

2 Vol. 25, No. 7 ;login:

in this issue
For the ninth time, USENIX and its members created a security symposium.

In the past, two years had to pass between conferences. Security was not

such a big deal. But no longer. Chairs will always say that this conference is

the best ever, and it seems this time that it was true. Wonderful papers,

marvelous speakers.

Win Treese put together the Invited Talks track. If you ever want to do something that
is nontechnical and really challenging, you should help put together an Invited track.
Treese went so far as to add a very human element to the conference by bringing in
Suelette Dreyfus to speak on Cryptography and Human Rights. Dave Dittrich scared us
all by reminding us that Distributed Denial of Service attacks have not stopped – they
just don’t make the news these days. Duncan Campbell talked about Echelon for the
conspiracy buffs in attendance (and there were quite a few), and Mudge explained how
a tool written by the l0pht (now @stake) goes about detecting network interfaces listen-
ing promiscuously.

You can find all of the papers online, of course, but I wanted to mention a few. Publius
is an interesting effort to permit anonymous and irrevocable publication of sensitive
documents. The detecting-backdoors pair of papers (one of which won Best Student
Paper) examine a way to detect backdoors and relays using network heuristics and
headers only, so that it is not necessary to sniff the data portion of packets, which
might be encrypted anyway. You should read the actual papers if you are interested, as
well as the summaries in this issue, to get a good idea of the papers, Invited Talks, and a
couple of BoFs.

I do not mean to slight any of the paper writers, as I found them excellent reading,
especially while sitting in the Denver airport during hours of thunderstorms, waiting
for United to allow their planes to approach the passenger tunnels. Isn’t it amazing just
how fragile our technology base is?

This issue of ;login: contains feature articles that I solicited from the security communi-
ty. I especially wanted a better understanding of DNSSec. It is one thing to read the
RFCs and quite another to talk to someone, in this case Evi Nemeth, who has played
with implementations, written a chapter in a book, and had BIND 9 implementors edit
the article you will find here.

I asked David Brumley and Steve Romig if they would contribute again. David already
had an idea in mind, the technique that he is using to help secure Linux systems at
Stanford University (through the creation of a secured distribution so that people can
at least start right). Steve has been working in computer investigations for years and
will teach a tutorial at the USENIX conference in San Diego in early December. Steve
writes about collating logs and understanding how they are used as evidence.

The Nessus team in France contributed an article about their vulnerability scanner.
These guys have put together an open source tool with a large collection of vulnerabili-
ties (no exploits, kiddies), and their tool ranked number one in Fyodor’s survey of the
best security tools. (ISS ranked seventh, not bad for one of three commercial products
mentioned, but pretty poor when you consider that Nessus is free.) Fyodor’s list, at
<http://www.insecure.org/tools.html>, is a nice reference for security tools (50 of them,
although the link for VeteScan was broken when I checked it).

Mudge contributed an article about testing supposed secure devices, which dovetails
very nicely with Peter Guttman’s paper on building a secure open source device for

by Rik Farrow

Theme Issue Editor

<rik@spirit.com>

http://www.insecure.org/tools.html

3November 2000 ;login:

crypto-functions. I’ll have more to say on that later. Sven Dietrich wrote about his own
experiences working with Distributed Denial of Service software through his involve-
ment in intrusion detection. And Carole Fennelly interviewed the conference’s keynote
speaker, Blaine Burnham, helping to explain exactly what Burnham plans to do in the
future.

Burnham’s speech struck several chords for me. There was the part about goatheads –
very nasty, low-growing weeds endemic to the Southwest and the scourge of bicyclists.
These weeds produce pretty little flowers, which turn into vicious spiked seeds quite
capable of flattening any bike tire, as well as getting stuck in car tires (which is why they
are found alongside roadways in many places).

Burnham used the goathead as an analogy. Bicycle riders have learned to take counter-
measures (or have flat tires daily during the mid- to late summer), such as extra-thick
tires, a plastic internal guard, or (in my case) green goo, anti-freeze mixed with fibers,
that fills small holes quite nicely. The problem is, software vendors have yet to figure
out about the green goo. When an exploit is discovered for NT or a CGI script, there is
nothing that will automatically fix the problem. You, and your system, are history.

Burnham said that this is because no one is writing secure programs. Sure, everyone
puts out patches, but that is hardly the proper solution when you need your server run-
ning, or when your company has become front-page news. Writing secure software will
certainly help. But we have several years’ experience with well-known problems with
buggy code, for example buffer overflows, and yet buffer overflows are still uncovered
at an alarming rate. (One day on BugTraq, a URL was posted for a site named LSD that
had exploit code for 20 vulnerabilities alone.) Marcus Ranum has said before that writ-
ing secure code is not easy. And he has personal experience of this, not just because he
was brave enough to teach a class in writing secure code, but also because his own code
fell victim.

Was this the event that forever embittered Ranum? Just kidding, but I am guessing that
it came close. Ranum had written large parts of the Firewall Toolkit (fwtk), only to fall
prey to a buffer-overflow attack. The attack was not in his code, but in the use of the
syslog() subroutine library called by his code for logging. More recently, WU-FTPD fell
prey to problems involving logging using sprintf(), and setproctitle() also allegedly had a
buffer overflow.

Burnham suggested that instead of just patching programs and trying to write secure
code, we actually run secure operating systems. This idea dates back to research in the
’60s and ’70s, with ideas like the rings in MULTICS, or the concept of a security moni-
tor. Not that we don’t use rings in our operating systems today – just not well. For
example, the Intel processor has four rings, but only two are used (see John Scott
Robin’s paper). UNIX, Linux, and NT systems all run OS code in the innermost, privi-
leged ring, and everything else in ring 4 (or an outer ring on other processors). The
problem with this is that an operating system, especially one where you can install driv-
ers and loadable modules, is much too large to secure.

Instead, the core of an operating system should be the security monitor. This is very
similar to a real microkernel system with a focus on security. (There are research ver-
sions of this design out there.) But the designs have so far proven to be too slow, and
getting new device drivers for them is a serious problem. Still, I have written about this
idea several times in the many years I have contributed to ;login:, and years before that
when I wrote for UNIXWorld. Our operating systems must be secure before we can
expect our systems to be secure.

ED
IT

O
RI

A
LS

4 Vol. 25, No. 7 ;login:

EDITORIAL STAFF

THEME ISSUE EDITOR

Rik Farrow <rik@spirit.com>

EDITORS

Tina Darmohray <tmd@sage.org>
Rob Kolstad <kolstad@usenix.org>

STANDARDS REPORT EDITOR

David Blackwood <dave@usenix.org>

MANAGING EDITOR

Jane-Ellen Long <jel@usenix.org>

COPY EDITOR

Eileen Cohen

TYPESETTER

Festina Lente

MEMBERSHIP AND PUBLICATIONS

USENIX Association

2560 Ninth Street, Suite 215

Berkeley, CA 94710

Phone: +1 510 528 8649

FAX: +1 510 548 5738

Email: <office@usenix.org>

WWW: <http://www.usenix.org>

This is not an unsolvable problem – just a very difficult one. One solution may be to
build special hardware, perhaps a multiprocessing design where one processor han-
dles device drivers, while another runs the secure OS, perhaps with virtual machines
running insecure OSs above it. In this design the driver processor would not have
access to system memory, and would rely on the security monitor for transferring
data and commands to and from the driver processor and the main processor and
memory. It could be done. The question is when.

I want to end this bit of musing by mentioning full disclosure. Full disclosure may
disappear. That is, new vulnerabilities will not be announced, only software patches
that might relate to security problems. This is exactly where we were six years ago,
when some UNIX vendors (as well as a very large non-UNIX vendor) never posted
information about security problems. They just didn’t talk about it.

Today, we are at the opposite extreme. For example, on Labor Day, several different
security vendors and teams announced that they had discovered serious problems
(read, root compromise) via the locale mechanisms in glibc, right after several OS-
distribution vendors announced patches for the problem. But the announcement was
not simultaneous, so very large vendors, like Sun and HP, did not have their patches
ready yet. PR through bug announcements is the current trend, and if the unruly
mob doesn’t learn some manners, we may soon find it gagged by law (or lawsuits).

The posting of complete, packaged exploits is another issue. On the one hand, I really
appreciate having code to read, as that helps with my understanding of a problem (in
UNIX at least – forget about the Win32 API). Unfortunately, it also helps the hoards
of script kiddies, who will start trying to hump, er, exploit, every system with the
appropriate port open, even if the architecture does not match.

I really do not want to see full disclosure go away. What I would like to see is some
moderation, moderation that appears to be forthcoming from groups like
SecurityFocus. SecurityFocus evolved out of Scott Chasin’s BugTraq mailing list,
which began after Brent Chapman got really upset when Chasin posted a sendmail
root exploit to the old firewalls mailing list back in 1994. Chasin’s posting was in
response to a CERT advisory about sendmail that was so vague as to leave everyone
wondering what the problem with sendmail might be. Chasin’s post turned out
to have nothing to do with the CERT advisory. (Read my article at
<http://www.spirit.com/Network/net0800.txt> to learn more about this.)

Having enough information to determine that your systems are exploitable is good.
Having a thousand script kiddies beating down your door is bad (very annoying,
especially if you ask the Pentagon).

With that note, I wish you all secure operating systems, and a merry good year.

http://www.spirit.com/Network/net0800.txt

As our society becomes more and more dependent on the Internet for infor-

mation, communication, and business, the Domain Name System (DNS),

which holds the Internet together, becomes a tasty target for hackers. A

hacker who compromises DNS can divert all traffic destined for one host to

another host without users ever knowing they have been led astray. The

economic impact of such an attack can be huge.

Securing DNS does not stop Web sites from being broken into and defaced, but it does
help to guarantee users that they are actually reaching the Web site they asked for. To be
totally honest, securing the DNS will guarantee that you reach the correct IP address,
but when connecting to this valid IP address, your connection might still be hijacked or
mis-routed due to other weaknesses in the infrastructure. To really secure the Internet
we need end-to-end authentication and encryption of the data sent over a connection.
Securing the DNS via DNSSEC is the first step, as the DNS can then provide a way to
distribute the keys required by any end-to-end security mechanisms. DNS is equally
important for email, copying files, printing, or any application that uses domain names
instead of network addresses.

There are two main points of vulnerability in the DNS system:

■ Server-server updates
■ Client-server communication

The Internet Software Consortium’s BIND implementation addresses these vulnerabili-
ties with separate mechanisms: TSIG/TKEY for server updates and DNSSEC for client-
server lookups. The first allows pairs of servers, such as your master server and its
slaves, to authenticate each other before exchanging data. TSIG/TKEY uses shared-
secret-based cryptography. DNSSEC allows the client not only to authenticate the iden-
tity of a server but also to verify the integrity of the data received from that server. It
uses public key cryptography. We describe each of these two mechanisms in detail and
then look at some of the outstanding issues that are hampering the widespread deploy-
ment of secure DNS zones. Some of the material in this article is adapted with permis-
sion from Nemeth et al., Unix System Administration Handbook, Third Edition, Prentice
Hall PTR, (in press). We assume that the reader is somewhat familiar with DNS
resource records, the DNS naming hierarchy, named (the BIND name-server daemon),
and its configuration file /etc/named.conf.

Securing DNS Transactions with TSIG and TKEY
While DNSSEC (covered in the next section) was being specified, the IETF developed a
simpler mechanism called TSIG (RFC2845) to allow secure communication among
servers through the use of transaction signatures. Access control based on transaction
signatures is more secure than access control based on IP source addresses.

Transaction signatures use a symmetric encryption scheme. That is, the encryption key
is the same as the decryption key. This single key is called a shared-secret key. You must
use a different key for each pair of servers that want to communicate securely. TSIG is
much less expensive computationally than public key cryptography, but it is only
appropriate for a local network on which the number of pairs of communicating
servers is small. It does not scale to the global Internet.

TSIG signatures sign DNS queries and responses to queries, rather than the authorita-
tive DNS data itself, as is done with DNSSEC. TSIG is typically used for zone transfers
between servers or for dynamic updates between a DHCP server and a DNS server.

21November 2000 ;login: SECURING THE DNS ●

by Evi Nemeth

Evi Nemeth is a
member of the
computer science
faculty at the Univer-
sity of Colorado and
a part-time resear-
cher at CAIDA, the
Cooperative Asso-
ciationfor Internet
Data Analysis at the
San Diego Super-
computer Center. She
is about to get out of
the UNIX and net-
working worlds and
explore the real
world on a sailboat.

<evi@cs.colorado.edu>

securing the DNS

●
SE

C
U

RI
TY

TSIG signatures are checked at the time a packet is received and are then discarded;
they are not cached and do not become part of the DNS data. Although the TSIG spec-
ification allows multiple encryption methods, BIND implements only one, the HMAC-
MD5 algorithm.

BIND’s dnssec-keygen utility generates a key for a pair of servers. For example, to gen-
erate a shared-secret key for two servers, serv1 and serv2, use the command

dnssec-keygen -H 128 -h -n serv1-serv2

to create a 128-bit key and store it in the file Kserv1-serv2+157+00000.private. The file
contains the string “Key:” followed by a base-64 encoding of the actual key.

The generated key is really just a long random number. You could generate the key
manually by writing down an ASCII string of the right length and pretending that it’s a
base-64 encoding of something, or by using mimencode to encode a random string.
The way you create the key is not important; it just has to exist on both machines.

Copy the key to both serv1 and serv2 with scp, or cut and paste it. Do not use telnet or
ftp to copy the key; even internal networks may not be secure. The key must be includ-
ed in both machines’ named.conf files. Since named.conf is usually world-readable and
keys should not be, put the key in a separate file that is included in named.conf. For
example, you could put the snippet

key serv1-serv2 {
algorithm hmac-md5 ;
secret "shared-key-you-generated" ;

} ;

in the file serv1-serv2.key. The file should have mode 600 and its owner should be
named’s UID. In the named.conf file, you’d add the line

include "serv1-serv2.key"

near the top.

This part of the configuration simply defines the keys. To make them actually be used
to sign and verify updates, each server needs to identify the other with a keys clause.
For example, you might add the lines

server serv2's-IP-address {
keys { serv1-serv2 ; } ;

} ;

to serv1’s named.conf file and

server serv1's-IP-address {
keys { serv1-serv2 ; } ;

} ;

to serv2’s named.conf file. Any allow-query, allow-transfer, and allow-update clauses in
the zone statement for the zone should also refer to the key. For example:

allow-transfer { key serv1-serv2 ;} ;

When you first start using transaction signatures, run named at debug level 1 (-d1) for
a while to see any error messages that are generated. Older versions of BIND do not
understand signed messages and complain about them, sometimes to the point of
refusing to load the zone.

22 Vol. 25, No. 7 ;login:

Older versions of BIND do

not understand signed

messages and complain about

them, sometimes to the point

of refusing to load the zone.

TKEY is an IETF protocol that BIND 9 implements to allow two hosts to generate a
shared-secret key automatically without phone calls or secure copies to distribute the
key. It uses an algorithm called the Diffie-Hellman key exchange, in which each side
makes up a random number, does some math on it, and sends the result to the other
side. Each side then mathematically combines its own number with the transmission it
received to arrive at the same key. An eavesdropper might overhear the transmission
but will be unable to reverse the math.

Securing Zone Data with DNSSEC
DNSSEC is a set of DNS extensions that authenticates the origin of zone data and veri-
fies its integrity by using public key cryptography. That is, the extensions permit DNS
clients to ask the questions, “Did this DNS data really come from the zone’s owner?”
and “Is this really the data sent by that owner?”

DNSSEC provides three distinct services: key distribution by means of KEY resource
records stored in the zone files, origin verification for servers and data, and verification
of the integrity of zone data. DNSSEC relies upon a cascading chain of trust: The root
servers provide validation information for the top-level domains, the top-level domains
provide validation information for the second-level domains, and so on.

Public key cryptosystems use two keys: one to encrypt (sign) and a different one to
decrypt (verify). Publishers sign their data with a secret “private” key. Anyone can verify
the validity of a signature with a matching “public” key that is widely distributed. If a
public key correctly decrypts a zone file, then the zone must have been encrypted with
the corresponding private key. The trick is to make sure that the public keys you use for
verification are authentic. Public key systems allow one entity to sign the public key of
another, thus vouching for the legitimacy of the key; hence the term “chain of trust.”

The data in a DNS zone is too voluminous to be encrypted with public key cryptogra-
phy – the encryption would be too slow. Instead, since the data is not secret, a secure
hash (e.g., an MD5 checksum) is run on the data and the results of the hash are signed
(encrypted) by the zone’s private key. The results of the hash are like a fingerprint of
the data, and the signed fingerprint is called a digital signature.

Digital signatures are usually appended to the data they authenticate. To verify the sig-
nature, you decrypt it with the public key of the signer, run the data through the same
secure hash algorithm, and compare the computed hash value with the decrypted hash
value. If they match, you have authenticated the signer and verified the integrity of the
data.

In the DNSSEC system, each zone has its own public and private keys. The private key
signs each RRset (that is, each set of records of the same type for the same host). The
public key verifies the signatures and is included in the zone’s data in the form of a
KEY resource record.

Parent zones sign their child zones’ public keys. named verifies the authenticity of a
child zone’s KEY record by checking it against the parent zone’s signature. To verify the
authenticity of the parent zone’s key, named can check the parent’s parent, and so on
back to the root. The public key for the root zone would be included in the root hints
file.

SIGNING A ZONE
Several steps are required to create and use signed zones. First, you generate a key pair
for the zone. For example, in BIND 9,

23November 2000 ;login:

Public key systems allow one

entity to sign the public key

of another, thus vouching for

the legitimacy of the key;

hence the term “chain of

trust.”

●
SE

C
U

RI
TY

SECURING THE DNS ●

dnssec-keygen -a DSA -b 768 -n ZONE mydomain.com.

or in BIND 8,

dnskeygen -D768 -z -n mydomain.com.

The table below shows the meanings of the arguments to these commands.

dnssec-keygen and dnskeygen return the following output:

algorithm = 003
key identifier = 12345
flags = 16641

They also create files containing the public and private keys:

Kmydomain.com.+003+12345.key # public
Kmydomain.com.+003+12345.private # private key

Generating a key with dnssec-keygen can take a long time, especially if your operating
system does not have /dev/random to help with generating randomness. It will ask you
to type stuff and use parameters from your typing speed and pauses to get the random-
ness it needs. It might take five minutes, so don’t get impatient, and keep typing until it
stops echoing dots for each character you type.

The public key is typically $INCLUDEd into the zone file. It can go anywhere after the
SOA record, but is usually the next record after SOA. The DNS key record from the .key
file looks like this:

mydomain.com. IN KEY 256 3 3 BIT5WLkFva53IhvTBIqKrKVgme7...

where the actual key is about 420 characters long.

DNSSEC requires a chain of trust, so a zone’s public key must be signed by its parent to
be verifiably valid. BIND 8 had no mechanism to get a parent zone to sign a child
zone’s key other than out-of-band cooperation among administrators. BIND 9 provides
a program called dnssec-makekeyset to help with this process.

dnssec-makekeyset bundles the keys you want signed (there may be more than just the
zone key), a TTL for the resulting key set, and a signature validity period. For example,
the command

dnssec-makekeyset -t 3600 -s +0 -e now+864000
Kmydomain.com.+003+12345

bundles the public zone key that you just generated with a TTL of 3,600 seconds (one
hour) and requests that the parent’s signature be valid for ten days starting from now.

24 Vol. 25, No. 7 ;login:

Argument Meaning

For dnssec-keygen (BIND 9)

-a DSA Uses the DSA algorithm
-b 768 Creates a 768-bit key pair
-n ZONE mydomain.com. Creates keys for a zone named mydomain.com

For dnskeygen (BIND 8)

-D768 Uses the DSA algorithm, with a 768-bit key
-z Creates a zone key
-n mydomain.com. Creates keys for a zone named mydomain.com

dnssec-makekeyset creates a single output file, mydomain.com.keyset. You must then
send the file to the parent zone for signing. It contains the public key and signatures
generated by the zone keys themselves so that the parent can verify the child’s public
key. Here is the mydomain.com.keyset file generated by the dnssec-makekeyset com-
mand above:

$ORIGIN .
$TTL 3600 ; 1 hour
mydomain.com IN SIG KEY 3 2 3600 20000917222654 (

20000907222654 64075 mydomain.com.
BE8V7nicLOARc0PRvBhBMeX7JXL3TdCUBY2Ah313pg+
Wq4THOq0U28Q=)

KEY 256 3 3 (
BIT5WLkFva53IhvTBIqKrKVgme7r/tbnBTRkLDDKjGYCnV
57TBIeHkZSgbJ7jfYtuTLv4a2OIF5jJDoHD8LEFKNJfboVma
8IGmONId2CSfryeuLdLLwW15bhhPHdw+nXWPFB7MY5s
bGLkokpuWmyHXkdWThr3A1ICWBs5GQRg8wMaIGOL4d
VSUWefQ/g4hGchEq12kieYVE4j9PE5p3uX2BNe0CIGNf05
c1VD6kYIn5Ip4hQZGwVL8hpi6NJsxp2U/krtS7GpHN55WA
fRY+joQ4AalY3f+AtapkGdV3lHjr1a7LG0qAgFAhNJ2jqKvoB
nXbWKKY9AlzMjsyleRdtRqn+V8vY30uTCkaaykrWhtu02QZ
pIGuwx294RudyA3gOQgR1aJ+X6BfUmXm2msmmHq//vL
mr)

In BIND 9, the parent zone uses the dnssec-signkey program to sign the bundled set of
keys:

dnssec-signkey mydomain.com.keyset Kcom.+003+56789

This command produces a file called mydomain.com.signedkey, which the parent
(com) sends back to the child (mydomain.com) to be included in the zone files for
mydomain.com. In BIND 8, the parent uses the dnssigner command.

The signedkey file is similar to the keyset file, except that the SIG record is associated
with the com zone. Note, in our example, we generated the key for the com zone to use
in the dnssec-signkey command; not the real one.

$ORIGIN .
$TTL 3600 ; 1 hour
mydomain.com IN SIG KEY 3 2 3600 20000917222654 (

2000090722265431263com.BAM/WIdPIwY6b4Aj8a5PZ
1UHwfo/qKl65HIlpitdvF2UgKaNJVEMSY4=)

KEY 256 3 3 (
BIT5WLkFva53IhvTBIqKrKVgme7r/tbnBTRkLDDKjGYCn
V57TBIeHkZSgbJ7jfYtuTLv4a2OIF5jJDoHD8LEFKNJ

...

Once you have obtained the parent’s signature, you are ready to sign the zone’s actual
data. Add the records from the signedkey file to the zone data before signing the zone.
The signing operation takes a normal zone data file as input and adds SIG and NXT
records immediately after every set of resource records. The SIG records are the actual
signatures, and the NXT records support the signing of negative answers.

Here is a before and after example for our mydomain.com zone:

25November 2000 ;login:

●
SE

C
U

RI
TY

SECURING THE DNS ●

$TTL 3600 ; 1 hour
; start of authority record for fake mydomain.com
@ IN SOA mydomain.com. hostmaster.mydomain.com. (

2000083000 ; Serial Number
7200 ; Refresh - check every 2 hours for now
1800 ; Retry - 30 minutes
604800 ; Expire - 1 week (was 2 weeks)
7200) ; Minimum - 2 hours for now

KEY 256 3 3 (
BIT5WLkFva53IhvTBIqKrKVgme7r/tbnBTRkLDDKjGYCnV57TBIe
HkZSgbJ7jfYtuTLv4a2OIF5jJDoHD8LEFKNJfboVma8IGmONId2
CSfryeuLdLLwW15bhhPHdw+nXWPFB7MY5sbGLkokpuWmyH
XkdWThr3A1ICWBs5GQRg8wMaIGOL4dVSUWefQ/g4hGchEq1
2kieYVE4j9PE5p3uX2BNe0CIGNf05c1VD6kYIn5Ip4hQZGwVL8h
pi6NJsxp2U/krtS7GpHN55WAfRY+joQ4AalY3f+AtapkGdV3lHjr1
a7LG0qAgFAhNJ2jqKvoBnXbWKKY9AlzMjsyleRdtRqn+V8vY30u
TCkaaykrWhtu02QZpIGuwx294RudyA3gOQgR1aJ+X6BfUmXm
2msmmHq//vLmr)

IN A 128.138.243.151
IN NS @
IN NS anchor
IN NS zamboni
IN MX 10 @
IN MX 30 anchor
IN LOC 40 00 23.5 N 105 15 49.2 W 1900m

localhost IN A 127.1
anchor IN A 128.138.242.1

IN A 128.138.243.140
IN MX 10 anchor
IN MX 99 @

awesome IN A 128.138.236.20
IN MX 10 awesome
IN MX 99 @

zamboni IN A 128.138.199.7
IN A 128.138.243.138
IN MX 10 zamboni
IN MX 99 @

In BIND 8, you use the dnssigner program in the contrib directory of the distribution
to sign a zone; in BIND9, you use the dnssec-signzone command. For example, the
command

dnssec-signzone mydomain.com Kmydomain.com.+003+12345 # BIND 9

reads the zone file mydomain.com and produces a signed version using the private key
in the Kmydomain.com+003+12345.private file. The resulting file is called mydomain.
com.signed. If you forget to include the key file on the command line, you get an
obscure error message about an “inappropriate ioctl for device” from the module
entropy.c.

It can take a long time to sign a zone, especially if your system does not have /dev/
random, because it asks you to type a few sentences for each signature it generates.
Quite a pain after a while. If you try to fool it by cutting and pasting text in, it makes
you type more till it feels there has been sufficient randomness generated. Here is a
portion of the resulting signed zone file for mydomain.com:

26 Vol. 25, No. 7 ;login:

$ORIGIN .
$TTL 3600 ; 1 hour
mydomain.com IN SOA mydomain.com. hostmaster.mydomain.com. (

2000083000 ; serial
7200 ; refresh (2 hours)
1800 ; retry (30 minutes)
604800 ; expire (1 week)
7200 ; minimum (2 hours)
)

SIG SOA 3 2 3600 20001008023531 (
2000090802353164075mydomain.com.BFN/8mIRX/M
W01kMoe+7qId63LB7Tbb9t98/NnfY16WQgItk03FDXTk
=)

NS mydomain.com.
NS anchor.mydomain.com.
NS zamboni.mydomain.com.
SIG NS 3 2 3600 20001008023531 (

20000908023531 64075 mydomain.com.
BAkrse9uTdANxbGA0kaWkjiippeCCUBcvHGR7zDOt+k
STeGbVfJy8iw=)

SIG LOC 3 2 3600 20001008023531 (
20000908023531 64075 mydomain.com.
BIARXt5zqiPy08Ca7T7AiUCau1PJEWlv3uHTQci0f3g5nlr
kw1exaqM=)

SIG MX 3 2 3600 20001008023531 (
2000090802353164075mydomain.com.
BEHMocIH/p1cL0FlQTz1cfEZzqHHHf1BBLSy2FtU1H6v
5DXZy9zkyOw=)

SIG A 3 2 3600 20001008023531 (
20000908023531 64075 mydomain.com.
BGKrpBrAkCtHcuzX57heH5sS0MYnFRC3MqeRMf3i881
Y3ZD+Q+E9r24=)

SIG KEY 3 2 3600 20000917222654 (
20000907222654 31263 com.
BAM/WIdPIwY6b4Aj8a5PZ1UHwfo/qKl65HIlpitdvF2UgK
aNJVEMSY4=)

$TTL 7200 ; 2 hours
SIG NXT 3 2 7200 20001008023531 (

20000908023531 64075 mydomain.com.
BDvw+QgYBcmIXeS4qMyMNDtB8K+sX5Jb2zKMRCcQ
4uFySJJVQ/s6A1w=)

NXT anchor.mydomain.com. (A NS SOA MX SIG
KEY LOC N XT)

$TTL 3600 ; 1 hour
KEY 256 3 3 (

BIT5WLkFva53IhvTBIqKrKVgme7r/tbnBTRkLDDKjGYCn
V57TBIeHkZSgbJ7jfYtuTLv4a2OIF5jJDoHD8LEFKNJfbo
Vma8IGmONId2CSfryeuLdLLwW15bhhPHdw+nXWPFB
7MY5sbGLkokpuWmyHXkdWThr3A1ICWBs5GQRg8w
MaIGOL4dVSUWefQ/g4hGchEq12kieYVE4j9PE5p3uX2
BNe0CIGNf05c1VD6kYIn5Ip4hQZGwVL8hpi6NJsxp2U/
krtS7GpHN55WAfRY+joQ4AalY3f+AtapkGdV3lHjr1a7L
G0qAgFAhNJ2jqKvoBnXbWKKY9AlzMjsyleRdtRqn+V8v
Y30uTCkaaykrWhtu02QZpIGuwx294RudyA3gOQgR1aJ
+X6BfUmXm2msmmHq//vLmr)

27November 2000 ;login:

●
SE

C
U

RI
TY

SECURING THE DNS ●

A 128.138.243.151
MX 10 mydomain.com.
MX 30 anchor.mydomain.com.
LOC 40 0 23.500 N 105 15 49.200 W 1900.00m 1m

10000m 10m
$ORIGIN mydomain.com.
anchor SIG MX 3 3 3600 20001008023531 (

20000908023531 64075 mydomain.com.
BFEtOCT+y0dQPx7Am7gpxD9SjEl+USuaE7qExUOrX22
X7wjqJFJbqdo=)

SIG A 3 3 3600 20001008023531 (
20000908023531 64075 mydomain.com.
BDwfBm2j6xFLoXttzvtuln9ZD+9qUWBAwSBJVB06WJ/
Rc6+F1ubj/fs=)

$TTL 7200 ; 2 hours
SIG NXT 3 3 7200 20001008023531 (

20000908023531 64075 mydomain.com.
BIMwxryI8NyfWupBe4JJmeRCCj1/FnyPjxAuBOQKTRX
X4FsaDrma1X4=)

NXT awesome (A MX SIG NXT)
$TTL 3600 ; 1 hour

A 128.138.242.1
A 128.138.243.140
MX 10 anchor
MX 99 mydomain.com.

...

The signedkey file from the parent domain .com gets slurped into the processing if it is
in the same directory as the zone file being signed (see the SIG KEY record associated
with com toward the top of the example). There is quite an increase in the size of the
zone file, roughly a factor of three in our example. The records are also reordered.

A SIG record contains a wealth of information:

■ The type of record set being signed
■ The signature algorithm used (in our case, it’s 3, the DSA algorithm)
■ The TTL of the record set that was signed
■ The time the signature expires (as yyyymmddhhssss)
■ The time the record set was signed (also yyyymmddhhssss)
■ The key identifier (in our case 12345)
■ The signer’s name (mydomain.com.)
■ And finally, the digital signature itself

To use the signed zone, change the file parameter in the named.conf zone statement for
mydomain.com to point at mydomain.com.signed instead of mydomain.com. In BIND
8, you must also include a pubkey statement in the zone statement; BIND 8 verifies the
zone data as it loads and so must know the key beforehand. BIND 9 does not perform
this verification. It gets the public key from the KEY record in the zone data and does
not need any other configuration.

Whew! That’s it.

NEGATIVE ANSWERS
Digital signatures are fine for positive answers like “Here is the IP address for the host
anchor.mydomain.com, along with a signature to prove that it really came from mydo-

28 Vol. 25, No. 7 ;login:

main.com and that the data is valid.” But what about negative answers like “No such
host”? Such negative responses typically do not return any signable records.

In DNSSEC, this problem is handled by NXT records that list the next record in the
zone in a canonical sorted order. If the next record after anchor in mydomain.com is
awesome.mydomain.com and a query for anthill.mydomain.com arrived, the response
would be a signed NXT record such as

anchor.mydomain.com. IN NXT awesome.mydomain.com (A MX SIG NXT)

This record says that the name immediately after anchor in the mydomain.com zone is
awesome, and that anchor has at least one A record, MX record, SIG record, and NXT
record. The last NXT record in a zone wraps around to the first host in the zone. For
example, the NXT record for zamboni.mydomain.com points back to the first record,
that of mydomain.com itself:

zamboni.mydomain.com. IN NXT mydomain.com. (A MX SIG NXT)

NXT records are also returned if the host exists but the record type queried for does
not exist. For example, if the query was for a LOC record for anchor, anchor’s same
NXT record would be returned and would show only A, MX, SIG, and NXT records.

We have described DNSSEC as of BIND v9.0.0rc5 (September 2000). Judging from the
significant changes that occurred during the beta cycle, this information may not be
current for long. As always, consult the documentation that comes with BIND for the
exact details.

Outstanding Issues
Now that we have described the two mechanisms available in BIND for securing the
DNS, let’s look at some of the potential problems.

CACHING AND FORWARDING

DNSSEC is at odds with the notions of caching and forwarders. DNSSEC assumes that
queries contact the root zone first and then follow referrals down the domain chain to
get an answer. Each signed zone signs its children’s keys, and the chain of trust is
unbroken and verifiable. When you use a forwarder, however, the initial query is divert-
ed from the root zone and sent to your forwarding server for processing. A caching
server that is querying through a forwarder will recheck signatures, so responses are
guaranteed to be secure. But, for the query to succeed, the forwarder must be capable of
returning all the SIGs and KEYs needed for the signature checking. Non-DNSSEC
servers don’t know to do this, and the RFCs ignore the whole issue of forwarding.

BIND 9 implements some extra features beyond those required by RFC2535 so that a
BIND 9 caching server can use DNSSEC through a BIND 9 forwarder. If you are using
forwarders and want to use DNSSEC, you might have to run BIND 9 throughout your
site.

Unfortunately, those busy sites that use forwarders and caching are probably the sites
most interested in DNSSEC. Alas, the standards writers didn’t quite think through all of
the implications for the other parts of the DNS system.

PUBLIC KEY INFRASTRUCTURE

DNSSEC also relies on the existence of a public key infrastructure that isn’t quite a real-
ity yet. There is no smooth way to get the parent to sign a child’s keys; we cannot yet
send mail to the hostmaster@com and get signed keys back. A public key infrastructure

29November 2000 ;login:

DNSSEC is at odds with the

notions of caching and

forwarders.

●
SE

C
U

RI
TY

SECURING THE DNS ●

is needed for other applications too, such as IPSec (a secure version of the IP protocol)
or e-commerce. DNSSEC is the first step in the chain of a series of security enhance-
ments being deployed on the Internet.

The private key for the root zone is essential for the whole process to work. It must be
used whenever the root zone changes and needs to be re-signed. Therefore it must be
accessible. What do we do if the private root key is lost or stolen? Generating a new key
pair is fast, but distributing it to millions of DNS servers isn’t. How do we change keys?
There must be some period of time during which both the old key and the new one are
valid if caching is to work. How do we plan for changing important keys – the root, the
key for the COM zone, etc.? How do we engineer the switchover to not destabilize the
network? If the root key is built into the software, then a compromise implies that
every DNS server out there must be manually touched and changed. The disruption to
the network would be worse than the damage that whoever stole the root key could do.

SIGNING BIG ZONES

The COM zone is over 2GB. It is typically updated twice a day. But with current hard-
ware and software-signing the COM zone takes several days. An incremental mecha-
nism for re-signing a zone is built into the current BINDv9 distribution. Re-signing,
when not much has changed, takes about 5% of the time to do the original signing. We
are within striking distance of being able to maintain a signed copy of the COM zone.

The folks at NLnet Labs (<http://www.nlnetlabs.nl/dnssec>) have experimented with
signing the top-level DE, NL, ORG, and COM zones. Some of their results are shown
below:

DE full zone 13 hours FreeBSD 3.4 PC
DE delegation zone 4 hours FreeBSD 3.4 PC
ORG full zone 42 hours* Red Hat Linux 6.2, DEC/Compaq Alpha
COM delegation zone 50 hours Red Hat Linux 6.2, DEC/Compaq Alpha

* It took 2 hours to re-sign after 1 record changed

The COM zone snapshot included 12 million delegations and was sorted before signing
(three hours with the standard UNIX sort command). The process used 9GB of virtual
memory, and it took an additional nine hours to write the signed zone out to disk.

NLnet Labs is currently running an experiment on DNSSEC issues in a special domain
called NL.NL. They are building tools to automate the signing of subdomain keys and
helping people get their domains secured.

PERFORMANCE

Signed zones are bigger. Signed answers to queries are bigger. UDP, the default trans-
port protocol used by DNS, has a limitation that makes the maximum packet size 512
bytes in the default case. If an answer is greater than 512 bytes, a truncated answer
comes back in a UDP packet and the client re-asks the query using TCP. TCP is slower
and requires more network traffic. It’s unclear whether the current servers for COM
could keep up with the query rate if a large portion of the DNS traffic were TCP.

Verifying signatures also costs CPU time and memory; the cost is about one-twentieth
of the cost of signing. The actual rates for both signing and verifying depend on the
encryption algorithm used, with DSA-512 the fastest (signing about 135 domains/sec.
on a 500Mhz FreeBSD PC) and RSA-1024 the slowest (17 domains/sec.). DSA-768, a
popular algorithm, is in the middle at 62 domains/sec.

30 Vol. 25, No. 7 ;login:

NLnet Labs is currently

running an experiment on

DNSSEC issues in a special

domain called NL.NL. They

are building tools to

automate the signing of

subdomain keys and helping

people get their domains

secured.

http://www.nlnetlabs.nl/dnssec

Transaction signatures (TSIG/TKEY) use less CPU time and network bandwidth than
do public key authentication methods, but they guarantee only that you know where
your responses came from, not that the responses are correct. A combination of a TSIG
relationship with a server known to do full DNSSEC might provide a reasonable degree
of security. It is not possible to have a TSIG relationship with every server you might
ever want to talk to, since TSIG relationships must be manually configured.

Conclusions
The ISC BIND version 9 contains an initial set of tools for sites to begin securing their
DNS. However, the public key infrastructure and automated mechanisms for a child
zone to have its key signed by its parent are not yet in place. Look for DNSSEC to be
fully deployable in the near future – it is the key ingredient in a public key infrastruc-
ture that can be used by any application requiring authentication, security, or privacy.
Folks with very sensitive data (banks, e-commerce sites, military installations, etc.)
might want to start experimenting with DNSSEC now, at least within the corporate
intranet.

31November 2000 ;login:

Look for DNSSEC to be fully

deployable in the near future.

●
SE

C
U

RI
TY

SECURING THE DNS ●

Repeatable Process
After a computer security policy is written, the real work begins – imple-

menting it! Implementation is the process of converting a written policy

into a set of specific procedures. Implementation requires the translation

of policy statements into current technology on current hardware, an often

arduous task.

Implementation is difficult, primarily because picking the right technology involves
tradeoffs. One product may streamline a business process yet create numerous security
risks. Implementors must decide whether the cost of risk mitigation is less or more
than the savings incurred by the software.

To make matters more difficult, current products emphasize features over economy of
mechanism. Economy of mechanism gives a clear method for a solution, while features
tend to cloud which mechanism is appropriate. Balancing the two is difficult. For
example, some surveys show that over 300 dialog boxes must be answered to correctly
install and configure Microsoft Windows NT 4.0. Because of the sheer number of
mechanisms, implementors may have an incomplete understanding of all the tradeoffs
being made.

Ultimately, every organization must decide which technologies it supports and which it
doesn’t. Sadly, many organizations stop there. Each piece of software supported should
also have a supported configuration. The reason: Any piece of software may have thou-
sands of switches and dialog boxes that, when configured differently, create radically
different solutions. For example, Windows NT 4.0 Workstation out of the box is very
different from the same software configured with C2 security.

Instead, organizations rely upon software installed by hand in an ad hoc fashion.
Predictably, error occurs. However, there is a better way.

Cloning a computer can be defined as the process of taking an installed system and
duplicating the configuration across many hosts in a repeatable and automatic fashion.
By definition, cloning is a way of managing the risk of human error. While cloning
does not mitigate the risk of incorrect policy implementation, it does assure that the
time and thought spent on a correct implementation is not wasted by the introduction
of human errors.

In other words, if an implementation of a policy is correct, cloning ensures that each
system cloned adheres to exactly the same standards. Cloning takes the traditionally ad
hoc method of manual installation and turns it into a repeatable process with repeat-
able results. Cloning adds a development cycle to workstation installation and manage-
ment. As a direct consequence, cloning gives the benefits of a true development cycle.

A clonable image is called a source image. There are two main methods for creating a
source image. The first is to install a source host exactly as you want and then duplicate
it. The second mechanism is to create your own distribution with all the configuration
details self-contained.

An example of the first method would be the Norton Ghost product. Norton Ghost can
be used to clone WinTel machines. The first step to using Norton Ghost (and products
like it) is to install a source host. That source machine is then loaded onto a distribu-
tion server. Machines that you wish to clone contact the distribution server and down-
load the image straight to disk.

32 Vol. 25, No. 7 ;login:

repeatable security
by David Brumley

David Brumley is the
assistant computer
security officer for
Stanford University
and a consultant with
Securify, Inc. David
also runs the white-
hat security site www.
theorygroup.com.

<dbrumley@stanford.edu>

RPM-based Linux, such as Red Hat, is a good example of creating your own distribu-
tion. You choose which RPMs (Red Hat packages) you wish to install and include them
in a certain ftp/nfs directory. Then, when a client wishes to use the distribution, it sim-
ply FTPs the image to disk.

Often the first mechanism can be recognized because everything except plug-and-play
hardware must be the same between source and destination. This is expected, since the
system is simply copied over from the source to the destination without any additional
drivers. The second method allows for different types of hardware between source and
destination, but is not readily available for all platforms.

Time Saved
What are other reasons to clone machines? Cloning saves time. To illustrate, imagine
the classic situation where an administrator must install 100 machines. On each
machine, the administrator inserts the system CD, boots the computer, then manually
answers each dialog question. Even while the administrator is not answering installa-
tion questions, he or she cannot stray far from the computer.

The total time it takes the administrator to install the 100 hosts is equal to the amount
of time to install one host times 100. In computer-science notation, we would say the
task of completing the installations is accomplished in O(N) time. Now it’s unusual for
a computer administrator to install 100 systems in a single day, so often the time spent
goes unnoticed. However, as the saying goes, you can “nickel and dime” your time away.
Time really adds up when installing a few today, a few tomorrow, and ten next week.

With cloning, time is saved by decreasing the total
time spent when the number of hosts is increased.
This concept is easiest to understand graphically. In
Figure 1, the dotted line is the time it takes to manual-
ly install computers. The solid line is the time it takes
to clone computers. Installing only one system takes
less time than cloning, simply because there is a small
cost associated with setting up the cloning mechanism.
However, the mechanism needs to be set up only once.
After installing only a few systems, this ramp-up cost
becomes negligible, and cloning becomes profitable.

Normally, cloning involves an entire operating system
plus any necessary applications. Which operating sys-
tems can be cloned? Almost every modern OS has
some sort of built-in cloning capability. Windows
NT/2000 has the Remote Installation Service (RIS).
RPM-based Linux systems allow easy creation of cus-
tom distributions. IRIX has a tool named RoboInst.
Solaris has JumpStart. The list goes on and on.

Regardless of the specific cloning mechanism, the
greater the attention paid to planning your source
image (that which you clone from), the greater the benefits. However, the things that
make or break a project are how critically you think about incorporating secure
authentication, remote administration capability, system security, and productivity
applications into your distribution.

33November 2000 ;login: REPEATABLE SECURITY ●

Figure 1

●
SE

C
U

RI
TY

Authentication and Administration
Providing secure authentication is a necessity in today’s hostile Internet. To manage
risk, employers must not only ensure that employees’ passwords are safe, but must also
provide an audit trail of authentication events. Quite often, large lawsuits have been
avoided because companies can show that both proper and appropriate action was
taken, which can be proven with good authentication data. Time saved may not be the
only advantage of cloning; you may save your organization from a lawsuit!

Remote administration allows for automatic updates and troubleshooting of a
machine. Typical examples are sudo, Kerberos, and PC Anywhere. To maximize bene-
fits, the remote administration mechanism should leverage off a single sign-on infra-
structure. For example, at Stanford University we install Kerberos on each public clus-
ter machine. Kerberos provides encrypted authentication. Kerberos also provides a
mechanism for listing principals that can log into an account. We set up our public
cluster machines to allow the Kerberos principal “dbrumley.root’” to log in to the root
account.

In other words, I can use my active authentication credentials for authorization into
various accounts. (This demonstrates a very good reason for distinguishing between
authorization and authentication.) Since Kerberos is single sign-on, I can script admin-
istration commands to multiple machines. For example, here is a tcsh script to print
out the date on each machine:

cat stanford_hosts.list

elaine1.stanford.edu
elaine2.stanford.edu
elaine3.stanford.edu
foreach host (`cat stanford_hosts.list`)
> echo $host
> /usr/kerberos/bin/rsh $host date
> end
elaine1.stanford.edu
Sun Aug 20 10:14:10 PDT 2000
elaine2.stanford.edu
Sun Aug 20 10:14:10 PDT 2000
elaine3.stanford.edu
Sun Aug 20 10:14:11 PDT 2000

Notice how the date command above shows it took only one second to execute a com-
mand on three machines. More complex scripts can be created, such as mounting a
patch tree and installing it. For example:

foreach host (`cat stanford_hosts.list`)
> echo $host
> /usr/kerberos/bin/rsh $host ''mount genesis:/export/home /mnt; cd
/mnt/patches; ./install.sh; umount /mnt;''
> end

Stanford uses Kerberos not only for secure single sign-on, but also as a remote adminis-
tration tool. With Kerberos, a handful of administrators can administer several hun-
dred hosts each with about 30,000 active accounts!

OS Hardening
In their classic book Firewalls and Internet Security, Cheswick and Bellovin state as an
axiom of computer security that all programs are buggy. A direct corollary is that if you

34 Vol. 25, No. 7 ;login:

Time saved may not be the

only advantage of cloning;

you may save your

organization from a lawsuit!

don’t run a program, it doesn’t matter if it is buggy. More narrowly, with a UNIX-type
system it doesn’t matter whether a program is buggy or not if the program never exe-
cutes with elevated privileges.

Operating System (OS) hardening is primarily concerned with reducing the number of
programs that run with elevated privileges, such as network services and setuid pro-
grams. A typical hardening script will turn off unneeded services and unused setuid
programs to mitigate the risk of exploitation. A side benefit is that if a program is not
used, it doesn’t need to be patched!

During cloning, it is important that your source image be hardened against attack. All
services that are not normally needed should be turned off. A common mistake is to
leave services enabled on your source image that are needed only by a small subset of
cloned machines. It is much better to disable the services on all systems and manually
reenable them when needed. The reason is twofold. First, if you do not need a service
on the majority of the systems, you spend more time disabling it on the majority of
systems than if you simply enabled it on the few where it was needed. It’s just a matter
of simple arithmetic. Second, services left on have a tendency to stay on simply because
of human error, procrastination, or lack of time.

What if you do not know whether a given service or program needs privileges? One of
my axioms of computer security states that if you don’t know what it does, you should-
n’t be running it. There is a wealth of tools to help you find out what a program does
and what it is used for. Instead of simply ignoring the problem, read the man page, ask
questions, and do traces of the program before installing it into a source image or pro-
duction system.

An Example: Creating Your Own Red Hat Distribution
To emphasize how easy it is to make your own distribution, here are the steps needed to
create your own Red Hat distribution:

1. Mirror Red Hat.
2. Create your own customization packages.
3. Include your packages in the distribution, remove packages not needed.
4. Inform the installation mechanism of your new package lists.
5. Install away.

Step 1 is to mirror Red Hat Linux. You can either sign up with Red Hat to become an
official mirror site, or you can ask one of the primary mirrors if you can mirror off of
them. The important thing is to download the directory tree for each version of Red
Hat you are going to support.

The i386 directory is the start of the distribution for the x86 architecture. If you like,
the same techniques will carry over to the SPARC and PPC directory trees.

Underneath the i386 directory are images, dosutils, Red Hat, doc, and misc. The
images directory is where the boot images are kept. dosutils contains programs like
rawrite.exe and fips.exe that help users install Linux from a MS Windows system. doc
is self-explanatory. misc is an interesting directory, as it contains the source code for the
boot and second images. However, there is no need to rebuild the images unless you
want to change the verbiage (or something even more drastic) seen during installation.
The Red Hat directory contains all the information needed after the initial boot disk to
install and configure Red Hat Linux, which we will explore later.

35November 2000 ;login:

Directory Tree

●
SE

C
U

RI
TY

REPEATABLE SECURITY ●

Step 2 is to create your own packages. There are several books and HOWTOs that
describe this process. Ed Bailey’s Maximum RPM from Red Hat is a good starting place
to learn about building your own packages. However, it is a bit outdated, so be sure to
consult the online manual pages for possible changes.

There are a few tricks to building successful RPMs for a distribution. The first is that
RPMs are installed in a pseudo-alphabetical order. Therefore, if there is an RPM that
must run first or last, it’s important to name it correctly. For example, my OS-harden-
ing RPM is named “zzsecurity” because it turns off services and disables setuid pro-
grams – things I want last during installation to avoid them being overwritten.

Second, I’ve found it useful to keep custom configuration options in separate RPMs
instead of editing the ones bundled by Red Hat. I do this primarily for maintenance
reasons; it makes it easy to identify which RPMs I provide and which are part of the
standard Red Hat distribution.

Step 3 is to include your RPMs into the standard distribution. This is done by editing
the Red Hat components file i386/Red Hat/base/comps. The comps file is a flat text file,
with the format:

<Component File Format Version>
blank line
<Component 1>
blank line
<Component 2>
blank line
....
EOF

If you don’t see a component already listed where your RPMs fit, you can create your
own component group. The format for each component is:

(0|1) (—hide)? <name> {
name1.rpm
name2.rpm
name3.rpm
}

Choose either 0 or 1, depending on whether or not you want the package selected by
default under custom installation. Also, note that the name of the component is com-
pletely arbitrary. For example, Stanford has one called “Stanford,” which looks like:

1 Stanford {
zzsecurity.i386.rpm
libsafe.i386.rpm
afs.i386.rpm
kerberos.i386.rpm
}

If you define your own component, you can use that in later components to make it
part of the standard options. For example, to include everything from the “Stanford”
component into the “Workstation” component, simply add the name “Stanford” to the
workstation component list.

Step 4 is the easiest. When using the Red Hat installer, a database is kept of RPM
dependencies, size, and other information. That information is used by the installer to
make sure all prerequisites and dependencies are installed properly. After you build

36 Vol. 25, No. 7 ;login:

your own RPMs and incorporate them into the component list, that database needs
updating. When run from the i386 directory, i386/misc/src/anaconda/utils/genhdlist will
rebuild the database for you. Note that the genhdlist command may be different
between Red Hat versions, so use the genhdlist included with each version.

Lastly, you should test your distribution. During testing, you are preparing to “go live”
with a new environment. Plans for support and maintenance should be in place before
deploying sitewide. You’ll want to support your Red Hat distribution the same way you
would support other software: with a bug repository, a Web page describing basic
installation, and so on.

For those who want a working example of a distribution, I’ve put up all the scripts and
RPMs for my distribution at <http://www.theorygroup.com/Tools/TGLinux>. TGLinux is
based upon a distribution I did for Stanford University that has been successfully
installed on several thousand systems.

Branding
When creating a Red Hat distribution, there are several ways to do “lite branding.” Here
is a short list of ideas:

1. Change the graphical login logo to your own. It’s located at
<usr/share/pixmaps/redhat/redhat-transparent.png>.

2. Incorporate the latest fixes and patches into your distribution nightly. An example
script can be found at:
<http://www.theorygroup.com/Tools/TGLinux/scripts/merge.pl>.

3. Place a common motd and banner in /etc/issue and /etc/issue.net. Note that these
files are automatically recreated at boot from /etc/init.d/rc.local normally, so you may
have to make some additional changes to that startup script.

4. Burn CD-ROMs of the distribution for home users.

Summary
Although the cloning mechanism may change for other operating systems, certain
tenets always apply. First, by creating your own clonable image, you have the opportu-
nity to deploy and enforce your security policy. Second, cloning saves time. Third,
cloning lends itself to a true development cycle with all its benefits.

But just as with everything else, the more thought put into planning, the better the
results. Too often, we find ourselves typing in the same thing day after day. To have
computers do what they should – enhance productivity – anything you find yourself
doing multiple times should be automated. By automating tasks, you will create a
repeatable process with repeatable results, an utter necessity to compete in the upcom-
ing e-business world and participate in the hostile Internet.

37November 2000 ;login:

To have computers do what

they should – enhance

productivity – anything you

find yourself doing multiple

times should be automated.

REPEATABLE SECURITY ●

●
SE

C
U

RI
TY

http://www.theorygroup.com/Tools/TGLinux
http://www.theorygroup.com/Tools/TGLinux/scripts/merge.pl

38 Vol. 25, No. 7 ;login:

I have often needed to peruse log files from different systems while investi-

gating computer crime, performance issues, and other odd happenings – and

I’ve learned a few tricks that I’d like to share with you. The general princi-

ples will apply to most investigations, but I’ll draw my examples mostly from

the UNIX and incident-response worlds with which I am most familiar.

I’ve written most of this while sitting at Camp Ohio, a 4-H camp, where I’m volunteer-
ing as a counselor for my church’s junior high summer camp. Trying to write an article
on such a technical subject between archery and setting up a campfire and night time
zip line is an interesting challenge (a zip line is where you jump off a tower suspended
below a cable by pulley and harness and ride the cable down to the ground some dis-
tance away – imagine doing that in the dark!) Between my co-counselor Marco and
myself we had more computing power with us than the rest of the camp combined, but
amazingly our cabin still didn’t win the “geekiest cabin” award the day that was the
theme for cabin clean-up. Maybe if we had had a working Internet connection . . .

Let’s suppose that you are investigating a compromised computer, and you are fortu-
nate enough to have tracked the activity back to the source and have access to all of the
systems involved. In our case, a suspect used his home computer to connect to the
Internet through our modem pool using a stolen account. Once on the Internet, he
used a variety of tools to probe for and break into victim hosts for various purposes.
(See Figure 1.)

One common goal in these sorts of investigations is to recon-
struct a chronological record of events and a list of other facts.
Once we have done that, we develop one or more theories that
account for this history and set of facts. If we are working on the
side of the prosecution in a computer-crime investigation, our
prime theory would be something along the lines of “the butler
did it with mstream in the kitchen.” If we are working on the side
of the defense, our theory might be “the prosecution’s theory
didn’t account for this and that evidence that shows that the but-
ler couldn’t have done it.” The supporting evidence and these the-
ories are presented before the court and the jury (“the trier of
fact”) is called upon to determine whether the prosecution has
sufficiently proven its case or not. Obviously, how well we can
construct the record of events and fit the pieces together has great
bearing on the outcome of the investigation.

We need to consider several issues. First, we need to be proficient
at finding the evidence. If you can’t find the evidence in the first
place, you’ll have a hard time fitting it into your reconstructed
chain of events. We also need to understand what the evidence

actually means. If we misunderstand the evidence, then either our reconstruction will
be wrong or we’ll create faulty theories that explain the evidence. Finally, we need to
understand how to piece evidence from different sources together to create a cohesive
reconstruction. If we know where the evidence can be found, what it means, and how it
fits together, then we’ll be well on our way to reconstructing the chain of events. Note
that I am totally ignoring issues concerning preservation of evidence for use in a civil
or criminal trial. Sorry!

by Steve Romig

Steve Romig is in
charge of the Ohio
State University
Incident Response
Team, which provides
incident response
assistance, training,
consulting, and
security auditing.

<romig@net.ohio-state.edu>

correlating log file
entries

Figure 1

Know Where the Evidence Is
I won’t dwell on this here – full treatment of the subject is way beyond the scope of this
short article. In general, this means that you have to know where evidence pertaining to
your case might be, and then look to see whether you can actually find it. For instance,
in our example investigation, we might find evidence in the following locations (look
back at Figure 1):

Think about the components involved in
the incidents you are investigating – what
information might they contain? If you
don’t know enough about them, it doesn’t
hurt to find an expert and ask questions.
Many people fail in their investigations
because they fail to ask questions about
the components involved and thereby miss
important evidence.

What the Evidence Means
It is relatively easy to understand where
the evidence might lie. Draw a block dia-
gram of the system under investigation
and consider each component in turn –
that at least gets you a high level view.
Understanding what the evidence actually
means is trickier. For one thing, it involves
a deeper understanding of the component systems involved. At the very least, we need
to understand how the evidence is created or compiled – for instance, knowing that the
UNIX login program (and some others, like sshd) updates the wtmp/wtmpx/utmp logs
and under what circumstances.

Knowing what the evidence means helps us avoid conclusions that aren’t logically sup-
ported by the evidence. For example (and pardon me if this seems simplistic), a
TACACS log entry that indicates that the “romig” account logged in means just that –
the “romig” account was used to log in. It does not prove that the owner of the account
was the one who used the account to log in, although the theory that “Steve Romig, the
owner of the romig account, used it to log in at this time” is consistent with this evi-
dence. Similarly, a DHCP (Dynamic Host Configuration Protocol) server log that
shows that a host with a particular MAC address had a lease for a given IP address does
not mean that that host was the only host using that IP address during that time peri-
od; it just means that this host held the lease. The theory that “this host held the lease
for this IP address at the time and used that address to probe the victim” is consistent
with the lease evidence, but the lease evidence doesn’t conclusively prove this theory,
since there are other plausible theories that are also consistent with this evidence.

Understanding what the evidence means also helps us recognize
potential blind spots. One modem pool that I worked with used a
pair of authentication servers handling authentication requests in a
round-robin fashion. This meant that log entries pertaining to
login/logout events for any given terminal server port could be
found in the logs from either server. If we only looked at the records
from authentication server A (see Figure 2), we might mistakenly
conclude that the “romig” account was used to authenticate the ses-
sion that spans 1:15:21 (the time that some nefarious Internet crime

39November 2000 ;login: CORRELATING LOG FILE ENTRIES ●

●
SE

C
U

RI
TY

Home system Dial scripts, dial logs, files containing output from
exploit tools, lists of compromised hosts, etc.

Phone system Phone traces or pen registers

Modem pool TACACS, TACACS+, or RADIUS authentication
logs

Networks logs of network activity, such as Cisco Netflow logs
or from the use of tools like Argus

Victim and intermediate hosts Syslog records showing access to network services
through TCP wrappers or other means; login
records such as utmp, wtmp, wtmpx (or in syslog
if you are smart enough to use loginlog, a program
that transcribes wtmp entries to syslog); processes
running on the system (and the associated memo-
ry, binaries, network connections, and files); free
and slack space on the filesystem, and so on.

authentication authentication
time server A server B
1:02:12 login - romig
1:10:32 logout
1:10:56 login - farrow
1:26:09 logout

Figure 2: Login/logout events for a single port on
a terminal server.

occurred, which we traced back to this terminal server port). Note that in this example
the logout records do not name the associated account name that goes with the corre-
sponding login records. You need to merge and sort the logs from both servers before
you can reconstruct an accurate history of login/logout events.

Again, don’t be afraid to get help from an expert.

How It Fits Together
When we conduct an investigation we collect bits and pieces of information from vari-
ous sources. These sources vary in completeness and in reliability. The real point to this
article is to talk about how to correlate the pieces together. When we do this we com-
monly run into several problems.

TIME-RELATED ISSUES

First, let’s talk about the time-related issues. Most log files include some sort of time-
stamp with each record, which can be used to correlate entries from several logs against
one another. One common problem we run into when correlating logs from different
hosts together is that the clocks on those hosts may not be synchronized to the same
time, let alone the correct time. You can sometimes infer this clock offset from the logs
themselves. If the shell history file for my account on host A shows me running “telnet
B” at time T1, but the TCP wrapper log on host B shows the Telnet connection at T2,
then we can conclude that the clock offset between host A and host B is roughly T2-T1
(assuming they are in the same time zone). It isn’t always possible to infer this offset
directly, since there can be a significant lag between events in different logs (see below).

It is also important to know the time zone that each log was recorded in. Unfortunate-
ly, the timestamps in many logs do not include the time zone. Get into the habit of
sending time-zone and clock-correction information when you send logs to others, and
request the same when you ask others to send logs to you. I generally like to express
time zones as offsets from GMT, since that is more universally understood and is less
ambiguous than some of the common abbreviations.

Event lag is the difference in times between related events in different types of logs. For
example, suppose that someone connects from host A to host B using Telnet and logs
in. A Cisco Netflow log containing the traffic between A and B will record the time T
that traffic to port TCP/23 (typically Telnet) on host B was first seen. If host B uses
TCP wrappers to log access to the Telnet service, the log entries for that entry will
probably have a timestamp very close to T. However, there can be a considerable delay
between when a person is presented with a login prompt and when she actually com-
pletes the authentication process, which is when the wtmp record would be created. So
I might see a NetFlow entry indicating attempts to connect to the Telnet service at
13:02:05, a TCP wrapper entry at 13:02:05, and a login entry at 13:02:38, 33 seconds
later.

Event lag is important because often our only means of correlating entries from differ-
ent logs together is through their timestamps. Unfortunately, since the amount of lag is
often variable, we can’t always correlate events specifically by starting time or even
duration since the session in the network-traffic log would last longer than the login
session. However, we can use session duration and starting time to eliminate false cor-
relations – a login session that lasts 0:23:32 wouldn’t (usually) match a phone session
that lasts only 0:05:10. We can sometimes use the ending time of a session to make
closer correlations, since the ending events often match up more closely in time. For
example, logging out of a host you connected with telnet usually ends the Telnet ses-

40 Vol. 25, No. 7 ;login:

sion and its associated network traffic, so the logout event and the end of network traf-
fic in the NetFlow log would be very close chronologically.

Sometimes logs are created in order of the ending time of a session, instead of the start
time. This can lend further confusion to the correlation process. Log entries for Cisco
Netflow logs are created when the “flow” of traffic ends. UNIX process accounting logs
are created when the associated process ends. It is easy to misinterpret such logs, since
important information may be buried much later in the log.
Figure 3 shows the process accounting records corresponding to a
login shell where someone ran ls, cat, and then a shell script that
ran egrep and awk. Note that the sh processes corresponding to
the login session and the shell script that was run show up after
the processes started from within those shells. If you were just
casually reading the log, however, you might miss this – I know I
have on several occasions, and was very confused until I realized
my mistake. Note that not all systems provide tools that print
process accounting records in this format – the basic data is there
in the file, but you might have to write some software to winkle it
out!

We can often can use the time bounds on one session to “focus in” on smaller portions
of other logs. For example, if the modem-pool authentication records show a login ses-
sion starting at 07:12:23 and lasting for 00:12:07, we can narrow our search through
things like process accounting logs and other logs on target systems to just that time
range (assuming that we’ve corrected for clock offsets and time zone). That’s fairly
straightforward, and we do this sort of bounding naturally. What may not be obvious is
that we cannot always do this. Most of the log entries associated with a login session on
a host should fall within the start and end times of that session. However, it is easy to
leave a process running in the background so that it will persist after logout (using
nohup), in which case its process accounting records will not be bounded by the login
session.

MERGING LOGS

We sometimes have to merge logs made on different systems together to build a com-
plete picture. For instance, on some occasions we have set up authentication servers
that operate in parallel, in which case logout records may not be left on the same server
that handled the corresponding login record. The Ohio State University now has two
different routers that handle traffic to different parts of the Internet. There are some
hosts where network traffic goes out through one router and returns through the sec-
ond (due to asymmetric routing). If we are looking through Cisco Netflow logs for
traffic, we now need to be careful to merge the logs together so that we have a more
complete record of network activity. This can also be an issue in cases where we have
multiple SMTP servers (records of some email will be here, some there) and for Web
proxy servers.

RELIABILITY

Logs vary in the degree to which they can be relied upon to be accurate recordings of
“what happened.” Their reliability hinges on issues like the ownership and mode of the
log files themselves. For instance, the utmp and wtmp logs on some UNIX systems are
world-writable, meaning that anyone on the system could modify their contents. We
are also dependent on the integrity of the system pieces that generate the logs. If those
subsystems have been compromised or replaced, the logs that they generate may not be

41November 2000 ;login:

start
line account time duration command
—— ———- —— ———— ———-
ttyp1 romig 12:32:28 00:00:07 ls
ttyp1 romig 12:33:02 00:00:05 cat
ttyp1 romig 12:33:45 00:00:03 egrep
ttyp1 romig 12:33:45 00:00:04 awk
ttyp1 romig 12:33:45 00:00:04 sh
...
ttyp1 romig 12:20:12 00:10:02 sh

Figure 3: Process accounting records.

●
SE

C
U

RI
TY

CORRELATING LOG FILE ENTRIES ●

a complete or accurate portrayal. If an intruder has replaced the login binary with a
“rootkit” version that doesn’t record login entries for certain users, then the login logs
will naturally be incomplete.

In other cases, the accuracy of the logs is subject to the security of the network proto-
cols used for transporting the messages. Syslog and Cisco Netflow logs are both sent
using UDP (the User Datagram Protocol), which makes no provisions to ensure that all
data sent will be received. In these cases the logs can easily be incomplete, in the sense
that records that were sent from the source were never received by the server that made
the record that we are examining. This also means that it is relatively easy to create false
log entries by directing carefully crafted UDP packets with spoofed source addresses to
the log servers.

We can help guard against the dangers of incomplete or incorrect logs by correlating
events from as many sources as possible. We will still have to adjust our theories to
account for discrepancies among the logs, but at least these discrepancies will be more
visible. This is especially true in the cases where system processes on a host have been
modified or replaced by an intruder.

IP ADDRESS AND HOST NAME PROBLEMS

We need to realize that IP addresses can be spoofed and recognize cases where this is
likely and cases where it is unlikely. (For example, spoofing is common in flooding
attacks and rare for straight Telnet connections.) There is also a variety of games that
people can play to steal domains, poison the caches on DNS servers, and otherwise
inject false information into address/name lookups.

Unfortunately, many subsystems resolve the IP addresses that they “know” into names
using DNS, and then only log the resolved names, which may not be correct. So we also
need to recognize that the host names that we see in log files may not represent the cor-
rect source of the traffic that generated the log message. It’s generally best for log mes-
sages to include both the IP address and the name that it was resolved to, rather than
one or the other. If I had to choose one, I would choose the IP address, since that’s
more correct in most contexts (in the sense that the subsystem “knows” that it saw traf-
fic with a source IP address of A.B.C.D, and we can’t know whether the resolved host
name for that is correct).

RECOGNIZE WHAT’S MISSING

Sometimes it isn’t what we find in the log that is interesting, but what we don’t find. If
we see NetFlow data showing a long-lasting Telnet session to a host but no correspon-
ding login entry for that time period, this should naturally raise the suspicion that the
login entries are incomplete (or that the NetFlow data was incorrect). If a shell history
file shows that someone unpacked a tar archive in /dev/ – but we cannot find /dev/ on
the system – then someone has either deleted it or it is being hidden by a rootkit of
some sort.

Some Comments on Specific Logs
I have a few parting comments about some of the logs that we commonly work with, in
light of the issues that I’ve addressed in this article.

PHONE LOGS

I don’t know whether the phone companies do anything to synchronize the clocks used
for timestamping phone trace logs; past experience shows that they are usually close to

42 Vol. 25, No. 7 ;login:

Sometimes it isn’t what

we find in the log that is

interesting, but what we

don’t find.

correct, but are usually off by a minute or two. Note also that there can be significant
event lag between the start of a phone connection and the start of an authenticated ses-
sion on the modem pool that someone is connecting to (or start of activity in other
logs). The easiest way to match calls to login sessions and other logs is by narrowing
down the search by very rough time constraints and especially by call duration. We
tend to have many short dialup sessions and relatively few long sessions, and so it is
generally easier for us to match login sessions against longer phone calls, since they are
“more unique” than the shorter calls. For example, there are few calls that last at least
2:31:07, but many that last at least 00:05:21.

UTMP, UTMPX, WTMP, AND WTMPX LOGS

Apart from the reliability concerns mentioned above, on some UNIX systems you also
run into problems that are due to the fact that the wtmp and utmp files truncate the
source host name (for remote login sessions) to some limited size. This obscures the
source host name if it is long. One way to help address this is to use other sources (like
TCP wrapper or network traffic logs) to try to determine the correct host name.

UNIX PROCESS-ACCOUNTING RECORDS

One problem with process accounting records is that they only contain the (possibly
truncated) name of the binary that was executed, and not the full pathname to the file.
Consequently, to find the binary that belongs to a process accounting record, we need
to search all attached filesystems for executable files with the same name. If there is
more than one file, it may not be possible to specifically determine which binary was
executed. In the case of shell scripts, the name of the interpreter for the script is record-
ed (e.g., Perl, sh, ksh), but the name of the script isn’t recorded at all.

In some cases we can infer the name of the executable on the basis of other records,
such as shell history files and by examining the user’s PATH environment-variable set-
tings. If we see from a user’s shell history file that a command named “blub” was run at
a given time, and a search of attached filesystems reveals a shell script named “blub” in
a directory that lies in their “PATH,” we can reasonably correlate the file with the shell
history file entry and the process accounting record for the shell that was invoked to
interpret the contents of “blub.” We should be able to make further correlations
between the contents of the script “blub” and the process accounting record if the
script executes other programs on the system. This is especially true if the sequence of
commands executed is unique, or the commands are not commonly used in other
places. Note that the most we can say in these cases is that the process accounting
records are consistent with running the script “blub.” We cannot prove directly from
the process accounting records that the script was what generated those log entries –
for instance, a different script named “blub” might have been run, and then deleted or
renamed.

UNIX SHELL HISTORY FILES

Some UNIX shell history files are timestamped – otherwise, it can be very difficult to
match these records to other events, such as process accounting records. Note, of
course, that shell history files are typically owned by the account whose activity they
record, and so are subject to editing and erasure. You should be able to match the
events depicted in the shell history file against the process accounting records and
sometimes against others, like logs of network traffic, timestamps on files in the local
filesystem, and so on. The shell history is written when each shell exits, so overlapping
shells can obfuscate the record. (History is written by the last to exit. . . .)

43November 2000 ;login:

Note that the most we can

say in these cases is that the

process-accounting records

are consistent with running

the script “blub.”

●
SE

C
U

RI
TY

CORRELATING LOG FILE ENTRIES ●

SYSLOG, NT EVENT LOGS, AND OTHER TIMESTAMPED LOGS

There’s a wealth of information available in other logs on a system, especially if the log
levels have been tweaked up by a knowledgeable administrator. Take note of my cau-
tions above about correlating log entries by timestamps and about the reliability of the
logs. It is ideal if you can log to a secure logging host so that an intruder can’t easily
modify previously logged events. This is easy to do with syslog, and fairly easy to do
with NT event logs using both commercial and free software. There’s even software that
allows you to “transcribe” NT event-log entries to a syslog server. One thing to beware
of – with syslog, the timestamp that appears on the entries in the log file is the time
that the entry was received by the local machine according to its own clock, not the
clock of the machine that the log entries come from. That’s generally a good thing,
since you’ve hopefully taken pains to synchronize your syslog host’s clock to “real time.”
However, it can cause confusion if you try to correlate those log entries to other events
from the original host, since there may be a clock offset between that host and the sys-
log host.

OTHER SOURCES THAT WE HAVEN’T TALKED ABOUT

There’s a wealth of information that can potentially be found on the local host – bina-
ries, source code, output from commands run, temporary files, tar archives, contents of
memory of various processes, access and modification times for files and directories,
files recovered from the free and slack space on the filesystems, information about
active processes, network connections and remote filesystem mounts at the time of the
incident, etc. You need to hunt for these and fit them into your reconstruction of the
history of the event. For most of this information, unless you have access to more
detailed logs (e.g., timestamped shell history files or tcpdump captures of the Telnet
session where the intruder did his work), a lot of this reconstruction will necessarily be
informed guesswork. Suppose we find a process running on a UNIX host and run lsof
on it. (lsof lists the file handles that a process has open – very handy for investigations
where processes have been left running.) If lsof reveals that this process has open net-
work connections, we might be able to correlate these against entries from network
traffic logs based on the time, the host’s IP address, the remote IP address, the IP proto-
col type, and the UDP or TCP port numbers (if applicable).

Take-Home Lessons
There are a few practices you can follow to improve the condition of your logs and
make it easier to correlate them against one another. First, turn your logging on and log
a reasonable amount of data (both in quality and in quantity). Disks are cheap these
days, so you can afford to both log more and retain it longer. It is always a good idea to
forward copies of your logs to a secure log server – this is easy to do with both syslog
and NT event logs. Synchronize your clocks to a common source – if you don’t want to
synchronize them to an external source, you can at least set up a fake internal source
and synchronize them using the network time protocol. If you have a choice, log IP
addresses in addition to (or instead of) the host name that corresponds to the address –
the host name might be more meaningful to you, but the IP address is more correct.
Finally, secure your systems so that you don’t have to do these sorts of investigations
often!

44 Vol. 25, No. 7 ;login:

There’s a wealth of

information available in

other logs on a system,

especially if the log levels

have been tweaked up by a

knowledgeable administrator.

A network scanner is a tool for analyzing network services, available on a

given set of systems. With Nessus, a new breed of scanners has been pub-

lished capable of running real attacks, often called exploits, in order to

determine that well-known system deficiencies can be exploited when run-

ning the attack against the scanned systems.

History
When Nessus was born back in 1998, it was just cool to have a free network scanning
and attacking tool with design goals similar to SATAN, written by Wietse Venema and
Dan Farmer. Right from the start, Nessus was set up as a client-server tool endowed
with its own communication protocol. The scanning and attacking workload was put
onto the server, and the presentation of the data was done by the client, very similar to
the design of SATAN.

In addition to that, the client realized better online control. So each host under scan
and attack could be released from the scanning, individually, at any time. SATAN’s
design launched the server and waited for the scanning to complete, without any con-
trol over the process. The attacks used by Nessus only test for vulnerabilities and do not
actually perform a “break-in.”

Nessus was planned and introduced to be publicly supported as a free software project.
Seen from an organizational standpoint, this only meant that the source code of both
the client-server platform and the plugin code database (the implementation of the
attacks and the scans) are open for public use and discussion.

Licensing Concept and Support Considerations
Nessus has been released under the GNU Library General Public License (renamed to
Lesser GPL in 1999), which might be further restricted, partly by some contributions to
Nessus.

Within one tool, a freely available set of working proof-of-concept attacks has been
published. This is still unique, as the size of the Nessus database is far beyond that of
any other scanner, even commercial collections.

The authors of Nessus strongly believe in the free and open-source approach. This has
a clear impact on the general acceptance of and contributions to Nessus. Many bugs
and exploits are probably found by individuals, favoring a public and open audience
rather than making a quick buck with a company that solely handles the exploits as
classified information.

The software can be deployed, tested, and modified freely. There is public bug-track
management and a searchable mailing list. Additionally, professional software support
is offered for commercial users to provide (legal) support contracts.

Implementation Notes
With the scanning and attacking database, Nessus aims to be as complete as possible. It
currently performs over 500 security checks. This includes advanced Windows NT
checks such as testing for permission to access the registry keys remotely, or for inap-
propriately shared partitions.

45November 2000 ;login: NESSUS ●

RENAUD DERAISON AND JORDAN HRYCAJ ARE

THE AUTHORS OF NESSUS AND THE FOUNDERS

OF THE NESSUS CONSULTING S.A.R.L.

nessus: the free
network security
scanner by Renaud

Deraison

Renaud Deraison was
tired of people
complaining of the
cost needed to bring
their network to a
decent level of
security, so he started
to write free tools to
help them to achieve
their goal at a much
lower cost.

<deraison@nessus.com>

and Jordan Hrycaj

Jordan Hrycaj works
as independent secu-
rity consultant and
joined the Nessus
project in late 1998.
He believes that clever
system solutions are
always born in the
mind rather than
designed with the
latest development
tool.

<jordan@nessus.com>

●
SE

C
U

RI
TY

While attacking, the intention is not to miss any vulnerabilities whatsoever. For
instance, nobody prevents you from opening a Telnet service on port 32 rather than 23,
and a testing tool should be able to find that out. Nessus will actually probe open ports
with unusual port addresses to see if Telnet or something like it is running there. Being
that flexible has not been common for a long time and probably is still uncommon,
especially with commercial software.

Nessus does not guess a host or operating-system type by reading the greeting message
banner of the Telnet program. Long after QUESO and NMAP introduced the IP-stack
fingerprinting approach, the banner method is still common practice with many other
tools.

A Strategic Tool
As of today, Nessus has been used as a tool to enforce the security policy of a company
site, institution, or organizational entity. Nessus goes much further than answering
questions like “Does my firewall have the particular bug reported in the BugTraq list
the other day?”

The Nessus project aims to provide a tool to check out and analyze the network as seen
from a security standpoint that is

■ comprehensive and reliable
■ distributed
■ continuously up-to-date
■ well known
■ cost effective

In the strategic setting up and running it has some similarities with network probes
commonly installed and used to monitor data and voice traffic in quality and quantity.

Although the resulting reports are not always simple to grasp by nature, Nessus has
been designed to be easily installed and handled by a user or an operator. It is possible
to control a session in batch mode as well as with a full operator dialog. The server
poses access restrictions upon the controlling operator using public-key technology.
Once installed, the operator can have full and individual control over a farm of servers,
possibly without the need to remember passwords (of course, the workstation needs
physical access security, unless the keys are protected by a pass phrase).

With the arrival of public bug-registration sites like CVE, Nessus easily integrates and
contributes to the worldwide network of security-relevant information systems that are
freely available for everybody.

Architecture
CLIENT-SERVER COMPUTING

The server, named nessusd, is the smart part of the program, which is in charge of the
security assessment, and is available for modern POSIX-like systems such as Linux,
FreeBSD, OpenBSD, and Solaris. There might be more but they are not officially sup-
ported by the core team. The client, as supported by the same team, is additionally
available for the Microsoft Windows releases 9x, NT4, and W2K.

The client is the controlling front end to the server. The communication between the
server and the client is encrypted. Session negotiation and authentication on the server
is based on public-key encryption technology.

46 Vol. 25, No. 7 ;login:

Nessus has been designed

to be easily installed and

handled by a user or an

operator.

The nessusd server manages its own user and access database, so different scan and
attack privileges can be configured. It is, for example, possible to configure the nessusd
server so that each user can test only her or his own computer.

PLUGINS

The nessusd server is an application platform for running a series of network-based test
programs and attacks, the results of which are collected in a common database. These
programs, called plugins, have access to this database. Apart from storing results, they
also use it for communication and optimizing tests.

In a few cases, plugins are dynamically linked program fragments (usually called shared
objects, or shared libraries.) Most commonly, though, they will be interpreter scripts in
a language, called NASL (the Nessus Attack Scripting Language). These scripts can be
run immediately and independently of any operating system by nessusd.

The NASL interpreter handles the communication between the scripts transparently
through the database, mentioned above. The script language is limited in its power to
implement applications different from network tests and attacks. It is not designed to
run in a sandbox as TAINTPERL and Java do, but does control what actions can be car-
ried out through the design of the interpreter.

Thanks to this architecture, updating a set of security checks for nessusd is usually just
a matter of downloading some files and copying them to the appropriate place on disk.
And this task is automated by shell scripts like nessus-update-plugins, which retrieves
all the newest NASL scripts, installs them at the proper location, and reloads them into
the nessusd server. The latest NASL scripts available are regularly published on the
Nessus script page.

Deployment Topology and Interfaces
Currently, Nessus supports only the deployment of standalone nessusd servers with
multisession support. Secure server-to-server communication for distributed attacks is
possible but so far has been implemented at transport level only.

There are well-defined library APIs for the NASL interpreter and the PEKS-encrypted
communication channel API. There is also a well-defined text form used for storing the
scanning and attacking results. A database API has been under discussion for some
time.

Availability Notes
The whole Nessus Package is about 16MB in source code; extra library packages need-
ed, like gmp or pcap add about 4MB. The exploits-and-attack database is currently
somewhat larger than 2MB of source code. Altogether, the gzipped sources make up a
bit more than 3MB.

There is a network of worldwide FTP mirrors; the easiest way to access them is to
browse any of the Nessus Web sites (<http://www.nessus.org> being the primary one).
On these sites, some online installation instructions are also available, as well as the
screen shots of a sample session.

Although version 1.0 was released not so long ago, Nessus is under active development.
The next major release will have better handling of large networks (over 10,000 hosts),
will offer the ability to do distributed scans, and will have better multilingual support.
(Currently, most plugins have English and French descriptions and messages.)

47November 2000 ;login:

●
SE

C
U

RI
TY

NESSUS ●

http://www.nessus.org

Summary
Nessus is a free network-security scanner and attack tool with a clear strategic focus. Its
main goal is to help enforce the security policy of the network site that is tested and
attacked. Designed as a server-client system, many servers can play the role of monitor-
ing devices controlled by one or more client operators.

Nessus is not a one-shot or standalone tool. It can be used that way, but is designed
with clear interfaces and APIs. This allows further development and integration at a
public or individual level.

Nessus has been developed in Europe, so there are currently no export restrictions
whatsoever.

48 Vol. 25, No. 7 ;login:

And How to Approach Them as a
Consumer
Many times we, as consumers of products for the online world, make

assumptions about those products’ security stance. Everyone would love to

assume that any commercial piece of software that they purchase is

“secure.” After all, it says so on the box. This is a common problem. What

about the devices that have an implied security connotation when in fact

they might not? Conversely, what about devices that appear to have no

bearing on security but upon closer inspection are critical to an infrastruc-

ture?

While engaged in some network-design work in the @stake labs, my team and I came
across crypto-accelerator appliances. The one in particular that we examined at the
time was a self-contained unit. It would boot and run from a memory card and take
the burden of encryption off of the end node. In other words, it would act as an invisi-
ble device (like a hub) and take HTTPS streams in from the outside world and output
HTTP streams on the inside. From the inside nets to the external networks the device
would take the HTTP streams and output HTTPS for the appropriate session. Thus the
device was required to keep state and session information locally.

Here is an example of a device that contains a public key and a private key, presents a
credential as if it were the final end node, and is conducting cryptographic transforms
on data passing through it. Instantly one is led to the conclusion that this is a security
device. However, closer examination will show that this is not the case and might even
present liabilities.

A crypto-accelerator of this type is designed to offload computational work that is
processor-expensive for systems. Oftentimes this is done through dedicated hardware
on the appliance in custom ASICs. This reduces the load on the end system general-
purpose processor so it can go back to serving content, accepting credit cards, and kick-
ing out instructions to other systems as to where to send the goods. Yes, it is in fact a
load balancer or coprocessor in nature, much like older systems where you could opt to
have a math coprocessor. Few people would think of a math coprocessor as a security
device; instead most would consider it a load balancer of some ilk where it is taking the
expensive operations and handling them for the main CPU. In reality, though, it could
very well be performing the math portions of cryptographic transforms. Here, the
device is removing the security blanket to speed the processing on the data within.

Simply having the words cryptography, crypto, crypto-accelerator, certificates, SSL,
HTTPS, etc. in a product name or description gives the consumer the impression that
what is being used is a security device that is putting security into the mix – not remov-
ing it. This is not necessarily the case.

The appliance here is not intended to protect the end systems. It is not even claiming
to protect itself. In fact, one can argue that it is now more important to secure the
back-end network, as the traffic is not actually encrypted all the way to a final destina-
tion, and thus the potential for monitoring and compromise of confidentiality is exag-
gerated.

49November 2000 ;login: SECURITY DEVICES THAT MIGHT NOT BE ●

by Mudge

Mudge is Vice
President of Research
amd Development
for @stake Inc.

<mudge@atstake.com>

security devices that
might not be

●
SE

C
U

RI
TY

Does this present a problem? Only if it caught the consumer off guard. A little analysis
up front can go a long way.

■ The device is used to remove a security layer.
■ The device is designed to be largely “plug and play.”
■ The device is an embedded system with no moving parts.
■ The vendor offers remote support.
■ The owner can remotely manage the device.
■ The owner can locally manage the device.

If we abstract the above to more generalized security devices, or nonsecurity devices
that have an implied security component, we can take the first four items above and
elaborate a bit.

THE DEVICE IS USED TO REMOVE A SECURITY LAYER

In the real world this unfortunately often translates to a lax security stance in the
design stage. The goal in the above example is to strip the HTTPS coming in on one
end and spit out raw HTTP on the other. A relatively simple goal, if that is all one is
thinking about. If one were working in the other direction, of introducing security in
an embedded system, one would (hopefully) think about how to harden the system
itself. The notion of not caring about the identity of the end node connecting, just that
the session is encrypted but not necessarily authenticated, lends itself to this poor
stance. This is an important area to analyze before deployment. Was the vendor lack-
adaisical and not treating the device as security relevant?

THE DEVICE IS DESIGNED TO BE LARGELY “PLUG AND PLAY”

This should almost always raise a large, red warning flag when seen in conjunction with
“security devices.” If there were a silver bullet, one-size-fits-all solution, then there
would be no need for all of the different products and vendors. There would be one
operating system. No need for public markets, etc., etc.

To be honest, Microsoft even gets a somewhat unfair rap on this count for security.
One of their main goals is to sell an operating system that is ubiquitous. To do so their
product must need minimal – or more appropriately no – custom configuration in
order to work in all environments. The same build-and-stock configuration must exist
in academic, military, corporate, medical, and personal environments. A custom build
for each area and the associated support costs would be prohibitive. We wonder why
there are so many security ramifications? Because we, the consumer, have demanded
that it be largely “plug and play” for all environments. If you see a device in your net-
work that is designed to be appliance-like and offer security, be very suspicious.

THE DEVICE IS AN EMBEDDED SYSTEM WITH NO MOVING PARTS

So what if the component in question is a more or less dedicated system? Chalk one up
toward a step in the right direction. In many cases it is much easier to batten down the
hatches on a product or system that is designed to do one thing in one particular envi-
ronment, and that alone. There very well might not be all of the problems associated
with a generic one-size-fits-all system. Then again, there is also the strong possibility
that the embedded system was chosen simply for cost and in reality is just a generic sys-
tem on the inside. Even if it is not a generic OS, did the vendor really take security seri-
ously, or are there tell-tale signs that point to less than master-craftsman type work?

50 Vol. 25, No. 7 ;login:

If you see a device in your

network that is designed to

be appliance-like and offer

security, be very suspicious.

Here are a few of the things we have seen in “embedded” appliance devices:

■ entire generic OS running on flash memory cards – not secured in the least
■ poorly crafted and tested TCP/IP stacks on ASICs
■ proprietary chips without tamper-resistant epoxy on them
■ serial EEPROMs with programming leads exposed
■ tamper-evident tape placed on the inside of the appliance where it is not visible

THE VENDOR OFFERS REMOTE SUPPORT

If you are lucky, the vendor knows one of the passwords of an account that you set up
for him. More often, the vendor is aware of a hidden account that you were not told
existed. While this is arguable, even if it is done for truly nonsecurity-related devices
(what are those?), it should be a career-limiting move for the marketing or sales person
that originally decided this was required to sell a security device. Does this still happen?
Unfortunately so – the crypto-accelerator mentioned above contained a couple. We
have also found them in printers, hubs, and plenty of software servers and clients. Of
course, the remote support might be something more obvious such as a modem and
analog line, or perhaps it was given away when customers asked for yet more holes to
be placed in the firewall to allow them to get in for troubleshooting and diagnostic pur-
poses.

Does this happen on your network? How strong is the stack on that VPN box? Let us
rephrase – how strong is the stack on that VPN box that you deployed parallel to the
firewall? Are the infrastructure components such as switches and load-balancers man-
aged in-band or out-of-band? How many addressable devices are on your network and
how many of them were able to be dropped on the network right out of the box and
they basically configured themselves? Does that NTP server offer more than just the
correct time? Are your hubs and switches addressable? Why?

Hopefully this article has caused some to think about their current environment and
others to take a different look at the items they are about to deploy.

Sleep well.

[Editor’s note: Peter Guttman’s paper, An Open-Source Cryptographic Coprocessor,
<http://www.usenix.org/publications/library/proceedings/sec2000/gutmann.html>,
makes an excellent companion to this article, with very concrete examples.]

51November 2000 ;login:

●
SE

C
U

RI
TY

SECURITY DEVICES THAT MIGHT NOT BE ●

http://www.usenix.org/publications/library/proceedings/sec2000/gutmann.html

52 Vol. 25, No. 7 ;login:

Dissecting Denial of Service (DDos)
You walk into your office on a Monday morning and find that your usual

game of Quake is painfully slow, like molasses in deep winter, and that your

email inbox is scarily full with tons of messages from stricken users com-

plaining about the network. Phrases like “the network is slow,” “DNS is not

working,” and “I can’t get to my Web site” ring in your ears as you retrieve

your voicemail. Chances are, you are under a DoS (Denial of Service) attack.

What should you do? The most important goal is to determine whether you are in a
simple DoS attack or a more complex DDoS (Distributed Denial of Service) attack, a
distributed variant. The latter attacks began occurring on a large scale during the sum-
mer of 1999. Groups of intruders using massively automated compromise tools began
infiltrating a large number of computer systems worldwide in late July and early August
of that year. For what purpose, you may ask. The first sign of malignant behavior I
encountered was in the form of a script that first mentioned a name that would go
around the world, literally: trin00 a.k.a. Trinoo.1 The script itself was copying in a pro-
gram called leaf and placing it in a typically unsuspicious location on a UNIX system:
/usr/bin/rpc.listen. For the inexperienced, this may appear to be a legitimate process tak-
ing care of RPC (Remote Procedure Call) services.

Well equipped with rootkits, the intruders would even hide that process on occasion
and most likely would have gone unnoticed, except for one thing: the load level. Due to
a flaw in the program, a cron job was launched every minute to keep the program,
which came to be known as a DDoS agent, alive. The name leaf seemed to imply a tree,
a leaf node of a larger structure.

The Scalpel
So what was the big deal? We all have seen DoS programs, whether they are UDP flood-
ers, ICMP flooders, spider programs, Smurfers, or even the original Morris worm of
1988. What made this one different became apparent when I took out my electronic
scalpel and started dissecting this piece of code: references to a “master server,” IP num-
bers, and traces of crypted strings and commands. The electronic scalpel, of course, is
your favorite binary or “hex” editor, but the UNIX strings command will also do in a
pinch. Only a few weeks later, the next attack wave unleashed a packet storm known as
the “University of Minnesota incident,” in which roughly 250 systems bombarded the
networks of the University of Minnesota and brought them to a screeching halt for
three days.

What was going on? The packets were coming in so fast, they must have come seeming-
ly from everywhere, at very high rates. The packets were very short, only 40 bytes in
most cases, but the sheer rate at which they were aggregating at the target, the
University of Minnesota, was simply overwhelming. So what was it really? Digging fur-
ther into the code and tracing the packets to their apparent source led to the discovery
of the “master server,” a.k.a. the DDoS handler. This was the program “coordinating”
the attack, ordering the DDoS agents to flood the target with packets. The intruders,
counting on being discovered sooner or later, had taken precautions: The list of all the
DDoS agents was encrypted, and in some cases the encrypted file was unlinked.
Extreme precaution was needed to recover the full list of agents. As agents were discov-
ered and shut down, new ones were being added in order to maintain the constant
flood of packets. It was indeed a large attack structure. In a better-covered set of events,

by Sven Dietrich

Sven Dietrich is a
senior security archi-
tect for Raytheon
ITSS at the NASA
Goddard Space Flight
Center. His focus is
computer security,
intrusion detection,
the building of a PKI
for NASA, and the
security of IP com-
munications in space.

<spock@netsec.gsfc.nasa.gov>

scalpel, gauze, and
decompilers

the incidents of February 2000 involved several well-known e-commerce and industry
sites as targets of DDoS attacks.2

So we return to the original question: What should you do? First and foremost: Start
recording packets. Network (and computer) forensics have been and still are the key
instruments in tracing back to the attacker. A simple tcpdump3 process at your site
border(s) will do for lack of a better choice. Then, and only then, start talking to your
upstream Internet service provider. With high probability, the source IPs of the flood
packets are spoofed, making determination of the actual source a bit harder at first. A
good relationship with that provider is critical to getting a fast response, as floods can
last anywhere from a few minutes to hours or sometimes days. Let us keep in mind that
several scenarios are possible:

1. You are the victim.
2. You are the host for one or more DDoS agents.
3. You are the host for one or more DDoS agents and a handler.

The Gauze
Of course, variants and combinations of the above are indeed possible. In the case of 1,
most likely you would like to restore your connectivity as soon as possible. Talking to
your upstream providers should help locate the source of the floods, as they may have a
better view of the flows of the (spoofed) packets. Of course, it is beneficial to get each
intermediate provider to start recording packets for later inspection. Once one source is
located, case 2 applies, as follows.

Now is the time for a tricky decision. Two types of traffic are involved in a DDoS situa-
tion, the flood traffic – felt heavily at the target, not necessarily at the source – and the
very light control traffic. The control traffic is the interesting one, as it will be the path
to the DDoS handler if no references to it can be found in the DDoS agent code. So
what should one do? Shut down the DDoS agent system cold and subsequently make a
binary snapshot, e.g., using dd, of the hard disk by transporting it to a different physical
system? Maybe. Or should you take a snapshot while it is running? By experience it has
been a good idea to “freeze” the system by doing the former.

There is really no simple answer, as it may be necessary to preserve the contents of
memory also. Using lsof4 and forensics tools such as The Coroner’s Toolkit5 are defi-
nitely a good idea, as things may not be as they appear. Of course, you are still record-
ing packets at this point and any attempt at contacting the agent will be recorded in the
logs, hopefully. The important aspect is to seep up as much evidence as possible with
our electronic gauze, for later scrutiny. In any case, seek the advice of a DDoS foe, a
CERT or FIRST member.

In some cases, law enforcement may choose to have its own idea of what to do in that
situation and can advise you. That is outside of my domain and I shall not comment.
For general guidelines, see the original CERT report6, compiled by a small group of
experts.

In the case of 3, you win! You are the lucky host of a DDoS handler and possibly of a
few DDoS agents. Now it is doubly important to proceed with extreme caution in order
not to destroy any evidence that may lead to the discovery of the entire list of agents,
the handler and/or the agent code, the possible source code, and last but not least, the
path to the actual intruder.

53November 2000 ;login: SCALPEL, GAUZE, AND DECOMPILERS ●

What should you do? First

and foremost: Start recording

packets.

●
SE

C
U

RI
TY

So, you think, why not just remove the handler, reformat the drive of the computer,
reinstall a more secure version of the operating system, and forget that it ever hap-
pened? Well, it is complicated. The intruders have considered that possibility and taken
precautions for one or more “backup handlers” to take over the existing agents and
continue their flooding. Think of it as a bad weed: Unless you get to the root of it, it
will come back to haunt you. Taking a closer look at your network will help identify
other, potentially dormant, agents. For scanning your network for well-known agents
or handlers, see 7, 1, 2, . Similarly, one can scan the host for well-known agents or han-
dlers. Unfortunately, these programs are not always “well-known,” and host integrity
checking is an important asset in determining what files, if any, have been added or
modified.

Of course, I have experienced quite a variety of “mishaps” during my quest for DDoS
tools – from system administrators not wanting to surrender their tapes, not perform-
ing the correct backups, not responding altogether, or not acknowledging that their sys-
tems were compromised, to just reinstalling the operating system on the compromised
host without prior backup. The good times, however, are finding the actual code for the
tools, mostly in binary form.

Once one has the actual tool, how should one proceed? While it is often possible to
replicate the traffic and provide substantial guidance to intrusion-detection system
configurators, research prototypes and commercial variants, it is far more exciting to
find the real code, the source, in order to discover potential flaws in the algorithm.
These flaws are the mechanisms for registering flood or control traffic that might oth-
erwise go unnoticed or dismissed as “noise.” In the Shaft case7 analysis of the agent
source code revealed a fixed TCP sequence number for flooding. The “echoes” of
attacks have been felt elsewhere in the world and are now signs of an ongoing Shaft
attack. Yet other flaws may reveal mechanisms for shutting down floods in progress,
such as improper authentication of handler-to-agent communications.

The Decompiler
In a different setting, reverse engineering of the binary executable may be the last resort
at getting a deeper understanding, short of reading straight COFF or ELF executable
binaries. On to the next ace up our sleeve: decompilation. In the case of Mstream8,
hand decompilation was essential to obtaining the attack algorithm, as no source code
was immediately available, and informing the appropriate audience of our findings. So
far, the decompilation process has been very much human, as the decompilation prob-
lem is hard and remains more of an art than a science.

Conclusion
As we lie in the aftermath of recent advertised and not-so-advertised DDoS attacks
around the globe, we find ourselves still faced with the threat of ever-evolving DDoS
tools. 9, 10 We need rapid incident-response teams, cooperative ISPs, good network
forensics, good host forensics, well-established policies, and competent and DDoS-
aware experts, all wrapped into one. While there are some good starting points for lim-
iting the impact of such attacks, or even using traceback for identifying the source of
the packet floods, 9, 10 that is outside of the scope of this article; the reader is referred
to 2, 7 as starting points.

Nevertheless, the number of vulnerable systems is increasing exponentially, providing
more hunting grounds for what apparently started as an IRC-channel takeover war. The
fact remains: DDoS attacks should be our concern, as they represent a powerful tool to
disable or incapacitate government, e-commerce, industry, and educational sites alike,

54 Vol. 25, No. 7 ;login:

The number of vulnerable

systems is increasing

exponentially.

in some cases even the underlying infrastructure.9 Thus far, intruders launching those
attacks have successfully evaded detection through their cleverly built DDoS networks
and are continuing to taunt us. A coordinated response and ongoing research will
hopefully put us one step, or at least half a step, ahead.

55November 2000 ;login:

REFERENCES

1. David Dittrich. The Trinoo Distributed
Denial of Service Attack Tool. 21 October 1999.

2. Sven Dietrich’s DDoS page.
<http://netsec.gsfc.nasa.gov/~spock/ddos.html>.

3. <ftp://ftp.ee.lbl.gov/tcpdump.tar.Z>

4. <http://vic.cc.purdue.edu/>

5. Dan Farmer and Wietse Venema. The
Coroner’s Toolkit.
<http://www.porcupine.org/forensics/tct.html>

6. CERT. Results of the Distributed Systems
Intruder Tools Workshop. December 1999.
<http://www.cert.org/reports/dsit_workshop.pdf>.

7. Sven Dietrich, Neil Long, and David Dittrich.
Analyzing Distributed Denial of Service Tools:
The Shaft Case. In Proceedings of USENIX LISA
2000, to appear.

8. David Dittrich, George Weaver, Sven Dietrich,
and Neil Long. The “mstream” Distributed
Denial of Service Attack Tool. May 2000.
<http://staff.washington.edu/dittrich/misc/mstream.analysis.txt>.

9. Sven Dietrich, Neil Long, and David Dittrich.
The History and Future of Distributed Systems
Attack Methods. 5-minute presentation at IEEE
Symposium on Security and Privacy, Oakland,
CA. 16 May 2000.

10. Sven Dietrich. Dietrich’s Discourse on Shaft
(DDoS). Work-in-Progress presentation at
USENIX Security Symposium 2000, Denver,
CO. 17 August 2000.

●
SE

C
U

RI
TY

SCALPEL, GAUZE, AND DECOMPILERS ●

http://netsec.gsfc.nasa.gov/~spock/ddos.html
ftp://ftp.ee.lbl.gov/tcpdump.tar.Z
http://vic.cc.purdue.edu/
http://www.porcupine.org/forensics/tct.html
http://www.cert.org/reports/dsit_workshop.pdf
http://staff.washington.edu/dittrich/misc/mstream.analysis.txt

56 Vol. 25, No. 7 ;login:

We have all heard the design model “Keep It Simple, Stupid” (KISS). In his

keynote address at the USENIX Security Conference in August, Dr. Blaine

Burnham expanded on this concept of common-sense security architecture

by demonstrating his points using examples that everyone could easily iden-

tify with.

I found many of Dr. Burnham’s points to be quite clear and inarguable. In discussing
the principle of Acceptability, he stressed that a security solution that is too difficult to
use will invite people to go around it or not use it at all. I couldn’t agree more.

Some of Dr. Burnham’s statements were thought-provoking and invited further discus-
sion. He graciously agreed to take time out from his busy schedule to answer a few
questions.

Design Principles of Simplicity: Followup Questions
Carole Fennelly: There was a reference to code that is not open source as providing
security by obscurity. While relying on obscurity as the sole means of providing securi-
ty is foolhardy, isn’t some obscurity necessary? There was a comment later in the talk
that “it takes a secret to keep a secret.” Isn’t this a form of obscurity? Isn’t privacy also a
form of “security through obscurity”?

Blaine Burnham: “Security by obscurity” speaks to the notion that you are basing the
security of the system on the assumption the bad guys are unable to discover the inter-
nal working of the security system. Historically this has been a very bad assumption.
We always tend to underestimate the ability and persistence of the bad guy. This is not
to say that one should aggressively market one’s security architecture to the bad guy.
The only safe assumption is to assume the bad guy has a complete and accurate copy of
your security solution.

Regarding the “it takes a secret to keep a secret” statement: It simply means that the
solution is designed in such a fashion that the introduction of secret content enables
the system to propagate the ability to keep a secret. There is nothing obscure about the
secret – usually everything about the secret – except its actual content is known. For
example, the DES algorithm is widely available. The details of generating DES keys are
openly available. However, a secret (a specific instance of a key known to only one
party) DES key can reliably protect – keep secret – a great deal of information.

I don’t see privacy as a form of security through obscurity. To me privacy is a global
system property/behavior in which the system has access to the private information but
it does not divulge the information in violation of the privacy policy. The system knows
it doesn’t tell. Part of the problem has been the absence of meaningful privacy policies
– hence an open season on personal/private information, a behavior that argues that
personal information is the property of the holder, not the referent – and therefore the
referent has no control/stake in the information. In addition, we have to deal with the
fundamental weakness of the systems to enforce any meaningful privacy policy in the
face of anything more than casual attempts to assault the system.

Carole: Actually, what I was referring to with regard to privacy fits in with your expla-
nation of “security by obscurity.” I may not aggressively advertise where I live and my
bank account numbers to the public at large, but I don’t rely on that “obscurity” to pro-
tect myself.

Blaine: This is a good working example of my point. You don’t have to advertise and
otherwise aid and abet the bad guy. On the other hand, these measures in and of them-

by Carole
Fennelly

Carole Fennelly is a
partner is Wizard’s
Keys Corp, a com-
pany specializing in
computer-security
consulting. Carole
also writes for
www.sunworld.com.

<fennelly@wkeys.com>

an interview with
Blaine Burnham

Dr. Blaine Burnham is
Director of the
Georgia Tech
Information Security
Center.

selves cannot provide you the real protection you may need. Some mechanism(s), usu-
ally of a completely different nature, will have to be employed to provide the protection
you may demand.

Carole: A comment was made that script kiddies create so much “noise” that it is diffi-
cult to track the real criminals. Isn’t some of this relatively harmless noise necessary to
raise awareness of security in the corporate world?

Blaine: I would not like to argue that this noise is harmless. In fact it is very harmful –
depending on who you read – latest numbers put the cost in the trillions. Further, as
distressing as it is, the observation that the security awareness of the corporate world
has been significantly increased as a result of this noise appears to be true, at least to a
first approximation. I find this whole “motivational” discussion tremendously upsetting
because it shouldn’t have to happen. There has been any amount of discussion and
ample demonstration, for years, pointing to the encroaching risk to information sys-
tems. I find it unbelievable that we have done so little, really, to address the problems. I
suspect that something like a consumer-protection agency is going to come about to
deal with the problem. This will be a solution that no one will like.

Carole: I certainly don’t endorse the activities of script kiddies and I agree they are a
major annoyance. But aren’t many reports of “damages” grossly exaggerated? Such as
reporting the damages as including the cost of installing a firewall and redesigning a
Web site?

Blaine: I haven’t spent much time trying to validate the legitimacy of the damage
claims. I know the impact of any of these DDoS attacks can be very substantial.

Carole: You mentioned that insurance companies will become an incentive for improv-
ing security. Do you think they will have a different picture of actual damages? Won’t
they hold organizations liable for not adhering to industry best practices?

Blaine: I think the insurance industry will have consistent measures for assessing the
damage. What those measures are has yet to be determined. But over time insurance
firms have demonstrated the ability to home in on the correct measures. I don’t exactly
see how the insurance industry will hold organizations liable. I think it will work more
along the lines that failure to adhere to best practices may void a company’s insurance
policy. Sort of like – as I recall – skydiving can void a personal injury/life insurance pol-
icy. However, in addition, the interdependencies of e-mumble will create situations
such that if a particular business fails to adhere to best practices and the consequent
damage propagates to the e-mumble business partners, the insurance representatives of
the damaged parties will come at the nonadhering business for compensation. This
could have enormous consequences. For example, if you are running some mom-and-
pop telecommuting engineering function for a major toy company and you are net-
worked into their whole just-in-time manufacturing – for the Christmas rush – toy
production facility, and you don’t take sufficient protection measures while you are sit-
ting on the beach somewhere while you put the finishing touches on your design, and
the bad guy (today he may be in the employ of a competing toy company, tomorrow
who knows) is able to gain access to your system and alter the design you upload to the
JIT plant, and the plant manufactures the toy with a lead-based paint (this is the bad
guy’s modification) that causes the toys to all be recalled the day after Thanksgiving. I
would hope you had paid up liability coverage – a lot of it.

Carole: You stated that “hostile and malicious code are the real problems.” What about
badly written code?

57November 2000 ;login: AN INTERVIEW WITH BLAINE BURNHAM ●

●
SE

C
U

RI
TY

Blaine: The Greeks built the Trojan horse after spending tremendous energy exploring
for a more direct access to the city of Troy. It is fair to observe that the Trojans were
probably fairly disciplined in their walls and gates and windows maintenance. Had they
not been, the Trojan horse would not have been necessary. Look at it from the bad guy’s
point of view: Take advantage of the target’s mistakes; these mistakes lower the cost of
the effort to achieve the objective. Badly written code is a tremendous advantage to the
bad guy. He doesn’t have to work so hard.

Carole: You stated that “security is not an add-on.” How do we enforce this? If you look
at the white paper for the proposed Simple Object Access Protocol (SOAP), security is
certainly considered to be someone else’s problem.

Blaine: I cannot argue for or against better alternatives for the SOAP; however, at least
the SOAP does not claim to support security services. There is no confusion about this.
Don’t look to SOAP for security services. Q.E.D.

Carole: How can we make security attractive to the “bottom line”?

Blaine: This has been tough. I have tried to picture/market security as a business
enabler. This sometimes works – sort of. I think the issue of “due care” will eventually
work its way into the auditing and insurance side of the business and businesses will
have to respond. I don’t see this approach delivering the technology we really need for
the information age that is upon us.

Carole: There was a reference to home schooling using the Internet. While the Internet
can be a great source of information to children, isn’t physical socialization also impor-
tant?

Blaine: Probably, but I think it will be way oversold by the folks that Internet-enabled
home schools will threaten the most. For the most part children today can have/get as
much “socialization” as they can schedule/stand, outside of the conventional school
environment. Internet-enabled home schooling will allow families to choose the social-
ization they want, rather than have to deal with the “socialization” being forced upon
them. For a lot of reasons we have let our schools degenerate into war zones in which
bullies reign. Additionally, many, many parents feel the schools have abandoned any
notion of a wholesome, family-centered system of values. For them and for many oth-
ers, particularly families with talented children who are buried in a degenerate school
system and can’t get out, the option is quickly emerging for parents to simply opt out.
Not play and not have to deal with a broken system. I think we are on the verge of see-
ing many of our schools and even whole systems degenerate into being holding tanks/
warehouses for truly dysfunctional youth with the rest opting for some form of neigh-
borhood-based Internet-enabled home schooling.

Carole: I’ve seen ads that entice people to “find out if your spouse is having an online
affair! Find out if your kids are surfing porn sites!” Any thoughts on the type of spy-
ware that is used in the home?

Blaine: There is really not much difference between “home spying” and “corporate spy-
ing.” It amounts to the bad guy wanting to violate a policy, and a system that is not ade-
quate to support the policy. Probably one of the more significant overlooked notions is
the word “personal” in the phrase “personal computer.” The expectation of any protec-
tion in the out-of-the-box PC way outstrips the ability of the technology, particularly
from an insider who has intimate access to the machine. Mostly this points to a serious
lack of understanding of the technology. It really reduces to a fairly simple dictum: If

58 Vol. 25, No. 7 ;login:

Probably one of the more

significant overlooked notions

is the word “personal” in the

phrase “personal computer.”

you care about the information and the consequences of its misuse then, to the extent
possible, eliminate the shared resource.

Carole: You stated that there are no “silver bullets.” What is your opinion of vendors
who are offering “one-stop shopping” for security services?

Blaine: The notion of “no silver bullet” is the notion that thus far there does not appear
to be a single technology or single point of application for a technology that completely
resolves the security challenge of most information systems. By that, I intend to point
out that an IDS by itself is not, typically, a complete solution; PKI by itself is not a
complete solution. The point is that security is a system problem and typically is not
resolved through the introduction of a particular security service. Some vendors mar-
ket a single product. Be cautious of vendors who argue that the single product is a
complete solution. On the other hand, there are vendors who market suites of products
that tend toward providing system-level solutions. These vendors are trying to provide
one-stop shopping to their clients and, arguably, this could be a constructive approach.
Arguably to the extent that the one-stop shops are dealing with the interactions and
dependencies of the assorted products and understand the completeness of the solu-
tions they offer. It’s not a lot different from the notion of buying a car by the piece or as
an integrated system. By the piece, one might get on the whole very high-quality indi-
vidual parts, but one is now committed to dealing with the problem of assembling the
parts into a whole. A great deal of energy will go into that effort and will require an
organizational commitment to the continual maintenance of the whole parts-assembly
business model. And it is not clear that all the parts go together to make something.
However, by the car, one gets an integrated system that provides transportation, which
is the overall objective.

Carole: What are your plans for the future?

Blaine: I would like to say something about this. The University of Nebraska at Omaha
has offered me the opportunity to establish, build, and lead a Center for Information
Assurance. We are committed to the mission of developing very skilled information-
assurance professionals at both the undergraduate and graduate level. The center will
be part of UN Omaha’s College of Information Science and Technology and be housed
in the University of Nebraska’s Peter Kiewit Institute. We will develop a comprehensive
undergraduate Information Assurance program targeted at supporting the Critical
Infrastructure Protection Cybercorp initiative and developing the MS-level Information
Assurance area of specialization. We are in the process of instrumenting a Security
Technology Emulation and Assessment Lab. We are committed to developing the highly
skilled and educated people, new knowledge, and appropriate technology to achieve a
safe, secure, and reliable Information Age.

59November 2000 ;login:

Security is a system problem

and typically is not resolved

through the introduction of a

particular security

service.

●
SE

C
U

RI
TY

AN INTERVIEW WITH BLAINE BURNHAM ●

60 Vol. 25, No. 7 ;login:

the bookworm

BOOK REVIEWED IN THIS COLUMN

This is an “extra” issue, so I want to
break with tradition and discuss one (!)
book.

Bruce Schneier’s Applied Cryptography
(1994; 2nd ed., 1996) is a truly splendid
book. His new Secrets and Lies: Digital
Security in a Networked World is really
outstanding.

Schneier’s byword is “Security is a
process, not a product.” Just as locking
your apartment or your house (or your
car) is a first step – not a solution – to
the problems introduced by those few
who want to prey on others’ possessions,
passwords, etc., are but a first step.

Schneier admits that he saw mathematics
as a solution in 1994, but that he was
wrong: cryptography (applied mathe-
matics) doesn’t exist in a vacuum; like
everything else, we function within a
highly complex environment. Secrets and
Lies is an attempt at both describing the
complexities of the digital environment
and elucidating the methods available to
render it more secure.

There are three parts to Secrets and Lies:
The Landscape (with chapters on
“Digital Threats,” “Attacks,” “Adversaries,”
and “Security Needs,” pp. 11–81);
Technologies (“Cryptography,” “Crypto-
graphy in Context,” “Computer Security,”
“Identification and Authentication,”
“Networked-Computer Security,” “Net-
work Security,” “Network Defenses,”
“Software Reliability,” “Secure Hard-

by Peter H. Salus

Peter H. Salus is a
member of the ACM,
the Early English Text
Society, and the Trol-
lope Society, and is a
life member of the
American Oriental
Society. He is Editori-
al Director at
Matrix.Net. He owns
neither a dog nor a
cat.

<peter@matrix.net>

SECRETS AND LIES: DIGITAL SECURITY

IN A NETWORKED WORLD

BRUCE SCHNEIER

New York: John Wiley, 2000. Pp. 412.

ISBN 0-471-25311-1.

ware,” “Certificates and Credentials,”
“Security Tricks,” and “The Human
Factor, pp. 83–269); and Strategies
(“Vulnerabilities and the Vulnerability
Landscape,” “Threat Modeling and Risk
Assessment,” “Security Policies and
Countermeasures,” “Attack Trees,”
“Product Testing and Verification,” “The
Future of Products,” “Security Processes,”
and “Conclusion,” pp. 271–395).

I happen to think security is important.
It was while I was executive director of
USENIX that we held the first security
workshop (August 1988 in Portland, OR,
chaired by Matt Bishop). Over the years
I’ve reviewed a large number of books
on security – ranging from Denning,
Diffie, and Landau, to Bellovin and
Cheswick; to Rubin, Geer, and Ranum
and (last month) the new edition of
Building Internet Firewalls. Secrets and
Lies is up there with the best of them.

In fact, I think that Schneier has put the
entire range of digital threats into appro-
priate context. I think that this is the
book that every business executive
should read. And it’s written in a manner
that every executive can understand.
There’s no code in it. No cryptographic
algorithms.

There are lots of good examples and true
stories.

In our increasingly digital world, the
dangers need to be comprehended. Just
as children need to learn how to cross
the street, businesses need to know just
how dangerous the networked world
can be.

Board Meeting
Summary

The following is a summary of some of
the actions taken by the USENIX Board
of Directors between June and August
2000.

Good Works
The Board voted to allocate $50,000
between now and 2001 for two programs
sponsored by the Computing Research
Association’s Committee on the Status of
Women in Computing Research. The
first project is the Distributed Mentor
Project
<http://www.cra.org/Activities/craw/dmp/index.html>, in
which outstanding female undergradu-
ates work with female faculty mentors
for a summer of research at the mentors’
institutions. The second project is called
Collaborative Research Experiences For
Women (CREW)
<http://www.cra.org/Activities/craw/crew/index.html>,
where students work in collaborative
teams with faculty mentors at their
home institutions during the academic
year.

SAGE
It was agreed that USENIX and SAGE
will work toward coming up with a
model that gives greater autonomy to
SAGE.

International Affiliate
Membership Category
The USENIX Board of Directors voted to
accept a proposal for a second interna-
tional affiliate membership category.
Affiliate members will have all the same
membership benefits as an individual
member except voting privileges, and
will receive access to ;login: in pdf format
through the Affiliate Group’s members-
only Web site.

61November 2000 ;login:

Bylaws and E-voting
A committee was formed to review the
USENIX bylaws and amend them to
allow us to conduct elections electroni-
cally.

Conferences
It was agreed that the Windows Systems
Symposium will no longer be held and
that the calls for papers for other
USENIX events should encourage papers
from all platforms and operating sys-
tems. A system administration of
Windows conference might be held
depending on support from SAGE and
Microsoft.

A file-systems storage conference,
chaired by Darrell Long, was approved.

It was agreed that USENIX will cospon-
sor the International Workshop on
Network and Operating Systems Support
for Digital Audio and Video (NOSS-
DAV).

Press Releases
Board members were tasked with writing
position papers/issuing press releases on
the implications of new technologies
e.g., electronic voting.

Next Meeting
The next meeting of the Board of
Directors will be held December 5, 2000,
in New Orleans, LA.

news

BOARD MEETING SUMMARY ●

●

U
SE

N
IX

A
N

D
SA

G
E

N
EW

S

by Gale Berkowitz
Deputy Executive Director

and Ellie Young
Executive Director

SAGE Elections
Elections for the SAGE Executive
Committee for the 2001-2003 term are
coming up soon. For the first time, vot-
ing will be conducted electronically.
VoteHere.net has been selected to con-
duct the elections.

To be eligible to vote, you must be a
SAGE member on December 1, 2000.
Since voting will take place electronically,
it is essential that your membership
information is up to date, particularly
your email address. To vote, you will
need your membership number and
password.

To verify and update your membership
information, please go to:
<https://db.usenix.org/membership/update_member.html>.

Election notifications and candidates’
statements will be available on the SAGE
Web site
(<http://www.usenix.org/sage/election01/>)
by December 11, 2000.

Notifications and voting instructions will
be sent via email to all current SAGE
members. For those who choose to not
submit their ballots electronically, a
paper ballot option will be made avail-
able through the voting website.

To find out more about the candidates
running for seats on the Executive
Committee, please attend the Candi-
dates’ Forum being held on December 7,
2000 at LISA in New Orleans. Candi-
dates’ statements will also be available
through the SAGE website.

This is another great reason to register
early for LISA, and be sure that your
membership is up to date in time for the
elections. The pre-registration discount
deadline for LISA is October 27, 2000.

For more information about SAGE gov-
ernance, please see:
<http://www.usenix.org/sage/official/>.

and

http://www.cra.org/Activities/craw/dmp/index.html>,in
http://www.cra.org/Activities/craw/crew/index.html
https://db.usenix.org/membership/update_member.html
http://www.usenix.org/sage/election01/
http://www.usenix.org/sage/official/

62 Vol. 25, No. 7 ;login:

USENIX Good
Works Program
Every year income from the USENIX
endowment fund and our conferences
are used to help nurture the develop-
ment of the advanced computing sys-
tems community. In 1999 USENIX spent
over a million dollars on such good
works. Here are some details.

USENIX Student Programs
Graduate and undergraduate college
education is always of the highest priori-
ty to the Association. USENIX and its
members value students and the research
in the computing systems arena that is
generated in colleges and universities.
Recognizing the importance of this
work, USENIX generously funds a num-
ber of programs for college students:
stipends for students to attend USENIX
and SAGE conferences, scholarships, stu-
dent research projects, outreach to repre-
sentatives on campuses, as well as several
innovative, computing-related projects.
The student stipend program offers trav-
el grants to enable full-time students to
attend USENIX conferences and sym-
posia. Over 360 institutions have been
represented in the USENIX Student
Stipend Program. To date, over 100
schools have designated outreach repre-
sentatives. Our Scholastic Program pro-
vides funding for scholarships and stu-
dent research projects. More information
about our student programs, at:
<http://www.usenix.org/students/students.html>.

Computing Community
Projects
The USENIX Association is pleased to
announce the funding of two important
projects that are relevant to the USENIX
and SAGE communities: The Internet
Software Consortium BIND v9 project,
and the Electronic Frontier Foundation’s
legal work for two important cases, the
Bernstein encryption software case, and
DVD DeCSS cases.

USENIX, with Stichting NLnet
Foundation, has also launched the
Research eXchange, an international
research exchange initiative for computer
software-related networking technolo-
gies, called ReX. Information is at
<http://www.usenix.org/about/rex.html>.

Here is a list of other projects USENIX
funded this year:

Travel stipends for the African
Network Infrastructure Meeting in
Cape Town in May.

Student stipends for travel and regis-
tration to attend the Computers,
Freedom and Privacy Conference and
the Fast Software Encryption
Workshop.

Incident Cost Analysis and Modeling
Project (I-CAMPII) of the University
of Michigan to study the frequency
and costs of IT-related incidents.

Software Patent Institute (SPI) to
expand, and improve SPI’s Database
of Software Technologies.

SOS Children’s Village Illinois, to sup-
port the purchase of computers and
network hardware and software for
this non-profit foster care agency.

Sponsor the USA Computing
Olympiad for high-school students.

Women in Computing
USENIX is dedicated to increasing the
representation of women in the comput-
ing professions. In our efforts to support
women’s fuller participation, USENIX
has contributed to funding the produc-
tion of a video targeted at high school
and college students. The video “Career
Encounters: Women in Computing” has
been broadcast nationally on cable and
satellite public television networks. For
information about this video, visit
<http://www.davisgrayinc.com/new1.html>.

USENIX will also be providing support
for two programs sponsored by the
Computing Research Association’s
Committee on the Status of Women in
Computing Research. The first project is
the Distributed Mentor Project
(<http://www.cra.org/Activities/craw/dmp/index.html>),
in which outstanding female undergrad-
uates work with female faculty mentors
for a summer of research at the mentor’s
institution.
The second project is called the Collab-
orative Research Experiences For Women
(CREW)
(<http://www.cra.org/Activities/craw/crew/index.html>),
whereby students work in collaborative
teams with a faculty mentor at their
home institution during the academic
year.

USENIX is proud to be a sponsor of the
recent Grace Hopper Women in
Computing conference.

For more information about the
USENIX Good Works program, please
see:
<http://www.usenix.org/about/goodworks.html>, or
contact Gale Berkowitz, Deputy
Executive Director, at
<gale@usenix.org>.

http://www.usenix.org/students/students.html
http://www.usenix.org/about/rex.html
http://www.davisgrayinc.com/new1.html
http://www.cra.org/Activities/craw/dmp/index.html>
http://www.cra.org/Activities/craw/crew/index.html>
http://www.usenix.org/about/goodworks.html>,or

	01-inthisissue
	02-dns
	03-repeat
	04-log
	05-nessus
	06-mudge
	07-dietrich
	08-burnham
	09-bookworm
	10-news

