

2

in this issue

Vol. 26, No. 7 ;login:

by Rik Farrow

Rik Farrow provides
UNIX and Internet
security consulting
and training. He is
the author of UNIX
System Security and
System Administra-
tor’s Guide to System
V.

rik@spirit.com

This has been a summer of disasters. Natural ones, like hurricanes,

droughts, and tornados. National ones, most incredibly the suicide bomb-

ings. The dot-com revolution has become the dot-bomb devolution. And for

security, an embarassment of automated attacks against IIS servers, making

a travesty of claims for security.

While some things, like nature, fanatics, and the stock market, are not under anyone’s
control, other things are. Computer and network security relies most on simplicity – if
a service is not run, it can’t be exploited. When you read this issue of ;login:, please
keep this in mind. It should be easy, because you will find this being said more than
once.

I am very excited about this issue. More people contributed articles and summaries
than we could fit into our pages. For those of you who could not attend the Tenth
USENIX Security Symposium this August in D.C., I recommend the summaries. Read-
ing them is the next best thing to having been there. We had more people volunteer to
write summaries than we had sessions to summarize, and I thank all who contributed
their time and energy in taking notes and writing them up for us.

The articles have been divided into three groups: Forensics, Intrusion Detection, and
Best Practices. Keith Jones, of Foundstone, contributed two articles based on his expe-
rience working on live systems with hacking tools installed. I appreciated reading both
of these articles, but especially liked Keith’s description of knark, and techniques for
defending against tools like it, as well as an excellent description of how loadable ker-
nel modules work as almost undetectable rootkits.

Brad Powell, of Sun Microsystems, writes about another aspect of forensics, detecting
trojaned commands. In some ways, what Brad describes are simple tools for collecting
checksums using MD5. What he barely touches on is the amount of work that went
into this project, which includes a database of MD5 checksums – one for every binary
that Sun has shipped. During a Sun BoF at the conference, I heard that Caspar Dik had
spent many hours loading all the Sun distribution CDs into drives so that all distribu-
tions and patches could be added to the database. I would love to see all vendors pro-
vide both a database like Sun’s, as well as an easy-to-use interface for checking the
authenticity of files. I also want to thank Brad, and his companions at Sun, for actually
completing something that many of us have wished for.

In the Intrusion Detection section, we have three articles from people who have imple-
mented ID systems using open source software. Jon Lasser talks about using snort in
an environment where, even with carefully trimmed rulesets, he was seeing tens of
thousands alerts each day. Peter Van Epp writes about the uses of Argus, a tool for
recording IP header information. Peter talks enthusiastically about many of the practi-
cal uses he has found for the gigabytes of Argus data that he has collected. In addition
Sven Dietrich covers a different angle of IDS: survivability, which is the ability of a dis-
tributed ID system to continue running in the face of determined adversaries, even
when the adversaries are insiders.

The final section borrows from the experience of three gentlemen who work in the
open environments of universities and research institutes. Oscar Bonilla, of Galileo
University in Guatemala, describes how necessity forced him to design a firewall that
fits on a floppy disk. Remember what I wrote earlier, about not running unnecessary

3November 2001 ;login:

services? Oscar shows you how to do this in the extreme case of a practically diskless
server.

David Brumley, of Stanford University, and Abe Singer, of the San Diego Supercom-
puting Center, describe the best practices that have made their sites more secure and
more easy to manage. David focuses on several very practical issues, with simplifying
configurations high on the list. Abe describes how the San Diego Supercomputer Cen-
ter has terminated the use of plaintext passwords in network services entering SDSC.
Both explain their successes and failures, and extol the power of having management
buy-in when it comes to getting anything done. I especially liked the psychological
techniques that Abe suggests for getting troublesome researchers to migrate to new,
more secure, tools and protocols.

Due to length restrictions, articles by Erin Kenneally, Paco Hope, and Ofir Arkin will
appear in later issues of ;login:. I truly wish we could have fit everything into this one
issue, but we ran out of available pages.

As you read the summaries, think about the implications touched on by the special
evening session about the SDMI challenge.

A group of researchers decided to investigate proposed techniques for protecting some
intellectual property – in this case, music owned by corporations and distributed on
CDs. The researchers were successful in reverse engineering and countering most, per-
haps all, of the six techniques used to watermark music or protect the contents track.
But when it came time to present their paper, they were threatened with a lawsuit,
based on the Digital Millenium Copyright Act (DMCA). It was only with the support
of USENIX and the Electronic Freedom Foundation that they were able to present the
results of their research.

As in the case of Slylarov, who was arrested after explaining the extremely lame job
Adobe had done to protect copyrighted information used in their e-Books (XOR-ing a
constant against the bytestream), the DMCA seeks to prevent researchers from point-
ing out that the emperor has no clothes. Imagine a world where you can only report
dangerous defects in automobiles to the manufacturer. This is the world that DMCA
expouses, where it is illegal to discuss mechanisms used to protect copyrights. (See
http://lwn.net/2001/0726/bigpage.php3 regarding the Skylarov case).

In the wake of the attacks on the World Trade Center and the Pentagon, the same old
voices are crying out for new limitations on encryption, and less restrictions on the
right to search, to incarcerate, and generally, to trample on the US Bill of Rights. This
trend toward a corporate state – one that focuses on corporate rights instead of citizen
rights – began before the suicide bombings.

I would much rather live in a world made secure through correctly designed software
and encryption without backdoors, than in a police state where it is illegal to share a
thought privately, disagree with the government, or even test whether the software that
is supposed to be secure is really doing anything at all. We are living in a most fright-
ening time, and it is not only terrorists I am frightened of.

IN
TH

IS
IS

SU
E

4 Vol. 26, No. 7 ;login:

conference reports
10th USENIX Security
Symposium
WASHINGTON, DC
AUGUST 13–17, 2001
KEYNOTE

WEB-ENABLED GADGETS:
CAN WE TRUST THEM?

Richard M. Smith, CTO, The Privacy
Foundation

Summarized by George M. Jones

Richard Smith started off by saying that
what he primarily does is “cause prob-
lems,” mostly for companies that have
not thought through the security impli-
cations of products that they have
released. They often “discover unin-
tended consequences that companies
don’t like to talk about.” The three main
areas they consider are security, privacy,
and control.

He stated that
“consumers
care more
about the
security of
cell phones
than about
Web servers”
because cell
phones are
personal
devices with

which consumers have immediate con-
nections. Application developers and
companies are more concerned with
functionality than security. Products
such as consumer devices based on real-
time operating systems tend to have
lower concerns for security.

Smith said that DirecTV was the first
consumer device that got his interest
about privacy issues. It had a phone jack.
What information was it sending back?
Later, a call to customer service on a dif-
ferent issue revealed that the customer
service people were able to send com-
mands (via satellite?) to turn his TV on.

Is this a good thing? Still another time
the company apparently chose to “adver-
tise” new services by causing the TV to
tune to a soft-porn channel which he
had not subscribed to or selected.

Earlier this year, just before the Super
Bowl, the company downloaded a pro-
gram to all DirecTV boxes. The goal was
to disable black market devices used to
pirate programming. It succeeded. But
what if they had made a mistake? What
if they had disabled service for legiti-
mate customers? Who, in fact, owns the
boxes? DirecTV clearly did not own the
black-market devices. Did the com-
pany’s actions constitute “hacking”? Did
the terms of service allow them to repro-
gram the legitimate boxes?

It turns out that DirecTV was not send-
ing back “Nielsen” information, just a lot
of information about the temperature
inside the box. Their competitor Tivo
does send in “Nielsen” info. You have to
explicitly opt out by calling customer
service.

We’re entering a brave new world of
connected devices. A company called
Sports Barn sold a strap-on device that
monitored your daily exercise...and then
uploaded it via phone to their Web site
to create a “personal profile” (which, of
course, would never be used for market-
ing or other) purposes. One could have
gotten the same effect by uploading to a
PC without disclosing personal informa-
tion, and there are inexpensive stand-
alone devices available at sports shops
that do similar things. But to maintain a
record you might have to (gasp) write
things on paper: the price of privacy.
Oh, the company just went out of busi-
ness. Many formerly happy customers
now have worthless devices. Similar
things could never happen with sub-
scription software licensing, could it?
Software companies never go out of
business, get bought out, refocus on
newer products, or have turnover or loss
of support staff.

This issue’s reports are on the 10th
USENIX Security Symposium

OUR THANKS TO THE SUMMARIZERS:

TAKEAKI CHIJIIWA

SAMEH ELNIKETY

KEVIN FU

RACHEL GREENSTADT

YONG GUAN

ANCA IVAN

GEORGE M. JONES

STEFAN KELM

DAVID RICHARD LAROCHELLE

ROSS OLIVER

EVAN SARMIENTO

COLE TUCKER

MIKE VERNAL

SAM WEILER

Richard M. Smith

Ever considered plugging your picture
frames into the phone? Kodak wants you
to so that you can “register” your digital
pictures. Of course, you’ll pay a recur-
ring subscription fee to do so. And
they’ll never share your private pictures
with anyone either, their servers never
get hacked, and all their employees are
intimately familiar with their informa-
tion security policies and actively make
it their top priority each day to follow
them.

Want free wireless Internet access? See
the Global Access Wireless Database at
http://www.shmoo.com/gawd/. Want to
see what your neighbors and coworkers
are doing? 802.11 is your friend. At least
one non-USENIX conference person
was observed using the USENIX wireless
network at the symposium.

Convergence is a good thing, right?
Fewer devices, more functionality, lower
cost, but do you really want someone
using the cell phone API in your combo
phone/palm pilot to run a program that
(1) turns off the speaker, (2) places a
call, and (3) turns on the microphone?
Your phone is now a bugging device, in
addition to a tool for pinpointing your
location at all times. Personally, I’ll stick
with dumb one-way pagers and only
turn my phone on when I want to make
a call (and announce my location).

Do you ever store personal/low-sensitiv-
ity data and business/high-sensitivity
information on, say, a palm pilot, a lap-
top computer, or a home computer con-
nected to public networks? Mudge and
Kingpin of @stake pointed out in a later
talk (dressed in bathrobes to protest
their 9 a.m. speaking slot) that PalmOS
has serious security problems. Cable
modem providers do not generally pro-
vide security/firewall services. Laptops
are routinely stolen (the laptop that was
being used as the gateway/router for the
conference terminal room disappeared
overnight and one of the terminal-room
attendants stopped someone who

5November 2001 ;login: SECURITY 2001 ●

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

Sattempted to walk out with its replace-
ment in broad daylight). Information
security management issues that were
once handled by trained security profes-
sionals in controlled, centralized envi-
ronments are now the problem of your
grandmother, Joe Six-pack, and your
CEO.

Do you ever speed in a rental car? In the
Q&A session Rik Farrow noted that at
least one person has been fined by the
rental car company for doing so. The
company installed GPS devices in all it’s
cars that enable it to track down stolen
cars...and tell how fast you go. Any
guesses how long it will be before law
enforcement and insurance companies
push for legislation requiring such
devices in all new cars?

Steve Bellovin noted that during the talk
there had been multiple nmaps of the
wireless net and an ongoing battle for
address of the default router (Dug Song
of dsniff fame was in the room).

And lastly, true confessions — Smith
admitted that he has not turned on WEP
on his own wireless net at home.

And the beat goes on...

INVITED TALKS

A MAZE OF TWISTY LITTLE STATUTES, ALL

ALIKE: THE ELECTRONIC COMMUNICATIONS

PRIVACY ACT OF 1986 (AND ITS APPLICA-
TION TO NETWORK SERVICE PROVIDERS)

Mark Eckenwiler, U.S. Department of
Justice

Summarized by Cole Tucker

The Electronic Communications Privacy
Act of 1986 has a reputation for com-
plexity. Mark Eckenwiler gave an expres-
sive overview of the law, primarily from
the viewpoint of a system administra-
tor/provider. Basically, the act covers
the relationship between, providers and
customers, and providers and the gov-
ernment. It tries to allow for communi-
cation privacy while keeping in mind

that online records are the key to prose-
cuting network criminals.

The law distinguishes four types of envi-
ronments, based on whether the data is
content or transactional in nature and
whether it’s being intercepted in real
time or after it’s been stored. The class
that receives the most protection, real-
time content, has a very basic rule for
the normal user: don’t get or look at it.
For the government, the rule is nearly as
simple: don’t get it without a wiretap
order. Providers aren’t supposed to look
at it unless they’re in the process of pro-
tecting their rights and property. So if
you’re a regular user, don’t run an unau-
thorized sniffer. If you’re representing a
provider, under Eckenwiler’s interpreta-
tion, feel free to run an IDS or even a
keystroke logger in real time; you can be
proactive in defending yourself. Other
exceptions are made for publicly accessi-
ble systems, such as IRC, or if all parties
consent, say in a system that has a ban-
ner stating that use implies consent to
monitoring. As a provider, if you have a
legitimate need to monitor, there’s no
reason to worry.

The second class of data consists of
transactional records being intercepted
in real time. For providers and users the
rules remain nearly the same: hands off
for the latter and have a good reason for
the former. The standards have been
lowered for the government, so this
information is essentially “less private.”
For access to this data, the government
simply needs a court order. Examples of
data that fall under this are addresses
attached to incoming emails and infor-
mation on where users are connecting
from and whether they are online.

Next comes stored content. Eckenwiler
referred to this section as “Dichotomies
‘R’ Us”; basically, each situation has dif-
ferent rules that apply, with way too
many to generalize here.

Finally, there are stored transactional
records. Users, hands off. Providers are

http://www.shmoo.com/gawd/

allowed to reveal this information to
anyone they like, except for the govern-
ment. In respect to the government,
there are two classes of data: basic user
data and non-contact info. Basic user
data (things like name, address, and
phone number) is accessible with a sub-
poena, and thus not strongly protected.
Everything else requires a 2703(d) war-
rant to access, but providers can be sent
a court order requiring they hold on to
the data for a specified amount of time,
usually in expectation of a warrant being
served in the near future.

LOANING YOUR SOUL TO THE DEVIL: INFLU-
ENCING POLICY WITHOUT SELLING OUT

Matt Blaze, AT&T Labs-Research

Summarized by George M. Jones

Matt Blaze commented on the public
debate over cryptology that’s taken place
over the past 10 years or so. He included
amusing stories of “hacker tourism,”
including nine cryptography experts all
independently trying to score “cool”
points by stealing stationery from secret
congressional briefing rooms and NOT
opening a red folder marked “TOP
SECRET: President’s Daily National
Security Briefing” when left alone in a
conference room in the old executive
office building.

What can a scientist/techie contribute to
the public policy debate? His main
advice is “stick to what you know” (sci-
ence/technology). “You are listened to
because people believe you have objec-
tivity.The basic purpose of science and
engineering is to expand understanding
of reality/truth, with no compromises.”
You are not there to comment on philos-
ophy, politics, or constitutional law.

He gave an amazingly insightful list of
the contrasting values of science and
politics):

■ Science is interested in finding
truth. Politics is about balancing
interests.

6 Vol. 26, No. 7 ;login:

■ In science, people are rewarded for
new discoveries. Disruptiveness is
considered good. In politics, people
are rewarded for making other peo-
ple happy. Disruptiveness is consid-
ered bad.

■ In science, uncompromising people
are admired; in politics, uncompro-
mising people are considered fools.

■ In science, “honesty” means admit-
ting mistakes; in politics, it means
keeping promises.

■ In science, challenging someone
shows interest; in politics, a chal-
lenge is an attack.

■ In science there is no “dress code”;
in politics, even suits can be consid-
ered “casual” (and thus cause you
not to be taken seriously).

The policy options range from discour-
aging/forbidding its use; allowing lim-
ited strength crypto; allowing use of
strong, modern cryptographic methods;
and encouraging use. In the last few
years the US has moved mostly from the
first to the third stage.

The tone of the
debate has also
changed and
includes more actual
dialogue. We no
longer have one side
yelling, “You’re a
bunch of long-
haired hippies,” and
the other yelling,
“You’re a bunch of

jack-booted thugs.” Now it’s just “you’re
a bunch of hippies” vs. “you’re a bunch
of thugs.” See, for instance, “Thou shalt
use skipjack/clipper” vs. the process for
selecting AES.

“Washington, D.C. is another planet, a
closed system.”“Much of what happens
here is for show.”“Any meeting with a
policy maker involves a little conspiracy
to make each other feel important.”
“Meetings with congressional staffers

always end with the question ‘What do
you suggest we do?’” Stick to what you
know.

COPS ARE FROM MARS, SYSADMINS ARE

FROM PLUTO: DEALING WITH LAW ENFORCE-
MENT

Tom Perrine, San Diego Supercomputer
Center

Summarized by Ross Oliver

Tom Perrine described some of his expe-
riences with law enforcement people
and discussed his recommendations for
other sysadmins who may need to inter-
act with law enforcement.

Like system administration, law enforce-
ment is a culture as well as an occupa-
tion, with its own lingo, inside jokes, etc.
There are also many different law
enforcement agencies: federal, state, city,
county, military, and customs. Even
schools and universities often have their
own police force.

Throughout the talk, Perrine empha-
sized the importance of trust in individ-
uals rather than organizations. Just as in
any large organization, there are “clue-
ful” and not “clueful” members, and
building personal relationships is key.
Also realize that the goals and priorities
of law enforcement may be different
from yours.

Because they are “agents of the govern-
ment,” law enforcement officers have
many legal constraints on their actions
that may not apply to private citizens.
Sysadmins can take advantage of “ISP
exemptions” in the law to take “any steps
necessary to protect the communica-
tions system.”

Perrine recommends that sysadmins
become familiar with applicable laws
(both federal and state) before the need
to apply them arises. Advice of qualified
legal counsel is strongly recommended.
Also, make sure your organization’s poli-
cies are suitable, and adhere to them
during any investigation.

Matt Blaze

READING BETWEEN THE LINES: LESSONS

FROM THE SDMI CHALLENGE

Summarized by Rachel Greenstadt

Scott A. Craver, Min Wu, and Bede Liu,
Princeton University; Adam Stubble-
field, Ben Swartzlander, and Dan S.
Wallach, Rice University; Drew Dean
and Edward W. Felten, Princeton Uni-
versity

Program Chair Dan Wallach introduced
this talk as being a long time in the mak-
ing and mentioned that he was pleased
to have it here. However, he stressed that
this first section would be a normal, bor-
ing technical talk. THEN there would be
a panel discussion where policy ques-
tions would be allowed. Matt Blaze
asked when the subpoenas would be
served; however, despite the large mass
of press and lawyers that joined the
USENIX attendees, there was no last-
minute withdrawal of the talk this time,
and no FBI agents came to cart Scott
Craver away as he gave his talk.

Craver began by describing the chal-
lenge, which took place during three
weeks in September and October of
2000. SDMI (Secure Data Music Initia-
tive) invited “hackers,” otherwise known
as the general public, to crack six of their
proposed technologies labeled A
through F. There were four watermark-
ing technologies and two others. SDMI
offered a cash prize for the successful
defeat of one of their technologies, but
this required the winners to sign a Non-
Disclosure Agreement, so the Felten
group decided to forego the prize in
favor of publishing their findings.

SDMI is an organization, an initiative,
and the technology for that initiative. At
the time of the challenge, that technol-
ogy was watermarking and related tech-
nologies. The watermarks (technologies
A, B, C, and F) were composed of a
robust and a fragile component, the
robust part of which would survive
altered music. Through a missing water-
mark in the fragile component, such as

7November 2001 ;login: SECURITY 2001 ●

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

Sif it had been mp3 compressed, an
SDMI device could perhaps determine if
a CD track was ever an mp3 in the past,
perhaps illegally downloaded. The other
technologies (D and E) were used to
sign tables of contents, supposedly to
control the propagation of CDs with
mixed tracks.

For the watermarking technologies there
were three samples given: (1) a sound
clip without a watermark, (2) the same
sample with a watermark, and (3) a dif-
ferent sound clip with a watermark. The
challenge was to remove the watermark
from the third sound clip. SDMI pro-
vided no actual embedders or detectors.
There was an online oracle to which you
could submit a sound clip and get a
response. There was no description of
the algorithms used, and no details or
reasons were given when an oracle
rejected a clip. The challenge lasted only
three weeks and the oracle had a turn-
around time in hours. As such, adaptive
oracle attacks, which would be possible
if the system were deployed, were not
feasible.

There were several approaches used
against the marks: (1) brute force attacks
not specific to the algorithm used and
which mostly consisted of adding noise
and filtering, (2) slight brute force
attacks loosely based on supposed
details of the algorithms, and (3) full-
blown reverse engineering.

For technologies B and C, the group
noticed that there was a narrow band
signal added to the clip. By the slightly
brute method of filtering at the fre-
quency and adding narrow-band noise
they were able to foil the oracle.

In their analysis of technology A, the-
group noticed a slight warping in the
time domain as though the signal was
slowly advancing or decreasing. They
determined that this phase shifting was
pre-processing and not the actual water-
mark, since the oracle did not admit the

sample when the distortion was
removed. However, removing this dis-
tortion in technology F was able to make
that watermark undetectable (quick,
somebody call the FBI).

Another approach to defeating technol-
ogy A would have been to try reinstating
the fragile component. However, there
was no way to test this type of attack
using the oracle.

The group noticed a ripple in the fre-
quency domain, which led them to
believe that technology A used some sort
of echo hiding technique consisting of
deliberate but inaudible echoes, which
meant that there was a signal which was
delayed and then added back into the
music. They tried a filtering approach to
reduce the audibility of the echo suffi-
cient to remove the watermark. Wanting
to discover more, they decided to do a
patent search figuring correctly that this
was a proprietary algorithm with a
patent. They found a patent belonging
to Aris corporation which became Ver-
ance, one of the SDMI companies. This
made them feel like they were on the
right track. They also discovered that it
was a simple echo every fiftieth of a sec-
ond and that a delayed version was
added or subtracted every fifteenth
interval. To further analyze the signal
they used the auto-kepstral technique
for echo hiding, combining techniques
to estimate the echo. They’ve come up
with better echo hiding detection soft-
ware subsequent to the challenge. Scott
demonstrated a program that was color
coded to detect the echo.

For technologies D and E, SDMI pre-
sented table-of-contents files for 100
CDs and signature tracks. The challenge
was to create a new table of contents and
successfully forge a signature for it. For
technology D they found that all the
energy was concentrated in a small fre-
quency band of 80 frequency bins which
only actually used a 16-bit signal

repeated five times with constant shuf-
fling. Since there were only 16 bits of
output, a user should be able to acquire
many authenticators, as there were two
hash collisions among the CDs given.
However, it was difficult to get further
than this analysis because the oracle for
D didn’t work; it would always return
“invalid” regardless of input. Technology

E, however, didn’t have any data to ana-
lyze at all. You could submit a mail say-
ing you’d try mixing this track and that
track, and you’d get a reply saying that
you couldn’t do that.

The speaker concluded by saying that
many claimed that this was a system to
“keep honest people honest.” However,
though the Felten group felt that the sys-
tem was too complex for that, they
wouldn’t claim any type of strong secu-
rity. The systems require trusted clients
in a hostile environment, but if deployed
they would be broken quickly. No spe-
cial EECS knowledge is needed and
there are no dirty secrets. Anyone with
reasonable expertise could do this.
Watermarking can be useful but not in
this situation. The weakness is in the
overall concept, not the specific technol-
ogy. One main lesson learned is that
security through obscurity STILL
doesn’t work. This is particularly the
case for secret algorithms which are
patented and therefore public.

Peter Honeyman asked about the possi-
bility of a secure watermark. Scott
replied that he personally thinks that

8 Vol. 26, No. 7 ;login:

watermarking won’t work for actively
enforcing a usage policy since doing this
provides all targets an oracle that they
can use. He is pessimistic about the use
of watermarking for copyright control.
He clarified that they broke, according
to the oracle, technologies A, B, C, and F,
but that D and E had no valid responses.
He also clarified that only technology A
used echo hiding, and that though they
don’t know what the criteria for the ora-
cle was, it appeared to make a decision
based on detectability and quality. He
explained that some areas where water-
marking might prove useful is in fragile
watermarks which provide tamper evi-
dence in digital photographs and in pre-
venting duplication of currency. These
technologies have a different threat
model. Someone asked about copy pro-
tected CDs; Scott replied that that was a
completely different approach done
entirely at the hardware level. People
wondered why honest people would not
want a complex copy protection scheme;
Scott answered that complex schemes
have higher rates of failure and higher
cost. Someone asked how this was rele-
vant to detecting steganographic infor-
mation and Scott answered that they
were basically the same and that the
information about echo detection would
be useful.

PANEL DISCUSSION ON SDMI/DMCA

Moderator: Dan Wallach, Rice Univer-
sity; Panelists: Edward W. Felten,
Princeton University; Cindy Cohn, EFF;
and Peter Jaszi, American University
College of Law

The three panelists spoke about the legal
and social questions surrounding the
SDMI/DMCA issue. Dan Wallach men-
tioned that if there were any representa-
tives from the record company, the panel
would love to have someone from the
other side come speak; he doubted,
however, that they would be here.

Peter Jaszi then presented a detailed
description of the Digital Millennium

Copyright Act (DMCA), section 1201.
He explained the difference between the
DMCA and copyright law. Copyright
law has been developed and refined over
a few hundred years and maintains a
delicate balance between owners and
users’ privileges. To that end it has been
relatively successful. It is important to
understand that the DMCA is not copy-
right law but, rather, a supplement to
copyright law or para-copyright legisla-
tion. As such it has the potential to over-

ride the
copyright
default protec-
tions which had
been carefully
laid out over
time. He sought
to explain these
overrides and
mentioned that
the risk the

DMCA poses to the fundamental copy-
right system isn’t news and wasn’t news
when it was passed. As a result some
limitations to the DMCA were built in,
but most of these exceptions are not
very functional.

The fundamental commandment of the
DMCA is “Thou shall not circumvent
for access.” The fact that it was access
and not use was a compromise intended
to limit the DMCA. However, it limited
the legislation less than some imagined
it would since there is a great deal of
confusion between access and use. There
are also secondary prohibitions concern-
ing making goods and services which
can be used for circumvention available.
Section 1201(b)(1) can be interpreted
broadly, and it was under this provision
that the threats from SDMI to the
authors of the paper were made.

Section 1201(c) presents a fair-use
exception in wonderful ringing lan-
guage, however, it is completely irrele-
vant since it references fair use as a
defense of copyright and the DMCA is
not copyright.

Q & A: Scott Craver & Dan Wallach

Prof. Peter Jaszi

The law enforcement exception is actu-
ally sweeping and robust; it applies to all
the provisions of the act. The reverse
engineering exception is not half bad; it
refers to the whole range of prohibitions
although it is still narrower in scope
than the protections under copyright
law. Sections 1201(g) and (j) present
limited exceptions for encryption
research and security testing which are
uncertain in scope. Section 1201(h)
presents a small but robust exception to
allow adults to circumvent in order to
frustrate a minor’s attempt to achieve
privacy in a Web environment. Section
1201(i) allows ordinary people to pro-
tect their privacy, but it is only a conduct
exception; you need to make your own
tools and not distribute them. There is
less to all these limitations and excep-
tions than meets the eye.

There are risks posed by this legislation
to the traditional balance of interest in
copyright law, which calls for a push-
back against legislative excess. To this
end Jaszi is forming a new access coali-
tion. They have a Web site at
http://www.ipclinic.org.

Cindy Cohn from the EFF said that
Peter had already said everything about
section 1201 but stressed that the EFF
was “pushback central” and explained
ways in which people could get involved
in this effort. The EFF has been involved
in this issue even before the cases involv-
ing 2600 Magazine, Felten and the
USENIX presentation of the SDMI
paper, and the California trade secrets
case.

Thomas Greene from the Register won-
dered why the mainstream press hasn’t
realized their stake in this and what it
implies about freedom of the press.
Cindy replied that they were getting
increased press support with the Sky-
larov arrest; speaking speculatively, she
also mentioned that the mainstream
press is owned by content holders. In

9November 2001 ;login: SECURITY 2001 ●

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

Saddition, most press organizations wish
to be seen as nonpartisan and objective.

Someone asked about dual use tech-
nologies, such as echo detection. The
DMCA takes this into account but the
language doesn’t give much comfort.
There are a series of criteria which will
give you liability.

There was a question about potential
connections between the lawsuit and the
Skylarov case. Cindy answered that in
strictly legal terms there was no overlap.

Someone asked what to do in Felten’s
situation, what lessons had they learned?
Felten responded that they learned a
great deal responding to the threats
regarding the paper. He said to talk to
people who’ve been there and keep in
mind your goals and values.

Someone brought up the question of
whether a person would be at risk for
summarizing the session. Cindy said
that the letter they received only per-
tained to the particular paper, but
because the paper can be published,
prosecuting for summarizing would be
hard. Peter suggested that if you were
going to synthesize the talk (uh...this is
starting to sound disturbingly famil-
iar...) and discuss strengths and weak-
nesses, theoretically you could be in
trouble. Especially if you implement
something based on the presentation.
Felten mentioned that the fact that this
question has no simple answer is telling.

Someone suggested widespread civil dis-
obedience as the only way to effect
change. Cindy responded that she never
advises people to break the law. Though
she feels that if the law is out of step
with what people believe their rights are,
the law should be changed. Peter added
that copyright law has functioned well
based on shared social investment. Like
the tax code, it works not because it is
policed but because there is a high
degree of collective buy in to its prem-
ises. The most corrosive thing about the

DMCA is that the basic assumptions it
makes about people are dark and pes-
simistic. We need to question those
assumptions and what flows from them.

Someone asked for some insight into
why the industry wouldn’t want this
research since it would allow them to
build better protection schemes. Felten
responded that to us the question is, is
this technology weak? We didn’t make it
weak, and we think it should be fixed.
The industry’s concern is not whether
the technology is strong or weak so
much as whether people believe it is
strong or weak. They think that if the
public reaches a consensus that the tech-
nology is strong, that will be enough.
Many of us find this hard to understand.

[More information and photographs
can be found at
http://www.usenix.org/events/sec01/index.html

CHANGES IN DEPLOYMENT OF

CRYPTOGRAPHY, AND POSSIBLE CAUSES

Eric Murray, SecureDesign

Summarized by Takeaki Chijiiwa

A survey of cryptography deployment
was conducted last year (2000) by Eric
Murray, and a similar survey was con-
ducted in 2001 to measure changes in
the deployment of SSL (Secure Socket
Layer) and TLS (Transport Layer Secu-
rity) Web servers.

The results of the 2000 survey showed
10,381 unique hostname and port num-
ber combinations compared to 12,630 in
2001. Detailed results are available at
http://www.lne.com/usenix01.

There were several noteworthy changes
between the results from the surveys in
2000 and 2001:

What got better?

■ A 14% increase, 5% decrease, and
8% decrease among servers catego-
rized as Strong, Medium, and Weak,
respectively.

http://www.ipclinic.org
http://www.usenix.org/events/sec01/index.html
http://www.lne.com/usenix01

■ The number of servers supporting
1024-bit key size increased by 10%
while a decrease of 8% was seen for
support of less than 512-bit key
size.

■ The protocol adoption saw a shift
from SSL v2 (3% decrease) toward
TLS (5% increase).

What got worse?

■ The number of expired certificates
increased from 3.1% to 3.7%.

■ Self-signed certificates increased
from 0.8% to 2.0%.

The results presented raised many ques-
tions from the audience.

Question: Why do you think there was
an increase in the number of self-signed
certificates?

Answer: This may be due to people play-
ing around with OpenSSL, or the survey
may have picked up servers used for
internal use. Furthermore, the increase
in the number of expired certificates
may have been a result of study error
and/or the inclusion of abandoned Web
sites.

Question: Did you retest the servers
from last year’s survey?

Answer: No. This was a new list and,
therefore, a completely new survey.

Question: Is the raw data available?

Answer: You can email ericm@lne.com
for private requests.

Question: Which browsers do you use
for personal use?

Answer: Linux and Netscape.

REVERSING THE PANOPTICON

Deborah Natsios, cartome.org; John
Young, cryptome.org

Summarized by Mike Vernal

Deborah Natsios described the mission
of cartome.org and cryptome.org as an
attempt to reverse the one-way flow of
information controlled by the national

10 Vol. 26, No. 7 ;login:

surveillance state. Based upon the
assumption that information is power,
Natsios likened the work of cartome.org
and cryptome.org to that of Ariadne in
the myth of Theseus and the Minotaur.
By reversing the flow of information,
cartome.org and cryptome.org hope to
empower those who may be caught in
the labyrinth of the security state, much
as Ariadne empowered Theseus with a
trail of silk thread through the labyrinth
of Crete.

John Young continued by explaining
that cryptome.org welcomed the sub-
mission of proprietary or classified doc-
uments and trade secrets from any
nation or corporation. Young described
a few such documents and the unfavor-
able responses they had received. The
British government objected to one doc-
ument and attempted to have cryp-
tome.org’s Internet service provider shut
the site down. Another document
prompted diplomatic requests from the
Japanese government for its removal. All
attempts to shut the site down have thus
far been rebuffed, but Young imagines
that someone will eventually be success-
ful.

Other information cryptome.org has
received and published include proofs
that American corporations used US
intelligence to stay ahead of foreign
competitors, the names of over 8,000
CIA informants, and, currently, the pro-
grams and keys associated with Russian
programmer Dmitri Skylarov’s crack of
Adobe’s E-book system, for which he
was arrested in July.

An audience member asked what types
of material cryptome.org would not
publish. Young explained that cryp-
tome.org is open to any kind of publica-
tion, but they have refused to publish
child pornography documents and
information related to biological war-
fare. They also feel that personal prerog-
ative takes precedence over the public’s
right to know, so they will remove per-

sonal information and documents if
requested by the person in question.
They also reminded the audience that
they do not verify the authenticity of the
information they publish – they leave
that to the interested reader.

Young repeatedly stressed what he
believed to be the transitory nature of
cryptome.org. He assured the audience
that at some point cryptome.org will
either be silenced or it will simply
mature away from the cutting edge.
When that finally happens, Young is
confident that someone else will emerge
at the vanguard of the quest to reverse
the Panopticon state.

DESIGNS AGAINST TRAFFIC ANALYSIS

Paul Syverson, U.S. Naval Research
Laboratory

Summarized by Yong Guan

Paul Syverson used a pseudonym, “Peter
Honeyman,” on his talk, a joke which
pervaded the rest of the conference.

Although the encryption of network
packets ensures privacy of the payload in
a public network, packet headers iden-
tify recipients, packet routes can be
tracked, and volume and timing signa-
tures are exposed. Since encryption
does not hide routing information, pub-
lic networks are vulnerable to traffic
analysis.

Traffic analysis can reveal, for example,
who is searching a public database, what
Web sites are surfed, which agencies or
companies are collaborating, where your
email correspondents are, what sup-
plies/quantities you are ordering and
from whom, and so forth.

Knowing traffic properties can help an
adversary decide where to spend
resources for decryption and penetra-
tion. Therefore, it is important to
develop countermeasures to prevent
traffic analysis.

The security goal of traffic-analysis-
resistant systems is to hide one or more
of the following:

■ Sender activity: that a site is sending
anything

■ Receiver activity: that a site is
receiving anything

■ Sender content: that a sender sent
specific content

■ Receiver content: that a receiver
received specific content

■ Source-destination linking: that a
particular source is sending to a
particular destination

■ Channel linking: identifying the
endpoints of a channel

Some systems were described:

Dining Cryptographers (DC) – net-
works, in which each participant shares
secret coin flips with other pairs and
announces the parity of the flips the
participant has seen to all other partici-
pants and the receiver.

Chaum mixes – a network of mix nodes,
in which messages are wrapped in mul-
tiple layers of public-key encryption by
the sender, one for each node in a route.
Most widely used anonymous commu-
nication systems use the Chaum mix
method.

There are two kinds of
routes for the messages:
mix cascade, where all
messages from any
source move through a
fixed-order “cascade” of
mixes, and random
route, where the route
of any message is

selected at random by the sender from
the available mixes.

Remailers, mainly used for email
anonymity, employ rerouting of an
email through a sequence of multiple
mail remailers before the email reaches
the recipient, so that the true origin of
the email can be hidden.

Anonymizer and SafeWeb provide fast,
anonymous, interactive communication
services. They are essentially Web prox-

11November 2001 ;login: SECURITY 2001 ●

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

Sies that filter out the identifying headers
and source addresses from Web
browsers’ requests. Instead of the user’s
true identity (e.g., IP address), a Web
server can only learn the identity of the
Web proxy. Both offer encrypted links to
their proxy (SSL or SSH). Anonymizer is
a single point of failure, whereas
SafeWeb is a double point of failure.
SafeWeb offers additional protection
from censorship.

Crowds aims at protecting users’ Web-
browsing anonymity. Like Onion Rout-
ing, the Crowds protocol uses a series of
cooperating proxies (called jondo) to
maintain anonymity within the group.
Unlike Onion Routing, the sender does
not determine the whole path. Instead,
the path is chosen randomly on a hop-
by-hop basis. At each hop a decision is
made whether to submit the request
directly to the end server or to forward it
to another randomly chosen member
according to forwarding probability. The
expected path length is controlled by the
forwarding probability. Cycles are
allowed on the path. The receiver is
known to any intermediate node on the
route. Once a path out of a crowd is
chosen, it is used for all the anonymous
communication from the sender to the
receiver within a 24-hour period.
Crowds does not have a single point of
failure and is a more lightweight crypto
than mix-based systems. However,
Crowds has limitations: all users must
run Perl code, users have to have long-
running high-speed Internet connec-
tions, an entirely new network graph is
needed for a new or reconnecting Crowd
member, connection anonymity is
dependent on data anonymity, and
responder protection is weak.

Onion Routing provides anonymous
Internet connection services. The Onion
Routing network operates on top of
existing TCP/IP networks such as the
Internet. It builds a rerouting path
within a network of onion routers,

which in turn are similar to real-time
Chaum mixes. In Onion Routing, the
data packet is broken into fixed-size
cells, and each cell is encrypted multiple
times (once for each onion router on the
path). Thus, a recursively layered data
structure called an onion is constructed.
An onion is the packet transmitted along
the rerouting path. The fixed size of an
onion limits a route to a maximum of 11
nodes in the current implementation.
Onions can be tunneled to produce
arbitrary length routes.

Onion Routing I (Proof-of-concept)
uses a network of five Onion Routing
nodes operating at the Naval Research
Laboratory. It forces a fixed length (five
hops, i.e., five intermediate onion
routers) for all routes.

Onion Routing II can support a network
of up to 50 core onion routers. For each
rerouting path through an Onion Rout-
ing network, each hop is chosen at ran-
dom. The rerouting path may contain
cycles, although only cycles with one or
more intermediate nodes are allowed.

Freedom Network also aims at provid-
ing anonymity for Web browsing. From
the user’s point of view, Freedom is very
similar to Onion Routing. Freedom con-
sists of a set of nodes (called Anony-
mous Internet Proxy) which run on top
of the existing Internet infrastructure.
To communicate with a Web server, the
user first selects a series of nodes to form
a rerouting path and then uses this path
to forward the requests to its destina-
tion. The Freedom Route Creation Pro-
tocol allows the sender to randomly
choose the path, but the path length is
fixed to be three. The Freedom client-
user interface does not allow the user to
specify a path-containing cycle. The
Freedom client must either have all the
intermediate nodes in the path chosen
or choose a preferred first node and last
node, and the intermediary nodes are
picked at random.

Paul Syverson

For more information, visit
http://www.onion-router.net and
http://www.syverson.org.

Question: Who manages the onion
routers? Are they managed independ-
ently?

Answer: Yes. The onion routers can be
distributed anywhere and be managed
by different groups.

Question: Do you believe that, the
longer the path, the safer the anony-
mous communication system?

Answer: I am not sure.

COUNTERING SYN FLOOD

DENIAL-OF-SERVICE (DOS) ATTACKS

Ross Oliver, Tech Mavens

Summarized by David Richard
Larochelle

SYN flood attacks are a nasty DoS
attack. The attacker sends a SYN packet
but does not complete the three-way
handshake. This is hard to defend
against because SYN packets are part of
normal traffic, and unlike ping attacks
you can’t firewall them. Since SYN pack-
ets are small, the attack can be done with
limited bandwidth. Finally, the attacks
are difficult to trace because source IP
addresses can be faked. Ross Oliver
stressed that it’s up to you to defend
yourself (law enforcement is unable to
deal with attacks as they occur, if they
can deal with them at all) and suggested
that firewalls employing SYN flood
defenses are the best way of doing this.

He reviewed four such products: PIX by
Cisco, Firewall-1 by Checkpoint,
Netscreen 100 by Netscreen, and App-
Safe (previously called AppSwitch) by
TopLayer. To test these products, he
placed a Web server behind the firewall
and used a machine with a script which
called wget repeatedly to request Web
pages to represent the legitimate client
traffic. An attacking machine threw SYN
packets with forged source addresses at
the Web server.

12 Vol. 26, No. 7 ;login:

The Cisco PIX used a threshold tech-
nique which allowed a set number of
incomplete connections and dropped
additional SYN packets. The tests
showed no significant improvement
over no firewall. The Firewall-1 fared
slightly better. It lets SYN packets reach
the Web server and then sends an ACK
packet to the Web server to complete the
three-way handshake. Under a SYN
flood attack, the Web server will then

have a bunch of com-
pleted connections
instead of half-open
ones. Firewall-1 pro-
tected up to 500 SYNs
per second but with
degraded response time.
The Web server returned

to normal 3–10 minutes after the attack
ceased.

Netscreen and AppSafe had the best
results. If these firewalls detect a SYN
flood attack, they proxy the incoming
connections and only send the Web
server the SYN and ACK packets if the
handshake is completed by the client.
Netscreen detects SYN floods by looking
at the number of incomplete connec-
tions. It protected up to 14,000 SYNs/sec
with acceptable response times and con-
tinued to function at higher SYN rates
but with increasing delays. The server
responded normally immediately after
the attack.

AppSafe used a more elaborate
approach. It determined whether to
proxy a connection request based on the
source IP address. SYN packets from IP
addresses which had recently behaved
legitimately were let through to the Web
server immediately. Only connections
from previously unseen or malicious IP
addresses were proxied. AppSafe was
effective up to 22,000 SYNs/sec, which
was the most traffic that the attacking
machine could produce in this test.
However, it was pointed out that, in the
test, the client machine used only one IP.

This technique may not work as well in a
situation in which there are new connec-
tions from previously unseen clients.

How much protection you need depends
on what type of attack you expect. An
attacker with a Cable or DSL connection
can produce 200 SYNs/sec. An attacker
with a T1 can produce 2,343 SYNs/sec.
According to the paper “Inferring Inter-
net Denial-of-Service Activity” pre-
sented the previous day, 46% of DoS
attacks involved more than 500
SYNs/sec but only 2.4% were above
14,000 SYNs/sec. This level can be han-
dled with a single firewall. Multiple or
distributed attacks may require multiple
parallel firewalls. Because of the wide
range of performance between devices,
Oliver stressed the importance of testing
and advised testing the devices yourself
if possible.

REAL STATEFUL TCP PACKET FILTERING WITH

IP FILTER

Guido van Rooij, Eindhoven University
of Technology

Summarized by Evan Sarmiento

Old firewall implementations used to fil-
ter TCP sessions using addresses and
ports only, creating an interesting prob-
lem. The administrator would have to
guess the source port of the packet in
order to filter it correctly. In order to
solve this, a new trend in firewalls is to
introduce stateful packet filtering. State-
ful packet filters remember and only
allow through addresses and ports of
connections that are currently set up.

Even before Guido van Rooij’s work, IP
Filter did have stateful packet filtering,
but it was implemented in the wrong
way. IP Filter does take sequence, ACK,
and window values into account, but it
makes the wrong assumption that pack-
ets seen by the filter host will also be
seen by the final destination. This
assumption caused IP Filter to drop
packets in certain situations. The new
state engine for IP Filter encompasses
the following goals:

Ross Oliver

http://www.onion-router.net
http://www.syverson.org

■ Conclusions made by the engine
must be provable.

■ All kinds of TCP behavior must be
taken into account.

■ The number of blocked packets
must be minimized.

■ Blocking of packets must never lead
to hanging connections.

■ Opportunities for abuse should be
made as small as possible.

The new state engine includes 20 bytes
per state entry and about 40 lines of C
code without loops; thus, the perfor-
mance overhead is minimal.

However, even the new state engine is
not always successful, even though it is a
great improvement. Occasionally,
blocked FIN and ACK packets cause
problems in the state timeout handling
for TCP half-closed sessions. IP Filter
drops packets coming from a few Win-
dows NT workstations for a strange and
as yet unknown reason.

Guido then outlined some future addi-
tions to IP Filter. He would like to be
able to fix fragment handling, add sup-
port for sessions entering the state table
after establishment, and check validity of
a session if a packet comes in from the
middle of the connection.

REFEREED PAPERS

SESSION: DENIAL OF SERVICE

Summarized by Stefan Kelm

USING CLIENT PUZZLES TO PROTECT TLS

Drew Dean, Xerox PARC; Adam Stub-
blefield, Rice University

Adam Stubblefield presented their work
on a DoS protection technique, namely,
the use of client puzzles within the TLS
protocol. Even though client puzzles
have been supposed to be a solution to
DoS attacks, Stubblefield pointed out
the lack of actual implementations. The
choice of TLS as the protocol to protect
against DoS seems obvious, but TLS is
subject to DoS attacks because of the
computing-expensive cryptographic

13November 2001 ;login: SECURITY 2001 ●

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

Soperations performed at both the client
and the server side. A server, however,
has to perform the more expensive RSA
decrypt operations during the session
handshake; thus any small number of
clients could easily overload a TLS server
by flooding the server with TLS hand-
shake messages. The goal of this work is
to prevent this using cheap methods.

The idea of TLS-based cryptographic
puzzles is to first let the client do the
work, and subsequently the server. If the
server is under a heavy load it sends a
so-called “puzzle request” to the client.
The client, in turn, has to compute a
number of operations which it then uses
to send a “puzzle solution” back to the
server. Thus, the server will not need to
continue the TLS handshake unless the
client has proven its intent to really open
a TLS connection.

Client puzzles are surprisingly easy to
implement on both the client and the
server side. Stubblefield used modified
OpenSSL and mod_ssl source code to
test the implementation. The implemen-
tation uses a metric which tracks unfin-
ished RSA decrypt requests in order to
decide whether or not the server is
assumed to be under attack. Since
adding more latency to the TLS protocol
was not a goal of this work, the server
only sends a puzzle request back to the
client if it really has to. This is imple-
mented by using variable thresholds.

The author concluded that they are able
to protect against certain denial-of-ser-
vice attacks at not much cost and with a
good user experience. Moreover, the
proposed solution can be implemented
using already existing code.

For more information, contact astubble
@rice.edu.

INFERRING INTERNET DENIAL-OF-SERVICE

ACTIVITY

David Moore, CAIDA; Geoffrey M.
Voelker and Stefan Savage, University
of California, San Diego

This paper, awarded the best paper
award, tried to answer the question of
how prevalent denial-of-service attacks
in the Internet currently are. The
authors ran a test over a period of three
weeks, trying to come up with an esti-
mate of worldwide DoS activity.

David Moore presented the so-called
“backscatter analysis” as their key idea
and outlined the basic technique: since
attackers normally use spoofed source IP
addresses, the “real owners” of those IP
addresses regularly receive response
packets from the systems being attacked
(Moore called these “unsolicited
responses”). By monitoring these unso-
licited responses one is able to detect
different kinds of DoS attacks. Further-
more, by observing a huge number of
different IP addresses over a longer
period of time, sampling the results can
provide an overview of attacks going on.

Moore presented some interesting
results and displayed a number of fig-
ures and tables showing the number of
attacks, the attacks over time, the attack
characterization, the attack duration dis-
tribution, and the attack rate distribu-
tion. Moore’s team observed a number
of minor DoS attacks (described as “per-
sonal vendettas”) as well as some victims
under repeated attack. Classifying the
victims by TLD showed countries like
Romania and Brazil being attacked far
more often than most other TLDs. The
presenter’s hypothesis was that either
those countries host ISPs that attack
each other, or there simply are more
hackers located in Romania and Brazil
(this was later denied by someone in the
audience stating that Romania has really
nice people).

In conclusion, the authors observed
some very large DoS attacks, though
most attacks seem to be short in dura-
tion. Another result showed the majority
of attacks being TCP based. To clarify,
this technique is not good at distin-
guishing between DoS and DDoS

attacks since it is not good at distin-
guishing between attackers.

During the Q&A session, one question
was on why the analysis showed no
attacks on the .mil domain. The
response given was that either .mil is not
under attack (unlikely) or that backscat-
ter packets are being filtered.

For more information, contact
dmoore@caida.org, or see
http://www.caida.org/outreach/papers/backscatter/.

MULTOPS: A DATA-STRUCTURE FOR

BANDWIDTH ATTACK DETECTION

Thomer M. Gil, Vrije Universiteit/MIT;
Massimiliano Poletto, MIT

Thomer Gil proposed a heuristic as well
as a new data structure to be used by
routers and similar network devices to
detect (and possibly eliminate) denial-
of-service attacks. Most DoS attacks
show disproportional packet rates with a
huge number of packets being sent to
the victim and only very few packets
being sent by the victim in response. The
new data structure, called MULTOPS
(Multi-Level Tree for Online Packet Sta-
tistics), monitors certain Internet traffic
characteristics and is able to drop pack-
ets based on either the source or the des-
tination address.

The main implementation challenges
with MULTOPS have been and still are
the precise identification of malicious
addresses, athe achievement of a small
memory footprint, and a low overhead
on forwarding “real” traffic as opposed
to DoS-based traffic. MULTOPS is
implemented as a memory-efficient tree
of nodes which contains packet-rate sta-
tistics and which dynamically grows and
shrinks with the traffic being observed.
At the current implementation, packets
are dropped based on either a variable
packet rate or a ratio. Since it usually is
impossible to identify an attacker
(because of IP spoofing), packets can be
dropped based on the victim’s IP, too.

14 Vol. 26, No. 7 ;login:

The authors succeeded in simplifying
memory management and the mecha-
nism that keeps track of packets. Gil
pointed out that their solution is suc-
cessfully being used by a network com-
pany. They are currently trying to focus
on the behavior of different TCP imple-
mentations as well as protocols other
than TCP.

Someone brought up the question of
differentiating DoS traffic from traffic
that normally shows disproportional
packet flows, e.g., video traffic. The reply
suggested the possibility of building
some kind of knowledge base. A lively
discussion on random class A addresses
within MULTOPS subsequently arose
but was taken offline.

For more information, contact thomer
@lcs.mit.edu.

SESSION: HARDWARE

Summarized by Anca Ivan

DATA REMANENCE IN SEMICONDUCTOR

DEVICES

Peter Gutmann, IBM T.J. Watson
Research Center

Peter Gutmann explained the dangers of
deleting data in semiconductors. Every-
one knows that deleting data from mag-
netic media is very hard, but not too
many realize that the same problem
exists for semiconductors, especially
since there are so many ways of building
semiconductors, each with its own set of
problems and solutions. After giving a
short background introduction in semi-
conductors and circuits (n-type, p-type,
SRAM, DRAM), Peter described some of
the most important issues:

■ Electromigration: because of high
current densities, metal atoms are
moved in the opposite direction of
the normal current flow. The conse-
quence is that the operating proper-
ties of the device are strongly
altered.

■ Hot carriers: during operation, the
device heats up and its characteris-
tics change considerably.

■ Ionic contamination: this is no
longer an issue and its effects are no
longer significant.

■ Radiation-induced charging: it
freezes the circuit into a certain
state.

The first phenomenon enables attackers
to recover partial information from spe-
cial-purpose devices (e.g., cryptographic
smartcards). The next two can be used
to recover data deleted from memory. In
order to avoid long- and short-term data
retention from semiconductors (a DES
key was recovered in the ‘80s),
researchers developed a series of solu-
tions that use various semiconductor
forensic techniques, including the fol-
lowing two:

■ Short-term retention: probably the
safest way to defend against it is not
to keep the same values in the same
memory cells for too long (maxi-
mum a few minutes).

■ Long-term retention: in 1996, some
researchers proposed periodically
flipping the stored bits. In this way,
no cell holds the same bit value for
long enough to “remember” it.

In the end, Peter talked about how all
the problems cited above extend to flash
memory. For example, random genera-
tors can generate strings of 1s when the
pool is empty, or information can be
leaked into adjacent cells into shared cir-
cuitry.

Even though the entire presentation
scared at least one person in the audi-
ence (guess who?), Peter assured us that
reality is not that gloomy. In fact, the
only problem is the lack of a standard.
Every time people decide to choose one
implementation method, they should
also choose which solutions are best for
it. Answering a question, Peter told us
that personal computers are not affected

http://www.caida.org/outreach/papers/backscatter/

by those problems but that most special-
ized devices, like airplane black boxes,
can leak information if analyzed with
very sophisticated equipment. But then
again who has such equipment?

STACKGHOST: HARDWARE-FACILITATED

STACK PROTECTION

Mike Frantzen, CERIAS; Mike Shuey,
Purdue University

The authors presented a software solu-
tion to the return-pointer hijacking
problem. The most important step in
the function-call process is when the
caller saves the return pointer before
giving the control to the called function.
Many attacks are based on changing this
pointer. When the callee finishes, the
return pointer dictates which function
takes control next. StackGhost is a piece
of software that automatically and trans-
parently saves the return pointer and
replaces it with another number. When
the called function completes, Stack-
Ghost verifies the integrity of that num-
ber (catching, in this way, possible
attacks) and reinstalls the correct
pointer value.

The security of StackGhost depends on
how it modifies the return pointer to
catch attacks; the authors have tried sev-
eral ways:

■ Per kernel XOR with a 13-bit signed
cookie: the main problem is that an
attacker can find out the cookie by
starting several arbitrary programs.

■ Per process XOR with a 32-bit
cookie: this is safer than the previ-
ous method, but more expensive.

■ Encrypt/decrypt the return pointer:
this method seems to be the most
expensive.

■ Return-address stack: this method
replaces the return pointer with
another number and saves the
pointer into a return-address stack.
However, this would impede other
applications from running correctly.

15November 2001 ;login: SECURITY 2001 ●

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

SAfter making performance measure-
ments for all techniques, the authors
noticed that the chances of StackGhost
not catching an attack were 1 in 3 for
XOR cookies and 1 in 232 for the return-
address stack. The conclusion was that
StackGhost was offering protection
against return-pointer overriding to all
processes in the system (which might be
seen as a disadvantage).

IMPROVING DES COPROCESSOR THROUGH-
PUT FOR SHORT OPERATIONS

Mark Lindemann, IBM T.J. Watson

Research Center; Sean W. Smith,

Dartmouth College

While the first two talks in this session
were at opposite poles (one deeply hard-
ware and one purely software), the third
one was somehow in the middle. The
presenter, Sean Smith, is one the fathers
of the cryptographic card developed at
IBM and presently working at Dart-
mouth College. Everything started in a
very optimistic fashion, with the usual
introduction we would have expected
from an IBM representative trying to sell
us this device: “It is secure . . . it is fast
. . . it is reliable.” All the buzzwords were
there. However, with the next slide this
changed to “It is not as secure . . . fast . . .
as we thought.” For example, the specifi-
cation promised the DES speed to be 20
megabytes/second when in reality a
friend obtained less than two kilobytes/
second in a database application. Where
was the discrepancy coming from? The
main intuition was that the specification
gives the performance for operations on
megabytes of input. The real speed is
much slower if the data is shipped to the
card in small chunks. The difference
between specs and reality was too big
not to be studied, and Lindemann
decided to find out the reasons behind
it. First, they built a model that simu-
lates the database application and then
tried to improve the speed by modifying
the execution conditions in the follow-
ing ways:

■ Reducing card-host interaction:
“folklore in IBM” taught them that
any card-host interaction consumes
too much time. Thus, they rewrote
the application to minimize the
number of interactions. The speed
went up to 18–23 kilobytes/second;
however, it was still too far from
megabyte speed.

■ Batching all operations into one
chip operation: chip resets were too
expensive. The speed became 360
kilobytes/second.

■ Batching into multiple chip opera-
tions: it reduced the number of
Layer 3 – Layer 2 switches. The
speed changed to 30–290
kilobytes/second, still not good.

■ Reducing data transfers: they did it
by using an internal key-table and
boosted the speed to 1,400 kilo-
bytes/second.

■ Using memory-mapped I/O: this
eliminated the internal ISA bus bot-
tleneck. The speed went up to 2,500
kilobytes/second.

■ Batching operation parameters:
instead of sending them as separate
packets. It increased the speed to
5000 kilobytes/second. This was
even more than they were expect-
ing, but the results were incorrect.
The client had asked for speed but
hadn’t mentioned anything about
correctness. So was the problem
solved?

■ Not using memory-mapped I/O: to
increase accuracy, they gave up on
memory-mapped I/O for initializa-
tion vectors and count. Unfortu-
nately, there was a small
performance cost: the speed was
now 3,000 kilobytes/second.

From the client’s point of view, all of
these steps showed them that the only
way to maximize the performance while
using the secure coprocessor was to
design DES-batched API. From the
designer’s point of view, the conclusions

were simpler: always distrust folklore
and think if and how people will use
your product before designing it!

SESSION: FIREWALLS/INTRUSION

DETECTION

Summarized by Stefan Kelm and Yong
Guan

ARCHITECTING THE LUMETA FIREWALL

ANALYZER

Avishai Wool, Lumeta

“What is your firewall doing?” Avishai
Wool asked the audience at the begin-
ning of his presentation, thereby
describing the motivation to build LFA,
the “Lumeta Firewall Analyzer.”

Firewalls have been installed by almost
all companies connected to the Internet.
However, the underlying policy often is
far from being good enough to actually
protect the company from outside
attackers. Network administrators often
do not know how to set up a firewall
securely, much less how to test or audit
the firewall configuration. Wool pointed
out that LFA is the successor of the Fang
prototype system built at Bell Labs as a
firewall analysis engine.

The key idea is not to probe the actual
firewall in any way but to allow testing
of the configuration before the firewall
is deployed. The firewall’s routing table
and configuration files are used as input
to the LFA, which parses these files and
simulates the behavior of any possible
packet flow combination (LFA mainly
offers support for Firewall-1 and PIX).
The results are presented to the user as
HTML pages.

Wool concluded by giving a short
demonstration. As input to the LFA, he
used a short Firewall-1 policy which
contained only six rules and explained
why even such a short rule set might
lead to problems once the firewall is
deployed. During the Q&A session he
emphasized that the LFA only checks
packet headers, not the content, and

16 Vol. 26, No. 7 ;login:

cannot therefore detect tunneling prob-
lems.

For more information, contact
yash@acm.org, or visit
http://www.lumeta.com/firewall.html.

TRANSIENT ADDRESSING FOR RELATED

PROCESSES: IMPROVED FIREWALLING BY

USING IPV6 AND MULTIPLE ADDRESSES PER

HOST

Peter M. Gleitz and Steven M. Bellovin,
AT&T Labs-Research

The authors proposed a method to sim-
plify firewall decisions. By using the
large address space brought by IPv6,
they employed a strategy of multiple
network addresses per host. That is, for
each request on the client host an IPv6
address is tied to the client process. The
firewall now makes access decisions
based on transport layer protocol infor-
mation (i.e., filtering is shifted from
ports to addresses). Once approved, the
firewall allows all traffic between the two
peers to pass to and fro. Once the service
is finished the IPv6 address is discarded.
This method is called TARP (transient
addressing for related processes). TARP
employs two different types of
addresses: (fixed) server addresses and
process group addresses.

Gleitz discussed how TARP works with
TCP and UDP applications and with the
firewall, router, domain name server,
and IPSEC. Employing TARP does not
necessarily affect the routers, though
TARP-aware routers can perform better.
Moreover, Gleitz pointed out that no
modifications to standard applications
such as Telnet, SSH, FTP, Sendmail, or
TFTP are necessary in order to use
TARP. He also mentioned briefly some
interop problems with protocols such as
DNS and ICMPv6.

For more information, contact
pmgleit@netscape.net.

NETWORK INTRUSION DETECTION: EVASION,
TRAFFIC NORMALIZATION, AND END-TO-END

PROTOCOL SEMANTICS

Mark Handley and Vern Paxson, ACIRI;
Christian Kreibich, Technische Univer-
sität München

This paper focused on the problem of
network intrusion detection system
(NIDS) evasion. Attackers usually can
fool any NIDS by exploiting certain
ambiguities in the packet flow being
monitored by the NIDS, i.e., (1) the
NIDS may lack complete analysis of the
packet flow (e.g., no TCP stream re-
assembly); (2) the NIDS may lack end-
system knowledge (e.g., certain
application vulnerabilities); and (3) the
NIDS may lack network knowledge
(e.g., the topology between the NIDS
and an end system).

As a solution, Paxson proposed the
deployment of a “normalizer,” the goal
of which would be to observe all packets
being sent between two network nodes
(he called that a “bump-in-the-wire”)
and to modify (“normalize”) packets
that seem to be ambiguous for one rea-
son or another. As an example the
author described problems with two
overlapping fragments: the normalizer
would re-assemble (and re-fragment, if
necessary) those packets before forward-
ing. Since re-assembly is a valid opera-
tion, the normalizer would, in this
example, have no impact on the seman-
tics at all.

Paxson also pointed out some of the
problems with this approach, one of
which is the “cold start” problem:
(re-)starting the normalizer will show
many valid connections already estab-
lished. It is difficult to handle those con-
nections accordingly (this is also true for
the NIDS itself). The normalizer has
been implemented and will be available
at www.sourceforge.net soon.

In the Q&A session Steven Bellovin
wanted to know whether normalization

http://www.lumeta.com/firewall.html

would not be needed at the application
layer as well. The presenter answered in
the affirmative.

For more information, contact
vern@aciri.org.

SESSION: OPERATING SYSTEMS

Summarized by Mike Vernal

SECURITY ANALYSIS OF THE PALM OPERATING

SYSTEM AND ITS WEAKNESSES AGAINST

MALICIOUS CODE THREATS

Kingpin and Mudge, @stake, Inc.

Kingpin and Mudge began their presen-
tation with a bold fashion statement,
appearing in matching white bathrobes.
Their bathrobes aimed to underscore the
fact that PDAs can undermine user pri-
vacy in a public setting. Their efforts
were later rewarded with the coveted
USENIX Style Award, presented by the
real Peter Honeyman, of the University
of Michigan.

The presentation centered on the secu-
rity threat posed by the recent ubiquity
of Personal Digital Assistants (PDAs),
and, more specifically, devices running
the Palm Operating System. Palm
devices increasingly are being used in
security-sensitive settings such as hospi-
tals and government agencies. While the
government is now aware of the security
threat posed by PDAs, the corporate
world has remained generally oblivious.

17November 2001 ;login: SECURITY 2001 ●

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

SThe security threat of the Palm stems
from the PalmOS’s lack of a well-defined
security framework. Specific weaknesses
enumerated include the direct address-
ability of hardware, the lack of memory
encryption, the lack of ACLs, weak
obfuscation of passwords, and a back-
door debug mode that allows for the
bypassing of “system lockout.” Because
of these and other weaknesses, the audi-
ence agreed with the assertion that
developing a secure application on top
of the PalmOS would be impossible.

The presentation suggested that
unscrupulous users could exploit a
number of weaknesses to install mali-
cious code, including normal applica-
tion installation, desktop conduits,
creator ID replacement, wireless com-
munications, and the Palm Debugger.
Another threat raised by Kingpin and
Mudge was the possibility of a new set of
cross-pollinating viruses, which could be
acquired via a Palm and propagate
themselves to desktop computers via the
HotSync operation, or vice versa.

With the growing popularity of PDAs,
Kingpin and Mudge invoked Occam’s
Razor: all other factors being equal, the
PDA may be the malicious user’s easiest
point of entry into an information net-
work. The upcoming PalmOS 4.0
reportedly fixes some of the security
concerns raised. In the interim, users
should be made aware of the possible
security threats and restrict or eliminate
their use of sensitive data and applica-
tions on Palm devices.

SECURE DATA DELETION FOR LINUX

FILE SYSTEMS

Steven Bauer and Nissanka B. Priyan-
tha, MIT

Steven Bauer presented an implementa-
tion of a kernel-level secure data-dele-
tion (SDD) mechanism for the ext2 file
system.

Bauer suggested that with the increasing
prevalence of public kiosks, thin clients,
multi-user computing clusters, and dis-
tributed file systems, users will want to
ensure that when their data is deleted
from these systems, it is truly and irre-
trievably deleted.

In 1996, Peter Gutmann of IBM demon-
strated that data that had been overwrit-
ten on a magnetic disk could be
recovered using advanced probing tech-
niques. While popular lore has suggested
certain government agencies may be
able to recover data overwritten dozens
of times, no commercial data recovery
company contacted in conjunction with
Bauer’s research believed that it could
recover data that had been overwritten
more than once. As such, the SDD sys-
tem as described probably only needs to
overwrite data a few times.

This SDD system was designed to ensure
that all flagged data is deleted, even in
the event of system failure. The deletion
process was designed as an asynchro-
nous daemon to ensure that it did not
interfere with normal operation and
performance. Though implemented for
the ext2 file system, Bauer asserts that
this system should be portable to any
block-oriented file system.

The ext2 implementation used the
unused secure-deletion flag, settable
with the chattr() function. With this
mechanism, the granularity with which
secure deletion can be specified ranges
from an entire device to an individual
file. Questions were raised as to the vul-
nerability of temporary files that are not
flagged in a secure deletion zone. Bauer
recommended that for maximum secu-
rity, the entire device should be flagged
for secure deletion.

Kingpin and Mudge

SESSION: MANAGING CODE

Summarized by Sameh Elnikety

STATICALLY DETECTING LIKELY BUFFER

OVERFLOW VULNERABILITIES

David Larochelle and David Evans, Uni-
versity of Virginia

Buffer overflow attacks account for
approximately half of all security vul-
nerabilities. Programs written in C are
particularly susceptible to buffer over-
flow attacks because C allows direct
pointer manipulations without any
bounds checking.

Run-time approaches to mitigate the
risks of buffer overflow incur perfor-
mance penalties, and they turn buffer
overflow attacks into denial-of-service
attacks by terminating execution of the
attacked processes. Static checking over-
comes these problems by detecting likely
vulnerabilities before deployment.

The authors developed a practical light-
weight static analysis tool based on
LCLint to detect a high percentage of
likely buffer overflow vulnerabilities.

The tool exploits semantic comments
(annotations) that describe programmer
assumptions and intents. These annota-
tions are treated as regular C comments
by the compiler but are recognized as
syntactic entities by LCLint. The annota-
tions represent preconditions and post-
conditions for functions to determine
how much memory has been allocated
for buffers. LCLint uses traditional com-
piler data flow analyses with constraint
generation and resolution. Also, LCLint
uses loop heuristics to efficiently analyze
many loop idioms in typical C pro-
grams.

The authors used the tool to analyze wu-
ftpd, which is a popular open source
FTP server, and part of BIND, which is a
set of domain-name tools and libraries
that is considered the reference imple-
mentation of DNS. Running LCLint is
similar to running a compiler. For wu-

18 Vol. 26, No. 7 ;login:

ftpd, it took less than one minute for
LCLint to analyze all 17,000 lines of
unmodified wu-ftpd source code. This
resulted in 243 warnings that showed
known and unknown buffer overflow
vulnerabilities.

LCLint source code and binaries are
available from
http://lclint.cs.virginia.edu.

FORMATGUARD: AUTOMATIC PROTECTION

FROM PRINTF FORMAT STRING

VULNERABILITIES

Crispin Cowan, Matt Barringer, Steve
Beattie, Greg Kroah-Hartman, WireX
Communications, Inc.; Mike Frantzen,
Purdue University; and Jamie Lokier,
CERN

In June 2000, a major new class of vul-
nerabilities called format bugs was dis-
covered when a vulnerability in
WU-FTP appeared that looked almost
like a buffer overflow but was not. It is
unsafe to allow potentially hostile input
to be passed directly as the format string
for calls to printf-like functions. The
danger is that the inclusion of % direc-
tives, especially %n, in the format string
coupled with the lack of any effective
type or argument counting in C’s
varargs facility allows the attacker to
induce unexpected behavior in pro-
grams.

The authors developed FormatGuard, a
small patch to glibc. It provides general
protection against format bugs using
particular properties of the GNU CPP
macro-handling mechanism to extract
the count of actual arguments to printf
statements. This is then passed to a safe
printf wrapper. The wrapper parses the
format string to determine how many
arguments to expect, and if the format
string calls for more arguments than the
actual number of arguments, it raises an
intrusion alert and kills the process.

FormatGuard fails to protect against for-
mat bugs under several circumstances.
For example, if the program uses a func-

tion pointer that has the address of
printf, then it evades the macro expan-
sion.

FormatGuard is incorporated in WireX’s
Immunix Linux distribution and server
products. It is available as a GPL’d patch
to glibc at http://immunix.org.

DETECTING FORMAT STRING VULNERABILITIES

WITH TYPE QUALIFIERS

Umesh Shankar, Kunal Talwar, Jeffrey S.
Foster, and David Wagner, University
of California, Berkeley

Systems written in C are difficult to
secure, given C’s tendency to sacrifice
safety for efficiency. Format string vul-
nerabilities can occur when user input is
used as a format specifier. One of the
most common cases is when the pro-
gram uses printf with one argument: a
user-supplied string assuming that the
string does not contain any % directive.
The authors presented a tool (cqual)
that automatically detects format string
bugs at compile time using type-theo-
retic analysis techniques. With this static
analysis, vulnerabilities can be proac-
tively identified and fixed before the
code is deployed.

Cqual builds an annotated Abstract Syn-
tax Tree (AST). Then, it traverses the
AST to generate a system of type con-
straints, which is solved online. Warn-
ings are produced whenever an
inconsistent constraint is generated.
Cqual presents the results of tainting
analysis to the programmer using Pro-
gram Analysis Mode for Emacs (PAM).
PAM is a GUI that is designed to add
hyperlinks and color mark-ups to the
preprocessed text of the program. The
interface shows the taint flow path to
help programmers determine how a
variable becomes tainted.

The configuration files makes cqual
usable without modifying the source
code. The authors analyzed four secu-
rity-sensitive benchmark programs with
the same standard prelude file and no

http://lclint.cs.virginia.edu
http://immunix.org

direct changes to the applications’
source code. Typically a few application-
specific entries were added to the prel-
ude file to improve accuracy in the
presence of wrappers around library
functions. Cqual reliably finds all known
bugs for the benchmark programs. It
also reports few false positives. Cqual is
fast; it usually takes less than a minute.

Cqual is available at
http://bane.cs.berkeley.edu/cqual.

SESSION: AUTHORIZATION

Summarized by Rachel Greenstadt

CAPABILITY FILE NAMES: SEPARATING

AUTHORIZATION FROM USER MANAGEMENT

IN AN INTERNET FILE SYSTEM

Jude T. Regan, consultant; Christian D.
Jensen, Trinity College

On the Internet there is no reliable way
to establish an identity. Flexible user-
user collaboration outside of an admin-
istered system so that people could
create ad hoc work groups and remove
arbitrary limitations to information
sharing is the authors’ goal.

Such a system should be globally accessi-
ble, easy to use, and require as little
intervention by system administrators as
possible. This system should integrate
with existing systems and applications. It
should have fine granularity so that
users would not have to use complicated
export mechanisms to share files.

The authors used the concept of a capa-
bility, a token conveying specified access
rights to a named object in order to
make the identity of the object and the
access rights inseparable. They embed-
ded the capability in something every
system knows – the file name.

The authors concluded that the system
was safe from interception and modifi-
cation Attackers could forge the client
part but not the server part of the file
names. Service could be interrupted, but
protecting against this is impossible

19November 2001 ;login: SECURITY 2001 ●

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

Swithout complete control of the net-
work. Performance was evaluated in
comparison to NFS. Most of the over-
head was in the open statement. Reads
were slightly slower and writes were
much slower, but they felt this could be
alleviated by implementing symmetric
writes.

KERBERIZED CREDENTIAL TRANSLATION: A
SOLUTION TO WEB ACCESS CONTROL

Olga Kornievskaia, Peter Honeyman,
Bill Doster, and Kevin Coffman, CITI,
University of Michigan

There are two different authentication
mechanisms: those used for services
such as login, AFS, and mail, for which
Kerberos is popular, and public key-
based mechanisms such as SSL, which is
used to establish secure connections on
the Web. These systems need to be able
to work together to satisfy a request.

The authors propose to achieve the best
of both worlds by leveraging Kerberos to
solve PKI key management. This will use
existing infrastructures which allow
strong authentication on the Web with
SSL and which provide access to Kerber-
ized back-end services. They propose a
system to provide interoperability
between PKI and Kerberos. Their system
consists of (1) a Certificate Authority
(CA), KX509, which creates short-lived
certificates, (2) a Web server which acts
like a proxy for users by requesting serv-
ices from Kerberized back-end services
and (3) a Kerberized Credential Transla-
tor, which translates public-key creden-
tials to Kerberos. They created a
prototype of their system called WebAFS
using AFS as an example Kerberized ser-
vice.

DOS AND DON’TS OF CLIENT AUTHENTICA-
TION ON THE WEB

Kevin Fu, Emil Sit, Kendra Smith, and

Nick Feamster, MIT

[This paper received the Best Student
Paper Award]

Kevin gave a very amusing presentation
which illustrated the gap between secu-
rity theory and practice. He described a
variety of Web sites that used insecure
client authentication schemes and pre-
sented hints on how to avoid their mis-
takes.

Client authentication seems like a solved
problem, but many sites continue to
come up with homebrew schemes which
just don’t quite get it right. Out of the 27
Web sites the cookie eaters group exam-
ined, they weakened the security on two
sites, were able to mint authenticators
on eight, and on one site were able to
obtain the secret key. Some of these sites
were high profile, such as the Wall Street
Journal (wsj.com), Sprint PCS (sprint-
pcs.com), and FatBrain (fatbrain.com).

In most cases, the mistakes made in
these sites were simple. By simply look-
ing at their cookie files the authors could
query Web servers and look at headers,
responses, and create sample authentica-

tors. Except for
Sprint, these
attacks involved no
eavesdropping at
all. The schemes
were not even
strong against what
the authors termed
the “interrogative
adversary.” This
adversary has no
special access, but it

adaptively queries a Web server a rea-
sonable number of times. It just sits
there and connects to port 80; it cannot
defeat SSL client authentication, HTTP
basic, or digest authentication. The best
such an adversary can do against a pass-

Kevin Fu

http://bane.cs.berkeley.edu/cqual

word sent in the clear is a dictionary
attack. However, some homebrew cookie
schemes are vulnerable.

In the case of the Wall Street Journal, a
site with half a million paid subscribers
who can track their stocks and buy arti-
cles, the authors found that the makers
of the site had misused cryptography
and created an authenticator weaker
than a plaintext password.

Some hints provided for client authenti-
cation were: limit the lifetime of authen-
ticators since browsers cannot be trusted
to expire cookies; expiration dates must
be cryptographically signed (this was
another problem with WSJ). Authentica-
tors should be unforgeable, and cookies
should not be modifiable by the user.
There should be no bypassing of pass-
word authentication. Digital signatures
are great, but you should not allow the
things you sign to be ambiguous. For
example, the concatenation of “Alice, 21-
Apr” and “Alice2, 1-Apr” is the same.
Delimiters can help solve this problem.
He presented a simple scheme for build-
ing an authenticator which would work
against the interrogative adversary.

In summary, there are many broken
schemes out there, even in popular Web
sites. There are even more juicy details
in the authors’ technical report. Cookie
schemes are limited; live with it or move
on. You can join the authors by donating
your cookies for analysis at
http://cookies.lcs.mit.edu.

SESSION: KEY MANAGEMENT

Summarized by Sameh Elnikety

SC-CFS: SMARTCARD SECURED

CRYPTOGRAPHIC FILE SYSTEM

Naomaru Itoi, CITI, University of
Michigan

Storing information securely is one of
the most important applications of
computer systems. Secure storage pro-
tects the secrecy, authenticity, and
integrity of the information. SC-CFS

20 Vol. 26, No. 7 ;login:

implements a secure file system and is
based on Matt Blaze’s Cryptographic
File System for UNIX (CFS). SC-CFS
uses a smartcard to generate a key for
each file rather than for each directory.
The per-file key encryption counters the
password-guessing attack and minimizes
both the damage caused by physical
attack, compromised media, and bug
exploitation.

When an encrypted file is updated, a
new key is generated for that file and the
file is re-encrypted for increased secu-
rity. SC-CFS employs the same authenti-
cation mechanism as CFS, using an
encrypted signature containing both a
random number and a predefined
sequence. A signature is stored in each
directory. When a user starts to access a
directory, SC-CFS gets the user key and
decrypts the signature to recover the
predefined sequence. If the sequence is
not recovered, SC-CFS denies the user
access to the directory.

SC-CFS is more secure than CFS
because the master key is a random
number instead of a password. This pre-
vents dictionary attacks. Also, the user
master key is not exposed to the host,
and a stolen file key would reveal only
one file and then only until that file is
updated and consequently re-encrypted
with a new file key.

The author implemented SC-CFS as an
extension to CFS, then evaluated the
performance of SC-CFS in comparison
with CFS and a local Linux file system
(ext2) using the Andrew Benchmark
test. The results show that the perfor-
mance of the system is not yet satisfac-
tory because smartcard access is the
bottleneck of SC-CFS. SC-CFS works as
efficiently as ext2 and CFS when it does
not access a smartcard. However, SC-
CFS is significantly slower than CFS
when it accesses a smartcard because
the smartcard generates a key in 0.31
seconds.

SECURE DISTRIBUTION OF EVENTS IN

CONTENT-BASED PUBLISH SUBSCRIBE

SYSTEMS

Lukasz Opyrchal and Atul Prakash,
University of Michigan

Some Internet applications, such as
wireless delivery services and inter-
enterprise supply-chain management
applications, require high scalability as
well as strict security guarantees. The
content-based publish subscribe para-
digm is one of the messaging technolo-
gies that facilitate building more scalable
and flexible distributed systems. In the
publish subscribe model, publishers
publish messages and send them to sub-
scribers via brokers. Each broker man-
ages a large number of subscribers. The
broker encrypts every message and
broadcasts it to subscribers. The broker
needs to guarantee the confidentiality of
the messages so that only a specific
group of subscribers can read the mes-
sage.

Each subscriber has an individual sym-
metric pair key shared only with its bro-
ker. A naïve way to achieve this secure
end-point delivery is for the broker to
encrypt each message with a new key.
Then, the broker sends the new key
securely to each subscriber in the target
group, by encrypting the new key with
the symmetric key shared between the
broker and the subscriber. The number
of encryptions limits the broker
throughput and system scalability. For
the naïve approach, the number of
encryptions is the same as the group
size.

The authors presented four caching
strategies to reduce the number of
required encryptions. Simple cache
assumes that many messages will go to
the same subset of subscribers. Simple
cache creates a separate key for each
group and caches it. Build-up cache is
based on the observation that many
groups are subsets of other larger
groups. Build-up cache uses a heuristic

http://cookies.lcs.mit.edu

to select some groups to cover the target
group. Clustered cache uses a much
smaller cache size by dividing the sub-
scribers into clusters. Then, it uses the
simple-cache method to send a message
to the target subgroup in each cluster.
Clustered-popular cache maintains both
a simple cache and a clustered cache.
When a new message arrives, clustered-
popular cache searches for the target
group in the simple cache. If the group
is not found it uses the clustered cache
to send the message to the appropriate
subgroup in each cluster.

The authors analyzed the four caching
strategies to find the average number of
required encryptions and ran a number
of simulations to confirm the theoretical
results. They found that clustering the
subscribers can substantially reduce the
number of encryptions, which can be
further reduced by adding a simple
cache to clustered cache. Build-up cache,
however, has little effect on the number
of required encryptions.

A METHOD FOR FAST REVOCATION OF

PUBLIC KEY CERTIFICATES AND SECURITY

CAPABILITIES

Dan Boneh, Stanford University; Xuhua
Ding and Gene Tsudik, University of
California, Irvine; Chi Ming Wong,
Stanford University

The authors presented a new approach
to fast certificate revocation using an
online semi-trusted mediator (SEM).
Suppose an organization has a Public
Key Infrastructure that allows users to
encrypt and decrypt messages and to
digitally sign the messages. If an adver-
sary compromises the private key of a
user, then the organization needs to
immediately prevent the adversary from
signing or decrypting any message.

The overall architecture of the system is
made up of three components. First, the
central Certificate Authority (CA) gen-
erates a public key and a private key for
each user. The private key consists of
two parts. The CA gives the first part

21November 2001 ;login: SECURITY 2001 ●

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

Sonly to the user, and the other part only
to the SEM. Second, the SEM responds
to user requests with short tokens. The
tokens reveal no information to other
users. Third, the user contacts the SEM
in case he wants to generate a digital sig-
nature or to decrypt a message. The sys-
tem uses the MRSA encryption
technique, which is similar to RSA, in a
way that is transparent to peer users.
The encryption process is identical to
standard RSA. For the decryption
process, the SEM does part of the
decryption and the user does the
remaining part. Both the SEM and the
user must perform their share to decrypt
a message. Digital signatures are gener-
ated in a similar way to performing
decryption.

The authors implemented the system
using OpenSSL and provided a client

API and server daemons.
The performance meas-
urements showed that
signature and encryption
times are essentially
unchanged from the
user’s perspective. The
authors also imple-

mented a plug-in for Eudora that
enables users to sign their emails using
the SEM. This approach achieves imme-
diate revocation of public key certifi-
cates and security capabilities for
medium-size organizations rather than
the global Internet.

The implementation of the system is
available at:
http://sconce.ics.uci.edu/sucses.

The SEM Eudora plug-in is available at:
http://crypto.stanford.edu/semmail.

SESSION: MATH ATTACKS!

Summarized by Kevin Fu

PDM: A NEW STRONG PASSWORD-BASED

PROTOCOL

Charlie Kaufman, Iris Associates; Radia
Perlman, Sun Microsystems
Laboratories

A bright and cheery Radia Perlman
talked about Password-Derived Moduli
(PDM), a protocol useful for both
mutual authentication and securely
downloading credentials. PDM’s notable
features and improvements over existing
protocols include unencumberance by
patents, better overall server perfor-
mance, and better performance when
not storing password-equivalent data on
the server.

Despite the promise of smartcards, pass-
words are still important for authentica-
tion. Demonstrating this importance,
Perlman cited her own habit of misplac-
ing any hardware token given to her.
However, she can remember a password.

PDM deterministically generates a
prime from a user’s password and salt
such as the username. To generate a
prime, the user Alice fills out chunks of
the right size with the hash of (“Alice,”
password, constant). PDM then searches
for a safe “Sophie Germain” prime (p). A
prime is Sophie Germain if (p-1)/2 is
also a prime. PDM then uses this prime
as the modulus in Diffie-Hellman
exchanges.

PDM is potentially fast on a server and
tolerably slow on a client. Although 512-
bit Diffie-Hellman moduli are within
the realm of breakability, a dictionary
attack against PDM requires a Diffie-
Hellman exponentiation per password
guess. This places a lot of computational
burden on an adversary. Using 512-bit
moduli instead of 1024-bit moduli
improves performance on the server by a
factor of six.

PDM strives not to leak information and
avoids timing attacks by properly order-

Gene Tsudik

http://sconce.ics.uci.edu/sucses
http://crypto.stanford.edu/semmail

ing cryptographic operations. PDM can
also avoid storing password-equivalent
data on the server. If the server is com-
promised, the user’s password can
remain safe. Other protocols avoid pass-
word equivalence by having extra Diffie-
Hellman exchanges.

Deriving a 512-bit prime from a pass-
word is computationally expensive.
Ten seconds on a reasonably modern
machine is not uncommon. However,
there are simple improvements. Perl-
man’s son improved the client perfor-
mance by a factor of three by using a
sieve instead of division. If a user pro-
vides a hint in addition to the password,
the generation of the prime can finish in
a fraction of a second. The hint could
be the first few bits of the prime, easily
encoded as a single character to remem-
ber.

Then came questions. Asked about the
distribution of primes derived from
passwords, Perlman answered that the
primes are uniformly distributed in the
range of possible primes. For all possible
passwords, this is uniformly distributed.

Asked why PDM depends on a strong
Sophie Germain prime, Radia explained
that the base 2 is then guaranteed to be a
generator if the prime is also congruent
to 3 mod 8. If 2 were not a generator,
then 2 would generate a smaller sub-
group – reducing security.

DETECTING STEGANOGRAPHIC CONTENT ON

THE INTERNET

Niels Provos, CITI, University of
Michigan

Because Slashdot had just discussed a
“theoretical” system to detect stegano-
graphic content on the Internet, Niels
decided it was time to discuss a system
already doing this. Instead of talking
about methods to defend against statisti-
cal steganalysis, Niels talked about his
software to find hidden messages in
JPEG files.

22 Vol. 26, No. 7 ;login:

The popular press claims that terrorists
like Osama bin Laden use steganogra-
phy. Of course, this is totally unsubstan-
tiated. Hence, Niels sought answers to
three questions:

■ How to automatically detect
steganographic content

■ How to find a source of images with
potentially steganographic content

■ How to determine whether an
image contains hidden content

Steganography is the art and science of
hiding the fact that communication is
happening. In modern steganography,
one should only be able to detect the
presence of hidden information by
knowing a secret key. The goal of an
adversary is to detect steganography, not

necessarily to recover
the message. One must
select a cover medium to
embed a hidden mes-
sage. Bits are changed to
embed a message. The
original cover medium
is then destroyed.

There are many systems to hide mes-
sages in images: JSteg, JPHide, and Niels’
Outguess. All of these systems cause dif-
ferent distortions in images. Niels wrote
the “stegdetect” program to detect
images modified by JSteg, JPHide, and
Outguess. The program gives a notion of
how likely it is that an image contains
hidden content.

On a 1200MHz Pentium III, stegbreak
processes 15,000 words/sec for JPHide,
47,000 words/sec for Outguess, and
112,000 words/sec for JSteg. Because a
single fast machine can only process so
much, Niels wrote the “disconcert” pro-
gram to mount a distributed dictionary
attack.

Niels has sorted through over 2 million
JPEG images from eBay. Although
17,000 images came up positive, no gen-
uine steganography was found. There is

as yet no final conclusion on whether
the underworld uses steganography in
this way. The popular press will have to
continue with unsubstantiated claims.

Asked if one can determine the quality
metric used to create a JPEG, Niels said
this is possible but will not reveal
whether there is steganographic content
because modifications of DCT coeffi-
cients do not modify quality of images
much.

Another person asked for advice on how
to hide messages while minimizing dis-
tortion. Niels explained that hiding just
one bit is easy. Otherwise it is important
to realign the statistical properties of the
image after embedding a message.

One audience member suggested that
terrorists might use homebrew stegano-
graphic software. In such a case, will the
same statistical tests help detect hidden
messages? Niels said that with certain
generic assumptions, maybe. One would
need to know the statistical signature
common to the software.

Another audience member asked if Niels
has searched for JPEGs on sites other
than eBay. Niels responded that he has
only considered eBay because the popu-
lar press mentioned auctions as the per-
fect venue. So far the press seems to be
fantasizing.

Finally, a participant asked if the num-
ber of false positives fit any hypothesis.
Niels answered no. The images vary in
quality and size. So, from the beginning,
many images are mischaracterized by
the statistical tests. Niels did run his
software against a test set though. It cor-
rectly detected the hidden messages.

For more information, see
http://www.citi.umich.edu/u/provos/ or
http://www.outguess.org/.

Niels Provos

http://www.citi.umich.edu/u/provos/
http://www.outguess.org/

TIMING ANALYSIS OF KEYSTROKES AND

TIMING ATTACKS ON SSH

Dawn Xiaodong Song, David Wagner,
and Xuqing Tian, University of
California, Berkeley

Dawn Song explained how two traffic
analysis vulnerabilities in the SSH proto-
col can leak damaging amounts of infor-
mation. By eavesdropping on an SSH
session, Song demonstrated the ease of
recovering confidential data such as root
passwords typed over an SSH connec-
tion. Song’s group then built the Herbi-
vore attacker system, which tries to learn
users’ passwords by monitoring SSH ses-
sions. Herbivore can speed up brute
force password searches by a factor of
50.

The SSH protocol has largely replaced
insecure Telnet. Ideally SSH should
withstand attacks by eavesdroppers.
Alas, SSH leaks information about the
approximate length of data. Moreover,
each key press generates a separate
packet. The length can indicate when a
user is about to enter a password during
an established SSH session. By watching
the inter-keystroke events, an eavesdrop-
per can make educated guesses about
passwords and other confidential infor-
mation.

The most startling example is that of the
su command typed over an SSH session,
which results in a very recognizable traf-
fic signature. Simply by looking at the
lengths of requests and responses, an
eavesdropper can detect the transmis-
sion of a password. Song noted that su
disables echo mode. The resulting asym-
metric traffic indicates that a password
will follow.

Once an eavesdropper knows that a
sequence of packets corresponds to a
password, the inter-keystroke timings
can reveal characteristics of the pass-
word. Herbivore looks at the frequency
distribution of a given character pair.
For instance, one may type vo with alter-
nating hands while typing vb with the

23November 2001 ;login: SECURITY 2001 ●

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

Ssame hand. The latency between each
keypress is distinguishing. For randomly
chosen passwords, inter-keystroke tim-
ings leak about 1.2 bits per character.

One countermeasure against this attack
would be to hide inter-keystroke timings
by using a constant packet rate in active
traffic.

Next, a slew of people raced to the
microphone. One person asked whether
taking many samples of a single user
would reduce the password search space
even more. Song responded that this
technique has diminishing returns.

Asked about the effect this work has on
passwords typed over a wireless net-
work, Song reported that her group did
not test real users’ passwords. Each test
subject used an assigned password. All
the test subjects were touch typists.

When one audience member asked why
not set TCPNODELAY right before typ-
ing passwords, another audience mem-
ber said that is already the case.

Song also explained that randomly
inserting a delay in traffic will not help
much. An eavesdropper can obtain your
typing of passwords many times to filter
out the randomization.

WORKS IN PROGRESS

Summarized by Sam Weiler and David
Richard Larochelle

USING THE FLUHRER, MANTIN, AND SHAMIR

ATTACK TO BREAK WEP

Adam Stubblefield, Rice University;
John Ioannidis and Avi Rubin, AT&T
Research

The authors implemented a recently
published attack against WEP, the link-
layer security protocol for 802.11 net-
works. Exploiting WEP’s improper use
of RC4 initialization vectors, they recov-
ered a 128-bit key from a production
network using a passive attack. For
assorted legal and moral reasons, they’re
not planning to release the code, but
others are developing similar tools.

For more information, visit
http://www.cs.rice.edu/~astubble/wep/.

SRMAIL – THE SECURE REMAILER

Cory Cohen, CERT

SRMail allows groups of people who
may not share common crypto methods
to communicate. It can generate
encrypted form letters and convert
between encryption formats when used
as a remailer. SRMail will be used at
CERT to allow several people to mas-
querade as CERT and generate docu-
ments signed with CERT’s keys without
requiring them to have direct access to
those keys.

VOMIT – VOICE OVER MISCONFIGURED

INTERNET TELEPHONES

Niels Provos, CITI, University of
Michigan

Vomit converts a Cisco IP phone conver-
sation into a wave file, allowing users to
play a call directly from the network or
from a tcpdump output file. Vomit can
also insert wave files into ongoing tele-
phone conversations. Provos suggested
that Vomit can be used as a network
debugging tool, a speaker phone, and so
on.

For more information, visit
http://www.monkey.org/~provos/vomit/.

VILLAIN-TO-VICTIM (V2V) PROTOCOLS, A
NEW THREAT

Matthias Bauer, Institut für Informatik

Bauer amused us with several ways to
transport or temporarily store data on
correctly configured machines without
the consent of the owner (i.e., in Web
guest books, in ICMP-echo-request
datagrams sent over connections with
long RTTs, or in SMTP messages sent
via open relays to domains that refuse to
accept the messages for several days). In
addition to providing an unreliable
backup medium, these methods can be
used to build an unobservable channel.
He proposes that these theft-of-service
attacks should be called “villain-to-

http://www.cs.rice.edu/~astubble/wep/
http://www.monkey.org/~provos/vomit/

victim” computing because some of the
engineering problems of P2P can be
solved by V2V protocols.

For more information, visit
http://www1.informatik.unierlangen.de/~bauer/new/v2v.html

.

DETECTING MANIPULATED REMOTE CALL

STREAMS

Jonathon Giffin, Bart Miller and Somesh
Jha, University of Wisconsin

In a distributed grid computing envi-
ronment, remotely executing processes
send call requests back to the originating
machine. A hostile user may manipulate
these streams of calls. This technique
statically analyzes the process’s binary
code at dispatch time and generates a
model of all possible call sequences. As
calls come back during execution,
they’re checked against the model,
which detects some types of manipula-
tion.

A QUANTITATIVE ANALYSIS OF ANONYMOUS

COMMUNICATIONS

Yong Guan, Xinwen Fu, Riccardo Bet-
tati, and Wei Zhao, Texas A&M Univer-
sity

This probabilistic analysis of rerouting
systems found that longer paths don’t
necessarily provide better protection
against sender identification. They also
found that path complexity doesn’t have
a significant impact on the probability
of identifying a sender. Additionally, the
ease of identifying a sender increases as
the number of compromised nodes in
the system increases, but that growth is
sublinear.

For more information, visit http://
netcamo.cs.tamu.edu/.

DISTRIBUTED AUTHORIZATION WITH

HARDWARE TOKENS

Stefan Wieseckel and Matthias Bauer,
Friedrich-Alexander-University Erlan-
gen-Nuernberg

24 Vol. 26, No. 7 ;login:

The authors have written a PAM module
for user authentication to workstations
based on RSA credentials stored on a
Dallas Semiconductor Java-iButton.
They use the KeyNote policy engine to
make authorization decisions, which
allows for complex trust relationships
and delegation of authority. They do not
presently address user or token revoca-
tion.

For more information, visit
http://www.wieseckel.de/ibutton_smartcard.html

.

MOVING FROM DETECTION TO RECOVERY

AND ANALYSIS

George Dunlap, University of Michigan

Dunlap proposed a mechanism of roll-
back and selective replay of network
events to aid in intrusion analysis and
recovery. Being able to answer questions
like “What if this packet had not been
delivered?” or “What if this TCP session
hadn’t happened?” should facilitate
debugging, forensic analysis, and intru-
sion detection signature development.

A CRYPTANALYSIS OF THE HIGH-BANDWIDTH

DIGITAL CONTENT PROTECTION (HDCP)
SYSTEM

Rob Johnson, Dawn Song, and David
Wagner, University of California at
Berkeley; Ian Goldberg, Zero Knowl-
edge Systems; and Scott Crosby,
Carnegie Mellon University.

HDCP is a proposed identity-based
cryptosystem for use over the Digital
Visual Interface bus, a consumer video
bus already in widespread use. The
authors found serious design flaws in
HDCP which allow one to eavesdrop on
HDCP communications, clone HDCP
devices, and build an HDCP-compliant
device that cannot be disabled via
HDCP’s Key Revocation facilities.
Because of the DMCA mess (see page 7,
the summary of “Reading Between the
Lines: Lessons from the SDMI Chal-
lenge,” particularly the question regard-
ing whether a person would be at risk

for summarizing the session), they aren’t
releasing the full details of their crypt-
analysis.

TRUST, SERVERS, AND CLIENTS

Sean Smith, Dartmouth University

WebALPS extends an SSL connection
into a tamper-resistant coprocessor. By
using the coprocessor as a trusted third
party, sensitive information is protected
from rogue server operators. Credit card
information, for example, can be sent
from the coprocessor via encrypted
email to a merchant with the web host-
ing provider never having access to it.

Additionally, Smith described how SSL
connections can be spoofed and pre-
sented an impressive demo in which Java
script and DHTML were used to spoof
the URL, the SSL warning windows, the
SSL icon, and the certificate informa-
tion.

For more information, visit
http://www.cs.dartmouth.edu/~pkilab.

SOURCE ROUTER APPROACH TO DDOS
DEFENSE

Jelena Mirkovic and Peter Reiher, Uni-
versity of California, Los Angeles

The authors propose a system to prevent
a network from participating in a DDoS
attack. Located at the source network
router, the system watches for a drop-off
in reverse traffic from a particular desti-
nation with heavy outgoing traffic. It
then throttles all traffic to that destina-
tion while attempting to identify attack-
ing flows and machines. The system is
similar to MULTOPS, but its source side
only, and its traffic models don’t depend
on packet ratios.

For more information, visit
http://fmg-www.cs.ucla.edu/ddos.

http://www1.informatik.unierlangen.de/~bauer/new/v2v.html
http://
http://www.wieseckel.de/ibutton_smartcard.html
http://www.cs.dartmouth.edu/~pkilab
http://fmg-www.cs.ucla.edu/ddos.

SAVE: SOURCE ADDRESS VALIDITY

ENFORCEMENT PROTOCOL

Jun Li, Jelena Mirkovic, Mengqiu
Wang, Peter Reiher, and Lixia Zhang,
University of California, Los Angeles

SAVE is a new protocol for building
incoming address tables at routers, even
in the face of asymmetric routes. Those
tables can be used to filter out packets
with spoofed IP source addresses, build
multicast trees, debug network prob-
lems, etc. To build the tables, SAVE
sends valid source address information
downstream along the paths used for
delivery.

For more information, visit
http://fmg-www.cs.ucla.edu/adas/.

CODE RED, THE SECOND COMING — FROM

WHENCE DIURNAL CYCLES

Colleen Shannon and David Moore,
CAIDA

Using the same system presented in the
Denial of Service session on Wednesday
morning, CAIDA analyzed the second
round of Code Red. They observed that
many of the infected hosts were using
dynamic addressing, suggesting that the
owners were not intentionally running
IIS. The data also showed a clear diurnal
pattern – one-third to one-half of
infected machines were being turned on
and off daily – again suggesting that
these machines were not running pro-
duction Web servers.

For more information, visit
http://www.caida.org/analysis/security/code-red/.

FAST-TRACK SESSION ESTABLISHMENT FOR

TLS

Hovav Shacham and Dan Boneh, Stan-
ford University

The authors describe a new, “fast-track”
handshake mechanism for TLS. A fast-
track client caches a server’s public
parameters and certain client-server
negotiated parameters in the course of
an initial, enabling handshake; these
need not be present on subsequent

25November 2001 ;login: SECURITY 2001 ●

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

Shandshakes. The new mechanism
reduces both network traffic and flows
and requires no additional server state.
The bandwidth savings are particularly
relevant to wireless devices.

For more information, visit
http://crypto.stanford.edu/.

ELECTROMAGNETIC ATTACKS ON CHIP CARDS

Bruce Archambeault, Josyula R. Rao,
and Pankaj Rohatgi, IBM Research

Chip cards and other devices leak sub-
stantially more information through
electromagnetic emanations than
through other side-channels such as
power consumption and timing analysis.
Additionally, the countermeasures for
the other side-channel attacks are often
insufficient to protect from electromag-
netic attacks. Because of the sensitive
nature of this work, the authors are
working with interested parties to secure
vulnerable devices prior to disclosing
complete details.

For more information, visit
http://www.research.ibm.com/intsec.

PASSWORD AUTHENTICATION

Philippe Golle, Stanford University

Philippe Golle proposed a scheme for
authenticating to a large number of Web
sites with different passwords, while
requiring the client to remember only a
single master password. The scheme
can be adapted to master passwords as
short as 40 bits and can resist coalitions
of up to three Web sites.

For more information, visit
http://crypto.stanford.edu/~pgolle.

A TRAFFIC CAPTURE AND ANALYSIS FRAME-
WORK

Josh Gentry, Southwest Cyberport

Josh Gentry presented some Perl tools
for collecting network statistics. The
capture engine uses libpcap to collect
traffic, does some pattern matching and
analysis, and stores the results in Perl

hashes. The command line client can
query that data locally or over the net-
work.

For more information, visit
http://www.systemstability.org/.

OPEN SOURCE IMPLEMENTATION OF 802.1X

Arunesh Mishra, Maryland Information
and Systems Security Lab, University of
Maryland

Lib1x is an open source implementation
of 802.1x, a port-based authentication
mechanism for wireless networks that’s
intended to be an alternative to 802.11
WEP (see the WiP by Adam Stubblefield
et al., above, for details on why an alter-
native is needed). Contributions are wel-
comed.

For more information, visit
http://www.missl.cs.umd.edu/1x/.

[Photographs of the Symposium can be
found at
http://www.usenix.org/events/sec01/index.html
]

Will the real Peter Honeyman
please stand up!

http://fmg-www.cs.ucla.edu/adas/
http://www.caida.org/analysis/security/code-red/
http://crypto.stanford.edu/
http://www.research.ibm.com/intsec
http://crypto.stanford.edu/~pgolle
http://www.systemstability.org/
http://www.missl.cs.umd.edu/1x/
http://www.usenix.org/events/sec01/index.html

26

Performing Investigations
on a Live Host
Corporate IT staffs are investigating computer security incidents and com-

puter crime more than ever before. Who would have thought the IT staff

would become the “network cops” of the company? But that is exactly

what they have become. Therefore, your Incident Response (IR) staff needs

to be armed and prepared to support the decisions and investigations to

protect corporate assets, protect employee privacy, and enforce the policies

that general counsel and senior management endorse. A methodology and

formal investigative process needs to be implemented.

This article will describe the process of performing a successful live incident response
on a UNIX operating system and will discuss the mechanisms used to preserve the evi-
dence. It is assumed the reader has basic system administration skills and little or no
experience with investigations. Therefore, this article will provide deeper focus on the
investigative aspects of the live response and methods used to collect the evidence in a
forensically sound manner rather than the technical usage of the tools. Since no inves-
tigation is the same, a step-by-step process that will encompass every aspect you may
encounter is difficult to provide. The information in this article will provide a solid
base to executing and transferring most of the information needed for a successful
investigation in a forensically sound manner.

Choosing the Toolkit for the Investigation
In order for the investigator to examine the victim machine, the correct tools must be
used. To select the tools you use, keep the “big picture” in your mind. What log files do
you want to retrieve? What UNIX tools help you determine the state of the system?
What configuration files do you want to review? Before you create your trusted toolkit,
you must determine the information you wish to acquire. The tools used in the live
investigation of computer crimes are not specialized. They resemble a handful of items
in the typical system administrator’s toolbox. Minimally, the following areas of a sus-
pect machine need to be examined during an investigation:

1. The current date and time of the victim server are recorded. This information will
provide a baseline if the system time has been skewed from other servers present in
the investigation.

■ Tool: date

2. All information about each network interface card, such as network addresses and
states, is recorded. If the suspect altered the IP address or started a network moni-
toring tool (e.g., sniffer) on the victim machine, this data would display the mischie-
vous action.

■ Tool: ifconfig
■ Typical Switches: -a

3. Each name, command line argument, length of execution time, and the user who
executed the process are recorded. Rogue processes are typically initiated by intrud-
ers, and the currently running process will be part of the evidence used to prove that
the rogue process was executed.

incident response:

Vol. 26, No. 7 ;login:

by Keith J. Jones

Keith Jones is a
computer forensic
consultant for
Foundstone. His pri-
mary area of concen-
tration is incident
response program
development and
computer forensics.

Keith.jones@foundstone.com

■ Tool: ps
■ Typical Switches: -aux (or –ef for Solaris)

4. The open network sockets and files along with the process number that opened
them are recorded. Typically, intruders leave back doors for future external access
into compromised systems. External access will require network access, and open
sockets are the indicator of a back door’s presence. Furthermore, unknown open
files usually indicate a monitoring tool that is either reading or writing to a file. As
an example, the most common type of monitoring tool is a sniffer, and it writes to a
log file.

■ Tool: netstat
■ Typical Switches: -an

■ Tool: lsof

5. Since an executable file can be deleted from the file system and currently be execut-
ing, your initial response may be the only chance to capture a copy and perform
offline tool analysis on a rogue process. All suspect processes are archived in a foren-
sic manner as an executable file.

■ Tool: the proc file system
■ Executable Image Location: /proc/<PID>/exe

■ Tool: carbonite (for Linux)
■ Location: http://www.foundstone.com

6. The IP routing table is documented. Unauthorized routing of the victim machine’s
network packets will be evident in the routing table, and it may indicate possible
man-in-the-middle network monitoring and attacks.

■ Tool: netstat
■ Typical Switches: -nr

7. The currently logged in users and their initiating place of connection are docu-
mented.

■ Tool: w

8. The loaded kernel modules (if your version of UNIX allows for this) are docu-
mented. Kernel modules literally alter the operating system and are in the intruder’s
benefit to load them, obviously an area that needs to be examined by the
investigator.

■ Tool: lsmod

9. The last accessed, modified, and created timestamp information for each file on the
victim machine are recorded. Correlating the timestamps for significant events pro-
vides information such as last execution, unauthorized modifications, and other
mischief. Furthermore, file permissions play a significant role in most investigations
and are easily captured during the same step as timestamps.

■ Tool: ls
■ Typical Switches for Last Accessed Time: -alR –time=atime /
■ Typical Switches for Last Modified Time: -alR /
■ Typical Switches for Created Time: -alR –time=ctime /

■ Tool: find

27November 2001 ;login:

. . . your initial response may

be the only chance to capture

a copy and perform offline

tool analysis on a rogue

process

●

FO

RE
N

SI
C

S

INCIDENT RESPONSE ●

http://www.foundstone.com

Vol. 26, No. 7 ;login:

■ Tool: The Coroner’s Toolkit (mactime)
■ Location: http://www.porcupine.org

10. All auditing files are archived into evidence. UNIX auditing is typically per-
formed by the syslog facility, and each log file is determined from the /etc/sys-
log.conf file. In addition to these logs, the wtmp, utmp, and lastlog files are
archived into evidence so that the login history is available for the investigation.

■ Tool: cat
■ Tool: last

11. The /etc/passwd file is submitted into evidence. This file will be examined for pos-
sible back doors into the system. It is well known that valid, but not necessarily
authorized, user credentials are the easiest way to avoid intrusion detection systems
and simple access.

■ Tool: cat

12. The /etc/inetd.conf file is submitted into evidence. The simplest back door installed
by an intruder is a shell, such as bash, listening on a random port. This back door
will be easily observed in this configuration file.

■ Tool: cat

13. All suspicious files on the victim machine are submitted into evidence for offline
tool analysis. The files can be transferred by using cat and redirecting the output to
a netcat TCP session, which is explained in the next session.

■ Tool: cat
■ Tool: strings
■ Tool: strace
■ Tool: file

It has to be assumed that any tool resident on the victim machine may be compro-
mised. If the intruder used a publicly available rootkit, they can trojan any system tool
such as ps, netstat, ls, and even bash to provide false results to the user executing
them. The tools listed above must be executed within a trusted shell, which is compiled
on a system without a history of incidents. Therefore, it is necessary to execute a
trusted shell before your initial response begins. Furthermore, the tools you use must
be compiled statically on a forensic workstation and transferred to the victim machine.
By statically compiling your tool set, you avoid running untrusted, potentially damag-
ing processes on the victim machine. The tools can be accessed by writing them either
to floppy or CD-ROM. This toolkit media is inserted into the victim machine and
mounted. Additionally, it is highly recommended to perform the response from the
victim console and not an X-Windows session. There are security considerations such
as session spying inherent with X-Windows usage. Furthermore, a response should
never be performed across a network connection such as Telnet. Once the media is
mounted, the trusted shell is run by executing it on the command line. The response
can begin once the investigator has completed the proper documentation and plan-
ning steps, explained in an upcoming section.

Storage of the Digital Evidence
There are several options for storing the data produced in the last section. The first
and most intrusive method is to save the data on the victim machine’s hard disk for

The simplest back door

installed by an intruder is a

shell, such as bash, listening

on a random port.

28

http://www.porcupine.org

analysis. The second method, less obtrusive but also less practical, is to store the data
on external media such as a floppy disk. The third and least obtrusive method involves
transmitting the data to a forensic analysis machine and saving on its hard disk drive.
This is the method that is recommended and is used in the rest of this article.

The method of saving the data directly to the forensic machine uses a TCP/IP network
as the transmission medium. The tool that will easily establish a TCP session is named
netcat. netcat is used in two modes: connection mode or server mode. The victim
machine will utilize the connection mode while the forensic analysis machine will use
the server mode. Since netcat establishes a TCP session, information can be sent
through the connection to a server by using the command line pipe. It is possible to
transfer whole files from one machine to another by simply redirecting the data on the
forensic machine that was received through netcat. The complete transmission process
can be summed up with the following commands:

Victim Machine: <command line> | nc <IP of the forensic workstation> <port
number>

Forensic Workstation: nc –l –p <port number> > <command line>.txt

Not every network used to transfer the data from the response will be trusted. To over-
come this hurdle, another tool named cryptcat can be used in the same manner as net-
cat. The difference between the tools is that cryptcat encrypts the TCP channel. The
encryption provides two aspects: authenticity and secrecy. If a bit were changed in
transmission, the data would be invalid when received on the forensic machine. Addi-
tionally, if an intruder is listening with a network monitoring tool, he or she will
observe garbled data due to the encryption.

There are two realistic choices for the network transfer of incident data: create a tem-
porary network using a crossover cable between the forensic workstation and the vic-
tim machine or connect the forensic machine directly to the untrusted network. A
topic of debate is whether the responder chooses to remove the victim machine from
the live, untrusted network at the time of detection. One logical approach to this ques-
tion is to perform the smallest subset of investigative steps to find out if removing it
from the live, untrusted network will trigger malicious code the intruder left behind.
Additionally, leaving the victim machine on the network will give the investigator the
chance to collect evidence if the intruder were to return by passively monitoring the
situation with a network monitoring tool.

Since every investigation should be performed under the pretense that it is the “big
one,” it is assumed that one day the investigator will be called to the stand to swear
under oath that the data is unaltered. There will be a mechanism in place to validate
the authenticity of the data at any point if it is questioned. The mechanism generally
accepted by the industry is an MD5 checksum. The MD5 checksum is a 128-bit length
string computed from a file’s contents and it is highly unlikely that two files will have
the same value. To create an MD5 checksum list of several files, the following com-
mand will work well:

Forensic Workstation: md5sum –b <filenames> > md5sums.txt

The MD5 checksum will be computed for every file transferred from the victim
machine to the forensic workstation. The checksum will be computed and saved on
the forensic server itself. Lastly, the evidence data and the MD5 checksum file will be
copied to unalterable media such as CD-ROM with the disc closed after the write.

29November 2001 ;login:

Not every network used to

transfer the data from the

response will be trusted. ●

FO

RE
N

SI
C

S

INCIDENT RESPONSE ●

Vol. 26, No. 7 ;login:

Documentation and Planning
Typically, documentation does not come naturally to technical individuals. However,
documenting the steps taken during an incident response is paramount. Records of a
response performed months or years prior have a longer shelf life than an individual’s
memory. Planning is also very important to the response because sometimes the inves-
tigator may only have one chance to respond correctly. Planning the commands, the
order, and what switches will be used on the victim machine will follow hand-in-hand
with the documentation. A simple spreadsheet is used to document what commands
executed on the victim machine can be created before the response is performed,
therefore allowing the investigator to plan and research the tools before they are run
live during the response. An example of this spreadsheet is viewed below.

The columns “trusted execution” and “untrusted execution” indicate how the tool was
executed and are the proper place for this documentation. In these columns it will be
considered an untrusted execution if any code contained on the victim machine is run,
such as dynamically loaded libraries and other tools.

Another aspect that must be documented is the transfer of evidence. The chain of cus-
tody is the record of when, to whom, and where a piece of evidence is transferred. A
completed chain of custody form will provide an extra level of authenticity of the evi-

dence, if it is ever ques-
tioned, and is standard
for any law enforcement
investigation. A sample
chain-of-custody form is
observed here.

If the proper documenta-
tion is created through-
out the investigation, a
final report is simple to
compile. The information
can be summarized from
the various documenta-
tion sources easily. Simple
generation of the final
report can be the greatest
motivation to document
properly.

30

Start Command Line Trusted Untrusted md5sum Comments
Time Execution Execution

4/3/2001 date | nc 192.168.69.2 2222 X e913412389f3430c5662a3ee54aef082 daylight savings
10:37:47 time in effect.

4/3/2001 netstat –an | nc 192.168.69.2 2222 X 37cfdab36f8e42369f099d39af36b275

10:42:15

Case Number: FS-010101 EVIDENCE
Evidence Tag: 001 CHAIN OF

CUSTODY

Evidence CD-ROM containing live response data files
Description:

Source Location: X Source Name: X Date: 06/01/2001 12:10
Destination Onsite Destination Name: Keith J. Jones <Keith’s Signature>
Location: Investigation

Miami, FL.
Source Location: Washington, DC Source Name: Keith J. Jones Date: 06/02/2001 14:43
Destination Evidence Safe, Destination Name: Keith J. Jones <Keith’s Signature>
Location: Washington, DC
Source Location: Washington, DC Source Name: Keith J. Jones Date: 06/04/2001 15:33
Destination Washington, DC Destination Name: Kevin Mandia <Keith’s Signature> <Kevin’s
Location: Signature>
Source Location: Source Name: Date:
Destination Destination Name:
Location:
Source Location: Source Name: Date:
Destination Destination Name:
Location:

Conclusion
This article provides a summary of tools and techniques used for a successful live inci-
dent response on a UNIX operating system. Proper documentation and planning are
needed in order to keep mistakes to a minimum. Documentation includes document-
ing the chain of custody to uphold the authenticity of the evidence should legal action
follow an investigation. A toolkit of trusted binary files must be used during the
response. The toolkit should be compiled statically and transferred to the victim
machine before the response is executed. Lastly, steps such as calculating an MD5
checksum on the evidence and archiving it to a read-only media will also be used to
prove authenticity.

These principles can be easily applied to a Microsoft Windows NT/2000 machine. Sub-
stitution of the UNIX tools with ones that are similar for NT/2000 will need to be per-
formed, but that is not difficult. The documentation and planning stages will be
exactly the same.

31November 2001 ;login:

Proper documentation and

planning are needed in order

to keep mistakes to a

minimum.

●

FO

RE
N

SI
C

S

INCIDENT RESPONSE ●

32

As the old Boy Scout motto goes, “Be Prepared.” Preparation is the key to

successfully surviving a security incident. If your organization hasn’t

thought about how you are going to handle that future security incident,

then NOW is the time to start thinking about it.

Let’s discuss some reasons why. When I was working internal security for Sun, we fig-
ured out four or five likely security-incident scenarios and laid plans on how they
would be handled and coordinated. The plans didn’t all survive the real-life incidents,
and some ended up being changed on the fly to deal with things we didn’t expect, but
all in all, they allowed us to bring the right resources to the problem. Having a plan
gave us the ability to work through all the surprises while still keeping our sanity – a
good reason to have one in this day and age.

Hoever, in my experience, most sites are not prepared and don’t have a plan in place,
so we will address that scenario in detail.

How to Respond to an Attack
So you think you have been hacked and don’t know how to respond. First off, don’t
PANIC. I’ve handled plenty of intrusions and a large percentage of them are false
alarms. Secondly, by the time you have figured out that you truly have been hacked, it’s
probably too late to panic, so I’d advise skipping the panic step altogether.

So what do you do? Well, the course is often dictated to you by management. Your
chances of catching the intruder are pretty small, so you might ask yourself “Why
bother?” Management, who may be on your case to get the resource back up and run-
ning in a hurry, doesn’t want to spend the time going through a full forensic analysis;
all they want is that Web server “Back on the Net so we can conduct business.” If this is
an all too familiar scenario, I beg you, when you get done reading this article, take it to
your management and have them read it too. Things will never get better until your
organization starts prosecuting and handling incidents.

We seem to have two opposing problems. Management wants and needs to get the sys-
tem back up and running quickly, but doing forensic analysis takes a lot of time. I sub-
mit to you that just getting the system back up on the Net begs the attacker to hit you
again and again. Until you fix the problems, you’re living on borrowed time.

Here is an example. When working internal security for Sun Microsystems, we had an
incident involving Kevin Mitnick. It was only because of a Herculean effort by Tsu-
tomu Shimomura that Mitnick was captured, but it was because Sun (and others) col-
lected so much evidence that Mitnick pleaded guilty to the charges. The point is that
the evidence you collect may not be readily used by your site, but it still has value. My
copy of the evidence as well as the original disk drives sat in a safe gathering dust for
over three years before the evidence was ever seen in court.

All well and good, but what if you don’t know if the system has been compromised?
Well your Network IDS and local Tripwire data will tell you what has occurred and
what has changed. What? You don’t have either of those? I’m not surprised. Now you
have a decision to make. Again, it’s probably based on resources. At this point you can:

■ Call in a professional to examine the tampered disk and give you an analysis of
what went wrong.

■ Turn over the evidence to law enforcement.
■ Look at the disk yourself and see what you can learn from it.

forensics lite

Vol. 26, No. 7 ;login:

by Brad Powell

Brad Powell works as
a senior network
security consultant
for Sun Microsystems
Professional Services,
where he does secu-
rity research and
writes security tools.

brad.powell@sun.com

■ Forget the whole thing.

Sadly, the last option is taken all too often. I beg you to reconsider before taking this
option.

Since we are discussing “forensics lite,” I’ll leave the first two options for another arti-
cle, or for others to cover, and will focus on what you can learn from the information
to ensure that you really have plugged the hole, so you don’t get any repeat incidents,
and to ensure you have cleaned up the mess.

Our first step is to make sure we really have been hacked. This can be trickier than you
think. Why? Well, to do it right, to avoid tampering with the evidence, you have to fol-
low all the procedures as if you are sure you have been hacked. So we assume we have
been hacked even though we are still unsure. First, take the system offline. Then, to
preserve the memory and running process tables, we need to suspend the system with-
out doing a graceful shutdown using shutdown(1) or init 0. With a Solaris system, we
use the Stop-A or L1-A sequence. Check with your operating system vendor for equiv-
alent functionality. Then we mount the file system onto another system, make a full
backup, preserve the original disk if at all possible, and build a new system disk that is
hardened against attack. Do NOT reuse the system backup you just made to restore
the system, since that is evidence, and most likely will only reintroduce the old bug
back into the system if used. That system cannot be trusted.

This is the safest way, and even if you find out later that you have not been hacked and
discover this was a false alarm, you have still improved your system security. Consider
the fresh install an added bonus and a worthy exercise.

You may later have to reload portions of the suspect system backup, but what gets
reloaded should not be the operating system or any other component that you can get
from distribution media. Make sure to apply all the latest patches after rebuilding from
distribution media.

The backup and fresh install gets the organization back up on the network and con-
ducting business and gives you the opportunity to figure out what went wrong and
how you can prevent it in the future. It also gives you, if you do discover evidence that
may lead to prosecution, a clean copy of all evidence on the original system disk and
on a backup tape.

From here on, I’m assuming we are working with a copy of the data and not with the
original. For full details on doing full forensics and how to make a copy of the disk
using dd(1) for your forensic lite, refer to TCT, The Coroner’s Toolkit
(http://www.fish.com/tct/), or “DD and Computer Forensics,” a simple guide to using
the dd(1) command, by Thomas Rude (http://www.crazytrain.com/dd.html). We use the
UNIX dd(1M) command instead of using tar(1) or ufsdump(1M) so that we preserve
the byte-by-byte layout of the system disk and the swap area of the disk. This is impor-
tant if we decide later that we need to do more in-depth forensics using TCT or
another forensic tool.

Now that we have a working copy and have preserved the original, there are some sim-
ple things we can do to poke at the disk to see if the operating system has been modi-
fied. The most often seen problem is a rootkit. A rootkit is a replacement set of Trojan
binaries that is used by intruders to hide their use of the system and used to install
back-door access to your system for future use.

33November 2001 ;login:

Our first step is to make sure

we really have been hacked.

This can be trickier than you

think.

●

FO

RE
N

SI
C

S

FORENSICS LITE ●

http://www.fish.com/tct/
http://www.crazytrain.com/dd.html

Vol. 26, No. 7 ;login:

Again, since we are talking about a lite version of forensics, I’m going to stick with
basic and simple tools. Let’s start with Sidekick. Sidekick.sh is a simple Bourne shell
script that works with MD5 to check the signatures of files. Sidekick is available from
http://www.sun.com/security/ or from
http://www.sun.com/blueprints/tools/fingerprint_license.html. Although written for use
with the Solaris Operating System, sidekick.sh is portable enough to use on most any
UNIX-like operating system. We use Sidekick in this example instead of going to an
industry standard like Tripwire because Tripwire can only report modifications since
the last time you ran it. If you had run Tripwire before all this occurred, then you
would already know what has changed. You might want to think about using Tripwire
in the future (it is a really good tool/product), but without the previous baseline to
compare against, you can’t figure out what has changed. So we use Sidekick to try and
create this baseline. As a side note, Sidekick can be used to look at legacy systems that
you can’t take offline to verify that the system hasn’t been trojaned in the past; and
from that point on, Tripwire ran daily will give you a reasonable start at system-level
intrusion detection. This isn’t a full solution, just a start.

Sidekick.sh, as the name implies, is a simple companion tool that just aids you in the
collection of MD5 signatures. When used on a file, MD5 produces a cryptographic
checksum of the file. It is nearly impossible for two binary files (assuming their length
is not 0) to produce the same MD5 checksum unless the content of the binaries match.
Thus, if we have two files with identical names but different contents, the MD5 check-
sums will not match. Please read the Sidekick manual page that accompanies distribu-
tion of sidekick.sh for details. I worked hard to make sure the man page had useful
information and limitations on its effectiveness.

Since we cannot assume the disk we are looking at hasn’t been trojaned or rootkitted
we don’t boot it; instead, we mount the partitions and gather the MD5 checksums
from there, or in the case of a system we can’t take offline, we run sidekick.sh locally
on the system using a statically linked MD5 program and take the resulting MD5
checksum output to another non-suspect system and check the MD5 checksums from
there.

Some of the useful options for sidekick.sh include:

-R Specify an alternate root directory. This option is useful for chroot areas such as on
DMZ Web servers, and can be used when you are able to mount the various parti-
tions of the suspect disk onto another system.

-r Check all the files that are commonly rootkitted, comparing them against what Sun
ships. This is the basic common Trojan check and should be performed before any
other Sidekick option to verify that the find(1) command, at a minimum, hasn’t been
trojaned.

-S This option is used with any of the other options to run Sidekick standalone, that
is, without invoking the Perl script that compares checksums (explained below).

-a This option checks all files and creates the MD5 checksum. This option is a poor
man’s version of L5 or Tripwire and can be used to check a legacy system and create
a reasonable baseline to ensure the binaries that are currently on the system are the
ones shipped by Sun for the entire system. Once a baseline is determined, the user
can then run L5 or Tripwire on a regular basis looking for changes. See the warning
above.

Since we cannot assume the

disk we are looking at hasn’t

been trojaned or rootkitted,

we don’t boot it

34

http://www.sun.com/security/
http://www.sun.com/blueprints/tools/fingerprint_license.html

Caution should be taken when using this option, as there will be many false posi-
tives reported for any locally modified configuration files or binaries.

So a typical check might include running sidekick.sh -R /mnt/suspectdisk -a -S which
collects an MD5 checksum of all the system files started at the mount point.
sidekick.sh -r just collects the MD5 checksums of a subset of binaries that are com-
monly found in a rootkit.

Now that we have MD5 checksums of all the files, we can compare this list to a list of
MD5 checksums from a known uncompromised system. Whatever doesn’t match is
either a patched binary that didn’t come with the original vendor release or a Trojan.

In the case of Sun Microsystems and Solaris, the task of finding a listing of known
good MD5 checksums has been made easier for you. Sun provides an MD5 fingerprint
database of every binary that it has ever shipped. I strongly encourage you to get with
your other vendors (Linux people, are you listening?) to have them supply MD5
checksums of every binary they ship. An additional tool called sfpC.pl is a Perl script
that can be used with sidekick.sh to query Sun’s Fingerprint database online. More
information about the Sun Fingerprint database can be found by searching on the key-
word “fingerprint database” at http://www.sun.com/blueprints/ or by going directly to
the Fingerprint database link at http://sunsolve.Sun.COM/pub-cgi/fileFingerprints.pl.

An example use of sidekick.sh:

root# sidekick.sh -S -r
Operating in standalone mode, sfpC will not be run.
Searching for files commonly found in rootkits.
The output has been saved to rootkitfiles-md5.20010820130858
[Note: the example has been edited to 10 entries to conserve space]
root# cat rootkitfiles-md5.20010820130858
MD5 (/usr/bin/du) = 9b9d5b91bb697c0b5e8acdd7e8286b79
MD5 (/usr/bin/ls) = 351f5eab0baa6eddae391f84d0a6c192
MD5 (/usr/sbin/in.telnetd) = dae9a44a49faeaf54ddcb30578663b39
MD5 (/usr/bin/login) = b6915118b96ed4132f45db7332dcc293
MD5 (/usr/sbin/route) = a4fea6e7e07e377812773c8e71cc5f05
MD5 (/usr/sbin/inetd) = 90907143eb6a4909aee4a7297b5d12a7
MD5 (/usr/bin/passwd) = 39d9e82ed48669d6396fed0fb9c0f901
MD5 (/usr/sbin/in.rshd) = 9656d16a4550c925d00e78d90cb775c9
MD5 (/usr/sbin/in.rlogind) = 46c1c2ba01e36c8264a3d25c4097bc98
MD5 (/usr/sbin/syslogd) = 93e97f044f18c85bfe3a12fb77f1198e

We take this output file created by sidekick.sh called rootkitfiles-md5.20010820130858
to another system which has Internet connectivity, and feed it into sfpC.pl, the utility
that queries Sun’s Fingerprint database:

mysystem-> sfpC.pl rootkitfiles-md5.20010820130858

9b9d5b91bb697c0b5e8acdd7e8286b79 - (/usr/bin/du) - 1 match(es)

canonical-path: /usr/bin/du
package: SUNWcsu
version: 11.8.0,REV=2000.01.08.18.12
architecture: sparc
source: Solaris 8/SPARC
patch: 109803-01

351f5eab0baa6eddae391f84d0a6c192 - (/usr/bin/ls) - 1 match(es)

35November 2001 ;login:

Sun provides an MD5 finger-

print database of every

binary that it has ever

shipped

●

FO

RE
N

SI
C

S

FORENSICS LITE ●

http://www.sun.com/blueprints/
http://sunsolve.Sun.COM/pub-cgi/fileFingerprints.pl

Vol. 26, No. 7 ;login:

canonical-path: /usr/bin/ls
package: SUNWcsu
version: 11.8.0,REV=2000.01.08.18.12
architecture: sparc
source: Solaris 8/SPARC

b6915118b96ed4132f45db7332dcc293 - (/usr/bin/login) - 1 match(es)

canonical-path: /usr/bin/login
package: SUNWcsu
version: 11.8.0,REV=2000.01.08.18.12
architecture: sparc
source: Solaris 8/SPARC

a4fea6e7e07e377812773c8e71cc5f05 - (/usr/sbin/route) - 1 match(es)

canonical-path: /usr/sbin/route
package: SUNWcsu
version: 11.8.0,REV=2000.01.08.18.12
architecture: sparc
source: Solaris 8/SPARC

90907143eb6a4909aee4a7297b5d12a7 - (/usr/sbin/inetd) - 1 match(es)

canonical-path: /usr/sbin/inetd
package: SUNWcsu
version: 11.8.0,REV=2000.01.08.18.12
architecture: sparc
source: Solaris 8/SPARC

39d9e82ed48669d6396fed0fb9c0f901 - (/usr/bin/passwd) - 1 match(es)

canonical-path: /usr/bin/passwd
package: SUNWcsu
version: 11.8.0,REV=2000.01.08.18.12
architecture: sparc
source: Solaris 8/SPARC

9656d16a4550c925d00e78d90cb775c9 - (/usr/sbin/in.rshd) - 1 match(es)

canonical-path: /usr/sbin/in.rshd
package: SUNWcsu
version: 11.8.0,REV=2000.01.08.18.12
architecture: sparc
source: Solaris 8/SPARC
patch: 108985-02

46c1c2ba01e36c8264a3d25c4097bc98 - (/usr/sbin/in.rlogind) - 1 match(es)

canonical-path: /usr/sbin/in.rlogind
package: SUNWcsu
version: 11.8.0,REV=2000.01.08.18.12
architecture: sparc
source: Solaris 8/SPARC

93e97f044f18c85bfe3a12fb77f1198e - (/usr/sbin/syslogd) - 1 match(es)

canonical-path: /usr/sbin/syslogd
package: SUNWcsu
version: 11.8.0,REV=2000.01.08.18.12
architecture: sparc
source: Solaris 8/SPARC

Now we need to examine the output from the Fingerprint database query. We notice
that we received nine responses from the database; each response showed exactly one

36

match, a reference of which file matched the files in the database, the OS release that
match came from, and in some cases, the fact that some of the binaries were Sun
patches and not directly tied to a distribution.

But wait! We sent the query 10 MD5 checksums. ONE didn’t receive a return; in.tel-
netd was not found in Sun’s Fingerprint database. What does this mean? This means
that the in.telnetd on the system was never shipped by Sun. Is this a Trojan? Possibly. It
could also mean that the user replaced in.telnetd with another version, possibly to add
a feature that Sun doesn’t provide, but either way in.telnetd needs to be looked at very
closely to decide where it came from and if it is legitimate.

We have now looked at all the shipped binaries for a Solaris OS, but what if I am using
Linux, or FreeBSD? Well some of the same tactics apply; it is just going to take addi-
tional steps. There are a few options. First, if we have another system which was
installed using the same installation media and hasn’t been modified too greatly by the
user (not likely), we could build up our own MD5 database. A better option would be
to install a fresh system using the installation media, install any updated RPMs
(patches) that were previously applied (you do keep a log of all patches you have
applied to each system, don’t you?) then use it as root so we get every file:

root-on-clean-system# find / -type f -exec md5 {} \; >clean-md5db-ostype-date

Then you sort and unique the files to give an alphabetic listing of all files:

root-on-clean-system# sort -u clean-md5db-ostype-date >
clean-md5db-ostype-date-sorted

Then we can do a simple compare of the two files, the MD5s collected from our sus-
pect system with sidekick.sh -a and the one from a clean system.

root-on-suspect-system# sidekick.sh -S -a
Operating in standalone mode, sfpC will not be run.
Searching for all files commonly this option is used in conjunction with ‘-S’
The output has been saved to allfiles-md5

We then move or copy the allfiles-md5 to the clean system; run sort and unique there,
and are ready to compare:

root-on-clean-system# sort -u allfiles-md5 >allfiles-md5-suspect
root-on-clean-system# diff allfiles-md5-suspect clean-md5db-ostype-

date-sorted

This will give us a reference pointer and a starting point. This method will result in a
lot of false negatives since system files such as the password file as well as any system
files that have been modified will not match the MD5, but it will at least show us
something meaningful.

Even though we are only doing the lite version of forensics, this is all getting compli-
cated, isn’t it? We could have saved ourselves a lot of grief up to this point if we had
created an MD5 database as soon as we installed the system, and/or run something like
Tripwire. An ounce of prevention is worth a pound of cure; or in this case, 20 minutes
of MD5 up-front is worth 20 hours of MD5 later.

Have I scared you enough to get you to go run MD5 now before an intrusion? Good!

37November 2001 ;login:

Even though we are only

doing the lite version of

forensics, this is all getting

complicated, isn’t it?

●

FO

RE
N

SI
C

S

FORENSICS LITE ●

Vol. 26, No. 7 ;login:

Log Files
What about log files? Well they are worth reviewing, and if you have one local copy
and one remote copy on your syslog server, then it should be a simple matter of com-
paring the log sizes to determine if your log files have shrunk in size. The first thing
any intruder does is clean out their entries from the log files to mask or cloak their
presence. Most rootkits have a built-in utility to do this. What? You only keep the log
files locally and don’t have a syslog server?

You are screwed. But, look at the log files anyway. Maybe it’s a script kiddie, and their
script failed to work properly due to a bad path to a utility or something, but don’t bet
on it. If you do have a syslog server set up, you are looking for anything in the remote
file that doesn’t match the local copy, and from there looking both before and after
that entry for signs of the first penetration. Most intruders will have set up a back door
that doesn’t log their connections, so you need to see if there was any previous system
scan or failed attempt before they found that bug in your application and introduced
the rootkit into your system. This may or may not be worth the trouble. Lesson
learned.

From here we need to look for anything which might have been loaded into the kernel
as a module. The process table and /proc file system if your system has one (most
modern UNIX systems do) are worth examining. Why? Well, after breaking into a sys-
tem a clever intruder will install his or her back door and then delete their toolkit to
keep it from being captured or examined. If you’re lucky and have the time to do full
forensics, it is quite possible to recover these deleted files. Take a look at the examples
(shameless plug alert) from the Honeynet project (http://project.honeynet.org) or The
Coroner’s Toolkit. Recovery of files takes a long time and requires plenty of disk space
to attempt, with no guarantee of results, but it is amazing just how pervasive data is
and how hard it is to truly delete.

This may be too extensive for forensics lite, so we will try looking into the /proc file
system first before attempting this.

From the man pages on proc:

“/proc is a file system that provides access to the state of each process and light-
weight process (lwp) in the system. The name of each entry in the /proc directory is
a decimal number corresponding to a process ID. These entries are themselves sub-
directories. Access to process state is provided by additional files contained within
each subdirectory; the hierarchy is described more completely below. In this docu-
ment, ‘/proc file’ refers to a non-directory file within the hierarchy rooted at /proc.
The owner of each /proc file and subdirectory is determined by the user-ID of the
process.”

We can use this to our advantage. Assuming we were able to suspend the system and
didn’t have to do a full shutdown (above), the /proc file system will be intact on our
suspect disk. We can first figure out if the process running was part of the original
operating system using MD5 and Sun’s Fingerprint database (or the database we cre-
ated using distribution media above). So let’s use MD5 to gather up signatures from
the running binaries from the /proc file system:

mysystem-> md5 /mounted-suspect-disk/proc/*/object/* >proc-md5-sigs

This will give us a list of MD5 signatures that we can then examine using the Finger-
print database. This step weeds out binaries that are system binaries and allows us to
figure out what was running.

The first thing any intruder

does is clean out their entries

from the log files to mask or

cloak their presence

38

http://project.honeynet.org

As an example, I take two of the MD5 signatures from processes that were running, and check it against known fingerprints:

mysystem-> cat proc-md5-sigs
[edited to only have a few entries for space]
MD5 (/proc/22296/object/a.out) = 1a7f2e29e1ee6fb0f5e87d0ba2d8770e
MD5 (/proc/2332/object/a.out) = 2805a09d9790e70ab0e098f337603656
MD5 (/proc/2332/object/ufs.32.6.357638) = e725b71635a1c5f1f72eff24cd3e63cc
MD5 (/proc/2332/object/ufs.32.6.65275) = 84ab84fa8af00324e09627912178c4a0
MD5 (/proc/2332/object/ufs.32.6.8182) = d60917907d88e9e56251ce0989eebfd4
MD5 (/proc/2332/object/ufs.32.6.8576) = 422073158f2775bdf119c3847d0d5b64
MD5 (/proc/2332/object/ufs.32.6.8581) = a11071db878fe24f9e03fb0b53c67bf8
MD5 (/proc/23418/object/a.out) = 2805a09d9790e70ab0e098f337603656
MD5 (/proc/9322/object/a.out) = f7f70ef41fdab1b7670582e62270e76c
MD5 (/proc/23418/object/ufs.32.6.357638) =e725b71635a1c5f1f72eff24cd3e63cc
MD5 (/proc/23419/object/a.out) = e1ee9f994caeb485767e225f049b3059

mysystem-> sfpC.pl proc-md5-sigs

1a7f2e29e1ee6fb0f5e87d0ba2d8770e - (/proc/22296/object/a.out) - 0 match(es)

Not found in this database.

2805a09d9790e70ab0e098f337603656 - (/proc/2332/object/a.out) - 1 match(es)

canonical-path: /usr/bin/jsh
package: SUNWcsu
version: 11.8.0,REV=2000.01.08.18.12
architecture: sparc
source: Solaris 8/SPARC
patch: 109324-01

e725b71635a1c5f1f72eff24cd3e63cc - (/proc/2332/object/ufs.32.6.357638) - 1 match(es)

canonical-path: /usr/platform/sun4u/lib/libc_psr.so.1
package: SUNWkvm
version: 11.8.0,REV=2000.01.08.18.12
architecture: sparc.sun4u
source: Solaris 8/SPARC

84ab84fa8af00324e09627912178c4a0 - (/proc/2332/object/ufs.32.6.65275) - 1 match(es)

canonical-path: /usr/lib/locale/en_US.ISO8859-1/en_US.ISO8859-1.so.2
package: SUNWnamos
version: 1.0,REV=1999.11.23.15.16
architecture: sparc
source: Solaris 8/SPARC

d60917907d88e9e56251ce0989eebfd4 - (/proc/2332/object/ufs.32.6.8182) - 2 match(es)

canonical-path: /etc/lib/ld.so.1
package: SUNWcsr
version: 11.8.0,REV=2000.01.08.18.12
architecture: sparc
source: Solaris 8/SPARC
patch: 109147-06

canonical-path: /usr/lib/ld.so.1
package: SUNWcsu
version: 11.8.0,REV=2000.01.08.18.12
architecture: sparc

39November 2001 ;login:

●

FO

RE
N

SI
C

S

FORENSICS LITE ●

Vol. 26, No. 7 ;login:

source: Solaris 8/SPARC
patch: 109147-06

422073158f2775bdf119c3847d0d5b64 - (/proc/2332/object/ufs.32.6.8576) - 1 match(es)

canonical-path: /usr/lib/libdl.so.1
package: SUNWcsl
version: 11.8.0,REV=2000.01.08.18.12
architecture: sparc
source: Solaris 8/SPARC
patch: 109147-06

a11071db878fe24f9e03fb0b53c67bf8 - (/proc/2332/object/ufs.32.6.8581) - 1 match(es)

canonical-path: /usr/lib/libgen.so.1
package: SUNWcsl
version: 11.8.0,REV=2000.01.08.18.12
architecture: sparc
source: Solaris 8/SPARC

e1ee9f994caeb485767e225f049b3059 - (/proc/23419/object/a.out) - 1 match(es)

canonical-path: /usr/dt/bin/dtpad
package: SUNWdtdst
version: 1.4,REV=10.1999.12.02
architecture: sparc
source: Solaris 8/SPARC

Ah! We now know that process /proc/2332/object/a.out was actually /usr/bin/jsh, and we also know that process MD5
(/proc/9322/object/a.out) was not found in the database. This file needs to be examined in more detail. Anything that doesn’t match
will need additional work to discover what it is. A first check would be to use the what(1) command and then the strings(1) com-
mand to see if we can figure out what the file is.

mysystem-> what /mnt-suspect-system/proc/ 9322/object/a.out
stream.h 1.85 99/12/15 SMI
isa_defs.h 1.20 99/05/04 SMI
vnode.h 1.85 99/07/30 SMI
types.h 1.66 00/02/14 SMI
feature_tests.h 1.18 99/07/26 SMI
machtypes.h 1.13 99/05/04 SMI
int_types.h1.697/08/20 SMI
select.h 1.16 98/04/27 SMI
time.h 2.64 99/10/05 SMI
time.h 1.39 99/08/10 SMI
time_iso.h 1.199/08/09 SMI
time_impl.h 1.599/10/05 SMI
t_lock.h 1.45 98/02/01 SMI
machlock.h1.21 00/04/27 SMI
param.h 1.76 00/02/14 SMI
unistd.h 1.37 98/10/28 SMI
mutex.h 1.20 98/02/01 SMI
rwlock.h 1.998/02/18 SMI
semaphore.h 1.598/02/01 SMI
condvar.h 1.11 00/03/05 SMI
cred.h 1.21 97/01/09 SMI
uio.h 1.29 97/06/29 SMI
resource.h 1.25 98/06/30 SMI
seg_enum.h 1.395/12/22 SMI
poll.h1.28 98/11/23 SMI
strmdep.h 1.10 98/01/06 SMI

40

model.h 1.20 97/09/22 SMI
strft.h 1.199/07/30 SMI
dlpi.h1.23 98/04/28 SMI
bufmod.h 1.998/01/06 SMI
types32.h 1.498/02/13 SMI
stdio.h 1.78 99/12/08 SMI
stdio_iso.h 1.299/10/25 SMI
va_list.h 1.12 99/05/04 SMI
stdio_tag.h1.398/04/20 SMI
stdio_impl.h 1.899/06/10 SMI
ctype.h 1.33 99/08/10 SMI
ctype_iso.h 1.199/08/09 SMI
string.h 1.24 99/08/10 SMI
string_iso.h 1.299/11/09 SMI
file.h 1.60 99/08/31 SMI
stropts.h 1.48 99/08/31 SMI
conf.h 1.59 99/05/26 SMI
signal.h 1.54 99/07/26 SMI
signal_iso.h 1.199/08/09 SMI
siginfo.h 1.54 98/03/27 SMI
machsig.h 1.15 99/08/15 SMI
socket.h1.53 99/11/07 SMI
netconfig.h 1.20 99/04/27 SMI
in.h 1.29 00/03/28 SMI
byteorder.h 1.14 98/04/19 SMI
un.h 1.996/07/12 SMI
if_dl.h 1.798/01/06 SMI
ioctl.h 1.992/07/14 SMI
if.h 1.23 00/03/28 SMI
if_arp.h 1.498/01/06 SMI
if_ether.h 1.899/03/21 SMI
in_systm.h 1.598/01/06 SMI
ip.h 1.798/08/26 SMI
udp.h1.699/11/04 SMI
ip_var.h 1.498/01/06 SMI
udp_var.h 1.293/02/04 SMI
tcp.h 1.14 99/11/04 SMI
inttypes.h 1.298/01/16 SMI
int_limits.h1.699/08/06 SMI
int_const.h1.296/07/08 SMI
int_fmtio.h 1.296/07/08 SMI
ip_icmp.h 1.499/04/05 SMI
netdb.h 1.23 99/12/06 SMI
inet.h 1.17 99/03/21 SMI

This tells us that the binary was compiled using Solaris header files, and it also tells us
that this binary probably does some networking functions based on the types of
header files it uses, such as tcp.h and socket.h. Let’s look at the strings output.

mysystem-> strings mnt-suspect-system/proc/ 9322/object/a.out
— TCP/IP LOG — TM: %s —

PATH: %s(%s) =>
%s(%s)
STAT: %s, %d pkts, %d bytes [%s]
DATA:
:
(%d)

41November 2001 ;login:

●

FO

RE
N

SI
C

S

FORENSICS LITE ●

Vol. 26, No. 7 ;login:

:
(%d)
PKT: (%s %04X)
%s[%s] =>
%s[%s]
Log ended at => %s
%s: alarm
%s: getmsg
%s: alarm finished getmsg() = %i
c6Lqd3Dvn2l3s
(%s)UP?
filtering out smtp connections.
filtering out telnet connections.
filtering out rsh/rlogin connections.
filtering out ftp connections.
Usage: %s [-d x] [-s] [-f] [-l] [-t] [-i interface] [-o file]
-d int set new data limit (128 default)
-s filter out smtp connections
-f filter out ftp connections
-l filter out rlogin/rsh connections
-t filter out telnet connections
-o <file> output to <file>
Using logical device %s [%s]
Output to %s.%s%s
[Cannot bg with debug on]
Log started at => %s [pid %d]
rlogin
telnet
smtp
DATA LIMIT
TH_FIN
TH_RST
[edited for length]

Well, well. Looks like a network sniffer was running. The strings(1) output here
matches up to a strings output for the old solsniff.c program that is floating around in
cyberspace. This would indicate something really was going on that needs to be inves-
tigated.

This last conclusion required a leap of faith because I happen to have seen this output
before. You may not be so lucky and may need to look at the binary in more detail, but
from just looking at the strings output and the usage line in the suspect binary, I think
anyone would agree that this binary was not supposed to be running. The fact that we
proved it was not part of the vendor-shipped operating system using MD5 and the
Fingerprint database would lead us to conclude, if nothing else, that we did have a
problem and that the work we did rebuilding the disk from scratch was justified. From
here we need to start looking for how the system was broken into in the first place.

At this point, I think we have exhausted the forensic lite scenario. To take things to the
next level and delve into full forensics, we need to examine memory and swap to
uncover evidence of how the intrusion unfolded. I’ll leave that for a follow-up article
on how dissecting swap may uncover exactly how the intrusion occurred.

Well, well. Looks like a

network sniffer was running

42

43November 2001 ;login:

●

FO

RE
N

SI
C

SThe New Frontier for Incident Response
What would you do if traditional incident response tools completely failed

during an investigation? That is exactly what I experienced when up against

a loaded evil kernel module. Loadable kernel modules are changing the

techniques used to perform an incident response because the level of com-

promise is raised from user space to kernel space. Once the compromise

breaches the kernel space, the effects trickle down to any user-space exe-

cutable resident on the trojaned system. This effect allows an intruder to

change the behavior for any command executed on the system without

changing the program binaries themselves. With this in mind, any trusted

toolkit you transfer to the victim machine will also be automatically com-

promised. Therefore, I will explain how one malicious kernel module works

and describe a couple of tools I developed to cope with the problem.

Overview of Loadable Kernel Modules
Loadable kernel modules (LKM) are a blessing for the system administrator, but a
nightmare for an incident responder. LKMs were initially designed to provide dynamic
functionality by altering a running kernel without rebooting. The slight altering of a
running kernel can provide additional support for other devices such as new file sys-
tem types and network adapters. Additionally, since kernel modules can access all
functions and memory areas of a kernel, the depth of what it can alter reaches the
whole operating system without any controls. Therefore, every function and memory
resident struct is in danger of being compromised by a malicious kernel module.

One well-known malicious module for Linux kernels is named knark. Once knark is
compiled and loaded on a victim machine, the syscall table is altered, which changes
the operating system behavior. Basically, the syscall table is the entry point into the
operating system provided to user-level programs and resides in kernel space. The for-
mal definition of “syscalls” is given in manual section two of most UNIX operating
systems. Whenever the kernel executes on behalf of user space, the area of an operating
system a typical user executes in, the OS maps all of the commands and functionality
executed on the command line to system calls within this table. Therefore, when knark
alters the syscall table, it is altering user command execution. The important system
calls knark alters are the following:

■ getdents – This system call gets the directory entries (i.e., the files and directories)
of a given directory. By compromising this call, knark is able to hide files and
directories from user-level programs.

■ kill – This system call sends a signal to a process, typically to kill it. This call is
compromised such that an extra unused signal, #31, will trigger the option flags of
a process to be set to the “hidden” state. When a process is hidden, its entry from
the /proc file system is removed and therefore hidden from ps. Signal #32 unhides
the file by resetting the option flags of the task.

■ read – This system call reads the contents of a given file. Knark compromises this
call such that it hides intruder connection specifics from netstat. The specifics are
hidden because they are read from the /proc file system as files.

■ ioctl – This system call changes the behavior of files and devices. When knark com-
promises this system call, it is able to clear the promiscuous flag on the network

loadable kernel
modules

LOADABLE KERNEL MODULES ●

by Keith J. Jones

Keith Jones is a
computer forensic
consultant for
Foundstone. His pri-
mary area of concen-
tration is incident
response program
development and
computer forensics.

Keith.jones@foundstone.com

Vol. 26, No. 7 ;login:

interface cards. Additionally, knark also inserts the functionality of hiding and
unhiding files into this function.

■ fork – This system call spawns a new process. When knark compromises this sys-
tem call, it will hide all child processes created from a hidden parent process.

■ clone – This system call spawns a new process. When knark compromises this sys-
tem call, it will hide all child processes created from a hidden parent process.

■ execve – This system call executes a file. It is called every time a command is
entered at the prompt by a user. When this system call is trojaned, the kernel
module can manipulate how and what commands are executed. knark allows an
intruder to point one executable to another, similar to a symbolic link but without
the evidence. When execve is compromised by knark, the destination executable
runs instead of the expected source program.

■ settimeofday – This system call sets the system time. knark compromises this sys-
tem call by watching for predetermined clock-setting times. When one of these
times is sent to this call to reset the clock, knark can either execute some adminis-
trative tasks or give the current user the user ID and group ID of root immedi-
ately. This eliminates the need of changing a shell to SUID-root in order to give
root privileges to an ordinary user.

Since the syscall table has been compromised, the functionality of administrative tools
is altered. netstat reports a network interface card that is never in promiscuous mode,
and connections from given locations disappear. ps and top do not report hidden
processes because they disappear from the /proc file system. ls ignores hidden files and
directories. All of this occurs because when the tools are run they rely on the operating
system to supply information. With control of the OS, an intruder can make it return
false information to the user-space queries. This occurs without changing the binary
files for netstat, ps, top, and ls. Therefore file system checksum tools, such as Tripwire,
are useless against this type of compromise. Checksum tools are also defenseless
against the executable redirection capabilities of knark. If an intruder were to link a file
hackme to cat, every time cat is run the program hackme is executed instead. This
allows cat to remain on the file system with the same MD5 checksum, yet execute with
different functionality.

Furthermore, transferring a new set of tools to a victim machine with knark installed
will not change the data reported. Even a trusted tool set must make system calls,
therefore the tools become untrusted immediately when running on the victim
machine. There is currently no way to circumvent a kernel-level compromise without
using a toolkit that also enters the kernel space. This was my motivation to develop
tools and techniques to check for the installation of LKMs and capture processes when
a system may have a malicious LKM installed.

One caveat not previously mentioned is the existence of knark.o in the loaded module
list reported by lsmod. Unfortunately for the investigator, there is a simple way to
make this information disappear for the intruder. knark is packaged with another load-
able kernel module named modhide, which makes itself and the last loaded module
disappear. Once a module has disappeared, there is no way to unload it without
rebooting the machine. Additionally, there is no easy method to even detect it is
loaded, because all identifiable references to the module disappear. As has been shown,
knark comes with all the tools to make it the ultimate stealthy rootkit.

With control of the OS, an

intruder can make it return

false information to the

user-space queries

44

Preventative Measures
If the ability to prevent a loadable kernel module compromise is available, it will obvi-
ously be the best solution. There are a few measures you can take to protect yourself
from loadable kernel modules ahead of time. You can protect yourself from most of
the maliciousness kernel modules can cause by securing your syscall table. A simple
loadable kernel module can be constructed that watches the syscall table at periodic
intervals and when other modules are loaded. If the sentry module discovers that the
syscall table has been modified from its original state, it can alert the system adminis-
trator and even change it back to the original value. The following example code will
work well with Linux 2.2 and 2.4. If you have a machine with more than one proces-
sor, it can be compiled by the following command: gcc –D__SMP__ -c syscall_sentry.c.
If you have a machine with a single processor, just remove the –D__SMP__ definition.
Once it is compiled, load it into the running kernel with insmod.

/*
* This LKM is designed to be a tripwire for the sys_call_table.
*/

#define MODULE_NAME "syscall_sentry"

/* This definition is the time between periodic checks. */
#define TIMEOUT_SECS 10

#define MODULE
#define __KERNEL__

#include<linux/module.h>
#include<linux/config.h>
#include<linux/version.h>
#include<linux/kernel.h>
#include<linux/sys.h>
#include<linux/param.h>
#include<linux/sched.h>
#include<linux/timer.h>
#include<sys/syscall.h>

/* This function is a simple string comparison function */
static int mystrcmp(const char *str1, const char *str2)
{

while(*str1 && *str2)
if (*(str1++) != *(str2++))

return -1;
return 0;

}

/* This function builds a timer struct for versions of linux
* less than Linux 2.4. It is used to set a timer
*/

#if LINUX_VERSION_CODE < KERNEL_VERSION(2,4,0)
/* Initializes a timer */
void init_timer(struct timer_list * timer)
{

timer->next = NULL;
timer->prev = NULL;

}
#endif

45November 2001 ;login:

If the ability to prevent a

loadable kernel module com-

promise is available, it will

obviously be the best solution

●

FO

RE
N

SI
C

S

LOADABLE KERNEL MODULES ●

Vol. 26, No. 7 ;login:46

/* This is our timer */
static struct timer_list syscall_timer;

/* This is the system’s syscall table */
extern void *sys_call_table[];

/* This is the saved, valid syscall table */
static void *orig_sys_call_table[NR_syscalls];

/* This function is needed to protect yourself */
static unsigned long (*orig_init_module) (const char *, struct module*);

/* This function checks the syscalls for changes
* and changes them back to the original if it has
* been changed.
*/

static int check_syscalls(void)
{

int i;

/* Add a new timer for our next check */
del_timer(&syscall_timer);
init_timer(&syscall_timer);
syscall_timer.function = (void *)check_syscalls;
syscall_timer.expires = jiffies + TIMEOUT_SECS * HZ;
add_timer(&syscall_timer);

for (i = 0; i < NR_syscalls - 1; i++)
{

if (orig_sys_call_table[i] != sys_call_table[i])
{

printk(KERN_INFO "\nSysCallSentry - sys_call_table has been
modified in entry %d!\n", i);

sys_call_table[i] = orig_sys_call_table[i];
}

}

return 1;
}

/* Check sys_call_table anytime a new module is loaded. */
static int long sys_init_module_wrapper(const char *name, struct

module *mod)
{

int i;
int res = (*orig_init_module)(name,mod);

for (i = 0; i < NR_syscalls - 1; i++)
{

if (orig_sys_call_table[i] != sys_call_table[i])
{

printk(KERN_INFO "\nSysCallSentry - sys_call_table has been
modified in entry %d!\n", i);

sys_call_table[i] = orig_sys_call_table[i];
}

}
return res;

}

/* Module Init Code */
static int init_module (void)
{

int i;
printk(KERN_INFO "\nSysCallSentry Inserted\n");

/* Initiate the periodic timer */
init_timer(&syscall_timer);

/* Save the old values of the sys_call_table */
orig_init_module = sys_call_table[SYS_init_module];

/* Wrap the init_module syscall. This will check to see
* if any calls have been altered when a new module loads.
*/
sys_call_table[SYS_init_module] = sys_init_module_wrapper;

for (i=0; i < NR_syscalls - 1; i++)
{

orig_sys_call_table[i] = sys_call_table[i];
}

/* Start our first check */
check_syscalls();
return(0);

}

/* Module Cleanup Code */
static void cleanup_module (void)
{

/* Return system status to the original */
sys_call_table[SYS_init_module] = orig_init_module;
printk(KERN_INFO "\nSysCallSentry Removed\n");

}

The current “state of the art” in LKM rootkitting is to modify the syscall table. There-
fore, this method of placing a sentry on the syscall table is practical because the syscall
table changes so infrequently. Possibly the best true preventative measure you can take
to protect your machines from this type of compromise is to remove the ability to load
kernel modules completely. Production servers should have all the code they need to
run compiled into the kernel, and loadable kernel modules should not be used.

There is another option available to protect yourself against hostile LKMs. A tool
called “St. Jude,” when compiled with one called “St. Michael,” both guard against the
modification of the syscall table, and checks root transitions for evidence of attacks,
based on a ruleset created during a learning phase.
(http://www.sourceforge.net/projects/stjude).

Development of Investigative Tools and Techniques
It is obvious that the investigation must examine the victim machine’s kernel space in
order to effectively respond to a kernel-level compromise. Therefore, investigators
must change their tools and techniques. It will be assumed that the response to an
incident involving knark will include a forensic duplication of the victim machine’s
storage devices. Therefore, any hidden files will be available to the investigator using
that method. What the investigator will miss, however, are hidden processes and net-
work information. This can be remedied by developing a kernel level “ps-like” tool
that also retrieves executable images of each process. This tool will be a loadable kernel

47November 2001 ;login:

The current “state of the art”

in LKM rootkitting is to

modify the syscall table ●

FO

RE
N

SI
C

S

LOADABLE KERNEL MODULES ●

http://www.sourceforge.net/projects/stjude

Vol. 26, No. 7 ;login:

Access to the process

executable image in Linux is

not trivial, but it is possible

48

module so that it can be loaded after an incident occurs. This section will describe, at a
high level, one such tool and how it works to circumvent the problems involved with
kernel-level investigations on a Linux 2.2 platform.

The most important struct for a kernel level ps tool is task_struct. It is a circularly
linked list where every process on the system is present. Every action available for the
process is available inside this struct, such as opened files, an executable image of the
process, opened network sockets, file operators, and more. The following are several
fields of important information for the investigator which will be written to a log file.

■ Process ID (PID) – This is the unique number used to identify a running process.
■ User ID – This is the user number that executed the process. It is important to

know what privilege level the process is running as.
■ Process Status – This flag indicates how the process is currently running. Since a

process cannot occupy the processing power of the CPU all of the time, it may be
sleeping. This flag will indicate what running state the process is in.

■ Process Name – This is the human-recognizable name for the process. It is the
equivalent to a portion of the command line used to execute this process.

■ Start Time – This is reported in “jiffies,” which is the number of system clock ticks
since the machine was booted. This field is used to determine when the process
was started. It is obvious when a process is initiated using a startup script during
system boot because the number is relatively small. It may also provide more clues
as to when the intrusion occurred.

■ Open File Handles – Since everything in UNIX is a file, viewing the open file han-
dles of a process allows you to see all open regular files, network sockets, and
FIFOs. This information will be pertinent when tracking down processes that save
information to files, like sniffers, or open network sockets, like back doors.

■ Command Line Arguments – The command line arguments are available in the
task struct and are useful when deciphering the options with which a process was
executed. For example, imagine an intruder started netcat. It would be difficult to
observe where it was connecting unless you had the command line arguments.
The command line arguments available in the task struct would include the IP
addresses and ports for netcat.

■ Process Environment Variables – Each process that is executed has its own version
of an environment table. Typically, it is a duplicate of the environment that the
initiating user had at the time of the execution. Therefore, extra information of
the intruder’s session will be available by examining the environment variables
available in the task struct.

Therefore, a tool would iterate through this circular linked list, saving the information
for each process to a log file. This information would be very similar to the ps –ef
command, so most investigators will be able to read it easily. Additionally, a separate
file will be created for the process containing the executable image, also found in the
task struct, for further offline tool analysis. Access to the process executable image in
Linux is not trivial, but it is possible. The image resides in the memory map struct of
the task. Within that memory map struct there is a virtual memory area associated
with the task. Within that area, there is a virtual-memory file, which contains a file
operator array. Once we have found the proper read function, reading the executable
image and writing it out to another file is simple. Theoretically, a process should
always have an executable image completely loaded in memory because it is possible to
delete binaries from the file system after they are running. The most difficult part of
acquiring the image is finding where it resides in memory.

While your module is running, no other process can be scheduled to run. Interrupts
and other system activity can still take place, but the module has preempted execution.
Because this module “freezes” the process list, I named it “Carbonite.” The source code
is available from http://www.foundstone.com and is a good basis to develop tools like it
for later versions of Linux and different operating systems.

One last fact you can use to determine if knark is loaded on your system is to view the
network card status. When knark is loaded, it never lets the network interface report it
is in promiscuous mode. This is to prevent a system administrator from observing an
intruder’s sniffer, which places the card into promiscuous mode. What you can do,
however, is simply run tcpdump or any other sniffer that uses promiscuous mode and
view the status of the network adapter using ifconfig. If the card does not report that it
is in promiscuous mode, knark could be loaded.

Conclusion
The ability to load kernel modules is a significant blow to incident responders. The
malicious loadable kernel module is already publicly available and probably used in
many intrusions. It raises the bar of compromise and incident response to the kernel
level. Although it may seem that kernel modules are a significant factor when perform-
ing investigations, they are not lethal. You can see that there are simple preventative
measures that you can take to protect yourself against this type of compromise. Fur-
thermore, investigative tools and techniques for this type of compromise fight fire with
fire by also executing in kernel space.

49November 2001 ;login:

The ability to load kernel

modules is a significant blow

to incident responders. ●

FO

RE
N

SI
C

S

LOADABLE KERNEL MODULES ●

http://www.foundstone.com

50

Last year, I implemented Snort in a production environment at a medium-

sized Web-hosting firm specializing in dedicated servers. We implemented

Snort version 1.6 (later upgrading to version 1.7) on a system running Red-

Hat Linux version 6.2. After we performed extensive tuning of the Intrusion

Detection System (IDS) rule set and wrote a number of scripts to parse its

output, the system proved quite useful for identifying denial-of-service

(DoS) attacks. It was somewhat less useful for detecting actual intrusions,

but even in this regard it was superior to running nothing at all.

Project goals were very vague, but the general idea was to increase the security and
manageability of our network. Because we had no direct control over customer
servers, we could identify misbehavior only by locating suspicious network traffic. A
number of customers also ran IRC servers, making them prime targets for DoS
attacks. Our hope was that by implementing an IDS we would be able to quickly iden-
tify the targets of DoS attacks. While we hoped to use the system to identify the attack-
ers, addresses were almost always spoofed and the degree of cooperation with our
upstream network feed did not lend itself to tracking down the attackers. (Many larger
network providers will not even attempt to trace back spoofed packets unless you
appear to be serious about prosecuting the attacker. They have limited resources to
deploy, so this strategy makes sense from their perspective.)

Our system was a generic Intel-based Pentium III system running at approximately
700 megahertz with a 100-megabit Ethernet card. Since customers were permitted to
perform virtually any activity on their dedicated servers, there was no site-wide fire-
wall. The IDS sat on the VLAN used by the routers to talk to each other and sat on the
“span” port so as to see all of the relevant traffic. However, the routers talked to each
other over gigabit fiber, and traffic averaged approximately 120 megabits per second,
so the IDS saw what amounted to a (hopefully) good sample of the traffic. Keeping up
with the throughput given by the 100-megabit card kept the CPU at full utilization all
of the time. Planned updates to the system included splitting the sensor from the
processor so as to allow for expansion and to reduce CPU usage, but this was never
implemented.

Linux was chosen as a platform not because of its strong packet-capture abilities but to
remain consistent with the other servers on site. Simplicity of management was one
goal of the implementation; there was no full-time security person on-site, so manag-
ing the IDS was one of a number of duties I had. Because the pcap library does not
keep track of dropped packets on Linux, it is impossible to estimate with any accuracy
the actual percentage of traffic processed by the server. It was certainly adequate for
much of the task at hand. My rough guess is that the IDS saw three-fifths of the traffic.
This guess is based primarily on what appear to have been complete sweeps of our net-
work space: approximately three out of five target IP addresses in our range tended to
show up in these sweeps. With even faster hardware now available inexpensively, it
might be possible to capture all hundred megabits of traffic even without a more com-
plex architecture; as some commercial vendors claim to be doing 200-300 megabits per
second of actual traffic, it should be possible to push the systems harder. This may
require more extensive engineering and more careful selection of rule sets.

implementing snort
in a production
environment

Vol. 26, No. 7 ;login:

by Jon Lasser

Jon Lasser is a UNIX
consultant in Balti-
more, Maryland, and
is the author of Think
UNIX. He is lead
coordinator for the
Bastille Linux Project
and thinks the four
food groups are cof-
fee, cheese, choco-
late, and beer.

jon@lasser.org

Snort 1.6 and 1.7 built out-of-the-box on RedHat 6.2; newer versions of RedHat Linux
have prebuilt Snort 1.7 packages available as part of their “PowerTools” collection of
applications, though Snort 1.8 is now available. Snort was chosen due in part to my
familiarity with parsing its output and the availability of other administrators in the
area who understood and were willing to help with Snort. (Thanks, Andy!) Low cost of
implementation was another consideration: the project goals were very vague, so justi-
fying expensive software or hardware was out of the question.

The most sensitive part of the Snort configuration was the rule set used. A Snort rule
set is a list of filters that apply to packets and determine which ones set off alarms.
Rules can match packets based on source and target addresses and ports, particular
protocols or flags, and the actual contents of the packet. The more rules implemented,
the slower the system will be, and the more alarms will go off. It is difficult to strike a
balance between a “quiet” IDS that misses important incidents and a “loud” IDS that
finds such a quantity of suspicious traffic that actual attacks are lost in the noise. Our
experience was one of trial-and-error, starting with an extensive rule set and whittling
out those rules that became more trouble than they were worth.

We based our rule set on the one made available at http://www.whitehats.com with a
number of substantial changes. First, because we were as worried about mischief origi-
nating from our network as that aimed at our network, we ignored the “internal” and
“external” network definitions and modified all rules to consider any source and desti-
nation addresses as matching the given rule. We disabled all rules that matched solely
on source and target ports; these rules have a very high false-positive rate. On the
other hand, many DoS attacks will set off a large number of these rules simultane-
ously, lighting up the target system like a Christmas tree. Even with these changes, a
large number of rules generated many false positives and were disabled. After that, we
still had 10,000–20,000 individual alerts generated by the system on a typical day,
many of which were false alarms that were too difficult to programmatically eliminate.

I wrote a group of scripts that ran hourly, examining the last full hour’s incident logs.
One script summarized all of the activity for the hour. It listed all of the rules that were
triggered, sorted by the number of times each rule was triggered; it listed the top 10
source addresses of packets that triggered rules; and it listed the top 10 destination
addresses of packets that triggered rules. This hourly summary gave me a quick read
on the status of my systems over time and allowed me to find serious incidents not
detected by the script described below. I also ran a daily summary script that provided
the same information on a daily basis, allowing me to keep (essentially useless) statis-
tics of how many detects a day we experienced.

Another script looked for particular alerts that we considered of high importance,
such as those matching a particular exploit. The script then collated all attacks from
that source IP over that hour – not simply the attacks serious enough to flag an email,
but all detects from that source IP address – and mailed me the resulting log excerpt,
with some boilerplate text up-front. These log excerpts often read like detailed sum-
maries of scan-attack-scan scripts.

I used procmail to sort all of these messages into a single folder and set my mail reader
to sort that folder by subject. Since each subject began with the IP address of the
attacking system, it was easy to see attacks that spanned multiple hours. Using whois, it
was quite simple to track down a responsible party for any particular server. By using
Mutt’s ability to act upon groups of messages simultaneously, and some clever vi

51November 2001 ;login:

A Snort rule set is a list of

filters that apply to packets

and determine which ones set

off alarms. . . many DoS

attacks will set off a large

number of these rules

simultaneously, lighting up

the target system like a

Christmas tree

●

IN

TR
U

SI
O

N
D

ET
EC

TI
O

N
| F

O
RE

N
SI

C
S

IMPLEMENTING SNORT ●

http://www.whitehats.com

Vol. 26, No. 7 ;login:

scripts to simplify stripping out extraneous information, I was able to quickly respond
to a particular incident or group of incidents. However, the volume of alerts was such
that I typically spent several hours a day sending “nastygrams” to sites that had
scanned our network or attacked servers on it. The only solutions were to be more
picky about what attacks and probes required a response or to automate further. Fur-
ther automation was scheduled for the never-implemented second iteration of the
IDS.

Frankly, whois information provided by most users is completely insufficient for accu-
rate security-specific response. The one exception was Brazil’s NIC, which included
provisions for tagging an individual as the person responsible for security at a given
site. I strongly urge the more widespread adoption of this technique, as it would both
improve the usefulness of whois as relevant to security and to allow for further
automation of security response. In general, the quality of information provided by
the various registrars was abysmal: not a day went by without several security messages
bounced due to invalid email information, and many more messages were misdirected
due to changes in IP space management not reflected in the database. I also urge the
use of a standardized “security” email address to simplify site contact for security-criti-
cal information.

The rate of response to security nastygrams varied wildly; some days as many as one-
third of the sites to whom I sent complaints responded, while other days nobody at all
did so. Responses were no more likely to come from places where English is the pri-
mary language than from other locations, and, in general, native English speakers were
the least polite. However, they were also the most likely to request help in interpreting
the logs or to offer to track down rogue server activity.

The most frightening activity picked up by the IDS was “low and slow” probes of our
network: at any one time, there were probably five or six different sites involved in
such probes. I have no way of knowing if these were coordinated attacks; because we
never implemented a database back end for the IDS, I do not know if the regions
scanned overlapped. The most obvious (!) of these attacks sent no more than two
packets a day, inquiring of the version number of BIND running on a particular sys-
tem. Even in the best case, it was hard obtaining sufficient evidence of malicious
behavior to send to administrators at the appropriate sites: only over a four- or five-
day period would enough packets accumulate that I would not feel foolish sending
them to the administrator of the machine scanning our network. As I tended to go
through the mail on a daily basis, I usually became aware of the low-and-slow probes
when coming back from a long weekend. Had I tried to respond to all such attacks
more frequently, I could have spent a full day every day doing nothing but processing
logs.

As stated above, the most effective use of the IDS was tracking down the targets of DoS
attacks. In fact, any packet-capturing system that can provide the source and destina-
tion IP addresses of individual packets can be used to do what we did. Simply, we had
a script that started a Snort process which was configured to capture a particular num-
ber of packets (we used 10,000 packets in most cases) and print out the packet header
information. We then extracted the source IP address of the packets, sorted them, and
then used uniq to count the instances of any particular address. Finally, we did a
reverse sort based on the packet count and printed the top 10 senders of packets.

Some high-volume customers continually ranked in the top 10, but there was usually
an order-of-magnitude difference in packet counts when a DoS attack was underway.

Frankly, whois information

provided by most users is

completely insufficient for

accurate security-specific

response

52

Under normal circumstances, the top user might have 500 packets out of that 10,000;
during an attack, the top user would likely have 3000–5000 packets. As a result of this,
our “top 10” script was our most effective anti-DoS tool, followed closely by MRTG,
which we could use to examine the traffic patterns of our top packet senders to deter-
mine whether or not the activity we were seeing was typical of that user.

As a means of detecting the actual compromise of servers, the IDS was rather ineffec-
tive. As most current exploits do not check for vulnerability before attempting to gain
access to a system, we would frequently see exploits attempted against servers running
different operating systems or even CPU architectures. Verifying the possible vulnera-
bility of particular system for particular exploits was a Herculean task and, to be frank,
boring. Worse, as we did not have root on most of our customers’ systems, it was often
impossible for us to verify whether or not a particular service was vulnerable on a
given system.

This points to two areas that I believe need improvement in intrusion detection. First,
I would like to see stateful systems that are not only able to detect a probable attack
against a particular system but, following that, would be able to detect the success or
failure of the exploit. This would require much more state than most intrusion detec-
tion systems maintain, and would likely be quite expensive in terms of memory and
CPU usage. Nevertheless, it would allow much better prioritization of incidents, allow-
ing limited resources to be deployed more effectively.

Second, it seems clear that intrusion detection is one small piece of the larger problem
of incident response. This is the “what now?” problem: one of the rules has been trig-
gered; what do you do now? This question goes unanswered by Snort and most other
IDSes. After detection, the incident needs to be tracked, the system needs to be exam-
ined, and the offending system’s administrator must be contacted. If the targeted sys-
tem is not under your direct control, its administrator must be contacted, and so forth.
I would like to see intrusion detection and response suites, essentially specialized trou-
ble-ticketing systems, that would allow a group of detects to be classified as an incident
and, once ticketed, allow that incident to be tracked. This would probably also include
tracking the “owners” of blocks of IP addresses, including accurate contact informa-
tion. This database could initially be populated via whois but could be refined by the
system’s users over time.

Overall, implementing a Snort-based IDS could not have been simpler. Were I to do it
again, I would definitely use a separate sensor and a database back end: although the
text-based logs were easy to process using Perl and shell scripts, the additional power
of database queries might have turned up more useful information and saved a lot of
time.

What was difficult about implementing an IDS with Snort was sorting the vast quan-
tity of data produced by this system. Judicious selection of alert rules is crucial, as is
some sort of automated post-incident processing. For my site, our hourly detect script
was the most useful. It found all “serious” alerts and sent an email with all alerts, seri-
ous and otherwise, from that source IP. Even this was far overshadowed by the ability
of the system to detect DoS attacks. That, however, could have been done on a much
simpler system connected to the span port on the router; we simply did not think to
use packet captures to detect DoS attacks until we had already implemented the IDS.
(Before the IDS, we simply used MRTG to find spikes in network load on particular
ports.)

53November 2001 ;login:

This is the “what now?”

problem: one of the rules has

been triggered; what do you

do now?

IMPLEMENTING SNORT ●

●

IN

TR
U

SI
O

N
D

ET
EC

TI
O

N
| F

O
RE

N
SI

C
S

Vol. 26, No. 7 ;login:

Unless a site has a specific need or a full-time security person on staff, I cannot yet rec-
ommend implementing an intrusion detection system. Although simple to implement,
the data produced by such a system tends to be useful only to the extremely paranoid
or those without adequate control of systems on the network in question. Over time,
however, I expect that intrusion detection systems will become more powerful and
more useful for the typical system administrator. Right now, however, these systems
are too good at producing high volumes of data and not good enough at providing
tools for turning that data into information.

54 Vol. 26, No. 7 ;login:54

pssst, wanna buy
some network
insurance?
From the title, you probably have the image of a seedy guy holding open a

raincoat full of insurance policies (and an arm full of watches), but that isn’t

quite what I mean.

Think what you could do if you had a record of all network transactions that crossed
your link to the Internet in an amount of disk space you could afford (without being a
major government). There is an open software tool called argus that provides exactly
that option. In this article, we are going to explore some of the things you can do with
such information and state some reasons why you might want to have it, even if you
can’t interpret the results immediately. Hopefully, your network will become a safer
place (and thus so will the Internet as a whole). You can certainly make friends with
your internal/external auditors because this can be used to audit the effectiveness of a
security policy, intrusion detection system (IDS), or firewall.

Let’s start the ball rolling with a true war story (and the first good use of this tool). As
the reader of our abuse email account in April a year or two ago, I received an external
complaint about someone our way doing a port scan of a site. We are a university site,
so nothing unusual there – just another contestant in the “you bet your account” con-
test. What was unusual was that a review of the weekend logs (this being Monday and
the scan being Saturday) didn’t turn up any scan. Then I looked at the date on the sup-
plied firewall log: it wasn’t from the previous Saturday but a Saturday last February. No
problem: crank up the old disk machine, run the log files from last February through

by Peter Van Epp

Peter has spent the past 13+ years as a
network/security/system administrator
(in that order of priority) for Simon
Fraser University in B.C., Canada.

vanepp@sfu.ca

ra (one of the argus data reporting tools included in the argus distribution) and, sure
enough, there was a port scan. Thus I was able to tell the person reporting the “prob-
lem” that we had dealt with it the Monday after it happened (by declaring a new win-
ner in the “you bet your account” contest) and that perhaps they should check their
firewall logs a little more frequently than every two months or so.

Several points to make here: first, you should check the date and timestamp on a com-
plaint using the argus logs to verify that a reported attack from your site really origi-
nated with your site (and wasn’t forged as coming from your site), and that the
reporting site (or you, when converting from a remote time zone) hasn’t gotten the
time wrong. This is important for things like dialup connections, where a different
time zone can cause someone to be blamed erroneously and a slip up can be embar-
rassing and possibly expensive. Next, because you are recording all traffic, you can
monitor outbound traffic from your site, which may or may not be important to you.
Around our place, the standard comment on firewalls is that “the firewall faces inward
to protect the Internet from our user community,” not necessarily the other way
around. On a commercial site, where you can (at least in theory) trust your user base,
this may be less of an issue. However, in the case of a breach, the log provides you with
a record of who else the attacker may have attacked from your site. Since the argus
server can also be invisible to the network and tightly secured, chances are good the
attacker won’t find it and delete his tracks, even if he does so on the machines he broke
in to.

A Hypothetical Case
While we are on this topic (i.e., sites that may have machines that are less than secure
in large numbers) let’s look at a hypothetical situation (which so far hasn’t happened
to me, and I hope never does). One morning a local law enforcement agent appears
with a warrant to seize one or more of our machines on the grounds that they have
been used in a DDoS attack. What are you going to do in this case? My guess is you’re
going to say, “Yes, sir, here it is, sir,” because you can’t refute the allegation (although
even being able to do so may well not help until later in the face of a warrant).

I have a 50/50 chance. I can check the argus logs and either refute that we were the
source of the DoS attack (best case) or confirm that we were the source (toast!).
Because in the first case, while the reply packets are appearing on my Internet connec-
tion, there are no corresponding source packets issuing from my net, which means the
source is being spoofed by a site without anti-spoof filters on their border router. If the
attack did come from our site, our risk manager can choose to settle out of court or
argue due diligence since we would have (and, in real life, have before it got this far)
detected and dealt with the problem in a timely manner because of the argus logs.

This also illustrates another argus feature. When the analysis of the DDoS clients first
came out in December a few years ago and indicated the control mechanism was an
ICMP echo reply packet, the author provided a scan program that I was able to run on
a segment monitored by argus. I determined what the scan looked like (an ECR flag on
the flow rather than ECO indicating an echo reply with no corresponding echo
request). Looking back, I noticed scans using ECR packets against my network starting
in September of that year (luckily without success) and continuing even as I type this
article and undoubtedly still going on as you read it. This procedure can be generalized
to most new exploits: determine what the exploit looks like in the argus log and scan
back over the time you (and more importantly your firewall and/or IDS) didn’t know

55November 2001 ;login:

I can check the argus logs

and either refute that we

were the source of the DoS

attack (best case) or confirm

that we were the source

(toast!)

PSSST, WANNA BUY SOME NETWORK INSURANCE? ●

●

IN

TR
U

SI
O

N
D

ET
EC

TI
O

N
| F

O
RE

N
SI

C
S

Vol. 26, No. 7 ;login:

you should be looking for the signature to detect compromised machines. Knowing of
a break in after the fact, while undesirable, is much better than not knowing of the
break in at all.

A news break: as I type this (on July 19) the IIS Code Red worm has broken out. This
provides a case study in using argus for unconventional things. A CERT notification
yesterday gave me my first infected machine. A look at the argus log indicates a signa-
ture of many, mostly 0 length, connection attempts to offsite Web servers. A quick Perl
script that takes the argus ra data reporting tool output as input and selects accesses to
port 80 that are not on any of my local nets is quickly written. The source and destina-
tion IP addresses get stored in an associative array indexed by source IP address and
then sorted. As long as the source address is the same, increment a counter (because
this is a new destination access from this same source host). Once the source address
changes, store the source address in a new associative array indexed by the remote host
count. When the entire file has been processed, sort the array of counts in reverse
numeric order and write it to standard out.

This is about a page of Perl and an hour or so of work. The output looks like this (with
the addresses obscured to protect the guilty):

100539
1xx.yy.zzc.65

271
1xx.yy.zze.6

269
1xx.yy.zzf.161

...

The first address (and 13 more like it across both our campuses) is a machine affected
with the Code Red worm scanning other machines. The other two hosts are normal
accesses. This is a fine example of why having a record of all the data passing through
your network is very useful. A firewall would ignore this, as they were outgoing HTTP
accesses on port 80. There are reports that the initial Snort rule, because of a rule mis-
take, wasn’t catching all of these. Since argus is recording everything that comes by, the
mark one eyeball (after some thinking and data processing) has no problem picking
the difficulty out of the noise in the raw data. A manual human scan of the argus log
verifies that this really is the worm from the ra output itself (again with addresses
obscured):

. . . (lots more just like this – 100,535 of them in fact . . .) So whack this host (and the
14 others) off the network.

Since we mentioned your firewall and IDS a couple of paragraphs ago (before I was so
usefully interrupted), and since I promised at the start to make your auditor smile
upon you, let’s look at some of the ways argus can be useful in conjunction with these
devices. While we all know none of us would ever misconfigure our firewall, in the
hypothetical situation where this did happen, how do you demonstrate that your fire-
wall/IDS is doing what your security policy specifies? One good way is to put an argus

A firewall would ignore this,

as they were outgoing HTTP

accesses on port 80.

56

Thu 07/19 06:56:44 s tcp 1xx.yy.zzc.65.60806 -> aaa.165.233.142.80 3 0 0 0 REQ
Thu 07/19 06:56:44 s tcp 1xx.yy.zzc.65.60791 -> bb.147.29.238.80 3 0 0 0 REQ
Thu 07/19 06:56:44 s tcp 1xx.yy.zzc.65.60813 -> cc.123.5.126.80 3 0 0 0 REQ
Thu 07/19 06:56:44 s tcp 1xx.yy.zzc.65.60768 -> dd.60.30.131.80 3 0 0 0 REQ

server on both sides of it and perhaps use a tool such as tcpreplay to insert known
attacks into the input data stream.

When you compare the two argus logs you would expect to see the attack packets in
the outside argus log. If you also find such packets in the log from the argus server
inside the perimeter, you have just found a problem. Of course, you also have logs back
in time to see if the hole has bitten you already. In such a situation, I often find the
standard operating procedure for swatch syslog watcher to be useful: filter out (one
class at a time) the expected packets from the log output and carefully examine that
which remains until you have explained why it should be there or have identified a
problem to be dealt with.

Another nice feature of argus is that, since it is not deciding anything at all about the
data stream but is just recording it in a compact form, it is harder – and with suffi-
ciently large hardware, perhaps impossible – to overload the argus server. Thus, should
the attacker be able to overwhelm your IDS or firewall, argus may still give you a
record of everything that happened on your net. With argus you at least have the data;
with only an overwhelmed IDS or firewall you don’t (or at least not all of it). Some-
thing to think about, especially in terms of insurance.

Now let’s look in detail at some argus-detected incidents to get a clearer idea of some
of the ways in which argus logs are useful. In all cases below, the addresses have been
obscured to protect both the innocent and the guilty. The data is being read from files
captured by the argus daemon program writing its output to a file (it can also output
to a socket in real time if desired) and then later processed with the ra reporting tool.
While argus and the reporting tools both accept tcpdump-style filters, the argus dae-
mon is running with no filters in place (i.e., capturing everything). Note as well that
these logs are from older versions of argus, so they will look a little different than cur-
rent version logs.

This listing was generated using the argus ra reporting tool, which outputs a human-
readable interpretation of the argus data. As mentioned, it accepts tcpdump-type fil-
ters; this listing was generated with a command line like this:

ra -r argus.log.file -c -n host bbb.cc.dd.75

which displays all records containing host bbb.cc.dd.75 with packet and byte counts (-
c flag) and without DNS lookups (-n flag) on stdout. We see the root break-in, along
with a large amount of additional data (including a port scan, which is what attracted
my attention in the first place), extracted below. First, an explanation of what we are
looking at. The first field is a timestamp, following that (blank in this instance) is a flag
field which indicates things like retransmissions in a flow and a variety of other items
documented in the ra man page. Following that is the protocol type (IP only in these
old logs, many more in current argus versions). Then the source IP and port (the port
being confusingly separated with a “.”). Note that this is the machine that argus
believes started the flow, either because it saw the SYN-ACK handshake, or it is its best
(and sometimes incorrect) guess if it didn’t see the original SYN ACKs. Next there is a
flow indicator which, in this case, indicates a bi-directional flow (again the possible
values and meanings are documented in the ra man page). Following that is the desti-
nation IP and port number. Then come the source and destination packet and byte
counts (added by the -c command-line flag).

57November 2001 ;login:

With argus you at least have

the data; with only an

overwhelmed IDS or firewall

you don’t (or at least not all

of it).

●

IN

TR
U

SI
O

N
D

ET
EC

TI
O

N
| F

O
RE

N
SI

C
S

PSSST, WANNA BUY SOME NETWORK INSURANCE? ●

Vol. 26, No. 7 ;login:

In version 1.8 (which this log is from) the counts are application data count; in the
current version 2.02, by default, the counts are total packet length to allow traffic cal-
culation, although the old meaning is possible with a command-line flag. The last field
on the line is the connection-status field.

Now knowing what we are looking at, we see that the attacking host aaa.255.11.140
made a connection from port 2344 to attacked host bbb.cc.dd.75 port 111, which hap-
pens to be the port mapper. The 36-byte reply from host bbb.cc.dd.75 told the attacker
that rpc.statd was running on port 32774 of the attacked host. The attacker then sent
the buffer overflow exploit code to port 32774 on the attacked host and created a new
root account (from post-breach analysis of the system rather than strictly this log),
although the successful telnet connection in the third line is also a good indication of a
problem. The compromised machine was then used to port scan other machines on
the Net, looking for more victims, which is what caught our attention.

Now, let’s look at a DDoS attack and an echo/echo reply flow (as opposed to an echo
reply only flow) for controlling DDoS clients. To create this data stream the following
ra command line was issued:

ra -r argus.log.file -c -n net ccc.dd.245.0 mask 255.255.255.224

which selects only the hosts belonging to the 32-host network that comprises this
address space and demonstrates some of the flexibility available in filters with argus.

The first line below is a normal echo flow from a network management station. Note
the flow is bi-directional (<-> flag), and the status flag of ECO indicates a perfectly
normal echo request/reply flow from ping.

Tue 05/15 16:09:55 icmp aaa.bb.184.131 <-> ccc.dd.245.2 3 3 ECO

Sometime later, we see a unidirectional flow (-> flag) from control machine
eee.ff.126.2 (somewhere in France) to compromised machine ccc.dd.245.2 (previ-
ously compromised via an unpatched RPC program) flagged as “only an echo reply”
by the ECR end flag. Unfortunately, because this is an argus 1.8 log, we only get packet
counts on the ICMP, not packet and byte counts as with argus 2.x. However, from both
the acknowledgment ECR packet sent back to the attacking machine and the following
DDoS and/or port scan, we see this is an attack. The first indication of a problem in
this case was the abnormally large size of the argus log file due to the number of DDoS
packet flows that were recorded.

Tue 05/15 16:16:20 icmp eee.ff.126.2 -> ccc.dd.245.2 4 0 ECR
Tue 05/15 16:18:39 icmp ccc.dd.245.2 -> eee.ff.126.2 4 0 ECR

Below, we see the DDoS attack; despite the varying source addresses in the same sub-
net (and many more being caught by the anti-spoof filters in the router before making
it this far), all of these packets are in fact from machine ccc.dd.245.2. If there weren’t
anti-spoof filters on this subnet, then the source addresses would have been from all
over the Net, making this a very hard attack to trace back. With anti-spoof filters, the
attacked site would know to whom to complain, although it wouldn’t point to the
compromised machine. It would direct me to the appropriate subnet on my network
because they are all appropriately anti-spoof filtered, and of course, the argus log
would do the rest.

58

Fri 12/10 21:54:18 udp aaa.255.11.140.2344 <-> bbb.cc.dd.75.111 1 1 64 36 ACC
Fri 12/10 21:54:18 udp aaa.255.11.140.2344 <-> bbb.cc.dd.75.32774 1 1 200 40 ACC
Fri 12/10 21:54:07 tcp aaa.255.11.140.3225 -> bbb.cc.dd.75.23 12 10 62 123 CLO
...

Now that we have seen some of the things argus is good for, let’s look at what’s needed
to run it. It’s likely a lot cheaper than you think, and it is certainly less than the traffic
charges for your link. Up to a moderately fast link (such as FastEther or an OC3), a
reasonably large PC, such as an 800MHz P3 class with 256 or 512MB of RAM and a 40
or 80GB UDMA66 IDE drive, will do fine. For Gig links you probably want something
in the class of a Sun 450, and of course larger/faster is better (and even then, 200 to
400 megabits per second of data is as much as I am aware of being successfully cap-
tured on either argus or commercial IDS systems at present, although there may be
faster systems out there). Benchmarking with iozone and bonnie disk benchmarks
indicate that the 7200 RPM UDMA66 IDE drives can get as much throughput as a
36GB SCSI drive, so use what you’ve got and test! Argus runs under UNIX, so any of
Solaris, Linux or the BSDs will do. Note on the BSDs, at least on current versions, that
there is a bpf bug relating to the select system call, and you need to apply a kernel
patch and rebuild the kernel (a source for patches is listed in references at the end of
this article). There is a test procedure in the patch README file, and I recommend
using it to check your setup so that you know whether you are seeing everything there
is to see.

On the low end of the scale, a 33MB 386 (yes a 386) with 16MB of RAM and a SMC
WD8013 10 baseT NIC running FreeBSD can keep up to 3 or 4 megabits per second of
traffic, i.e., more than enough for a cable or a DSL connection at home. This was
measured with tcpreplay, which we are going to discuss in a while. That also means
that if you aren’t blessed with a high-speed link (or money), any old machine (a sur-
plus 486 for instance) may be able to keep up with your link, making experimentation
or production cheap.

Although the capital costs are reasonable, there are additional costs. Interpreting the
output data is a high-skill occupation at present, and I suspect it is likely to remain so.
However, before I lose half the audience, let me point out that as an insurance solution
this doesn’t have to be a show stopper. As we have seen, the capital costs for argus are
modest. Disk is cheap and getting cheaper. That means that even if you lack the
expertise to interpret the output data, it is possible (and in my view very prudent) to
collect, verify you are collecting (this is important and we will discuss how below), and
save the data from your network. Should the worst happen and you have an incident,
you can hire a consultant and have him or her interpret the argus data for you. Ideally,
you will never use it, and it will sit on the disk unused until you decide it’s old enough
that you don’t care anymore and overwrite it.

If you choose to do this for insurance, you will, on a regular basis, want to display the
output of the argus log files with the argus ra data display tool to verify that you are in
fact collecting data. The idea is to make sure something is in fact being collected from
your network so that you don’t discover when a disaster hits that the disk filled
months ago and the argus data is lost.

In addition to the regular testing, when you first install argus and any time you
increase the speed of your link or change the hardware argus is running on, you’ll also
want to run a test to make sure that argus can keep up with the maximum speed of

59November 2001 ;login:

Tue 05/15 16:18:44 tcp ccc.dd.245.25.2009 ?> ggg.hh.141.177.71 1 0 0 0 TIM
Tue 05/15 16:18:44 tcp ccc.dd.245.9.1012 ?> ggg.hh.141.177.72 1 0 0 0 TIM
Tue 05/15 16:18:44 tcp ccc.dd.245.30.1822 ?> ggg.hh.141.177.73 1 0 0 0 TIM
Tue 05/15 16:18:44 tcp ccc.dd.245.27.1204 ?> ggg.hh.141.177.78 1 0 0 0 TIM
. . .

●

IN

TR
U

SI
O

N
D

ET
EC

TI
O

N
| F

O
RE

N
SI

C
S

PSSST, WANNA BUY SOME NETWORK INSURANCE? ●

Vol. 26, No. 7 ;login:

your link. This same thing (and the same tools) are useful for testing your firewall and
IDS system. If you haven’t stressed them, how do you know how they will perform
when you need them to? More importantly, if they are going to fail, how do they fail:
by passing all traffic (deadly if this is your firewall) or by ignoring attacks (deadly if
this is your IDS system)?

The open source tool called tcpreplay will replay a tcpdump file, either in real time
(according to the timestamps in the file) or at a selected rate or (best of all) as fast as it
possibly can given your hardware. Tcpreplay has been added to the FreeBSD ports col-
lection (at least in the 4.3-STABLE branch if not yet the release branch), which means
that you can install it by just typing make in the appropriate directory under FreeBSD.
In addition I have available both the original source (because the home site of tcpre-
play is currently being reworked and a new version being produced) and a modifica-
tion that will take two tcpdump files and two NICs and output a full duplex data
stream. There are performance issues. I was only able to get about 160 megabits per
second on a 600MHz P3 machine with a single UDMA66 IDE disk, but two disks on
separate controllers may boost that. More importantly, there’s a timing issue (which I
currently punt): the two streams are not synchronized so it is possible that a response
will appear before the corresponding source packet is sent on the other channel. The
solution to this would be a tcpdump file compiler that would rearrange and/or insert
packets to ensure that at full speed, data would come out in the appropriate order. This
is very similar to a RISC C compiler having to insert no ops in the instruction stream
to maintain memory access timing. In this case, you need to either move a later packet
or insert a padding packet to ensure that, when played at full speed, the response will
appear after the request in the other data stream. It isn’t rocket science, but it is work
that I currently haven’t had time to do. Again, if someone is interested in writing it
before me I’d be happy to test.

This setup is what identified the bug in the bpf routines of the BSDs with the select
system call during a test of argus. It’s also what I used to determine that Solaris and (of
all things) Linux are able to capture data at a full 100MB (Solaris cheated by using an
E450 rather than a PC; I haven’t run the test on Solaris 86 yet). Surprisingly, the BSDs
(at least FreeBSD 4.2 and OpenBSD 2.7) lose a small percentage of the traffic at 100
(on the identical hardware that Linux was using). It is also the setup that verified that a
386 can keep up with 3 to 4MB of data without losing anything. Being able to repeat
an exact sequence of packets (and to vary the speed of delivery) is a very powerful test
tool, not only for argus but also for your firewall, IDS, sniffers, and network gear.

Deploying Argus
Now that you have implemented argus and verified its performance, let’s look at some
of the issues with deploying it. First, it is a juicy target. It contains lots of sensitive data
about your network all in one convenient place, so you need to secure it heavily. It is
also potentially a privacy issue, and you need to have appropriate approvals and policy
around what will and won’t be done with the data. Since argus by default is only look-
ing at the headers, the issues are somewhat less problematic than with an IDS that is
also looking at the data, but in either case the issues still need to be addressed before
implementation proceeds.

Like your IDS system, it only needs read access to the network. That suggests that you
should use a splitter such as the Shomiti Century tap (for 10/100 baseT) or an
80%/20% optical splitter for a fiber connection to isolate your systems (both argus and

The open source tool called

tcpreplay will replay a

tcpdump file, either in real

time (according to the

timestamps in the file) or at a

selected rate or (best of all)

as fast as it possibly can

given your hardware.

60

an IDS). You should tighten down the UNIX box it runs on to run either nothing at all
(which implies management access from the machine console and is likely too para-
noid a reaction in many cases) or with only a well-patched SSHD running on a private
network deep in the well-protected heart of your network. This is likely the configura-
tion to run. It allows you to move the captured data (via SCP for instance) to another
heavily secured (and large-memory) machine where you want to run the analysis pro-
grams. This prevents the analysis process from stealing resources from the capture
process, which in turn may result in packet loss during capture. If your link speed is
not that high and you have a fairly large machine, this may not be an issue, but it is
something to keep in mind in any case. Remember to secure the backup tapes (assum-
ing you are archiving to tape) as well; the data on them is just as sensitive as the data
on the disk (and more often overlooked when security is being considered).

If you are on a busy/fast network, you probably need to increase the bpf buffer size in
your kernel (the default is usually 8,000 or so with a max of 32,000, at least on the
BSDs). Boost it to the full 32,000 and larger, if possible, to give yourself the best chance
you can of capturing all the packets. This is where the “packets lost by kernel” message
in argus (and other libpcap-using programs) comes from. Note that even if this num-
ber is 0 it is still possible that your network interface is silently dropping packets at a
point before this counter in the bpf routines, so you need to use a tool such as tcpre-
play to send a known data stream at the maximum rate to determine that your instal-
lation can keep up with the maximum data stream.

Once you have done all of these interesting (and time-consuming) things, and argus is
happily collecting data, what kinds of things do you want to look for (and, better yet,
write tools to look for automatically) in the data?

The prime one comes under the label of “history.” As you get more and more logs
from your network, you can also get a baseline of what is normal for your network.
New patterns of access (in or out) are of interest. If there is suddenly a connection to a
machine that hasn’t occurred before, either someone new has been granted access to
the machine or there is a problem. Politely asking the owner of the machine (or alert-
ing the owner to the change automatically) can catch a problem early.

A connection in from the outside to a machine followed by a connection to a machine
on the outside is a common cracker trick for laundering connections to avoid detec-
tion. Such a pattern (which again a firewall isn’t likely to flag since it looks legit)
deserves to be asked about to make sure it is authorized. Again, more of concern on a
university campus, port scans both from the outside world heading in and from the
inside against external hosts are of interest (and usually automatic first prize in the
“you bet your account” contest if done from my site). With experience, you begin to be
able to pick out the tool being used to scan you from the pattern of data in the logs.

One interesting feature of an argus log is the ability to detect slow port scans. I’ve seen
some where that one probe is done around every 40 minutes for weeks. I say they are
of limited interest because the event of interest isn’t the scan, but any machine that is
compromised, which will typically show up as a much more immediate log entry.

One use of scan (including slow scan) detectors is to populate a “suspicious IPs” file.
This consists of IP addresses that have scanned or attempted compromises against
your network. Future connections from such a site are “interesting”; they may also be
suspicious, but they are certainly worth paying attention to because they may be com-
ing back to exploit a hole that they have found on an earlier scan, or they may be a dif-

61November 2001 ;login:

As you get more and more

logs from your network, you

can also get a baseline of

what is normal for your

network.

●

IN

TR
U

SI
O

N
D

ET
EC

TI
O

N
| F

O
RE

N
SI

C
S

PSSST, WANNA BUY SOME NETWORK INSURANCE? ●

Vol. 26, No. 7 ;login:

ferent customer of an ISP or cable company (with DHCP) doing something perfectly
legit such as accessing a public Web page. As long as you remember that and don’t
overreact, it’s fine to be suspicious of such an access, and, sometimes it will net you a
cracker, a compromised machine, or both.

Since argus captures the number of bytes transferred in both directions and the TCP
flags, it is possible to see (and thus to automatically filter out) connections that failed,
reducing the amount you need to consider suspicious. Again, because argus records
the byte and packet counts of all connections by post-processing them, you can
acquire a complete traffic record (down to the source / destination IP / port level, if
desired) in your network. This is interesting, as mentioned above, because of patterns
and history. If you process traffic counts by machine and sort them (usually reverse
order is the most interesting) and keep history of previous “normal” (for some value of
normal) traffic patterns, the result of a compromise will leap out at you (along, unfor-
tunately, with a number of false positives). If a machine that has previously done
almost no traffic off-site suddenly is transferring large amounts of data to machines all
over the net, you can be reasonably sure you have a compromised machine running a
warez site or someone (perhaps the authorized user) running one of the distributed
file-sharing programs.

I find that a query along the lines of “What has this to do with university business?” or
“What account number should the bandwidth charges be charged to?” will either
cause an abrupt halt or provide a valid explaination (more usually the former than the
latter). Basically, what I’m saying here is that for external compromises (of any kind)
to be useful, the attacker has to change the traffic profile of the machine (otherwise, it
is of no use to them). When they do that and you have a complete log of the traffic, it
becomes detectable and stoppable with limited damage. There isn’t any easy way
around this, other than, of course, finding a less protected system somewhere else.

This is another great advantage of a complete connection history: you can step back in
time and see if you have been compromised by a newly discovered (on the white-hat
side of the fence) exploit before you knew it was an exploit. Again, while it would be
better to find this before the compromise (and it may show up in the changed traffic
pattern before the compromise itself surfaces), better late than never (or when the
lawyer and/or cops are pounding on the door). Your complete log can also absolve you
of attacks with forged source addresses (your forged source address!) since the reply
packets from the attacked host will show up in the argus log, but there will be no cor-
responding attack packets in the log from your site.

There are a couple more classes of traffic, such as a large amount of apparently pur-
poseless traffic to or from a site. Unfortunately, on a university campus this is often
hard to differentiate from legit research traffic which often seems to have no purpose. I
remember what turned out to be a DoS attack directed at us coming from a university
machine with ldap in its hostname on port 500 (X.500), which could plausibly be
someone doing an X.500 update across the net as research. This may be a DoS or
DDoS attack. We have seen a number of these involving the DNS, queries with (I
assume) a forged source address for a largish DNS record repeated over and over.

I’ve thought about (but not implemented) an authenticated Web page that could be
accessed by the sysadmin of a machine or network which would display the history
data of connections and possibly traffic patterns to and from their machines. There are
privacy issues here that would need to be carefully considered and debated within the

Since argus captures the

number of bytes transferred

in both directions and the

TCP flags, it is possible to see

(and thus to automatically

filter out) connections that

failed, reducing the amount

you need to consider

suspicious.

62

user community (and it may well need to be opt in), but it may make a very powerful
tool. If this interests you, feel free to join the argus developers list and implement.

Finally, what challenges does the future hold? The main one is the increase in link
speed (without a corresponding increase in memory, disk, and CPU speed). That will
make it much more difficult in the future to be able to keep up with the higher speed
links and will make life very, very challenging. One solution is to divide the link traffic
up among IDS/firewall/argus boxes using a demultiplexor. The problem is that a skill-
ful attacker who is aware of that can arrange to flood enough traffic at your box to
possibly slip an attack by you. It is possible to keep up with a 100baseT/OC3 Internet
link (that’s what I have now). When my link speed goes to gigE, and then possibly
10GigE (since the underlying backbone is going to OC192), how do we monitor it (or
more correctly, who has that somewhat used Cray?). We most certainly will be living in
interesting times.

63November 2001 ;login:

REFERENCES
Argus: http://www.qosient.com/argus

tcpreplay: http://www.anzen.com/research/
nidsbench (not available at the moment so also
at ftp.sfu.ca /pub/unix/tcpreplay)

bpf patches: ftp.sfu.ca /pub/unix/argus

Century tap: http://www.shomiti.com/

optical splitters: http://www.netoptics.com/

●

IN

TR
U

SI
O

N
D

ET
EC

TI
O

N
| F

O
RE

N
SI

C
S

PSSST, WANNA BUY SOME NETWORK INSURANCE? ●

http://www.qosient.com/argus
http://www.anzen.com/research/
http://www.shomiti.com/
http://www.netoptics.com/

64

Glancing at the hexadecimal pattern on the screen, I was quite happy with

my intrusion detection system: I had netted some Ramen worm exploit

code and handed it over to the appropriate incident response team. It had

caught itself in one of the flytraps that was listening on the border network.

This was quite surprising in light of the stumbling blocks I had encountered

in the preceding few weeks.

The Mission
This catch should not have been that surprising. During the 18 months preceding
this incident I had built up a network analysis and intrusion detection system (IDS)
geared toward dealing with distributed denial of service (DDoS) attacks.1 One of the
difficulties I had encountered during this time was maintaining the set of systems to
the point of self-sufficiency and self-repair, within reason at least, under common
attack scenarios.

One of the fears of a security expert is the loss or absence of network forensics. “Net-
work traces? Sorry, the network analysis systems are down/not available/not up yet.”
Network forensics provide clues to a security expert in the same way a detective would
use clues to solve a mystery or a crime. Typical examples are packet flows collected at
the router level, TCP-wrapper2 logs at the host level, and intrusion detection system
logs. Frequently, an intruder will try to disable monitoring systems prior to launching
the real attack so that it cannot be reconstructed. The mission is to be able to recon-
struct the incident, if not fully, at least partially.

Departure from Basic Security Concepts
The computer security field assumes a binary model, where a system either resists the
attack or is compromised. Many years of research have gone into the effort of building
higher and higher walls that the intruders cannot overcome. This inevitably leads to an
arms race with the attackers, as they attempt to undermine, breach, or otherwise trans-
gress those walls.

Rather than try to compete in this game, the field of survivability takes a different spin.
The concept of survivability, as currently defined, is the ability of a system to fulfill its
mission in the presence of attacks, failures, and accidents.3 In the survivability world-
view, one accepts the compromise or failure of one or more components of the system,
as long as the mission can be completed, even if a reduced or degraded mode is neces-
sary. The field explores various techniques for building survivable systems, including
techniques borrowed from dependability and fault-tolerance, among others. For more
philosophical foundations on the definition of the term, please refer to the references.4

Motivation
As I had investigated some initial incidents, I was often faced with the frequent absence
of evidence. I wanted to be able to analyze most aspects of the attack, whether it was
denial of service or not. Therefore, I needed a system that could operate, even partially,
in the presence of a DDoS attack to gather as much information on the attack as possi-
ble. Even the local legitimate “security scans” that would periodically check for
unpatched and insecure systems could rattle the hosts quite a bit.

The Approach
Since my budget was small, my choices were somewhat limited. I decided to take baby
steps and proceed empirically. Based on my first setup (a sensor piping data back to a

survivability
with a twist

Vol. 26, No. 7 ;login:

by Sven Dietrich

Sven Dietrich is a
member of the tech-
nical staff at the
Carnegie Mellon
Software Engineering
Institute in Pitts-
burgh, PA. When he
does not snort pack-
ets, he conducts
research in computer
security and surviv-
able network tech-
nology.

spock@cert.org

data collection host over a secure shell connection), I identified operating systems and
hosts stable enough for my purpose. However, I could not stop there. That summer
was very hot and the local power company kept implementing rolling brownouts and
blackouts. I wanted to look at all the components of this little system: what hosts
would come back up and how would they recover after the “uninterruptible” power
system lost power?

How robust was my setup really? I had found several uninterruptible power systems
and distributed them among the hosts. As the system lived in a set of racks, colleagues
would repeatedly trip over power and network cables as they were trying to access
their own prototype systems. Of course this kept me on my toes. I had managed to
build a set of redundant systems – replication of services, excellent! A geographic dis-
persion of the systems and their associated data files followed to minimize the impact
of a local failure. My next step was to create a heterogeneous environment, so that one
potential attack would not necessarily affect all of the systems involved, which was
achieved by selecting a slightly different operating system for each host. (For those die-
hard operating system aficionados who must know, the two operating systems were
OpenBSD and NetBSD.)

Slicing the Network Stream
Since a complete loss of disks, systems, or other components could not be excluded
from consideration, I wanted to record the data in several ways, so as to “rebuild”
events later. It was absolutely critical that I be able to return to any given point in the
data sets so I could perform the aforementioned network forensics. Gathering packet
headers using argus,5 full-packet recording using tcpdump,6 keyword detection across
protocols and ports using ngrep,7 and signature detection and anomaly detection
using Snort8 were some methods for the slicing. Effectively, one performs several types
of data reduction while one drinks from the fire hose that is the network stream.

Some types of attack, such as a buffer overflow in tcpdump, could disable, compro-
mise, or blind intrusion detection systems. These so-called in-band attacks would
travel in the data stream that one is recording and would act on a listening tool itself
or affect a susceptible operating system, causing it to hang or crash. By varying the way
one looked at the data, the chances that at least a few monitoring tools would remain
orthogonal to the problem were relatively high. Even that was not sufficient; I wanted
to reconfigure my system in the event of loss, corruption, or compromise of one of my
components.

The Interconnection Network
In order for the different hosts to exchange status information, network stream data
and logs, I built a redundant interconnection network, opaque to the outside observer.
By performing queries, from the simple pinging of a host to a more complex one such
as interrogating via a series of TCP/IP client-server messages whether a particular ser-
vice was still running, the other hosts were given a view of the system as a whole. In
the event of a non-response, the remainder of the system could then reconfigure by
firing up appropriate replacement processes, such as a new packet logger or signature
detector, without impacting the current role of the host. Each host had a primary role
assigned to it, with a list of secondary and tertiary roles that would be assumed in case
of the loss of a primary-role host. Several strategies were conceivable. One very sim-
plistic one, noticing that a primary-role host had vanished and taking the role of that
host if the local host was capable of doing so, seemed to work well enough. Another

65November 2001 ;login:

These so-called in-band

attacks would travel in the

data stream that one is

recording and would act on a

listening tool itself . . .

SURVIVABILITY WITH A TWIST ●

●

IN

TR
U

SI
O

N
D

ET
EC

TI
O

N
| F

O
RE

N
SI

C
S

Vol. 26, No. 7 ;login:

one, pushing out the newly learned information to the remaining known hosts, led to
a collaborative decision.

Network time information, a source of accurate time which is important both for cor-
relating events across the globe and coordinating between hosts, relied on two separate
sources: a radio clock receiving the official time signal and a GPS-based clock, both on
local networks. These timings were crucial for the analysis of the collected exploit and
attack data. More details describing this system can be found in an upcoming paper.9

The Twist
Sitting in deep thought in front of my monitor, I recalled my first day back after my
vacation. Two of my components, computationally powerful yet non-critical as they
were, had for unexplained reasons been disconnected from both the interconnection
and the border networks. I had discounted it as a mistake I had made since I had put
the system into survivable mode before going on my vacation. Actually, it turned out
to be a confirmation of the security credo that insider threats account for a significant
number of the problems. As the non-critical components were removed from the sys-
tem, the monitoring system proceeded to reconfigure itself in order to compensate for
that loss and make the mission survive.

What I had designed to work against the outsider threat ended up working against an
insider threat, intentional or not, and it was put to the test in a perfect setting: I had
gathered sufficient network data to understand the Ramen incident and suggest miti-
gation measures.

The mission had succeeded.

REFERENCES
1. Sven Dietrich, “Scalpel, Gauze, and Decom-
pilers: Dissecting Denial of Service (DDoS),”
;login: (November 2000), theme issue on secu-
rity.

2. Wietse Venema, “TCP Wrapper – Network
Monitoring, Access Control, and Booby Traps.”
3rd USENIX Security Symposium, Baltimore,
MD (September 1992),
http://www.porcupine.org/.

3. R.J. Ellison, David Fisher, Rick Linger,
Howard Lipson, Tom Longstaff, Nancy Mead,
“Survivable Network Systems: An Emerging
Discipline,” Software Engineering Institute
Technical Report No. CMU/SEI-97-TR-013
(November 1997).

4. CERT Survivability Research page,
http://www.cert.org/research/; John C. Knight,
Matthew C. Elder, “Fault Tolerant Distributed
Information Systems,” International Sympo-
sium on Software Reliability Engineering, Hong
Kong (November 2001); Jonathan Millen,
“Local Reconfiguration Policies,” IEEE Sympo-
sium on Security and Privacy, Oakland, CA
(May 1999).

5. argus: ftp://ftp.andrew.cmu.edu/pub/argus/.

6. tcpdump: http://www.tcpdump.org/.

7. ngrep: http://sourceforge.net/projects/ngrep/.

8. Marty Roesch, “Snort – Lightweight Intru-
sion Detection for Networks,” USENIX LISA
XIII (December 1999), http://www.snort.org/.

9. Sven Dietrich, “AMPLIFIDS – A Survivable
Ensemble,” in preparation.

66

http://www.porcupine.org/
http://www.cert.org/research/
ftp://ftp.andrew.cmu.edu/pub/argus/
http://www.tcpdump.org/
http://sourceforge.net/projects/ngrep/
http://www.snort.org/

67November 2001 ;login:

System administrators working with limited resources must be resourceful.

Sometimes, however, this same limitation can force the system administra-

tor to think thoroughly about the problem at hand in order to utilize the

scarce resources effectively. In this article, I present an example of how a

limitation in disk space led me to rethink the role of the firewall. I also show

how to build a BSD-based firewall that fits on a floppy and runs on a PC

without a hard disk. This type of configuration could be, in my opinion,

more secure than some commercial products and most OS-based firewalls

running on a PC with a hard disk drive.

For the past few years, I have been working as an instructor for the computer science
department of Galileo University in Guatemala (http://www.galileo.edu). As is often the
case with universities in undeveloped countries, the teaching staff has to take over
other responsibilities usually given to administrative staff in universities with more
resources. Since the subjects I teach are operating systems and computer networks, I
have been implicitly expected to be the system administrator for the computing infra-
structure of the university. Universities in third-world countries usually have very lim-
ited resources for computer infrastructure. For example, the primary firewall of the
university I work at, a PC running FreeBSD and IP Filter, crashed a couple of months
ago and needed to be replaced. I found a machine lying around that had most of the
specifications needed for the job, except for a hard disk drive. I asked the supplies
department for a 40GB hard disk drive and got a 1.44MB floppy.

This lack of resources forces system administrators to think carefully about how the
available resources will be used. In the firewall example above, having limited space
makes you to think very carefully about what programs you will be installing on the
machine and the uses you will give them.

A firewall is essentially a discriminating router. It receives IP packets on one network
interface, tries to match the packet with one of the rules, and takes an action which
could be routing or dropping the packet. All of this is done inside the kernel. Thus,
firewalls do not really need many programs to accomplish their job. All that is needed
is the kernel, a program for installing the firewall rules, and a few commands for ini-
tializing the network interfaces, turning routing on, and checking how the firewall is
doing.

Most operating systems come with many programs and services installed; many of
these services are even enabled by default. This is not surprising since they are general
purpose operating systems and have to be useful to a wide variety of users. In the next
section we will see how we can choose a minimal subset of these programs that lets a
firewall do its job.

The One-Floppy Firewall (using PicoBSD)
PicoBSD is a variant of FreeBSD that fits in a single floppy. It lets you create a boot
floppy that contains a custom kernel and a memory file system in which you can
install your own subset of the programs available in the FreeBSD distribution. You can
also add your own programs as long as there is still space in the file system.

You must have a FreeBSD system with full sources in order to build a PicoBSD floppy.
This is because PicoBSD utilizes a technology called “crunched binaries.” This means
that several programs (and libraries) are combined in a single statically linked binary,
thus saving considerable amount of disk space. This statically linked binary uses its

a secure OS-based
firewall

I asked the supplies

department for a 40GB hard

disk drive and got a 1.44MB

floppy.

A SECURE OS-BASED FIREWALL ●

●

BE

ST
PR

A
C

TI
C

ES
|I

N
TR

U
SI

O
N

D
ET

EC
TI

O
N

| F
O

RE
N

SI
C

S

by Oscar Bonilla

Oscar Bonilla is an
instructor at Galileo
University in
Guatemala. As part
of his consulting
career, he has desig-
ned the networks of
three major ISPs in
Guatemala and El
Salvador. His main
interests include
operating systems,
computer networks,
and Internet secu-
rity.

obonilla@galileo.edu

http://www.galileo.edu

Vol. 26, No. 7 ;login:

own name (argv[0]) to know which function it must perform. You only need to hard
link it to every program name you have “crunched” in it to have it execute the proper
functions. In order to build the crunched binary, all the binary files must be recom-
piled using special flags. The reason we hard link the different program names to the
crunched binary, as opposed to soft linking it, is that a hard link only uses an entry in
the directory for storing another name for the same inode, whereas a soft link uses
another inode with the path of the linked program. Since inodes take space in the file
system, it is more efficient to use hard links.

In FreeBSD, all of the required sources for PicoBSD are in the directory /usr/src/
release/picobsd. In this directory you’ll find several examples of various one-floppy
configurations that do things such as routing, dial-up serving, etc. However, we’ll see
how to build a custom PicoBSD floppy with only the programs you want.

A typical configuration directory has the following hierarchy:

floppy_name/
PICOBSD
config crunch.conf
floppy.tree/

etc/
...files that will go in /etc on the floppy...

root/
...files that will go in /root on the floppy...

mfs_tree/
etc/

...files that will go in /etc on the MFS...

In the picobsd directory there are several examples that you can copy and modify to
suit your needs. Alternatively, you can create the configuration directory from scratch.
I will explain here how to create the hierarchy from scratch.

The floppy_name is the name of the directory that will hold all the configuration files
for the floppy. Think of it as a project name. I chose to call it offw (One-Floppy Fire-
Wall).

The PICOBSD file is a FreeBSD kernel configuration file specifying which device driv-
ers and options to install in the new kernel. It must start with the following lines:

Line starting with #PicoBSD contains PicoBSD build parameters
#marker def_sz init MFS_inodes floppy_inodes
#PicoBSD 3500 init 4096 32768
options MD_ROOT_SIZE=3500 # same as def_sz

The first two lines are just comments. The third line is a comment for the kernel con-
figuration program config(8). However, that third line tells the PicoBSD building
script the parameters for building both the MFS and floppy file systems. The four
parameters def_sz, init, MFS_inodes, and floppy_inodes specify the size of the MFS file
system, what program to use as init, the number of inodes to use in the MFS, and the
number of inodes to use in the floppy file system, respectively.

PicoBSD uses two file systems for operation: MFS and a floppy file system. MFS is a
Memory File System that’s patched into the kernel and loaded at boot time to the
machine’s RAM. Since MFS is patched into the kernel, it makes the kernel binary
image bigger. The bigger you make the MFS, the bigger the kernel will be, and the less
memory you’ll have for running user processes.

The bigger you make the

MFS, the bigger the kernel

will be, and the less memory

you’ll have for running user

processes.

68

The other file system used by PicoBSD is the floppy file system. This is the file system
that remains on the floppy. In this file system, you’ll have the kernel itself and some
files in which modifications must persist between reboots. Another program that will
be copied to the floppy file system is the kernel binary image itself. What this means is
that as the kernel image gets bigger (because the MFS is bigger or because you have too
many drivers in the kernel), the space available in the floppy file system will get
smaller.

You have to achieve a balance between the size of the MFS, the drivers configured in
the kernel, and the files you put in the floppy file system. The bigger the MFS, or the
more drivers you have in your kernel, the bigger the kernel binary image that will be
copied to the floppy file system, thus leaving less space for programs and files in the
floppy file system.

So how do you go about choosing the right sizes? I basically put as much as I can on
the MFS and leave the floppy file system only for configurations files and data that
must persist between reboots. There are two reasons for doing this: (1) if you put files
in the floppy that will be used a lot (like binaries), the floppy must be inserted and
working in order to use those files, and (2) floppy access times are usually orders of
magnitude slower than memory access times. So in the end, I’ve found that it works
best to keep most of the files in the MFS and leave as little as possible in the floppy file
system. Files that need to be modified easily (without recompiling the kernel image)
should go in the floppy file system. For example, the firewall rules configuration file is
a good candidate for the floppy file system.

Getting back to the PICOBSD kernel configuration file, the rest of the configuration
lines will be what drivers you need and what options you want set in your kernel. You
can find plenty of information on configuring FreeBSD kernels on the FreeBSD Hand-
book, available from the FreeBSD home page (http://www.freebsd.org/). Just remember
to keep things to a minimum. Here’s my complete kernel configuration file:

Line starting with #PicoBSD contains PicoBSD build parameters
#marker def_sz init MFS_inodes floppy_inodes
#PicoBSD 3500 init 4096 32768
options MD_ROOT_SIZE=3500 # same as def_sz
the machine architecture
Machine i386
the cpu type
cpu I686_CPU
an identifier for this kernel
ident FIREWALL
maxusers sets the static sizes of various structures inside the
kernel, like maximum number of open files, etc.
maxusers 12

options INET #InterNETworking
options FFS #Berkeley Fast File System
options FFS_ROOT #FFS usable as root device [keep this!]
options MFS #Memory File System
options MD_ROOT #MFS as root
options COMPAT_43 #Compatible with BSD 4.3 [KEEP THIS!]
options PCI_QUIET

device isa0 # ISA Bus
device pci0 # PCI Bus

69November 2001 ;login:

. . . it works best to keep

most of the files in the MFS

and leave as little as possible

in the floppy file system.

A SECURE OS-BASED FIREWALL ●

●

BE

ST
PR

A
C

TI
C

ES
|I

N
TR

U
SI

O
N

D
ET

EC
TI

O
N

| F
O

RE
N

SI
C

S

http://www.freebsd.org/

Vol. 26, No. 7 ;login:

Floppy disk controller
device fdc0 at isa? Port IO_FD1 irq 6 drq 2
Floppy disk
device fd0 at fdc0 drive 0

Keyboard controller
device atkbdc0 at isa? port IO_KBD
Keyboard
device atkbd0 at atkbdc? irq 1
VGA display
device vga0 at isa?
Console Driver
device sc0 at isa?
Math Coprocessor [KEEP THIS!]
device npx0 at nexus? port IO_NPX irq 13
Serial Port
device sio0 at isa? port IO_COM1 flags 0x10 irq 4
miibus is needed for certain Ethernet cards (like 3Com FastEthernet)
device miibus
device xl0 # 3Com FastEthernet Card
pseudo-device loop # local loop interface (lo0)
pseudo-device ether # Generic Ethernet Drivers
pseudo-device pty 8 # Pseudo TTY’s
pseudo-device md # memory disk
Berkeley Packet Filter (not needed if you don’t need tcpdump)
pseudo-device bpf 4 # 4KB, for tcpdump
IPFilter is the packet filter we’ll use
options IPFILTER
Logging facility for IPFilter
options IPFILTER_LOG
Make IPFilter block all packets by default
options IPFILTER_DEFAULT_BLOCK
options PROCFS #Process file system

The next file you need to create is config. This file is a configuration file that is sourced
by the PicoBSD build script. It must contain only variable definitions. The one impor-
tant variable that must be in this file is MY_DEVS, which tells the build script which
devices to create in /dev inside the MFS. This is done passing each item in MY_DEVS
to the standard FreeBSD MAKEDEV script usually found in /dev. This is what I have:

MY_DEVS="std vty10 fd0 pty0 cuaa0 bpf0 bpf1 ipl"

This example tells MAKEDEV to create standard devices (std), 10 tty’s (vty10), a
floppy disk drive device (fd0), the pseudo stty’s (pty0), a serial port device (cuaa0),
two Berkeley Packet Filter devices (bpf0 and bpf1), and an IPFilter logging device (ipl).

The ipl device is particularly important because it’s the interface between IPFilter
inside the kernel and the command line utilities that run in user space and are needed
to load the firewall rules. The bpf devices can be left out if you don’t need tcpdump in
the firewall host.

The next file is called crunch.conf and contains the specifications needed to make the
crunched binary.

The type of directives supported are (from the crunchgen(1) man page):

70

■ srcdirs dirname: A list of source trees in which the source directories of the
component programs can be found. These dirs are
searched using the BSD <source-dir>/<progname>/ con-
vention. Multiple srcdirs lines can be specified. The direc-
tories are searched in the order they are given.

■ progs progname: A list of programs that make up the crunched binary.
Multiple progs lines can be specified.

■ libs libspec: A list of library specifications to be included in the
crunched binary link. Multiple libs lines can be specified.

■ buildopts : A list of build options to be added to every make target.
■ ln progname linkname: Causes the crunched binary to invoke progname whenever

linkname appears in argv[0]. This allows programs that
change their behavior when run under different names to
operate correctly.

Here’s what I have in my crunch.conf file:

We don't need PAM, NETGRAPH, IPSEC or INET6 (and we’ll hint the
sources that this is a RELEASE_CRUNCH
buildopts -DNOPAM -DRELEASE_CRUNCH -DNONETGRAPH -DNOIPSEC -\

DNOINET6
directories where to look for sources of various binaries
srcdirs /usr/src/bin
srcdirs /usr/src/sbin/i386
srcdirs /usr/src/sbin
srcdirs /usr/src/usr.bin
srcdirs /usr/src/gnu/usr.bin
srcdirs /usr/src/usr.sbin
srcdirs /usr/src/libexec
Some programs are especially written for PicoBSD and reside here.
srcdirs /usr/src/release/picobsd/tinyware

init is almost always necessary.
progs init # 4KB.
Without ifconfig you wouldn’t be able to configure IPs on your
network interfaces.
progs ifconfig # 4KB.
You need a shell.

progs sh # 36KB.
ln sh -sh
These are just some utilities I find useful.
progs echo # 0KB.
progs pwd
progs mkdir rmdir
progs chmod chown
progs mv ln # 0KB.
progs mount
minigzip is smaller than gzip.
progs minigzip # 0KB.
ln minigzip gzip
progs cp # 0KB.
progs rm
progs ls
progs kill
progs df # 0KB.

71November 2001 ;login: A SECURE OS-BASED FIREWALL ●

●

BE

ST
PR

A
C

TI
C

ES
|I

N
TR

U
SI

O
N

D
ET

EC
TI

O
N

| F
O

RE
N

SI
C

S

Vol. 26, No. 7 ;login:

progs ps # 4KB.
ns is a lightweight version of netstat.
progs ns # 4KB.
ln ns netstat
progs vm # 0KB.
progs cat # 0KB.
progs test # 0KB.
ln test [
progs hostname # 0KB.
progs login # 4KB.
progs getty # 4KB.
progs stty # 4KB.
progs w # 0KB.
uptime gives you only the first line of w’s output.
ln w uptime
msg is a lightweight version of dmesg.
progs msg # 0KB.
ln msg dmesg
progs kget # 0KB.
progs reboot # 0KB.
less is smaller than more
progs less # 36KB
ln less more

sysctl is a program for changing kernel variables;
it’s needed, for instance, to enable IP Forwarding.
progs sysctl
progs swapon # 0KB.
progs pwd_mkdb # 0KB.
progs dev_mkdb # 0KB.
progs umount
progs mount_std

progs route # 8KB
If you need an editor ee is as small as they get although it is
at least debatable why you would need an editor in the firewall.
#progs ee # 32KB.
#libs -lncurses

It might be useful to have tcpdump for debugging purposes.
progs tcpdump # 100KB.
special tcpdump srcdir /usr/src/usr.sbin/tcpdump/tcpdump

progs arp # 0KB.
I wouldn’t NFS mount anything on a firewall, but it can be done.
#progs mount_nfs # 0KB.
#ln mount_nfs nfs
progs ping # 4KB.
#progs routed # 32KB.
progs traceroute # 0KB.
ln mount_std procfs
ln mount_std mount_procfs

It’s nice to be able to ssh into your firewall and see how it’s doing.
progs sshd # includes ssh and scp

These programs are needed to control IPFilter.
progs ipf ipfstat ipnat ipmon

72

IPFilter logs using syslog which should be configured to log remotely to a
centralized log server.
progs syslogd

progs chflags

Libraries Needed
libs -ledit -lutil -lmd -lcrypt -lmp -lgmp -lm -lkvm
libs -lmytinfo -lipx -lz -lpcap -lwrap
libs -ltermcap -lgnuregex -ltelnet
libs -lcrypto

The process of selecting the programs for the floppy is basically a trial and error proce-
dure. You think of something you would like to have in the floppy, you add it, the
image turns out to be too big, you think again if you really, really need it (or delete
something else), and so on.

As you can see in the crunch.conf example, the firewall should have as few programs as
possible to accomplish its job. You could strip this list even further, but don’t make the
system completely unusable. You should still be able to login to it and troubleshoot it.

The two directories mfs_tree and floppy.tree will be copied to the MFS and floppy file
systems, respectively. You should have there the minimum set of configuration files
needed for the system to function properly.

In my mfs_tree directory I only have a /etc directory containing a stripped down ver-
sion of the following files:

disktab host.conf profile services
fstab hosts protocols shells
gettytab login.conf rc termcap
group motd remote ttys

The rc file is a special script in PicoBSD. While rc is called by init, just like in any other
UNIX, the shell script overwrites itself during execution. The reason for this is that no
file created in the MFS can be modified without recompiling the kernel. Although you
can modify them in a running system, the changes will be lost if you reboot the
machine. By having a minimal rc in the MFS that only copies the configuration files
from the floppy and rewrites itself, we can achieve the most flexibility for system con-
figuration. The real rc in the floppy file system can be modified by mounting the
floppy on another machine, and it will not be necessary to rebuild either the kernel or
the floppy binary image.

The rc script file that is in the MFS will be something like this:

#!/bin/sh
Special setup for one floppy PICOBSD ###
WARNING!!! We overwrite this file during execution with a new rc file.
Awful things happen if this file's size is > 1024B

stty status '^T'
trap : 2
trap : 3

HOME=/; export HOME
PATH=/sbin:/bin:/usr/sbin:/usr/bin:/usr/local/sbin
export PATH
dev="/dev/fd0c" #
trap "echo 'Reboot interrupted'; exit 1" 3

73November 2001 ;login:

While rc is called by init . . .

the shell script overwrites

itself during execution.

A SECURE OS-BASED FIREWALL ●

●

BE

ST
PR

A
C

TI
C

ES
|I

N
TR

U
SI

O
N

D
ET

EC
TI

O
N

| F
O

RE
N

SI
C

S

Vol. 26, No. 7 ;login:

Copy from MFS version of the files, and then from FS version.
echo "Reading /etc from ${dev}..."
mount -o rdonly ${dev} /fd
cd /fd; cp -Rp etc root / ; cd / ; umount /fd
cd /etc
#rm files to stop overwrite warning
for i in *.gz; do

if [-f ${i%.gz}]; then
rm ${i%.gz}
fi

done
gzip -d *.gz
pwd_mkdb -p ./master.passwd
echo "Ok. (Now you can remove ${dev} if you like)"
echo " "
. rc
exit 0

In the file system floppy, you should put the configuration files that you expect to
change. For instance, you can put your firewall rules (ipf.conf) and your NAT rules
(ipnat.conf) there if you’re doing NAT. Another file that is usually there is the
master.passwd file used to generate the passwd and db hashes used for authentica-
tion.

Here are the files I have in my floppy.tree /etc directory:

ipf.conf ipnat.conf rc sshd_config
master.passwd resolv.conf syslog.conf

The interesting file here is rc. This rc script is the one that overwrites the rc in the MFS
file system. This file is where I configure the network interfaces, load the firewall rules,
load the NAT rules, start the appropriate daemons like SSH and syslogd, and rebuild
the password files.

#!/bin/sh
mount -a -t nonfs
rm -rf /var/run/*
hostname firewall
ifconfig lo0 inet 127.0.0.1 netmask 0xff000000 up
ifconfig xl0 inet XX.XX.XX.XX netmask 0xffffff00 up
ifconfig xl1 inet YY.YY.YY.YY netmask 0xffffff00 up
route add default ZZ.ZZ.ZZ.ZZ
route add -net 192.168.0.0 192.168.0.1
ipf -Fa -f /etc/ipf.conf
ipnat -FC -f /etc/ipnat.conf
sysctl -w net.inet.ip.forwarding=1
(cd /var/run && { cp /dev/null utmp; chmod 644 utmp; })
sshd -f /etc/sshd_config
syslogd -s
dev_mkdb
cat /etc/motd
exit 0

Since this file is in the floppy file system, changing it is very easy. You only need to
mount the floppy on any UNIX machine and make any modifications you want. Since
the rc file in the MFS overwrites itself with this rc file, your modifications will have an
effect on the firewall host.

74

Another trick is to put a /root directory in the floppy tree with a .ssh/ subdirectory. You
can then store your SSH public keys in the floppy file system and configure SSHD to
use only public key authentication.

After you have all files ready, it’s only a matter of running the PicoBSD configuration
script. The script is in the directory build/ and it’s called picobsd. It has a menu which
lets you modify various parameters and build the binary image of your floppy.

Once you have the floppy image done, you can use dd(1) to transfer it to a real floppy
and boot your firewall from it. Remember to format the floppy first to make sure it
does not have any bad blocks.

Once you have your one floppy firewall operational, there are some things you can try
experimenting with. One of them is the kernel run levels in FreeBSD, and thus
PicoBSD.

There is a variable in the FreeBSD kernel that specifies in which security context the
kernel should operate. The name of the variable is kern.securelevel, and the default is
-1 which means that no security is enabled. The possible values are:

-1 Permanently insecure mode – always run the system in level 0 mode. This is the
default initial value.

0 Insecure mode – immutable and append-only flags may be turned off. All
devices may be read or written subject to their permissions.

1 Secure mode – the system immutable and system append-only flags may not be
turned off; disks for mounted file systems, /dev/mem, and /dev/kmem may not
be opened for writing; kernel modules (see kld(4)) may not be loaded or unloaded.

2 Highly secure mode – same as secure mode, plus disks may not be opened for
writing (except by mount(2)) whether mounted or not. This level precludes tam-
pering with file systems by unmounting them, but also inhibits running
newfs(8) while the system is multi-user.
In addition, kernel time changes are restricted to less than or equal to one sec-
ond. Attempts to change the time by more than this will log the message “Time
adjustment clamped to +1 second.”

3 Network secure mode – same as highly secure mode, plus IP packet filter rules
(see ipfw(8) and ipfirewall(4)) cannot be changed and dummynet(4) configuration
cannot be adjusted.

The MFS and floppy file systems could be built with all files set as immutable, and
right after loading the firewall rules you could switch to run level 3. The only disad-
vantage of this is that once the system is running you can no longer change anything,
but I think that’s as secure as you can get with a firewall.

Conclusion
Although firewalls are usually built using general purpose operating systems, they do
not need all of the programs and utilities that come by default. All that firewalls really
need are the kernel and a couple of programs for configuring network interfaces, load-
ing the rules, etc. We have seen that all of these programs fit nicely in a single 1.44MB
3.5” floppy disk. There is no reason to have all of the extra unused programs in the
disk, even if there is enough space for them. They make it possible to accidentally turn
on an unwanted service. They also give a trespasser a rich development environment
from which to launch further attacks. I believe that eliminating all of these unused
programs makes a firewall more secure. In the case of a break-in, it gives the attacker
an almost unusable system from which no further attack is possible.

75November 2001 ;login:

. . . once the system is

running you can no longer

change anything, but I think

that’s as secure as you can

get with a firewall.

A SECURE OS-BASED FIREWALL ●

●

BE

ST
PR

A
C

TI
C

ES
|I

N
TR

U
SI

O
N

D
ET

EC
TI

O
N

| F
O

RE
N

SI
C

S

76

Introduction
This article is about managing infrastructure from a computer security per-

spective. In this article there will be three recurring themes. The first theme

is the need to do things the proper way the first time. A correctly written

program will always act predictably, even on bad or malicious input, and

hence be secure. Similalrly, when designing an infrastructure each service is

reduced to its essential components. Each component is combined to act

predictably.

The second theme is the need for proper planning. A clear and consistent plan keeps
all the different parts of the computer infrastructure functioning together. Without a
plan, security is a catch-up game, constantly behind the latest exploits and news. With
a clear plan, security provides defense in depth. As new components are added to the
infrastructure, defense in depth will be enhanced, not compromised. By considering
security implications at the appropriate levels of infrastructure planning, a system can
become not only more secure but also easier to use and more robust, and can provide
better availability.

The third theme is that scalable infrastructures can reduce overall cost while enhanc-
ing security. A scalable infrastructure is one that not only can be extended, but also can
decrease the cost of extension. Scalable infrastructures are modular, allowing new
technology to update and extend the old.

The Need
Do your users have any expectation of privacy? Do you have assets that need protect-
ing? Have you considered the cost of a system compromise? These are dumb ques-
tions. Yet, we still fool ourselves into thinking we aren’t the targets.

A picture is worth a thousand words.

This graph depicts the incident counts from Stanford University. Included
in the incident counts are attempted intrusions from one of our network
links to the Internet.

Notice the figure depicts an exponential increase in incidents. Each year,
except one, the incident count doubled. These figures demonstrate that
computer security incidents are on the rise. Without automated, scalable
mechanisms to resist attacks, systems will be compromised quickly. For
example, the recent “Code Red” Internet worm was able to compromise
some servers at Stanford within only hours of installation.

Now think back to the questions I just asked about computer security.
These incident counts are alarming because users expect some level of pri-
vacy and protection on the Internet, which you must provide.

What Is Computer Security
The term computer security often conjures up a mental image of a teenage hacker
breaking into the US Department of Defense computers. In a dimly lit room investiga-
tors watch a screen “trace back” the “hacker,” with a SWAT team on hand for good
measure. While this sounds exciting, it is not what computer security is primarily
about.

Computer security is the art of ensuring confidentiality, integrity, and availability of
compute resources.

a crash course in
managing security

Vol. 26, No. 7 ;login:

by David Brumley

David Brumley is well
known for his site
http://www.
theorygroup.com and
for his role as Assis-
tant Computer
Security Officer for
Stanford University.

dbrumley@stanford.edu

CONFIDENTIALITY
Confidentiality is the best understood of the three areas. Every computer has some-
thing that needs to be kept private. On one end, there are databases containing the
crown jewels: intellectual property. On another end, there are user passwords and
other personal information.

Even systems which don’t contain sensitive data may have access to one of the largest
pools of data at your organization: the network. Network sniffers can gather enough
information to leave all your systems vulnerable.

For example, in February 2001 several computers at Stanford were compromised.
These computers were used by faculty, primarily for email. Nothing on the computer
was confidential. However, using the computers, the hacker who broke in gleaned con-
fidential information from the network the computers were on.

xxxxxx.Stanford.EDU => yyyyyy.Stanford.EDU [110]
USER user1
PASS password1
STAT
UIDL
QUIT

——- [FIN]

xxxxxx.Stanford.EDU => yyyyyy.Stanford.EDU [23]
!'''#P

38400,38400#xxxxxxx.stanford.edu:0'DISPLAYxxxxxxx.stanford.edu:0XTE
R
Muser2
password2
elm
jjjjjjjjjjjjjjjjjjjjjj
——- [Timed Out]

xxxxxx.Stanford.EDU => yyyyyy.Stanford.EDU [21]
(#USER user3
PASS password3
SYST
PORT 171,65,0,0,5,104
LIST
CWD /home/pub/gary
CWD /home/pub/
CWD /home/

——- [Timed Out]

While I have removed the actual usernames and passwords, be assured they were just
as clear as the words “user” and “password” are above.

The total log file the hacker had of passwords was approximately 8,000 lines long. The
point is that just because a system doesn’t have direct access to confidential data, it is
quite likely it has indirect access to confidential data via the network.

ENSURING CONFIDENTIALITY

Confidentiality is best ensured by using encryption. Any data that is sensitive should
be encrypted.

77November 2001 ;login:

Network sniffers can gather

enough information to leave

all your systems vulnerable.

A CRASH COURSE IN MANAGING SECURITY ●

●

BE

ST
PR

A
C

TI
C

ES
|I

N
TR

U
SI

O
N

D
ET

EC
TI

O
N

| F
O

RE
N

SI
C

S

2

1

KDC

Vol. 26, No. 7 ;login:

Some of the most important data to encrypt is user authentication tokens. Those who
still use clear-text telnet and FTP should immediately develop a plan to switch to a
model that protects the authentication data from eavesdroppers.

Think back to the cracker’s sniffer log file I showed you earlier. Encrypted communi-
cation turns those clear-text logins into a jumbled mess of ASCII characters. In that
same file was the following entry:

xxxxxx.Stanford.EDU => yyyyyy.Stanford.EDU [23]
%%user1%IR.STANFORD.EDU@(P^$:-)':ca<’%.+vc6s}DF~T[f8FLc|vI;#wG\CN6MYl
P%6M-&&&&
& #'$&&Y`&&VT100&
wl\cfCCSDK) >aWHW^H
>rGhsN{q0jxU
`&$$ vQa;j:T8%H>VzL d>7s_
——- [Timed Out]

The difference is clear. Those who used clear-text authentication such as telnet and
FTP had to change their passwords. In most organizations, this would result in a help
desk call. Those who used an encrypted protocol did not have to change their pass-
word, saving a help desk call.

This is just one example of how computer security measures save money over the long
term.

Universities generally have a large user base that changes rapidly. Stanford, like many,
uses Kerberos as our base authentication model. Kerberos provides a central infra-
structure for managing user information.

Kerberos uses a Key Distribution Center (KDC), which contains authentication infor-
mation on all users. (The following is a simplified description of Kerberos. For a more
accurate report, please see the reference.) Using Kerberos, a user contacts the KDC for
an authentication token (called a ticket). The KDC sends back an authentication token
encrypted with the user’s password. If the user can type in the password correctly, they
can decrypt their authentication token. This is step 1 in the figure.

The user can use the decrypted token (ticket) to authenticate to other services (step 2).

The centralized model gives:

■ A single place for adding new users
■ A single authentication scheme for adding new services
■ An abstraction between service and authenticating to that service

If we need to disable a user, we can do so in the KDC. Further, once disabled in the
KDC the user cannot use any service. We don’t have to go from the email service to the
file server to the Web server and revoke login privileges . . . it’s all done in one place.

At Stanford, our KDC contains over 58,000 active principles. Every year, each new stu-
dent is given a principle. Each graduating student has their principle suspended. All of
this is done automatically, without manual processes, just as computers should.

INTEGRITY
The integrity of compute resources generally relies upon proper enforcement of pro-
tection domains, such as file permissions. When a system is compromised, the cracker
can do anything. Besides installing an Ethernet sniffer to grab unencrypted network
chatter, as above, the cracker can replace system utilities to hide his presence.

78

If you don’t stop the initial compromise, there is a good chance with a skilled attacker
that you will never notice the intruder. You simply won’t see the bad guy’s changes to
the system. For example, a hacker can replace ps so you do not see their processes.
They can replace ls so you do not see the files. They can install a kernel module so you
cannot see their open files.

ENSURING INTEGRITY

There are two axioms (attributed to Cheswick and Bellovin) when hardening a system
against attack:

■ all programs are buggy;
■ if a program isn’t run, it doesn’t matter if it is buggy.

In essence, these principles mean each computer should ideally only run one service.
That service should run with the economy of a mechanism utilizing the principle of
least privilege on a stripped down operating system.

Unneeded services and programs should be removed because:

■ Programs periodically need to be patched, and fewer programs means less
patching, an often time-consuming task.

■ More resources are available to the needed service.
■ Unneeded services add complexity to the system.
■ There will be fewer services to support.

Unfortunately OS vendors ship computers with most services enabled. They do this on
purpose: they want the computer to be easy to use. They also assume that the user will
customize the system appropriately.

Pushing out secure servers to the end user means disabling all programs that are not
needed. At Stanford, we created SULinux to do just that.

SULinux is secure. There have been no recorded compromises of an SULinux system.
More importantly, SULinux gives us the opportunity to not just secure the system, but
also to integrate the host into our environment. Users don’t just see the security, they
see the increased usability.

There are approximately five installations of SULinux per day on average, or about
2,000 per year. Assume a low-ball estimate that each compromise costs the university
approximately $300 to fix. Costs include downtime and employee time to reinstall,
regardless of whether research or other data was modified. Given the current rate of
scanning, it’s appropriate to assume any unpatched system would be compromised at
some time or another.

Thus, the savings can be estimated at 2,000 hosts x $300 = $600,000 per year. This is
only a ballpark figure, but it demonstrates the scale of the problem and the possible
savings from implementing security solutions.

Most operating systems allow for automated installation. By distributing hardened
versions of the OS, whether it be through Windows RIS or Ghost images or IRIX
roboinst, you can significantly increase the security and integrity of compute
resources, while at the same time allowing users to easily integrate into the infrastruc-
ture provided by central IT.

AVAILABILITY
The goal for computer services is 99.999% availability. Computer vendors tout the
number, yet realizing the 5 9’s in the real world is difficult.

79November 2001 ;login:

There have been no recorded

compromises of an SULinux

system.

A CRASH COURSE IN MANAGING SECURITY ●

●

BE

ST
PR

A
C

TI
C

ES
|I

N
TR

U
SI

O
N

D
ET

EC
TI

O
N

| F
O

RE
N

SI
C

S

Vol. 26, No. 7 ;login:

Achieving 99.999% availability in practice requires technology that will work consis-
tently. Remember that a secure program is a correct one, and it will produce an answer
or error whenever possible. Availability is built upon programs functioning in exactly
this manner. Hence, a highly available service must be built upon secure components.

Today, there are many threats to availability, including system intrusions, DoS attacks,
and service hijacking.

Computer security can increase availability by keeping hackers from compromising
systems, creating robust services that resist DoS attacks, and properly securing your
domain to prevent hijacking. Though computer security alone can’t accomplish each
of these things, it can facilitate such an environment when implemented in a consis-
tent and serious manner.

For example, one of the leading companies in computer security had their Web site
defaced in February 2000, right before the widespread DDoS attacks. The hacker
changed the Web site by compromising the DNS server, pointing their main splash
page to point to a Web server in Brazil. The company was caught with their proverbial
pants down. Their site was defaced for over 13 hours, along with significant downtime
of their primary DNS server while they fixed the problem.

The reason: a hacker named Dennis Moran, age 18, who lived across the country on
the east coast. The lesson here is security can not only allow the organization to save
face, but it can also help minimize downtime. In this specific case, a coherent security
plan may have:

■ Prevented the system compromise.
■ Detected the system compromise.
■ Planned for a backup server to minimize downtime in case of compromise.
■ Provided staff so that compromises could be reported and resolved quickly and

easily.

Each would have reduced downtime. Each must be planned and implemented before
the compromise.

How to Start
There are consultants charging well over $500/hour who will help you implement a
security architecture at your organization. If you need a consultant to overcome politi-
cal boundaries, by all means hire one.

If you don’t have the cash, I’ll tell you for free what to do. First, create a position or
office for a person who will be in charge of computer security at your organization. At
Stanford that office is called the Computer Security Office. Having a central authority
is the only way I know of for security to be effectively implemented in any organiza-
tion. Authority over computer security should be given to the person responsible for
it. This may sound trite, but it is the most often overlooked aspect of creating a sound
infrastructure. (A corollary: if you are ever offered a security position without author-
ity, run away.)

Next, you should find the correct people to be responsible for computer security in the
organization. The correct person will understand computer security risks and be able
to evaluate them with a long-term perspective. Those without a long-term perspective
generally do not last.

The company was caught

with their proverbial pants

down.

80

Last, you should let the people do their job. If you have given security the proper posi-
tion and authorization, and you have selected the right people, the rest will take care of
itself. This is because security is a process, not a goal.

This isn’t just what you should do, this is how Stanford implemented the Computer
Security Office. Our policies give the office responsibility, and we have hired the best
talent around.

Policies
Effective policies are essential to the success of an organization. Foremost, policies
should give the community the expectations surrounding the use of compute
resources. While policies often differentiate between acceptable and unacceptable
behavior, their purpose should be to let the community know how the compute
resources are to be used to realize the goals of the organization.

For example, at Stanford the goal of the organization is learning. Our compute
resources are for academic pursuits. Our policy explicitly mentions that only inciden-
tal non-academic use is tolerated.

Second, policies provide a consistent mechanism for addressing the eventual security
incident. More, carefully crafted policies and procedures provide a chain of command
so that incidents can be dealt with quickly, efficiently, thoroughly, and consistently.

At Stanford, the computer-use policy appoints the computer security officer at the top
of the chain, with administrators and then users following.

The Plan
At a high level, the critical areas to plan well are

■ What base-level authentication system to use
■ How to ensure system integrity
■ Educating the community on using that infrastructure
■ Educating the community on security-related matters

The answer Stanford has come up with is we will use Kerberos for base-level authenti-
cation. Authorization is handled through the local services, such as AFS file permis-
sions.

Everything hinges on our authentication choice. Kerberos is used to authenticate
for file access (AFS), Web access (WebAuth), directory services (LDAP), and even
enrolling in classes (AXESS)

Ensuring system integrity is not complete. Our partial solution includes SULinux
for Linux, Norton Anti-Virus for Windows, Best Use Documents for other OSes,
and periodic vulnerability assessments.

The Computer Security Office, along with others, educates the community. We
give talks, presentations, and provide documentation and tools to the community.

Quick Response
On May 29, 1999, over 30,000 people received a hate mail derogatory to certain racial
groups. The mail was forged to appear to be from a Stanford engineering student,
probably in order to exact some sort of revenge.

81November 2001 ;login:

Mail File Web LDAP

Kerberos

A CRASH COURSE IN MANAGING SECURITY ●

●

BE

ST
PR

A
C

TI
C

ES
|I

N
TR

U
SI

O
N

D
ET

EC
TI

O
N

| F
O

RE
N

SI
C

S

Vol. 26, No. 7 ;login:

Over 30,000 people believed that this student sent the mail. Within an hour angry peo-
ple were outside the innocent student’s residence. The situation was critical.

Without proper resources the incident could have turned into a hefty political prob-
lem. However, Stanford was able to act quickly because the Computer Security Office
was already in place to handle this sort of problem. Within 14 hours of the hate mail,
the Security Office was able to identify suspects and distribute a response from the
university president. The quick response turned a potentially disastrous situation into
a positive racial-awareness campaign.

While not everyone will have a similar hate-mail incident, every organization will at
some time need leadership during a computer security crisis. It may be an Internet
worm or a DoS attack. Having a group for computer security ensures a quick response.

As a Public Service
In February 1999, a computer intruder who went by the nickname “ShadowKnight”
compromised several Stanford computers. Some of the computers compromised were
responsible for one of NASA’s largest and longest-running research projects, with a
multi-million-dollar budget.

On November 6, 2000, Jason Diekman, aka “ShadowKnight,” appeared before a United
States district judge and pleaded guilty to recklessly causing damage to a protected sys-
tem, unauthorized access of a non-public computer, and unauthorized use of an access
device.

Our office coordinated the investigation with several Stanford network administrators.
The network administrators were capable of assisting because of a commitment at all
levels to providing a safe and secure Internet. The results of that investigation were
turned over to the FBI, who then arrested and prosecuted Mr. Diekman.

Protecting People
A CAT scan uses radiation to map out the human body. A CAT scanner is a computer,
normally running SGI’s IRIX operating system.

IRIX machines by default have a “guest” username with no password. These same IRIX
boxes with the “guest” account are used in CAT scan machines. Imagine a hacker sim-
ply logging into your local medical facilities computer and viewing or changing the
results of this diagnostic procedure.

Critical infrastructure, such as the CAT scan machine, should be identified. After iden-
tification, regular audits protect the organization from liability. More, audits alert peo-
ple to potential problems before they affect the people who use the equipment daily.

Summary
Creating a security infrastructure is just like planning, implementing, and deploying
any other service. While you may receive more recognition for your deployment of a
Web mail service, the long-term safety of the community is considerable compensa-
tion. Though many may be angry when they must change the way they compute, you
are giving the community good habits that will follow them into careers outside the
university. Finally, implementing a coherent computer security strategy may protect
you, your organization, and your coworkers from harm done by computer intruders.

USEFUL URLS.
SULinux – http://sulinux.stanford.edu

Stanford Security Office –
http://security.stanford.edu

Stanford Kerberos Infrastructure –
http://lelandsystems.stanford.edu/services/kerberos/

David's Site – http://www.theorygroup.com

82

http://sulinux.stanford.edu
http://security.stanford.edu
http://lelandsystems.stanford.edu/services/kerberos/
http://www.theorygroup.com

83November 2001 ;login:

Introduction
Compromise of a user password is one of the most difficult intrusions to

detect. Historically it has been difficult or impossible to avoid transmission

of passwords in the clear. But the technology now exists to make this possi-

ble, albeit not trivially. The San Diego Supercomputer Center (SDSC) has

managed to eliminate plaintext password transmission, while continuing to

deliver services to a widely distributed user base. While it took some techni-

cal effort, overcoming the human hurdles proved to be more challenging.

This article discusses what solutions we provided and how we managed to

do it without annoying too many people. We have actually added value to

the environment, instead of reducing it.

At SDSC, we have to deal with some interesting issues of scale. We have thousands of
users and very few support staff. We have a wide variety of operating systems, high-
speed networks and high-performance storage systems. Our users expect to be able to
move large amounts of data (terabytes) around, in a reasonable amount of time. They
want to do streaming applications, grid computing, and stuff that has not yet been
invented. In addition to providing computing resources to researchers, we have people
doing research in high-performance computing, networking, and storage. Unlike
many places, most of our users do not work inside networks that we control. They are
spread all over the planet and work for different institutions. This means that our
infrastructure must scale outside of our “trusted” networks.

Because of the nature of our users, and the work done within and outside the Center,
we cannot (and do not want to) mandate homogeneity such as “everyone must use
Outlook for email.” Instead, we focus on supporting protocols, and let the users pick
their clients. We attempt to provide reasonable support for the applications that our
users are already using, instead of requiring them to use the one(s) that we’ve decided
are easy to support. Oh, and by the way, we have not had a root-level compromise
(that we are aware of) on our managed systems in over two years.

How do we do it? Mostly through the following:

* Strong configuration management
* Patch early, patch often
* Strong authentication, and no plaintext passwords, anywhere
* Simple, but strong, access control between “trusted” and “untrusted” networks

We have managed to turn off plaintext passwords and continue to provide support for
almost all of the applications our users have. Additionally, we will provide services for
applications that we don’t support. For instance, we provide IMAP over SSL service,
and support Netscape Mail and Outlook clients. However, if a user has another client
that speaks IMAPS, they are welcome to use it. We just won’t help them with problems
with their client.

The result is that we have an environment where users can get their work done from
anywhere in the world. They can use the software that they need and read their email
with the clients that they like, and we have improved the security of our systems at the
same time.

no plaintext
passwords

NO PLAINTEXT PASSWORDS ●

by Abe Singer

Abe Singer is a com-
puter security man-
ager at the San Diego
Supercomputer Cen-
ter, and occasional
consultant and expert
witness. His current
work is in security
measurement and
security “for the life
of the Republic.”

abe@SDSC.EDU

●

BE

ST
PR

A
C

TI
C

ES
|I

N
TR

U
SI

O
N

D
ET

EC
TI

O
N

| F
O

RE
N

SI
C

S

Vol. 26, No. 7 ;login:

Background
Most of the commonly used TCP protocols use plaintext passwords: telnet, the r-com-
mands, ftp, pop, imap, and HTTP basic authentication. Other protocols can use either
plaintext or encrypted passwords but may use plaintext passwords by default.

Effective access control requires strong authentication. This means using authentica-
tion mechanisms which cannot be easily bypassed or subverted through eavesdrop-
ping, cryptanalysis, or brute-force attack.1

An authentication scheme that is highly resistant to brute-force attack or cryptanalysis
can be fundamentally useless if the password can be intercepted. Protection of pass-
words on hosts is reasonably well implemented: both UNIX and Windows provide
encrypted storage of passwords and prevent exposure of the passwords to the users.
However, many network protocols transmit these same passwords in plaintext.

Why is this a problem? Primarily because plaintext passwords can be easily intercepted
via a sniffer. There are dozens of sniffer programs available.2 Some sniffers are smart
enough to filter out just the usernames and passwords, and produce username, remote
host, and password in an easy-to-read format.

As mentioned above, we have not had a root-level compromise on our managed sys-
tems in over two years. But we do have some networks with systems managed by users
or other groups. We have had compromises on those systems, and occasionally we help
investigate intrusions on other systems. Most of the intrusions we’ve seen include the
use of a sniffer.

An intruder may have any number of motives for breaking into a system: running an
IRB “bot,” setting up a “warez” site, or using the system as a cutout to attack other sys-
tems, for example. The intruder typically installs a rootkit, and the rootkit almost
always includes a sniffer. Even when sniffing is not an intruder’s primary motive, the
sniffer is an opportunistic attempt to compromise user accounts on other systems.
Since users often use the same password on multiple systems, an intruder will try the
username and password on various machines, even at different sites, to see what they
can log into.

In one case, a user burned passwords to three different sites, including ours. The user
had set up their own system (on the “user-managed” network) because they suppos-
edly needed to run their own FTP server. They would routinely telnet into the system,
and from there ssh into our site and the two others. Eventually their system was com-
promised (due to an unpatched vulnerability). The intruder used the system to run a
bot but also installed a sniffer. When we found the sniffer log, we saw several user-
names and passwords into multiple sites. We notified the other sites involved and
investigated our managed machines to determine whether or not the intruder had
actually used the passwords (apparently not).

“Switched” networks are not immune to sniffing. Switches sometimes leak informa-
tion. Some switches are not fully switched but are really “switching hubs,” where
groups of ports share data exactly like a hub. Most importantly, most switches behave
like hubs when their MAC tables are overloaded.3

One of the big problems with password compromises is that they are difficult to
detect. Since the intruder logs in with a legitimate username and password, they are
successfully authenticated and look like a legitimate user to the system. A user account
compromise can go undetected for months – in one case we know of, a compromise

. . . most switches behave like

hubs when their MAC tables

are overloaded

84

went undetected for two years! Some detection is possible using user profiling, but this
is cumbersome and inaccurate. We believe that efforts are better spent at eliminating
the opportunity for interception in the first place.

The more effective solution is to either encrypt the password in transmission or
authenticate without password transmission.

The Rollout
About three years ago, SDSC began turning off most plaintext password services. A
year ago we turned off the last, with the exception of a few older systems that we
haven’t yet updated. (The long time frame was partly due to a lack of technology and
partly due to the need to make sure that users were able to make the transition.) These
systems allow plaintext within our trusted networks, but not outside.

We began by enabling SSH and Kerberos services. Users had the option of using Ker-
berized clients or SSH. FTP was enabled via tunneled SSH sessions. We bought 5,000
copies of SecureCRT and several hundred copies of F-Secure SSH for Macintosh to
distribute to users who needed it.

We then announced that plaintext access would be cut off in nine months. We notified
all user via email and mentioned the change in the message-of-the-day and in banners.
All the messages included links to Web pages for information on how to get software
and how to use it. We also periodically sent out reminders.

On the scheduled date, we turned off access to Telnet, rlogin, and FTP. We did this by
changing TCP-wrappers to deny access and display a banner with an explanation and a
URL for more information. Most of our users had already switched. Some of them had
not, but as soon as they tried to log in and saw the rejection message, they had little
choice but to make the appropriate transition. Very few called our help desk, as they
sheepishly realized that we had given them plenty of notice. A few (20 or so) did call.
Most of them had some problems understanding. One user, when asked if he had
read seen our notices, responded, “I never read those things. They never say anything
useful.”

We implemented email solutions as they became available. About a year and a half ago,
we drew a matrix of all the email clients we had to support, the non-plaintext authen-
tication mechanisms they supported, and servers implementing the same. We found
that we could turn off plaintext access to email using a combination of IMAPS, POPS,
APOP, KPOP, and NFS access for mail-reading from managed UNIX systems. We also
found a Web-mail solution (IMHO Webmail)4 to provide users with access to their
email from any SSL-capable Web browser.

Six months later, after appropriate announcements and lead time, we turned off plain-
text email services.

We have also rolled out SecureFTP,5 sftp, and are evaluating Web-based access to user
directories.6

The Technology
We describe here the various solutions we have implemented, with some tips based on
our experience. We are not providing a tutorial on how to implement POP or IMAP
servers. Rather, we discuss what we use to encrypt passwords on these services. Refer-
ences are provided for details of implementation.

85November 2001 ;login:

One user, when asked if he

had read seen our notices,

responded, “I never read

those things. They never say

anything useful”

NO PLAINTEXT PASSWORDS ●

●

BE

ST
PR

A
C

TI
C

ES
|I

N
TR

U
SI

O
N

D
ET

EC
TI

O
N

| F
O

RE
N

SI
C

S

Vol. 26, No. 7 ;login:

Kerberos is a mature,

well-reviewed, open

protocol, having been around

about 15 years.

86

INTERACTIVE ACCESS
For interactive access, we support Kerberos7 and SSH.8

Kerberos works very well. Installing and configuring Kerberos is not trivial, but it is
very easy to use. Kerberos provides strong authentication (both user and host) without
transmitting passwords, and can provide encrypted data transmission. It scales very
well (our KDCs are Sparc5s), has low overhead, and provides redundancy for failover
and remote administration tools. Kerberos is a mature, well-reviewed, open protocol,
having been around about 15 years. See note 7 for a detailed source of information on
running and installing Kerberos.

SSH is a replacement for Telnet which provides interactive shell access, rcp-like file
copying, and the ability to tunnel other protocols across encrypted streams. All data
streams in SSH are encrypted.

We are currently supporting version 1 SSH because, until recently, there were not ver-
sion 2 clients for all of the platforms we have to support (Windows, UNIX/Linux,
Macintosh). We support Kerberos authentication for SSH sessions.

We also support RSA public keys for authentication via SSH. This requires a user to
generate a public-key pair, store the private key on their client machine(s), and install
the public key on the server(s). We have mixed feelings about this option, as it requires
users to keep their private key secure, and users are not known for being good at keep-
ing data secure.

A source for information on various SSH clients can be found in reference 8.

EMAIL
We support a variety of services for email. Our users have Eudora, Netscape Mail, Out-
look, and others.

Our users have to be able to read and send mail from any location. However, we do not
want to be an open relay for the entire world. Our solution involves authenticated
SMTP over SSL, IMAP over SSL (IMAPS), APOP, POP XTND XMIT, HTTPS, POP
over SSL, and KPOP.9

Here is what we support:

Reading Mail Sending Mail

Client Protocol Daemon Protocol Daemon

Eudora APOP qpopper POP XTND XMIT Sendmail, qpopper

Outlook IMAP/SSL UW imapd, sslwrap AUTH SMTP/SSL Sendmail

Netscape IMAP/SSL UW imapd, sslwrap AUTH SMTP/SSL Sendmail

Webmail HTTPS, IMAP Roxen,IMHO, imapd HTTPS Sendmail, Roxen, IMHO

Mutt, Elm, Pine NFS SMTP

Eudora KPOP qpopper

Outlook POP/SSL qpopper, sslwrap

IMAPS and POPS are implemented using sslwrap.10 This is almost trivial to do.

We have a centralized mail hub running Sendmail. We will not relay mail for machines
outside of our network, without authentication. However, users outside our network
who need to send mail have the option of using either authenticated SMTP over SSL,
or the XTND XMIT option of POP. Netscape Mail and Outlook support the former,
Eudora supports the latter.

For UNIX mail clients (pine, elm, mutt) on internal hosts, we provide NFS access to
incoming mail folders. We only allow NFS on “trusted” networks, which are the net-
works which only have hosts that we manage. Since users have to use Kerberos or SSH
to access these hosts, they have already used a strong authentication method to access
the system.

sslwrap is a relatively simple way to encrypt a TCP-based service. To sslwrap a service,
first configure the service to accept connections only on the loopback interface
(127.0.0.1). This can be done easily with TCP-wrappers (and you should be TCP-
wrapping your services anyway). Next, place an entry in inetd for the secure version of
that service (e.g., IMAP uses port 143, IMAPS uses port 993).11

The inetd.conf entry for imap and imaps looks like this:

imap stream tcp nowait root /usr/local/etc/tcpd /usr/local/etc/imapd
imaps stream tcp nowait nobody /usr/local/etc/tcpd /usr/local/etc/imapsd

imapsd is a simple shell script that looks like this:

/usr/local/etc/sslwrap -cert /usr/local/certs/ssl-imap.pem \
-CAfile /usr/local/certs/ca-cert.pem -port 143

The TCP-wrapper configuration for these services looks like this:

imapd: 127.0.0.1: allow
imapd: ALL: rfc931: DENY
imapsd : ALL : rfc931 : ALLOW

The ssl-wrapper negotiates an encrypted session on the “secure” port, then connects
through the loopback device to the original unencrypted service. The remote client
gets an encrypted session, and the local client does not require any modification. The
same can be done to implement POPS with any POP server.

KPOP is not trivial to configure, and Eudora only supports version 4 of Kerberos. The
server must be compiled with Kerberos libraries, and is run on an alternate port with a
command line option to enable Kerberos authentication. We have not had many users
making use of KPOP. Refer to the qpopper documentation for instructions on imple-
mentation.12

APOP uses a challenge-response password hashing mechanism to avoid transmitting
passwords in the clear. When a client connects to the server, the server presents a chal-
lenge string. The client hashes the user’s password with that challenge, and returns the
hash. The server authenticates the client by comparing that hash with its own hash of
the password. In order to implement APOP, qpopper has to keep clear-text copies of
user passwords in its own database, by default /etc/pop.auth. Tools are provided for
managing this password database.

The XTND XMIT feature of qpopper allows mail delivery through the pop server. The
pop server in turn delivers the mail by calling Sendmail locally. This allows us to pre-

87November 2001 ;login:

sslwrap is a relatively simple

way to encrypt a TCP-based

service.

NO PLAINTEXT PASSWORDS ●

●

BE

ST
PR

A
C

TI
C

ES
|I

N
TR

U
SI

O
N

D
ET

EC
TI

O
N

| F
O

RE
N

SI
C

S

Vol. 26, No. 7 ;login:

vent open mail relaying on our mail server and still enable users to send mail through
their POP clients.

XTMD XMIT also has to be configured on the client. For Windows Eudora clients, this
requires editing a .ini file. For Macintosh clients, it requires that the Esoteric Settings
plug-in be installed.13

Authenticated SMTP over SSL implements the SMTP AUTH feature,14 using SSL to
encrypt the data stream. We implement this feature using Open Sendmail,15 with
SASL16 and the entropy-gathering daemon.17 With Sendmail, the server must be dedi-
cated to authenticated SMTP, so we run a separate mail host just for authenticated
relaying.18 A source for detailed implementation instructions is in this reference.

For users who insist on using other mail clients which do not support the above proto-
cols, we also support SSH-port forwarding.19 Our POP and IMAP servers allow plain-
text authentication via the loopback device. A user can establish an SSH connection to
our mail server and then tunnel any mail client they want. SSH tunneling can be tricky
to do, but it does work.

Finally, we have some users who may not have access to a mail client. They may be
using another person’s machine, in a terminal room in a conference, or at an “Internet
cafe,” for example. In addition to the various client support above, we provide a Web-
based mail client called IMHO (see note 4). The client runs under the Roxen20 Web
server, and talks IMAP to the mail server via localhost.

FILE TRANSFER
For file transfers, we support scp through SSH (version 1), sftp (through SSH version
2), KFTP, and SecureFTP (see note 5).

scp is supported through the SSHD server. However, the scp protocol has a two-giga-
byte file limit, which is problematic for some of our users.

sftp uses a separate binary which is invoked by the SSHD server. An entry in the SSHD
configuration file points to the sftp binary.

KFTP is a Kerberized version of FTP. It uses Kerberos authentication on the command
channel, but data transfers remain plaintext. This is considered a feature by some of
our users.

Many of our users are not concerned with data confidentiality, only data integrity.
Most are researchers using open or published data. Many of them transfer large
amounts of data – sometimes terabytes. In these cases, the overhead of encryption cre-
ates too large a performance problem. At one point in time, our users found that
encryption increased transmission time by a factor of four.

SecureFTP is an ssl-wrapped FTP server, with command line clients and a Java-based
client that can be run from a Web browser. The command channel is encrypted, which
protects passwords during transmission. Like KFTP, the data channel is left unen-
crypted. Any FTP server can be ssl-wrapped, and the Java client can be run from any
operating system (which supports Java). See reference 5 for where to find details.

FILE SHARING
We currently do not allow file sharing outside of our trusted networks. Within our
networks, we provide NFS for UNIX systems, Netbios/SMB for Windows systems, and

. . . the scp protocol has a

two-gigabyte file limit, which

is problematic for some of

our users

88

AppleTalk for Macintosh. We have a handful of centralized file servers where all user
data lives – home directories, project areas, etc.

NFS does not provide user authentication. We only export to trusted hosts, and the
NFS server will only talk to trusted networks.

We use Samba to provide file sharing for the Windows systems. We do this so that we
can export the same data to the Windows systems as we do the UNIX systems. Samba
can authenticate using UNIX passwords, its own password file, or through a Windows
PDC, but password encryption is only available for the latter two methods. We authen-
ticate Samba users against a PDC, which is also used to authenticate Windows logins.
In order to match file ownership properly against a UNIX system, Samba requires that
the UNIX usernames match the Windows usernames, or you must manually maintain
an equivalence list.

We use Netatalk21 to provide AppleTalk file shares similar to how we provide Windows
file shares. Currently this uses plaintext passwords, and is restricted to our Macintosh
networks.

OTHER
We also maintain an anonymous-only FTP site. It is configured anonymous-only so
that users aren’t tempted to use the server for file transfers. All users have an incoming
and outgoing folder that they can use anonymously. This provides a fallback method
of transferring files when authenticated access is unavailable.

PGP software is available for those who wish to use it. We provide version 2 and ver-
sion 5+ software.22

Weaknesses
Our system is not (yet :-]) perfect. There are some known weaknesses, most of which
will be addressed over time.

Our biggest problem is what we call “two-hopping.” A user at a remote site, who does
not have an SSH client on their desk (machine A), will telnet to another system which
does have SSH (machine B), and then SSH into our site. The password into our site is
intercepted by a sniffer between A and B. The intruder then uses the password to SSH
into our site. Sometimes the less-than-clueful user telnets through several machines
before ssh-ing into ours. In some cases, we have alerted the user and site administra-
tion, and changed their passwords, only to have it happen again a few days later. When
asked to install SSH, the user complains that it is too hard, or they don’t have the fif-
teen dollars for a site-licensed copy! (and now there are free versions of SSH available)

Macintosh file sharing via AppleTalk currently sends passwords in plaintext. As men-
tioned above, we expect to move to DoubleTalk and Samba.

Several of the services we implement (e.g., APOP and Kerberos) require access to
stored plaintext passwords (encrypted on disk with a shared key). While this is less
than desirable, the hosts on which these passwords are stored are within our control
and are kept relatively secure. The risk to us is much less than a user storing a plaintext
password on their home computer.

The anonymous-only feature of our FTP server (wu-ftpd) does not reject the login
until after the password is provided. The result is that users who don’t know the server
is anonymous-only will “burn” their password the first time they try to use the service.

89November 2001 ;login:

Our biggest problem is what

we call “two-hopping.”

NO PLAINTEXT PASSWORDS ●

●

BE

ST
PR

A
C

TI
C

ES
|I

N
TR

U
SI

O
N

D
ET

EC
TI

O
N

| F
O

RE
N

SI
C

S

Vol. 26, No. 7 ;login:

Windows password encryption is known to be weak.23 We only use this protocol on
internal networks and limit it to Windows-only networks.

We are also vulnerable to keystroke sniffers. An intruder at a remote site can install a
keystroke sniffer and intercept passwords as they are typed. In our experience, key-
stroke sniffers are rather rare, and our risk is relatively low. The only solution to this
would be one-time passwords or hardware tokens, which for us is not worth the
expense.

Policy
It probably goes without saying that it is important to have policy behind your tech-
nology.

As always, support from management is instrumental. Our management takes security
seriously and has supported our efforts. What has helped us gain that support is show-
ing that we are enabling services, as opposed to denying access. Additionally, we make
sure that management knows what we are doing, and is comfortable using the technol-
ogy, before switching off services. In this way, when the disgruntled big-ego researcher
calls the director to complain about not being able to use Telnet, the response is, “I’m
able to use it, why can’t you?”

We sometimes appeal to ego to encourage recalcitrant users. For instance, when deal-
ing with a researcher, first we’ll find out who their biggest rival is. The conversation
then goes something like this: “Well, Dr. X, Dr. Y [the rival] had no problem installing
and using SSH. Perhaps we could ask one of his grad students to come over and show
you how to use it.” This works more often than you might think.

The other key strategy is to give users plenty of advance warning. We typically give six
months’ to a year’s warning, with email reminders, items in the message-of-the-day,
and banners on services. Even with all this notice, some users will not get the informa-
tion. So we make sure that help-desk staff are prepared to support them. In some
cases, we preemptively help out users who we know will have difficulty.

Clients that store plaintext passwords for the convenience of the user are problematic.
An intruder on a remote machine can pluck these passwords out of the files where
they are stored. We don’t have any (technological) way to prevent users from using
these features. We do ban user storage of plaintext passwords on our managed systems.

Gotchas and Issues
When configuring any encrypted service, first make sure that authentication works
properly without encryption. It can be easy to assume that there is a problem with ses-
sion encryption when the real problem is that authentication is failing.

When enabling encryption, verify that the transmitted passwords are actually
encrypted. Some services can be easily misconfigured, so that you think that passwords
are encrypted when they actually are being sent in plaintext.

Password distribution/management is not trivial. All of these systems require that we
manage user passwords on a variety of systems. We do not use a centralized account
management service (e.g., NIS), because most of them are insecure and/or don’t work
with all of our systems.

We have a home-grown Web-based password changing system, which sets UNIX pass-
words, Kerberos pass-phrases, APOP passwords, and Windows passwords. We do not

90

REFERENCES
1. B. Schneier, Applied Cryptography, 2nd ed.
(John Wiley and Sons, Inc., 1996).

2. SecurityFocus: sniffers,
http://www.securityfocus.com/templates/tools_category.html?category=4&platform=&path=[%20sniffers%20]

3. S. Sipes, “Why Your Switched Network Isn’t
Secure,” http://www.sans.org/newlook/resources/IDFAQ/switched_network.htm, The
SANS Institute, September 10, 2000.

4. S. Wallström, B. Lincoln, IMHO Webmail,
http://www.lysator.liu.se/~stewa/IMHO.

5. G. Cohen, B. Knight, SecureFTP,
http://secureftp.sdsc.edu, 2000.

6. Y. Last, WebRFM,
http://www.geocities.com/SiliconValley/Horizon/7772/webrfm.html, 1999.

7. “Kerberos, the Network Authentication Pro-
tocol,” http://web.mit.edu/kerberos/www/,
September 10, 2000.

8. “OpenSSH for Windows and Mac”,
http://www.openssh.org/windows.html, July 25,
2001.

9. M. Crispin, RFC 2060, “Internet Message
Access Protocol – Version 4rev1,” December
1996; J. Myers, M. Rose, RFC 1939, “Post Office
Protocol – Version 3,” May 1996; A. Freier, P.
Karlton, P. Kocher, “The SSL Protocol Version
3.0,”
http://home.netscape.com/eng/ssl3/draft302.txt,
November 18, 1996.

10. R. Kaseguma, sslwrap,
http://www.rickk.com/sslwrap/, 1999.

11. Protocol Numbers and Assignment Services,
http://www.iana.org/numbers.html, Internet
Assigned Numbers Authority, April 30, 2001.

12. qpopper, http://www.eudora.com/qpopper/.

13. “Email FAQ,”
http://www.netgate.net/html/email_faq.html;
“Changing POP (or other) Port in Eudora,”
http://www.eudora.com/techsupport/kb/1501hq.html.

14. J. Myers, RFC 2554, “SMTP Service Exten-
sion for Authentication,” March 1999.

15. Sendmail, http://www.sendmail.org.

16. J. Myers, RFC 2222, “Simple Authentication
and Security Layer (SASL),” October 1997.

17. EGD, http://www.lothar.com/tech/crypto/.

http://www.securityfocus.com/templates/tools_category.html?category=4&platform=&path=[%20sniffers%20]
http://www.sans.org/newlook/resources/IDFAQ/switched_network.htm
http://www.lysator.liu.se/~stewa/IMHO
http://secureftp.sdsc.edu
http://www.geocities.com/SiliconValley/Horizon/7772/webrfm.html
http://web.mit.edu/kerberos/www/
http://www.openssh.org/windows.html
http://home.netscape.com/eng/ssl3/draft302.txt
http://www.rickk.com/sslwrap/
http://www.iana.org/numbers.html
http://www.eudora.com/qpopper/
http://www.netgate.net/html/email_faq.html
http://www.eudora.com/techsupport/kb/1501hq.html
http://www.sendmail.org
http://www.lothar.com/tech/crypto/.

manage all passwords from a centralized database but explode the passwords out to
their respective systems. It’s not the best system, but it works for us.

Be aware of software that people can install on their desktops on their own, such as
VNC (it can be SSH-wrapped), personal Web servers, FTP servers, etc. We ban these as
a matter of policy, but it is difficult to prevent.

Future Directions
We eventually will replace /bin/login with the Kerberized version. This version will log
users in using their Kerberos pass-phrase, and get a ticket-granting ticket all in one
shot. This will allow us to use the KDC as the central password management system
for UNIX logins. We would like to integrate Windows 2000 into this environment, but
its feasibility remains to be seen.

We are evaluating a Web-based system for users to access our file systems (WebRFM,
see note 6), providing the ability to upload and download files through an encrypted,
authenticated site. The system looks promising.

We have also started looking at OpenAFS24 with Kerberos. AFS provides true user-
authenticated file sharing and can be used effectively for file sharing between different
sites.

Conclusion
Due to the ubiquitous use of sniffers, disabling plaintext passwords is critical for effec-
tive protection of systems. There is no single solution that provides universal access,
but effective service can be provided through a combination of technologies, policy,
and careful user handling.

Thanks to the following people who were involved in the actual implementation: Tom
Guptil, Tom Perrine, Jeff Makey, Cindy Zheng, Haisong Cai, and Dave Savilonis.

For additional documentation see http://security.sdsc.edu/self-help/no-plaintext/.

91November 2001 ;login:

18. B. Bannister, “Implementing Authenticated
SMTP with Sendmail,”
http://security.sdsc.edu/publications/smtp-auth.shtml.

19. “Port Forwarding,”
http://www.ssh.com/products/ssh/administrator30/Port_Forwarding.html, May
2001.

20. Roxen Web Server,
http://www.roxen.com/products/webserver/.

21. Netatalk, http://netatalk.sourceforge.net/.

22. Pretty Good Privacy,
http://web.mit.edu/network/pgp.html.

23. l0phtCrack,
http://www.atstake.com/research/lc3.

24. OpenAFS, http://www.openafs.org/.

NO PLAINTEXT PASSWORDS ●

●

BE

ST
PR

A
C

TI
C

ES
|I

N
TR

U
SI

O
N

D
ET

EC
TI

O
N

| F
O

RE
N

SI
C

S

http://security.sdsc.edu/self-help/no-plaintext/
http://security.sdsc.edu/publications/smtp-auth.shtml
http://www.ssh.com/products/ssh/administrator30/Port_Forwarding.html
http://www.roxen.com/products/webserver/
http://netatalk.sourceforge.net/
http://web.mit.edu/network/pgp.html
http://www.atstake.com/research/lc3
http://www.openafs.org/

92

I’m writing this on September 17. That
means that the issue of security is very
different from the one I’ve written about
for more than 15 years.

In the ‘50s and ‘60s (and early ‘70s),
computer security meant, in general, the
physical security of the multimillion-
dollar mainframe. The advent of the
DEC 10, the Multics project, and UNIX
yielded password security questions. The
ARPANET introduced other questions,
carefully and wittily discussed by Bob
Metcalfe in RFC 602 (December 1973),
which I still recommend.

Cryptography, firewalls, etc., help us
somewhat where data security is con-
cerned, but I fear that an analogy with
our homes or cars is apt. We lock our
doors; in some neighborhoods, folks
have bars on their windows, burglar
alarm systems, “kryptonite” on their
bicycles, and “The Club” on their steer-
ing wheels.

None of these will avail where a deter-
mined attack is concerned, just as moats
and armor offered deterrents and
shields, not absolute protection.

The news is full of statements that “the
world has changed” as of Tuesday morn-
ing (Eastern Standard Time). Our sense
of security and safety has changed.
That’s for sure.

On September 14, the FBI sent an advi-
sory to InfraGard members, who are
mandated with keeping the nation’s dig-
ital infrastructure intact, warning them
to upgrade their security precautions in
light of recent terrorist activity. But

the bookworm

Vol. 26, No. 7 ;login:

by Peter H. Salus

Peter H. Salus is a
member of the ACM,
the Early English Text
Society, and the Trol-
lope Society, and is a
life member of the
American Oriental
Society. He is Editor-
ial Director at
Matrix.net. He owns
neither a dog nor a

peter@matrix.net

BOOKS REVIEWED IN THIS COLUMN

CYBERREGS

Bill Zoellick

Boston: Addison-Wesley, 2001.

Pp. 307. ISBN 0-201-72230-5.

InfraGard comprises federal agencies,
which is hardly a significant segment of
the Net.

The effect of the devastating terrorist
attacks of September 11 have caused
businesses and the government to act in
anticipation of cyber-assaults.

In a hearing on Wednesday, September
12, the U.S. Senate Governmental Affairs
Committee detailed how prone critical-
systems computer networks are to
cyberterrorism. They concluded that
security measures taken where govern-
ment systems were concerned was poor.

Etc.

Crackers, viruses, DDoS attacks, idiots
with backhoes, morons running trawlers
in the China Sea, earthquakes, hurri-
canes – that’s what we generally concern
ourselves with. Not with terrorist activ-
ity.

I was in Copenhagen for uptime(1), the
celebration of UNIX’s 109 second, and
got home after midnight on September
11. I got into my office after about six
hours’ sleep to find everyone clustered
around the TV set.

Just terrible.

And a book, too.

Bill Zoellick has written a fine book
about the old version of the universe.
Perhaps, after a while it will be relevant
to the new Internet world, too.

Zoellick has written a couple of other
books, and I’ve always found him reli-
able. The volume at hand is a thoughtful
essay on the ways that government regu-
lation may impinge on business where
the Internet and the Web are vital.

My problem is that I fear that govern-
ment regulation and intrusion will
increase, making Zoellick’s notions inap-
plicable.

It’s a thought-provoking read, but events
may have overtaken it.

93November 2001 ;login:

●

BO

O
K

RE
V

IE
W

S

book reviews
PROGRAMMING RUBY:

THE PRAGMATIC PROGRAMMER’S

GUIDE

DAVID THOMAS, ANDREW HUNT ET AL.
Boston: Addison-Wesley, 2001. Pp. 564.

ISBN 0-201-71089-7.

Reviewed by Raymond M. Schneider
ray@hackfoo.net

For those who do not already know,
Ruby is a programming language from
Japan. It has been suggested that Ruby is
more popular than Python. The Prag-
matic Programmers have tackled the
task of providing the world with the first
book documenting this language.

As any good programmer knows, you
need the right tool for the right job.
Well, Ruby is another excellent language
to add to the toolbox. The book is bro-
ken down into five sections: Facets of
Ruby, Ruby in Its Setting, Ruby Crystal-
lized, Ruby Library Reference, and
Appendices.

The Facets of Ruby section begins by
quickly introducing the prospective
Ruby programmer to the basics. It cov-
ers all of the usual suspects: arrays,
hashes, and control structures. For those
Perl regular expression folks, you’ll be
happy to know that Ruby’s syntax for
regexs is much like Perl. The remaining
chapters in this section of Programming
Ruby provide more depth on the various
things Ruby has in common with
object-oriented programming languages
and completes the brief overview of
Ruby’s syntax and language characteris-
tics.

Ruby in Its Setting shows some of what’s
in store for someone utilizing Ruby in
various scenarios. The first chapter of
this section covers Ruby’s command-line
syntax and flags. There are no surprises
here. The following two chapters, Ruby
and the Web and Ruby TK, are fun with
plenty of examples to play with.

Ruby Crystallized, the third section, is an
even more in-depth look at dealing with

corresponding Microsoft server soft-
ware. I sense a vicious circle here.

What browser should you use? IE has a
user interface (UI) that I just don’t like.
Netscape sadly lost its war and is now
being sent in the wrong direction by
AOL. Mozilla 9.1 is good for the knowl-
edgeable Linux or *nix user. Amaya is
the W3C example browser. Konqueror is
a KDE/Linux project. Opera is an excel-
lent alternative. I like its UI, speed, size,
and availability for lots of OSes (MS
Windows, Solaris, OS/2, Macintosh,
Linux [x86, SPARC, PowerPC], EPOC,
and BeOS).

Opera is a free browser with ads. Turn
off the ads for a (low) purchase price. If
you as a professional expect your
browser to be free of cost, go soak your
head.

New users: This book will be useful to
anyone new to Opera, even if they are
new to Web browsers in general. It is
said that you can divide users of an
application into categories: beginner
(10%), average (80%), and advanced
(10%).

This book will help a beginner quickly
get into the average user category and
will encourage the average user to make
the step to advanced. Sysadmins who
provide Opera on their systems will
want to have a few copies of this book to
make available to users.

Web developers: If you want a nice, stan-
dards-compliant browser, Opera is a
good choice, and you will find this book
useful for Opera configuration. If you
have to develop for both IE and
Netscape, you may find it easier to
develop for Opera and then test in IE
and Netscape since Opera is more com-
pliant to standards.

This book starts with a good description
of the UI: all menus, buttons, and
options. There are some subtleties here,
such as an option to pretend to be the IE

Ruby’s semantics. This section has more
information on the behavior of classes
and objects in Ruby, looking at safe lev-
els and tainting as well.

The Ruby Library Reference section is
just that, designed for those of us who
do not feel the need to read a book on
programming in yet another language
but just want a reference. This section of
the book (starting on page 279 and
going through to the Appendices) is just
excellent, not only providing explana-
tions of what things are but also includ-
ing many examples of the way things
should be implemented.

This book is excellent in its approach,
whether you like to read through the
basics with each language you learn or
just want to tackle the references. It
should satisfy you no matter what sort
of reader you are.

Lastly, this book has actually been made
available under the Open Publications
License. It is on the Web, and you can
download it at:
http://www.rubycentral.com/book/index.html.
Happy Ruby Hacking!

THE OPERA 5.X BOOK

J.S. LYSTER

San Francisco: No Starch, 2001.

Reviewed by Rick Leir
We have seen IE clobber Netscape in the
browser market, and many companies
now don’t much care whether their Web
applications or Web sites work with any-
thing but IE. This sets the stage for the
“big company in the Northwest” to
dominate the Web as it does the desktop.
I am interested in any browser which has
the merits to buck the trend. Opera
might have a chance.

Dominate? There are Web sites which
only work in IE, forcing you to have a
desktop machine with a Microsoft OS.
Most people have such a machine avail-
able to them, so Web designers tend to
cater to IE users, and make use of the

http://www.rubycentral.com/book/index.html

Vol. 26, No. 7 ;login:

browser so certain sites don’t go into a
“lowest common denominator mode” or
reject you completely. Keyboard short-
cuts are presented, and they can speed
you up considerably. The book contin-
ues with a description of mail and news-
group access that will help even people
who are new to Usenet.

Next is a description of Java and plugin
configuration, which is important
because Opera defaults to minimal plug-
ins so it can be lightweight.

For more advanced users, there is a very
brief introduction to CSS so that Opera
styles can be configured and a very brief
introduction to security protocols so
that cookies and certificates will make
more sense. An introduction to HTML
leads into using Opera in full-screen
mode for presentations or kiosks.

94

Up to this point ,the book focuses on
Opera 5 for Windows, but it follows
with two chapters on the differences for
other OSes.

There is an attached CD containing ver-
sions of Opera for various OSes, plugins,
and sample HTML/CSS code. This will
save you hours if you don’t have a
broadband link.

To wrap it up, there is a “Brief Contents”
before a “Contents in Detail,” which
together make it easier to get around,
and an index.

This book is typeset with a nice choice
of fonts in a casual style. Look for a pur-
ple cover with a conductor’s baton!

book reviews

95November 2001 ;login:

news

●

U
SE

N
IX

 N
EW

SUSENIX MEMBER BENEFITS
As a member of the USENIX Association,
you receive the following benefits:

FREE SUBSCRIPTION TO ;login:, the Association’s

magazine, published eight times a year, fea-

turing technical articles, system administra-

tion articles, tips and techniques, practical

columns on security, Tcl, Perl, Java, and

operating systems, book and software

reviews, summaries of sessions at USENIX

conferences, and reports on various stan-

dards activities.

ACCESS TO ;login: online from October 1997

to last month http://www.usenix.org/

publications/login/login.html.

ACCESS TO PAPERS from the USENIX Confer-

ences online starting with 1993

http://www.usenix.org/publications/library/

index.html.

THE RIGHT TO VOTE on matters affecting the

Association, its bylaws, election of its direc-

tors and officers.

OPTIONAL MEMBERSHIP in SAGE, the System

Administrators Guild.

DISCOUNTS on registration fees for all

USENIX conferences.

DISCOUNTS on the purchase of proceedings

and CD-ROMS from USENIX conferences.

SPECIAL DISCOUNTS on a variety of products,

books, software, and periodicals. See

http://www.usenix.org/membership/

specialdisc.html for details.

FOR MORE INFORMATION

REGARDING MEMBERSHIP OR

BENEFITS, PLEASE SEE

http://www.usenix.org/

membership/membership.html

OR CONTACT

office@usenix.org

Phone: 510 528 8649

CRITICALITY AND USENIX ●

Criticality and
USENIX

September 11th hit close to home. I
write this as a patriot of civilization. I
hope that’s possible, because that is my
premise. I don’t want to argue, which I
mean in the deeply emotional sense of
the word “want.”

Harris Miller, President of the Informa-
tion Technology Association of America,
testifying before the US House Govern-
ment Subcommittee on Government
Efficiency, Financial Management, and
Information Technology, very elo-
quently said: “Many people are unsure
what homeland defense means and
unclear on how they can participate. I
would like to suggest an immediate
action: safeguard US computer assets by
adopting much more widely sound
information security practices.”

I’d like to endorse that but as a citizen of
civilization more than of the United
States, which you should not misinter-
pret as a diminution of my first alle-
giance.

All of us in USENIX like to say that the
Net has no borders. Some of us call
themselves Netizens. A few think that no
borders means that they are outside of
every (and hence subject to no) civil
authority; more know that no borders
instead means that they are inside every
civil authority, that everyone’s rules

apply rather than no one’s. In that sense,
the Net is now the carrier of civilization
and you can no more roll that back than
command the wind. It is not a digital
divide; it is a civilization divide.

In the United States, business in aggre-
gate spent $100 billion (1011) on the
Y2K issue, and business did it as a risk
management activity goosed along by
civil authority. On a worldwide basis, the
figure was somewhere between $300 bil-
lion and $800 billion. Compare that, if
you will, with a total worldwide spend in
calendar 2001 for cyber security that is
estimated to be no more than $10 bil-
lion. Civilization has yet to comprehend
that on the Internet it is still September
10th.

Speaking for security people everywhere,
we have gotten what we asked for (the
spotlight) and now the real work begins.
We are faced with fantastic demand pull
and an expectation of miracle-working.
Side effects are likely. A hard design
requirement (inescapable) plus a hard
design constraint (indetectable) will
challenge us, but economic trade-offs
favor broad implementation for the first
time in our careers. “Lead, follow, or get
out of the way” has never meant as
much. If you, as do I, think of security as
a proper subset of reliability, then get-
ting the Net from September 10 to Sep-
tember 12 means attention to the
matters that USENIX people are all
about, whether that is systems manage-
ment, operating system resilience, pro-
gramming languages more likely to help
than hurt, and so forth. We are the
crème de la crème of what it takes. We,
that is You, have to lead, follow, or get
out of the way; I recommend lead.

Wealth comes from productivity and
nowhere else. Our productivity is ever
more dependent on our electronic infra-
structure. More to the point, our pro-
ductivity gains have to come from or
through our electronic infrastructure or

by Daniel Geer

President, USENIX
Board of Directors

geer@usenix.org

Vol. 26, No. 7 ;login:96

than Patent Offices have done at protec-
tion, but just because something is novel
and non-obvious does not mean it is
valuable. Our first forays into distance
learning have just begun which now
seems prescient as travel permissions
start to tighten. We will have to shrink
some meetings to make others work.
What can we do to make that genie
unnecessary? Help us think. Help us
help you do. Lead.

IETF Network
Management
People Meet LISA
Network/System
Administrators

[The note below is, in my mind, what
conferences are all about. If you're a net-
work manager going to LISA, please
consider attending this BOF. The Editor]

There will be a BOF at LISA 2001 on
Wednesday evening running from 7pm-
11pm, the purpose of which is to start a
dialog between the Internet Engineering
Task Force people working on network
management technologies and net-
work/system administrators who actu-
ally run enterprise networks. The goal is
to better understand the needs of the
network/system administrators and to
evaluate how IETF technologies can help
to get the job done and to identify what
is missing. The IETF is especially inter-
ested to receive input from people who
are running large enterprise networks.

The IETF NM folk have already had ses-
sions with NANOG (North America)

they are not going to come. If you like
wealth, then act like you do and pay real
attention to the one central fly in the
ointment: On the Internet, every socio-
path is your next door neighbor. That
makes attacks inevitable unless, of
course, the uncivilized cannot grasp the
centrality of the Net and thus overlook it
as the target of choice. Not a bet I would
take. Not something we can treat as a
wait-and-see experiment either since,
unlike in a tank battle, in the electronic
sphere the cost for the defense is 100x
the cost for the offense and it is that
magnification of the hostile and the
insignificant that make the Net, and our
role in and around it, the critical playing
field.

Your patriotic duty is to act in propor-
tion to the extent that the computer sys-
tems and technologies you influence are
of any value beyond personal playthings.
Wanna be thought part of the global
economy? Smell the global coffee. Want
the citizenry to depend on you as an
integral part of a global infrastructure?
Act like it matters and lock the damned
door. Think risk management is a game
for cool heads and ruthless assessment?
Take a deep breath of discipline.

If the genie were standing here asking
me for my wish, then I’d wish for the
word USENIX to be always used in this
sentence: “When it matters you find a
USENIX member,” sweetening that with
“and it matters more than ever.” In some
sense, our biggest ally is the insurance
industry who will, you can be assured,
start rating digital risks as closely as they
rate flame-front spread speeds in
draperies.

All this requires knowledge and I am
asking you to help me review if not
revise how to pick and choose both the
knowledge that we need and the knowl-
edge that we need to propagete. In some
sense, USENIX has always done a better
job of intellectual property detection

and RIPE (Europe) ISP operators. From
these meetings, a set of requirements
have been gathered and described in:
http://www.ietf.org/internet-drafts/
draft-ops-operator-req-mgmt-00.txt (By
the time you read this, there may be a
revision 01).

Some people think that the Enterprise
network operators have different
requirments. So it would be good to
read the above document and evaluate if
your requirements are included, and if
not, then to make sure that we (IETF
NM protocol folk) get your input.

by Bert Wijnen

Area Director for IETF Operations
and Management Area

bwijnen@lucent.com

http://www.ietf.org/internet-drafts/

	farrow
	1829-confrpts
	jones1
	powell
	jones2
	lasser
	epp
	dietrich
	bonilla
	brumley
	singer
	bkrev
	usenixnews

