
THE MAGAZINE OF USENIX & SAGE
October 2000 • volume 25 • number 6

{

#
inside:

MOTD

The Advanced Computing Systems Association &

The System Administrators Guild

&

2 Vol. 25, No. 6 ;login:

motd
Professionalism
I enjoyed the special privilege of seeing a concert by the 70s and 80s band

Earth, Wind, and Fire recently. They were preceded by a very competent

blues combo, The Hazel Miller Blues Band, a perfectly reasonable group per-

forming blues vocals with keyboards and guitars.

But when EW&F took the stage, the difference was not only immediately apparent but
incredibly dramatic. It was clear that these guys knew what they were doing (probably
proving that practicing your instruments for 20 years really does lead to a certain level
of proficiency). Their music and performance had impact and verve – quite astounding
(no different from any other super-competent band that one might like, in general, of
course).

I mused to myself about the notion of professionalism closer to the technical world. I
just reviewed/edited a very good perl book about debugging that’s soon to be pub-
lished. It included all sorts of advice on how to be a programmer whose attributes I
might term “professional.”

One of the book's most amusing suggestions, to me, was a simple methodology for tak-
ing trouble reports. It required just three questions:

“What did you observe?”
“What did you do to cause that?”
“What did you expect to happen?”

These questions can be answered by people at any technical level from total novice/lay-
man all the way to the top of the guru heap. Furthermore, as a technical person, you’re
liable to get 90% or more of the information you really need in order to solve a techni-
cal-style problem.

I tried to think on how many times people have asked those questions of me when I
called a help desk or vendor support telephone line. I’m not sure that I have been treat-
ed professionally in those contexts in the last half decade or so.

Programmers can also exhibit a degree of professionalism. Coding that doesn’t contain
buffer over-runs is one way to be more professional. Following advice found in
Kernighan’s and Pike’s books is also a good way to move up the ladder (e.g., “verify all
input before acting on it”).

Writing such things must be hard as not enough programs exhibit such properties (e.g.,
feeding binary garbage to UNIX utilities used to cause problems). Completing web-
based forms is often a nightmare, as is trying to get the formatting (e.g., credit cards) in
just the format the programmer had in mind.

The SAGE folks have a new set of ethics. Dan Geer's column on open systems is
provocative. I am going to continue to reflect on the challenge of putting on a profes-
sional face both for peers and for the outside world to see. It seems like quite a chal-
lenge.

by Rob Kolstad

Dr. Rob Kolstad has long

served as editor of

;login:. He is also head

coach of the USENIX-

sponsored USA

Computing Olympiad.

<kolstad@usenix.org>

3October 2000 ;login:

Living on Borrowed Time
System administrators like to tell “war stories.” I hypothesize that our

retelling of stories serves our community much the same way story-telling

serves many cultures: by passing along traditions, values, and experience.

With the explosive growth of our industry, it seems there are ever more

experiences to share and more stories to tell. I received this note from one

of my friends via email last week.

I’m writing this note from the co-location cage at Exodus. Good connectivity from here
:-) Over the last few months that I’ve been in here, I’ve wondered who the next cage
over belongs to. I’ve never seen such a mess. Their racks are stuffed full of bare mother-
boards (no cases) that are as crooked as the hind leg of a dog, bowed in the middle
from the weight of the CPUs and other components. There’s a “bridge” of sorts over
the doorway. It is built up of those long power strips (plugged in and in use, of course)
on each side. Over the top, connecting the two sides, are two Panduit wire-management
trough covers that are duct-taped together. They support a thick bundle of Ethernet
cables. The right side support is held up by being duct-taped to a shelf. The left side
support is wedged between two stacks of computers piled on the floor, each about
waist-high. On top of the pile closest to the door is an HP hub. The place makes your
belly churn to look at it. I’ve always wondered who this mess belonged to. Today I
found out. It’s [Editor’s Note: name removed to protect the innocent] . . .

Stories like this do make seasoned system administrators wonder why that hardware is
in such disarray. The popular excuse these days is often “the company is running on
Internet time.” I gotta say, this one doesn’t hold much water for me any more because
in fact, it’s often the very reason the company’s network should be a showplace for
industry best practices. It’s obvious, isn’t it? If a company’s business is the network,
doesn’t it follow that the network is the most important priority and has to be done
right? Sadly, as we hear from my friend, it’s not always the case, which is what makes it
noteworthy.

Cultures tell stories that have special meaning and have the intent to pass on wisdom to
the listener. Veteran system administrators are virtually screaming at the tops of their
lungs in many forums to take the time to design and deploy networks that can scale, be
reliable, and are secure. Heed their advice and avoid the temptation to cut corners and
create network monstrosities in the name of “Internet Time.” If you do, you’ll find out
all too soon that you’re living on “Borrowed Time.”

ED
IT

O
RI

A
LS

apropos
by Tina
Darmohray

Tina Darmohray, co-

editor of ;login:, is a

computer security and

networking consultant.

She was a founding

member of SAGE.

<tmd@usenix.org>

letters to the editor

Vol. 25, No. 6 ;login:

EDITORIAL STAFF

EDITORS

Tina Darmohray <tmd@sage.org>
Rob Kolstad <kolstad@usenix.org>

STANDARDS REPORT EDITOR

David Blackwood <dave@usenix.org>

MANAGING EDITOR

Jane-Ellen Long <jel@usenix.org>

COPY EDITOR

Eileen Cohen

TYPESETTER

Festina Lente

MEMBERSHIP, PUBLICATIONS, AND

CONFERENCES

USENIX Association

2560 Ninth Street, Suite 215

Berkeley, CA 94710

Phone: +1 510 528 8649

FAX: +1 510 548 5738

Email: <office@usenix.org>

<conference@usenix.org>

<login@usenix.org>

WWW: <http://www.usenix.org>

4

HACKER VERSUS CRACKER

FROM MATT CURTIN
<cmcurtin@interhack.net>

I’d like to add my support to Joseph E.
Wals’s request that USENIX be more
conscientious in its use of “hacker” vs.
“cracker.” I think John Walker, founder of
AutoDesk, most clearly articulated why
when he wrote in The Hacker’s Diet:

The word “hacker” and the culture it
connotes is too rich to sacrifice on the
altar of the evening news.

To that let me add only that it should be
we who influence the mainstream media
for the better, not the reverse.

Rob replies:

If only we had enough clout or numbers
to influence the mainstream media.
Regrettably, with the majority of our
USA citizens (and a totality of its jour-
nalists) with access to computers, I fear
we have no hope of winning this battle
by leading the charge.

A BURGESS FAN

FROM: MARKO SCHUETZ
<marko@kinetic.ki.informatik.uni-frankfurt.de>

I spoke my mind in the past, when I
wasn’t pleased with ;login: content. This
time I’d like to let you know, that I thor-
oughly enjoyed reading “System Admin-
istration Research” parts 1 & 2.
Encouraging research in this direction
and in the accessible way the articles do
sure has my backing!

A DEBT OF GRATITUDE

FROM TED DOLOTTA

Regarding the article “Teaching
Operating Systems with Source Code
UNIX” by Bob Gray in the July 2000
;login: (vol. 25, no. 4), we should recall
the original – and, in the context of the
history of UNIX, very, very significant –
use of UNIX to teach operating-system
design, namely the operating-systems
courses taught by the late John Lions at
the University of New South Wales in the
1970s.

John Lions wrote, for these courses, two
companion volumes (UNIX Operating
System Source Code – Level Six and A
Commentary on the UNIX Operating
System), which together constitute the
first complete explanation of the UNIX
operating system, apart from being very
well-written and a model of pedagogical
clarity.

Bob replies:

We all owe a debt of gratitude to the late
John Lions who taught Operating
Systems based on Source Code UNIX in
the late 1970s. His material has been
republished so that we may now grow
from it.

5October 2000 ;login:

conference reports
related. Because the Freenix track was
run with the same rigor as the general
refereed papers track, they also presented
awards:

Best paper: “An Operating System in Java
for the Lego Mindstorms RCS
Microcontroller” by Pekka Nikander

Best student paper: “Protocol
Independence Using the Sockets API” by
Craig Metz

Andrew Hume, immediate past president
of the USENIX Association (and now
vice president) announced the two annu-
al USENIX awards:

Software Tools User Group (STUG)
Award: Tetu Yionen for the initial design
and creation of “ssh”, the Secure Shell.

The Flame: Outstanding Achievement
Award given posthumously to W.
Richard Stevens for his work as an inno-
vator, teacher, and active member of the
USENIX community (accepted on his
behalf by his sister, his widow, and his
children)

KEYNOTE ADDRESS

Bill Joy presented the keynote address on
his vision on the future of technology.

Based on his 25 years of experience, Joy
forecasted the next 25-30 years in com-
puting. He started by looking back at the
history: the eventual acceptance of soft-
ware as research in computer science, the
integration of networks and the operat-
ing system, and the growth of portability
in computing. More and more we’ll see
standards defined in English, perhaps
passing code or agents instead. He also
sees the continued need for maintaining
compatibility with open protocols and
specifications, noting that protocols
often outlive the hardware systems for
which they were designed.

Looking forward, Joy believes that
Moore’s Law will continue. He expects to
see up to a 1012 improvement over 30
years based in part on molecular elec-

USENIX ANNUAL TECHNICAL
CONFERENCE
JUNE 18–23, 2000
SAN DIEGO, CA
Opening Session
Summary by Josh Simon

ANNOUNCEMENTS

Christopher Small announced that there
were 1,730 attendees as of the start of the
technical sessions. The program commit-
tee received 91 refereed-paper submis-
sions (up from 63 in 1999) and accepted
27 (up from 23 in 1999). Next year
USENIX will be in Boston.

The best paper awards were:

Best paper: “Scalable Content-aware
Request Distribution in Cluster-based
Network Servers” by Mohit Aron, Darren
Sanders, Peter Druschel, and Willy
Zwaenepoel

Best student papers (tie): “Integrating a
Command Shell into a Web Browser” by
Robert C. Miller and Brad A. Myers, and
“Virtual Services: A New Abstraction for
Server Consolidation” by John Reumann,
Ashish Mehra, Kang G. Shin, and Dilip
Kandlur

Kirk McKusick, chair of the Freenix
committee, spoke about that track. The
committee received 56 refereed paper
submissions and accepted 29 of them.
Most of the papers were open source–

This issue’s report is on the USENIX
Annual Technical Conference held in San
Diego, California, June 18-23, 2000.

Thanks to the summarizers:

Doug Fales
Rik Farrow
Kevin E. Fu
Matt Grapenthien
Bob Gray
Josh Kelley
Jeff Schouten
Josh Simon
Craig Soules
Gustavo Vegas

And check out Peter Salus’ impressions
of the conference on page 34.

A collection of photographs taken at the
conference can be found at
<http://www.usenix.org/publications/libra
ry/proceedings/usenix2000/photos.html>

<http://www.usenix.org/publications/library/proceedings/usenix2000/photos.html>

Christopher Small

http://www.usenix.org/publications/libra
http://www.usenix.org/publications/library/proceedings/usenix2000/photos.html

tronics and improved algorithms. The
question of synchronization between dif-
ferent geographies becomes hard when
you can store 64 TB in a device the size
of your ballpoint pen. We need to
improve resilience and autonomy for the
administration of these devices to be
possible.

Further, he sees six webs of organization
of content: near, the Web of today, used
from a desktop; far, entertainment, used
from your couch; here, the devices on
you, like pagers and cell phones and
PDAs; and weird, such as voice-based
computing for tasks like driving your car
and asking for directions. These four
would be the user-visible webs; the
remaining would be e-business, for busi-
ness-to-business computing, and perva-
sive computing, such as Java and XML.

Finally, reliability and scalability will
become even more important. Not only
will we need hardware fault tolerance but
also software fault tolerance. In addition
we need to work toward a distributed
consensus model so there’s no one sys-
tem in charge of a decision in case that
system is damaged. This leads into the
concepts of byzantine fault tolerance and
the genetic diversity of modular code.
We also need to look into the fault toler-
ance of the user; for example, have the
computer assist the user who has forgot-
ten her password.

Refereed Papers Track

SESSION: INSTRUMENTATION AND

VISUALIZATION

Summarized by Josh Simon

MAPPING AND VISUALIZING THE INTERNET

Hal Burch, Carnegie Mellon University;

Bill Cheswick and Steve Branigan, Bell

Labs Research, Lucent Technologies

We need tools to be able to map net-
works of an arbitrarily large size, for
tomography and topography. This work
is intended to complement the work of
CAIDA. So Cheswick, et al. developed
tools UNIX-style, using C and shell

6 Vol. 25, No. 6 ;login:

scripts to map the Internet as well as the
Lucent intranet. The tools scan up to 500
networks at once and are throttled down
to 100 packets per second. This generates
100–200MB of text data (which com-
presses to 5–10MB) per day and covers
on the order of 120,000 nodes. See
<http://www.cs.bell-labs.com/who/ches/map/>
for details and maps.

MEASURING AND CHARACTERIZING SYSTEM

BEHAVIOR USING KERNEL-LEVEL EVENT

LOGGING

Karim Yaghmour and Michel R.

Dagenais, Ecole Polytechnique de

Montréal

Karim Yaghmour spoke on the problem
of visualizing system behavior. ps and
top are good, but neither provides truly
realtime data. He therefore developed a
kernel trace facility with a daemon that
logs to a file. He instrumented the Linux
kernel to trace the events, and then per-
forms offline analysis of the data. The
tools do not add much overhead for
server-side operations but do add a lot of
overhead to intensive applications such
as the Common Desktop Environment
(CDE). Data is collected up to 500kb per
second but it compresses well. Future
work includes quality-of-service kernels
(throttling the rate of, for example, file
opens), security auditing, and even inte-
grating the event facility further into the
kernel. Sources are available at
<http://www.opersys.com/LTT> and are
under the GNU Public License.

PANDORA: A FLEXIBLE NETWORK

MONITORING PLATFORM

Simon Patarin and Mesaac Makpangou,

INRIA SOR Group, Rocquencourt

Patarin and Makpangou’s goal was to
produce a flexible network-monitoring
platform with online processing, good
performance, and no impact on the envi-
ronment. The privacy of users was also
important in the design. They decided to
use components for flexibility and a
stack model. They developed a small

configuration language and a dispatcher
that coordinates the creation and
destruction of the components. The tool
is 15,000 lines of C++, using libpcap. The
overhead is about 0.26 microseconds per
filter per packet. For example, HTTP
requests get over 75Mb/s throughput on
traces, which translates into 44–88Mb/s
in real-world situations, or 600–2600
requests per second. Future work
includes improving the performance and
flexibility. More details are available from
<http://www-sor.inria.fr/projects/relais>
and released pursuant to the GPL.

INVITED TALKS

COMPUTER SYSTEM SECURITY: IS THERE

REALLY A THREAT?

Avi Rubin, AT&T Research

Summarized By Rik Farrow

Avi Rubin began his talk by alluding to
the February 2000 distributed denial-of-
service (DDoS) attacks, saying that those
attacks just about made this talk redun-
dant. But perhaps the theme of his talk
was that not enough has been learned
about mitigating the threats to security,
that lessons have not been learned from
the past.

Rubin used the Internet Worm to illus-
trate this point. In November of 1988,
Robert T. Morris released the Worm, a
relatively small piece of code that used
the Internet to copy itself to over 6,000
systems. At the time, those 6,000 systems
compromised a large percentage of hosts
on the Internet. Damage estimates fell
between $10,000 and $97 million.
Recovering from the Worm was difficult,
as most Internet-connected sites relied
on email for communication, and email
couldn’t get through while Worms were
executing.

The Worm used three mechanisms to
obtain access to networked systems: a
buffer-overflow in the finger server, a
backdoor still in sendmail (debug), and
the “r” commands. The Worm would

http://www.cs.bell-labs.com/who/ches/map/
http://www.opersys.com/LTT
http://www-sor.inria.fr/projects/relais

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

Scrack passwords, using a list of 432
“common” passwords so it could assume
other user identities for use with the
remote shell.

Today, the finger server has been patched
and the debug backdoor commented out
(except for short period when a Sun
engineer accidentally reenabled it in
1994) of sendmail. But “r” commands
are still in use today, and SSH when used
as an “r” command replacement (with
trust) is still vulnerable to Worm-style
attacks.

But the biggest problem then and now
was homogeneity. The Worm targeted
Sun servers. (A few VMS systems were
also affected.) Microsoft systems present
the current homogenous environment.

Rubin went on to talk about several
recent virus attacks. Rubin had firsthand
experience with HAPPY99, as it infected
his mom’s system. HAPPY99 is very
polite and very widespread. It keeps a list
of infected systems, can be commanded
to remove itself, and does nothing else. It
will even replace the DLL (Dynamic
Linked Library) it modifies with a copy
of the original.

The Melissa virus caused many millions
in damages. Named after a dancer in
Florida, Melissa first appeared on alt.sex.
Because Melissa is written in Visual
Basic, it is easy to modify even if you
don’t know VB, as you can just change its
message or various strings, and it will
still work (and have a different anti-virus
signature as well).

Rubin listed the reasons why Melissa was
so successful (besides its promise of a list
of hot porn sites):

■ Many people use the same mailer
(Outlook)

■ MSWord on Windows on almost all
systems

■ Many people click okay to macro
warnings

■ No separation between MSWord
and OS

7October 2000 ;login:

■ Virus protect only works against
known viruses

“If every time you received a phone call,
there was a chance that an appliance,
such as your toaster, could explode, you
would likely not put up with it. For some
reason, people are willing to tolerate the
potential loss of all their data when they
receive an email.” said Rubin.

There have been other interesting virus-
es, such as Russian New Year and
Bubbleboy. Russian New Year invokes
Excel to execute any program on the sys-
tem. Bubbleboy was the first email virus
that did not require an attachment, but
did display a dialog prompting the user
to delete update.hta instead of doing it
itself via code, which it could have done.
Bubbleboy represents the killer transport
mechanism, as it could install any soft-
ware wanted. Actually, Microsoft makes
this easy, as there are system calls that
upload files (one call), then execute them
(second call).

In summary, Rubin suggested that there
were certain deficiencies in our current
security model. Besides the homogeneity
of desktops, Rubin said, “This seems to
be the theme, security by pop-up win-
dows. Do you want to continue? The
default is YES.” He also suggested the use
of Digest Authentication in HTTP to
prevent replay attacks, and said that SSL
was the right place to do encryption, as
the top of the IP stack, where you could
tell it is working.

Rubin stated, “Trinoo [a DDoS tool]
requires password (people can be very
proprietary about their daemons).” He
went on to recommend that people
remember to make backups, so if some-
thing does go awry, you at least can
recover.

There were a number of questions. Chris
Harrison, Whitehead Institute, asked:
“Why haven’t we yet seen someone who
has caused some really serious damage
on a national scale?” Rubin answered, “I
don’t have an answer to that. Could have

been much much worse. We need a soci-
ologist to answer that.”

Some one asked about the patch to
Outlook. Rubin said that he would
install it, but what surprises him is how
fast MS produced a patch (440k).

Some one asked two questions. How
much risk do you see from polymorphic
viruses? How much risk from cross-plat-
form viruses? Rubin answered, “I think
polymorphic viruses are harder to detect,
making them more dangerous. As for
cross platform, right now all viruses and
worms are on MS platforms, but when
cell phones start including command
interpreters, this problem will spread this
as well.”

Dan Geer, now CTO of @stake (which
bought the l0pht) asked: What is your
opinion about closing security holes by
advertising them? Rubin answered by
saying that there are “days I wake up feel-
ing we should advertise vulnerabilities,
and other days where I think this is a bad
idea.” The NIPC (National Infrastructure
Protection Council, [I think]) is plan-
ning on creating industry forums for
exchanging security information and
rumors. Rubin said, “We need a way to
disseminate information to all of the
good guys and none of the bad guys.”
(laugh)

There were several more questions,
including comments about Linux or
UNIX users having the inboxes crammed
full of impotent email viruses, and a sug-
gestion to use litigation to force better
adherence to security practices.

USENIX ANNUAL TECHNICAL CONFERENCE ●

FREENIX TRACK

SESSION: STORAGE SYSTEMS

Summarized by Kevin E. Fu

SWARM: A LOG-STRUCTURED STORAGE

SYSTEM FOR LINUX

Ian Murdock and John H. Hartman,

University of Arizona

Ian Murdock described Swarm, a log-
structured interface to a cluster of stor-
age devices in Linux. Filesystem inter-
faces are often tightly coupled to the
interface of the underlying storage sys-
tem (e.g., requiring a block-oriented
storage device). Moving away from this
tendency, Swarm provides a configurable
and extensible infrastructure that may be
used to build high-level storage abstrac-
tions and functionality. The intent was to
build more than a just a research proto-
type.

Swarm is storage system, not a filesys-
tem. However, Murdock presented two
filesystems that build upon Swarm. Sting
is a log-structured filesystem similar to
Sprite’s LFS. Ext2fs/Swarm is an unmod-
ified Ext2 filesystem on top of a special
logical Swarm device.

Several goals guided the design of
Swarm:

■ Scalability. As the network grows,
scale to demands.

■ High performance. Take advantage
of the network-disk bottleneck.

■ High Availability. Handle failures
gracefully.

■ Cost-performance. Run on com-
modity hardware.

■ Flexibility.

Swarm moves the high-level abstractions
from the server to the client. The server
becomes a simple repository for data
while clients implement the bulk of
functionality. By clustering devices,
Swarm removes centralization. In this
way, Swarm avoids bottlenecks and sin-
gle points of failure.

8 Vol. 25, No. 6 ;login:

Clients use a striped, append-only log
abstraction to store data on servers. This
combines log-structured properties with
RAID. Each client maintains its own log
to eliminate synchronization. The log
allows reconstruction of data from server
crashes and client failures.

Logs are divided into fixed-size pieces
called fragments, which are striped
across storage servers. Parity is computed
for redundancy. The log is append-only,
conceptually infinite, and consists of an
ordered stream of blocks and records.

Visit
<http://www.cs.arizona.edu/swarm/> for
more information.

Q: What is the performance to availabili-
ty tradeoff? A: Write performance is
good because Swarm can batch small
writes. Large write performance is also
good. Read performance is not as good
as it should be, but this is an artifact of
the implementation. The log structure
gives both high availability and high per-
formance.

Q: Is there a mechanism for synchro-
nization of a shared resource? A: We are
working on distributed lock service.

Q: How does the cleaner know what is
cleanable? A: The cleaner is not aware of
what is in the fragments, but it can know
what parts of the fragment are alive.
Agents participate in the cleaning
process.

Q: You might consider a Hierarchical
Storage Management (HSM) design
instead of cleaning the tapes. A: Cleaning
is a very interesting topic we are explor-
ing. Your suggestion might be useful.

DMFS - A DATA MIGRATION FILE SYSTEM

FOR NETBSD

William Studenmund, Veridian MRJ

Technology Solutions

Bill Studenmund talked about the Data
Migration File System (DMFS) designed
at the NASA Ames Research Center.

Implemented for NetBSD, DMFS stores
files on both disk and tape. This allows
an administrator to transparently archive
data to tape without affecting users.

NAStore 3 is a storage system at NASA’s
Numerical Aerospace Simulation facility.
It consists of three main systems: the vol-
ume-management system for tape robot-
ics, the virtual volume-management sys-
tem to avoid small writes to tape by
aggregating data, and the data-migration
filesystem. Studenmund focused on
DMFS for the remainder of the talk.

DMFS is a layered filesystem that places
its migration code between kernel
accesses and the underlying filesystem.
The system works with the Berkeley Fast
File System (FFS), FFS with soft updates,
and any other filesystem with a fixed
number of inodes. The layering decou-
ples development of DMFS from that of
any FFS-related development.

To have control over archiving and
restoring, there are a number of new
FNCTL operations, such as set-archive-
in-progress and set-restore-in-progress.
Also, a modified ls command denotes
whether a file is unarchived, archived
and resident, or archived and nonresi-
dent.

When a user asks for a file stored on
tape, a DMFS daemon blocks the user
process until the file is sufficiently
restored from tape or the restoration
fails. However, a user can still interrupt
the process by hitting control-C. There is
also a utility to force restoration of files
from tape into the resident risk. Writes
also block until restoration finishes. The
archive subsystem stores whole files on
tape. Therefore, it is necessary to read
from tape to piece together the unmodi-
fied parts of a file. To initiate an archival
process, one can either run a user utility
or let the daemon schedule an archive.

The performance cost of using DMFS is
minimal. There is an overhead of 1–2%
to access resident files. However,

http://www.cs.arizona.edu/swarm/

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

SStudenmund jokingly admitted that for
obvious reasons vi takes about five min-
utes to start when the data is retrieved
from tape.

Q: Looking at HSM, it seems that some
files are active, while others are accessed
only once a month. Is there a way to
mark file as readable but not actually
perform the restoration? Say, classify files
as active or read once a month? A: This
is not supported by DMFS, but sounds
reasonably easy to add to the system.

Q: You added system calls to deal with
opening/closing files. Why not use a new
filesystem with vnodes instead? A: We
added only three system calls. Data
passed to open is sent to the name-
lookup system before the filesystem gets
the request. Using a special filesystem
that would take file handles as the
“names” of files would not work.
open(2), stat(2), and statfs(2) take nul-
terminated strings to name files. File
handles have an embedded length, and
can contain nuls. Thus these system calls
will not read in the correct amount of
data for such a special filesystem to be
able to work.

Q: Can you mark files as preferred
online rather than archival? A:
Everything is done in response to the
migration daemon. You could modify
the daemon to control this. It is certainly
feasible.

A 3-TIER RAID STORAGE SYSTEM WITH

RAID1, RAID5, AND COMPRESSED RAID5
FOR LINUX

K. Gopinath, Nitin Muppalaneni, N.

Suresh Kumar, and Pankaj Risbood,

Indian Institute of Science, Bangalore

K. Gopinath discussed the design and
implementation of a host-based driver
for a 3-tier RAID storage system. The
tiers include a small RAID1, a larger
RAID5, and a compressed RAID5. The
system migrates the most frequently
accessed data to the RAID1 tier. The
project was motivated by the need for

9October 2000 ;login:

fast, reliable, efficient, quickly recover-
able, and easily manageable storage.

Gopinath and his students previously
developed the system for Solaris, but are
now developing in the context of Linux.
The team ran into difficulty with the
Linux device-driver framework. Linux
has some support to logically integrate
multiple disks as one logical disk, but
this breaks its own device-driver frame-
work.

Q: A lot of RAID performance is guided
by stripe size. How do you support
changing stripe size? A: We do not, but
we considered issues of the filesystem
informing the lower layer (volume man-
ager) about stripe sizes and in the reverse
direction about the actual capacities
available because of compression.

SESSION: FILE SYSTEMS

Summarized by Kevin E. Fu

A COMPARISON OF FILE SYSTEM

WORKLOADS

Drew Roselli and Jacob R. Lorch,

University of California at Berkeley;

Thomas E. Anderson, University of

Washington

Drew Roselli presented an analysis of
filesystem traces from a variety of envi-
ronments under modern workloads. The
goal was to understand how modern
workloads affect the performance of
filesystems.

Traces were collected on four workloads:
an HP-UX instructional workload with
20 hosts for eight months (INS), an HP-
UX research workload with 14 hosts for
one year (RES), an HP-UX Web database
and server with one host for six weeks
(WEB), and a personal computing work-
load with eight NT hosts for four to nine
months (NT). To normalize the meas-
urements, only 31 days of each trace
were used. None of the workloads
reached a steady state because more files
were created than deleted. Drawing

chuckles from the crowd, Drew noted
that “disk sales confirm this result.”

The authors developed a new metric for
measuring lifetimes. This involves track-
ing all files created during the trace and
ignoring files created toward the end of
the trace window. This measurement
reveals that for many workloads, the
block lifetime is less than the 30-second
write delay used by many systems.

On to the results. Each workload has its
own unique shape. Systems with dae-
mons tend to have a knee because of
activities such as overwriting Web-
browser cache files. Other operating sys-
tems tend to either delete immediately or
wait until space fills (e.g., emptying the
recycle bin). The deletion sweet spot cen-
ters around one hour on all but the NT
workload. The NT workload reads and
writes more than twice the amount of
the RES or INS workload. Common to
all workloads are that overwrites cause
the most significant fraction of deleted
blocks, and overwrites show substantial
locality. The results also show that a
small cache is very effective for decreas-
ing disk reads.

Because many processes memory-map a
small set of files, these files are usually
cached. The authors also reconfirmed a
bimodal distribution where many files
are repeatedly written without being
read while many are repeatedly read
without being written. This buys pre-
dictability in post-cache access patterns.

The UNIX traces are publicly available
on
<http://tracehost.cs.berkeley.edu/traces.html>.

Q: How often should such trace studies
be done? Can we subscribe to something
that collects and publishes such traces?
A: If you’re thinking of collecting traces,
don’t do it. Read others’ traces instead.
Workloads change over time.

Q: Did you filter out access to shared
libraries? Or is this included in your
trace? A: There isn’t much left if you take

USENIX ANNUAL TECHNICAL CONFERENCE ●

http://tracehost.cs.berkeley.edu/traces.html

out the shared libraries, so we kept them
in the study.

Q: Are there traces of large sequential
flows? This is important to manufactur-
ers. I’m willing to pay for the traces. A:
Usually traces do not exist because peo-
ple are concerned about privacy. [Margo
Seltzer from Harvard stood up and said
she can help in this area. Contact her
offline.]

Q: Are filesystems generally designed
with database workloads in mind? A:
The Web server has a database in it. IBM
compared database workloads with
Sprite. There is not a big difference
between their results and Sprite.

Q: You mentioned that your tested
filesystem is not in steady state. How
much is expanding? A: We reported this
in paper submission, but we thought it
was too wordy so we removed it. I can’t
remember the growth off the top of my
head, but it was somewhere around
30GB.

FIST: A LANGUAGE FOR STACKABLE FILE

SYSTEMS

Erez Zadok and Jason Nieh, Columbia

University

Erez Zadok discussed FiST, a language
for stackable filesystems. Building a
filesystem is hard! The kernel is a hostile
environment; portability is a pain; devel-
opment is time-consuming; and main-
taining the code is costly. A stackable
filesystem makes code extensible and
modular. To create a new filesystem, one
does not have to remember all the low-
level details.

Early research suggested creating new
APIs such as the stackable vnodes.
However, this suffers from several prob-
lems including: modifying each operat-
ing system, rewriting existing filesystems,
taking a performance hit, using a non-
portable API, and having no high-level
functionality. A stackable filesystem

10 Vol. 25, No. 6 ;login:

alone is not enough. It still leaves much
kernel work to do.

The FiST approach consists of a language
and a set of templates. The language
contains simple, high-level primitives
while C templates provide kernel-level
abstractions. The fistgen program out-
puts code given a base template (basefs)
and a FiST input file. Erez dubbed this
system “a YACC for filesystems.”

Without stacking, a user system call is
translated into a filesystem call. With
stacking, there is a translation between
the filesystem and basefs. The translation
can modify results and arguments. This
allows for feature additions such as file
attributes and distributed filesystems.

The authors compared the development
of FiST-based filesystems with filesys-
tems written from scratch. Four filesys-
tems were implemented under the vari-
ous models:

■ Snoopfs: warns of possible unautho-
rized access

■ Cryptfs: transparent encryption
filesystem

■ Aclfs: adds ACLs to files
■ Unionfs: joins content of two direc-

tories

The measured systems include filesys-
tems written from scratch in C, written
using the basefs templates, written using
the wrapfs templates, and written using
FiST.

The authors found that the size of newly
written code is one to two orders of
magnitude smaller when written with
FiST. Development time is shortened by
a factor of seven compared to writing
from scratch. Meanwhile, the perform-
ance overhead ranges between 0.8% and
2.1% to enable stacking.

For more information, see
<http://www.cs.columbia.edu/~ezk/research/fist/
> or email <fist@cs.columbia.edu>.

Q: Could you explain the difference in
cryptfs results between basefs and

wrapfs? Why the strange spike in the
graph? A: Wrapfs performs unnecessary
memory copies.

Q: How do you handle locking? A:
Filesystem templates take care of nasty
details like locking and reference count-
ing. We use whatever the VFS provides.
Special locking primitives could be
added to the FiST language.

Q: What is your intention now that you
have built a filesystem framework? Do
you intend to write an original filesystem
using FiST? A: We have plans to extend
the language for low-level filesystems on
various storage media.

Q: How do you handle traditional
filesystem issues such as consistency and
recovery? A: Stacking is completely inde-
pendent of what happens above and
below the stacking. You don’t have to
know about details.

JOURNALING VERSUS SOFT UPDATES:
ASYNCHRONOUS METADATA PROTECTION IN

FILE SYSTEMS

Margo I. Seltzer, Harvard University;

Gregory R. Ganger, Carnegie Mellon

University; M. Kirk McKusick, Author &

Consultant; Keith A. Smith, Harvard

University; Craig A. N. Soules, Carnegie

Mellon University; Christopher A. Stein,

Harvard University

Chris Stein compared two technologies
for improving the performance of meta-
data operations and recovery: journaling
and soft updates. Journaling uses an aux-
iliary log to record metadata operations
while soft updates uses ordered writes to
ensure metadata consistency.

Stein discussed three properties for relia-
bility:

■ Integrity. Metadata always recover-
able.

■ Durability. Persistence of metadata.
■ Atomicity. No partial metadata visi-

ble after recovery.

The metadata update problem concerns
proper ordering of operations such that
a filesystem can recover from a crash.

http://www.cs.columbia.edu/~ezk/research/fist/

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

SThere are three general approaches: syn-
chronous writes, soft updates, and jour-
naling. The Berkeley Fast File System
(FFS) uses synchronous writes to main-
tain consistency. That is, an operation
blocks until metadata are safely written
to disk. Synchronous writes significantly
impair the ability of a filesystem to
achieve high performance. On the other
hand, soft updates and journaling use
asynchronous writes.

Soft updates uses delayed metadata
writes to improve performance.
However, delayed writes alone could
change the order of writes. Therefore,
soft updates maintains dependency
information to order writes. That is,
before a delayed write is written to disk,
it must satisfy certain dependency con-
straints. Soft updates is not durable or
atomic; has weak guarantees on when
updates flush to disk; and requires no
recovery process after a crash.

Journaling writes all metadata updates to
a log in such a way to guarantee recover-
ability. It can perform asynchronous
with Write Ahead Logging (WAL) to
ensure that the metadata log is written to
disk before any associated data. After a
crash, the system can scan this log to
recover metadata consistency. This pro-
vides atomicity. With synchronous jour-
naling, the filesystem will have durability.
Asynchronous mode results in higher
performance at the cost of durability.

The authors performed a microbench-
mark consisting of several stages remi-
niscent of the LFS benchmark. After cre-
ating a directory hierarchy, the bench-
mark writes, reads, and deletes either
128MB of data or 512 files, whichever
generates the most files. There is also a
test on zero-length files to stress metada-
ta operations.

Macrobenchmarks included four work-
loads:

■ An SSH build (similar to the
Modified Andrew Benchmark)

11October 2000 ;login:

■ A netnews server (large working set,
no locality)

■ The SDET software development
environment (timesharing)

■ The PostMark ISP benchmark
(small file transactions to simulate
email and e-commerce)

These benchmarks were applied to two
journaling filesystems; a soft updates
filesystem, and FFS. One of these jour-
naling implementations has the charac-
teristic that the log is a separate filesys-
tem. This makes it easy to run either syn-
chronously or asynchronously, switching
on and off the filesystem’s metadata-
durability property.

The results show that both journaling
and soft updates dramatically improve
the performance of metadata operations.
However, synchronous journaling alone
is insufficient to solve the metadata
update problem. Synchronous journaling
can penalize performance up to 90% rel-
ative to the upper bound of an asynchro-
nous filesystem with no protection. The
delayed writes in soft updates improves
performance in the microbenchmarks.
However, soft updates did not achieve
good performance in the netnews bench-
mark because of the ordering con-
straints. On the other hand, the delayed
writes let soft updates excel in perform-
ance on the PostMark benchmark.

By understanding the solutions in terms
of the transactional properties they offer,
one can derive the relative costs of the
properties. The cost of durability is the
performance difference between the
best-performing solution that does offer
this property and the best-performing
one that does not. Likewise with the
other properties. What one discovers
from comparing performance is that the
cost of durability is generally large rela-
tive to that of integrity. If one sacrifices
durability, performance can be very close
to that of systems with no metadata pro-
tection, while maintaining integrity.

Q: What part of the performance gain is
due to the hefty hardware you’re using?
Which has a better gain, an expensive
disk or an expensive CPU?
A: Synchronous systems would perform
better with better SCSI drives and rota-
tion. Asynchronous systems would bene-
fit from more memory and faster CPU.

Q: Did you turn off disk caching? For
instance, Cheetah hard drives do
caching. A: I can’t recall off the top of
my head.

Q: In your microbenchmark, what were
the file sizes and how long short lived
were the files? A: There were many file
sizes. There are four phases in the
microbenchmark. All files were first cre-
ated, the filesystem was unmounted then
remounted, and then the files were read
and deleted.

INVITED TALK

WATCHING THE WAIST OF THE PROTOCOL

HOURGLASS

Steve Deering, Cisco Systems

Summarized by Rik Farrow

Steve Deering elected to use imagery and
puns to get across his point: that the
waist of IP should remain narrow. The
basic image was an hourglass shape,
where layers four through seven of IP
(application and transport) represent the
top half; layer three (IP) is the narrow
middle, or waist; and various different
transport mechanisms fit into the fat
bottom half (ATM, SONET, Ethernet,
etc.). Deering pointed out the impor-
tance of the IP layer – that it isolates the
stuff above it from the stuff below it, and
that this is what has allowed the Internet
to evolve.

IP allows us to create a “virtualized net-
work” to isolate end-to-end protocols
from network details/changes. Having a
single IP protocol maximizes interoper-
ability and minimizes the service inter-
face. IP means that we can assume a least

USENIX ANNUAL TECHNICAL CONFERENCE ●

common denominator of network func-
tionality to maximize the number of net-
works.

Then Deering asked rhetorically: why
worry about the waist of IP? He gave
mostly humorous answers:

■ It provides for navel gazing.
■ It happens at middle age.
■ The IP is the only layer I can get my

arms around.
■ I am worried about how the archi-

tecture is now being lost: the waste.
■ This theme offers all these puns.

Deering went on to describe some prob-
lems with the waist of IP. For example,
IP multicast (which he actually had a lot
to do with) and quality of service (QoS)
have added to the waist. And a mid-life
crises, IPv6, has created a second waist
(the hourglass image now has two nar-
row connections). IPv6 doubles the
numbers of interfaces, requires a new
Ethertype, and changes in application
software.

The reason for IPv6 was that the IPv4
address space was being rapidly depleted.
Although IPv4 addresses began to be
rationed out in the early ’90s, Network
Address Translation (NAT, RFC 1631)
and application gateways (AG) have
helped to preserve the IPv4 address
space, but at some cost to the original
goals of IP.

IP was also threatened by youths. The
ATM community had this vision of get-
ting rid of the IP layer, and having end-
to-end ATM. ATM did not supplant IP,
and instead we wound up with a compli-
cated hybrid and two address plans. On
top of this, we had more fattening temp-
tations: layer-two tunneling protocols
(PPP, LP2T, PPP over Ethernet). “This is
progress?” quipped Deering.

Deering talked about lost features of the
Internet, properties that were true but
are not anymore:

■ Transparency – devices that modify
addresses (NAT).

12 Vol. 25, No. 6 ;login:

■ Robustness through fate-sharing –
design a system so you do not
depend on more resources than you
absolutely must. TCP connectiveness
depends on state maintained at
either end. Add in NAT, and you lose
this.

■ Dynamic routing. There are many
places routing is constrained. With
NAT, an organization cannot pro-
vide multiple outgoing paths. And
the failure of your ISP today means
that you cannot simply have a sepa-
rate path to your network (another
ISP).

■ Portable addresses. (Early connec-
tors could move their addresses with
them, but now addresses are not
portable.)

■ Unique addresses (NAT).
■ Stable addresses (NATs and DHCP).
■ Connectionless service. (If you are

behind the NAT, NATs do not sup-
port transaction-oriented protocols
like UDP; protocols do not have an
explicit teardown, so NAT boxes just
apply their own heuristics.)

■ Always-on service, most users of the
Internet are behind dialup services,
so they must connect or disconnect
from the Internet. PPPoE makes
cable/DSL like dialup.

■ Peer-to-peer communications, not
symmetric devices (no servers
behind the Net). It becomes the
purview of the ISP to set up servers.

■ Application independence is another
key feature, as more and more appli-
cation knowledge has to be built
into the NAT. If NAT had been
widespread before we got the Web,
we might have not gotten the Web
(no servers behind NAT).

In case all this didn’t make the network
manager’s job hard enough, we renamed
bridges to switches. Router people
renamed routers as switches (multilayer
switches and layerless switches, but this
just obscures what is going on). Is this
entropy or evolution? Deering believes

that this looks like the normal entropy of
all large engineered systems over time.
“Of course it grows warts and hats over
time,” said Deering.

What Deering really wants to do is turn
hourglass into wineglass – IP over cop-
per, fiber, radio with no intervening pro-
tocols. If the lower layers are making IP
jobs harder, then let’s get rid of lower
layers. And we are seeing signs of IP
evolving this way. We saw IP over
SONET, but people are asking what
value does SONET add to IP? We need
IPv6 to get back to the narrow shape.
Deering concluded, “This is my dream.
Only time will tell.”

Rob Pike of AT&T Research arose quick-
ly to ask the first question. Pike men-
tioned that there is not much flow
through the stem of the wineglass. He
also stated that he thinks that Deering
was not giving enough credit to things
like what the phone system does for you,
and that he doesn’t think that IPv6 can
replace this. Deering responded by say-
ing that the shape was not supposed to
represent a bottleneck, but a reduction in
baggage. Pike responded by saying it
doesn’t appear that IPv6 addresses many
of these issues, such as trunking between
sites supported by frame relay. Deering
responded that circuits could be better
based on routing tables, and that MPLS
is the current answer to this problem. At
this point, Pike suggested that they con-
tinue in private.

Jeff Mogul of Compaq Western Research
Labs tried to get Deering to talk about
firewalls. (It was obvious he doesn’t like
them.) Eventually, Deering said that fire-
walls should be in the end host, not in a
dedicated firewall (not that we can throw
firewalls away today).

Evi Nemeth asked when we will we see
IPv6 really deployed. Deering answered
“next year,” and when Nemeth asked
what will get it there, Deering said, “IPv6
in billions of cell phones will require it.”

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

SSESSION: OLD DOGS, NEW TRICKS

Summarized by Bob Gray

LEXICAL FILE NAMES IN PLAN 9, OR, GETTING

DOT-DOT RIGHT

Rob Pike, Bell Laboratories

Rob Pike pointed out that for 20 years,
the UNIX community has been living
with the embarrassing problem that
chdir("..") doesn’t work properly in the
presence of symbolic links. From his
paper an example is:

% echo $HOME
/home/rob
% cd $HOME
% pwd

/n/bopp/v7/rob
% cd /home/rob
% cd /home/ken
% cd ../rob
../rob: bad directory

This annoyance, which causes confusion
and headaches, should never have lasted
so long. The anomaly exists in most ver-
sions of UNIX and Plan 9. With a few
hours of work, Pike was able to solve the
problem for Plan 9 by implementing an
“accurate” path name for every active file
in the system. It is guaranteed to be the
rooted, absolute name the program used
to acquire it. A pure lexical definition of
chdir("..") is required. That is, take the
current working directory and strip off
the last component, yielding the new
working directory. However, symbolic
links introduce an ambiguity in the
pathnames. Rob showed that the “cor-
rect” name can easily be determined by
context.

Rob explained that in Plan 9, “bind” is
like symbolic links and a channel is a
filesystem handle. All of the necessary
information to disambiguate chdir("..") is
present in the kernel. A few lines of ker-
nel code implemented the proper solu-
tion. Rob challenged the audience to fix
this silly bug in contemporary UNIX
implementations. He suggested that we
may want to look at the Plan 9 source
code, which is freely available now at
<http://plan9.bell-labs.com>.

13October 2000 ;login:

GECKO: TRACKING A VERY LARGE BILLING

SYSTEM

Andrew Hume, AT&T Labs-Research;

Scott Daniels, Electronic Data Systems

Corp.; Angus MacLellan, AT&T Labs-

Research

Andrew Hume described Gecko – an
adjunct system to track the efficiency,
performance, and accuracy of the AT&T
phone billing system. The fundamental
question being asked was: “Is every tele-
phone call being billed exactly once?”
Their legacy system comprises dozens of
big-iron, MVS computers, running hun-
dreds of programs written in Cobol – it
was not feasible to interrupt the opera-
tions of this 24x7 production system to
add tracking software. However, Hume
and his team were allowed to tap into the
data flows between processes. The sum
of these taps amounted to over
250GB/day.

Given the hundreds of millions of trans-
actions per day, Hume’s job was to mon-
itor and verify that billing processing was
accurate, timely, and complete. His solu-
tion was to create “tags” for each tele-
phone call record at each tap point.
Nightly, Gecko would add these tags into
a giant (60G tag) database, and produce
reports highlighting discrepancies from
expected flows.

Hume and his team processed the raw
information and analyzed the flows
using a 32-processor Sun E10000 and
two smaller Sun E5000s. They used a
number of basic tools: C, ksh, Awk, and
Gre (a special implementation of grep).
He compared implementations on the
Sun and an SGI Origin 2000, and com-
mented that Gecko relied on a solid SMP
implementation and they were stymied
by inadequacies in PC environments. He
found that the SGI gave a 2.5 price/per-
formance advantage over the Sun. But
for huge increases in scalability, they
would recommend a cluster implemen-
tation.

EXTENDED DATA FORMATTING USING SFIO

Glenn S. Fowler, David G. Korn, Kiem-

Phong Vo, AT&T Labs-Research

Kiem-Phong Vo described the Sfio pack-
age, which is a faster, more robust, and
more flexible replacement for the Stdio
package. Stdio has several shortcomings
in data formatting. For example, to print
an abstract scalar such as off_t on some
systems you would use a printf specifica-
tion of %d – on other systems you
would need a printf specification of %ld.
The Stdio routines, gets and scanf are
unsafe when the length of an input line
or string exceeds the size of the given
buffer. Stdio has no extension mecha-
nism for printing user-defined types. For
example, if you had a spatial coordinate
type, Coord_t, you would have to use ad
hoc formatting methods.

Sfio fixes the above-mentioned prob-
lems. It also contains a generalized
mechanism for printing arbitrary bases
in the range of 2–64. For example, %..2d
will print the decimal value of 123 as
1111011.

Here is an example of how Sfio allows
flexibility in printing a integer whose size
may vary from architecture to architec-
ture:

sfprintf(sfstdin, "%I*d", sizeof(intval),
intval);

Similarly, here is a scanning example for
floating point numbers:

sfscanf(sfstdin, "%I*f". sizeof(fltval),
&fltval);

In both examples, the sizes of the scalar
objects determine their types.

Sfio has hooks for handling user-defined
types such as complex numbers. This
general mechanism allows user to specify
format strings, argument lists, and func-
tions to parse each data type.

Sfio outperforms Stdio on all tested plat-
forms mostly due to the new data con-
version algorithms. The code is available
from <http://www.research.att.com/sw>.

USENIX ANNUAL TECHNICAL CONFERENCE ●

http://plan9.bell-labs.com
http://www.research.att.com/sw

INVITED TALK

IMPLEMENTING 3D WORKSTATION GRAPHICS

ON PC UNIX HARDWARE

Daryll Strauss, Precision Insight

Summarized by Matt Grapenthien

3D hardware for PCs has improved to
the point where it begins to rival that of
traditional 3D graphics workstations.
However, providing these capabilities on
commodity hardware poses a number of
difficult and interesting problems.

After explaining some of the basic algo-
rithms implemented by various 3D hard-
ware, Strauss addressed several of the
challenges 3D presents, such as security
issues related to commodity hardware.
Also, the scheduling granularity used by
the Linux kernel, though more efficient
for most processes, is too large for
smooth video.

Next, Strauss presented the shortcomings
of indirect rendering techniques, and
presented an alternative: the Direct
Rendering Infrastructure (DRI). The
DRI is designed to be secure, reliable,
and high-performance, by utilizing the
available hardware as much as possible.
In addition, the DRI is highly modular,
allowing different implementations to
use only the subset of software they
wish.

The DRI is included in XFree86 4.0, and
is starting to be used by 3DLabs, HP, and
IBM, among others, even on high-end
hardware. Precision Insight’s work to
provide completely open-source solu-
tions to the problems above has shown
great promise, even in this somewhat
early stage.

14 Vol. 25, No. 6 ;login:

FREENIX SESSION: FILE SYSTEMS

Summarized by Kevin E. Fu

PORTING THE SGI XFS FILE SYSTEM TO

LINUX

Jim Mostek, Bill Earl, Steven Levine,

Steve Lord, Russell Cattelan, Ken

McDonell, Ted Kline, Brian Gaffey, and

Rajagopal Ananthanarayanan, SGI

Russell Cattelan talked about the work
necessary to port SGI’s XFS filesystem to
Linux. In particular, he discussed the
filesystem interface, the buffer caching,
and legal issues. XFS is a highly scalable,
journaling filesystem available for free
under the GPL.

To maintain atomic updates to the
filesystem metadata, XFS keeps a log of
its uncommitted actions. Should the
machine crash, XFS simply replays the
log to recover to a consistent filesystem.
Recovery time depends on the size of the
uncommitted log. This is in stark con-
trast to the fsck tool, where recovery
time depends on the size of the entire
filesystem.

A single XFS filesystem can hold as
much as 18 million terabytes of data and
as much as 9 million terabytes of data
per file. XFS is an extent-based filesys-
tem. That is, data are organized into
arbitrarily long extents of disk rather
than fixed-sized blocks of disk. This
allows XFS to achieve a throughput of
7MB/second when reading from a single
file on an SGI Origin 2000 system.

XFS uses the vnode/VFS interface.
However, Linux does not use this inter-
face. As a result, SGI created the linvfs
interface, which maps the Linux VFS
interface to the VFS layer in IRIX. At a
small overhead cost in translation, this
keeps the core XFS code portable.

Second, SGI added pagebuf to Linux.
This is a cache and I/O layer to provide
most of the advantages from the cache in
IRIX. Pagebuf allows pinning of metada-
ta buffers, delayed writes via a daemon,
and placement of metadata in a page
cache.

Russell also explained the legal process of
encumbrance relief. SGI determined, for
all the XFS code, which code was original
and which code came from third parties.
Most of the original XFS code came
from SGI. However, XFS contains some
software from third parties. A homebrew
tool compared every line of code in XFS
against the source code from third par-
ties. After removing the third-party code,
SGI released XFS under the GPL.

For more information, see
<http://oss.sgi.com/projects/xfs/>.

Q: Is preallocation fast? A: Yes. You’re
preallocating an extent of space, not
individual blocks. You’re not zeroing out
files, but you will receive zeros if you
read from preallocated space.

Q: How does preallocation work on an
API level? A: There are two ways to pre-
allocate, with a command-line utility or
new IRCTL calls.

Q: Could you describe what you did at
the vnode/VFS layer? A: Our vnode is
now part of the inode. The Linux inode
would not work with our design. We
mostly map functions from linvfs func-
tions to vnode functions.

LINLOGFS – A LOG-STRUCTURED FILE

SYSTEM FOR LINUX

Christian Czezatke, xS+S; M. Anton Ertl,

TU Wien

Christian Czezatke described the
LinLogFS filesystem. Started in 1998,
LinLogFS aims to achieve faster crash
recovery than that of the Ext2 filesystem.
LinLogFS also enables the creation of
consistent backups while the filesystem
remains writable.

LinLogFS evolved from the Ext2 code-
base to a log-structured filesystem with
better data consistency and
cloning/snapshots. It guarantees in-order
write consistency.

If you modify part of an Ext2 filesystem
during a backup, the change may or may
not be noticed. Worse, a simultaneous

http://oss.sgi.com/projects/xfs/

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

Sbackup may only detect parts of the
change. LinLogFS does not suffer from
this problem because backups can use a
snapshot of a filesystem. In this manner,
backups are completely atomic while still
allowing read-write access to the filesys-
tem.

In the future, Czezatke plans to finish the
cleaning program, use less naive data
structures and algorithms, and cooperate
with the object-based disk project for
mirroring.

See
<http://www.complang.tuwien.ac.at/czezatke/lfs.html>

for the code.

Q: Have you reviewed the LFS code for
the *BSD operating systems? Can you
comment on differences or code overlap?
A: We looked at BSD LFS and Sprite LFS.
We had slightly different goals. We want-
ed an LFS for Linux. And the Sprite and
BSD LFS goal was higher speed than
FFS. Our goal was better functionality at
the same speed as Ext2.

UNIX FILE SYSTEM EXTENSIONS IN THE

GNOME ENVIRONMENT

Ettore Perazzoli, Helix Code, Inc.

Ettore Perazzoli spoke about filesystem
extensions in the GNOME environment.
Perazzoli is an open source software
developer and contributor to the
GNOME project. GNOME extends the
functionality of the UNIX filesystem by
using a user-level library called the
GNOME Virtual File System.

There are many file formats to juggle:
zip, tar, gzip, etc. Each format uses a dif-
ferent tool to view the file contents.
GNOME avoids this problem by using a
global filesystem namespace. This allows
GNOME to identify and view contents of
container files such as tar files. Names in
the GNOME VFS use an extension of the
familiar Web Uniform Resource
Identifier scheme.

Ettore discussed how Microsoft
Windows has the “My Computer” con-

15October 2000 ;login:

cept where one can find all system
resources such as files, a control panel,
printers, and the recycling bin. GNOME
VFS addresses the “My Computer” prob-
lem by providing filesystem abstractions,
and the asynchronous file I/O problem
by implementing an asynchronous API.
Asynchronous behavior is important
because a GUI should be responsive all
the time. If the GUI were to block on a
file operation, the user cannot stop the
operation. GNOME implements asyn-
chronous behavior through an asynchro-
nous virtual filesystem library.

For more information, visit
<http://www.gnome.org/> and
<http://developer.gnome.org/>.

Q: Why did you choose a pound sign for
subschema? A: We inherited this from
Midnight Commander. You can always
quote the character.

Q: How do you handle symlinks with “..”
in the path? A: Symlinks only work with-
in their context. For instance, a symlink
inside a tar file will only make sense
within the context of the tar file.

Q: Have you considered POSIX AIO as
twisted as it may be? A: Yes, but POSIX
AIO only lets you make reads/writes
from/to the filesystem asynchronous, so
it does not help in complex cases such as
the .tar or .zip ones, when you have to do
other stuff besides physically reading the
file.

SESSION: DISTRIBUTION AND

SCALABILITY: PROBLEMS AND

SOLUTIONS

Summarized by Josh Kelley

VIRTUAL SERVICES: A NEW ABSTRACTION FOR

SERVER CONSOLIDATION

John Reumann, University of Michigan;

Ashish Mehra, IBM T.J. Watson

Research Center; Kang G. Shin,

University of Michigan; Dilip Kandlur,

IBM T.J. Watson Research Center

Virtual services (VSes) provide a way to
partition resources on a server cluster
between competing applications. VSs can
be used to set resource limits and to
charge resources out to different virtual
services. For example, Web servers for
two different companies can be run on a
single host by treating them as two sepa-
rate VSes. Such partitioning has tradi-
tionally been done by partitioning a
physical host into several virtual hosts.
Although this approach provides good
insulation between services, it does not
allow sharing common subservices
between co-hosted sites. VSes address
this problem by dynamically adjusting
resource bindings. Each request’s VS
resource context is tracked as the request
is handed off across application and
machine boundaries, thus allowing VSes
to remain insulated from each other
while still accessing shared applications
and machines.

Implementing VSes involves modifying
the operating system’s scheduler to parti-
tion the CPU. A VS also hooks into vari-
ous system calls (such as process creation
calls and network communication calls)
via gates in order to track the propaga-
tion of work. Gates adjust resource bind-
ings during system calls (binding a
process to a different virtual service as
needed) and enforce resource limits.
These gates are implemented as loadable
kernel modules.

Evaluation shows that virtual services
have a minimal negative impact on per-
formance and successfully insulate com-
peting services from each other, even
when these services rely on a common
shared service. VS support is currently
available for Linux 2.0.36; support for
Linux 2.2.14 is in development. Source
code is available from
<http://www.eecs.umich.edu/~reumann/vs.html

>.

USENIX ANNUAL TECHNICAL CONFERENCE ●

http://www.complang.tuwien.ac.at/czezatke/lfs.html
http://www.gnome.org/
http://developer.gnome.org/
http://www.eecs.umich.edu/~reumann/vs.html

LOCATION-AWARE SCHEDULING WITH

MINIMAL INFRASTRUCTURE

John Heidemann, USC/ISI; Dhaval Shah,

Noika

With the increase in use of laptop com-
puters, some way to specify context-
dependent configurations and activities
could provide a great deal of conven-

ience for users. For example, a user
might wish to specify “print to the print-
er in room 232 when I’m at work” or
“disable this background process while
I’m on battery.” lcron is a context-aware
cron that provides a general solution to
scheduling such context-dependent
activities.

Context information could come from
many sources: GPS receivers, wireless
base station name, idle status, network
addresses, or battery status are all possi-
bilities. Lcron currently supports the lat-
ter two.

The interface to lcron is similar to that of
the standard cron and at utilities. A con-
text-dependent at command, for exam-
ple, could be invoked as at 7pm @work.
lcron allows users to specify mappings
between terms meaningful to the user
(‘@work’) and information readily avail-
able to the computer (latitude, longitude,
router IP address).

lcron has been in use for two years. It is
available from
<http://www.isi.edu/~johnh/SOFTWARE/XCRON>.

16 Vol. 25, No. 6 ;login:

DISTRIBUTED COMPUTING: MOVING FROM

CGI TO CORBA

James FitzGibbon and Tim Strike,

Targetnet.com Inc.

In 1997, TargetNet deployed a banner-ad
delivery system using CGI. As the net-
work grew, basic CGI showed itself to be
incapable of keeping up with the growth.
They wanted a solution that was faster
than basic CGI, was freely available,
would support distributed computing,
and would work with other products.
CORBA was chosen as the solution that
best met these criteria.

The system that was developed involves
two main components. First is an HTTP-
to-CORBA proxy. This proxy, called the
dispatch server, takes HTTP requests
from the Web servers and presents them
as CORBA requests to the application
servers. This dispatch server allows a
three-tier architecture (Web servers,
application servers, databases) in which
only the Web servers are exposed to the
Internet.

The second main component is a
method of notifying each dispatch server
of the available application servers. A
service heartbeat daemon serves this role
by maintaining a list of available applica-
tion servers, providing a client with an
available application server when
queried, and coordinating with other
heartbeat daemons. This design avoids
any single point of failure and provides
excellent scalability.

CORBA offers an open source, distrib-
uted object model, with wide language
support. The combination of a dispatch
server and a heartbeat daemon allows a
three-tier architecture with excellent reli-
ability and near-linear scalability.

INVITED TALK

THE MICROSOFT ANTITRUST CASE: A VIEW

FROM AN EXPERT WITNESS

Edward Felten, Princeton University

Summarized by Josh Simon

Disclaimer: Neither the author of this
write-up nor the speaker is a lawyer.

Dr. Felten was one of the expert witness-
es for the U.S. Department of Justice in
the recent antitrust case against
Microsoft. In his talk he discussed why
he believed the government chose him,
and he explained the role of an expert
witness in antitrust cases.

In October 1997 Felten received an email
message from an attorney in the
Department of Justice asking to speak
with him. After signing a nondisclosure
agreement (which is still binding, so he
advised us there were some aspects he
simply could not answer questions on),
and over the course of several months,
he spoke with the DOJ until, in January
1998, he signed a contract to be an advi-
sor to the case.

What was the case about? Unlike media
portrayals, the case was not about
whether Microsoft is good or evil, or
whether or not Bill Gates is good or evil,
or whether Microsoft’s behavior was
good or bad. The case was specifically
about whether or not Microsoft violated
U.S. antitrust laws.

A brief discussion of economics may be
helpful here. Competition constrains
behavior. You cannot, as a company, hike
prices and provide bad products or serv-
ices when there is competition, for the
consumer can go to your competitors
and you’ll go out of business. Weakly
constrained companies, or those compa-
nies with little or no competition, have
what is called monopoly power.
Monopoly power in and of itself is not
illegal. What is illegal is using the
monopoly power in one market (for
example, flour) to weaken competition
in another market (for example, sugar).

John Heidemann

http://www.isi.edu/~johnh/SOFTWARE/XCRON

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

SThe U.S. government claimed that (1)
Microsoft has monopoly power in the
personal-computer operating-system
market; and that (2) Microsoft used its
monopoly power to (a) force PC manu-
facturers to shun makers of other (non-
Microsoft) applications and operating
systems; (b) force AOL and other ISPs to
shun Netscape’s browsers, Navigator and
Communicator; and (c) force customers
to install and use Microsoft Internet
Explorer. These issues are mostly non-
technical and specifically economic. Dr.
Felten focused on the technical aspects.

Under U.S. antitrust law, tying one prod-
uct to another is illegal in some cases.
For example, if you have a monopoly on
flour, you cannot sell flour and sugar
together unless you also sell flour alone.
You cannot force customers to buy your
sugar in order to get your flour.
Similarly, the government argued,
Microsoft cannot tie Windows 95 (later,
Windows 98) together with Internet
Explorer unless it offers both the OS and
the browser separately. Microsoft
claimed technical efficiencies in bundling
the products together.

This boils down to two legal issues. First,
what was the motive in combining the
OS and the browser? The answer to this
is provided by documentation and wit-
nesses, subpoenaed by the government,
and not technical. Second, does the com-
bination achieve technical efficiencies
beyond that of not combining the two?
The answer to this is experimental, tech-
nical, based in computer science, and
was the focus of the rest of the talk.

Specifically, how did Felten go about
testing the efficiencies or lack thereof?
He started by hiring two assistants who
reverse-engineered both Windows and
Internet Explorer. (Note that this work,
because it was done on behalf of the gov-
ernment for the specific trial, was not
illegal. Doing so yourself in your own
basement would be illegal.) After nine
months, they were able to assemble a

17October 2000 ;login:

program to remove Internet Explorer
from Windows.

The next step in the process was to pre-
pare for court. In general, witnesses have
to be very paranoid, nail down the tech-
nical details, have sound and valid con-
clusions, and learn how to be cross-
examined. Lawyers, no matter your per-
sonal opinion of them, are generally very
well-schooled in rhetoric, terminology,
and framing of questions, and hiding
assumptions in them. They’re also good
at controlling the topic, pacing the exam-
ination, and producing sound bites. In
his testimony, Felten demonstrated the
“remove IE” program. Jim Alchain,
Microsoft vice president, provided 19
benefits of tying the products together
and claimed the removal program had
bugs. In the government’s cross-exami-
nation of Alchain, he admitted that all 19
benefits were present if IE was installed
on top of Windows 95, and that the
video used to show that the demonstra-
tion of the removal process had bugs had
errors and inconsistencies. Microsoft
tried a second demo to show problems
with the removal program under con-
trolled circumstances and could not do
so. Furthermore, in rebuttal to
Microsoft’s assertion that the products
had to be strongly tied together to gain
benefits, the government pointed out
that Microsoft Excel and Microsoft Word
were not strongly tied and yet were able
to interoperate without being insepara-
ble.

Judge Jackson reported in his findings of
fact in November 1999 that the combi-
nation had no technical efficiencies
above installing them separately, Internet
Explorer could be removed from the
operating system, and tying the browser
and the operating system together was,
in fact, illegal.

The next phase of the trial was the reme-
dy phase in May 2000. The goals of the
remedy phase are to undo the effects of
the illegal acts, prevent recurrence of

those acts, and be minimally intrusive to
the company, if possible. There are gen-
erally two ways to accomplish this: struc-
tural changes (reorganization or separa-
tion of companies) and conduct changes
(imposing rules). The judge could
choose either or both. The decision was
reached to restructure Microsoft such
that the operating system (Windows)
would be handled by one company and
everything else by another. Furthermore,
in conduct changes, Microsoft could not
place limits on contracts; could not retal-
iate against companies for competing in
other markets (such as, for example,
word processing); must allow PC manu-
facturers to customize the operating sys-
tems on the machines they sell; must
document their APIs and protocols; and
cannot tie the OS and products together
without providing a way to remove
them.

Microsoft has appealed the case. At the
time of this writing it is not clear
whether the appeal will be heard in the
U.S. Court of Appeals or by the U.S.
Supreme Court. The remedies are stayed,
or on hold, until the resolution of the
appeals or until a settlement of some
kind is reached between Microsoft and
the U.S. government. Once the case is
truly over, Felten’s slides will be available
on the USENIX Web site.

FREENIX SESSION: SOCKETS

Summarized by Bob Gray

PROTOCOL INDEPENDENCE USING THE

SOCKETS API

Craig Metz, University of Virginia

Craig Metz convinced the audience that
in an all-IP world, our network pro-
gramming has become inflexible and
uni-protocol. Even though the Berkeley
Sockets were designed as a protocol-
independent API, other parts of the API
(like the name-service functions) grew
up as protocol-dependent. So, some of
the APIs are not protocol-independent,

USENIX ANNUAL TECHNICAL CONFERENCE ●

which in turn encourages code not to be
either. For now, IPv4 is ubiquitous, but
as its 32-bit address space runs out, we
will find IPv6 more and more com-
pelling. Therefore, it would be prudent
to pay attention to the portability issues
and even check and retrofit some of our
existing network programs.

Metz pointed out multiple problems:

■ Hard coded constants in programs,
■ Storage limitations and assumptions,
■ GUIs that assume four three-digit

fields as an address.

For example, many programs hard-code
the protocol family as AF_INET, which
prevents protocols other than IP from
being used. We should not assume a net-
work address will fit in a u_long. And
using struct sockaddr_in sin limits pro-
grams because it doesn’t allocate enough
storage for protocols such as IPv6.

Metz recommends using the new POSIX
p1003.1g interfaces. For example, getad-
drinfo performs the functionality of geth-
ostbyname(3) and getservbyname(3), in
a more sophisticated manner.

The new interfaces will take time to be
universally deployed; however, they are
currently available in at least the follow-
ing environments: AIX, BSD/OS,
FreeBSD, Linux, OpenBSD, NetBSD,
Solaris, and Tru64 UNIX. They are
expected to be available soon with IRIX
and HP-UX.

SCALABLE NETWORK I/O IN LINUX

Niels Provos, University of Michigan;

Chuck Lever, Sun-Netscape Alliance

Graduate students Niels Provos and
Chuck Lever have observed and
addressed bottlenecks in Linux where
many high-latency, low-bandwidth con-
nections are simultaneously present on a
Web-server box. The problem is that the
stock kernel data structures and algo-
rithms don’t scale well in the presence of
thousands of rapidly formed HTTP con-
nections. The file-descriptor selection

18 Vol. 25, No. 6 ;login:

code needed work. The problem is event
notification. It takes a long time for the
kernel to find which connections are
ready for I/O.

Niels discussed two solutions to remove
the inefficiency: the POSIX RT signals
API and an optimized poll() along the
lines of Banga’s declare_interest() inter-
face. He convinced the audience that
both mechanisms provide huge improve-
ments for HTTP response time when
251 or 501 idle or inactive connections
are present in the background. However,
his optimization using /dev/poll yielded
the overall best response times.

To achieve high performance, Neils made
the following changes to poll():

■ Maintain state information in the
kernel so that every poll system call
doesn’t have to retransmit it.

■ Allow device drivers to post comple-
tion events to poll().

■ Eliminate the result copying when
poll returns to the user.

The /dev/poll device allows a process to
add, modify, and remove “interests” from
an interest set. This streamlines poll()
calls because only relevant information is
passed at system call time. Further, when
poll() returns, the application immediate-
ly has access to the ready descriptors.

The software enhancements to poll() are
freely available.

ACCEPT() SCALABILITY IN LINUX

Stephen P. Molloy, University of

Michigan; Chuck Lever, Sun-Netscape

Alliance

Stephen Molloy described the thunder-
ing hard problem associated with Linux
implementations of the accept() system
call. When multiple threads call accept()
on the same TCP socket to wait for
incoming TCP connections, they are
placed into a wait queue. The problem is
when a TCP connection is accepted, all
of the threads are awakened – even
though all but one will immediately need

to go back to sleep. As the number of
threads goes from a few dozen to hun-
dreds, the kernel begins severe thrashing.

One proposed solution is called Task
Exclusive. The idea is to add a flag to the
thread state variable, change the han-
dling of wait queues, and connect into a
standard, newly added wait-queue mech-
anism.

Another solution is called Wake One,
which adds new calls to complement
wake_up() and wake_up_interruptible().
The new functions just wake up one
thread when a connection becomes
ready.

Molloy presented micro-benchmark data
showing huge improvements in “settle
time” for both the Task Exclusive and
Wake One solutions over the stock ker-
nel.

He also used a Macro-benchmark,-
SpecWeb99, to demonstrate the effective-
ness of both solutions – over 50% more
connections.

The Task Exclusion solution has been
incorporated into the Linux kernel. The
code is also available at the Linux
Scalability Project’s home page:
<http://www.citi.umich.edu/projects/linux-scalability/>.

SESSION: TOOLS

Summarized by Doug Fales

OUTWIT: UNIX TOOL-BASED PROGRAMMING

MEETS THE WINDOWS WORLD

Diomidis D. Spinellis, University of the

Aegean

Windows is fundamentally an environ-
ment of mouse clicks and pixel output.
Very little of this GUI-based OS is acces-
sible to text-based programs. It is with
this shortcoming in mind that Diomidis
Spinellis developed Outwit. Outwit pro-
vides a number of text-based tools for
Windows to work together with UNIX-
based tools. Specifically, Spinellis’ tools
provide mechanisms for interaction with

http://www.citi.umich.edu/projects/linux-scalability/

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

Sthe clipboard, the registry, the ODBC
database interface, document properties,
and shell links (shortcuts). The presenta-
tion included several convincing exam-
ples of the time-saving advantages of
such an environment.

One example used the winreg command
(the interface to the registry) to change
the location of the user’s home directory
from drive C: to drive D:, with a little a
help from pipelines and the Win32 ver-
sion of sed:

winreg HKEY_CURRENT_USER |
sed -n 's/C:\\home/D:\\home/gp' |
winreg

The winclip tool provides shell-based
clipboard access. For example, to copy
data from standard input to the
Windows clipboard:

ls -l | winclip -c

and to paste Windows clipboard data to
standard output:

winclip -p | wc -w

Spinellis would be interested in adding
functionality to Outwit for new features
of Windows 2000, and in providing sup-
port for Unicode. The Outwit tools are
available at <http://softlab.icsd.aegean.gr/
~dspin/sw/outwit>.

PLUMBING AND OTHER UTILITIES

Rob Pike, Bell Labs

Plumbing is a Plan9 solution for inter-
process communication and message
passing between user applications. The
general idea is to remove some of the
burden on the user of constantly shuf-
fling data from program to program. A
common example of this occurs during
compilation and debugging, when a
compiler generates error messages detail-
ing file location and line number.
Plumbing allows the user to access the
error in an editor in one click.

Thanks to the pattern-matching lan-
guage at the core of the plumber’s
design, it is a far more powerful mecha-

19October 2000 ;login:

nism than filename-extension associa-
tions such as those in Windows. While
the goal is for the plumber’s default
actions to be the most desirable actions,
it is highly customizable through a con-
figuration file that defines rules in a pat-
tern-action format.

The actual message passing is relatively
trivial because the plumber is a fileserv-
er; messages are written to a file on the
server, which then takes appropriate
action based on the defined rules. The
rules are actually quite flexible and pow-
erful in that they provide a means to
interpret the context of messages.

The interface for plumbing is simple and
designed to minimize keystrokes and
button clicks. The applications them-
selves do remarkably little work; almost
everything is handled within the
plumber itself.

One very good application of this sort of
automation is in dealing with file for-
mats that might require transformation
before viewing, such as an attached
Microsoft Word document. With a cou-
ple of pattern-matching rules to set up
the variables, this rule takes a Word doc-
ument, converts it to text, and sends it to
the editor:

plumb start doc2txt $data | \
plumb -i -d edit \
-a action=showdata \
-a filename=$0

This one-click approach to conversion
and viewing is a slick example of the
advantages of this system. Details and
more examples may be found in Pike’s
paper.

INTEGRATING A COMMAND SHELL INTO A

WEB BROWSER

Robert C. Miller and Brad A. Myers,

Carnegie Mellon University

Rob Miller demonstrated enhancements
to his existing Web browser (LAPIS, see
http://www.usenix.org/events/usenix01/cfp/miller/miller_html/usenix99.html>
). The extension was an integration of

browser and command shell. At first
glance, this might look like another
attempt to unnecessarily GUI-ify a clas-
sic typescript tool. However, this project
demonstrated some very useful and
innovative ways of using a Web browser.

Miller’s browser provides a circular redi-
rection of the standard input and out-
put, so that commands are executed as if
in one long pipeline. The benefits of
such a mechanism in a Web browser are
not immediately apparent until the full
potential of conventions like the “back”
button are realized.

In addition, the browser conveniently
separates the standard error and output
streams when displaying command out-
put. Some features of the browser are: an
embedded pattern-matching language to
extract data from a Web page, a com-
mand window that can execute tradi-
tional shell commands and Web-specific
commands, and the ability to automate
browsing.

The demonstration showed how LAPIS
could be used to visit and print (or save)
each page in a document that is strung
out over several links. Another interest-
ing application was automating the use
of forms. Miller used the pattern-match-
ing language to extract the ISBN of a
book from an Amazon.com Web site,
and then fed this into a script that had
been constructed by LAPIS to consult
the form-based Web pages of CMU’s
library lookup service.

Judging by the demonstration, LAPIS
seemed a well-designed, easy to use
interface. Furthermore, it does some-
thing to alleviate the pain of endless
clicking and banner-ad watching that is
associated with browsing the Web these
days. The browser and its Java source are
available at
<http://www.cs.cmu.edu/~rcm/lapis>.

USENIX ANNUAL TECHNICAL CONFERENCE ●

http://softlab.icsd.aegean.gr/
http://www.usenix.org/events/usenix01/cfp/miller/miller_html/usenix99.html
http://www.cs.cmu.edu/~rcm/lapis

INVITED TALK

CHALLENGES IN INTEGRATING THE MAC OS
AND BSD ENVIRONMENTS

Wilfredo Sanchez, Apple Computer

Summarized by Josh Simon

Fred Sanchez discussed some of the chal-
lenges in integrating the MacOS and
BSD environments to produce MacOS X.
Historically, the Mac was designed to
provide an excellent user interface (“the
best possible user experience”) with tight
hardware integration and a single user.
In contrast UNIX was designed to solve
engineering problems, using open source
(for differing values of “open”), running
on shared multi-user computers and
with administrative overhead. There are
positives and negatives with both
approaches. MacOS X is based on the
Mach 3.0 kernel and attempts to take the
best from both worlds. A picture may
help explain how all this hangs together:

Sanchez next talked about four problem
areas in the integration: filesystems, files,
multiple users, and backwards compati-
bility. Case sensitivity was not much of
an issue; conflicts are rare and most sub-
stitutions are trivial. MacOS uses colon
as the path separator; UNIX uses the
slash. Path names change depending on
whether you talk through the Carbon
and Classic interfaces (colon, :) or the
Cocoa and BSD interfaces (slash, /).
Filename translation is also required,
since it is possible for a slash to be pres-
ent in a MacOS file name. File IDs are a
persistent file handle that follows a file in

20 Vol. 25, No. 6 ;login:

MacOS, providing for robust alias man-
agement. However, this is not imple-
mented in filesystems other than HFS+,
so the Carbon interface provides for
nonpersistent file IDs. Hard links are not
supported in HFS+, but it fakes it, pro-
viding the equivalent behavior to the
UFS hard link. Complex files – specifi-
cally, the MacOS data and resource forks
– are in the Mac filesystems (HFS+, UFS,
and NFS v4) but not the UNIX filesys-
tems (UFS and NFS v3). The possible
solutions to this problem include using
AppleDouble MIME encoding, which
would be good for commands like cp
and tar but bad for commands using
mmap(), or using two distinct files, which
makes renaming and creating files tough,
overloads the name space, and confuses
cp and tar. The solution they chose was
to hide both the data and resource forks
underneath the filename (for example,
filename/data and filename/resource,

looking like a
directory
entry but not
a directory)
and have the
open() system
call return the
data fork
only. This lets
editors and
most com-
mands
(except

archiving commands, like cp and tar, and
mv across filesystem boundaries) have
the expected behavior. Another filesys-
tem problem is permissions (which exist
in HFS+ and MacOS X but not in
MacOS 9’s HFS). The solution here is to
base default permissions on the directory
modes.

The second problem area is files. Special
characters were allowed in MacOS file-
names (including space, backslash, and
the forward slash). Filename translation
works around most of these problems,
though users have to understand that
“I/O stuff” in MacOS is the same as

“I:O_stuff” in UNIX on the same
machine. Also, to help reduce problems
in directory permissions and handling
they chose to follow NeXT’s approach
and treat a directory as a bundle, reduc-
ing the need for complex files and sim-
plifying software installations, allowing
drag-and-drop to install new software.

The third problem area involves multiple
users. MacOS historically thought of
itself as having only a single user and
focused on ease of use. This lets the Mac
user perform operations like setting the
clock, reading any file, installing soft-
ware, moving stuff around, and so on.
Currently MacOS X provides hooks for
UID management (such as integrating
with a NetInfo or NIS or LDAP environ-
ment) and tracks known (UNIX-like)
and unknown disks, disabling com-
mands like chown and chgrp on
unknown disks.

The fourth and final problem area
Sanchez discussed was compatibility
with legacy software and hardware.
Legacy software has to “just work,” and
the API and toolkit cannot change, so
previous binaries must continue to work
unchanged. The Classic interface pro-
vides this compatibility mode. Classic is
effectively a MacOS X application that
runs MacOS 9 in a sandbox. This causes
some disk-access problems, depending
on the level (application, filesystem, disk
driver, or SCSI driver). The closed archi-
tecture of the hardware is very abstract-
ed, which helps move up the stack from
low-level to the high-level application
without breaking anything.

Questions focused on security, the desire
to have a root account, and the terminal
window or shell. The X11 windowing
system can be run on MacOS X, though
Apple will not be providing it. Software
ports are available from
<http://www.stepwise.com/>. Additional
details can be found at
<http://www.mit.edu/people/wsanchez/papers/USENIX_2000/>

, <http://www.apple.com/macosx/>, and
<http://www.apple.com/darwin/>.

Platinum Aqua Curses

Classic Carbon Cocoa BSD

(OpenStep)

Application Services

Quantum, OpenGL, and QuickTime

Core Services

Darwin (BSD layer)

http://www.stepwise.com/
http://www.mit.edu/people/wsanchez/papers/USENIX_2000/
http://www.apple.com/macosx/
http://www.apple.com/darwin/

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

SFREENIX SESSION: NETWORK

PUBLISHING

Summarized by Matt Grapenthien

The growth and evolution of the Internet
has caused some of its limitations to
become more acute. The presenters in
this session attempt to address some of
these problems with more dynamic and
generally more useful systems and proto-
cols than those currently in wide use.

PERMANENT WEB PUBLISHING

David S. H. Rosenthal, Sun

Microsystems Laboratories; Vicky Reich,

Stanford University Libraries

David Rosenthal presented LOCKSS
(Lots of Copies Keep Stuff Safe), a sys-
tem to preserve access to scientific jour-
nals in electronic form. Unlike normal
systems, LOCKSS has far more replicas
than necessary just to survive the antici-
pated failures. Exploiting the surplus of
replicas, LOCKSS allows much looser
coordination among them.

THE GLOBE DISTRIBUTION NETWORK

A. Bakker, E. Amade, and G. Ballintijn,

Vrije Universiteit Amsterdam; I. Kuz,

Delft University of Technology; P.

Verkaik, I. van der Wijk, M. van Steen,

and A. S. Tanenbaum, Vrije Universiteit

Amsterdam

The Globe Distribution System, present-
ed by Arno Bakker, attempts to address
the problem of distribution to a world-
wide audience through selective, per-
document replication, as opposed to the
“all-or-none” replication policies cur-
rently in use. Though still in an early
stage, the project’s goal of a “better”
WWW/FTP seems promising.

OPEN INFORMATION POOLS

Johan Pouwelse, Delft University of

Technology

Johan Pouwelse presented a method to
allow modification and extension of
existing Web pages by allowing public
write access to collections of WWW-

21October 2000 ;login:

based databases. Open Information
Pools further address the problem of
quickly evaluating huge amounts of con-
tent, through an open rating and moder-
ation system. Experiments on similar,
already-existing systems seem to prove
these concepts very valuable.

SESSION: KERNEL STRUCTURES

Summarized by Josh Kelley

OPERATING SYSTEM SUPPORT FOR MULTI-
USER, REMOTE, GRAPHICAL INTERACTION

Alexander Ya-li Wong and Margo I.

Seltzer, Harvard University

An increasing number of services are
being provided over the network instead
of locally. Examples include filesystems
(NFS), storage (Fibre Channel), memory
(Distributed Shared Memory), and inter-
faces (thin clients). Of these, thin clients
are often neglected.

The key characteristics of thin-client
service are that it is interactive, multi-
user, graphical, and remote. One of the
most important features of thin-client
service is low latency. This presentation
compared two operating systems,
Windows NT 4.0 Terminal Server
Edition, and Linux 2.0.36 running the X
Window System, and examined how well
they provide these characteristics.

The first two questions regarding thin-
client service are processor management
and memory management. The OS’s goal
should be to prevent the user from expe-
riencing any perceptible latency. To min-
imize latency, the OS should insure that
interactive performance is background-
load-independent and should swap out
pages belonging to interactive processes
last. Although NT offers special support
for scheduling interactive threads, exper-
iments showed Linux to be much better,
both for processor scheduling and for
low latencies while swapping pages in
from disk. Open questions here include
the best time slice to use for interactive
processes and how the Linux kernel can
identify interactive threads (since inter-

activity is determined in user space) for
special treatment.

A third question regarding thin-client
service is network load. In experiments,
NT’s Remote Display Protocol presented
a much lower network load, with a larger
message size, than did the X or LBX pro-
tocols used by Linux and X Windows.
(This may be due partially to poorly
coded X applications.) RDP’s use of a
client-side bitmap cache allowed it to
have virtually no load in the specific area
of animation (as long as the cache was
not overloaded). These experiments
point out the importance of a client-side
cache.

TECHNIQUES FOR THE DESIGN OF JAVA

OPERATING SYSTEMS

Godmar Back, Patrick Tullmann, Leigh

Stoller, Wilson C. Hsieh, and Jay

Lepreau, University of Utah

A Java OS is an execution environment
for Java bytecode that provides standard
operating-system functionality: separa-
tion and protection, resource manage-
ment, and interapplication communica-
tion. It may run on a traditional OS or it
may be embedded in an application. The
purpose of a Java OS is to support exe-
cuting multiple Java applications.

There are several options for arranging
the operating system, Java Virtual
Machine, and Java applications. One
approach is physical separation: one OS
per one JVM per one app. Such an
approach is expensive, prevents embed-
ding of an OS within an application, and
makes communication difficult. A sec-
ond approach is separate JVM processes
running under one OS. This approach
has inefficient resource use, requires a
underlying OS, and makes for difficult
communication and no embedding
within outside applications. A third
approach is an ad hoc layer that supports
running multiple applications within
one JVM. Examples of this approach
include an applet context or a servlet

USENIX ANNUAL TECHNICAL CONFERENCE ●

engine. However, this approach offers
insufficient separation between the
processes, with no resource control and
unsafe termination of one runaway
process. The fourth, and best, approach
is to provide support for processes with-
in the JVM, turning the JVM into a Java
OS. The Java OS can be designed to
replace the base OS as well.

There are several design decisions to be
made for a Java OS. One example is the
area of shared memory management.
Issues here include the precision of
accounting, the ability to reclaim shared
objects, and the need for full reclamation
of memory upon process termination.
Java’s automatic garbage collection com-
plicates these issues. Solutions to the
question of shared memory management
include copying (simple but slow), indi-
rect sharing via revocable proxies, direct
sharing via a dedicated shared heap, and
a hybrid approach of both direct and
indirect. The J-Kernel, from Cornell
University, and Alta and K0 (which later
became KaffeOS), both from the
University of Utah, all offer different
solutions to this question and illustrate
the general tradeoffs between separation,
resource management, and communica-
tion.

SIGNALED RECEIVER PROCESSING

José Brustoloni, Eran Gabber, Abraham

Silberschatz, and Amit Singh, Lucent

Technologies-Bell Laboratories

This session presented signaled receiver
processing, an alternative to the BSD’s
traditional IP packet receiver processing.
Since implementations of and derivatives
of BSD have appeared on a variety of
platforms, BSD receiver processing is a
part of many operating systems,
although it has several disadvantages.
Protocol processing of received packets
in BSD is interrupt-driven. This results
in scheduling anomalies; CPU time spent
processing packets is charged to the cur-
rently running process or is not charged
at all. Therefore, no quality of service

22 Vol. 25, No. 6 ;login:

(QoS) guarantees are possible. A second
problem is receive livelock, in which the
system spends all of its time processing
incoming packets, even when no buffer
space is available to store these packets.

One alternative to BSD receiver process-
ing is lazy receiver processing (LRP). To
prevent receive livelock, LRP uses earlier
demultiplexing to detect full receive
buffers as soon as possible and drop
packets accordingly. UDP packets are
processed synchronously, at the receive
call. TCP packets are processed asyn-
chronously, via an extra kernel thread
per process or via a system-wide process
that uses resource containers. (Resource
containers are an abstraction used to
separate resource principal and protec-
tion domain. Resources used by kernel-
level code can be charged out to user
processes.) This processing of UDP and
TCP packets allows LRP to avoid the
BSD receiver processing’s scheduling
anomalies.

There are several disadvantages with
LRP. First, it does not work on systems
that do not implement kernel threads or
resource containers. Second, under LRP,
TCP is always asynchronous and shares
resources equally with the application.
Third, LRP is designed for hosts, not
gateways. Its early demultiplexing is too
simplistic for gateways, and time-sharing
scheduling is inadequate for gateways.
There are open questions with LRP
regarding how well it would work with
realtime schedulers and proportional-
share schedulers.

Signaled receiver processing (SRP) is
presented as an alternative method that
avoids these problems with LRP. When a
packet arrives, the OS signals the receiv-
ing application. By default, the packet is
processed asynchronously, although the
application may instead choose to catch,
block, or ignore the packet, in order to
defer processing until the next receive
call. SRP processes incoming packets in
several stages; only the actual hardware

input is handled at the interrupt level.
Processing is handled via a multi-stage
early demultiplexer, or MED, and is
transferred from one stage to another via
the next stage submit (NSS) function.
The NSS function signals the application
by sending it a SIGUIQ (unprocessed
interrupt queue).

Performance tests show that throughput,
CPU utilization, and round trip times
are practically the same for SRP under
Eclipse/BSD as they are for BSD receiver
processing under FreeBSD. Tests also
show that SRP successfully prevents
receive livelock. It is easily portable,
allows for flexible scheduling and use
with gateways, and still allows for QoS
guarantees.

INVITED TALK

THE CONVERGENCE OF NETWORKING AND

STORAGE: WILL IT BE SAN OR NAS?

Rod Van Meter, Network Alchemy

Summarized by Josh Simon

The goal of this talk was to provide
models for thinking about SANs and
NASs. Network-attached storage (NAS)
is like NFS on the LAN; storage area net-
works (SAN) are like a bunch of Fibre
Channel–attached disks.

There are several patterns of data shar-
ing, such as one-to-many users, one-to-
many locations, time slices, and fault tol-
erance; activities, such as read only, read-
write, multiple simultaneous reads, and
multiple simultaneous writes; and multi-
ple ranges, of machines, CPUs, LAN ver-
sus WAN, and known versus unknown
clients.

When sharing data over the network,
how should you think about it? There
are 19 principles that Levy and
Silverschatz came up with that describe
the file. These include the naming
scheme, component unit, user mobility,
availability, scalability, networking, per-
formance, and security. There is Garth

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

SGibson’s taxonomy of four cases: server-
attached disks, like a Solaris machine;
server integrated disks, like a Network
Appliance machine; netSCSI, or SCSI
disks shared across many hosts with one
“trusted” host to do the writes, and net-
work-attached secure devices (NASD).
Over time, devices are evolving to
become more and more network-
attached, smarter, and programmable.

Van Meter went into several areas in
more detail. Access models can be appli-
cation-specific (like databases or HTTP),
file-by-file (like most Unix file systems),
logical blocks (like SCSI or IDE disks),
or object-based (like NASD). Connec-
tions can be over any sort of transport,
including Ethernet, HiPPI, Fibre
Channel, ATM, SCSI, and more. Each
connection model is at the physical and
link layers and assumes there is a trans-
port layer (such as TCP/IP), though
other transport protocols are possible
(like ST or XTP or UMTP). The issues of
concurrency (are locks mandatory or
advisory, is management centralized or
distributed?), security (authorization and
authentication, data integrity, privacy,
and nonrepudiation), and network (“it
doesn’t matter” versus “it’s all that mat-
ters”) all need to be considered.

Given all those issues, there are three
major classes of solutions today. The first
is a distributed file system (DFS), also
known as NAS. This model is a lot of
computers and lots of data; examples
include NFS v2, AFS, Sprite, CIFS, and
XFS. The bottleneck with these systems
is the file manager or object store; draw-
backs include the nonprogrammability
of these devices and the fact that they are
OS-specific and have redundant func-
tionality (performing the same steps dif-
ferent times in different layers).

The second class of solution is storage
area networks (SAN). These tend to have
few computers and lots of data and tend
to be performance-critical. These are
usually contained in a single server or

23October 2000 ;login:

machine room; the machines tend to
have separate data and control networks.
These devices’ drawbacks are that they
are neither programmable nor smart,
they’re too new to work well, they pro-
vide poor support for heterogeneity, and
the scalability is questionable. However,
there is a very low error rate and the
application layer can perform data recov-
ery. Examples of SANs include VAX clus-
ters, NT clusters, CXFS from SGI, GFS,
and SANergy.

The third solution class is NASD, devel-
oped at CMU. The devices themselves
are more intelligent and perform their
own file management. Clients have an
NFS-like access model; disk drives
enforce (but do not define) security poli-
cies. The problems with NASD is that it’s
too new to have reliable details, more
invention is necessary, there are some OS
dependencies, and some added function-
ality may be duplicated in different lay-
ers. Which solution is right for you? That
depends on your organization’s needs
and priorities.

FREENIX SESSION: X11 AND USER

INTERFACES

Summarized by Gustavo Vegas

THE GNOME CANVAS: A GENERIC ENGINE

FOR STRUCTURED GRAPHICS

Federico Mena-Quintero, Helix Code,

Inc.; Raph Levien, Code Art Studio

The GNOME Canvas is a generic high-
level engine for structured graphics. A
canvas is a window in which things can
be drawn. It contains a collection of
graphical items such as lines, polygons,
ellipses, smooth curves, and text.
Graphics on this canvas are deemed to
be structured because you can place
these geometric shapes in the canvas and
later on access the objects to change their
attributes, such as position, color, and
size. The canvas is in charge of all
redrawing operations.

The GNOME canvas has an open inter-
face that permits applications that use
the canvas to create their own custom
item types. Thus, the canvas can work as
a generic display engine for all kinds of
applications. The GNOME canvas items
are GTK+ objects derived from an
abstract class (GnomeCanvasItem), that
gives the methods for objects to be
implemented. Using the GTK+ object
system provides several advantages, such
as the possibility of associating arbitrary
data items to canvas items.

The GNOME canvas also uses the Libart
library for its external imaging model in
antialias mode. Libart is a library that
provides a superset of the PostScript
imaging model, and it provides support
for antialiasing and alpha transparency.
The end result is that graphics’ contours
are smoothed out to eliminate jagged
edges.

Several applications that are currently
distributed as part of the GNOME envi-
ronment use the GNOME canvas to ren-
der graphics and other types of data.
Examples of such applications are
Gnumeric (the GNOME spreadsheet),
GNOME-PIM (personal information
manager), and Evolution (the next-gen-
eration mail and groupware program for
GNOME).

For more information about the
GNOME project and the GNOME can-
vas, see <http://developer.gnome.org/>.

EFFICIENTLY SCHEDULING X CLIENTS

Keith Packard, SuSE Inc.

Keith Packard presented a new schedul-
ing algorithm for X11. The technical
motivation behind this project is that the
original scheduling mechanism in X11 is
simplistic and can potentially starve
interactive applications while a graphics-
intensive program runs. This program is
evident when one runs programs like
plaid, which generate many rendering
requests that can tie up the system for
long periods of time, making it unusable

USENIX ANNUAL TECHNICAL CONFERENCE ●

http://developer.gnome.org/

by other programs, as simple as an
xterm.

The X server is typically a single-thread-
ed network server that uses well-known
ports to receive connections from clients
for which it processes requests sent over
the port. To detect pending input from
clients, it uses the select(2) system call.
When the set of clients with pending
input has been determined, the X server
starts executing the requests, starting
with the smallest file descriptor. Each
client uses a buffer to read some of the
data from the network connection. This
buffer can be resized but it is typically
4KB. The requests are executed until
either the buffer is exhausted of com-
plete requests, or after ten requests. After
this has taken place, the server figures
out if there are any clients with pending
complete requests. If this is the case, the
server stops the select(2) call and goes
back to process those pending requests.
When all client input is exhausted, the X
server calls select(2) again to await for
more data. The problem with this algo-
rithm is that it gives preference to more
active clients. If a client generates com-
plex requests, these requests may take up
more time to be satisfied and this client
will end up hogging the server. As a con-
sequence, clients that generate fewer
requests are starved in the presence of
more active clients. Also, clients that do
not generate a complete request during
their turn will be ignored. On the posi-
tive side, when clients are busy, the server
spends most of its time executing
requests and wastes little time on system
calls.

The design goal of the proposed solution
is to provide relatively fine-grained time-
based scheduling with increased priority
given to applications that receive user
input. Each client would be given an ini-
tial priority at connect time. Requests are
executed from the client with the highest
priority, and various events may change
the priority of a given client. This system

24 Vol. 25, No. 6 ;login:

intends to penalize overactive clients and
praise clients with little activity.

In the performance measurements that
were presented a measurable change was
apparent. However, the two schedulers
were within only 2% of each other. This
shows that the changes in the scheduler
have little impact on the tool used for
performance measurement. The tool
used was X11perf, a widely available tool.
This tool runs with very little competi-
tion from other clients, and thus most of
the benefits of the new scheduler go
unnoticed.

In conclusion, simple changes on the
scheduler, based on real-life observations
of the X server behavior, can bring some
advantages over the original scheduler
without impacting performance nega-
tively. For more information and for
work that has been incorporated into the
4.0 release of the X Window System from
the XFree86 group, see
<http://www.xfree86.org/>.

THE AT&T AST OPEN SOURCE SOFTWARE

COLLECTION

Glenn S. Fowler, David G. Korn,

Stephen S. North, and Kiem-Phong Vo,

AT&T Laboratories-Research

David Korn presented a suite of tools
that have been released to the open
source community by AT&T. This tool
suite includes widely known components
that may or may not be directly used in
graphics applications, but the fact that
these have been released has a profound
impact in the open source community.

These tools have been released under an
AT&T license agreement. This is not GPL
or LGPL, so it is important to read the
license if one is going to make use of any
of the software components for any pur-
pose.

The components of this suite are deemed
to be highly portable to practically any
environment, given the right base. They
may not necessarily be complete applica-
tions, but they can be reusable tools to

produce other powerful pieces of soft-
ware. Their focus when creating this
software suite is reusability. They have
also focused in creating software libraries
that encompass core computing func-
tions such as I/O and memory allocation
and other new algorithms and data
structures such as data compression and
differencing and graph drawing. Thus,
they created libraries like,

Libast – Porting base library for their
software tools.
Sfio – This I/O library provides a
robust interface and implements new
buffering and data formatting algo-
rithms that are more efficient than
those in the standard I/O library,
Stdio.
Vmalloc – This memory-allocation
library allows creation of different
memory regions based on applica-
tion-defined memory types (heap,
shared, memory mapped, etc.) and
some library-provided memory-man-
agement strategies.
Cdt – This container data-type library
provides a comprehensive set of con-
tainers under a unified interface:
ordered/unordered sets/multisets,
lists, stacks, and queues.
Libexpr – This library provides run-
time evaluation for simple C-styled
expressions.
Libgraph – This graph library sup-
ports attributed graphs, generalized
nested subgraphs, and stream file I/O
in a flexible graph data language. It is
built on top of the Cdt library and
employs disciplines for I/O, memory
management, graph-object name-
space management and object-update
callbacks. This library is the base of
the Graphviz package.

Other complete tools that have been
released as part of this collection are
reimplementations of programs like the
KornShell language and nmake, and
other new applications like: tw, a more
powerful find and xargs; and warp, a tool
that helped with Y2K testing by running

http://www.xfree86.org/

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

Sa process through it and simulation a
time and clock speed different from the
actual system’s time and clock.

For more information, please see
<http://www.research.att.com/sw/tools/>.
For the AT&T source code license agree-
ment, please see
<http://www.research.att.com/sw/license/ast-open.html>.

SESSION: WORKS IN PROGRESS

Summarized by Kevin Fu

PERL ON THE ITANIUM

Murray Nesbitt

<murray@activestate.com>, ActiveState

Tool Corp.

Nesbitt discussed his experiences in
building Perl under Windows 2000,
Linux, and Monterey on the 64-bit Intel
Itanium. It was straightforward to build
Perl on IA-64 Linux. Building Perl on
Monterey was almost as easy; it required
a standard Perl hints file to compile
though. Murray’s main point was that
building Perl on Windows 2000 was
more painful for a number of reasons
such as lack of configure-script support
and problems with type sizes and
abstractions. In the future Murray plans
to work on optimization. In short, it’s
fairly easy to port Perl, but it’s helpful to
share an office with a Perl guru.

TTF2PT1: A TTF TO ADOBE TYPE 1 FONT

CONVERTER

Sergey Babkin <babkin@users.source-

forge.net>, Santa Cruz Operation

Babkin described his work on a TTF-to-
Adobe Type 1 converter. The converter
also attempts to clean the outlines from
detects and automatically generate Type
1 hints. His program optimizes the
method to make the conversion look
good. It comes under the BSD license
and is reasonably well modularized. He
noted that this work has nothing to do
with SCO and is simply his personal
hobby. For more information, see
<http://ttf2pt1.sourceforge.net/>.

25October 2000 ;login:

LODD: A PIPELINING AND IN-PIPE DATA

MANIPULATION TOOL

Joseph Pingenot <jap3003@ksu.edu>,

Kansas State University

Pingenot, an undergraduate at KSU,
talked about a tool to combine multiple
channels of input and output. The lodd
utility hopes to perform tasks such as
acting as a logical dd and mixing three
pipes together. lodd 1.x has stream-pipe
support and can mix multiple pipelines
together, manipulate data at the block
level, perform bitwise logic, and divide
pipelines. lodd is dd-compatible. Some of
the interesting issues in creating lodd
include dealing with blocking I/O, back-
streams, block sizes, shell limitations,
and deciding what to do if a pipe closes.
Visit
<http://www.phys.ksu.edu/~trelane/lodd>
for more information.

Q: Are functions extensible? A: Not in
the preliminary version. Hopefully in the
future.

Q: How does one use lodd within a shell?
A: I am now looking at ways to imple-
ment a shell syntax. Suggestions are wel-
come.

VSTACK: EASILY CATCH SOME BUFFER

OVERRUN ATTACKS

Craig Metz <cmetz@inner.net>,

University of Virginia

Buffer overruns typically work by over-
writing a function’s return address with a
value of the adversary’s choice. In this
way, an adversary can change the flow of
control to execute, for example, a root
shell. Metz described a simple approach
that prevents many commonly exploited
overruns.

vstack verifies that function return
addresses do not change. It does so by
keeping a separate virtual stack of return
addresses and frame pointers. On return
from a function, a program verifies that
the return address and frame pointer on
the execution stack matches that on the
virtual stack. If not, the program jumps

to a fault handler. This does not break
standard calling convention and requires
changes only to the caller convention in
a compiler.

A sample Perl implementation exists for
the x86. It edits assembly code to insert
the checks and management of the virtu-
al stack. The code will appear soon
under a BSD-style license. The perform-
ance loss is minimal. In the future, Metz
plans to have more sophisticated choices
in what to do after detecting an overrun.
vstack does not catch every overrun
attack, but it can catch the vast majority.

Q: Instead of verifying the return address
matches, why not simply use the return
address on the virtual stack? A: There
might be other corrupted data. In special
cases it might be OK to use the virtual
stack directly, but not in general.

Q: What prevents overwriting the virtual
stack itself? A: It is elsewhere in memory.
If you can overwrite an extent of 232

space, then you can overwrite everything
anyway.

Q: Does longjmp() or other functions
that unwind the real stack confuse
vstack? A: Probably. (Offline Metz
explained that this is mostly solvable by
using wrappers around longjmp() and
related functions. It won’t catch every
case, but it will catch most of them.)

Q: Can I overwrite data on the stack? A:
Yes, but vstack will detect changes made
to return addresses.

KQ: KERNEL QUEUES IN FREEBSD

John-Mark Gurney <jmg@freebsd.org>,

FreeBSD

Kernel queues are a stateful method of
event notification. Instead of passing
which events to monitor each time as is
done with select(2) and poll(2), the pro-
gram tells the kernel which events need
notification. kq supports event monitors
(filters) for file descriptors, processes,
signals, asynchronous I/O, and VNODEs.
State is allocated in kernel memory. kq

USENIX ANNUAL TECHNICAL CONFERENCE ●

http://www.research.att.com/sw/tools/
http://www.research.att.com/sw/license/ast-open.html
http://ttf2pt1.sourceforge.net/
http://www.phys.ksu.edu/~trelane/lodd

pays attention to what file descriptors are
ready for reading and writing.

John-Mark described l0pht’s watch pro-
gram modified to use kq. The watch pro-
gram looks for temporary files created in
/tmp. Before using kq, the watch pro-
gram consumed a lot of CPU time by
polling directory entries in /tmp over and
over. With kq, you get a notification
when the /tmp directory changes. In this
manner, the watch program does not
needlessly scan an unmodified directory.

Efforts are underway to use kq in the
Squid HTTP proxy cache for asynchro-
nous I/O and in ircd to reduce the server
load. Visit
<http://people.freebsd.org/~jmg/kq.html>
for more information.

Q: How does this compare to /dev/poll
on Solaris 8? A: I haven’t looked at
/dev/poll; it’s hard to say. However, my
system is extremely lightweight.

Q: If a given source sends multiple sig-
nals, will it cause a series of kernel mem-
ory allocations before the read occurs? A:
The memory is actually allocated when
you register.

Q: Can you unify with other kernel
name spaces? A: Currently you are limit-
ed to a filesystem. However, pretty much
any kernel object can be associated.

AUTONOMOUS SERVICE COMPOSITION ON

THE WEB

Laurence Melloul

<melloul@stanford.edu>, Stanford

University

The goal of this service it to allow
dynamic specification of composition
requests. The advantages include a cost-
effective development cycle, better fault
tolerance, and high availability. Melloul
chose the Web as the medium because it
has autonomous services, uses a public
infrastructure, is common, is simple, and
speaks a language independent protocol
(HTTP). The two main issues are detec-
tion of service interface changes and ver-

26 Vol. 25, No. 6 ;login:

ification of semantic compatibility
between service parameters. The key is to
build on the ontology by web users.

THE HUMMINGBIRD FILE SYSTEM

Liddy Shriver <shriver@research.bell-

labs.com>, Bell Labs, Lucent

Technologies

The Hummingbird File System caters to
workloads of a caching Web proxy. On
UNIX machines, server software such as
Apache or Squid typically runs on a
derivative of the 4.2BSD Fast File
System. FFS was not designed with the
workload of a proxy server in mind. In
particular a Web-proxy workload has
high temporal locality, relaxed persist-
ence, and a read/write ratio different
from most workloads. FFS also includes
features which a proxy server does not
require.

The Hummingbird File System takes
advantage of Web-proxy server proper-
ties such as whole file access, small files
on average, and repeatable reference
locality sets. It also co-locates the storage
of an HTML Web page with its embed-
ded GIFs. Performance measurements
show that under a sample Web-proxy
workload, Hummingbird supports
throughput five to ten times greater than
that of XFS and EFS (SGI) and six to ten
times greater than that of FFS mounted
asynchronously (FreeBSD).

Future work includes persistence of data.
At the moment, Hummingbird does not
worry about persistence because the data
can be regenerated from origin servers.
Visit
<http://www.bell-labs.com/project/hummingbird/> for
more information.

Q: Does Hummingbird support for
HTTP reads for specific byte ranges? A:
Not yet.

Q: When does Hummingbird write to
disk? A: During idle time and when
memory is filled and space is needed.

THE SELF-CERTIFYING FILE SYSTEM

Kevin Fu <fubob@mit.edu>, MIT Lab

for Computer Science

The Self-Certifying File System is a
secure, global filesystem with completely
decentralized control. SFS lets you access
your files from anywhere and share them
with anyone, anywhere. Anyone can set
up an SFS server, and any user can access
any server from any client. SFS lets you
share files across administrative realms
without involving administrators or cer-
tificate authorities.

SFS is a secure network filesystem in the
sense that it provides confidentiality and
integrity of the Remote Procedure Calls
(RPCs) going over the wire. SFS runs at
user level and uses NFSv3 for portability.
It performs between TCP and UDP NFS
on FreeBSD and is in day-to-day use for
Fu’s research group.

Server public keys are made explicit in
pathnames. The pathname to a remote
file includes a “HostID” that consists of a
cryptographic hash of a server’s public
key and hostname. At a high level, the
HostID is essentially equivalent to a pub-
lic key. Using this convention, we can
easily implement certificate authorities
with symbolic links. Then a certificate
authority can chain trust with symbolic
links. A system of user agents and
authenticated lists of trusted HostId
takes care of most of the HostIds.

There is also a read-only dialect suitable
for highly replicated, public, read-only
data (e.g., software-distribution or cer-
tificate authorities). In this scheme, an
administrator creates offline a signed
database of a filesystem to export.
Untrusted servers can replicate this data-
base. Clients can then select any of the
untrusted servers. Because the database
is signed and the self-certifying path
denotes the corresponding public key,
the client can verify that the data is
authentic. Measurements show that a
read-only server can handle many times
the workload of a read-write SFS server
and that server-side authentication is

http://people.freebsd.org/~jmg/kq.html
http://www.bell-labs.com/project/hummingbird/

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

Smore than an order of magnitude faster
than that of SSL.

SFS is free software. The SFS developers
have used it on OpenBSD, FreeBSD,
Solaris, OSF/1, and a patched Linux ker-
nel. Download the software from
<http://www.fs.net/>.

Q: Why not store server public keys in a
file? Is the self-certification just a hack?
A: We believe the symlink approach is
more elegant. And c’mon! It’s a cool
hack.

Q: Have you thought about committing
this to the FreeBSD tree? You should
make sure that your software stays main-
tained by contacting someone in charge
of distributions for each operating sys-
tem. A: You are certainly welcome to
include SFS in your operating system.
We can try to locate the appropriate con-
tacts for each operating system, but you
are welcome to contact the SFS develop-
ers too. Email <sfs-dev@pdos.lcs.mit.edu>.

Q: Do you rely on DNS for security? A:
No. We only use DNS as a hint to locate
a server. If a fake SFS server responds to
a request, the client will detect the fake
because the fake server’s private key will
not correspond to the public key
described in the self-certifying path. You
could receive notification of such failures
via an agent. In our system, the worst an
adversary can do is deny service.

NFS VERSION 4 OPEN SYSTEMS PROJECT

Andy Adamson <andros@umich.edu>,

CITI, University of Michigan

Adamson discussed some of the interest-
ing features of NFS version 4. The CITI
group at the University of Michigan
received funding from Sun Microsystems
to implement NFSv4 on Linux and
OpenBSD.

NFS version 4 has compound RPCs that
perform multiple operations per RPC.
There is no more mountd. There is no
more lockd. Locking is incorporated into
the protocol and includes DOS share

27October 2000 ;login:

locks and nonblocking byte-range locks
with lease-based recovery. Delegation
aids in client file cache consistency. The
server controls who gets delegation.
Security is added to the RPC layer via
GSSAPI. NFSv4 requires Kerberos5 and
Lipkey PKI implementations. The securi-
ty mechanism and QOP is negotiated
between the client and server.

The code has passed all nine basic
Connectathon tests under Linux. The
CITI folks have just started work on the
OpenBSD code. In the near future,
Adamson plans to rebase to Linux 2.2.4
and finish the OpenBSD port. Source
code will be available by September 1,
2000. Visit
<http://www.citi.umich.edu/projects/nfsv4/>
for more information.

Q: Is there backwards compatibility with
NFS3? A: There is none.

Q: Do you expect future growth in NFS
specifications? A: Ohhhh yeah.

Q: What are the terms of the license? A:
Under Linux it is GPLed. Under
OpenBSD it has the OpenBSD license.

Q: Does it work under IPv6? A: We’d
love it to work with IPv6. Would you like
to financially support us?

ALFA-1: A SIMULATED COMPUTER WITH

EDUCATIONAL PURPOSE

Alejandro Troccoli <atroccol@dc.uba.ar>

and Sergio Zlotnik

<szlotnik@dc.uba.ar>, University of

Buenos Aires

The Alfa-1 project consists of software
tools to simulate a processor. This helps
in teaching computer architecture to
undergraduate students. The GAD tool
was used as a basis for developing a sim-
ulated computer, allowing students to
experiment with the approach defined by
the DEVS formalism. The model is based
mainly on the specification of the Integer
Unit of the Sparc processor.

Undergraduates implemented most of
the system, which is now completely

specified and implemented. In the
future, the Alfa-1 staff hopes to add a
GUI, perform exhaustive testing, use dig-
ital logic gates, add another level of
cache memory, and promote educational
use of Alfa-1. Visit
<http://www.dc.uba.ar/people/proyinv/usenix/>
for more information.

Q: What are you able to simulate? A: If
we had enough computational power, we
could simulate everything.

Q: Are there triggers, tracepoints, GDB
for this? A: This is plain C code. You can
debug the simulator using any standard
tool.

TELLME STUDIO

Jeff Kellem <composer@tellme.com>,

Tellme Networks

Tellme Studio offers a free service for
developing and testing voice XML appli-
cations. All you need is knowledge of
VoiceXML and JavaScript (if you choose
to use JavaScript). You write your
VoiceXML code, put it up on a Web serv-
er somewhere, log in to Tellme Studio
(<http://studio.tellme.com/>), and give
the URL pointing to your code. You are
then given an 800 number to call to
immediately test out the application.
Tellme Studio includes VoiceXML docu-
mentation, code and grammar examples,
and a community for sharing ideas.

PASSWORDS FOUND ON A WIRELESS

NETWORK

Dug Song <dugsong@monkey.org>,

CITI, UMich

Receiving a standing ovation and giving
by far the most entertaining talk at the
conference, Dug Song from the CITI
group at the University of Michigan gave
a “brief report of what he found in the
air.” He further described tools he creat-
ed to demonstrate the insecurity of his
network. In the process, the audience
convinced him to give a live demonstra-
tion on how easy it is to collect pass-
words and shadow a user’s Web surfing.

USENIX ANNUAL TECHNICAL CONFERENCE ●

http://www.fs.net/
http://www.citi.umich.edu/projects/nfsv4/
http://www.dc.uba.ar/people/proyinv/usenix/
http://studio.tellme.com/

Song’s second slide included slightly san-
itized sniffer logs. Among the finds were
cleartext root logins via Telnet and color-
ful passwords such as “hello dug song, do
I smell.” While explaining an ebay.com
URL, Dug reasoned that, “I don’t know if
Matt Blaze is here, but it sure looks like
he is.”

On to more serious stuff, Dug explained
the rationale behind his seemingly mali-
cious behavior. He views himself not as a
bad guy, but as someone promoting
“security through public humiliation.”
On that note, he introduced the mother
of all password sniffers and a few pene-
tration testing tools. His penetration
tools include:

arpredirect – This tool is extremely effec-
tive for sniffing on switched Ethernet. It
does so by poisoning ARP. It politely
restores the ARP mappings when fin-
ished.
macof – This is a C port of a tool to
flood a network with random MAC
addresses. It causes some switches to fail
open in repeating mode. This effectively
turns the switch into a hub for the pur-
poses of sniffing. Dug commented,
“Switch becomes hub, sniffing is good.”
tcpkill – A evil tool to selectively kill con-
nections. However, Dug uses it to
remotely initialize connection state.
tcpnice – This selectively slows down
traffic by using ICMP quenches and
shrinking TCP window sizes. This is use-
ful for sniffers that work better on slower
network traffic. It’s also useful against
things like Napster.
dsniff – This sniffer decodes 30 major
protocols from Telnet to Meeting Maker.
The HTTP module recognizes password
URL schemes for many e-commerce sites
(e.g., Web mail sites, eBay, etc). dsniff
uses a magic(5)-style automatic protocol
detection. For example, running Telnet
on port 3000 will not fool dsniff because
it can determine protocol by analyzing
the traffic content.
filesnarf – Sucks down cleartext NFS2
and NFS3 traffic. Very useful against files

28 Vol. 25, No. 6 ;login:

such as .XAuthorithy and .ssh/identity.
This is Song’s “motivation” for develop-
ing NFSv4.
mailsnar – A fast and easy way to violate
the Electronic Communications Privacy
Act of 1986 (18 USC 2701-2711), be
careful. This snarfs cleartext mail and
outputs the contents into a convenient
format suitable for offline browsing with
your favorite mail reader.
urlsnarf – Same idea as mailsnarf but for
URLs.
webspy – Very sinister. It allows you to
watch someone’s Web surfing in real-
time. Dug demonstrated the tool by
shadowing the Web surfing of an audi-
ence member.

Song concluded that many people incor-
rectly believe wireless and switched net-
works are immune to sniffing. He thinks
that public humiliation can remind peo-
ple of this misconception. Visit
<http://www.monkey.org/~dugsong/dsniff>
for more information. The slides are on
<http://www.monkey.org/~dugsong/talks/usenix00.ps>.

Q: Should we block access to port 23 at
USENIX terminal rooms? Then cleartext
Telnet sessions will not happen. A: That’s
a technical solution to a social problem. I
like my way better.

Q: The conference network ran out of
DHCP leases. Can your tools help me? A:
During the conference I wrote a short
“dhcpfree” program to forcibly free up IP
addresses. [Crowd laughs as he shows the
code.]

Q: Once upon a time in a terminal
room, I measured the ratio of
SSH/Telnet traffic. At one point, I said
loudly “look at all the interesting pass-
words!” All of a sudden, the ratio went
up. A: Yup.

INVITED TALK

LESSONS LEARNED ABOUT OPEN SOURCE

Jim Gettys, Compaq

Summarized by Matt Grapenthien

In this interesting, informative, and thor-
oughly entertaining talk, Jim Gettys
addressed the history of several projects
and presented the most (and least) suc-
cessful methodologies over a time frame
of about two decades.

Beginning with a history of X, Gettys
traced its peaks and valleys from “prehis-
tory” (1983) through our present
“baroque” period. When the CDE (or
“cruddy desktop environment”) took
over the market, X development became
almost nonexistent. Then, starting in

about 1996, a combination of factors
revitalized X. X is better today than any
point in the past, and the future looks
promising.

Next Gettys talked about several individ-
ual projects, tracing the Apache’s market
share through the past decade. Through
these case studies, he noted which prac-
tices worked best (release continuously,
make it easy for developers to con-
tribute) and which didn’t work at all.

Gettys achieved a rare balance of keeping
the talk both very entertaining and very
useful. His wit, sarcasm, and experience
(20 years with OSS) made this a valuable
and enjoyable session.

Jim Gettys

http://www.monkey.org/~dugsong/dsniff
http://www.monkey.org/~dugsong/talks/usenix00.ps

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

SSESSION: RUN-TIME TOOLS AND

TRICKS

Summarized by Josh Kelley

DITOOLS: APPLICATION-LEVEL SUPPORT FOR

DYNAMIC EXTENSION AND FLEXIBLE

COMPOSITION

Albert Serra, Nacho Navarro, and Toni

Cortes, Universitat Politècnica de

Catalunya

DITools is a way to modify an applica-
tion or library without access to the
source code. It can be used, for example,
to profile a binary without instrumenta-
tion, to use another library with a pro-
gram without rewriting the program, or
to fix a bug in a library without recom-
piling it.

A process image is traditionally built of
three parts: a runtime loader, a main
program, and one or more libraries. The
OS brings all of the needed modules into
the address space, and then the runtime
loader resolves references between these
modules. DITools augments the loader to
insert an extension backend between the
main program and the libraries. The
main program then calls the extension
backend instead of the libraries, and the
backend forwards calls to the libraries as
appropriate.

DITools loads before entering the pro-
gram. It offers dynamic loading support
and uses binding management to inter-
pose modules. DITools can change func-
tion bindings on a per-module basis,
through rebinding, or globally, through
redefinition. DITools also offers two
interposition modes; it can change the
linkage table to point directly to a back-
end’s wrapper, or it can change the link-
age table to point to DITools’s dispatch-
er, which calls callback functions in the
backend before and after calling the orig-
inal function. To ensure correct opera-
tion, DITools transparently checks for
and handles events that may affect its
behavior, such as dynamic loading,
process forking, and multithreading.

29October 2000 ;login:

Performance tests show that DITools
incurs a reasonable overhead on function
calls. DITools complements related
methods such as static binary rewriting
or dynamic instrumentation based on
code patching. DITools operates at a
higher abstraction level and is simpler
than these related methods, but it works
at the function level only. It presents an
application-level tool to intercept cross-
module references and easily make
changes. DITools is available from
<http://www.ac.upc.es/recerca/CAP/DITools>.

PORTABLE MULTITHREADING-THE SIGNAL

STACK TRICK FOR USER-SPACE THREAD

CREATION

Ralf S. Engelschall, Technische

Universität München (TUM)

Multithreading offers many advantages
to a programmer, but finding a portable
fallback approach to implement thread-
ing on UNIX platforms can be difficult,
if the standardized Pthreads API is not
available. Setjmp(3) and longjmp(3) are
the traditional methods of transferring
execution control in user-space, but they
do not address the question of how to
create a machine context on a particular
runtime stack. The ucontext(3) API
allows for user-space context creation
and switching, but it is still not available
across all platforms.

A solution to this problem is to use the
UNIX signal-handling facilities in con-
junction with setjmp(3) and longjmp(3).
The process can create a machine context
by setting up a signal stack using sigalt-
stack(2), then sending itself a signal to
transfer control onto that stack. Once in
that stack, the process saves the machine
context there via setjmp(3), leaves the
signal handler scope, and later restores
the saved machine context without sig-
nal-handler scope. Then it finally enters
the thread-startup routine while running
on this particular stack. A much more
detailed description of the algorithm is
available in the author’s paper or at
<http://www.engelschall.com/pw/usenix/2000/>).

Performance tests show that thread cre-
ation using this signal stack trick is about
15 times slower than thread creation
using ucontext(3), because of the signal-
ing required. However, user-space con-
text switching is as fast as with ucon-
text(3). The signal-stack trick offers an
extremely portable method of imple-
menting user-space threads without rely-
ing on assembly code or platform-specif-
ic facilities. This fallback approach is
used in the GNU Portable Threads (Pth)
library, available from
<http://www.gnu.org/software/pth/>.

TRANSPARENT RUN-TIME DEFENSE AGAINST

STACK-SMASHING ATTACKS

Arash Baratloo and Navjot Singh, Bell

Labs Research, Lucent Technologies;

Timothy Tsai, Reliable Software

Technologies

Buffer overflows are one of the most
common sources of security vulnerabili-
ties. Crackers can exploit buffer over-
flows to achieve two dependent goals:
injecting attack code and altering control
flow to execute this attack flow. The basic
method of exploiting a buffer overflow is
the stack-smashing attack, where the
attacker puts the attack code on the
stack, then overwrites the current func-
tion’s return address with the address of
the attack code. This presentation offered
two complementary defenses against
stack-smashing attacks.

The first defense is libsafe, which inter-
cepts calls to unsafe functions and
replaces them with safe versions. The
majority of buffer overflows result from
the misuse of unsafe functions such as
strcpy and fscanf. At runtime, libsafe
estimates a safe upper bound on the
stack buffer. It intercepts calls to these
unsafe functions and replaces them with
calls using this upper bound, thus con-
taining overflows to a safe region and
guaranteeing that the stack return
addresses are protected. The function-
interception technique is similar to that
used by zlib.

USENIX ANNUAL TECHNICAL CONFERENCE ●

http://www.ac.upc.es/recerca/CAP/DITools
http://www.engelschall.com/pw/usenix/2000/>
http://www.gnu.org/software/pth/

The second defense, libverify, uses binary
rewrites to ensure that return addresses
are valid before use. It wraps each func-
tion to save the function’s return address
on the heap upon entry and check the
return address at exit. If the return
address has changed, then the process
displays an error to screen and syslog
and dies. libverify uses runtime instru-
mentation (copies the program at run-
time and changes it) to insert its stack-
checking code. This technique is similar
to that used by StackGuard, but without
recompilation of the source code.

Both libraries can be loaded for an
already-compiled binary using an entry
in /etc/ld.so.preload or the LD_PRELOAD
environment variable. Testing showed
that these libraries successfully prevented
known exploits on several programs with
reasonable execution time overhead. lib-
safe is available for Linux from
<http://www.bell-labs.com/org/11356/libsafe.html>.

INVITED TALK

AN INTRODUCTION TO QUANTUM

COMPUTATION AND COMMUNICATION

Rob Pike, Lucent Technologies – Bell

Labs

Summarized by Doug Fales

Rob Pike’s discussion of quantum com-
puting was a very forward-looking,
change-of-pace invited talk. He first
reviewed some quantum mechanics to
bring the audience to common ground.
The always-popular polarized-light
experiment helped to demonstrate the
principles. He also presented the famous
two-slit experiment, in which a single
photon passed through two very small
slits in a barrier still creates interference
on the opposite side of the barrier. Pike
used this as a demonstration of the
Quantum Measurement Postulate
because when the particle is measured to
see which slit it passed through, the pat-
tern disappears.

30 Vol. 25, No. 6 ;login:

After the simplified (but challenging)
introduction, Pike progressed into the
more specific field of quantum computa-
tion. He addressed quantum-mechanical
phenomena like decoherence and entan-
glement, as well as the implementation
of quantum computational systems
(qubits, quantum gates, etc.). The most
promising aspects of this infant technol-
ogy, those of massive parallelism and

zero-energy calculation, were clarified.
As examples of the power of quantum
computation, Pike went over the possi-
bilities of Shor’s algorithm for factoring
large primes in polynomial time, and
Grover’s algorithm, which searches a list
in square root time.

In addition to the computational side of
quantum mechanics, Pike also addressed
possibilities for communications, which
he saw as not so distant in the future.
This included a discussion of EPR pairs
(a pair of entangled photons produced
by electron-positron annihilation, named
after Einstein, Podolsky and Rosen) and
how entanglement is actually an advan-
tage for communications.

Perhaps the most interesting point in the
whole talk was the theme that informa-
tion is known to be a physical quantity,
restricted by a law of conservation, much
like energy or mass. Furthermore, as
Moore’s Law continues to shrink classical
computers, we will run into a physical
barrier of size; as Pike put it, “we’re run-
ning out of particles.”

Although quantum computation is still
relatively far from real application, Pike
noted in closing that we cannot tell yet
whether progress in this field will be lin-
ear or exponential. After all, he said, clas-
sical computers were as much of an enig-
ma 60 years ago as quantum computa-
tion is today. The slides for this presenta-
tion are at
<http://www.usenix.org/events/usenix2000/invitedtalks/pike_html/index.html

>.

INVITED TALK

PROVIDING FUTURE WEB SERVICES

Andy Poggio, Sun Labs

Summarized by Josh Simon

Andy Poggio basically expanded on Bill
Joy’s keynote talk. The Internet has effec-
tively begun to mimic Main Street and is
beginning to provide those services that
Main Street cannot, such as any time and
anywhere. The six Webs are of relevance:

Near web – Monitor, keyboard, and
mouse attached to a nearby system; per-
sonalized news such as multimedia and
news-on-demand; and educational
aspects like multimedia, interactive sim-
ulations, and so on. An example of edu-
cational uses of the near web can be
found at
<http://www.planetit.com/techcenters/docs/>.

Far web – The television or appliance
with remote control, providing enter-
tainment on demand; multiple data
sources, providing a lower barrier to
entry; possibly targeted advertising with
product placement in on-demand
movies showing Coke ads on the sides of
a taxi cab to Coke drinkers but showing
Pepsi drinkers a Pepsi ad in the same
position.

Voice web – For use when the hand and
eye are busy, like driving a car.

e-commerce web – Computer-to-com-
puter, such as auctions (both “forward”
like eBay and “reverse” like eWanted) and
dynamic pricing.

Rob Pike

http://www.bell-labs.com/org/11356/libsafe.html
http://www.usenix.org/events/usenix2000/invitedtalks/pike_html/index.html
http://www.planetit.com/techcenters/docs/

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

SDevice web – Device-to-device for non-
PC devices like cell phones and pagers
and set-top boxes. These include agents
to collect data and remote distributed
processing via IP and Java.

Here web – Personal digital assets, like
“my CDs” or “my MP3s” or “my DVDs”;
providing on-demand access and owner-
ship, and allowing the end-user to create
her own environments.

So how do we get there? Three aspects
need to be worked on. First, the network
has to be enhanced. IPv6 provides more
address space, better configuration man-
agement, authentication, and authoriza-
tion, but adoption has been slow. Poggio
predicts wired devices will win over
wireless devices, both quality of service
and overprovisioning will continue, opti-
cal fiber will replace or supercede electri-
cal (copper) wiring, and the last mile to
the home or the consumer will be fiber
instead of ADSL or cable modems or
satellites. Second, the computer-chip
architecture will probably remain based
on silicon for the next ten or so years.
Quantum effects (see the “Quantum
Computing” talk for more information)
show up around 0.02 microns, so we
need new approaches such as optical
computing, organic computing, quan-
tum computing, or computational fogs
(virtual realities). Third, Poggio believes
that the system architecture will connect
three components – CPU server, storage
devices, and the network – with some
form of fast pipe, probably InfiniBand (a
high-bandwidth, low-error, low-latency
fast interconnect).

31October 2000 ;login:

FREENIX SESSION: COOL STUFF

Summarized by Jeff Schouten

AN OPERATING SYSTEM IN JAVA FOR THE

LEGO MINDSTORMS RCX
MICROCONTROLLER

Pekka Nikander, Helsinki University of

Technology

The RCX Microcontroller is a device sold
as part of a Lego set. It’s designed to
move a bit of Lego here or there, and
making a mostly functional robot for a
child to play with. As a project, a Java
operating system was developed for this
microcontroller by Pekka Nikander and
his students at Helsinki University of
Technology. The RCX consists of a
Hitachi H8 microcontroller, 32K of ram,
an LCD panel, an IR transceiver, and sev-
eral IO devices.

Using mostly Java, a small bit of C++,
and a bit of H8 assembly, there is a most-
ly functional OS for the RCX. When the
RCX agrees to take the download (about
one in three times) it runs fairly well, but
gets stuck in a loop once in a while. A
student is currently debugging this
behavior. (That gave us a few laughs).

In all, it’s an amazingly small OS, for a
very limited task, but it works – it can be
done.

LAP: A LITTLE LANGUAGE FOR OS
EMULATION

Donn M. Seeley, Berkeley Software

Design, Inc.

LAP (Linux Application Platform), is a
Linux-emulation package for BSD/OS
that allows Linux applications to run
under BSD/OS. By loading a shared
library on a BSD system to “catch” Linux
system-level calls and reroute them to
the BSD kernel, a BSD user can run a
Linux application.

Emulation is quite successful. A number
of interesting Linux applications run via
LAP and liblinux under BSD, including
Adobe Acrobat Reader v4, Netscape

Communicator, and WordPerfect 8. Not
all functions of a Linux system are emu-
lated, most notably the Linux clone() sys-
tem call.

Overall, it seems to not eat a lot of
processor, and it provides BSD users a bit
of flexibility they didn’t previously have.

TRAFFIC DATA REPOSITORY AT THE WIDE
PROJECT

Kenjiro Cho, Sony CSL; Koushirou

Mitsuya, Keio University; Akira Kato,

University of Tokyo

The idea behind this project is to collect
statistical data on trans-Pacific backbone
links on the Internet. WIDE is a Japanese
research consortium that designed this
data repository, with the intent of build-
ing free tools with which to build your
own repository.

One problem with this type of data is
privacy, another security. How do they
protect private information from leaking
into the repository and thus generating a
possible security breach? Removal of the
payload is the first step, leaving only
header information to analyze. Address
Scrambling is the second step, rewriting
or stripping out IP addresses out of
ICMP and TCP packets.

INVITED TALK

THE GNOME PROJECT

Miguel de Icaza

Summarized by Josh Kelley

Although Linux has proved itself on the
server, its progress on the desktop lagged
until quite recently. Three years ago,
UNIX had little innovation; the last sig-
nificant user interface change was X
Windows. There was little code reuse and
no consistent way to build desktop appli-
cations. Improvements were incremental
enhancements to speed and feature lists
rather than major architectural changes,
and there was little direction between
groups making these enhancements. The

USENIX ANNUAL TECHNICAL CONFERENCE ●

GNOME project aims to correct these
shortcomings.

The GNOME project is a unified, con-
certed effort to build a free desktop envi-
ronment for UNIX. One major part of
this effort is GNOME’s component plat-
form. GNOME is designed as a collec-
tion of components that build on top of
one another; dependencies between
components are encouraged, and each
application or component exports its
internals to others via CORBA.

This approach to writing software as a
collection of small components works
well with free software. Since free-soft-
ware contributors tend to come and go, a
set of components allows them to focus
on, and contribute to, a small problem
with relatively little ramp-up time.

Traditional approaches to components
have several disadvantages. UNIX com-
mand-line tools may not be easy to use
and can only communicate through uni-
directional pipes that transfer primarily
streams of textual data. Object-oriented
programming has its advantages, but
sharing objects among different object-
oriented languages is difficult.

Bonobo is the GNOME solution for
components. Bonobo is a component
architecture based on CORBA and par-
tially inspired by Microsoft’s COM/
ActiveX/OLE2. Bonobo provides the
building blocks and the core infrastruc-
ture for writing and using components.
Bonobo can be divided into two parts:
the CORBA interfaces that are the con-
tract between the providers and the
users, and the implementations of those
interfaces. Other implementations of
these interfaces are possible. For exam-
ple, KDE could choose to provide these
interfaces to allow KDE and GNOME
components to work together.

Since Bonobo is based on CORBA, it has
all of the standard CORBA features,
including language independence and
support for automation and scripting.
Bonobo’s basic interface is

32 Vol. 25, No. 6 ;login:

Bonobo::Unknown, which provides two
basic features: life-cycle management of
an object through reference counting,
and dynamic discovery of features
through a standard query interface.
Specific components may support any
number of additional interfaces to allow
full access to their functionality.

One application of Bonobo would be to
provide standard interfaces to system
services. Traditional UNIX, for example,
stores configuration information in a
variety of formats, mostly in files under
the /etc directory, and specific instruc-
tions on how to make changes and how
to put these changes into effect often dif-
fer. The goal of Bonobo (and GNOME)
is to have CORBA interfaces everywhere,
for every service, for the desktop, and for
each application. The entire system
should be scriptable. Applications should
have easy access to one another’s func-
tionality rather than having to write
desired functionality themselves. This
provides better IPC (a more flexible
alternative to pipe and fork) and better
Internet protocols (applications can
communicate via Bonobo rather than
using ad hoc protocols).

Bonobo is used in several applications
that are either in development or are
currently available. These include
Gnumeric (a spreadsheet), Sodipodi (a
draw application), Evolution (a mail and
calendar system), and Nautilus (the
GNOME 2.0 file manager). Bonobo is
also integrated with the rest of GNOME;
the GNOME canvas, for example, allows
embedding of objects of any type, and
the GNOME printing architecture offers
functionality similar to the canvas to
provide an alternative to using PostScript
for everything. GNOME 1.4, which
includes Bonobo 1.0, should be released
this October.

FREENIX SESSION: SHORT TOPICS

Summarized by Craig Soules

JEMACS – THE JAVA/SCHEME-BASED EMACS

Per Bothner

The first talk of the “shorts” section of
Freenix was a discussion of JEmacs, the
Java/Scheme-based Emacs. Described as
“A next-generation Emacs based on
Java,” JEmacs offers all of the standard
features of Emacs, as well as a number of
useful new features.

The rationale behind JEmacs is that Java
implementations have become increas-
ingly faster, making it suitable to an
application such as Emacs. Additionally,
it offers a number of useful features,
such as built-in Unicode support and
multithreading. Through the use of
Kawa, JEmacs also has an easy-to-use
Scheme interpreter that offers features of
Java, such as Swing (its GUI interface), in
a simple scripting language.

In order to make the transition to
JEmacs as painless as possible, JEmacs
also offers full ELisp support. Although
there are some slight difficulties with
integrating ELisp with the multithreaded
nature of Java, the author seems to have
them well in hand. For more informa-
tion on JEmacs see
<http://www.jemacs.net/>. Kawa
(JEmacs’s Scheme implementation) also
has a home page,
<http://www.gnu.org/software/kawa/>.

A NEW RENDERING MODEL FOR X

Keith Packard, SuSE, Inc.

Keith Packard spoke on developing a
new rendering model for the X Window
System. The current X system was devel-
oped based upon the PostScript specifi-
cation of the time, and was targeted at
being a simple solution to support sim-
ple “business” applications. Today most
programs don’t even use many of the
available features of X, relying on ineffi-
cient or unaccelerated external libraries

http://www.jemacs.net/
http://www.gnu.org/software/kawa/

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

Sto handle screen drawing, which is done
mostly client side. By looking at the
requirements of most X programs today,
Packard has developed a new model for
X that will offer many of its missing fea-
tures.

Although many things in the current X
system are lacking, there are a few things
that are worth keeping, such as testable
pixelization and exposed pixel values. It
is important also, that all of the poten-
tial, good and bad, of the old model is
left in place for use by legacy programs.
The proposed solution offered here is
simply to add a number of new features.
These include: alpha composition,
antialiasing support, a finer-grained
coordinate system, more rendering prim-
itives, and better text handling.

UBC: AN EFFICIENT UNIFIED I/O AND

MEMORY CACHING SUBSYSTEM FOR NETBSD

Chuck Silvers, The NetBSD Project

UBC is a unification of the I/O and
memory caching systems of NetBSD, and
was presented by Chuck Silvers. Unlike
many other current operating systems,
NetBSD had a separated page and file
caching. This led to many complications
within the kernel involving management
between the two systems to avoid stale
data and proper behavior. Additionally,
the page cache has a number of useful
features not available in the file-buffer
cache, such as being dynamically resized.

The proposed solution to this problem is
to have the page cache manage all file
access. This offers a number of benefits:
only one copy of the data will ever be
cached, which also prevents any copying
to avoid stale data; the page cache can
dynamically resize itself; and cached data
no longer needs to be constantly mapped
in memory to remain in the cache. This
is all managed through several new calls,
which are used by the buffer cache to
retrieve and manage pages from the vir-
tual-memory system.

33October 2000 ;login:

Although this new system has the poten-
tial to have increased performance, as
well as reducing overall cache size, many
improvements need to be made in order
to make this a reality. Tests with the ini-
tial system indicate worse sequential-
access performance than the current
caching system. This is claimed to be due
mostly to unaggressive read ahead and
bad pager algorithms. In addition to the
performance tuning, several other
enhancements are in the future, such as
soft-updates support, avoiding the need
to map pages in order to do file I/O, and
page loan out. The current implementa-
tion of this code will become available in
the release following the 1.5 release of
NetBSD.

MBUF ISSUES IN 4.4BSD IPV6 SUPPORT –
EXPERIENCES FROM THE KAME IPV6/IPSEC

IMPLEMENTATION

Jun-ichiro itojun Hagino, Internet

Initiative Japan, Inc.

This presentation looked at the difficul-
ties found in offering IPv6 support in a
BSD environment. Although IPv6 was
designed with the idea that it can easily
be layered over current IPv4 implemen-
tations, its implementation on 4.4BSD
proved to be more complicated than
advertised.

These complications arose from a num-
ber of IPv4-specific assumptions made
within the BSD kernel. The biggest of
these problems arose from a change in
header size in IPv6, which led to severe
packet loss. In order to fix this problem,
the author created a new parser for the
IP layer which not only offered correct
IPv6 support, but also reduced the
amount of copying and mbuf allocation
significantly. This work has now been
integrated with all of the major BSD ker-
nels available. For more information on
this work, see <http://www.kame.net/>.

MALLOC() PERFORMANCE IN A

MULTITHREADED LINUX ENVIRONMENT

Chuck Lever and David Boreham, Sun-

Netscape Alliance

This work, presented by Chuck Lever, is
a direct result of the Linux scalability
project at the University of Michigan.
This project aims to enumerate the prob-
lems facing network servers and ensure
that Linux offers support greater than or
equal to current production-level operat-
ing systems for network servers.

Because malloc() is a major concern for
network servers, it is important that it be
able to offer acceptable performance in
situations that require multithreaded
asynchronous I/O, low latency and high
data throughput with a predictable
response time, and a potentially
unbounded input set of unpredictable
requests. It has been found that the man-
ner in which malloc() performs can have
a significant effect in overall system per-
formance. One example showed a 6x
performance degradation when the
iPlanet LDAP server ran on four-way
hardware with a native implementation
of malloc().

To study the performance of malloc(),
three benchmarks were created. The first
compared the elapsed runtime of N
threads accessing the same heap concur-
rently. It was found that Linux outper-
formed Solaris for N greater than two.
The second benchmark, which tested
unbounded memory consumption, allo-
cated an object in one thread and free
the same object in the second thread. It
was found that Linux has no pathologi-
cal heap growth in this situation. The
final benchmark tested data placement
within the heap by allocating a data
object normally with malloc() and then
letting several threads write into it many
times. Bad data placement causes poor
performance, especially on SMP hard-
ware. Linux’s version of malloc() aligns
data to eight-byte boundaries, which
resulted in widely varying application

USENIX ANNUAL TECHNICAL CONFERENCE ●

http://www.kame.net/

performance on CITI’s four-way test
machine. In conclusion, the version of
malloc() offered with glibc 2.1 showed
overall acceptable performance on two-
and four-way hardware, but still needs
work and special attention to reduce per-
formance and scalability problems
caused by sloppy data placement.

CLOSING SESSION

NEW HORIZONS FOR MUSIC ON THE

INTERNET

Thomas Dolby Robertson

Summarized by Josh Simon

Thomas Dolby is a musician (you’ll
probably remember him from “She
Blinded Me with Science!”) who’s been
working for at least 20 years on integrat-
ing computers into music. (One histori-
cal tidbit: The drums in “Science!” were
actually generated by a discotheque’s
light-control board.)

Dolby is one of the founders of Beatnik
(<http://www.beatnik.com/>), a tool suite
or platform to transfer descriptions of
the music, not the music itself, over the
Internet. For example, the description
would define which voice and attributes
to use, and the local client side would be
able to translate that into music or
effects. This effectively allows a Web page
to be scored for sound as well as for
sight.

For example, several companies have
theme music for their logos that you may
have heard on TV or radio ads. These
companies can now, when you visit their
Web sites, play the jingle theme without
needing to download hundreds of kilo-
bytes, merely tens of bytes. Similarly, a
Web designer can now add sound effects
to her site, such that scrolling over a but-
ton not only lights the button but plays a
sound effect. Another use for the tech-
nology is to mix your own music with
your favorite artists, turning on and off
tracks (such as drums, guitars, and
vocals) as you see fit, allowing for per-

34 Vol. 25, No. 6 ;login:

sonalized albums at a fraction of the disk
space. (In the example provided during
the talk, a 20K text file would replace a
5MB MP3 file.) In addition to the “way
cool” and “marketing” approaches,
there’s an additional educational compo-
nent to Beatnik. For example, you can set
up musical regions on a page and allow
the user to experiment with mixing dif-
ferent instruments to generate different
types of sounds.

The technical information: Beatnik com-
bines the best of the MIDI format’s effi-
ciency and the WAV format’s fidelity.
Using “a proprietary key thingy” for
encryption, Beatnik is interactive and
cross-platform, providing an easy way to
author music. And because the client is
free, anyone can play the results. The
audio engine is a 64-voice general MIDI
synthesizer and mixer, with download-
able samples, audio file streaming, and a
64:2 channel digital mixer. It uses less
than 0.5% of a CPU per voice, and there
are 75 callable Java methods at runtime.
It supports all the common formats
(midi, mp3, wav, aiff, au, and snd), as
well as a proprietary rich music format
(rmf), which is both compressed and
encrypted with the copyright. RMF files
can be created with the Beatnik Editor.
(Version 2 is free while in beta but may
be for-pay software in production.) The
editor allows for access to a sound bank,
sequencer, envelope settings, filters, oscil-
lations, reverbs, batch conversions (for
example, entire libraries), converting
loops and samples to MP3, and encryp-
tion of your sound. And there is an
archive of licensable music so you can
pay the royalties and get the license
burned into your sample.

Web authoring is easy with the EZ
Sonifier tool, which generates JavaScript;
middling with tools like NetObjects’
Fusion, Adobe GoLive, and Macromedia
Dreamweaver; and hard if you write it
yourself, though there is a JavaScript-
authoring API available for the music
object.

Beatnik is partnered with Skywalker
Sound, the sound-effects division of
Lucasfilms Ltd.

BOF SESSION

WORKPLACE ISSUES FOR LESBIAN, GAY,
BISEXUAL, TRANSGENDERED AND FRIENDS

Summarized by Chris Josephes and Tom
Limoncelli

Although the first submitted name for
this BoF suggested that it was for “sysad-
mins,” it was well-attended by managers,
engineers, programmers, and anyone else
who felt like attending. The LGBT BoF
has had a long history at USENIX and
LISA conferences. The crowd was an
even mix of newcomers and conference
veterans. The purpose of the session was
to give people to opportunity to talk
about their work environments, and to
provide the opportunity to network with
other attendees whom they may not have
otherwise met during the conference.

Everyone introduced themselves and the
companies they work for. Then they
talked about how their employers have
handled issues facing LGBT employees
and related experiences they may have
had when dealing with their employers.
As it is becoming harder to find qualified
people, more companies are adapting
their benefits to the LGBT community in
hopes of attracting new talent and
retaining existing employees.

Of the 34 attendees, most reported that
their employers established a nondis-
crimination policy that included sexual
orientation. On top of that, some
employers also offered domestic-partner-
ship benefits for registered partners.
Another issue employers are trying to
address is maintaining a safe, friendly,
nonthreatening environment for
employees by implementing peering pro-
grams, diversity training, and employee
groups.

Andrew Hume, USENIX vice president,
attended the BoF to welcome everyone

http://www.beatnik.com/

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

Sand assure us that USENIX is committed
to creating a space that is inviting and
supportive to all attendees. His com-
ments were well-received.

After the introductions were finished, the
BoF became an open floor. We talked
more in depth about the issues of
employment and some of the recruiting
plans some firms were offering. Several
attendees, all from one large company,
reported that they now have a recruit-
ment effort targeting the LGBT commu-
nity since they feel their accepting work
environment is one of their competitive
advantages. Someone pointed out which
BoF attendees were presenting papers at
the conference, so that others could
attend and lend support. Ideas for
improving attendance at future BoFs
were brought up, including a couple of
suggestions for making sure the
male/female ratio was more representa-
tive of the conference attendance.

When it was time for the BoF to official-
ly end, everyone agreed to informally get
together at one of the hospitality suites
scheduled for that night.

Trip Report

USENIX ANNUAL TECHNICAL

CONFERENCE
by Peter H. Salus

<peter@matrix.net>

I had a great time at the 25th Anniv-
ersary USENIX conference in San Diego.
Oh, boy! San Diego! Right. I didn’t even
get off the hotel premises for nearly three
days.

After all, there were Dennis Ritchie, Ken
Thompson, Bill Joy, Rob Pike, Kirk
McKusick, Eric Allman, Tom
Christiansen, Elizabeth Zwicky, Margo
Seltzer, Sam Leffler, Jim Gettys, Clem
Cole, Evi Nemeth, Mike Ubell, Teus
Hagen, Rich Miller, Oz Yigit, Miguel de
Icaza, and over 2000 others inside the
hotel.

35October 2000 ;login:

In fact, I only got to about two
papers/presentations a day. Take
Thursday, the “middle” day of the con-
ference. From 9:00 to 11:00 am, I listened
to Ed Felten of Princeton University talk
about the Microsoft trial. As he was
under DoJ secrecy rules (he was adviser
to and expert witness for the DoJ), there
was much he couldn’t say. What he could
say was fascinating. Then I walked
around the exhibits, and chatted. Then I
went to a publications-committee meet-
ing where I was a guest of the USENIX
board. Then I was on the Dr. Dobb’s
Webcast for over an hour, to be succeed-
ed by Linus Torvalds. So I chatted with
Linus, his wife, and their two little girls.
Then I sat down with some folks from
Sleepycat to learn about embedded data-
bases. And it’s now after 5:00 pm. At
6:00, I went to the celebratory reception;
at 8:00, I went to hear Linus at the Linux
BoF. At nine, I went to the “Old Farts’
BoF.” At 10:30 pm I met my wife, who
wanted to go out for dinner. I was too
tired. We stayed in the Marriott.

On Wednesday morning I had the pleas-
ure of witnessing the awarding of the
“Flame” (for lifetime achievement) to the
late Rich Stevens, with Rich’s wife, chil-
dren, and sister getting a five-minute
standing ovation from the attendees.
Then Bill Joy shared his thoughts about
the future of computing.

Bill traced his beginnings in the field –
just about 25 years ago at Berkeley – and
traced the origins of “open source” to the
bases of university research and of UNIX
on the PDP-11. While there was the
question of whether doing software is
“research,” the common answer was
“yes,” and as researchers publish results,
there could be no property rights adher-
ing to that research. Lately, largely
because of commercial and industrial
contributions, there are more and more
“entanglements.”

Bill noted that he had written “a really
boring Java book.” My guess is that he

was referring to The Java Language
Specification by Joy, Steele, Gosling, and
Bracha. As I really liked the first edition
(1996) and found the second edition
(2000) even better – when was the last
time the second edition of a reference
book was smaller than the first? – I think
I’d disagree.

One of Joy’s more interesting comments
turned on the fact that UNIX was inher-
ently reliable because of its modulariza-
tion. The consequence is that “Microsoft
is clearly foolish” in attempting to make
all of its applications integral and the
construct monolithic. “Microsoft is
beyond retrograde,” Bill said. “All inter-
faces should be published.”

Turning to the future, Bill scorned the
notion of the death of Moore’s law. In
fact, he thinks that we might see another
“ten-to-the-sixth” improvement over the
next 30 years, just as machinery has
improved a million times over the past
30. Bill thinks that molecular computing
will enable us to come to grips with the
“grand challenge problems” like those of
cell biology. Some of these steps will
come about through algorithmic
improvements, some through greater
emphasis on remote storage and fast
transmission.

However, he pointed out, the more that’s
done remotely, the higher the toll for the
round-trip, even with high-speed optical
connections. “The Internet isn’t about
packets,” he said. “It’s about end-to-end.”

On the client-server side, Bill said that he
saw six Webs in the future:

the “near web,” which we currently
use;
the “far web,” the entertainment for
couch potatoes;
the “here web,” of the pocket device
and the cell phone;
the “weird web,” involving smart
clothing and voice-activated cars;
and two “invisible” webs: “e-business”
and “truly pervasive.”

USENIX ANNUAL TECHNICAL CONFERENCE ●

Friday morning I was spellbound as Rob
Pike, who is always exciting to hear,
spoke about quantum computing. This is
the kind of paper that differentiates a
real conference from a hawker’s
sideshow: Heisenberg, Schroedinger,
integral signs, real equations. Rob said
that we should rid ourselves of the
notion that “the elements of information
are independent” and get used to con-
cepts like “conservation of information.”
“A quantum computer is probabilistic,”
he remarked. “It’s not going to happen
soon,” but it will happen.

Now we can turn it over to Gibson,
Sterling, Stephenson, and Vinge . . .

A fine conference. I can’t wait till the
30th Anniversary.

There was lots more. It was a fine hour.

Then I spent over an hour on the Dr.
Dobb’s Webcast.

Wednesday night there was a four-hour
BSD BoF (that’s right) organized by Kirk
McKusick. An hour each of OpenBSD,
FreeBSD, NetBSD, and BSDI. I sat
through over an hour of it. While there
were pockets of enthusiasts cheering and
jeering, it was a generally highly intelli-
gent, well-informed group of about 400.
And I thought it exciting to see them all
together. A doff of my cap to you, Kirk.

Thursday morning, as I mentioned, I
went to hear Ed Felten. While most folks
know many of the details of the case, I
found listening to the recollections of a
participant truly fascinating. My person-
al feeling is that the case is more about
economics and business than about tech-
nology, but there are (clearly) two tech-
nical queries of significance: (1) is there
a technical advantage to tying Windows
to the browser? and (2) can they be dis-
entangled without injury to either?

The clear answer to (1) is “no” (there is,
of course, a business advantage for
Microsoft) and Felten himself demon-
strated the answer to (2) in court. In fact,
advocates of the small kernel (like Linus
Torvalds) as well as “old-timers” (like Bill
Joy) all shun the interwoven monolithic
monstrosities produced by Microsoft.

Went off for another hour of Webcast.

The “Old Farts’ BoF” on Thursday night
was very well attended. Ken Thompson,
Lou Katz, Greg Rose, Dennis Moomaw,
Clem Cole, and I were among the recol-
lectors. Toward 10:00 pm, Professor Arun
K. Sharma, head of computer science
and engineering at the University of New
South Wales, announced a “drive” to
raise $A2M (= $US1.2M) to establish a
John Lions Chair of Operating Systems
at UNSW. As I considered John a teacher
and a friend, I handed Arun my check
for $1,000 on the spot. I found it very
moving.

36 Vol. 25, No. 6 ;login:

The 25th Anniversary Reception was a good
party!

Proxy Classes
Proxy classes are a new Java feature, one that allows you to create dynamic

classes at runtime. These classes can be used to add a level of indirection to

interface method calls, so that calls can be trapped and processed as desired.

Using this feature, it’s possible to do call tracing for performance purposes,

add functionality to existing interfaces, and so on.

We’ll start by reviewing some basics of Java interface programming.

Interface Programming
In Java programming, an interface is an abstract type, typically a set of methods that
specifies a contract for the type. For example, a List interface might look like this:

interface List {
void add(Object o);
void del(int i);
Object get(int i);
int size();

}

In this example, methods are specified for adding, deleting, and retrieving elements
from a list, and for obtaining the list size.

An interface itself contains no implementation. That is, you do not say:

interface List {
int size() {...}

}

Rather, you implement an interface via a Java class, like this:

class LinkedList implements List {
int size() {...}

}

The interface itself does not specify any details of how a list is to be represented (such
as with a vector or linked list); this decision is left to an implementing class. Thus the
interface specifies a contract, and the class implements the contract.

You can program in terms of interface types, for example:

List lst = new LinkedList();

and then say things like:

int sz = lst.size();

without worrying about exactly which class (ArrayList, LinkedList, etc.) is used to
implement the List interface, or the details of list representation.

Proxies
java.lang.reflect.Proxy is a class that allows you to create proxy classes at runtime, class-
es that implement specified interfaces. Once you have an instance of a proxy class, you
can use it to provide a level of indirection when you make interface method calls. Calls
to methods of interfaces implemented by the proxy class are dispatched to a single
invoke() method in an invocation handler. At this point, you can intercept the calls, for
example to provide method logging for performance analysis purposes.

37October 2000 ;login:

java performance
by Glen
McCluskey

Glen McCluskey is a
consultant with 15
years of experience
and has focused on
programming lan-
guages since 1988.
He specializes in Java
and C++ perfor-
mance, testing, and
technical documenta-
tion areas.

<glenm@glenmccl.com>

●
PR

O
G

RA
M

M
IN

G

JAVA PERFORMANCE ●

In other words, you create a proxy class and instance by specifying a set of interfaces,
and an invocation handler to call when any of the methods in the interfaces are
invoked. You then use this instance as a proxy for some other object; the proxy sits on
top of the other object and allows you to trap method calls that you would normally
make on the underlying object.

When a method call is trapped, you are supplied with the signature of the method and
a list of all the method arguments. You can then invoke the method on the real under-
lying object, or take various other actions as desired.

An Example
Here’s an example of setting up a proxy:

import java.lang.reflect.*;
import java.util.*;
public class ProxyDemo implements InvocationHandler {

// the underlying object that the proxy is based on private Object proxyobj;
// create a ProxyDemo object (an invocation handler)
private ProxyDemo(Object obj) {

proxyobj = obj;
}

// create a proxy object
public static Object makeProxy(Object obj) {

Class cls = obj.getClass();
return Proxy.newProxyInstance(cls.getClassLoader(),
cls.getInterfaces(),

new ProxyDemo(obj));
}

// handle interface method calls
public Object invoke(Object proxy, Method meth, Object args[])

throws Throwable {

// print the method name and arguments
System.out.println(meth);

if (args != null) {
System.out.print(" args: ");
for (int i = 0; i < args.length; i++)

System.out.print(args[i] + " ");
System.out.println();
}

// invoke the method on the original object
return meth.invoke(proxyobj, args);

}
public static void main(String args[]) {

// create a proxy
List lref = (List)makeProxy(new ArrayList());

// create a list of Integer objects
lref.add(new Integer(57));
lref.add(new Integer(37));
lref.add(new Integer(47));

// sort the list in ascending order
int size = lref.size();
for (int i = 0; i < size - 1; i++) {

for (int j = i + 1; j < size; j++) {

38 Vol. 25, No. 6 ;login:

Comparable obj1 =
(Comparable)lref.get(i);

Comparable obj2 =
(Comparable)lref.get(j);

if (obj1.compareTo(obj2) > 0) {
Object t = lref.get(i);

lref.set(i, lref.get(j));
lref.set(j, t);

}
}

}
}

}

In this example, ProxyDemo is a class that implements the InvocationHandler interface,
that is, defines a method invoke() that is called when any of the methods in the inter-
faces implemented by the proxy are called. The ProxyDemo constructor records the
underlying object that the proxy is created for.

ProxyDemo.makeProxy() is a static method that is used to create a proxy class instance,
based on the set of interfaces implemented by a passed-in object.

The proxy in this example is used to track operations on an ArrayList object, an object
of a class that implements the java.util.List interface. A proxy is created for an ArrayList
object, and then List interface methods are called through the proxy to add elements to
the list and sort the list.

When methods are called through the proxy, what actually happens is that the invoke()
method in the specified invocation handler is called. It displays the method name and
arguments, and then calls the actual method for the underlying object. So in this exam-
ple, the proxy is used to log method calls, and then the “real” method is called. The first
few lines of output from running the program are these:

public abstract boolean java.util.List.add(java.lang.Object)
args: 57

public abstract boolean java.util.List.add(java.lang.Object)
args: 37

public abstract boolean java.util.List.add(java.lang.Object)
args: 47

public abstract int java.util.List.size()
public abstract java.lang.Object java.util.List.get(int)

args: 0

The example uses java.lang.Class and java.lang.reflect.Method. These classes are part of
what is called “reflection,” the ability to examine and manipulate types at runtime. For
example, a Method object represents a particular method of a class, and you can invoke
the method by specifying an object and a set of arguments, so that:

meth.invoke(obj, args);

is equivalent to:

obj.meth(arg1, arg2, ...);

Other Uses For Proxies
We illustrated method logging above, using proxies to display each interface method
just before it’s invoked. You can also use proxies in other ways, for example, to add
functionality to an existing interface, or to modify method arguments before calling a
method.

39October 2000 ;login:

You can also use proxies in

other ways, for example, to

add functionality to an

existing interface, or to

modify method arguments

before calling a method.

●
PR

O
G

RA
M

M
IN

G

JAVA PERFORMANCE ●

40 Vol. 25, No. 6 ;login:

Life After Containers and Layout
Managers: Part II
In Part I of this topic, I presented a brief background on “Containers” and

“Layout Management.” I also discussed the use of “Panels” and “Frames.”

One motivation for this was the increased popularity of GUI-based client-side applica-
tions. For instance, in the electronic-commerce domain the canonical n-tiered architec-
ture often relies on a “thin” client that can be a GUI-based Java program. This does not
imply that the console-based paradigm is being abandoned; it suggests that using GUI
applications permits a more suitable semantic format for expressing a product’s capa-
bility. An example of this is the merging of two database queries from two different
databases. In this example a user may prefer to click and drag icons to merge these
queries as opposed to typing them at a console.

In this article, I will present the use of “Dialogs” and how to handle “Menus.” This will
help to consolidate the information in Part I.

Dialogs
A dialog is normally a short-term popup window with a titlebar, border, and perhaps
some other pieces whose client area groups a set of User Interface (UI) controls solicit-
ing input from a user and performing an action. The dialog is responsible for creating
and positioning the controls and dealing with the notification they generate to provide
a coherent dialog with the user.

In most windowing systems, because of the static nature of the control content in the
dialog and the static nature of the size and position of the controls, some kind of
resource (read-only) data item will describe the dialog and its content. The dialog
resource can be used to easily create the dialog box and its contents and position or to
resize the controls. The AWT (Abstract Windowing Toolkit) does not have resources, so
dialog boxes have to be constructed dynamically in the application as required.

The AWT Dialog class is derived from the Window class. It is different from regular
windows because they are dependent on a “Frame.” When the Frame is destroyed, all
the dialogs associated with that Frame are also destroyed. If the Frame is iconified, the
Dialogs dependent upon it also disappear from the screen. When the Frame is deiconi-
fied, its dependent Dialogs return to the screen. This behavior is intrinsic to the AWT,
and no specific programming is required within the application to support capability.

Recall that in the case of Applets, they are running in their own Frame. This means that
they cannot use Dialogs directly. Applets must bring up dialogues in their “own”
Frames.

Modal dialogs require the attention of users, and they prevent the user from doing any-
thing else in the Dialog’s applet application until it has been dealt with. By default,
dialogs are nonmodal. A bug in the JDK1.1 release prevented the creation of dialog
subclasses that were modal. That restriction is not there in JDK1.2.

File Dialogue
The class FileDialog is derived from the Dialog class and displays a dialog window form
which the user can select a file.

The user sets up the dialog by calling methods such as:

using java
by Prithvi Rao

Prithvi Rao is the co-
founder of KiwiLabs,
which specializes in
software engineering
methodology and
Java/CORBA training.
He has also worked on
the development of
the MACH OS and a
real-time version of
MACH. He is an
adjunct faculty at
Carnegie Mellon and teaches in the Heinz
School of Public Policy and Management.

<prithvi+@ux4.sp.cs.cmu.edu>

FileDialog.setFile()
FileDialog.setDirectory();
FileDialog.setFilenameFilter(); (determines the initial search criteria).

This is an example of a “modal” dialogue. In other words, when its show() method is
invoked, it blocks the rest of the application until the user has chosen a file.

To determine which file has been chosen, the application issues a call to:

FileDialog.getFile();

Menus
A menu is a hierarchical group of components. A MenuItem represents a command. A
Menu (often can be a sub-menu) is a group of MenuItems or other Menus.

The top level grouping is a Menubar and contains only Menus. There is also a
CheckboxMenuItem class that maintains a check of the menu item that is currently
selected. None of these classes inherits from Component; they are instead a subclass of
the MenuComponent class.

In order to be able to contain a MenuComponent an object must adhere to the
MenuContainer interface. Recall that classes such as Frame, Menubar, and Menu are all
implementations of the MenuContainer interface. Additionally these are the only classes
that implement this interface. In theory, it should be possible to write a MenuContainer
interface implementation to which we can attach a MenuBar, Menu, or MenuItem.

In most windowing systems, some kind of resource (read-only data item) will describe
the initial state and contents; this is true even though the state of the menu and its con-
tents may change dynamically.

The JDK 1.0 release does not support resources, so menus must be constructed “on the
fly” in the code. In JDK 1.1 and subsequent releases resources are supported and this is
done through the internationalizable class (which is beyond the scope of this article).

The following is an example of some code in a Frame-derived class to provide a menu:

MenuBar bar = new MenuBar();
Menu popup = new Menu("File", true);
MenuItem item = new MenuItem("Exit");
// set a menu bar to be added
setMenuBar(bar);
// now add component so that it can be viewed
bar.add(popup);
// now add the menuitem
popup.add(item);
popup = new Menu("Edit", true);
bar.add(popup);
popup.addSeparator();
item = new MenuItem("Cut");
popup.add(item);
item = new MenuItem("Copy");
popup.add(item);
item = new MenuItem("Paste");
popup.add(item);
item = new MenuItem("Delete");
popup.add(item);
item = new MenuItem("Select All");
popup.add(item);

41October 2000 ;login: USING JAVA ●

In most windowing systems,

some kind of resource will

describe the initial state and

contents.

●
PR

O
G

RA
M

M
IN

G

popup.addSeparator();
item = new MenuItem("Properties");
popup.add(item);
popup = new Menu("Help", true);
bar.add(popup);
item = new MenuItem("About....");
popup.add(item);
bar.setHelpMenu(popup);

The key to understanding the above code is that the MenuItem, Menu,
CheckBoxMenuItem, and MenuBar classes all derive from the MenuComponent and not
the Component class.

Also in order to support menus, it is necessary to implement the MenuContainer inter-
face (Frame, MenuBar, Menu, . . .).

Finally, MenuItems generate events.

Conclusion
In Part I, I discussed the use of layout managers and their use in writing effective GUI
applications in Java. I also presented an example of how to manipulate components in
the absence of a layout manager at the expense of portability.

In Part II, I have presented an example of how to create a menu.

For serious GUI developers, it is preferable to use the “Swing” classes because they
obviate the need to implement many of the interfaces; in other words, it is done for
you. However, for those interested in understanding the details of how the AWT sup-
ports GUI development, the examples presented will facilitate that endeavor.

42 Vol. 25, No. 6 ;login:

For serious GUI developers,

it is preferable to use the

“Swing” classes because

they obviate the need to

implement many of the

interfaces.

43October 2000 ;login:

use your local tools
There are some times when a sysadmin has to make do with what is avail-

able. This is a story about one of those times.

I received an email message from someone in the UK with the subject “IMPORTANT:
do not ignore.” The lengthy content went on and on about how they suspected that a
host on my network was running a distributed-denial-of-service (DDoS) agent called
Stacheldraht. Other than that, the message was strangely uninformative. It contained a
link to a site with an analysis of various DDoS systems and tools to find them. But it
provided no evidence of how they came to the conclusion my network was involved.
Further, it said not to ask for evidence because it would be of no use.

Hmm. Was this a joke? I have to admit I haven’t been keeping up with the latest script-
kiddie toys. So I wasn’t sure if I could have Stacheldraht in my midst and not know it. I
decided rather than ignore the message, I’d at least find out if it could be true. I read up
on DDoS. Stacheldraht means “barbed wire” in German. I’ll let you read the full analy-
sis at your leisure some other time at <http://staff.washington.edu/dittrich/misc/ddos/>.
But here is the brief overview of what I learned and how I managed to find the culprit
in less than ideal circumstances. I did ask the person who contacted me to at least send
me the time stamps on his log entries that implicated my site. I figured I could use
those to narrow down the part of the haystack I needed to look in.

Stacheldraht is based on Tribe Flood Network and incorporates features of trinoo.
Agents are installed on as many hosts as possible – on hosts presumably targeted by
automated probes and compromised by standard root kits. Linux and Solaris hosts
tend to be the favorite targets. The agents are monitored and controlled by “handlers.”
In order for this to happen, the agents communicate with the handlers using ICMP
echo-reply packets. Yes, just reply, no echo request. This is probably because a firewall is
more likely to pass echo-reply than echo-request packets. The data portion of the
ICMP packet is used to transmit control and status information. But it is encrypted.
The encryption is easy to break if the agent was installed with the stock key (provided
on the analysis Web site). Once installed, a Stacheldraht agent can be commanded to
launch one of several popular DoS attacks: ICMP flood, SYN flood, etc. The analysis
Web site also provided text strings commonly found in the program like “sickem.”
Stacheldraht also spoofs the source IP address of the packets it sends during an attack.
If the local router will let it, it will spoof the entire IP address. Otherwise it will spoof
only the last byte. It verifies this by sending a spoofed packet to its handler (with the
real source address in the payload) and waiting for a confirmation.

The attack packets received by the site in the UK apparently showed my network as the
source IP, but with random fourth bytes. That’s why they said the log entries would be
of no use. But the packets could have also listed my network while being sent from else-
where. While that was a possibility, I figured it was still worth looking for unusual
activity.

The network in question here is an ISP network. It is a /24, or “class C” network. There
are over 100 hosts on that network. Each is owned and administered by a different
company and person with few exceptions. I don’t have user or root access on any hosts
on that network except my monitoring station and my sniffer. So logging in to each
system and looking for signs of compromise was not an option. That would be tedious
and inefficient anyway. The monitoring I do is purely for billing. There is no firewall.

The first thing I did was check my traffic logs – one for (almost) each host. The date of
the incident was a few weeks prior, so the MRTG data was reduced enough that it was

by Barbara Dijker

Barbara Dijker is cur-

rently SAGE president.

She's been sysadminning

for about 12 years and

runs a couple of ISPs.

<barb@usenix.org>

●

SE
C

U
RI

TY
| P

RO
G

RA
M

M
IN

G

USE YOUR LOCAL TOOLS ●

44 Vol. 25, No. 6 ;login:

As you might expect with a

large (switched) network of

strange machines, bizarre

things happen frequently.

difficult to see any anomalies. I found four candidate suspects with what appeared to be
about 100kbps more outgoing traffic than usual. We notified their system administrator
to look for possible compromise.

That produced nothing of course. They each said their system was impenetrable. They
probably didn’t even look. So I went back to the analysis site to look for tools. There are
a few promising ones. I tried to install the two that were recommended. The problem I
ran into is that they all eventually require libpcap to build custom packet headers. I
don’t own a Linux box. I tried a simple make where appropriate on BSDI, FreeBSD,
and Solaris. All failed! I wasn’t in the mood to port someone else’s code. Nessus looked
intriguing. I decided that would be best installed when I had the time to learn it prop-
erly – to decide an optimal and long-term configuration. So I opted to use a tool
already on hand with which I’m comfortable and familiar: my sniffer.

As you might expect with a large (switched) network of strange machines, bizarre
things happen frequently. My sniffer is one of my best friends. The average traffic level
on this network is in excess of 5Mbps. Long ago I invested in a sniffing tool that was
flexible and useful and that provides quick results. It’s a dedicated beefy and zippy PC
with a high-quality fast Ethernet card. I use software called Observer by Network
Instruments. Alas, it has to run on NT. But it met my criteria.

The first thing I asked my sniffer to do was track and capture all ICMP echo-reply
packets. In just a few minutes, I had a list sorted by number of packets. The top hosts
on that list became suspect. I browsed the packet-header dumps of some of the individ-
ual packets sent and received by the top suspect. Indeed they looked like they could be
Stacheldraht because of size and ICMP ID. I didn’t go to the trouble of decrypting the
payload to see for certain. However, I was amazed at how many of the hosts on our net-
work send (and receive) many and frequent pings as a matter of course. That made it
more difficult to use this as definitive evidence.

In the meantime, we started to suffer some minor issues on our router – it was notice-
ably slower than it should have been. A quick look there indicated that the packets it
was routing per second increased 50-fold from typical! The problem then went away as
soon as we found it, of course. So the next thing we asked the sniffer to do was to con-
tact us when the packets per second went above a threshold. Sure enough, within a day
we had a trigger. The top sender of tons of tiny packets was indeed the same host that
was the champion of ICMP echo replies.

At that point we captured some of the packets this host was sending, and bingo. All the
packets were TCP ACKs. They were sent repeatedly and in large quantity to a short list
(<10) of destinations. Interestingly the quantity was not large enough to look unusual
in our MRTG traffic graphs – because they graph bits per second, not packets per sec-
ond. The source IP address used indeed had a spoofed fourth byte. We know it was
spoofed because the Ethernet address was the same. (That’s what we used to filter the
packet capture.) We have quite a few hosts that are assigned many IP addresses for vir-
tual Web hosts. But typically you’ll only see those as the IP destination, while the source
IP used is the primary IP of the host. We confirmed that the IP addresses being used to
source these packets were assigned to different hosts entirely.

OK. We caught one. It was a Linux box. Then we needed to make sure our Ethernet-
address database wasn’t old or wrong. We unplugged its network cable to verify the
packets stopped. Then we plugged it in again and verified the packets reappeared. We
were confident we had the right host. Most sniffers will learn and build your Ethernet-

45October 2000 ;login:

If you monitor traffic, monitor

bps and pps.

to-IP address table for you based on the source addresses of normal packets. You just
need to make sure you do that when no one is spoofing.

We left the system unplugged and contacted the owner/administrator. They were in a
meeting all day and couldn’t be bothered. So we asked for root access. Our goal was to
clean up the system enough so that we could bring the system back online to serve mail
and Web.

We indeed found Stacheldraht. It was called /bin/in.sysched. We also found that the
hacker installed their own ssh in /usr/sbin/in.amdq with its configuration files in
/dev/sdc0. They installed their own “pam” authentication module in /dev/sde0. In addi-
tion, they installed their own bind (resolve.conf was still configured as a client) and
their own wu-ftpd – both of which were running and presumably had back doors. Of
course they replaced /bin/login and /bin/ps. Finally, some files had been made immut-
able so that even root could not set them back without additional effort. We instructed
the customer to “nuke it from orbit” – a fresh installation was recommended.

The customer sent someone out, and they spent about five hours reinstalling the oper-
ating system from scratch, upgrading to the most recent version of their brand of Linux
in the process. Within five days, they were hacked and running Stacheldraht again. The
customer had rebuilt the system from scratch, but they neglected to install known
patches. They thought that the latest version must be secure. Further, they never both-
ered to check their mail server or Web server for vulnerabilities. A quick check showed
both were vulnerable.

The moral to the story? If you monitor traffic, monitor bps and pps. Have the tools you
need. Use the tools you have. Know how to use them properly.

USE YOUR LOCAL TOOLS ●

●

SE
C

U
RI

TY
| P

RO
G

RA
M

M
IN

G

46 Vol. 25, No. 6 ;login:

Some Dirty Tricks
Two issues ago, I asked people to email me dirty burglar-alarm tricks from

their networks. I’ve gotten a couple of really interesting suggestions, and

I’m going to share a few of them with you. I’m editing the original emails

down to a nubbin, in order to fit them in this space, so if any inaccuracies

are induced, it’s probably my error.

The inimitable Gene Spafford sent me a ton of good suggestions, including creating a
bogus user and stuffing its /var/spool/mail file with a few fake messages from root,
including discussion of various machines’ root passwords. The mail files were watched
by a separate process that detected when they were accessed – in those days intruders
would frequently try a “grep password /var/spool/mail/*” upon entering a new machine.
He also left a specialized program in the user’s bin directory that looked like a setuid
access program, but which, in fact, would generate an alarm and freeze a copy of the
process table, etc. Another delicious dirty trick from Gene was to doctor the crypto
routines in a decompiled version of the Morris Internet Worm, so that they would sim-
ply waste the bad guy’s CPU cycles instead of cracking passwords. Sure enough, some-
one stole the doctored copy, and, presumably, enjoyed a private moment of frustration
when his ill-gotten software didn’t work as expected!

Daniel Wesermann described how he once rigged the routing table on a bastion host to
contain a number of attractive-looking routes to nonexistent subnets, which, in fact,
pointed to a “black hole” Linux machine that did nothing but suck up the traffic direct-
ed to it. He tinkered with the source to netstat to make it look like there were even
active connections from within the bogus subnets, to further confuse the attackers.
When a friend managed to seize control of the bastion host, and began to explore, the
“black hole” machine set off alarms and logged packets.

I’m sending these guys cool “Network Police” windbreakers so they can show everyone
which side they’re on.

The Slaughter of the Innocents
One of the cherished ideologies of computer security in the last few years has been the
notion of “full disclosure.” In the full-disclosure universe, when one finds a security
hole in someone else’s software, one gets them to fix it by announcing the bug in a
public forum (e.g., bugtraq) and including details of how the bug can be induced or
exploited. Sometimes, one posts a tool that exploits the bug – as a “demonstration” – so
that there can be no doubt of the bug’s seriousness. The logic goes as follows:

■ By disclosing bug details, we all learn how to avoid similar bugs in the future.
■ By disclosing the bug’s existence, we force the vendor to issue a patch.
■ By releasing an exploit tool, we force the end user to install the patch.
■ The bad guys may already know about the bug so we will tell the good guys.
■ You/We need these tools so we can test and secure our systems.

In principle, this seems sensible, but it ignores the third parties (usually average users)
who are harmed in the process of all the “improvement” that is taking place. Indeed, it’s
somewhat reminiscent of the old “we had to destroy the village in order to save it” kind
of logic that went out of vogue in the late 1970s. Under the guise of improving security,
a lot of people are being made miserable at the hands of armies of script-kiddies1

armed with the latest hacking tools.

Let’s examine the claims of the full disclosure ideologues in detail:

the network police
blotter

by Marcus J.
Ranum

Marcus J. Ranum is
CTO of Network
Flight Recorder, Inc.
He’s the author of
several security prod-
ucts and of a book
on computer security
(with Dan Geer and
Avi Rubin) and is a
part-time sysadmin.

<mjr@nfr.net>

BY DISCLOSING BUG DETAILS WE LEARN HOW TO AVOID SIMILAR BUGS IN THE FUTURE

Unfortunately, most of the security holes that are being exploited today are categories
of holes that are already well known. For example, a huge number of today’s exploits
are buffer-overrun/stack-smashing attacks. The Morris Internet Worm of 1988 exploit-
ed buffer overruns; we’ve known about that category of problem for a very long time,
in Internet years. The fact that programmers keep making mistakes of that sort isn’t
news to anyone, either: anyone who is writing security-critical software should already
be aware of array boundaries. There are, periodically, new paradigms of security flaws,
but these are discovered relatively rarely.

BY DISCLOSING THE BUG’S EXISTENCE, WE FORCE THE VENDOR TO ISSUE A PATCH

Unfortunately, there are vendors that care about security, and there are vendors that do
not. Vendors that care will issue patches in a timely manner, and “do the right thing”
about vulnerabilities. Those that do not care will probably continue not to care. The
evidence is certainly contradictory on this issue. Microsoft, for example, has pushed out
patches quite quickly on some occasions, but meanwhile has allowed Windows’ authen-
tication scheme to remain so badly flawed that l0phtcrack consistently makes mince-
meat of it. Email attachment execution and scripting have been responsible for several
egregious security holes – resulting in band-aid patches but no fixes to address the fun-
damental problem. Apparently disclosure’s effectiveness is mixed in this regard. I sus-
pect that “security through public humiliation” simply annoys everyone: it insults the
diligent vendor’s efforts and is a flea-bite to the uncaring vendor.

BY RELEASING AN EXPLOIT TOOL, WE FORCE THE END USER TO INSTALL THE PATCH

Unfortunately, this only happens in the rare case of relatively sophisticated users who
care about securing their systems. A few years ago, Dan Farmer2 did a terrifying study
that indicated a majority (60+%) of Internet sites were running Web servers with docu-
mented security holes – the end users simply had not taken the time to install the nec-
essary patches. More important, when an exploit tool is released, it spreads into use
extremely quickly. Even the sophisticated end user will not be able to monitor bugtraq
24 hours a day every day; they are still left vulnerable for an undetermined amount of
time. If the proponents of full disclosure really cared to help, they would announce two
or three weeks ahead of time to warn users, “on X/Y/Z we are releasing a vulnerability
in PDQ that provides remote access – turn off that software immediately.” Some disclo-
sures have happened in that manner, but the majority simply appear as an announce-
ment and an exploit tool. Hours or minutes later, innocent people around the Internet
are suffering and do not know why. Hint to exploit releasers: they aren’t grateful for
your assistance, either.

THE BAD GUYS ALREADY KNOW ABOUT THE BUG, SO WE WILL TELL THE GOOD GUYS

Unfortunately, many of the vulnerabilities that are exposed are disclosed by their dis-
coverers. So, perhaps the bad guys already know about the bug, but the number of bad
guys knowing it is usually fairly small. Indeed, the good guys have fairly good intelli-
gence networks of their own; usually they find out about a vulnerability fairly quickly
once it leaks into the hacker3 community-at-large. In other words, the vulnerabilities
are not being exposed to the good guys much faster than they would in the course of
normal events. One thing for certain, however, the vulnerabilities are being shared
much more quickly among the hackers, under the guise of “helpfulness.”

YOU/WE NEED THESE TOOLS SO WE CAN TEST AND SECURE OUR SYSTEMS

Unfortunately, though few like to admit it, this simply isn’t the case. In virtually every
case, it is possible to test for the presence of a vulnerability without having to exploit it.

47October 2000 ;login: THE NETWORK POLICE BLOTTER ●

Many of the vulnerabilities

that are exposed are disclosed

by their discoverers.

●

SE
C

U
RI

TY
| P

RO
G

RA
M

M
IN

G

For example, rather than executing code that penetrates the system, the tool could sim-
ply notify the user that a particular piece of software needs to be upgraded. In many of
the tools used by “legitimate security professionals” there are options that have no nec-
essary purpose for legitimate security purposes. Take the popular nmap utility, for
example – a tool that is useful for scanning networks to look for open ports on servers,
or to identify and categorize systems – the scanner has considerable functionality that is
intended to defeat firewalls and to make the scans harder to detect. Why would a legiti-
mate security professional, acting on his own or a client’s behalf, feel the need to hide
an authorized scan of a network? The answer is simple: no legitimate security profes-
sional needs to act like a hacker.

I’ve run into security experts who claim they need penetration tools so they can con-
vince their customers to take action. Apparently CERT alerts, vendor-issued patches
and release notes, and bugtraq postings from legitimate security practitioners are not
enough. I suppose it’s possible someone could be so obtuse (many appear to believe the
damaging effects of tobacco smoke don’t apply to them, either . . .) but this is not a
technical problem, it’s an exercise in management and interpersonal skills. Of course,
it’s possible that the security expert has a vested interest in having the customer scared
and feeling vulnerable – it helps sell their services.

Blaming the Victim
I’ve seen a distressing trend toward blaming the victim of a hacking attack: “they
should have installed their vendor patches” or “it served them right for being so lame.”
In a few cases, when I’ve debated this topic over beers at a conference, I’ve heard even
seasoned professionals display an amazing lack of sympathy for innocent victims. I
think what happens is that we security practitioners are so focused on our little niche
of the universe that we forget sometimes that “real users” don’t want to care about this
stuff – they just want to lead their lives and get useful work done on the Internet. Any
of you who’ve been on the receiving end of a hacking attack may remember what an
unpleasant violation it is, how helpless, puzzled, and frustrated it makes you feel. Not
to mention how much of your time and money it eats up.

The Internet as a whole spent over half a billion dollars on computer security last year.
This is basically money spent to accomplish no purpose other than to avoid damage.
The ILOVEYOU virus and distributed denial of service attacks such as were launched at
Amazon.com and eBay.com cost hundreds of millions of dollars in lost time and pro-
ductivity, to say nothing of aggravation and unhappiness. A lot of the blame for this
slaughter of the innocents can be laid at the feet of “legitimate security professionals”
who choose to play on both sides of the fence. They want to have the secret thrill of
punching weaknesses in innocent users’ defenses, but they want to have their hands
clean of actually pulling the trigger in person. If you read between the lines of the cases
where alleged perpetrators of denial of service attacks were caught, you’ll quickly see
that many of them didn’t even understand how their tools worked. They just downloaded
them and made complete strangers miserable.

Accountability for All
In order to make progress, we need to raise accountability for computer-security fail-
ures. In this case, vendors that produce buggy insecure products must be held account-
able if they knowingly release software that places their customers at risk. So it’s not
just the attack-tool writers and distributors that need to clean up their act. One of the
primary intellectual underpinnings of full disclosure is the notion that vendors won’t
act responsibly unless they are forced – probably an accurate belief in some cases. I

48 Vol. 25, No. 6 ;login:

In order to make progress, we

need to raise accountability

for computer-security failures.

don’t think ad hoc force is the way to go about it and neither does the software indus-
try. It’s fairly clear that UCITA is an attempt to establish advance protection against lia-
bility for vendors producing shoddy software. If UCITA goes forward in its current
incarnation then I believe it will badly hurt the cause of the end user and computer
security. In moments of idle daydreaming I imagine how fun it would be to ask a judge
to issue a restraining order blocking the release of some new version of a major prod-
uct that was known to contain fundamental security flaws. Of course that’s not going to
happen, but we’ve got to ask ourselves what would happen to a car manufacturer that
sold a car knowing it tended to catch fire and explode every so often. Eventually, if you
put people at risk long enough, it will come back to haunt you. We need to make sure
that happens, if we want to see change for the better.

A Plea
I beg you, please, if you find a vulnerability in someone’s software, work with them to
get it fixed. Don’t make other people suffer for your ego by distributing something to
show everyone how smart you are. If you want to show people how smart you are,
write a better firewall, or a secure browser, or mailer, or something – anything – that
has a useful, helpful, and legitimate purpose. Don’t write and distribute denial of serv-
ice tools. Don’t write and distribute rootkits and trojan horses. Don’t arm, aid, and abet
script kiddies. If this situation does not stop, we can expect knee-jerk legislation from
our elected leaders – we security practitioners need to clean house ourselves before
someone else feels obligated to step in. Don’t market yourself by hurting other people;
market yourself by helping.

The Bottom Line
The sad reality of the full-disclosure process, as it is practiced today, is that it holds the
entire Internet hostage to the views of a vocal minority that have chosen to pursue their
egotistic agenda while ignoring the damage it does to innocent users. These innocent
users are not technically sophisticated, do not care about security, and simply want to
be left alone to lead their lives without unwarranted intrusion from a hacker. They
don’t upgrade their systems, they don’t install firewalls, they simply do not expect that
some immature script kiddie is going to amuse himself by molesting them. The imma-
ture and unskilled script kiddies are, in fact, being armed by smart but “ethically chal-
lenged” individuals who want to have their cake and eat it, too – they want the thrill of
being a “black hat” hacker while commanding the salary, stock options, and peer
respect accorded to true professionals. What boggles my mind is how they’ve managed
to convince themselves they’re doing us all a big favor.

49October 2000 ;login:

Notes
1. A “script kiddie” is a hacker who doesn’t really
know anything about security but who knows
how to download the latest attack tools from the
Net and run them over and over until they find
a machine they can break into and ravish. It’s a
term I first coined back in the early 1990s that
has apparently found its way into common
usage.

2. See <http://www.fish.com/survey>.

3. People have complained about my politically
incorrect usage of the term “hacker” to broadly
refer to cybercriminals and vandals. The original
meaning of “hacker” has been usurped by the
mass media, and, in the interest of being widely
comprehended, I avoid arguing about vocabu-
lary. You may feel free to mentally substitute
“cracker” or “attacker” or whatever suits your
fancy.

●

SE
C

U
RI

TY
| P

RO
G

RA
M

M
IN

G

THE NETWORK POLICE BLOTTER ●

http://www.fish.com/survey

50 Vol. 25, No. 6 ;login:

More Stack-smashing Fun
July brought the usual stuff – crushing heat, humidity (for those not in the

desert, that is), and a new technique for smashing the stack. At first, I was

perplexed about why some were saying that this was not a buffer overflow,

but after pouring enough water over my head to cool off and think about it,

I can see why.

The problem first surfaced in reports of a root exploit of the venerable wu-ftpd server.
You may recall that wu-ftpd was the victim of a buffer-overflow exploit published in
February 1999. In that exploit, if the attacker could write in any directory available on
the FTP server, the server could be coaxed into replacing itself with a shell, running as
root, and still connected to the remote attacker using TCP.

The February exploit was a classic buffer overflow. In that attack, shell code, that is,
machine instructions for the target architecture, gets copied to the stack, along with a
leader of NOPs (null operations), and then many copies of an address that should
point within the regions of NOPs. The idea is to replace the correct return address with
the pointer to the shell code (really, the preceding leader of NOPs), so that when the
function returns, it will instead execute the shell code.

There are several techniques for dealing with this. One popular one is to make the stack
nonexecutable. This helps but still permits buffer overflows to succeed. The exploit
must copy the shell code somewhere else, not on the stack, then overwrite the return
address with the address of the shell code. When the function returns, the shell code
gets executed (as it is not in a nonexecutable portion of memory).

StackGuard, subject of several USENIX papers (also, check out <http://wirex.com> and
<http://immunix.org>) works by modifying the way in which functions are called. The
function preamble and postamble puts a “canary” value below the return address on
the stack and then checks that the canary has not been smashed on the return from the
function. Now, a buffer overflow that overwrites the return address also overwrites the
canary, and the StackGuard mods cause the program to exit rather than execute shell
code.

The programming flaw that makes buffer overflows possible is the use of functions and
loops that copy user input into a locally defined array without counting how many
bytes are being copied. The C language was designed by guys who were writing an
operating system (UNIX), and didn’t need to worry about running off the end of an
array. They wanted performance, and also knew what they were doing.

The problem occurs when a program accepts user input, whether from the command
line, a network connection, or the environment, and copies it without counting to a
buffer allocated on the stack (any variables declared locally, that is local to a function,
get allocated on the stack). Some of these functions are: strcat(), strcpy(), sprintf(),
vsprintf(), bcopy(), gets() and scanf(). You can check out the links found at
<http://www.securityportal.com/lskb/articles/kben10000082.html> for replacements for
these functions, such as strncat(), as well as some other resources for secure program-
ming practices.

Stack Manipulation
Rather than blindly smashing the stack, the new technique enables an attacker to probe
the stack, then surgically install a new return address (while not touching the canary).

musings
by Rik Farrow

Rik Farrow provides
UNIX and Internet
security consulting
and training. He is
the author of UNIX
System Security and
System Administrator’s
Guide to System V.

<rik@spirit.com>

http://wirex.com
http://immunix.org
http://www.securityportal.com/lskb/articles/kben10000082.html

51

Programs, like wu-ftpd, that pass user input to formatting functions, like sprintf(), are
the culprits here.

The printf() family of C functions has a rather interesting capability, especially if you
have learned to program using Java or SmallTalk only. That is, these functions accept a
variable list of arguments. Internally, a set of routines collectively known as varargs
handles the processing of function calls when the number calling arguments is not
known at compile time, as with sprintf(). Let’s look at a little code example posted by
Pascal Bouchareine on July 18 to bugtraq (<http://www.securityfocus.com/>):

void main() {
char tmp[512];
char buf[512];
while(1) {
memset(buf, '\0', 512);
read(0, buf, 512);
sprintf(tmp, buf);
printf("%s", tmp);
}

}

This simple program will echo back anything that you type as input (once you compile
and run it). sprintf(tmp, buf) copies the input buffer, buf, into a second buffer, tmp. The
array tmp is local to main(), so it appears on the stack. So far so good.

What makes this interesting is when you include format characters in your input, such
as %s, %f, or %x. To sprintf(), these appear to be commands to pop values off the stack
and format them. For example, providing “%x %x %x %x” as input will result in
“25207825 78252078 a782520 0” (on Intel processors and their little-endian byte order-
ing). “25” is the ‘%’, “20” a space, and “78” the ‘x’ as hexadecimal. But just displaying
what we have put on the stack is not very interesting. What if you use enough format-
ting commands to move up the stack until you display the return address? Now,
through the user control of format commands, the state of the stack can be displayed,
and the return address located.

Finding the return address is only part of the fun. There is another format command
that I do not remember ever using, %n. The %n command counts the number of argu-
ments popped off the stack by sprintf() and related functions and stores that value in
the location pointed to. By arranging for %n to place values in the four bytes of the
return address, you can overwrite the return address without disturbing the canary
which lies below it on the stack.

With these two techniques, exploits can be written that can search for the return
address, overwrite it, then execute shell code. wu-ftpd and its SITE-EXEC command
logging became the target of a number of exploits all published to bugtraq within a
couple of days. There was another formatting problem discovered involving setprocti-
tle(), but no exploit for this was published. You can learn about vendor responses to this
by checking out: <http://www.cert.org/advisories/CA-2000-13.html>.

Full Disclosure
Once upon a time, only “hackers” and a few people in universities and government
research sites had access to information about security exploits. The “good guys”
defended keeping this information secret by saying that the number of attacks would
increase if they made what they knew public.

●

SE
C

U
RI

TY
| P

RO
G

RA
M

M
IN

G

MUSINGS ● October 2000 ;login:

http://www.securityfocus.com/>):
http://www.cert.org/advisories/CA-2000-13.html

52 Vol. 25, No. 6 ;login:

I am glad to have left the

bad old days of keeping

vulnerabilities secret behind

us.

Of course, keeping secrets this way kept most sysadmins unaware of the dangers
involved in not upgrading to the latest patch for service Y. (Can’t use X here for obvious
reasons.) The middle road involves sharing enough information to permit sysadmins to
test their servers and see if they are vulnerable or not. After all, you don’t want to patch
something that is not broken. (You will likely break it.)

Even the middle road is dangerous, as knowing how to test for the vulnerability is two-
thirds of the way to creating an exploit. But I far prefer the current state of affairs, as I
prefer to know what is wrong, why it is wrong, and that it must be fixed. Also, the pub-
lishing of vulnerability information has lead to better vendor response in fixing prob-
lems.

I am glad to have left the bad old days of keeping vulnerabilities secret behind us. Now
we have to deal with security problems rather than sweep them under the carpet. That
is much better than living in denial.

For a free, unpaid, political diatribe visit: <http://www.spirit.com/pol.html>

http://www.spirit.com/pol.html>

53October 2000 ;login:

an interview with
geoff halprin
[Editor’s Note: This interview was conducted electronically with SAGE board member
Geoff Halprin during July 2000.]

Rob: Tell us how education works in Australia after one graduates from high school.

Geoff: High school in Australia finishes with year 12. The exact name and nature of the
final exams changes from state to state. These scores (partly exam, partly tests and
assignments during the final year or two years) determine your university entrance
ranking. You select your preferred courses and wait for an anxious month or two for
offers.

University is anything from three years to five or six years, depending on the course.
Computer science is a three-year course.

I had actually started with computers when I was 11, with PDP-8s. I was contract pro-
gramming after school on Cromemcos when I was 14. So, choosing my Uni course was
not really an issue. That made it all the more interesting to find all these holes in my
(self-taught) knowledge when I started Uni.

I treated Uni as a place to learn (not just more exams to pass) and so enrolled in the
more esoteric and challenging courses – advanced computer architecture, advanced
compiler design, advanced operating systems, advanced software engineering.
(Compiler design was a compulsory second-year unit that stretched everyone – we only
had seven people choose the third-year elective after having to write a real compiler in
second year.)

Rob: How did you prepare for your current career in sysadmin?

Geoff: I got bitten by the bug when I was young. At 12, I started attending meetings of
MICOM – the Micro Computer Club of Melbourne. By my 13th birthday I had one of
the first Apple IIs in the country – it ran off 110V transformers!

When I was at Uni, I was also working for Melbourne House – a computer-games com-
pany. Writing computer games (especially back in those days of 64K 6502-based and
Z80-based machines like the Sinclair Spectrum and Commodore 64) was a very chal-
lenging exercise; most programming is a trade-off between speed and efficiency. Games
programming requires both. You had only the “vertical retrace” (about 30–60 cycles) to
update the screen, and only 64KB (minus the overhead) for the program logic, scenery
databases, sprite databases, sounds, music, and work area. I learned a lot by stretching
machines to their limits. On one project, we had to hand-compile C into assembler.

One of the roles I fell into there was looking after their UNIX (System III) machines.
We developed cross-compilers, cross-debuggers and other tools. I was looking after
those tools and the UNIX machines they ran on. I guess that was my first real stint as a
UNIX systems administrator. (I’d always looked after the PDP-8s and PDP-11s, but no
one knew the term “systems administrator” back then.)

So I found myself walking both sides of the fence – software development and systems
administration. I had been drawn to the challenges of troubleshooting other people’s
code right at the beginning, as a tutor to other students, and in the support of other
people’s code. Managing the system was an extension of this – you had to become very
adept at recognizing patterns and forming hypotheses.

Rob: Tell us how you came to be at SysAdmin after University.

Geoff: Having had my taste, I was already forming ideas about how to look after sys-
tems. I had also already had my fill of bad management. So a friend and I started a

●

SY

SA
D

M
IN

|S
EC

U
RI

TY
| P

RO
G

RA
M

M
IN

G

AN INTERVIEW WITH GEOFF HALPRIN ●

by Rob Kolstad

Editor

<kolstad@usenix.org>

company. Initially it was a shell for us to contract through. For several years I alternated
between development and operations projects. I found it very useful to be able to help
programmers understand the consequences of their choices (and why daily runs that
take 27 hours are a bad idea).

Around 1992, after a series of such projects, I decided to step back and look at this
emerging need. We were doing work with Sun in Australia, and it was clear to me that
there was a huge demand for this nonprogramming skill. I started developing a product
that came to be called the “operational support contract.” Basically, we established good
practices (our toolkit and configuration and documentation), then managed the site
through regular visits, all prepaid quarterly in advance. There was incentive built in so
that if we did a good job, they wouldn’t need to call us, and we would have been paid a
retainer that wasn’t fully utilized.

We became one of two companies in Australia providing a bank of systems expertise.
(It isn’t quite clear who was officially first.) We had established a presence with that
product, and a close working relationship with several vendors as a consequence.

I became involved in the Sun User Group of Melbourne, later to become SUG-OZ and
operate nationwide. In mid-1993 SAGE-AU was founded. The groundswell had begun.

In 1995, I left that business and started The SysAdmin Group to continue my work on
developing methodologies and toolkits for systems administration. It has been quite an
eye opener to start up another business, and to learn what it is I do well, and what it is I
rely on others to provide.

Rob: So you are the founder and sole proprietor?

Geoff: Yes. When I left my first company, the last thing I was going to do was have
another partner. I had a lot of emotional turmoil to work through. So I started
SysAdmin with the experience of almost ten years as a company director, but with no
customer base or intellectual property – all that had to be left behind. It was a huge
learning curve.

There is a book called The E-myth. It talks about why people start their own businesses,
and the three hats you wear as you grow a business. It’s quite an enlightening explana-
tion: most people start a business for reasons like, “I can make widgets better than these
guys. Why am I putting up with all this frustration and bad management?” So they go
into business making widgets. And they really do build better widgets than they were
previously.

But as they grow the business something happens – they have to do other things as
well. There are three hats – the technician, who looks at the present (“How do I do this
right now?”); the manager, who looks at the past (“How do I do that more efficiently, at
lower cost?”); and the entrepreneur who looks to the future (“What else can I do?”). It
is quite ironic that the first of the roles you jettison as you grow a business is that of
technician – the very reason you first started the business.

The reason I say that is that one of the frustrations that I have faced, as a geek, is the
lack of time and focus I’ve been able to devote to the real technical work. It’s really
quite distracting having to continually find new customers to pay the bills with. The
systems administration market place has changed significantly from when I first started
growing a practice in 1992.

SysAdmin has been an experiment. I’ve had a rare opportunity to try out different
management and resourcing models, and learn the strengths and weaknesses of each.

54 Vol. 25, No. 6 ;login:

One of the frustrations that I

have faced, as a geek, is the

lack of time and focus I’ve

been able to devote to the

real technical work.

At this point in its life, SysAdmin is a virtual company – using peers who all own their
own companies as subcontractors.

Rob: What is SysAdmin’s main business model?

Geoff: I have tried to align incentives for good systems-management practice with good
business and customer management. For example, the OSC encourages both parties to
plan, but recognizes that it isn’t always possible. There are tariffs for out-of-hours work,
and prepaid allotments that attract a discount but are nonrefundable. It all goes to try-
ing to encourage good practices.

Rob: You’re very active in the SAGE community. What do you think are the most
important challenges that lie ahead for SAGE?

Geoff: When SAGE first began, the only people who knew what systems administration
was were those in the role; the practitioners. SAGE was established with the charter of
developing systems administration as a profession. I believe we are now half way there.
We have established it as a unique vocation. Companies now hire systems administra-
tors. The second half of the journey is to move from vocation to profession. This may
sound quite fuzzy, and I guess it is to some extent. But there are a number of attributes
that go along with the term “profession,” such as accountability, continuing education,
and standards of practice, to name a few.

We are facing a huge challenge. There is a drastic shortage of systems administrators,
and the vendors have responded to this by putting up nice GUI screens and pretending
that that is what systems administration is.

We did ourselves a huge disservice by coining the term “systems administrator.” The
term “administrator” implies (at least in the eyes of management) that it is a role that
can be procedurized and automated. Those of us who work in the field know that there
is nothing further from the truth. As the systems we integrate and manage continue to
become more complex, the answers are not found in a couple of icon movements.

The word that best describes systems administration is “intricacy.” The dictionary
defines this as “the complex interplay of components; perplexingly entangled or
involved; confusingly complex.” These are all accurate representations of systems
administration. We know that. The people we provide our services to do not. Just as the
community appreciates the complexity of the body a doctor deals with, and the com-
plexity of the law a lawyer deals with, so too we need them to appreciate the complex
bodies of knowledge that we deal with.

For SAGE, we must embark on a major campaign of educating the users of our skills
that there is more to the role than dragging a few icons across a desktop. The certifica-
tion effort being undertaken at present is one of the strategic ways to address that goal.
As the community sees a vendor-neutral certification program, they will start to under-
stand that there are core skills that are intrinsic to good systems administration.

There are also new books appearing, such as Mark Burgess’ book, that are addressing
the disciplines and principles of systems administration. These complement the exist-
ing excellent task- and platform-oriented texts.

Rob: Which challenges are you personally attacking?

Geoff: My personal area of interest is “best practice” and standards of practice in gener-
al. I can change accountants without them having to redesign my accounts, and I can
change lawyers without them having to rewrite every contract, but when I change sys-

55October 2000 ;login:

There is a drastic shortage of

systems administrators, and

the vendors have responded

to this by putting up nice

GUI screens and pretending

that that is what systems

administration is.

●

SY

SA
D

M
IN

|S
EC

U
RI

TY
| P

RO
G

RA
M

M
IN

G

AN INTERVIEW WITH GEOFF HALPRIN ●

tems administrators, there is a huge hidden cost as they re-create the site in their own
image; deploying the tools and standards they have become most comfortable with.

We desperately need to develop standards of practice that we can all agree on, or at
least live with as reasonable. Even in the complexity of systems administration, there
are patterns and recognized good practice. Software engineering has started recognizing
the presence of patterns. Long ago (1972) they recognized the need for the “ego-less
programmer.” Perhaps we should learn from the world around us?

I’ve started (with lots of help) to define a framework that is independent of technology,
vendor or platform; the Systems Administration Body of Knowledge. It has a lot of the
meat still missing, but there is a structure that anyone can use to assess their site, and to
plan improvement works. That’s a step in the right direction.

Having a framework allows us to communicate effectively with those around us, to
show them what it is that we do, how complex it really is, and to provide guidance to
both personal and organizational maturity and growth.

Rob: Do you have any idea why tackling all these challenges is taking the “system
administration community” such a long time?

Geoff: Systems administration is young. In the broadest sense it’s only been around 40
years, but in any real sense it’s been around for maybe 20 years. Accounting and medi-
cine have been around for hundreds of years, and they’re still getting it wrong.

Another major problem is that the field is not recognized as an independent field of
study. A small number of universities offer units in systems administration, not a full
degree, and these are part of a computer science course. Just as it took a long time for
CS to break away from maths, we’re now seeing similar problems of SA being treated as
a subset of CS.

This is also reflected at the corporate level, where software engineering research is rec-
ognized, but systems administration research is not. It’s a side effect of other research at
best.

Then there’s the minor problem that the industry is so massively short of capable sys-
tems administrators that the ones there are don’t get much time to devote to research.

But I see this changing. The community as a whole is now recognizing the need for a
more disciplined approach to systems management. This is evidenced by the outsourc-
ing boom. I’ve also noticed the change in the nature of the papers at LISA over the past
five years. As a group, we are now ready to be introspective enough, and have enough
collective experience to recognize meaningful patterns, and to look at underlying
knowledge, skills, and abilities that form the basis of systems administration. The next
few years are going to be quite exciting.

56 Vol. 25, No. 6 ;login:

We desperately need to

develop standards of practice

that we can all agree on,

or at least live with as

reasonable.

It was Y2K, and a change was afoot. It was a simple change, to apply some

Y2K patches to a production Solaris server. These patches had already been

applied to a development server, so there was a reasonable confidence in

their correctness. The change was scheduled to commence at 9:00 am on a

Sunday.

The change plan, as approved, called for the mirrors to be split as a regression strategy.
(All production systems are fully mirrored, using Solstice Disk Suite.) This was in addi-
tion to the cold backup that was to have been performed prior to the change.

The change commenced. The patches were applied. The machine was rebooted.

“ld.so: file not found”. Oh dear. The time: 09:15.

I was called in to resolve this continuing problem at: 23:15.

The teleconference revealed that in attempting to resolve the above problem (which
seemed to affect only a token ring driver), the administrator booted from CD-ROM
and copied /usr/lib/ld.so from the CD-ROM to the /usr partition (A-side sub-mirror),
then rebooted. Surprisingly, this did not resolve the problem.

Yes, I can hear a few of you gasping.

Once I got past the initial incredulity at the course of action, I asked whether they were
aware of the consequences of this chosen course.

Did they know that the copy of /usr/lib/ld.so on the CD-ROM would almost certainly
be a different binary from the patched Solaris revision, and therefore incompatible with
the system? Did they know that /usr/lib/ld.so is somewhat critical to a system, and if it
really couldn’t be found, the entire system would not work (or boot past this error mes-
sage)? Did they know how many copies of ld.so reside on a Solaris system, and where
they live?

Oh yes, and that niggly one, did they know that mounting and touching one sub-mir-
ror taints the entire mirror and effectively creates two randomly different disks which,
in a round-robin read-balancing scheme (such as Disk Suite uses by default), this
would cause (at best) a random panic from the kernel for reasons that would be next to
impossible to trace?

Once I had teased the detail of their actions from them, I declared the change a wash,
and asked them about the change plan’s regression strategies. Turns out that, seeing as
the change had gone so well on the test machine, they hadn’t bothered to split the mir-
rors per the change plan, and so only had the full backup to revert to.

This was, it turns out, a blessing. The systems administrators involved had no idea of
how to recover a system from split mirrors. The organisation had no “bare metal recov-
ery procedure” for split mirrors. Some practical regression strategy that turned out to
be!

So I asked them about their “full, cold” backup. It turns out, that this was an ADSM
backup, performed with the system in multi-user mode (init level 3). Oh well, it’s all we
have, so here we go (It seemed a common ailment of that company to not under-
stand the meaning of “cold,” but that’s another story.)

Now, I have nothing against ADSM as a product. I believe it to be an excellent backup
solution. It is, however, inappropriate for “bare metal” recovery scenarios.

57October 2000 ;login: ODE TO RISK MANAGEMENT ●

ode to risk
management

●

SY

SA
D

M
IN

|S
EC

U
RI

TY
| P

RO
G

RA
M

M
IN

G

By Geoff Halprin

Geoff Halprin is a
member of the SAGE
Executive Commit-
tee, and the Principal
Consultant at The
SysAdmin Group, a
systems administra-
tion consultancy.

<geoff@sysadmin.com.au>

Why? Well, what is the general recovery scenario from a UFSDUMP of system parti-
tions?

1. Boot from CD-ROM.
2. Restore to the A-side sub-mirrors (corrupted partitions only).
3. Mount the A-side sub-mirrors and remove references to mirror devices.
4. Boot the A-side (raw devices).
5. Bootstrap the mirrors from the A-side sub-mirrors.

This scenario should take around an hour or so. And from a third-party backup solu-
tion?

1. Boot from CD-ROM.
2. Suninstall a basic Solaris onto the B-side sub-mirrors.
3. Boot the B-side sub-mirrors (raw devices actually).
4. Load the ADSM client software.
5. Restore to the A-side sub-mirrors (devices).
6. Mount the A-side sub-mirrors and remove references to mirror devices.
7. Boot the A-side (raw devices).
8. Bootstrap the mirrors from the A-side sub-mirrors.

This scenario took in excess of 24 hours to complete.

So, at one level this change was a series of catastrophic mistakes and errors in judg-
ment. But on another level, it all stems from a single fault – the lack of risk assessment
and risk mitigation, skills that are essential to managing production computing envi-
ronments.

Risk Management
Our principal objective in making changes to a production environment is to ensure
the success of those changes – as planned, with no unanticipated side effects. They
should be completed within the designated timeframe, and with no unforeseen impact
on the user community.

The only way to do that is with careful planning. We are, of course, fighting against
Murphy’s Law. So it is important to plan for things to go wrong, things that we cannot
predict. The only counter we have to an unknown threat is time – time to resolve
unknown problems, and (planning for the worst case) time to admit defeat and back-
out the entire change. So our change plan must include this contingency and regression
time in calculating the change window required.

It is also vital that the system is never left in an indeterminate state (I hold this to be an
axiom of change management), so this acts as a primary constraint on our risk-mitiga-
tion strategy selection. The state prior to the change is, by definition, a known state,
with known functionality and known problems. This is why a cold backup forms a
baseline for change regression, should things go awry.

TIME
Assuming a stable baseline (backups), then our risks and costs are pretty much always
time – time to back a change out, time to reschedule and reapply the change, lost pro-
ductivity.

So our goal in risk management is to minimize these costs.

In evaluating our risk-mitigation options, we must always consider (a) how much
(time) does this regression step cost to implement? (E.g., how long will the backups

58 Vol. 25, No. 6 ;login:

Our principal objective in

making changes to a

production environment is

to ensure the success of

those changes.

take?) And (b) how much (time) does this regression plan cost to execute? (E.g., how
long will the restore take?)

Splitting and recovering from split mirrors is far faster than filesystem restore from
backup media (no slow tapes to deal with), and therefore a good strategy. It does, of
course, come at increased risk – a disk failure during a change window would require a
full restore from tape. If you want hard guarantees of return-to-service time, then a
third mirror might be appropriate. Given the cost of disks and RAID units these days,
doing cold backups to a mirrored disk array could be an effective alternative to tape in
some environments!

Of course, copying file hierarchies sideways is an even cheaper risk-mitigation strategy
(only the relevant files are copied), but not always a viable one.

Whatever regression strategy is chosen, be sure to reduce to rote procedure the steps to
follow to back the change out. You do not want to have to work this out at 3:00 am
under pressure of a failed change.

FURTHER REDUCING RISK
Have a good look at your change plan and identify all those steps that can be per-
formed prior to the change window. Not only does this reduce the time required for
the main change window itself, but it reduces pressure on the systems administrator,
and so also reduces the risk inherent in the change.

Can steps be automated? Scripting steps ahead of a change has several advantages:

■ A peer can inspect your work, and provide that essential QA review without any
time pressure.

■ You can create test scaffolding to find errors that the human eye is less tuned to
spot.

■ You greatly reduce the room for human error (such as fat-finger problems) to
cause a failed change. How often have you typed in the wrong disk-partition num-
ber or cylinder number?

Geoff ’s Rule: Script anything where numbers or disk partitions are involved.

Of course, another aspect of reducing risk is to trial the change on a nonproduction
platform. As the systems administrators in our story learned, however, this is no assur-
ance that the production platform will behave identically to the test platform.

PROBLEM CONTAINMENT
Another important aspect of risk control is to ensure that you really do know the
bounds of the exercise and can identify the point at which a problem was introduced.

Although it was never determined (don’t get me started on the lack of root cause analy-
sis), it was highly likely that the patches were nothing to do with the observed problem.
The fact that the host was not rebooted prior to the application of the patches means
that there was no guarantee of a stable baseline prior to the change. Just think how
much time could have been saved if the host had been rebooted prior to the change,
and this problem encountered at that time?

Any nontrivial change plan should have regular checkpoints scattered throughout it
(including at the beginning). These are points at which correct system behavior can be
confirmed, and thus problems detected early, and attributed to their cause faster and
more accurately. The earlier we detect a problem, the better position we are in to take
corrective action and continue with the change. By contrast, if we do not detect the

59October 2000 ;login:

The earlier we detect a

problem, the better position

we are in to take corrective

action and continue with the

change.

ODE TO RISK MANAGEMENT ●

●

SY

SA
D

M
IN

|S
EC

U
RI

TY
| P

RO
G

RA
M

M
IN

G

problem until the acceptance tests at the conclusion of the change, then our only
course of action is to enter a protracted troubleshooting exercise, or back the entire
change out.

WHEN IS COLD NOT REALLY COLD?
Finally, another hard-learned lesson. I always thought that what constituted “cold” was
pretty obvious. It turns out that not everyone shares this insight.

A “cold” backup (as opposed to a “warm” or “hot” backup) means a known, stable
point in the system being backed up. We should always be able to recover from a cold
backup and know that the system will operate properly, and the integrity of the data is
assured.

The only way to perform a cold backup is with the relevant object (e.g., database,
filesystem) quiescent, with no changes occurring. This is why cold backups are normal-
ly performed in single-user mode on UNIX.

I have seen people performing “cold” backups in multi-user mode (run level 3), and
with a database live!

It is important to note that even with no users on a system, you are not guaranteed a
stable cold snapshot if you do not ensure that the host is in the appropriate run mode,
or that other steps are taken to guarantee the machine (or relevant subsystem) is quies-
cent. For example, CRON can kick off jobs that alter the filesystem during a backup,
and upstream applications can FTP new transactions onto the host. Should either of
these happen during a “cold” backup, we have created the potential for data loss.

Conclusion
Change management is a critical skill for systems administrators, whether you are run-
ning systems for a Fortune 500 company, an e-business that is exploding in capacity
every week, or even a small business with relatively few systems to manage. Businesses
rely on computers as mission-critical resources. It is our job as systems administrators
to minimize service disruption. Change management is a core strategy and discipline
for achieving that end.

A core element of change management is risk management. No change should happen
to a production environment without appropriate risk assessment and planning. The
weight of such an assessment should be proportional to the cost of the change failing
and the time required to take corrective actions.

Systems administrators must understand the risks inherent in the changes they are per-
forming and plan for things to go wrong. The same skills that we use in reactively trou-
bleshooting system failures should be employed in proactively planning system
changes.

60 Vol. 25, No. 6 ;login:

Systems administrators must

understand the risks inherent

in the changes they are

performing and plan for

things to go wrong.

61October 2000 ;login:

vendor contract
services
A Primer
I’d like to talk about the logistics of coordinating large-scale service build-

outs when you have several independent vendor teams and subcontractors

working on a project. More and more of the “architecture” work I do is

devolving into 30% architecture, 50% project management, and 20% keep-

ing the finger-pointing and name-calling between vendor teams at a mini-

mum. I know that I’m not the only one in this situation, and I’d like to share

some of the things I have learned along the way.

I have been both an employee and a contractor for clients, and a subcontractor for a
vendor team. I’ve managed projects involving vendor teams, managed vendor teams for
a client, and managed vendor teams for the vendor. In other words, I have toured the
sausage factory from most conceivable viewpoints, including that of the sausage. I
won’t say that I will never eat another sausage, but I will say that “managed eating” is a
Very Good Thing when it comes to sausage.

I will also say that while there are few “right answers,” some of the more correct
answers from a client side run headlong into best practices from a vendor side, and vice
versa. You may be frustrated at the lack of a clear recommendation as to the best course
of action, as am I. The best that one can do in this situation is to illuminate some of the
issues and tradeoffs, and allow each person to make the choices that seem best for their
situation.

Vendor 101
THE STATEMENT OF WORK

First, understand that vendor services groups, unlike many individual contractors, gen-
erally have a well-defined process for engaging in work. They may only deal with firms
as part of a product sales process, or they may deal with firms that have purchased
products in the past. They tend to require a signed and approved Statement of Work
(SOW) before letting the client talk to anyone but a sales person. The SOW is basically
a contract defining the client and the vendor obligations. A good SOW will protect you,
the client, with an appropriate level of detail about deliverables and about the process
whereby deliverables are approved. Since the SOW must be approved before the work
begins, and contains the financial information controlling the work, getting a good
SOW in reasonable time is something of an exercise in compromise. Specifics will be
detailed in the next section of this article.

Be aware that your vendor may look like a large, homogenous, well-managed corpora-
tion, but in fact may be a tangle of different subcompanies that have been acquired,
autonomous departments, software/hardware organizations with completely different
tech support and vendor services groups, etc.

To make things more interesting, even within one company or group, a vendor may
have two distinctly different vendor services departments. One will be a sales depart-
ment that books an SOW, and the other will be a deployment department that is basi-
cally stuck trying to deliver what the sales folks have promised. If your vendor sells
hardware as well as software, it is extremely likely that there will be at least two different
vendor service groups, hardware and software, which may also contain this dichotomy
within them. Just because you have signed on an SOW does not mean that the vendor

by Strata Rose
Chalup

Founder, VirtualNet;
Consulting Director
of Network Opera-
tions, KnowNow Inc.
Strata Rose Chalup
got her first sysadmin
job 1983 and never
looked back.

<strata@virtual.net>

●

SY

SA
D

M
IN

|S
EC

U
RI

TY
| P

RO
G

RA
M

M
IN

G

VENDOR CONTRACT SERVICES ●

actually has personnel available to assign to your work. It is generally a true sales
process, meaning that the goal is to get you to sign first and then to deliver afterwards.

Most vendor services groups I have seen seem to be constantly shifting between a one-
structure and a two-structure arrangement. The truth of the matter is that vendor serv-
ices are hard to deliver, since you are dependent on the usual intricacies and delays of
the sales process plus the real-world constraints of personnel availability. There is no
“perfect fit.”

THE VENDOR TEAM

Many firms are in a constant battle to retain personnel and to protect them from
burnout. Being a vendor services team member generally means experiencing most of
the angst of consulting (variable schedule, constant emergencies, frequent travel) with-
out the benefits of consulting (high rates, vacations between contracts, freedom to turn
down work). It doesn’t take a rocket scientist to figure out that a move into actual con-
sulting or into another department or company can result in higher compensation,
reduced job pressure, or both.

Your vendor team will probably be composed of vendor employees and of contractors.
Either the employees or the contractors could be people who have worked extensively
with the products, or people who are new to the vendor and whose resumes indicated
product familiarity. If the team member is new to the vendor, he or she may not have
the crucial engineering and support contacts needed to resolve problems with your
deployment. As a contractor myself, I do not wish to tar vendor services contractors
with any sort of broad brush. Most of the ones I have worked with have been talented
professionals who have conducted themselves admirably at client sites. In practice,
however, it is more likely that the vendor services employee has established relation-
ships with key engineers and high-tier support personnel. He or she can bypass cum-
bersome tech-support protocols with private email to internal developers, search the
employee bug database, etc. It is a very good idea to make sure that for each major ven-
dor product in your deployment plan there is one person, employee or contractor, who
has a strong history of working tightly with the vendor on that particular product.

As I have often discovered, the right hand rarely shares resources with the left. A truly
dynamite vendor team member who has access into a vendor’s VPN product may have
little or no access to the same vendor’s firewall product group. Familiarity with the
engineering group responsible for the messaging product in no way guarantees knowl-
edge of the engineering group responsible for the Web-server product, etc. This is of
particular importance when dealing with a multi-product deployment from a large
vendor. Some of the products were probably developed in-house, some may have been
acquired as intellectual property, and some may have been acquired along with the
company that developed them. You have no visibility into the internal support struc-
ture of the vendor, so you
must ensure that the
expertise will be available
to you via your vendor
team regardless of the
strange politics that may
hold sway behind the
scenes.

62 Vol. 25, No. 6 ;login:

Role Hourly Rate Duration

Project Manager $250 12-14 weeks

Messaging Architect $225 2-4 weeks

Messaging Developer $175 4-8 weeks

Scripting Developer $175 2-4 weeks

Firewall Architect $200 1 - 2 weeks

Table 1: Sample project assignments

63October 2000 ;login:

First, ask yourself the Very

Hard Questions: Can anyone

really get this project

delivered in that timeframe?

DEPLOYMENT AND FINANCIALS

In the vast majority of cases, deployment of the vendor team will be assigned and spec-
ified by role and duration. Where this is done, rates will be assigned via roles, rather
than individuals. An example is given in Table 1.

Given personnel changes and project constraints, it is very unusual for a vendor servic-
es organization to list specific individuals as committed to a project in the SOW. If your
firm has experience with any specific individuals and wants to require that they be part
of the team, it is necessary to capture that quite explicitly in the SOW or in an adden-
dum that is indicated as binding by the SOW. Issues surrounding role-based resources
vs. individuals are discussed more thoroughly in the “Resources” section below. The
Statement of Work will generally require a financial commitment for the maximum
estimated time listed for a given role. Be certain that your vendor’s SOW indicates that
only the actual time worked will be billed, rather than the entire allocated duration of
the role.

An overhead figure will be set in the SOW for incidental vendor expenses, including
reimbursement for travel expenses for personnel who are brought in from out of town
for the duration of their role in the project. Typical numbers are 12% to 15% for over-
head. Note that if your firm is located in an extremely expensive urban area such as San
Francisco or New York City, this figure may be higher. You may be familiar with “over-
head” from a university or research environment, where it is deducted by your parent
organization from the total monies allocated. The type of overhead expense mentioned
here is only billed against to provide direct reimbursement for expenses incurred by the
vendor on the project.

That said, it is up to your firm to track these expenditures closely and ensure that they
do not exceed the figures budgeted in the SOW. The vendor organization does not typi-
cally track expenses vs. overhead allotment, relying on the client to protest if the
expenses exceed the allotment. It is often helpful to request a copy of the vendor’s travel
and expense policy for employees and subcontractors. The vendors generally review
individual team-member expense reports against the criteria in the policy.

Be aware that it is very common for vendors to pull in employees and subcontractors
from other regions in order to fill out a team. Most projects have a rate structure such
that the vendor can profitably employ subcontractors from other regions as long as
there is an overhead for travel expenses paid by the client. Do not assume that the over-
head will go unused if the vendor is local to your area or has a regional office nearby.

Client Requirements
KNOW YOUR OWN CONSTRAINTS

First, ask yourself the Very Hard Questions: Can anyone really get this project delivered
in that timeframe? Do you have any idea of the complexity of what you’re doing? Have
you read The Mythical Man-Month?

We can talk about that in another article, but for now we’ll stick to the rack-space
rental, bringing in your WAN lines, setting site policy, hiring your ops staff, setting up
your trouble-ticket system, setting up your tier-1 support including 800-number help
desk, etc. Okay, maybe your project is different: small, manageable. Probably not, since
companies never seem to call vendor contract services for those kind of projects – they
just overload their sysadmins. Or worse, they may not even have enough of a realistic
schedule to get beyond the “I don’t care what it takes, just do it” mentality. Marketing
has been planning this for a year, engineering has been writing the custom app, and
now, six months before launch, the exec-level project plan says “hire a director of oper-

VENDOR CONTRACT SERVICES ●

●

SY

SA
D

M
IN

|S
EC

U
RI

TY
| P

RO
G

RA
M

M
IN

G

ations and commence buildout of site.” You have my deepest sympathies. Exec staff
always seems to believe that a big enough budget can change the law of physics.

Are you doing this to spare your folks the ramp-up time on getting things working, or
are you secretly hoping to offload a whole bunch of stuff onto the vendor team and use
them as generic sysadmin help? Are you really prepared to give them a working infra-
structure or are you building everything in parallel and wasting a lot of their time
(which you will pay for!) while you fumble with your network plan?

DEFINE YOUR GOALS

You should have a distinct plan for what you wish the vendor team to accomplish.

Note that if what you are trying to do is very complicated, you may find limitations in
the products or their interactions of which you were formerly unaware. For this reason,
I recommend purchasing the minimum number of licenses or copies of the software
required to establish a working test setup. If you are integrating a number of different
vendor products, you will undoubtedly find limitations in their interaction that will
require additional engineering work on your part. You may even find limitations that
call the validity of your entire production model into question.

A typical e-commerce project may be attempting to integrate new accounts, provision-
ing existing/new accounts, billing, Web forms, messaging, security via certificates,
advertising, and a store or sales engine. Companies or products involved might include
PeopleSoft, Oracle, Oracle Financials, custom scripting, LDAP servers, LDAP gateways
between PeopleSoft or Oracle and the LDAP servers, messaging servers, mailbox provi-
sioning with “welcome to this” messages, certificate initializing, setting uniform pass-
words across services, etc. There are so many places for things to go wrong that it bog-
gles the mind.

If you have an unusually strong requirements document and someone to drive the
project to the level of detail necessary, you have an excellent chance of finding out what
works and doesn’t work during the design and architecture stage. If not, you will have
to find out in reactive mode while trying to meet your deadlines, and go through
annoying and probably expensive change control with your original SOWs and project
plans while building the live system.

Constructing the Statement of Work
PROJECT PLAN VS. SOW

To build an SOW, you should have real deployment plans, with clearcut deliverables for
your team as well as for the vendor team. The usual catch-22 is that you generally need
the assistance of the vendor team to make those deployment plans. It would be won-
derful to have an actual project plan delivered as part of the SOW, especially for these
big $250K-to-$500K projects that involve a whole vendor services team. This seems
eminently sensible from the client viewpoint. Your vendor manager will balk at this,
since developing project plans is usually a source of revenue and part of the service
provided. If you ask for a project plan as part of the SOW, you are asking him or her to
commit an expense for “business development” to create that project plan, i.e. to
adversely affect his or her bottom-line numbers.

You could attempt to insist that the project plan be listed as part of the SOW, but deliv-
ered before the SOW is approved. You will not get this kind of concession from an expe-
rienced manager, as you are asking him or her to commit resources before any legal
guarantee of payment is in place. This is reasonable, as lack of an approved SOW also

64 Vol. 25, No. 6 ;login:

You should have a distinct

plan for what you wish the

vendor team to accomplish.

exposes your firm to the risk that personnel will be needed elsewhere and reassigned,
leaving you in the lurch.

In theory, it would be better to insist on separate SOWs for the deployment plan and
the “real work,” so that the mutually agreed-upon deployment plan can serve as the
basis for estimations. In practice, this means committing to an architecture SOW sepa-
rately from a deployment SOW.

Be aware that without a detailed project plan, the vendor account manager will be
unable to get accurate estimates from the vendor architects and potential team mem-
bers. This could lead to a highly inflated fixed price, or the imposition of time and
materials with an unreasonable cutoff point.

MULTI-STAGE VS. MONOLITHIC

Clearly we are back to our catch-22. I still believe that the best way to proceed is to
arrange a fixed hourly allotment for preparation and review of a project plan, including
identification of resources required by the vendor team. This “mini-SOW” will get
things off on the right foot by getting you a firm set of plans and deliverables. It will
almost certainly need to include architectural design and review unless you are merely
hiring vendor implementation for a predefined architecture. Most contract services
groups will pressure you to do one big SOW that includes architecture and deploy-
ment, but I caution you against this. While the vendor may present some compelling
arguments, most of them boil down to “I really want to book this.” Be aware that the
manager who books your SOW receives a very substantial commission bonus in many,
if not most, vendor contract services organizations. In a split sales/deployment contract
services organization, the manager may even be subject to quotas or deadlines similar
to those in the main product-sales group.

Be aware that approval of an SOW on the vendor side may be a one-to-three-week
process, as it has elements of a binding contract and must be run past the vendor’s legal
department. A “dead zone” of one to three weeks between the project-plan phase and
the deployment phase may affect the availability of the vendor team, since there are
usually more projects than personnel to implement them. Creating the larger SOW in
parallel with the mini-SOW, incorporating its deployment plans as they come in, is the
ideal approach. Tip: If you and your vendor manager pre-approve the wording of the
SOW shell first, then add specific deliverables, you can shave days or weeks off the
approval process when you have your final large SOW draft ready.

You can usually get a good feel for the availability of team members from the account
manager, and should plan multiple vs. multi-stage SOW from there. If a vendor manag-
er claims that he or she cannot guarantee that you will get the resources that you need
unless you commit now and schedule their time out N weeks, I would think seriously
about another vendor. What that manager is really telling you is that they have a very
disorganized or loosely organized department that is long on managers and short on
technical talent. In those environments, managers with paying work get to reserve
architect and senior-class people, usually through some project-tracking system.

If your choice of vendor is dictated by the product(s) you have purchased, you are
between a classic rock and a hard place, and you need to decide for yourself how much
is bluff and how much is real. Attempting to close quickly on a “mini-SOW” is probably
the right choice, since your vendor manager is also looking at lost revenue if he or she
can’t pull a team together.

65October 2000 ;login:

If a vendor manager claims

that he or she cannot

guarantee that you will get

the resources that you need

unless you commit now and

schedule their time out N

weeks, I would think seriously

about another vendor.

VENDOR CONTRACT SERVICES ●

●

SY

SA
D

M
IN

|S
EC

U
RI

TY
| P

RO
G

RA
M

M
IN

G

66 Vol. 25, No. 6 ;login:

RESOURCES

Make sure you get commitments of specific personnel with specific experience, not “or
equivalent.” All vendor services organizations are subject to pressures that encourage
them to pull architects and senior folks off and put you in a sustaining role before you
are really ready. You want those senior-level people around when you start testing, for
instance, since they can debug problems much faster than the junior folks. And when
the SOW says “equivalent,” it means you’ll be paying the same dollar for those junior
folks as you would have if you’d stuck to your guns and kept your original team. Watch
out for this one, it is a big one and quite common. Just smile sweetly and say that if so-
and-so is an “equivalent resource” then he or she can go off to the East Coast to do the
work that your original architect is supposedly called away to perform. After all, they’re
“equivalent” aren’t they?

There are some legitimate situations in which you may need to okay resource substitu-
tion for a period of time. Perhaps your senior implementor came to your project from
a six-month gig at BigCompany and they have run into a problem. You can understand
that he or she could solve the problem faster than an equivalent, due to the prior famil-
iarity with the site. You hope that if you run into problems down the road that you
would be able to command the same priority on a few days of the person’s time. That’s
fine, and is part of the inevitable give and take. It’s when the vendor wants to start a
new project with your paid resource that you should be prepared to hunker down and
not give in. If you do agree to a substitution, specify a maximum number of days, after
which you must reapprove the substitution in order for the vendor to be meeting the
contract terms.

Part of the SOW should include measurable, quantifiable milestones and checklists for
determining when those goals are met, so neither you nor vendor team will say “but it
isn’t done.” If those checklists are not available at the time of the SOW, you must make
them an explicit deliverable with a signoff stage. You must also be willing to acknowl-
edge any of your own mistakes, and pay for them if necessary. An example from real
life: the network is stable for several weeks, then the client decides to rip out the core
router and rewire the racks after the vendor team has conducted performance testing.
Are you sure the new configuration is stable enough to let the old performance testing
stand? What if the new load balancers you are introducing don’t really do a valid RSET
on expired cached connections, and thus confuse the LDAP connection caching on the
mail relays? Are you going to find out during your beta test phase that if no email pass-
es through the system for five minutes or more, the mail relays get into a wonky state?
A typical true, if ugly, story.

DOCUMENTATION

One common “gotcha” is documentation. The SOW should specify not only documen-
tation on any software installed by the team, but also documentation of config files.
These should include annotations and/or explanations in or with the file, not just
printouts of the file contents. It should also be explicitly stated that any scripts, pro-
grams, or utilities brought onsite by the vendor team to do their job should remain
installed onsite and be documented by the vendor team, even if those tools are not offi-
cial products of the vendor. I would advise that the wording indicate that tools explicit-
ly published/provided by outside groups such as the Free Software Foundation are
exempted from this requirement, as are tools published by individuals outside the ven-
dor group. Any modifications to those outside tools done by vendor group employees
or contractors, however, even if performed outside the duration or scope of your proj-
ect, should be required to be documented.

OUTSIDE TOOLS

To protect yourself, I also advise inserting a clause that indicates that any licensing or
usage fees, copyright issues, or intellectual-property issues involving tools, scripts, or
utilities brought onsite or requested/required by the vendor team are the responsibility
of the vendor and that you will not be liable. If that nifty set of host file to LDIF scripts
turn out to require an annual fee if used commercially, for instance, your vendor
should not be able to say that those scripts are crucial to their completion of the SOW
and that you’ll have to pony up. If they say that before the SOW, that’s fine, at that point
you and they can negotiate for the extra time and effort needed to work around or
duplicate that functionality. What you don’t want is to find out halfway through the
project that you’re in violation of someone else’s shareware licensing.

CONTROLLING SCOPE

Note that your vendor services account manager is almost certainly subject to “variable
compensation,” i.e., a commission. He or she will be genuinely helpful, but also attempt
to sell as large a contract as possible. Be realistic about what portions of the job can and
will be done by your staff, and what portions should be implemented by the vendor
team. If you assign too much to your team, you will be paying for the vendor team to
twiddle their thumbs while your team struggles to complete dependencies so that the
project can move forward.

One of the most helpful practices in this area is to encapsulate functional pieces of the
project such that you minimize interdependencies but allow both teams to proceed in
parallel. An example of this would be specifying that your team will be providing the
machine infrastructure and firewall, whereas the vendor team will be installing and
configuring their application servers on the machines using the assigned names and IP
addresses, then cooperating with your team to assist in the final testing of the firewall.

It is vital to make certain that the SOW explicitly includes all stages of the product-
deployment lifecycle, since the vendor team will be using the SOW to determine their
duties. Many items are commonly forgotten or merely assumed by the client, and there
is friction introduced when differing expectations collide. Do you have a test lab? Will
the vendor team be installing the products on the test lab first, testing them, then
installing them on production hardware and re-testing? Is the testing simple function-
ality testing, or is it performance testing as well? What are success characteristics for the
installation, and are they functionality-based, performance-based, or both?

Recognize that most vendor services teams’ first goal is to get the job done. Their very
close, but still second place, goal is to make you happy. Question, question, question,
and then question some more. Make sure your site practices and standards are fully
captured in the SOW, so you don’t end up with a vendor team insisting that it’s your
responsibility, for instance, to make Jumpstart scripts for their packages since the SOW
only says “configure” and doesn’t spell out “provide working Jumpstart configurations.”

Review SOW architectures with the vendor team leaders in a wider sysadmin context.
Many of the architecture-level vendor team leads I have met are actually fairly recent
CS grads who are very sharp in their vendor’s product but have little or no clue about
sysadmin “best practices.” They tend to produce vendor architectures that are excellent
from a high transactions-per-second throughput-rate perspective but poor from a
redundancy, maintainability, and disaster-recovery perspective. For example, little or no
attention is generally paid to preventive-maintenance issues such as alert levels, log
rotation, etc, leaving your team to reconfigure (and possibly break) the vendor packages
after the vendor team has signed off on them.

67October 2000 ;login:

What you don’t want is to

find out halfway through

the project that you’re in

violation of someone else’s

shareware licensing.

VENDOR CONTRACT SERVICES ●

●

SY

SA
D

M
IN

|S
EC

U
RI

TY
| P

RO
G

RA
M

M
IN

G

Working Together
PROVIDE APPROPRIATE INFRASTRUCTURE

Vendor rates and time estimates do not generally include spending half a day here and
there getting FTP to work between your colo hosts and your internal network, for
instance. It’s up to you to have those things in place. It’s perfectly legitimate to ask the
vendor team to provide a list of what facilities they need upfront, though, and to insist
that the list be meaningful rather than vague. A typical response might be “normal sys-
tem functions available,” to which you might push back with a list of services and
checkboxes as to which are truly required. Be aware that many vendor teams rely on
Internet access to pull binaries and patches from their own sites, so be certain your list
specifies “internal” vs. “external” access for services such as Telnet, ssh, FTP, and email.

A savvy vendor services team will come with a project manager, who will insist that any
delays caused by your infrastructure be included quite explicitly in the project plan, and
who will bring change control processes to your management if presented with a non-
working environment. Be aware that multiple “little things” that seem inconsequential
to you will add up to significant time spent wrestling with your environment. If you
succeed in obfuscating the issue, all you are really doing is delaying the inevitable, and
pushing the argument off to the sign-off portion of the project. If the vendor is doing
time and materials, the higher cost will come out in the end. If there is a fixed-price
contract in place, certain items like documentation and testing phases may end up
being silently ignored or handwaved around because of the extra time taken previously.
Yes, it is unprofessional. Yes, it happens all the time, especially once the servers are
working and your management has lost interest in chasing the vendor for some missing
docs.

TEAM INTERACTIONS

It’s a good idea to hold cross-vendor “global group” meetings, with your own people
and the vendor team. Obviously if you have all of the vendor team members in your
weekly staff meeting, you are paying a lot for them to sit around and eat donuts with
your team. Structure regular attendance at your staff meeting for their project manager
and technical lead.

Don’t let your team drag the vendor team into kibitzing on things that aren’t their
SOW. Many of the folks on the vendor team will have relevant experience that could
benefit your group, but you must be absolutely clear to both your team and the vendor
team that they are hands-off! Be certain that the vendor team manager is very clear on
your policy, as he or she may need to remind individual team members that they are
not allowed even to “take just a quick look” at something outside the scope of the work
they are doing.

Do plan for your team to spend some unstructured time, such as a team lunch or coffee
break once or twice a month, with the full vendor team to get the benefit of their expe-
riences on projects like yours. An hour of trading war stories not only builds rapport
but gives your team an idea of who actually knows their stuff on the vendor team and
who is just full of it – and vice versa! Some of your own team may not be as strong as
you’d like, and a good relationship with vendor project managers or technical leads can
often yield information about your own people as well.

Brief your team and your support organization about the vendor team’s existence, their
project, and its priority in the scheme of things. If you are the member of a networking
group in a large company, working with a switching vendor on your e-commerce site,

68 Vol. 25, No. 6 ;login:

it’s likely that the folks at “support@mycompany” have never heard of the vendor team
and will sit on their requests for a couple of days trying to figure out who they are and
to which department they report.

UNOFFICIALLY MANAGING VENDOR TEAMS

You may or may not be your firm’s client contact for the vendor team. You may be a
technical lead who is working closely with them. Or you may be a manager to whom
the vendor team reports as a whole, but individual vendor team members report to
their own project manager. Regardless, there are things you can and should do to
“manage” the vendor team and provide some guidance.

The first thing is simply “be nice to them.” Yes, you’ve got better things to do than cod-
dle other people’s employees that you’re hiring at $150+/hr. Usually, so do their man-
agers. Most professional-services engineers are overworked, underappreciated, and on
their own with little management support. Their managers are usually out lining up
gigs for them that demand weekend travel or 24x7 on-site presence. If you treat these
folks more like your own team than strangers, often they will jump through hoops for
you and that may make the critical difference for your project.

You can provide some extra support, give positive feedback whenever appropriate and
be considerate in giving negative/constructive feedback, include them in some of the
lunch runs and T-shirt giveaways, etc. They will usually take an interest in your project
and begin to think of you as a friend and colleague more than just another client to
survive. Miracles can and do happen, ranging from custom features finding their way
into a release to client project staff being put on the “friends” list for an IPO. (That last
is a true story from a recent project. I was on another vendor team, alas, and arrived
on-project very late in the game. Oh well! Maybe next time!)

On the flip side, prepare to spend what seems like endless and needless times nudging
vendor team members through fairly simple roadblocks. They are usually operating
under stress, so often their tendency is to want to fingerpoint, quit for the day, and go
back to the home office to catch up on paperwork, email, etc. It’s not malicious, it’s
simply a response to things that seem to be out of their control, so they are going to
exercise good time-management skills and do something else.

Make sure that someone from your team is always available to the vendor team so that
he or she can catch these things in action and insist on trying to walk through the
obstruction, fix the problem right then and there, make internal requests within your
organization, and generally grease the wheels. You are probably on a tight schedule, and
you’d rather have one of your team members call the Security group and arrange a
quick chat with the firewalls guy than have your vendor team stuck for half a day
unable to test sending Internet mail. In most cases, it is better to appoint a dedicated
“fixer” as liaison for the vendor team than to have them try to resolve support issues
directly with your company’s usual channels. At the very least, the “fixer” can lodge
support requests on the team’s behalf, and may be able to provide direct results if the
project is time-critical.

ON-SITE VS. WORKING FROM VENDOR OFFICES

There is one policy which you should absolutely attempt to enforce which is guaran-
teed to be unpopular with the vendor. That is the insistence that work be performed
on-site, and that assigned vendor team members will be required to work on-site unless
specifically exempted by mutual agreement. Obviously you are not going to insist that
sick days, etc. be verified with your own firm’s manager, but you should make it clear to

69October 2000 ;login:

Make sure that someone from

your team is always available

to the vendor team so that he

or she can . . . generally

grease the wheels.

VENDOR CONTRACT SERVICES ●

●

SY

SA
D

M
IN

|S
EC

U
RI

TY
| P

RO
G

RA
M

M
IN

G

the vendor manager or team lead that any absences need to be reported and also sched-
uled in advance if at all possible. That means the weekly report should include upcom-
ing absences such as holidays, scheduled vacations, etc. of the vendor team members. If
a team member has an unscheduled absence, it should be reported via email from the
vendor manager or team lead on the same day.

This may seem like pure old-fashioned control-freak business thinking. Unfortunately,
speaking as someone who has worked on both sides of the fence, I find that it is a key
factor in a successful outcome when working with vendor teams. While vendor profes-
sional-services groups look great on paper, the fact is that the majority of them are
extremely short-handed. When working out of their normal offices, vendor team mem-
bers are subject to phone calls about past projects, visits by sales managers trying to get
help closing deals with “just a quick conference call,” deployment managers asking
about availability for the next project, fellow team members with a problem that needs
solving on another project, etc. Of course, all of these people have pagers and cell-
phones, but the degree to which they respond to non-urgent messages delivered
remotely is vastly different from the response to someone “just dropping by.”

I have seen most of a day be spent handling other projects’ needs or administrative
issues, and the norm is generally two to three hours out of an eight-hour workday.
Many vendor team members are very conscientious and will not charge those hours to
your project. I have seen many others who will just cheerfully write down “8 hours” for
that day, even though most of them were not hours that assisted your project in any
way. If the team member is an employee of the vendor, he or she is probably subject to
a performance criteria that includes 35–40 hours of billable (revenue) time per week. If
he or she is a subcontracted consultant, he or she is doing vendor-related work during
those interruptions and certainly has little motivation to donate hours to your firm.

The flip side of this issue is that there is generally great utility in having one or more of
your team members working out of their home office for a half-day or a day per week.
They will be meeting with coworkers to discuss solving your problems, going down the
hall to visit engineering with questions, and basically interrupting other people to help
your project. Yes, I understand that is slightly hypocritical. So on the basic theory of
commutative benefit in a business situation, it is in your interest to let folks leave after
lunchtime one day a week to work from the home office or designate a day that they
will always be working there. I do stress that you will almost certainly lose control of
the project if you allow the vendor team to set its own hours and on-site policies, as
they will choose to work remotely most of the time and communicate solely through
architecture documents and occasional emails.

STATUS REPORTING

Insist on regular reports from the vendor team lead or project manager, as well as brief
status reports for the global group meetings. The weekly status reports do not need to
be lengthy, but they should follow a standardized format which includes the following:

■ Reporting period
■ Issues hotlist
■ Resolution of last report’s issues
■ Team members on project
■ Hours billed to SOW
■ High-level goals accomplished during this period
■ Planned work done during period (by team member)
■ Unplanned work done during period (by team member)

70 Vol. 25, No. 6 ;login:

Insist on regular reports from

the vendor team.

■ Goals for next period
■ Change control information (cumulative, but old info can be pruned if it exceeds a

page)
■ Updated copy of any project plans or timelines maintained by vendor team
■ Scheduled absences (by team member)

MULTIPLE VENDOR TEAMS

If you are implementing one of the complex service clusters alluded to in the beginning
of this article, it is very likely that you are dealing with multiple vendor teams, ranging
from your layer 2/3 switching and load-balancing vendor to your layered application-
server-package vendor and everyone in between. I feel for you. I truly do.

In addition to the tips and techniques listed here, I strongly recommend that you
arrange regular team meetings among the multiple vendor teams, with the technical
lead for each major product and the vendor team project manager from each team par-
ticipating. This works best if you can get overall authority for facilitating, but also
works if your boss is a good facilitator. These people may be attending a regular staff or
subgroup meeting with your team anyway, but that is not a forum where you can drill
deep on product interactions.

Be sure to build verifiable, quantitative functionality test suites into the SOW as a deliv-
erable for each vendor team. When problems arise, insist that each team repeat the sim-
ple functionality table and show results. Don’t take “we didn’t change anything, it
should all still work” for an answer.

I know of one major vendor who began building its own vendor services team last year
simply because it was losing too much engineering time resolving finger-pointing by
other vendor services teams. Since this firm had no team of its own, there was no one
on-site to point back and issues were escalating needlessly into engineering to prove
that its product was not at fault before other vendor’s teams would initiate diagnostics.
Be ruthless about the teams doing diagnostics and functionality tests in parallel when
the project hits a major snag. You are the client. You are paying for this, and it needs to
be resolved.

Conclusion
A complex service rollout involving one or more vendor services teams is usually a wild
ride, but it can be one of the most exhilarating and satisfying experiences found in the
workplace. Rigorous application of some common-sense rules can result in a project
that ends with everyone feeling good about the project and looking forward to working
with one another again someday. Letting things “just happen” and assuming that things
will proceed as well as they do in ordinary projects is almost a guarantee of problems
somewhere along the line. With knowledge of the workings of the vendor services
process and some preparedness in setting up the engagement, you can greatly increase
your chances of a fully successful outcome.

71October 2000 ;login:

Letting things “just happen”

and assuming that things will

proceed as well as they do in

ordinary projects is almost a

guarantee of problems.

●

SY

SA
D

M
IN

|S
EC

U
RI

TY
| P

RO
G

RA
M

M
IN

G

VENDOR CONTRACT SERVICES ●

72 Vol. 25, No. 6 ;login:

During the past few years, we have seen an explosive growth in the number

of companies that depend on the Internet for the success of their business.

For those of us who work to support the systems and networks, we can look

forward to stable employment. But the success of our companies means

more work to do, and it is becoming harder to find additional qualified tech-

nical people to hire. As a result, we need to learn to do more with less. This

article will tell you about one tool that saves me time, reduces downtime,

speeds troubleshooting, and aids in the training of new staff. (Oh yeah, it’s

also free!)

Thomas A. Fine and Steven Romig presented a client-server application called
Conserver at LISA IV (Fall 19901). Conserver allowed administrators around the net-
work to have access to serial-console ports using the Telnet protocol between the client
and server, and the server would log all of the session activity coming from each con-
sole. This application saved Ohio State University space, power, and cooling by remov-
ing many of the monitors and keyboards that used to be attached to the servers in their
data center. It also saved them a great deal of running to the server room every time
they needed to make a change on the physical console! I’m happy to report that
Conserver has been getting better over time.

During the past decade, the Conserver application has evolved2, based on the needs and
feedback of the users. Terminal servers, as a product class, have also evolved during this
decade, and many now allow Telnet-like (socket-based) and secure-shell (ssh) access
from networked hosts to individual serial ports. This extends the reach of the adminis-
trators to the far corners of their network, including control of devices that do not have
network connections (such as CSU/DSU equipment, test and diagnostic devices, to
name only a few).

Conserver is distributed freely3, but the serial ports you use with it, unfortunately, are
not. While a terminal server can provide remote access to serial-console ports, the cost-
per-port to deploy them has been high, and is currently still higher than the cost of a
10/100 switch port. There are many advantages to be gained by deploying terminal
servers in your network, and I will outline some of the best reasons in this article. I
have found the benefits well worth the cost of deployment, especially in terms of the
speed of recovery from outages. And in today’s e-commerce world, some outages can
be downright costly, in terms of lost sales, not to mention customer perception.

When your hosts won’t boot, access to the serial-console port becomes invaluable, but
the serial console can also be useful in your change-control procedures. Once your
hosts are up and running, the administrator(s) will have many options for remote
access to them to control their functions. But those avenues of access can mean that
multiple administrators (or users with administrative access) will have simultaneous
ability to the change settings on the host. This suggests that you also need to consider
good change-control practices, to prevent many administrators from making changes
on top of each other. If the administrators all share access to a single console of a host,
they will know whether they have exclusive access to make their changes. Conserver can
help whether the host is up or down.

Considering the Alternatives
You may have a bunch of hosts connected to monitors and keyboards. The monitors all
take up space, use power, and create extra heat when they are turned on. If you aren’t
watching all the time, you probably rely on the scrollback in some of the GUI windows

finding time
to do it all

David Stuit, and Michael Batchelder,

both of GNAC, also provided substan-

tial material for this article. (In August

2000, Global Networking and

Computing (GNAC) became Certainty

Solutions.)

by David K. Z.
Harris

David K. Z. Harris has
been a network
plumber “for more
than a decade.” He’s
been a member of
the technical staff at
Certainty Solutions
for nearly three
years.

<zonker@certaintysolutions.com>

and Bryan
Stansell

Bryan Stansell is one
of the earliest mem-
bers of Certainty
Solutions staff, and is
the current keeper of
the Conserver code.

<bryan@certaintysolutions.com>

on each host. The cost of each 15” screen and keyboard approaches the cost for a termi-
nal-server port. In a large data center, add in the cost of air conditioning capacity for all
those monitors. (You probably don’t want more than a few display devices in a large
data center.)

Keyboard/video/mouse (K/V/M) switch systems allow you to connect many hosts to a
single display device. You’ll find the cost of K/V/M ports are close to the cost of a ter-
minal-server port if you are attaching PCs, and the cost is significantly higher to attach
UNIX workstations (Sun, SGI, etc.) to a K/V/M switch. Don’t forget the complication
of screen resolutions, and scan rates! You can’t get more than 12 to 18 devices on a big
switch. While you can cascade the switches, it still doesn’t scale for large data centers.
You can find more information about K/V/M switches from the Celeste Stokely System
Administration Web site.4, 5

VT-type terminals (or a terminal emulation window on a host) connected to a multi-
port switchbox give you text-only (CLI) support for much less money than a K/V/M,
but you don’t get GUI access when the host is up. The average cost for switchboxes with
eight ports will cost you about the same as one terminal server port. Your limitations
here include the physical distance for the serial console lines between hosts and the
switchbox, as well as the number of devices you can attach to the switchbox. You can
cascade these devices to gain more ports per terminal, but the length limitation is still
there, plus you need to know which switch combinations will connect you to the port
that you want.

Terminal servers generate less heat than your average monitor, take up one network
port, and allow you to access any serial port that you connect from anywhere on your
network via a Telnet session. Most units take only one to rack units of vertical space to
mount. Many sessions can be open to different ports at the same time, unlike most of
the other alternatives above. (There are many Web sites that show how to connect vari-
ous devices to various vendors’ terminal servers.5, 6) The disadvantages to using termi-
nal servers include the price, and the fact that there is no logging inherent in the termi-
nal servers. If you were not connected to a console and watching, the data coming from
each connected host is lost.

Adding the (free) Conserver application to a deployment of terminal servers adds the
logging option, as well as adding a mentoring capacity, provides access control (and
auditing of access) to the console ports, thus increasing the overall value of the deploy-
ment to the administrators.

The Value of Remote Console Access
If you are one of a few (or the only one) who carries a pager to respond to outages
around your network, then remote access to your consoles should be one of the tools at
your disposal. This gives you the ability to sit at any workstation (even dialed in from
home) and be on the physical console of any connected host. This gives you faster visi-
bility into your problem, and faster time to resolution, than if you needed to return to
the data center to get to a terminal or keyboard. Do you remember a time when you
were less than ten minutes from home, your pager went off, and you had to fight traffic
back to the office to fix some problem? What would it be worth to you to keep driving
home and get on the console remotely, with your dinner at your side?

Let’s consider the benefits of deploying terminal servers for remote access to consoles,
then we’ll discuss the extra benefits of adding the Conserver software.

73October 2000 ;login: FINDING TIME TO DO IT ALL ●

●

SY

SA
D

M
IN

|S
EC

U
RI

TY
| P

RO
G

RA
M

M
IN

G

TERMINAL SERVER-ONLY COMMUNICATIONS OVERVIEW
■ Device console ports are attached to terminal servers on the network.
■ The administrator uses a Telnet session to connect to a specific serial port.

■ Telnet session is from admin’s system to the terminal server.
■ Only one session at a time can be connected to each serial port.
■ If no session is connected to a port, data from the attached device is lost.

Imagine that you get home and access the console on the downed host. You hit return,
and there is no response. If there is someone at the office whom you can call, you can
ask them to cycle the power on your host, while you stay at home and watch the boot
cycle. (Even if you don’t have after-hours staff in the office there are power strips with
serial ports7, and/or Ethernet ports with Telnet and/or HTTP interfaces8, to let you
control power to individual outlets. You can cycle the power yourself, from home!)

Do you need to escort administrators into restricted areas, just for simple machine
reset? We use console access to allow system administrators to control their hosts that
need to live in a lab with restricted physical access. The ability to provide them with
remote access to power-cycle the device as well as control the console has eliminated
the need to allow nonessential staff to have physical access to security-sensitive areas.

While most UNIX hosts provide a method to use serial consoles instead of a video dis-
play and keyboard, your average PC platform does not have this built into the BIOS.
While a UNIX kernel running on a PC will eventually allow you to use a serial port for
a console, it isn’t active until the kernel has booted, so you normally cannot see the
Power-On Self Test information. But PC platform users do have some options!

Some PC server makers are modifying the BIOS to provide the ability to redirect the
results of the Power-On Self Test (POST) to a serial port. Network Engines has recently
added this, while Compaq has had this ability for about a year. Hewlett-Packard has an
optional system management card that you can add to their servers. There are no stan-
dards for this type of console access, so the features for each vendor are different, and
you should ask your vendor about the features they offer.

Tip: If your server vendor includes console redirection in BIOS, you should understand
the limitations of their implementation. For example, the Network Engines BIOS hands
off the startup to intelligent hard-disk controllers and Ethernet NICs, and the output
from those interfaces is not redirected. If there are problems posted by those con-
trollers, you will not see them through BIOS redirection in the current implementa-
tion.

If you use a PC that doesn’t have console support in the BIOS, but it does have a spare
ISA slot, you can consider using the PC Weasel 2000 add-in card9. This appears to the
server as a monochrome display adapter, but it translates the characters sent to the
pseudo-screen into characters on a serial port. The PC Weasel also includes hardware
that senses when your OS tries to use the serial port for its console, and it connects the
serial port on the card to the operating system. The card also monitors the serial stream
for a special sequence coming into the console, which allows the administrators to talk
to the PC Weasel again to restart the PC (or the PC Weasel). Their Web site has an
online demo.

Added Value from Free Software
Let’s visit that downed host again. You connected to the console port, hit return, and
nothing came back. What caused it to stop? If nobody was connected and watching,
anything the host had sent to the console was lost. The logging capability of a console
server application is one of the best reasons to combine it with your terminal servers.

74 Vol. 25, No. 6 ;login:

terminal server (no conserver)

TERMINAL SERVERS WITH CONSERVER OVERVIEW
■ Terminal servers are deployed near the devices you want to monitor.
■ The Conserver host is configured for the devices you want to monitor.

■ Hosts can attach to serial ports on the Conserver host.
■ Hosts can attach to serial ports on the terminal servers.
■ Conserver opens a socket-based session to each terminal server port.

■ The client application connects to the Conserver via Telnet today (optionally by
SSL soon).
■ The client session requests to be connected to a host logging session.
■ Many clients can connect to the same device session simultaneously.
■ Clients can connect to multiple distributed Conserver hosts.

With Conserver in this equation, you connect to the downed host, press
return, and get nothing back. Then you use a few meta-keystokes to replay
the last 20 or 60 lines of the log for that device to your session. This will
usually tell you why it stopped (bad memory, full disk, other problems),
and this may affect your decision to just cycle the power. You may decide
that something needs to be fixed before you bring it up again.

You can deploy terminal servers, and distributed console servers, across the country,
and even internationally. This can be an important tool if you have to support smaller,
remote offices without administrators onsite. Sure, you can preconfigure a new host for
a remote office, and even set it up in a test lab. You can include diagrams and docu-
mentation for the remote-office staff, directing them how to unpack it and plug it in.
But when they follow your instructions, and you can’t connect to it, what do you do?
Before you can talk someone through fixing the problem, you need to troubleshoot it.

■ Is it powered?
■ Is the network connection plugged into the correct interface?
■ Is there a duplicate network address in the office?
■ Did the network switch auto-negotiate to the wrong speed?
■ Was the disk damaged in shipment?
■ What will the remote office folks use for a console, in order to be your eyes?

If you had it plugged into a terminal-server port in that office, you could get most of
those answers yourself, rather than talking the office staff through the troubleshooting
steps. (Now how much is that terminal server worth to you?)

You can find links to a number of console server applications on the Console
Connection Guide Web pages6, but my favorite application is currently Conserver for a
number of reasons:

1. Conserver allows you to control devices attached to serial ports connected to the
Conserver host, as well as to serial ports on terminal servers scattered throughout
your network.

2. Everything that comes out of a device’s console port goes into the Conserver log
file for that device.

3. Single-user control, but multi-user viewing, makes Conserver an excellent men-
toring tool. Control can be easily switched between users, allowing collaboration
between administrators in different locations.

We have used Conserver during maintenance downtimes, along with a conference
call, to allow a standby administrator to hear and watch the progress of an upgrade

75October 2000 ;login:

conserver overview

●

SY

SA
D

M
IN

|S
EC

U
RI

TY
| P

RO
G

RA
M

M
IN

G

FINDING TIME TO DO IT ALL ●

session. This was done because the person making the changes was across the coun-
try, while the standby person was at his desk in the same building as the equipment,
in case the hardware failed during the changes.

4. The log files for various devices can also be used as a teaching tool, as a junior
administrator can look through sessions to see how a senior administrator per-
formed some tasks, providing that your security policies and the file permissions
allow this. (Conserver logs the data coming in from the attached host, not the data
going from clients to the host.)

You can also use Conserver logs for training after a failure. If a junior-level adminis-
trator started the troubleshooting, and a senior had to come in later and follow up,
both administrators can benefit. The senior can look at the logs and see what was
already done (including looking to see what happened before the failure). The jun-
ior can watch the senior and perhaps learn new methods to use the next time.

5. Scripting tools can also sift through the logs, looking for problems, as a backup to
your other automated device managers. These includes SWATCH10, presented at
LISA in 1993.

6. The logs can also provide additional logging, as a backup to your syslog files. (A
cracker can find out where you are sending syslog messages, but the host doesn’t
require any special pointers to the Conserver host in order to be connected and
logged, so a cracker would not know there was another log to clean up after an
intrusion.)

We have found syslog settings misconfigured on some hosts more than once using
the Conserver logs. While one machine kept quietly rebooting at random intervals,
the administrators found nothing in the syslog files, yet the conserver logs told two
stories: first, the cause of the rebooting was a failure to write to a full file system;
second, the fact that syslog wasn’t logging the errors led us to check the syslog con-
figurations.

7. If a device attached to your Conserver doesn’t timestamp its output, Conserver
can be set up to put an hourly timestamp in the log for that device.

8. Multiple distributed Conserver hosts can be controlled by a single configuration
file, which specifies which servers are connected to the various hosts and devices.
This provides easy configuration, even when you deploy Conservers in remote
offices.

Tip: Deploying a Conserver host at each remote office means that console data won’t
be lost if a WAN link fails. If you allow remote access to the remote office, you can
look at the logs during the link failure to see what activity may have happened and
keep an eye on your link providers work during the repair.

If the WAN link to a remote office goes down, you can still dial into a modem
attached to the terminal server in that office, pass the authentication challenge,
allowing the network administrator to look at the CSU/DSU and router on both
ends of the failing link at once.

9. You can’t use grep(1) on a pile of paper on the back end of a DECWriter! But you
can use it on the log files from Conserver.

Tip: As with syslog and backups, keeping the clocks between all of your Conserver-
connected systems in sync is very important. We recommend a stable NTP infra-

76 Vol. 25, No. 6 ;login:

structure be in place when you deploy a console server. During large problem events
(denial of service attacks, network outages, cascading failures across multiple
servers), your troubleshooting will be faster if all of the clocks are in sync. This
allows you to correlate time stamps between various hosts and network devices, and
to understand what happened first and what happened after that. (Consider using
one time zone for all hosts if making the time-zone conversions for troubleshooting
is a concern for you.)

The maintainer of Conserver and I will present a half-day tutorial about deploying
remote serial console access at the LISA conference11 in December. We invite anyone
with an interest in the topic to sign up. We will be covering several models for deploy-
ing Conserver, and we’ll try to take the mystery out of connecting various serial devices
to your terminal servers.

There are also options that you can use for added security, but architecture also plays a
part in that discussion. Deployment models vary, depending on the security needs.
Bring your questions to LISA, and look for the Conserver BoF session!

What about the BREAK Problem?
If you have Sun hosts, you may have been warned away from attaching terminal servers
for remote access. Let me offer a brief explanation and some information that may
help.

There is a serial-port equivalent to the Telnet BREAK signal, where the data lead signal
is inverted from its normal state for a brief period of time (more than the duration of a
single character, including start and stop bits)12. This is not the same as sending control
characters. Most terminal servers send a serial BREAK to every port when you turn the
power off, and some even do it when you turn power on, or during their boot
sequence. This problem also exists on most multi-port add-in cards for PCs.

When Sun machines receive a serial BREAK, they will drop down to the “ok>” prompt.
This stops the operating system, and all the useful services that the machine is doing at
the time, until someone gets on the console and types “go.” This is actually quite useful
for getting the machine out of a hung state, so you normally don’t want to block this
signal. Newer versions of SunOS either allow a patch13, or include in the OS the ability
to ignore the serial BREAK but listen for a specific character sequence instead. Sun cus-
tomers with SunSolve14 support access can check SunSolve for more information.

The problem occurs when you have a bunch of Sun hosts connected to a terminal serv-
er, and then the terminal server sends a BREAK to all of the attached hosts – and every-
thing stops until you get on each of the consoles and type “go” for each host. (You can
infer why it would be a bad idea to plug the console of your Conserver host into a ter-
minal server that you access through that Conserver.)

Cisco Systems has also posted a Field Notice related to the BREAK problem to a Web
page15 in April 1998. The basic idea behind the notice was trying to keep the BREAK
signal from getting to the Sun host, or make the Sun host ignore the signal.
Unfortunately, the signal is too useful to administrators, so we can’t advocate methods
that block the BREAK signal from getting to the host.

Our search for a good answer has led us to try to find terminal servers that don’t send
BREAK at inopportune times. In support of Mark Burgess’s series of articles (Systems
Administration Research) in recent issues of ;login:, I have started a series of tests on a
variety of terminal-server models. We’re posting our test methods as well as the results,

77October 2000 ;login:

●

SY

SA
D

M
IN

|S
EC

U
RI

TY
| P

RO
G

RA
M

M
IN

G

FINDING TIME TO DO IT ALL ●

and encouraging other sites with an interest to perform similar tests and share their
results with us. We’re trying to determine whether the failures for various vendors are
related to hardware or software; trying to determine when you can expect the failure to
occur; and trying various recommended settings on the terminal servers to try to elimi-
nate the problem. You can find more information on our results page16.

In Summary
If you have always worked at a site with remote access to the serial consoles, consider
yourself lucky. If you don’t have some type of access now, I hope I’ve given you some
reasons to consider adding it soon. If I’ve managed to interest you in the subject, but
you want to learn more, I hope to see you in the tutorial in December.

I believe it was Elizabeth Zwicky who wrote a series of articles about software that
should have been included in our favorite operating systems. I think Conserver belongs
in that category.

78 Vol. 25, No. 6 ;login:

References
1. Thomas A. Fine and Steven M.Romig, The Ohio State University: “A Console Server.” Found in hardcopy proceedings of LISA IV, October 17-19, 1990. It is
not currently online at the USENIX site.

2. Historical notes: Ohio State distributed the original terminal-server code. Conserver was the name of the server component. Folks at Purdue University
added a “pipe to shell” feature, which some folks used to send sessions through Telnet sessions to high TCP ports in order to reach console servers. Later,
Robert Olsen at Argonne National Labs (ANL) hacked the OIS code to include the socket-based support. The Certainty Solutions (formerly GNAC) version
derives from a Purdue release, with the ANL additions, plus contributions from Arnold de Leon while at Synopsys, Inc.

Package Maintainer URL
Conserver Thomas A Fine <http://hea-www.harvard.edu/~fine/Tech/console-server.html>

Purdue version Kevin S. Braunsdorf <ftp://ftp.physics.purdue.edu/pub/pundits/>

Certainty Solutions
(formerly GNAC) version Bryan Stansell <http://www.conserver.com/>

3. Conserver application <http://www.conserver.com/>

4. Celeste Stokely Sysadmin Web site <http://www.stokely.com/>

5. Celeste Stokely UNIX Serial Port page <http://www.stokely.com/unix.serial.port.resources/tutorials.html>

6. David K. Z. Harris’s Console Connection Guide Web pages <http://www.certaintysolutions.com/consoles/>

7. BayTech Data Communications Division, Bay Saint Louis, Missouri, USA. RPC series power control devices. <http://www.baytechdcd.com/products/rpcseries.shtml>

8. American Power Conversion Corp., West Kingston, Rhode Island, USA. Master Switch, and Master Switch Plus units.
<http://www.apcc.com/products/masterswitch/index.cfm>

9. Calgary Connect Corporation, Calgary, Alberta, Canada. PC Weasel 2000. <http://www.realweasel.com/>

10. SWATCH <http://www.stanford.edu/~atkins/swatch/>

11. USENIX LISA 2000 conference. <http://www.usenix.org/events/lisa2000/>)

12. “Communications Concepts, An Introduction to Data Communications”, Communications Research Group, and Telebit Corp., pp. 3–12

13. Sun part number for the Consulting Special to address the serial BREAK problem: “CONSULT-ZSBRK”

14. SunSolve contract support site <http://sunsolve.sun.com/>

15. Cisco Field Notice about fixing the BREAK problem on Suns <http://www.cisco.com/warp/public/770/fn-tsbreak.html>

16. Certainty Solutions (formerly GNAC) Terminal Server BREAK-off pages <http://www. certaintysolutions.com/consoles/breakoff.html>

http://hea-www.harvard.edu/~fine/Tech/console-server.html
ftp://ftp.physics.purdue.edu/pub/pundits/
http://www.conserver.com/
http://www.conserver.com/
http://www.stokely.com/
http://www.stokely.com/unix.serial.port.resources/tutorials.html
http://www.certaintysolutions.com/consoles/
http://www.baytechdcd.com/products/rpcseries.shtml
http://www.apcc.com/products/masterswitch/index.cfm
http://www.realweasel.com/
http://www.stanford.edu/~atkins/swatch/
http://www.usenix.org/events/lisa2000/
http://sunsolve.sun.com/
http://www.cisco.com/warp/public/770/fn-tsbreak.html
http://www

Recently I have been thinking about sysadmin ethics. Here are some of the

things I’ve been thinking about, and some conclusions I’ve come to.

Ethics has been part of SAGE since the beginning. SAGE-AU adopted an ethics code
several years ago. SAGE accepted an ethics document for discussion and has published
a code of ethics. Recently, a group has been working on a unified ethics document for
all the international SAGE groups.

1. I have been served well by the SAGE ethics document. I used it to jumpstart a dis-
cussion on sysadmin ethics with the student sysadmin staff at the university where I
work. I don’t recall what prompted this particular discussion – it wasn’t an incident
involving our staff. I thought that the discussion would be more productive than a
lecture about ethics from me.

2. I have heard from several friends that the SAGE code of ethics has been useful in
explaining to others (usually management) why they should not or will not do
something that they have been asked or told to do.

3. I think the SAGE ethics document has served SAGE well. At numerous events, I
have explained SAGE to potential members and others in related areas of the com-
puter industry. I always mention the ethics documents. It has always been a positive
with the people I’m talking to. I think just mentioning our ethics document has
helped a lot of people to think about sysadmin as a serious profession.

4. Last May, I gave a talk to the Twin Cities System Administrators (TCSA), the
Minneapolis/St. Paul SAGE local group. My talk was a SAGE activities update gener-
ally and a discussion of the SAGE certification program. One of the participants
(not a SAGE member, but I think he’s joined since then) asked about ethics. Would
it be a component of the certification process. Wow. I hadn’t thought about that.
(Note – I’m not on the certification committee. They may have had a discussion
about it, I’m not sure).

5. At the USENIX Security Conference I was part of a fascinating discussion in the
bar. The issue was the ethics and morality of certain security practices. Full disclo-
sure vs. limited disclosure. “Grey Hat” security people. The discussion was wide-
ranging, and touched on many situations, and drew upon many analogies. Case in
point: a common network scanning tool that is extremely useful, but also has some
stealth characteristics. For the sysadmin or “white hat” security professional, the tool
would be (or should be – more on that later) equally valuable without the stealth
features. Why are they there, if not to make the tool equally useful to the black hats?

6. A friend was sitting next to me during this discussion. He commented that the
stealth features were useful to him – it prevented another organization within his
company from knowing that he was port-scanning his own network. It is important
to note that this was not a case of hiding it from his users, but of hiding it from
another IT group that might object or think he was out of line for taking responsi-
bility for the network for which he is nominally responsible.

7. In various conversations, we – the sysadmin community at large – have been
accused of compromising on ethics. Why? Because every time someone poses an
ethical dilemma on the <sage-members> mailing list (or in a BoF or tutorial) almost
all the answers include disclaimers (“I don’t know the details of your situation,” “You
will have to decide how important this issue is to you,” “You might want to consider

79October 2000 ;login: SYSADMIN ETHICS ●

Opinion by David
Parter

David Parter is a
member of the SAGE
Executive Commit-
tee.

<dparter@cs.wisc.edu>

sysadmin ethics

●

SY

SA
D

M
IN

|S
EC

U
RI

TY
| P

RO
G

RA
M

M
IN

G

looking for another job”), and refuse to consider the question or its answer in
“black-and-white” and flat out tell the questioner what to do.

What do I conclude from this?

Ethics is an important part of the profession. Ethics is also important to me as a per-
son. Can I separate the two? Maybe, but not entirely. My own personal ethics will guide
me in any discussion of ethics for the profession, or for the workplace and job situa-
tions I find myself in.

Ethics are important, but complicated. I don’t think we are compromising our ethics
(as accused in #7 above) when we recognize that not all situations are the same, and
not every sysadmin shares one’s particular personal ethical system. We may have a
consensus on a general statement of ethics, but the devil is always in the details. Is
divulging the contents of a user’s email an ethical violation? It depends on the circum-
stances. To whom are you divulging that information? Why? What does the company/
site policy say on the subject? These are just a few of the questions that have to be con-
sidered before a judgment can be made. It has been observed that the “tech culture” has
a strong streak of libertarianism in it. Many of us are fierce advocates of civil liberties,
objecting to electronic (and other) censorship and invasion of privacy. Yet that same
streak prevents us from imposing our values on others. I don’t think that is a cop-out.

In response to this issue, it was suggested (in one of those late-evening discussions
among fellow sysadmins) that we borrow from the legal and medical professions. They
(according to the person who proposed this – I haven’t researched the details) have
“ethics boards” that can discuss the details of a situation with a member who is facing
an ethical dilemma, and based on the profession’s code of ethics, traditions, and per-
sonal experience (and probably the law), give guidance. The entire discussion must, of
course, remain confidential.

Would such a system work for sysadmins? I don’t think we are ready to do that on a
formal basis. But many of us, through our networks of colleagues (from LISA confer-
ences, coworkers at past jobs, local groups, etc.), do have a resource that we can call
upon to help us face these decisions. The result may not have the weight of an “ethics
board” ruling, but it seems to me to be an appropriate step to take. This assumes that
there is a common understanding of the basic ethics of the profession, and a recogni-
tion of the role of ethics in the profession – at least among those one chooses to con-
sult.

Not every sysadmin has a well-developed network of peers to consult in such circum-
stances – even those who do consult the <sage-members> mailing list. Hopefully, the
answers and discussion on the list have helped members deal with their situations. I
assume that in some cases there is private follow-up between the poster and some of
the respondents, to provide the type of advice that requires more details.

Can we (society at large) “teach ethics”? I don’t know. I have never had an ethics
course, but I know they exist. I don’t know what is in them. I have always assumed that
we can’t “teach ethics” (and have as an outcome ethical behavior by the students) by the
lecture or pronouncement method. I think each person develops his or her own per-
sonal code of ethics, and will most likely resist a rigid code being imposed upon them. I
think we can teach about ethics and raise the issues, and raise the awareness among our
students (or membership, or users, or management). We can – indeed must – also
teach by personal example. As an example, I am 100% sure that every sysadmin on the

80 Vol. 25, No. 6 ;login:

staff where I work knows that I am extremely concerned about protecting our users’
privacy, and that it is based on more than just the university’s rules.

Should we include ethics in the certification process? Yes. Should we judge the appli-
cants’ ethics? No. We are not at the point where the ethics of systems administration are
universally understood and agreed to by sysadmins, their users, managers, and the gen-
eral public. Until we get to that point – which will probably take a long time – the pro-
fession and professional bodies are not in a position to judge. We can advise, educate,
and discuss. In our certification process we can ask applicants about their knowledge of
the SAGE code of ethics, but that is all.

If you have not looked at the SAGE code of ethics recently, you should:
<http://www.usenix.org/sage/publications/code_of_ethics.html>). Have you had an ethics
discussion (not a lecture!) at work? In your local SAGE group? It might be time to do
that.

81October 2000 ;login:

●

TH

E
W

O
RK

PL
A

C
E

|S
YS

A
D

M
IN

|S
EC

U
RI

TY
| P

RO
G

RA
M

M
IN

G

http://www.usenix.org/sage/publications/code_of_ethics.html

82 Vol. 25, No. 6 ;login:

Have you ever been asked by someone, in a joking tone, “Are you still driv-

ing that old lemon?” And experienced a moment of blankness as you real-

ized that neither “yes” or “no” felt very good to you? There are many such

questions (many people are familiar with the old question “Have you

stopped beating your wife?”, which is of the same type). But few people

take the time to analyze such sentences to understand why they are so diffi-

cult to deal with. That is our topic for this month.

All meaning is context dependent. A sentence such as “They are visiting relatives” can
have several different meanings, depending not only on the linguistic context but also
on nonverbal context such as a pointing finger. Frequently, however, in order to make
any sense out of a sentence, we must accept that certain things are true in the context of
that sentence. A sentence such as “I gave John a rose from my rosebush” requires you to
accept that I have a rosebush and that the bush had a rose on it. Otherwise, you can’t
make sense of the sentence. These assumptions are called presuppositions, and they are
a very powerful way of pulling the wool over someone’s eyes. Note that it is much easier
linguistically to dispute that I gave John a rose (“No you didn’t!”) than that I have a
rosebush (ahh, er, about that rosebush . . .).

So the question “Are you still driving that lemon?” has a significant presupposition –
that the car in question is a lemon. To understand the sentence, you must accept the
presupposition. And then it doesn’t matter whether you answer yes or no – your car is
still a lemon.

Understanding presuppositions is important for two reasons. One is that they are use-
ful, especially in the persuasive arts. The second is that they may be used against you,
and you need to know how to defend against them. You go to buy a car, and the car
dealer winds up his pitch by asking “Would you like the red one or the blue one?” The
presupposition is that you are already going to buy. Many people are swept along and
into the manager’s office without ever clearly having a moment when they decided to
buy. The dealers love it that way.

Presuppositions can be exquisitely subtle. Consider this gem, collected by Tad James:
“What’s the one question that, when you ask it, will totally address all your objections
and allow you to buy this car?” A careful reading will reveal that, if you accept the pre-
suppositions, you will buy the car even if your question is never answered. In fact, even
saying “I don't know, what?” presupposes that you will buy the car. Whew!

Presuppositions are also a frequent source of misunderstanding and confusion in both
business and personal communication. A man who asks his wife “What are we having
for dinner tonight?” may fail to realize the presuppositions – that it is his wife’s job to
decide what is for dinner, that it’s OK for him not to know or care until the last minute.
His wife may also not be aware of the presuppositions either, consciously, and just find
herself growing irritated. The courts handle thousands of contract disputes a year
because some presupposition was not written into a contract, and the two parties dis-
agreed about how to deal with the resulting situation. Even in everyday business, being
attentive to presuppositions is important. An employee was hired recently at a high tech
company with the hiring managers and all the interviewers presupposing that he knew
C, only to discover he was completely ignorant of it (he was a crack Lisp programmer,
but they never asked and he never told).

by Steve Johnson

Steve Johnson has
been a technical
manager on and off
for nearly two dec-
ades. At AT&T, he’s
best known for writ-
ing Yacc, Lint, and
the Portable Compil-
er.

<scj@transmeta.com>

and Dusty White

Dusty White works
as a management
consultant in Silicon
Valley, where she acts
as a trainer, coach,
and trouble-shooter
for technical compa-
nies.

<dustywhite@earthlink.net>

just presuppose...

So what can you do when you suspect that you are the victim of a presupposition
apparition?

The first thing to do is to stop whatever you are doing, and set about slowly and
methodically to analyze the statements, bringing the presuppositions out into the open.
Check these with the other person – “It sounds like you are assuming that I will buy
this car. Actually, I still have reservations about the price.” Sometimes people are very
calculating with their presuppositions; other times people simply hear what they want
to hear – the dealer may have genuinely believed that you said you would buy (yeah,
right, we can hear you say. But it doesn’t hurt to assume the best and watch your back).

Often our old friend Chunking (see ;login: Vol. 25, No. 1, p. 64) can be used to get out
of a double bind gracefully. By talking about the color of the car, the dealer is chunking
down, getting more detailed. You can chunk up by saying things like “What other fuel
efficient vehicles do you have on the lot?” or “Are your prices generally lower in the
summer?” This also gives you a chance to dodge the presupposition without acknowl-
edging its existence, a valuable skill when tact is called for.

You can also use presuppositions in your own communications. When the situation is a
win/win, they can be a way of saving time, increasing motivation, and sending messages
that might be awkward to send more explicitly. For example, a manager may ask an
employee “What job in this company would you like to be in five years from now?”
There are some major presuppositions in this sentence – that the company will still be
in business in five years, that the employee will still be working for it in five years, and
even a presupposition that the manager will still be with the company in five years and
can do anything effective with the answer to the question.

By answering this question, the employee accepts these presuppositions, implying that
their future lies with the company. Subtle? Yes. Ethical? Probably, since most employees
are able to frame the discussion with an understanding that the future is unpredictable.
And the biggest presupposition, that the manager is interested in fostering the employ-
ee’s career growth, may be the most important message of all.

83October 2000 ;login: SECURITY ●

●

TH

E
W

O
RK

PL
A

C
E

|S
YS

A
D

M
IN

|S
EC

U
RI

TY
| P

RO
G

RA
M

M
IN

G

83October 2000 ;login:

the bookworm

BOOKS REVIEWED IN THIS COLUMN

Well, it may not be the end of the year
yet, but I know that the new edition of
Building Internet Firewalls will make my
top-ten list!

In the five years since the first edition of
Chapman & Zwicky, Firewalls has picked
up an author (Simon Cooper) and added
about 350 pages. It’s a good deal heftier
than it was, but it’s really packed with
useful information.

If you’re at all concerned with security,
firewalls are a necessity. And this book is
a must read.

I don’t intend to go through every chap-
ter, or even most chapters, here, but I do
want to point out some exceptional
aspects of Zwicky-Cooper-Chapman.
Not at all least among these are the
appendices: three of them, comprising
over 50 pages. First, a truly superb list of
resources – Web pages, FTP sites, mailing
lists, papers, articles, books, etc. Second,
tools and packages with complete URLs.
Third, a (very) brief general essay on
cryptography (with a pointer to Bruce
Schneier’s excellent Applied Cryptogra-
phy).

I found chapters 10, 11, and 12 (on
Bastion Hosts) very interesting. It’s a
topic I’d never thought about. Zwicky,
Cooper, and Chapman have made the
exposition lucid, and by covering (as
they do in many places) UNIX/Linux
and Windows (NT and 2000).

by Peter H. Salus

Peter H. Salus is a
member of the ACM,
the Early English Text
Society, and the
Trollope Society, and
is a life member of
the American
Oriental Society. He
is Editorial Director at
Matrix.Net. He owns
neither a dog nor a
cat.

<peter@pedant.com>

BUILDING INTERNET FIREWALLS, 2ND

ED.

ELIZABETH ZWICKY, SIMON COOPER &

D. BRENT CHAPMAN

Sebastopol, CA: O’Reilly, 2000. Pp. 869.

ISBN 1-56592-871-7.

INTERNET COLLAPSES AND OTHER

INFOWORLD PUNDITRY

BOB METCALFE

Foster City, CA: IDG Books, 2000. Pp. 324.

ISBN 0-7645-3503-X.

ENIAC

SCOTT MCCARTNEY

New York: Walker & Co., 1999. Pp. 262.

ISBN 0-8027-1348-3.

UNIX NETWORKING CLEARLY

EXPLAINED

RICHARD L. PETERSEN

San Francisco, CA: Morgan Kaufmann, 1999.

Pp. 591. ISBN 0-12-552145-6.

THE LINUX PROBLEM SOLVER

BRIAN WARD

San Francisco, CA: No Starch Press, 2000.

Pp. 283 + CR-ROM. ISBN 1-886411-35-2.

ESSENTIAL XML

DON BOX, AARON SKONNARD & JOHN LAM

Boston, MA: Addison-Wesley, 2000.

Pp. 368. ISBN 1-201-70914-7.

Also notable is chapter 14 on intermedi-
ary protocols. As most of you know, I’m
addicted to RFCs and protocols. Reading
the expositions here was genuinely illu-
minating.

You might even copy the 25 pages of
Chapter 1 for your CIO or VP: it’s clear
and concise enough for him/her to
understand.

This is an important and worthwhile
book. Thanks, Elizabeth, Simon, and
Brent.

Punditry
Another important book, for a different
reason, is Metcalfe’s anthology of
InfoWorld columns. But Metcalfe, while
egocentric, infuriating, brash, and irritat-
ing, is also interesting, entertaining, and
(frequently) authoritative. As the essays
are short, this is the perfect book to take
on vacation or on a plane trip. You will
surely snort occasionally; you’ll guffaw
sometimes, and you’ll find that you even
agree now and then. The most important
thing is, however, that you recognize that
a lot of the time Metcalfe is provocative
yet right.

Microsoft was abusing its monopoly in
1991. The Internet did not collapse in
1996. Those are two examples.

Bob Metcalfe is an egotistic gasbag. Read
him!

Useful Stuff
If you live on the Internet, you know that
there are problems. Yes, we’ve got trouble
right here in River City! The result of
this is that books that offer solutions to
real-world problems are of great value.

Two such books that have come my way
in the last few months are Petersen’s
Unix Networking Clearly Explained and
Ward’s Linux Problem Solver.

Petersen really knows his stuff, and it
shows. It shows most significantly in his
breadth. He talks about mail, and then
there are chapters on mailx, Elm, MH,

84 Vol. 25, No. 6 ;login:

and Pine. Where news is concerned, rn,
readnews, trn, tin, and nn are all there.
And archie, WAIS, Gopher, Veronica are
discussed along with WWW.

There’s a lot more, but I was really
pleased to see that stuff that’s more than
a few years old, but still in use, has not
been totally forgotten. I still like Lynx,
for example; I’m frequently uninterested
in the zillions of bits of graphics.

Ward is useful for a very different reason:
there are over 100 books on installing
some flavor of Linux and getting started,
but there’s too little on what you do next
– what you do when there’s a real prob-
lem with your network or you’ve suf-
fered a system crash.

Ward answers the questions you’ll have
in real life, after your Linux system is up
and running. The CD is useful, too, as it
contains a bunch of config files and can
serve as an emergency boot disk.

Petersen and Ward share the shortcom-
ing of not have a references section, nei-
ther of URLs nor of books.

XML
Box et al. have written a book that’s not
so much about the Web, as about how
XML can be utilized as “universal duct
tape for all software integration prob-
lems.” I’m not really convinced as to
XML’s universality, but I have been sold
on its usefulness for several years.

This is a fine book on a relatively high
level, covering a number of fundamental
abstractions and the concepts that
underlie XML technology.

The three appendices cover the XML
information set (complete with URLs),
XML productions (both xml and xmlns),
and an “example gallery” – all in under
100 pages.

Highly recommended.

85October 2000 ;login:

news

●

SA
G

E
N

EW
S

SAGE CERTIFICATION PROCESS ●

time to help craft the initial draft of the
new global document.

SAGE Certification
Process
Proceeding

The sun was shining brightly in Seattle
(for a change) on August 1st for the
SAGE Certification Policy Committee
meeting.

Many of you may be wondering why I
was there since I have been a strong
objector to the certification process. I
was one of the nay sayers at the “Great
Certification Debate” at LISA and I still
maintain a strong sense of skepticism
towards the value of certification in our
profession. However, since the certifica-
tion ship was getting ready to sail with or
without me, I decided the prudent thing
to do would be to try and help steer it
through the shoals in the hope that
SAGE will deliver a strong certification
program tightly coupled with a strong
educational program and not just anoth-
er rubber stamp certification.

The attendees at the Seattle meeting
were:

Lois Bennett, Stephen Berry, Mark
Burgess, J. K. Chapman, Barb Dijker,
Bradley Donison, Tim Gassaway, Richard
Jaross, Mark Langston, Phil Scarr, Mark
Stingley, John Stoffel, Leeland G. Artra,
Gale Berkowitz, USENIX; Ellie Young,
USENIX; Geoff Halprin, SAGE Executive

SAGE Code of
Ethics

For a professional body, an ethical code
is an important part of defining that
profession. For more than four years, a
Code of Ethics has been posted on the
SAGE Web site. It was the result of years
of collaboration among SAGE members
interested in that effort. At each LISA
conference since 1994, an Ethics BoF has
been held to inform members on the sta-
tus of the project, get comments, and
attract new blood to the ongoing Ethics
Working Group and its associated
<sage-ethics> mailing list.

System administration is a task that is
ubiquitous in a computerized world.
SAGE has encouraged and supported the
development of SAGE groups in other
parts of the globe. There are currently
three formalized SAGE organizations
outside the US. There are others in the
making and yet others either loosely
organized or comingled with other bod-
ies. The global expansion of SAGE is
expected to continue.

Ethics, one would hope, transcends law
and culture. So it would follow that there
should be one code for all system admin-
istrators, or at least all regional SAGE
groups. The existing SAGE Code of
Ethics was developed independently of
the one developed for SAGE-AU. The
result was two documents. Even before
the code was effectively completed in
early 1997, those involved with the proj-
ect recognized the need to rewrite it
from scratch.

The SAGE and SAGE-AU documents are
effectively the same or as different as
night and day, depending on whom you
ask. Either way, it quickly became clear
that neither side was likely to abandon
its code and adopt the other without sig-
nificant revision.

At the direction of the SAGE Executive
Committee, the Ethics Working Group
then began work on a new global code.
The start of this rewrite was first dis-
cussed in detail at the Ethics BoF held at
LISA ‘97. The next Ethics BoF at LISA ‘98
was hosted by Hal Miller, who shepherd-
ed the first ethics document, and Geoff
Halprin, of SAGE-AU. At that BoF, Lee
Damon was asked to coordinate the
effort of drafting a new global Code of
Ethics.

A new ten-stanza draft ethics document
was presented at the Ethics BoF at LISA
‘99 in Seattle. The first six stanzas were
reviewed, discussed, debated, voted on,
and approved at that BoF. When time
ran out, the discussion of the remainder
of the new draft was moved online. All of
the people at the ‘99 BoF were asked to
sign up for the mailing list, and along
with the attendees from the ‘98 BoF,
became the new Ethics Working Group.
The working group continued going over
the remaining stanzas one at a time,
rewriting sections and voting on each
stanza in turn.

At press time, the working group is vot-
ing on the last stanza of the new draft
code. The final report of the Ethics
Working Group, including the proposed
new code, should be available in the
December issue of ;login:. In the coming
months, the drafted new code will be
reviewed by representatives from each of
the regional SAGE groups. A process for
adopting the code will be developed by
each regional group. Information about
this project will be posted at
<http://www.sage.org/ethics/>.

We would like to thank the 34 stalwart
individuals who took so much of their

by Barbara Dijker

SAGE President

<barb@sage.org>

and Lee Damon

Lee Damon is chair of the SAGE
Ethics Working Group, and was
one of the commentators on the
original SAGE Ethics document.

<nomad@castle.org>

by Phil Scarr

Phil Scarr is a senior

systems architect at

Certainty Solutions

(formerly GNAC, Inc.).

He's been involved with

USENIX and SAGE for

several years and is co-

chair of LISA 2000.

<prscarr@greymouser.com>

http://www.sage.org/ethics/

86 Vol. 25, No. 6 ;login:

the existing SAGE Levels for System
Administrators.

Who is the competition? The committee
identified several key competitors in this
field. Among them are the ACM,
Universities, and SANS. But in the field
of general system administration, there
are few non-vendor programs. However,
one of the big educational companies,
Learning Tree International, is very inter-
ested in using the SAGE/USENIX certifi-
cation exams in their own courses and to
have SAGE evaluate their coursework for
completeness. There is nothing formal,
but it could be an interesting project.

What is the cost? There was a lot of
debate on this question and nothing
conclusive came out. This issue will be
raised again in October at the next meet-
ing.

What about recertification? It was gener-
ally agreed that the credentials would
have an expiration of no more than 3
years and that “points” (like Continuing
Education Units) could be used to pro-
vide that recertification. These points
would be awarded for the completion of
training courses, teaching classes and
giving talks. However the mechanism for
achieving this remains undefined.

Committee; Michael Hamm, Consultant;
Gordon Waugh, HumRRO.

The committee nominated J. K.
Chapman as the Committee Chair.

The primary goals of this meeting were
to deliver a plan of action for the devel-
opment of a business plan, develop poli-
cies and procedures, and define criteria
for the Exam Development Committee.

The committee reviewed and debated
many aspects of the certification ques-
tion. But a general consensus was
achieved that there is sufficient interest
among the members of SAGE and
USENIX to provide a certification pro-
gram for the members. This was borne
out by the feasability study commis-
sioned by SAGE.

In order to deliver this program, there
are numerous details to be worked out
by the Policy Committee. For instance,
there must be an administrative frame-
work to manage and deliver the exami-
nations. This framework includes both
professional staff as well as volunteers
from the ranks of SAGE and USENIX.
The exact composition of this frame-
work is still being analyzed.

Through the process of defining the
characteristics of a certification program,
we were asked by Michael Hamm, a con-

sultant specializing in professional certi-
fication programs, to review several
important planning questions. Among
them were: The motivations for a certifi-
cation program, objections to such a
program, levels of certification, competi-
tion, cost, and the key question of recer-
tification. Here are summaries of the
answers to these questions.

What are the motivations for a certifica-
tion program? There are several, among
which are: The ability to objectively
measure skills; a response to both mem-
ber and market needs; to advance the
profession; to “set the standard” for sys-
tem administrator certification; to foster
a philosophy of personal and profession-
al development in the field; and to help
focus the educational programs within
SAGE/USENIX. This last point is one
that is key to delivering a sound certifica-
tion program.

What are the objections to a certification
program? Again, there are several, among
them are: It simply can’t be done; the
field is changing too rapidly for a certifi-
cation program to keep up; it legislates
mediocrity; it can lead to exclusionary
behavior.

What are the levels of certification? The
program will follow along the lines of

SAGE, the System Administrators Guild, is a

Special Technical Group within USENIX. It is

organized to advance the status of computer

system administration as a profession, establish

standards of professional excellence and recog-

nize those who attain them, develop guidelines

for improving the technical and managerial

capabilities of members of the profession, and

promote activities that advance the state of the

art or the community.

All system administrators benefit from the

advancement and growing credibility of the

profession. Joining SAGE allows individuals and

organizations to contribute to the community

of system administrators and the profession as

a whole.

SAGE membership includes USENIX member-

ship. SAGE members receive all USENIX mem-

ber benefits plus others exclusive to SAGE.

SAGE members save when registering for

USENIX conferences and conferences co-spon-

sored by SAGE.

SAGE publishes a series of practical booklets.

SAGE members receive a free copy of each

booklet published during their membership

term.

SAGE sponsors an annual survey of sysadmin

salaries collated with job responsibilities. Results

are available to members online.

The SAGE Web site offers a members-only

Jobs-Offered and Positions-Sought Job Center.

SAGE MEMBERSHIP

<office@sage.org>

SAGE ONLINE SERVICES

list server: <majordomo@sage.org>

Web: <http://www.usenix.org/sage/>

87October 2000 ;login:

December 2000 (at LISA) (tentative):
Convene second meeting of Exam
Development Committee to review ques-
tions

May 1, 2001: Selection of pilot test ques-
tions

June 2001: Pilot testing takes place

Fall 2001: Rollout of first exam

While this is just a tentative timeline and
things may change, delivery of the first
exam should take place in Q3 or Q4 of
2001.

●

SA
G

E
N

EW
SFinally, the committee reviewed the

plans to create the exams themselves.
Gordon Waugh from HumRRO
described the process of creating and
managing the exams. They will all be
multiple-choice exams (to begin with)
and we will be developing the first one at
the very basic level. There will be two
forms of the test and 150 items per
exam.

There was a lot of debate on the question
of multiple-choice versus more hands-on
approaches. There were several people
who felt that without a hands-on com-
ponent, the certification process would
be incomplete. However, the cost (to
both USENIX and to the participants in
the program) of such a hands-on exam is
prohibitive. However, as the certification
program expands to cover more senior
system administrators, such a scheme
will be revisited. Most people agreed that
to deliver a certification with the clout of
the Cisco CCIE, hands-on examinations
were required.

The formation of a Test Development
Committee is underway. This committee
will be responsible for delivering the
questions for the question pool.
Membership requirements for the Test
Development Committee were reviewed
and will include Subject Matter Experts,

people who are analytical, have diverse
experience, experience evaluating system
administrators, self-critical, clever (to
help write wrong answers) and at least 5
years of sysadmin experience. John
Stoffel will chair the search committee
with Tim Gassaway and Louis Bennett
helping to coordinate the search and
Gale Berkowitz as the staff coordinator.

A tentative timeline for the entire process
was worked out:

Mid-August 2000: Receipt of Business
Plan from consultant

Late August 2000: Certification
Committee to review draft of business
plan

August 22, 2000: Submit names for
potential Exam Development Committee
members

September 8, 2000: Selection of Exam
Development Committee

October/November, 2000: Convene first
meeting of Exam Development
Committee to conduct training

October 21, 2000 (San Diego) (tenta-
tive): Convene next meeting of SAGE
Certification Committee

November, 2000: Item writing takes place

SAGE STG Executive Committee

President:

Barb Dijker <barb@sage.org>

Vice-President:

Xev Gittler <xev@sage.org>

Secretary:

David Parter <parter@sage.org>

Treasurer:

Peg Schafer <peg@sage.org>

Members:

Geoff Halprin <geoff@sage.org>

Hal Miller <hal@sage.org>

Bruce Alan Wynn <wynn@sage.org>

SAGE SUPPORTING MEMBERS

Collective Technologies

Deer Run Associates

Electric Lightwave, Inc.

ESM Services, Inc.

GNAC, Inc.

Macmillan Computer Publishing, USA

Mentor Graphics Corp.

Microsoft Research

Motorola Australia Software Centre

New Riders Press

O’Reilly & Associates Inc.

Remedy Corporation

RIPE NCC

SysAdmin Magazine

Taos: The Sys Admin Company

Unix Guru Universe

88 Vol. 25, No. 6 ;login:

SAGE Volunteers
Needed!
Want to get involved in SAGE, but don’t
know where to start? Here are a few
places where SAGE can use folks with
some time and energy.

SAGE Annual Awards
<www.usenix.org/sage/people/awards.html>
Volunteers are needed to help decide the
recipient(s) of the SAGE Outstanding
Achievement Award, to be given at LISA
in New Orleans.

SAGE Elections
Early in 2001, elections will be held for
the SAGE Executive Committee. If you
want to be on the Nominating Commit-
tee, or are interested in running for
office, please contact the SAGE
Nominating Committee.
<nomcom@sage.org>

Mentors
The mentoring project
<http://www.usenix.org/sage/mentor/index.html>
needs people who are willing to be men-
tors. This is a great chance to give back
and have a hand in the future of the pro-
fession.

The USENIX
Conference Office Has
Moved!!!
Please note the new address and phone number
for USENIX conference management services:

USENIX Conference Department
2560 Ninth Street, Suite 215
Berkeley, CA 94710

Phone: 1.510.528.8649

Fax: 1.510.548.5738

Email: <conference@usenix.org>

http://www.usenix.org/sage/mentor/index.html

20 Years Ago in
UNIX

One of the really nice things about pub-
lishing this set of historical notes is the
way the participants contribute to my
knowledge.

For years I’ve been reading columns by
the “Jeffreys, Haemer and Copeland.” Jeff
Haemer is an old friend, but I’d never
met Jeff Copeland. However, in June I
received the following:

In your June “20 years ago . . .” col-
umn, you quote some correspondence
from Ted Dolotta on the use of the
word “touch” in Interactive’s docu-
mentation for IBM. Ted minimizes his
own role in preventing the travesty.

Certainly, Joyce Yoshihata uttering
that she had been a press-typist for 25
years stopped the first round of IBM
insisting on changing “touch” to
“press,” and that solved the problem
with the IBM documentation man-
agers. Unfortunately, as in many a
large organization, the word didn’t get
passed down to the troops. As a
result, when the documentation
review for the text processing tools
(with which I had some ego involve-
ment) rolled around, the first words
out of the young technical editor sit-
ting across the table were something
like “The first global issue is your per-
vasive use of the word ‘touch’ – that’s
going to have to be changed.”

Ted by then had had enough. He
leaned his elbows on the table, looked
the editor in the eye, and said “OK.
Fair enough. How about ‘fondle?’ Can
we ‘fondle the key?’”

89October 2000 ;login:

After she turned seven shades of pink,
Ted explained that (1) we’d been
through this before, and (2) if AT&T
– the other conservative high-tech
monopoly in the country at the time
– could sell “Reach Out and Touch
Someone” nightshirts in their compa-
ny store, perhaps IBM should loosen
up, too.

Soon after I received this, I had the
opportunity to actually meet Jeff, who is
currently with a large (unmentionable)
corporation in Redmond, Washington,
whose opinions his email does not repre-
sent. I can assure you all that he is as
witty in person as in print.

While this most likely ends the Dolotta
documentation tale, it far from con-
cludes this episode of history.

Fall 1980 saw Sam Leffler’s arrival on the
Berkeley campus. In October, the CSRG
released 4BSD. This release contained a
faster filesystem for use with virtual
memory, job control, reliable signals,
automatic reboot, “delivermail,” and the
Franz Lisp system.

Eric Allman’s delivermail is what was
renamed sendmail. (Eric said: “sendmail
is really just delivermail version 2 or 3.”)
(The full story is in Quarter-Century of
UNIX, pp. 161-163.)

Finally, Fall 1980 saw the resumption of
the publication of ;login: – I’ll leave that
for the next installment.

news
USENIX MEMBER BENEFITS

As a member of the USENIX Association,
you receive the following benefits:

FREE SUBSCRIPTION TO ;login:, the

Association’s magazine, published eight

times a year, featuring technical articles,

system administration articles, tips and

techniques, practical columns on security,

Tcl, Perl, Java, and operating systems, book

and software reviews, summaries of ses-

sions at USENIX conferences, and reports

on various standards activities.

ACCESS TO ;login: online from October 1997

to last month

<www.usenix.org/publications/login/login.html>.

ACCESS TO PAPERS from the USENIX

Conferences online starting with 1993

<www.usenix.org/publications/library/index.html>.

THE RIGHT TO VOTE on matters affecting the

Association, its bylaws, election of its direc-

tors and officers.

OPTIONAL MEMBERSHIP in SAGE, the System

Administrators Guild.

DISCOUNTS on registration fees for all

USENIX conferences.

DISCOUNTS on the purchase of proceedings

and CD-ROMS from USENIX conferences.

SPECIAL DISCOUNTS on a variety of products,

books, software, and periodicals. See

<http://www.usenix.org/membership/specialdisc.html> for

details.

FOR MORE INFORMATION

REGARDING MEMBERSHIP OR

BENEFITS, PLEASE SEE

<http://www.usenix.org/membership/membership.html>

OR CONTACT

<office@usenix.org>

Phone: 510 528 8649

by Peter H. Salus

USENIX Historian

<peter@Matrix.Net>

20 YEARS AGO ●

●

U
SE

N
IX

N
EW

S

http://www.usenix.org/membership/specialdisc.html
http://www.usenix.org/membership/membership.html

90 Vol. 25, No. 6 ;login:

Member Dues
Here are a few charts that show how
your USENIX and SAGE dues are spent.
Chart 1 shows the total dues income
($746,402 in 1999) divided by type of
membership. Chart 2 then presents how
those dues are spent. Note that income
from our conferences cover all costs of
the conference office, exhibition and
marketing. Chart 3 shows how the exec-
utive office spends its money. The
“other” category covers such items as
taxes, licenses, bank charges and miscel-
laneous expenses. Chart 4 indicates
where most of the money allocated to
Good Works and standards activities are
spent ($962,513) in 1999. (See the
USENIX Web site at
<http://www.usenix.org/about/goodworks.html>
for a description of our Good Works
program). These funds come from the
income generated by the USENIX con-
ferences and interest income from the
Association’s reserve fund.

Two charts deal with SAGE income
(chart 5) ($270,143 in 1999) and direct
expenses (chart 6) ($185,607).

Allocated expenses (staff and overhead)
are not reflected in the direct expenses
chart.

USENIX
Association
Financial Report
1999
The following information is provided as
an annual report of the USENIX Asso-
ciation and represents the Association’s
statement of revenue and expenses for
the year. Below are several charts that
illustrate where your membership dues
go. The Association’s complete financial
statements for the fiscal year ended
December 31, 1999 are available on
request from the USENIX Association at
2560 Ninth Street, Suite 215, Berkeley,
CA, 94710.

The USENIX Association completed fis-
cal year 1999 with a net operating sur-
plus of $117,361.

Membership increased again, both in the
general membership and SAGE, and now
tops 10,000 members. About half of the
members are also members of SAGE.
However, with increasing membership,
comes growth in expenses. Membership
and publication expenses increased.

Conferences
In 1999, USENIX sponsored the most
conferences ever: three major confer-
ences and 10 smaller workshops. Over
6,000 people attended these events.
Tutorials continue to be popular. We
boast some of the finest teachers in the
industry and this is evidenced by the
increasing number of persons taking
them. Conferences and workshops that
operated at a net loss were COOTS,
Smart Cards, NETA, DSL, and USITS.
Revenues exceeded expenses for all of the
conferences included in the Annual
Technical, LISA, and Security.

Publications
We published 8 issues of ;login:. The
quality and quantity of material keeps
improving.

Projects and Good Works
The Association’s healthy year-end budg-
et was supported by strong returns on
our investments, which netted $256,644
for our Good Works program. USENIX
allocated over $1,000,000 for its Good
Works program, and spent nearly all of
it. These funds are used to provide
stipends to students to attend USENIX
and SAGE conferences, scholarships,

http://www.usenix.org/about/goodworks.html

91October 2000 ;login:

support student research, promote out-
reach to representatives on campuses, as
well as several innovative, computing-
related projects. Over 360 institutions
have been represented in the USENIX
Student Stipend Program. To date, over
100 schools have designated outreach
representatives. Our Scholastic Program
provides funding for scholarships and
student research projects.

See
<http://www.usenix.org/about/goodworks.html>
for a complete list of our Good Works
program.

●

U
SE

N
IX

N
EW

S

USENIX FINANCIAL REPORTS ●

http://www.usenix.org/about/goodworks.html

92 Vol. 25, No. 6 ;login:

STATEMENTS OF FINANCIAL POSITION

AS OF DECEMBER 31, 1999 AND 1998

ASSETS 1999 1998

CURRENT ASSETS:

Cash and cash equivalents $2,107,048 $2,079,358

Receivables 115,555 60,714

Prepaid expenses 57,841 112,405

Inventory 18,544 22,311

Total current assets 2,298,988 2,274,788

INVESTMENTS 7,755,283 5,648,278

FURNITURE AND EQUIPMENT 155,028 125,290

Total assets $10,209,299 $8,048,356

LIABILITIES AND NET ASSETS

CURRENT LIABILITIES:

Accrued expenses $134,564 $231,428

Total current liabilities 134,564 231,428

COMMITMENTS AND CONTINGENCIES

UNRESTRICTED NET ASSETS 10,074,735 7,816,928

Total liabilities and net assets $10,209,299 $8,048,356

USENIX BOARD OF DIRECTORS

Communicate directly with the USENIX Board
of Directors by writing to: <board@usenix.org>.

PRESIDENT:

Daniel Geer <geer@usenix.org>

VICE PRESIDENT

Andrew Hume <andrew@usenix.org>

SECRETARY:

Michael B. Jones <mike@usenix.org>

TREASURER:

Peter Honeyman <honey@usenix.org>

DIRECTORS:

John Gilmore <john@usenix.org>
Jon “maddog” Hall <maddog@usenix.org>
Marshall Kirk McKusick <kirk@usenix.org>
Avi Rubin <avi@usenix.org>

EXECUTIVE DIRECTOR:

Ellie Young <ellie@usenix.org>

CONFERENCES

Barbara Freel <conference@usenix.org>
Registration/Logistics
Telephone: 510 528 8649
FAX: 510 548 5738

Dana Geffner <display@usenix.org>
Exhibitions
Telephone: 831 457 8649
FAX: 831 457 8652

Daniel V. Klein <dvk@usenix.org>
Tutorials
Telephone: 412 422 0285

1999 Financial Statements

93October 2000 ;login:

●

U

SE
N

IX
N

EW
SSTATEMENTS OF ACTIVITIES FOR THE YEARS ENDED

DECEMBER 31, 1999 AND 1998

REVENUE 1999 1998

Conference revenue $4,102,871 $3,696,590

Workshop revenue 928,746 729,267

Membership dues 746,402 533,129

SAGE membership dues and other income 270,143 190,952

Product sales 47,712 48,616

Total unrestricted revenue 6,095,874 5,198,554

OPERATING EXPENSES

Conference expenses 1,954,395 1,766,978

Personnel and related benefits 1,136,834 1,016,021

Projects and good works 962,513 812,167

Workshop expenses 724,596 500,677

Other general and administrative 628,736 545,406

Membership; login:/web 319,472 299,325

SAGE expenses 185,607 129,351

Product expenses 66,360 46,886

Total Expenses 5,978,513 5,116,811

Net operating surplus 117,361 81,743

NONOPERATING ACTIVITY

Donations 6,015

Interest and dividend income 215,943 213,034

Gains and losses on marketable securities 2,011,441 788,667

Investment fees (86,938) (43,797)

Net investment income

and nonoperating expense 2,140,446 963,919

INCREASE IN NET ASSETS 2,257,807 1,045,662

NET ASSETS, BEGINNING OF YEAR 7,816,928 6,771,266

NET ASSETS, END OF YEAR $10,074,735 $7,816,928

MEMBERSHIP

Telephone: 510 528 8649
Email: <office@usenix.org>

PUBLICATIONS/WEB SITE

<http://www.usenix.org>
Jane-Ellen Long <jel@usenix.org>
Telephone: 510 528 8649

USENIX SUPPORTING MEMBERS

Addison-Wesley
Earthlink Network
Edgix
Interhack Corporation
Interliant
JSB Software Technologies
Lucent Technologies
Macmillan Computer Publishing, USA
Microsoft Research
Motorola Australia Software Centre

Nimrod AS
O'Reilly & Associates Inc.
Performance Computing
Sendmail, Inc.
Smart Storage, Inc.
Sun Microsystems, Inc.
Sybase, Inc.
Syntax, Inc.
Taos: The Sys Admin Company
UUNET Technologies, Inc.

USENIX FINANCIAL REPORTS ●

http://www.usenix.org

94 Vol. 25, No. 6 ;login:

STATEMENTS OF CASH FLOWS FOR THE YEARS ENDED

DECEMBER 31, 1999 AND 1998

CASH FLOWS FROM OPERATING ACTIVITIES 1999 1998

Increase in net assets $ 2,257,807 $ 1,045,662
Adjustments to reconcile increase in net assets

to net cash provided by operating activities:
Depreciation 44,498 40,748
Realized and unrealized gains on investments (2,011,441) (788,667)

(Increase) decrease in current assets:
Receivables (54,841) (11,817)
Prepaid expenses 54,564 19,591
Inventory 3,767 8,013

Increase (decrease) in liabilities:
Accrued expenses (96,864) 107,917
Deferred revenue — (200,613)

Total cash provided by operating activities 197,490 220,834

CASH FLOWS FROM INVESTING ACTIVITIES

Purchase of investments (9,628,860) (2,183,978)
Sale of investments 9,533,296 2,333,141
Purchase of furniture and equipment (74,236) (39,645)

Total cash provided (used)
by investing activities (169,800) 109,518

INCREASE IN CASH AND CASH EQUIVALENTS 27,690 330,352

CASH AND CASH EQUIVALENTS,
BEGINNING OF YEAR 2,079,358 1,749,006

CASH AND CASH EQUIVALENTS, END OF YEAR $ 2,107,048 $ 2,079,358

If This Be Open,
Let Us Make the
Most of It

USENIX is home to a lot of people who
look kindly on “open systems.” So long as
we don’t try to define the term too close-
ly, many of us can generally agree on a
few things that fall under that category
or, dare I say, that way of life. But try to
be precise on what constitutes “open”
and things tend to fall apart in a way that
mimics the sectarian divisions arising in
any set of millennial beliefs. This is not
news.

What may be, relatively speaking, news is
that open systems are no guarantee of
perfection even at what they are best at,
and what they are best at is harnessing
the brains of a larger collection of critics
than a profit-making company can ordi-
narily justify to its investors or its cus-
tomers. Eric Raymond says, “Given
enough eyeballs, all bugs are shallow.”
This is just the information-age version
of “Practice makes perfect” – but as my
father would always correct me, the full
form is “Practice makes perfect only
when you are practicing perfection.”

As a specialist in security, I look for per-
fection when I can get it and risk man-
agement when I can’t. By now, everyone
knows never to trust a cryptographic
algorithm until everybody who is any
good has taken a run at it. By now,

95October 2000 ;login:

almost everyone has heard that substan-
tial vulnerabilities are nearly never in the
crypto part of a security system, but
rather in handling hostile triggering of
weird-ass error conditions. Within the
past year my old friend Kerberos, cer-
tainly one of the most open and widely
used security systems, turned out to have
a buffer overflow vulnerability. There is
no better example out there to prove by
demonstration that even if there are
enough eyeballs to make all bugs shal-
low, that does not mean that those eye-
balls are paying attention. Just like my
father said, practice makes perfect only
when you are practicing perfection.

This is about rigor, tempered with brutal
marketplace realities. It is naive to imag-
ine that sustained rigor is a natural con-
comitant of volunteer labor. It is wishful
to imagine that rigor can come without
costs that don’t have to be covered by
somebody with money to spend,
whether that money flows from taxation,
gratitude, profit, or charity. To the extent
that the systems USENIX folk build and
operate are ever more critical to the
world as we know it, we cannot imagine
that we’ll get what we want – systems
that can be improved upon because we
can understand them in detail – just by
wishing it so. It is hard to be one for all
and all for one in the glare of an IPO. It
will be hard to ignore rigor when certifi-
cation leads to licensure and thence to
malpractice standards.

So here’s my challenge to you: That you
are a USENIX member makes you atypi-
cal. That you are a USENIX member
who actually reads this piece makes you
more atypical. That you are a USENIX
member who reads this piece and has
enough spare cycles to coherently think
through what it is USENIX can do, if
anything, makes you more atypical still.
Let me leave you with a problem state-
ment:

How much rigor do systems need to let
people like us stay in the driver’s seat,
and can USENIX help?

USENIX
Conference Office
Moves
In September, the USENIX Association
moved its conference department from
Lake Forest into headquarters in
Berkeley. The southern California office
was closed because Judy DesHarnais,
who has been the USENIX meeting plan-
ner for the past 20 years, is moving to
Hawaii. She will continue to work part-
time for USENIX as an Associate
Meeting Planner.

Barbara Freel <barbara@usenix.org>, has
been hired as the new Conference
Director. For the past nineteen years,
Barbara has been managing large meet-
ings and conventions for several profes-
sional associations in the healthcare field
and, most recently for EPRI, the Electric
Power Research Institute. She earned her
Certified Meeting Professional designa-
tion in 1987.

Owen Rundall has been hired as an assis-
tant meeting planner. He has just gradu-
ated from college, and has nine years of
experience in the meetings industry,
including the International Society for
Magnetic Resonance in Medicine, and
the Convention Sales department of the
Hilton San Francisco and Towers. Moun
Chau, who has been a production editor
in the Berkeley office, is helping with
registration and other conference activi-
ties on an interim basis.

NOTE ADDRESS CHANGE!

Please change all address entries you may
have for the USENIX Conferences to:

USENIX Conference Department
2560 Ninth Street, Suite 215,
Berkeley, CA 94710
Phone: 1.510.528.8649
Fax: 1.510.548.5738
Email: conference@usenix.org

●

U
SE

N
IX

N
EW

S

IF THIS BE OPEN . . . ●

by Daniel Geer

President, USENIX
Board of Directors

<geer@usenix.org>

	01-motd
	02-apropos
	03-letterstotheeditor
	04-loginconfrpts
	05-javaperformance
	06-usingjava24
	07-useyourlocaltools
	08-networkpoliceblotter
	09-musings
	10-interviewwithhalprin
	11-odetoriskmanagement
	12-vendorcontractservices
	13-findingtimetodoitall
	14-sysadminethics
	15-justpresuppose
	16-bookworm
	17-sagenews
	18-usenixnews

