running
history. Revert() will actually revert the hash to a specified position in the
history. Tie::History is pretty spiffy, because it also works for scalars and
arrays.

To keep things moving along, I won’t show you an example for
Tie::HashHistory, but I do want to mention one way that it differs from
Tie::History. Tie::HashHistory is meant to augment other tie() modules and
give them history superpowers. For example, if you were using the
Tie::DBI module talked about in the last column, it might be handy for
debugging purposes to keep a running history of all changes made to a
Tie::DBI'd hash. Tie::HashHistory makes that easy.

Restrictive Hashes

Hashes are fabulous data structures. This notion of a collection of infor-
mation in key/value pairs is both very powerful and very easy to use. But
hashes can be a bit of a pushover. They are happy to store anything you
throw at them, even mistakes. For example, a hash has no way to know
that the key in:

$authors{'Charles Dikkens'} = “Hard Times";

is a typo (after all, it could be the well-known Dutch author). Just as the
use strict pragma offers a good way to avoid variable name typos, the mod-
ule Tie::StrictHash will do the same for hash keys:

use Tie::StrictHash;
my $hobj = tie my %authors, ‘Tie::StrictHash’;

Now we have two things: a hash (called %authors), which will behave in
an unusual way, and a hash control object ($hobj) that will be used to
make changes to that object. %authors is now unusual because, as the doc-
umentation says:

No new keys may be added to the hash except through the add method
of the hash control object.

No keys may be deleted except through the delete method of the hash
control object.

The hash cannot be reinitialized (cleared) except through the clear
method of the hash control object.

Attempting to retrieve the value for a key that doesn’t exist is a fatal
error.

Attempting to store a value for a key that doesn’t exist is a fatal error.

So if we wanted to add a new key to the hash, we would call:
$hobj->add('Charles Dickens’ => 'Hard Times’);

Once in place, existing keys are changed just as one would expect:
$authors{'Charles Dickens'} = ‘Great Expectations’;

In the interests of full disclosure (since this isn’t tie()-related), Perl 5.8.x
versions implement something known as “restricted hashes” that have very
similar properties. Using the Hash::Util module that ships with Perl, it is
possible to lock down a hash or even individual keys in a hash. You don’t
get all of the Tie::StrictHash functionality or its very clear semantics (i.e.,
method calls for making changes), but it doesn’t require installing a sepa-
rate module.

Automatic Ranking

It’s fairly common to write code that reads in a set of values and then has
to report back the rank of each value in the whole list. Tie::Hash::Rank
makes it easy to determine where a particular value stands in the ranking
by constructing magical hashes that return a rank for each key stored in
them instead of the associated value. For example:

use Tie::Hash::Rank;
tie my %rhash, ‘Tie::Hash::Rank’;

grams of sugar

%rhash = (
‘countchocula’ => 12,
‘booberry’ => 15,

"trix’ => 13,
‘cheerios’ =>1,

);

print $rhash{'countchocula’}, “\n"; # prints 3
print $rhash{’booberry’}, ~ “\n"; # prints 1
print $rhash{'trix’}, “\n"; # prints 2
print $rhash{’'cheerios’}, “\n"; # prints 4

There are other similar modules that make it easy to keep track of the top
N values in the hash (e.g., Tie::CacheHash).

Automatic Sorting

There are a few modules that handle keeping a hash’s elements in a sorted
order; these include Tie::Hash::Sorted and Tie::IxHash. If you find yourself
repeatedly sorting and resorting your hash keys before processing, this can
be a big win (especially when dealing with large data sets).

In a related vein, Tie::Array::Sorted helps you maintain an array whose ele-
ments stay (or appear to stay) sorted even in the face of element additions
and deletions. I say “appear” because there is also a Tie::Array::Sorted::Lazy
module in the package that is smart enough to only re-sort the array when
its contents are retrieved. This works well for cases where you have an
array that will be modified quite a bit before being read.

Encypted Hashes and Multi-Valued Storage

We're getting close to the end of our wish list, so let’s take a quick look at
the last two items on the list so we can move on to creating our own tie()-
based code. The first is the ability to transparently encrypt and decrypt
data in a hash. Tie::EncryptedHash is an excellent module for this purpose
if it fits your program’s model. Tie::EncryptedHash is good for those cases
where you want to create a collection of information that needs to be
encrypted when not in active use.

A hash tied using this module can contain both normal key/value pairs and
“encrypting fields.” Encrypting fields are those key/value pairs that begin
with an underscore (e.g., $hash{’_name’}, $hash{'_socsecur}, etc.). The
hash itself is kept either in transparent/unencrypted or opaque/encrypted
mode. The mode designates whether the encrypting fields found in that
hash are encrypted or not.

To read or modify the encrypting fields in the hash, you unlock it with a
special __password key; deleting this password will lock it again. In locked
mode, you can safely drop the contents of the hash to disk or copy it over
a network without fear of those fields being disclosed (the normal
key/value pairs will continue to stay in plaintext). This is really simple in
practice:

use Tie::EncryptedHash;
use Data::Dumper;

tie my %eh, Tie::EncryptedHash’;
$eh{'normal’} = 'no magic here’;

let's unlock the hash

$eh{’__password’} = ‘supersecretsquirrel’;

and store an encrypting field
$eh{’_encrypting’} = 'now you see it ...";

print “transparent: “ . Dumper(\%eh). “\n";

lock the hash
delete $eh{'__password’};

print “opaque: “ . Dumper(\%eh);
The output of this program is:

transparent: $VAR1 = {
‘normal’ => 'no magic here’,
'_encrypting’ => 'now you see it ...
I8
opaque: $VAR1T = {
‘normal’ => 'no magic here’,
'_encrypting’ => ‘Blowfish FHt07w3l/xyfd1/c4hskvQ
53616c7465645f5f4e8203d51070213d75fdf19b4c26b13435bc375600c49f
27b07e21be89f631df
I8

The last item on the wish list is one that makes a programmers life easier.
Tie::Hash::MultiValue is helpful in those cases where you want to store
multiple values in a single hash key. The standard way to handle this situa-
tion is to store a reference to an anonymous array for that hash key (the
Hash of Lists idea). Tie::Hash::MultiValue actually does this, but it makes
the process a little easier. For example, instead of having to write some-
thing like this:

$mvh{'mike’} = [gw(greg peter bobby)I;

add a new element to the list, not the most pleasant syntax
push(@{$mvh{'mike'}}, tiger’);

you can write:
use Tie::Hash::MultiValue;
tie my %mvh, ‘Tie::Hash::MultiValue’;

$mvh{'mike'} = “greg”;
$mvh{'mike’} = “peter”;
$mvh{'mike’} = “bobby";
$mvh{'mike'} = “tiger”;

to get the same result. The module will also make sure that only unique
values are stored, so that:

$mvh{'mike’} = "alice”;
$mvh{'mike’} = "alice”;

only stores “alice” once in the anonymous array associated with the key
“mike.” (A quick warning: The doc for Tie::Hash::MultiValue says that it is
possible to assign multiple values at a time. This unfortunately does not
work in the current version available on CPAN.)

That’s the last of the items on our wish list, but there are still many impres-
sive tie()-based modules available on CPAN that we could talk about. I
could continue to blather on about modules such as Tie::File (which reads
and writes lines in a file as if it were an array), Tie::HashVivify (in which
you call your own subroutine every time you attempt to read a key in a
hash that doesn't exist), or Tie::RemoteVar (which implements a client/serv-
er model that allows you to share the same variables between programs run-
ning on different machines).

Instead, let's move on to creating our own tie()-based code.

61

Don’t Do It

As I mentioned in the first part of this series, there are a number of valid
objections to writing tie()-based code. They include a couple of concerns:

Performance: Tied variables can be quite slow compared to other
approaches, because of all of the overhead.

Maintainability: Without seeing the tie() call, other programmers can’t
know whether a tied variable will go “oogah-boogah” every time it is
accessed, instead of exhibiting the usual variable behavior.

Both of these are perfectly reasonable concerns, so let me quickly state the
alternative to tie()-based code: Write your code using standard OOP prac-
tices, create objects instead of tie()’d variables, and call the methods of
those objects explicitly. Instead of:

$special{’key’} = ‘value’; # prints “oogah-boogah”
use something like:
$special->0o0gahboogah('key’, 'value’)

instead. Although this is not the most glamorous alternative, it does help
with both performance and maintainability.

No, Really. Tie() Me Up, Tie() Me Down

If you've determined you do want to write code for tie() there are a few
ways to go about it. In the interests of space and time, I'm going to show
you only one way, using a very simple example that makes SNMP (Simple
Network Management Protocol) queries using hash semantics. If you are
not familiar with how SNMP works or the Net::SNMP module (perhaps a
future column topic), the short version is that it is a protocol for querying
management information from a device (e.g., a router).

The standard way to construct a tie()-based module requires a bit of Perl
OOP knowledge. If you don’t have that knowledge or just want something
quick and dirty you can use the Tie::Simple module to hide the details for
you. These details are found in the _perltie_ manual page (perldoc perltie)
and are the subject of Chapter 9 in Damian Conway’s Object Oriented Perl.

Here’s how the code you are about to see works. To create tie() code, you
build an OOP-based package. This package creates objects with methods
that implement all of the standard variable operations (fetch, store, exists,
delete, etc.) required of that variable type. Code for tie()-ing scalars needs
to contain 4 subroutines to cover all of the operations; for hashes the num-
ber is 9, and for arrays it goes to 13. To avoid having to write all that code
for this example, we're going to inherit a set of default subroutines from
Tie::StdHash module in the Tie::Hash package. These subroutines mimic
the standard hash behavior, leaving us free to redefine just the operations
that suit our purpose. In the example that follows, we redefine only the
TIEHASH operation, called when the tie() function is executed, and FETCH,
called when a key is looked up in a hash.

Here’s the code, with explanation to follow:

package SNMPHash;
require Tie::Hash;
use Net::SNMP;

@ISA = (Tie::StdHash);

sub TIEHASH {
my ($class, $arghash) = @_;

create the object
my $self = {};
bless $self, $class;

create an SNMP session and store it in the object

my ($session, $error) = Net::SNMP->session(%{$arghash});

die “Could not establish SNMP session: $error” unless defined $session;
$self{'session’} = $session;

return $self; # return the object
}

sub FETCH {
my $self = shift;
my $key = shift;

do the actual SNMP lookup
my $result = $self{'session’}->get_request(-varbindlist => [$key]);

return $result->{$key};
}

1; # to allow for loading as a module

Here’s a very brief tour of the code: We start by declaring the name of the
package (which will become the class of the object created). After the
usual loading of modules we declare that we'll be inheriting from the
Tie::StdHash module. This gives us the freedom to redefine two operations,
TIEHASH and FETCH.

For TIEHASH, we create an empty object, initialize an SNMP session object
based on the arguments in the tie() statement, and store a reference to this
session in the object for later use. That use happens in the very next sub-
routine when we define what should happen upon key lookup. In this
case, we take the key, turn it into a standard SNMP _get_ request, and then
return the answer. When this happens it looks like the tie()’d hash has
magical keys consisting of SNMP variables (in OID form), which can be
queried to see the live data.

How does this get used?

assumes we saved the previous example in a file called SNMPHash.pm
someplace Perl can find it
use “SNMPHash";
tie my %snmphash, ‘SNMPHash’,
{ "-hostname’ => ‘router’, -community’ => ‘public’ };
this long string of numbers is just a way of referencing (in SNMP
OID form) the SNMP variable that holds the description for a system
(i.e. sysDescr.0). See Elizabeth Zwicky's article at
http://www.usenix.org/publications/login/1998-12/snmp.html or
another SNMP tutorial for more info
print $snmphash{'.1.3.6.1.2.1.1.1.0'},"\n";

This yields something like:

Cisco Internetwork Operating System Software

IOS (tm) s72033_rp Software (s72033_rp-PK9S-M), Version 12.2(18)SXD1,
RELEASE SOFTWARE (fc1)

Technical Support: http://www.cisco.com/techsupport

Copyright (c) 1986-2004 by Cisco Systems, Inc.

Compiled Wed

There’s a ton of things missing from this sample code; it is just meant to be
a snippet to start your motor running. There’s virtually no error checking.
Most of the hash operations aren’t implemented. (It isn’t exactly clear just

63

64

how all of the SNMP operations should map onto hash operations. Some
are obvious, but the others deserve some head scratching.) Still, you've
now received a taste of what it takes to write your own tie()-based code.
And with that, we need to wrap up this issue’s column. Take care, and I'll
see you next time.

Save the Date!

ry 4th USENIX Symposium on Networked

Systems Design & Implementation

April 11-13,2007 Cambridge, MA

Join us in Cambridge, MA, April 11-13,2007, for NSDI ‘07, which will focus on the design principles
of large-scale networks and distributed systems. Join researchers from across the networking

and systems community—including computer networking, distributed systems, and operating

systems—in fostering cross-disciplinary approaches and addressing shared research challenges.

USENIX

ROBERT HASKINS

ISPadmin: anti-
spam roundup

Robert Haskins has been a UNIX system administra-
tor since graduating from the University of Maine
with a B.A.in computer science. Robert is employed
by Shentel, a fast-growing network services provider
based in Edinburg, Virginia. He is lead author of
Slamming Spam: A Guide for System Administrators

IN THIS EDITION OF ISPADMIN, | TAKE
a look at a few relatively current events in
the area of anti-spam. Although not direct-
ly service-provider related, spam is certainly
an area that is near and dear to the net-
work service provider’s operations.

The areas that I look at in this column include:

= Reputation

= Image spam

= SpamHINTS

= Sophos “top 12”

= Dlink SECURESPOT

(Addison-Wesley, 2004).

haskins@usenix.org

Reputation

The area of reputation as it applies to anti-spam
continues to mature. Although “reputation” can
mean many different things to different people, 1
use “reputation” here to mean the likelihood a
particular IP has emitted spam in the past. A sim-
ple reputation service would be a DNS blacklist
service such as Spamhaus SBL [1] or DSBL [2].
However, these systems are simple “on” or “off”
reputation systems; the systems described below
assign a likelihood-of-spam probability in much
the same way a personal credit scoring system
assigns probabilities.

OPEN

SOURCE SOFTWARE

Unfortunately, there has been little progress in

the open source arena on anti-spam reputation-
based systems. GOSSiP [3] appears to be at a
standstill. I guess this means that a viable reputa-
tion service needs to have a commercial entity
behind it (Trend Micro, Symantec, etc.). However,
similar open source-like data-sharing anti-spam
schemes currently exist in the form of the Distrib-
uted Checksum Clearinghouse (DCC) [4] and
Vipul's Razor (written by Vipul Prakash, a founder
of Cloudmark). Perhaps some would consider
DCC commercial in the sense that it is backed by
the commercial entity Rhyolite Software, but as far
as | am aware, it doesn'’t generate revenue directly
from running the DCC service.

COMMERCIAL SOLUTIONS

;LOGIN: OCTOBER 2006

In the commercial arena, the IP reputation-based
solutions keep on coming. One of the newer ones
is from Simplicita Software [5]. The Simplicita
Reputation Knowledge Server (RKS) can take IP

ISPADMIN: ANTI-SPAM ROUNDUP

65

66

feeds from many different sources (MTA logs, firewalls, DNS-based black-
lists, etc.) and allow network operators to block inbound messages from
IPs determined to be bad. The RKS solution allows easy manipulation of
these lists, adding and expiring IPs using many different schemes.

Another approach to the IP reputation is the Symantec 8100 series appli-
ance [60], formerly known as Turntide. (Disclaimer: My employer is a
Symantec customer and user of the 8100 and SBAS products mentioned
here.) In the most common implementations, you simply put the device
“in line” in front of your mail transfer agents (MTAs), behind either
switch(es) or router(s). This solution works at the TCP level to block
SMTP connections from IPs that have sent spam messages to your email
infrastructure. The most egregious spamming IPs are “ratcheted down” in
the rate at which they can send messages to the inbound or outbound
MTAs sitting behind the 8100 appliance.

The good news about the 8100 device is that deploying them can signifi-
cantly reduce the need for additional MTAs in your email architecture and
they can reduce the number of spam messages hitting your MTA. However,
the appliance isn’t a perfect solution, as it does not eliminate the need for
additional filtering capability, requiring an MTA-level anti-spam filter such
as Symantec Brightmail AntiSpam [7].

The other bit of bad news is that the appliance often blocks legitimate
email from hosted domain forwarders, resulting in complaints from cus-
tomers who have email forwarded to local accounts that come from such
domain email forwarders. Of course, the 8100 device allows the adminis-
trator to whitelist IP address space, but the problem is where to draw the
line. If you whitelist too many senders, then there isn’t much point in hav-
ing the device to begin with.

The 8100 device does allow placement of IPs into a number of “classifica-
tions,” ranging from essentially unlimited access to a very slow rate of
accepting SMTP connections. One solution is to “lock” the domain-hosting
IP into a specific classification, not allowing unrestricted access, but slow-
ing it down somewhat. It's not a perfect solution, but it’s better than the
alternatives.

One resource I have found to be particularly useful in managing the 8100
devices is Ironport’s Senderbase [8]. When one needs to whitelist an email
service provider and the provider is unwilling or unable to tell you what
their outbound servers are, the Senderbase data can give you a good idea
of what IPs to start with. Although not perfect, it gives one a place to start.

Image Spam

One of the newer spamming techniques is the use of embedded images in
email messages. This is a particularly difficult method of spam to deal
with. (I personally have been receiving image spam for at least two years
now.) Some commercial anti-spam vendors recommend not allowing
images as a solution to this problem. This isn’t very practical, as this would
only work for those that don't regularly receive images. I would guess that
isn’t very many users. Barracuda Networks’ [9] solution is to perform opti-
cal character recognition on image attachments [10]. This sounds interest-
ing, but I wonder how well it works. Pretty soon, we’ll be seeing water-
marks in spam images to throw off the automated detection of spam via
OCR!

SpamHINTS

SpamHINTS [11] is a research project by Richard Clayton at the University
of Cambridge. His approach is to look at network traffic patterns and glean
spamming IPs from the changes in patterns over time. This strategy will be
very interesting if it works. The problem I see with this approach is that if
the spammers can make their traffic look just like legitimate traffic, then
there won't be anything to find. I suspect that a traffic-based approach will
work for the high-volume spammers who send their junk via a relatively
small number of IP addresses, but detecting small volumes spread out over
widely disparate networks will prove difficult to identify using this
method.

Sophos “Top 12”

I cringe every time I see a lot of press coverage of the “biggest spammer”
lists such as that recently published by Sophos [12]. It’s not that I have
anything against such lists; but I have reservations about how accurate
the data really is and what it really means. But first, does it really matter
that North America allegedly originates 23.1% of spam? I think that the
SpamCop stats [13], which show spammers by net blocks, are much more
useful. With per-network spam information, we (Internet users) can put
pressure on the egregious spammers with the SpamCop information. Back
on the geographic lists, do we really care what country (or continent, for
that matter) originates the most spam? What are we going to do, complain
to George Bush because the United States originates the most spam?

Regarding the accuracy of the data, I suspect that the geolocation data has
gotten better over time, but I still wonder how accurate it really is, with
VPN, inexpensive bandwidth, and all the other little details that make
geolocation difficult.

Dlink SECURESPOT

The Dlink SECURESPOT [14] takes the security appliance to the extreme,
for the consumer (SOHO) market. In a box half the size of a deck of cards,
the device performs a whole host of security-related functions, including:

Parental control
Pop-up blocking
Virus protection
Spam blocking
Spyware protection
Identity protection
Firewall protection
Network reporting

SECURESPOT was designed by Bsecure Technologies [15], who handle
the “service” side of the product, updating firmware and maintaining the
lists of “bad guys” to block as part of the solution. Like any new product,
it will take time for the support issues to be straightened out. I would
imagine that this product would take some tweaking to work within the
existing user’s PC environment, given software firewalls, anti-spam, anti-
virus, and other security-related software already running on the PC.

Of course, it remains to be seen how well this device works when com-
pared to software equivalents such as Symantec’s Norton Internet Security

[16]. The best design would be to integrate this functionality into the
existing SOHO firewall/router and not have an extra box, but I suppose
you have to start somewhere. I suspect that if this product takes off, Dlink
will probably integrate the SECURESPOT functionality into some of their
other products.

REFERENCES

[1] Spamhaus SBL: http://www.spamhaus.org/sbl/index.lasso.
[2] DSBL: http://dsbl.org/main.

[3] GOSSIP: http://gossip-project.sourceforge.net/.

[4] DCC: http://www.rhyolite.com/anti-spam/dcc/.

[5] Simplicita: http://www.simplicita.com/.

[

6] Symantec Mail Security 8100:
http://www.symantec.com/Products/enterprise? c=prodinfo&refld=852.

[7] Symantec Brightmail AntiSpam:
http://www.symantec.com/Products/enterprise? c=prodinfo&refld=835&cid
=1008.

[8] Ironport’s database of sending IPs: http:/www.senderbase.org/.
[9] Barracuda Networks: http://www.barracudanetworks.com.

[10] http://www.networkworld.com/news/2006/071906-barracuda
html?fsre=rss-security.

[11] SpamHINTS: http://www.spamhints.org/.

[12] Sophos top 12: http://www.sophos.com/pressoffice/news/
articles/2006/04/dirtydozapr06.html.

[13] SpamCop stats: http://www.spamcop.net/spamstats.shtml.

[14] Dlink SECURESPOT:
http://www.dlink.com/products/?sec=0&pid=486.

[15] Bsecure Technologies: http://www.bsecure.com/.

[16] Symantec Norton Internet Security:
http://www.symantec.com/home_homeoffice/products/overview.jsp?pcid=is
&pvid=nis2006.

HEISON CHAK

Heison Chak is a system and network administrator at
SOMA Networks. He focuses on network management
and performance analysis of data and voice networks.
Heison has been an active member of the Asterisk com-
munity since 2003.

heison@chak.ca

HELLO, HELLO, HELLO, HetLLo, . . .

Many of us have had experience with echo, whether
it was speaking loudly in an empty stadium, shout-
ing in the great outdoors in front of a mountain,
hearing your own voice while talking on a tele-
phone, or even singing Karaoke with the echo fea-
ture enabled on a mixer. It all boils down to the per-
sistence of a sound after its source has stopped.

Although there are two main types of echo, acoustic
and electronic, both can be generalized as reflection
points being introduced that cause the audible echo.

In the case of an acoustic echo, sound waves get
bounced against objects. Since these objects may
have very different physical characteristics and can
be varying distances from the source of the sound,
the resulting sound arrives at the speaker’s ears at
different times and amplitudes. It is important to
understand that echo may only be heard by the
speaker. Consider a speaker standing at one end of a
tunnel or an empty stadium, shouting out to his lis-
tener. Only the speaker will hear his own voice
being reflected by the surroundings. Similarly, if a
climber is shouting out to her friend on top of a
mountain, the friend may be able to hear the mes-
sage clearly with no echo. Yet the climber may hear
her own voice being reflected by the mountain and
surrounding reflection objects even after she has
stopped shouting.

Electronic echo reflection points found in telephony
systems are generally related to analog-to-digital
conversation, 2—4-wire hybrid, and impedance mis-
match. In a telephony system, when a caller experi-
ences echo, it’s likely that the reflection point is at
the remote end of the conversation. In fact, the
remote party of the conversation may find the com-
munication sounding perfectly fine, simply because
he or she is beyond or behind the reflection point,
much like the mountaineer yelling from the bottom
of a mountain to her friend at the top. This is com-
monly known as the far-end problem.

Echo in VoIP Systems

When sound is applied to the handset transmitter of
a VoIP device, it is digitized, processed, encoded,
and transmitted via the network interface as IP
packets. The near-end telephone intentionally sends
some of the electrical signal from the transmitter to
the receiver. These signal components, known as
side-tone, are used to simulate the natural expecta-
tion of a user to hear his or her own voice while
speaking. Since side-tone originates locally, it carries
only a small amount of delay, too short to be per-
ceived by a user.

69

70

In a pure VoIP system (i.e., an IP-IP call), there is no chance of echo being
introduced until the packets arrive at the far-end telephone. Electrical
crosstalk in the far-end telephone can occur and couple some of the
received signal in its transmit path, leading to leakage of the speaker’s
voice in the return path. The handset on the far-end telephone can gener-
ate an acoustic output that is coupled back to the transmitter as well. The
combined electrical and acoustic signals get digitized, processed, encoded,
and transmitted to the near-end phone, where they appear at the receiver.
Since these packets carry much longer delay than those generated locally
on the near-end devices, they become a more noticeable side-tone with a
much longer delay—in other words, echo.

The perceived quality of the connection can often be impacted by the
amount of delay these signals carry as well as by their amplitude. Typically,
when the signal delay exceeds 15-20 ms, the user perceives the delay, and
the experience becomes more unpleasant if the delay has a high amplitude.
Fortunately, analog telephone systems have low enough latency that sig-
nals are generally not perceived as echo.

VoIP packets are known to have low resilience to delay and latency; the
effect is even more undesirable when it comes to echo. Besides typical
transmission delay of IP networks, VoIP packetization intervals (framing
duration of received audio for transmission) and jitter buffers can con-
tribute further delay.

VolP and POTS

In traditional analog telephone systems, whenever a 2—4-wire hybrid is
used, some receive signals will leak back into the transit path, owing to the
imperfection of coupling. Similar coupling issues can be seen if the user’s
telephone impedance mismatches that of the phone service provider.
Because of the short delay characteristics of local calls on the PSTN (Public
Switched Telephone Network), signals created by such 2—4-wire hybrid
reflection generally are not perceived as echo. For long distance and inter-
national calls, telephone service providers feature echo cancellers to take
care of the added transmission delay. An echo canceller is a software algo-
rithm that tries to remove the portion of the signal caused by the transmit-
ter picking up receive output of the telephone; it does so by attenuating
delay samples in uncompressed form (e.g., 12-bit PCM). Generally, echo
cancellers are disabled for local calling, as they are simply redundant.

When VoIP systems are communicating with POTS phones, echo can origi-
nate from a number of places:

VoIP to local numbers: The PSTN provider has its echo canceller dis-
abled, as it assumes that local calls have short latency; it has not fac-
tored in the possible added delay inherited from an IP network. (A
VoIP user may experience echo, mainly electrical.)

Poor echo canceller on a gateway: An inexpensive media gateway usu-
ally will not feature a hardware echo canceller; echo cancellation per-
formed in software may not converge fast enough to cope with the
ever-changing characteristics of a call, especially on a busy system. (A
VoIP user may experience echo, mainly electrical.)

Underpowered echo canceller: With dedicated hardware, if an echo
canceller has a relatively short echo cancellation capacity, it will not be
able to remove echo effectively. (A VoIP user may experience echo,
mainly electrical.) A typical T1/PRI echo canceller is capable of remov-
ing undesired signal up to 128 ms across all channels.

Impedance mismatch on a gateway: The FXO (Foreign Exchange
Office) interface on a media gateway may not couple with the PSTN, so

the voice of the POTS user gets reflected into his or her return path.
(The POTS user may experience echo, mainly electrical.)

Poorly designed hybrid on a gateway: The quality of each 2—4-wire
hybrid that comprises a telephone call tends to correlate with the
amount of echo a user perceives. Good circuit design can ensure better
coupling, minimizing reflection points. This can be compensated for
by an echo canceller, if applied correctly. (POTS and VoIP users may
experience echo, mainly electrical.)

Hands-free telephones: These tend to have higher output amplitude on
the speaker and higher sensitivity, because a user is usually sitting fur-
ther away from the phone than with a handset telephone. As a result,
the acoustic coupling of the speaker to the microphone is high and can
result in echo. With the added latency of VoIP, echo from hands-free
telephones can become quite strong. (POTS and VoIP users may expe-
rience echo, mainly acoustic.)

PC to PC: During a pure IP-IP call, when packets arrive, electrical and
acoustic echo may be introduced. If a PC-to-PC call involves a speaker
and a microphone that have the sensitivity characteristics just described,
echo becomes inevitable. The same applies to PC-to-PSTN calls. (VoIP
and POTS users may experience echo, mainly acoustic.)

Both acoustic and electrical echo can be compensated for by proper appli-
cation of echo cancellation. If an echo canceller is applied too far from the
source, the undesired signal may outrun the capability of the canceller
(e.g., a canceller with 128 ms of capacity will not remove a delayed copy of
someone’s voice of 400 ms). In the case of a call between a VoIP device
(either a PC or an IP handset) and the PSTN, if the call is identified by the
PSTN as a local call, the echo canceller may be disabled, making the call
vulnerable to the sorts of echo problems just described.

VoIP applications are often challenged by echo problems, impacting call
quality. It is important to remember that echo is usually a far-end problem.
If echo cannot be avoided, placing an echo canceller closest to the source
can ensure more effective compensation, giving faster convergence and less
DSP-intense operations.

Although echo is often viewed as a far-end problem, this may not always
be the case. Consider a telephone call where one end is on a mobile phone.
The conversation starts out fine but deteriorates as soon as a generic head-
set is used on the mobile phone (in which case only the mobile user expe-
riences echo). As soon as the generic headset is swapped with one that is
specifically designed for the phone, the echo problem diminishes. In this
case, no changes are made to the system except that a near-end device has
been replaced. It is possible that there is impedance mismatch between the
generic headset and the mobile phone, which suggests a near-end problem.

It is difficult to convince the user of a poorly designed telephone that his
phone is coupling the signal it receives and sending the delayed signal
back to the other party on a well-designed phone. In effect, the user of the
well-designed telephone will hear a delayed copy of her own voice, while
the conversation sounds just fine to the user of the poorly designed tele-
phone. The situation can be misleading. The user of the poorly designed
telephone believes that his telephone is working well, whereas the user of
the well-designed telephone may wonder whether her telephone set is the
source of echo, when just the opposite is true.

REFERENCE

http://microtronix.ca/echo_problems.htm.

n

ROBERT G.

/dev/random

Robert is a semiretired hacker with literary and
musical pretensions who lives on a small ranch in

the Texas Hill Country with his wife, five high-main-
tenance cats, and a studio full of drums and guitars.

rgferrell@greatambience.com

WE ALL GET BEES IN OUR BONNETS
from time to time, and one little critter
that's been buzzing around in mine for
quite a spell now is the gradual disappear-
ance of the concept of personal responsibil-
ity. Growing up in West Texas, when you
made a mistake you stared down at the
ground and scraped your toe in the sand in
embarrassment for a few seconds, wishing
that teleportation weren't just a cheesy sci-
fi effect, then straightened your back,
squared your shoulders, and took the con-
sequences. Sure, we occasionally produced
stink beetles who tried to blame missing
that easy pop fly to center field on the sun
being in their eyes or getting distracted by
one of those balsawood glider-sized drag-
onflies endemic to the area, but by and
large folks in my neck of the cactus planta-
tion had a pretty firm grasp on societal
cause and effect. OK, | think I've got all the
bugs out of my system now. Did | mention
how much | hate big red wasps?

;LOGIN: VOL. 31, NO. 5

The fundamental idea that you, not some corpora-
tion/neighbor/government agency/supernatural
influence/alignment of fantastically distant celes-
tial objects, are responsible for what happens to
you has apparently joined the Ivory-billed
Woodpecker and the woefully misnamed “com-
mon sense” on the critically endangered list. I
suppose such quaint and outdated mores simply
don’t resonate with today’s society, working as
they do in opposition to the generation of new
SUVs and beach properties for the legal profession.

Some examples of total abdication of personal
responsibility are obvious, such as the recent spate
of well-publicized lawsuits over fumble-fingers
who scald themselves with beverages, consumers
who take that term a bit too literally and wolf
down anything and everything put in front of
them, blaming the food vendors when this indis-
criminate consumption results in arteries with the
structural characteristics of uncooked pasta, and
parents who think the rest of the world should be
held accountable for their own inability to control
what their children read and watch on a daily
basis. Others are more insidious: every computer
sitting at the terminus of an always-on broadband
Internet link, for example.

Imagine that you buy a new car and leave it, unlocked and running, in
your driveway 24 hours a day. Imagine further that some lowlife slithers
up, steals said car from said driveway, and employs it in the commission of
a crime. Do you share any of the blame for this event? You didn’t actively
participate in or condone the action itself, so why would you? Is providing
easy access to a potent tool acting as a sort of unwitting accessory to the
crime? The legal arguments surrounding this scenario are more complex
than they may first appear, and let me state now for the record that I Am
Not A Lawyer (I prefer to sleep at night), but fundamentally this boils
down to a question of personal responsibility, however oblique that may
seem to the case as stated.

Items deemed by expert consensus to be potentially dangerous to health
or safety are ideally accessible only by those who bear the brunt of respon-
sibility for their use. This includes weapons, prescription drugs, vehicles,
theatrical adaptations of classic comic books, and . . . computers. That’s
right: computers. A potential for economic and sociological mayhem, if
not actual public safety concerns, resides right there in that oversized
shoebox sitting on edge under your desk. Whether or not you admit it,

if you don't take some fairly simple steps to keep out the riffraff it is almost
a dead certainty that your computer will be recruited into a multicellular
evil entity whose metabolic functions are anything but beneficial to the
society on which they ravenously feed. I liken botnets, as these infernal
networks are called, to digital cancers. They spread one cell at a time
throughout a logical system until most or all of the CPU cycles of that
system are devoted not to their original benign purpose (I'm being charita-
ble here, I realize) but to the propagation of the infection and the bidding
of their demonic overlord(s). Or mayhap your box will be hijacked to
serve as an anonymizing launch pad for malicious activity such as identity
theft or reading celebrities’ text messages to their dog groomers. Either
way, that PC you rely upon for delivering your spam and checking your
online sports memorabilia auctions will become just one more hapless cog
in a larger, sinister enterprise—I mean, in addition to already being part of
the Internet.

So, you may well ask, what does that have to do with personal responsibil-
ity? The answer, my friend, is simple in the end: everything. Ultimately,
you are responsible for what gets done using your hardware. It’s your com-
puter, in your house, on a network you pay to access. If you don’t under-
stand how to keep it secure because you're nontechnical, fine: Outsource
that job to someone you trust. Simply throwing up your hands and claim-
ing exemption because you don’t understand the issues or technology
involved does not wash. Do you understand the myriad mechanical, chem-
ical, and physical processes that take place when you drive your car?
Probably not. Does that make you any less liable when you plow through
a crowd drinking coffee at a sidewalk café? No. It is implied by your
assumption of the role of pilot of a motor vehicle that you have received
basic instruction in the safe operation thereof.

So it should be with the increasing potential hazard that is the Internet.
Millions of people all around the globe depend on you to do your small
part to minimize the spread of malware. It doesn’t take much—a few
mouse clicks in most instances and a basic policy of not opening attach-
ments unless you're absolutely certain of their origin and contents—to pre-
vent 99% of all commonly encountered exploits. As with automobiles, the
benefits of learning to operate the machine safely exceed the effort
required by several orders of magnitude. The ROI, in other words, be phat.
The penalties for irresponsible computing so far have been diffuse and

3

74

applied too far up the chain to do much good. The effort has to come from
end users like us to be successful. Put another way:

Take it to the house y’all, lock it or lose it.

Don't leave it in the open 'cause the thugs’ll abuse it.
Close it off, shut ’em down, make ’em find another kill'n.
The botz take you down unless you get physical.

Here, then, is my Contract with the Digerati: If I don’t see a marked de-
crease in DDoS and other botnet-related activity in the near future, I'll pen
more of these, uh, lyrics. I don’t think you want that, now, do you? I knew
you didn’t. I could see it in your eyes.

But, you protest, I'm an inherently superior UNIX user and savvy enough
to secure my own systems. Cleverly, 'm counting on that. It leaves you
free to devote yourself to helping those less technically blessed to secure
theirs. Now get to work, slackers. Don’t make me come over there. Dword?

: & /WHAT DID THEY DO
w?gu%sio?ﬁ- WHEN THEY FOUND

PERHAPS A KERNEL s THE INTRUSION?
EXPLOIT! S 4

Copyright 2006 R. Moon

ELIZABETH ZWICKY,
ERIC SORENSON, AND
SAM STOVER

THE .NET DEVELOPER’S GUIDE TO
WINDOWS SECURITY

Keith Brown

Addison-Wesley, 2004, 392 pages.
ISBN 0-321-22835-9.

OK, so this is not an obvious
review choice for me. I'm not a
developer, I don’t do .NET, and I
don’t do much Windows—which
leaves “Security” as the only rele-
vant word in the title. To be hon-
est, I didn’t request the book, for
no very obvious reason the pub-
lisher sent it along with books 1
did request, and I picked it up
mostly because I thought “Hey,
it’s short and irrelevant; I can
glance at it, determine that I
don’t care, and move on rapidly.”

So I picked it up and read a ran-
dom page, which to my surprise
was lucid and interesting. So 1
read the whole thing; and then I
read bits of it aloud to my col-
leagues, who said things like,
“Hey! Can I borrow that?” even
though they aren’t NET devel-
opers either.

If you happen to know any .NET
developers, you should run out,
buy this book, and force them

to read it. Then force them to
reread the bits on running as a
normal user and developing soft-
ware that system administrators
don't hate. If you are a system
administrator, you should defi-
nitely read those bits yourself,

just so you can have the warm
fuzzy feeling that out there
somewhere is a developer who
understands.

And if you need to know how
security-relevant parts of Win-
dows actually work, buy this
book even if you have no interest
at all in .NET, because it’s full of
clear explanations and practical
tips. I was awe-struck by the
explanation of why group nest-
ing works the way it does. I
mean, I suppose I had always
assumed there was some reason,
but nobody had ever mentioned
one, let alone diagrammed it out.
And now I have been enlight-
ened.

LEARNING WINDOWS SERVER 2003
Jonathan Hassell

O’Reilly, 2006. 723 pages.
ISBN 0-596-10123-6.

THE ULTIMATE WINDOWS SERVER
2003 SYSTEM ADMINISTRATOR’S
GUIDE

Robert Williams and Mark Walla

Addison-Wesley, 2003. 956 pages.
ISBN 0-201-79106-4.

As I said above, I don’t do Win-
dows much. In fact, the Win-
dows 2003 machines I adminis-
ter are entirely virtual (users

and all), and if something goes
wrong, I cheerily destroy them
and start another nice clean one
that a real Windows administra-
tor built an image for. Thus, 'm
reviewing these books from the
point of view of a UNIX adminis-
trator with a need to understand
things periodically, not of some-
body who lives and breathes
Windows system administration.

However, I have had reason to
consult these books recently, and
there’s a clear pattern. Learning
Windows Server 2003 has the
information I need, without a lot
of other stuff, and with handy
information about command-
line tools. The Ultimate Windows
Server 2003 System Administra-

tor’s Guide has more deployment
information, but it’s less clearly
written and often obfuscates
rather than clarifying important
details. For instance, it tells you
that users can read files even
when they don’t have permission
to read the folder the files are in,
but it doesn’t mention that this is
in fact a user right that can be
revoked. It has lots of illustra-
tions of the dialogs used to set
up groups, and of particular
group configurations (many of
which it tells you not to use), but
it doesn’t have a table that says
what kind of users and groups
can be members of each kind of
group. Learning Windows Server
2003 has such a table. The NET
book also has such a table, plus
an explanation of why the
groups work the way they do
and what the pros and cons of
each kind of group are.

Here’s how each book introduces
groups:

The .NET Developers Guide to
Windows Security: “Most devel-
opers have a basic idea of what
a security group in Windows is
all about. It’s a way to simplify
administration by grouping
users together. In a large system,
a clearly defined group can allow
an administrator to assign per-
missions for hundreds of files,
registry keys, directory objects,
and so on, without having to
think about each individual
user that will be in the group to
which he or she is granting per-
mission.”

Learning Windows Server 2003:
“The point of groups is to make
assigning attributes to larger sets
of users easier on administrators.
Picture a directory with 2,500
users. You create a new file share
and need to give certain employ-
ees permission to that file share
(e.g., all accounting users).”

The Ultimate Windows Server
2003 System Administrator’s
Guide: “A group is a collection of

75

76

users, computers, and other enti-
ties. It can be a Windows Server
2003 built-in group or one cre-
ated by the system administrator
to conform to required attrib-
utes. Windows Server uses stan-
dard groups to reflect common
attributes and tasks.”

As you can see, the books have
very different styles. I recom-
mend Learning Windows Server
2003 as a general reference, and
The .NET Developers Guide to
Windows Security for under-
standing underpinnings.

THE BEST SOFTWARE WRITING |

Joel Spolsky, Editor

Apress, 2005. 305 pages.
ISBN 1-59059-500-9.

This is a collection of essays,
some of them brilliant, some of
them thought-provoking, some
of them laugh-out-loud funny,
and (from my point of view) one
clunker (no, I won't tell you
which one). Most of them are
available on the Web already,
although if you've found them
all you read way too many blogs.

The canonical reader here is a
senior programmer in a startup,
but anybody who likes to think
about programming, program-
ming languages, or the computer
industry will find something to
chew on and something to laugh
at. Or maybe weep at—I'm hon-
estly not sure whether the appro-
priate response to “Powerpoint
Remix” is to laugh or to cry.

If you're looking for a great air-
plane book, this is quick but mean-
ingful stuff. I enjoyed it vastly.

EXTRUSION DETECTION: SECURITY
MONITORING FOR INTERNAL
INTRUSIONS

Richard Bejtlich

Addison-Wesley Professional, 2005.
ISBN 0-321-35996-2.
REVIEWED BY ERIC
SORENSON

Extrusion Detection is, in sum, a
refocusing of the methodology

Bejtlich detailed in The Tao of
Network Security Monitoring.
Here he shifts the emphasis from
threats that generate traffic out
on the Internet to ones that are
already inside an enterprise’s
perimeter and must be detected
by inspecting outbound traffic.
Since Extrusion Detection ought
to be useful by itself without
requiring The Tao of NSM, Bejt-
lich necessarily repeats some
material but fortunately provides
enough new information to
make for some worthwhile read-
ing, even for experienced NSM
practitioners.

He begins by introducing general
network security and intrusion
detection principles along with
the NSM credo: “Prevention
eventually fails.” The goal of net-
work security monitoring is to
provide a framework for answer-
ing the dreaded question, “We've
been compromised—What
now?” As such, the bulk of Part I
of Extrusion Detection describes
specific measures an administra-
tor can put in place to produce
good answers: blocking and
proxying outbound traffic, plac-
ing packet capture sensors at
choke-points, and using router
features such as null routes and
reverse path forwarding. With
these in place, the administrator
will run a “defensible network,”
that is, one that gives a reason-
able chance of dealing with an
intruder.

In Parts II and 111, Bejtlich walks
through what “dealing with an
intruder” might entail, first as a
procedural framework (Part II)
and then with a specific extru-
sion in the form of an unautho-
rized botnet (Part III). Unfortu-
nately, here the book’s greatest
strength is offset by its biggest
weakness. The sections that
detail specific steps and princi-
ples to observe during incident
response and when gathering
network forensics data could be
powerfully useful references for

one of the primary target audi-
ences of the book—savvy enter-
prise network administrators
who have not had much oppor-
tunity to do formal incident
response. But instead of present-
ing the information in capsule,
checklist form and then provid-
ing detail, there is lengthy—in
some cases multiple-page—out-
put from commands and sample
data between steps, which makes
it difficult to get a good overview
of the entire process. In an emer-
gency, the book would be frus-
trating if not outright dangerous
to thumb through as you're
responding. (The author’s three-
page description of his difficulty
reading a mangled pcap file in
the Network Forensics chapter
is a prime example of this prob-
lem.)

However, this should not detract
from the overall thumbs-up I
give this book; a prepared admin
team will have customized the
book’s suggested incident re-
sponse procedure for their envi-
ronment and summarized it (on
paper!) before anything action-
able happens—right? There is
plenty of useful information in
Extrusion Detection: the compar-
isons of SPAN monitor ports
versus network taps, the routing
and filtering tricks, and the
walkthrough that shows the dis-
covery of a botnet are worth the
price of admission. The exploits
that lead to a high-profile Web
server’s defacement get most of
the press, but Richard Bejtlich’s
Extrusion Detection describes a
methodology for dealing with
threats that are potentially far
more damaging, because they
move from the inside out.

BUFFER OVERFLOW ATTACKS

James C. Foster, Vitaly Osipov,
Nish Bhalla, and Niels Heinen

Syngress, 2005. ISBN 1-932266-67-4.
REVIEWED BY SAM STOVER

When I first started amassing my
“Foster Library,” I was pretty
excited. I couldn’t wait to find
the time to really sink my teeth
into the guts of buffer overflows
and exploit code. I still have that
desire to learn, but as I start
plowing through the books, I'm
becoming more and more disap-
pointed with the library. The
book entitled Buffer Overflow
Attacks (BOA) was written in
2004 and provided the founda-
tion for a more recent book I've
reviewed previously called Writ-
ing Exploits and Security Tools
(WSTaE). Well, it’s not just the
foundation, but the house,
garage, yard, trees in the yard,
birds in the trees, etc., etc.

I think saying that the overlap
between these two books borders
on the criminal is not an over-
statement. I think saying that
WSTaE is an updated version of
BOA is misleading. True, some of
the grammar and wording has
been changed, such as the shift
from “commonest” to “the most
common.” Some of the chapter

titles have changed: “Buffer
Overflows: The Essentials” has
become “Writing Exploits and
Security Tools,” and “Stack
Overflows” is now “Exploits:
Stack.”

Other than that, not much has
changed. WSTaE actually does
have more content with chapters
devoted to Metasploit, Nessus,
and Ethereal, but the core of the
book is so “cut and paste” that
over half of WSTaE is completely
redundant. It would have made
more sense to omit the overlap
and release an update to BOA—
but at a drastically reduced price.

There are a couple of gems in
BOA that aren’t in WSTaE, but
I'm not convinced that they are
worth the $35. There are three
sections dedicated to case stud-
ies, which walk through 11
exploits as well as providing an
introduction to Inline Egg
(which is discussed in much
greater detail in WSTaE).

This commonality puts me in

a rather awkward position—
there isn’t much to review that I
haven't already discussed in a
previous review. The crux of the
matter, then, is to help you the
reader and potential purchaser to
make a decision as to which

book fits your needs. If you've
already purchased BOA, then
you're bound to be disappointed
when you have to throw down
another $50 for WSTaE, which
does have a lot more informa-
tion, notably the chapters on
Metasploit. However, if you
already own the Penetration
Tester’s Open Source Toolkit (Syn-
gress, 2005), then you have two
of the three chapters on Metas-
ploit. Sheesh. If you already own
WSTaE, you'll definitely want to
think carefully before ordering
BOA—at the very least cruise
over to your local bookstore and
see if the case studies are really
worth your hard-earned dollars.
If you don’t own any of these
books yet, and are looking for a
first purchase, don’t waste your
time with BOA, go directly to
WSTaE.

In conclusion, I have to say that
Buffer Overflow Attacks was a
pretty big disappointment. The
incestuous relationship between
Mr. Foster’s books leaves me
with a sour taste in my mouth.
Writing exploits is a hot item
right now, and ripping content
from one book seems a direct
attempt to exploit the unwary
novice (pun intended).

7

NICHOLAS M.
STOUGHTON
AND ANDREW JOSEY

Nick is the USENIX Stan-
dards Liaison and repre-
sents the Association in the
POSIX, ISO C, and LSB work-
ing groups. He is the ISO
organizational representa-
tive to the Austin Group, a
member of INCITS commit-
tees J11 and CT22, and the
Specification Authority sub-
group leader for the LSB.

nick@usenix.org

Andrew Josey is the director
of Certification within The
Open Group and chairs the
Austin Group, the working
group responsible for devel-
opment of the joint revision
to POSIX and the Single
UNIX Specification.

a.josey@opengroup.org

78

An Update on Standards:
Diary of a Standard Geek

NICK STOUGHTON

Have you ever wondered just
what happens at a standards com-
mittee, what it is like to attend an
international meeting to deter-
mine the future of a standard that
affects millions of your fellow
workers? Here are some notes
from a trip to Berlin in April 2006
for the ISO-C committee (offi-
cially known as ISO/IEC JTC 1 SC
22/WG 14, it’s charged with ¢99,
a.k.a. ISO-C, the language accept-
ed by most modern compilers).

Saturday: I get on a plane to go to
Germany for an ISO-C meeting (a
three-leg flight from Oakland,
through Dallas and Zurich), arriv-
ing in Berlin sometime tomorrow.
I have 14 hours to reread all of the
documents submitted for the
meeting (11 papers and 2 draft
documents). Well, that took up
one hour . . . just another 13 to
go.

Monday: The meeting starts at
9:30 at the DIN headquarters. Is
this the place they invented DIN
plugs? Well, yes. But standards
shouldn’t be about invention
(though in the case of electrical
connectors, they often are). We
start gathering at about 8:45—
there’s plenty of coffee and pas-
tries on offer in the meeting room
(thanks to SAP). There are 26 of
us, representing five national bod-
ies. All participation in ISO meet-
ings is by national body (other-
wise known as a “country”). In
the case of ISO-C, it is also jointly
developed by ANSI (the U.S.
national body), and so the U.S.
contingent is 20 of the 26. (The
astute mathematicians will figure
out that the delegations from the
other countries are modest in
comparison.)

Every working group has its own
methods for achieving consensus;
in ISO-C we try as hard as possi-

ble to avoid formal votes. We reg-
ularly will stop proceedings to
hold straw votes. These are taken
to get a sense of the room on an
issue. They are nonbinding, but
they often stop us from going
down ratholes where it is clear
that there’s only one or two peo-
ple who believe in a given direc-
tion.

However, meetings are formal.
They have a definite pattern, with
an agenda to work through and,
often, time limits. Low-level
working groups, such as ISO-C or
the Austin Group (where POSIX
gets written and maintained) are
driven by technical matters. We
will spend an hour arguing over
whether or not an optimizer is
allowed to reorder certain mem-
ory accesses for performance,
especially if the program happens
to be multi-threaded (and this
particular question won'’t go away
any time soon). But this meeting,
as are most all standards meet-
ings, is more for direction setting.
The “real” work of such a work-
ing group happens in the papers
that are developed between meet-
ings.

Monday morning is spent work-
ing through administrivia, liaison
reports (including two from me,
one from POSIX, and one from
the FSG on LSB status), and
potential defect reports. One of
the other style issues that differs
from working group to working
group is how defect reports are
handled. In the ISO-C case, defect
reports can be raised either
through a national body (e.g., the
UK can submit a defect report
directly) or by individuals who
submit them to the chair, and
they then get considered during
this “potential defect” agenda
slot. At this point, we simply have
to agree whether or not they are
defects, and if so, they get added
to the list of defects we will work
on later in the week. This time, I
get to submit a small handful

on behalf of the Austin Group,
where a conflict between C and
POSIX appears to be present.

Monday lunch has me off to a
local hotel for lunch provided by
SAP This is a rare treat . . . we
usually don’t get lunch provided
for us!

Monday afternoon: Two papers
are to be considered, one on
“Managed Strings” and one (com-
ing from the C++ committee) to
add, to the floating point han-
dling, macros to handle a maxi-
mum number of significant deci-
mal digits. Although the concepts
in the “Managed Strings” paper
were interesting, they were all
invention, with little existing
practice, and overlapped with a
paper I'm developing on I/O func-
tions that use dynamic memory.
The decimal digits work could be
passed off to a subgroup who are
writing a Technical Report on
Decimal Floating Point (to align
with the new revision of IEEE
754).

After coffee, it is time to talk
about the “Security” TR (Techni-
cal Report). You may recall I
have written about this in previ-
ous columns. At least it's now
called “the bounds checking
TR.” It is looking like it may be
ready for its next ballot at this
point, and it appears to me now
to be mostly harmless! However,
members of the Austin Group
had had serious concerns over it,
and I presented a paper from
them on these concerns. The
author agreed to write a response
to this paper. This may need a
few discussions in the bar
tonight!

Tuesday: It’s time to talk about
the decimal floating point docu-
ment. This meeting is pleasant,
because there is little political
controversy, and for the majority
of the meeting I can simply con-
centrate on the technical aspects
of what we are doing. Now, if
this had been SC 22, the parent

committee in ISO, the tone
would be very different, and the
discussions in the bar would
have a very different feel to
them!

Floating point is not one of my
favorite subjects, so I spend
much of the time while this is
being discussed preparing for the
Defect Report work we will be
starting this afternoon.

In fact, it seems that most of us
in the room feel like this . . .
there are only three people talk-
ing, and everyone else is franti-
cally clicking the keyboards on
their laptops. Maybe they are
reading their email. But you can’t
stop listening to the subject mat-
ter. Maybe there will be some-
thing that matters to POSIX, or
to the LSB. No . . . that was too
much to hope for!

Defect Reports take up much of
the week. We start on Tuesday
and will finish sometime Thurs-
day. We work though the log of
defects (which has just gotten
longer because of the potential
defects we turned into actual
defects yesterday), usually start-
ing from the top and going to the
end. Those old, old defects at the
top of the list have been looked
at many times; we just can’t find
the right answer. Sometimes we
will assign a small group to go
off and consider a response (if
there is anyone prepared to serve
on such a breakout group). Or
we'll give homework to one indi-
vidual to write a response. If you
want to see what a defect report
looks like, look at http://www
.open-std.org/jtcl/sc22/wgl4/
www/docs/summary.htm.

Wednesday: More defect reports
are discussed. You'd think a lan-
guage as well established as C
wouldn’t have a lot of defects in
the specification. But it is hard to
write a specification, and one
that is heavily used will always
have many issues in it. Not all of
them are bugs in the standard.

Often it is a misunderstanding
on the part of the submitter, or a
question that is outside the
scope of the standard, or any of a
host of other issues.

“If an incomplete array type has
elements of unknown size,
should the incomplete array type
be a VLA type?”

“Must bit fields of type char nev-
ertheless have the same signed-
ness as ordinary objects of type
char?”

“What if asctime() is called with
a tm structure whose tm_year
field results in a year > 9999?”

“The first sentence of 6.7.5.2p2
seems to suggest that any ordi-
nary identifier can have both
block scope and function proto-
type scope and no linkage has a
variably modified type. This is
clearly wrong.”

Andsoon...

Thursday: Wow! It looks like we
might actually finish the agenda
early for the week! We are done
with defects. We just have the
final reports from the defect
review and the closing business
to get through! Where’s the next
meeting? Portland, Oregon.
What about the one after that?
We have an invitation from the
U.K. Then there’s the action item
review: who has to do what? by
when? I have to help write the
response to the Austin Group’s
concerns on the bounds check-
ing TR (or at least ensure that
the response is delivered). And I
have to write the dynamic mem-
ory I/O functions report. My
work is cut out for the next
meeting. I can finally enjoy a
couple of hours in Berlin before
my flight home this evening.

79

80

Why Get Involved in POSIX?

ANDREW JOSEY

One of the key factors leading to
success for Linux and the UNIX
system has been the adoption of
popular, open standards such as
the X Window System, TCP/IP,
and the POSIX standards. Today
we see a rapid evolution of IT
systems and applications brought
about by the adoption of the
Internet and the changes that has
brought to the way we work. But
are the standards evolving fast
enough to keep pace with the
changes? This article gives a
high-level look at the current
POSIX standardization activity,
how it works, and how you can
contribute to helping it keep
pace.

What is POSIX? POSIX, a regis-
tered trademark of the IEEE, is
an acronym for “Portable Oper-
ating System Interfaces.” The
name POSIX was suggested by
Richard Stallman in 1986. The
most well known POSIX stan-
dard is IEEE Std. 1003.1 (or ISO
Std. 9945, which is the same
document), known for short as
“POSIX.1.” It specifies applica-
tion programming interfaces
(APIs) at the source level and is
about source code portability. It
is neither a code implementation
nor an operating system, but a
standard definition of a program-
ming interface that those sys-
tems supporting the specifica-
tion guarantee to provide to the
application programmer. Both
Operating System Vendors
(OSVs) and Independent Soft-
ware Vendors (ISVs) have imple-
mented software that conforms
to this standard.

The major sections of POSIX.1
are definitions, utilities (such as
awk, grep, ps, and vi), headers
(such as unistd.h, sys/select.h,
and other C headers), threads,
networking, real time, interna-

tionalization, and math func-
tions. In total, the standard
describes over 1,350 interfaces.

If POSIX.1 is mentioned as a re-
quirement for your software
project, that does not tell you
much. POSIX.1 is large (3,600
pages) and no project needs
everything (even OSVs rarely
implement every optional inter-
face). The POSIX.1 standard is
structured into modules known
as option groups. A minimal set
of interfaces and functionality is
required for all POSIX systems.
The majority of all functionality
is optional. For a good descrip-
tion of options and their status
in Linux and glibc, see http:/
people.redhat.com/~drepper/
posix-option-groups.html.
There are several common mis-
conceptions about POSIX. Since
its development started in the
mid 1980s, one common mis-
conception is that it has not
changed for some time; it is out-
dated and irrelevant. The latest
version of the POSIX.1 standard
was produced in 2001 and
updated in 2004: it is known as
IEEE Std. 1003.1, 2004 Edition.
Work is now underway to revise
the standard to produce a new
revision in 2008. Although the
new versions of the standard are
in general upwardly compatible
with the original, many hun-
dreds of interfaces that have
been added since then. Your par-
ticipation is needed to help keep
it up to date and to keep pace
with the developments in the
industry.

Another common misconception
is that you need to be an I[EEE
member to participate. The latest
edition was developed by the
Austin Group, an open working
group found at http://www
.opengroup.org/austin/. Partici-
pation is free and open to all
interested parties (you just need
to join the mailing list). Deci-
sions are made by consensus;

sometimes consensus is reached
easily, and sometimes only after
heated discussion! The more
people involved in such discus-
sions, the more likely it is that
when consensus is reached, the
right decision has been made.
That’s why your participation is
so important. Readers should
note, however, that the mailing
lists are not a technical support
forum. All the major UNIX play-
ers and open source distribu-
tions are represented in the
Austin Group.

Today the approach to the POSIX
standard development is one of
“write once, adopt everywhere,”
with a single open technical
working group and the resulting
documents being adopted by
IEEE as the POSIX standard,
adopted by The Open Group as
the Base Specifications of the
Single UNIX Specification, and
by the International Standards
Organization as an international
standard (which in turn means
that it may be a national standard
in your country; for example, the
British Standards Institute has
adopted ISO 9945 as a BS).

So does this mean that the
POSIX.1 standard is complete
and perfect? No. Like any large
product, it has bugs, and there is
an ongoing bug reporting and
fixing process to refine the docu-
ment as implementation experi-
ence grows. Although the stan-
dard cannot change overnight,
there is a mechanism both to
make regular technical correc-
tions and also to collect items for
future directions. To report a bug
or suggest a change, please use
the defect report form at http://
Www.opengroup.org/austin/
defectform.html.

Is POSIX still relevant? Yes. Stan-
dard interfaces mean easier port-
ing of applications. The POSIX
interfaces are widely imple-
mented and referenced in other
standardization efforts, includ-

ing the Single UNIX Specifica-
tion and the Linux Standard
Base.

Why should you get involved?
Feeding back issues with the
standard based on implementa-
tion experience allows the stan-
dard to be improved and
extended with new functionality,
which in turn can “raise the bar

of commonality” among systems.

There is often much more to be
gained by having key functional-
ity share a common interface
and/or behave in exactly the
same way, than for it to be differ-
ent.

More information on POSIX.1
and the Austin Group, including
how to join and participate, is

available from its Web site at
http://www.opengroup.org/
austin/.

The html version of the standard
is freely available from The Open
Group’s Single UNIX Specifica-
tion Web site at http://www.unix
.org/version3/.

Renew Your USENIX and SAGE Memberships Online Today! |

Renewing your USENIX and SAGE memberships has never been easiet. ‘
Visit http://www.usenix.org/membership and click on the appropriate links.

In addition to your subscription to ;login:, your USENIX henefits include:

Online access to all Conference Proceedings from 1993 to the present

Substantial discounts on technical sessions registration fees for all USENIX-sponsored events
Jobs Board and Resume posting

And more . ..

Are you a SAGE member too? SAGE membership benefits include:

Short Topics booklets in both online and paper versions
Discount on registration for LISA, the annual Large Installation System Administration conference
Jobs Board and Resume posting

Access to sage-members mailing list and the archives

And more . ..

Don’t miss out on the benefits that help you keep up with the latest technologies,

network with your peers, and find out about new job opportunities.

Renew hoth memberships today!

http://www.usenix.org/membership

81

USENIX BOARD OF DIRECTORS USACO NEWS
ROB KOLSTAD

USACO Head Coach

Communicate directly with the
USENIX Board of Directors by
writing to board@usenix.org.

82

USENIX MEMBER BENEFITS

Members of the USENIX
Association receive the follow-
ing benefits:

FREE SUBSCRIPTION to ;login:, the Associ-
ation’s magazine, published six times
a year, featuring technical articles,
system administration articles, tips
and techniques, practical columns
on such topics as security, Perl, Java,
and operating systems, book reviews,
and summaries of sessions at
USENIX conferences.

ACCESS TO ;LOGIN: online from October
1997 to this month:
www.usenix.org/publications/login/.

ACCESS TO PAPERS from USENIX confer-
ences online:
www.usenix.org/publications/
library/proceedings/

THE RIGHT TO VOTE on matters affecting
the Association, its bylaws, and elec-
tion of its directors and officers.

DISCOUNTS on registration fees for all
USENIX conferences.

DISCOUNTS on the purchase of proceed-
ings and CD-ROMs from USENIX
conferences.

SPECIAL DISCOUNTS on a variety of
products, books, software, and
periodicals. For details, see
www.usenix.org/membership
/specialdisc.html.

TO JOIN SAGE, see www.usenix.org/
membership/classes.html#sage.

FOR MORE INFORMATION regarding
membership or benefits, please see
www.usenix.org/membership/
or contact office@usenix.org.
Phone: 510-528-8649

PRESIDENT

Michael B. Jones,
mike@usenix.org

VICE PRESIDENT

Clem Cole,
clem@usenix.org

SECRETARY

Alva Couch,
alva@usenix.org

TREASURER

Theodore Tso,
ted@usenix.org

DIRECTORS
Matt Blaze,
matt@usenix.org

Rémy Evard,
remy@usenix.org
Niels Provos,
niels@usenix.org

Margo Seltzer,
margo@usenix.org

EXECUTIVE DIRECTOR

Ellie Young,
ellie@usenix.org

The USA Computing Olympiad con-
tinues to lead the world in training
programs. As of this writing, 52,178
students have registered for training,
including 8,900 U.S. students. The
students solve training tasks and vie
for top dog status in our monthly
contests, which generally attract
900-1,000 participants from as many
as 80 countries.

These fierce competitors battled
through six contests, spread over
most of the school year, to earn the
coveted invitation to Colorado
Springs, where they spent eight days
on the campus of Colorado College.
The 2006 USA Invitational Comput-
ing Olympiad (USAICO) garnered
competitors from Russia, Poland,
Romania (2), China, Canada (4), and,
of course, the good old U.S. of A.
(12).

Along the way, wunderkind Matt
McCutchen, a senior from Rockville,
MD, was the top U.S. performer in
three monthly contests and the U.S.
Open. He was crowned USACO
National Champion. Zeyuan Zhu
from China earned the USACO World
Champion plaque for his outstanding
sustained performance as an interna-
tional competitor.

The USAICO comprises five tradition-
al contests (3—4 challenging algorith-
mic problems over 3-5 hours) and the
exciting Speed Round, where scores
for the 15 serially presented tasks are
updated in real time and contestants
can unseat winners with each new
programming task.

In the end, the U.S.A’s John Pardon
and China’s Zeyuan Zhu fought to a
tie for the gold medal. Silver medals
went to Matt McCutchen and
Canada’s Richard Peng. Bulgaria’s
Rostislav Rumenov won the bronze
medal.

The top four U.S. students were invit-
ed to participate in the 101 (Interna-
tional Olympiad on Informatics, the
holy grail of pre-college programming

competition) in Mexico: Juniors Matt
McCutchen, John Pardon, and Bohua
Zhan, and senior George Boxer.

U.S. IOI Contenders (left to right):
Matt McCutchen, John Pardon, George Boxer,
Bohua Zhan

The IOI was held August 10-20,
2006, in Mérida, Mexico, the heart of
the Yucatan peninsula. A city of about
one million people, Mérida is sur-
rounded by territory of the former
Mayan empire and is only 1.5 hours
from Chich’en Itza, the renowned pre-
Columbian archaeological site.

Meérida’s weather in August is hot, of
course: close to 100°E with very high
humidity. The contestants spent most
of their time in air-conditioned
spaces, but we poor organizers
worked in the hot convention center,
where the roof actually collected more
heat than we’d have experienced sit-
ting outside.

The first day’s tasks were quite tradi-
tional, similar to the USACO contests
and algorithmic in nature. Matt
McCutchen led the way with a perfect
300 points; all four U.S. students were
in contention for gold medals (award-
ed to 1/12 of the contestants).

The second day’s tasks were nontradi-
tional; scores were dramatically lower
across the board. John Pardon again
pulled a gold medal out of an
extremely stressful situation; the other
three earned silver medals.

All in all, the USACO continues to
serve the world market, with many
students at the 101 saying that
USACO training enabled them to earn
a berth on their country’s team and a
medal at the IOL

Congratulations to all the great per-
formers. Thanks to USENIX, we can

continue this fine program that
encourages and recognizes pre-college
programimers.

SAGE UPDATE
STRATA CHALUP
SAGE Programs Manager

Greetings from USENIX. We've been
working on many SAGE fronts: print,
Web, and the LISA conference. Here’s
the latest.

Booklets News

Another manuscript in the SAGE
Short Topics in System Administration
series, The Internet Postmaster, by
Nick Christenson and Brad Knowles,
has now gone through a stringent
technical review and is in production.
Serving as postmaster for a site in-
volves knowing a couple of decades’
worth of oral tradition, plus a solid
grounding in technical and RFC
issues. There really hasn’t been a sin-
gle place where this kind of informa-
tion has been gathered, until now. As
someone who has done a fair bit of
postmastering in the past, I have to
say that I'm completely pleased with
this booklet. It’s a real first!

Another booklet that “pulls it all
together” is in the pipeline, on the
topic of superuser privileges—how to
manage them, how to implement
them, what constitutes ethical behav-
ior, and more. A first draft of Being
Root, by William Charles and Xev
Gittler, has been reviewed by our edi-
tors, and we expect that by the time
you read this, the final manuscript
will be in technical review. I'm really
looking forward to this one, too.

Current SAGE members can access
the whole Short Topics series online
at http://www.sage.org/pubs/. Drop by
and enjoy some great info.

LISA "06 Registration

It's going to be an outstanding LISA
again this year! We've got a bunch of
great tracks and training sessions, and
some surprises. I'm really looking for-
ward to Cory Doctorow’s keynote,
“Hollywood’s Secret War on Your

NOC.” Elizabeth Zwicky will be talk-
ing about her experiences Teaching
Problem Solving, our wildly popular
Hit the Ground Running sessions
return, and the refereed paper track
has some really hefty stuff ranging
from Customer-Friendly Kernel
Analysis, through NetFlow, to Man-
aging Large Networks of Virtual
Machines. We mentioned surprises,
but first . . .

Back again by popular demand, train-
ing will be going on throughout the
week. Starting on Sunday, we are
offering some of our most popular
training during the entire week of
the conference. There’s so much
going on during the main portion of
the conference that combining tech
sessions with training is still the best
way to get the most out of your LISA
experience. Plus, you get the biggest
discount! Find out more at
http://www.usenix.org/lisa06/.

Now, about those surprises:

#1: An entire Friday track on security,
covering topics such as Black Ops pat-
tern recognition, fighting remote
takeover attacks such as zombie or
bot-net kits, and special issues for
corporate security. Way cool.

#2: Bob Apthorpe and Dan Klein will
present a new conference closer,
“Improv for SysAdmins.”

Registration opened at the beginning
of September. Register by November
10 to save up to $300!

New SAGE Web Site

We've been unveiling the new look
in bits and pieces, putting our efforts
primarily into delivering our pro-
grams and conference activities. But
we're scheduled to have the site live
in early October, maybe sooner. Ex-
pect a crisp, clean look, lots of new
info and new services, updates of
long-neglected pages, and better navi-
gation.

Learn more about SAGE at
http://www.sage.org/.

83

Writing is not easy for most of
us. Having your writing
rejected, for any reason, is no
fun at all. The way to get your
articles published in ;login:, with
the least effort on your part and
on the part of the staff of ;login:,
is to submit a proposal first.

PROPOSALS

84

In the world of publishing, writ-
ing a proposal is nothing new. If
you plan on writing a book, you
need to write one chapter, a pro-
posed table of contents, and the
proposal itself and send the
package to a book publisher.
Writing the entire book first is
asking for rejection, unless you
are a well-known, popular
writer.

;login: proposals are not like
paper submission abstracts. We
are not asking you to write a
draft of the article as the pro-
posal, but instead to describe
the article you wish to write.
There are some elements that
you will want to include in any
proposal:

What's the topic of the
article?

What type of article is it
(case study, tutorial,
editorial, mini-paper,
etc.)?

Who is the intended
audience (syadmins,
programmers, security
wonks, network
admins, etc.)?

Why does this article
need to be read?

What, if any, non-text
elements (illustrations,

code, diagrams, etc.)
will be included?
What is the approxi-
mate length of the arti-
cle?

Start out by answering each of
those six questions. In answer-
ing the question about length,
bear in mind that a page in
;login: is about 600 words. It is
unusual for us to publish a one-
page article or one over eight
pages in length, but it can hap-
pen, and it will, if your article
deserves it. We suggest, how-
ever, that you try to keep your
article between two and five
pages, as this matches the atten-
tion span of many people.

The answer to the question
about why the article needs to
be read is the place to wax
enthusiastic. We do not want
marketing, but your most elo-
quent explanation of why this
article is important to the read-
ership of ;login:, which is also
the membership of USENIX.

UNACCEPTABLE ARTICLES

;login: will not publish certain
articles. These include but are
not limited to:

Previously published
articles. A piece that
has appeared on your
own Web server but not
been posted to
USENET or slashdot is
not considered to have
been published.
Marketing pieces of any
type. We don't accept
articles about prod-
ucts. “Marketing” does
not include being
enthusiastic abouta
new tool or software
that you can download
for free, and you are
encouraged to write
case studies of hard-

ware or software that
you helped install and
configure, as long as
you are not affiliated
with or paid by the
company you are
writing about.
Personal attacks

FORMAT

The initial reading of your arti-
cle will be done by people using
UNIX systems. Later phases
involve Macs, but please send us
text/plain formatted documents
for the proposal. Send proposals
to login@usenix.org.

DEADLINES

For our publishing deadlines,
including the time you can
expect to be asked to read proofs
of your article, see the online
schedule at http:/www.usenix
.org/publications/login/sched
.html.

COPYRIGHT

You own the copyright to your
work and grant USENIX permis-
sion to publish it in ;login: and
on the Web. USENIX owns the
copyright on the collection that
is each issue of ;login:.

You have control over who may
reprint your text; financial nego-
tiations are a private matter
between you and any reprinter.

FOCUS ISSUES

In the past, there has been only
one focus issue per year, the
December Security edition. In
the future, each issue may have
one or more suggested focuses,
tied either to events that will
happen soon after ;login: has
been delivered or events that
are summarized in that edition.

THANKS TO THE SUMMARIZERS

2006 USENIX ANNUAL TECH
Marc Chiarini

Rik Farrow

Wei Huang

John Jernigan

Scott Michael Koch

Kiran-Kumar Muniswamy-Reddy
Partho Nath

Aameek Singh

Chris Small

Yizhan Sun

SRUTI '06
John Bethencourt

Balanchander Krishnamurthy

Anirudh Ramachandran

EVT ’06
Aaron Burstein

Sarah P. Everett
Dan Sandler
Ka-Ping Yee

SUMMARIES

2006 USENIX ANNUAL TECHNICAL
CONFERENCE 85-104

2ND WORKSHOP ON STEPS TO REDUC-
ING UNWANTED TRAFFIC ON THE
INTERNET (SRUTI’06) 104-106

2006 USENIX/ACCURATE ELECTRONIC
VOTING TECHNOLOGY WORKSHOP
(EVT’06) 107-113

2006 USENIX Annual
Technical Conference

Boston, MA
May 30—June 3, 2006

KEYNOTE: PLANETLAB:
EVOLUTION VS. INTELLIGENT
DESIGN IN PLANETARY-SCALE
INFRASTRUCTURE

Larry Peterson, Professor and Chair,
Department of Computer Science,
Princeton University; Director,
PlanetLab Consortium

Summarized by Yizhan Sun

PlanetLab is a global platform
for evaluating and deploying
network services. It currently
includes 670 nodes, spanning
325 sites and 35 countries, and
has more than 3 million users.
PlanetLab hosts many kinds of
services, including file transfer,
routing, DNS, multicast, Inter-
net measurement, and email.

Larry Peterson summarized
design requirements for the
PlanetLab architecture:

1. It must provide a global
platform that supports both
short-term experiments and
long-running service.

2. It must be available now,
even though no one knows
for sure what “it” is. In
other words, we must
deploy the existing system
and software.

3. We must convince sites to
host nodes running code
written by unknown
researchers from other
organizations. This require-
ment is satisfied by building
a relationship between
users and service providers
through trusted PLC (Plan-
etLab Consortium).

4. Sustaining growth depends
on support for site auton-
omy and decentralized con-
trol.

5. It must scale to support
many users with minimum
resources available.

Peterson explained that they
favor evolution over a clean slate,
and design principles over a fixed
architecture. Design principles
include:

leverage existing software
and interfaces

keep VM monitor and con-
trol plane orthogonal
exploit virtualization

give no one root (no more
privilege than necessary)
support federation

VIRTUALIZATION

Summarized by Marc Chiarini

Antfarm: Tracking Processes in a
Virtual Machine Environment

Stephen T. Jones, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau,
University of Wisconsin, Madison

Stephen Jones presented an
approach that allows virtual
memory managers (VMMs) to
track the existence and activities
of guest OS processes. Process-
aware VMMs are better able to
implement traditional OS services
such as I/O scheduling, which
leads to improved performance
over host and guest OS imple-
mentations. The main advantages
of the authors’ approach are
threefold: (1) the VMM does not
require detailed knowledge of the
guest’s internal architecture or
implementation; (2) no changes
to the guest OS are necessary (a
big win in the case of legacy or
closed-source components); and
(3) accurate inferral of process
events incurs a very low overhead
(2.5% in their worst-case sce-
nario). The team implemented
and evaluated their techniques on
both x86 and SPARC architec-
tures with the Xen VMM hosting
Linux and the Simics full-system
simulator hosting Windows.

85

86

Jones described the mechanism
by which a VMM can detect
process creation, destruction,
and context switches in the
guest. On x86, Antfarm tracks
the contents of the privileged
CR3 register, which points to the
page directory for the process
currently running in the guest.
When the CR3 changes to any of
a particular range of values, it
can be inferred that a context
switch has occurred. If the CR3
is loaded with a previously
unseen value, it can further be
inferred (and the VMM can
track) that a new process has
been created. The VMM makes
two more observations to deter-
mine whether a process has been
destroyed: Windows and Linux
systematically clear nonprivi-
leged portions of page table
pages before reusing them; the
TLB must also be flushed once
an address space has been deallo-
cated. If the VMM determines
that the number of assigned
pages in a process’s address space
has gone to zero and that the
TLB has been flushed (by load-
ing CR3 with a special value),
the VMM can rightly infer a
process exit. Similar techniques
are available for SPARC architec-
tures. Jones concluded with a
case study of Antfarm’s perfor-
mance improvements for an
anticipatory disk scheduler: By
understanding which disk I/O
requests come from which guest
processes, a scheduler can try to
optimize requests across all
processes in all guests.

Optimizing Network Virtualization
in Xen

Aravind Menon, EPFL; Alan L. Cox,
Rice University; Willy Zwaenepoel,
EPFL

Awarded Best Paper!

Aravind Menon presented three
modifications to the Xen archi-
tecture that significantly improve
its network performance. First,
the approach implements high-

level network offload features for
guest domain interfaces, includ-
ing scatter/gather /O, TCP/IP
checksum, and TCP segmenta-
tion offload; second, the perfor-
mance of the I/O channel
between the guest and network
driver domains is enhanced; last,
the VMM is modified to allow
guest OSes to use efficient virtual
memory primitives, including
superpage and global page
mappings.

After a brief overview of the Xen
Network Virtualization Architec-
ture, Menon discussed the team’s
optimizations in detail. He noted
that 60-70% of the processing
time for transmit/receive opera-
tions is spent in the I/O channel
and bridging within the driver
domain. To help combat this bot-
tleneck, an offload driver is
inserted just before the NIC
driver on the path to the physical
NIC. This driver implements in
software whichever offload fea-
tures are not already imple-
mented on the NIC. A 4x, 2.1x,
and 1.9x reduction in execution
cost was achieved in the guest
domain, driver domain, and Xen
VMM, respectively.

Menon and his team also
attacked the mechanisms used to
transfer packets over the I/O
channel between the guest and
driver domains. They found that
the current technique of page
remapping for each network
packet is not necessary in many
cases. Using simple methods,
such as data copying, packet
header investigation, and MTU-
sized socket buffers, the team
achieves a 15.7% and 17%
improvement in transmission
and reception, respectively,
across the I/O channel.

Overall, the optimizations ex-
plored in the research improved
the transmit throughput in guest
domains by a factor of 4.4 and
the receive throughput in the
driver domain by 35%. The team
needs to do further research to

determine effective techniques
for improving receive perfor-
mance in the guest domain. In
the Q&A, Mike Swift asked
about other common network
optimizations and how they may
be applicable to this work.
Menon responded that more
offload features may be useful
but their benefit has not yet been
studied.

High Performance VMM-Bypass I/O
in Virtual Machines

Jiuxing Liu, IBM T.J. Watson Research
Center; Wei Huang, The Ohio State
University; Bulent Abali, IBM T.J. Wat-
son Research Center; Dhabaleswar K.
Panda, The Ohio State University

Jiuxing Liu presented a new
device virtualization model,
VMM-bypass I/O, that allows
guest OSes to perform time-
critical I/O operations without
diverting through the VMM or
other specialized I/O VMs. The
problems with these techniques
are manifest when one considers
that every I/O operation involves
the VMM, making it a potential
bottleneck. Additionally, the sec-
ond technique results in expen-
sive context switches. The key

is to use a “guest module” device
driver installed in guest VMs that
handle setup and management
operations of direct I/O. These
modules communicate with
“backend modules” within either
the VMM or a privileged device
driver VM. Co-located with
backend modules are the origi-
nal privileged modules that
know how to make requests to
intelligent I/O devices.

Liu went on to describe the
InfiniBand architecture and the
design and implementation of
Xen-IB, their IfiniBand virtual-
ization driver for Xen. Infiniband
is a high-speed interconnect to
various devices that supports
OS-bypass, allowing processes
in a host OS to communicate
(semi-)directly with the hard-
ware. The prototype built by the

research team supports all privi-
leged InfiniBand operations,
including initialization, resource
management, memory registra-
tion, and event handling. Liu
gave a rundown of the Infini-
Band cluster used as a testbed,
consisting of Xen 3.0 running
RedHat AS4 on Intel Xeon
machines. Comparisons were
presented between native Infini-
band and Xen-IB for latency and
bandwidth (negligible differ-
ences), event/interrupt handling
(10- to 25-uS overhead intro-
duced), memory registration
(25-35% overhead), IP over
InfiniBand (<10% throughput
degradation for >16KB-size mes-
sages), and MPI bandwidth and
latency benchmarks (negligible).

Finally, Liu discussed some re-
maining challenges. Providing a
complete and efficient bypass
environment requires addressing
some remaining important is-
sues, such as safe device access,
QoS among competing VMs, and
VM check-pointing and migra-
tion. The team is eyeing some
directions they think will be
fruitful. The prototype can be
downloaded at http://xenbits
.xensource.com/ext/
xen-smartio.hg.

INVITED TALK

Deploying a Sensor Network on an
Active Volcano

Matt Welsh, Harvard University

Summarized by John Jernigan

Matt Welsh related his experi-
ences during two deployments of
sensor arrays on volcanoes in
Ecuador. He explained that the
arrays could potentially provide
civil authorities with warnings of
volcanic activity and help miti-
gate hazards. The research team
spread “motes” (small and inex-
pensive wireless sensors) in a
swath around the volcano and
measured seismic and acoustic
activity in real time. By compari-

son, traditional methods of seis-
mic data logging involve manual
collection of data from the field
site, which can be very remote
and difficult to reach. In addi-
tion, wireless sensors can cover a
larger amount of terrain because
of lower costs.

The basic system involved the
motes, synchronized by GPS
timestamps and sophisticated
algorithms, propagating data
over an ad hoc mesh network to
aradio modem that communi-
cated with a base station many
kilometers away. Deploying
wireless sensors presents signi-
ficant technological challenges,
however, as high sampling rates
generate huge amounts of data,
and maintaining accurate timing
of captured events is absolutely
critical for use by seismologists.

He indicated that node reliability
was one of the largest concerns.
Ironically, it was not the sensor
network that failed often in the
deployment, but the base station
at the observatory, where a lap-
top would experience sporadic
electrical outages. Logistical
issues and bad luck seemed to
overshadow the technological
acclaim of the sensors as system
uptime sank. Seismologists
working with the research team
lost confidence in the data set as
a result of reliability issues. Nev-
ertheless, the data set could be
cleaned up and analyzed using
external validation techniques,
including data from third-party
data-logging stations.

Some of the lessons learned from
the deployments were as follows:
Accurate timing of captured
events must be the first priority.
The goals of the computer scien-
tists and the seismologists were
sometimes disparate, and this
affected the usefulness of the
gathered data. Nodes should
have been collocated with exist-
ing data-logging stations for later
verification of data. Finally, nev-
er take for granted that you can

simply find an electrical outlet
when you need one!

The next steps for the technol-
ogy involve nailing down timing
issues so that earthquakes can be
localized in real time, and utiliz-
ing 3D mapping techniques to
map the inside of volcanoes.

STORAGE

Summarized by Wei Huang
Provenance-Aware Storage Systems

Kiran-Kumar Muniswamy-Reddy,
David A. Holland, Uri Braun, and
Margo Seltzer, Harvard University

Kiran-Kumar Muniswamy-
Reddy presented a provenance-
aware storage system. In the con-
text of his work, provenance
refers to the information that
describes data in sufficient detail
to facilitate reproduction and
enable validation of results.
Kiran-Kumar started his talk
with several usage cases of prov-
enance-aware storage, such as
applications in homeland secu-
rity, archiving, and business
compliance, where accessing the
history of files may be critical to
end users. However, as Kiran-
Kumar pointed out, support for
provenance is very limited in file
systems. Most of the current
solutions are domain-specific,
which may cause the data and
the provenance to be out of sync.
And in many cases the solutions
are simply lacking.
Kiran-Kumar argued for the
importance of PASS, which
keeps the data and the prove-
nance tightly bound and pro-
vides transparent management.
He then introduced their design
of PASS. In their design, the col-
lector records the provenance
data or events and passes the
records to the file system. The
storage layer, which is a stack-
able file system called PASTA,
uses an in-kernel database
engine to store the metadata.
And the query tool makes the

87

88

provenance accessible to users.
Kiran-Kumar showed that their
implementation had reasonable
overhead on applications, both
spatially and temporally.

Kiran-Kumar concluded his talk
with several research challenges
they are experiencing through
their prototype study, such as
searching suitable security mod-
els, pruning of provenance, and
addressing the network attached
storage. In the Q&A session,
Kiran-Kumar was asked whether
there are any micro-benchmark
evaluations for PASS. He indi-
cated that small file operations
micro-benchmarks entail up to
100-200% overhead time. How-
ever, since most applications do
not access the storage system
that often, the overhead is usu-
ally acceptable for applications.

Thresher: An Efficient Storage Man-
ager for Copy-on-write Snapshots

Liuba Shrira and Hao Xu, Brandeis
University

Thresher targets BITE (Back-In-
Time Execution) applications
that take snapshots of the past
state, inspect the snapshots with
BITE, and retain snapshots
deemed as interesting for an
unlimited time for future analy-
sis. Liuba started her talk with a
discussion of why today’s snap-
shot systems are inadequate for
BITE applications. She pointed
out that it is critical to provide
applications with the ability to
discriminate among snapshots,
so that valuable snapshots can be
retained while the less valuable
ones can be discarded or moved
offline, because although disk
space is cheap, administration of
storage becomes costly.

In the second part of the talk,
Liuba introduced Thresher, a
snapshot storage manager based
on new copy-on-write snapshot
techniques. Thresher is the first
to provide applications with the
ability to discriminate among

snapshots efficiently. Liuba
focused on two important con-
cepts in Thresher: discrimination
and segregation. Applications
discriminate among snapshots
by ranking them according to
their importance. The storage
manager segregates differently
ranked snapshots efficiently, so
that higher-ranked snapshots

can be accessed faster and lower-
ranked snapshots can eventually
be discarded without affecting
the accessibility of higher-ranked
ones and without disk fragmen-
tation.

Lazy segregation technique allow
the rank of snapshots to be spec-
ified after the snapshots are
taken, enabling BITE-based
ranking. Liuba focused on the
diff-based segregation technique
and the optimizations for low-
cost reclamation and faster
access to snapshots. Liuba con-
cluded her talk with perfor-
mance evaluation of Thresher.
She showed that lazy segregation
and faster snapshots can be
implemented with very low per-
formance overhead, allowing a
huge reduction in storage
requirements for snapshots.

Design Tradeoffs in Applying Content
Addressable Storage to Enterprise-
scale Systems Based on Virtual
Machines

Partho Nath, Penn State University;
Michael A. Kozuch, Intel Research
Pittsburgh; David R. O’Hallaron, Jan
Harkes, M. Satyanarayanan, Niraj
Tolia, and Matt Toups, Carnegie Mellon
University

Partho Nath presented their
experience on applying Content
Addressable Storage (CAS) to
enterprise-scale systems based
on virtual machines. Partho first
described the Internet suspend
/resume (ISR) client-manage-
ment system, which is the execu-
tion environment at which their
work is targeted. ISR is a virtual-
machine-based client manage-

ment system. It stores the user
execution environments as
parcels, which are the complete
VM images, including memory
and disk snapshot. Different ver-
sions of parcels are stored in a
lossless manner.

Partho then asked two questions,
both of which are answered by
their evaluations in this paper:
Can content-aware storage re-
duce the (1) storage and (2) net-
work requirements in ISR sys-
tems? And, if so, by how much?
Their evaluation consisted of
three dimensions: the policies,
the chunk size, and gzip com-
pression. They evaluated three
policies for managing the parcels:
the non-CAS baseline policy
(“delta”), which stores different
versions of parcels for each user
as the diff of the previous ver-
sion; the intra-parcel policy,
where each parcel is represented
by a separated pool of unique
chunks shared by all versions
from the same user; and the ALL
policy, where all parcels for all
users are represented by a single
pool of chunks. Gzip can be used
to further compress the data.

Partho showed their evaluation
results. He pointed out that
adopting CAS into the storage
system significantly reduces stor-
age requirements, especially
when using relaxed policy (ALL
policy). And within CAS poli-
cies, using smaller chunks works
best in spite of metadata over-
heads. Another important obser-
vation is that CAS policies alone
can consume less storage than a
non-CAS policy with gzip com-
pression, which avoids the ex-
pensive compression operations.
In response to a question on the
performance overhead of hash
calculation for CAS policies.
Partho indicated that they had
not experienced any noticeable
slowdown for hash calculations.

INVITED TALK

Panel: Open Source Software Business
Models

Mike Olsen, Oracle, Sleepycat; Brian

Aker, MySQL; Miguel de Icaza, Novell,

Ximian

Moderator: Stephen Walli, Optaros, Inc.
Summarized by Scott Michael Koch

The discussion began with each
panelist sharing his opinions and
experiences with OSS. Although
the panel agreed that OSS busi-
nesses can be very successful,
Miguel felt that giving away your
company’s product for free was a
risk, and he does not recom-
mend starting a business of this
type. The panel seemed to agree
that there are only certain cir-
cumstances in which a OSS busi-
ness can have success. Mike
reminded us that it is hard to
start any sort of business, and
Brian added that selling any sort
of software, whether proprietary
or open source, today is like “set-
ting up a tip jar” in that you just
hope that enough people are
willing to pay for your software.
Brian felt that, if you want to
make money, a service and sup-
port model or an ASP model
makes the most successful long-
term option, instead of trying to
sell a binary. It was pointed out
that people are becoming very
comfortable with the subscrip-
tion model. Miguel felt that the
model of building a proprietary
server with free clients was the
way to go. Everyone agreed that
for the traditional model of sell-
ing OSS to be successful, it was
key to find a niche in the market
where your product was some-
thing that everyone needed.
Mike summarized this well by
saying that using open source
software can be successful as a
tactic if it supports your overall
strategy as a business.

The panelists then went on to
talk about the interactions and
relations with the communities

that surrounded their respective
businesses. Mike explained that
the community surrounding Bdb
consisted mostly of users of the
Bdb library, and although they
benefited from the many eyeballs
examining their code and enforc-
ing high quality, there are no
outside contributors. For My-
SQL, Brian said that ideas for fea-
tures and quality bug reports are
the most important contribu-
tions they receive from their
community. Miguel explained
that his current project, Mono,
receives many external code con-
tributions, and he believes that
the amount and type of contri-
butions strongly depend on the
maturity of the code base. Mike
then said that the most impor-
tant contribution from the com-
munity is the adoption of their
software, which increases the
visibility and popularity of the
software in the community.
Inspired by a question in the
audience, the panel discussed
some lessons they had learned
from their past experiences with
OSS businesses. The only com-
mon problem they mentioned
was that it can be frustrating try-
ing to deal with the slashdot-
type community, and anyone
starting an OSS business should
be aware of the energy and effort
required to constantly nurture
that community. Learn to com-
municate with your audiences
appropriately. Marketing to the
typical OSS user is best done
through attending conferences,
setting up blogs, and communi-
cating with them one-on-one.

SHORT PAPERS SESSION |

Summarized by Kiran-Kumar
Muniswamy-Reddy

Compare-by-Hash: A Reasoned
Analysis

J. Black, University of Colorado,
Boulder

John Black presented this paper,
a rebuttal to Val Henson’s HotOS

2003 paper that criticized the
use of hash functions to compare
two files to tell whether they are
the same. John presented various
arguments to make the point
that although hash functions
may not be strong enough for
scenarios where there is an
adversary, they are more than
sufficient for usage scenarios
where there is no adversary. John
concluded the talk by stating
that the computation power
needed to find collisions in a
128-bit hash function in 24 days
would cost around $80,000, and
for a SHALI it would take
$80,000,000 and 2 years. So
other approaches such as social
engineering might be more suc-
cessful. In the Q&A session,
John agreed that the current
hash functions may not be
secure after 20 years.

An Evaluation of Network Stack
Parallelization Strategies in Modern
Operating Systems

Paul Willmann, Scott Rixner, and
Alan L. Cox, Rice University

The paper was presented by
Paul Willmann. The paper eval-
uates three different strategies
for parallelizing network stacks:
(1) message-based (MsgP), (ii)
connection-based using threads
for synchronization (ConnP-T),
and (iii) connection-based us-
ing locks for synchronization
(ConnP-L). MsgP is the slowest
of the three, as it has a significant
amount of locking overhead.
ConnP-T has lower locking
overhead but experiences signi-
ficant scheduling overhead.
ConnP-L has the best perfor-
mance, as it mitigates both lock-
ing and scheduling overheads.
Paul concluded the talk by stat-
ing that current programs them-
selves haven't been written to
take advantage of parallelism.

89

90

Disk Drive Level Workload
Characterization

Alma Riska and Erik Riedel, Seagate
Research

application and kernel code.
RETOS then performs checks on
the machine instructions to
ensure that applications do not
write to or jump to an address

INVITED TALK

Success, Failure, and Alternative
Solutions for Network Security

Peiter Zatko, BBN Technologies

The paper, presented by Eric
Riedel, characterizes workloads
in various kinds of devices,
including PCs, laptops, and
home devices. The authors col-
lected traces by inserting SCSI or
IDE analyzers into the I/O bus
and intercepting the signals.
Some of their findings are as fol-
lows. The read/write ratio, the
access pattern, and write traffic
vary by application. The request
size is around 4 kB. I/O bus and
disks are underutilized. In the
enterprise/desktop environment,
requests are spread all over the
disk. Videos are highly sequen-
tial. Access characteristics de-
pend on the environment: cache
management, arrival, and service
processes at the disk drive. Char-
acteristics common in environ-
ments include idleness and
burstiness.

Two key questions were ad-
dressed in the Q&A session. (1)
How are your results different
from the Hewlett-Packard paper?
Eric replied that they don’t com-
pare, because of the large differ-
ence between the devices and
environment presented in this
paper and those in that paper.
(2) Can we get the traces? Eric
replied that they may be able to
give out the traces.

outside their logical portion.
Some of the instructions can be
verified statically at compile time
and others need to be verified at
run time; for the latter, verifica-
tion code is injected while com-
piling the code.

Transparent Contribution of Memory

James Cipar, Mark D. Corner; and
Emery D. Berger, University of
Massachusetts, Amherst

The talk was given by James
Cipar. Contributory applications
such as condor, SETI@home,
and Farsite utilize wasted CPU
cycles, idle memory, and free
disk space on participating user
machines. They can, however,
disrupt user activity by forcing
user pages to disk. Normal
approaches such as scheduling
do not help with memory and
disk usage. James presented the
Transparent Memory Manager
(TMM), which controls memory
usage by contributory applica-
tions, thereby ensuring that it
does not impair normal system
functionality. TMM works by
detecting the imprint of user
applications and then limits the
memory footprint of contribu-
tory applications accordingly.
TMM detects the memory
imprint by keeping an LRU his-
togram of memory accesses.

Summarized by John Jernigan

Peiter Zatko, a.k.a. “Mudge,”
spoke of the current state of
affairs in network security, offer-
ing his musings and concerns.
He began with a summary of his
background,; he is a former mem-
ber of 10pht, has worked with
the National Security Council,
and started his own security
company, Intrusic. He is now
working for BBN Technologies.

Peiter first addressed some of the
pertinent questions in network
security today, asking how much
progress we have really made,
where we have messed up, and
where we are spinning our
wheels. He points out that the
Internet has far outpaced our
understanding of security. As the
Internet grew and added nodes
and users, the threat model
increased, but software was still
not being designed with any
notion of security. Eventually, a
distinction between internal and
external environments evolved,
much like a military compound
with a fence and a gateway to
swap credentials, but internal
resources were not themselves
secure. Presently, many networks
are watched by intrusion detec-
tion systems, which only let in

Towards a Resilient Operating System
for Wireless Sensor Networks

Hyoseung Kim and Hojung Cha, Yonsei
University

Currently, the only way to
recover from crashes in sensors is
to reset the sensors. Hyoseueng
presented RETOS, a resilient,
expandable, threaded operating
system. RETOS achieves this by
introducing dual mode operation
and static/dynamic code check-
ing. Dual mode separates out the

When pages need to be allocated
but there are no free pages and
both normal and contributory
apps have exceeded their limit,
normal apps are favored. Other-
wise, the page is evicted from the
class that has exceeded its limit.

and out certain traffic and flag
dubious behavior. However, 0-
days still penetrate these
defenses and will always be one

step ahead of patches by defini-
tion. Of even greater concern is
that the defenses do little to pre-
vent unauthorized activity
within the network itself. Peiter
emphasized that our threat
model has changed, but our
defenses have not grown with
the environment.

On the topic of buffer overflows,
he suggests that, even if they all
went away, we would be left with
plenty of threats, such as root-
kits, sniffing, and trojaned appli-
cations. In addition, overflows of
many different types, such as
heap-based and pointer over-
flows, abound. In other areas, it
has become too easy for naive
developers to create enterprise
applications, such as with PHP,
and vulnerable software is live
and rampant.

Peiter suggested that firewalls,
intrusion detection systems, and
intrusion prevention systems are
not really the answer to our se-
curity woes. We should really be
looking at what goes on inside a
network as well. We should not
see drastic changes in the behav-
ior of nodes or out-of-order
packets on internal systems with
few routers. We need to adhere
to RFCs and also to detect when
behavior does not match real-
world trends on the network.

The thought we are left with is
that security is still a cat-and-
mouse game, and more intelli-
gent methods of security are
strongly needed to keep pace
with developing technologies
and Internet expansion.

SERVER IMPLEMENTATION

Summarized by Scott Michael Koch

Implementation and Evaluation of

management, operations on ref-
erence counters, and thread syn-
chronization. While looking for
these bottlenecks they found
that 43% of total run time was
spent waiting to acquire locks.
They were able to eliminate the
bottleneck in memory manage-
ment by enabling a internal
memory allocator to provide
each thread with a separate pool
of memory, and they also sepa-
rated the workspaces of the
threads since the temporary data
used by a single thread did not
need to be shared. They elimi-
nated the bottleneck on refer-
ence counters by using atomic
operations without locks instead
of using pthread locks. Although
this solution is less portable,
since it depends on specific hard-
ware architectures, all the same
platforms are supported, as be-
fore, through an abstract APL
They also implemented more
efficient reader-writer locks by
basing the design on Mellor-
Crummey’s Algorithm.

By identifying and eliminating
the thread synchronization over-
head and these other bottle-
necks, they significantly im-
proved BIND9 performance with
multiple threads. They con-
firmed their improvements by

mance servers. The authors felt
that, when building these types
of servers, having to deal with
the thread programming makes
the code much harder to reuse
and adds the possibility of dead-
locks in the code. Having to
worry about threading is an
unnecessary burden on the pro-
grammer and can significantly
complicate debugging. Flux aims
to separate the programming
process so that all the concur-
rency control is taken care of
with its simple language, and the
logical programming of the
server is done in C, C++, or Java.
They found that programming
with this separated method
allowed the programmer to bet-
ter understand the overall func-
tionality of the different parts of
the server without having to
worry about the underlying
implementation of each of the
parts. Using Flux they were able
to put together a Web server,
image rendering, a BitTorrent
peer, and a game server that per-
formed as fast as or faster than
their counterparts written
entirely in C. More information
and a working example of both
the HTTP and BitTorrent Server
can be found at http://flux.cs
.umass.edu/.

testing them on a four-way
machine. Their improvements
should be available in BINDO as
of version 9.4.0a5. Although
they focused on BIND9, they feel

Understanding and Addressing
Blocking-Induced Network Server
Latency

Yaoping Ruan, IBM TJ. Watson Re-
search Center; Vivek Pai, Princeton

Moderate Parallelism in the BIND9
DNS Server

Tatuya Jinmei, Toshiba Corporation;

Paul Vixie, Internet Systems Consor-

tium
Tatuya Jinmei presented a paper
about improving the perfor-
mance of ISC’s BINDO, a widely
used DNS server. The authors
found that it had poor perfor-
mance with threads and did not
benefit from having multiple
CPUs. Some of the key bottle-
necks they found were memory

the techniques and improve-
ments that they used are appli-
cable to other thread-based
applications.

Flux: A Language for Programming
High-Performance Servers

Brendan Burns, Kevin Grimaldi,
Alexander Kostadinov, Emery D. Berger,
and Mark D. Corner, University of
Massachusetts, Amherst

Brendan Burns talked about a
new programming language
with the goal of simplifying the
process of building high-perfor-

University

The last paper in this session was
way over my head. Even after
going though the presentation
and attempting to read the paper,
any attempt at writing a sum-
mary just turned into trying to
reword the abstract of the paper.
You can find out more about

this paper at http://www.cs
.princeton.edu/nsg/papers/
latency_usenix_06/.

91

92

INVITED TALK

Is University Systems Teaching and
Research Relevant to Industry?

Moderator: Gernot Heiser,
NICTA/UNSW

Panelists: Stephen Geary, HE head of
Linux strategy in R&D; Orran Krieger,
IBM, K42, Xen strategy; Margo Seltzer;
Harvard, Oracle, Sleepycat; Tim
Roscoe, Intel Research Berkeley, OS,
distributed systems; Jim Waldo, Sun
Labs, Jini, Harvard; Andy Tannenbaum,
Vrije University, Minix, 16 textbooks

Summarized by Chris Small

Gernot started by stating the
claims of industry: that universi-
ties are not producing the kinds
of systems people need and are
producing irrelevant research.
Industry does research, but
because it doesn’t get published,
industry gets no respect from
academia. He then asked each of
the six panelists to respond to
his opening statement.

Andy Tannenbaum: What are
universities for? To serve stu-
dents? Industry? Government?
Faculty? The average student’s
career lasts 40 years; I want to
focus on stuff that will be useful
for 20 years, emphasizing princi-
ples, not facts. Teaching how
MS-DOS works might have been
very interesting 20 years ago but
is less interesting now. I want to
teach how to keep the design
simple, good software engineer-
ing practice, and to expect para-
digm shifts. Think in terms of
systems. Ignore hype; don’t for-
get the past; ideas get recycled. 1
think sometimes I'm supposed to
teach “bloat-ology.”

Jim Waldo: I'm the industry guy
and mostly agree with Andy. But
he’s going to concentrate not on
20 years from now but now. Stu-
dents never have to maintain a
system longer than it takes to
write the paper. “I don't fix bugs;
I have a Ph.D.—I write new
things.” When you get your

Ph.D. you're not done: You're
ready to start. But how can you
teach system building and main-
tenance in a university setting?
You can't. Industrial research
used to be “short-term”; academ-
ics did “longterm” research. But
it's no longer true—academics
are doing short-term one-off
things to get the next grant;
industry looks at the longer
term. So people coming out of
universities are not ready for the
adult world, but Jim doesn’t
expect them to be.

Tim Roscoe: I don't like the divi-
sion between industry and aca-
demic research. Intel sets up
lablets of 10-20 researchers,
closely attached to the university.
They do not pursue patents on
joint work. Everything is sup-
posed to be published, open
source, etc. Intel can do this
because Intel is a manufacturing
company, not a software com-
pany. It probably doesn’t make
sense for Microsoft to do this.
Intel wanted to strategically
influence the way universities
work. Can we get universities to
do work that’s of more value to
Intel? Intel provides industrial
relevance and resources. Planet-
Lab is an example—an attempt to
change the research culture in
distributed systems in academia.
There is less emulation and less
“we ran this on 17 machines, so
clearly it scales up to 100,000
nodes” thinking. Students take
their distributed systems text-
book and try to implement the
ideas on PlanetLab—and it
doesn’t work. They learn a lot
about what really matters by
doing it. How do you teach sys-
tems principles? It’s very hard,
unless you're getting experience
building real systems.

Margo Seltzer: There are two
different topics here that this
nice academic-oriented panel
are trying to hide from you.
Undergrad education and grad

education are two very different
things. This conference is for
graduate types, but industry
mostly hires undergrads. Andy is
fundamentally wrong: Universi-
ties and colleges are there to
serve society, not students or fac-
ulty. We need to help students
figure out what path they want
to follow and how to follow it,
not to build raw fodder for in-
dustry, nor clones of ourselves.
They want to develop thinkers
and people who can make good
decisions, even if they end up
being lawyers. Tension exists
between giving them tools and
giving them a specific skill set. In
the long term, the tools are more
important.

Orran Krieger agrees with Jim
that there has been a longterm/
short-term inversion. K42 was
developed even though many
people in the company thought
it was a waste of time, but im-
portant skills and knowledge
were brought into the com-
pany—for example, Linux and
pervasive virtualization. What
we want from Ph.D.s are people
who will come up with radical
ideas to change things. Ham-
mond said, “Don’t read all the
relevant literature—think about
the fundamentals and the prob-
lem for a month, then go read
the literature.” Researchers
should work on big, irrelevant
systems and work in teams. We
used to have five-, six-, and
seven-year Ph.D.s, and that gave
them time to thrash and come up
with their own ideas.

Stephen Geary: Hey, 'm a me-
chanical engineer. I have product
responsibilities, making sure that
Linux and open-source tech-
nologies work on Itanium-based
systems. A chunk of code or a
piece of research by itself is not
interesting, or not as interesting
as long-lived supported systems
that do things for customers. You
get them for four years; I get

them for 40 years. You have to
teach people about budgets and
schedules.

Andy: The job of the university
is to serve society, but they’re
turning out lawyers.

Jim: What I'm really looking for
when I'm hiring is people who
know “how,” not who know
“that”—people who know how
to think, not people who know
facts (e.g., how to build a partic-
ular kind of hash table).

Q. Is academia doing anything
right?

Margo: We need to adjust expec-
tations. Andy’s students under-
stand how to think about sys-
tems, but they don’t understand
every line of Windows.

Gernot: How is it that academia
can churn out mechanical and
electrical engineers but not com-
puter systems folks? Why are
there so few real systems depart-
ments?

Orran: Linux progress is much
slower than it should be because
they ignore the literature. They
did a brilliant job of cloning
UNIX. But that’s not going to
revolutionize the field. The suc-
cess of Linux has stifled the abil-
ity to do the kind of research that
will move the field forward. Ten
years ago there were more ideas
moving things forward.

Andy: It’s not the job of universi-
ties to produce open source
code. But many of the people
producing open source code are
university graduates.

Q. People build their own tools.
They should come out of univer-
sity with the start of their own
personal toolkit.

Tim Roscoe: That’s insightful.
One thing I've noticed about
textbooks, particularly in sys-
tems, is that almost all of them
are useless at teaching how to
think about operating systems,
planning to build a system, or

how to deal with a large body of
code.

Margo: Open source is a fraud—
there are a handful of people
who commit to the Linux source
tree, not tens of thousands.

Orran: We should have a tax on
corporations—where their top
people come from, money goes.

Margo: Computer science head-
count is plummeting. Students
think “computer science means
programming, and programming
will be outsourced.”

Orran: One of the best things
that is happening to academia is
dropping enrollment. People
used to get into academia
because they were excited; for a
while these were people who
thought it was a good career
move. Now a higher percentage
of people are passionate about it.

Margo: It’s not that we’re only
getting the passionate people. In
1992 (at Harvard) we had 30
concentrators; this year we have
12. People who are passionate
about technology think, “Oh, I
know how to write programs; I
don’t need to study computer
science.” Or people in other
intellectual disciplines (e.g.,
physics), who used to have to
learn how to program to get a
summer job, got seduced, but
now they learn these things in
high school and ignore computer
science in university.

Q. Of 16 graduates, 11 were dou-
ble majors, and these were most-
ly in economics.

Gernot: To wrap up, what can we
do? Or should we just give up?

Stephen: Gelato Consortium is
a good example; it was founded
by HP university relations to
advance Linux, Itanium, and
supercomputing.

Clem Cole: We need to teach
people how to collaborate.

SECURITY

Summarized by Yizhan Sun

Reval: A Tool for Real-time Evaluation
of DDoS Mitigation Strategies

Rangarajan Vasudevan and Z. Morley
Mao, University of Michigan; Oliver
Spatscheck and Jacobus van der Merwe,
AT&T Labs—Research

An ISP network today faces many
DDoS attacks. The defense deci-
sion for DDoS attack is often
manual and complex. Many
defense/mitigation strategies are
available, and it is difficult for a
network operator to choose the
appropriate one in real time. The
approach presented here is the
Reval simulator framework.

Reval takes network state, attack
info, and mitigation policy as
input and goes through initial-
ization, mitigation setup, traffic
setup, and evaluation steps. The
output of Reval is the optimal
solution for a DDoS attack.

A case study on the Abilene net-
work was illustrated in the talk.
Two mitigation mechanisms can
be applied in this case: blackhol-
ing and scrubbing. The result of
using Reval to determine the
right mitigation strategy in real
time was explained and evalu-
ated.

LADS: Large-scale Automated DDoS
Detection System

Vyas Sekar, Carnegie Mellon Univer-
sity; Nick Duffield, Oliver Spatscheck,
and Jacobus van der Merwe, AT&T
Labs—Research; Hui Zhang, Carnegie
Mellon University

Several strategies and their draw-
backs for DDoS attacks were
introduced:

Wait for customer to complain—
not effective at all

Buy a per-egress detection
device—expensive and not scala-
ble

Install devices at select locations—
gives incomplete coverage and
inaccurate limits on sensitivity

93

94

Use existing data feeds (e.g.,
SNMP and Netflow)

Use SNMP—entails low overhead
and yields few false negatives, but
has low diagnostic ability

Use Netflow—has good diagnos-
tics, yields few false positives, but
has higher overhead and does not
scale

LADS is a better approach. The
mechanism behind LADS is to
use time-series anomaly-detec-
tion triggers collection of Net-
flow and do fine-grained analysis
afterward. Benefits of LADS
include detection of high-impact
attacks, efficient data collection
and reduced computational cost,
and flexibility.

Bump in the Ether: A Framework for
Securing Sensitive User Input

Jonathan M. McCune, Adrian Perrig,
and Michael K. Reitet; Carnegie Mellon
University

Jonathan McCune first intro-
duced how a user’s input (user
name and password) can be
stolen by a malicious application
installed on Windows systems.
Then he introduced a threat
model and some assumptions of
BitE, including a priori knowl-
edge of which software is good.
Then he proceeded to explain
BitE architecture, setup, and
operation.

BitE system architecture is based
upon a partially trusted host
platform with a BitE Kernel
module installed and executed.
The BitE kernel module and
mobile client participate in key
setup and bypass the traditional
input path to avoid information
being stolen by malicious
applications.

BitE can be set up through
device association and applica-
tion registration and operates
through several steps, including
application request, verification
of attestation, user interaction,

and establishment of session
keys.

INVITED TALK

Architectures and Algorithms for
Biomolecular Simulation

Cliff Young, D.E. Shaw Research, LLC

Summarized by Partho Nath

This talk by Cliff Young was on
the need for developing more
powerful hardware to get closer
to answering challenging ques-
tions in modern biology, chem-
istry, and medicine. A typical
means of understanding phe-
nomena in these fields is via
molecular dynamics (MD)—
simulation of biologically signifi-
cant molecules at the atomic
level. If performing such experi-
ments were accurate and infi-
nitely fast it would be easy to
perform arbitrary computational
experiments such as determining
structures by watching them
form, transforming measure-
ments into data for mining later,
etc. However, for a goal of, say,
simulating about 64,000 atoms
at a millisecond scale, with
explicit water molecules, one
would need a 10,000-fold
increase in computational power
if a single state-of-the-art proces-
sor were used, or a 1,000-fold
speedup if a modern parallel
cluster were used. The talk con-
sidered the pros and cons of sev-
eral different available architec-
tural options: (a) clusters of
commodity processors, (b) gen-
eral-purpose supercomputers
(e.g., Blue-Gene), and (c) spe-
cial-purpose supercomputing
architectures.

The speaker was of the opinion
that new specialized, enormous-
ly parallel architectures with spe-
cial-purpose ASICs specially tai-
lored for MD simulations are the
answer. Optimizations could
include arithmetic specializa-
tion, hardware tailored for speed

(e.g., hardware tables with
parameters) but not too pro-
grammable, data flow to exactly
where the data is needed, and
design for almost never touching
off-chip memory. Given that the
class of algorithms to be run on
these machines is well known,
such a machine could be an
order of magnitude faster than
general-purpose supercomput-
ers. The speaker commented that
production of such a machine
was already underway and could
be expected in 2008. This
machine is designed to have 16
segments at the physical level,
each consisting of 512 nodes
(ASICs) in a 8-cube toroidal
mesh (to reflect the physical
space being simulated). The
speaker detailed the performance
of this machine for the NT algo-
rithm (a parallel algorithm for
range-limited pairwise interac-
tions of atoms). He noted that
this architecture showed asymp-
totically less inter-processor
communication, which trans-
lates to better scaling.

Most of the questions to the
speaker addressed the machine
under production. Regarding
soft errors (given that the ma-
chine has thousands of nodes),
the speaker commented that off-
chip memory has ECC, whereas
on-chip memory is supposed to
be free from such errors. Addi-
tionally, the runtime does a
checkpoint and reload of the
simulation once every hour.
Another question was whether
writing code for such specialized
hardware was going to be a sig-
nificant bottleneck. The speaker
agreed that this might be a sig-
nificant issue, especially given
that programmers were writing
code in assembly for a special-
ized hardware. No compiler was
being developed because the
development cycle for a com-
piler would be longer than that
of developing the code for the
corresponding algorithms in

assembly itself. Given that the
architecture is simplified by the
absence of both speculation and
out-of-order execution, writing
efficient code for such an archi-
tecture may not be too bad. An-
swering a query on power de-
mands, the speaker said that
housing the machine would be
another nontrivial task, both in
terms of the physical space
required and the cooling costs.
On a question on the numeric
precision of the machine, the
author remarked that no float-
ing-point arithmetic is used.
Computations use a fixed-point
subset of double-precision, i.e.,
32-bit single-precision fixed-
point arithmetic. The advantages
gained here were that the simula-
tion runs would be more deter-
ministic and that the pipeline
design would be simpler. Anoth-
er question was on whether such
a machine is viable at all: Given
that the world market may ab-
sorb only about five such ma-
chines, would it not be cheaper
to just build commodity clusters
instead of such a specialized
cluster? The speaker commented
that with commodity clusters a
1,000-fold speedup would not be
possible in a five-year timeframe.
The speaker conceded that the
size of the market justified by
such an investment is still an
open question.

MANAGEMENT AND ADMINISTRATION

Summarized by Kiran-Kumar
Muniswamy-Reddy

maintains inventories of
resources offered by providers
and matches requests with avail-
able resources. Leases are used to
bind a set of resource units to a
consumer for a lease term. Bro-
kers issue tickets to consumers
that are redeemed for leases at
the providers. Shirako’s design
makes resource allocation inde-
pendent of the application. Dur-
ing the Q&A, Vivek Pai asked
how Shirako knows what data
the application needs (i.e., what
do you do when the applications
need disk space but not CPU?)
David replied that they tried to
allocate better bandwidth and to
allocate systems closer to the
consumers. Vivek then asked
how they dealt with applications
that checkpoint their state and
restart on a different system.
David replied that other groups
have been looking at this and
they plan to build on that work.

Understanding and Validating Data-
base System Administration

Fdbio Oliveira, Kiran Nagaraja, Rekha
Bachwani, Ricardo Bianchini, Richard
P Martin, and Thu D. Nguyen, Rutgers
University

The talk was given by Fabio
Oliveira. The goal of this work is
to reduce database downtime.
Most of database downtime is
caused by mistakes made by
database administrators. To this
end, the authors conducted a
survey of experienced adminis-
trators at SAGE to better charac-
terize the source of these errors.
They found that one common
source of errors is that the de-

the live system, play the traces
onto the system/components to
be tested, and compare the two
results to detect any errors. Some
operations, such as change in
schema, cannot be validated by
the first two methods, so they
propose a model-based
approach. In this approach, the
operator can specify the ex-
pected behavior using their mod-
el. The dynamic behavior of the
system is then validated with
that of the predicted model. In
the Q&A, Atul Adya asked
whether they closed the loop,
that is, did they go back to the
DBAs with their results? Fabio
replied that they did not. In
response to another question by
Atul, Fabio replied that they did
not deal with triggers.

SMART: An Integrated Multi-Action
Adbvisor for Storage Systems

Li Yin, University of California, Berke-
ley; Sandeep Uttamchandani, Ma-
dhukar Korupolu, and Kaladhar Voru-
ganti, IBM Almaden Research Center;
Randy Katz, University of California,
Berkeley

The talk was given by Li Yin. The
common approach to meeting
the service level objective (SLO)
for storage systems involves the
observe, analyze, and act loop.
This approach involves manual
interaction and is slow. There are
existing tools that help automate
the task, but these are again
restrictive, as they can correct
only one action, such as work
throttling, data migration, or
addition of new resources. Li
presented SMART, a framework

Sharing Networked Resources with
Brokered Leases

David Irwin, Jeff Chase, Laura Grit,
Aydan Yumerefendi, and David Becker,
Duke University; Kenneth G. Yocum,
University of California, San Diego

David Irwin presented Shirako, a
system to coordinate resource
allocation between providers and
consumers. Shirako introduces
brokers, a software entity that

ployment environment is differ-
ent from the test environment.
They also found that DBAs of all
experience levels are prone to
make mistakes.

They presented three forms of
validation to reduce operator
errors: trace-based, replica-
based, and model-based. In the
trace-based approach, they log
the requests to and replies from

that considers multiple correc-
tive actions.

SMART aims to maximize the
system utility for a give opti-
mization window. SMART con-
tains four key components: (1)
INPUT modules (containing
sensors monitoring system state,
SLOs, component modules,
workload request rate, etc.), (2)
a utility evaluator (which calcu-

95

96

lates the overall utility delivered
by the system), (3) single action
tools (to automate invocation of
a single action), and (4) an
action advisor that, based on the
other three components, gener-
ates a schedule for actions to be
invoked to improve system util-
ity. The action advisor operates
in two different decision modes:
normal and unexpected. In nor-
mal mode, it proactively gener-
ates decisions to forecasted
workloads by optimizing local
actions to achieve global optima.
In unexpected mode, it makes
defensive decisions in response
to unexpected variations in
workloads. The reason for it
being defensive is that the unex-
pected workload may be tran-

SHORT PAPERS SESSION Il

Summarized by Wei Huang

sMonitor: A Non-Intrusive Client-
Perceived End-to-End Performance
Monitor of Secured Internet Services

Jianbin Wei and Cheng-Zhong Xu,
Wayne State University

Jianbin Wei first described the
inadequacies of existing ap-

proaches for monitoring end-to-
end user-perceived performance

of Internet services, especially
with increasing deployment of
HTTPS services. Jianbin indi-
cated that there is a strong need
to deploy a performance moni-
tor, which is nonintrusive, easy
to deploy at the server side, and
can handle HTTPS services.

data to share with other users)
and user selectivity (e.g., with
whom to share the data).

However, Aameek’s study re-
vealed that, in current *nix sys-
tems, the lack of convenience in
data-sharing mechanisms often
leads to users compromising
their security requirements to
conveniently fit the specifica-
tions of the underlying access-
control model. Aameek talked
about their studies on two multi-
user *nix installations. Simply
by scanning readable user direc-
tories and guessing executable-
only directories, along with
email and browser statistics, they
were able to “attack” massive
amounts of privacy data, which,
they believed, were not exposed

sient. There were no questions
after the talk.

INVITED TALK

Permissive Action Links, Nuclear
Weapons, and the History of Public
Key Cryptography

Steven M. Bellovin, Columbia
University

Jianbin presented sMonitor, their
solution to these goals. sMonitor
consists of a package capture to
collect live network packets, a
packet analyzer to reconstruct
the pages of HTTP/HTTPS trans-
actions, and a performance ana-
lyzer to derive client-perceived
response time of the monitored
services. Jianbin focused on their

on purpose. Since the technical
sophistication of the attacks is
low and there is no quick fix to
such vulnerabilities of private
data, Aameek raised a major con-
cern about the inadequate pro-
tection of privacy in *nix sys-
tems.

Aameek concluded the talk with
some possible solutions to

Summarized by Partho Nath

This talk traced the history of
PALs (Permissive Action Links),
detailing the motivation for their
invention and those responsible
for their creation. The speaker
ran through a timeline of their
use and evolution, highlighting
the possible design choices made
at those junctures, along with
cryptography and key manage-
ment for the different designs.
The talk concluded with possible
designs for modern-day PALs
and what we might learn from
them in designing secure sys-
tems. The slides for the talk can
be found at
http://www.cs.columbia.edu/
~smby/talks/pal.pdf. The content
for the talk can be found at
http://www.cs.columbia.edu/
~smb/nsam-160/pal.html.

solutions to several key design
challenges, such as identifying
encrypted HTTP requests from
packet size analysis, handling
pipelined requests, and parallel
downloading.

Jianbin concluded with their
evaluation of the accuracy of
sMonitor in measuring HTTPS
and HTTP services. He showed
that errors between the client
measurements and the reported

performance of sMonitor, which
is deployed at the server, are less

than 8%.

Privacy Analysis for Data Sharing in
*nix Systems

Aameek Singh, Ling Liu, and
Mustaque Ahamad, Georgia Institute
of Technology

The *nix access control model,
as Aameek Singh pointed out,
must provide good support for

both data selectivity (e.g., which

enhance privacy protection, such
as using privacy auditing tools to
monitor potential privacy data
exposures or virtualizing the file
system hierarchy differently for
different users. But until that
happened, Aameek said, users
should pay more attention to
monitoring the privacy of their
own data.

Securing Web Service by Automatic
Robot Detection

KyoungSoo Park and Vivek S. Pai,
Princeton University; Kang-Won Lee
and Seraphin Calo, IBM T.J. Watson
Research Center

KyoungSoo Park presented a
automatic robot detection frame-
work to support a secure Web
service. KyoungSoo first talked
about the widespread existence
of malicious bots, including
those for password cracking and
DDoS attacks. The increasing

abuse of robots motivated an
accurate robot detection system.

KyoungSoo described their tech-
niques to separate human brows-
er activities from robot-gener-
ated Web traffic. They include
browser detection and human
activity detection. Browser
detection is based on the obser-
vation that most robots are not
standard browsers; it catches
robots if the behavior deviates
from that of normal browsers.
Human activity detection di-
rectly detects humans by observ-
ing human activities such as
mouse movement or keyboard
events behind the browsers.
Hardware events are being
tracked in dynamically embed-
ded Javascript and the activity is
indirectly reported to the server
via a fake image request. This
technique is based on the fact
that current robots are not gener-
ating hardware events.

KyoungSoo showed that most
human activities can be distin-
guished within tens of HTTP
requests. And the maximum
false positive rate is low (2.4%).
KyoungSoo also mentioned that
with their system deployed on a
CoDeeN content distribution
network, complaints on robot-

visiting a nonauthoritative Web
site.

David presented a study on the
nature and quantity of homo-
graph attacks. Using a nine-day
trace of Web traffic from the
Computer Science Department
of the University of Washington,
they probed the DNS to find reg-
istered names that are confusable
with (i.e., a homograph to) the
names of visited sites. The re-
sults of the study were fourfold:
(1) No user visited a nonauthori-
tative site during the trace; (2)
popular Web sites are more like-
ly to have registered confusable
names than unpopular sites; (3)
registered confusable names tend
to consist of substitutions of two
or fewer confusable Latin char-
acters, though some IDN (Inter-
national Domain Name) substi-
tutions were found; and, (4) the
intent behind most registered
confusable names is benign—
predominantly advertisements.
David concluded that homo-
graph attacks currently are rare
and not severe in nature. How-
ever, given the recent increase in
phishing incidents, homograph
attacks seem like an attractive
future method for attackers to
lure users to spoofed sites.

related abuse have dropped by a
factor of 10. KyoungSoo admit-

ted that serious hackers can still
break their detection system and

Stealth Probing: Efficient Data-Plane
Security for IP Routing

Ioannis Avramopoulos and Jennifer
Rexford, Princeton University

suggested using machine-learn-
ing techniques as a remedy.

Cutting through the Confusion: A
Measurement Study of Homograph
Attacks

Tobias Holgers, David E. Watson, and
Steven D. Gribble, University of
Washington

David Watson introduced a mea-
surement study of homograph
attacks. A homograph is a char-
acter or string that is visually
confusable with a different char-
acter or string. A homograph
attack tries to fool a user into

Ioannis Avramopoulos started
his talk by introducing the chal-
lenges in secure IP routing. He
argued that data-plane monitor-
ing must be part of any complete
solution. However, existing pro-
posals for secure forwarding
with link-level fault localization
capability are heavyweight, re-
quiring cryptographic operations
at each hop in a path. Ioannis
presented a lightweight data-
plane mechanism that monitors
the availability of paths in a
secure fashion. In intradomain
routing, this mechanism also

enables the management plane
to home in on the location of
adversaries by combining the
results of probes from different
vantage points (called Byzantine
tomography). Ioannis discussed
advantages of stealth probing,
including its incremental deploy-
ability, backward compatibility,
and incentive compatibility.

loannis presented two deploy-
ment scenarios for stealth prob-
ing. He described how an ISP
can deploy stealth probing to
secure its own infrastructure.
He also discussed how a pair

of edge networks can deploy
stealth probing to secure the
path through untrusted ASes
on the Internet.

INVITED TALK

Gold and Fool’s Gold: Successes,
Failures, and Futures in Computer
Systems Research

Butler Lampson, Microsoft Research

Summarized by Kiran-Kumar
Muniswamy-Reddy

Butler Lampson started off by
discussing trends in computer
use. He then briefly enumerated
things in the history of computer
science that worked, things that
didn’t work and why they didn’t
work, and a list of things that
“maybe” worked. He claimed
that the future of computer sci-
ence lay in applications that
dealt with avoiding catastrophes
and uncertainties.

In the context of Moore’s law,
improvement in hardware sim-
plifies software. Better hardware
enables new applications with
the complexity going into soft-
ware. Accordingly, the fields in
which computers have been used
has been growing. In the 1950s,
computers were used for simula-
tion. In the 1980s, they were
used for communication and
storage (e.g., email, airline tick-
ets, and search engines). By

97

98

2010, computers will be embod-
ied in the physical world, that is,
interacting nontrivially with the
physical world, embedded in fac-
tories, cars, robots, etc.

He then gave a list of things that
worked: virtual memory, address
space, packet nets, objects/sub-
types, transactions, RDB and
SQL, bitmaps and GUIs, the
Web, and algorithms. The list of
things that did not work
includes capabilities, fancy type
systems, formal methods, soft-
ware engineering (all they did
was have interfaces and count
the number of lines), RPC
(which failed because the idea
was to try to mask the fact that
the call was remote distributed
computing), persistent objects
(in which you end up storing a
bunch of rubble, because of pro-
gram bugs), and security (get-
ting worse because there is a lot
more software now; also, people
don't like security, because secu-
rity says no but people want to
say yes), RISC (Intel retrofit the
good ideas of RISC into their
chips).

Things that may have worked
include parallelism (which now
we actually need because we
have multi-core systems, but
many programmers don’t know
how to apply the theory, so we
probably can’t make it work),
garbage collection (which was
not designed to be used by sys-
tems), interface and specifica-
tions (with substantial overhead
in breaking down the system and
specifying the interfaces, they are
slightly successful in hardware
but not in software), and reus-
able components (which [1] are
expensive to develop, [2] are
specific to how resources are
allocated and have unique failure
models, [3] have been successful
in filters and big things [e.g.,
OSes, DBs, browsers]). Reusable
components have not worked for
Ole/COM/Web services; how-

ever, they have worked for com-
panies such as Amazon, who can
afford to have 20% of the things
displayed wrong.

Systems research has failed at
times, the classic case being that
we didn’t invent the Web. This is
mainly because of the way we
think. For example, we felt that
the design and the idea of the
Web are too simple. The idea of
the Web had been around for
some time but was never tried.
Computer scientists would have
tried too hard to come up with
an optimal design. Another rea-
son for the failure is that com-
puter scientists tend to deny that
things might work. For example,
in the case of the Web, they
would have just argued that it
would never scale.

The future of systems research
involves building systems that
deal with uncertainty and that
avoid catastrophe (e.g., reducing
highway traffic deaths to zero).
The problem involves computer
vision; building world models
for roads and vehicles; dealing
with uncertainty about sensor
inputs, vehicle performance, and
a changing environment; and,
finally, dependability. Butler
defines a dependable system as
one that avoids catastrophes.
This ensures that the focus is on
the really important and pro-
vides a way to reduce aspirations
for a system. Catastrophe pre-
vention has not always worked;
for example, air traffic control
specifications state that the
downtime should be 3 seconds/
year/workstation. But this is not
true. The architecture of the sys-
tem should have a normal mode
and a catastrophe mode. The
catastrophe mode should have
clear, limited goals, implying
limited functionality, have <50K
lines, and have high assurance.
Another issue is dealing with
uncertainty. Any “natural” user
interface should make assump-

tions. For example, a speech-
understanding program will get
some unknown or uncertain
input that the computer has to
approximate. So one way to deal
with this may be to build para-
digms where distribution is a
standard data type and can be
parameterized over a domain

(like lists).

Peter Honeyman asked the first
question. Is it right to attribute
the World Wide Web to physi-
cists? Wasn’t Mosiac developed
by computer scientists? Butler:
Could be I oversimplified. Ques-
tion: Why is distributed comput-
ing a failure? Don’t we have the
Web? Butler: We don'’t do dis-
tributed computing. We do
client-server, where only two
machines are talking to each
other. Grid? I don’t understand
it. Margo Seltzer: IBAL is a lan-
guage that supports probability
as a fundamental datatype. I
encourage everyone to try it.
Margo Seltzer: It looks like catas-
trophe code is similar to recov-
ery code as it is never run. But-
ler: Catastrophe code should be
a subset of normal code and
shouldn’t be used only in catas-
trophes. Marc Chiarini: Is Al a
success or a failure? Butler: Yes,
it is successful. When it is suc-
cessful, it’s spun off, for example,
computer vision. Al continues to
be a success and continues to be
a mess. Question: Are not large-
scale bank computer crashes
computer-only catastrophes?
Butler: Not true; although it will
inconvenience a lot of people,
there is enormous redundancy
that will get things back to nor-
mal. Question: RISC is a success,
since most game systems run on
it. Butler: There has not been a
successful RISC system since
then.

PLENARY SESSION

Why Mr. Incredible and Buzz
Lightyear Need Better Tools: Pixar
and Software Development

Greg Brandeau, Vice President of
Technology, Pixar Animation Studios

Summarized by Scott Michael Koch
The talk began by explaining the

process involved in creating a
movie at Pixar. Using examples
from their latest movie, Cars,

and past movies such as Monsters

Inc., he explained the key steps

involved in turning an idea for a

movie portrayed in storyboard
drawings into a detailed, com-

puter-rendered movie. Although
all of Pixar’s movies are essential-
ly cartoons, the company feels it

is important for its movies to
contain lifelike effects. Special
attention is paid to detail when
creating the environments in

which their stories take place, by

taking into account effects such

as weather and fire. When appro-

priate, Pixar tries to avoid char-

acters appearing to have a plastic

texture by giving them fur or
other more detailed textures.
The next part of the talk began
with the showing of a trailer for
Cars and an explanation of how

it compared to some of the mov-

ies Pixar had done in the past.

Their movies typically take three

to five years to complete, and
although Cars took about the
same amount of time to com-
plete as their earlier Toy Story, it
required 300 times the comput-
ing power. He explained the

basics of various lighting effects,

such as irradiance, ambient
occlusion, and reflection, that
were used to improve the realis-

tic characteristics of the cars. He

also showed a demo of an in-
house tool called the Cars Dri-
ving System that simulated the

movement and interaction of the

cars with their environment, so
that the animators did not have
to worry about underlying car-

toon physics such as the car’s
suspension, steering, and turn-
ing.

He talked about some of the
challenges they encountered in
creating Cars, as well as some of
Pixar’s other movies. Besides the
basic process mentioned here,
each movie is custom-made.
Each has a different director,
environment, characters, and
technology. Using a technique
called Reyes Rendering, the
memory space of a 32-bit archi-
tecture machine was not enough,
so the company were forced to
switch to 64-bit machines when
rendering Cars. In fact, a single
car required more than 2 GB of
memory. Overall, it required 2.4
CPU millennium to render the
movie.

Along with using commercial
applications, third-party li-
braries, and other in-house
applications, the majority of
Pixar’s work is done with a more
than 2-million-line in-house
application that has been devel-
oped over the past 20 years. The
application is written in a num-
ber of different languages includ-
ing C++, C, Python, Perl, and sh.
The application is constantly
being customized to meet the
ever-changing needs of the cur-
rent movie. To take advantage of
the best tools at any given time,
Pixar feels it is important to keep
their software as cross-platform
as possible.

A perceived major problem is
that Linux/OSS development has
not kept up with the innovation
of hardware. Having had mixed
results with gdb and purify, they
felt there needed to be a better
debugging utility geared toward
larger applications. Using cur-
rent debugger solutions, a pro-
cess that usually takes several
hours turns into a weekend-long
process when run under a
debugging environment. They
would like OSS developers to

design software with large pro-
duction applications, long run
times, OpenGL, and 64-bit tech-
nology in mind. They also would
like to see a Visual Studio—type
IDE for Linux. They also men-
tioned wanting vendors to pro-
vide a sitewide license for soft-
ware, to make management of
licenses for a large number of
machines less complicated.

The talk got a mixed response as
far as audience questions were
concerned. Several attendees
from other large companies at-
tested to the fact that the prob-
lems and challenges mentioned
were not exclusive to Pixar. Oth-
ers questioned Pixar’s contribu-
tions back to the open source
community. Although they are
active in submitting bug reports
and patches to projects they use,
some thought that they need to
be the ones taking the initiative
to start solving these problems in
the community, and others will
join them if they see the project
to be worthwhile. There were
also suggestions about making
all or portions of Pixar code
open source in various ways, but
the company does not feel that
would be appropriate for their
type of software. There were also
a few suggestion about using
Solaris’s dtrace, which is some-
thing they are considering.

WIDE AREA DISTRIBUTED SYSTEMS

Summarized by Wei Huang

Service Placement in a Shared
Wide-Area Platform

David Oppenheimet; University of
California, San Diego; Brent Chun,
Arched Rock Corporation; David
Patterson, University of California,
Berkeley; Alex C. Snoeren and Amin
Vahdat, University of California, San
Diego

David Oppenheimer’s talk tried

to answer one question: Can

intelligent service placement be

99

100

useful on a shared wide-area
platform such as PlanetLab? At
the beginning of his talk, David
laid out five perspectives, from
which they will analyze the re-
source characteristics of shared
wide-area platforms and try to
answer this question: the vari-
ability in resource competitions
across nodes; the variability in
resource demands across slivers
(allocated resources on a single
node for an application); how
random placement behaves; how
the quality of initial resource
mappings decay over time; and
whether resource competition
can be predicted.

David presented their studies on
these five aspects from a six-
month trace of node-, network-,
and application-level measure-
ments of PlanetLab. They found
out that CPU and network re-
source usages are highly variable
across the nodes. And the re-
source demands across instances
of applications also varied wide-
ly. These trends suggested that
an intelligent service placement
will benefit applications. This
was demonstrated by David’s
simulation results on running
OpenDHT, Coral, and CoDeeN,
which showed that there were
more slivers satisfying applica-
tion resource requirements by
using intelligent service place-
ment. David also pointed out
that node placement decisions
can be ill-suited after about 30
minutes, which suggested that
migration may help applications
if the cost is acceptable. David
also indicated that a node’s CPU
and bandwidth usage can be pre-
dicted by its utilization of that
resource recently, which implies
that a migration service need not
require high measurement
update rate. However, David said
that they found no daily or
weekly periodicity on resource
utilization.

Replay Debugging for Distributed
Applications

Dennis Geels, Gautam Altekar, Scott
Shenker; and Ion Stoica, University of
California, Berkeley

Awarded Best Paper!

Dennis Geels presented liblog, a
debugging tool for distributed
applications. Dennis started his
talk with challenges of the
debugging process in distributed
applications. Many errors are
due to race conditions and usu-
ally are impossible to reproduce
locally. Because of this “limited
visibility,” testing or simulation
is usually not sufficient to repro-
duce and catch the errors. The
current state-of-the-art tech-
nique for debugging is still to use
the print statement. However,
once the software is deployed,
this technique requires that the
developer choose to expose the
affected internal state before the
fault manifests.

To address the difficulties of
debugging distributed applica-
tions, Dennis proposed liblog,
which provides lightweight log-
ging and deterministic replay, is
transparent to applications, and
requires no patch to kernels. It
intercepts all libc calls and logs all
sending/incoming messages. Each
message is associated with a lam-
port clock so that it can be used
later for deterministic replay.
Dennis discussed several key
challenges and design choices of
liblog. He talked about how to
deal with concurrent threads,
where deterministic replay was
harder owing to the lack of kernel
support. He also mentioned how
to do user-level annotation for
TCP traffic and using liblog in a
mixed environment of logging
and nonlogging processes.

In the Q&A session, when asked
whether there are any success/
failure cases,, Dennis briefly
mentioned their experience

using liblog on I3/Chord and

OCALA proxy. He said that
liblog helped to find errors
caused by broken assumptions
about network or coding errors.

Loose Synchronization for Large-
Scale Networked Systems

Jeannie Albrecht, Christopher Tuttle,
Alex C. Snoeren, and Amin Vahdat,
University of California, San Diego

Jeannie Albrecht started by
addressing the inadequacy of
current barrier semantics in
large-scale distributed heteroge-
neous computing environments.
She argued that the current bar-
rier semantics is too strict to be
effective for emerging applica-
tions. For example, network
links may be unreliable and
machines may become unre-
sponsive. A traditional barrier
may lead to the situation where
progress is limited by the slowest
participant or where one must
wait for an indefinite time for

failed hosts.

Jeannie proposed several possi-
ble relaxations of strict barrier
synchronization (or partial bar-
rier), which are designed to
enhance liveness in loosely cou-
pled networked systems. She
proposed two partial barrier
semantics: early entry, which
allows nodes to pass through
without waiting for certain slow
participants, to prevent a few
nodes from slowing down the
whole process; and throttle
release, which releases the bar-
rier participants within a certain
interval, to avoid resource over-
load by preventing all processes
from simultaneously coming
into the critical section. Jeannie
also talked about several heuris-
tics to dynamically choose the
parameters used in partial barri-
ers, such as detecting the knee of
the curve (at which point the
arrivals are considered to be
slow) and finding the optimal
capacity of the critical section.

Jeannie presented their experi-
ence in adapting wide-area ser-
vices by using partial barriers for
synchronization. She showed
promising results. For instance,
using a semaphore barrier (a
special variation of a throttle bar-
rier) to perform admission con-
trol for parallel software install-
ation in Plush enabled an overall
completion rate close to the opti-
mal value achievable by manual
tuning.

Jeannie was asked about the flex-
ibility of their partial barrier
schemes. She answered that the
schemes should be very flexible,
since applications receive call-
backs when the events happen,
(i.e., when some nodes are
detected to be slow). The appli-
cations still have control of the
progress and thus have the flexi-
bility to make the best decisions.

INVITED TALK

were connected with layer 3, we
could use a router.) So we use
bridges. (Switches came from a
different direction, but they
ended up being the same thing
as bridges through parallel

evolution.)

The basic idea is that bridges lis-
ten promiscuously, learn who is
on each side of the bridge, and
only forward packets between
the two networks as appropriate.
But loops (cycles) are a disaster,
since layer 2 has neither hop
counts nor topology, so you get
exponential proliferation of
packets. (See Radia’s book for the
detailed story.)

Let’s compute a spanning tree
(i.e., subset the graph to make a
tree and do not include cycles),
only transmit along the links
that are in the spanning tree, and
save the other links for backups.

On bridges, the spanning tree
algorithm turns links on when
it thinks the primary links are

spanning tree, which is more
robust.

Then each RBridge encapsulates
packets to tunnel across the net-
work to other RBridges. Add a
layer 2 header at each RBridge,
with destination address set to
the last RBridge.

To fit this into MPLS, we needed
to map a 6-byte MAC addr into
19 bits. The trick is to use a nick-
name (mapping 6-byte MAC
addrs to 19-bit nicknames).

Q. What about overflowing max-
imum packet size?

A. This turns out not to be a
problem in practice. The original
max packet size was set because
the first Ethernet had a very lim-
ited amount of RAM, so the max
packet size was set where it is.
Everybody can handle larger
packets these days.

NETWORK AND OPERATING
SYSTEM SUPPORT

Routing Without Tears, Bridging

dead—so if you drop packets,
Without Danger

the spanning tree gets turned
back into a general graph. On
routers, if you drop packets,

Summarized by Aameek Singh

System- and Application-level Support
for Runtime Hardware Reconfiguration

Radia Perlman, Sun Microsystems
Laboratories

Summarized by Chris Small

Bridges, being at some level sim-
pler than routers (at least, re-
quiring less configuration), are
often thought to have come first.
Actually, routers came first,
bridges came later. And it’s a
myth that bridges are simpler:

Layer 1 relay = repeater
Layer 2 relay = bridge
Layer 3 relay = router

Wait, this doesn’t make sense:
layer 2 is defined as neighbor-to-
neighbor.

We'll see why this makes sense
later. Ethernet is a misnomer: It’s
not a network, it’s a multi-access
link. Layer 2 is flat, no topology.
If we need to connect two net-
works of machines connected
using a layer 2 protocol, we have
no topology information. (If they

the link gets shut down. Now
that everyone has converged on
IP (i.e., everybody is using the
same layer 3 protocol), why use
bridges at all? Why not routers?
Well, bridges are simpler to con-
figure—self-configuring, even.

With link state routing, you dis-
cover who you are connected to
and broadcast this to your neigh-
bors. Everybody collects this
information and forwards it on.
Eventually everybody has full
information about the entire
network.

There is a solution to the bridge/
spanning tree problem, called
RBridges. They can replace
bridges and are safer. Basically
they are bridges that gather
global link state information.
Each RBridge builds its own

on SoC Platforms

D. Syrivelis and S. Lalis, University of
Thessaly, Hellas

Dimitris Syrivelis presented this
paper describing an approach to
enable programs running on a
reconfigurable System-on-Chip
(SoC) to modify the underlying
Field-Programmable Gate Array
(FPGA) behavior at runtime.
Accomplishing this requires sup-
port from both the underlying
system and the application run-
ning on it. The reconfiguration is
achieved using a quick suspend-
resume mechanism, in which the
FPGA bitstream corresponding
to the new hardware layout is
stored in external memory; the
system saves its current runtime
state and initiates its FPGA
reprogramming (i.e., the entire
FPGA is reprogrammed from

101

102

scratch, as opposed to dynamic
partial reconfiguration). After
the reconfiguration, the system
restarts and manages all effects
and potential side effects of the
operation. Such reconfigurable
systems can offer significant
advantages over systems that
have soft-core CPUs, drivers, or
controllers. Changing the run-
time characteristics of underly-
ing units can help applications
adapt to different requirements
and boost overall performance,
though a number of issues such
as device addressing need to be
resolved. The applications inter-
act with the reconfigurable sys-
tem through a library that issues
device addition/removal re-
quests. The paper also discusses
two sample applications of a
Mandelbrot calculation and an
audio signal monitor.

boxes, can be deployed incre-
mentally, and minimize end-
point changes. The extensions
use in-band signaling (thus eas-
ing deployability), negotiations
(for an end-point to agree to use

INVITED TALK

An Introduction to Software Radio

Eric Blossom, Blossom Research;
Coordinator and Maintainer of the
GNU Radio Project

the extension—a support that is
already present in SSH and TLS),
and authentication of reconnec-
tion (to prevent hijacking). One
unanswered question is the secu-
rity analysis of these extensions.
The authors believe that the
extensions do not introduce any
new vulnerabilities, but a formal
evaluation has yet to be made.

Structured and Unstructured Overlays
under the Microscope: A Measurement-
based View of Two P2P Systems That
People Use

Y. Qiao and E Bustamante, North-
western University

Fabian E. Bustamante presented

Resilient Connections for SSH and
TLS

Teemu Koponen, Helsinki Institute for
Information Technology; Pasi Eronen,
Nokia Research Center; Mikko Sareld,
Helsinki University of Technology

a measurement-based study of
two file-sharing peer-to-peer
systems based on unstructured
(Gnutella-based) and structured
(Distributed Hash Table [DHT]—-
based Overnet system) topolo-
gies. The unstructured systems

Teemu Koponen presented this
paper, which addresses a com-
mon concern of SSH/TLS con-
nections dropping owing to a
network outage or travel. The
SSH and TLS protocols are ex-
tended to provide more resilient
connections that can withstand
changes in IP addresses and long
disconnections. The authors
argue that such mobility issues
are best handled at a higher ses-
sion layer as opposed to the data
link or network layers, the tradi-
tional approaches employed in
wireless handover or mobile IP
mechanisms. This is especially
true in the presence of long dis-
connection periods and absence
of any network infrastructure
such as mobile IP home agents.
The proposed protocol exten-
sions are made while ensuring
that they do not require any net-
work changes or middleware

do not dictate the topology of
the network, and thus are
thought to be more resilient to
peer churn (peers joining/leav-
ing the network). In contrast,
the structured systems offer
guaranteed and scalable O(log
N) lookup performance (where
N is the number of peers).

Based on observations, the au-
thors conclude that both systems
are efficient in handing churn;
even the Overnet DHT-based
system was surprisingly efficient.
Both systems had good perfor-
mance for exact-match (precisely
matching an object) queries of
popular objects, but Overnet had
almost twice the success rate for
querying shared objects. Key-
word searching was fast in both
systems, and load balancing was
better handled by Overnet.

Summarized by Rik Farrow

Software radio means using code
to modulate/demodulate radio
signals by using as little hard-
ware as possible. Instead of sol-
dering parts, you change the
code that is controlling the soft-
ware radio, providing extreme
flexibility, on-the-fly reconfigura-
tion, the ability to act as multiple
radios simultaneously, and a
much quicker development
cycle. Software radio is currently
used by the military, SIGINT,
research, and cellular companies.
Another potential use would be
public safety, where interoper-
ability of radios has been a prob-
lem (recall the Katrina disaster
relief fiasco).

Blossom introduced some basic
concepts required for building
any radio transceiver, with the
focus on doing this as much in
software as possible. Radio
waves range from kilohertz into
the gigahertz frequencies. To
properly digitize any signal, you
must sample it according to
Nyquist’s rule, at at least twice
the bandwidth. That sampling is
done in hardware using analog
to digital converters (ADC),
sampling rates as high as 6 GHz,
and sample sizes ranging from 8
to 24 bits. Think about that for a
moment. If you sample at 6 GHz
and 16 bits, we are talking about
12 GB/s. You won't be doing this
on your desktop system soon.
But researchers have recorded
HDTV signals and stored them
to disk, requiring a disk storage
capacity of 40 MB/s.

Not all radio requires such high
sampling rates (for example, FM
radio), and there are projects at
GNU Radio (www.gnu.org/
software/gnuradio) for an FM

receiver and a 1 Mb/s data trans-
ceiver. Blossom said that you can
buy hardware today that in-
cludes four ADC pairs, an FPLA
(for onboard computations, pro-
grammed using GNU radio), up
to four daughter cards that
include analog parts for filtering
signals from antennas, and a
connection via USB to your
desktop system. Using this setup
and a 2x2 phased array antenna
1.5 m on a side, Blossom has cre-
ated software that can track air-
craft using the signal from an
FM radio station antenna on a
mountaintop near his home in
Nevada. There are regulatory
issues when building your own
radio transmitters, but these can
be dealt with by using certain
frequencies and signal strengths.
Blossom called the FCC a bunch
of politicians, lawyers, econo-
mists, and engineers who regu-
late bandwidth as if radio were
stuck in the 1920s. A single VHF
TV channel wastes 6 MHz of
bandwidth, for example, and
compulsory channels use more
than all the bandwidth used by
cellular channels. Creative use of
software radios would make
much better use of bandwidth
without causing interference
with other forms of radio com-
munication.

GNU Radio uses data flow
abstractions, event-based over-
lay, message queues, and mes-
sages, all written in a hybrid of
C++ and Python. The software is
free and the hardware now costs
under $1,000 (www.ettus.com).
You can learn more at
http://comsec.com/wiki.

CLOSING SESSION

Real Operating Systems for Real-time
Motion Control

Trevor Blackwell, CTO, Anybots

Summarized by Marc Chiarini

Trevor Blackwell gave an inter-
esting and entertaining presenta-

tion about his experiences build-
ing robots and other devices that
are controlled by humans in real
time. Some useful areas for these
include performing dangerous
tasks (bomb squad and under-
water salvage), avoiding long-
term travel (Mars rover), and,
perhaps somewhat controver-
sially, supplying efficient on-
demand manual labor (e.g.,
someone half a world away does
your household chores, much to
the delight of homebodies and
eight-year-olds!).

The bulk of the talk comprised
four parts: fundamentals of
robotics and control, software
platforms and components, lev-
els of abstraction for controlling
robotic devices, and a discussion
of his construction of self-bal-
ancing motorized vehicles. For
the first part, Blackwell quickly
took the audience through a
primer on a spectrum of comput-
ing components and sensors,
from large to small, that serve
different purposes and are placed
on different sections of robots.
The joints on humanoid robots
are primarily pneumatic and are
actuated by software-controlled
proportional valves. Human con-
trol of the robots he builds, such
as those for experimenting with
bipedal motion, utilize common
sensors in gloves and cameras
that provide constant feedback
on hand and/or arm position.
Several videos comically demon-
strated the difficulty of real-time
robot control, particularly when
lag was involved (even human
sensory lag).

Blackwell moved on to show a
breakdown of his component-
based heterogeneous infrastruc-
ture for robotic experimentation.
He starts with a rack of BSD
servers responsible for perform-
ing complex motion vector and
other computations (mostly pro-
grammed in Python). These are
connected via wired (or wireless)
TCP/IP to embedded CPUs run-

ning UNIX and mounted at vari-
ous points on the robots. The
CPUs communicate with a set of
microcontrollers that drive the
actual hardware, valves, etc. By
tinkering with several parame-
ters in the embedded FreeBSD
kernel, it is possible to achieve
millisecond response times when
coordinating controllers. Timing
is very important to this task,
because even a slight lag in actu-
ation can result in, for example,
a robot losing balance, running
into a wall, or crushing an ob-
ject. This led naturally into a dis-
cussion about the levels of ab-
straction for motion control:
actuator, position control, posi-
tion control with feedback, high-
level, and fully autonomous. A
graph gave the audience a good
idea of what could be effectively
controlled by a human (given
human tolerances) or software at
each level: Using just actuators
and position control, a device at
the level of a Roomba vacuum
cleaner is achievable; with feed-
back, unmanned aircraft or an
arm on wheels can be controlled;
high-level computations might
permit reasonable bipedal mo-
tion, but a fully humanoid robot
would require a high degree of
autonomous control. There are,
of course, cracks in this picture
and not every device falls neatly
into a single category.

The last part of the presentation
focused on Blackwell’s originat-
ing hobby of building self-bal-
ancing vehicles such as his Euni-
cycle and Segway-like scooter.
Most of it turns out not to be
rocket science, but it still re-
quires a reasonable knowledge of
mechanical engineering and
classical physics. There were sev-
eral poignant questions asked
during the Q&A: Is building
these things an affordable en-
deavor for hobbyists? Scooters
and such are definitely reason-
able. Humanoid robotics, espe-
cially smaller projects, are quick-

103

104

ly becoming an option. Why did-

n't Blackwell incorporate force-

feedback in his projects? Latency

is a significant stumbling block,
especially for fine control. Why
did Blackwell ignore other bio-
logically inspired nonhuman
robot designs? The response was
that he was most interested in
robots that could do tasks de-
signed for people in environ-
ments designed for humanoids.
See http://anybots.com and
http://tlb.org/scooter.html for
further details.

2nd Workshop on Steps to
Reducing Unwanted Traffic on
the Internet (SRUTI ’06)

July 7, San Jose, CA

Thanks to sponsorship by AT&T,
Google, and Microsoft Research

Summarized by Anirudh
Ramachandran and John
Bethencourt and edited by
Balachander Krishnamurthy

Rob Thomas of Team Cymru
began the workshop with a scin-
tillating keynote address on

the underground economy.
Although much of the research
community working on un-
wanted traffic issues has focused
on technical aspects of various
subproblems, Rob brought his
direct experience with ongoing
study of the underground econ-
omy dominated by the criminal
elements trading in credit cards,
passwords, and the like. He
painted a grim picture of the
underground economy and
stressed the need for a closer
examination of activities com-
mon in that world that are large-
ly unknown to the research com-
munity.

The talk was laden with various
anecdotes and examples chosen
from actual IRC sessions, but the
thrust was to convey a sense of
the breadth of the activities
across the financial underpin-

nings of the worldwide economy,
which is increasingly dependent
on the Internet. Periodically, he
delved into details of some of
the attacks, motivations of the
criminals behind them, and their
varying technical expertise. Par-
ticipants often peddle compro-
mised hosts in more valuable
domains (such as .mil and .gov),
all the way up to gigabit back-
bone routers. The information
gathered from these hosts, such
as bank or credit card details and
entire identities (Social Security
cards, birth certificates, and visa
information), are traded.

The offers and exchanges are
performed on robust IRC
servers. The servers are often,
but not always, hosted in coun-
tries with lax cybercrime laws.
Honor among thieves is missing
but attempts to swindle are met
with retributions in the form of
attacks or, more often, documen-
tation of the fraud and banish-
ment from the trading commu-
nity. Team Cymru works closely
with many partners to reduce the
overall threat level. However,
there is significant pessimism,
given the extent to which crimi-
nal elements with significant
profit motives are able to stay
ahead in the technical arena,
where an overwhelming majority
of users are less knowledgeable
and thus susceptible to social
engineering.

The Rising Tide: DDoS from Defective
Designs and Defaults

Richard Clayton, University of
Cambridge, Computer Laboratory

The first technical paper session
focused on flooding and Distrib-
uted Denial of Service (DDoS)
attacks and its mitigation strate-
gies. Richard Clayton discussed
flooding arising from defective
software and firmware designs.
Defective design in software re-
sults in unwanted traffic, such as
malformed DNS traffic to root
nameservers, Network Time Pro-

tocol traffic from hard-coded
domain names, etc. Flawed de-
signs of components assumed to
be secure, such as wireless rout-
ers, cause unwanted attack traffic
to hosts on the Internet. The
author warns of other possible
sources of flooding (i.e., not from
compromised hosts) resulting
from design flaws. He suggests
distributing services, out-of-band
authorization, education, and
economic disincentives as some
of the ways to mitigate flaws in
design.

Efficient and Secure Source Authenti-
cation with Packet Passports

Xin Liu and Xiaowei Yang, University
of California, Irvine; David Wetherall
and Thomas Anderson, University of
Washington

This paper discusses the design
of a packet “passport” system to
securely authenticate the source
of a packet. The goal is to pre-
vent source address spoofing
and help filter unwanted hosts
in DDoS attacks. The technique
involves generating a Message
Authentication Code for each
packet over the spoofable fields
of a packet header, using pre-
shared keys to perform encryp-
tion. The paper also addresses
complications with such a
scheme, including key distribu-
tion, preventing replay attacks
(using bloom filters), and secure
bootstrapping using shim head-
ers piggybacked on ordinary
BGP route announcements.

Cookies Along Trust-Boundaries:
Accurate and Deployable Flood
Protection

Martin Casado, Stanford University;
Aditya Akella, University of Wisconsin,
Madison; Pei Cao, Stanford University;
Niels Provos, Google; Scott Shenker,
University of California, Berkeley,

and ICSI

In this paper, the authors pro-
pose “flow cookies” for limiting
DDoS attacks, building on previ-
ous work on capabilities and fil-

tering. The idea is a “hack” to
TCP by using the currently
unused timestamp field in the
header coupled with syn-cook-
ies. It uses cookie middleboxes
stationed ahead of susceptible
servers to complete TCP hand-
shakes with clients and issue
temporary capabilities. The pro-
posal includes the notion of a
“trust region”—ISP A trusts ISP
Bif A is a customer of B—to
facilitate broader, incremental
deployment of flow cookies
along trust boundaries, thus
providing benefit for the auton-
omous systems that choose to
deploy it.

In sum, the papers presented in
this session addressed both the
cause and effect sides of the
DDoS problem and proposed
novel, incrementally deployable
network-based solutions for
DDoS mitigation.

The second paper session con-
sidered several abuses of
resources, along with the diffi-
culties in making accurate mea-
surements of unwanted traffic.

before the message content is
processed. Upon receiving a new
connection, a receiver that main-
tains a history of past connec-
tions can examine whether that
server has contacted it before,
how long ago, whether it sent
spam earlier, etc. Based on this
information, some messages may
be deemed unlikely to be spam
and are delivered immediately.
Other messages may be queued
up for processor-intensive filter-

any redirection URLs. For one
sort of typo (a missing dot after
www), 30% of the generated
typo domains were found to be
registered. The vast majority of
typo-squatting was found to be
due to a relatively small number
of large-scale domain-parking
companies, including Applied
Semantics (formerly Oingo),
which is currently owned by
Google.

ing. An experimental evaluation
of seven months of email data in
a university environment re-
vealed that this technique pro-
vides 90% accuracy in spam

Tracking the Role of Adversaries in
Measuring Unwanted Traffic

Mark Allman, ICSI; Paul Barford,
University of Wisconsin; Balachander
Krishnamurthy and Jia Wang, AT&T
Labs—Research

identification without processing
the message body. Reducing the
number of messages that must
undergo expensive spam detec-
tion algorithms (which may take
as long as 10 seconds per mes-
sage) reduces delivery latency.

Strider Typo-Patrol: Discovery and
Analysis of Systematic Typo-Squatting
Yi-Min Wang and Doug Beck, Microsoft
Research, Redmond; Jeffrey Wang, PC-
Rethinking.com; Chad Verbowski and
Brad Daniels, Microsoft Research, Red-

Separating Wheat from the Chaff:
A Deployable Approach to Counter
Spam

Youngsang Shin, Minaxi Gupta, and
Rob Henderson, Indiana University;
Aaron Emigh, Radix Labs

mond

The authors examined the prac-
tice of registering domains simi-
lar (in the sense of string edit
distance) to existing, popular

The authors proposed two new
techniques for spam filtering
aimed at reducing Mail Transfer
Agent (MTA) processing load.
The first technique—token-
based authentication—involves
adding a cookie-like token as a
new header in outgoing mes-
sages. Any replies to such mes-
sages will naturally include the
token header and may be deliv-
ered immediately without fur-
ther spam filtering efforts. The
second technique, history-based
prioritization, utilizes various
characteristics of an incoming
SMTP connection from another
MTA that may be considered

domains. Such domains are used
in many ways: They may host a
page of ads (known as domain
parking) or, more maliciously,

be used for phishing or distribut-
ing malware. A systematic inves-
tigation of the problem of typo-
squatting as it currently exists on
the Internet has been carried out
via several automated tools. For
each of the most popular 10,000
domains (according to Alexa
traffic rankings), many typo-like
variations of the domain accord-
ing to several simple rules are
generated. For each typo that
resolved in DNS, an HTTP
request was sent, and the re-
sponse was recorded along with

The authors evaluated a number
of techniques used in malicious
traffic to foil network measure-
ment systems. They pointed out
the importance of network mon-
itoring systems such as intrusion
detection systems, firewalls,
honeypots, and application-level
filters in maintaining awareness
of malicious traffic. So far, mali-
cious traffic constructed in an
intelligent attempt to bypass or
disable such monitoring systems
has been given little considera-
tion; this paper attempts to fill
that gap. A variety of attacks on
monitoring systems were dis-
cussed, ranging from direct
attacks that attempt to compro-
mise or overload the monitoring
system itself to methods for
avoiding monitoring systems
while compromising other hosts.
To better understand these
attacks and take a principled
approach to countermeasures,
two metrics for classifying their
effects on measurement systems
were proposed: consistency and
isolation. These metrics were
shown to provide a taxonomy
dividing the polluting effects of
malicious traffic on measure-
ment systems into four groups.

The talks of the last paper ses-
sion concerned detection of bot-
nets used for various purposes

105

106

and possibilities for pushback
mechanisms that disable or
block bot software on the
infected host itself.

An Algorithm for Anomaly-Based
Botnet Detection

James R. Binkley and Suresh Singh,
Portland State University

The authors reviewed some prac-
tical botnet detection techniques
at a university. The university’s
dormitory networks are fre-
quently home to botnets,
because of the proliferation of
poorly secured Windows PCs.
These hosts launch DDoS
attacks. Since many botnet pro-
grams use IRC for coordination,
the authors have found that
inspecting layer 7 for anomalous
IRC traffic is useful in discover-
ing the botnets. The authors
define a “TCP work weight” met-
ric for each host on the network
as the ratio of TCP control pack-
ets sent to total TCP packets
sent. The metric is helpful in
revealing whether a particular
host is participating in DDoS
attacks.

Revealing Botnet Membership Using
DNSBL Counter-Intelligence

Anirudh Ramachandran, Nick Feam-
ster; and David Dagon, Georgia Insti-
tute of Technology

In this paper, the authors pro-
pose a different technique for
detecting botnets that have yet to
be used in malicious activities.
DNS-based blackhole lists
(DNSBL) are currently used to
keep track of hosts that relay
large amounts of spam and allow
MTAs to easily query this infor-
mation. Botnets that are not yet
listed in DNSBL fetch a much
larger price in underground mar-
kets such as those discussed in
the keynote address. Purchasers
of such botnets may first check
the IPs in DNSBL to verify that
the botnet is still useful for send-
ing spam. Two heuristics were

developed to detect such anom-
alous DNSBL query activity.
Running the heuristics against
actual DNSBL logs revealed that
these query patterns were in fact
present and that the hosts que-
ried were later used as spam
relays. This discovery provides a
method for passive botnet detec-
tion before the botnet is used for
spam relaying.

Leveraging Good Intentions to Reduce
Malicious Network Traffic

Marianne Shaw, University of Washing-
ton

Shaw discussed speculative
thoughts on a new strategy for
combating the compromised
machines in botnets. A large
majority of such systems are
owned by technically ignorant
but well-intentioned users
(“grandma”). Some of these
users may be willing to allow
some sort of backdoor system on
their host that will allow external
systems to block or disable mal-
ware on their machine should it
begin producing malicious traf-
fic. Since malware on the com-
promised system will naturally
attempt to disable any such
mechanism, it would have to be
located outside the control of the
host operating system. Proposed
were several locations, including
the firmware of cable modems,
NIC firmware, and inside a VM
wrapped around the host operat-
ing system. This last possibility
has been implemented as a re-
search prototype under the De-
nali VMM. The system devel-
oped provides a mechanism for a
host under DDoS attack to re-
turn a blocking request to the
enforcement mechanism in the
VMM. Experiments demon-
strated an acceptable, yet signifi-
cant, impact on the host’s net-
work performance.

Panel: Real World Experiences

Richard Clayton, Sean Donelan, Mark
Seiden, Rob Thomas

The workshop ended with a one-
hour panel discussion on real-
world problems and the social
issues involved in efforts to re-
duce malicious Internet traffic.
The panel opened with the ques-
tion “If you had a magic wand,
what one thing would you
change?” Responses focused on
increased law enforcement
efforts directed at the sorts of
communities discussed in the
keynote. It was acknowledged
that it would be difficult to track
down and prosecute all (or even
most) perpetrators of online
fraud, but any efforts that in-
creased the costs and risks of
online fraud would help serve as
a deterrent. Further discussion
centered on the role of user edu-
cation in improving the security
of end hosts and thereby reduc-
ing the numbers involved in
malicious activities. The general
consensus was that user educa-
tion in security is at worst a
hopeless task and at best of lim-
ited utility in certain environ-
ments. The lack of faith in end-
user education led to examining
whether more responsibility for
compromised hosts could be
placed on the service providers.
One problem in this approach is
the lack of an incentive for ser-
vice providers to combat prob-
lems affecting other networks by
cutting off the access of their
own paying customers who have
compromised hosts. The panel
discussion revealed the inherent
difficulty of eliminating mali-
cious Internet traffic without
reducing the ability of techni-
cally naive users to access net-
work services—the same net-
work services we are ultimately
trying to protect.

2006 USENIX/ACCURATE
Electronic Voting Technology
Workshop (EVT '06)

Vancouver, B.C., Canada
August 1, 2006

KEYNOTE ADDRESS

Who Won? Statistical Election Fraud

Detection and Its Limits

Walter R. Mebane, Jr.,, Cornell University

Summarized by Sarah P. Everett

Professor Walter Mebane began
his work in quantitative political
analysis in 2000, after the elec-
tion fiasco in Florida. He devel-

oped methods to detect statis-
tical anomalies in voting like

those that occurred owing to the
use of the butterfly ballot. After

the problems in the 2004 elec-

tion in Ohio, Mebane expanded
his work to use statistical anom-
alies to detect fraud in elections.
He looked at patterns in various
states, including Ohio and Flor-

ida, where he examined the
problems caused by the new
electronic voting machines.

Mebane’s project required him to
develop new statistical methods.

To use the previous methods,
much information would have

been needed about the election.
However, using a new tool based
on Benford’s Law, all one needs

to examine anomalies are the

actual votes. Mebane has applied
this method to the recent Mexico

election data.

Many political scientists became
interested in the usability of vot-
ing ballots and equipment after

the Florida butterfly-ballot
recount. To examine how the

butterfly ballot affected that elec-

tion, Mebane fit a statistical

model to votes in many counties.
For example, the method allows
a researcher to look at the proba-

bility that someone voted for

Buchanan. This model takes into

account voter registration by
political party and demographics
to predict how many votes
Buchanan should have gotten in
the county. When the model
does not approximate the
reported votes, it suggests that
something abnormal happened
in the county. For the presiden-
tial race, box plots of studentized
residuals can be made and out-
liers identified. In Mebane’s
analysis of the 2000 election
data, Palm Beach County was
approximately 35 standard devi-
ations away from the rest of the
data. This means that the
county’s count was not produced
in the same way as those of the
rest of the counties in Florida. In
another comparison, absentee
ballots (which were not butterfly
ballots) were compared to elec-
tion day ballots to see the per-
centages who voted for
Buchanan. Again, Palm Beach
County pops out of the data.

In Mebane’s publication “The
Wrong Man Is President,” he
looks at votes and overvotes in
the 2000 Florida election. Some
overvotes reflect confusion on
the part of the voter. This confu-
sion can be caused by, for exam-
ple, ballots that instruct voters to
vote on every page, although a
race may be split between pages.
In this election, two-mark and
multiple-mark overvotes were
enough to make up the differ-
ence between the totals for Bush
and Gore. In Florida, many types
of punchcards and optical scan
ballots were used. One can look
at the ratio of allocated ballots to
certified vote counts to see the
rate of overvoting in different
counties and on different tech-
nologies. Mebane explored how
many of the two-mark and mul-
tiple-mark overvotes were errors.
He used a method that looked at
Senate votes and produced true
votes. Without the overvote
errors, he found, Gore would
have gained over 46,000 votes

and Bush would have gained
approximately 11,000 votes.
This led to his belief that the
wrong man became president,
since Bush won by fewer than
600 votes in Florida.

The butterfly ballot is only one
example of how voting methods
can cause confusion. In Califor-
nia, an arrow paper ballot dis-
plays two languages, English and
either Chinese or Spanish. In
Ohio in the 2004 election, Cuya-
hoga County used punchcard
ballots in which the ballot order
of names was rotated. Many
precincts voted in the same
place, and some voters were
given a book that did not line up
with their ballot or their ballot
was processed through the
wrong counting machines. This
led to between 1,000 and 2,000
votes for Kerry being lost. Yet
another example of problems
was the 2004 Broward County
ballot. It was clearer than the
2000 Florida butterfly ballot, but
too much space was left between
the candidate’s name and where
the voter marked his choice.

For the 2006 election in Mexico,
Mebane is using Benford’s Law,
which examines the frequency of
digits, to look at the second digit
of vote counts. Results indicate
that certain states, such as Méx-
ico and Distrito Federal, show
irregularities. The irregularities
could be due to votes being
swapped or to votes being
thrown out as invalid. Mebane
used the residual outlier analysis
again and found that that one
district, Distrito Federal, stood
out for its many outliers.

When the residual vote rates by
machine type in the Ohio 2004
election data were studied, much
higher rates were found with
punchcards than with other
machine types. The rate of DREs
(direct recording electronic vot-
ing machines) fell between those
of punchcards and optical scan

107

108

machines. Overall, the residual
vote rates were not high enough
to change the election. A com-
parison of the 2002 gubernato-
rial votes to the 2004 presiden-
tial votes showed that Kerry had
higher turnout in areas where he
was strong, and the same was
true for Bush. The pattern
obtained by this analysis sug-
gested no tampering or switch-
ing of votes in Ohio.

Mebane also applied the Ben-
ford’s Law test of second digits to
the Florida 2004 election data.
He found that in Miami-Dade
County, electronic voting
machines do not seem to have
been problematic.

Mebane has also studied the
problem of auditability. It is true
that not all electronic machines
get equal numbers or kinds of
voters. This can be due to
reasons such as crowding. From
machine logs, you can tell when
each vote was cast. Most
machines are used throughout
the day, but some are used for
only a few hours. This means
that all machines are not used
randomly, as may have been
assumed. This is why precincts
satisfy Benford’s Law but
machines do not. Of course,
these records depend on the
accuracy of machine logs, that is,
to know where the machines
were, you need a map of the
machines’ locations on election
day.

When Mebane studied the
machine allocation problem in
Ohio in 2004, he looked at the
correlation with ballots cast per
voting machine. The number of
ballots cast per machine is lower
in areas with higher proportions
of African-Americans. Although
the ballots were longer in those
areas, the difference does not
explain the discrepancy in num-
ber of registered voters per
machine, since in areas where

there are higher numbers of
African-American voters, polls
close later. Mebane’s analysis
indicates discrimination in the
allocation of voting machines.

Mebane uses an assortment of
statistical tools that can help
assess how voting machines
affect voting accuracy, trans-
parency, fraud, etc. Researchers
can look at machines in connec-
tion with administrative practice
and decisions, how they are used
in polling places, and how peo-
ple (both voters and poll work-
ers) respond to machines. Any of
these analyses rely on substantial
non-quantitative knowledge in
addition to the statistics.

Q: You didn’t mention exit polls.
Do you view them negatively or
positively in this?

A: Unless people steal 90% of the
votes, exit polls are mostly use-
less. There was a bias in the 2004
exit polls, a demographic bias
and a large sampling error.

Q: About your conclusions: you
examined paper and machine
ballots?

A: No, I didn’t say we should
move to paper. I'd recommend
optical scan ballots, where the
voter gets feedback, the error is
reduced, and you have the bal-
lots for recount.

Q: Could you talk more about
using Benford’s test?

A: It’s best to use the second
digit, because the test is almost
never satisfied by the first digit.
If you look at the error rates of
when someone means to vote yes
and actually votes no and vice
versa, then you get this second-
digit pattern. If you simulate
clumping of votes, you get the
second-digit pattern.

USABILITY

Summarized by Aaron Burstein

Making Ballot Language
Understandable to Voters
Sharon J. Laskowski, NIST;
Janice (Ginny) Redish, Redish &
Associates, Inc.

The authors examined more
than 100 ballots from all 50
states and the District of Colum-
bia, as well as four DRE voting
systems, to determine whether
their instructions and, in the
case of the DREs, system mes-
sages conformed with best prac-
tices for writing instructions.
These best practices were drawn
from disciplines such as cogni-
tive psychology, linguistics, and
the study of human-computer
interaction. Laskowski reported
that most, if not all, ballots she
and Redish examined violated
some best practices. Laskowski
highlighted instances of instruc-
tions appearing after voting
selections; opaque, legalistic lan-
guage (e.g., “Choose such candi-
date as you desire”); and instruc-
tions whose meaning was
obscured by the use of double
negatives (“If that oval is not
marked, your vote cannot be
counted for the write-in candi-
date”). In addition, some DREs
generated system messages that
are unlikely to help voters or
poll workers understand what
problem the DRE system has
detected or how to correct it. In
addition to recommending that
ballot instructions be phrased in
clear, direct language and that
voters be warned of the conse-
quences of an action before they
have an opportunity to take that
action, Laskowski outlined sev-
eral directions for further
research. This research should
include gaining a better under-
standing of how voters read a
ballot and determining whether
voters understand commonly

used ballot terms, such as “cast a
ballot,” “partisan,” “contest,”
and “race.”

A workshop participant asked
whether voters actually read bal-
lot instructions; Laskowski
replied that she did not know,
but that if voters do read instruc-
tions, they should be as clear as
possible. Another participant
asked whether election officials
should considering using pic-
tures and images, rather than
prose, to convey ballot instruc-
tions. Laskowski pointed out
that the interpretation of images
varies widely with cultural back-
ground but that some research
into this area might be war-
ranted. Finally, Laskowski stated
that some of the guidelines
developed—excluding ballot lay-
out guidelines—in this work will
be incorporated in Version 2 of
the Voluntary Voting System
Guidelines (VVSG).

A Comparison of Usability Between
Voting Methods

Kristen K. Greene, Michael D. Byrne,
and Sarah P. Everett, Rice University

Kristen Greene reported the
results of the authors’ usability
studies, measuring efficiency
(ballot completion time), accu-
racy (error rates), and satisfac-
tion (a subjective response), on
three traditional voting methods:
the open response ballot, the
bubble ballot, and the mechani-
cal lever machine. (An open
response ballot provides a pair of
parentheses within which a voter
marks his or her selection but
does not indicate what kind of
mark the voter should use,
whereas a bubble ballot provides
an oval that must be darkened to
select a candidate.) This study
provides a baseline of traditional
voting system usability against
which electronic voting systems
can be compared. A total of 36
subjects participated: 21 female,
15 male; ages 18-56; 23 Rice
University undergraduates and

13 subjects from the general
population of Houston, Texas.
The ballot consisted of 27 races
between fictional candidates.
Subjects in the study used each
ballot type and voted using vary-
ing levels of information about
the candidates. Greene reported
that the three ballot types were
generally equally efficient. The
ballot types also did not generate
statistically different error rates,
but the error rate was rather
high: 17% of all ballots con-
tained at least one error. Finally,
subjects preferred the bubble
ballot to the open ballot or lever
machines.

Workshop participants asked
several questions about the
study’s design and the composi-
tion of its subjects. Greene stated
that subjects from outside Rice
were recruited though ads on
Craigslist and in the Houston
Chronicle classified section; the
latter subjects displayed an error
rate that was significantly higher
than the average. The study con-
tained a control for prior voting
experience, because elections in
the Houston area have previ-
ously used punchcard ballots.
Finally, in response to questions
about differences in voters’
incentives in an experimental
study versus a real election,
Greene acknowledged that vot-
ers might take additional care to
vote accurately in a real election
but noted that neither voters nor
test subjects received any tangi-
ble incentive to vote accurately.
Finally, Greene believes that it is
unlikely that governments will
devote additional resources to
voter conditioning in order to
reduce error rates.

The Importance of Usability Testing of
Voting Systems

Paul S. Herrnson, University of Mary-
land; Richard G. Niemi, University of
Rochester; Michael J. Hanmer, George-
town University; Benjamin B. Bederson,
University of Maryland; Frederick G.
Conrad and Michael Traugott,
University of Michigan

Paul Herrnson reported the
results of usability tests he and
his co-workers performed on
several electronic voting sys-
tems: ES&S Model 100 (paper
optical scan ballot), Diebold
AccuVote-TS (touchscreen
machine with smartcard activa-
tion), Avante Vote Trakker
(touchscreen with a readable
paper printout for verification),
Zoomable (a touchscreen proto-
type developed specifically for
this study), Hart Intercivic eSlate
(electronic display with a
mechanical dial and buttons for
navigation and selection), and

Nedap LibertyVote (full ballot
electronic display with mem-
brane buttons to select candi-
dates). This study was restricted
to assessing usability and accu-
racy in order to develop recom-
mendations for those aspects of
electronic voting systems. Herrn-
son devoted most of his presen-
tation to a field election that
involved approximately 1,500
voters but noted that his group’s
study also included an evalua-
tion of the six voting systems by
human-computer interaction
experts, a laboratory experiment,
and field experiments in Florida
and Michigan. Subjects in the
field studies were recruited from
such diverse locations as inner
cities, shopping malls, universi-
ties, and business offices. They
were asked to complete a ballot
with 18 races (more than one
selection was allowed in some
races), 4 ballot questions, and a
write-in option. Study partici-
pants indicated a fairly high level
of satisfaction with all machines,

109

10

with some preference for the
Diebold system and significant
dissatisfaction with the Hart sys-
tem. Regarding accuracy, Herrn-
son reported that study partici-
pants successfully cast their
ballot for the candidate they
wanted 97-98% of the time.
Study participants reported that
the designs of the ES&S system
and the Avante system made it
difficult to change their selec-
tions. Herrnson stated that few
voter characteristics influenced
satisfaction, while more educa-
tion and computer experience,
lower age, and greater profi-
ciency with English correlated
with fewer help requests and
greater accuracy. Finally, Herrn-
son reported that most field
study participants ignored the
paper verification features of the
ES&S and Avante systems and
actually reported a lower level of
confidence in those systems than
in the Diebold and Zoomable
systems.

In response to a question from a
workshop participant about
accessibility testing, Herrnson
said that he and his co-workers
had intended to study this aspect
of voting systems but lost the
part of their budget that was
allocated for doing so. Herrnson
also noted that his team did not
have access to scanners for opti-
cal ballots; the researchers had to
tally those ballots by hand.

TECHNOLOGIES

Summarized by Dan Sandler

Secure Data Export and Auditing
Using Data Diodes

Douglas W. Jones and Tom C.
Bowersox, The University of lowa

In order to be communicated to
the public, election results must
be moved from secure tabulation
facilities to public networks.
Current best practices involve
convoluted chains of dissimilar
and obscure computer networks,

or physically transported USB
storage devices. However com-
plex this chain of networks or
disk swaps, each link is bidirec-
tional, so unauthorized commu-
nication from the public into the
secure inner network is possible.

To create a truly secure transmis-
sion system, the authors have
devised a data diode, a one-way
optical communications
medium. What distinguishes the
data diode from previous similar
approaches is its extreme sim-
plicity: it uses no black boxes or
even transistors, so its circuits
can be understood and directly
inspected. Comprehensive docu-
mentation describes the purpose
of each component and each
trace in the system; the authors
call upon all designers of ostensi-
bly verifiable components to do
likewise.

A question was asked about tim-
ing channels; clearly the diode
does not hinder these, and our
best tool remains scrupulous
analysis of source code on the
transmitting side (including
deep examination of the serial
hardware). Any access to real-
time clocks is a red flag. Other
measures such as a Faraday cage
around the entire tabulation
room were proposed by the audi-
ence. A pointed question called
the big picture “hopeless” even if
the diode is a localized success.
Jones stressed that the focus of
this work is specifically to elimi-
nate the air gap in data transmis-
sion, a place where jurisdictions
currently make very bad mis-
takes. By solving this problem
we force attackers to resort to
other, more challenging attacks.

Simple Verifiable Elections
Josh Benaloh, Microsoft Research

True voter verifiability: My vote
and all other votes are cast as
intended and counted as cast.
VVPAT (Voter Verified Paper
Audit Trail) in practice comes
nowhere near this goal, but mis-

leadingly implies that it does. We
can achieve the goal with com-
plex crypto, but can we achieve
it in a way that is understandable
and usable by typical voters?
Obviously, a completely trans-
parent election—for example,
votes posted on a public Web
site—achieves this goal, but at
the cost of secrecy.

A cryptographic voting system
that is trustable and secret
should be conceptually simple
and require no more of voters
than current DREs do. Such a
system allows voters to cast
encrypted ballots and then verify
that those encrypted ballots were
tallied correctly (e.g., using reen-
cryption mix nets). When
encrypting ballots with poten-
tially untrusted devices, we
might use “unstructured audit-
ing,” that is, in advance of the
election we might allow some
voters to create an arbitrary
number of encrypted ballots
with a device that might be vul-
nerable. The voter can then
choose either to cast each ballot
or take it home to check its
encryption. A tiny fraction of
voters choosing to undertake
this audit should detect even a
1% rate of defective encrypted
ballots.

Question: With this system I can
verify that my own vote was cast
and counted correctly, but not
others? Answer: You do not
know how others voted, but you
can still verify that all others
were counted correctly.

Prerendered User Interfaces for
Higher-Assurance Electronic Voting

Ka-Ping Yee, David Wagner, and Marti
Hearst, University of California,
Berkeley; Steven M. Bellovin, Columbia
University

Ping Yee offered a voting
machine design in which almost
all of the user interface is preren-
dered long before election day.
This design helps jump a num-
ber of hurdles facing voting

machine vendors wishing to
develop secure systems. The first
is accessibility vs. security: mak-
ing an accessible voting system
requires a lot of potentially faulty
user-interface code. By preren-
dering entire ballots we can
remove a lot of this UI code from
the trusted voting machine,
decoupling UI design from secu-
rity. Anyone could download a
prerendered ballot and try it at
home, for education or practice
or to verify its correctness.

The second issue is that of pro-
prietary code. Vendors would
prefer not to disclose code. By
reducing the size of the security
kernel, vendors can get away
with disclosing less. Third, the
size of the code base directly
affects verification time and
complexity; a smaller security
kernel is clearly a win here.
Finally, vendors worry about the
constantly changing require-
ments for voting machines and
the impact on the code base,
which must be reverified for
each change. The authors argue
that a great many of such
changes occur in the ballot-
design phase of preparing an
election, which in their design is
removed from the trusted secu-
rity kernel. The goal is to reduce
by an order of magnitude the
voting-specific trusted software,
with similar or better usability
than current systems. The
authors’ solution consisted of
293 lines of Python and a few
libraries.

A member of the audience
expressed concern that usability
testing isn’t being substantially
improved by rendering ballots
earlier. Ping replied that official
usability testing is still essential,
but is no longer the last word on
the matter, since any constituent
is able to download and examine
the ballot ahead of time. While it
doesn’t reproduce the experience
of using the voting machine,

publishing ballot pictures does
allow anyone to vet the interac-
tion. In response to another
question, Ping explained that
they don't currently plan to
apply his techniques to paper
(e.g., opscan) ballots. Another
participant suggested that the
authors investigate usability
studies of QWERTY (used in the
prototype for write-ins) with
other free text-input mecha-
nisms. Finally, Ping reassured a
questioner that candidate rota-
tion, i.e., shuffling, is possible
with their system by prerender-
ing all the permutations and
including them with the final
ballot.

Ballot Casting Assurance

Ben Adida, MIT; C. Andrew Neff,
VoteHere

Ben Adida began by saying that
voters will, or should, always
have concerns about the correct-
ness of voting machines until we
offer them end-to-end, voter-
centric verification. Voters
should have a reasonable assur-
ance that their votes are cast as
intended, counted as cast, and
not susceptible to coercion or
purchase. This talk addresses the
cast-as-intended problem, in
which we attempt to safeguard
the voter’s intent until it reaches
the ballot box. VVPAT systems
address a portion of the chain-of-
custody problem—they allow us
to ignore the correctness and
correct deployment of the voting
machine code—but they do not
guarantee that results cannot be
modified or that they are stored
and transported safely.

In VVPAT terms, Ballot Casting
Assurance (BCA) means that bal-
lots are cast as intended and the
chain of custody is perfect. Such
a system might force the voter to
revote until the ballot is verified
to be acceptable and then give
her an authentic receipt that
could later be used as evidence
in a challenge of count accuracy.

Invalid receipts would signal the
presence of faulty or malicious
voting equipment. The Mark-
Pledge and Punchscan systems
follow this model. Finally, it is
not enough merely to detect
errors; we must also supply solid
policies for error recovery. The
voter’s hand-off of the ballot
must not be our last opportunity
to deal with errors. As David Dill
has said, “The difference
between using computers for
voting and for flying airplanes is
that you know when the airplane
crashes.”

Audience questions prompted
discussion of the usability of
secure election receipts, espe-
cially for large contests. Many
options are available to address
this particular problem, but only
usability testing will tell us for
sure which work best for voters.
The threat model of the system
was clarified: the described sys-
tems are intended to detect any
malicious software in the voting
stack.

POLICY & PRACTICE

Summarized by Ka-Ping Yee

Transparency and Access to Source
Code in Electronic Voting

Joseph Lorenzo Hall, University of
California, Berkeley

Transparency and the election
process are the foundations of a
representative democracy. Hall’s
definition of “transparency” has
four parts: accountability, public
oversight, comprehension, and
access to the entire process.
“Open source” can refer to the
open source license or to the
development model. Source code
can also be disclosed even if the
disclosure doesn’t include all the
components of the official Open
Source Definition. Though com-
puter scientists often say that all
voting code should simply be
made open source, the issue is

m

12

more complex than that: it has
both positive and negative effects
on security and on the market.

Source availability offers several
benefits: more people can exam-
ine the code; you can build the
code yourself and debug it; you
can use automated tools to eval-
uate it. However, software alone
is not enough. For a full evalua-
tion you need access to the com-
plete system in its running envi-
ronment. Some states are starting
to require code escrow and dis-
closure. Open source also brings
risks. It exposes vulnerabilities
to the public, and it would
require a process for handling
flaws discovered just before an
election.

Barriers to disclosing source
code for voting technology
include: (1) regulations require
system recertification whenever
code changes; (2) certification
and contractual performance
bonds are expensive; and (3) to
field a product, you need more
than just code development. It
remains an open question how
we can level the playing field for
open source or disclosed source.
As an incentive, the government
might offer a prize in a Grand
Challenge to develop an open
source voting system, subject to
some requirements. It may be
very difficult for vendors to
move to a disclosed source
regime, because their code was-
n't designed to be exposed; it
may contain patented work or
work improperly copied from
other sources, for example.

Question: If you designed your
system not thinking about it
being opened, what will you do
when it finally leaks? Even when
there are strong controls on
source code access, it seems
often to be leaked or reverse-
engineered. Answer: Maybe we
need to put vendors on notice
that you need to design your
code as if you have nothing to

hide. Maybe it’s time to start
now. An audience member com-
mented that with regard to foun-
dations for transparency in a rep-
resentative democracy, we might
look at Arrow’s impossibility the-
orem: in order to verify the con-
ditions of the theorem, such as
that the decision is not imposed
or that the decision responds
positively to changes in individ-
ual preference, you would need
transparency. Another partici-
pant commmented that Arrow’s
theorem is about the process of
vote tallying, but you could dis-
close the tallying software with-
out disclosing the vote selection
software.

Question: What do you think
would happen if federal legisla-
tion immediately mandated
software disclosure? Answer: Be-
cause vendors compete on razor-
thin margins, you may see an
exodus. But some vendors are
more confident about the quality
of their code than others. I'm not
really sure what would happen.

A Critical Analysis of the Council of
Europe Recommendations on E-Voting

Margaret McGaley and J. Paul Gibson,
NUI Maynooth, Ireland

McGaley explained that the
Council of Europe, CoE, is an
organization of 46 member states
and is not directly connected
with the EU. In 2003 the CoE
created a committee to develop
legal, operational, and technical
standards for electronic voting.
E-voting was first deployed in
Europe in 1982 (in the Nether-
lands) and then in 1991 (in Bel-
gium) and has since been tested
in the U.K., Italy, Spain, and Ire-
land. The U.K. and Ireland are
pulling back from their more
ambitious plans for various rea-
sons, including some detected
fraud in postal voting.

The U.S. standards effort is older.
The first FEC (Federal Election
Commission) standards were

produced in 1990, whereas the
CoE document is only two years
old. The U.S. standards are nom-
inally voluntary but in many
states are legally required. In
Europe, only Belgium appears to
be using the CoE standards,
which are shorter and less
detailed than the FEC standards.

The authors evaluated the CoE
standards from a software engi-
neering perspective: they exam-
ined consistency, completeness,
scope, over/underspecification,
redundancy, maintainability, and
extensibility, Many problems
were uncovered: Some of the
standards are vague, ill-defined,
or nonsensical, although it is
conceivable that better systems
might fail to meet these stan-
dards while worse systems might
pass.

The authors propose a restruc-
turing of the standards, catego-
rizing them according to the five
basic rights identified in the orig-
inal standard: that they ensure
universal, equal, free, secret, and
direct suffrage. Organizing the
standards in this fashion pre-
vents inconsistency and redun-
dancy, maximizes coverage, and
makes them easier to understand
and use. In their proposed
restructuring, some of the stan-
dards are merged, some are
revised or omitted, and some
additional standards have been
added.

Question: You mentioned bug-
tracking software in your pro-
posed standard. Were you think-
ing about soliciting comments
during the use of a voting system
and incorporating the changes
during a further development
process? Answer: What we had
in mind is that each bug would
have an identifier and would be
traceable as to how it was
resolved or not resolved. The
system purchased by the Irish
government didn’t have any sort
of bug-tracking system, so after a

problem was reported, it was
hard to trace. Question: Is any-

body at the CoE listening to your

recommendations? Answer:
They are: one of the members
read our paper and was very
interested in it. Question: Does
the CoE ever solicit input from
nonmember nations or interna-
tional organizations? Answer:
Yes. In fact, Canada is a regular
participant!

An Examination of Vote Verification
Technologies: Findings and Experi-
ences from the Maryland Study

Alan T. Sherman, Aryya Gangopad-
hyay, Stephen H. Holden, George
Karabatis, A. Gunes Koru, Chris M.
Law, Donald E Norris, John Pinkston,
Andrew Sears, and Dongsong Zhang,
University of Maryland, Baltimore
County

Sherman explained what his
group found when they evalu-
ated four vote verification prod-
ucts: a Diebold VVPAT, an MIT
audio system developed by Ted
Selker, a software system called
Scytl Pnyx.DRE, and the Vote-
Here system based on crypto-
graphic receipts. By 2007 Mary-

land will have spent $96 million
on Diebold systems. The authors
believe that governments should

spend some fraction—even if
only 2 percent—of that money
on voting system research. Their
study looked only at how vote
verification products worked
with the Diebold voting system,
not at whether the voting system
as a whole is secure. Adding veri-
fication to the system would be
challenging, since it would add
complexity and would require
that Diebold revise their
software.

The authors evaluated each of
the verification products in
terms of reliability, functional
completeness, accessibility, data
management, election integrity,
implementation difficulty, and
impact on voters and proce-
dures. Each product could prob-
ably improve the situation some-
what, but none is a fully ready
product. For example, the
Diebold VVPAT can’t be used by
blind voters, and the MIT-Selker
audio system can’t be used by
deaf voters. Also, integration
with the DRE machine can be
complicated; indeed, the Scytl
Pnyx.DRE system can cause the
DRE to fail. The VoteHere cryp-
tographic system provides strong
election integrity and is imple-

mented in high-quality open
source software. However, it may
be more difficult for the user.
Parallel testing, a powerful tech-
nique, was found it to be in some
ways better than these vote veri-
fication products.

Question: I don’t share your con-
fidence in parallel testing. It
doesn’t seem particularly diffi-
cult for malware to beat parallel
testing, even if it’s conducted
fairly carefully. Answer: The easi-
est way to subvert parallel test-
ing is to load the wrong software
onto all the machines and then
signal the machines that are
being tested to operate correctly.
[don’t mean to imply that paral-
lel testing is perfect, but I do
believe it meaningfully raises the
bar by addressing the thread of
systemic failure. Question: 'm
surprised you rated Scytl higher
in terms of election integrity
than VVPAT. Could you elabo-
rate on why? Answer: Scytl uses
cryptography to protect the
information in more places, as
compared to the chain of cus-
tody issues of a VVPAT.

13

Refereed Papers Track

Sponsored by USENIX, The Advanced Computing Systems Association
http://www.usenix.org/usenix07

June 17-22, 2007

Important Dates

Submissions due: Tuesday, January 9, 2007, 11:59 p.m.
PST (hard deadline)

Notification to authors: Monday, March 19, 2007

Final papers due: Tuesday, April 24, 2007

Program Committee

Program Co-Chairs
Jeff Chase, Duke University
Srinivasan Seshan, Carnegie Mellon University

Program Committee

Atul Adya, Microsoft Research

Matt Blaze, University of Pennsylvania

George Candea, EPFL

Miguel Castro, Microsoft Research, Cambridge

Fay Chang, Google

Nick Feamster, Georgia Institute of Technology

Marc Fiuczynski, Princeton University/PlanetLab

Terence Kelly, Hewlett-Packard Labs

Eddie Kohler, University of California, Los Angeles,
and Mazu Networks

Z. Morley Mao, University of Michigan

Erich Nahum, /BM T.J. Watson Research Center

Jason Nieh, Columbia University

Brian Noble, University of Michigan

Timothy Roscoe, Intel Research, Berkeley

Emin Giin Sirer, Cornell University

Mike Swift, University of Wisconsin, Madison

Renu Tewari, IBM Almaden Research Center

Win Treese, SiCortex, Inc.

Andrew Warfield, Cambridge University and
XenSource

Matt Welsh, Harvard University

Yuanyuan Zhou, University of lllinois at Urbana-
Champaign

Overview

Authors are invited to submit original and innovative papers
to the Refereed Papers Track of the 2007 USENIX Annual
Technical Conference. We seek high-quality submissions that

Santa Clara, California, USA

further the knowledge and understanding of modern com-
puting systems, with an emphasis on practical implementa-
tions and experimental results. We encourage papers that
break new ground or present insightful results based on expe-
rience with computer systems. The USENIX conference has a
broad scope.

Specific topics of interest include but are not limited to:

Architectual interaction

* Benchmarking

* Deployment experience

¢ Distributed and parallel systems

¢ Embedded systems

* Energy/power management

¢ File and storage systems

Networking and network services

Operating systems

Reliability, availability, and scalability
Security, privacy, and trust

System and network management

Usage studies and workload characterization
Virtualization

¢ Web technology

* Wireless and mobile systems

Best Paper Awards

Cash prizes will be awarded to the best papers at the confer-
ence. Please see the USENIX Compendium of Best Papers
(http://www.usenix.org/publications/library/proceedings/best
_papers.html) for examples of Best Papers from previous
years.

How to Submit

Authors are required to submit full papers by 11:59 p.m. PST,
Tuesday, January 9, 2007. This is a hard deadline; no exten-
sions will be given.

All submissions for USENIX Annual Tech *07 will be
electronic, in PDF format, through the conference Web site.
Annual Tech 07 will accept two types of papers:

Regular Full Papers: Submitted papers must be no
longer than 14 single-spaced pages, including figures,
tables, and references, using 10 point font or larger. The

first page of the paper should include the paper title and
author name(s); reviewing is single-blind. Papers longer
than 14 pages will not be reviewed.

Short Papers: Authors may submit short papers that
publicize early ideas, convey results that do not require
a full-length paper, or advocate new positions. The same
formatting guidelines apply, except that short papers are
at most 6 pages long. Accepted short papers will be
published in the Proceedings and included in the Poster
Session, and time will be provided in Short Papers Ses-
sions for brief presentations of these papers.

In addition, the program committee may accept some reg-
ular submissions as 6-page short papers if they judge that the
submission is interesting but do not accept it as a full-length
paper. Please indicate explicitly if you do not wish your reg-
ular paper to be considered for acceptance as a short paper.

Specific questions about submissions may be sent to
usenix07chairs@usenix.org.

In a good paper, the authors will have:

attacked a significant problem

¢ devised an interesting and practical solution

clearly described what they have and have not imple-
mented

* demonstrated the benefits of their solution

articulated the advances beyond previous work

drawn appropriate conclusions

Simultaneous submission of the same work to multiple
venues, submission of previously published work, and pla-
giarism constitute dishonesty or fraud. USENIX, like other
scientific and technical conferences and journals, prohibits
these practices and may, on the recommendation of a pro-
gram chair, take action against authors who have committed
them. In some cases, program committees may share infor-
mation about submitted papers with other conference chairs
and journal editors to ensure the integrity of papers under
consideration. If a violation of these principles is found,
sanctions may include, but are not limited to, barring the
authors from submitting to or participating in USENIX con-
ferences for a set period, contacting the authors’ institutions,
and publicizing the details of the case.

Note that the above does not preclude the submission of a
regular full paper that overlaps with a previous short paper or
workshop paper. However, any submission that derives from
an earlier workshop paper must provide a significant new
contribution, for example, by providing a more complete
evaluation.

Authors uncertain whether their submission meets
USENIX’s guidelines should contact the program chairs,
usenix(07chairs@usenix.org, or the USENIX office,
submissionspolicy@usenix.org.

Papers accompanied by nondisclosure agreements cannot
be accepted. All submissions are held in the highest confi-
dentiality prior to publication in the Proceedings, both as a
matter of policy and in accord with the U.S. Copyright Act
of 1976.

Authors will be notified of paper acceptance or rejection
by Monday, March 19, 2007. Accepted papers may be shep-
herded by a program committee member. Final papers must
be no longer than 14 pages, formatted in 2 columns, using 10
point Times Roman type on 12 point leading, in a text block
of 6.5" by 9".

Note regarding registration: One author per accepted
paper will receive a registration discount of $200. USENIX
will offer a complimentary registration upon request.

Poster Session

The poster session, held in conjunction with a reception, will
allow researchers to present recent and ongoing projects. The
poster session is an excellent forum to discuss new ideas and
get useful feedback from the community. The poster submis-
sions should include a brief description of the research
idea(s); the submission must not exceed 2 pages. Accepted
posters will be put on the conference Web site; however, they
will not be printed in the conference Proceedings.

Birds-of-a-Feather Sessions (BoFs)
Birds-of-a-Feather sessions (BoFs) are informal gatherings
organized by attendees interested in a particular topic. BoFs
will be held in the evening. BoFs may be scheduled in
advance by emailing bofs@usenix.org. BoFs may also be
scheduled at the conference.

Training Program
USENIXs highly respected training program offers inten-
sive, immediately applicable tutorials on topics essential to
the use, development, and administration of advanced com-
puting systems. Skilled instructors, hands-on experts in their
topic areas, present both introductory and advanced tutorials.
To provide the best possible tutorial slate, USENIX con-
tinually solicits proposals for new tutorials. If you are inter-
ested in presenting a tutorial, contact Dan Klein, Training
Program Coordinator, tutorials@usenix.org.

Program and Registration Information

Complete program and registration information will be avail-
able in March 2007 on the Annual Tech *07 Web site, both as
HTML and as a printable PDF file. If you would like to
receive the latest USENIX conference information, please join
our mailing list at http://www.usenix.org/about/mailing.html.

Last Updated: 8/30/06

HotOS XI

Announcement and Call for Papers “SENIX

11th Workshop on Hot Topics in Operating Systems

Sponsored by USENIX, The Advanced Computing Systems Association, in cooperation with
the IEEE Technical Committee on Operating Systems (TCOS)

http://www.usenix.org/hotos07

May 7-9, 2007
Important Dates

Paper submissions due (hard deadline): January 4,
2007

Notification to authors: March 6, 2007

Final position papers due: April 10, 2007

Publication of papers for participants: April 17, 2007

Conference Organizers

Program Chair

Galen Hunt, Microsoft Research

Program Committee

George Candea, Ecole Polytechnique Fédérale de
Lausanne

Landon Cox, Duke University

Armando Fox, University of California, Berkeley

Rebecca Isaacs, Microsoft Research Cambridge

Rodrigo Rodrigues, Instituto Superior Técnico and
INESC-ID

Margo Seltzer, Harvard University

Michael Swift, University of Wisconsin, Madison

Amin Vahdat, University of California, San Diego

David Wetherall, Intel Research and University of
Washington

John Wilkes, Hewlett-Packard Labs

Emmett Witchel, University of Texas at Austin

Yuanyuan Zhou, University of Illinois at Urbana-
Champaign

Overview

The field of Operating Systems research is more rele-
vant today than ever. Massively multi-core architec-
tures, field programmable hardware, virtual machine
monitors, safe languages, security, and dependability
requirements are all in significant flux while processor
speeds have stagnated. Decades-old assumptions about
computer architecture and the computing environment
are being challenged or changing.

Catamaran Resort Hotel, San Diego, CA

In the context of these dramatic changes, the 11th
Workshop on Hot Topics in Operating Systems will
bring together people conducting innovative work in
the systems area for three days of interaction, with all
attendees being active participants and contributors
throughout the workshop. Continuing the HotOS tradi-
tion, this workshop will be a place to present and dis-
cuss new ideas about computer systems and how
technological advances and new applications are
shaping our computational infrastructure.

We request submissions of position papers that pro-
pose new directions of research, advocate nontradi-
tional approaches to old (or new) ideas, or generate
insightful discussion. HotOS takes a broad view of
what the systems area encompasses and seeks contribu-
tions from all fields of systems practice, including
operating systems, data storage, networking, security,
ubiquitous computing, Web-based systems, tools, and
systems management. As a venue for exploring new
ideas, HotOS encourages contributions influenced by
other fields such as hardware design, networking, eco-
nomics, social organizations, biological systems, and
the impact of compiler developments on systems and
vice versa. We particularly look for position papers
containing highly original ideas.

To ensure a productive workshop environment,
attendance is limited to about 60 participants who are
active in the field. We urge practitioners as well as
researchers to contribute submissions. Each potential
participant should submit a position paper of five or
fewer pages that exposes a new problem, advocates a
new approach to an old idea, or reports on actual expe-
rience. Participants will be invited based on the sub-
mission’s originality, technical merit, topical relevance,
and likelihood of leading to insightful technical discus-
sions at the workshop. Multiple authors may share a
position paper, but at most two authors per paper will
be invited to participate in the workshop.

Preliminary online proceedings will be made avail-
able via the Web by April 17, 2007, for workshop par-
ticipants. Printed proceedings, including a summary of
the interactions at the workshop, will be published and
mailed to participants after the workshop.

Submitting a Paper

Position papers must be received by 11:59 p.m. Pacific
Standard Time, on Thursday, January 4, 2007. This is a
hard deadline—no extensions will be given.

Submissions must be no longer than 5 pages includ-
ing figures, tables, and references. Text should be for-
matted in two columns on 8.5-inch by 11-inch paper
using 10 point fonts on 12 point (single-spaced) lead-
ing, and 1-inch margins. Author names and affiliations
should appear on the title page (reviewing is not blind).
Pages should be numbered, and figures and tables
should be legible in black and white without requiring
magnification. Papers not meeting these criteria will be
rejected without review, and no deadline extensions
will be granted for reformatting.

Papers must submitted in PDF format via the Web
submission form, which will be available at http://www
.usenix.org/events/hotos07/ctp/.

All submissions will be acknowledged by January 9,
2007. If your submission is not acknowledged by this
date, please contact the program chair promptly at
hotosO7chair@usenix.org.

All submissions are held in the highest confiden-
tiality prior to publication in the proceedings both as a
matter of policy and in accord with the U.S. Copyright
Act of 1976. The proceedings will be published to the
Web no earlier than April 10, 2007. Papers accompa-
nied by nondisclosure agreement forms are not accept-
able and will be returned to the author(s) unread.

Simultaneous submission of the same work to mul-
tiple venues, submission of previously published work,
and plagiarism constitute dishonesty or fraud. USENIX,
like other scientific and technical conferences and jour-
nals, prohibits these practices and may, on the recom-
mendation of a program chair, take action against
authors who have committed them. In some cases, pro-
gram committees may share information about sub-
mitted papers with other conference chairs and journal
editors to ensure the integrity of papers under consider-
ation. If a violation of these principles is found, sanc-
tions may include, but are not limited to, barring the
authors from submitting to or participating in USENIX
conferences for a set period, contacting the authors’
institutions, and publicizing the details of the case.

Authors uncertain whether their submission meets
USENIX’s guidelines should contact the program chair,
hotos07chair@usenix.org, or the USENIX office,
submissionspolicy@usenix.org.

Rev. 6/8/06

L I SA '()6 A Blueprint for Real World
System Administration

20TH LARGE INSTALLATION
SYSTEM ADMINISTRATION CONFERENCE DECEMBER 3-8, 2006 | WASHINGTON, D.C.

6 days of training by experts in their fields

3-day technical program:

e Keynote Address by Cory Doctorow, science fiction writer, co-editor of
Boing Boing, and Senior Fellow, USC Annenberg Center for Communication

¢ |nvited Talks by industry leaders
e Refereed Papers, Guru Is In Sessions, and WiPs

Vendor Exhibition
And more!

Registration is open and the full program is available at www.usenix.org/lisa0é

Sponsored by

USENIX = [SOQE

Early Birds! Register by November 10 and save! www.usenix.org/lisa0é

