
J U N E 2 0 0 8 V O L U M E 3 3 N U M B E R 3

T H E U S E N I X M A G A Z I N E

The Advanced Computing
Systems Association

OPINION	 Musings	 2
R i k Fa R Row

SySadmIN	 	Data	Corruption	in	the	Storage	Stack:	
A	Closer	Look	 6
L a k s h m i Ba i R ava su n da R a m ,
G a R t h G o o d s o n , B i a n c a s ch Ro e d e R ,
a n d R e a a R paci - d uss e au, a n d R e m z i
a R paci - d uss e au

Pergamum:	Energy-efficient	Archival	Storage	
with	Disk	Instead	of	Tape	 15
m a R k w. sto R e R , k e v i n m . G R e e n a n ,
e t h a n L . m i L L e R , a n d k a L a d h a R vo Ru G a n t i

Don’t	Blame	Disks	for	Every	Storage	Subsystem	
Failure	 22
we i h a n G J i a n G , ch o n G Fe n G h u, Y ua n Y ua n
z h o u, a n d a R k a dY k a n e vs k Y

TierStore:	A	Distributed	File	System	for		
	Challenged	Networks	in	Developing	Regions	 32
m i ch a e L d e m m e R , B owe i d u, a n d
e R i c B R e we R

The	Present	and	Future	of	SAN/NAS:	Interview	
with	Dave	Hitz	and	Brian	Pawlowsky	of		
NetApp	 39
i n t e Rv i e w BY m a RG o s e Lt z e R

PrOgrammINg	 	Driving	the	Evolution	of	Software	Languages	
to	a	Concurrent	Future	 45
a n d R e w B Rown swo R d

The	Murky	Issue	of	Changing	Process		
Identity:	Revising	“Setuid	Demystified”	 55
da n t sa FR i R , d i L m a da s i Lva , a n d
dav i d waG n e R

COlumNS	 	Practical	Perl	Tools:	A	Little	Place	for	
Your	Stuff	 67
dav i d n . B L a n k- e d e L m a n

Pete’s	All	Things	Sun	(PATS):	
The	State	of	ZFS	 72
pe t e R Ba e R G a Lv i n

iVoyeur:	Admin,	Root	Thyself.	 77
dav i d J o s e ph s e n

/dev/random	 83
Ro B e R t G . Fe R R e L L

StaNdardS	 Update	on	Standards:	Undue	Influence?	 85
n i ck sto u G h to n

bOOk	revIewS	 Book	Reviews	 88
e L i z a B e t h z wi ck Y e t a L .

uSeNIx	NOteS	 	Election	Results	 91

Notice	of	Annual		Meeting	 91

CONfereNCeS	 	FAST	’08	Reports	 93

LSF	’08	Reports	 107

June08_login_covers.indd 1 5/13/08 4:44:56 PM

Upcoming Events

For a complete list of all USENIX & USENIX co-sponsored events,
see http://www.usenix.org/events.

The SixTh inTernaTional ConferenCe on
Mobile SySTeMS, appliCaTionS, and ServiCeS
(MobiSyS 2008)
Jointly sponsored by ACM SIGMOBILE and USENIX

June 17–20, 2008, Breckenridge, cO, uSA
http://www.sigmobile.org/mobisys/2008/

2008 USenix annUal TeChniCal ConferenCe
June 22–27, 2008, BOStOn, MA, uSA
http://www.usenix.org/usenix08

firST USenix WorkShop on large-SCale
CoMpUTing (laSCo ’08)
Co-located with USENIX ’08

June 23, 2008, BOStOn, MA, uSA
http://www.usenix.org/lasco08

xen SUMMiT norTh aMeriCa 2008
Co-located with USENIX ’08

June 23–24, 2008, BOStOn, MA, uSA
http://xen.org/xensummit/

2nd inTernaTional ConferenCe on diSTribUTed
evenT-baSed SySTeMS (debS 2008)
Organized in cooperation with USENIX, the IEEE and IEEE
Computer Society, ACM SIGSOFT, and ACM SIGMOD

July 2–4, 2008, rOMe, itAly
http://debs08.dis.uniroma1.it/

2008 USenix/aCCUraTe eleCTroniC
voTing TeChnology WorkShop (evT ’08)
Co-located with USENIX Security ’08

July 28–29, 2008, SAn JOSe, cA, uSA
http://www.usenix.org/evt08

2nd USenix WorkShop on offenSive
TeChnologieS (WooT ’08)
Co-located with USENIX Security ’08

July 28, 2008, SAn JOSe, cA, uSA
http://www.usenix.org/woot08
Submissions due: June 1, 2008

WorkShop on Cyber SeCUriTy
experiMenTaTion and TeST (CSeT ’08)
Co-located with USENIX Security ’08

July 28, 2008, SAn JOSe, cA, uSA
http://www.usenix.org/cset08

17Th USenix SeCUriTy SyMpoSiUM
July 28–AuguSt 1, 2008, SAn JOSe, cA, uSA
http://www.usenix.org/sec08

3rd USenix WorkShop on hoT TopiCS in
SeCUriTy (hoTSeC ’08)
Co-located with USENIX Security ’08

July 29, 2008, SAn JOSe, cA, uSA
http://www.usenix.org/hotsec08

Third WorkShop on SeCUriTy MeTriCS
(MeTriCon 3.0)
Co-located with USENIX Security ’08

July 29, 2008, SAn JOSe, cA, uSA
http://www.securitymetrics.org/content/Wiki.
jsp?page=Metricon3.0

22nd large inSTallaTion SySTeM adMiniSTraTion
ConferenCe (liSa ’08)
Sponsored by USENIX and SAGE

nOveMBer 9–14, 2008, SAn diegO, cA, uSA
http://www.usenix.org/lisa08

SyMpoSiUM on CoMpUTer hUMan inTeraCTion
for ManageMenT of inforMaTion TeChnology
(ChiMiT ’08)
Sponsored by ACM in association with USENIX

nOveMBer 14–15, 2008, SAn diegO, cA, uSA
http://www.chimit08.org

aCM/ifip/USenix 9Th inTernaTional
MiddleWare ConferenCe (MiddleWare 2008)

deceMBer 1–5, 2008, leuven, BelgiuM
http://middleware2008.cs.kuleuven.be

June08_login_covers.indd 2 5/13/08 4:44:58 PM

; LO G I N : J U N E 20 0 8 A RTI CLE T ITLE �

contents

Ed i to r
Rik Farrow
rik@usenix.org

M a n agi n g Ed i to r
Jane-Ellen Long
jel@usenix.org

Co p y Ed i to r
David Couzens
proofshop@usenix.org

pro d u C t i o n
Casey Henderson
Jane-Ellen Long
Michele Nelson

t y pEsE t t Er
Star Type
startype@comcast.net

usEn i X a ss o Ci at i o n
2560 Ninth Street,
Suite 215, Berkeley,
California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

http://www.usenix.org
http://www.sage.org

;login: is the official
magazine of the
USENIX Association.

;login: (ISSN 1044-6397) is
published bi-monthly by the
USENIX Association, 2560
Ninth Street, Suite 215,
 Berkeley, CA 94710.

$90 of each member’s annual
dues is for an annual sub-
scription to ;login:. Subscrip-
tions for nonmembers are
$120 per year.

Periodicals postage paid at
Berkeley, CA, and additional
offices.

POSTMASTER: Send address
changes to ;login:,
USENIX Association,
2560 Ninth Street,
Suite 215, Berkeley,
CA 94710.

©2008 USENIX Association

USENIX is a registered trade-
mark of the USENIX Associa-
tion. Many of the designations
used by manufacturers and
sellers to distinguish their
products are claimed as trade-
marks. USENIX acknowledges
all trademarks herein. Where
those designations appear in
this publication and USENIX
is aware of a trademark claim,
the designations have been
printed in caps or initial caps.

V O L . 3 3 , # 3 , J u n e 2 0 0 8

OPINION	 Musings 2
R I k FA R ROw

SySadmIN	 Data Corruption in the Storage Stack:
A Closer Look 6
L A k s h m I BA I R AvA sU N dA R A m ,
G A R T h G O O d s O N , B I A N C A s Ch RO E d E R ,
A N d R E A A R pACI - d Uss E AU, A N d R E m z I
A R pACI - d Uss E AU

Pergamum: Energy-efficient Archival Storage
with Disk Instead of Tape 15
m A R k w. sTO R E R , k E v I N m . G R E E N A N ,
E T h A N L . m I L L E R , A N d k A L A d h A R vO RU G A N T I

Don’t Blame Disks for Every Storage Subsystem
Failure 22
wE I h A N G J I A N G , Ch O N G FE N G h U, Y UA N Y UA N
z h O U, A N d A R k A dY k A N E vs k Y

TierStore: A Distributed File System for
 Challenged Networks in Developing Regions 32
m I Ch A E L d E m m E R , B OwE I d U, A N d
E R I C B R E wE R

The Present and Future of SAN/NAS: Interview
with Dave Hitz and Brian Pawlowsky of
NetApp 39
I N T E Rv I E w BY m A RG O s E LT z E R

PrOgrammINg	 Driving the Evolution of Software Languages
to a Concurrent Future 45
A N d R E w B ROwN swO R d

The Murky Issue of Changing Process
Identity: Revising “Setuid Demystified” 55
dA N T sA FR I R , d I L m A dA s I LvA , A N d
dAv I d wAG N E R

COlumNS	 Practical Perl Tools: A Little Place for
Your Stuff 67
dAv I d N . B L A N k- E d E L m A N

Pete’s All Things Sun (PATS):
The State of ZFS 72
pE T E R BA E R G A Lv I N

iVoyeur: Admin, Root Thyself. 77
dAv I d J O s E ph s E N

/dev/random 83
RO B E R T G . FE R R E L L

StaNdardS	 Update on Standards: Undue Influence? 85
N I Ck sTO U G h TO N

bOOk	revIewS	 Book Reviews 88
E L I z A B E T h z wI Ck Y E T A L .

uSeNIx	NOteS	 	Election Results 91

Notice of Annual Meeting 91

CONfereNCeS	 	FAST ’08 Reports 93

LSF ’08 Reports 107

login_articles_JUNE08.indd 1 5/13/08 4:50:47 PM

� ; LO G I N : vO L . 33, N O. 3

R i k F a R R o w

musings
rik@usenix.org

W e a r e a l l a c c u s t o m e d t o o u r
software having bugs. We would be sur-
prised if our software actually worked
perfectly, with no glitches or gaping secu-
rity holes. Surprised? More like flummoxed.
Oddly, we seem to have a much stronger
belief about our hardware being perfect,
that processors can perform 128-bit float-
ing-point multiplies accurately, and that
disks actually store what we ask them to.
Well, guess again.

During FAST ’08, I was treated to what has become
a yearly spectacle: researchers digging into massive
disk-error databases to pick apart what goes wrong
with disks while in production. At FAST ’07, the
big news was the failure curve for hard drives not
being bathtub-shaped. In 2008, researchers looked
for, and found, other problems with using disks
that are certainly surprising.

As one researcher pointed out, the typical hard
drive includes 300,000 lines of code in its firm-
ware: room enough for errors, eh? And we thought
we were using hardware, but like many hardware
devices, even hard drives are software-controlled.
As Goodson and his researchers write in the lead
article in this issue, silent write errors are actu-
ally a big problem. Their findings certainly have
me longing for new filesystem designs, such as ZFS
and the under-development BTRFS, that include
checksums with the data they store. Even enter-
prise-level drives have a problem with silent write
errors, which is something you might not expect,
as these drives write checksums and error-cor-
recting code into each sector. But when the wrong
data gets written, or data gets written to the wrong
physical block, error-correction code just isn’t
going to help you.

Buggy Hardware

There was once a time when I relied on hardware
failure. I’ve built a lot of my desktop systems over
the years and would use them until they were ob-
solete (for three to five years). Over time, I would
use my own personal method for organizing direc-
tories, resulting in a pretty incredible mess. I could
still find things, of course, and rarely lost things.
But my file hierarchies began to look more and
more like the amazing Winchester Mystery House
in San Jose.

login_articles_JUNE08.indd 2 5/13/08 4:50:48 PM

Then a miracle would happen. The hard drive would cease working, and
only the directories I had deemed important enough to back up could be re-
stored. I would start out with a brand new, empty filesystem, on a hard disk
that was generally twice as big as the previous one. Backup media evolved
from floppy disks (really) to quarter-inch tape cartridges (a whopping 45
MBs), then to CDs (700 MB!), and finally to the plug-in USB drive.

And now I was in trouble. The USB drive was newer than my desktop drive,
and I wound up with stuff I had deleted being still available on the backup
drive. I now find myself in need of some serious filesystem organizing.

And I, like many in this modern age, find myself with an even worse prob-
lem: How do we safely archive the records of our increasingly digital lives?
Digital photos, digital recordings, and digital videos that record life’s big
events all wind up on hard drives, perhaps backed up to another hard drive
and the read-only storage of plastic disks (CDs and DVDs). I’ve already spo-
ken of the problems with hard drives, both because of sudden, unexpected
deaths, but also the now uncovered issues of silent write errors. But what
of other uncontrollable issues, such as the feature creep of image standards?
Will the JPEG digital images of a wedding or child’s first birthday still be us-
able in 100 years?

One of the keynote speakers at FAST, Cathy Marshall, has researched how
real people are currently handling archiving their digital media, and she
outlined the shaky plans her research subjects had. But how good are our
own plans for archiving? Will you remember to dig out the CDs to which
you copied your digital photos, read them in, and upgrade the digital format
to whatever is current before the conversion software can no longer recog-
nize the format you had been using? And how long will CDs reliably store
data? Nobody knows. They haven’t been around long enough yet, but we
certainly know that CDs exposed to sunlight will start failing pretty quickly.
Heat will also destroy data disks, and perhaps age will as well. We have all
seen photos of at least some (if not all) of our grandparents and even some of
their parents as well. But will our media be readable in 50 years?

Tomes

Perhaps we should consider using Pergamum Tomes, simple embedded sys-
tems complete with a hard drive, designed for creating distributed archives
(see the article by Storer and his colleagues). Although I like the idea of hav-
ing lots of small systems, using power over Ethernet and only spinning up
the hard drives when needed, I don’t consider my own home proof against
the fires we sometimes see in the Southwest. In fact, every spring brings
with it incredible dryness, and the beautiful scenery takes on a terrifying
alter ego that may destroy entire neighborhoods as well as forests. And there
go my archives.

But there are still more hardware issues. Jiang et al. explain that more prob-
lems were found with supporting hardware than with hard drives in their
research. Their article and FAST ’08 paper go a long way toward explaining
why disk manufacturers often find no problems with drives returned be-
cause they appeared DOA.

Sluggish Memory

I’ve been harping on CPU performance issues in my columns, and with so-
licited articles, for many years now. What has likely become evident to any-
one with a technical background is that making CPUs run faster has little to

; LO G I N : J U N E 20 0 8 mUsI N Gs �

login_articles_JUNE08.indd 3 5/13/08 4:50:48 PM

� ; LO G I N : vO L . 33, N O. 3

do with increasing clock speeds. The performance bottlenecks today have
to do with memory latency issues. If a cache miss results in having to grab
a line from DRAM, the processor can wait many thousands of cycles for
the data needed to arrive. And if the very next operation results in another
cache miss because of poor data layout, many more thousands of CPU cycles
may be wasted.

CPU vendors have gotten creative about trying to hide these issues. Having
multithreaded cores works to mitigate the problems, by allowing one thread
to go idle while another thread proceeds once data has been copied from
DRAM to cache. Sun’s Niagara architectures does this very well, and Intel’s
Hyperthreading provides at least two threads to help with this problem.

Many-cored systems are the other important advance in processor technol-
ogy, but this advance comes with a large dose of programming pain. Mc-
Cool’s article in the April 2008 issue focused on increased parallelism in
CPU design, carefully describing the many different types of parallelism
found in current architectures. In this issue, Andrew Brownsword looks at
how parallelism is the only hope we have for increasing actual CPU perfor-
mance. Andrew explains why this is so, invoking Amdahl’s Law, and then
provides examples of just why parallel programming is so difficult to do. We
have neither the hardware support, such as transactional memory, nor the
software approach, in new languages, compilers, and debuggers, for writing
good parallel software.

I was very excited to learn that Dave Patterson will be giving the keynote
at the 2008 USENIX Annual Technical Conference in Boston this sum-
mer. Patterson, best known for the development of both RISC and RAID,
will be telling attendees that they are going to have to work with many-core
systems and their increased parallelism, whether they like it or not. And I
agree. Today, smart phones, such as the iPhone, consist of many processing
cores, and this is going to be the future of desktops and servers. We already
have desktops that include multiple GPUs used for graphics coprocessing
(and for some scientific work as well). Many-core systems are the future of
computing, and we need software that will support this future. In fact, we
needed this software years ago. As Andrew points out in his article, testing
CPU utilization at Electronic Arts, where he works, shows that CPUs gener-
ally run at 4% of capacity while executing an application, and occasionally
they reach 60% utilization but only with painstakingly handcrafted code. So
much for your 3.2-GHz Xenon CPUs and the registered DRAMs that run hot
to the touch, as the CPUs are idling the majority of the time, waiting for data
to make its way from memory.

I have often written about the problems with the current batch of hardware
and software (see, for example, the August 2007 “Musings”). Behind the
scenes, I have done more than just whine. I have encouraged researchers
and practitioners to start thinking outside the box of the past. The most tan-
gible effect, although certainly not one that I can take credit for, is the first
USENIX Workshop on Hot Topics in Parallelism (HotPar ’09: http://www.
usenix.org/events/hotpar09/).

Research into parallelism has become a very hot topic, quite publicly pushed
by Intel and Microsoft. I yearn for the day when our cell phones, desktops,
and servers cease to be architected like micro-mainframes, with designs
more suited to time-sharing, but instead begin to follow the secure and truly
parallel models of computing that we should be using.

login_articles_JUNE08.indd 4 5/13/08 4:50:49 PM

In This Issue

I’ve actually managed to introduce all the articles but two, at this point.
Right before the FAST ’08 conference, Margo Seltzer and I interviewed Dave
Hitz, a founder of NetApp, and Brian Pawlowsky, an NFS developer there,
about the future of SAN and NAS. The interview was recorded and tran-
scribed, and you can find that transcription at www.usenix.org/publications/
login/2008-06/netappinterview.pdf. I’ve taken the 42 pages of transcription
and edited it down to something that fits on five pages. Of course, I don’t
cover all the points in that interview, but that’s just not the point.

We also have an article written by Dan Tsafir, Dilma Da Silva, and David
Wagner. Dan and his co-authors produced an article examining problems
with setting user and group IDs correctly in widely utilized code. They set
about explaining how the various methods for changing effective user and
group IDs work, and they provide a portable technique for doing this prop-
erly.

In the columns, we start out with David Blank-Edelman, who demonstrates
many of the ways that Perl can be used to store data structures. Peter Galvin
then provides us with a splendid update on ZFS, including current and fu-
ture features, as well as the strengths and weaknesses of the current imple-
mentation.

Dave Josephsen takes a different look at storage, from the perspective of au-
diting disk reads and writes. Dave finds most current techniques in Linux
lacking, and he demonstrates a clever use of SystemTap to capture the user
and group IDs during reads and writes of a particular disk partition.

Robert Ferrell provides us with his own personal take on storage issues. We
have Nick Stoughton’s comments on his herculean tasks working with com-
peting standards committees, trying to manipulate the C++ standards body
into not diverging too far from POSIX standards. We end, as usual, with a
collection of book reviews.

Did I write “end”? Actually, we have summaries from both FAST ’08 and the
Linux Storage and Filesystem workshop. While the FAST summaries pro-
vide you with the scoop on what happened during the conference, the LSF
summaries provide a different sort of insight, as in what to expect from the
Linux community in regards to file systems in the next year. I found myself
particularly interested in the issues surrounding solid state disks, as current
high-end models can complete I/O operations faster than can be handled.
It’s obvious that support for SSDs is years out, so if you have plans to solve
issues with memory-starved applications, SSDs are not a short-term solution.

; LO G I N : J U N E 20 0 8 mUsI N Gs �

login_articles_JUNE08.indd 5 5/13/08 4:50:49 PM

� ; LO G I N : vO L . 33, N O. 3

L a k s h m i B a i R a v a s u n d a R a m ,
G a R t h G o o d s o n , B i a n c a s c h R o e d e R ,
a n d R e a a R p a c i - d u s s e a u , a n d
R e m z i a R p a c i - d u s s e a u

data corruption in
the storage stack:
a closer look
Lakshmi N. Bairavasundaram is a PhD student in
Computer Sciences at the University of Wiscon-
sin, Madison, working with advisors Prof. Andrea
Arpaci-Dusseau and Prof. Remzi Arpaci-Dusseau. He
received his BE from Anna University, India, and his
MS from the University of Wisconsin, Madison.

laksh@cs.wisc.edu

Garth Goodson is a researcher at NetApp, Inc., with
interests in virtualization, distributed systems, and
new memory technologies. He received his PhD in
2004 from Carnegie Mellon University under the
supervision of Greg Ganger.

Garth.Goodson@netapp.com

Bianca Schroeder is an Assistant Professor in the
Department of Computer Science at the Univer-
sity of Toronto. Before coming to Toronto, Bianca
completed her PhD and a two-year postdoc at
Carnegie Mellon University. Her research focuses on
computer systems and has earned her multiple best
paper awards.

bianca@cs.toronto.edu

Andrea Arpaci-Dusseau is an associate professor of
Computer Sciences at the University of Wisconsin,
Madison. She received her BS from Carnegie Mellon
University and her MS and PhD from the University
of California, Berkeley, under advisor David Culler.

dusseau@cs.wisc.edu

Remzi Arpaci-Dusseau is an associate professor of
Computer Sciences at the University of Wisconsin,
Madison. He received his BS from the University of
Michigan and his Master’s and PhD from the Uni-
versity of California, Berkeley, under advisor David
Patterson.

remzi@cs.wisc.edu

o n e o f t h e b i g g e s t c h a l l e n g e s i n
designing storage systems is providing the
reliability and availability that users expect.
A serious threat to reliability is silent data
corruption (i.e., corruption not detected by
the disk drive). In order to develop suitable
protection mechanisms against corruption,
it is essential to understand its character-
istics. In this article, we present the results
from the first large-scale field study of
data corruption. We analyze over 400,000
corruption instances recorded in produc-
tion storage systems containing a total of
1.53 million disk drives, over a period of 41
months.

One primary cause of data loss is disk drive un-
reliability. It is well known that hard drives are
mechanical, moving devices that can suffer from
mechanical problems, leading to drive failure and
latent sector errors (detected by the disk’s ECC). Less
well known, however, is that current hard drives
and controllers consist of hundreds of thousands of
lines of low-level firmware code. Bugs in this firm-
ware code can cause a more insidious type of disk
error: silent data corruption, where the data is si-
lently corrupted with no indication from the drive
that an error has occurred.

Silent data corruptions could lead to data loss more
often than latent sector errors, since, unlike latent
sector errors, they cannot be detected or repaired
by the disk drive itself. Worse, basic protection
schemes such as RAID may also be unable to de-
tect these problems, thereby returning corrupt
data.

The most common technique used in storage sys-
tems to detect data corruption is the addition of a
higher-level checksum for each disk block, which is
validated on each disk block read. However, check-
sums do not protect against all forms of corrup-
tion. Therefore, in addition to checksums, NetApp
storage systems also use filesystem-level disk block
identity information to detect previously undetect-
able corruptions.

In order to improve the handling of corruption er-
rors, we need to develop a thorough understanding
of data corruption characteristics. Although recent
studies provide information on whole disk failures
[4, 5, 7] and latent sector errors [1], very little is
known about data corruption, its prevalence, and
its characteristics. This article summarizes the re-

login_articles_JUNE08.indd 6 5/13/08 4:50:50 PM

sults of our study of data corruption first published in the 2008 USENIX
FAST conference [2].

Detecting Data Corruption

The data we analyze is from tens of thousands of production and develop-
ment NetApp storage systems from hundreds of customer sites. These stor-
age systems are designed to detect and handle a wide range of disk-related
errors, including silent data corruption. Data corruption may be caused by
both hardware and software errors. Hardware bugs include bugs in the disk
drive or the disk shelf firmware, bad memory, and adapter failures. Typi-
cally, it is not possible to identify the root cause of a corruption error. How-
ever, our storage system has several mechanisms in place to detect when
data corruption occurs, to prevent propagation of corrupt data. We briefly
describe two of those mechanisms.

DaTa InTegrITy SegMenT

In order to detect corruptions, the system stores extra information along
with each disk block. For every 4KB file system block written, the storage
controller writes a 64-byte data integrity segment along with the disk block.

One component of the data integrity segment is a checksum of the entire
4KB filesystem block. The checksum is validated by the RAID layer when-
ever the data is read. Once a corruption has been detected, the original
block can usually be restored through RAID reconstruction. We refer to
corruptions detected by RAID-level checksum validation as checksum mis-
matches.

A second component of the data integrity segment is the block identity in-
formation. The identity information refers to where the block resides within
the file system (e.g., this block belongs to inode 5 at offset 100). This identity
is cross-checked at file read time to ensure that the block being read belongs
to the file being accessed. If, on file read, the identity does not match, the
data is reconstructed from parity. We refer to corruptions that are not de-
tected by checksums, but detected through filesystem identity validation, as
identity discrepancies.

DaTa SCruBBIng

In order to proactively detect errors, the RAID layer periodically scrubs all
disks. A data scrub issues read operations for each physical disk block, com-
putes a checksum over its data, and compares the computed checksum to
the checksum located in its data integrity segment. If the checksum compar-
ison fails (i.e., a checksum mismatch), the data is reconstructed from other
disks in the RAID group, after those checksums are also verified.

We refer to these cases of mismatch between data and parity as parity incon-
sistencies. Note that data scrubs are unable to validate the extra filesystem
identity information stored in the data integrity segment, since this informa-
tion only has meaning to the file system.

CHeCkSuM MISMaTCHeS

As just described, corruption events are classified into three classes: check-
sum mismatches, identity discrepancies, and parity inconsistencies. In this
article we focus on checksum mismatches, since we find that they occur

; LO G I N : J U N E 20 0 8 dATA CO RRU p TI O N I N Th E sTO R AG E sTACk �

login_articles_JUNE08.indd 7 5/13/08 4:50:50 PM

� ; LO G I N : vO L . 33, N O. 3

with the highest frequency. Checksum mismatches can result from (i) data
content corrupted by components within the data path, or (ii) a torn write,
wherein only a portion of the data block is written successfully, or (iii) a
misdirected write, wherein the data is written to either the wrong disk or
the wrong location on disk, thus overwriting and corrupting data [3, 6].

Our study focuses on the characteristics of checksum mismatches, such as
their frequency, the factors that affect the development of checksum mis-
matches, and the statistical properties of checksum mismatches. In our
analysis we refer to a 4KB file system block with a checksum mismatch as a
checksum mismatch block. We call a disk drive a corrupt disk if it has at least
one checksum mismatch block.

DaTa ColleCTIon

The data we collected covers a period of 41 months starting in January 2004
and includes tens of thousands of NetApp storage systems containing a total
of 1.53 million disk drives. The data was collected by a built-in, low-over-
head mechanism called AutoSupport. AutoSupport is included in every Net-
App storage system and logs system events back to a central repository.

Our disk drive sample is not only large but also diverse. The disks belong to
14 different disk families. Each disk family refers to one particular disk drive
product. Typically, disks in the same family only differ in the number of
platters and/or heads. The drives come from 31 distinct disk models. A disk
model is the combination of a disk family and a particular disk size. Finally,
the drives cover two different disk classes: an enterprise class of Fibre Chan-
nel disks and a nearline class of SATA disks.

result Synopsis

During the 41-month period covered by our data we observed a total of
about 400,000 checksum mismatches. Of the total sample of 1.53 million
disks, 3855 disks developed checksum mismatches: 3088 of the 358,000
SATA disks (0.86%) and 767 of the 1.17 million Fibre Channel disks
(0.065%). This indicates that SATA disks may be more susceptible to corrup-
tion leading to checksum mismatches than Fibre Channel disks. On average,
each disk developed 0.26 checksum mismatches. By considering only cor-
rupt disks, the mean number of mismatches per disk is 104, the median is
3, and the mode (i.e., the most frequently observed value) is 1 mismatch per
disk. The maximum number of mismatches observed for any single drive
was 33,000.

DISk ClaSS, MoDel, age, anD SIze

We start by examining the dependence of checksum mismatches on factors
such as disk class, disk model, and disk age. A disk’s age is its time in the
field since its ship date.

Figures 1 and 2 shows the cumulative distribution function of the time
in the field until the first checksum mismatch occurs for SATA and Fibre
Channel disks, respectively.

login_articles_JUNE08.indd 8 5/13/08 4:50:50 PM

F i g u r e 1 : C u m u L a t i V e d i s t r i b u t i O n F u n C t i O n O F t h e t i m e i n
t h e F i e L d u n t i L t h e F i r s t C h e C k s u m m i s m a t C h O C C u r s F O r s a t a
d i s k s
F i g u r e 2 : C u m u L a t i V e d i s t r i b u t i O n F u n C t i O n O F t h e t i m e i n

t h e F i e L d u n t i L t h e F i r s t C h e C k s u m m i s m a t C h O C C u r s F O r
F i b r e C h a n n e L d i s k s

Observation: SATA disks have an order of magnitude higher probability of
developing checksum mismatches than Fibre Channel disks.

We find that 0.66% of SATA disks develop at least one mismatch during the
first 17 months in the field, whereas only 0.06% of Fibre Channel disks de-
velop a mismatch during that time.

Observation: The probability of developing checksum mismatches varies sig-
nificantly across different disk models within the same disk class.

We see that there is an order of magnitude difference for developing at least
one checksum mismatch after 17 months between the two most extreme
SATA disk models: 3.5% for one model vs. 0.27% for the other.

Observation: Age affects different disk models differently with respect to the
probability of developing checksum mismatches.

On average, as SATA disks age, the probability of developing a checksum
mismatch is fairly constant, with some variation across the models. As Fibre
Channel disks age, the probability of developing the first checksum mis-
match decreases after about 6–9 months and then stabilizes.

Observation: There is no clear indication that disk size affects the probability
of developing checksum mismatches.

; LO G I N : J U N E 20 0 8 dATA CO RRU p TI O N I N Th E sTO R AG E sTACk �

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 3 6 9 12 15 18

Fr
ac

tio
n

of
 to

ta
l d

is
ks

 w
ith

 a
t l

ea
st

 1
 C

M

Disk age (months)

A-1
C-1
D-1
D-2
E-1
E-2
NL

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0 3 6 9 12 15 18

Fr
ac

tio
n

of
 to

ta
l d

is
ks

 w
ith

 a
t l

ea
st

 1
 C

M

Disk age (months)

Enterprise

k-3
l-1
l-2
l-3
m-2
n-1
n-2
n-3
o-1
o-2
ES

login_articles_JUNE08.indd 9 5/13/08 4:50:51 PM

�0 ; LO G I N : vO L . 33, N O. 3

Since the impact of disk size on the fraction of disks that develop checksum
mismatches is seen in only 7 out of 10 families, we conclude that disk size
does not necessarily impact the probability of developing checksum mis-
matches.

CHeCkSuM MISMaTCHeS per CorrupT DISk

Observation: The number of checksum mismatches per corrupt disk var-
ies greatly across disks. Most corrupt disks develop only a few mismatches
each. However, a few disks develop a large number of mismatches.

A significant fraction of corrupt disks develop only one checksum mis-
match. However, a small fraction of disks develop several thousand check-
sum mismatches (i.e., 1% of the corrupt disks produce more than half of all
mismatches recorded in the data).

Observation: On average, corrupt Fibre Channel disks develop many more
checksum mismatches than corrupt SATA disks.

Within 17 months, 50% of corrupt disks develop about 2 checksum mis-
matches for SATA disks but almost 10 for Fibre Channel disks. Given that
very few Fibre Channel disks develop checksum mismatches in the first
place, it might make sense to replace the Fibre Channel disk when the first
mismatch is detected.

Observation: Checksum mismatches within the same disk are not independent.

We found that the conditional probability of developing further checksum
mismatches, given that a disk has at least one mismatch, is higher than the
probability of developing the first mismatch. We also found that one par-
ticular SATA disk model is particularly aberrant: Around 30% of its corrupt
disks develop more than 1000 checksum mismatches.

DepenDenCe BeTween DISkS In THe SaMe SySTeM

Observation: The probability of a disk developing a checksum mismatch is
not independent of that of other disks in the same storage system.

Although most systems with checksum mismatches have only one corrupt
disk, we do find a considerable number of instances where multiple disks
develop checksum mismatches within the same storage system. In fact,
one of the systems in the study that used SATA disks had 92 disks develop
checksum mismatches. The probability of 92 disks developing errors inde-
pendently is less than 10−12, much less than 10−5, the approximate fraction
of systems represented by one system.

SpaTIal loCalITy

We measure spatial locality by examining whether each checksum mis-
match block has another checksum mismatch block (a neighbor) within
progressively larger regions (locality radius) around it on the same disk. For
example, if in a disk, blocks numbered 100, 200, and 500 have checksum
mismatches, then blocks 100 and 200 have one neighbor at a locality radius
of 100, and all blocks (100, 200, and 500) have at least one neighbor at a lo-
cality radius of 300.

Observation: Checksum mismatches have very high spatial locality. Much of
the observed locality is due to consecutive disk blocks developing corrup-
tion. Beyond consecutive blocks, the mismatches show very little spatial lo-
cality.

login_articles_JUNE08.indd 10 5/13/08 4:50:51 PM

For more than 50% of the checksum mismatch blocks in SATA disks and
more than 40% of the checksum mismatch blocks in Fibre Channel disks,
the immediate neighboring block also has a checksum mismatch (on disks
with between 2 and 10 mismatches). These percentages indicate very high
spatial locality.

It is interesting to examine how many consecutive blocks have mismatches.
We find that, among drives with at least 2 checksum mismatches, on av-
erage 3.4 consecutive blocks are affected. In some cases, the length of
consecutive runs can be much higher. About 3% of drives with at least
2 mismatches see one or more runs of 100 consecutive blocks with mis-
matches, and 0.7% of drives with at least 2 mismatches see one or more
runs of 1000 consecutive mismatches.

TeMporal loCalITy

Observation: Most checksum mismatches are detected within one minute of a
previous detection of a mismatch.

Observation: Checksum mismatches also exhibit temporal locality over larger
time windows and beyond the effect of detection time.

The first observation might not be surprising, since it could just be an ar-
tifact of the manner in which the detection takes place (by scrubbing). In
order to remove the impact of detection time, we examined temporal locality
over larger time windows. For each drive, we first determined the number of
checksum mismatches experienced in each two-week time window that the
drive was in the field and then computed the autocorrelation function (ACF)
on the resulting time series. The ACF can be used to determine whether the
number of mismatches in one two-week period of our time series is corre-
lated with the number of mismatches observed in two-week periods later.

If checksum mismatches in different two-week periods were independent
(no temporal locality on bi-weekly and larger time scales), the autocorrela-
tion would be close to zero at all time lags. Instead, we observe strong auto-
correlation even for large lags in the range of up to 10 months.

DISCovery

The severity of a data corruption event depends on when it is discovered. If
a checksum mismatch is encountered during RAID reconstruction, data loss
can result if the system is not configured to handle simultaneous disk fail-
ures.

Figure 3 (on p. 12) shows the distribution of requests that detect checksum
mismatches. There are five types of requests that discover checksum mis-
matches: (i) file system reads (FS Read); (ii) writes by the RAID layer (Write);
(iii) reads for disk copy operations (Non-FS Read); (iv) reads for scrub-
bing (Scrub); and (v) reads for RAID reconstruction (Reconstruction).

; LO G I N : J U N E 20 0 8 dATA CO RRU p TI O N I N Th E sTO R AG E sTACk ��

login_articles_JUNE08.indd 11 5/13/08 4:50:52 PM

�� ; LO G I N : vO L . 33, N O. 3

F i g u r e 3 : d i s t r i b u t i O n O F r e q u e s t s t h a t d e t e C t C h e C k s u m
m i s m a t C h e s

Observation: RAID reconstruction encounters a non-negligible number of
checksum mismatches.

We see that, on average, data scrubbing discovers about 49% of the check-
sum mismatches in SATA disks and 73% of the checksum mismatches in
Fibre Channel disks. Despite the use of data scrubbing, we find that RAID
reconstruction discovers about 8% of the checksum mismatches in SATA
disks. For some models more than 20% of checksum mismatches were de-
tected during RAID reconstruction. This observation implies that (i) data
scrubbing should be performed more aggressively and (ii) systems should
consider protection against double disk failures.

CoMparISon To laTenT SeCTor errorS

When comparing checksum mismatches to latent sector errors we find some
interesting similarities and differences:

n Frequency: The probability of developing checksum mismatches is
about an order of magnitude smaller than that for latent sector errors.

n Disk model: For both error types, the development of errors depends
on the disk model. Interestingly, the SATA disk model with the highest
percentage of disks developing latent sector errors also had the lowest
percentage of disks developing checksum mismatches.

n Disk class: For both error types, Fibre Channel disks are less likely to
develop an error than SATA disks. Surprisingly, however, in both cases,
once an error has developed, Fibre Channel disks develop a higher
number of errors than SATA disks.

n Spatial locality: Both latent sector errors and checksum mismatches
show high spatial locality. However, the locality radius is significantly
larger for latent sector errors.

We also found a weak positive correlation between checksum mismatches
and latent sector errors. The conditional probability of a latent sector error,
given that a disk has checksum mismatch, is about 1.4 times higher than the
unconditional probability of a latent sector error for SATA disks and about
2.2 times higher for Fibre Channel disks. We also verified the existence of a
correlation between the two error types by performing a chi-square test for
independence.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

A-
1

C
-1

D
-1

D
-2 E-
1

E-
2

k-
2

k-
3 l-1 l-2 n-
2

n-
3

o-
2

o-
3

N
L

ES

Fr
ac

tio
n

of
 C

M
s

di
sc

ov
er

ed

Disk Model

Reconstruction
FS Read

Write
Non-FS Read

Scrub

login_articles_JUNE08.indd 12 5/13/08 4:50:52 PM

lessons learned

We present some of the lessons learned from the analysis for corruption-
proof storage system design.

n Albeit not as common as latent sector errors, data corruption does hap-
pen. For some drive models as many as 4% of drives develop checksum
mismatches during the time examined. Even though rare, identity dis-
crepancies and parity inconsistencies do occur. Therefore, the protec-
tion offered by checksums and block identity information is critical to
protect against data corruption.

n A significant number (8% on average) of corruptions are detected dur-
ing RAID reconstruction, creating the possibility of data loss. In this
case, protection against double disk failures is necessary to prevent data
loss.

n Although the probability of developing a corruption is lower for en-
terprise-class drives, once they develop a corruption, many more are
likely to follow. Therefore, replacing an enterprise-class drive on the first
detection of a corruption might make sense.

n Strong spatial locality suggests that redundant data structures should be
stored at a distance from each other.

n The high degree of spatial and temporal locality may suggest that cor-
ruptions occur at the exact same time, perhaps as part of the same disk
request. Thus, important or redundant data structures should be written
as part of different write requests spaced over time.

n Strong spatial and temporal locality (over long time periods) suggests
that it is worth investigating how the locality can be leveraged for
smarter, targeted scrubbing (e.g., trigger a scrub before its next sched-
uled time) or selective scrubbing of an area of the drive that’s likely to be
affected.

n Failure prediction algorithms in systems should take into account the
correlation of corruption with other errors such as latent sector errors.

Conclusion

We have analyzed data corruption detected in 1.53 million disks used in
production storage systems. During a 41-month period we observed more
than 400,000 instances of checksum mismatches, 8% of which were discov-
ered during RAID reconstruction, creating the possibility of real data loss.

We identified various characteristics of checksum mismatches, including:
(i) the probability of developing the first checksum mismatch is almost an
order of magnitude higher for SATA disks than for Fibre Channel disks; (ii)
checksum mismatches are not independent occurrences—both within a
disk and within different disks in the same storage system—and the number
of mismatches per disk follows a heavy-tailed distribution; and (iii) check-
sum mismatches also show high spatial and temporal locality, encouraging
system designers to develop schemes that spread redundant data with re-
spect to both the on-disk location and the time written.

referenCeS

[1] L.N. Bairavasundaram, G.R. Goodson, S.Pasupathy, and J. Schindler, “An
Analysis of Latent Sector Errors in Disk Drives,” in Proceedings of the Interna-
tional Conference on Measurements and Modeling of Computer Systems (SIGMET-
RICS ’07), San Diego, California, June 2007.

; LO G I N : J U N E 20 0 8 dATA CO RRU p TI O N I N Th E sTO R AG E sTACk ��

login_articles_JUNE08.indd 13 5/13/08 4:50:52 PM

�� ; LO G I N : vO L . 33, N O. 3

[2] L.N. Bairavasundaram, G.R. Goodson, B. Schroeder, A.C. Arpaci-Dus-
seau, and R. Arpaci-Dusseau, “An Analysis of Data Corruption in the Storage
Stack,” in Proceedings of the 6th USENIX Symposium on File and Storage Technol-
ogies (FAST ’08), San Jose, California, Feb. 2008.

[3] W. Bartlett and L. Spainhower, “Commercial Fault Tolerance: A Tale
of Two Systems,” IEEE Transactions on Dependable and Secure Computing,
1(1):87–96 (Jan. 2004).

[4] W. Jiang, C. Hu, Y. Zhou, and A. Kanevsky, “Are Disks the Dominant
Contributor for Storage Subsystem Failures? A Comprehensive Study of Stor-
age Subsystem Failure Characteristics,” in Proceedings of the 6th USENIX Sym-
posium on File and Storage Technologies (FAST ’08), San Jose, California, Feb.
2008.

[5] E. Pinheiro, W.-D. Weber, and L.A. Barroso, “Failure Trends in a Large
Disk Drive Population,” in Proceedings of the 5th USENIX Symposium on File
and Storage Technologies (FAST ’07), San Jose, California, Feb. 2007.

[6] V. Prabhakaran, L.N. Bairavasundaram, N. Agrawal, H.S. Gunawi, A.C.
Arpaci-Dusseau, and R.H. Arpaci-Dusseau, “IRON File Systems,” in Proceed-
ings of the 20th ACM Symposium on Operating Systems Principles (SOSP ’05), pp.
206–220, Brighton, United Kingdom, Oct. 2005.

[7] B. Schroeder and G.A. Gibson, “Disk Failures in the Real World: What
Does an MTTF of 1,000,000 Hours Mean to You?” in Proceedings of the 5th
USENIX Symposium on File and Storage Technologies (FAST ’07), San Jose, Cali-
fornia, Feb. 2007.

uSenIX patrons
Google
Microsoft Research
NetApp

uSenIX Benefactors
Hewlett-Packard
IBM
Linux Pro Magazine
VMware

uSenIX & Sage partners
Ajava Systems, Inc.
DigiCert® SSL Certification
FOTO SEARCH Stock Footage

and Stock Photography
Raytheon
rTIN Aps
Splunk
Tellme Networks
Zenoss

uSenIX partners
Cambridge Computer

Services, Inc.
cPacket Networks
EAGLE Software, Inc.
GroundWork Open

Source Solutions
HypericInfosys
Intel
Interhack
Oracle
Ripe NCC
Sendmail, Inc.
Sun Microsystems, Inc.
UUNET Technologies, Inc.

Sage partner
MSB Associates

Thanks to uSenIX and Sage Corporate Supporters

login_articles_JUNE08.indd 14 5/13/08 4:50:53 PM

m a R k w . s t o R e R , k e v i n m . G R e e n a n ,
e t h a n L . m i L L e R , a n d k a L a d h a R
v o R u G a n t i

Pergamum:
energy-efficient
archival storage with
disk instead of tape
Mark W. Storer is a fourth-year graduate student at
the University of California, Santa Cruz. His primary
research is archival storage, in particular the secu-
rity, design, and management of long-term storage.
He plans to finish his PhD at the end of calendar
year 2008.

mstorer@cs.ucsc.edu

Kevin Greenan is a graduate student at the Univer-
sity of California, Santa Cruz. His interests include
system reliability, novel applications of erasure
codes in systems, and power-managed systems.

kmgreen@cs.ucsc.edu

Dr. Ethan L. Miller is an associate professor of com-
puter science at the University of California, Santa
Cruz, where he is a member of the Storage Systems
Research Center (SSRC). His current research proj-
ects, which are funded by the NSF, Department of
Energy, and industry support for the SSRC, include
long-term archival storage systems, scalable meta-
data and indexing, issues in petabyte-scale storage
systems, reliability and security in file systems, and
file systems for nonvolatile memory technologies.

elm@cs.ucsc.edu

Kaladhar Voruganti is a Technical Director in the
Advanced Technology Group at NetApp. He got his
PhD in Computing Science from the University of
Alberta in Edmonton, Canada. Kaladhar likes to
build systems and also write papers.

kaladhar@netapp.com

i s t h e c a r t l e a d i n g t h e h o r s e W h e n
it comes to long-term digital storage? Few
would disagree that there has been a tre-
mendous shift toward writing our personal
histories as digital data. The convenience of
digital photos has lured people away from
film, just as email has supplanted letters.
Unfortunately, we have yet to demonstrate
that we can reliably preserve digital data for
more than a few years. Will future genera-
tions be able to browse the sentimental and
historical artifacts we leave them the way
we might flip through our grandparents’
photo albums? Clearly, the long-term pres-
ervation of data requires a storage system
that can evolve over time, while remaining
cheap enough to allow the retention of
anything that might be important. To fill
this need, we have developed Pergamum,
a distributed network of energy-efficient,
hard drive–based storage appliances. Each
of our devices, which we call a Pergamum
tome, offers the low-latency access times of
disks while being cheaper to buy and oper-
ate than either disk- or tape-based systems.

The archival Storage problem

The state of archival storage, in the professional
sector, is largely the same as in the private sector,
although businesses are slowly starting to recog-
nize the importance of archival storage. Further,
they are starting to recognize it as a class of storage
distinct from mere backups. This is partially due to
legislation that has mandated requirements for the
preservation, retrieval, and auditing of digital data.
However, outside of legal requirements, data-min-
ing techniques have proven to be a boon in shap-
ing business strategy and have demonstrated the
enormous value contained in archival data.

Paradoxically, the increasing value of archival data
is driving the need for inexpensive, evolvable stor-
age. The goal of cost-efficient, long-term storage is
to enable the potentially indefinite retention of all
data that might one day prove useful. With cur-
rent systems, it is simply too expensive to store
everything indefinitely (if any long-term persis-
tence guarantees are available at all). Imagine par-
ents implementing a seven-year retention policy on

; LO G I N : J U N E 20 0 8 pE RG A mUm : E N E RG Y- E FFI CI E NT A RCh I vA L sTO R AG E ��

login_articles_JUNE08.indd 15 5/13/08 4:50:54 PM

�� ; LO G I N : vO L . 33, N O. 3

sentimental data in order to reclaim storage space! With home movies and
photography all being done digitally, is this what we are forcing them into?
Archival storage therefore needs to be cheap to obtain (static costs), cheap to
operate (operational costs), and easy to expand (evolvable). In particular, one
of the biggest culprits in high storage costs is energy consumption. Some
reports find that commonly used power supplies operate at only 65%–75%
efficiency, representing one of the primary culprits of excess heat production
and contributing to cooling demands that account for up to 60% of data-
center energy usage [7].

Unfortunately, despite its increasing prominence, archival data is still often
confused with backup data. The access pattern of archival data is dominated
by writes, and data, once written, is rarely changed. Reads are also rare, but
although a slight latency penalty is acceptable if it results in cost savings,
archival storage must still be fairly accessible. Archival data can be thought
of as cold data: You may not need it right away, but it is still useful; its value
increases the easier it is to read, query, browse, and search over. In con-
trast, backup data is a safety net that you only resort to if something else has
failed. Moreover, most backup data only needs to live long enough to be su-
perseded by a newer write. Thus, whereas both backup and archival storage
are concerned with data safety, the goal of the latter is to maintain both the
persistence and the usability of data. This aspect of archival storage can be
seen quite clearly in digital libraries. For example, the Digital Library Feder-
ation, a consortium of libraries, was formed not only to advance the preser-
vation of digital collections but also to expand their accessibility [4].

As a result of this confusion, digital archives are often relegated to storage
systems designed for backup data. Oftentimes, these systems utilize remov-
able media that decouple the media from the access hardware. Although
many of these systems seem cost-effective because the media are cheap,
when you amortize the high costs of readers, silos, and robots over the num-
ber of media, you often discover that these systems are far from a bargain.
In addition to hidden costs, decoupled media introduce other problems as
well. They generally offer poor access times, and they introduce the need to
either preserve complex chains of hardware or institute expensive and time-
consuming migration strategies. Tape, the most common media in these de-
coupled systems, is further hindered by a sequential access pattern. The end
result is that it can take on the order of minutes to handle random requests.
This conspires against many archival storage operations—such as auditing,
searching, consistency checking, and inter-media reliability operations—that
rely on relatively fast random-access performance.

In contrast to the decoupled media and reader of tape, hard drive–based
storage is an attractive alternative. By coupling the heads and the media,
hard drives offer better performance and obviate the need for robotics, re-
ducing physical movement and system complexity. Recent trends showing
drive prices dropping relative to tape [8] reinforce the idea that disk-based
systems may be feasible for archival storage. Even more promising, recent
work on MAIDs (Massive Arrays of Idle Disks) has demonstrated that con-
siderable energy-based cost savings can be realized, while still maintaining
high levels of performance, by keeping hard drives spun down [3, 12].

Although inexpensive hard drives can help control static costs, they can-
not, by themselves, fully address all the needs of archival storage. Long-lived
data has a potentially indefinite lifetime, and that requires a system that can
scale across time as well as capacity. Luckily, a number of recent innova-
tions have opened the door to a new model of evolvable storage. High-per-
formance, low-power CPUs and inexpensive, high-speed networks make it

login_articles_JUNE08.indd 16 5/13/08 4:50:54 PM

possible to produce a self-contained, network-attached storage device [6]
with reasonable performance and low power utilization. The Ethernet back-
plane helps simplify the long-term maintenance, as interfaces and protocols
are standardized and have changed much more slowly than storage-specific
interfaces. The long-term benefit of a network of intelligent storage devices is
that the system can be largely agnostic to how the actual devices are imple-
mented. For example, in fifty years, the devices might utilize holographic
storage, but their admission to the group will still only be predicated on the
ability to speak a given protocol and their ability to perform a set of well-de-
fined tasks.

The system we have developed using this model, called Pergamum, con-
sists of a distributed network of independent, intelligent storage appliances.
Other distributed systems exist, but they either compromise a fully distrib-
uted design for easier management [5] or do not achieve the level of power
savings needed in archival storage [13, 9]. Although each device in our sys-
tem is fully self-sufficient and manages its own consistency checking and
disk scrubbing, the devices cooperate in inter-device redundancy schemes
so that, even if a unit fails, data can be rebuilt.

The Design of pergamum

The Pergamum tomes that make up our system are simple, intelligent stor-
age devices. As Figure 1 shows, each unit is composed of four hardware
components: a commodity hard drive for persistent, large-capacity storage;
on-board flash memory for persistent, low-latency metadata storage; a low-
power CPU; and a network port. The result is a reliable, low-power storage
device that can be used as a building block for more advanced systems.

F i g u r e 1 : h i g h - L e V e L s y s t e m d e s i g n O F P e r g a m u m . i n d i V i d u a L
P e r g a m u m t O m e s a r e C O n n e C t e d b y a C O m m O d i t y n e t w O r k
b u i Lt F r O m O F F - t h e - s h e L F s w i t C h e s .

When fully active, each Pergamum tome consumes less than 13 watts, well
within the capabilities of power over Ethernet. Of that, the disk itself is by
far the largest energy consumer. This explains why MAID systems have been
able to achieve considerable power savings by keeping idle disks spun down.
Our design goes a step further and achieves even more cost savings by mov-
ing away from the power-hungry, centralized controllers found in most
MAID systems. Each Pergamum tome consumes less than a single watt in its
spun-down, idle mode! By pairing a 2–3 watt processor with each disk, we
can gracefully scale the power consumed to the size of the system’s load.

The form factor of each Pergamum tome can be quite compact. As the low-
power processing boards are roughly the size of a pack of gum (or smaller),

; LO G I N : J U N E 20 0 8 pE RG A mUm : E N E RG Y- E FFI CI E NT A RCh I vA L sTO R AG E ��

login_articles_JUNE08.indd 17 5/13/08 4:50:55 PM

18	 ; LO G I N : 	VO L . 	33, 	N O. 	3

the entire device would not be much larger than the drive itself. With power
over Ethernet, each Pergamum tome is essentially a sealed device with a sin-
gle connection. This, together with the lower air space requirements of idle
drives, means that very high storage densities can be achieved. It also opens
the door for novel rack configurations. Unlike a tape silo, there is no need to
provide room for robots to operate.

In addition to our choice of numerous low-power processors, the theme of
scaling the response to the size of the task can also be seen in our reliabil-
ity model. As Figure 2 shows, Pergamum utilizes two levels of redundancy
encoding: intra-disk and inter-disk. Individual segments are protected with
redundant blocks on the same disk (those labeled with a P). Redundancy
groups are protected by the shaded segments (labeled R), which contain era-
sure correcting codes for the other segments in the redundancy group. Note
that segments used for redundancy still contain intradisk redundant blocks
to protect them from latent sector errors. Recent work has highlighted the
danger of latent sector errors on disks [2]. These are errors that often go un-
detected until they are read. In a traditional RAID system, at the first sign of
any trouble, all the disks in the redundancy group would be spun up. This
one-size-fits-all approach to data recovery works well, but it is very expen-
sive. In our system, for many errors, the Pergamum tome can utilize its own
intra-disk parity to recover from such errors without waking up a single
other device. By using two levels of redundancy, Pergamum achieves higher
reliability compared to traditional RAID setups and much higher power sav-
ings for the price of only a slight increase in storage overhead.

F i g u r e 2 : T h e T w o l e v e l s o F r e d u n d a n c y i n P e r g a m u m

Although flash memory has received a fair amount of press lately, it will be
some time before it is cheap enough to use as the primary storage medium
for archival data. This is not, however, to say that it is not useful in long-
term storage. As Figure 1 shows, each Pergamum tome contains a small
amount of nonvolatile RAM. This is used as a persistent metadata store. It
allows the Pergamum tome to handle many types of requests without spin-
ning up the disk.

One of the most important types of metadata that we store in NVRAM is
data signatures. Similar to a traditional hash value, such as SHA-1, data sig-
natures allow us to confirm the correctness of data during a disk scrub or
read request; the stored signatures can be compared to a signature calcu-
lated over the data being read. The signatures we use, however, are called
algebraic signatures and they display a rather useful characteristic [10]. For
many codes, the signatures of the data exhibit the same relationship as the
data itself. In other words, if data blocks A and B generated parity block P
(as in a traditional RAID system), then the signatures of A and B will gen-
erate the signature of P. Using these signatures, Pergamum is able to check
the consistency not only of the data stored on each Pergamum tome but of
the entire inter-disk redundancy group. Moreover, using trees of hash val-
ues, we greatly reduce the amount of signature data we need to exchange
between nodes in order to confirm the integrity of the inter-disk redundancy

login_articles_JUNE08.indd 18 5/13/08 4:56:43 PM

groups. We describe our approach in full detail in our FAST ’08 paper on
Pergamum [11].

results and observations

One of the challenges raised by the use of low-power processors is the need
for tight engineering and optimized code. Today, even laptop processors
have the horsepower to make non-native, high-level scripting languages per-
form well, albeit at a huge power cost. As this project has spent its life in a
research lab and not in an engineering department, almost all of the soft-
ware running on the Pergamum tome has been implemented in Python,
and it can only be considered proof-of-concept–level code. The results are
nonetheless promising. For example, whereas data encoding on a Pergamum
tome took almost ten times as long as on a laptop processor, the laptop pro-
cessor consumed more than ten times the power. However, early system pro-
filing indicates that native implementations and careful optimizations can
reap great improvements in performance.

Although we are still early in development, our experiments suggest that our
model is a viable approach to archival storage. Our two-level approach to
reliability provides excellent protection against latent sector errors as well as
full drive failure, and it does so while incurring only minimal storage over-
head. Regarding performance, our initial optimizations suggest that we have
yet to tap the full potential of our low-power processors, not to mention the
possible level of parallelism inherent in our design. Finally, our cost analy-
sis suggests that we can be very price-competitive with tape, while offering
functionality that tape systems simply cannot provide. All of these results
and a full explanation of our experimental methods are available in our
FAST ’08 paper on Pergamum [11].

where Do we go from Here?

Pergamum demonstrates some of the features needed in an archival storage
system, but work remains to turn it into a fully effective, evolving, long-term
storage system. In addition to the engineering tasks associated with optimiz-
ing the Pergamum implementation for low-power CPUs, there are a number
of important research areas to examine.

Storage management in Pergamum, and in archival storage in general, is
an open area with a number of interesting problems. Management strate-
gies play a large part in cost efficiency; many believe that management costs
eclipse hardware costs [1]. The goal of our management research is to main-
tain the decentralized design of Pergamum, while making the addition and
removal of drives as automated as possible. In the model we envision, at a
frequency of no more than once a month a minimally trained administra-
tor would be tasked with adding new devices to the network and removing
failed devices. Once added, the devices would automatically find the exist-
ing nodes and either join their redundancy groups or join new redundancy
groups created by the system.

In our current implementation, users interact with Pergamum by submit-
ting requests to specific Pergamum tomes using a connection-oriented pro-
tocol. In future versions, the use of a simple, standardized put and get style
protocol, such as that provided by HTTP, could allow storage to be more
evolvable and permit the use of standard tools for storing and retrieving in-
formation. Further, techniques such as distributed searching that take into
account data movement and migration could greatly simplify how users in-
teract with the system.

; LO G I N : J U N E 20 0 8 pE RG A mUm : E N E RG Y- E FFI CI E NT A RCh I vA L sTO R AG E ��

login_articles_JUNE08.indd 19 5/13/08 4:50:56 PM

�0 ; LO G I N : vO L . 33, N O. 3

Part of a storage administrator’s role has traditionally been to decide how
much storage overhead to accept in order to increase storage redundancy.
Moving forward, this role will grow slightly more complicated as adminis-
trators increasingly consider energy costs as well. In order to make an in-
formed decision, the interplay of redundancy, storage overhead, and power
consumption must be better understood. Part of our work in this area is to
develop data-protection strategies that are best suited to the unique demands
and usage model of archival storage.

Although there is still a lot of work to do to turn Pergamum into a fully
functioning, evolvable, archival storage system, our storage model is promis-
ing. In its current state, Pergamum uses low-power, network-attached disk
appliances to provide reliable, cost-effective archival storage. Two levels of
redundancy encoding, within disks and across disks, provide both reliabil-
ity and cost savings, as data recovery techniques can be appropriately scaled
to the size of the data-loss events. Finally, Pergamum achieves its cost-effi-
ciency goals by controlling both static and operational costs. We keep fixed
costs low through the use of standardized network interfaces and com-
modity hardware, allowing each Pergamum tome to be viewed as an es-
sentially “disposable” appliance; a system operator can simply throw away
faulty nodes. Operational costs are controlled by utilizing ultra-low-power
CPUs, power-managed disks, and a myriad of new techniques such as local
NVRAM for caching metadata and redundancy information to avoid disk
spin-ups, intra-disk redundancy, and trees of algebraic signatures for distrib-
uted consistency checking.

Historical note

Our system is named after the Library of Pergamum, one of the most famous
libraries of the ancient world. Located in modern-day Turkey, then a part of
ancient Greece, the library was built by Eumenes II. Two distinctions make
this an apt inspiration for our system. First, the Library of Pergamum is the
home and namesake of parchment. At the time, manuscripts were written
on papyrus, which was expensive, as it was produced only in Alexandria.
Second, the library took great care in the layout of its shelves, as it recog-
nized the importance that airflow played in the long-term persistence of its
works.

aCknowleDgMenTS

We would like to thank our colleagues in the Storage Systems Research Cen-
ter (SSRC), who provided valuable feedback on the ideas in this paper, help-
ing us to refine them.

This research was supported by the Petascale Data Storage Institute under
Department of Energy award DE-FC02-06ER25768 and by the industrial
sponsors of the SSRC, including Los Alamos National Lab, Livermore Na-
tional Lab, Sandia National Lab, Agami Systems, Data Domain, Digisense,
Hewlett-Packard Laboratories, IBM Research, LSI Logic, Network Appliance,
Seagate, Symantec, and Yahoo!.

referenCeS

[1] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal, and A. Veitch,
“Hippodrome: Running Circles around Storage Administration,” in Proceed-
ings of the 2002 Conference on File and Storage Technologies (FAST ’02), Mon-
terey, CA, Jan. 2002.

login_articles_JUNE08.indd 20 5/13/08 4:50:56 PM

[2] L.N. Bairavasundaram, G.R. Goodson, S. Pasupathy, and J. Schindler,
“An Analysis of Latent Sector Errors in Disk Drives,” in Proceedings of the
2007 SIGMETRICS Conference on Measurement and Modeling of Computer Sys-
tems, June 2007.

[3] D. Colarelli and D. Grunwald, “Massive Arrays of Idle Disks for Storage
Archives,” in Proceedings of the 2002 ACM/IEEE Conference on Supercomputing
(SC ’02), Nov. 2002.

[4] Digital Library Federation: http://www.diglib.org (accessed Mar. 2008).

[5] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File System,” in
Proceedings of the 19th ACM Symposium on Operating Systems Principles (SOSP
’03), Bolton Landing, NY, Oct. 2003.

[6] G.A. Gibson and R. Van Meter, “Network Attached Storage Architecture,”
Communications of the ACM, 43(11):37–45, 2000.

[7] Green Grid Consortium: http://www.thegreengrid.org, Feb. 2007.

[8] W. C. Preston and G. Didio, “Disk at the Price of Tape? An In-depth Ex-
amination,” Copan Systems white paper, 2004.

[9] Y. Saito, S. Frølund, A. Veitch, A. Merchant, and S. Spence, “FAB: Build-
ing Distributed Enterprise Disk Arrays from Commodity Components,” in
Proceedings of the 11th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), pages 48–58, 2004.

[10] T. Schwarz and E.L. Miller, “Store, Forget, and Check: Using Algebraic
Signatures to Check Remotely Administered Storage,” in Proceedings of the
26th International Conference on Distributed Computing Systems (ICDCS ’06),
Lisbon, Portugal, July 2006.

[11] M.W. Storer, K.M. Greenan, E.L. Miller, and K. Voruganti, “Pergamum:
Replacing Tape with Energy Efficient, Reliable, Disk-based Archival Storage,”
in Proceedings of the 6th USENIX Conference on File and Storage Technologies
(FAST ’08), Feb. 2008.

[12] C. Weddle, M. Oldham, J. Qian, A.-I. A. Wang, P. Reiher, and G. Kuen-
ning, “PARAID: A Gear-shifting Power-aware RAID,” in Proceedings of the 5th
USENIX Conference on File and Storage Technologies (FAST ’07), Feb. 2007.

[13] W.W. Wilcke, R.B. Garner, C. Fleiner, R.F. Freitas, R.A. Golding, J.S.
Glider, D.R. Kenchammana-Hosekote, J.L. Hafner, K.M. Mohiuddin, K. Rao,
R.A. Becker-Szendy, T.M. Wong, O.A. Zaki, M. Hernandez, K.R. Fernandez,
H. Huels, H. Lenk, K. Smolin, M. Ries, C. Goettert, T. Picunko, B.J. Rubin,
H. Kahn, and T. Loo, “IBM Intelligent Bricks Project—Petabytes and Be-
yond,” IBM Journal of Research and Development, 50(2/3):181–197, 2006.

; LO G I N : J U N E 20 0 8 pE RG A mUm : E N E RG Y- E FFI CI E NT A RCh I vA L sTO R AG E ��

login_articles_JUNE08.indd 21 5/13/08 4:50:57 PM

�� ; LO G I N : vO L . 33, N O. 3

w e i h a n G J i a n G , c h o n G F e n G h u ,
Y u a n Y u a n z h o u , a n d a R k a d Y k a n e v s k Y

don’t blame disks
for every storage
subsystem failure
Weihang Jiang is a PhD candidate in the Depart-
ment of Computer Science at the University of
Illinois at Urbana-Champaign. He is particularly
interested in system mining that applies data min-
ing techniques to improve system performance,
dependability, and manageability.

wjiang3@uiuc.edu

Chongfeng Hu spent his college life at Peking
University, China, and is currently a graduate
student in the Department of Computer Science at
the University of Illinois at Urbana-Champaign. His
interests include operating systems, software reli-
ability, storage systems reliability, and data mining.

chu7@cs.uiuc.edu

Yuanyuan Zhou is an associate professor at the Uni-
versity of Illinois, Urbana-Champaign. Her research
spans the areas of operating system, storage sys-
tems, software reliability, and powesr management.

yyzhou@uiuc.edu

Arkady Kanevsky is a senior research engineer at
NetApp Advanced Technology Group. Arkady has
done extensive research on RDMA technology, stor-
age resiliency, scalable storage systems, and parallel
and distributed computing. He received a PhD in
Computer Science from the University of Illinois
in 1987. He was a faculty member at Dartmouth
College and Texas A&M University prior to joining
the industry world. Arkady has written over 60
publications and is a chair of DAT Collaborative and
MPI-RT standards.

arkady@netapp.com

Trademark notice: NetApp, the NetApp logo, Go

further, faster, and RAID-DP are trademarks or

registered trademarks of NetApp, Inc. in the U.S.

and other countries.

d i s k s a r e t h e k e y c o m p o n e n t s o f
storage systems. Researchers at CMU and
NetApp had demonstrated a trend of in-
creasing gap between the size of individual
disks and disk access time [11], and hence
the probability that a secondary failure hap-
pens during RAID reconstruction becomes
too high for comfort. This led to RAID-6 [4]
and RAID-DP [5]. Interestingly, even though
disk reliability is critical to storage systems
reliability, we found that disks themselves
were not the component most likely to fail
in storage systems.

In this work, we looked at other components in
storage systems beyond disks to answer the follow-
ing questions: Are disk failures the main source of
storage system failures? Can enterprise disks help
to build a more reliable storage system than SATA
disks? Are disk failures independent? What about
other storage component failures? Are techniques
that went into RAID design, such as redundant in-
terconnect between disks and storage controllers,
really helpful in increasing the reliability of storage
systems?

Reliability is a critically important issue for stor-
age systems because storage failures not only can
cause service downtime but can also lead to data
loss. Building reliable storage systems becomes in-
creasingly challenging as the complexity of modern
storage systems grows to an unprecedented level.
For example, the EMC Symmetrix DMX-4 can be
configured with up to 2400 disks [6], the Google
File System cluster is composed of 1000 storage
nodes [7], and the NetApp FAS6000 series can
support more than 1000 disks per node, with up to
24 nodes in a system [9].

To make things even worse, disks are not the only
component in storage systems. To connect and ac-
cess disks, modern storage systems also contain
many other components, including shelf enclo-
sures, cables and host adapters, and complex soft-
ware protocol stacks. Failures in these components
can lead to downtime and/or data loss of the stor-
age system. Hence, in complex storage systems,
component failures are very common and critical
to storage system reliability.

Although we are interested in failures of a whole
storage system, this study concentrates on the core
part of it—the storage subsystem, which contains

login_articles_JUNE08.indd 22 5/13/08 4:50:57 PM

disks and all components providing connectivity and usage of disks to the
entire storage system.

We analyzed the NetApp AutoSupport logs collected from about 39,000 stor-
age systems commercially deployed at various customer sites. The data set
covers a period of 44 months and includes about 1,800,000 disks hosted in
about 155,000 storage shelf enclosures. Our study reveals many interesting
findings, providing useful guidelines for designing reliable storage systems.
Some of our major findings include:

n Physical interconnect failures make up the largest part (27%–68%) of
storage subsystem failures, and disk failures make up the second largest
part (19%–56%). Choices of disk types, shelf enclosure models, and
other components of storage subsystems contribute to the variability.

n Each individual storage subsystem failure type and storage subsystem
failure as a whole exhibit strong self-correlations.

n Storage subsystems configured with redundant interconnects experience
30%–40% lower failure rates than those with a single interconnect.

Data on latent sector errors from the same AutoSupport Database was first
analyzed by Bairavasundaram et al. [2], and data on data corruptions was
further analyzed by Bairavasundaram et al. [3].

Background

In this section, we detail the typical architecture of storage systems we study
in NetApp, the definitions and terminology used in this article, and the
source of the data studied in this work.

STorage SySTeM arCHITeCTure

Figure 1 shows the typical architecture of a NetApp storage system node. A
NetApp storage system can be composed of several storage system nodes.

F i g u r e 1 : s t O r a g e s y s t e m n O d e a r C h i t e C t u r e

From the customer’s perspective, a storage system is a virtual device that
is attached to customers’ systems and provides customers with the desired
storage capacity with high reliability, good performance, and flexible man-
agement.

Looking from inside, we see that a storage system node is composed of stor-
age subsystems, resiliency mechanisms, a storage head/controller, and other

Shelf Enclosure 1
Disk

Storage Subsystem

Resilient Mechanism (RAID)

Storage Layer
(software protocol stack)

HBA

FC Cables

AC
power

Fan

Backplane

Shelf Enclosure 2

HBA

Redundant
Cables

Storage System Node

; LO G I N : J U N E 20 0 8 d O N ’ T B L A m E d I sk s ��

login_articles_JUNE08.indd 23 5/13/08 4:50:58 PM

�� ; LO G I N : vO L . 33, N O. 3

higher-level system layers. The storage subsystem is the core part of a stor-
age system node and provides connectivity and usage of disks to the entire
storage system node. It contains various components, including disks, shelf
enclosures, cables and host adapters, and complex software protocol stacks.
Shelf enclosures provide a power supply, a cooling service, and a prewired
backplane for the disks mounted in them. Cables initiated from host adapt-
ers connect one or multiple shelf enclosures to the network. Each shelf en-
closure can be optionally connected to a secondary network for redundancy.
In the Results section we will show the impact of this redundancy mecha-
nism on failures of the storage subsystem.

Usually, on top of the storage subsystem, resiliency mechanisms, such as
RAID, are used to tolerate failures in storage subsystems.

F i g u r e 2 : i / O r e q u e s t P a t h i n s t O r a g e s u b s y s t e m

TerMInology

We use the followings terms in this article:

n Disk family: A particular disk product. The same product may be offered
in different capacities. For example, “Seagate Cheetah 10k.7” is a disk
family.

n Disk model: The combination of a disk family and a particular disk
capacity. For example, “Seagate Cheetah 10k.7 300 GB” is a disk model.
For disk family and disk model, we use the same naming convention as
in Bairavasundaram et al. [2, 3]. (See also “Data Corruption in the Stor-
age Stack,” p. 6 in this issue.)

n Failure types: Refers to the four types of storage subsystem failures—disk
failure, physical interconnect failure, protocol failure, and performance
failure.

n Shelf enclosure model: A particular shelf enclosure product. All shelf en-
closure models studied in this work can host at most 14 disks.

n Storage subsystem failure: Refers to failures that prevent the storage sub-
system from providing storage service to the whole storage system node.
However, not all storage subsystem failures are experienced by custom-
ers, since some of the failures can be handled by resiliency mechanisms
on top of storage subsystems (e.g., RAID) and other mechanisms at
higher layers.

n Storage system class: Refers to the capability and usage of storage systems.
There are four storage system classes studied in this work: nearline
systems (mainly used as secondary storage), low-end, mid-range, and
high-end (mainly used as primary storage).

n Other terms in the article are used as defined by SNIA [12].

Disk Drivers

SCSI Protocol

FC Adapter w/ drivers

Disk

Storage
Layer

Networks

Protocol
Stack

login_articles_JUNE08.indd 24 5/13/08 4:50:58 PM

DefInITIon anD ClaSSIfICaTIon of STorage SuBSySTeM faIlureS

Figure 2 shows the steps and components that are involved in fulfilling an
I/O request in a storage subsystem. As shown in Figure 2, for the storage
layer to fulfill an I/O request, the I/O request will first be processed and
transformed by protocols and then delivered to disks through networks ini-
tiated by host adapters. Storage subsystem failures are the failures that break
the I/O request path; they can be caused by hardware failures, software
bugs, and protocol incompatibilities along the path.

To better understand storage subsystem failures, we categorize them into
four types along the I/O request path:

n Disk failure: This type of failure is triggered by failure mechanisms of
disks. Imperfect media, media scratches caused by loose particles,
rotational vibration, and many other factors internal to a disk can lead
to this type of failure. Sometimes the storage layer proactively fails disks
based on statistics collected by on-disk health monitoring mechanisms
(e.g., a disk has experienced too many sector errors [1]). These inci-
dences are also counted as disk failures.

n Physical interconnect failure: This type of failure is triggered by errors in
the networks connecting disks and storage heads. It can be caused by
host adapter failures, broken cables, shelf enclosure power outages, shelf
backplanes errors, and/or errors in shelf FC drivers. When physical in-
terconnect failures happen, the affected disks appear to be missing from
the system.

n Protocol failure: This type of failure is caused by incompatibility between
protocols in disk drivers or shelf enclosures and storage heads and
software bugs in the disk drivers. When this type of failure happens,
disks are visible to the storage layer but I/O requests are not correctly
responded to by disks.

n Performance failure: This type of failure happens when the storage layer
detects that a disk cannot serve I/O requests in a timely manner while
none of the previous three types of failures are detected. It is mainly
caused by partial failures, such as unstable connectivity or when disks
are heavily loaded with disk-level recovery (e.g., broken sector remap-
ping).

The occurrences of these four types of failures are recorded in AutoSupport
logs collected by NetApp.

results

frequenCy of STorage SuBSySTeM faIlureS

As we categorize storage subsystem failures into four failure types based on
their root causes, a natural question is therefore, “What is the relative fre-
quency of each failure type?” To answer this question, we study the NetApp
AutoSupport logs collected from 39,000 storage systems.

Figure 3 presents the breakdown of the average failure rate (AFR) for storage
subsystems based on failure types, for all four system classes studied in this
work.

Finding (1): Physical interconnect failures make up the largest part (27%–
68%) of storage subsystem failures; disk failures make up the second largest
part (20%–55%). Protocol failures and performance failures both make up
noticeable fractions.

; LO G I N : J U N E 20 0 8 d O N ’ T B L A m E d I sk s ��

login_articles_JUNE08.indd 25 5/13/08 4:50:58 PM

�� ; LO G I N : vO L . 33, N O. 3

Implications: Disk failures are not always a dominant factor in storage subsys-
tem failures, and a reliability study for storage subsystems cannot focus only
on disk failures. Resilient mechanisms should target all failure types.

F i g u r e 3 : a F r F O r s t O r a g e s u b s y s t e m s i n F O u r s y s t e m C L a s s e s
a n d t h e b r e a k d O w n b a s e d O n F a i L u r e t y P e s

As Figure 3 shows, across all system classes, disk failures do not always
dominate storage subsystem failures. For example, in low-end storage sys-
tems, the AFR for storage subsystems is about 4.6%, whereas the AFR for
disks is only 0.9%, about 20% of the overall AFR. However, physical in-
terconnect failures account for a significant fraction of storage subsystem
failures, ranging from 27% to 68%. The other two failure types, protocol
failures and performance failures, contribute 5%–10% and 4%–8% of stor-
age subsystem failures, respectively.

Finding (2): For disks, nearline storage systems show higher (1.9%) AFR
than low-end storage systems (0.9%). But for the whole storage subsystem,
nearline storage systems show lower (3.4%) AFR than low-end primary stor-
age systems (4.6%).

Implications: Disk failure rate is not indicative of the storage subsystem fail-
ure rate.

Figure 3 also shows that nearline systems, which mostly use SATA disks,
experience about 1.9% AFR for disks, whereas for low-end, mid-range, and
high-end systems, which mostly use FC disks, the AFR for disks is under
0.9%. This observation is consistent with the common belief that enterprise
disks (FC) are more reliable than nearline disks (SATA).

However, the AFR for storage subsystems does not follow the same trend.
Storage subsystem AFR of nearline systems is about 3.4%, lower than that of
low-end systems (4.6%). This indicates that other factors, such as shelf en-
closure model and network configurations, strongly affect storage subsystem
reliability. The impacts of these factors are examined next.

IMpaCT of SySTeM paraMeTerS on STorage SuBSySTeM faIlureS

As we have seen, storage subsystems of different system classes show differ-
ent AFRs. Although these storage subsystems are architecturally similar, the
characteristics of their components, such as shelves, and their redundancy
mechanisms, such as multipathing, differ. We now explore the impact of
these factors on storage subsystem failures.

shELF ENCLOsURE mOdEL

Shelf enclosures contain power supplies, cooling devices, and prewired
backplanes that carry power and I/O bus signals to the disks mounted in

login_articles_JUNE08.indd 26 5/13/08 4:50:59 PM

them. Different shelf enclosure models are different in design and have dif-
ferent mechanisms for providing these services; therefore, it is interesting to
see how shelf enclosure model affects storage subsystem failures.

F i g u r e 4 : a F r F O r s t O r a g e s u b s y s t e m s b y s h e L F e n C L O s u r e
m O d e L s u s i n g t h e s a m e d i s k m O d e L . t h e e r r O r b a r s s h O w
9 9 . 9 % C O n F i d e n C e i n t e r V a L s F O r P h y s i C a L i n t e r C O n n e C t
F a i L u r e s .

Finding (3): The shelf enclosure model has a strong impact on storage subsys-
tem failures.

Implications: To build a reliable storage subsystem, hardware components
other than disks (e.g., shelf enclosure) should also be selected carefully.

Figure 4 shows AFR for storage subsystems when configured with different
shelf enclosure models but the same disk models. As expected, shelf enclo-
sure model primarily impacts physical interconnect failures, with little im-
pact on other failure types.

To confirm this observation, we tested the statistical significance using a
T-test [10]. As Figure 4 shows, the physical interconnect failures with differ-
ent shelf enclosure models are quite different (3.08±0.20% versus 6.11
±0.35%). A T-test shows that this is significant at the 99.9% confidence in-
terval, indicating that the hypothesis that physical interconnect failures are
impacted by shelf enclosure models is very strongly supported by the data.

NETwORk REdUNdANCY mEChANIsm

As we have seen, physical interconnect failures contribute to a significant
fraction (27%–68%) of storage subsystem failures. Since physical intercon-
nect failures are mainly caused by network connectivity issues in storage
subsystems, it is important to understand the impact of network redundancy
mechanisms on storage subsystem failures.

For the mid-range and high-end systems studied in this work, FC drivers
support a network redundancy mechanism, commonly called active/passive
multipathing. This network redundancy mechanism connects shelves to two
independent FC networks, redirecting I/O requests through the redundant
FC network when one FC network experiences network component failures
(e.g., broken cables).

To study the effect of this network redundancy mechanism, we look at the
data collected from mid-range and high-end storage systems, and we group
them based on whether the network redundancy mechanism is turned on.
Owing to the space limitation, we show results only for the mid-range stor-
age systems here. As we observed from our data set, about 1/3 of storage
subsystems are utilizing the network redundancy mechanism, whereas the

; LO G I N : J U N E 20 0 8 d O N ’ T B L A m E d I sk s ��

login_articles_JUNE08.indd 27 5/13/08 4:50:59 PM

�� ; LO G I N : vO L . 33, N O. 3

other 2/3 are not. We call these two groups of storage subsystems dual path
systems and single path systems, respectively.

Finding (4): Storage subsystems configured with network redundancy mecha-
nisms experience much lower (30%–40% lower) AFR than other systems.
AFR for physical interconnects is reduced by 50%–60%.

Implications: Network redundancy mechanisms such as multipathing can
greatly improve the reliability of storage subsystems.

Figure 5 shows the AFR for storage subsystems in mid-range systems. As ex-
pected, secondary path reduces physical interconnect failures by 50%–60%
(1.82±0.04 % versus 0.91±0.09 %), with little impact on other failure types.
Since physical interconnect failure is just a subset of all storage subsystem
failures, AFR for storage subsystems is reduced by 30%–40%. This indicates
that multipathing is an exceptionally good redundancy mechanism that de-
livers reduction of failure rates as promised. As we applied a T-test on these
results, we found that the observation is significant at the 99.9% confidence
interval, indicating that the data strongly supports the hypothesis that phys-
ical interconnect failures are reduced by multipathing configuration.

However, the observation also tells us that there is still further potential in
network redundancy mechanism designs. For example, given that the prob-
ability for one network to fail is about 2%, the idealized probability for two
networks to both fail should be a few orders of magnitude lower (about
0.04%). But the AFR we observe is far from the ideal number.

F i g u r e 5 : a F r F O r s t O r a g e s u b s y s t e m s b r O k e n d O w n b y t h e
n u m b e r O F P a t h s . t h e e r r O r b a r s s h O w 9 9 . 9 % C O n F i d e n C e
i n t e r V a L s F O r P h y s i C a L i n t e r C O n n e C t F a i L u r e s .

CorrelaTIonS BeTween faIlureS

In this subsection, we will study the statistical property of storage subsystem
failures both from a shelf perspective and from a RAID group perspective.

Our analysis of the correlation between failures is composed of two steps:

1. Derive the theoretical failure probability model based on the assumption
that failures are independent.

2. Evaluate the assumption by comparing the theoretical probability against
empirical results.

Next, we describe the statistical method we use for deriving the theoretical
failure probability model.

login_articles_JUNE08.indd 28 5/13/08 4:51:00 PM

sTATIsTICAL mEThOd

We denote the probability for a shelf enclosure (including all mounted disks)
to experience one failure during time T as P(1) and denote the probability
for it to experience two failures during T as P(2). The relationship between
P(1) and P(2) is as follows:

For a complete proof, refer to our conference paper [8].

Next, we will compare this theoretically derived model against the empirical
results collected from NetApp AutoSupport logs.

CORRELATION REsULTs

To evaluate the theoretical relation between P(1) and P(2) shown in equa-
tion 1, we first calculate empirical P(1) and empirical P(2) from NetApp Auto-
Support logs. Empirical P(1) is the percentage of shelves (RAID groups) that
have experienced exactly one failure during time T (where T is set to one
year), and empirical P(2) is the percentage that have experienced exactly two
failures during time T. Only storage systems that have been in the field for
one year or more are considered.

Finding (5): For each failure type, storage subsystem failures are not inde-
pendent. After one failure, the probability of additional failures (of the same
type) is higher.

Implications: The probability of storage subsystem failures depends on factors
shared by all disks in the same shelf enclosures (or RAID groups).

Figure 6a shows the comparison between empirical P(2) and theoretical P(2),
which is calculated based on empirical P(1). As we can see in the figure, em-
pirical P(2) is higher than theoretical P(2). More specifically, for disk failure,
the observed empirical P(2) is higher than theoretical P(2) by a factor of 6.
For other types of storage subsystem failures, the empirical probability is
higher than the theoretical correspondences by a factor of 10–25. Further-
more, T-tests confirm that the theoretical P(2) and the empirical P(2) are sta-
tistically different with 99.5% confidence intervals.

These statistics provide a strong indication that when a shelf experiences a
storage subsystem failure, the probability for it to have another storage sub-
system failure increases. In other words, storage subsystem failures from the
same shelves are not independent.

P(2) =
 1

 2
P(1)2

F i g u r e 6 : C O m P a r i s O n b e t w e e n t h e O r e t i C a L m O d e L [w i t h P (2) C a L C u L a t e d F r O m e q u a -
t i O n 1] a n d e m P i r i C a L r e s u Lt s ; t h e e r r O r b a r s s h O w 9 9 . 5 % + C O n F i d e n C e i n t e r V a L s .

; LO G I N : J U N E 20 0 8 d O N ’ T B L A m E d I sk s ��

(a) s h e L F e n C L O s u r e F a i L u r e s (b) r a i d g r O u P F a i L u r e s

login_articles_JUNE08.indd 29 5/13/08 4:51:00 PM

�0 ; LO G I N : vO L . 33, N O. 3

Figure 6b shows an even stronger trend for failures from the same RAID
groups. Therefore, the same conclusion can be made for storage subsystem
failures from the same RAID groups.

Conclusion

In this article we have presented a study of NetApp storage subsystem fail-
ures, examining the contribution of different failure types, the effect of some
factors on failures, and the statistical properties of failures. Our study is
based on AutoSupport logs collected from 39,000 NetApp storage systems,
which contain about 1,800,000 disks mounted in about 155,000 shelf en-
closures. The studied data covers a period of 44 months. The findings of our
study provide guidelines for designing more reliable storage systems and de-
veloping better resiliency mechanisms.

Although disks are the primary components of storage subsystems, and
disk failures contribute 19%–56% of storage subsystem failures, other com-
ponents such as physical interconnect and protocol stacks also account for
significant percentages (27%–68% and 5%–10%, respectively) of storage
subsystem failures. The results clearly show that the other storage subsystem
components cannot be ignored when designing a reliable storage system.

One way to improve storage system reliability is to select more reliable com-
ponents. As the data suggests, storage system reliability is highly dependent
on shelf enclosure model. Another way to improve reliability is to employ re-
dundancy mechanisms to tolerate component failures. One such mechanism
studied in this work is multipathing, which can reduce AFR for storage sys-
tems by 30%–40% when the number of paths is increased from one to two.

We also found that the storage subsystem failure and individual storage sub-
system failure types exhibit strong self-correlations. This finding motivates
revisiting resiliency mechanisms, such as RAID, that assume independent
failures.

A preliminary version of this article was published at FAST ’08 [8]. Because
of limited space, neither this article nor our FAST paper includes all our re-
sults. Readers who are interested in a complete set of results should refer to
our NetApp technical report [13].

aCknowleDgMenTS

We wish to thank Rajesh Sundaram and Sandeep Shah for providing us
with insights on storage failures. We are grateful to Frederick Ng, George
Kong, Larry Lancaster, and Aziz Htite for offering help on understanding
and gathering NetApp AutoSupport logs. We appreciate useful comments
from members of the Advanced Development Group, including David Ford,
Jiri Schindler, Dan Ellard, Keith Smith, James Lentini, Steve Byan, Sai Su-
sarla, and Shankar Pasupathy. Also, we would like to thank Lakshmi Bai-
ravasundaram for his useful comments. Finally, we appreciate our shepherd,
Andrea Arpaci-Dusseau, for her invaluable feedback and precious time, and
the anonymous reviewers for their insightful comments for our conference
paper [8]. This research has been funded by NetApp under the “Intelligent
Log Mining” project at CS UIUC. Work of the first two authors was con-
ducted in part as summer interns at NetApp.

login_articles_JUNE08.indd 30 5/13/08 4:51:01 PM

referenCeS

[1] Bruce Allen, “Monitoring Hard Disks with SMART,” Linux Journal,
2004(117):9 (2004).

[2] Lakshmi N. Bairavasundaram, Garth R. Goodson, Shankar Pasupathy,
and Jiri Schindler, “An Analysis of Latent Sector Errors in Disk Drives,”
 SIGMETRICS Perform. Eval. Rev. 35(1):289–300 (2007).

[3] Lakshmi N. Bairavasundaram, Garth R. Goodson, Bianca Schroeder,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau, “An Analysis
of Data Corruption in the Storage Stack,” in FAST ’08: Proceedings of the 6th
USENIX Conference on File and Storage Technologies, San Jose, CA, February
2008.

[4] Mario Blaum, Jim Brady, Jehoshua Bruck, and Jai Menon, “Evenodd: An
Efficient Scheme for Tolerating Double Disk Failures in RAID Architectures,”
IEEE Transactions on Computing, 44:192–202 (1995).

[5] Peter Corbett, Bob English, Atul Goel, Tomislav Grcanac, Steven Klei-
man, James Leong, and Sunitha Sankar, “Row-diagonal Parity for Double
Disk Failure Correction,” in FAST ’04: Proceedings of the 3rd USENIX Confer-
ence on File and Storage Technologies, pp. 1–14 (2004).

[6] EMC Symmetrix DMX-4 Specification Sheet (July 2007): http://www
.emc.com/collateral/hardware/specification-sheet/c1166-dmx4-ss.pdf.

[7] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, “The Google
File System,” in SOSP ’03: Proceedings of the Nineteenth ACM Symposium on
 Operating Systems Principles, New York, pp. 29–43 (2003).

[8] Weihang Jiang, Chongfeng Hu, Yuanyuan Zhou, and Arkady Kanevsky,
“Are Disks the Dominant Contributor for Storage Failures?—A Comprehen-
sive Study of Storage Subsystem Failure Characteristics,” in FAST ’08: Pro-
ceedings of the 6th USENIX Conference on File and Storage Technologies, San
Jose, CA, February 2008.

[9] FAS6000 Series Technical Specifications: http://www.netapp.com/
products/filer/fas6000_tech_specs.html.

[10] A.C. Rosander, Elementary Principles of Statistics (Princeton, NJ: Van
Nostrand, 1951).

[11] Bianca Schroeder and Garth A. Gibson, “Disk Failures in the Real
World: What Does an MTTF of 1,000,000 Hours Mean to You?” in FAST
’07: Proceedings of the 5th USENIX Conference on File and Storage Technologies,
Berkeley, CA, USA, 2007.

[12] Storage Networking Industry Association Dictionary: http://www
.snia.org/education/dictionary/.

[13] Weihang Jiang, Chongfeng Hu, Yuanyuan Zhou, and Arkady Kanevsky,
“Don’t Blame Disks for Every Storage Subsystem Failure—A Comprehensive
Study of Storage Subsystem Failure Characteristics,” NetApp Research Paper,
April 2008: http://media.netapp.com/documents/dont-blame-disks-for-every-
storage-subsystem-failure.pdf.

; LO G I N : J U N E 20 0 8 d O N ’ T B L A m E d I sk s ��

login_articles_JUNE08.indd 31 5/13/08 4:51:01 PM

�� ; LO G I N : vO L . 33, N O. 3

m i c h a e L d e m m e R , B o w e i d u , a n d
e R i c B R e w e R

TierStore: a distributed
file system for
 challenged networks
in developing regions
Michael Demmer is a PhD candidate at UC Berkeley.
His research is on delay- and disruption-tolerant
networking, distributed systems for unusual or
challenged network environments, and application
of technology in developing regions. He received
his BS from Brown University.

demmer@cs.berkeley.edu

Bowei Du is a PhD candidate at UC Berkeley.
 His research is on distributed storage in delay-
 tolerant networks. He received his BS from
Cornell University.

bowei@cs.berkeley.edu

Eric Brewer is a Professor of Computer Science at
UC Berkeley who focuses on all aspects of Internet-
based systems, including technology, strategy, and
government. He leads the TIER research group on
technology for developing regions, with projects in
India, Ghana, and Uganda, and including commu-
nications, health, education, and e-government. He
received an MS and PhD in EECS from the Massa-
chusetts Institute of Technology and a BS in EECS
from UC Berkeley and was recently elected to the
National Academy of Engineering for leading the
development of scalable servers.

brewer@cs.berkeley.edu

t e c h n o l o g y h a s a g r e at r o l e t o
play in developing regions, but we need ap-
proaches that can tolerate limited network-
ing and power infrastructure. One promis-
ing model is to build applications around a
file system interface that provides eventual
consistency in these “challenged” network
environments. Our resulting system, Tier-
Store, hides much of the complexity of in-
termittency and simplifies the deployment
of important applications such as email,
Web caching, and wiki-based collaboration.

In many developing region settings throughout the
world, there is an unmet need for robust informa-
tion distribution applications. The limited com-
munications infrastructure that exists in these
environments means that simple information shar-
ing systems can have a large impact. In fact, several
projects have shown tangible results in the areas
of health care, education, commerce, and produc-
tivity. As one example, data collection related to
causes of child deaths in Tanzania led to a reallo-
cation of resources and a 40% reduction in child
mortality (from 16% to 9%) [1, 3].

However, the limited infrastructure also makes ap-
plication deployment challenging. Wired networks
are often either poor in quality or virtually nonex-
istent, cellular networks may be growing rapidly
but remain a largely urban and costly phenom-
enon, and satellite networks provide good cover-
age but are prohibitively expensive. Many of these
networking approaches further suffer from periodic
outages owing to unreliable grid power. Thus any
software system targeted toward these environ-
ments must deal with intermittent connectivity and
potentially long-lasting network partitions and fail-
ures.

In response to the combination of application
needs and the complexity of programming inter-
mittency-tolerant applications, we have developed a
distributed storage system called TierStore [4]. Tier-
Store is a new approach to designing and deploying
information distribution applications which aims to
overcome the connectivity challenges in developing
countries, while at the same time making it easy to
port existing applications and develop new ones.

This work is part of the Technology and Infrastruc-
ture for Emerging Regions (TIER) [7] research ef-
fort at UC Berkeley. The aim of the TIER project
is to address challenges in bringing the information

login_articles_JUNE08.indd 32 5/13/08 4:51:02 PM

technology revolution to the masses of the developing regions of the world.
Unfortunately, most projects that aim to do this today rely on technology
that was developed for the affluent world, yet these imported technologies
fail to address key challenges in cost, deployment, power consumption, and
support for semi- and illiterate users. Instead, our approach is to explore the
development of novel solutions to technical challenges that explicitly take
the needs of developing countries into account.

Background

In developing TierStore, we were inspired by several existing projects that
deal with poor and intermittent connectivity. For example, the Wizzy Digi-
tal Courier system [9] distributes educational content among schools in
South Africa by delaying dialup access until night time, when rates are
cheaper. As another example, DakNet [6] provides email and Web connec-
tivity by copying data to a USB drive or hard disk and then physically carry-
ing the drive among locations that have no traditional network connectivity,
sometimes via motorcycles. Finally, the TEK [8] disconnected Web search
engine allows users to search the Web using SMTP as the underlying proto-
col, which can buffer communication across network outages.

These examples help underscore the value of information distribution ap-
plications in developing regions, but they all essentially started from scratch
and thus use ad hoc solutions with little leverage from previous work. In-
stead, the goal of TierStore is to be a general-purpose framework that can
abstract away most of the complications related to working with intermittent
networks.

Asynchronous Disconnection-tolerant Synchronous
 offline WWW
email information portals
voicemail e-government services VOIP
bulk data copy survey/data collection video chat
 medical records

t a b L e 1 : a n a P P L i C a t i O n t a x O n O m y w i t h r e s P e C t t O
i n t e r m i t t e n C y

Table 1 gives a rough breakdown of example applications and their behav-
ior with respect to intermittent networks. At the end points, “asynchronous”
applications already work well in disconnected environments, whereas “syn-
chronous” applications fundamentally require end-to-end connectivity and
just cannot function during network outages. However, the large class of
“disconnection-tolerant” applications can potentially work well in a discon-
nected fashion, yet their implementations are limited by the requirements
of the underlying software platforms on which they are implemented. For
example, many such services require Internet connectivity simply because
they have been written as Web applications, whereas they could potentially
function well even when disconnected. Our goal with the TierStore system
is to make it easy to adapt these applications to work well in an intermittent
environment.

One step toward this goal comes in the form of Delay-Tolerant Networking
(DTN) [2]. DTN is a new approach to networking in challenged environ-
ments that seeks to address the shortcomings of traditional Internet pro-
tocols in some scenarios. Specifically, there are many cases in which it is
difficult to maintain the kind of reliable, low-latency network connection
needed by TCP/IP-based protocols. In these cases DTN can route network
messages across a variety of different transports such as peer-to-peer wire-

; LO G I N : J U N E 20 0 8 TI E R sTO RE : A d I sTRI BUTE d F I LE sYsTEm FO R d E v E LO pI N G REG I O N s ��

login_articles_JUNE08.indd 33 5/13/08 4:51:02 PM

�� ; LO G I N : vO L . 33, N O. 3

less connections, dialup links, or physically carried flash drives or PDAs.
Furthermore, DTN is based around application-defined data objects called
“bundles” (not packets or circuits) and can deal with outages by storing mes-
sages in the network core to wait for connectivity to be restored. DTN also
offers new approaches to routing, quality of service, and reliability based on
custody transfer which help to deal with many of the problems that exist in
challenged network environments.

Yet applications need more than just a messaging service. Running while
disconnected implies that applications need to have local storage to respond
to user requests. Distributing information between instances mandates con-
ventions for object naming and organization to ensure that multiple sites
remain in sync with each other. Operations that modify the system state
need to be logically ordered, and potentially conflicting operations need to
be identified and resolved. Perhaps most importantly, adapting existing ap-
plications to DTN environments would require significant rewriting to use
the DTN-specific messaging APIs. TierStore is aimed squarely at addressing
these application needs while leveraging the existing advantages of the DTN
framework.

How TierStore works

To address these needs, TierStore implements a replicated file system inter-
face, and applications interact with the system using the standard POSIX
APIs. This decision means that existing applications that are already writ-
ten to use the file system for interprocess communication can be adapted
with relatively few changes, while developers creating new applications can
leverage their familiarity with the existing APIs and use a wide range of pro-
gramming environments and languages to interact with the system. Figure 1
shows the TierStore system components.

F i g u r e 1 : t i e r s t O r e s y s t e m C O m P O n e n t s

Unlike NFS or CIFS, there is no central server that stores file data. Instead,
each TierStore node keeps a copy of the data and uses a lazy distribution
protocol to forward updates among nodes using DTN bundles. This means
that replicated file data is available for access even when the network is
down, and local filesystem interactions need not consume valuable band-
width.

replICaTIon

File system modifications, such as writing some data to a file, are encoded
as update messages. These updates are immediately applied to the local node
so that applications see the effects of their operations in the file system. They

DTN

Network

Object / Metadata /

Version Repositories

View Resolver

FUSE / NFS

Subscription

Manager

Update

Manager

Filesystem Interface

Conflict Management

Persistent Storage

Replication

Applications

TierStore

Apps

DTN

login_articles_JUNE08.indd 34 5/13/08 4:51:03 PM

are also forwarded to the subscription manager that determines how to dis-
tribute the updates to other nodes.

To enable fine-grained data sharing, the files and directories in the TierStore
file system are divided into non-overlapping subsets called publications.
Publications define the units of replication between TierStore installations,
and they are defined in application-specific ways. For example, an individual
publication might be a user’s mailbox, files from a particular Web site, or a
set of data collection samples from a specific region. TierStore nodes then
subscribe to a set of publications, indicating that they want to receive up-
dates to the relevant files. Subscribing is the TierStore equivalent to mount-
ing a portion of the file system, and therefore file data in a publication is
replicated only to the set of subscribed nodes.

TierStore uses DTN for all internode communication, meaning that it can le-
verage its range of network transports and in-network message queuing fea-
tures. Thus TierStore need not be concerned with the details of how updates
are communicated, but instead it can queue an update message for transmis-
sion whenever the network becomes available, using whatever transmission
mechanism is most appropriate for the environment.

To help distribute data efficiently over low-bandwidth links, each TierStore
node is configured as part of a multicast-like distribution tree in the DTN
network. Each publication can be thought of as a multicast group, so up-
dates need only be transmitted once across a network link in the tree and
are reforwarded down the tree, eventually reaching all subscribed nodes.
In our early deployments, this distribution tree was manually configured,
as the number of nodes was fairly small, but we are currently working on a
new DTN multicast implementation to automate this process.

HanDlIng ConflICTS

F i g u r e 2 : d e F a u Lt C O n F L i C t h a n d L e r . d i s C O n n e C t e d u s e r s a L i C e
a n d b O b m a k e e d i t s t O t h e s a m e F i L e . w h e n t h e y r e C O n n e C t ,
t h e O t h e r ’ s e d i t s w i L L b e V i s i b L e a s a C O n F L i C t F i L e i n t h e F i L e
s y s t e m .

Since TierStore nodes might be disconnected for long periods of time, they
must be able to modify the filesystem state while disconnected, so applica-
tions need some way of handling concurrent updates. Yet long outages mean
that traditional approaches such as file locking will not work well. Instead,

Alice Bob

Network is unavailable ...

$ echo “red” > /tierstore/foo $ echo “blue” > /tierstore/foo

$ ls /tierstore $ ls /tierstore

foo foo

Network is available ...

$ ls /tierstore $ ls /tierstore

foo foo.#bob foo foo.#alice

$ cat foo $ cat foo

red blue

$ cat foo.#bob $ cat foo.#alice

blue red

; LO G I N : J U N E 20 0 8 TI E R sTO RE : A d I sTRI BUTE d F I LE sYsTEm FO R d E v E LO pI N G REG I O N s ��

login_articles_JUNE08.indd 35 5/13/08 4:51:04 PM

�� ; LO G I N : vO L . 33, N O. 3

we allow arbitrary operations to occur and then detect (and possibly resolve)
conflicts when nodes return into connectivity.

The first (and best) way to handle conflicts is to avoid them in the first
place. TierStore only considers conflicts on a per-file basis, so updates to
different files or directories are independent and do not conflict. Thus ap-
plications that partition their data into separate directories or use uniquely
named files that are not updated at different parts of the network are thereby
conflict-free. Many of the applications we have ported to TierStore naturally
fall into this category.

When conflicts are unavoidable, applications can register custom handlers
to resolve the situation. These handlers are able to look at conflicting ver-
sions of a file and arbitrarily rename, merge, or modify them to deal with
the conflict. If there is no custom resolver, a default policy appends each
conflicted filename with .#X, where X is the identity of the node that gener-
ated the conflict. This approach allows applications to see both versions of
the conflicted file, similarly to how CVS allows multiple versions of a file to
simultaneously exist on different branches. Applications can then resolve the
conflict later at any point in the network.

However, one subtle aspect of this default policy is that file operations that
occur at a particular node are presented unmodified to applications that are
running at that node (i.e., without the .#X extension). This does mean that
the displayed filesystem structure can vary at different locations in the net-
work, but it also has the important side effect that nodes always “see” the
files they have generated and modified locally, regardless of any conflicting
updates that may have occurred at other locations (see Figure 2). This is an
important decision that helps when porting unmodified applications, since
their local file modifications do not suddenly disappear if another node
makes a conflicting update to a file. It also means that application state re-
mains self-consistent even in the face of conflicts and, most importantly, is
sufficient to handle many applications without needing to write a custom
conflict resolver.

using TierStore

We have adapted several commonly used applications for use with TierStore
to validate our system: an IMAP email service, a shared offline Web cache,
and a shared wiki collaboration system. These three applications represent
a range of requirements. Email in IMAP folders is accessed by a single user,
but the folders may be replicated to many different computers. A Web cache
is shared by many users but is read-only. A wiki system is shared by many
users and has the potential for many conflicting writes from users editing
overlapping parts of the wiki.

To support a shared email service with the TierStore system, we used a stock
IMAP server configured to store mail content in maildir format. The maildir
storage format is ideal for use with TierStore because each mail message is
stored as a separate file and the metadata associated with the message is en-
coded in the message file name. Mail folders are thus mapped to directories
in the TierStore file system, and each user mailbox is placed in a separate
publication. This allows each computer in the network to elect to replicate
only some of the users’ mailboxes. To handle benign conflicts in state (e.g.,
flagging a message on one computer and marking it read on another), we
wrote a conflict resolver that takes conflicting state flags and resolves them
to be the union of the flags.

login_articles_JUNE08.indd 36 5/13/08 4:51:04 PM

For push-based shared Web cache functionality, we took an existing offline-
enabled Web cache, WWWOFFLE, and configured its cache directory to
point to a TierStore shared directory. For a selected set of Web sites, we pop-
ulate the cache directory with a Website crawl of commonly accessed refer-
ence Web sites. This model suits the needs of organizations that create local
mirrors of online references such as Wikipedia. Using the TierStore system
allows administrators to integrate Web content mirrors from many alterna-
tive sources into the same system. A bulk load of content via media such as
DVDs can be supplemented by small incremental deltas pushed over con-
ventional Internet access.

Finally, we have ported an existing piece of wiki software, PmWiki, to Tier-
Store as well as our created own wiki software [5], which leverages TierStore
as its storage back end. PmWiki stores its pages as individual files on the
local file system. This matches the semantics of TierStore quite well, because
conflicts in the file system map to edit conflicts at the page level; page-level
conflicts are well understood by users of wikis, since they already occur be-
cause of delays between when a page is loaded in the browser and when the
edit is saved to the server. Using the default conflict resolver, users of Pm-
Wiki will see edit conflicts as specially named pages on the wiki site. In our
own wiki software, we implemented a resolver that performs a text-based
merge of the conflicting pages.

next Steps

On the research front, we are continuing to push TierStore in two direc-
tions. The first is focused on the networking layer to develop a robust
publish/subscribe-based distribution network that functions well in DTN
environments. The next is focused on developing an easy-to-use SQL inter-
face to support disconnection-tolerant Web applications that interface with a
database instead of the file system.

We are also continuing to work on several TierStore deployments in devel-
oping countries. One example is supporting community radio stations in
Guinea Bissau, a small West African country characterized by a large num-
ber of islands and poor infrastructure. For many of the residents, their main
information source comes from small radio stations that produce and broad-
cast local content. TierStore is being used to help bridge the communica-
tion barriers between the different islands and distribute content from these
stations throughout the country. We are also currently doing a pilot deploy-
ment in Senegal, where TierStore will be used to link student medical re-
cords between two schools and a local hospital.

In general, our initial results from working on TierStore are encourag-
ing, and we hope to gain additional insights through more deployment
 experience.

referenCeS

[1] E. Brewer, M. Demmer, B. Du, M. Ho, M. Kam, S. Nedevschi, J. Pal,
R. Patra, S. Surana , and K. Fall, “The Case for Technology in Developing
Regions,” IEEE Computer 38(6), 25–38 (June 2005).

[2] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall,
and H. Weiss, “Delay-Tolerant Networking Architecture,” RFC 4838, April
2007.

[3] D. de Savigny, H. Kasale, C. Mbuya, and G. Reid, in Fixing Health Systems
(International Development Research Centre Books, Ottawa, 2004).

; LO G I N : J U N E 20 0 8 TI E R sTO RE : A d I sTRI BUTE d F I LE sYsTEm FO R d E v E LO pI N G REG I O N s ��

login_articles_JUNE08.indd 37 5/13/08 4:51:04 PM

�� ; LO G I N : vO L . 33, N O. 3

[4] M. Demmer, B. Du, and E. Brewer, “TierStore: A Distributed File System
for Challenged Networks in Developing Regions,” in FAST ’08: 6th USENIX
Conference on File and Storage Technologies , pp. 35–48 (Feburary 2008).

[5] B. Du and E. Brewer, “DTWiki: A Disconnection and Intermittency Tol-
erant Wiki,” in 17th Annual International WWW Conference (April 2008).

[6] A.S. Pentland, R. Fletcher, and A. Hasson, “DakNet: Rethinking Connec-
tivity in Developing Nations,” IEEE Computer (January 2004).

[7] Technology and Infrastructure for Emerging Regions (TIER) Research
Group: http://tier.cs.berkeley.edu/.

[8] W. Thies, J. Prevost, T. Mahtab, G. Cuevas, S. Shakhshir, A. Artola,
B. Vo, Y. Litvak, S. Chan, S. Henderson, M. Halsey, L. Levison, and S. Ama-
rasinghe, “ Searching the World Wide Web in Low-connectivity Communi-
ties,” in Proceedings of the 11th International World Wide Web Conference, Global
Community Track (May 2002).

[9] Wizzy Digital Courier: http://www.wizzy.org.za/.

• 6 days of training by experts in their
fi elds

• 3-day technical program
 • Keynote Address by Sean Dennehy

and Don H. Burke, Intellipedia, U.S.
Central Intelligence Agency

 • Plenary Session by Bruce Schneier,
Founder and CTO, BT Counterpane

 • Invited talks by industry leaders
 • Refereed Papers, Guru Is In Sessions,

 Workshops, and Work-in-Progress
Reports

• Vendor Exhibition
• And more!

22nd LARGE INSTALLATION
SYSTEM ADMINISTRATION
CONFERENCE

Save the Date!

www.usenix.org/lisa08/jlo

November 9–14, 2008, San Diego, CA

login_articles_JUNE08.indd 38 5/13/08 4:51:09 PM

i n t e R v i e w B Y m a R G o s e Lt z e R

the present and
future of SAN/NAS
intervieW With dave hit z and
brian paWloWsk y of netapp

Dave Hitz is one of the founders of NetApp. At Ne-
tApp, he has been a programmer, an evangelist, and
the VP of Engineering. Now he focuses on strategy
and culture as the Chief Philosophy Officer, asking
the timeless questions: Who are we? Where did we
come from? Where are we going? (See blogs.netapp.
com/dave.)

Dave.Hitz@netapp.com

Brian Pawlowski is Senior Vice President and Chief
Technology Officer at NetApp. Since joining NetApp
in 1994, he has been involved in the design of high-
performance, highly reliable storage systems.

Brian.Pawlowski@netapp.com

Margo I. Seltzer is a Herchel Smith Professor of
Computer Science and a Harvard College Professor
in the Harvard School of Engineering and Applied
Sciences. Her research interests include file systems,
databases, and transaction processing systems.
She is the author of several widely used software
packages. Dr. Seltzer is also a founder and CTO of
Sleepycat Software, the makers of Berkeley DB.

margo@usenix.org

m a r g o : m y f i r s t q u e s t i o n i s t h at
people use this term “network storage” but I think
different people use it to mean different things, so
in order to lay some context I’d like you guys to tell
me what you think network storage is all about.

Dave: I think we should start with the technical
answer.

Brian: Storage that’s on a network?

Dave: There’s a whole bunch of different dimen-
sions when you look at network storage. Brian gave
the answer: it’s storage over a network. Yes, but
does a Fibre Channel network count as a network
or does network storage only include Ethernet?
Sometimes people say network-attached storage,
which almost always means Ethernet, but is that
only file-based protocols or would iSCSI be a form
of network-attached storage? And so you can get
into really funny kinds of technical semantic argu-
ments about whether a particular type of storage
like iSCSI is a form of network-attached storage or
not, so I’m not that interested in the vocabulary of
it, but I think that there’s two dimensions that mat-
ter. The first dimension is, “Are you using Ethernet,
or are you using some other form of networking
like Fibre Channel?” That’s important dimension
number one; and then the other interesting dimen-
sion is, “Is it block-based storage like Fibre Chan-
nel or iSCSI (basically, read a block, write a block,
talk directly to the disk drive), or is it file-based
storage like NFS or CIFS?”

Margo: So let’s look at each of those dimensions.
Why does it matter whether you’re talking over an
Ethernet or something else?

Dave: From a technical perspective, technical peo-
ple tend to look at the difference between Fibre
Channel and Ethernet and they say it’s not that big
of a difference. What really matters is where I plug
into the operating system, and plugging in at the
block device layer is an important distinction as
opposed to plugging into the file system layer.

Margo: So that goes back to your other dimension,
and I guess the question is, “Are those dimensions
really separable, then?”

Dave: The block file really is where you plug into
the OS, and technical people almost always argue
that that’s the much more important distinction.
Business people tend to focus on Fibre Channel
versus Ethernet, and the reason business people
tend to focus on that is because they worry about
things like capital expenditure. If they’ve spent
millions of dollars on a Fibre Channel infrastruc-
ture and they’re about to buy more storage, they
care a whole lot whether that new storage is going

m a r g O s e Lt z e r i n t e r V i e w i n g b r i a n P a w L O w s k y

; LO G I N : J U N E 20 0 8 Th E pREsE NT A N d FUTU RE O F sA N / N A s ��

d a V e h i t z

d a V e h i t z

login_articles_JUNE08.indd 39 5/13/08 4:51:10 PM

�0 ; LO G I N : vO L . 33, N O. 3

to plug into the millions of dollars’ worth of Fibre Channel infrastructure
they already bought or whether they’re going to plug it into their corporate
Ethernet infrastructure, in which case they may need to beef that up.

Brian: So there is a historical artifact here that I think was interpreted as a
technical truism: that essentially the evolution of block storage went into the
Fibre Channel network and Fibre Channel SANS, which were much better
than using run-of-the-mill Ethernet and TCP networking, which was used
for low-grade file sharing along the lines of NFS or things that you see in the
Microsoft Windows network. And there was this line between the two that
was more an artifact of the evolution of the two technologies than a tech-
nical requirement. Where we are today is just a total blur, first with iSCSI
going over TCP/IP, Fibre Channel protocols being put over Ethernet, and
block protocols being tunneled through Fibre Channel networks, and Infini-
Band just playing merrily between the two camps.

Dave: This has been something that evolved over time. Ten years ago it
was pretty clear where Fibre Channel would make sense and where Ether-
net would make sense. If you were looking at heavy-duty database business
kind of apps you definitely wanted a Fibre Channel. If you were looking at
more distributed users’ home directories, you definitely wanted NAS, and it
was pretty distinct.

Margo: Why? Is it again just—

Dave: Because Ethernet reliability was not as strong and because the appli-
cations had not yet been modified to support NAS. If you went and talked
to Oracle they would give you a list of reasons why NFS was not a good so-
lution for running your databases. So 10 or 15 years ago there really was a
strong distinction.

Brian: And even if it ran over NFS, Oracle would say they wouldn’t support
Oracle over NFS, which was a deal breaker for a lot of customers even if
they said, “But we just ran the application over NFS and it works fine.”

Dave: Oracle hadn’t chosen to train their problem-solving people on those
technologies and so they couldn’t really help you. What happened is that
Ethernet got to be much, much faster and better. Then Oracle said, “You
know, this NFS stuff can save people money.” So if you look at it like a Venn
diagram of what are all the problems you could solve with NFS and what are
all the problems you could solve with SAN, 10 years ago they were disjoint
sets. There was not really any overlap. Today for the vast majority of things
you might consider using storage for, you could use either one. It’s gone to a
Venn diagram with 90% overlap.

So from a business perspective, what I tend to believe is whatever you’re al-
ready doing is probably the cheapest thing to keep doing. From a technical
perspective, if you’ve got the opportunity to come in and redesign a bunch
of stuff from scratch—not always but 80 or 90 percent of the time Ethernet
storage, either NAS or iSCSI, is almost always going to be easier to manage
and lead to lower cost.

Margo: So we can take away from this that in some sense these decisions are
no longer important. It used to be that when I wanted storage I went and
I bought the best price-performing disk I could. And it’s no longer a pure
price-performance choice in storage, so what are those other characteristics
that you started alluding to and what are the value adds that storage manu-
facturers are really going to have to compete on?

Dave: Let me start top down. It’s humbling as a storage vendor to recognize
that CIOs do not care about storage. CIOs have some list of business prob-

login_articles_JUNE08.indd 40 5/13/08 4:51:11 PM

lems that they want to solve and in general each of those business problems
links to a particular application (e.g., all the employees need to be able to
send each other email). Okay, we’ve chosen Exchange and so the CIO’s top-
level concern then is, how do I run Exchange—or, if we are going to balance
the books, how do I run Oracle’s financials? The more that a storage vendor
can talk to the CIO about how its storage makes some kind of difference for
running that application, the better off you are as a storage vendor. So—your
face is all scrunched up.

Margo: That makes it sound like your value-adds are all application-specific
and I’m going to claim that there’s got to be a set of common value addons
that you can argue will help your Exchange server and will help your fi-
nancial apps and will help something else and that you can’t possibly run a
business having to argue each individual application independently.

Dave: There are common technologies that can help a lot of different apps,
but I’ll tell you that when you get into actually working with someone doing
an Exchange deployment versus an Oracle deployment, they care about fun-
damentally different things. Let me use Exchange as just a really specific ex-
ample. One of the things that people have noticed in Exchange deployments
is that the Exchange database tends to get corrupted. So in an Exchange
world, Exchange administrators care a lot about, “How do I get back to the
earlier version of the stuff I had that used to be good?” And snapshots are a
beautiful tool for doing that and so you can get back to that earlier version—
and the more automated the better, right?

Think about the challenge in the real data center: You’ve got an Exchange
administrator who typically doesn’t own his own server, and there’s a server
administrator who typically doesn’t own the network to the storage, and
there’s a Fibre Channel or an Ethernet administrator; and then down the
line somewhere further on there’s a storage administrator. Often each of
those people reports to a different director and sometimes a different VP.
The poor Exchange guy is just trying to get his database back the way it
used to be, right? If you can somehow work with that Exchange guy and say,
“Look, here’s a tool that lets you do all this stuff,” and now your Exchange
environment is back up and running again without having to have even
talked to the storage guy—that’s a whole different model.

In Oracle, on the other hand, one of the big challenges is that people are
always running test and development environments. They’re not so wor-
ried about whether the database is corrupt, but they say, “I’ve got this giant
production database that I’m not allowed to touch but I’m doing some little
tweak in the customization that I have for SAP, say, or Oracle financials and
I wish I had a playpen I could work in.” Snapshots, writeable snapshots, or
clones are a great tool for that. You really do have to look—there’s a bazil-
lion apps but you look at the combination of the major apps—the Microsoft
Suite, the Oracle, the SAP, and VMware as an emerging one that has com-
mon characteristics: test and development environment, sort of the typical
UNIX home directory. You look at that set of apps and optimize for them
based on a common set of underlying capabilities. How do you virtualize
your storage more? How do you create snapshots? How do you do thin pro-
visioning? How do you do clones? You’ve got lots of data here, so how do
you get it to there? De-duplication—those are the kinds of building blocks.

Brian: I want to make a comment, because Dave just kind of glossed over a
large part of our history. It wasn’t that there weren’t a lot of NFS servers out
there; one of the key differentiators was basically the instantaneous copy-
ing of an entire file system at essentially zero cost. And that shattered the
Exchange deployment preconceptions about the time required for backup

; LO G I N : J U N E 20 0 8 Th E pREsE NT A N d FUTU RE O F sA N / N A s ��

login_articles_JUNE08.indd 41 5/13/08 4:51:11 PM

�� ; LO G I N : vO L . 33, N O. 3

and the number of recovery points you could have in your Exchange envi-
ronment: when it divoted on you, what you hope to recover, and how fast
the recovery was. Snapshots just blew away the traditional methods of doing
backup to tape or any other means. Fast-forwarding, we come to that ex-
perience from the late nineties when we started seeing vast incursions into
Exchange deployments for our product: a lot of times our customers were
coming to us kicking and screaming about many different applications be-
fore we were giving them the tools around it.

I think there was a recognition that it’s not the primary copy of data that’s
what is most important and of most concern to people in an organization.
It’s the secondary copies of data—the recovery points, the archives, etc.—
and the ability to leverage and reuse data that has to be managed, because
of the cost of making those copies for different purposes but also because of
their usefulness in terms of business continuity. The primary copy is what
everybody was designing around and everything was optimizing for. But
what came circling back to everybody was the cost and value of the second-
ary copies, around which our fundamental technology enables interesting
processes and techniques, regardless of how you access the data. How do
we do data management with snapshots? How do we do disaster recoveries?
Secondary copy management applies to Fibre Channel SANS and to NAS
and file access.

Margo: So what I can take away is that snapshots were a truly fundamental
value add that helped you differentiate early and that continued to be lever-
aged to solve a bunch of different business problems.

Brian: Yes.

Margo: What have you done for me lately? So snapshots were a great idea
but it’s 2008 and what’s the next piece of core technology?

Dave: There are a handful of different ones that we can work our way
through. One that I think is interesting and people don’t understand the
ramifications of as much as they might is RAID 6 or RAID DP—the ability
to allow any two disks to fail instead of just one. When I say RAID group, I
mean one parity drive with however many different disk drives; and as the
number of disks gets bigger, each disk drive itself gets bigger. Say you put
10, then your overhead’s 10%. You put 20: your overhead is 5%. The more
disks you put in there, the more data you have to read to reconstruct a bad
one. In fact, if you look at the math, disks are getting so big these days that
just looking at the bit failure rate (with the current size of disks, you build a
standard RAID group of 7 disks), you would expect to see failures 1% of the
time on your RAID reconstructions just as a result of the raw bit failure rate
of the underlying disk drives.

So imagine that doubles again because, remember, if one drive fails you have
to read all of the other drives. So it was already getting bad for regular disk
drives; the real challenge is what about those cheap ATA drives? Wouldn’t it
be nice to be able to use SATA drives? These are both bigger and slower, so
it’s going to take longer and be less reliable.

Margo: It’s the next generation; now we’re going to replace arrays of moder-
ately inexpensive disks with arrays of really super cheap disks that are unre-
liable and so therefore we’re going to have to go to even bigger parity.

Dave: Absolutely. Look at EMC, the way that EMC enabled the transition
from the DASD style of drives to the cheaper emerging, more commoditized
drives of that era was through the invention of RAID 4. I do think that ATA
or SATA drives enable the next generation of this transition.

login_articles_JUNE08.indd 42 5/13/08 4:51:11 PM

Brian: I want to connect the two topics of snapshots and RAID DP. The
strength of snapshots was basically the commoditization and making snap-
shots available for everyone at no cost essentially compared to all other solu-
tions. The clever part about RAID DP—having double disk protection—was
not a new invention. RAID 6 was certainly okay, but no one could ever en-
able it because they would regret that decision forevermore because of the
performance. The really clever part about RAID DP is that it was enabled
with no more than a 1% to 3% performance drop versus single-parity disk
protection on all our storage systems, to the point where we ship it out by
default in all our systems, from our low-end SMB product, to the S500, and
up to our high-end systems.

Dave: Another zone of technology is the data-replication technology that
NetApp has—it turns out that snapshots are a beautiful starting point for
replicating data to a remote location. The reason for that is one of the big-
gest challenges of replicating data: If the data that you’re copying is chang-
ing underneath you and you’re moving the blocks, depending on what order
the data changes and depending on what order the blocks move in, you may
get corruption on the copy that’s of a form that even FSCK can’t fix. You’ve
got to be really careful, so in a lot of situations when you do bulk copies to a
remote location, you may even have to quiesce the system. If you have snap-
shots as a foundation you can just copy all of the blocks in a snapshot and
you know that a snapshot is static and those blocks are locked down so that
changes don’t go back on top of those blocks.

Margo: You said “just the same,” but for using snapshots there’s a time delay.

Dave: Sorry, “just the same as it looked at some point in the past; just the
same but with a delay.”

Brian: And with a well-defined consistency point.

Dave: Yes, with a well-defined consistency model. What a lot of custom-
ers started saying as they moved away from tapes for backup was, “I like
that model, but on the remote machine it’s probably made with cheap boat-
loads of ATA and probably a lot more drives per head, so the performance
wouldn’t be there necessarily for running an app but just kind of for refer-
ence.” They want to keep the snapshots for a lot longer: On your primary
systems you only keep snapshots for a day or two or maybe a week, but on
your remote system, what if you could keep snapshots for literally a year or
multiple years? We started getting banks looking at this and saying tape just
isn’t scaling; disks are getting bigger and faster—faster than tapes are getting
bigger and faster, especially the faster part. A lot of banks have a regulatory
requirement to keep data around for seven years and so they started saying
“Can we have seven years’ worth of snapshots, please?”

Margo: And it seems that when you get into that model of, “Okay, I need
my snapshots for seven years,” and they’re going to be spinning, then I also
have a disk lifetime problem and the disks don’t necessarily last seven years,
and so I also have a problem of refreshing my disk farm as it’s running with
these unreliable disks.

Dave: Sure. The capital lifetime of this equipment for most customers is
three or four years. Some people keep it for an extra year, but really three
to five years is typically the replacement cycle. So keeping a snapshot for
seven years, that snapshot may not be living on the same system or the same
disks, but that snapshot has the same bytes in the same file system orga-
nized structure. The snapshot may live for much, much longer than any of
the physical components live.

; LO G I N : J U N E 20 0 8 Th E pREsE NT A N d FUTU RE O F sA N / N A s ��

login_articles_JUNE08.indd 43 5/13/08 4:51:12 PM

�� ; LO G I N : vO L . 33, N O. 3

Margo: As a customer, when I’m refreshing my vault, I assume I want to
keep my vault spinning, so am I doing sort of a real-time online migration to
my new vault and then sort of replacing incrementally, or am I really doing,
“Okay, time to copy the vault”?

Read the complete interview transcript online at www.usenix.org/
publications/login/2008-06/netappinterview.pdf.

The 8th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’08)
brings together pro fessionals from academic
and industrial backgrounds in what has become
a premier forum for discussing the design,
implemen tation, and implications of systems
software. The OSDI Symposium emphasizes
both innovative research and quantifi ed or
 illuminating experience.

8TH USENIX SYMPOSIUM
ON OPERATING SYSTEMS
DESIGN AND IMPLEMENTATION
December 8–10, 2008, San Diego, CA

Save the Date!

www.usenix.org/osdi08/jlo

Save the Date!

The following workshops will be co-located
with OSDI ’08:

Fourth Workshop on Hot Topics in System
Dependability (HotDep ’08),
December 7
http://www.usenix.org/hotdep08

First USENIX Workshop on the Analysis of
System Logs (WASL ’08),
December 7
http://www.usenix.org/wasl08

Third Workshop on Tackling Computer
 Systems Problems with Machine Learning
Techniques (SysML08), December 11
http://www.usenix.org/sysml08

login_articles_JUNE08.indd 44 5/13/08 4:51:23 PM

a n d R e w B R o w n s w o R d

driving the evolution of
software languages to
a concurrent future
Andrew Brownsword is Chief Architect at Electronic
Arts BlackBox in Vancouver, Canada. He has been
with the company since 1990 and has a BSc in
Computing Science from the University of British
Columbia.

andrew@brownsword.ca

Concurrent: existing, happening, or done at the
same time.

c o n c u r r e n c y h a s b e c o m e a h o t
topic in the past few years because the
concurrency available in hardware is in-
creasing. Processor designers have reached
a point where making sequential tasks take
less time has become impractical or im-
possible—the physical limits encountered
demand engineering tradeoffs. But writing
software that takes advantage of concur-
rency is hard, and making that software
perform as well on different CPU architec-
tures is all but impossible. In this article, we
will explore the reasons why this is currently
true, with specific examples, and will con-
sider how this evolution represents a chang-
ing paradigm that renders the traditional
imperative programming model fragile and
inefficient.

For the past 20+ years, hardware designers have
been using concurrency in the form of pipelining,
superscalar issue, and multi-transaction memory
buses to improve the apparent performance of what
appears to be sequential hardware. Since about
the late 1990s most microprocessors have also in-
cluded SIMD instructions, which are typically ca-
pable of 4 FLOPs (Floating Point OPerations) per
instruction. More recently, some processors sup-
port multiple threads per core (from two in Intel’s
Hyperthreading, up to eight in Sun’s Niagara archi-
tecture), and now processors with two or four cores
are becoming the norm. Michael McCool’s April
2008 ;login: article provides an overview of these
techniques.

Computational efficiency

Most high-performance modern hardware these
days is theoretically capable of about 10–20 FLOPS
for each floating point value moved through the
processor. In terms of latency, approximately 400-
4800 FLOPS could theoretically be done in the
time it takes to fetch a value directly from memory.
These are theoretical peak computation rates, based
on the four-way SIMD capabilities that most pro-
cessors have now. Theoretical rates are not reached
in practice, so what can we really expect to achieve
and what do we see in practice?

; LO G I N : J U N E 20 0 8 d RI v I N G L A N GUAG Es TO A CO N CU RRE NT FUTU RE ��

login_articles_JUNE08.indd 45 5/13/08 4:51:23 PM

�� ; LO G I N : vO L . 33, N O. 3

How efficiently a processor executes is a function of the details of the pro-
cessor’s operation, its memory subsystem, and the software that is running.
Typically all operations are scalar, because that is how most languages are
defined. ALGOL set the pace, and most imperative languages since then
have been embellishing the basic model. They embody the ideas of the se-
quential Von Neumann architecture and are notations for describing a se-
quence of scalar operations. These operations are usually dependent on the
output of operations that came immediately before, or nearly so.

Also, typical code sequences are filled with decision points and loops, which
appear as branch instructions that disrupt the efficient flow of instructions.
Branch frequency and data dependencies in typical code are a frequently
measured metric by hardware and compiler developers. In the mid 1990s,
IBM found during the development of the PowerPC 604 that branches oc-
curred, on average, once every 6 instructions. This makes it largely unpro-
ductive to have hardware dispatch more than about 3 or 4 instructions per
clock cycle. To this day most hardware is aimed at 2- to 4-way dispatch,
which is unsurprising, since software hasn’t changed substantially. More
recent tests on an in-order processor showed that most of the software for
gaming platforms averaged about 10% of the potential instruction dispatch
rate. And very little of that software was using the considerable SIMD capa-
bilities of the hardware, leaving the realization at less than 3% of the proces-
sor’s theoretical computational capability. Instead of the theoretical potential
~25 GFLOP, less than 1 GFLOP was realized. Out-of-order-execution pro-
cessors will do somewhat better than this, but usually only by a factor of 2
or 3.

In recent years both the number of cores in one system and, on some cores,
the number of threads executing on each core have increased beyond unity.
I will ignore the distinction between hardware threads sharing a core and
multiple cores for the rest of this article and will refer simply to “threads.”

Memory and Threads

Multiple threads must share the system in which they exist. The most im-
portant shared resource is main memory (RAM). In most systems there is a
single large pool of RAM. The system may also have a GPU processor, and
some architectures give the GPU its own pool of RAM. Some systems parti-
tion the CPU memory by attaching parts of it directly to each processor; this
is called NUMA (Non-Uniform Memory Access). How each processor ac-
cesses data at a given memory address and how long it takes to do it depend
on where that memory is physically located.

The sharing of memory is complicated by the fact that processors use on-
chip caches to speed up memory access. When the cache isn’t shared by all
threads, the potential exists for a given memory location’s actual current
state to be sitting in one thread’s cache when another one needs it. Most
hardware implements “cache coherency,” which is a mechanism that tracks
where each memory location’s actual state is and retrieves it from that lo-
cation when requested. Having multiple threads reading the same location
is dealt with by having multiple copies of the state in the various caches.
Writing to the same location is problematic, however, because a single cur-
rent state must be kept up to date and it is usually placed in the cache of the
thread that most recently modified it. If more than one thread is continu-
ously updating the same location at the same time, considerable intercache
traffic may result.

login_articles_JUNE08.indd 46 5/13/08 4:51:24 PM

From a developer’s perspective the problem with multiple threads, at least
in an ALGOL-like language, is that the program must be explicitly writ-
ten to take advantage of them. Given a program written for a single-proces-
sor machine, all but one thread will sit idle unless the operating system has
something for additional threads to do. Typically the OS has enough to keep
a second thread at least partially busy, and some OS services are now inter-
nally moving computation to other threads (graphics, movie playing, ani-
mation, etc.) if those services are in use. If the hardware has more than two
threads, however, then they are going to be doing little to improve your soft-
ware’s performance. As a result, if you are using 3% of one thread’s poten-
tial and you have a four-core machine, for example, you are now only using
<1% of the system potential. In theory you could speed up your software by
a factor of over 100 or be doing 100 times as much computation on the same
hardware.

programming for Concurrency

So how do you take advantage of this ability of hardware to operate concur-
rently? Broadly speaking, there are two kinds of available concurrency: in-
struction-level and thread-level.

Instruction-level concurrency has largely become the domain of the com-
piler, but that doesn’t mean there is nothing you can do about it. The choice
of language you use and how you use it has an enormous impact. As already
mentioned, most current languages embody a fundamentally scalar and se-
quential programming model. Some compile to an intermediate form that
also embodies a simple sequential machine, and the need for efficient JIT
severely limits how the compiler can optimize. Fully natively compiled lan-
guages or those with more powerful intermediate forms may have compil-
ers that can perform aggressive optimizations (such as auto-vectorization) in
specific circumstances, but these techniques tend to be fragile and provide
limited results. In C and C++, the language provides fairly low-level-detail
control over the emitted instructions, and the compilers often support hard-
ware-specific language extensions to access SIMD instructions and other
unique hardware features. With careful, labor-intensive techniques, highly
specialized platform-specific code can be written to dramatically improve
performance. This kind of code optimization requires substantial expertise,
detailed knowledge of the hardware platform, and a great deal of time, and it
incurs substantial maintenance costs. On modern hardware it commonly de-
livers 4–20x performance improvements, raising the 3% utilization into the
10–60% range. Notice that this is as good as or better than the improvement
you might expect by going from a single- to a many-threaded processor. Not
all problems can be optimized in this fashion, but more are amenable to it
than most developers seem to think. This kind of data-parallel solution also
tends to be more amenable to being divided across multiple threads, making
it easier to achieve thread-level concurrency. Unfortunately, the aforemen-
tioned problems make the process of experimentation and exploration to
find efficient new data-parallel solutions very difficult and expensive.

Achieving a high level of instruction-level concurrency boils down to writ-
ing code that fits into a set of constraints. The precise definition of these
constraints depends on the hardware, but there are some general principles
that apply. Choose data structures and access patterns that are uniform and
predictable, organize data so that access to it is spatially and temporally
dense, choose data structure alignments and sizes, apply precisely the same
sequence of operations to many data elements, minimize data dependencies

; LO G I N : J U N E 20 0 8 d RI v I N G L A N GUAG Es TO A CO N CU RRE NT FUTU RE ��

login_articles_JUNE08.indd 47 5/13/08 4:51:24 PM

�� ; LO G I N : vO L . 33, N O. 3

across parallel elements, define interfaces where each interaction specifies a
large amount of work to be performed, and so forth.

Unfortunately, most programming languages do nothing to aid the program-
mer in these pursuits, if they allow these things to be under explicit pro-
grammer control at all. Even worse, code written in these languages contains
too much detail (i.e., the semantic information available to the compiler is
at a very primitive level) and this limits what the compilers are capable of
and what they are permitted to do by the language rules. There are a few
languages and alternative notations available (Michael McCool’s own Rapid-
Mind being one proprietary example; others are StreamIt, Intel’s Ct, etc.),
but they are far from pervasive and thus far there is no widely available stan-
dard that integrates tightly enough with the standard environments (such as
C/C++) to be adopted. Tight integration and, where possible, familiar syntax
are essential for practical efficiency reasons, for programmer comfort, and
for gradual adoption by an industry heavily invested in existing languages.
Exactly what such a language should look like is open to debate, but my
opinion is that burdening an existing grammar of already excessive com-
plexity is not the correct solution.

Thread-level Concurrency

Thread-level concurrency tends to receive more attention, largely because it
is easier to see and understand. It is accomplished in most languages by call-
ing a threading interface provided by the OS, including it in a support li-
brary, or as a language feature. These vary in their details and features. The
detailed semantics and capabilities of how threads work between platforms
and interfaces vary significantly. How they get scheduled to run, whether
priorities can be set, how the threads interact based on these priorities,
whether a given software thread will stay on a given hardware thread, how
long it will run without being interrupted, and so on can show up latent
bugs and result in noteworthy performance differences that are hard to di-
agnose.

Threads running concurrently will inevitably want to interact and will
therefore need to access some piece of shared state. This generally isn’t a
problem until one or more of the threads want to modify the shared state.
Then we run into a problem called the “lack of atomicity.” Most operations
are actually composed of several hardware operations. Incrementing an in-
teger variable, for example, reads the value from memory into a register,
performs the add operation, then stores the value back to memory. Even
with hardware that has an instruction that appears to add a value directly
to memory, it in reality implements this internally as an read–modify–write
sequence. When each of these operations is a pipelined instruction, which
is itself broken down into many stages, it should be clear that there are a lot
of steps involved in doing even this most trivial of examples. When these
steps are happening in a machine where there are additional threads sharing
the memory location being modified, the possibility exists of conflicting up-
dates. Exactly what happens to the value depends on the operation, its hard-
ware implementation, and the precise timing of each incident of conflicting
change. This means that even this trivial example can do something differ-
ent every time it is executed, and even if timing were somehow stable, then
executing on different (even nominally compatible) hardware may impact
the outcome.

Many thread interfaces provide some basic “atomic operations.” These func-
tions use capabilities provided by the processor to ensure atomicity for this
kind of simple read–modify–write operation. Usually the hardware provides

login_articles_JUNE08.indd 48 5/13/08 4:51:24 PM

a base mechanism to use instead of the atomic operation itself. This is usu-
ally either a compare-and-set operation or a reserve-and-conditional-store
operation. I’m not going to describe what these two things are here, but the
salient point is that using them correctly and ensuring atomicity is signifi-
cantly more expensive in terms of complexity, instructions, performance,
and programmer knowledge than just a simple nonatomic operation. They
also don’t guarantee atomicity across a series of operations.

An important point to note about primitive hardware synchronization op-
erations is that they cause the hardware to synchronize. This seemingly triv-
ial point has unfortunate consequences. It usually means that at least part
of the hardware must stop and wait for some set of operations to complete,
and often this means requests on the memory bus. This interferes with the
bandwidth across the bus, which is one of the system’s key performance bot-
tlenecks. The more aggressive the processor is about concurrent and out-of-
order operations, the more there is to lose by forcing it to synchronize.

The problem with the lack of atomicity goes far deeper than the trivial incre-
ment example just cited. Consider this simple piece of C code:

int done; // assume this is an initialized shared variable
if (done == 0)
{
 // do “stuff” here that you want to happen once
 done = 1;
}

If you have two threads and they try to execute this code at the same time,
then both may perform the test and do the “stuff” before done is set to 1.
You may think that by putting the done=1 before doing the “stuff” you can
fix the problem, but all you will do is make it happen less often. The in-
stant that done is read for the comparison, another thread may come along
and read the same value so that it can make the same test succeed. Subtle
changes in the hardware or OS can dramatically impact how often this code
fails in practice. One solution to this example is to use an atomic operation
that your threading interface provides, but this doesn’t get you very far, be-
cause it will provide only a limited set of atomic operations and you can’t
restrict your programming to just using those!

Synchronization

The standard solution to this is to use synchronization primitives. Each
threading interface provides some set of “synchronization primitives.” These
are usually fairly similar among interfaces, but the semantics can differ in
subtle but important ways. Each primitive also brings with it different per-
formance implications. Using some lightweight synchronization, even if
blocking or waiting doesn’t happen, might consume only a few tens or hun-
dreds of cycles, whereas others might consume thousands (possibly many,
many thousands). And this is the cost if there is no contention between
threads!

Most of these primitives are in the form of a lock /unlock pair of operations.
In some cases it is called enter/ leave instead of lock /unlock because the
pair is defining a “critical section” of code that you enter with the lock (or
enter) operation and that you exit with the unlock (or leave) operation.
Only a single thread can be inside such a critical section at a time. Other
threads attempting to enter are forced to wait until the one in the critical
section leaves it (i.e., they are “mutually excluded,” which is shortened to
“mutex”). This ensures that the code in the critical section is executed atomi-

; LO G I N : J U N E 20 0 8 d RI v I N G L A N GUAG Es TO A CO N CU RRE NT FUTU RE ��

login_articles_JUNE08.indd 49 5/13/08 4:51:25 PM

�0 ; LO G I N : vO L . 33, N O. 3

cally. Unfortunately, this also forces this part of the program to be effectively
single-threaded, and spending too much time in critical sections reduces
your performance to that of a single hardware thread (or less, since execut-
ing synchronization primitives has a cost).

int done; // assume this is an initialized shared variable
enter_critical_section();
if (done == 0)
{
 // do stuff here that you want to happen once
 done = 1;
}
leave_critical_section();

From this you might think that synchronization is only needed when a
value is going to be modified. Unfortunately this isn’t so.

int *p; // assume this is an initialized shared variable
if (p != NULL)
{
 if (*p == 0)
 {
 // do something wonderful
 }
}

Here we are testing p to be sure that it is valid before using it. Unfortunately,
some other code might come along and modify it (to NULL, for example)
before it is dereferenced, causing unexpected behavior, an outright crash, or
an exception.

One idea to attempt a fix might be this:

int *p; // assume this is an initialized shared variable
int *mycopy = p;
if (mycopy != NULL)
{
 if (*mycopy == 0)
 {
 // do something wonderful
 }
}

However, this can be a disaster as well. The memory referenced by p is part
of the shared state, so simply making a copy of the pointer doesn’t solve the
problem. For example, another thread could deallocate the memory refer-
enced by p or otherwise repurpose it. In a garbage-collected language the
object will not have been deallocated, but if p now references a different ob-
ject than mycopy you may be relying on (or changing) stale data. In other
situations this might be a valid and efficient strategy.

There are likely to be multiple places in the code that modify a particular
piece of shared state, so we need to be able to lock them all to make them
mutually exclusive. To allow this, synchronization primitives are almost al-
ways objects—mutex objects, critical section objects, etc. The lock/unlock
operations become methods, and all the normal issues of creation and life-
time management come into play. A synchronization object is a piece of
shared state that is used to arbitrate between threads.

mutex m; // assume this is initialized shared state
int *p; // assume this is an initialized shared variable

login_articles_JUNE08.indd 50 5/13/08 4:51:25 PM

m.lock();
if (p != NULL)
{
 if (*p == 0)
 {
 // do something wonderful
 }
}
m.unlock();

One obvious problem with this is that it becomes easy to forget the unlock
operation or to retain the lock for long periods of time. This is particularly
an issue if the lock and unlock operations are enacted indirectly through a
higher-level piece of code via an interface, or if expensive function calls to
other subsystems are made while the lock is held.

To mitigate these problems some threading interfaces provide lexically
scoped synchronization. For example, in C#:

object m;
int *p; // assume this is an initialized shared variable
lock (m)
{
 if (p != NULL)
 {
 if (*p == 0)
 {
 // do something wonderful
 }
 }
}

Synchronization primitives are shared resources, and in C++ it is appropri-
ate to apply the resource acquisition through a construction paradigm, as in,
for example:

class MutexLock
{
public:
 MutexLock (Mutex m) : mMutex(m) { mMutex.Lock(); }
 ~MutexLock () { mMutex.Unlock(); }
private:
 Mutex mMutex;
};

As a project grows in size and more code needs to operate concurrently, a
program will come to have multiple synchronization objects. A new problem
arises in code with multiple synchronization primitives: deadlock. Imagine
two threads (#1 and #2), which are using two mutexes (A and B). Now con-
sider what happens in this scenario: Thread #1 acquires mutex A, thread
#2 acquires mutex B, thread #1 attempts to acquire mutex B (and blocks
until #2 releases it), and finally thread #2 attempts to acquire mutex A (and
blocks until #1 releases it). These two threads are now stopped, each waiting
for the other to release its resource, which of course they cannot do, because
they are stopped.

Deadlock is relatively simple to be aware of and to avoid in a simple piece
of software. It becomes considerably more complex to avoid in larger pieces
of software. One solution is to use a single mutex instead of two different
ones. Some early threaded operating systems adopted this approach to pro-

; LO G I N : J U N E 20 0 8 d RI v I N G L A N GUAG Es TO A CO N CU RRE NT FUTU RE ��

login_articles_JUNE08.indd 51 5/13/08 4:51:25 PM

�� ; LO G I N : vO L . 33, N O. 3

tect their internal resources. The problem with this approach was, as previ-
ously described, that the program can rapidly degenerate to being effectively
single-threaded. The more hardware threads you have, the more of a loss
this is.

An alternative to sharing mutexes widely is to avoid shared state and to use
no other systems from within critical sections. In large projects this can be-
come difficult or impossible. Powerful and important design patterns such
as delegates and iterators can lead to unexpected situations where deadlock
is possible.

The term “thread safety” is often used to describe objects (or systems) that
are designed to be used from multiple threads simultaneously. It is often not
clear what is meant by an object being thread-safe. One approach is to sim-
ply make each of the methods in the object lock a mutex while it executes to
ensure that the object’s state remains consistent during the call. That does
not ensure that the object’s state remains consistent between calls. For ex-
ample, in C++ with STL:

vector<int> a; // assume this is shared
int len = a.size(); // assume this is a synchronized op
int last_value = a[len-1]; // ... and so is this one

This code can fail even though all the operations on a are individually
thread-safe. If another thread removes an element from a after the count is
retrieved, then this thread will index past the end. If another thread adds an
element to a, then it won’t be the last value that is retrieved.

A naive solution to this problem is to provide a lock/unlock operation as
part of the object’s interface. The user of the object holds the lock while
working with it. Unfortunately, working on objects in isolation is rare—most
interesting code uses multiple objects to accomplish something interest-
ing. If more than one of those objects uses this approach, you may now find
yourself in a potential deadlock situation. One example of this arises when
iterating across containers. What happens if another thread changes the con-
tainer while it is being iterated? The .NET framework’s containers, for exam-
ple, throw an exception if this happens. The code doing the iteration must
ensure that this cannot happen. The obvious solution is to lock a mutex for
the duration of the iteration, but heavily used or large containers or slow
per-element operations can make this prohibitively expensive. Furthermore,
if the operation involves calls to other code (such as methods on the objects
from the container), then deadlock can become an issue. A common exam-
ple is moving objects from one container to another where both containers
are using this locking strategy.

amdahl’s law

It is useful to understand Amdahl’s Law as it applies to concurrency. It actu-
ally applies to the principle of optimization in general, but here I’ll just point
out its implication with respect to synchronization. The time to execute a
program is equal to the sum of the time required by the sequential and par-
allel parts of the program: T = S + P. Optimizations to the sequential part
can reduce S, and optimizations to the parallel part can reduce P. The obvi-
ous optimization to the parallel part is to increase the number of processors.
Twice as many processors might reduce P by 2; an infinite number might
reduce it to virtually nil. If the split between S and P cannot be changed,
however, then the maximum speedup possible by parallel optimizations is
1/S (i.e., P has gone to zero). If the sequential part of the program is 50% of
the execution time, adding an infinite number of processors will only double

login_articles_JUNE08.indd 52 5/13/08 4:51:26 PM

its performance! It should therefore be clear that minimizing the amount of
time spent in sequential parts of the program (i.e., critical sections or hold-
ing mutex locks) is essential to performance scaling.

One important point about the preceding paragraph is whether the split be-
tween S and P can be changed. Changing this split is a powerful approach,
akin to improving your algorithm instead of your implementation. It can be
accomplished in three basic ways. The obvious, although difficult, one is to
replace some of your sequential work with parallel equivalents. The second
is simply to not do some of the sequential work, which is not always an op-
tion but sometimes worth considering. And the third is to do more paral-
lel work. The parallel work is what will scale with increasingly concurrent
hardware, so do more of it.

Conclusions

The point of this discussion of threaded programming is not to enumerate
all the potential pitfalls of threaded programming. Nor do I claim that there
aren’t solutions to each of these individual problems, even if they require
careful design and implementation and rigorous testing. What I am trying to
convey is that there is a minefield of nasty, subtle, intractable problems and
that the programming model embodied by the common programming lan-
guages does nothing to help the programmer deal with it. These languages
were conceived for programming computers that no longer exist.

So what, with respect to concurrency, might a language and compiler take
care of that could make life easier for the programmer? Here’s a sampling
(none of which I’m going to explain), just to give you an idea: structure and
field alignment, accounting for cache line size and associativity, account-
ing for cache read/write policies, using cache prefetch instructions, account-
ing for automatic hardware prefetching, dealing with speculative hardware
execution (particularly stores), leveraging DMA hardware, using a context
switch versus spin-lock synchronization, dealing with variables co-inhab-
iting cache lines, loading variables into different register sets based on ca-
pabilities versus cost of inter-set moves versus usage, dealing with different
register sizes, handling capability and precision differences among data
types, organizing vectors of structures based on algorithmic usage and mem-
ory system in-flight transaction capabilities, vector access patterns based
on algorithms and hardware load/store/permute capabilities, compare and
branch versus bitwise math, branching versus selection, dealing with reg-
ister load/store alignment restrictions, choosing SoA versus AoS in-memory
and in-register organizations, hoisting computations from conditionals to
fill pipeline stalls, software pipelining of loops, organizing and fusing loops
based on register set size, selecting thread affinities, latching shared val-
ues for atomicity, object synchronization, trade-off between instruction and
thread-level parallelism, and leveraging hardware messaging and synchroni-
zation capabilities. Any one of these things can result in doubling the perfor-
mance of your algorithm and, although they may not combine linearly, you
typically have to get them all right to get close to maximum performance.
And many of them will break your code if you get them wrong. Some of
them will simply make your code nonportable and fragile.

There are alternative categories of languages, and some of these offer pro-
gramming models with strong advantages in concurrent programming.
Functional languages (e.g., Haskell, Lisp, APL, ML, Erlang) offer some pow-
erful advantages, but most bring with them various disadvantages and none
is mainstream. Array programming languages (e.g., APL, MATLAB) are pow-
erfully expressive of data parallel concepts but have limitations and haven’t

; LO G I N : J U N E 20 0 8 d RI v I N G L A N GUAG Es TO A CO N CU RRE NT FUTU RE ��

login_articles_JUNE08.indd 53 5/13/08 4:51:26 PM

�� ; LO G I N : vO L . 33, N O. 3

reached their full potential in terms of optimization—and they typically
eschew the object-oriented paradigms that are now deeply (and rightfully)
entrenched in modern software development. Less traditional programming
models and languages exist that embody powerful concurrent concepts such
as message-passing objects networks (e.g., Microsoft’s Robotics Studio), but
they are far from standard, are not portable, and typically cannot be inte-
grated into existing environments. Highly specialized languages and tools
such as StreamIt, RapidMind, and cT also suffer from the same issues. A few
very successful specialized languages exist, particularly in the domain of
graphics: HLSL, GLSL, and Cg have given graphics software and hardware
developers tremendous power and flexibility. They have integrated well into
existing software systems, and being part of the C language family makes
them readily accessible to the C/C++/Java/C# communities. The wide adop-
tion of these shading languages gives some indication of and hope about
what is possible. All of these alternatives point in directions in which we can
take our programming languages and models in the future.

SuggeSTeD reaDIng

Video of Herb Sutter’s talk “Machine Architecture: Things Your Program-
ming Language Never Told You” at NWCPP on September 19, 2007:
http://video.google.com/videoplay?docid=-4714369049736584770.

Slides for Sutter’s talk: http://www.nwcpp.org/Meetings/2007/09.html.

Michael D. McCool, “Achieving High Performance by Targeting Multiple
Hardware Mechanisms for Parallelism,” ;login:, April 2008.

Transactional memory: http://research.microsoft.com/~simonpj/papers/stm/
index.htm.

Language taxonomy: http://channel9.msdn.com/Showpost.aspx?postid
=326762.

Nested data parallelism: http://research.microsoft.com/~simonpj/papers/
ndp/NdpSlides.pdf.

Erlang: http://www.sics.se/~joe/talks/ll2_2002.pdf.

P. Grogono and B. Shearing, “A Modular Programming Language Based on
Message Passing”: http://users.encs.concordia.ca/~grogono/Erasmus/E01.pdf.

login_articles_JUNE08.indd 54 5/13/08 4:51:26 PM

d a n t s a F R i R , d i L m a d a s i Lv a , a n d
d a v i d w a G n e R

the murky issue of
changing process
identity: revising
“setuid demystified”
Dan Tsafrir is a postdoctoral researcher at the IBM
T.J. Watson Research Center in New York. He is a
member of the advanced operating systems group
and is interested in various aspects of operating
systems.

dants@us.ibm.com

Dilma da Silva is a researcher at the IBM T.J. Watson
Research Center in New York. She manages the
Advanced Operating Systems group. Prior to joining
IBM, she was an Assistant Professor at University of
Sao Paulo, Brazil. Her research in operating systems
addresses the need for scalable and customizable
system software.

dilmasilva@us.ibm.com

David Wagner is a professor in the computer
science division at the University of California at
Berkeley. He studies computer security, cryptogra-
phy, and electronic voting.

daw@cs.berkeley.edu

d r o p p i n g u n n e e d e d p r o c e s s p r i v i -
leges promotes security but is notoriously
error-prone because of confusing set*id sys-
tem calls with unclear semantics and subtle
portability issues. To make things worse,
existing recipes to accomplish the task are
lacking, related manuals can be misleading,
and the associated kernel subsystem might
contain bugs. We therefore proclaim the
system as untrustworthy when it comes to
the subject matter, and we suggest a defen-
sive, easy-to-use solution that addresses all
concerns.

Whenever you run a program, it assumes your
identity and you lend it all your power: Whatever
you’re allowed to do, it too is allowed. This in-
cludes deleting your files, killing your other pro-
grams, changing your password, and retrieving
your mail, for example. Occasionally, you need to
write programs that enhance the power of oth-
ers. Consider, for example, a Mahjongg game that
maintains a high-score file. Of course, making the
file writeable by all is not a very good idea if you
want to ensure that no one cheats, so Mahjongg
must somehow convey to players the ability to up-
date the file in a controlled manner. In UNIX sys-
tems this is done as follows: When a game ends,
if the score is high enough, Mahjongg temporarily
assumes the identity of the file’s owner, makes the
appropriate modifications, and switches back to the
identity of the original player.

Many standard utilities work this way, includ-
ing passwd and chsh (which update /etc/passwd),
xterm (which updates utmp usage information),
su (which changes user), sudo (which acts as root),
and X (which accesses interactive devices). The
common feature of these tools is that they know
their real identity is of a nonprivileged user, but
they have the ability to assume a privileged iden-
tity when required. (Note that “privileged” doesn’t
necessarily mean root; it merely means some other
identity that has the power to do what the real user
can’t.) Such executables are collectively referred as
“setuid programs,” because (1) they must be ex-
plicitly associated with a “setuid bit” (through the
chmod command) and (2) they pull off the iden-
tity juggling trick through the use of set*id system
calls (setuid (2), setreuid (2), and all their friends).

There’s another, often overlooked, type of program
that can do identity juggling but does not have an
associated setuid bit. These start off as root pro-

; LO G I N : J U N E 20 0 8 Th E mU Rk Y I ssU E O F Ch A N G I N G pRO CEss I d E NTIT Y ��

login_articles_JUNE08.indd 55 5/13/08 4:51:27 PM

�� ; LO G I N : vO L . 33, N O. 3

cesses and use set*id system calls to change their identity to that of an or-
dinary nonprivileged user. Examples include the login program, the cron
daemon (which runs user tasks at a specified time), daemons providing ser-
vice to remote users by assuming their identity (sshd, telnetd, nfs, etc.), and
various mail server components.

Both types of programs share a similar philosophy: To reduce the chances
of their extra powers being abused, they attempt to obey the principle of
least privilege, which states that “every program and every user of the sys-
tem should operate using the least set of privileges necessary to complete the
job” [16]. For setuid programs this translates to:

1. minimizing the number and duration of the time periods at which the
program temporarily assumes the privileged identity, to reduce the
negative effect that programming mistakes might have (e.g., mistakenly
removing a file as root can have far greater negative implications than
doing it when the nonprivileged identity is in effect), and

2. permanently giving up the ability to assume the privileged identity as
soon as it’s no longer needed, so that if an attacker gains control (e.g.,
through a buffer overflow vulnerability), the attacker can’t exploit those
privileges.

The principle of least privilege is a simple and sensible rule. But when it
comes to identity-changing programs (in the immortal words of The Essex
[7] or anybody who ever tried to lose weight [14]) it’s easier said than done.
Here are a few quotes that may explain why it’s at least as hard as doing a
diet: Chen et al. said that “for historical reasons, the uid-setting system calls
are poorly designed, insufficiently documented, and widely misunderstood”
and that the associated manuals “are often incomplete or even wrong” [2].
Dean and Hu observed that “the setuid family of system calls is its own rat’s
nest; on different UNIX and UNIX-like systems, system calls of the same
name and arguments can have different semantics, including the possibil-
ity of silent failures” [3]. Torek and Dik concluded that “many years after the
inception of setuid programs, how to write them is still not well understood
by the majority of people who write them” [17]. All these deficiencies have
made the setuid mechanism the source of many security vulnerabilities.

It has been more than 30 years since Dennis Ritchie introduced the setuid
mechanism [15] and more than 20 years since people started publishing pa-
pers about how to correctly write setuid programs [1]. The fact that this ar-
ticle has something new to say serves as an unfortunate testament that the
topic is not yet resolved. Our goal in this paper is to provide the equivalent
of a magical diet pill that effortlessly makes you slim (or at least lays the
foundation for this magic). Specifically, we design and implement an intui-
tive change-identity algorithm that abstracts away the many pitfalls, con-
fusing details, operating-system-specific behavior, and portability issues.
We build on and extend the algorithm proposed by Chen et al. [2], which
neglected to factor in the role that supplementary groups play in forming
an identity. Our code is publicly available [18]. It was extensively tested on
Linux 2.6.22, FreeBSD 7.0-STABLE, OpenSolaris, and AIX 5.3. We warn
that, given the history of subtle pitfalls in the set*id syscalls, it may be pru-
dent for developers to avoid relying upon our algorithm until it has been
subject to careful review by others.

user Identity vs. process Identity

Before attempting to securely switch identities, we need to define what the
term “identity” means. In this context, we found it productive to make a dis-

login_articles_JUNE08.indd 56 5/13/08 4:51:27 PM

tinction between two types of identities: that of a user and that of a process.
The user’s credentials include the user ID (uid), the user’s primary group
(gid), and an additional array of supplementary groups (sups). Collectively,
they determine which system resources the user can access. In particular, a
zero uid is associated with the superuser (root) who can access all resources.
We define the ucred_t type to represent a user by aggregating these three
fields, as follows:

typedef struct supplementary_groups {
 gid_t *list; // sorted ascending, no duplicates
 int size; // number of entries in 'list'
} sups_t;

typedef struct user_credentials {
 uid_t uid;
 gid_t gid;
 sups_t sups;
} ucred_t;

Things are a bit more complicated when it comes to the corresponding pro-
cess credentials. Each process has three user IDs: real (ruid), effective (euid),
and saved (suid). The real uid identifies the “owner” of the process, which
is typically the executable’s invoker. The effective uid represents the identity
in effect, namely, the one used by the OS (operating system) for most access
decisions. The saved uid stores some previous user ID, so that it can be re-
stored (copied to the euid) at some later time with the help of set*uid system
calls. Similarly, a process has three group IDs: rgid, egid, and sgid. We de-
fine the pcred_t type to encapsulate the credentials of a process:

typedef struct user_ids { uid_t r, e, s; } uids_t;
typedef struct group_ids { gid_t r, e, s; } gids_t;

typedef struct process_credentials {
 uids_t uids; // uids.r = ruid, uids.e = euid, uids.s = suid
 gids_t gids; // gids.r = rgid, gids.e = egid, gids.s = sgid
 sups_t sups;
} pcred_t;

Supplementary groups can be queried with the help of the getgroups sys-
tem call. The ruid, euid, rgid, and egid of a process can be retrieved with
getuid, geteuid, getgid, and getegid, respectively. The ways to find out
the values of suid and sgid are OS-specific.

In Linux, each process also has an fsuid and an fsgid, which are used for
access control to the file system. Normally, these are equal to the euid and
egid, respectively, unless they are explicitly changed [11]. As this rarely used
feature is Linux-specific, it is not included in the aforementioned data struc-
tures. To ensure correctness, our algorithm never manipulates the fsuid or
fsgid, ensuring that (if programs rely only upon our interface for manipulat-
ing privileges) the fsuid and fsgid will always match the euid and egid.

The benefit of differentiating between user and process identities is that the
former is more convenient to work with, easier to understand, better cap-
tures the perception of programmers regarding identity, and typically is all
that is needed for programmers to specify what kind of an identity they re-
quire. In other words, the notions of real, effective, and saved IDs are not
important in their own right; rather, they are simply the technical means by
which identity change is made possible. Note, however, that “user” isn’t an
abstraction that is represented by any kernel primitive: The kernel doesn’t
deal with users; it deals with processes. It is therefore the job of our algo-
rithm to internally use pcred_t and provide the appropriate mappings.

; LO G I N : J U N E 20 0 8 Th E mU Rk Y I ssU E O F Ch A N G I N G pRO CEss I d E NTIT Y ��

login_articles_JUNE08.indd 57 5/13/08 4:51:28 PM

�� ; LO G I N : vO L . 33, N O. 3

rules of Identity Juggling

IDenTITy propagaTIon anD SplIT perSonalITIeS

The second thing one has to consider when attempting to correctly switch
identities is the manner by which processes initially get their identity. When
a user rik logs in, the login program forks a process P and sets things up
such that (1) P’s three uids hold rik’s uid, (2) P’s three gids hold rik’s pri-
mary group, and (3) P’s supplementary array is populated with the gids of
the groups to which rik belongs. The process credentials are then inherited
across fork. They are also inherited across exec, unless the corresponding
executable E has its setuid bit set, in which case the effective and saved uids
are set to be that of E’s owner (but the real uid remains unchanged). Like-
wise, if E is setgid, then the saved and effective groups of the new process
are assigned with E’s group.

Conversely, the supplementary array is always inherited as is, even if E’s set-
uid/setgid bits are set. Notice that this can lead to a bizarre situation where
E is running with a split personality: The effective user and group are of E’s
owner, whereas the supplementary groups are of E’s invoker. This isn’t nec-
essarily bad (and in fact constitutes the typical case), but it’s important to
understand that this is what goes on.

uSer ID JugglIng

Since access control is based on the effective user ID, a process gains privi-
lege by assigning a privileged user ID to its euid, and drops privilege by re-
moving it. To drop privilege temporarily, a process removes the privileged
user ID from its euid but stores it in its saved ID; later, the process may
restore privilege by copying this value back to the euid. To drop privilege
permanently, a process removes the privileged user ID from all three uids.
Thereafter, the process can never restore privilege.

Roughly speaking, there typically exists some technical way for a process to
copy the value from one of its three uids to another, and thus perform the
uid juggling as was just described. If the process is nonroot (uid =/ 0), then
that’s all it can do (juggle back and forth between the real and saved uids).
Root, however, can assume any identity.

prIMary group JugglIng

The rules of changing gids are identical, with the exception that egid=0
doesn’t convey any special privileges: Only if euid=0 can the process set ar-
bitrary gids.

SuppleMenTary groupS JugglIng

The rules for changing supplementary groups are much simpler: If a process
has euid=0, it can change them however it likes through the setgroups sys-
tem call. Otherwise, the process is forbidden from using setgroups and is
stuck with the current setting. The implications for setuid programs are in-
teresting. If the setuid program drops privileges (assuming the identity of its
invoker), then the supplementary groups will already be set appropriately.
However, until that happens, the program will have a split personality. A se-
tuid-root program can set the supplementary groups to match its privileged
identity, if it chooses. However, nonroot setuid programs cannot: They will
suffer from a split personality for as long as they maintain their privileged

login_articles_JUNE08.indd 58 5/13/08 4:51:28 PM

identity, and there’s simply no way around it. As a result, nonroot setuid
programs might run with extra privileges that their creators did not antici-
pate.

MeSSIneSS of SeTuID SySTeM CallS

Several standard set*id system calls allow programmers to manipulate the
real, effective, and saved IDs, in various ways. To demonstrate their prob-
lematic semantics, we focus on only setuid (2) through an example of a vul-
nerability found in a mainstream program. Googling the word “setuid” with
“vulnerability” or “bug” immediately brings up many examples that are suit-
able for this purpose. But to also demonstrate the prevalence of the problem,
we attempted to find a new vulnerability. Indeed, the first program we ex-
amined contained one.

Exim is a popular mail server that is used by default in many systems [5].
Figure 1 shows the function exim uses to drop privileges permanently, taken
from the latest version available at the time of this writing [6]. It implicitly
assumes that calling setuid will update all three uids, so that all privileges
are permanently relinquished. This assumption indeed holds for some OSes
(e.g., FreeBSD). But if the effective ID is nonzero (which may be the case ac-
cording to the associated documentation) then the assumption doesn’t hold
for Linux, Solaris, and AIX, as the semantics of setuid under these circum-
stances dictate that only the euid will be updated, leaving the ruid and suid
unchanged. Consequently, if exim is compromised, the attacker can restore
exim’s special privileges and, for example, obtain uncontrolled access to all
mail in the system.

Although this particular vulnerability isn’t nearly as dangerous as some pre-
viously discovered setuid bugs, it does successfully highlight the problematic
system call behavior, which differs not only between OSes but also accord-
ing to the current identity.

/*
/* This function sets a new uid and gid permanently, optionally calling
/* initgroups() to set auxiliary groups. There are some special cases when
/* running Exim in unprivileged modes. In these situations the effective
/* uid will not be root; [...]
/*/
void exim_setugid(uid_t uid, gid_t gid, BOOL igflag, uschar *msg)
{
 uid_t euid = geteuid();
 gid_t egid = getegid();

 if (euid == root_uid | | euid != uid | | egid != gid | | igflag) {

 if (igflag) {
 /* do some supplementary groups handling here */ ...
 }

 if (setgid(gid) < 0 | | setuid(uid) < 0) {
 /* PANIC! */ ...
 }
 }
}

F i g u r e 1 : e x i m ’ s C O d e t O P e r m a n e n t Ly C h a n g e i d e n t i t y
C O n t a i n s a V u L n e r a b i L i t y.

; LO G I N : J U N E 20 0 8 Th E mU Rk Y I ssU E O F Ch A N G I N G pRO CEss I d E NTIT Y ��

login_articles_JUNE08.indd 59 5/13/08 4:51:29 PM

�0 ; LO G I N : vO L . 33, N O. 3

Safely Dropping privileges

Equipped with a good understanding of the subject, we go on to develop an
algorithm to safely drop privileges permanently. We do so in a top-down
manner, making use of the ucred_t and pcred_t types previously defined.
Figure 2 (facing page) shows the algorithm. Its input parameter specifies the
target identity; the algorithm guarantees to permanently switch to the tar-
get identity or clearly indicate failure. The algorithm works by first changing
the supplementary groups, then changing the gids and changing the uids (in
that order), and, finally, checking that the current identity matches the tar-
get identity.

error HanDlIng

There are two ways to indicate failure, depending on how the macros
DO_CHK and DO_SYS are defined:

#ifdef LIVING_ON_THE_EDGE
define DO_SYS(call) if((call) == -1) return -1 /* do system call */
define DO_CHK(expr) if(! (expr)) return -1 /* do boolean check */
#else
define DO_SYS(call) if((call) == -1) abort() /* do system call */
define DO_CHK(expr) if(! (expr) abort() /* do boolean check */
#endif

But although reporting failure through return values is possible, we advise
against it, as it might leave the identity in an inconsistent state. Thus, when
an identity change fails in the middle, programmers should either abort or
really know what they’re doing.

InpuT CHeCk

The ucred_is_sane function checks the validity of the input parameter. It
is implemented as follows:

long nm = sysconf(_SC_NGROUPS_MAX);
return (nm >= 0) && (nm >= uc->sups.size) && (uc->sups.size >= 0) &&
 uc->uid != (uid_t) -1 &&
 uc->gid != (gid_t) -1;

The maximal size of the supplementary groups may differ between systems,
but it can be queried in a standard way. We also check that the user and
group IDs aren’t -1, because this has special meaning for several set*id sys-
tem calls (“ignore”).

verIfICaTIon

The first chunk of code in Figure 2 is responsible for setting the supplemen-
tary groups to uc->sups, the three gids to g, and the three uids to u. Set-
ting the uids last is important, because afterward the process might lose its
privilege to change its groups. Setting supplementary groups before primary
groups is also important, for reasons to become clear later on. The remain-
der of the function verifies that all of these operations successfully changed
our credentials to the desired identity. This policy is required in order to
prevent mistakes in the face of the poorly designed set*id interface (e.g., this
policy would have prevented the exim vulnerability), to protect against pos-
sible

login_articles_JUNE08.indd 60 5/13/08 4:51:29 PM

int drop_privileges_permanently(const ucred_t *uc /*target identity*/)
{
 uid_t u = uc->uid;
 gid_t g = uc->gid;
 pcred_t pc;

 DO_CHK(ucred_is_sane(uc));
 DO_SYS(set_sups(&uc->sups));
 DO_SYS(set_gids(g/*real*/, g/*effective*/, g/*saved*/));
 DO_SYS(set_uids(u/*real*/, u/*effective*/, u/*saved*/));

 DO_SYS(get_pcred(&pc));
 DO_CHK(eql_sups (&pc.sups , &uc->sups));
 DO_CHK(g == pc.gids.r && g == pc.gids.e && g == pc.gids.s);
 DO_CHK(u == pc.uids.r && u == pc.uids.e && u == pc.uids.s);
 free(pc.sups.list);

#if defined(__linux__)
 DO_SYS(get_fs_ids(&u, &g));
 DO_CHK(u == uc->uid && g == uc->gid);
#endif

 return 0; /* success */
}

F i g u r e 2 : P e r m a n e n t Ly s w i t C h i n g i d e n t i t y a n d V e r i F y i n g t h e
C O r r e C t n e s s O F t h e s w i t C h .

related kernel bugs [2] or noncompliant behavior (see below) and to defend
against possible future kernel changes. These reasons, combined with the
fact that having the correct identity is crucial in terms of security, provide
good motivation for our untrusting approach.

 queryIng proCeSS IDenTITy

The get_pcred function we implement fills the memory pointed to by the
pcred_t pointer it gets. We get the ruid, rgid, euid, and egid with the help
of the standard system calls getuid, getgid, geteuid, and getegid, respec-
tively. Unfortunately, there’s no standard way to retrieve saved IDs, so we
use whatever facility the OS makes available, as shown in Figure 3 on the
next page. The getresuid and getresgid nonstandard system calls are the
easiest to use and the most popular among OSes. AIX’s getuidx and get-
gidx also have easy semantics, whereas with Solaris the programmer must
resort to using Solaris’s /proc interface [10].

The supplementary groups are retrieved with the help of the standard get-
groups system call. To allow for easy comparison of supplementary arrays,
we normalize the array by sorting it and by removing duplicate entries, if
any exist. The array is malloced, and it should therefore be freed later on.

lInuX fIleSySTeM IDS

In Linux, the fsuid is supposed to mirror the euid, as long as setfsuid isn’t
explicitly used [11], and the same goes for fsgid and egid. However, there
has been at least one kernel bug that violated this invariant [2]. Therefore, in
accordance with our defensive approach, the algorithm in Figure 2 explicitly

; LO G I N : J U N E 20 0 8 Th E mU Rk Y I ssU E O F Ch A N G I N G pRO CEss I d E NTIT Y ��

login_articles_JUNE08.indd 61 5/13/08 4:51:29 PM

�� ; LO G I N : vO L . 33, N O. 3

int get_saved_ids(uid_t *suid, gid_t *sgid)
{
#if defined(__linux__) | | defined(__HPUX__) | | \

defined(__FreeBSD__) | | defined(__OpenBSD__) | | defined(__DragonFly__)
uid_t ruid, euid;
gid_t rgid, egid;
DO_SYS(getresuid(&ruid, &euid, suid));
DO_SYS(getresgid(&rgid, &egid, sgid));

#elif defined(_AIX)
DO_SYS(*suid = getuidx(ID_SAVED));
DO_SYS(*sgid = getgidx(ID_SAVED));

#elif defined(__sun__) | | defined(__sun)
prcred_t p; /* prcred_t is defined by Solaris */
int fd;
DO_SYS(fd = open("/proc/self/cred", O_RDONLY));
DO_CHK(read(fd, &p, sizeof(p)) == sizeof(p));
DO_SYS(close(fd));
*suid = p.pr_suid;
*sgid = p.pr_sgid;

#else
error "need to implement, notably: __NetBSD__, __APPLE__, __CYGWIN__"

#endif
 return 0;
}

F i g u r e 3 : g e t t i n g t h e s a V e d u i d a n d g i d i s a n O s - d e P e n d e n t
O P e r a t i O n .

verifies that the fs-invariant indeed holds. As there is no getfsuid or
getfsgid, our implementation of get_fs_ids is the C equivalent of

grep Uid /proc/self/status | awk '{print $5}' # prints fsuid
grep Gid /proc/self/status | awk '{print $5}' # prints fsgid

SeTTIng uIDS anD gIDS

The POSIX-standard interfaces for setting IDs are tricky, OS-dependent,
and offer no way to directly set the saved IDs. Consequently, nonstandard
interfaces are preferable, if they offer superior semantics. This is the design
principle underlying our implementation of set_uids and set_gids. The
implementation is similar in spirit to the code in Figure 3, but it is compli-
cated by the fact that nonprivileged processes are sometimes not allowed to
use the preferable interface, in which case we fall back on whatever is avail-
able.

Specifically, all OSes that support getresuid (see Figure 3) also support
setresuid and setresgid. These offer the clearest and most consistent se-
mantics and can be used by privileged and nonprivileged processes alike.
(Of course the usual restrictions for nonprivileged processes still apply,
namely, each of the three parameters must be equal to one of the three IDs
of the process.) In Solaris, only root can use the /proc interface for setting
IDs [10], so with nonroot processes we naively use seteuid and setreuid
(and their gid counterparts) and hope for the best: The verification part in
Figure 2 will catch any discrepancies. In AIX, setuidx and setgidx are the
clearest and most expressive, and they can be used by both root and non-
root processes [13]. However, AIX is very restrictive: a nonroot process can

login_articles_JUNE08.indd 62 5/13/08 4:51:30 PM

only change its effective IDs, so dropping privileges permanently is impos-
sible for nonroot processes; also, root processes are allowed to set euid, euid/
ruid, or euid/ruid/suid, but only to the same value.

SuppleMenTary groupS CaveaTS

Recall that nonroot processes are not allowed to call setgroups. Therefore,
to avoid unnecessary failure, setgroups is only invoked if the current and
target supplementary sets are unequal, as shown in Figure 4. (Disregard the
FreeBSD chunk of code for the moment.) Additionally, recall that after set-
ting the supplementary groups in Figure 2, we verify that this succeeded
by querying the current set of supplementary groups and checking that it
matches the desired value. In both cases the current and target supplemen-
tary sets must be compared. But, unfortunately, this isn’t as easy as one
would expect.

int set_sups(const sups_t *target_sups)
{
 sups_t targetsups = *target_sups;

#ifdef __FreeBSD__
 gid_t arr[targetsups.size + 1];
 memcpy(arr+1, targetsups.list, targetsups.size * sizeof(gid_t));
 targetsups.size = targetsups.size + 1;
 targetsups.list = arr;
 targetsups.list[0] = getegid();
#endif

 if(geteuid() == 0) { // allowed to setgroups, let’s not take any chances
 DO_SYS(setgroups(targetsups.size, targetsups.list));
 }
 else {
 sups_t cursups;
 DO_SYS(get_sups(&cursups));
 if(! eql_sups(&cursups, &targetsups)) // this will probably fail... :(
 DO_SYS(setgroups(targetsups.size, targetsups.list));
 free(cursups.list);
 }

 return 0;
}

F i g u r e 4 : s e t t i n g s u P P L e m e n t a r y g r O u P s , w h i L e t r y i n g t O
a V O i d F a i L u r e O F n O n r O O t P r O C e s s e s , a n d a C C O m m O d a t i n g
n O n C O m P L i a n t b e h a V i O r O F F r e e b s d .

The POSIX standard specifies that “it is implementation-defined whether
getgroups also returns the effective group ID in the grouplist array” [9].
This seemingly harmless statement means that if the egid is in fact found
in the list returned by getgroups, there’s no way to tell whether this group
is actually a member of the supplementary group list. In particular, there is
no reliable, portable way to get the current list of supplementary groups. As
a result, our code for comparing the current and target supplementary sets
(see eql_sups in Figure 5, which is used in Figure 2 and Figure 4) assumes
that they match even if the current supplementary set contains the egid and
the target supplementary set doesn’t. This isn’t completely safe, but it’s the
best we can do, and it’s certainly better than not comparing at all.

; LO G I N : J U N E 20 0 8 Th E mU Rk Y I ssU E O F Ch A N G I N G pRO CEss I d E NTIT Y ��

login_articles_JUNE08.indd 63 5/13/08 4:51:30 PM

�� ; LO G I N : vO L . 33, N O. 3

bool eql_sups(const sups_t *cursups, const sups_t *targetsups)
{
 int i, j, n = targetsups->size;
 int diff = cursups->size - targetsups->size;
 gid_t egid = getegid();

 if(diff > 1 | | diff < 0) return false;

 for(i=0, j=0; i < n; i++, j++)
 if(cursups->list[j] != targetsups->list[i]) {
 if(cursups->list[j] == egid) i--; // skipping j
 else return false;
 }

 // If reached here, we're sure i==targetsups->size. Now, either
 // j==cursups->size (skipped the egid or it wasn't there), or we didn't
 // get to the egid yet because it's the last entry in cursups
 return j == cursups->size | |
 (j+1 == cursups->size && cursups->list[j] == egid);
}

F i g u r e 5 : w h e n C O m P a r i n g t h e C u r r e n t s u P P L e m e n t a r y
a r r a y t O t h e t a r g e t a r r ay, w e i g n O r e t h e e g i d i F i t ’ s
i n C L u d e d i n t h e F O r m e r .

nonCoMplIanT freeBSD BeHavIor

Kernel designers might be tempted to internally represent the egid as just
another entry in the supplementary array, as this can somewhat simplify
the checking of file permissions. Indeed, instead of separately comparing
the file’s group against (1) the egid of the process and (2) its supplementary
array, only the latter check is required. The aforementioned POSIX rule that
allows getgroups to also return the egid reflects this fact. But POSIX also
explicitly states that “set[*]gid function[s] shall not affect the supplementary
group list in any way” [12]. And, likewise, setgroups shouldn’t affect the
egid. So such a design decision, if made, must be implemented with care.

The FreeBSD kernel has taken this decision and designated the first entry
of the supplementary array to the egid of the process. But the implement-
ers weren’t careful enough, or didn’t care about POSIX semantics [4]. When
trying to understand why the verification code in Figure 2 sometimes fails
in FreeBSD, we realized that the kernel ignores the aforementioned POSIX
rules and makes no attempt to mask the internal connection between egid
and the supplementary array. Thus, when changing the array through
setgroups, the egid becomes whatever happens to be the first entry of
the array. Likewise, when setting the egid (e.g., through setegid), the first
entry of the array changes accordingly, in clear violation of POSIX. The
code in the beginning of Figure 4 accommodates this noncompliant behav-
ior. Additionally, whenever we need to set the egid, we always make sure
to do it after setting the supplementary groups, not before (see Figure 2).

TeMporarIly DroppIng anD reSTorIng prIvIlegeS

Our implementation also includes functions to temporarily drop privileges
and to restore them. They are similar to Figure 2 in that they accept a “tar-
get identity” ucred_t argument, they treat supplementary groups identically,
and they verify that the required change has indeed occurred. When drop-
ping privileges temporarily, we change only the euid/egid if we can help it
(namely, if the values before the change are present in the real or saved IDs,

login_articles_JUNE08.indd 64 5/13/08 4:51:30 PM

which means restoration of privileges will be possible). Otherwise we at-
tempt to copy the current values to the saved IDs before making the change.
(Unfortunately, this will fail on AIX for nonroot processes.) The algorithm
that restores privileges performs operations in the reverse order: first restor-
ing uids, and only then restoring groups; saved and real IDs are unaffected.

CauTIon!

Identity is typically shared among threads of the same application. Conse-
quently, our code is not safe in the presence of any kind of multithreading:
Concurrent threads should be suspended, or else they run the risk of ex-
ecuting with an inconsistent identity. Likewise, signals should be blocked or
else the corresponding handlers might suffer from the same deficiency.

The algorithms described in this article do not take into account any capa-
bilities system the OS might have (e.g., “POSIX capabilities” in Linux [8]).
Capabilities systems, if used, should be handled separately.

Conclusion

Correctly changing identity is an elusive, OS-dependent, error-prone, and la-
borious task. We therefore feel that it is unreasonable and counterproductive
to require every programmer to invent his or her own algorithm to do so, or
to expect programmers to become experts on these pitfalls. We suggest that
the interests of the community would be better served by a unified solu-
tion for managing process privileges, and we propose the approach outlined
in this article as one possible basis for such a solution. Our code is publicly
available [18]. We welcome suggestions, bug reports, and extensions.

referenCeS

[1] M. Bishop, “How to Write a Setuid Program,” ;login 12(1) (Jan./Feb.
1987).

[2] H. Chen, D. Wagner, and D. Dean, “Setuid Demystified,” in 11th USENIX
Security Symp., pp. 171–190 (Aug. 2002).

[3] D. Dean and A.J. Hu, “Fixing Races for Fun and Profit: How to Use Ac-
cess(2),” in 13th USENIX Security Symp., pp. 195–206 (Aug. 2004).

[4] R. Ermilov, R. Watson, and B. Evans, [CFR] ucred.cr_gid, thread
from the FreeBSD-current mailing list: http://www.mail-archive.com/
freebsd-current@freebsd.org/msg28642.html (June 2001) (accessed March
2008).

[5] Exim Internet mailer: http://www.exim.org/ (accessed March 2008).

[6] Exim-4.69/src/exim.c, source code of exim 4.69: ftp://ftp.exim.org/
pub/exim/exim4/exim-4.69.tar.gz (accessed March 2008).

[7] W. Linton and L. Huff, “Easier Said Than Done,” performed by The Essex
(July 1963): http://www.youtube.com/watch?v=tgJ1ssTJtnA (accessed March
2008).

[8] Man capabilities(7)—Linux man page—overview of Linux capabilities:
http://linux.die.net/man/7/capabilities (accessed Mar 2008).

[9] Man getgroups(2)—the Open Group Base Specifications Issue 6,
IEEE Std 1003.1, 2004 edition: http://www.opengroup.org/online-
pubs/000095399/functions/getgroups.html (accessed March 2008).

; LO G I N : J U N E 20 0 8 Th E mU Rk Y I ssU E O F Ch A N G I N G pRO CEss I d E NTIT Y ��

login_articles_JUNE08.indd 65 5/13/08 4:51:31 PM

�� ; LO G I N : vO L . 33, N O. 3

[10] Man proc(4)—Solaris 10 reference manual collection: http://docs.sun.
com/app/docs/doc/816-5174/proc-4?l=en&a=view (accessed March 2008).

[11] Man setfsuid(2)—Linux man page: http://linux.die.net/man/2/setfsuid
(accessed March 2008).

[12] Man setgid(2)—the Open Group Base Specifications Issue 6, IEEE Std
1003.1, 2004 edition: http://www.opengroup.org/onlinepubs/000095399/
functions/setgid.html (accessed Jan. 2008).

[13] Man setuidx—AIX Technical Reference: Base Operating System and Ex-
tensions, Volume 2: http://publib.boulder.ibm.com/infocenter/systems/topic/
com.ibm.aix.basetechre f/doc/basetrf2/setuid.htm (accessed March 2008).

[14] Nerd Gurl, “Why Can’t I Ever Achieve My Goals?” Yahoo! Answers (Jan.
2008): http://answers.yahoo.com/question/index?qid=20080101143342AAQ1
jbO (accessed March 2008).

[15] D.M. Ritchie, Protection of Data File Contents, Patent No. 4135240 (July
1973): http://www.google.com/patents?vid=USPAT4135240 (accessed March
2008).

[16] J.H. Saltzer and M.D. Schroeder, “The Protection of Information in
Computer Systems, Proc. of the IEEE 63(9), 1278–1308 (Sept. 1975).

[17] C. Torek and C.H. Dik, Setuid mess (Sept. 1995): http://yarchive.net/
comp/setuid_mess.html (accessed March 2008).

[18] D. Tsafrir, D. Da Silva, and D. Wagner, “Change Process Identity”:
http://www.research.ibm.com/change-process-identity or
http://code.google.com/p/change-process-identity.

login_articles_JUNE08.indd 66 5/13/08 4:51:31 PM

d a v i d n . B L a n k - e d e L m a n

practical Perl tools:
a little place for
your stuff
David N. Blank-Edelman is the Director of Technol-
ogy at the Northeastern University College of Com-
puter and Information Science and the author of
the O’Reilly book Perl for System Administration. He
has spent the past 22+ years as a system/network
administrator in large multi-platform environ-
ments, including Brandeis University, Cambridge
Technology Group, and the MIT Media Laboratory.
He was the program chair of the LISA ’05 conference
and one of the LISA ’06 Invited Talks co-chairs.

dnb@ccs.neu.edu

Actually this is just a place for my stuff, ya
know? That’s all, a little place for my stuff.
That’s all I want, that’s all you need in life, is a
little place for your stuff, ya know? I can see it
on your table, everybody’s got a little place for
their stuff. This is my stuff, that’s your stuff,
that’ll be his stuff over there. That’s all you
need in life, a little place for your stuff.
 —George Carlin

g i v e n t h at t h i s i s t h e f i l e s y s t e m
and storage issue, let’s take a look both at
some of the most widely used ways of keep-
ing your stuff using Perl and some of the
less conventional methods you may have
missed. We’ll start with the most specific
kind of stuff and move toward the most
general.

Storing your perl Data Structures

There are times when your program has worked
hard to create such a really useful data structure in
memory that you want it to persist beyond the life
of that current program run. Maybe your program
runs once a week and wants to add that week’s
data to the previous runs. Maybe you have a job
that is meant to run a long time before producing
an answer, and (as they would say on The Sopra-
nos if it took place in a datacenter), “You wouldn’t
want anything to happen to that data, say, right in
the middle of the run, now would you, palsie?” You
owe it to yourself to periodically dump important
data structures and other context to disk so it is
possible to resume the computation should power,
net, or the little hamster that runs around in the
machine doing the actual work cut out.

The most conventional approach to this problem is
to use the Storable module that ships with Perl. It’s
really easy to use. To write a data structure to a file
you can use:

use Storable;
my %datastructure = ...
some convoluted data structure
nstore (\%datastructure, 'persistfile')
 or die "Can’t write to persistfile\n";

Then, in another program (or another routine of
the current program), you can use:

$dsref = retrieve('persistfile');

and you’ll get back a reference to the data structure
you stored. If you wanted to work with just a hash
like the original data structure we stored instead of

; LO G I N : J U N E 20 0 8 pR AC TI C A L pE RL TO O L s : A L IT TLE pL ACE FO R sTU FF ��

login_articles_JUNE08.indd 67 5/13/08 4:51:32 PM

�� ; LO G I N : vO L . 33, N O. 3

a reference to it (and you don’t mind the hit to copy the data), you can deref-
erence it as per usual like this:

%datastructure = %{$dsref};

One last note about this code. I tend to use nstore () , as shown here, ver-
sus the default store () method, because it keeps the data in “network order”
format. Storable writes its data in a binary format. Using the network order
storage function ensures that this data can be read on different machines
with different byte orders. It is a little less efficient to store in this format,
but retrieving is still as fast and you gain more portability for your data.

That last note offers a good segue to a less common approach. If you are
concerned about keeping your data around in some binary format because
you are a Long Now kind of person (www.longnow.org) and you don’t trust
you’ll have anything with which to read it back when Perl is at version 8.5,
then a text-based data serialization module may be more your cup of tea.
You could use something like Data::Dumper (or, better yet, the more ob-
scure Data::Streamer) to write text to a file, but I’d assert you will be better
off finding the most standard standard you can find and writing that format.
Two such similar standards that fit the bill nicely are YAML (www.yaml.org)
and JSON (www.json.org). The former has deeper Perl roots; the latter is
well known because of its ties to Javascript and the AJAX world. The YAML
folks also note that JSON is essentially a subset of YAML and so any decent
YAML parser worth its salt should also be able to parse JSON.

In previous columns I’ve demonstrated the use of YAML, so let’s take a
quick look at JSON.

Taking a data structure and turning it into JSON is easy:

use JSON;
my %datastructure = ... # some convoluted data structure

 my $json = JSON->new();
 my $encoded = $json->encode(\%datastructure);
 # or, for prettier but less space-efficient results:
 # my $encoded = $json->pretty->encode(\%datastructure);

If we had a data structure like this:

%datastructure = ('Fred' => 1, 'Barney' => 2, 'Wilma' => 3)

then $encoded would contain:

'{

 "Wilma" : 3,
 "Barney" : 2,
 "Fred" : 1
}'

which isn’t all that impressive until you start playing with more complex
data structures. I recently had a case where I needed to parse the output of a
Java program that spat out JSON and I was able to write code like this:

use JSON;

get the results of the zmGetUserFolders command in JSON format
open my $ZMMBOX, zmGetUserFolders($from_user) . "|"
 or die "Can’t run zmGetUserFolders(): $!";
my $json_data = join(", <$ZMMBOX>);
close $ZMMBOX;

parse it into a Perl data structure
my $folders = from_json($json_data);

login_articles_JUNE08.indd 68 5/13/08 4:51:32 PM

extract the hrefs that contain the folders we care about
my @sharedfolders
 = grep { exists $_->{ownerId} and $_->{view} eq 'appointment' }
 @{ $folders->{children} };

This code ran the command, parsed the JSON output, and then walked the
list of folders returned, looking for those with the right owner and view type.

Storing key–value pairs

A slightly more general and hence more widely used scheme for data storage
involves a simpler key–value model. For instance, Username is associated
with “dnb,” “FirstName” with “David,” and “LastName” with “Blank-Edel-
man.” It isn’t a particularly sophisticated idea, but it is the thing that makes
Perl’s hashes (and Snobol4’s tables, which led to associative arrays in awk to
give the predecessor languages their proper due respect) so useful.

The easiest and most conventional way to store data like this is to use Perl’s
tie () functionality to call an external database library such as gdbm or
BerkeleyDB (my preference). Two past columns discussed tie () in all of its
glory, so let’s make do with a really small example sans explication:

use BerkeleyDB; # this module has lots of firepower, see the doc for details
tie my %tiedhash, 'BerkeleyDB::Hash', -Filename => 'data.db'
 or die “Can’t open data.db: $!\n”;

$tiedhash{uid} = 'dnb';
$tiedhash{FirstName} = 'David';
$tiedhash{LastName} = 'Blank-Edelman';

untie %tiedhash;

Next time you tie to that database, you can retrieve the values you want for
that key using standard Perl hash syntax.

Let’s see two less conventional ways to deal with key–value pair storage. The
first is to use a very cool module you may not have seen before. DBM::Deep
is an almost entirely pure Perl module that implements an entire database
engine. This engine stores its data in a portable format, actually implements
ACID transactions, and is pretty darn fast even with very large datasets.

(Note that the module used to be entirely written in Perl until a recent revi-
sion started to depend on the FileHandle::Fmode module. If you look at the
CPAN bug reports you’ll find a pure-Perl replacement for that dependency if
this is important to you.)

DBM::Deep can be used via tie () just like in our BerkeleyDB example, but
then you’ll lose an additional piece of magic: multi-level array and hash sup-
port. Yup, we’re essentially combining the previous sections of this article
with the current one because we can now write:

use DBM::Deep;

my $dbdeep = DBM::Deep->new('data.db');

$dbdeep->{uid} = 'dnb';
$dbdeep->{name} = { 'FirstName' => 'David',
 'LastName' => 'Blank-Edelman'};

Then in another program (or another part of the same program during a dif-
ferent program run), you can write:

 print $dbdeep->{name}->{LastName}

and it will retrieve and print my last name. Pretty nifty!

; LO G I N : J U N E 20 0 8 pR AC TI C A L pE RL TO O L s : A L IT TLE pL ACE FO R sTU FF ��

login_articles_JUNE08.indd 69 5/13/08 4:51:32 PM

�0 ; LO G I N : vO L . 33, N O. 3

The second, less conventional approach I want to mention but not really
delve into is less of a storage technique and more of an optimization tech-
nique. If you have data that you only need to keep for a short amount of
time (e.g., Web sessions) or have accessible in memory just while it is ac-
tively used, you should take a look at the various caching frameworks avail-
able. Cache::Cache is the most heavily used, but there are others. The CHI
framework in particular seems to be up and coming and worth considering.
Many of these frameworks will automatically serialize more complex data
structures for you when you attempt to store that data similar to what Stor-
able will do for you.

With all of these frameworks, you basically set up the kind of cache you
want to use (in memory, stored as files, in shared memory, using a sepa-
rate custom daemon such as memcached, etc.) and what flavor of cache you
want (e.g., should the cache keep itself under a certain size?). Once you’ve
picked your cache “backend” you then have the opportunity to add things
to the cache using some sort of set() operator. This set operator usually lets
you specify the amount of time that data should persist. Expired data will be
flushed from the cache either automatically or at your command. To use the
cache itself, you tend to write code that looks like this:

is item in cache?
 yes: retrieve and use data
 no: work harder to get data (pull from database, make a new one, etc),
 store the data in the cache and then return the new value
do stuff
purge the cache when the main work is done

Modules such as those in Cache::Cache and CHI handle all of the behind-
the-scenes work of maintaining the cache for you, and everyone wins.

Storing Stuff in Sql Databases

If you mention SQL and databases in the same sentence, Perl programmers
will reflexively just say “DBI.” The “DataBase Independent interface for Perl”
(dbi.perl.org) is one of the great gifts Perl, via Tim Bunce, has given the
world.

It is basically an API that allows you to write database-agnostic code that
will work independently of whatever database engine you are using today.
It is a tremendous relief to be able to write code that will work unchanged
with Oracle, MS-SQL, MySQL, Postgres, etc. Simple DBI code looks like
this:

use DBI;

my $uid = $ARGV[0];

my $dbh = DBI->connect(
 "DBI:mysql:database=usenix;host=localhost", 'user', 'password')
 or die “Couldn’t connect to database: “ . DBI->errstr;

my $sth = $dbh->prepare('SELECT * FROM users WHERE uid = ?')
 or die "Couldn’t prepare statement: " . $dbh->errstr;
$sth->execute($uid)
 or die "Couldn’t execute statement: " . $sth->errstr;

my @results = ();
while (@results = $sth->fetchrow_array()){
 print join (' \n',@results);
}

login_articles_JUNE08.indd 70 5/13/08 4:51:33 PM

$sth->finish;
$dbh->disconnect;

We connect to a specific database by providing the database engine name,
database name, server host name, and authentication information. This re-
turns a database handle through which we’ll communicate with that da-
tabase. We then pre-parse the SQL statement we’re going to send using
prepare ().(Although this last step is not strictly necessary, it will prove
useful for better performance when our code gets more sophisticated.) This
yields a statement handle. The statement handle will give us a means to
run that query with execute () and return the result via fetchrow_array().
fetchrow_array() returns the results of that query to an array, one result
row at a time. Once done, we close both our statement and database handles
and we’re done.

There’s much more we could look at around DBI (several published books’
worth, to be exact) but we’re going to leave that behind so we can look at a
lesser-known twist on this approach: DBD::SQLite.

All DBI-compatible database engines have a database-dependent driver
called a DBD written to use them. The particular DBD I’d like to call your
attention to is called DBD::SQLite. It not only provides the driver for the
SQLite database engine (www.sqlite.org) but it also builds the actual run-
time libraries it needs so you don’t have to install anything extra to start
using it. SQLite is a really wonderful lightweight SQL database engine that
does not require a server to run. In some ways it is like the BerkeleyDB libs
mentioned earlier, except that one can actually throw a fairly decent subset
of SQL at it and it will do the right thing.

What does this mean to you? You can write reasonably portable Perl code
using DBI and SQL without a server. Your database will live in a single file
on your machine. This is wonderful for prototyping code or creating small
projects that don’t need the power a full database server would bring (and
the concomitant hassles of setting it up).

Code that uses DBD::SQLite looks like any other DBI code. Instead of:

my $dbh = DBI->connect(
 "DBI:mysql:database=usenix;host=localhost", 'user', 'password')
 or die "Couldn’t connect to database: " . DBI->errstr;

you write:

my $dbh = DBI->connect("dbi:SQLite:dbname=datafile.sql3", ", ",)
 or die "Couldn’t connect to database: " . DBI->errstr;

and everything proceeds as normal from there.

And with that tip, I’m running out of, err, space. Take care, and I’ll see you
next time.

; LO G I N : J U N E 20 0 8 pR AC TI C A L pE RL TO O L s : A L IT TLE pL ACE FO R sTU FF ��

login_articles_JUNE08.indd 71 5/13/08 4:51:33 PM

�� ; LO G I N : vO L . 33, N O. 3

p e t e R B a e R G a Lv i n

Pete’s all things
Sun (PATS): the
state of ZFS
Peter Baer Galvin (www.galvin.info) is the Chief
Technologist for Corporate Technologies, a premier
systems integrator and VAR (www.cptech.com). Be-
fore that, Peter was the systems manager for Brown
University’s Computer Science Department. He has
written articles and columns for many publications
and is coauthor of the Operating Systems Concepts
and Applied Operating Systems Concepts textbooks.
As a consultant and trainer, Peter teaches tutorials
and gives talks on security and system administra-
tion worldwide.

pbg@cptech.com

W e a r e i n t h e m i d s t o f a f i l e s y s -
tem revolution, and it is called ZFS. File sys-
tem revolutions do not happen very often,
so when they do, excitement ensues—
maybe not as much excitement as during a
political revolution, but file system revolu-
tions are certainly exciting for geeks. What
are the signs that we are in a revolution? By
my definition, a revolution starts when the
peasants (we sysadmins) are unhappy with
the status quo, some group comes up with
a better idea, and the idea spreads beyond
that group and takes on a life of its own. Of
course, in a successful revolution the new
idea actually takes hold and does improve
the peasant’s lot.

;login: has had two previous articles about ZFS.
The first, by Tom Haynes, provided an overview
of ZFS in the context of building a home file server
(;login:, vol. 31, no. 3). In the second, Dawidek and
McKusick (;login:, vol. 32, no. 3) discuss ZFS’s fun-
damental features, as well as the porting of ZFS to
FreeBSD. This month I won’t repeat those efforts,
but, rather, continue on from that ZFS coverage to
complete the list of ZFS features, discuss field ex-
periences and the ZFS adoption status, and try to
see into the future of ZFS. The revolution started in
November 2005 when ZFS was made available for
download. Now let’s check in with the revolution
and see how it is progressing.

The Current feature list

This detailed summary of all of the current ZFS
features can serve as a checklist to determine
whether ZFS can do what is needed in a given en-
vironment. The following feature list is accurate as
of April 2008. All of the features are included in
the current commercial Solaris release (Update 4,
also known as 11/07).

n Disks or slices are allocated to storage “pools”
in RAID 0, 1, 0+1, 1+0, 5 (RAID Z), and 6
(RAID Z2) formats. (Note that RAID Z and Z2
are optimized over the standard RAID levels to
remove the RAID 5 “write hole.”)

n File systems live within a pool and grow
and shrink automatically within that pool as
needed.

login_articles_JUNE08.indd 72 5/13/08 4:51:33 PM

n File systems can contain other file systems. (Think of ZFS file systems as
being more like directories, with many new attributes.)

n File system attributes include compressed, NFS exported, iSCSI export-
ed, owned by a container (a “dataset”), mount point, and user-definable.

n Copy-on-write allocation, data, and meta-data are always consistent on
disk; no “fsck” is needed.

n There is end-to-end data and meta-data integrity checking via a Merkel
tree structure; important blocks are automatically “dittoed,” giving data
protection far beyond other solutions.

n The system is “self-healing”: If corrupt data or meta-data is found and
a noncorrupt copy exists, the corrupt version is replaced with the good
version.

n Highly efficient snapshots and clones (read-write snapshots) can be
made.

n One can roll back a file system to a given snapshot and promote a clone
to replace its parent file system.

n There are quotas to limit the size of a file system and reservations to
guarantee space to a file system.

n One can make full and incremental backups and restores to a file or
between two systems (replication) via send and receive commands.

n There is support for multiple block sizes, pipelined I/O, dynamic strip-
ing, and intelligent prefetch for performance.

n Fast re-silvering (re-mirroring) is allowed.
n ACLs are in NFS V4/NTFS style.
n Adaptive “endian-ness” allows import and export of ZFS pools between

varying-architecture systems; new data writes are in the native format of
the current system.

n Requestable pool integrity checks (scrubs) to search for corruption in
the background can be made.

n Configuration data is stored with the data (e.g., disks know what RAID
set they were a part of).

n The system can make use of hot spares, shareable between pools, with
automatic RAID rebuild upon disk failure detection

n ZFS is implemented in two major commands (with lots of subcom-
mands).

n Very, very large data structures (up to 128 bits) are allowed, with no
arbitrary limits (files per directory, file systems, file size, disk per pool,
snapshots, clones, and so on).

n ZFS is open source and free.
n It has been ported to FreeBSD, FUSE, and Mac OS X Leopard (read-

only).

There are many articles about how to use ZFS and take advantage of these
features, which, again, I won’t repeat here [1].

zfS Status

File system revolutions, as opposed to political revolutions, happen much
more slowly and tend to be bloodless (although losing files can be very pain-
ful). A file system gradually gains trust as direct and shared experiences
gradually build into an “it works” or “it loses files” general consensus. At this
point in the life of ZFS it has passed that test for many people. The testing
performed during its development and continuing every day is rather awe-
inspiring, as described in Bill Moore’s blog [2]. Reading through the posts
at the ZFS forum [3] suggests that ZFS is being used a lot and at many sites,
mostly very successfully. There is quite a lot of discussion of current and fu-
ture features, as well as a few “something bad happened” discussions. Those

; LO G I N : J U N E 20 0 8 pE TE’s A LL Th I N Gs sU N : Th E sTATE O F z Fs ��

login_articles_JUNE08.indd 73 5/13/08 4:51:34 PM

�� ; LO G I N : vO L . 33, N O. 3

posts, while revealing occasional problems, show in summary that ZFS is
rock-solid, especially for such a new, innovative, core piece of software.

The next step in adopting new technology is support by other software prod-
ucts, such as backup/restore tools, clustering, and even general-purpose ap-
plications such as databases. Other vendors’ products might work fine, but
without a stamp of approval, commercial sites are very unlikely to use the
new file system and risk being off of the support matrix. At first, of course
there was zero non-Sun support for ZFS, but that situation has improved
greatly. All major backup products support ZFS, and it is also now sup-
ported by Veritas and Sun cluster. Most applications are independent of the
underlying file system, but those that do care, such as Oracle, are generally
supporting ZFS.

Before a new technology can be put into top-priority environments (such as
production OLTP database servers), it must perform as well as or better than
the technology it is replacing. Performance tuning is usually a never-ending
effort (or at least not ending until the product life ends). ZFS is no exception,
and it is exceptionally young compared to the other production file systems
such as UFS and Veritas Storage Foundation (the VXVM volume manager
and VXFS file system). The only performance question more controversial
than “Which is faster?” is “How do you prove which is faster?” The debate in
general is continuous and unsolvable. There are certainly claims that ZFS is
very fast, and faster than other file systems for certain operations. There are
also counter claims that ZFS is slower at other operations. The StorageMojo
blog has been following the debate and is a good site to watch. One posting
[4] is especially interesting, showing ZFS compared with hardware RAID.

In my opinion, ZFS is a fundamentally fast volume manager/file system. It
gets many aspects of storage very right. However, it cannot in software make
up for one feature of hardware RAID: NVRAM cache. Nonvolatile cache al-
lows writes to memory to take the temporary place of writes to disk. Be-
cause memory is much faster than disk, NVRAM is a great performance
win. So, for example, using a Sun server containing local disk as a NAS
device will have worse random write performance than a good NAS appli-
ance that contains NVRAM. One solution to this performance delta is to use
hardware RAID arrays that include NVRAM to provide individual LUNs to
a system, and then use ZFS to create RAID sets and manage those LUNs as
if they were individual disks. The NVRAM provides a performance boost,
while all of the ZFS features remain available. Of course, in cases where ran-
dom write performance is not critical (say, media servers and backup disk
pools) NVRAM is not needed and ZFS is fine using local disks.

Aside from these performance challenges, ZFS is doing well at many sites. It
is mostly being used in development, testing, and utility environments but is
making its way into production. As more improvements are made to the fea-
ture set and more field experience drives acceptance, ZFS use should greatly
increase.

The future feature list and the future of zfS

In spite of the massive list of ZFS features, there are still features that are de-
sirable but not yet included in ZFS.

Probably the most important and useful would be the use of ZFS as the root
file system, which would enable all of the above features for system admin-
istration. Imagine creating an instant snapshot of “/” and installing a patch
in “/” and rolling the system back to that snapshot if the patch did not have
the desired effect. Or imagine creating a snapshot every minute of the day

login_articles_JUNE08.indd 74 5/13/08 4:51:34 PM

to allow easy detection of changed files and restoration to the file’s previ-
ous state. Once ZFS can be used as a root file system, zones will also be able
to use ZFS for their root file systems. (Actually they already can have a ZFS
root, but such a system cannot be upgraded to the next release of Solaris, as
the upgrade code does not understand ZFS.) Fortunately, bootable ZFS has
been added to OpenSolaris and should make its way into the commercial
Solaris release in the future. It can be used currently via the various non-
commercial Solaris distributions [5].

Native CIFS support is in OpenSolaris as well, so expect CIFS exporting as
a future feature—no Samba (or other dancing) required.

Encryption is complicated to implement for a file system, mostly because of
the key management. There is currently a ZFS encryption project underway
for OpenSolaris [6], and alpha test code has already been released.

Removing disks (aside from hot spares) from a pool is an obvious need.
Also missing is the ability to expand the size of a pool by adding individual
disks. Currently, a set of disks can be added, for example as a RAIDZ set
concatenated to a RAIDZ pool, and ZFS will cleverly stripe data across the
two RAIDZ sets to maximize performance. However, adding a single disk to
a ZFS pool simply has the disk concatenated to that pool, leaving for exam-
ple a RAIDZ-plus-a-concatenated-disk pool rather than the much more de-
sirable RAIDZ-expanded-to-include-the-new-disk pool.

The current quota system is a per-filesystem rather than a per-user one,
which has pros and cons. There do not seem to be any plans to implement
per-user quotas as well.

Scrubbing is currently done as a low-priority I/O task, but even lower-over-
head user-definable scrubbing rates (in which a pool is gradually scrubbed
over a period of time) are already planned for Solaris.

The ZFS intent log (ZIL), the place where ZFS stores changes that are to be
applied to a ZFS pool, currently resides within the disks of that pool. Open-
Solaris already includes the ability to put that log somewhere else, helping to
improve write and especially random write performance. A natural next step
would be to use a device dedicated to the ZIL. This could be an NVRAM de-
vice (and at least one company makes a PCI-based NVRAM card for Solaris)
or a flash-based device that has been optimized for writes.

Another performance improvement could come from Brendan Gregg (of
DTraceToolkit fame). He has added support in OpenSolaris for a level-2
adaptive replacement cache (L2ARC). This allows buffers to be evicted out of
DRAM into a storage medium that fits between DRAM and the disk in terms
of capacity and performance. The L2ARC and flash-based solid state drives
(SSDs) seem to be a natural fit, and this is certainly an area to watch over
the next 12 to 18 months.

ZFS integration with Mac OS X has been underway for quite a while, and
read/write ZFS is available for testing [7].

For performance, many database sites use direct I/O, which bypasses the
buffer cache and file locking, essentially telling the operating system and
file system to get out of the way of database I/O. This feature does not exist
within ZFS, and database performance on ZFS is currently a work in prog-
ress. For the latest information on ZFS performance see the ZFS Best Prac-
tices Guide [8].

Certainly the future is wide open for innovation around and integration of
ZFS. As one example, have a look at the Service Management Facility (SMF)

; LO G I N : J U N E 20 0 8 pE TE’s A LL Th I N Gs sU N : Th E sTATE O F z Fs ��

login_articles_JUNE08.indd 75 5/13/08 4:51:34 PM

�� ; LO G I N : vO L . 33, N O. 3

services being written by Tim Foster to automate snapshots and backups of
ZFS file systems [9].

next Time

Hopefully this ZFS status check has cleared up some questions and given
guidance as to whether ZFS is now or will be in the future the right file sys-
tem for your systems. The revolution seems to be well on its way and the
Bastille is starting to fall. ZFS rising in its place seems inevitable and desir-
able.

In the next PATS column I’ll discuss something that is basic, important, but
frequently overlooked or done ad hoc: system problem analysis. What steps
are the right ones to analyze a system that is having a problem, be it reliabil-
ity or performance? My hard-learned cookbook may be a useful addition to
your own techniques.

referenCeS

[1] Recommended articles about ZFS: http://opensolaris.org/os/community/
zfs/intro/; http://www.samag.com/documents/s=9950/sam0602j/0602j.htm;
http://www.samag.com/documents/s=9979/sam0603h/0603h.htm;
http://www.sun.com/bigadmin/features/articles/zfs_overview.jsp;
http://www.sun.com/bigadmin/features/articles/zfs_part1.scalable.jsp.

[2] Bill Moore’s ZFS blog: http://blogs.sun.com/bill/category/ZFS.

[3] ZFS Forum: http://www.opensolaris.org/jive/forum.jspa?forumID=80.

[4] StorageMojo blog entry comparing hardware RAID to ZFS performance:
http://storagemojo.com/?p=441.

[5] OpenSolaris downloads: http://opensolaris.org/os/downloads/.

[6] Alpha ZFS encryption support: http://www.opensolaris.org/os/project/
zfs-crypto/.

[7] ZFS for Mac OS X: http://trac.macosforge.org/projects/zfs/wiki/.

[8] Latest on ZFS performance: http://www.solarisinternals.com/wiki/
index.php/ZFS_Best_Practices_Guide.

[9] Automating snapshots: http://blogs.sun.com/timf/entry/zfs_automatic
_for_the_people.

login_articles_JUNE08.indd 76 5/13/08 4:51:35 PM

d a v i d J o s e p h s e n

iVoyeur: Admin,
root thyself.
David Josephsen is the author of Building a Monitor-
ing Infrastructure with Nagios (Prentice Hall PTR,
2007) and Senior Systems Engineer at DBG, Inc.,
where he maintains a gaggle of geographically
dispersed server farms. He won LISA ‘04’s Best Paper
award for his co-authored work on spam mitigation,
and he donates his spare time to the SourceMage
GNU Linux Project.

dave-usenix@skeptech.org

d i d y o u h a p p e n t o s e e t h e l at e s t
Die Hard movie? The one where the inter-
webs are broken? Well if you did, it prob-
ably annoyed you quite a bit. It’s a pretty
typical Hollywood blockbuster take on
computers and the nerds who love them,
and they pretty typically get it all horribly
wrong. I’m kind of atypical when it comes
to these sorts of films: I actually rather like
them. I think I find something endearing in
Hollywood’s belief in magic [1]. But when
I see them, I try to do so alone or in the com-
pany of nerds; otherwise someone I’m with
will invariably ask, à la Homer Simpson [2],
“Computers can do that?!” (or some varia-
tion thereof).

I imagine it’s the same pain periodically felt by pa-
leontologists who’ve been dragged to Jurassic Park,
or um . . . pagans at Harry Potter? Anyway, I don’t
like to disappoint folks, and since the answer to
the Homer question is almost always, “Well, not
really,” it’s better to just avoid the situation when
I can. But much as I hate to harsh on their new-
found interest in computer security, I can’t help but
chuckle to myself at how disappointed they’d be if
they knew the truth about the security capabilities
of today’s computers.

I’m not talking about Windows being vulnerable to
the sploit of the week, or even theoretical design is-
sues such as mandatory access control. I’m talking
about simple functionality that everyone outside
of our community probably assumes is there and
would be surprised to find out is not. For example,
if you asked a random movie producer whether he
or she thought a computer kept a record of all the
changes made to any given file on the file system
for the past week, I think you’d find that most of
them would give an emphatic yes.

How many times was /etc/foobar changed, by
whom, and when? This is a problem I think most
people would assume has been solved by now. But
in reality, this type of auditing information is sur-
prisingly difficult to come by. Indeed, very good
books [3] have been written on the subject of teas-
ing this type of stuff from a file system offline and
after an attack. To pull it off in real time you need
to audit changes to every file in the file system.
The audit records need to include who, what, and
when, and they need to be captured and written in
a way that is difficult to bypass or modify after the

; LO G I N : J U N E 20 0 8 I vOY EU R : A dm I N , RO OT Th YsE LF ��

login_articles_JUNE08.indd 77 5/13/08 4:51:35 PM

�� ; LO G I N : vO L . 33, N O. 3

fact. Add to that UNIX’s rather murky definition of a “file,” and this isn’t a
solved problem. There are several solutions, and they’re all far from perfect.

So since that example ties in so well with the filesystem theme of this issue,
I’d like to take a look at some ways to monitor changes to the file system, in-
cluding a method you may not have considered, namely using kernel instru-
mentation such as DTrace or SystemTap to audit kernel vfs read/write calls.
I’ve become rather fond of the method lately for several reasons, and I hope
it will prove useful to you.

By far the most popular way to do this sort of thing normally is with a file-
system integrity checker such as Tripwire [4] or Samhain [5]. These pro-
grams are polling engines; they usually run as a daemon and periodically
wake up to recursively check the file system against a database of hashes.
In practice this works fairly well. They have a reasonable overhead once the
hash database is created, they capture changes to file metadata such as per-
missions, ownership, and modification dates, and they are pretty good at
staying out of the way.

I’ve used Samhain in my production environments for a few years now, and
I don’t hate it. It has some rudimentary rootkit detection capabilities on
Linux and Open/Free BSD via the /dev/kmem file, can hide itself from script
kiddies, and does a good job of finding and notifying you of changes to the
file system. Although it wants badly for you to use its client/server model, it
will play nicely with your existing tools such as syslog, Splunk, databases,
and SEC/Logsurfer, if you ask it politely.

The biggest thing I don’t like about the filesystem integrity checkers has
got to be that they can’t tell you who changed the file. Ideally I’d like to
know the pid and uid of the thingy that changed a given file. Since integ-
rity checkers simply wake up once every so often and compare files against
MD5 hashes in a database, they only know that a file has changed and not
who changed it. The question of “who” is what you might call a fundamental
piece of information.

A less important nit is that the change notifications are delayed by the
length of the polling interval. Depending on your situation, it could take
some time before you know what files have changed, which can be frustrat-
ing when you’re dealing with an intrusion in real time. The integrity check-
ers can obviously only notify you of changes to “normal” files; changes to
special files such as sockets and block devices cannot be detected this way.
Finally, the integrity checkers are somewhat high in the stack, so it’s pos-
sible that they could be bypassed for certain types of events. For example,
they won’t be able to notify you of read events if you have “noatime” set in
fstab (because they won’t be able to see a difference in access times in the
file metadata).

One way to solve some of these problems, including the polling interval
delay, is to use the kernel’s inotify subsystem. The inotify subsystem pro-
vides user-space programs with notifications of file change events. It’s used
primarily by content-indexing tools such as Beagle [6], but there’s no reason
it couldn’t be used to log changes to files systemwide. There are several user-
space implementations, including some shell tools called “inotifytools” [7].
These include a program called “inotifywait” that basically blocks on inotify
events for a given directory or set of directories and provides event details to
STDOUT. I haven’t used inotifytools to recursively monitor /, so I don’t know
how much overhead it might incur, but from my limited experience it seems
pretty scalable. It’s also a bit closer to the kernel, so it’s more difficult to fool.
Unfortunately inotify doesn’t solve the “who” problem. The pid/uid of the

login_articles_JUNE08.indd 78 5/13/08 4:51:35 PM

changing process is not one of the pieces of information passed by the ker-
nel to user space. Bummer.

A somewhat more indirect approach might be to use tty snooping. Solu-
tions of this type simply listen in on input from the ttys of the machine,
thereby logging the actions of users. There are all sorts of implementations
here; most of them are shell replacements or patches to existing shells such
as bofh-bash and ttysnoop [8], but some are more elegant, kernel-space tools
such as Sebek [9]. These tty sniffers work very nicely when a user can’t sim-
ply launch another shell to bypass them. They solve the “who” problem, giv-
ing you granular detail of what changed and sometimes even the content of
the change, depending on how the file was edited. These can induce some
overhead, however, and, since they tend to be user-centric, they might be
bypassed by non-interactive programs or system processes.

Finally, just about every system has a kernel-space auditing subsystem: SE-
Linux and the kernel audit subsystem for Linux, BSM auditing for Solaris et
al. These are used to great effect by folks who know them well, and they are
probably the closest thing to the “right” answer, but they aren’t necessarily
focused on file accesses and can generate metric tons of auditing informa-
tion. They can also be difficult to use and maintain and rarely play nicely
with centralized tools such as OSSIM or Syslog.

So let’s take a look at the kernel probes approach I’ve been playing with
lately. I should disclaim that the DTrace folks have explicitly warned against
the use of DTrace for security auditing [10] because DTrace might drop
events if the system becomes overloaded. This is pretty much a deal breaker
for DTrace in this context at the moment, but I have a feeling DTrace will
eventually be a useful solution here. So for now I’ll focus on the SystemTap
script in Figure 1.

If you aren’t familiar with SystemTap [11], it is comparable to DTrace but
only runs on Linux. There are already healthy religions built up around
both tools, and I’ll probably get flamed for that last sentence, so I’ll leave it
at that and let you work out the differences for yourself. SystemTap scripts
are written in an awk-like language, parsed into C by an interpreter, com-
piled into a kernel module, and finally loaded into a running kernel. Once
loaded, the module can trace system calls and broker information between
kernel and user space. It’s a fascinating and useful tool, but it requires some
understanding of the kernel internals, or at least a good handle on C and a
willingness to dig around at the kernel headers to use.

SystemTap requires that CONFIG_DEBUG_INFO, CONFIG_KPROBES,
and optionally CONFIG_RELAY and CONFIG_DEBUG_FS be enabled in
the kernel. It also assumes some Red Hat–style symlinks to the running ker-
nel source, so check the README if you’re installing it on a box that’s not
Red Hat. One of the more interesting features of SystemTap is the ability to
inject blocks of C directly into the system tap script. In the script in Figure
1, I have a function that is written in raw C, but it is called from within the
SystemTap scripting language.

The purpose of the script is to probe kernel vfs_read and vfs_write calls
and return information about them to STDOUT. This approach has several
advantages. First, it takes advantage of the fact that everything in UNIX is
a file, so reads and writes to sockets, fifos, block files, etc., will all be cap-
tured. Second, since we are writing the instrumentation, we can ask for
whatever pieces of information we want, including the pid/uid of the entity
making the file access. Next, the probe is fairly limited in scope, so we get
what we want and nothing we don’t, and with a very small overhead. Fi-
nally, it plays nicely with any of your other tools that take STDIN. The thing

; LO G I N : J U N E 20 0 8 I vOY EU R : A dm I N , RO OT Th YsE LF ��

login_articles_JUNE08.indd 79 5/13/08 4:51:36 PM

�0 ; LO G I N : vO L . 33, N O. 3

I might like the most about it is that it’s actually kind of fun. It isn’t every
day I get to rummage about in /usr/src/linux/include, and I learned a lot
about Linux in the process.

#from an error message I got when I misspelled a struct name,
#the structs avail to stap in the vfs_(read|write) context are:
#f_u f_dentry f_vfsmnt f_op f_count f_flags f_mode f_pos f_owner
#f_uid f_gid f_ra f_version f_security private_data f_ep_links f_ep_lock f_mapping

function get_path:string (da:long, va:long) %{
 char *page = (char *)__get_free_page(GFP_ATOMIC);
 struct dentry *dentry = (struct dentry *)((long)THIS->da);
 struct vfsmount *vfsmnt = (struct vfsmount *)((long)THIS->va);
 snprintf(THIS->__retvalue, MAXSTRINGLEN, “%s”, d_path(dentry, vfsmnt,\
 page, PAGE_SIZE));
 free_page((unsigned long)page);
%}

probe kernel.function (“vfs_write”),
 kernel.function (“vfs_read”)
{
 dev_nr = $file->f_dentry->d_inode->i_sb->s_dev
 path=get_path($file->f_dentry, $file->f_vfsmnt)

 subPath=substr(path,0,4)
 if((subPath != “/dev”) && (dev_nr == (8 << 20 | 3)))
 printf (“%s(%d,%d) %s\n”, execname(), pid(), uid(), path)
}

F i g u r e 1 : s a m P L e s y s t e m t a P s C r i P t

So let’s step through this script starting with the function declaration in line
1:

function get_path:string (da:long, va:long) %{

As you can see, the function declaration is not C. The function is declared
in the SystemTap language; embedded C blocks are denoted by %{ and %}.
The second thing you might notice is that both variables are declared long
even though, when the function is called below, it is passed pointers to
structs. This is because all pointers are cast to longs by the interpreter, so
they need to be declared as such in the function declaration and typedef ’d
back into struct pointers later. The entire purpose of this function is to call
the d_path() function to return the full path of the file in question. So the
next three lines set up the required arguments for dpath():

char *page = (char *)__get_free_page(GFP_ATOMIC);
struct dentry *dentry = (struct dentry *)((long)THIS->da);
struct vfsmount *vfsmnt = (struct vfsmount *)((long)THIS->va);

There may have been a way to directly refer to the file’s path with SystemTap
built-ins, but if there is, I couldn’t find it. The next two lines call dpath()
and free the page we allocated:

snprintf(THIS->__retvalue, MAXSTRINGLEN, “%s”, d_path(dentry, vfsmnt, \
 page, PAGE_SIZE));
free_page((unsigned long)page);

 Below this function is the SystemTap script proper. The first two lines tell
SystemTap that we are going to probe for vfs_ (write|read) calls:

probe kernel.function (“vfs_write”),
 kernel.function (“vfs_read”)

login_articles_JUNE08.indd 80 5/13/08 4:51:36 PM

Any number of comma-separated probes may be declared in a probe state-
ment. The block immediately following the probe statement includes the in-
structions we want to carry out for each call we capture. In this script the
first thing we do is dereference the device number of the current file:

dev_nr = $file->f_dentry->d_inode->i_sb->s_dev

The dentry struct is defined in /usr/src/linux/include/linux/dcache.h. You
can directly reference anything in a struct from SystemTap without needing
to resort to embedded C. It’s generally preferable to avoid C when you can,
because SystemTap uses kprobes’ considerable safety and sanity checks as
long as you stay within the bounds of its interpreted language. I should also
save you some time and note that when you are dereferencing string data
from kernel space in the SystemTap language, you need to use the kernel_
string () conversion function or you’ll end up with a typedef’d long once
again. For example, we could directly dereference the name of the file from
within the SystemTap language like so:

f_name=kernel_string($file->f_dentry->d_name->name)

Next we call our get_path function to derive the full path of the file:

path=get_path($file->f_dentry, $file->f_vfsmnt)

I placed some filters in here to give you a rough feel for the syntax you can
use to filter probe data. Generally, the SystemTap language has all the itera-
tive loops and conditionals you’d expect. In the line:

subPath=substr(path,0,4) if((subPath != “/dev”) && (dev_nr == (8 << 20 | 3)))

the first check filters out changes to files in the /dev directory (grep -v ‘^/
dev’). The second check filters out everything except files that reside on
the third SCSI volume (/dev/sda3) as defined by the device number (major
8, minor 3). You can derive the device number for files on a given partition
by cd ’ing to that partition and performing a stat -c ‘%D’ *. Without any
filters you get every read and write happening on the system. If someone
moved a mouse, for example, you’d see writes to /dev/psaux.

Finally, the printf built in prints our data to STDOUT:

printf (“%s(%d,%d) %s\n”, execname(), pid(), uid(), path)

The first three arguments are also built-in functions: execname returns
the name of the program making the change (xterm, vi, etc.), and pid () and
uid () are self-explanatory. I placed the reads and writes in the same probe
statement to show you it’s possible, but if we wanted to differentiate reads
from writes, our script could declare the probes separately, giving each its
own instruction block. The read instruction block, for example, could have a
printf that said read: %s(%d,%d) %s\ n. We execute the script like so:

sudo stap -g figure1.stp

or, even better:

sudo stap -g figure1.stp | logger -t vfsprobe -p kern.info &

The -g is for “guru” mode, which allows the execution of embedded C. As
I alluded to earlier, guru mode gives you the rope to hang yourself with by
turning off quite a bit of sanity checking. This sort of thing should probably
not be done lightly. If you are new to SystemTap and are considering run-
ning your code on production systems, I’d recommend running it by the
gang on the SystemTap mailing list (as I did with this script).

I think kernel probe tools show a lot of potential to solve some of our nag-
ging auditing needs. I’ve begun running a script like this one under dae-

; LO G I N : J U N E 20 0 8 I vOY EU R : A dm I N , RO OT Th YsE LF ��

login_articles_JUNE08.indd 81 5/13/08 4:51:37 PM

�� ; LO G I N : vO L . 33, N O. 3

montools [12] on a few of the boxes in our staging environment, with
favorable results. I’m hoping it will eventually replace a few auditing tools
we’re using now, and I’d really like to expand it to include some other audit-
ing gaps I have. It’s not Blockbuster material, probably, but it is close enough
to magic for the folks I hang out with.

Take it easy.

referenCeS

[1] The “magic” entry in the jargon file: http://catb.org/~esr/jargon/html/M/
magic.html.

[2] Homer Simpson’s classic quotation: http://www.eventsounds.com/wav/
cmputers.wav.

[3] Forensic Discovery by Dan Farmer and Wietse Venema: http://www
.porcupine.org/forensics/forensic-discovery/.

[4] Tripwire: http://www.tripwire.com/.

[5] Samhain: http://la-samhna.de/samhain.

[6] Beagle: http://beagle-project.org/Main_Page/.

[7] See libinotifytools for a scriptable inotify implementation:

http://inotify-tools.sourceforge.net/api/index.html.

[8] ttysnoop: http://freshmeat.net/projects/ttysnoop/.

[9] Sebek: http://www.honeynet.org/tools/sebek/.

[10] DTrace: http://www.solarisinternals.com/wiki/index.php
/DTrace_Topics_Limitations.

[11] SystemTap: http://sourceware.org/systemtap/.

[12] daemontools: http://cr.yp.to/daemontools.html.

login_articles_JUNE08.indd 82 5/13/08 4:51:37 PM

R o B e R t G . F e R R e L L

/dev/random
Robert G. Ferrell is an information security geek
biding his time until that genius grant finally comes
through.

rgferrell@gmail.com

i t W a s n ’ t t h at t e r r i b ly l o n g a g o ,
in the accelerated timeline of technologues,
that the term “storage device” used in an IT
context referred to little plastic rectangles
with spring-loaded sliding metal covers,
misleadingly flexible miniature 45 RPM
records in black sleeves, or a variety of glori-
fied cassette tapes ranging from slim ’n’
sexy to stout ’n’ chunky. Whatever their size
and physiognomy, they were all pretty easily
identifiable as gadgets you stick into a slot
on a computer and pull out later covered
with magnetic zeroes and ones (or some-
times with strawberry jelly and slightly
melted, if you tried doing this before your
morning coffee and got the wrong slot).

The digital archiving landscape has evolved radi-
cally since those simpler days, it seems. USB and
flash memory together have conspired to render
darn near every little piece of junk lying about the
house capable of duplicating the Library at Alex-
andria with a couple of gigabytes to spare. USB
memory dongles can now be found nestled in ath-
letic shoes (sneaker net: the next generation), in
ID badge holders, in lighters, in pocket knives,
in plush toys, on keychains, on Donner, on Blit-
zen . . .

I can’t help thinking that there is still a whole lotta
fertile soil to be tilled in the “things you can plug
into a USB port” field, though. Let’s move beyond
the foam missile launchers, heated gloves, and
mini lava lamps and get to the really good stuff,
such as personal laser show projectors, tasers for
zapping offensive office mates, customizable elec-
tronic filters that let you disguise your voice (for
making anonymous calls over VoIP), and adapters
for recharging the aforementioned blinky LED run-
ning shoes. How about tiny deep-fryers for crafting
one french fry at a time? Or a little spray gun for
applying hand/sun lotion? Maybe even a miniature
branding iron for those craving DIY monochrome
tattoos would be handy too.

Admittedly, all of this has precious little to do with
storage devices, which is the direction I thought I
was headed, but nowhere in my contract does it say
I have to come up with a relevant topic sentence
and stick to it. Nowhere in my contract does it say
anything at all, actually, because I don’t have one,
but even if I did have one, I doubt it would be capa-
ble of speech. Are you starting to understand why I

; LO G I N : J U N E 20 0 8 / d E v/ R A N d Om ��

login_articles_JUNE08.indd 83 5/13/08 4:51:37 PM

�� ; LO G I N : vO L . 33, N O. 3

titled this column “/dev/random”? The “dumb” part has probably been fairly
evident all along, I’ll admit.

OK, I’m over it.

Acknowledging without further comment the fact that storage devices large
and small are proliferating madly like bored bacteria in an open package of
processed beef salivary glands and lymph nodes (otherwise known as “hot
links”), let us examine some of the underlying tissue . . . er . . . issues.

Given that the old-fashioned habit of reading is rapidly assuming the man-
tle of taking the fringe-top surrey down to watch the perspirational semi-
clothed gentlemen driving in an afternoon’s worth of railroad stakes, one
must in all lucidity wonder what, exactly, it is that so many people are so
keen to store in their USB-enabled corkscrews. Sports trivia? Recipes? A few
emergency episodes of their favorite television program? (You know, in case
they get stranded in the back of a laptop-equipped taxi during a hurricane
evacuation.) Bird calls? Maps and floor plans to the home of every single
subscriber to The Journal of Privacy Protection? Their personal genome? Their
pit bull’s genome? I Dream of Genome?

Whatever the reasons, I think it’s safe to say that the storage device craze is
only going to get sillier. At least I’m going to do my part. Here are a few pre-
emptive strike product suggestions for those flash memory manufacturers
whose company names I am not phonologically limber enough to pronounce
without sounding as though I might have bird flu.

n	 RAM-a-Lam-a-Ding-Dong: This little widget lets you download and
install your choice of doorbell tones. Now your elegant neoclassical
portico can emit “Dark Side of the Moon” at 120 dB. Get rid of solicitors
and other household pests the fun and easy way. May cause structural
damage.

n	 The DDRAMikin: This would be perfect for increasing server through-
put while serving crème brûlée. Pick up the optional USB brazing torch
for added convenience (2.5 farad capacitor not included).

n	 FlashFlash: This flashlight with lens and embedded memory automati-
cally captures images of whatever’s being illuminated. It’s handy for
proving to mom that there really was a monster in the yard last night,
or maybe that was just your older sister coming home from the party a
little late.

n	 The RAMBow: This beautiful and thoughtful accessory allows you to
include whatever message you like to accompany your gift, in any media
format you choose. It is especially useful for those times when YouTube
just isn’t personal enough.

n	 USBJammin: This universal adapter converts, well, anything into a USB
memory stick. It works with tea cozies, collectible figurines, pirate eye
patches, die-cast trains, travel mugs, velvet Elvis paintings, cashew jars,
mice, dice, egg cartons, paper towel dispensers, steering wheel covers,
phonograph needles, gate hinges, most cosmetics containers, and over
3,250 additional common objects around the home.

Some conversions will not function as expected. Possible choking hazard for
children, adults, and certain of the larger iguanas. Bridge may ice before road-
way. Offer void where unavailable.

In closing, have you noticed that the once ubiquitous nine-pin port on per-
sonal computers is edging toward extinction? Coming up next on Ohm’s Law
and Order: “USB, the Forgotten Serial Killer.”

login_articles_JUNE08.indd 84 5/13/08 4:51:38 PM

n i c k s t o u G h t o n

update on
 standards:
undue influence?
USENIX Standards Liaison

nick@usenix.org

r e g u l a r r e a d e r s o f t h i s c o l u m n
probably know by now that I am a partici-
pant in a number of committees that run
under the auspices of the ISO/IEC Joint
Technical Committee on Information Tech-
nology, in the programming languages and
their run-time environments area, known
by insiders by the catchy title “ISO/IEC JTC 1/
SC 22.” I sit in the Working Groups for POSIX,
the Linux Standard Base, the C program-
ming language, and the C++ programming
language, as well as the special working
group on language vulnerabilities and the
top-level committee for administering all of
these sub working groups.

Several years ago, that top-level committee gave me
the unenviable task of handling all of the coordina-
tion and liaison required between POSIX and the
programming languages that reference it. For ex-
ample, there’s a big overlap between parts of the C
standard and POSIX. My job is to make sure that
both sides know what the other is thinking when
considering a change to something in that shared
space.

Now, with C it’s easy. We all know where the over-
lap is and how to handle the questions. But C++
is a different kettle of fish. POSIX isn’t written in
terms of C++. Although POSIX and C both specify
the fopen() call, the equivalent isn’t so obvious
in C++.

But C++ is, as I’ve reported before, going through
a revision. There are lots of new features going into
the language. And for some of those features it is
easier to draw parallels with POSIX (for example,
multithreading). POSIX has long had a powerful
set of thread APIs. C++ is adding some. Can we at
least align the two so that C++ threads can be built
on top of POSIX threads?

The POSIX working group saw some serious prob-
lems with implementing the proposals for C++
multithreading. The “Nick Stoughton” robot was
wound up and pointed at the C++ committee with
a message to make sure that its members realized
there was a problem.

I did what I was asked to do.

The C++ working group was convinced that there
was a problem, and its members collectively voted
to change their proposal to remove the conten-
tious thread cancellation wording. I thought about

; LO G I N : J U N E 20 0 8 U pdATE O N sTA N dA Rds : U N dU E I N FLU E N CE ? ��

login_articles_JUNE08.indd 85 5/13/08 4:51:38 PM

�� ; LO G I N : vO L . 33, N O. 3

standing on an aircraft carrier deck with a “Mission Accomplished” banner
flying behind me.

At the same time, the POSIX working group decided that it would be a good
idea to study creating a C++ language binding. Just as there is an Ada and a
Fortran binding to POSIX, why relegate C++ to using the C interfaces, for-
saking the strong type checking and object orientation and all that good
stuff? A study group was formed, and a substantial number of people from
the C++ working group (C++, not POSIX!) joined up with enthusiasm. This
was their language, and their platform of choice. What could be better than
such a marriage! The group did the necessary work to prove that there was a
viable body to produce a standard sometime in the future (probably around
2012). They did the paperwork with the IEEE (one of the three participating
bodies in the POSIX world) and formed the 1003.27 working group.

The 1003.27 working group then read through the table of contents of the
current working draft of the C++ language revision document, looking for
places where a POSIX language binding might touch on something that is
already in the C++ draft. If it is already in the draft, and the ink isn’t dry on
the draft, can we influence the draft to make sure it

n	 provides the hooks needed for whatever POSIX extensions might be
needed in the future?

n	 doesn’t contain anything truly problematic with respect to POSIX?

Remember, the vast majority of these people in 1003.27 (the POSIX-C++
binding) are also members of the C++ working group. The draft of C++ they
were reviewing was one that they had helped to write. I was a member of
that group, and we came up with a relatively short list of issues.

Naturally, the messenger picked to walk into the C++ group with this list
was yours truly.

There are only a few people in leadership roles in C++, and in general they
are all deeply committed to doing a good job for the language. However,
they do have their own agendas, and by and large, POSIX isn’t a big part of
that agenda. So being requested by a sizable minority of their working group
to change or, worse, remove some of the wonderful new (untested and unim-
plemented) features of their draft certainly took them by surprise. And they
have worked hard at one by one shooting down all of the requests made by
1003.27. They haven’t succeeded yet, but when you consider that the sim-
plest request (“Please could you reserve the namespaces ::posix and ::std::
posix for our use”) generated about 90 emails in a week, you can see how
hard they are fighting.

Building a standard is all about achieving consensus. But what is consensus?
When do we know we have reached it? When everyone is exhausted talk-
ing about it, does the last voice win? Is it unanimity? In general, in all of the
groups I have worked in, when we realize we have a contentious issue, the
best thing to do is to omit the issue from the standard, however painful that
might be to some. We have done this in POSIX. We have done it in C. We
have done it in the LSB. So why is C++ so different that if one loud voice
says, “I want this feature in my language,” we have to have it, even if 45%
or 50% of the working group don’t feel so strongly and another 45% or 50%
feel more strongly the other way?

Every formal process I have studied has a means for reversing a previously
made decision. Robert’s Rules of Order has a substantial section on it. Voting
something in at one meeting never stops us voting it out at the next! Within
SC 22, this is one of the golden rules: “This is the decision we’ve made until
we decide to change it.”

login_articles_JUNE08.indd 86 5/13/08 4:51:39 PM

Saying, in C++, “we voted at the last meeting to add the system_error ob-
ject, so we can’t remove it now” doesn’t fit that model.

When the message to change comes from an officer of your parent commit-
tee, you cannot simply ignore it. And if that officer happens to have a siz-
able contingent of your own working group agreeing with the message, you
cannot ignore it. Complaining that POSIX is having an undue influence on
the purity of the language is specious and pusillanimous. Certainly it is true
that C++ runs on platforms other than POSIX. But POSIX is the only inter-
national standard platform on which the international standard language is
going to be implemented.

And, in my role as POSIX liaison, I’m going to continue to rattle the bars at
the C++ meetings. They can try to silence me, but they can never succeed!
Pray for fewer “features”!

; LO G I N : J U N E 20 0 8 U pdATE O N sTA N dA Rds : U N dU E I N FLU E N CE ? ��

login_articles_JUNE08.indd 87 5/13/08 4:51:40 PM

�� ; LO G I N : vO L . 33, N O. 3

book reviews
e L i z a B e t h z w i c k Y, w i t h s a m s t o v e R
a n d e v a n t e R a n

Ihost integrit y monitoring using osiris
and samhain

Brian Wotring

Syngress, 2005. 399 pages.
ISBN 1-597490-18-0

Host integrity monitoring is not the sexy part of
computer security. That would be network intru-
sion prevention, because networks are cooler than
hosts, intrusions are cooler than integrity, and pre-
vention is way cooler than monitoring. But host
integrity monitoring has in general a strongly posi-
tive effectiveness/annoyance ratio, for some of the
same reasons that it’s not sexy. For instance, most
of the time what it does is detect stupidity rather
than malice; it’s really good at tattling on autho-
rized users who are doing things they ought not to.
Fortunately for us all, your average network suffers
more from stupidity than from malice.

So if you run a network of any size, you ought to
be doing host integrity monitoring. It won’t keep
intruders out or make your hair shinier, but it will
find intruders and make your site tidier. This book
goes over why you ought to do host integrity moni-
toring, what kinds of things you need to moni-
tor and why, and how to install and configure the
most popular open source monitoring systems.

The author clearly has experience with monitoring
systems and with practical security. He advocates
for configurations that are as secure as practical,
but no more so, with the authentic weariness of the
person who has seen rookie administrators either
try to do it “Right! At all costs!” or decide that all
this security stuff is too much hassle anyway, and
you might as well build your security products just
like any other package.

Warning for ex-proofreaders and other people in-
clined toward pickiness: This book is edited to the
usual Syngress standards, which is to say there’s an
error or two per page. The content is fine, but the
itch to red-pen things gets overwhelming.

Itelling ain’t tr aining

Harold D. Stolovitch and Erica J. Keeps

ASTD Press, 2002. 189 pages.
ISBN 1-56286328-9

Training, like documentation, is one of those tasks
that programmers and system administrators end
up with for a number of reasons: The organization
is too small to need a dedicated person, everybody
is so accustomed to seeing it done badly that they
don’t realize how much better it could be done, or
the managers are cynics who believe it’s all point-
less anyway, so they assign it to whoever complains
about the lack as a punishment for complaining.

If you find yourself wanting to train people more
effectively, I recommend this book. It captures the
essence of modern training—which, like all good
things, is simple in concept, difficult to imple-
ment—and communicates it vividly and practi-
cally. You will find good advice on how to decide
what to cover, how to lay out the course, and what
educators currently know about education and the
brain. (As they point out, common sense is not
your best guide to figuring out what works, and
tradition is a whole lot worse.)

Do not run their advice on French verbs by your
French teacher, however; I kept waiting for them
to point out that oversimplification is a valid edu-
cational technique and they were doing it on pur-
pose, and they never did. (There is more than one
pattern for regular verbs in French. They classify
regular verbs in -ir and -re as irregular. I believe we
had already established my pedantic tendencies.)

I implementing itil configur ation
 management

Larry Klosterboer

IBM Press, 2007. 216 pages.
ISBN 0-13-242593-9

This is a book aimed at large sites, the kind of
place that has an IT department that cannot all
sit around the same table and eat pizza together,
even when they rent the whole restaurant. Since I
work for the kind of site where the IT department
is measured in fractions of a person, it’s not of im-
mediate application for me. However, I’ve worked
for enough large organizations to recognize the au-
thentic voice of experience.

login_articles_JUNE08.indd 88 5/13/08 4:51:40 PM

Only somebody who knows what he’s talking about
would address the question of how to do configu-
ration management on a machine that nobody
knows how to get into, but that can’t be turned off.
He gives the right answer, too: First, figure out if
you can stick your fingers in your ears and pretend
it doesn’t exist. That’s what everybody else is doing;
why should you get the hot potato? Failing that,
try very hard to eliminate it, because it is probably
cheaper to replace it than to manage it.

If you need to implement IT Infrastructure Library
(ITIL) configuration management, you definitely
want this book. It assumes that you know some-
thing about ITIL but nothing much about run-
ning a large IT project. It’s actually a nice overview
of how to run any such project. The language is
stuffier than it needs to be in places, reducing the
readability, but the content is straightforward and
practical and steers you through many of the mine-
fields of big IT projects. For instance, it lays out
clearly how to set up a pilot project—and what to
do to save the entire project if the pilot fails.

Imindset : the new psychology of
success

Carol S. Dweck

Ballantine Books, 2006. 268 pages.
ISBN 978-0-345-47232-8

Yes, it’s a second nontechnical book, or, rather, it is
mostly a technical book, but not in computer sci-
ence.

This book is about the difference between a fixed
mindset—a belief that how you do at most things
is primarily determined by the talents and inter-
ests you’re born with—and a growth mindset—a
belief that how you do at most things is primarily
determined by how much and how well you work
at them. It provides both anecdotes and research
supporting the conclusion that the fixed mindset
is neither true nor useful. That is, success has a lot
more to do with effort than talent, and the belief
that talent is the major controlling factor is harm-
ful.

Why would I bring this up? The fixed mindset is
the dominant paradigm in our culture, broadly
defined, but it’s also the dominant paradigm in
the computing subculture more narrowly defined.
I’ve recently seen discussions about whether you
can teach people problem solving (yes, you can,
and yes, it is partly about intelligence, but you can
teach that, too), about whether programmers can
be good system administrators and about whether
Microsoft system administrators can be good UNIX
system administrators. All of these “Can people in

specialty X be good at specialty Y” questions pre-
suppose a fixed mindset. These are nonsensical
questions from a growth mindset. They also pre-
suppose that all programmers, all Microsoft system
administrators, and so on are somehow inherently
shaped for their jobs; I can’t decide whether this
is because people think everybody gets the job
they were born to, which you’d think most people
would realize didn’t work for them, or because they
think some things warp your brain if you ever ac-
cept money for them. Either way, it seems a pecu-
liar belief to me.

I could expound at length on these subjects. I have
before and I probably will again. But it would save
me a lot of trouble if people would just go out and
read this book.

Isecurit y power tools

Bryan Burns, Jennifer Grannick, Steve Manzuik,
and many others

O’Reilly Media, 2007, 570 pages.
ISBN 13: 978-0-596-00963-2

re v i eWed by sa m stov er

One of the great things about doing book reviews
is that once I run out of books that interest me, I
start looking at books that I might otherwise over-
look. Being in the security field, I’m almost em-
barrassed to say that I would have overlooked this
book—and that would have been a shame. The
point is summed up nicely in the foreword, where
the big question of “Why write this book?” is dis-
cussed. Why indeed? There are plenty of other
books on Metasploit, Nessus, Nmap, etc. etc. Does
the world need another one? Yes, it does. Not only
is this book the best “all-in-one” compilation of all
the important security tools, it shows you how to
use them. No, I mean really use them.

Before we get into the usage, I want to take a sec-
ond to specifically mention Chapter 1, “Legal and
Ethics Issues.” I can’t quite say that this chapter is
worth the price of admission alone, but it’s close.
It’s the least technical chapter in the book, but ar-
guably the most important, and certainly the one
you need to read first. It was written by a real law-
yer about real legal issues that arise in the security
world. If you don’t understand the potential rami-
fications of your actions, then you should get out
of the sandbox. Finally, we get some substance in-
stead of the usual “We are not lawyers, so don’t do
anything stupid” disclaimer so prevalent in secu-
rity books. Kudos to the authors—this chapter has
been a long time in coming.

; LO G I N : J U N E 20 0 8 B O O k RE v I E ws ��

login_articles_JUNE08.indd 89 5/13/08 4:51:41 PM

�0 ; LO G I N : vO L . 33, N O. 3

Now that you’ve read just enough legalese to make
you nervous, let’s get into the tech stuff. The book
is broken into seven sections, ranging from recon-
naissance to exploitation to mitigation. There’s even
a dash of forensics in there too—this book really
does cover all the bases. As I mentioned before, the
usual suspects are discussed in great detail, as are
some newer tools, particularly in the wireless re-
connaissance and penetration chapters. One thing
that I truly appreciated was the constant stream of
references to other works. This book might touch
on pretty much everything from rootkits to fire-
walls, but the authors acknowledge many other
specialized books that pick up where this one
leaves off. This is just another example of the class-
iness that is the hallmark of O’Reilly. In that vein,
grammatical errors, typos, and cut-and-paste hacks
were all absent, as usual. There might have been
twelve self-acknowledged “nonwriters” authoring
the chapters, but each topic reads cleanly and pro-
fessionally.

One problem inherent with this type of book is
the expectation and experience level of the reader.
Some veterans might be a little frustrated with the
amount of introductory material, but I think this
was kept to a minimum. The book is accessible
to the novice but tailored for the tech-savvy. Sim-
ply put, I would recommend this book to anyone
who needs a great all-around reference and is con-
cerned with getting stuff done. There are plenty of
networking topics for the system admins and vice
versa. Since the writers and editors did such a great
job writing for a highly technical—but not neces-
sarily security-minded—audience, anyone with a
good technical background should snap this book
up as soon as possible.

Ihacking : the art of exploitation,
2nd edition

Jon Erickson

No Starch Press, 2008. 488 pages.
ISBN 978-1-59327-144-2

re v i eWed by e va n ter a n

This is a good book. It does a great job of first es-
tablishing the mindset of a hacker and then walk-
ing the reader step by step through the various
techniques of finding interesting ways to solve
problems. This in itself is what the author claims is
the defining characteristic of a hacker, and I agree.

Unlike the first edition, this book spends about
100 pages explaining what programming is, first
with pseudo-code giving very general examples,
then working through all the major features of the
C programming language, and finally how this all

ties to assembly language for the x86 processor. Al-
though I feel this is all requisite knowledge for the
subject, if you are already a competent C program-
mer you are likely going to want to skip chapter
“0x300” altogether, especially if you are also com-
fortable with x86 assembly.

In addition to the general programming overview,
the networking chapter has been expanded to in-
clude much more information about programming
using the BSD sockets API. Once again, if you are
already familiar with programming sockets, you
may want to skip this chapter. However, since not
every programmer writes networked applications,
this was a valuable addition to the book.

All of the basics for program exploitation are ex-
plained well. Everything from the commonplace
stack-based buffer overflow to how to make a for-
mat string vulnerability corrupt memory in a use-
ful way is covered. The explanations and examples
of the various techniques have been improved
since the first edition and use more realistic code
samples.

There is also a completely new chapter, “Counter-
measures‚” which goes over ways that a hacker can
get around some of the basic preventives a pro-
grammer might use. These techniques, ranging
from trivial to modern, include logging, byte re-
strictions, stack randomization, and nonexecutable
stacks. Basically this chapter is a way of addressing
many of the newer techniques that would prevent
the book’s examples from working on a real-world
machine.

For example, pretty much all of the stack exploit
examples earlier in the book assume that the stack
is located at the same location for each process.
In fact, the LiveCD has ASLR (Address Space Lay-
out Randomization) disabled in order to make this
work. One thing that I didn’t care for is that this
was mentioned as an afterthought. In addition to
that, the solution of bouncing off the linux-gate is
incomplete, since it does not work in the newest
Linux kernels. The author does suggest another so-
lution, which works OK (as in, not all the time, but
once is enough).

Personally, if someone asked me to recommend a
book on exploitation and they had no knowledge of
programming, I would probably recommend they
start with a book that focuses specifically on C
first. In my opinion, program exploitation is an ad-
vanced programming topic that will do nothing but
frustrate beginners. Overall, I would recommend
this book to those who are competent C program-
mers, with the caveat that they may want to either
skim or skip the early background chapters.

login_articles_JUNE08.indd 90 5/13/08 4:51:41 PM

USENIX
notes

us e n i x m e m b e r b e n e F it s

Members of the USENIX Association
 receive the following benefits:

free subscrip tion to ;login:, the Associa-
tion’s magazine, published six times
a year, featuring technical articles,
system administration articles, tips
and techniques, practical columns
on such topics as security, Perl, net-
works, and operating systems, book
reviews, and summaries of sessions
at USENIX conferences.

access to ; lo gin : online from October
1997 to this month:
www.usenix.org/publications/login/.

discounts on registration fees for all
 USENIX conferences.

discounts on the purchase of proceed-
ings and CD-ROMs from USENIX
conferences.

special discounts on a variety of prod-
ucts, books, software, and periodi-
cals: www.usenix.org/membership/
specialdisc.html.

the right to vote on matters affecting
the Association, its bylaws, and elec-
tion of its directors and officers.

for more infor m ation regarding mem-
bership or benefits, please see
www.usenix.org/membership/
or contact office@usenix.org.
Phone: 510-528-8649

r e su Lt s O F th e e LeC ti O n O F th e
u s e n i x b Oa r d O F d i r eC tO r s FO r
2 0 0 6 –2 0 0 8

Communicate directly with the
 USENIX Board of Directors by
writing to board@usenix.org.

President

Clem Cole, Intel
clem@usenix.org

V ice President

Margo Seltzer, Harvard University
margo@usenix.org

secre ta ry

Alva Couch, Tufts University
alva@usenix.org

t re a surer

Brian Noble, University of Michigan
brian@usenix.org

direc to r s

Matt Blaze, University of Pennsylvania
matt@usenix.org

Gerald Carter, Samba.org/Centeris
jerry@usenix.org

Rémy Evard, Novartis
remy@usenix.org

Niels Provos, Google
niels@usenix.org

For details of the election results,
see http://www.usenix.org/about/
elections08results.html.

n Oti Ce O F a n n ua L m e e ti n g

The USENIX Association’s Annual
Meeting with the membership and the
Board of Directors will be held during
the 2008 USENIX Annual Technical
Conference, on June 25, 2008, Boston,
Massachusetts. The time and place of
the meeting will be announced on-site
and on the conference Web site, www.
usenix.org/usenix08.

us e n i x & sag e CO ntaC t i n FO

Conference Registration:
conference@usenix.org

Executive Director:
Ellie Young, ellie@usenix.org

;login: Submissions:
login@usenix.org

Mailing List Rental:
Camille Mulligan, sales@usenix.org

Marketing:
Anne Dickison, marketing@usenix.org

Membership:
membership@usenix.org

Ordering USENIX & SAGE
 Publications:
orders@usenix.org

Password Problems:
office@usenix.org

Permission to Reprint from USENIX
& SAGE Publications:
Jane-Ellen Long, jel@usenix.org

Publicity:
Anne Dickison, marketing@usenix.org

Publishing with USENIX and SAGE:
Jane-Ellen Long, jel@usenix.org

Campus Rep Program:
Anne Dickison, anne@usenix.org

SAGE:
Jane-Ellen Long, jel@sage.org

Sponsorship and Exhibiting:
Camille Mulligan, sponsorship@
usenix.org

Standards:
Nick Stoughton, nick@usenix.org

Student Conference Grants/Stipends:
Devon Shaw, students@usenix.org

System Administrator:
Tony Del Porto, tony@usenix.org

Tutorial Speakers:
Dan Klein, tutorials@usenix.org

Web Site:
Casey Henderson, casey@usenix.org

; LO G I N : J U N E 20 0 8 UsE N IX N OTEs ��

login_articles_JUNE08.indd 91 5/13/08 4:51:42 PM

p r o f e s s o r s , c a m p u s s t a f f, a n d s t u d e n t s —

d o y o u h a v e a u s e n i X R e p r e s e n t a t i v e o n y o u r c a m p u s ?

i f n o t , u s e n i X i s i n t e r e s t e d i n h a v i n g o n e !

The USENIX Campus Rep Program is a network of representatives at campuses around the
world who provide Association information to students, and encourage student involvement
in USENIX. This is a volunteer program, for which USENIX is always looking for academics
to participate. The program is designed for faculty who directly interact with students. We
fund one representative from a campus at a time. In return for service as a campus represen-
tative, we offer a complimentary membership and other benefits.

A campus rep’s responsibilities include:

n Maintaining a library (online and in print) of USENIX publications at your university for
student use

n Distributing calls for papers and upcoming event brochures, and re-distributing informa-
tional emails from USENIX

n Encouraging students to apply for travel grants to conferences

n Providing students who wish to join USENIX with information and applications

n Helping students to submit research papers to relevant USENIX conferences

n Providing USENIX with feedback and suggestions on how the organization can better serve
students

In return for being our “eyes and ears” on campus, representatives receive a complimentary
membership in USENIX with all membership benefits (except voting rights), and a free con-
ference registration once a year (after one full year of service as a campus rep).

To qualify as a campus representative, you must:

n Be full-time faculty or staff at a four year accredited university

n Have been a dues-paying member of USENIX for at least one full year in the past

For more information about our Student Programs, see http://www.usenix.org/students

USENIX contact: Anne Dickison, Director of Marketing, anne@usenix.org

login_articles_JUNE08.indd 92 5/13/08 4:51:42 PM

; LO G I N : J U N E 20 0 8 cO N fE rE N cE rE p O rt s 93

FAST ’08: 6th USENIX Conference on File and
Storage Technologies

San Jose, CA
February 26–29, 2008

ke ynote address : “It ’s like a fire. You just
have to move on”: Rethinking Personal
Digital Archiving .

Cathy Marshall, Senior Researcher, Microsoft

Summarized by Swapnil Bhatia (sbhatia@cs.unh.edu)

To a storage systems researcher, all user bytes are created
opaque and equal. Whether they encode a timeless wed-
ding photograph, a recording of a song downloaded from
the WWW, or tax returns of yesteryear is not germane
to the already complex problem of their storage. But ac-
cording to Cathy Marshall, this is only one stripe of the
storage beast. There is a bigger problem that we will have
to confront eventually: The exponentially growing size of
our personal digital estate will soon—if it has not done
so already—surpass our management abilities.

In a visionary keynote address delivered in her own
unique style, Marshall successfully argued the increasing
importance, complexity, and enormity of the problem of
personal digital archiving: the need for tools and meth-
ods for the collection, preservation, and long-term care of
digital artifacts valuable to us.

In the first part of her talk, using data gathered from
extensive surveys, interviews, and case studies, Marshall
characterized the prevailing attitudes of users toward the
fate of their digital data. She discovered a strange mix of
reckless resignation, paranoia, and complacency based
on flawed assumptions about the role of backups, the
perceived permanence of the content on the WWW, and
a misperception of one’s own ability to manage one’s data
over a variety of time scales.

Marshall outlined four fundamental challenges in per-
sonal digital archiving: value, variation, scale, and con-
text. According to Marshall, personal digital archiving is
not just about backing up data; it is the selective pres-
ervation and care of digital artifacts that are of value to
us. Quantifying the value of a digital artifact appears to
be a difficult task, even for its owner. Furthermore, the
variability in the value of a digital artifact over time to its
user only adds complexity to the problem. Current meth-
ods of backup are value oblivious and therefore promote
blind duplication rather than selective archival.

The second challenge arises from the distributed storage
of our digital assets. Personal digital artifacts are almost
never stored in a single central repository. Typically, they
end up copied from their source to a number of personal
computers and servers, some of which may not be con-
trolled by the owner(s) of the digital artifacts. Moreover,
all the many copies created in the process of the distribu-

conference reports

thaNks tO OUr sUmmarIzErs

6th USENIX Conference on File and Storage
Technologies (FAST ’08)93
Medha Bhadkamkar
Swapnil Bhatia
Chris Frost
James Hendricks
Elie Krevat
Dutch Meyer
Shafeeq Sinnamohideen

2008 Linux Storage & Filesystem Workshop
(LSF ’08) . 107
Grant Grundler, with help from James Bottomley,
Martin Petersen, and Chris Mason

The LSF ’08 summaries were substantially abbreviated for
publication. For the complete summaries, see http://www.
usenix.org/events/lsf08/lsf08sums.pdf.

login_summariesJUNE2008.indd 93 5/13/08 4:42:22 PM

94 ; LO G I N : VO L . 33, N O. 3

tion may not be identical; for example, differences in resolu-
tion of images or associated metadata may result in many
differing versions of essentially the same digital artifact.
Without any supervening method of preserving provenance,
the problem of archiving a family of related but different
digital artifacts dispersed across many locations—building
a digital Noah’s ark of sorts—quickly becomes intractable.

Archiving would still be a manageable problem, were it
not for its sheer enormity. According to Marshall, there are
about seven billion pictures on the Yahoo! and Facebook
sites. Most users are simply incapable of dealing with large
numbers of digital artifacts because of a lack of either tech-
nological savvy or the time and effort needed. Archiving
personal data requires stewardship, but no tools currently
exist to facilitate it at this scale.

Finally, even the perfect archiving tool augmented with the
best search interface would be of no help if, years later, one
has forgotten the content and the context of one’s archive.
Such forgetfulness is—as Marshall found through her user
interviews—an often underestimated problem. Marshall
suggested that re-encountering archived data is a promising
solution to this problem. The idea behind re-encountering
is to enable archived data to remind the user of their own
provenance by facilitating periodic review or revisitation.

Marshall concluded by saying that solving these challenges
would require a method for assessing the value of digital
artifacts and better curatorial tools and services with built-
in facilities for re-encountering. Marshall also pointed out
that this problem will require cooperation and partnership
among social Web sites, software companies, data reposito-
ries, ISPs, and content publishers.

In response to a question from an audience member, Mar-
shall mentioned that, as yet, users were not willing to pay
for an archiving service. Another questioner asked Marshall
to explain why it was not enough to back up all user data.
The same misequation of backup with archiving also arose
in audience discussions after the talk. Marshall explained
that users were not looking to save everything: This would
only make the problem of context and re-encounter harder.
Rather, what users need is a selective way of preserving per-
sonally valuable data, along with the context that makes the
data valuable, and doing so over a time scale that is signifi-
cantly longer than that of a backup.

distributed stor age

Summarized by Chris Frost (frost@cs.ucla.edu)

n	 Pergamum: Replacing Tape with Energy Efficient, Reliable,
Disk-Based Archival Storage
Mark W. Storer, Kevin M. Greenan, and Ethan L. Miller, Univer-
sity of California, Santa Cruz; Kaladhar Voruganti, Network
Appliance

Mark Storer spoke on the Pergamum system, which uses
disks, instead of tape, for archival storage, and their work

toward reducing power costs. With Pergamum, Storer et
al. wanted to achieve power cost and data space scalability
similar to tape systems but achieve random access per-
formance similar to disk array and Massive Array of Idle
Disk systems. Their approach uses an evolvable distributed
network of disk-based devices, called tomes. Each tome
can function independently and is low-power enough to
run on Power over Ethernet. Pergamum uses intradisk and
interdisk reliability to protect against corruption and tome
failure, including trees of data algebraic signatures to ef-
ficiently detect and locate corruption. A tome spins down its
disk when inactive and stores metadata in nonvolatile RAM
(NVRAM) to help keep its disk spun down even longer.

Storer et al.’s experiments show that adding one to three
backup tomes per tome increases the mean time to failure
by orders of magnitude. A tome’s low-power CPU and SATA
disk sustain a 5 MB/s write speed; they anticipate raising
this with further CPU optimizations. One thousand tomes
with a spin rate of 5% could ingest 175 MB/s. They cite
costs as being 10%–50% of today’s systems.

David Rosenthal of Stanford asked how well they under-
stood drive failures, especially given a tome’s difference
from the expected environment. Storer noted that acceler-
ated drive testing is a good idea and also that this is one
reason they use interdisk redundancy and data scrubbing.
Geof Kuenning of Harvey Mudd asked what would hap-
pen if a tome’s NVRAM were to fail. Storer replied that
they would replace the device and use interdisk reliability
to rebuild. Another person asked about how much energy
routers use, since disk arrays do not have this component.
Storer answered that router and disk array backplane en-
ergy costs are similar.

n	 Scalable Performance of the Panasas Parallel File System
Brent Welch, Marc Unangst, and Zainul Abbasi, Panasas, Inc.;
Garth Gibson, Panasas, Inc., and Carnegie Mellon University;
Brian Mueller, Jason Small, Jim Zelenka, and Bin Zhou, Panasas,
Inc.

Brent Welch presented Panasas’s parallel file system, which
has installations as large as 412 TB with sustained through-
put of 24 GB/s using thousands of Panasas servers. The
Panasas system is composed of storage and manager nodes;
a storage node implements an object store and a manager
node runs a metadata service that layers a distributed file
system (PanFS, NFS, or CIFS) over the object store. Scal-
ability is the goal of Panasas and is primarily achieved by
distributing metadata and supporting scalable rebuilds.

Each file and its metadata are stored together, in an Object
Storage Device File System. The system automatically selects
redundancy (RAID) levels on a per-file basis based on file
size, optimizing space usage for small files and run-time
performance for large files. By randomly placing data among
storage nodes, failure recovery is made scalable, an essential
feature for such a large, distributed system. Panasas serv-
ers also include integrated batteries to permit them to treat

login_summariesJUNE2008.indd 94 5/13/08 4:42:23 PM

; LO G I N : J U N E 20 0 8 cO N fE rE N cE rE p O rt s 95

RAM as nonvolatile RAM (NVRAM), significantly increasing
metadata manipulation performance. Welch et al. find that
system write performance scales linearly with the number
of servers; read performance scales fairly well, although ef-
fective readahead becomes difficult at large scales.

One audience member asked how many objects backed a
typical file. Welch said, “Several; a new 512-kB file would
consist of about ten objects.” Another person asked how
much of Panasas’s scalability is due to using an object store.
Welch replied that the object store primarily simplified the
software. Another person, worried about the lack of true
NVRAM, asked what would happen if a hardware fault lost
the contents of RAM. Welch said an exploded storage server
would not harm the file system, because data and logs are
replicated synchronously.

n	 TierStore: A Distributed Filesystem for Challenged Net-
works in Developing Regions
Michael Demmer, Bowei Du, and Eric Brewer, University of
California, Berkeley

Michael Demmer spoke on sharing data among comput-
ers in developing regions, where network connectivity is
intermittent and of low bandwidth. Many approaches exist
for working in such environments, but all start from scratch
and use ad hoc solutions specific to their environment–ap-
plication pair. Demmer et al. aim to extend the benefits of
Delay Tolerant Networking to provide replicated storage for
applications to easily use for storage and communication.

TierStore’s design has three goals. (1) Software should
be able to easily use TierStore. They achieve this goal by
exposing TierStore as a file system. This permits many
existing programs to use TierStore and takes advantage of
the well-known, simple, programming language-agnos-
tic, and relatively weakly consistent filesystem interface.
(2) TierStore should provide offline availability. Therefore
TierStore provides locally consistent views with a single-
file coherence model and uses application-specific conflict
resolvers to merge split views after a write–write conflict.
(3) TierStore should distribute data efficiently. Delay-toler-
ant publish–subscribe is used to provide transport portabil-
ity. A simple publish–subscribe protocol is used to manage
interest on fine-grained publications (e.g., a user’s mailbox
or an RSS feed).

One audience member asked how TierStore deals with
churn. Demmer replied that their current prototype is
manually configured and has a fairly stable overall topology.
Another person asked why Demmer et al. propose a fancy
solution when they also say one cannot use fancy technol-
ogy in such environments. Demmer answered that econom-
ics is often the barrier. When asked about the usability of
conflict resolution in their system, Demmer said that, thus
far, applications have been designed to be conflict-free (e.g.,
Maildirs). They hope applications will continue to be able to
store data so that conflicts are not a problem.

you c ache, i c ache . . .

Summarized by Swapnil Bhatia (sbhatia@cs.unh.edu)

n	 On Multi-level Exclusive Caching: Offline Optimality and
Why Promotions Are Better Than Demotions
Binny S. Gill, IBM Almaden Research Center

Binny S. Gill presented the two primary contributions of
his work on a multi-level cache hierarchy: a new PROMOTE
operation for achieving exclusivity efficiently, and policies
that bound the optimal offline performance of the cache
hierarchy.

Gill started his talk with a discussion of the DEMOTE
technique used for achieving exclusivity. When a higher-
level cache evicts a page, it DEMOTEs it to the lower cache,
which in turn makes room for the new page, possibly
demoting a page in the process itself. Gill argued that DE-
MOTE is an expensive operation and performs poorly when
bandwidth is limited. Furthermore, for workloads without
temporal locality, DEMOTEs are never useful.

Gill proposed a new technique for achieving exclusivity
based on a new operation called PROMOTE. PROMOTE
achieves exclusivity by including an ownership bit with
each page traversing the hierarchy, indicating whether
ownership of the page has been claimed by some lower-
level cache. Each cache on a path PROMOTEs a page with
a certain probability, which is adapted so as to equalize
the cache life along a path. (A higher-level cache periodi-
cally sends its cache life to the next-lower-level cache.)
Experimental results show that PROMOTE is better than
DEMOTE when comparing average response time, and it
cuts the response time roughly in half when intercache
bandwidth is limited.

Gill also presented two policies, OPT-UB and OPT-LB,
which bound the performance of an optimal offline policy
for a multi-level cache hierarchy. Essentially, both policies
use Belady’s optimal offline policy for a single cache and
apply it incrementally to a path. In his paper, Gill proves
that no other policy can have a better hit rate, intercache
traffic, and average response time than OPT-UB. Gill
presented experimental results that showed that the two
bounds were close to each other.

One audience member pointed out that using PROMOTE
would require a change in the command set of the protocol
used for intercache communication. Gill argued that the
performance gained by using PROMOTE would hopefully
incentivize such a change. In response to another question,
Gill clarified that the response times of the caches need
only be monotonically increasing, with no constraint on the
magnitude of the differences. Another questioner provided
a counter-example scenario in which the working set of the
workload is highly dynamic and asked what impact this
would have on the adaptive PROMOTE probabilities. Gill
pointed out that when cache lives are equalized, the be-
havior of the PROMOTE scheme would be no different—in
terms of hits—than that with DEMOTE.

login_summariesJUNE2008.indd 95 5/13/08 4:42:23 PM

96 ; LO G I N : VO L . 33, N O. 3

n	 AWOL: An Adaptive Write Optimizations Layer
Alexandros Batsakis and Randal Burns, Johns Hopkins Uni-
versity; Arkady Kanevsky, James Lentini, and Thomas Talpey,
Network Appliance, Inc.

Although an application writes data to the disk, in reality
the file system caches writes in memory for destaging later.
Alexandros Batsakis’s talk tried to answer the following
questions about such write-behind policies: How much and
which dirty data should be written back? And when should
this be done? The answers require careful consideration of
the tradeoffs between writing too quickly or waiting too
long, and using available memory for caching writes versus
reads. To this end, Batsakis proposed a three-part solution:
adaptive write-back, ghost-caching, and opportunistic queu-
ing.

Batsakis explained an adaptive high–low watermark algo-
rithm in which write-back commences when the “dirtying”
rate crosses the high mark and stops when it falls below the
low mark. The two watermarks are dynamically adapted in
harmony with the dirtying and flushing rates.

Batsakis proposed ghost-caching to balance memory usage
across reads and writes. The scheme involves the use of two
ghost caches. The Ghost Miss Cache (GMC) records meta-
data of evictions resulting from write buffering. A cache
miss with a GMC hit is used to deduce that write buffering
is reducing the cache hit ratio. The Ghost Hit Cache (GHC)
records a subset of the cached pages. A read hit that falls
outside the GHC is used to deduce that additional write
buffering will lower the read hit rate. Thus, the GHC is used
to prevent interference from writes early on, rather than
recover from it using the GMC later.

Batsakis proposed the use of opportunistic queuing to
decide which data to write back. An I/O scheduler main-
tains separate queues for blocking (read) and nonblocking
(writes) requests with requests sorted by block number to
minimize seek time. In Batsakis’s scheme, dirty blocks are
added to a third (nonblocking) opportunistic queue. When
a page is flushed from any of the other queues, the sched-
uler is free to service a “nearby” page from the opportunistic
queue. Overall, experiments show that the three optimiza-
tions can improve performance by 30% for mixed work-
loads.

n	 TaP: Table-based Prefetching for Storage Caches
Mingju Li, Elizabeth Varki, and Swapnil Bhatia, University of
New Hampshire; Arif Merchant, Hewlett-Packard Labs

Mingju Li presented the two primary contributions of her
work: a method for detecting sequential access patterns in
storage-level workloads and a method for resizing the stor-
age-level prefetch cache optimally.

Table-based prefetching (TaP) is a sequential detection and
cache resizing scheme that uses a separate table for record-
ing workload history and resizing the prefetch cache opti-
mally. TaP records the address of a cache miss in a table. If

a contiguous request arrives later, then TaP concludes that
a sequential access pattern exists in the workload, and it
begins prefetching blocks on every subsequent cache hit
from that stream. Separating the workload history needed
for detection from other prefetched data prevents cache
pollution and allows TaP to remember a longer history. As
a result, TaP can detect sequential patterns that would have
otherwise been lost by interleaving.

When the prefetch cache is full, TaP evicts a cache entry,
but it records its address in the table. If a request for this
recorded address arrives later, then TaP concludes this to be
a symptom of cache shortage and expands the cache. Thus,
TaP uses the table to resize the cache to a value that is both
necessary and sufficient and hence optimal. As a result, TaP
exhibits a higher useful prefetch ratio, i.e., the fraction of
prefetches resulting in a hit. In many cases, TaP can achieve
a given hit ratio using a cache that is an order of magnitude
smaller than competing schemes.

In response to audience questions, Li mentioned that she
planned to address the design of a prefetching module,
which is responsible for deciding the size and time of
prefetching, in her future work. Another question called
attention to the cost of prefetch cache resizing: What is the
impact of the frequent change in the size of the cache on
performance? Li responded by saying that the rate at which
the cache size is decreased can be controlled and set to a
reasonable value. The final questioner asked Li how TaP
would compare in performance to AMP (Gill and Bathen,
FAST ’07). Li pointed out that AMP could in fact be incor-
porated into TaP as one possible prefetching module and
that this would be addressed in her future work.

work-in-progress reports (wips)

Summarized by Shafeeq Sinnamohideen (shafeeq@cs.cmu.edu)

n	 Byzantine Fault-Tolerant Erasure-Coded Storage
James Hendricks and Gregory R. Ganger, Carnegie Mellon
University; Michael K. Reiter, University of North Carolina at
Chapel Hill

Hendricks presented a scheme that provides Byzantine fault
tolerance for a slight overhead over non-Byzantine-fault-tol-
erant erasure-coded storage. Traditionally, storage systems
have used ad hoc approaches to deciding which faults to
tolerate and how to tolerate them. As storage systems get
more complex, the kinds of faults that can occur get harder
to predict; thus, tolerating arbitrary faults will be useful.
Providing Byzantine fault tolerance in an erasure-coded sys-
tem requires each storage server to be able to validate that
the data fragment stored on that server is consistent with
the data stored on the other servers. This is difficult because
no server has a complete copy of the data block. Using the
recent technique of homomorphic fingerprinting, however,
each server can validate its fragment against a fingerprint
of the complete data block, and a client can validate that
all the fragments it received from the servers are consistent

login_summariesJUNE2008.indd 96 5/13/08 4:42:24 PM

; LO G I N : J U N E 20 0 8 cO N fE rE N cE rE p O rt s 97

with a single fingerprint. In a prototype system, Hendricks’s
scheme provides write throughput almost as good as a
crash-only tolerant system, and with far better performance
than existing Byzantine fault-tolerant schemes.

n	 Mirror File System
John Wong, Twin Peaks Software

Wong presented an overview of Twin Peaks’s filesystem rep-
lication product. Since files stored on a local file system are
vulnerable to failures of the local machine, and files stored
on remote servers are vulnerable to failures of that server
or the network, the Mirror File System (MFS) attempts to
get the best of both worlds by mirroring the state of a local
EXT3 file system onto a remote NFS server. It does so by
transparently intercepting file system operations at the VFS
layer and applying them to both the local and remote file
systems, while requiring no modifications to applications,
EXT3, or NFS.

n	 Quantifying Temporal and Spatial Localities
Cory Fox, Florida State University

Fox states that accurately describing workloads is critical
to comparing different real workloads and creating accu-
rate synthetic workloads. Because locality is an important
property of a workload, understanding how the locality
of a workload is transformed as it passes through system
components, such as caches, is crucial. Fox suggests that
current metrics such as cache hit ratios, reference distance,
and block distance do not adequately describe locality.
Instead he proposes a metric called “affinity,” which builds
on block and reference distances, while being less sensi-
tive to hardware details. Much future work is anticipated in
showing how well it captures locality and in studying how
the workloads seen by individual components relate to the
overall workload.

n	 Filesystems Should Be Like Burger Meals: Supersize Your
Allocation Units!
Konstantin Koll, University of Dortmund, Germany

Koll discussed the tradeoff between small and large filesys-
tem allocation units, through a humorous analogy to fast
food meal sizes. In both file systems and restaurants, exces-
sively small allocation units reduce waste, but at the same
time they reduce performance and add administrative over-
head. Koll stated that fast food vendors have realized that
since food is cheap, avoiding waste is less important than
reducing overheads, and since a study of filesystem work-
loads reveals that the amount of wasted space grows less
than linearly with allocation unit size, filesystem designers
should use larger allocation units. An unnamed questioner
stated that XFS and other extent-based filesystems do use
large allocation units. Koll responded: Then I hope you
found this talk amusing.

n	 Zumastor: Enterprise NAS for Linux
Daniel Phillips

Zumastor is a NAS product, built on Linux, that provides
live volume snapshots, remote volume replication, online
volume backup, NFS, Samba, and CIFS interfaces, and easy
administration. It is based on the ddsnap engine, which is a
mostly userspace driver presenting a block device interface
with copy-before-write snapshots. The snapshots can be
replicated to other Zumastor servers using techniques such
as compression or binary differencing to reduce the amount
of data to be transmitted. Future work includes adding a
graphical administrative console, better volume manage-
ment, online resizing, and incremental backup.

n	 View-based Collective I/O for MPI-IO
Javier Garcia Blas, Florin Isaila, and Jesus Carratero, University
Carlos III of Madrid

Blas proposed an alternative to two-phase collective I/O
with the goal of increasing performance by reducing the
cost of data scatter-gather operations, minimizing the
overhead of metadata transfer, and reducing the amount
of synchronous communication. The alternative, called
view-based collective I/O, relies on clients once providing
the aggregators with additional information about the type
of the data the client will be accessing. This reduces the
amount of information the client must send with every ac-
cess, as well as permitting the aggregators to cache file data
across operations, allowing one operation to benefit from a
previous operation’s cache miss. In the MPI-IO benchmark
performed, view-based I/O reduced write times by more
than a factor of 2 and read times by at least 10%.

n	 Towards a Performance Model for Virtualised Multi-Tier
Storage Systems
Nicholas Dingle, Peter Harrison, William Knottenbelt, Abagail
Lebrecht, and Soraya Zertal, Imperial College London, UK

Lebrecht’s goal is to model the performance of a complex
system using nested queuing network models of its basic
components. Starting with models of simple disk and RAID
system, the models she has developed closely match the
performance of the real devices for random workloads. Fu-
ture work includes extending these results to more complex
and heterogeneous workloads.

n	 Adapting RAID Methods for Use in Object Storage Systems
David Bigelow, Scott A. Brandt, Carlos Maltzahn, and Sage Weil,
University of California, Santa Cruz

Bigelow proposes characterizing the tradeoffs among vari-
ous methods of implementing RAID in object-based storage
systems. These include “client-based RAID,” in which the
client performs parity calculations, “RAID across objects,”
in which the storage system stores an object on one node
but includes a different object on each node in the parity
calculation, and “RAID within objects,” in which the storage
system stores a portion of each object on each node and
computes parity across all of them. Bigelow is currently
working on implementing these schemes in the Ceph Object

login_summariesJUNE2008.indd 97 5/13/08 4:42:25 PM

98 ; LO G I N : VO L . 33, N O. 3

Storage System and evaluating their relative performance, as
well as developing more complex and hierarchical schemes.

n	 How Shareable Are Home Directories?
Carlos Maltzahn, University of California, Santa Cruz

Maltzahn hypothesizes that most users manage a subset of
their files in a way identical to other users. Thus, it should
be possible to share the work of managing files across users.
He proposes to quantify this shareability by categoriz-
ing files through a user survey. His survey, in which users
categorized files as “unshareable,” “shareable within one
user,” “shareable within one group of users,” and “publicly
shareable,” revealed that 75% of users have at least half their
files shareable in some way, and 50% of users have at least
half their files in common with a different user.

n	 Load Balancing in Ceph: Load Balancing with Pseudoran-
dom Placement
Esteban Molina-Estolano, Carlos Maltzahn, and Scott Brandt,
University of California, Santa Cruz

Molina described several issues that could be encountered
in Ceph owing to its use of pseudo-random placement of
objects, along with potential solutions to these issues. In the
case of one node that happens to hold the primary replica
of many popular objects, that node can be switched to be
a secondary replica of some of them, moving the load to
the new primary replica. In the case of a read flash crowd,
some of the readers can be directed to other nodes that hold
a secondary replica of the object, or even to other clients
that have a recently cached copy of the object. In the case of
a write flash crowd, some clients can be directed to write to
the secondary replicas, but this relies on HPC I/O exten-
sions that allow the application to describe ordering and
dependencies. Preliminary results show that these tech-
niques allow load to be shifted away from an overloaded
storage node.

n	 Ringer: A Global-Scale Lightweight P2P File Service
Ian Pye, Scott Brandt, and Carlos Maltzahn, University of Cali-
fornia, Santa Cruz

Pye presented a global file service that provides filesystem
semantics as well as indexing based on document contents.
Filesystem semantics are necessary for application compat-
ibility, and indexing is necessary to help users find the files
they are interested in. The architecture Pye proposes is a
Hybrid P2P approach in which metadata servers maintain
the filesystem indices and perform searches, but file data is
transferred directly from the peer that has it. Future work
includes implementing, testing, and evaluating the system.

n	 The New and Improved FileBench
Eric Kustarz, Spencer Shepler, and Andrew Wilson, Sun Micro-
systems

Spencer described the current state of the FileBench frame-
work. It provides a collection of configurable workloads
and can apply them to a number of storage server types. It
recently underwent a large code cleanup and is distributed

in OpenSolaris and through SourceForge.net. Features in
development include support for random workloads, NFS,
CIFS, and multiple clients.

n	 HyFS: A Highly Available Distributed File System
Jianqiang Luo, Mochan Shrestha, and Lihao Xu, Wayne State
University

Luo proposes a Linux filesystem that uses erasure coding
to provide redundancy against hardware failure. HyFS is
implemented at the user level by using FUSE and erasure
codes file data across a user-configured number of NFS
servers. Performance and scalability evaluations are ongo-
ing.

n	 Virtualizing Disk Performance with Fahrrad
Anna Povzner, Scott Brandt, and Carlos Maltzahn, University of
California, Santa Cruz; Richard Golding and Theodore M. Wong,
IBM Almaden Research Center

Povzner extends existing work in providing soft perfor-
mance isolation to provide hard isolation guarantees. The
Fahrrad disk scheduler allows clients to reserve disk time
and attempts to minimize the seeks required to serve the
client workloads. If seeks between streams are necessary,
they are accounted to the streams that required them and
thus the necessary overhead time can be reserved, allowing
for hard isolation. Experiments show that this can provide
complete isolation of competing workloads, with only a 2%
overhead.

n	 RADoN: QoS in Storage Networks
Tim Kaldeway and Andrew Shewmaker, University of Califor-
nia, Santa Cruz; Richard Golding and Theodore M. Wong, IBM
Almaden Research Center

Kaldeway presented RADoN, which aims to coordinate the
individual network, cache, and storage QoS parameters in
order to provide end-to-end QoS guarantees for a given ap-
plication. Doing so requires discovering how the parameters
of individual system components affect the overall QoS.
This project seeks to discover the important parameters
through modeling and simulating the system and coordina-
tion strategies and will build a framework for applications to
specify their QoS requirements.

n	 Improving Efficiency and Enhancing Concurrency of Un-
trusted Storage
Christian Cachin, IBM Zürich; Idit Keidar and Alexander
Shraer, Technion: Israel Institute of Technology

Cachin summarized recent improvements in protecting
against storage servers that present different views of history
to different clients. Fork linearizability is a useful build-
ing block because it ensures that once a server has forked
a view, it must remain forked. The authors reduce the
communication cost of a fork-linearizable protocol to nO(n)
messages instead of O(n2) and show that such a proto-
col can never be wait-free. Instead they introduce a weak
fork-linearizable protocol that is wait-free and has the same
communication cost.

login_summariesJUNE2008.indd 98 5/13/08 4:42:25 PM

; LO G I N : J U N E 20 0 8 cO N fE rE N cE rE p O rt s 99

n	 Reliability Markov Models Are Becoming Unreliable
Kevin M. Greenan and Jay J. Wylie, Hewlett-Packard

Greenan described the Markov models traditionally used
for reliability analysis. Whereas the single disk and RAID-5
models accurately model the reliability of such systems, a
naive RAID-6 model underestimates the MTTDL of a RAID-
6 system by a factor of 2. This is because the memoryless-
ness of the model ignores data that may have been rebuilt
onto other disks after a disk failure. Although not accurate,
Markov models may provide the correct intuition in reason-
ing about failures, and future work is necessary to develop
them further or devise new models.

ke ynote address : sustainable inform ation
technology ecosystem

Chandrakant D. Patel, HP Fellow, Hewlett-Packard Labs

Summarized by Dutch Meyer (dmeyer@cs.ubc.ca)

In a far-looking presentation, Chandrakant Patel explored
the hidden costs of disks and the data center, along with
the potential to deliver more efficient and reliable services.
Patel suggested that in the future, bringing IT to all levels
of developing economies will require a sustainable ecosys-
tem. This is based on the conviction that the technologies
with the least footprint, lowest power consumption, and
least materials will eventually have the lowest total cost of
ownership. To realize this transformative change, we must
recharacterize the costs associated with IT, drawing on deep
technical knowledge of the physical processes involved.

The costs of IT can be measured at several levels. Initially,
materials are extracted and formed into a usable product;
next, the product is used in operation for some time; finally,
the product is recycled, allowing some resources to be
reclaimed while others are irreversibly lost. Other consid-
erations such as transportation and human effort can also
be incorporated. A quantifiable metric for these costs is
“exergy,” which is drawn from thermodynamics as the mea-
sure of the available and usable energy in a system. In the
illustrative case of a cellular phone, the CPU draws power
from the battery in order to perform its function. In the
process, exergy consumed by the CPU is converted to heat,
which is dispelled passively in the body of the phone. In the
future, owing to high power density and the difficulty of
removing heat passively from stacked chip packages, even
heat removal will require powered solutions. To mitigate the
added power requirements, Patel suggested an active-pas-
sive solution—a phone filled with a phase-change material
such as wax, which absorbs heat for short conversations and
switches to active solid state heat removal. Such active-pas-
sive cooling solutions will be necessary to provision power
based on need.

Using some of these principles, Patel and his associates are
developing data centers that are significantly more energy-
efficient. The key observation is that the common practice

of over-provisioning results in unnecessary redundancy and
cooling. By emphasizing the pervasive use of sensors, one
can develop a flexible and configurable approach driven
by policies. Applying this technique to the cooling system
of a data center has resulted in a 35% energy savings. Patel
argued that the system also results in improved reliability,
because it can quickly adapt to problems as they occur.
The cooling is provided on-demand and over-provisioning,
although it remains important, can be limited to a cost-ef-
ficient and pragmatic level.

In closing, Patel elaborated on some future directions for
the work. He stressed the need to analyze the costs associ-
ated with the lifetime use of IT and showed how software
tools can help with this analysis. He suggested combining
the data from sensors with thermo-mechanical attributes
of compute and storage components, to detect anomalies
and predict failure. Stressing that the currency of the flat
world will be joules of exergy consumed, Patel emphasized
the importance of collaboration among computer scientists,
mechanical engineers, and electrical engineers.

Eric Brewer, of Intel Research and U.C. Berkeley, asked if
the joule is an accurate measure of total cost of ownership.
He suggested that market inefficiencies are prevalent and
seem to be growing. Patel acknowledged this discrepancy
but postulated that in the long run sustainability concerns
will come to dominate the costs. He also pointed to recent
successes in the data center, where a sustainability-oriented
approach has allowed him to quickly reduce costs. Mochan
Shrestha noted that limiting provisioning could result in an
increased error rate and wondered whether it was necessary
to incorporate the value of the data into the model. Patel
said that in practice this valuation is problematic but that it
can be approximated with service-level agreements.

failures and loss

Summarized by Medha Bhadkamkar
(medha@cs.fiu.edu)

n	 The RAID-6 Liberation Codes
James S. Plank, University of Tennessee

Plank offered an alternate RAID-6 encoding scheme that
has near-optimal performance for encoding, decoding, and
modifications. Plank first described the motivation, which
is based on the drawbacks of the current implementation
of RAID-6 systems: They are typically slow and modifica-
tions are suboptimal and inflexible. The proposed code,
termed Liberation Codes, uses parity arrays, which are w
× w bit matrices, where w is a prime number equal to or
greater than the number of devices. The performance is
compared with the Reed-Solomon coding. The evaluations
show that the encoding is primarily focused on parity-based
protection and single errors in RAID systems. Modification
performance is overoptimal, but decoding performance is
15% of optimal. To further optimize decoding operations,
a Bit Matrix scheduler for the XOR operations is proposed

login_summariesJUNE2008.indd 99 5/13/08 4:42:26 PM

100 ; LO G I N : VO L . 33, N O. 3

to reduce the Liberation decoding overhead by a factor of
between 6 and 11, depending on the values of w. Optimal
values have also been achieved for the nonprime values of w
= {2,4}. The paper also provides a URL to the freely available
source of the Liberation Coding Library.

Nitin Garg of Data Domain posited that other matrices can
have bad cache performance and wondered whether Plank
had compared his method with any other methods, such as
the Reed-Solomon error correcting code. Is it true that eval-
uating cache performance is important? Plank replied that
they haven’t explored caching with Reed-Solomon codes. To
a question about the optimal value of k for an 8- to 10-GB
disk, Plank responded that roughly a factor of 2 for encod-
ing, but up to 4 for decoding, was optimal.

n	 Are Disks the Dominant Contributor for Storage Failures?
A Comprehensive Study of Storage Subsystem Failure
Characteristics
Weihang Jiang, Chongfeng Hu, and Yuanyuan Zhou, University
of Illinois at Urbana-Champaign; Arkady Kanevsky, Network
Appliance, Inc.

Jiang began by stating the importance of reliability and
availability in storage systems. As storage systems have
evolved from single hard disks to network storage systems,
it is necessary to have a good understanding of the failure
characteristics of disk drives. The data used in this study
was obtained by analyzing failure logs for about 44 months
from 39,000 commercial storage systems and about 1.8
million disks. The data was analyzed in three dimensions,
with four failure types being classified based on their root
cause and symptoms, the effect of design factors such as
disk models and enclosures, and statistical properties. The
results show that, first, whereas disk failures (29%) form a
substantial part of storage system failures, failures of other
components also make a substantial contribution (7% pro-
tocol failures and 60% interconnect failures). Second, after
a failure, the probability of another failure of the same type
is higher. Third, interconnect redundancy is an important
factor. Finally, shelf enclosures play an important role in
failure patterns. This study does not take into account the
impact of workloads, the reason behind failures, or the con-
sequences of different failure types.

Someone from Wayne State University asked how disk
failures are defined: by data loss or by service loss? Jiang
answered that problems such as scratches, vibrations, or
malfunctioning of internal components are responsible for
disk failures. Data loss is a consequence of disk failures.

n	 Parity Lost and Parity Regained
Andrew Krioukov and Lakshmi N. Bairavasundaram, University
of Wisconsin, Madison; Garth R. Goodson, Kiran Srinivasan,
and Randy Thelen, Network Appliance, Inc.; Andrea C. Arpaci-
Dusseau and Remzi H. Arpaci-Dusseau, University of Wiscon-
sin, Madison

Andrew Krioukov explained that RAID systems offer nu-
merous data protection techniques and it is unclear which

technique or combination of techniques can protect against
which kind of errors. The focus is primarily on parity-based
protection and single errors in RAID systems. To solve this
problem, a formal method based on model checking is used
to analyze the design of the protection techniques. The
model checker outputs a state machine that shows the state
transitions that are obtained and searches the space for all
possible states. It provides primitives for disk operations,
such as atomic reads and writes, and for data protection,
such as checksums and parity. For every analysis, exactly
one error is injected. The model checker is also used to
generate data loss or corruption probabilities. The results
show that, for all designs, single errors can cause data loss.
In addition, data scrubbing, which is used to reduce double
disk failure, actually spreads corrupt data in one block to
other blocks because of parity calculations. Also, data loss
has a higher probability than data corruption. To address
the issues uncovered, the authors also propose a protection
mechanism, which uses version mirroring and combines
block checksums, identity information, parity, and scrub-
bing.

Someone asked how one would handle a case where a mis-
directed write overwrites a parity block. Krioukov said that
since parity blocks are protected by checksums, by a com-
parison of blocks on the data disk and the parity disk we
know whether data has been lost, and it can be restored by
reconstruction. Erik Reidel of Seagate asked about the com-
plexity involved in representing the operations in a model.
Krioukov said that building the model checker was simple,
but building the framework with primitives was difficult.
John Carrier of Cray, Inc., asked whether the model checker
can be extended to RAID 6, especially since RAID 5 will
be phased out soon. Krioukov answered that it can be used
with double parity and can definitely be extended.

cpus, compilers, and packets, oh my !

Summarized by Elie Krevat (ekrevat@cs.cmu.edu)

n	 Enhancing Storage System Availability on Multi-Core Archi-
tectures with Recovery-Conscious Scheduling
Sangeetha Seshadri, Georgia Institute of Technology; Lawrence
Chiu, Cornel Constantinescu, Subashini Balachandran, and Clem
Dickey, IBM Almaden Research Center; Ling Liu, Georgia Insti-
tute of Technology; Paul Muench, IBM Almaden Research Center

As legacy storage systems transition toward multi-core
architectures and embedded storage software systems
(controllers) are becoming more complex and difficult to
test, Sangeetha Seshadri and her co-authors argue that it
is important not to focus just on performance but also on
system availability. Storage controllers have many inter-
acting components and exhibit many different types of
transient failures (these types are classified in the paper).
A transient failure that occurs in one thread is typically
handled by restarting and reinitializing the entire system,
which also requires consistency checks. As systems grow to

login_summariesJUNE2008.indd 100 5/13/08 4:42:26 PM

; LO G I N : J U N E 20 0 8 cO N fE rE N cE rE p O rt s 101

larger numbers of cores, systemwide recovery may not scale.
However, task-level recovery has the potential for recover-
ing a smaller subset of components in the system, with the
additional challenges of determining the correct recovery
semantics (dynamic and stateful), identifying recovery de-
pendencies, and bounding the recovery process in time and
resource consumption.

To improve recovery time and better scale the recovery pro-
cess with system growth, the authors propose a framework
for more fine-grained task-level recovery. The design goals
of these recovery-conscious scheduling algorithms include
creating a nonintrusive recovery framework, dynamically
determining recovery actions, tracking recovery dependen-
cies, and generally improving system availability by reduc-
ing the ripple effect of failures. Developers specify clean-up
blocks (task-specific recovery procedures) and explicit
dependencies between tasks, which are then refined by the
system into recovery groups that include implicit dependen-
cies. To limit the number of dependent tasks dispatched
concurrently, resource pools partition the processors into
smaller independent units. A recovery-conscious scheduler
maps recovery groups to resource pools in a static or dy-
namic fashion while adhering to recoverability constraints.
The scheduler bounds the time of recovery and reduces the
impact of a failure in a proactive manner by limiting the
number of outstanding tasks per recovery group, and in a
reactive manner after a failure occurs by waiting to dis-
patch new tasks for a group currently undergoing recovery
until after the recovery completes. The authors implement
their recovery-conscious scheduler (RCS) on real industry-
strength storage controllers and compare it with a standard
performance-oriented scheduler (POS) that does not con-
sider recovery dependencies. They measure the good-path
performance during normal operation, and the bad-path
performance under localized failure and recovery, using
the z/OS Cache-Standard workload for which they identify
16 recovery groups. Experiments show that Dynamic RCS
closely matches the good-path throughput of POS while
improving bad-path throughput by 16.3%.

One of the participants asked how easy it is to define re-
covery groups, and if the developer gets it wrong, how that
would affect performance. Sangeetha answered that a de-
veloper defines recovery groups explicitly based on whether
a task accesses the same resource, which depends on the
system, complexity of code, and other interactions. She
noted that task-level recovery is an option, but system-level
recovery is still needed as a safety net. Another participant
asked what properties of tasks make them easier to identify
than components as a reasonable boundary for recovery.
The response was that techniques such as micro-reboots
will reset the system, but tasks handle resources across
different components. In some situations the controller can
retry the operation at the task level and succeed, and based
on task functionality these situations can be identified. The
last question addressed how the system would scale for

pool sizes greater than a single processor. The response was
that the experimental setup had eight processors, a larger
pool size is possible, and it’s just an issue of defining the
right granularity. For coarser constraints between groups, it
would make sense to have a larger pool size.

n	 Improving I/O Performance of Applications through Com-
piler-Directed Code Restructuring
Mahmut Kandemir and Seung Woo Son, Pennsylvania State
University; Mustafa Karakoy, Imperial College

Large-scale applications in science and engineering have
grown dramatically in complexity, requiring huge computa-
tional needs and generating large amounts of data. Accord-
ing to Seung Woo Son and his co-authors, I/O is always a
pressing problem for these data-intensive applications, but
disk performance has not kept pace with the large annual
growth in storage capacity density and processor speeds.
One promising way to handle this problem and improve
I/O performance is to reduce the number of disk accesses,
achieved at different layers of the I/O subsystem by cach-
ing or restructuring the application code to maximize data
reuse. Since the compiler has better knowledge of the entire
application code, including data access patterns, the authors
address the growing I/O problem through compiler-directed
code restructuring, which can be used along with other OS-
and hardware-based schemes.

The authors propose an approach to increase disk reuse in
the compiler, which will hopefully also reduce the number
of disk accesses by improving the chances of finding data
in the cache. Their approach optimizes the entire program
code rather than individual loop-nests, and they discussed
file layout optimizations for adapting to parallel execution.
The targeted disk system architecture is one in which file
striping occurs over parallel disks, where a compiler should
know which disks are accessed by certain portions of an
array, either because this information is already supplied to
the compiler or because it is available from an API. Inter-
iteration data dependencies may not allow for code restruc-
turing for better disk reuse, but if an ordering is legal for
the particular data dependencies, then the authors make
use of polyhedral algebra based on Presburger arithmetic to
capture and enumerate those legal loop iterations that ex-
hibit disk access locality. A disk map is defined to capture a
particular set of disks, and a disk locality set is a set of loop
iterations that access the same set of disks. Then the authors
use two procedures to maximize disk reuse. First, for a
given disk array, iterations in the disk locality set are ex-
ecuted consecutively. Second, when moving from one disk
locality set to another, a disk locality set that accesses a new
disk map is selected to have minimum Hamming distance
from the current disk map. This second condition mini-
mizes the number of disks whose status is changed when
executing the iterations in a new disk locality set. Since
real applications have other data dependencies, the authors
also demonstrate how to use existing heuristics to merge or
split nodes in a locality set graph (LSG) that captures these

login_summariesJUNE2008.indd 101 5/13/08 4:42:27 PM

102 ; LO G I N : VO L . 33, N O. 3

dependencies, thereby converting a nonschedulable LSG to
a schedulable one. The authors also show how file layout
modifications (striping info) can be changed, using profiling
to detect the most suitable file layout for each file and then
transforming the layout during optimization. Because good
disk reuse for a single CPU does not imply that good disk
reuse happens overall, the scheduling algorithm determines
the global (inter-thread) usage of disks and selects disk
locality sets based on a global estimate.

To evaluate these scheduling algorithms, a compiler was im-
plemented using SUIF, and different algorithms were tested
on a number of applications. The whole program-based
disk reuse optimization (DRO-WP) algorithm achieved on
average 23.9% better performance in I/O time than the
base algorithm and 15% better performance than using
conventional data locality optimization (CLO) techniques.
This performance improvement occurs because the average
number of times a given data block is visited is much lower
with DRO-WP than with CLO (2.1 compared to 3.9). Other
results show that performance gains are sensitive to the size
of the cache but still substantial with higher cache sizes,
and parallel thread optimization is important in maximiz-
ing overall disk reuse, especially with a large number of
CPUs.

One of the participants tried to understand the limitations
of this approach by asking whether there have been other
optimizations besides using the polyhedral approach that
were considered but did not map well. Seung answered
that they use conventional solutions from other domains,
which looks reasonable for now, but there is still room for
more optimizations. Another participant asked whether the
approach to file layout optimization, when looking over all
the access patterns to find a better layout, used estimated
weights for different bits of code accessing the same block
or assumed the same rate of access. The response was that
a ranking system is used to determine the best candidate,
rating each optimization and selecting the highest value, but
weights for the rate of access in different code regions were
not used. Another participant, noting that in large-scale sys-
tems things change constantly, wanted to know if he would
need to recompile for a changing environment to better
optimize I/O. The answer to this question was that reop-
timization is suggested in changing environments. To the
question of how this work of limiting data reads performs
in areas of HPC that don’t do many data reads (e.g., internal
file systems may not even cache data), the answer was that,
when possible, the compiler can reduce the set of disks that
are accessed at any time. The last question, whether the
compiler can identify data reads and reuse explicitly or can
only monitor disk reuse, elicited the response that no infor-
mation on data reuse is given to the compiler.

n	 Measurement and Analysis of TCP Throughput Collapse in
Cluster-based Storage Systems
Amar Phanishayee, Elie Krevat, Vijay Vasudevan, David G.
Andersen, Gregory R. Ganger, Garth A. Gibson, and Srinivasan
Seshan, Carnegie Mellon University

Building cluster-based storage systems using commodity
TCP/IP and Ethernet networks is attractive because of their
low cost and ease of use, along with the desire to use the
same routing infrastructure for LAN, SAN, and high-perfor-
mance computing traffic. However, Amar Phanishayee and
his co-authors argue that an important barrier to high-per-
formance storage using these commoditized networks is the
problem of TCP throughput collapse: the incast problem.
Incast occurs during synchronized reads of data striped
over multiple storage servers, where the system is limited
by the completion time of the slowest storage node, and the
concurrent flood of traffic from many servers increases past
the ability of an Ethernet switch to buffer packets. Dropped
packets at the switch can cause one or more TCP timeouts
which impose a relatively large delay until TCP recovers,
resulting in a significant degradation of throughput. The au-
thors recreate the incast problem while performing synchro-
nized reads on an Ethernet-based storage cluster. They fix
the amount of data read from each storage server, defined
as a Server Request Unit (SRU), and increase the number of
servers involved in a data transfer. This experiment shows
an initial improvement of throughput up to around 900
Mbps with three servers, and then a sharp order-of-magni-
tude collapse. Other experiments fixing the block size while
scaling the number of servers produce the same collapse.
Although one might expect TCP to completely utilize the
bottleneck link, and a tool that measures throughput using
long-lived TCP streams does not experience incast, it is
perplexing that a particular setup with typical communica-
tion patterns in storage systems can cause such a significant
performance loss.

The authors study the network conditions that cause TCP
throughput collapse, characterize its behavior under a
variety of conditions, and examine the effectiveness of TCP-
and Ethernet-level solutions. To understand the reasons for
throughput collapse, a distinction is made between TCP’s
mechanism for data-driven loss recovery, which occurs
when a sender receives three duplicate acknowledgments
and is relatively fast, and timeout-driven loss recovery,
when no feedback is available from receiver to sender and
the sender must wait until the Retransmission TimeOut
(RTO) time has passed before continuing the flow, a rela-
tively slow process. Timeouts cause throughput collapse
because a server loses its packets at the switch, and without
any feedback it must fall back to timeout-driven recovery.
Simulations of the incast problem show that doubling the
switch buffer size from 32 to 64KB also doubles the number
of servers supported before a collapse. However, switches
that support fast buffers are expensive. Increasing the SRU
size means that servers have more data to send per data

login_summariesJUNE2008.indd 102 5/13/08 4:42:28 PM

; LO G I N : J U N E 20 0 8 cO N fE rE N cE rE p O rt s 103

block and produce less idle time on the link; however, a
larger SRU size also requires each server to do more data
prefetching while the client has to allocate more memory
for the complete block. The TCP variants of NewReno and
SACK avoid certain timeout situations when compared
to Reno, with NewReno performing best, but all variants
eventually experience throughput collapse as the number
of participating servers is increased. Reducing the penalty
of a timeout by lowering TCP’s minimum retransmission
timeout period from 200 milliseconds to 200 microseconds
helps significantly but is impractical and unsafe, because it
requires timer support in microseconds from the operating
system and may create unnecessary timeouts and retrans-
missions when talking to clients in the wide area network.
Ethernet flow control helps only for the simplest network
settings, but in more common multi-switched systems it
has adverse effects on other flows, produces head-of-line
blocking, and is inconsistently implemented across different
switches. New standards for Data Center Ethernet are being
developed to create a lossless version of Ethernet, but it is
unclear when these new standards will be implemented in
switches, and there are no guarantees that implementation
of these standards will be uniform or that new switches will
be as inexpensive as they are currently. Without any single
convincing network-level solution, application-level solu-
tions by the storage system may be more appropriate, since
the storage system has the knowledge of all data flows and
the control to limit situations that may cause throughput
collapse.

One of the participants asked whether this problem is
related to TCP using a single stream, and if a solution such
as SCTP, which transports multiple message streams, would
be better. Amar answered that only TCP was considered be-
cause it is used by most developers and is very simple and
workable, since most machines have TCP implementations.
In response to the question of whether work on an adaptive
RTO would apply, Amar said that RTO is already adaptive
and is based on the round-trip time estimation. Another
participant asked about the queuing discipline implemented
at the switch. Amar said that drop tail and random drops
were used, but these didn’t provide a solution. Another
participant, remarking that the problem with TCP flows is
that they are bursty and stay open for a long time, asked
whether explicitly causing TCP to close its congestion
window was used. The answer was that disabling TCP slow
start in experiments did not help. To the suggestion that
other TCP variants that avoid loss altogether be used, Amar
responded that with the TCP variants that were tried, RED
(which drops packets early) and ECN (which notifies the
server to back off) were not successful in preventing incast.
Two participants asked about application-level solutions,
such as introducing random delay at the servers, and the
response was that indeed this was one of the solutions that
might help, that staggering should help to limit overflow at
the switch buffer, but that very early experiments did not
demonstrate much improvement.

where did we go wrong ?

Summarized by James Hendricks
(James.Hendricks@cs.cmu.edu)

n	 Portably Solving File TOCTTOU Races with Hardness
 Amplification
Dan Tsafrir, IBM T.J. Watson Research Center; Tomer Hertz,
Microsoft Research; David Wagner, University of California,
Berkeley; Dilma Da Silva, IBM T.J. Watson Research Center

Awarded Best Paper!

Dan Tsafrir started by explaining the time-of-check-to-time-
of-use (TOCTTOU) race problem. Suppose some root-privi-
leged script deletes files in /tmp that are not accessed for a
while. The script would (1) check the access time of each
file F and (2) delete F if it had not been accessed recently.
This approach, however, may allow an attacker to trick the
script into deleting any file because there is a window of
vulnerability between the check operation (examining F’s
access time) and the use operation (deleting F). For ex-
ample, an attacker may make a directory /tmp/etc and file
/tmp/etc/passwd, then symlink /etc to /tmp/etc at the right
moment. Check will decide to delete /tmp/etc/passwd, but
use will delete /etc/passwd because /tmp/etc will be pointed
to /etc during the window of vulnerability. (Search the Web
for “TOCTTOU symlink” for real-world vulnerabilities.)

TOCTTOU vulnerabilities occur between any check-use
pair of system calls that involve a name of a file; in the ex-
ample here it’s lstat(F) and unlink(F). Thus, there are many
variants of the problem, often providing attackers with the
ability to obtain permanent root access. One proposed solu-
tion is hardness amplification (Dean and Hu). The idea is to
check the condition multiple times, reducing the probabil-
ity of a TOCTTOU race. Unfortunately, a maze of sym-
bolic links makes TOCTTOU attacks much more feasible
(Borisov et al.) because traversing symbolic links is slow,
easily defeating such defenses and many similar proposals.
The authors propose a generic check-use mechanism that
emulates the kernel’s file-path resolution procedure in user
mode. This approach allows programmers to safely execute

Ph
ot

o
by

 E
th

an
 M

il
le

r

login_summariesJUNE2008.indd 103 5/13/08 4:42:28 PM

104 ; LO G I N : VO L . 33, N O. 3

most check-use operations without suffering from the asso-
ciated TOCTTOU problems, effectively binding the check-
use pair into an atomic transaction. The fine-grained control
over the path resolution process allows programmers to
express policies such as forbidding symbolic links along the
path or verifying that a given user is allowed to operate on
a given file. The solution is portable and works for existing
systems, in contrast to prior proposals which changed the
kernel or the API.

Bill Bolosky from Microsoft Research noted that the race
exists because the check-use mechanism is not atomic, that
transactions remove this race, and that Windows Vista has
transactions. The speaker responded that the solution in the
paper is portable. Another questioner asked about the cost
of doing the check in userspace. The speaker responded
that some performance is lost. There is a tradeoff between
efficiency and safety, and the proposed mechanism takes
3–6 times longer to complete than the naive insecure alter-
native.

n	 EIO: Error Handling Is Occasionally Correct
Haryadi S. Gunawi, Cindy Rubio-González, Andrea C. Arpaci-
Dusseau, Remzi H. Arpaci-Dusseau, and Ben Liblit, University
of Wisconsin, Madison

Haryadi Gunawi started by stating that errors are often
improperly propagated. The authors considered 34 error
codes (e.g., EIO, ENOMEM) on 51 file systems (all in
linux/fs/*) and three storage drivers (SCSI, IDE, software
RAID) and found that 1153 of 9022 function calls do not
save the propagated error codes. More complex file systems
have more propagation violations, and writes are worse
than reads. Propagation errors are common, not just corner
cases. Common problems occur when the error code goes
unchecked (e.g., err = func() is called, but err is not propa-
gated), unsaved (e.g., func() is called, ignoring any returned
errors), or overwritten (e.g., err = func1(); err = func2() is
called, discarding the error code from func1).

The authors built a tool to map the call graph, demon-
strating which error calls are incorrectly propagated. The
call graphs are impressive and the reader is encouraged
to peruse them in the online proceedings. Coda correctly
propagates all errors (the audience applauded efforts by the
Coda team); several systems incorrectly propagate more
than a quarter of all errors. The authors concluded the talk
and the paper with entertaining responses from developers
(e.g., “Should we pass any errors back?” and “Just ignore
errors at this point. There is nothing we can do except try
to keep going.”).

Dave Chinner of SGI noted that some of the XFS faults have
been fixed. SGI has recently implemented a tool to ensure
that errors that should be checked are checked. He would
be interested in a more recent run. Another questioner
asked whether the tool would be released; developers often
hear anecdotes of problems but are given no way to correct
them. The speaker responded that the tool will be released

(it will be located at http://www.cs.wisc.edu/adsl/
Publications/eio-fast08/readme.html). Keith Smith of
 NetApp asked whether they had any experience trying this
technique in other parts of the kernel; the speaker re-
sponded that he is beginning to look into other parts of the
kernel.

n	 An Analysis of Data Corruption in the Storage Stack
Lakshmi N. Bairavasundaram, University of Wisconsin, Madi-
son; Garth Goodson, Network Appliance, Inc.; Bianca Schroeder,
University of Toronto; Andrea C. Arpaci-Dusseau and Remzi H.
Arpaci-Dusseau, University of Wisconsin, Madison

Awarded Best Student Paper!

Lakshmi Bairavasundaram started by saying that files
get corrupted and that corruptions are often correlated.
Unfortunately, our understanding of how data is corrupted
is mostly anecdotal. The authors analyzed over 1.5 million
disks in thousands of NetApp systems over 41 months.
There are many types of corruption, such as basic bit cor-
ruption, lost writes (writes ignored by disk), misdirected
writes (blocks sent to the wrong physical location), and torn
writes (in which only part of the block is written). NetApp
applies various techniques, including checksums and disk
scrubbing, to detect the effects of these faults, such as
checksum mismatches, parity inconsistencies, and identity
discrepancies. Enterprise disks have 10% as many faults as
nearline disks, and bit corruption and torn writes are more
common than lost writes or misdirected writes. Different
models age differently (some fail early, some fail late, and
some are less affected).

Nearline drives have checksum mismatches more often. But
when enterprise drives have any checksum mismatches,
they tend to get several mismatches. Checksum mismatches
are often for consecutive or nearby blocks, with high tempo-
ral locality. Furthermore, they are not independent in a disk
array. In one drive model, a particular logical block number
was much more likely to exhibit faults, and certain ranges

Ph
ot

o
by

 E
th

an
 M

il
le

r

login_summariesJUNE2008.indd 104 5/13/08 4:42:29 PM

; LO G I N : J U N E 20 0 8 cO N fE rE N cE rE p O rt s 105

of blocks were somewhat more likely to develop faults than
others. Thus, staggering RAID stripes for each disk may be
a good idea. Given the variety of faults, it is wise to make ef-
forts to detect, prevent, and recover from faults. Preventing
data loss may require double parity and vigilant scrubbing.

Mary Baker from HP Labs asked whether the numbers were
broken down by firmware revision in addition to model; the
speaker responded that this is a good point but that they
were not. Rik Farrow asked whether, given that hard drives
reorganize data on the disk, the speaker could say any-
thing about the fact that he found correlations with block
numbers. The speaker replied that the correlations were
found using logical block numbers. Another questioner sug-
gested that error correlations could be due to the NetApp
boxes, given that all tests were run on NetApp systems.
The speaker said that was not likely, since he found very
different types of errors for different disk models. Another
questioner asked whether the type of errors correlates to the
type of end user, but the speaker said this was not studied.
Bruce Worthington of Microsoft asked whether part of the
correlation could be due to overwriting critical blocks re-
peatedly and whether it would make sense to move master
blocks around. The speaker responded that the errors seem
to be more due to firmware and software, so overwrite fre-
quency was not a likely culprit.

buffers, power, and bot tlenecks

Summarized by Dutch Meyer (dmeyer@cs.ubc.ca)

n	 BPLRU: A Buffer Management Scheme for Improving Ran-
dom Writes in Flash Storage
Hyojun Kim and Seongjun Ahn, Software Laboratory of Samsung
Electronics, Korea

Hyojun Kim proposed adding a RAM-based cache and
management system to flash devices in order to improve
random write performance. NAND-based flash memory has
grown to become the primary storage solution for mobile
devices owing to its good overall performance and low
power consumption. However, the medium suffers from low
random write performance, which may hamper its growth
in the future.

Existing filesystems perform write operations that are ill-
suited to flash memory because of hardware limitations
that force I/O operations to be aligned at a coarse granular-
ity. In addition, overwrite operations require first erasing
the target area, which incurs additional cost. By adding a
RAM buffer, similar to those that exist in conventional disk
drives, write operations can be coalesced and performed
more efficiently. The Block Padding Least Recently Used
(BPLRU) algorithm was introduced to manage this buffer. It
operates by merging adjacent requests such that they can be
written at the block size of the flash unit and by prioritizing
these lower-cost write operations. The system was evaluated
with trace-based simulations, a subset of which were then
verified on a prototype directly.

Brent Welch of Panasas wondered about the buffer’s opera-
tion under power failure. The current system does not
tolerate this scenario, but Kim identified the problem as one
that may be solved in the future. The potential for increased
latency was also a concern, as it was not formally evaluated.

n	 Write Off-Loading: Practical Power Management for Enter-
prise Storage
Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron,
Microsoft Research Ltd.

Dushyanth Narayanan made the case that significant power
savings can be achieved in data centers by spinning down
idle disks. He also demonstrated that further savings are
possible when writes to idle disks are redirected to already
active disks. The results, which were based on a trace
of measurements of real workloads, stand in contrast to
previous benchmark-based findings that suggested such an
approach to be impractical.

Narayanan described an approach that allows incremen-
tal deployment by working with existing storage and file
systems. By adding a management module to the storage
stack of each volume, drives that idle for some period of
time can be spun down. In addition, future writes to such a
disk can be redirected to another disk that is already active,
thus avoiding the overheads associated with spinning up
idle disks, and allowing fewer disks to remain in operation
at any given time. This latter technique was referred to as
write off-loading.

In servicing these off-loaded write requests, a log structure
associated with the remapping operation is stored on the
active disk at a known location. In addition, a record of the
remapped block is stored in the memory of the original
host. Future reads may then be redirected to the appropriate
disk, which will be activated if needed. These remapping
operations are temporary, which ensures that the underly-
ing storage structure is not degraded. The system tolerates
failure by reestablishing the block locations after an unclean
shutdown. Narayanan also showed that the increased
latency associated with an operation that activates an idle
disk was significant but that this occurrence was rare in
practice.

The audience responded actively, allowing Narayanan to
elaborate on several topics. He described the load-based
heuristic for selecting an off-loading target and the transpar-
ency benefits to ensuring that remapped blocks are short-
lived. He also asserted that the benefits of write off-loading
would be present even on a system that had consolidated its
data onto fewer disks.

n	 Avoiding the Disk Bottleneck in the Data Domain Dedupli-
cation File System
Benjamin Zhu, Data Domain, Inc.; Kai Li, Data Domain, Inc.,
and Princeton University; Hugo Patterson, Data Domain, Inc.

Data Domain’s system for enterprise data backup and net-
work-based disaster recovery was described by Benjamin

login_summariesJUNE2008.indd 105 5/13/08 4:42:29 PM

106 ; LO G I N : VO L . 33, N O. 3

Zhu. He showed how the company’s file system provides a
high degree of data deduplication and off-site backup, with
good performance. The system was evaluated with data
gathered from real customers, which showed a data com-
pression rate up to 30 times, with throughput meeting or
exceeding the system’s 100 MB/s target.

After providing some background, Zhu detailed the differ-
ences between primary storage and backup. Whereas the
former focuses on latency, seek times, and throughput, the
latter is concerned with large batched writes and space ef-
ficiency. In the case of a remote backup, bandwidth over the
WAN link is also a concern. The Data Domain File System
targets these problems with a combination of compression
and deduplication based on content hash.

In a large data set, detecting duplicates can be costly. The
size of the hash table can quickly exceed the available RAM
and, when flushed to disk, the table shows no temporal or
spatial locality. To address this challenge, a Bloom filter is
used to determine whether a particular segment is a dupli-
cate. Since a negative result from the Bloom filter is only
probabilistically correct, such a hypothesis must be con-
firmed by consulting an on-disk structure. To help regain
locality, segments written by the same stream are placed to-
gether on-disk in containers. Once duplicate data is merged
in storage, it is compressed to further save space.

After the presentation, a lengthy exchange ensued regarding
the performance of the system at some boundary condi-
tions. At least one attendee was concerned that a long series
of nonduplicate data could overwhelm the system’s ability
to efficiently flush metadata. The debate was deferred until
later before any consensus was reached. Others wondered
about the potential for hash collision. Zhu initially said that
such a collision was rare enough to be of no concern; he
later clarified, explaining that a mechanism to test for colli-
sions existed but was disabled by default.

compliance and provisioning

Summarized by Chris Frost (frost@cs.ucla.edu)

n	 Towards Tamper-evident Storage on Patterned Media
Pieter H. Hartel, Leon Abelmann, and Mohammed G. Khatib,
University of Twente, The Netherlands

Everyone wants to prevent data tampering, and Write-Once
Read-Many (WORM) devices may be of help. Compared
to disks and flash, they have high access times and low
throughput. Hartel suggested that an alternative approach
to tamper-resistant storage is tamper-evident storage, where
data may be modified, but any modification will be de-
tected. Common techniques include calculating the hash
of data and writing this to a notebook and giving it to a
notary public. The difficulty with these approaches lies in
managing these hashes and keeping them consistent with
their tracking of the data-hash pairs. This talk proposed a
hardware device based on patterned media that can store

both Write-Many Read-Many and WORM data, effectively
providing Selectively Eventually Read-Only (SERO) storage.

Hartel et al. show how, in theory, a device could support
magnetic read and write operations as well as electri-
cal read and write operations. An electrical write would
permanently change the location’s magnetic properties, but
electrical reads and writes are significantly slower than the
magnetic equivalents, so one could make data tamper-evi-
dent by storing only a secure hash electrically. Specifically,
they propose storing each hash bit in two bits with a parity
of one (the Manchester encoding) of electrical storage. To
modify data an attacker would need to either find data with
an equal hash or modify the hash value. But an attacker
could only set unset bits in the hash, and this would change
the bit’s parity. They also presented a filesystem design for
SERO storage, in which fragmentation becomes a serious
concern as more of the disk becomes read-only.

Peter Honeyman asked whether they have simulated opera-
tion timings. Hartel answered that they have not, but that
they hope patterned media will support both archival and
online storage. Bill Bolosky asked what would stop an at-
tacker from blanking the entire SERO device and rewriting
it with modifications, to work around the tamper-evidence
guards. The authors replied that one could, but this would
take some time, and perhaps the device could record the
fact.

n	 SWEEPER: An Efficient Disaster Recovery Point Identifica-
tion Mechanism
Akshat Verma, IBM India Research; Kaladhar Voruganti, Net-
work Appliance; Ramani Routray, IBM Almaden Research; Rohit
Jain, Yahoo! India

Akshat Verma presented their work on quickly finding a
backup snapshot from before a latent error occurred. Cur-
rent methods for quickly finding such a backup are ad hoc;
their system systematizes the location process. SWEEPER
logs system events that, with a goal recovery time and
recovery point objective, help speed up good backup iden-
tification. SWEEPER’s balanced search strategy calculates
probabilities that certain events are correlated with the
specified error and uses its event log, along with a binary
search, to locate good backups. Example events include
misconfiguration, virus activity, hardware warnings and er-
rors, and applications logs.

An audience member asked about the sensitivity of their
benchmark to event weights. Verma replied that SWEEP-
ER’s informed search can be way off but that this is accept-
able because the binary search will still find a good backup.

n	 Using Utility to Provision Storage Systems
John D. Strunk, Carnegie Mellon University; Eno Thereska,
Microsoft Research, Cambridge, UK; Christos Faloutsos and
Gregory R. Ganger, Carnegie Mellon University

In provisioning a storage system (e.g., for OLTP or scien-
tific or archival purposes), trade-offs are unavoidable. For

login_summariesJUNE2008.indd 106 5/13/08 4:42:30 PM

; LO G I N : J U N E 20 0 8 cO N fE rE N cE rE p O rt s 107

example, increasing data protection can harm performance
or increase purchase cost. Whereas the existing practice
is to consult an area expert, John Strunk spoke on how
utility functions can convey the cost-benefit structure to an
automated provisioning tool. Users are then able to make
appropriate trade-offs among various system metrics.

Strunk et al. use utility functions, functions from a set of
metrics (e.g., revenue, availability, data value, power usage,
or purchase cost) to a utility value (e.g., dollars), to char-
acterize a particular point in the purchase space. To find
a desirable point in this (large) space they use a genetic
algorithm to refine a configuration population over many
generations. Strunk then illustrated the value of this ap-
proach through three case studies, including scenarios with
a limited budget and where system cost can affect the long-
term solution.

Peter Honeyman asked why linear programming was not
used instead of a genetic algorithm. Strunk answered that
linear programming’s constraints on objective function form
rules out many real-world utility functions. Honeyman
also asked whether one can maximize multiple objectives;
Strunk replied that you would convert these to one utility.
Another audience member asked whether they had looked
at a method for generating good utility functions, noting
that Strunk’s seemed simplistic. Strunk said they have,
that the paper has more examples, and that this is also an
area where they are doing further work. One person asked
whether this approach can determine whether it is better
to upgrade an existing system or migrate to a new system.
Strunk answered that they can do this, but that it is the
second part of his thesis. Two audience members asked
whether Strunk’s approach supported varying input values
as a function of time. Strunk answered that their system fo-
cuses only on static provisioning. The final questioner asked
whether not finding the most optimal solution is a problem.
Strunk replied that in the real world one often only gets in
the ballpark, and that this approach already does at least as
well as today’s ad hoc approaches.

LSF ’08: 2008 Linux Storage & Filesystem
Workshop

San Jose, CA
February 25–26, 2008

stor age tr ack

Summarized by Grant Grundler (grundler@google.com)
Copyright 2008 Google, Inc. (Creative Commons Attribution
License, http://code.google.com/policies.html or http://
creativecommons.org/licenses/by/2.5/)

Several themes came up over the two days:

Theme 1: Solid State Drives
SSDs (Solid State Disks) are coming. There was a good
presentation by Dongjun Shin (Samsung) on SSD internal

operation, including some discussion on which param-
eters were needed for optimal operation (theme #2). The
I/O stack needs both micro-optimizations (performance
within driver layers) and architectural changes (e.g., you
have to parameterize the key attributes so that file systems
can utilize SSDs optimally). Intel presented SCSI RAM
and ATA_RAM drivers to help developers tune the SCSI,
ATA, and block I/O subsystems for these orders-of-magni-
tude-faster (random read) devices. Hybrid drives were a
hot topic at LSF ’07 but were only briefly discussed in the
introduction this year.

Theme 2: Device Parameterization
The device parameters discussion is just beginning on
how to parameterize device characteristics for the block
I/O schedulers and file systems. For instance, SSDs want
all writes to be in units of the erase block size if possible,
and device mapping layers would like better control over
alignment and placement. The key object here is how to
provide enough parameters to be useful but not so many
that “users” (e.g., the file system) get it wrong. The general
consensus was that having more than two or three param-
eters would cause more problems than it solved.

Theme 3: I/O Priorities
I/O priorities and/or bandwidth sharing has lots of folks
interested in I/O schedulers. There was consideration about
splitting the I/O scheduler into two parts: an upper half to
deal with different needs of feeding the Q (limit block I/O
resource consumption) and a lower half to rate-limit what
gets pushed to the storage driver.

Theme 4: Network Storage
Two technologies were previewed for addition to the Linux
kernel: pNFS (parallel NFS) and FCoE (Fiber Channel over
Ethernet). Neither is ready for kernel.org inclusion, but
some constructive guidance was given on what directions
specific implementations needed to take.

The issues facing iSCSI were also presented and discussed.
User- versus kernel-space drivers was a hot topic in Net-
worked Block Storage forums.

n	 Introduction and Opening Statements: Recap of Last Year
Chris Mason and James Bottomley

This session was primarily a scorecard of how many topics
discussed last year are fixed or implemented this year. The
bright spots were the new filesystem (BTRFS, pronounced
“butter FS,” which incorporates B-trees for directories and
an extent-based filesystem with 264 maximum file size) and
emerging support for OSD (Object-base Storage Device) in
the form of bidirectional command integration (done) and
long CDB commands (pending); it was also mentioned that
Seagate is looking at producing OSD drives.

Error handling was getting better, but there’s still a lot of
work to be done and we have some new tools to help test
error handling. The 4k sector size, which was a big issue

login_summariesJUNE2008.indd 107 5/13/08 4:42:30 PM

108 ; LO G I N : VO L . 33, N O. 3

last year, has receded in importance because manufacturers
are hiding the problem in firmware.

n	 SSD
Dongjun Shin, Samsung Electronics

Dongjun gave an excellent introduction and details of how
SSDs are organized internally (sort of a two-dimensional
matrix). The intent was to give FS folks an understanding
of how data allocation and read/write requests should be
optimally structured. “Stripes” and “channels” are the two
dimensions to increase the level of parallelization and thus
increase the throughput of the drive. The exact configura-
tions are vendor-specific. The tradeoff is to reduce stripe
size to allow multithreaded apps to have multiple I/Os
pending without incurring the “lock up a channel during
erase operation” penalty for all pending I/Os. Hard disk
drives (HDDs) prefer large sequential I/Os, whereas SSDs
prefer many smaller random I/Os.

Dongjun presented postmark (mail server benchmark)
performance numbers for various file systems. An obvious
performance leader seemed to be nilfs for most cases, and it
was never the worst. Successive slides gave more details on
some of the FSes tested. Some notable issues were that flush
barriers kill XFS performance and that BTRFS performance
was better with 4k blocks than with 16k blocks.

Flush barriers are the only block I/O barriers defined today,
and the flush barriers killed performance on the SSDs since
the flash translation layer could no longer coalesce I/Os and
had to write data out in blocks smaller than the erase block
size. Ideally, the file system would just issue writes using
erase block sizes.

n	 Error Handling
Ric Wheeler, EMC

Ric Wheeler introduced the perennial error-handling topic
with the comment that bad sector handling had mark-
edly improved over the “total disaster” it was in 2007. He
moved on to silent data corruption, noting that the situation
here was improving with data checksumming now being
built into file systems (most notably BTRFS and XFS) and
emerging support for T10 DIF. The “forced unmount” topic
provoked a lengthy discussion, with James Bottomley claim-
ing that, at least from a block point of view, everything
should just work (surprise ejection of USB storage was cited
as the example). Ric countered that NFS still doesn’t work
and others pointed out that even if block I/O works, the file
system might still not release the inodes. Ted Ts’o closed
the debate by drawing attention to the paper by Gunawi et
al. at FAST ’08 showing over 1,300 cases where errors were
dropped or lost in the block and filesystem layers.

Error injection was the last topic. Everybody agreed that if
errors are forced into the system, it’s possible to consistently
check how errors are handled. The session wrapped up
with Mark Lord demonstrating new hdparm features that

induce an uncorrectable sector failure on a SATA disk with
the WRITE_LONG and WRITE_UNC_EXT commands.
This forces the on-disk CRCs to mismatch, thus allowing
at least medium errors to be injected from the base of the
stack.

n	 Power Management
Kristen Carlson Accardi, Intel

Arjan van de Ven wrote PowerTOP and it’s been useful
in tracking down processes that cause CPU power con-
sumption but not I/O. Although kjournald and pdflush
are shown as the apps responsible, obviously they are just
surrogates for finishing async I/O. For example, postfix
uses sockets, which triggers inode updates. Suggestions for
preventing this include using lazy update of nonfile inodes
and virtual inodes.

With ALPM (Aggressive Link Power Management, http://
www.lesswatts.org/tips/disks.php), up to 1.5 watts per disk
can be saved on desktop systems. Unlike disk drives, no
hardware issues have been seen with repeated powering up
or down of the physical link, so this is safer to implement.
Performance was of interest since trading off power means
some latency will be associated with coming back up to a
full-power state. The transition (mostly from Async Negotia-
tion (AN) when restoring power to the Phys) from SLUM-
BER to ACTIVE state costs about ~10 ms. Normal bench-
marks show no performance hit, as the drive is always busy.
We need to define a bursty power benchmark that is more
typical of many environments.

Kristen presented three more ideas on where Linux could
help save power. The first was to batch-average group I/O;
5–30 seconds is normal to flush data, so instead wait up to
10 minutes before flushing these. The second suggestion
was a question: Can the block layer provide hints to the
low-level driver? For example, “Soon we are going to see
I/O; wake up.” The third suggestion was making smarter
timers to limit CPU power-up events—that is, coordinate
the timers so they can wake up at the same time, do neces-
sary work, then let the CPU go to a low-power state for a
longer period of time.

Ric Wheeler (EMC) opened the discussion on powering
down disks, since the savings there are typically 6–15 watts
per disk. But powering up disks requires coordination
across the data center.

Eric Reidel (Seagate) mentioned EPA requirements: Should
we idle CPU versus the hard drive? One would be trading
off power consumption for data access. He said that Seagate
can design for higher down/up lifecycles. Currently, it’s not
a high count only because Seagate is not getting data from
OEMs on how high that count needs to be. It was noted
that one version of Ubuntu was killing drives after a few
months by spinning them down or up too often.

login_summariesJUNE2008.indd 108 5/13/08 4:42:31 PM

; LO G I N : J U N E 20 0 8 cO N fE rE N cE rE p O rt s 109

n	 Block IO Resources and cgroups
Fernando Luis Vazquez Cao

Cao touched on three related topics: block I/O (BIO) re-
sources and cgroups, which define arbitrary groupings of
processes; I/O group scheduling; and I/O bandwidth alloca-
tion (ioband drivers, which manage I/O bandwidth available
to those groups). The proposals were not accepted as is
but the user-facing issues were agreed upon. The use case
would be Xen, KVM, or VMware.

Currently, the I/O priority is determined by the process that
initiated the I/O. But the I/O priority applies to all devices
that process is using. This changed in the month preced-
ing the conference, and the speaker acknowledged that. A
more complex scheme was proposed that supports hierar-
chical assignment of resource control (e.g., CPU, memory,
I/O priorities). Proposed was page_cgroup to track write
bandwidth. The page would get assigned to a cgroup when
the BIO is allocated. One advantage of the get_context() ap-
proach is that it does not depend on the current process and
thus would also work for kernel threads.

Idea #1 proposed a layer between the I/O scheduler and the
I/O driver. This requires some changes to elevator.c and ad-
ditional infrastructure changes. Jens Axboe pointed out that
one can’t control the incoming queue from below the block
I/O scheduler. The scheduler needs to be informed when
the device is being throttled from below in order to prevent
the I/O scheduler queue from getting excessively long and
consuming excessive memory resources. Jens suggested
they start with #1 since it implements fairness.

Idea #2 was generally not accepted. For idea #3 (group
scheduler above LVM make_request), adding a hook so
cgroup can limit I/O handed to a particular scheduler was
proposed and this idea got some traction. Jens thought #3
would require less infrastructure than #1. Effectively, #3
would lead to a variable-sized Q-depth. And #3 would limit
BIO resource allocation.

n	 NCQ Emulation
Gwendal Grignou, Google

Gwendal started by explaining what Native Command
Queuing (NCQ) was, his test environment (fio), and which
workloads were expected to benefit. In general, the idea is
to let the device determine (and decide) the optimal order-
ing of I/Os since it knows current head position on the
track and the seek times to any I/Os it has in its queue. Ob-
viously, the more choices the device has, the better choices
it can make and thus the better the overall throughput the
device will achieve. Results he presented bear this out, in
particular for small (<32k), random read workloads (e.g., for
a classic database).

But the problem is that since the device is deciding the
order, it can chose to ignore some I/Os for quite a while too.
And thus latency-sensitive applications will suffer occasion-
ally, with I/Os taking more than 1–2 seconds to complete.

He implemented and showed the results of a queue plug-
ging that starved the drive of new I/O requests until the
oldest request was no longer over a given threshold. Other
methods to achieve the same effect were discussed but each
had its drawbacks (including this one).

He also showed how by pushing more I/O to the drive, we
affect the behavior of block schedulers to coalesce I/O and
anticipate which I/Os to issue next. And although NCQ was
effective on a best-case benchmark, it was debated how ef-
fective it would be in real life (perhaps <5%).

n	 Making the IO Scheduler Aware of the Underlying Storage
Topology
Aaron Carroll and Joshua Root, University of New South Wales

Disclosure: Grant Grundler arranged the grant from Google
to fund this work. HP is also funding a portion of this
work.

Aaron and Joshua have created an infrastructure to mea-
sure the performance of any particular block trace and
were interested in seeing how I/O schedulers behave under
particular workloads. The performance slides are graphs of
how the various schedulers perform as one increases the
number of processes generating the workload. They tested
the following schedulers: AS (Anticipatory Scheduler), CFQ
(Completely Fair Queueing), Deadline, FIFO, and NOOP.

They tested a few different configs: RAID 0 sequential,
async; single-disk random and sequential; and 10-disk
RAID 0 random and sequential. Of the various param-
eters—queue depth, underlying storage device type, and
RAID topology—they wanted to establish which parameters
were relevant and find the right way to determine those
parameters (e.g., by user input, with runtime microbench-
mark measurements, by asking lower layers). Queue depth
is generally not as important nor is it very helpful for any
sort of anticipation. For device type, it would be obvious to
ask the underlying device driver but we need a suitable level
of abstraction. For RAID topology, the key info was “stripe
boundaries.”

Ric Wheeler said that he can see differences in performance
depending on the seek profile if most I/Os are to one disk
at a time and if Array is doing read ahead. Random reads
for RAID 3/5/6 depend on worst case (i.e., the slowest
drive). Jens mentioned that disk type could be exported
easily by plugging (stopping Q to build a bigger I/O) or
through an anticipatory maneuver (starting new I/O, after
the previous one has completed but before the application
has requested the data/metadata). We discussed how to
split fairness/bandwidth sharing/priorities (or whatever you
want to call it) so that a component above the SW RAID
md driver would manage incoming requests. A lower half of
the scheduler would do a time slice. It was also noted that
CFQ can unfairly penalize bursty I/O measurements. One
suggestion was to use Token Bucket to mitigate bursty traf-
fic. Aaron and Joshua introduced two new schedulers that

login_summariesJUNE2008.indd 109 5/13/08 4:42:31 PM

110 ; LO G I N : VO L . 33, N O. 3

might be useful in the future: FIFO (true fifo, without merg-
ing) and V(R) SSTF. There was no discussion on these.

n	 DMA Representations: SG_table vs. SG_ring IOMMUs and
LLD’s Restrictions
Fujita Tomonori

(LLD stands for Low Level Driver, e.g., a NIC or an HBA
device driver.)

Fujita did an excellent job of summarizing the current mess
that is used inside the Linux kernel to represent DMA capa-
bilities of devices. As Fujita dove straight into the technical
material with no introduction, I’ll attempt to explain what
an IOMMU is and the Kernel DMA API. Historically, I/O
devices that are not capable of generating physical addresses
for all of system RAM have always existed. The solution
without an IOMMU is a “bounce buffer” in which you DMA
to a low address the device can reach and then memcpy to
the target location. I/O Memory Management Units (IOM-
MUs) can virtualize (a.k.a. remap) host physical address
space for a device and thus allow these legacy devices to
directly DMA to any memory address. The bounce buffer is
no longer necessary and we save the CPU cost of the mem-
cpy. IOMMUs can also provide isolation and containment
of I/O devices (preventing any given device from spew-
ing crap over random memory—think Virtual Machines),
merge scatter-gather lists into fewer I/O bus addresses (more
efficient block I/O transfers), and provide DMA cache coher-
ency for virtually indexed/tagged CPUs (e.g., PA-RISC).

The PCI DMA Mapping interface was introduced into the
Linux 2.4 kernel by Dave Miller primarily to support IOM-
MUs. James Bottomley updated this to support noncache
coherent DMA and become bus-agnostic by authoring the
Documentation/DMA-API.txt in Linux 2.6 kernels. The
current DMA API also does not require the IOMMU drivers
to respect the max segment length (i.e., IOMMU support
is coalescing DMA into bigger chunks than the device
can handle). The DMA alignment (i.e., boundaries a DMA
cannot cross) has similar issues (e.g., some PCI devices
can’t DMA across a 4-GB address boundary). Currently,
the drivers that have either length or alignment limitations
have code to split the DMA into smaller chunks again.
The max_seg_boundary_mask in the request queue is not
visible to IOMMU, since only struct device * is passed to
IOMMU code.

The next issue discussed was IOMMU performance and I/O
TLB flushing. The IOMMU driver (and HW) performance
are critical to good system performance. New x86 platforms
support virtualization of I/O; and thus it’s not just a high-
end RISC computer problem. Issues included the following:

1. How does one best manage IOMMU address space?
Through common code? Some IOMMU drivers use bit-
map (most RISC); Intel uses a “Red Black” tree. Fujita tried
converting POWER to use Red/Black tree and lost 20%
performance with netperf. Bottomley and Grundler agree
that the address allocation policy needs to be managed by

the IOMMU or architecture-specific code since I/O TLB
replacement policy dictates the optimal method for allocat-
ing IOMMU address space.

2. When should we flush I/O TLB? One would like to avoid
flushing the I/O TLB since (a) it’s expensive (as measured
in CPU cycles) and (b) it disturbs outstanding DMA (forces
reloading I/O TLB). However, if we flush the entries when
the driver claims the DMA is done, we can prevent DMA
going to a virtual DMA address that might have been freed
and/or reallocated to someone else. The bottom line is that
there is a tradeoff between performance and safety (a.k.a.
robustness).

3. Should we just map everything once? The performance
advantage is that you don’t need to map, unmap, and flush
I/O TLB for individual pages, but the tradeoff is isolation
(since any device can DMA anywhere), which can be use-
ful in some cases (e.g., embedded devices such as an NFS
server).

The last DMA-mapping-related issue was SG (SCSI Generic)
chaining versus SG rings.

n	 ISCSI Transport Class Simplification
Mike Christie and Nicholas Bellinger

The main thrust here is that common libs are needed to
share common objects between transport classes. In par-
ticular, Mike called out the issues that the iSCSI maintainer
has faced across different kernel versions where /sys has
evolved. James Bottomley conceded that there were issues
with the original implementation. Mike also mentioned
problems with parsing /sys under iSCSI devices. The goal
is to provide a common starting point for user-space-visible
names.

Mike proposed a scsi_transport_template that contained
new scsi_port and scsi i_t_nexus data structures. iSCSI also
needs an abstraction between SCSI ports—an I_T_nexus.
Other users of I_T_nexus were also discussed.

James Bottomley pointed out that libsas already has an
I_T_nexus abstraction. It provides a host/port/phy/rphy/
target/lun hierarchy for /sys. However, the exported paths
need to be more flexible. Mike floated the idea of a new
library to encapsulate the SCSI naming conventions so that
tools like lsscsi wouldn’t have to struggle.

Development for iSCSI focuses on Linux-iSCSI.org. iSCSI
exposed issues with error recovery. The slides neatly sum-
marize most of the points Nicholas wanted to make. The
lively but inconclusive debate left me thinking that most of
the code will be forced to live in user space until evidence is
presented otherwise. iSCSI, FC, and SAS would be better in
kernel because concurrency control fundamentally resides
in the kernel. And LIO-SE assumes most drivers belong and
are implemented in kernel space because transport APIs
force middle code into kernel. KVM performance suffers
because of movement among virtual kernels.

login_summariesJUNE2008.indd 110 5/13/08 4:42:32 PM

; LO G I N : J U N E 20 0 8 cO N fE rE N cE rE p O rt s 111

n	 Request-based Multi-pathing
Kiyoshi Ueda and Jun’ichi Nomura, NEC

The key point was proposed multi-path support below the
I/O scheduler; this seems to be the favored design. Prob-
lems are expected with request completion and cleaning up
the block layer. An RFC for a request stacking framework
was posted to linux-scsi and linux-ide mailing lists. See the
last slide (37) for URLs to postings. The big advantage of
request-based DM (Device Mapper) multi-path is that, since
BIOs are already merged, the multi-path driver can do load
balancing since it knows exactly how many I/Os are going
to each available path.

Three issues were raised. The first issue was that blk_
end_request() will deadlock because the queue lock is
held through the completion process. Bottomley suggested
moving completions to tasklet (soft IRQ) since SCSI at one
point had the same issue. There was also some discussion
about migrating drivers to use blk_end_request instead of
__blk_end_request(). The second issue involved busy stack
drivers that won’t know when the lower driver is busy, and
once a request is removed from the scheduler queue, it’s no
longer mergeable. Slides 14–21 have very good graphic rep-
resentations of the problem. Bottomley suggested prep and
unprep functions to indicate whether requests are mergeable
or not. One basic difference between BIO (existing code)
and proposed Request DM is that device locking (queue
lock) will be required for both submission and completion
of the Request DM handler I/Os and is not required by BIO.
The third issue was that req->end_io() is called too late and
is called with a queue lock held. Solutions were offered and
discussed in the remaining slides (29–36).

Regarding issue 1, one should only allow use of nonlock-
ing drivers (i.e., drivers that do not lock in the completion
path). All SCSI drivers, cciss, and i2o already meet this
criterion; Block Layer is using locking completion; a DASD
driver change is needed. There was a discussion about how
much work it was to convert other drivers.

n	 FS and Volume Managers
Dave Chinner, SGI

Dave covered several major areas: a proposal he called
“BIO hints” (which Val Hansen called “BIO commands”);
DM multi-path; chunk sizes; and I/O barriers. BIO hints
is an attempt to let the FS give the low-level block hints
about how the storage is being used. The definition of “hint”
was something that the storage device could (but was not
required to) implement for correct operation. The function
mkfs could provide the “space is free” hints and would be
good for RAID devices, transparent security (zero released
data blocks), and SSDs, which could put unused blocks in
its garbage collection.

DM multi-path has a basic trust issue. Most folks don’t
trust it because the necessary investment wasn’t made to
make it trustworthy. This is a chicken-and-egg problem. Ric
Wheeler said that EMC does certify DM configs. Other com-

plaints were poor performance, the lack of proper partition-
ing, the poor user interface for management tools, and the
total lack of support for existing devices.

Barriers today are only for cache flushing, both to force data
to media and to enforce ordering of requests. Bottomley
suggested implementing commit on transaction.

n	 OSD-based pNFS
Benny Halevy and Boaz Harrosh, Panasas

Benny first described the role of the layout driver for OSD-
 based pNFS. Layouts are a catalog of devices, describing
the byte range and attributes of that device. The main
advantage of the layout driver is that one can dynamically
determine the object storage policy. One suggestion was to
store small files on RAID1 and large files on RAID5. Strip-
ing across devices is also possible. By caching the layouts
(object storage server descriptions), one can defer cataloging
all the OSD servers at boot time and implement on-demand
access to those servers.

Current device implementations include iSCSI, iSER, and
FC. SCSI over USB and FCoE are also possible. Functional
testing has been done and performance was described as
being able to “saturate a GigE link.” Future work will in-
clude OSD 2.0 protocol development, and it’s already clear
there will be changes to the OSD protocol.

Requirements of the Linux kernel to support OSD pNFS
were discussed. Bidirectional SCSI CDB support is in
2.6.25-rcX kernels. There are no objections to patches for
variable-length CDBs, which might go into 2.6.26. Recent
patches to implement “Long Sense Buffers” were rejected; a
better implementation is required.

The discussion ended on DM and ULD (Upper Level Driver;
e.g., sd, tape, CD/DVD). DM contains the desired striping
functionality, but it also takes ownership of the device. Dis-
tributed error handling is not possible unless the DM would
pass errors back up to high layers. Each ULD is expected to
register an OSD type. But the real question is whether we
want to represent objects as block devices (segue to the next
talk) and how to represent those in some namespace.

n	 Block-based pNFS
Andy Adamson, University of Michigan; Jason Glasgow, EMC

Afterward, pNFS was summarized to me as “clustered FS
folks . . . trying to pull coherency into NFS.” The underly-
ing issue is that every clustered filesystem (e.g., Lustre)
requires coherency of metadata across nodes of the cluster.
NFS historically has bottlenecked on the NFS server, since
it was the only entity managing the metadata coherency.

The first part of this talk explained the Volume Topologies
and how pNFS block devices are identified (fsid). Each fsid
can represent arbitrarily complex volume topologies, which
under DM get flattened to a set of DM targets. But they
didn’t want to lose access to the hierarchy of the underlying
storage paths in order to do failover.

login_summariesJUNE2008.indd 111 5/13/08 4:42:33 PM

112 ; LO G I N : VO L . 33, N O. 3

The proposal for “Failover to NFS” survived Benny’s expla-
nation of how a dirty page would be written out via block
path, and if that failed, then via NFS code path. The main
steps for the first path would be write, commit, and logout
commit and, for the failover path, write to MDS and com-
mit. This provoked sharp criticism from Christoph Hellwig:
this adds complexity without significant benefit. The client
has two paths that are completely different, and the corner
cases will kill us. The complexity he referred to was the
unwinding of work after starting an I/O request down the
block I/O code path and then restarting the I/O request
down a completely different code path. A lively debate
ensued around changes needed to Block I/O and VFS layers.
Christoph was not the only person to object and this idea
right now looks like a nonstarter. The remaining issue cov-
ered block size: 4k is working but is not interoperable with
other implementations.

n	 FS and Storage Layer Scalability Problems
Dave Chinner, SGI

Dave offered random thoughts on 3- to 5-year challenges.
The first comment was “Direct I/O is a solved problem and
we are only working on micro-optimizations.”

He resurrected and somewhat summarized previous discus-
sion on exposing the geometry and status of devices. He
wanted to see independent failure domains being made
known to the FS and device mapper so that those could
automate recovery. Load feedback could be used to avoid
hot spots on media I/O paths. Similarly, failure domains
and dynamic online growing could make use of loss-redun-
dancy metrics to automate redistribution of data to match
application or user intent.

Buffered I/O writeback (e.g., using pdflush) raised another
batch of issues. It’s very inefficient within a file system
because the mix of metadata and data in the I/O stream
causes both syncing and ordering problems. pdflush is also
not NUMA aware and should use CPUsets (not Containers)
to make pdflush NUMA aware. James Bottomley noted that
the I/O completion is on the wrong node as well (where
the IRQ is handled). Finally, different FSes will use more
or less CPU capacity and functionality such as checksum-
ming data, and aging FS might saturate a single CPU. He
gave an example where the raw HW can do 8 GB/s but only
sees 1.5 GB/s throughput with the CPU 90% utilized. Dave
also revisited the topic of error handling with the assertion
that given enough disks, errors are common. He endorsed
the use of the existing error injection tools, especially
scsi_debug driver.

His last rant was on the IOPS (I/O per second) challenge
SSDs present. He questioned that Linux drivers and HBAs
are ready for 50k IOPS from a single spindle. Raw IOPS are
limited by poor HBA design with excessive per-transac-
tion CPU overhead. HBA designers need to look at NICs.
Using MSI-X direct interrupts intelligently would help, but
both SW and HW design to evolve. I’d like to point folks

to mmio_test (see gnumonks.org) so they can measure
this for themselves. Disclaimer: I’m one of the contribu-
tors to mmio_test (along with Robert Olsson, Andi Kleen,
and Harald Welte). Jörn Engel added that about 2 years ago
tasklets were added which now do the equivalent of NAPI
(“New API” for NIC drivers). NAPI was added about 5 or 6
years ago to prevent incoming NIC traffic from live-locking
a system. All the CPU cycles could be consumed exclusively
handling interrupts. This interrupt mitigation worked pretty
well even if HW didn’t support interrupt coalescing.

n	 T10 Dif
Martin Petersen, Oracle

Martin pointed to the FAST ’08 paper “An Analysis of Data
Corruption in the Storage Stack” by Bairavasundaram et al.
(See the related article in this issue of ;login:.)

His first point was that data can get corrupted in nearly
every stage between host memory and the final storage
media. The typical data-at-rest corruption (a.k.a. “grown
media defects”) is just one form of corruption. Remain-
ing data corruption types are grouped as “while data is in
flight” and applications need to implement the first level
of protection here. He also characterized Oracle’s HARD
as the most extreme implementation and compared others
to “bong hits from outer space.” Given the volume of data
being generated, there was agreement that the trivial CRCs
would not be sufficient.

Although some vendors are pushing file systems with
“logical block cryptographically strong checksumming”
and similar techniques as bullet-proof, they only detect the
problems at read time. This could be months later, when the
original data is long gone. The goal of the TDIF (T10 Data
Integrity Feature) standard was to prevent bad data from
being written to disk in the first place.

HW RAID controllers routinely reformat FC and SCSI
drives to use 520-byte sectors to store additional data in-
tegrity/recovery bits on the drive. The goal of TDIF was to
have end-to-end data integrity checks by standardizing and
transmitting those extra 8 bytes from the application all the
way down to the media. This could be validated at every
stop on its way to media and provide end-to-end integrity
checking of the data.

He pointed out which changes are needed in the SCSI; one
of those (variable-length CDBs) is already in the kernel.
James Bottomley observed that he could no longer get SCSI
specs to implement new features like this one, owing to
recent changes in distribution. He also pointed out that the
FS developers could use some of the tag CRC bits to imple-
ment a reverse-lookup function they were interested in.
The best comment, which closed the discussion, came from
Boaz Harrosh: Integrity checks are great! They catch bugs
during development!

login_summariesJUNE2008.indd 112 5/13/08 4:42:33 PM

; LO G I N : J U N E 20 0 8 cO N fE rE N cE rE p O rt s 113

n	 FCoE
Robert Love and Christopher Leech

Robert and Christopher took turns giving a description of
the project, providing an update on current project status,
and leading a discussion of issues they needed help with.

FCoE is succinctly described as “an encapsulation protocol
to carry Fibre Channel frames over Ethernet” and standard-
ized in T11. The main goal of this is to integrate existing
FC SAN into a 10-GigE network and continue to use the
existing FC SAN management tools. The discovery protocol
is still under development. James Bottomley observed that
VLAN would allow the FC protocol to pretend there is no
other traffic on the Ethernet network, since the on-wire
protocol supports 802.1Q tags.

Open-FCoE.org seems to be making good progress on sev-
eral areas but it’s not ready for production use yet. Current
problems discussed included the complexity of the code,
frustration with the (excessive) number of abstractions, and
wanting to take advantage of current NIC offload capabili-
ties. Current rework is taking direction from James Smart,
making better use of existing Linux SCSI/FC code and then
determining how much code could be shared with existing
FC HBA drivers.

Discussion covered making use of proposed “IT_Nexus”
support. Robert and Christopher agreed that IT_Nexus
would be useful for FCoE as well, since they had the same
issues as others managing the connection state. James Bot-
tomley also pointed out that their current implementation
didn’t properly handle error states; he got a commitment
back that Robert would revisit that code.

n	 Linux Storage Stack Performance
Kristen Carlson Accardi and Mathew Wilcox, Intel

Kristen and Mathew “willy” Wilcox provided forward-look-
ing performance tools to address expected performance
issues with the Linux storage stack when used with SSDs
(see http://www.usenix.org/events/lsf08/tech/Carlson_Ac-
cardi_powermgmt.pdf). This follows the “provide data and
the problem will get solved” philosophy. Storage stacks are
tuned for seek avoidance (waste of time for SSDs) and SSDs
are still fairly expensive and uncommon. The underlying
assumption is that lack of SSDs in the hands of developers
means the data won’t get generated and no one will accept
optimizations that help SSDs.

Kristen’s first slides, providing a summary of SSD cost/per-
formance numbers (e.g., Zeus and Mtron), showed that a
single device is now capable of 50,000+ IOPS (I/O per sec-
ond). Current rotational media can only do 150–250 IOPS
per device on a random read workload (3000–4000 if it’s
only talking to the disk cache) and largely depend on I/O
request merging (larger I/O sizes) to get better throughput.
Ric Wheeler pointed out that EMC’s disk array can actually
do much more, but it requires racks of disks. Kristen’s point
was that this level of performance will be in many laptops

soon and it would be great if Linux could support that level
of performance.

n	 SYSFS Representations
Hannes Reinecke and Kay Sievers, SuSE

Summarized by James Bottomley
(James.Bottomley@HansenPartnership.com)

Hannes Reinecke and Kay Sievers led a discussion on sysfs
in SCSI. They first observed that SCSI represents pure SCSI
objects as devices with upper-layer drivers (except SCSI
Generic) being SCSI bus drivers. However, everything else,
driven by the transport classes, gets stored as class devices.
Kay and Greg want to eliminate class devices from the tree,
and the SCSI transport classes are the biggest obstacle to
this. The next topic was object lifetime. Hannes pointed to
the nasty race SCSI has so far been unable to solve where
a nearly dead device gets re-added to the system and can
currently not be activated (because a dying device is in the
way). Hannes proposed the resurrection patch set (bringing
dead devices back to life). James Bottomley declared that he
didn’t like this. A heated discussion ensued, during which it
was agreed that perhaps simply removing the dying device
from visibility and allowing multiple devices representing
the same SCSI target into the device list but only allowing
one to be visibleå might be the best way to manage this sit-
uation and the references that depend on the dying device.

Noncontroversial topics were reordering target creation at
scan time to try to stem the tide of spurious events they
generate and moving SCSI attributes to default attributes so
that they would all get created at the correct time and solve
a race today where the upward propagation of the device
creation uevent races with the attribute creation and may
result in the root device not being found if udev wins the
race.

The session wound up with Bottomley demanding that Greg
and Kay show exactly what the sysfs people have in store
for SCSI.

For the complete summaries, see http://www.usenix.org/
events/lsf08/lsf08sums.pdf.

login_summariesJUNE2008.indd 113 5/13/08 4:42:34 PM

Writing is not easy for most
of us. Having your writing
rejected, for any reason, is no
fun at all. The way to get your
articles published in ;login:, with
the least effort on your part and
on the part of the staff of ;login:,
is to submit a proposal first.

ProPoSALS

In the world of publishing, writ-
ing a proposal is nothing new.
If you plan on writing a book,
you need to write one chapter, a
proposed table of contents, and
the proposal itself and send the
package to a book publisher.
Writing the entire book first
is asking for rejection, unless
you are a well-known, popular
writer.

;login: proposals are not like
paper submission abstracts. We
are not asking you to write a
draft of the article as the pro-
posal, but instead to describe
the article you wish to write.
There are some elements that
you will want to include in any
proposal:

n What’s the topic of the
article?

n What type of article is it
(case study, tutorial, edi-
torial, mini-paper, etc.)?

n Who is the intended
audience (syadmins,
programmers, security
wonks, network admins,
etc.)?

n Why does this article
need to be read?

n What, if any, non-text
elements (illustrations,
code, diagrams, etc.) will
be included?

n What is the approximate
length of the article?

Start out by answering each of
those six questions. In answer-
ing the question about length,
bear in mind that a page in
;login: is about 600 words. It
is unusual for us to publish a
one-page article or one over
eight pages in length, but it
can happen, and it will, if your
article deserves it. We suggest,
however, that you try to keep
your article between two and
five pages, as this matches the
attention span of many people.

The answer to the question
about why the article needs to
be read is the place to wax en-
thusiastic. We do not want mar-
keting, but your most eloquent
explanation of why this article
is important to the readership of
;login:, which is also the mem-
bership of USENIX.

UNACCEPTAbLE ArTICLES

;login: will not publish certain
articles. These include but are
not limited to:

n Previously published
articles. A piece that
has appeared on your
own Web server but not
been posted to USENET
or slashdot is not con-
sidered to have been
published.

n Marketing pieces of any
type. We don’t accept
articles about products.
“Marketing” does not in-
clude being enthusiastic
about a new tool or soft-
ware that you can down-
load for free, and you are
encouraged to write case

studies of hardware or
software that you helped
install and configure, as
long as you are not affili-
ated with or paid by the
company you are writing
about.

n Personal attacks

FormAT

The initial reading of your arti-
cle will be done by people using
UNIX systems. Later phases
involve Macs, but please send us
text/plain formatted documents
for the proposal. Send proposals
to login@usenix.org.

DEADLINES

For our publishing deadlines,
including the time you can ex-
pect to be asked to read proofs
of your article, see the online
schedule at http://www.usenix
.org/publications/login/sched
.html.

CoPyrIghT

You own the copyright to your
work and grant USENIX per-
mission to publish it in ;login:
and on the Web. USENIX owns
the copyright on the collec-
tion that is each issue of ;login:.
You have control over who
may reprint your text; financial
negotiations are a private matter
between you and any reprinter.

FoCUS ISSUES

In the past, there has been only
one focus issue per year, the
 December Security edition. In
the future, each issue may have
one or more suggested focuses,
tied either to events that will
happen soon after ;login: has
been delivered or events that
are summarized in that edition.

writing for
;login:

login_summariesJUNE2008.indd 114 5/13/08 4:42:34 PM

Important Dates
Paper titles and abstracts due: October 3, 2008,
6:00 p.m. EDT

Complete paper submissions due: October 10, 2008,
6:00 p.m. EDT (hard deadline)

Notification of acceptance: December 19, 2008
Papers due for shepherding: February 2, 2009
Final papers due: February 25, 2009
Poster proposals due: March 1, 2009
Notification to poster presenters: March 15, 2009

Conference Organizers
Program Co-Chairs
Jennifer Rexford, Princeton University
Emin Gün Sirer, Cornell University
Program Committee
Miguel Castro, Microsoft Research
Jeff Dean, Google, Inc.
Nick Feamster, Georgia Institute of Technology
Michael J. Freedman, Princeton University
Steven D. Gribble, University of Washington
Krishna Gummadi, Max Planck Institute for Software Systems
Steven Hand, University of Cambridge
Farnam Jahanian, University of Michigan
Dina Katabi, Massachusetts Institute of Technology
Arvind Krishnamurthy, University of Washington
Bruce Maggs, Carnegie Mellon University/Akamai
Petros Maniatis, Intel Research Berkeley
Nick McKeown, Stanford University
Greg Minshall
Michael Mitzenmacher, Harvard University
Jeff Mogul, HP Labs
Venugopalan Ramasubramanian, Microsoft Research
Pablo Rodriguez, Spain Telefónica
Kobus van der Merwe, AT&T Labs—Research
Geoffrey M. Voelker, University of California, San Diego
Matt Welsh, Harvard University
Hui Zhang, Carnegie Mellon University/Rinera
Yuanyuan Zhou, University of Illinois at Urbana-Champaign

Steering Committee
Thomas Anderson, University of Washington
Greg Minshall
Mike Schroeder, Microsoft Research
Margo Seltzer, Harvard University
Amin Vahdat, University of California, San Diego
Ellie Young, USENIX

Overview
NSDI focuses on the design principles and practical evalua-
tion of large-scale networked and distributed systems. Sys-
tems as diverse as Internet routing, peer-to-peer and overlay
networks, sensor networks, Web-based systems, and measure-
ment infrastructures share a set of common challenges. Prog-
ress in any of these areas requires a deep understanding of
how researchers are addressing the challenges of large-scale
systems in other contexts. Our goal is to bring together re-
searchers from across the networking and systems commu-
nity—including communication, distributed systems, and
operating systems—to foster a broad approach to addressing
our common research challenges.

Topics
NSDI will provide a high-quality, single-track forum for pre-
senting new results and discussing ideas that overlap these
disciplines. We seek a broad variety of work that furthers the
knowledge and understanding of the networked systems com-
munity as a whole, continues a significant research dialog, or
pushes the architectural boundaries of large-scale network
services. We solicit papers describing original and previously
unpublished research. Specific topics of interest include but
are not limited to:

• Self-organizing, autonomous, and federated networked
systems

• Scalable techniques for providing high availability and
reliability

• Energy-efficient computing in networked environments
• Clean-slate approaches to communication systems
• Distributed storage, caching, and query processing
• Security, robustness, and fault-tolerance in networked
environments

April 22–24, 2009 Boston, MA

Announcement and Call for Papers

6th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’09)
Sponsored by USENIX in cooperation with ACM SIGCOMM and ACM SIGOPS

http://www.usenix.org/nsdi09

login_summariesJUNE2008.indd 115 5/13/08 4:42:36 PM

• Overlays and peer-to-peer systems
• Systems and protocols for mobile and wireless systems
• Protocols and OS support for sensor networking
• Novel operating system support for networked systems
• Virtualization and resource management for networked
systems

• Design and evaluation of large-scale networked system
testbeds

• Network measurements, workload, and topology charac-
terization

• Managing, debugging, and diagnosing problems in net-
worked systems

• Practical protocols and algorithms for networked sys-
tems

• Addressing novel challenges of the developing world
• Experience with deployed networked systems

What to Submit
Submissions must be full papers, at most 14 single-spaced
8.5" x 11" pages, including figures, tables, and references,
two-column format, using 10-point type on 12-point (single-
spaced) leading, with a maximum text block of 6.5" wide x
9" deep with .25" intercolumn space. Papers that do not meet
the size and formatting requirements will not be reviewed.
Submissions will be judged on originality, significance,
interest, clarity, relevance, and correctness.

NSDI is single-blind, meaning that authors should include
their names on their paper submissions and do not need to
obscure references to their existing work.

Authors must submit their paper’s title and abstract by
October 3, 2008, and the corresponding full paper is due by
October 10, 2008 (hard deadline). All papers must be sub-
mitted via the Web form on the Call for Papers Web site,
http://www.usenix.org/nsdi09/cfp. Accepted papers may be
shepherded through an editorial review process by a member
of the Program Committee. Based on initial feedback from
the Program Committee, authors of shepherded papers will
submit an editorial revision of their paper to their Program
Committee shepherd by February 2, 2009. The shepherd will
review the paper and give the author additional comments.
All authors (shepherded or not) will produce a final, print-
able PDF and the equivalent HTML by February 25, 2009,
for the conference Proceedings.

Simultaneous submission of the same work to multiple
venues, submission of previously published work, and pla-
giarism constitute dishonesty or fraud. USENIX, like other
scientific and technical conferences and journals, prohibits
these practices and may, on the recommendation of a pro-
gram chair, take action against authors who have committed
them. In some cases, program committees may share infor-
mation about submitted papers with other conference chairs

and journal editors to ensure the integrity of papers under
consideration.

Previous publication at a workshop is acceptable as long
as the NSDI submission includes substantial new material.
For instance, submitting a paper that provides a full evalua-
tion of an idea that was previously sketched in a 5-page posi-
tion paper is acceptable. Authors of such papers should cite
the prior workshop paper and clearly state the submission’s
contribution relative to the prior workshop publication.

Authors uncertain whether their submission meets
USENIX’s guidelines should contact the Program Co-
Chairs, nsdi09chairs@usenix.org, or the USENIX office,
submissionspolicy@usenix.org.

Papers accompanied by nondisclosure agreement forms
will not be considered. All submissions will be treated as
confidential prior to publication on the USENIX NSDI ’09
Web site, http://www.usenix.org/nsdi09.

One author per paper will receive a registration discount
of $200. USENIX will offer a complimentary registration
upon request.

Best Paper Awards
Awards will be given for the best paper and the best paper
for which a student is the lead author.

Birds-of-a-Feather Sessions
Birds-of-a-Feather sessions (BoFs) are informal gatherings
organized by attendees interested in a particular topic. BoFs
will be held in the evening. BoFs may be scheduled in ad-
vance by emailing the USENIX Conference Department at
bofs@usenix.org. BoFs may also be scheduled at the confer-
ence.

Poster Session
NSDI will be continuing its long-running tradition of show-
casing early research in progress at a poster session. New,
ongoing work, early findings from measurement studies, and
demonstrations of newly deployed systems are highly en-
couraged. We are particularly interested in presentations of
student work. To submit a poster, please send a proposal, one
page or less, by March 1, 2009, to nsdi09posters@usenix
.org. The poster session chairs will send back decisions by
March 15, 2009.

Registration Materials
Complete program and registration information will be
available in January 2009 on the conference Web site. If you
would like to receive the latest USENIX conference infor-
mation, please join our mailing list at http://www.usenix
.org/about/mailing.html.

Rev. 5/1/08

login_summariesJUNE2008.indd 116 5/13/08 4:42:39 PM

Important Dates
Paper submissions due: January 13, 2009

(hard deadline)
Notification to authors: March 10, 2009
Final papers due: April 20, 2009
Papers available online for attendees: April 27, 2009

Workshop Organizers
Program Chair
Armando Fox, University of California, Berkeley

Program Committee
George Candea, EPFL
Garth Gibson, Carnegie Mellon University and

Panasas, Inc.
Rebecca Isaacs, Microsoft Research
Kimberly Keeton, Hewlett-Packard Labs
Eddie Kohler, University of California, Los Angeles
Petros Maniatis, Intel Research Berkeley
Timothy Roscoe, ETH Zürich
Michael L. Scott, University of Rochester
Marvin Theimer, Google, Inc.
Amin Vahdat, University of California, San Diego
Dan S. Wallach, Rice University

Overview
The practice of computing continues to move at aston-
ishing speed. In the past few years alone, we’ve seen
cloud computing and software as a service, container-
ized computing, multicore/manycore becoming main-
stream, batch processing of petabyte datasets, and
biological and statistical approaches to computing and
systems. The 12th Workshop on Hot Topics in Oper-
ating Systems will bring together innovative practi-
tioners and researchers in computing systems, broadly
construed. Continuing the HotOS tradition, participants
will present and discuss new ideas about computer sys-
tems research and how technological advances and new

applications are shaping our computational infrastruc-
ture.

We solicit position papers of five or fewer pages that
propose new directions of research, advocate non-tradi-
tional approaches, report on noteworthy actual experi-
ence in an emerging area, or generate lively discussion
around an important topic. HotOS takes a broad view
of systems, including operating systems, storage, net-
working, languages and language engineering, security,
dependability, and manageability. We are also interested
in contributions influenced by other fields such as hard-
ware design, machine learning, control theory, network-
ing, economics, social organizations, and biological or
other nonsilicon computing systems.

To ensure a vigorous workshop environment, atten-
dance is limited to about 60 participants who are active
in the field. Participants will be invited based on their
submissions’ originality, technical merit, topical rele-
vance, and likelihood of leading to insightful technical
discussions that will influence future systems research.
Submissions may not be under consideration for any
other venue. In order to promote discussion, the review
process will heavily favor submissions that are forward-
looking and open-ended, as opposed to those that sum-
marize more mature work on the verge of conference
publication. In general, at most two authors per
accepted paper will be invited to the workshop.

Submitting a Paper
Position papers must be received by 11:59 p.m. PST on
January 13, 2009. This is a hard deadline—no exten-
sions will be granted.

Submissions must be no longer than 5 pages includ-
ing figures, tables, and references. Text should be for-
matted in two columns on 8.5-inch by 11-inch paper
using 10 point fonts on 12 point (single-spaced) leading,
and 1-inch margins. Author names and affiliations
should appear on the title page (reviewing is not blind).

May 18–20, 2009 Monte Verità, Switzerland

Announcement and Call for Papers

12th Workshop on Hot Topics in Operating Systems
(HotOS XII)
Sponsored by USENIX, the Advanced Computing Systems Association, in cooperation with the IEEE Technical
Committee on Operating Systems (TCOS)

http://www.usenix.org/hotos09

login_summariesJUNE2008.indd 117 5/13/08 4:42:41 PM

Pages should be numbered, and figures and tables
should be legible in black and white without requiring
magnification. Papers not meeting these criteria will be
rejected without review, and no deadline extensions
will be granted for reformatting.

Papers must submitted in PDF format via a Web sub-
mission form on the HotOS XII Call for Papers Web
site, http://www.usenix.org/hotos09/cfp.

Simultaneous submission of the same work to mul-
tiple venues, submission of previously published work,
and plagiarism constitute dishonesty or fraud. USENIX,
like other scientific and technical conferences and jour-
nals, prohibits these practices and may, on the recom-
mendation of a program chair, take action against
authors who have committed them. In some cases, pro-
gram committees may share information about sub-

mitted papers with other conference chairs and journal
editors to ensure the integrity of papers under consider-
ation. If a violation of these principles is found, sanc-
tions may include, but are not limited to, barring the
authors from submitting to or participating in USENIX
conferences for a set period, contacting the authors’
institutions, and publicizing the details of the case.

Authors uncertain whether their submission meets
USENIX’s guidelines should contact the program chair,
hotos09chair@usenix.org, or the USENIX office,
submissionspolicy@usenix.org.

Papers accompanied by nondisclosure agreement
forms will not be considered. All submissions will be
treated as confidential prior to publication on the
USENIX Web site.

Rev. 4/15/08

login_summariesJUNE2008.indd 118 5/13/08 4:42:42 PM

login_summariesJUNE2008.indd 119 5/13/08 4:42:51 PM

login_summariesJUNE2008.indd 120 5/13/08 4:42:51 PM

Project3 1/3/08 12:03 PM Page 1

June08_login_covers.indd 3 5/13/08 4:44:59 PM

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

Register by July 14, 2008, and save! http://www.usenix.org/sec08/jlo

Save the Date!

Join us in San Jose, CA, for:
• Keynote address, “Dr. Strangevote or:

How I Learned to Stop Worrying and
Love the Paper Ballot,” by Debra Bowen,
 California Secretary of State

• 2 days of training by industry experts

• Invited talkss by leaders in security

• Refereed papers covering the latest
 research

• Plus BoFs, a poster session, WiPs,
and more!

17th USENIX SECURITY SYMPOSIUM
July 28–August 1, 2008

Don’t miss these co-located workshops:

2008 USENIX/ACCURATE Electronic
Voting Technology Workshop
July 28–29, 2008
http://www.usenix.org/evt08/

Workshop on Cyber Security
Experimentation and Test
July 28, 2008
http://www.usenix.org/cset08/

June08_login_covers.indd 4 5/13/08 4:45:00 PM

