JUNE 2007 VOLUME 32 NUMBER 3
AN EE |
AR N
| L] EEEE B ©E EER BEE
I B
— — — — — — — E EEm THE USENIX MAGAZINE
H EEE HEER EEE NEEE B H EN

Musings
RIK FARROW

OPINION

FILE SYSTEMS I A Brief History of the BSD Fast File System
MARSHALL KIRK MCKUSICK

Porting the Solaris ZFS File System to the FreeBSD
Operating System
PAWEL JAKUB DAWIDEK AND MARSHALL KIRK MCKUSICK

Ext4:The Next Generation of the Ext3 File System

AVANTIKA MATHUR, MINGMING CAO, AND
ANDREAS DILGER

e

SECURITY I A Quant Looks at the Future)
DAN GEER

Supporting a Security Laboratory
VASSILIS PREVELAKIS >

LAW I Spam and Blogs, Part 2: Blogs, for Good or 1l g i
DANIEL L. APPELMAN e

%2

3

Script Kiddies with Briefcases: The Legal System
as Threat ol 8
ALEXANDER MUENTZ &

L
q

e ! l A USRI AR il N | il
COLUMNS I Practical Perl Tools: Impractical Perl Tools | | e
DAVID BLANK-EDELMAN |- ‘ i

T
=i

/dev/random
ROBERT G. FERRELL N

BOOK REVIEWS I Book Reviews
ELIZABETH ZWICKY ET AL.

ol
(g1 UL sing 6

g PT B

USENIX NOTES I Notice of Annual Meeting

In Memoriam: John W. Backus, 1924—2007
ALEX AIKEN

CONFERENCES I sth USENIX Conference on File and Storage
Technologies

2007 Linux Storage & Filesystem Workshop

USENIX

The Advanced Computing
Systems Association

USENIX Upcoming Events

USENIX TRAINING AT SANSFIRE 2007
JULY 25-AUGUST 3, 2007, WasHINGTON, D.C., USA
http://www.usenix.org/sansfire07

5TH ACM/USENIX INTERNATIONAL CONFERENCE
ON MoOBILE COMPUTING SYSTEMS, APPLICATIONS,

AND SERVICES (MoOBISYs 2007)

Jointly sponsored by USENIX and ACM SIGMOBILE, in
cooperation with ACM SIGOPS

JUNE 11-15, 2007, SAN JuAN, PuerTO RiCO
http://www.sigmobile.org/mobisys/2007/

THIRD INTERNATIONAL ACM SIGPLAN/SIGOPS
CONFERENCE ON VIRTUAL EXECUTION ENVIRON-
MENTS (VEE '07)

Sponsored by ACM SIGPLAN and ACM SIGOPS in cooperation
with USENIX

JUNE 13-15, 2007, SaN Dieco, CA, USA
http://vee07.cs.ucsb.edu

SECOND WORKSHOP ON HOT TOPICS IN AUTO-

NomiC CompuTING (HOTAC 1)

Sponsored by IEEE in cooperation with USENIX and ACM
JUNE 15, 2007, JACKSONVILLE, FL, USA
http://www.aqualab.cs.northwestern.edu/HotAClIl/

2007 USENIX ANNUAL TeCHNICAL CONFERENCE
JUNE 17-22, 2007, SANTA CLARA, CA, USA
http://www.usenix.org/usenix07

3RD WORKSHOP ON STEPS TO REDUCING UN-

WANTED TRAFFIC ON THE INTERNET

(SRUTI '07)

Co-located with the 2007 USENIX Annual Technical Conference
JUNE 18, 2007, SANTA CLARA, CA, USA
http://www.usenix.org/sruti07

INAUGURAL INTERNATIONAL CONFERENCE
ON DISTRIBUTED EVENT-BASED SYSTEMS
(DEBS 2007)

Organized in cooperation with USENIX, the IEEE and IEEE Com-
puter Society, and ACM (SIGSOFT)

JUNE 20-22, 2007, ToroNTO, CANADA
http://www.debs.msrg.utoronto.ca

THIRD WORKSHOP ON HOT TOPICS IN SYSTEM
DePeNDABILITY (HOTDEP '07)
Co-sponsored by USENIX
JUNE 26, 2007, EDINBURGH, UK
http://hotdep.org/2007

16TH USENIX SECURITY SYMPOSIUM
AUGUST 6-10, 2007, BosToN, MA, USA
http://www.usenix.org/sec07

2007 USENIX/ACCURATE ELECTRONIC
VOTING TECHNOLOGY WoORKsHOP (EVT '07)
Co-located with USENIX Security '07
AUGUST 6, 2007, BosToN, MA, USA
http://www.usenix.org/evt07

FIRST USENIX WORKSHOP ON OFFENSIVE
TecHNoLoGIEs (WOOT '07)
Co-located with USENIX Security '07
AUGUST 6, 2007, Boston, MA, USA
http://www.usenix.org/woot07

DETER CommuNITY WORKSHOP ON CYBER SE-
CURITY EXPERIMENTATION AND TEST 2007
Co-located with USENIX Security '07
AUGUST 6-7, 2007, BosToN, MA, USA
http://www.usenix.org/deter07

2ND USENIX WOoRksHOP ON HOT ToPICS IN SE-
CURITY (HOTSEC '07)
Co-located with USENIX Security '07
AUGUST 7, 2007, BosToN, MA, USA
http://www.usenix.org/hotsec07

SECOND WORKSHOP ON SECURITY METRICS
(MEeTRICON 2.0)
Co-located with USENIX Security '07
AUGUST 7, 2007, BosToN, MA, USA
http://www.securitymetrics.org

21T LARGE INSTALLATION SYSTEM ADMINISTRA-
TION CONFERENCE (LISA '07)
Sponsored by USENIX and SAGE
NOVEMBER 11-16, 2007, DALLAs, TX, USA
http://www.usenix.org/lisa07

For a complete list of all USENIX & USENIX co-sponsored events,

see http://www.usenix.org/events.

HEE EE |
[1] |
[| HEE [[1]] H _Em [] |
[]| []] H n H EE (1} H Em
] | |]] HEEE []] |
| | | | |]] H EEm
VOL. 32, #3, JUNE 2007
EDITOR ;login: is the official
Rik Farrow magazine of the

rik@usenix.org

MANAGING EDITOR
Jane-Ellen Long
jel@usenix.org

COPY EDITOR
David Couzens
proofshop@usenix.org

PRODUCTION
Lisa Camp de Avalos
Casey Henderson

TYPESETTER
Star Type
startype@comcast.net

USENIX ASSOCIATION
2560 Ninth Street,
Suite 215, Berkeley,
California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

http://www.usenix.org
http://www.sage.org

USENIX Association.

;login: (ISSN 1044-6397) is
published bi-monthly by the
USENIX Association, 2560
Ninth Street, Suite 215,
Berkeley, CA 94710.

$85 of each member’s annual
dues is for an annual sub-
scription to ;login:. Subscrip-
tions for nonmembers are
$120 per year.

Periodicals postage paid at
Berkeley, CA, and additional
offices.

POSTMASTER: Send address
changes to ;login:,

USENIX Association,

2560 Ninth Street,

Suite 215, Berkeley,

CA 94710.

©2007 USENIX Association

USENIX is a registered trade-
mark of the USENIX Associa-
tion. Many of the designa-
tions used by manufacturers
and sellers to distinguish their
products are claimed as trade-
marks. USENIX acknowl-
edges all trademarks herein.
Where those designations
appear in this publication and
USENIX is aware of a trade-
mark claim, the designations
have been printed in caps or
initial caps.

OPINION

Musings
RIK FARROW

FILE SYSTEMS

A Brief History of the BSD Fast File System
MARSHALL KIRK MCKUSICK

Porting the Solaris ZFS File System to the
FreeBSD Operating System

PAWEL JAKUB DAWIDEK AND MARSHALL KIRK
MCKUSICK

Ext4:The Next Generation of the Ext3 File
System

AVANTIKA MATHUR, MINGMING CAO, AND
ANDREAS DILGER

SECURITY

31

40

47

51

A Quant Looks at the Future
DAN GEER

Supporting a Security Laboratory
VASSILIS PREVELAKIS

LAW

Spam and Blogs, Part 2: Blogs, for Good or Il
DANIEL L. APPELMAN

Script Kiddies with Briefcases: The Legal System
as Threat
ALEXANDER MUENTZ

COLUMNS

56

62

Practical Perl Tools: Impractical Perl Tools
DAVID BLANK-EDELMAN

/dev/random
ROBERT G. FERRELL

BOOK REVIEWS

64

Book Reviews
ELIZABETH ZWICKY ET AL.

USENIX NOTES

68
68

Notice of Annual Meeting

In Memoriam: John W. Backus, 1924—-2007
ALEX AIKEN

CONFERENCE SUMMARIES

70

84

5th USENIX Conference on File and Storage
Technologies (FAST '07)

2007 Linux Storage & Filesystem Workshop
(LSF’07)

RIK FARROW

rik@usenix.org

;LOGIN: VOL. 32, NO. 3

NOT EVERYONE WILL BE AS FASCI-
nated by hardware as | am. But some peo-
ple certainly are, so | will feed those who
want to know more about the physical
parts of the computers that, in the end,
feed those of us who work with them.

I got to attend the tutorial given by Dave Anderson
and Willis Whittington, both longtimers at Seagate
Technologies. Anderson and Whittington shared
what they could, that is, that which is not propri-
etary and secret, before the 5th USENIX Confer-
ence on File and Storage Technologies began in
San Jose in February 2007. Later on, I will share a
different perspective with you, as researchers pre-
sented two papers about disk failure rates that
conflict with what drive vendors report. But for
now, let me present a digest of what I learned.

First and most obvious, Anderson and Whitting-
ton speak from the manufacturer’s perspective.
Before you go mentally disregarding everything
they say, you need to realize that they live in the
world where shiny new drives get made, drives
that people expect will have high capacities, high
1/0 rates, and low error rates and will last at least
five years while costing as little as possible. This
list of expectations is self-conflicting to start with.
And, from a vendor’s perspective, testing how
long drives will survive is actually impossible,
outside of field tests, at which point, said drives
will be obsolete by several years.

Drive vendors see their market split into many
categories, certainly more than I had considered:
enterprise, near-line enterprise, home PC, note-
book, and consumer devices. As a computer user
and researcher, I find myself focused on just three
of these: the enterprise drives, SCSI, FC, and SAS;
near-line, SATA and FC; and PC, SATA. The old
PC standard, ATA, is now called PATA, for Parallel
ATA, and is expected to disappear, with the excep-
tion of replacement drives, very soon.

The consumer market for drives is the most vola-
tile, with price and capacity being the driving fac-
tors. Vendors view the enterprise market differ-
ently, with reliability and high 1/O rate being criti-
cal. Note that these categories were not created by
drive vendors but are driven by the demands of
the two biggest purchasers of hard drives: the
makers of high-end servers and storage systems.
If your entire business revolves around providing
fast and reliable storage systems (EMC and Net-
work Appliance as examples), then the behavior
of the millions of drives you use each year influ-
ences buyer perception of your own servers.

;LOGIN: JUNE 2007

Anderson and Whittington didn’t spend much time explaining where the
demand for enterprise drives comes from. I just wanted to make that clear
myself, as enterprise drives are designed and manufactured to suit the
needs of special classes of users. Those differences do show up as they talk
about the hardware, so knowing the reason for enterprise drives helps to
make sense of why enterprise drives have lower capacities, have higher I/O
rates, and cost more.

Speaking of drive capacities, the areal density—the product of bits per inch
times tracks per inch—is the key factor. Bits per inch (BPI) means the
number of bits that can be written and later reread per linear inch. You
might first think that BPI just has to do with the magnetic coating on a
surface, but you would be wrong. The magnetic coating is just one of six
layers, starting with the substratum, which can be aluminum or glass (used
in notebook drives for its greater rigidity), and ending with a lubrication
layer. The number of magnetic grains is a limiting factor for BPI, and one
that gets attacked by creating smaller grains, all of nearly the same size. In
the future, the magnetic coating will likely be composed of self-organized
particles in the 6.3 +/- 0.3 nm range. The current particle sizes range from
8 to 15 nm.

Head technology represents another limiting factor for BP1. The head flies
over the surface of a disk at about the distance of a wavelength of visible
light (about 0.5 micrometers) and as fast as 118 miles per hour (in 15k
rpm drives). Heads must be fabricated to exacting standards to read and
write the tiny magnetic regions on narrow tracks. In the most recent
advance in head technology, called perpendicular recording, the write field
penetrates the media at a right angle, instead of along the surface of the
media (longitudinal recording). The read portion of the head now uses
GMR, Giant Magnetoresistive effect, to sense the magnetic orientation of
bits. At current bit densities, 80-100 grains make up one bit.

The number of tracks that can fit within an inch is governed by head posi-
tioning, runout, and rotational vibration (RV). Head positioning is the easi-
est to grasp, but it requires great precision when there can be over 90,000
tracks per inch. Runout describes the shape of a track, which is never
quite round. So following a track long enough to read a sector not only
means seeking to the correct track but also following the track, because it
does not describe a circle.

As if this feat weren't difficult enough, RV indicates the amount of vibration,
created by other hard drives as they seek, by fans, and by other sources of
vibration. Consider that if you have a single hard drive, each time it seeks,
its case (and thus its mounting hardware) must resist the angular momen-
tum created by swiveling the head. Now, put a bunch of hard drives into
one unit, then stack many of those units up in a rack, and imagine all of the
shaking going on, all in the same approximately horizontal plane within
which the drives are rotating their heads. Anderson described tests of drive
cabinets where one-third of the cabinets tested allowed an unacceptable
level of RV for any type of drive. The more rigid the drive mounts, where
metal is good and plastic bad, the better the cabinet.

This is also one of the areas where enterprise drives differ from other
drives. Enterprise drives have two accelerometers, each sensing movement
about the drive axis, and one drive CPU (enterprise drives have two)
works to compensate for RV, keeping the head on track. All drives have
positioning information created when the drives are formatted, and this
information is used to keep the heads aligned with the track too. But
enterprise drives can recover from more RV (21 rad/s?) than SATA drives

MUSINGS

3

;LOGIN: VOL. 32, NO. 3

(just 6 rad/s?). If the drive fails to follow a track, there will be a read error,
and the drive CPU will reattempt the read. The goal is for enterprise drives
to have higher I/O rates in environments with lots of activity by avoiding
having to reread sectors.

Reading the data from sectors also differs between enterprise and other
drives. All drives include Error Correction Code (ECC) that allows the
drive to recover from bit errors while reading data. Enterprise drives also
include Error Detection Code (and this is not the CRC that’s included
when data is sent to the drive) and an additional IOECC that makes it pos-
sible for enterprise drives to recover from more bit errors than other
drives. Enterprise drives also use additional sync marks within the data
field, instead of just at the beginning of the data field, as in other drives.
All of these techniques subtract from the amount of space left for data in
exchange for more reliability.

I've already mentioned that future development of disk drives will require
a smaller grain size and more even distribution, to increase the areal den-
sity. Another future technique will be the development of write heads that
include a small laser that heats the grains before the perpendicular write
head passes over them. With this Heat Assisted Magnetic Recording
(HAMR), consumer drives are expected to reach capacities of 8 TB by
2013, and enterprise drives 2.4 TB.

And what about increasing disk rpms? Today, only enterprise drives spin at
15,000 rpm, with consumer drives running at 7,200 rpm and notebook
drives at 5,400 rpm. Increasing the rpms increases the IO transfer rate, as
more bits pass under the head in each second the faster the disks spin. But
the power required to rotate a disk increases as the cube of the rpm. The
roadmap does have consumer drives reaching 10,000 rpm and enterprise
drives staying at 15,000 rpm. Because areal density will be increasing as
well as rpms, consumer drives should reach a maximum transfer rate of 5
GB/s by 2013, but enterprise drives will actually be slower, at 4 GB/s
(because their areal density is lower).

Enterprise read seek times are already about half that of consumer drives
(which have seek times of 8 ms, compared to 3.7 ms for enterprise drives),
and this ratio will remain about the same, with only modest improvements
in read seek speed (seek times of 6.5 ms to 2.8 ms projected for 2013).

There was, of course, much more in this half-day class, and if you ever get
a chance to listen to either Anderson or Whittington speak, I'd recommend
that you be there if you find yourself fascinated by the details of modern
disk drives.

The Competition

Not only do disk vendors compete with each other, they now find them-
selves competing with memory vendors as well. Various forms of flash
memory have improved in speed, capacity, and number of rewrites while
offering lower cost, and you can already buy flash “drives” for laptops, as
well as the now ubiquitous USB memory sticks, at prices that compare well
with hard drives ($10/GB for flash versus $1/GB or less for disks). As an
interesting side note, IBM developed the first form of rotating magnetic
memory, which cost $10,000/MB (in 1956 US dollars; perhaps $70,000/MB
in today’s dollars). That makes my first hard drive, at $60/MB, or $2000 for
a 34-MB drive, not seem quite so outrageous.

The competition to disk vendors that I really want to address is not other
hardware vendors, but researchers. During the first session at FAST *07,

;LOGIN: JUNE 2007

two groups presented papers in which they examined hard-drive replace-
ment rates based on field data. Disk vendors perform accelerated aging
tests on the drives they build by subjecting the drives to high temperatures
and high utilization (continuous IO with lots of seeks) in an attempt to
tease out how long a particular drive type will last. The vendors publish
the Annual Failure Rate, AFR, based on these tests. In these two papers,
the researchers report actual failure rates several times higher than the
ones suggested by vendors.

Bianca Schroeder (with Garth Gibson, winner of the Best Paper Award)
collected information about disk failures from several High Performance
Computing (HPC) centers as well as a couple of Internet service providers.
Although the information collected from each of the sources differed in
many ways, she statistically analyzed the data to pry out a number of inter-
esting observations. For example, the expected rate of failures for disk
drives is supposed to resemble a curve like a bathtub, with high failure
rates at the beginning of drive life as well as toward its end. In Schroeder’s
analysis, the failure rate, which she termed ARR for Annual Replacement
Rate, was highest in the third and fourth years, placing a big hump where
there is supposed to be a comfortable dip in the replacement graph.

Schroeder’s paper lists many observations, and I suggest you read her paper
for all of them. I do want to mention another point that you need to be
aware of: the possibility of a drive failing while a RAID system is in the
process of rebuilding the replacement drive. The standard (and vendor)
view of this process is based on the Unrecoverable Error Rate (UER),
something that Anderson and Whittington discussed in their tutorial.
Enterprise drives have a lower UER, 10-'¢, compared to SATA drives, 10-'%.
To rebuild one disk in a RAID 5 array composed of 500-GB SATA drives,
213 bits must be read successfully, one-fifth the value of the UER for SATA
drives. In other words, the odds of encountering a second error while
rebuilding this RAID 5 array are 1 in 5. For people who are counting on
RAID for reliable access to data, a 20% chance of failure is much too high.

Although this potential for failure already appears high, Schroeder shows
that it fits poorly with observed data. First, just consider this quote from
Schroeder and Gibson:

The failure probability of disks depends for example on many factors,
such as environmental factors, like temperature, that are shared by
all disks in the system. When the temperature in a machine room is
far outside nominal values, all disks in the room experience a higher
than normal probability of failure.

I think we can agree that this makes good, intuitive sense, partially shred-
ding the notion of relying on UER for calculating risk without looking at
real data. Then Schroeder goes on to test for autocorrelation: the notion
that disk failures appear to be related in time. If one just considers UER,
failures should be completely random and unrelated. Schroeder shows
that, in practice, disk failures appear related, exhibiting a decreasing haz-
ard rate over time. A decreasing hazard rate implies that a subsequent disk
failure is likely to occur sooner, rather than later. So the likelihood of a
second disk failure while rebuilding a RAID 5 array appears much higher
than a simple UER suggests.

I have felt uncomfortable when I hear or read about people relying on
RAID systems with no backups. All I had to rely on was the UER, which
seemed dangerous enough when applied to large arrays. But Schroeder’s
work makes relying on RAID without a backup appear more like expecting

MUSINGS

5

;LOGIN: VOL. 32, NO. 3

lightning not to strike in the same place twice, even if the spot in question
is the antenna on top of a very tall building. RAID arrays are composed of
drives all within the same environment, likely the exact same type of drive
manufactured perhaps within the same batch.

Schroeder also observes that she did not find any difference in the failure
rates for SATA and SCSI drives in her data. One of the points in building,
or buying, enterprise drives is to gain a higher level of reliability, but the
data in this case do not back up that goal. I find this point very interesting,
as both disk and file server manufacturers appear to believe in enterprise
drives, and I suspect they have reasons that go beyond the higher profit
margins in enterprise drives.

Google Drives

Schroeder and Gibson weren’t the only people looking at drive failures at
FAST °07. Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz André Barroso
of Google Inc. wrote “Failure Trends in a Large Disk Drive Population,”
which examines another very large data set about disk drive failures.
Google is known to collect huge amounts of data on vast distributed stor-
age systems. Just how large is actually a secret, and Pinheiro et al. don’t tell
us exactly how many drives, but they do tell us that they are looking at
“more than one hundred thousand,” a decent-sized data set.

This paper shares one of the problems faced by Schroeder and Gibson: The
exact failure time of drives is often unknown. Pinheiro et al. use the time
of replacement of drives as their failure metric, and the reason for failure
was not included in their data. The focus of this paper is quite different in
that they examined SMART (Self-Monitoring, Analysis and Reporting Tech-
nology) data collected from disk drives to see if this data could be used to
predict drive failures.

SMART has always seemed like a good idea to me. Modern disk drives are
embedded systems, and having the drive expose some of the data it col-
lects makes perfect sense. But I can’t say that I have routinely run the
SMART data collection tools, as I've experienced plenty of disk failures,
usually at the most inappropriate times and without any useful warnings.
Pinheiro reports, sadly enough, similar findings.

Like Schroeder, Pinheiro reports an AFR that is not at all bathtub-shaped,
with the same big hump in the middle. The Google data actually shows
peaks earlier than Schroeder’s data, at years two and three. Google data
also includes a utilization metric, missing from the other paper. The
expected result would be that heavily utilized drives, particularly the SATA
drives favored by Google, would fail more frequently. In fact, their data
show no difference between heavily and lightly utilized drives, except in
the first three months of use and during the fifth year. The authors suggest
that the spike in failures in heavily utilized drives represents

the survival-of-the-fittest theory. It is possible that the failure modes
that are associated with higher utilization are more prominent early
in the drive’s lifetime. If that is the case, the drives that survive the
infant mortality phase are the least susceptible to that failure mode,
and the resulting population is more robust with respect to variations
in utilization levels.

This finding might also account for what disk vendors discover when they
stress-test new drives. However, Pinheiro et al. did not perceive any signifi-
cant difference in the rate of drive failures related to higher temperatures.

;LOGIN: JUNE 2007

Pinheiro et al. looked at four SMART data variables to see whether they
can predict drive failure. Scan errors (when the drive detects an error while
performing reads during background testing) do indicate that these drives
are 39 times more likely to fail within 60 days than drives with no scan
errors. Reallocation errors (when a drive remaps a sector because of
repeated soft read errors or a hard read error) also indicate that a drive
may be likely to fail sooner than drives with no errors (being 14 times
more likely to fail within 60 days).

Pinheiro et al. examine seven other SMART parameters, then attempt to
create predictive models for drive failures. Since some SMART data appears
highly correlated with drive failures, they hoped they could create a pre-
dictive failure model. Unfortunately, using SMART data, with and without
temperature values, still left 36% of all replaced drives with no failure sig-
nals at all. The authors conclude that SMART data is useful for provision-
ing, as it can predict the aggregate reliability of large disk populations, but
it cannot suggest when an individual drive is about to die. Too bad.

Intelligent Drives

Disk drives have been getting “smarter” for many years. I did ask Dave
Anderson whether programmers should make any assumptions about the
relationship between logical disk layout and the physical disk. Anderson
told me that we should forget any notion of “cylinders”; as for disk layout,
he implied that when writing a collection of logically sequential blocks a
disk would attempt to write those blocks so that they could be read again
quickly. In other words, what happens inside the physical disk may be
quite different from what we expect. I asked people involved with Linux
and BSD filesystem design whether they knew about this, and both said
they were quite aware that disks, not the filesystem designer, have control
over where data gets written. I was a bit amazed, even though I had heard
stories about this. Guess I am just a bit out of date.

Given that disk drives have gotten a lot smarter, perhaps it makes sense to
share more responsibility for file systems. I believe that day is coming, and
you will see research in other FAST papers that considers object data stor-
age, making the disk aware of file metadata, and other newfangled notions.
Take a look at the FAST summaries included in this issue for more new
ideas about file systems.

I also suggest you read the filesystem articles included in this issue of
;login:. Kirk McKusick leads off with an excellent survey of UNIX filesys-
tem design since 1980, a must for anyone who wants to understand mod-
ern file systems. Pawel Jakub Dawidek writes a related but much more
focused article about porting ZFS to FreeBSD. You can learn a lot more
about ZFS as well as modern OS support for new filesystem designs by
reading Dawidek’s article. To provide a bit of balance, the lead authors of
ext4, the newest version of the Linux ext file system lineage, explain moti-
vations behind creating a new filesystem type, as well as the advantages
they have seen in performance and capabilities in this new design. I had
expected to have an article on XFS as well, but that will have to wait for
another time.

We have two articles about security this month. Dan Geer has been study-
ing security metrics for years now, and he has created a talk that examines
the future of security based on current trends. If you want to have a feel
for current threats and get a better idea of the security threats you can
expect to be facing over the next several years, I invite you to study Geer’s
observations. Also in the security section, Vassilis Prevelakis demonstrates

MUSINGS

7

;LOGIN: VOL. 32, NO. 3

how you can use VMware and VMs to simulate both local and routed net-
works for security classes.

In the Legal section, Dan Appelman concludes his two-part series on spam,
blogs, U.S. law, and the system administrator. Appelman provides advice
that can be followed by diligent system administrators, whether or not
they work in the United States. Alexander Muentz follows Appelman, with
a different way of looking at search warrants, subpoenas, and other forms
of legal demands. Muentz compares these demands to a DoS attack and
suggests both how to prepare for potential demands and how to handle
them.

Two regular columnists opted not to submit columns for this issue, but
David Blank-Edelman did decide that we needed more entertainment when
learning Perl and the Acme module. Before the book review section,
packed as usual, Robert Ferrell exercises his development skills with his
very own filesystem design.

I've already mentioned that we have FAST summaries, but we also have the
summaries from the Linux Storage & Filesystem Workshop. As you might
imagine, the workshop and FAST sparked my imagination to create this
longer than usual Musings—some things just fire me up.

A while back, I wrote in “Musings” that I didn't yet feel as though I was
living in the future. I was referring to the future I had seen in images when
I was growing up, with satellite dishes everywhere and flying cars. Since
the time I wrote that column, I've acquired a microwave dish on my roof,
solar panels, and a hybrid car and can claim to feel vague stirrings of the
future around me. But I still run insecure operating systems, have disk
drives I can’t trust (but am willing to back up), and carry both a cell phone
and a laptop when I travel. My own vision of the future includes more
than just all-electric vehicles: it also includes a computing device I carry
with me everywhere that provides secure storage, networking, and identifi-
cation. Server systems, too, need to be more reliable, more secure, and eas-
ier to manage. We still have a long way to go, with lots of interesting work
ahead for enterprising computer scientists.

MARSHALL KIRK MCKUSICK

a brief history of
the BSD Fast File
System

Dr. Marshall Kirk McKusick writes books and articles,
teaches classes on UNIX- and BSD-related subjects,

| FIRST STARTED WORKING ON THE
UNIX file system with Bill Joy in the late
1970s. | wrote the Fast File System, now
called UFS, in the early 1980s. In this
article, | have written a survey of the
work that | and others have done to
improve the BSD file systems. Much of
this research has been incorporated into
other file systems.

and provides expert-witness testimony on software
patent, trade secret, and copyright issues, particu- 1979

: Early Filesystem Work

larly those related to operating systems and file sys-
tems. While at the University of California at Berke-
ley, he implemented the 4.2BSD Fast File System and
was the Research Computer Scientist at the Berkeley
Computer Systems Research Group (CSRG) oversee-
ing the development and release of 4.3BSD and
4.4BSD.

mckusick@mckusick.com

The first work on the UNIX file system at Berke-
ley attempted to improve both the reliability and
the throughput of the file system. The developers
improved reliability by staging modifications to
critical filesystem information so that the modifi-
cations could be either completed or repaired
cleanly by a program after a crash [14]. Doubling
the block size of the file system improved the per-
formance of the 4.0BSD file system by a factor of
more than 2 when compared with the 3BSD file
system. This doubling caused each disk transfer to
access twice as many data blocks and eliminated
the need for indirect blocks for many files.

The performance improvement in the 3BSD file
system gave a strong indication that increasing the
block size was a good method for improving
throughput. Although the throughput had dou-
bled, the 3BSD file system was still using only
about 4% of the maximum disk throughput. The
main problem was that the order of blocks on the
free list quickly became scrambled as files were
created and removed. Eventually, the free-list
order became entirely random, causing files to
have their blocks allocated randomly over the
disk. This randomness forced a seek before every
block access. Although the 3BSD file system pro-
vided transfer rates of up to 175 kbytes per sec-
ond when it was first created, the scrambling of
the free list caused this rate to deteriorate to an
average of 30 kbytes per second after a few weeks
of moderate use. There was no way of restoring
the performance of a 3BSD file system except to
recreate the system.

1982

: Birth of the Fast File System

The first version of the current BSD file system
was written in 1982 and became widely distrib-
uted in 4.2BSD [13]. This version is still in use
today on systems such as Solaris and Darwin. For

;LOGIN: JUNE 2007 A BRIEF HISTORY OF THE BSD FAST FILE SYSTEM

10

;LOGIN: VOL. 32, NO. 3

large blocks to be used without significant waste, small files must be stored
more efficiently. To increase space efficiency, the file system allows the divi-
sion of a single filesystem block into fragments. The fragment size is speci-
fied at the time that the file system is created; each filesystem block option-
ally can be broken into two, four, or eight fragments, each of which is
addressable. The lower bound on the fragment size is constrained by the
disk-sector size, which is typically 512 bytes. As disk space in the early
1980s was expensive and limited in size, the file system was initially
deployed with a default blocksize of 4 kbytes so that small files could be
stored in a single 512-byte sector.

1986: Dropping Disk-Geometry Calculations

The BSD filesystem organization divides a disk partition into one or more
areas, each of which is called a cylinder group. Historically, a cylinder
group comprised one or more consecutive cylinders on a disk. Although
the file system still uses the same data structure to describe cylinder
groups, the practical definition of them has changed. When the file system
was first designed, it could get an accurate view of the disk geometry,
including the cylinder and track boundaries, and could accurately compute
the rotational location of every sector. By 1986, disks were hiding this
information, providing fictitious numbers of blocks per track, tracks per
cylinder, and cylinders per disk. Indeed, in modern RAID arrays, the “disk”
that is presented to the file system may really be composed from a collec-
tion of disks in the RAID array.

Although some research has been done to figure out the true geometry of a
disk [5, 10, 23], the complexity of using such information effectively is
high. Modern disks have greater numbers of sectors per track on the outer
part of the disk than on the inner part, which makes calculation of the
rotational position of any given sector complex to calculate. So in 1986, all
the rotational layout code was deprecated in favor of laying out files using
numerically close block numbers (sequential being viewed as optimal),
with the expectation that this would give the best performance. Although
the cylinder group structure is retained, it is used only as a convenient way
to manage logically close groups of blocks.

1987: Filesystem Stacking

The early vnode interface was simply an object-oriented interface to an
underlying file system. By 1987, demand had grown for new filesystem fea-
tures. It became desirable to find ways of providing them without having
to modify the existing and stable filesystem code. One approach is to pro-
vide a mechanism for stacking several file systems on top of one another
[22B]. The stacking ideas were refined and implemented in the 4.4BSD
system [7]. The bottom of a vnode stack tends to be a disk-based file sys-
tem, whereas the layers used above it typically transform their arguments
and pass on those arguments to a lower layer.

Stacking uses the mount command to create new layers. The mount com-
mand pushes a new layer onto a vnode stack; a umount command removes
a layer. Like the mounting of a file system, a vnode stack is visible to all
processes running on the system. The mount command identifies the
underlying layer in the stack, creates the new layer, and attaches that layer
into the filesystem name space. The new layer can be attached to the same
place as the old layer (covering the old layer) or to a different place in the
tree (allowing both layers to be visible).

;LOGIN: JUNE 2007

When a file access (e.g., an open, read, stat, or close) occurs to a vnode in
the stack, that vnode has several options:

= Do the requested operations and return a result.

= Pass the operation without change to the next-lower vnode on the
stack. When the operation returns from the lower vnode, it may mod-
ify the results or simply return them.

= Modify the operands provided with the request and then pass it to the
next-lower vnode. When the operation returns from the lower vnode,
it may modify the results or simply return them.

If an operation is passed to the bottom of the stack without any layer tak-
ing action on it, then the interface will return the error “operation not sup-
ported.”

The simplest filesystem layer is nullfs. It makes no transformations on its
arguments, simply passing through all requests that it receives and return-
ing all results that it gets back. Although it provides no useful functionality
if it is simply stacked on top of an existing vnode, nullfs can provide a
loopback file system by mounting the file system rooted at its source vnode
at some other location in the filesystem tree. The code for nullfs is also an
excellent starting point for designers who want to build their own filesys-
tem layers. Examples that could be built include a compression layer or an
encryption layer.

The union file system is another example of a middle filesystem layer. Like
nullfs, it does not store data but just provides a name-space transformation.
It is loosely modeled on the work on the 3-D file system [9], on the Trans-
lucent file system [8], and on the Automounter [19]. The union file system
takes an existing file system and transparently overlays the latter on anoth-
er file system. Unlike most other file systems, a union mount does not
cover up the directory on which the file system is mounted. Instead, it
shows the logical merger of the two directories and allows both directory
trees to be accessible simultaneously [18].

1988: Raising the Blocksize

By 1988, disk capacity had risen enough that the default blocksize was
raised to 8-kbyte blocks with 1-kbyte fragments. Although this meant

that small files used a minimum of two disk sectors, the nearly doubled
throughput provided by doubling the blocksize seemed a reasonable trade-
off for the measured 1.4% of additional wasted space.

1990: Dynamic Block Reallocation

Through most of the 1980s, the optimal placement for files was to lay
them out using every other block on the disk. By leaving a gap around
each allocated block, the disk had time to schedule the next read or write
following the completion of the previous operation. With the advent of
disk-track caches and the ability to handle multiple outstanding requests
(tag queueing) in the late 1980s, it became desirable to begin laying files
out contiguously on the disk.

The operating system has no way of knowing how big a file will be when it
is first opened for writing. If it assumes that all files will be big and tries to
place them in its largest area of available space, it will soon have only small
areas of contiguous space available. Conversely, if it assumes that all files
will be small and tries to place them in its areas of fragmented space, then
the beginning of files that do grow large will be poorly laid out.

A BRIEF HISTORY OF THE BSD FAST FILE SYSTEM

12

;LOGIN: VOL. 32, NO. 3

To avoid these problems the file system was changed in 1990 to do dynam-
ic block reallocation. The file system initially places the file’s blocks in
small areas of free space, but then moves them to larger areas of free space
as the file grows. With this technique, small files use the small chunks of
free space whereas the large ones get laid out contiguously in the large
areas of free space. The algorithm does not tend to increase I/O load, be-
cause the buffer cache generally holds the file contents long enough that
the final block allocation has been determined by the first time that the file
data is flushed to disk.

The effect of this algorithm is that the free space remains largely unfrag-
mented even after years of use. A Harvard study found only a 15% degra-
dation in throughput on a three-year-old file system versus a 40% degrada-

tion on an identical file system that had had the dynamic reallocation
disabled [25].

1996: Soft Updates

In file systems, metadata (e.g., directories, inodes, and free block maps)
gives structure to raw storage capacity. Metadata provides pointers and
descriptions for linking multiple disk sectors into files and identifying
those files. To be useful for persistent storage, a file system must maintain
the integrity of its metadata in the face of unpredictable system crashes,
such as power interruptions and operating system failures. Because such
crashes usually result in the loss of all information in volatile main mem-
ory, the information in nonvolatile storage (i.e., disk) must always be con-
sistent enough to deterministically reconstruct a coherent filesystem state.
Specifically, the on-disk image of the file system must have no dangling
pointers to uninitialized space, no ambiguous resource ownership caused
by multiple pointers, and no unreferenced live resources. Maintaining
these invariants generally requires sequencing (or atomic grouping) of
updates to small on-disk metadata objects.

Traditionally, the file system used synchronous writes to properly sequence
stable storage changes. For example, creating a file involves first allocating
and initializing a new inode and then filling in a new directory entry to
point to it. With the synchronous write approach, the file system forces an
application that creates a file to wait for the disk write that initializes the
on-disk inode. As a result, filesystem operations such as file creation and
deletion proceed at disk speeds rather than processor or memory speeds
[15, 17, 24]. Since disk access times are long compared to the speeds of
other computer components, synchronous writes reduce system perform-
ance.

The metadata update problem can also be addressed with other mecha-
nisms. For example, one can eliminate the need to keep the on-disk state
consistent by using NVRAM technologies, such as an uninterruptible
power supply or Flash RAM [16, 31]. Filesystem operations can proceed as
soon as the block to be written is copied into the stable store, and updates
can propagate to disk in any order and whenever it is convenient. If the
system fails, unfinished disk operations can be completed from the stable
store when the system is rebooted.

Another approach is to group each set of dependent updates as an atomic
operation with some form of write-ahead logging [3, 6] or shadow-paging
[2, 22A, 26]. These approaches augment the on-disk state with a log of
filesystem updates on a separate disk or in stable store. Filesystem opera-
tions can then proceed as soon as the operation to be done is written into

;LOGIN: JUNE 2007

the log. If the system fails, unfinished filesystem operations can be com-
pleted from the log when the system is rebooted. Many modern file sys-
tems successfully use write-ahead logging to improve performance com-
pared to the synchronous write approach.

In Ganger and Patt [4], an alternative approach called soft updates was
proposed and evaluated in the context of a research prototype. Following a
successful evaluation, a production version of soft updates was written for
BSD in 1996. With soft updates, the file system uses delayed writes (i.e.,
write-back caching) for metadata changes, tracks dependencies between
updates, and enforces these dependencies at write-back time. Because most
metadata blocks contain many pointers, cyclic dependencies occur fre-
quently when dependencies are recorded only at the block level. Therefore,
soft updates track dependencies on a per-pointer basis, which allows
blocks to be written in any order. Any still-dependent updates in a meta-
data block are rolled back before the block is written and rolled forward
afterward. Thus, dependency cycles are eliminated as an issue. With soft
updates, applications always see the most current copies of metadata
blocks, and the disk always sees copies that are consistent with its other
contents.

1999: Snapshots

In 1999, the file system added the ability to take snapshots. A filesystem
snapshot is a frozen image of a file system at a given instant in time. Snap-
shots support several important features, including the ability to provide
backups of the file system at several times during the day and the ability to
do reliable dumps of live file systems.

Snapshots may be taken at any time. When taken every few hours during
the day, they allow users to retrieve a file that they wrote several hours
earlier and later deleted or overwrote by mistake. Snapshots are much
more convenient to use than dump tapes and can be created much more
frequently.

To make a snapshot accessible to users through a traditional filesystem
interface, the system administrator uses the mount command to place the
replica of the frozen file system at whatever location in the namespace is
convenient.

Once filesystem snapshots are available, it becomes possible to safely dump
live file systems. When dump notices that it is being asked to dump a
mounted file system, it can simply take a snapshot of the file system and
run over the snapshot instead of on the live file system. When dump com-
pletes, it releases the snapshot.

2001: Raising the Blocksize, Again

By 2001 disk capacity had risen enough that the default blocksize was
raised to 16-kbyte blocks with 2-kbyte fragments. Although this meant
that small files used a minimum of four disk sectors, the nearly doubled
throughput provided by doubling the blocksize seemed a reasonable trade-
off for the measured 2.9% of additional wasted space.

2002: Background Fsck

Traditionally, after an unclean system shutdown, the filesystem check pro-
gram, fsck, has had to be run over all the inodes in a file system to ascer-

A BRIEF HISTORY OF THE BSD FAST FILE SYSTEM

13

14

;LOGIN: VOL. 32, NO. 3

tain which inodes and blocks are in use and to correct the bitmaps. This
check is a painfully slow process that can delay the restart of a big server
for an hour or more. Soft updates guarantee the consistency of all filesys-
tem resources, including the inode and block bitmaps. With soft updates,
the only inconsistency that can arise in the file system (barring software
bugs and media failures) is that some unreferenced blocks may not appear
in the bitmaps and some inodes may have to have overly high link counts
reduced. Thus, it is completely safe to begin using the file system after a
crash without first running fsck. However, some filesystem space may be
lost after each crash. Thus, there is value in having a version of fsck that
can run in the background on an active file system to find and recover any
lost blocks and adjust inodes with overly high link counts.

With the addition of snapshots, the task becomes simple, requiring only
minor modifications to the standard fsck. When run in background clean-
up mode, fsck starts by taking a snapshot of the file system to be checked.
Fsck then runs over the snapshot filesystem image doing its usual calcula-
tions, just as in its normal operation. The only other change comes at the
end of its run, when it wants to write out the updated versions of the bit-
maps. Here, the modified fsck takes the set of blocks that it finds were in
use at the time of the snapshot and removes this set from the set marked as
in use at the time of the snapshot—the difference is the set of lost blocks.
It also constructs the list of inodes whose counts need to be adjusted, then
uses a new system call to notify the file system of the identified lost blocks
so that it can replace them in its bitmaps. It also gives the set of inodes
whose link counts need to be adjusted; those inodes whose link count is
reduced to zero are truncated to zero length and freed. When fsck com-
pletes, it releases its snapshot. The complete details of how background
fsck is implemented can be found in McKusick [11, 12].

2003: Multi-Terabyte Support

The original BSD fast file system and its derivatives have used 32-bit point-
ers to reference the blocks used by a file on the disk. At the time of its
design in the early 1980s, the largest disks were 330 Mbytes. There was
debate at the time whether it was worth squandering 32 bits per block
pointer rather than using the 24-bit block pointers of the file system it
replaced. Luckily, the futurist view prevailed, and the design used 32-bit
block pointers.

Over the 20 years since it has been deployed, storage systems have grown
to hold over a terabyte of data. Depending on the blocksize configuration,
the 32-bit block pointers of the original file system run out of space in the
1-to-4-terabyte range. Although some stopgap measures can be used to
extend the maximum-size storage systems supported by the original file
system, by 2002 it became clear that the only long-term solution was to
use 64-bit block pointers. Thus, we decided to build a new file system, one
that would use 64-bit block pointers.

We considered the alternatives of trying to make incremental changes to
the existing file system versus importing another existing file system such
as XFS [27] or ReiserFS [20]. We also considered writing a new file system
from scratch so that we could take advantage of recent filesystem research
and experience. We chose to extend the original file system, because this
approach allowed us to reuse most of its existing code base. The benefits of
this decision were that the 64-bit-block—based file system was developed
and deployed quickly, it became stable and reliable rapidly, and the same
code base could be used to support both 32-bit-block and 64-bit-block

;LOGIN: JUNE 2007

filesystem formats. Over 90% of the code base is shared, so bug fixes and
feature or performance enhancements usually apply to both filesystem for-
mats.

At the same time that the file system was updated to use 64-bit block
pointers, an addition was made to support extended attributes. Extended
attributes are a piece of auxiliary data storage associated with an inode that
can be used to store auxiliary data that is separate from the contents of the
file. The idea is similar to the concept of data forks used in the Apple file
system [1]. By integrating the extended attributes into the inode itself, it is
possible to provide the same integrity guarantees as are made for the con-
tents of the file itself. Specifically, the successful completion of an fsync
system call ensures that the file data, the extended attributes, and all
names and paths leading to the names of the file are in stable store.

2004: Access-Control Lists

Extended attributes were first used to support an access control list, gener-
ally referred to as an ACL. An ACL replaces the group permissions for a
file with a more specific list of the users who are permitted to access the
files. The ACL also includes a list of the permissions each user is granted.
These permissions include the traditional read, write, and execute permis-
sions, along with other properties such as the right to rename or delete the
file [21].

Earlier implementations of ACLs were done with a single auxiliary file per
file system that was indexed by the inode number and had a small fixed-
sized area to store the ACL permissions. The small size kept the size of the
auxiliary file reasonable, since it had to have space for every possible inode
in the file system. There were two problems with this implementation. The
fixed size of the space per inode to store the ACL information meant that it
was not possible to give access to long lists of users. The second problem
was that it was difficult to atomically commit changes to the ACL list for a
file, since an update required that both the file inode and the ACL file be
written in order to have the update take effect [28].

Both problems with the auxiliary file implementation of ACLs are fixed by
storing the ACL information directly in the extended-attribute data area of
the inode. Because of the large size of the extended attribute data area (a
minimum of 8 kbytes and typically 32 kbytes), long lists of ACL informa-
tion can be stored easily. Space used to store extended attribute informa-
tion is proportional to the number of inodes with extended attributes and
the size of the ACL lists they use. Atomic updating of the information is
much easier, since writing the inode will update the inode attributes and
the set of data that it references, including the extended attributes in one
disk operation. Although it would be possible to update the old auxiliary
file on every fsync system call done on the file system, the cost of doing so
would be prohibitive. Here, the kernel knows whether the extended attrib-
ute data block for an inode is dirty and can write just that data block dur-
ing an fsync call on the inode.

2005: Mandatory Access Controls

The second use for extended attributes was for data labeling. Data labels
provide permissions for a mandatory access control (MAC) framework
enforced by the kernel. The kernel's MAC framework permits dynamically
introduced system-security modules to modify system security functional-

A BRIEF HISTORY OF THE BSD FAST FILE SYSTEM

15

16

;LOGIN: VOL. 32, NO. 3

ity. This framework can be used to support a variety of new security ser-
vices, including traditional labeled mandatory access control models. The
framework provides a series of entry points that are called by code sup-
porting various kernel services, especially with respect to access control
points and object creation. The framework then calls out to security mod-
ules to offer them the opportunity to modify security behavior at those
MAC entry points. Thus, the file system does not codify how the labels are
used or enforced. It simply stores the labels associated with the inode and
produces them when a security module needs to query them to do a per-
mission check [29, 30].

2006: Symmetric Multi-Processing

In the late 1990s, the FreeBSD Project began the long hard task of convert-
ing their kernel to support symmetric multi-processing. The initial step
was to add a giant lock around the entire kernel to ensure that only one
processor at a time could be running in the kernel. Each kernel subsystem
was brought out from under the giant lock by rewriting it to be able to be
executed by more than one processor at a time. The vnode interface was
brought out from under the giant lock in 2004. The disk subsystem
became multi-processor—safe in 2005. Finally, in 2006, the fast file system
was overhauled to support symmetric multi-processing, completing the
giant-free path from system call to hardware.

Further Information

For those interested in learning more about the history of BSD, additional
information is available from http:/www.mckusick.com/history/.

REFERENCES

[1] Apple, “Mac OS X Essentials, Chapter 9 Filesystem, Section 12
Resource Forks” (2003): http://developer.apple.com/techpubs/macosx/
Essentials/SystemOverview/FileSystem/chapter_9_section_12.html.

[2] D. Chamberlin and M. Astrahan, “A History and Evaluation of System
R,” Communications of the ACM (24, 10) (1981), pp. 632-646.

[3] S. Chutani, O. Anderson, M. Kazar, W. Mason, and R. Sidebotham,
“The Episode File System,” USENIX Winter 1992 Technical Conference
Proceedings (January 1992), pp. 43-59.

[4] G. Ganger and Y. Patt, “Metadata Update Performance in File Systems,”
First USENIX Symposium on Operating Systems Design and Implementation
(November 1994), pp. 49-60.

[5] J. L. Griffin, J. Schindler, S.W. Schlosser, J.S. Bucy, and G.R. Ganger,
“Timing-accurate Storage Emulation,” Proceedings of the USENIX Confer-
ence on File and Storage Technologies (January 2002), pp. 75-88.

[6] R. Hagmann, “Reimplementing the Cedar File System Using Logging
and Group Commit,” ACM Symposium on Operating Systems Principles
(November 1987), pp. 155-162.

[7]]. S. Heidemann and G.J. Popek, “File-System Development with Stack-
able Layers,” ACM Transactions on Computer Systems (12, 1) (February
1994), pp. 58-89.

;LOGIN: JUNE 2007

[8] D. Hendricks, “A Filesystem for Software Development,” USENIX
Summer 1990 Technical Conference Proceedings (June 1990), pp. 333-340.

[9] D. Korn and E. Krell, “The 3-D File System,” USENIX Summer 1989
Technical Conference Proceedings (June 1989), pp. 147-156.

[10] C.R. Lumb, J. Schindler, and G.R. Ganger, “Freeblock Scheduling
Outside of Disk Firmware,” Proceedings of the USENIX Conference on File
and Storage Technologies (January 2002), pp. 275-288.

[11] M.K. McKusick, “Running Fsck in the Background,” Proceedings of the
BSDCon 2002 Conference (February 2002), pp. 55-64.

[12] M.K. McKusick, “Enhancements to the Fast Filesystem to Support
Multi-Terabyte Storage Systems,” Proceedings of the BSDCon 2003 Confer-
ence (September 2003), pp. 79-90.

[13] M.K. McKusick, W.N. Joy, S.J. Leffler, and R.S. Fabry, “A Fast File
System for UNIX,” ACM Transactions on Computer Systems (2, 3) (August
1984), pp. 181-197.

[14] M.K. McKusick and TJ. Kowalski, “Fsck: The UNIX File System
Check Program,” in 4.4BSD System Managers Manual (Sebastopol, CA:
O'Reilly & Associates, 1994), vol. 3, pp. 1-21.

[15] L. McVoy and S. Kleiman, “Extent-like Performance from a UNIX File
System,” USENIX Winter 1991 Technical Conference Proceedings (January
1991), pp. 33-44.

[16] J. Moran, R. Sandberg, D. Coleman, J. Kepecs, and B. Lyon, “Breaking
Through the NFS Performance Barrier,” Proceedings of the Spring 1990
European UNIX Users Group Conference (April 1990), pp. 199-206.

[17] J. Ousterhout, “Why Aren’t Operating Systems Getting Faster as Fast
as Hardware?” USENIX Summer 1990 Technical Conference (June 1990), pp.
247-256.

[18] J. Pendry and M.K. McKusick, “Union Mounts in 4.4BSD-Lite,”
USENIX 1995 Technical Conference Proceedings (January 1995), pp. 25-33.

[19] J. Pendry and N. Williams, “AMD: The 4.4BSD Automounter Refer-
ence Manual,” in 4.4BSD System Managers Manual (Sebastopol, CA:
O'Reilly & Associates, 1994), vol. 13, pp. 1-57.

[20] H. Reiser, “The Reiser File System” (January 2001):
http://www.namesys.com/res_whol.shtml.

[21] T. Rhodes, “FreeBSD Handbook, Chapter 3, Section 3.3 File System
Access Control Lists” (2003): http://www.FreeBSD.org/doc/en_US
IS08859-1/books/handbook/fs-acl.html.

[22A] M. Rosenblum and J. Ousterhout, “The Design and Implementation
of a Log-Structured File System,” ACM Transactions on Computer System
(10, 1) (February 1992): 26-52.

[22B] D. Rosenthal, “Evolving the Vnode Interface,” USENIX Winter 1990
Technical Conference Proceedings (June 1990), pp. 107-118.

[23] J. Schindler, J.L. Griffin, C.R. Lumb, and G.R. Ganger, “Track-aligned
Extents: Matching Access Patterns to Disk Drive Characteristics,” Proceed-
ings of the USENIX Conference on File and Storage Technologies (January
2002), pp. 259-274.

[24] M. Seltzer, K. Bostic, M.K. McKusick, and C. Staelin, “An Implemen-
tation of a Log-Structured File System for UNIX,” Proceedings of the
USENIX Winter 1993 Conference (January 1993), pp. 307-326.

A BRIEF HISTORY OF THE BSD FAST FILE SYSTEM 17

18

;LOGIN: VOL. 32, NO. 3

[25] K. Smith and M. Seltzer, “A Comparison of FFS Disk Allocation Algo-
rithms,” Proceedings of the USENIX 1996 Annual Technical Conference (Janu-
ary 1996), pp. 15-25.

[26] M. Stonebraker, “The Design of the POSTGRES Storage System,” Very
Large DataBase Conference (1987), pp. 289-300.

[27] A. Sweeney, D. Doucette, C. Anderson, W. Hu, M. Nishimoto, and
G. Peck, “Scalability in the XFS File System,” Proceedings of the 1996
USENIX Annual Technical Conference (January 1996), pp. 1-14.

[28] R. Watson, “Introducing Supporting Infrastructure for Trusted Oper-
ating System Support in FreeBSD,” Proceedings of the BSDCon 2000 Confer-
ence (September 2000).

[29] R. Watson, “TrustedBSD: Adding Trusted Operating System Features
to FreeBSD,” Proceedings of the FREENIX Track at the 2001 USENIX Annual
Technical Conference (June 2001), pp. 15-28.

[30] R. Watson, W. Morrison, C. Vance, and B. Feldman, “The TrustedBSD
MAC Framework: Extensible Kernel Access Control for FreeBSD 5.0,” Pro-
ceedings of the FREENIX Track at the 2003 USENIX Annual Technical Confer-
ence (June 2003), pp. 285-296.

[31] M. Wu and W. Zwaenepoel, “eNVy: A Non-Volatile, Main Memory
Storage System,” International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS) (October 1994), pp.
86-97.

PAWEL JAKUB DAWIDEK AND
MARSHALL KIRK MCKUSICK

porting the Solaris ZFS file

system to the FreeBSD
operating system

Pawel Jakub Dawidek is a FreeBSD committer. In the
FreeBSD project he works mostly in the storage sub-
systems area (GEOM,, file systems), security (disk
encryption, opencrypto framework, IPsec, jails), but
his code is also in many other parts of the system.
Pawel currently lives in Warsaw, Poland, running his
small company.

pjd@FreeBSD.org

Dr. Marshall Kirk McKusick writes books and articles,
teaches classes on UNIX- and BSD-related subjects,
and provides expert-witness testimony on software
patent, trade secret, and copyright issues, particu-
Tarly those related to operating systems and file sys-
tems. While at the University of California at Berke-
ley, he implemented the 4.2BSD fast file system and
was the Research Computer Scientist at the Berkeley
Computer Systems Research Group (CSRG) oversee-
ing the development and release of 4.3BSD and
4.4BSD.

mckusick@mckusick.com

THE ZFS FILE SYSTEM MADE REVOLU-
tionary (as opposed to evolutionary) steps
forward in filesystem design, with its
authors claiming that they threw away 20
years of obsolete assumptions to design an
integrated system from scratch. In this arti-
cle, we describe the porting of ZFS to
FreeBSD, along with describing some of the
key features of the ZFS file system.

Features of ZFS

ZFS is more than just a file system. In addition to
the traditional role of data storage, ZFS also
includes advanced volume management that pro-
vides pooled storage through a collection of one
or more devices. These pooled storage areas may
be used for ZFS file systems or exported through a
ZFS Emulated Volume (ZVOL) device to support
traditional file systems such as UFS.

POOL

ED STORAGE MODEL

File systems created by ZFS are not tied to a spec-
ified device, volume, partition, or disk but share
the storage assigned to a pool. The pool may be
constructed from storage ranging from a single
partition up to farms composed of hundreds of
disks. If more storage is needed, new disks can be
added at run time and the space is automatically
made available to all the file systems sharing the
pool. Thus, there is no need to manually grow or
shrink the file systems when space allocation
requirements change. There is also no need to cre-
ate slices or partitions. When working with ZFS,
tools such as fdisk(8), bsdlabel(8), newfs(8),
tunefs(8), and fsck(8) are no longer needed.

COPY-ON-WRITE DESIGN

File systems must be in a consistent state to func-
tion in a stable and reliable way. Unfortunately, it is
not easy to guarantee consistency if a power failure
or a system crash occurs, because most file system
operations are not atomic. For example, when a
new hard link to a file is created, the file system
must create a new directory entry and increase the
link count in the inode. These changes usually
require writing two different disk sectors. Atomic-
ity of disk writes can only be guaranteed on a per-
sector basis. Two techniques have been used to
maintain filesystem consistency when multiple

sectors must be updated:

;LOGIN: JUNE 2007 PORTING THE SOLARIS ZFS FILE SYSTEM TO THE FREEBSD OS

20

= Checking and repairing the file system with
the fsck utility on boot [11], a technique that
has lost favor as disk systems have grown.
Starting with FreeBSD 5.0, it is possible to
run the fsck program in the background, sig-
nificantly reducing system downtime [9].

= To allow an immediate reboot after a crash,
the file system uses soft updates to guarantee
that the only inconsistency the file system
might experience is resource leaks stemming
from unreferenced blocks or inodes [5, 10].

McKusick added the ability to create snapshots to
UFS, making background fsck possible [12]. Un-
fortunately, filesystem snapshots have a few disad-
vantages, because during one step of a snapshot
all write operations to the file system are blocked.
Luckily, this step does not depend on filesystem
size and takes only a few seconds. However, the
time of the step that sets up the snapshot grows
linearly with the size of the file system and gener-
ates heavy I/O load. So even though the file sys-
tem continues to operate, its performance is
degraded while the snapshot is being prepared.

Once a snapshot is taken, all writes to the file sys-
tem must be checked to see whether an older
copy needs to be saved for the snapshot. Because
of the design of snapshots, copies are rarely
needed and thus do not appreciably slow down
the system. A slowdown does occur when remov-
ing many small files (i.e., any file less than 96
kilobytes whose last block is a fragment) that are
claimed by a snapshot. In addition, checking a file
system in the background slows operating system
performance for many hours because of its added
demands on the I/O system. If the background
fsck fails (usually because of hardware-based disk
errors) the operating system needs to be rebooted
and the file system must be repaired in the fore-
ground. When a background fsck has failed, it
means that the system has been running with an
inconsistent file system, which implies undefined
behavior.

The second technique used requires storing all
filesystem operations (or only metadata changes)
first in a special journal. Once the entire operation
has been journaled, filesystem updates may be
made. If a power failure or a system crash occurs,
incomplete entries in the journal are removed and
partially completed filesystem updates are finished
by using the completed entries stored in the jour-
nal. Filesystem journaling is currently the most
popular way of managing filesystem consistency
[1,17,18].

The ZFS file system needs neither fsck nor jour-
nals to guarantee consistency. Instead it takes an

;LOGIN: VOL. 32, NO. 3

alternate copy-on-write (COW) approach. COW
means that ZFS never overwrites valid data.
Instead, ZFS always writes data into a free area.
When the data is safely stored, ZFS switches a sin-
gle pointer in the block’s parent. With this tech-
nique, block pointers never point at inconsistent
blocks. This design is similar to the WAFL file
system design [6].

END-TO-END DATA INTEGRITY AND SELF-HEALING

Another important ZFS feature is end-to-end data
integrity. All data and metadata undergoes check-
sum operations using one of several available
algorithms (fletcher2, fletcher4 [4], or SHA256
[14]). ZES can detect silent data corruption
caused by any defect in disk, controller, cable,
driver, or firmware. There have been many reports
from Solaris users of silent data corruption that
has been successfully detected by ZFS. If the stor-
age pool has been configured with some level of
redundancy (RAID-Z or mirroring) and data cor-
ruption is detected, ZFS not only reconstructs the
data but also writes valid data back to the compo-
nent where corruption was originally detected.

SNAPSHOTS AND CLONES

Snapshots are easy to implement for file systems
such as ZFS that store data using a COW model.
When new data are created, the file system simply
does not free the block with the old data. Thus,
snapshots in ZFS are cheap to create (unlike UFS2
snapshots). ZFS also allows the creation of a
clone, which is a snapshot that may be written.
Finally, ZFS has a feature that allows it to roll
back a snapshot, forgetting all modifications intro-
duced after the snapshot was created.

ZFS supports compression at the block level. Cur-
rently, Jeff Bonwick’s variant of the Lempel-Ziv
compression algorithm and the gzip compression
algorithm are supported. Data encryption is also a
work in progress [13].

Porting ZFS to FreeBSD

We describe work done by Pawel Jakub Dawidek
in porting ZFS to FreeBSD in the remainder of
this article. This task seemed daunting at first, as
a student had spent an entire Summer of Code
project looking at porting ZFS to Linux and had
made little progress. However, a study of the ZFS
code showed that it had been written with porta-
bility in mind. The ZFS code is clean, well com-
mented, and self-contained. The source files rarely

include system headers directly. Most of the time,
they include only ZFS-specific header files and a
special zfs_context.h header where system-specific
includes are placed. Large parts of the kernel code
can be compiled in a user process and run by the
ztest utility for regression and stress testing.

So, Dawidek felt a fresh start on doing a port
seemed appropriate, this time taking the approach
of making minimal changes to the ZFS code base
itself. Instead, Dawidek built a set of software
compatibility modules to convert from the
FreeBSD internal interfaces to those used by
Solaris and expected by ZFS. Using this approach,
he had an initial port up and running with just
ten days of effort.

SOLARIS COMPATIBILITY LAYER

;LOGIN: JUNE 2007

When a large project such as ZFS is ported from
another operating system, it is important to keep
modifications of the original code to a minimum.
Having fewer modifications makes porting easier
and makes the importation of new functionality
and bug fixes much less difficult.

To minimize the number of changes, Dawidek cre-
ated a Solaris-compatible application program-
ming interface (API) layer. The main goal was to
implement the Solaris kernel functions that ZFS
expected to call. These functions were imple-
mented by using the FreeBSD kernel program-
ming interface (KPI). Many of the API differences
were simple, involving different function names,
slightly different arguments, or different return
values. For other APIs, the functionality needed to
be fully implemented from scratch. This tech-
nique proved to be quite effective. For example,
after these stubs were built, only 13 files out of
112 of the core ZFS implementation directory
needed to be modified.

The following milestones were defined to port the
ZFS file system to FreeBSD:

1. Create a Solaris-compatible API using the
FreeBSD APIL
2. Port the user-level utilities and libraries.
3. Define connection points in ZFS where
FreeBSD makes its service requests. These
service requests include:
= ZFS POSIX Layer, which has to be able to
communicate with the virtual filesystem
(VFES) layer

= ZFS Emulated Volume (ZVOL), which has
to be able to communicate with the Free-
BSD volume-management subsystem
(GEOM)

m /dev/zfs, a control device that communi-
cates with the ZFS user-level utilities and
libraries

4. Define connection points in ZFS where the
storage pool virtual device (VDEV) needs to
make /O requests to FreeBSD.

ZFS POSIX LAYER

The ZFS POSIX layer receives requests from the
FreeBSD VFS interface. This interface was the
hardest part of the entire port to implement. The
VES interface has many complex functions and is
quite system-specific. Although the Solaris and
FreeBSD VFS interfaces had a common heritage
twenty years ago, much has changed between
them over the years. VFS on Solaris seems to be
cleaner and a bit less complex than FreeBSD’s.

ZFS EMULATED VOLUME

A ZFS VDEV managed storage pool can serve
storage in two ways, as a file system or as a raw
storage device. ZVOL is a ZFS layer responsible
for exporting part of a VDEV-managed storage
pool as a disk device.

FreeBSD has its own GEOM layer, which can also
be used to manage raw storage devices either to
aggregate them with RAID or by striping, or to
subdivide them using partitioning. GEOM can
also be used to provide compression or encryption
(see [12], pp. 270-276, for details on GEOM).

To maximize the flexibility of ZVOL, a new ZVOL
provider-only GEOM class was created. As a
GEOM provider, the ZVOL storage pool is
exported as a device in /dev/ (just like other
GEOM providers). So, it is possible to use a ZFS
storage pool for a UFS file system or to hold a
swap-space partition.

ZFS VIRTUAL DEVICES

A ZFS VDEV-managed storage pool has to use
storage provided by the operating system [16].
The VDEV has to be connected to storage at its
bottom layer. In Solaris there are two types of
storage used by VDEVs: storage from disks and
storage from files. In FreeBSD, VDEVs can use
storage from any GEOM provider (disk, slice, par-
tition, etc.). ZFS can access files by making them
look like disks using an md(4) device.

Rather than interfacing directly to the disks, a
new VDEV consumer-only GEOM class was cre-
ated to interface ZFS to the GEOM layer in

PORTING THE SOLARIS ZFS FILE SYSTEM TO THE FREEBSD OS

21

FreeBSD. In its simplest form, GEOM just passes
an uninterpreted raw disk to ZFS. But all the
functionality of the GEOM layer can be used to
build more complex storage arrangements to pass
up to a VDEV-managed storage pool.

EVENT

NOTIFICATION

ZFS has the ability to send notifications on vari-
ous events. Those events include information
such as storage pool imports as well as failure
notifications (I/O errors, checksum mismatches,
etc.). Dawidek ported this functionality to send
notifications to the devd(8) daemon, which
seemed to be the most suitable communication
channel for those types of messages. In the future,
a dedicated user-level daemon to manage mes-
sages from ZFS may be written.

KERNEL STATISTICS

Solaris exports various statistics (mostly about
ZFS-cache and name-cache usage) via its kstat
interface. This functionality was directed to the
FreeBSD sysctl(9) interface. All statistics can be
printed using the following command:

sysctl kstat

ZFS AND FREEBSD JAILS

22

ZFS works with Solaris zones [15]. In our port,
we make it work with FreeBSD jails [7], which
have many of the same features as zones. A useful
attribute of ZFS is that once it has constructed a
pool from a collection of disks, new file systems
can be created and managed from the pool with-
out requiring direct access to the underlying disk
devices. Thus, a jailed process can be permitted
to manage its own file system since it cannot
affect the file systems of other jails or of the base
FreeBSD system. If the jailed process were permit-
ted to directly access the raw disk, it could mount
a denial-of-service attack by creating a file system
with corrupted metadata and then panicking the
kernel by trying to access that file system.

ZFS fits into the jail framework well. Once a pool
has been assigned to a jail, the jail can operate on
its own file system tree. For example:

main# zpool create tank mirror da0 da’
main# zfs create tank/jail

main# zfs set jailed=on tank/jail

main# zfs jail 1 tank/jail

;LOGIN: VOL. 32, NO. 3

jail# zfs create tank/jail/home

jail# zfs create tank/jail/lhome/pjd

jail# zfs create tank/jail/home/mckusick
jail# zfs snapshot tank/jail@backup

FreeBSD Modifications

There were only a few FreeBSD modifications
needed to port the ZFS file system.

The mountd(8) program was modified to work
with multiple export files. This change allows the
zfs(1) command to manage private export files
stored in /etc/zfs/exports.

The vnode-pointer-to-file-handle (VPTOFH) oper-
ation was switched from one based on the filesys-
tem type (VFS_VPTOFH) to one based on the
vnode type (VOP_VPTOFH). Architecturally, the
VPTOFH translation should always have been a
vnode operation, but Sun first defined it as a
filesystem operation, so BSD did the same to be
compatible. Solaris changed it to a vnode opera-
tion years ago, so it made sense for FreeBSD to do
so as well. This change allows VPTOFH to sup-
port multiple node types within one file system.
For example, in ZFS the v_data field from the
vnode structure can point at two different struc-
tures (either znode_t or zfsctl_ node_t). To be able
to recognize which structure it references, two dif-
ferent vop_vptofh functions are defined for those
two different types of vnodes.

The Iseek(2) API was extended to support the
SEEK_DATA and SEEK_HOLE operation types
[2]. These operations are not ZFS-specific. They
are useful on any file system that supports holes
in files, as they allow backup software to identify
and skip holes in files.

The jail framework was extended to support “jail
services.” With this extension, ZFS can register
itself as a jail service and attach a list of assigned
ZFS datasets to the jail’s in-kernel structures.

User-level Utilities and Libraries

User-level utilities and libraries communicate with
the kernel part of ZFS via the /dev/zfs control
device. We needed to port the following utilities
and libraries:

= zpool: utility for storage pools configuration

m zfs: utility for ZFS file systems and volumes
configuration

= ztest: program for stress testing most of the
ZFS code

= zdb: ZFS debugging tool

= libzfs: the main ZFS user-level library used by
both the zfs and zpool utilities

m libzpool: test library containing most of the
kernel code, used by ztest

To make it work, we also ported libraries (or
implemented wrappers) they depend on: libavl,
libnvpair, libutil, and libumem.

Testing FileSystem Correctness

It is quite important and very hard to verify that a
file system works correctly. The file system is a
complex beast and there are many corner cases
that have to be checked. If testing is not done
right, bugs in a file system can lead to application
misbehavior, system crashes, data corruption, or
even security failure. Unfortunately, we did not
find freely available filesystem test suites that ver-
ify POSIX conformance. Instead, Dawidek wrote
the fstest test suite [3]. The test suite currently
contains 3438 tests in 184 files and tests all the
major filesystem operations including chflags,
chmod, chown, close, link, mkdir, mkfifo, open,
read, rename, rmdir, symlink, truncate, and
unlink.

Removing four src directories by four processes in

parallel:

UFS 364s
UFS+soft-updates 185s
UFS+gjournal+async 111s
ZFS 220s

Executing dd if=/dev/zero of=/fs/zero bs=1m
count=5000:

UFS 78s
UFS+soft-updates 77s
UFS+gjournal+async 200s
ZFS 11s

Status and Future Directions

Filesystem Performance

;LOGIN: JUNE 2007

Below are some performance numbers that com-
pare the current ZFS version for FreeBSD with
various UFS configurations. Note that all file sys-
tems were tested with the atime option turned off.
The ZFS numbers are measured with checksum-
ming enabled, as that is the recommended config-
uration.

Untarring src.tar archive four times one by one:

UFS 256s
UFS+soft-updates 207s
UFS+gjournal+async 127s
ZFS 237s

Removing four src directories one by one:

UFS 230s
UFS+soft-updates 94s
UFS+gjournal+async 48s
ZFS 97s

Untarring src.tar by four processes in parallel:

UFS 345s
UFS+soft-updates 333s
UFS+gjournal+async 158s
ZFS 199s

After about six months of work, the ZFS port is
almost finished. About 98% of the functionality is
ported and tested. The primary work that remains
is to tune its performance.

Here are some missing functionalities:

= ACL support. Currently ACL support has not
been ported. ACL support is difficult to im-
plement because FreeBSD has only support
for POSIX.1e ACLs, whereas ZFS implements
NFSv4-style ACLs. Porting NFSv4-style ACLs
to FreeBSD requires the addition of system
calls, updating system utilities to manage
ACLs, and preparing procedures on how to
convert from one ACL type to another.

= Allowing ZFS to export ZVOLs over iSCSI. At
this point there is no iSCSI target daemon in
the FreeBSD base system, so there is nothing
with which to integrate this functionality.

= Code optimization. Many parts of the code
were written quickly but inefficiently.

ZFS was recently merged into the FreeBSD base
system. Indeed, it may be ready for version 7.0

release. There are no plans to merge ZFS to the
RELENG_6 branch.

The UFS file system supports system flags—
chflags(2). There is no support for those in the
ZFS file system, but it would be easy to add sup-
port for system flags to ZFS.

There is no encryption support in ZFS itself, but
there is an ongoing project to implement it. It
may be possible to cooperate with Sun developers
to help finish this project. With a properly defined
interface within ZFS, it would be easy to integrate
encryption support provided by the opencrypto
framework [8].

PORTING THE SOLARIS ZFS FILE SYSTEM TO THE FREEBSD OS

23

ACKNOWLEDGMENTS

We would like to thank the ZFS developers, who
created a great file system, and the FreeBSD Foun-
dation (www.FreeBSDFoundation.org) for their
support. The machines from the FreeBSD Netperf
Cluster (www.freebsd.org/projects/netperf/cluster
.html)were used for much of the development
work. Pawel Jakub Dawidek would like to thank
Wheel LTD (www.wheel.pl). He was able to do
this work during his day job. Finally, we would
like to thank the FreeBSD community for their
never-ending support and warm words.

REFERENCES

24

[1] S. Best, “JFS Overview” (2000): http://
www-128.ibm.com/developerworks/linux/
library/1-jfs.html.

[2] J. Bonwick, “SEEK_HOLE and SEEK_DATA
for Sparse Files” (2005): http://blogs.sun.com/
bonwick/entry/seek_hole_and_seek_data.

[3] P Dawidek, “File System Test Suite” (2007):
http://people.freebsd.org/~pjd/fstest/.

[4] J. Fletcher, “Fletcher’s Checksum” (1990):
http://en.wikipedia.org/wiki/Fletcher’s_checksum.

[5] G. Ganger, M.K. McKusick, C. Soules, and Y.
Patt, “Soft Updates: A Solution to the Metadata
Update Problem in File Systems,” ACM Transac-
tions on Computer Systems 18(2) (2000): 127-153.

[6] D. Hitz, J. Lau, and M. Malcolm, “File System
Design for an NFS File Server Appliance,” USE-
NIX Association Conference Proceedings (Berkeley,
CA: USENIX Association, 1994), pp. 235-246.

[7] P Kamp and R. Watson, “Jails: Confining the
Omnipotent Root,” Proceedings of the Second Inter-
national System Administration and Networking
Conference (SANE) (2000): http://docs.freebsd.org/
44doc/papers/jail/.

[8] S. Leffler, “Cryptographic Device Support for
FreeBSD,” Proceedings of BSDCon 2003 (Berkeley,
CA: USENIX, 2003), pp. 69-78.

;LOGIN: VOL. 32, NO. 3

[9] M.K. McKusick, “Running Fsck in the Back-
ground,” Proceedings of the BSDCon 2002 Confer-
ence, pp. 55-64.

[10] M.K. McKusick and G. Ganger, “Soft
Updates: A Technique for Eliminating Most Syn-
chronous Writes in the Fast Filesystem,” Proceed-
ings of the FREENIX Track at the 1999 USENIX
Annual Technical Conference (Berkeley, CA:
USENIX Association, 1999), pp. 1-17.

[11] M.K. McKusick and T.J. Kowalski, “Fsck:
The UNIX File System Check Program,” in
4.4BSD System Managers Manual (Sebastopol, CA:
O'Reilly & Associates, 1994), vol. 3, pp. 1-21.

[12] M.K. McKusick and G. Neville-Neil, The
Design and Implementation of the FreeBSD Operat-
ing System (Reading, MA: Addison-Wesley, 2005).

[13] D. Moffat, “ZFS Encryption Project” (2006):
www.opensolaris.org/os/project/zfs-crypto/files/
zfs-crypto.pdf.

[14] NIST, “SHA Hash Functions” (1993):
http://en.wikipedia.org/wiki/SHA-256.

[15] D. Price and A. Tucker, “Solaris Zones: Oper-
ating System Support for Consolidating Commer-
cial Workloads,” Proceedings of LISA *04: 18th
Large Installation System Administration Conference
(Berkeley, CA: USENIX Association, 2004), pp.
241-254.

[16] Sun Microsystems, “ZFS Source Tour”
(2007): http://www.opensolaris.org/os/
community/zfs/source/.

[17] A. Sweeney, D. Doucette, W. Hu, C. Ander-
son, M. Nishimoto, and G. Peck, “Scalability in
the XFS File System,” USENIX 1996 Annual Tech-
nical Conference Proceedings (Berkeley, CA:
USENIX Association, 1996), pp. 1-14.

[18] S. Tweedie, “EXT3, Journaling Filesystem,”
Ottawa Linux Symposium (2003): http:/ssrc.cse
.ucsc.edu/PaperArchive/ext3.html.

AVANTIKA MATHUR, MINGMING CAO,
AND ANDREAS DILGER

ext4: the next
generation of the
ext3 file system

Avantika Mathur is a Linux kernel developer in the
IBM Linux Technology Center. Her primary focus is
ext3 and exty filesystem development and testing.

mathur@us.ibm.com

Mingming Cao has been a Linux kernel developer at
the IBM Linux Technology Center for 7 years, mainly
in the areas of IPC, block 10, and the ext3 filesystem.
Her recent focus has been on bringing up the ext4
filesystem.

cmm@us.ibm.com

Andreas Dilger is a Principal Systems Software Engi-
neer for Cluster Filesystems, Inc., designing and
developing the Lustre distributed file system on
some of the largest computers in the world. He
started programming more than 25 years ago and
has spent much of the last 10 years focused on Linux
filesystem development.

adilger@clusterfs.com

;LOGIN: JUNE 2007

LAST YEAR, A NEW LINUX FILE SYS-
tem was bom: ext4. A descendant of the
ext3 file system, ext4 will soon replace ext3
as the “Linux file system.” Ext4 provides
greater scalability and higher performance
than ext3, while maintaining reliability and
stability, giving users many reasons to
switch to this new file system. The primary
goal for ext4 is to support larger files and
file systems. Once it is mature, the develop-
ing ext4 file system will be suitable for a
greater variety of workloads, from desktop
to enterprise solutions.

Extg

Among the many file systems Linux offers today,
ext3 is the most popular, with the largest user
base and development community. Having been
designed with stability and maintenance in mind
makes ext3 a very reliable file system with rela-
tively good performance. Thus it has been the
default file system in many commercial Linux dis-
tributions for many years.

However, the conservative design of ext3 limits its
scalability and performance. One of the hard lim-
its faced by ext3 today is the 16-TB filesystem size
maximum. This limit has already been reached in
large installations and will soon be hit by desktop
users. Today, 1-TB external hard drives are readily
available in stores, and disk capacity can double
every year.

Last year, a series of patches were sent to the
Linux kernel mailing list, to address filesystem
capacity and to add extents mapping to ext3. The
extent patches would cause intrusive changes to
the on-disk format and break forward compatibil-
ity for file systems that used them. In order to
maintain the stable ext3 file system for its massive
user base, it was decided to fork the ext4 file sys-
tem from ext3 and address performance and scala-
bility issues in this new file system.

Why not use a file system such as XFS for this?
The answer is that the XFS code in Linux is very
complex, being burdened with an extra layer of
compatibility code for IRIX. Even with the addi-
tion of the features described here, ext4 is still
much smaller and more understandable than XFS
(25k lines vs. 106k lines). Also, there is a consid-
erable investment in the stability and robustness
of the ext3 and e2fsck code base, most of which
will continue to be used for ext4.

EXT4

25

26

;LOGIN: VOL. 32, NO. 3

What'’s New in Extg

Ext4 was included in mainline Linux version 2.6.19. The file system is cur-
rently in development mode, titled ext4dev, explicitly warning users that it
is not ready for production use. There are many new features in the ext4
road map under development and testing. Some of the features in progress
may continue to change the filesystem layout. Any future changes, as with
the current ones, will be protected by appropriate feature flags so that
existing kernels and e2fsprogs will be able to know whether it is safe to
mount a given ext4 file system. Once the layout is finalized, ext4 will be
converted from development to stable mode. At that point, ext4 will be
stable and available for general use by all users in need of a more scalable
and modern version of ext3.

The initial version of the ext4 file system includes two new key features:
extent support and 48-bit block numbers. Combined, these features sup-
port larger file systems and better performance on large files.

EXTENT SUPPORT

The ext3 file system uses the traditional indirect block mapping scheme,
which is efficient for small or sparse files but causes high metadata over-
head and poor performance when dealing with large files, especially on
delete and truncate operations. To address this issue, ext4 uses extent
mapping as an efficient way to represent large contiguous files.

An extent is a single descriptor that represents a range of contiguous
blocks. A single extent in ext4 can represent up to 128 MB. Four extents
can be stored directly in the inode structure. That is generally sufficient for
small to medium contiguous files, but for very large or highly fragmented
files, an extents tree is created to efficiently look up the many extents
required.

Extents mapping improves performance on large files, such as mp3, DVD,
video, or database files, as it is tuned toward allocating large contiguous
blocks. Extents bring about a 25% throughput gain in large sequential I/0
workloads when compared with ext3. A similar performance gain was also
seen on the Postmark benchmark, which simulates a mail server, with a
large number of small to medium files. With extents the metadata is more
compact, causing greatly reduced CPU usage.

Although the indirect block and extents mapping schemes are incompati-
ble, both are supported by ext4, and files can be converted between the
two formats. This is discussed further in the migration section.

LARGE

FILE SYSTEM SUPPORT

The first issue addressed in ext4 is the filesystem capacity limit. Because
ext3 uses 32 bits to represent block numbers and has a default 4k block
size, the file system is limited to a maximum of 16 TB. Ext4 uses 48-bit
block numbers. In theory this allows it to support 1-EB (1-million-TB) file
systems. This change was made in combination with the extents patches,
which use 48-bit physical block numbers in the extents structure. Other
metadata changes, such as in the super-block structure, were also made to
support the 48-bit block number.

In order to support more than 32-bit block numbers in the journaling
block layer (JBD), JBD2 was forked from JBD at the same time that ext4

was cloned. There is also work underway to add checksumming to the
journal in JBD2 to validate this critical metadata at recovery time. Cur-
rently, JBD2 is only used by ext4, but eventually both 32-bit and 64-bit
Linux file systems will be able to use JBD2 for journaling support.

One may question why we chose 48-bit block numbers rather than the
round 64 bits. Although it is possible to design for 64-bit ext4 file systems,
this is impractical today because of reliability and serviceability problems.
Having full 64-bit physical and logical block numbers would have meant
that fewer extents could fit within the inode (2 vs. 4) for only very theoret-
ical gains. It would take 119 years at today’s speeds to run e2fsck on even
a 2*8-block file system. The ext4 developers will focus their efforts on
improving the reliability aspects before worrying about a theoretical size
limit.

What’s Next

The increased file system capacity created by the 48-bit block numbers and
extent mapping features that are currently in ext4 will provide many new
features in the road map. These features are focused on enhancing ext4
scalability, reliability, block placement, and performance.

An ext4 git tree is hosted at git://git.kernel.org/pub/scm/linux/kernel/
git/tytso/ext4. The tree contains the series of patches in line for ext4. Up-
to-date information on new ext4 features, patch sets, and development dis-
cussion can be found at the ext4 wiki page, http://ext4.wiki.kernel.org/.

BLOCK ALLOCATION ENHANCEMENTS

Fragmentation is a key factor affecting filesystem performance. The follow-
ing features in the ext4 road map attempt to address performance by avoid-
ing or decreasing fragmentation. This is essential for the efficient use of
extents and maximizing performance on modern high-bandwidth storage.

PERSISTENT PREALLOCATION

Applications such as large databases often write zeros to a file for guaran-
teed and contiguous filesystem space reservation. Persistent preallocation
in ext4 allocates a contiguous set of blocks for a file without the expensive
zero-out. The preallocated extents contain a flag specifying that the blocks
are uninitialized. These uninitialized extents are protected from undesired
exposure of their contents through read operations. A new system call,
sys_fallocate, is planned to be added to the Linux kernel, and the existing
posix_fallocate library is being modified. These interfaces can be used by
users to specify the portion of the file to preallocate.

DELAYED ALLOCATION AND MULTIPLE BLOCK ALLOCATION

The ext3 block allocation scheme is not very efficient for allocating
extents, as blocks are allocated one by one during write operations, so ext4
will use delayed allocation and multiple block mechanisms to efficiently
allocate many blocks at a time and contribute to avoiding fragmentation.
With delayed allocation, block allocations are deferred to page flush time,
rather than during the write operation. This avoids unnecessary block allo-
cation for short-lived files and provides the opportunity to queue many
individual block allocation requests into a single request.

;LOGIN: JUNE 2007 EXT4 27

28

;LOGIN: VOL. 32, NO. 3

The multiple block allocation feature uses a buddy data structure to effi-
ciently locate free extents and allocates an entire extent referencing multi-
ple blocks, rather than allocating one at a time. Combined, delayed alloca-
tion and multiple block allocation have been shown to significantly reduce
CPU usage and improve throughput on large /0. Performance testing
shows a 30% throughput gain for large sequential writes and 7-10%
improvement on small files (e.g., those seen in mail-server-type work-

loads).

ONLINE DEFRAGMENTATION

Even though there are techniques in place to attempt to avoid file fragmen-
tation, with age, a file system can still become highly fragmented. The
online defragmentation tool is designed to defragment individual files or
an entire file system. The defragmentation is performed by creating a tem-
porary inode, using multiple block allocation to allocate contiguous blocks
to the inode, reading all data from the original file to the page cache, then
flushing the data to disk and migrating the newly allocated blocks over to
the original inode.

SCALABILITY ENHANCEMENTS

Besides enlarging the overall file system capacity, there are many other scal-
ability features planned for ext4.

Although ext3 has support for different inode sizes, the default inode
structure size is 128 bytes, with little extra room to support new features.
In ext4, the default inode size will be enlarged to 256 bytes. This will pro-
vide space for the new fields needed for the planned features, nanosecond
time stamps, and inode versioning. The latter is a counter incremented on
each file modification that will be used by NFSv4 (network file system) to
keep track of file updates.

By using a larger inode size in ext4, the EA-in-inode feature can be enabled
by default. This feature is also available in ext3, but because of the smaller
default inode size it is not widely used. EA-in-inode stores extended attrib-
utes (EAs) directly in the inode body, making EA access much faster. The
faster EA access can greatly improve performance, sometimes by 2-3 times,
for those using SELinux, ACLs, or other EAs. Additional EAs, which don’t
fit in the inode body, are stored in a single filesystem block. This limits the
maximum EA capacity per file to 4k. In ext4, there is a plan to remove this
limit by storing large EAs in a file.

To address directory scalability, the directory indexing feature, available in
ext3, will be turned on by default in ext4. Directory indexing uses a spe-
cialized Btree-like structure to store directory entries, rather than a linked
list with linear access times. This significantly improves performance on
certain applications with very large directories, such as Web caches and
mail systems using the Maildir format. Performance improvements were
often by factors of 50-100, in particular for directories with more than
10,000 files. An additional scalability improvement is eliminating the
32,000 subdirectory limit in ext4.

Support for larger files, extending beyond the 2-TB limit, are in the road
map. There is interest in efficiently supporting large numbers of files, sur-
passing the 4-billion limit, which implies 64-bit inode numbers and
dynamic inode tables. Because of the potential intrusive on-disk format
changes involved, plans and design aspects are still on the drawing board.

;LOGIN: JUNE 2007

FASTER REPAIR AND RECOVERY

A file system is not very useful if it cannot be repaired or recovered in a
reasonable amount of time. As the filesystem size grows, the e2fsck time
becomes unbearable, taking from minutes to years depending on the file-
system size. This issue is more prevalent for ext4, as it can support larger
file systems. Although the ext4 journaling support tries to avoid the need
for file system recovery as much as possible, in the event of a disk error
e2fsck is still necessary.

The e2fsck tool scans the whole file system, regardless of whether only a
small part of it is being used. With a little more information about the file
system, e2fsck could skip those unused block groups or inode structures.
The uninitialized block groups feature uses a flag in the block group to
mark whether it is uninitialized. Once it is written to, watermarks are used
to keep track of the last used inode structures. Any uninitialized block
groups or inodes are not scanned by e2fsck, which greatly reduces the run
time. This feature can speed up e2fsck dramatically, reducing run times to
1/2 to 1/10 of the original run time, depending on how the file system is
used. The flags marking a block group uninitialized and the high water-
mark are checksummed. If there is ever corruption, e2fsck will fall back to
the slower, but safer, full scan for that block group. As new features are
added to ext4, the user tools, e2fsprogs, will be updated correspondingly.

Migration from Ext3 to Ext4

Compatibility between ext4 and existing ext3 file systems has been main-
tained as much as possible. Even though ext4 has changed some parts of
the on-disk format, it is possible to take advantage of many of the ext4 fea-
tures, such as extents, delayed allocation, multiple block allocation, and
faster e2fsck, without requiring a backup and restore.

There is an upgrade path from ext3 that allows existing file systems to start
using ext4 immediately, without requiring a lengthy downtime. Users can
mount an existing ext3 file system as ext4, and all existing files are still
treated as ext3 files. Any new files created in this ext4 file system will be
extent-mapping-based. There is a flag in each individual file to indicate
whether it is an ext3 file (indirect mapped) or ext4 file (extent mapped).

There is also a way to do a systemwide migration. A set of tools is under
development to migrate an entire file system from ext3 to ext4, which
includes transferring indirect files to extent files and enlarging the inode
structure to 256 bytes. The first part can be performed online in combina-
tion with online defragmentation. This tool will perform the conversion
from ext3 to ext4 while simultaneously defragmenting the file system and
files, and it will have the option of converting only part of the file system.
Resizing the inodes must be performed offline, and this can be done in
conjunction with converting files to extent mapping. In this case the whole
file system is scanned, and proper backup is done to prevent data loss if
the system crashes during the migration.

Users who are hesitant to migrate to ext4 immediately can optionally for-
mat their ext3 file system with large inodes (256 bytes or more) to take
advantage of the EA-in-inode feature today and nanosecond timestamps if
they migrate to ext4. This would avoid the need to do an offline migration
step to resize the inodes.

EXT4

29

30

;LOGIN: VOL. 32, NO. 3

There is also a downgrade path from ext4 to ext3, with a method to con-
vert the extent files back to indirect mapping files. In the case that users
prefer to go back to ext3, they can mount the ext4 file system with the
“noextents” mount option, copy the extent-based ext4 files to new files,
rename these over the old extents, use tunefs to clear the
INCOMPAT_EXTENTS flag, and then remount as an ext3 file system.

Conclusion

As we have discussed, a tremendous amount of work has gone into the
ext4 file system, and this work is ongoing. As we stabilize the file system,
ext4 will become suitable for production use, making it a good choice for a
wide variety of workloads. What was once essentially a simple file system
has turned into an enterprise-ready modern file system, with a good bal-
ance of scalability, reliability, performance, and stability. Eventually ext4
will replace ext3 as the default Linux file system.

LEGAL STATEMENT

Copyright © 2007 IBM.

This work represents the view of the authors and does not necessarily rep-
resent the view of IBM.

IBM and the IBM logo are trademarks or registered trademarks of Interna-
tional Business Machines Corporation in the United States and/or other
countries.

Lustre is a trademark of Cluster File Systems, Inc.

Linux is a registered trademark of Linus Torvalds in the United States,
other countries, or both.

Other company, product, and service names may be trademarks or service
marks of others.

References in this publication to IBM products or services do not imply
that IBM intends to make them available in all countries in which IBM
operates.

This document is provied “AS IS,” with no express or implied warranties.
Use the information in this document at your own risk.

THE FUTURE IS ALREADY HERE—IT’S
just unevenly distributed [1]. To see some of
security’s future we do trend analysis on
what we already know. This essay demon-
strates what can be gotten from open-
source intelligence of the most general sort

d quant]OOkS at and how it may apply to looking at the

-th e fu-tu-re near- to medium-term future of security. As
with any such work, there are limitations to

DAN GEER

Dan Geer is a security researcher with a quantitative the method and the results can, if one

bent. His group at MIT produced Kerberos, and a .

number of startups later he is still at it—today as insists, be pushed too far.

Chief Scientist at Verdasys. He writes a lot, and

sometimes the output gets read, such as the semi-

famous paper on whether a computing monocul- Security is not an end, it is a means. As a tech-
ture rises to the level of a national security risk. He’s . iti f f risk t and b
an electrical engineer, a statistician, and someone nique, 1 .IS ?'.1 .orm 0 rl.s management and a sub-
who thinks truth is best achieved by adversarial set of reliability. Real risk management means
procedures. good decisions, good decision-making requires
dan@geerorg good decision support, and good decision support

requires ordinal scale (X > Y) metrics—often no
more than ordinal scale.

Where does trend analysis come into this? Trend
analysis is what a statistician will recommend
when the underlying topic of interest is new
and/or changing rapidly and where the method of
measuring it is uncertain. In such a circumstance,
and so long as the measurement you do have can
be applied consistently, the trend data from the
measurement can be relied upon even if the raw
numbers the measurement returns are suspect. As
trends are generally sufficient for decision support
(X >Y), we've explained why we are here. By
analogy, a street cop may never know how much
crack is for sale, but he or she can tell a lot from
the rise and fall of the street price—enough to
make decisions.

Making decisions early is often regarded as some-
thing valuable. In the present context, it is good
to remember that early decision-making is itself a
tradeoff: Making decisions early is more expensive
in decision cost than making them later, because
early on the choice set is larger and the uncer-
tainty around that choice set is higher. Making
decisions later generally comes with fewer work-
able options, so decision cost per se is less. Trend
analysis can thus help you decide not only what
decision to make but also when to make it. These
are Good Things.

Gather Ye Numbers Where Ye May

There are two sources of numbers: reports from
instrumented collection points and surveys. Both
may be done by others, and so we must hope that

;LOGIN: JUNE 2007 A QUANT LOOKS AT THE FUTURE 31

32

the ways this data is collected is consistent over
time. Surveys are hard to do really right, as they
are subject to lots of biases, but the biases are not
terribly relevant to trend analysis if those biases
are consistent over time. Let’s start with the well-
known CSI/FBI annual survey [2] and look at the
question, “Did your organization experience
unauthorized use of computer systems in the last
12 months?” The question has been asked for sev-
eral years, so there is something to look at (see

Figure 1).

O yes 4 no i+ don’t know
1 00 CSI/FBI
0.75
0.50 M
0.25

0

\09 '\9@ '\96\ '\9@' '\96” '\90"‘ '\90‘9 (\90‘°

FIGURE 1: UNAUTHORIZED USE IN THE
PAST 12 MONTHS

This first trend immediately shows that careful
interpretation is part of the effort. In this case,
you could say that people who've no idea whether
they had or did not have an episode of unautho-
rized use actually did or did not have such an
event. On the one hand, we can say that unless
you know you had an event then you did not
(“optimistic”), while, on the other hand, we can
say that unless you know you did not have an
event then you did (“pessimistic”). This is illus-

trated in Figure 2.
2 yes O yes+unk

CSI/FBI

1.00

=-22.5%
A=-13.3%

+33% worse at outset

0.25 /
+69% better improvement
0
R S\ R TR SR I
D S S S S

FIGURE 2: OPTIMISTIC V. PESSIMISTIC

This interpretation allows us to think about the
problem a little bit deeper, since we now have the
upper and lower bounds of assumption, given the

;LOGIN: VOL. 32, NO. 3

data we do have, and we're reminded that the stu-
dent who gets all As is never the student who gets
the “Most Improved” award.

O reports # sites

APWG

40,000

u(life) = 4.0 days

30,000

20,000

10,000

0
A S S Sad S

W R A
FIGURE 3: NEW PHISHING MESSAGES AND
SITES PER UNIT INTERVAL

Lets look at something different: phishing (Figure
3). Data from the Anti-Phishing Working Group
[3] shows a 19-month increase of 59% in the
monthly reports of phishing email received but

a 677% increase in the number of URLs used by
phishers in those emails and that the lifetime

of those URLs is 4.0 days. This tells us that the
supply of URLSs is no problem for our opponents
and that our opponents cycle the URLs just fast
enough to outrun the combined protection bu-
reaucracy response (of consumer to fraud com-
plaint to ISP to hosting center). That tells us that
we have lost the supply-side battle, and we should
plan accordingly.

O *new* variants

APWG
400

300
200

100

0
W Nt {\é‘y Ry

FIGURE 4: NEW DATA THEFT MALWARE
VARIANTS IN PHISH EMAILS PER UNIT
TIME

These days, phish email often comes with mal-
ware attached, and that is certainly a trend worth
watching (Figure 4). Although those numbers are
not sky-high, it is important as a future-of-secu-
rity planning exercise to remember that if you are
trying to recognize these malware-carrying phish-

ing emails on sight, then your workfactor is the
integral of all the phish mails to date, whereas the
opposition’s workfactor is the price of creating
new ones. That, in turn, means that Figure 5 is
more like what your force planning exercise has to
contend with.

O *new* variants

APWG
4,000

p/month = 200
3,000

2,000

1,000

00
S

%eﬁ& ed\ \"’Q 5 & éOA

& gt
‘Nbv

FIGURE 5: CUMULATIVE NEW MALWARE
VARIANTS IN PHISH EMAILS

O *new* URLs

s APWG
2,500 R ﬂ
2,000 ﬁwﬂq&#
1,500
1,000
500

0

o \§§\ CDOQ" T\o“\ & & e \\}* :,?/Q“ eo"

{{&
FIGURE 6: NEW DATA THEFT IN URLS IN
PHISH EMAILS PER UNIT TIME

Of course, the same thing is true when we look at
the URLs that the data theft malware will use if
and when that malware succeeds. The month-to-
month rate looks like that shown in Figure 6. Fig-
ure 7 shows the cumulative effect of Figure 6’
rate.

;LOGIN: JUNE 2007

O “*new* URLs

APWG
35,000
p/month = 1600
26,250
17,500
8,750
0 g
X QA L
€\$\ \§\ R Y\‘o \?“{\‘o {{Fr\ §\ OQ éo
FIGURE 7: CUMULATIVE NEW DATA THEFT
IN URLS IN PHISH EMAILS
O *new* vulns
3000 Symantec
2,250
1,500
750
0

N SN N O N DN ON N
S @ o R e S e
P F P IE T F

FIGURE 8: NEWLY REPORTED VULNERA-
BILITIES PER UNIT TIME

Let’s look at something different—vulnerabili-
ties—and let’s switch to Symantec data. Let’s also
remember that every software vendor is working
harder and harder to keep vulnerabilities out of its
code. In Figure 8, we can nevertheless see that in
the most recent six-month reporting period a new
high for identified vulnerabilities was reached.
Now Symantec has only been publishing this in
its Internet Security Threat Report [4] since 2001,
and there have certainly been vulnerabilities
around since before that. Even so, if we said that
only Symantec hears about vulnerabilities and that
there weren’t any before 2001, we would have,
between then and now, a 26-fold increase since
record-keeping began (see Figure 9). Cumulative
vulns may not be at the top of anyone’s agenda
but, in truth, vulns never really go away (they just
get rarer, like car owners who never answer recall
notices).

A QUANT LOOKS AT THE FUTURE

33

O *new* vulns
Symantec
20,000
fzex
15,000
10,000
5,000

Of

DD &S LGS
S HFHFE S S
3 e G A e

FIGURE 9: CUMULATIVE NEWLY REPORTED
VULNERABILITIES

2005 2004 2003 2002
(0N 19 140 163 213
Net Stack 1 6 6 18
Non-Server App. 229 393 384 267
Server App. 88 345 440 771
Hardware 0 20 27 54
Protocol 12 28 22 2
Crypto 0 4 5 0
Other 0 10 16 27

TABLE 1: REMOTE VULNS REPORTED

TO/BY NIST

But perhaps you are more interested not in total
vulnerabilities but merely in remotely exploitable
ones (“remotes”). In that case, NIST has some data
for you [5], as summarized in Table 1. Table 1 is
exactly as it was reported originally, but as a table
it is not as informative as it might be. (Nonserver
apps are, by the way, client tools such as Web
browsers and email readers.) A better presentation
is that of Figure 10 (in which the timeline goes
from left to right and mass is displayed as area).

1,500 Hdw+Protocol+Crypto+Other
1125 Server App
N-S App
750 g 1 0s
375 e >
0
2002 2003 2004 2005

FIGURE 10: REMOTE VULNS BY SOURCE
OVER TIME

34 ;LOGIN: VOL. 32, NO. 3

Hardware -73.5%
Other -66.7%
Net Stack -61.8%
0S -55.3%
Server App. -51.5%
Non-Server App. -5.0%
Protocol 81.7%
Crypto n.a.
Overall 36.0%

TABLE 2: COMPOUND ANNUAL GROWTH

RATE (CAGR) BY REMOTE VULN TYPE

But although the display is more informative, it
still isn’t good enough. Perhaps it would be better

to compute a compound annual growth rate

for

the various kinds of remote vulns, as listed in
Table 2. Now that is more informative, especially
as it tells you where progress is being made and
where it is not. This might tell you how to rede-

ploy your efforts, for example, but there is yet one

more way to look at this, and that is as market
share rather than counts. We first construct Table
3 and then use Table 3 to construct Figure 11,

where it is now apparent that the action is becom-

ing almost entirely about the nonserver applica-
tions. This is important for planning purposes.

2005 2004 2003 2002
0S 5% 15% 15% 16%
Net Stack 0% 1% 1% 1%
Non-Server App. 66% 42% 36% 20%
Server App. 25% 36% 41% 57%
Hardware 0% 2% 3% 4%
Protocol 3% 3% 2% 0%
Crypto 0% 0% 0% 0%
Other 0% 1% 2% 2%

100% 100% 100% 100%

TABLE 3: COUNTS OF REMOTE VULNS
EXPRESSED AS MARKET SHARE

Hdw+Protocol+Crypto+Other

100 |
<« Server App
75 : [
50 S =
<« N-S App
25
0 < OS
2002 2003 2004 2005
FIGURE 11: REMOTE VULNS BY SOURCE
OVER TIME, EXPRESSED AS MARKET SHARE
Let’s take a similar look at our very best friend,
spam. Because so many people are interested in
that topic, we have the luxury of several sources
of data. In Figure 12, we have TQM3’ take [6] on
the volume. In Figure 13, we have Commtouch’s
take [7] on spam volume and in Figure 14, we
similarly have Postini’s take [8] on that volume of
spam.
TQM3
i,
S R B R
L. ok s e oy g i
\ 6mar05 [2nov06
FIGURE 12: ONE ILLUSTRATION OF
A SPAM SURGE
6.500.000 Commtouch
30day average
4,875,000
3,250,000
1,625,000 _/
0
& & &
N Q N N Q Q N N N
Y \\\"’ NSNS\ A\ \\\'\' N

FIGURE 13: ANOTHER ILLUSTRATION OF
A SPAM SURGE

;LOGIN: JUNE 2007

Postini

6B
4B
2B 89% of all e-mail messages are spam
/ A45% of e-mail is virus infected
726 attempts per virus delivered
o o o o o QA
N O)) Q O
N N N N N Q
Y o\ ALY o \\\’\’ W

FIGURE 14: ANOTHER ILLUSTRATION OF
A SPAM SURGE

It does look as though the trend is upward at not
dissimilar rates. Postini’s report of additional num-
bers is itself interesting. For example, it proves
that economics lies on the side of the spammer
who is trying to get the working attention of the
recipient. In the direct mail advertising (junk
mail) world, a response rate of 1 in 100 (1%) is
considered a success and here we have 1 in 726
for what we can call response rate to virus trans-
mission. The transmitter thus has 1/7 of the direct
mail market’s definition of success but has that for
zero effective cost. The planning information to
take from this result is simply that economics
favors the opposition, but we also have a metric
for how we are doing: whether the 726 number
can be made to increase or not.

Incidentally, it is likely that total spam email vol-
ume is not rising (despite these three disparate
charts) but, rather, that the percentage delivered is
rising as template spam (for making individual
messages unique) is progressively defeating
Bayesian filters.

NVD work factor and 7-day trailing average

y = 0.0111x - 423.4p

A A Aty

A 7

10/17/06

10/24/06

10/31/06 1
11/7/06
11/14/06
11/21/06 1
11/28/06 1
12/5/06
12/12/06 1
12/19/06
12/26/06 1
1/2/07
1/9/07 4
1/16/07
1/23/07 1
1/30/07
2/6/07
2/13/07 4
2/20/07 4
2/27/07
3/6/07
3/13/07

FIGURE 15: WORKFACTOR FOR SECURITY
PRACTITIONERS

This is all obviously pointing at work for you, the
reader, to do, but how much work? Interestingly,

A QUANT LOOKS AT THE FUTURE 35

36

the National Vulnerability Database folks calculate
a daily number—the “workfactor” number. In Fig-
ure 15, we see several months’ worth as the raw
number and a fitted line. Among other things, the
fitted trend line is rising, which, as a planning
mechanism, says that the workfactor of people
dealing with security problems is climbing. The
vertical dashed lines are the days on which
Microsoft releases its monthly bolus of problems
to attend to. The spikes point to the minimum
(the Sunday after Thanksgiving) and the maxi-
mum (the next-to-the-last shopping day before
Christmas). One can be perhaps forgiven for sug-
gesting that this would be consistent with an all-
out assault on the Internet Christmas shopper this
past season.

hebdomadalic variation in NVD workfactor

1 2 3 4 5 6 7
day of week, Sun->Sat

FIGURE 16: EVIDENCE OF A WORKWEEK
HIDING IN THE WORKFACTOR DATA

But there is something interesting hiding in these
numbers if you look at them a different way: It
appears (in Figure 16) that there may be evidence
of a conventional workweek. And if the opponent
is actually enjoying a conventional workweek,
there is perhaps no further need for corroboration
that exploiting security problems has become the
day job for some number of people. Yes, the dot-
ted line is a sine curve and it does fit pretty well.
In fact, we see corroboration of a workweek in
Symantec’s numbers for the daily appearance rate
of unique phishing emails (Figure 17).

‘O unique phishes per day

1,200
1,000 O
800
600
‘oo“&;\ \,\o“&;\ @0"6’5\$&¢0"@ é"&;\ Q{‘ﬁ\ q§\§85\

FIGURE 17: NUMBER OF UNIQUE
PHISHING EMAILS ON WEEKLY CYCLE

;LOGIN: VOL. 32, NO. 3

Everyone rightly worries about spyware, trojan
horse programs, and especially such nasties as
keyloggers. With help from Webroot [9] we can
quickly see that if an enterprise PC has any spy-
ware then it probably has more than one example
(Figure 18). We can see that trojans are plentiful
(Figure 19) and we can see that if an enterprise PC
has any trojans then it probably has more than one
example (Figure 20) or, even more worrying, that
if an enterprise PC has a keylogger then it could
well have more than one example (Figure 21).

O number of programs amongst those who have any spyware

Webroot

$H $H $H $H o o
'\90 ’\9() @Q ’\96 ’&Q f\,QQ
\ D LY N o
Q 0} (01 (e) 0%
FIGURE 18: NUMBER OF SPYWARE EXAM-
PLES PER ENTERPRISE PC THAT HAVE ANY
‘O trojans/PC
20 Webroot
I.SO\/_—-‘\O_O
1.0
o if you have one trojan, you may have more
0
o o
& & & & S §
o 5 5V XY ¥ 5
Q Q Q Q Q Q
FIGURE 19: PERCENTAGE OF ENTERPRISE
PCS WITH A TROJAN
©O % carrying trojans
Webroot
40

10
0

S & FEE PP
\’\« ,»’\' ,._,’\' b < o ,,,'\r b:\' \'\« ,»’\v
o o0 oo o o o o o o o

FIGURE 20: NUMBER OF TROJAN EXAM-
PLES PER ENTERPRISE PC THAT HAVE ANY

‘O number of keyloggers amongst those who have them

Webroot

ad v

10% of those with one keylogger have another

» % 3 o 3
\ P N > Ny
o Ry W O W

o} o c o o}
FIGURE 21: NUMBER OF KEYLOGGERS PER
ENTERPRISE PC THAT HAVE ANY

This apparent fact makes sense; users who do
things that get them in trouble once will probably
get themselves in trouble more than once, leading
one to concur with Microsoft that having the abil-
ity to very quickly re-image a desktop may be an
important part of any risk management plan:

When you are dealing with rootkits and
some advanced spyware programs, the only
solution is to rebuild from scratch. In some
cases, there really is no way to recover with-
out nuking the systems from orbit.
—Mike Danseglio, Program Manager, Security
Solutions Group, Microsoft, April 3, 2006 [10]

Sometimes, though, you can make better deci-
sions by understanding whether you are a target,
per se. Using Counterpane’s data [11], it is easy to
see that where the money is is where the attacks
go (Figure 22).

B % by industry of all seen

Counterpane

where the money is

¢ & &80 D o &
Q) N X3 ' XX
K (€ Qp Q\@ O"
FIGURE 22: WHERE THE ATTACKS ARE IS
WHERE THE MONEY IS, AND VICE VERSA

Perhaps your training leads you to think of the
great mass of IT in the modern enterprise in the
way a public health doctor views infection in a
sprawling city. If so, figures like this might make
you think:

;LOGIN: JUNE 2007

= 318 new Win32 viruses/week

= 9,163 hosts/day join botnets

= 75% of malware is modular

= 1% of bots show themselves per day
= 5,900 phishing emails/minute

This, too, is part of thinking about the future so
as to plan for it. In fact, by this point in this essay,
perhaps we can hazard some inferences and iden-
tify some implications.

Where This Leads

Security and threat co-evolve, exactly in the same
sense that predators are the reason prey diversify.
Over time, and as natural immune systems get
better, the pathogens that remain are fewer in
number but are selected for virulence (the ability
to move from host to host), and indeed we’ve seen
that in ever-faster-spreading but ever-rarer epi-
demics of computer viruses and worms. We've
seen that infectious agents rarely cross species
boundaries, just like in nature. We know that cor-
ruption of the immune system is the worst (think
of the “Witty” worm), and we know that parasites
co-exist nonlethally with their hosts. (Some wags
claim that home machines involved in botnets,
except for being Owned, are better managed than
your average home machine.)

We also know that evolution’s course is by punc-
tuated equilibria [12] rather than through smooth
gradual change. We are living just after such a
puncturing of the equilibrium. Public access to
the Internet began in 1990, and that access, fol-
lowed in 1991 by the precursor of the browser,
created an irresistible economic force for everyone
to connect to this Internet thing. However, doing
so suddenly created a world where both prey and
predator were and are location-independent. In
this new world, force multiplication is propor-
tional to bandwidth, and bandwidth is cheap,
almost (but not entirely) too cheap to steal [13].
That opening of the Internet also created the eco-
nomic driver for commoditization of computers
and that commoditization, absent any effective
regulatory framework, led inexorably to monocul-
ture and monoculture threat.

For better than three decades, the computing you
can buy for a dollar has grown by 1% per week,
the storage you can buy for a dollar has grown
faster than that, and the transmission capacity you
can buy for a dollar has grown even faster still.
Over that same interval, total market capitaliza-
tion, as measured by the Dow Jones Industrial
Average, has grown by 1/7% per week, thereby

A QUANT LOOKS AT THE FUTURE

37

38

proving that data comprises a rising fraction of
total corporate wealth. Of course, the value thus
expressed is a magnitude and, to a large extent,
the sign bit is separately determined, in part by
security technology and security practitioners.
Data has thus become the coin of the realm, being
the repository of value for the general economy.

That data is increasingly mobile. The economi-
cally optimal computer is changing as we speak.
When CPU price/performance doubles every 18
months, storage price/performance every 12, and
bandwidth every 9, then for every decade one
expects two orders of magnitude in computer
power but three orders of magnitude in retained
data and four orders of magnitude in data trans-
mission. The implication of spending constant
dollars on these three components of a computing
infrastructure would thus mean that at the end of
a decade the CPU would be only 1/10 as powerful
per unit volume of data but the data, despite
being 10 times as voluminous, would be able to
completely move 10 times as fast. Coupling this
with the close embrace of the Internet by com-
merce at all levels makes it clear that the winners
will be those with as much information as possi-
ble in play, while the losers will be those who
have too much, with security technology and
practice providing the fine line between as “much
as possible” and “not too much.” This is already
semi-present, as Gibson would say, with conver-
gence of pure comms (telephony) and data-rich
applications.

Data becomes our focus going forward. Security is
what distinguishes data that has value from data
that does not. Regardless of setting or metaphor, a
rising threat requires any defensive perimeter to
contract. This is true for the military, for wilde-
beeste, and for data. A contracted perimeter for
data means a shift of focus of our arrayed protec-
tion technologies to individual data objects at
their point of use. Operationally, data is at risk
when it changes from at rest to in motion, a state
change akin to evaporation. The point of use is
where that state change occurs, and thus monitor-
ing is the first priority because in the electronic
world that which escapes your view is that which
will escape your grasp (i.e., you cannot control
what you cannot see). The single smartest thing
any Cabinet Secretary has said in thirty years was
Secretary of Defense Donald Rumsfeld’s comment
that it is the unknown unknowns that will kill
you (and every journalist and pundit who made
fun of it thus proved beyond doubt that they are
innumerate). Security metrics therefore begin with
certainty at the point of use.

;LOGIN: VOL. 32, NO. 3

Cost

There are lots of interesting but decidedly losing
propositions for how to handle a future that is
about data security:

= Perform content inspection. This can be
defeated by Pig Latin, much less encryption.

= Use statistical anomaly detection. This
defeats itself, as it creates an infeasible work-
factor to damp out false positives.

= Look for signatures. Like antivirus programs,
this is defeated by any enemy, as it is the Red
Queen’s own technology, “Around here, it
takes all the running you can do to keep in
the same place” [14].

No, the trends and the facts tell us that the engi-
neering problem statement now facing us is data
protection that is (1) inescapable, (2) invisible,
and (3) future-proof. The rules of economics tell
us that this is a minimax problem, meaning an
optimization tradeoff between preventing trouble
(anticipation costs) and cleaning up trouble (fail-
ure costs). The National Center for Manufacturing
Studies perhaps illustrates this best [15]. Figure
23 shows that near-infinite spending on preven-
tion does get near-zero spending on failure recov-
ery, just as near-zero spending on preventing trou-
ble risks near-infinite spending on failure recovery.
The economically optimal point is the sum of the
two curves, the minimum cost for the maximum
protection—a “minimax” solution. Though not
shown, as the degree of electronic collaboration
rises, the failure costs at a given level of informa-
tion assurance will rise, thus pushing the summed
cost curve upward and rightward as the essential-
ness of electronic collaboration grows.

NCMS

minimax e

A

“\total|costs .-/-_;1/"/anticipation costs

-

7 1"..__failure costs

1 L
Information Assurance Level

FIGURE 23: BEAR VS. AVOID THEM

Summary

In a sense, this essay should be unsurprising and
it should feel unfinished. It is unsurprising, and it
is unfinished. The trend data tells us that our
opposition is gaining ground in an asymmetric
war, a war where our costs accumulate and theirs
do not. It tells us that our substantially increased
levels of effort in protective armamentarium, in
better prevention of vulnerabilities, and in im-
proved detection of all sorts are proving not to be
enough, as despite the rise in protective input
there is a faster rise still in the capabilities of that
which must be protected against. This calls out
for the only advice there is: If you are losing a
game you cannot dfford to lose, change the rules.
The rules we have to change are what it is we
think we are protecting. A lost laptop is economi-
cally meaningless besides the data it contains. A
single point of failure that must exist for absolute
design reasons needs layers of defense-in-depth.
Cascade failure cannot be cost-effectively pre-
vented except by diversification when the efficacy
of protections is, as these graphs show, falling
despite the best efforts of good and honest people.
Because data is where the value is, that is where
the protections must go. If we are lucky, the worst
tradeoffs we get are “DRM and privacy: both or
neither.” If we are unlucky, we get neither free-
dom nor security and neither privacy nor conven-
ience, but the unluckiness will be because we
failed to make necessity be the mother of inven-
tion. The trends are not good, but they are not yet
a disaster. All of them have a consistent direction
and tilt; what will be a disaster is if that direction
and tilt continue, and that disaster will arrive far
sooner than global warming.

;LOGIN: JUNE 2007

REFERENCES

[1] William Gibson, author of Neuromancer, NPR
interview, 30 November 1999.

[2] http://www.gocsi.com/forms/fbi/csi_fbi
_survey.jhtml.

[3] http://antiphishing.org/reports/apwg
_report_december_2006.pdf.

[4] http://eval.symantec.com/mktginfo/enter-
prise/white_papers/ent-whitepaper_internet
_security_threat_report_xi_03_2007.en-us.pdf.

[5] http://icat.nist.gov/icat.cfm?function=statistics.
[6] http://tqmcube.com/tide.php.

[7] http://www.commtouch.com/Site/
ResearchLab/statistics.asp.

[8] http://www.postini.com/stats/.

[9] http://www.webroot.com/pdf/
2006-q2-sos-US.pdf.

[10] Mike Danseglio, Program Manager, Security
Solutions Group, Microsoft, April 3, 2006;
http://www.eweek.com/article2/0,1895,1945808
,00.asp.

[11] http://www.counterpane.com/cgi-bin/
attack-trends4.cgi.

[12] N. Eldredge and S.J. Gould, “Punctuated
Equilibria: An Alternative Tophyletic Gradualism,”
in Models in Paleobiology, edited by T.J.M. Schopf
(Freeman Cooper, 1972).

[13] It is actually better to steal that bandwidth,
since if you register a block of static addresses,
then people will blacklist that block.

[14] L. Carroll, Through the Looking Glass, Chap-
ter 2, 1872, replicated in the “Red Queen Hypoth-
esis” in the study of co-evolution of parasites and
hosts; for that see L. Van Valen, “A New Evolu-
tionary Law,” Evolutionary Theory (1973), vol. 1,
pp-1-30.

[15] http:/trust.ncms.org/pdf/
CostInfoAssur-NCMS.pdf.

A QUANT LOOKS AT THE FUTURE

39

MANY YEARS AGO, WHEN | WAS AN
undergraduate student, when showing
freshmen students around campus we
would point to a large crater-like depres-
sion in the ground and say, “And this is the
site of the old chemistry laboratory” and

Supportjn 9 d smile at the allusion to a horrible accident.
Secu_‘r]"ty] ab OTatOTy The trick worked because people (especially

freshmen) associate chemistry labs with

VASSILIS PREVELAKIS

Vassilis Prevelakis is assistant professor of computer exp]osions. However, Tunm'ng a secuﬁty lab
science at Drexel University in Philadelphia. Over the ’

past 12 years he has been involved in numerous at the un derg raduate level can also lead to

security projects, both as a network administrator « PR .

and as a researcher; currently, he is leading a project mterestmg situations. Care must be taken
that aims to improve security for home networks. so that the expeﬂ'm ents do not diSTUpt the

vp@drexel.edu campus network or, heaven forbid, escape

into the Internet.

Another question is what kind of experiments
should be run so that the students derive real ben-
efits from these labs. We do not want to teach stu-
dents to become script kiddies, learning proce-
dures by rote without really understanding what
is going on. Moreover, students should have the
means to evaluate their proposed solutions to
problems that have been set out for them. In this
way they reinforce their learning by actually put-
ting into use concepts discussed in class. The
labs, thus, do not replace the normal lectures but,
rather, augment them. For the labs to be effective
we need to ensure that students (a) actually spend
time thinking about what they are doing rather
than simply following some checklist, (b) learn
concepts, rather than being trained in the use of
specific programs, and (c) develop their ability to
analyze complex situations and arrive at convinc-
ing solutions to problems.

At the Computer Science Department of Drexel
University we have created a security lab environ-
ment and associated course work with the objec-
tive of meeting these aims. Our goal was to ensure
that students could participate in lab sessions
while also giving them the option of working with
the security lab environment outside the lab ses-
sions. Either way, students should be able to work
independently without interfering with each
other.

Experiments

Let us first discuss a number of experiments that
we created for the lab and then we can describe
the environment we created to run them.

40 ;LOGIN: VOL. 32, NO. 3

;LOGIN: JUNE 2007

Gateway

We use two topologies to try out different experiments. In both cases we
have three hosts (A, B, and C) that are used for the experiment, plus a
fourth host (G), which connects host A to the campus LAN to allow stu-
dents to exchange files with departmental servers. The first one (bus topol-
ogy) is the traditional LAN layout, where all the hosts are connected on
the same LAN (Figure 1a). The star topology shown in Figure 1b is mostly
found in WAN situations, where A, B, and C are routers connecting inter-
nal networks together over long-distance point-to-point links

Alice

= Optional

Alice
Gateway

Bob

FIGURE 1A: BUS TOPOLOGY,
WHERE HOSTS A, B, AND C ARE
CONNECTED ON THE SAME LAN

Bob Candice
Candice
FIGURE 1B: STAR TOPOLOGY, WHERE
A, B, AND C ARE EACH CONNECTED TO
TWO OTHERS VIA SEPARATE LANS

EXPERIMENT 1: ARP SPOOF

In our first experiment we want to fool Bob into talking to the wrong DNS
server and we do this by installing a fake DNS server on Candice and per-
forming an ARP spoofing attack on Bob. The main purpose of this experi-
ment is to show how protocols lacking authentication (such as ARP and
DNS) can be subverted, but it also serves to familiarize the students with
the ways raw packets can be generated by user-level applications.

This experiment has three stages: installing the fake DNS server, construct-
ing and running the program to carry out the ARP spoof attack, and trou-
bleshooting the fake DNS server in order to complete the attack. Students
are provided with a simple DNS server replacement (dproxy) and they
have to configure it on both Alice (the “valid” server) and Candice (the
malicious, or “fake,” DNS server).

We chose dproxy because it is a very simple DNS proxy server. Although
dproxy listens for DNS requests in the same way as a usual DNS server
(e.g., named), rather than resolving the queries itself, it simply uses the
resolver library. The big advantage of this is that dproxy can answer que-
ries by looking at the /etc/hosts configuration file, so we can easily add a
new entry (e.g., www.drexel.edu, but even one belonging to a bogus zone
such as www.priv) by editing the /etc/hosts file.

Students start the experiment by setting up dproxy on Alice and setting up
Bob to use Alice as its DNS server (i.e., adding Alice to the /etc/resolv.conf
file). They also configure dproxy on Candice and add two bogus entries
pointing to itself: one for Alice and a second using a fictitious domain
(www.priv). For example, by assuming that Candice has IP address
192.168.100.3, the new entry in /etc/hosts will look like:

192.168.100.3 alice www.priv

Students then run a few queries (nslookup and ping) to ensure that they
have correctly configured their machines and establish a baseline for obser-

SUPPORTING A SECURITY LABORATORY

41

42

;LOGIN: VOL. 32, NO. 3

vations. They then activate the ARP spoof program on Candice and carry
out the same queries, observing that while Bob now sends its requests to
Candice, the request fails because dproxy uses Candice’s source IP address
and not Alice’s. Students have to solve this problem and run the complete
spoofing operation, fooling Bob into thinking www.priv really exists.

EXPERIMENT 2: ROUTING/FIREWALL

The triangle topology in Figure 1b is used as the basis for a WAN scenario
where A, B, and C are routers connected via point-to-point links.

In the routing experiment students run a routing protocol (we used RIPv2
because it is the easiest to configure) and observe how they can divert traf-
fic to Candice by injecting routes. The fake DNS server from the first
experiment is also used here to exploit the redirection.

By removing the link marked “optional” in the diagram, the same topology
can be used to create a configuration where B can serve either as “man-in-
the-middle” or as a firewall. In the man-in-the-middle scenario, students
observe packets going through B to spy on communications between A and
C. For example, we ask students to use telnet to log onto A from C, while
running tcpdump on B. Then students extract the log-in password from
the packet traces.

In the scenario where B is an IP firewall, students design various configura-
tions showing how B can filter packets, perform network address transla-
tion, etc.

Making All This Happen

Running these experiments in a safe manner while allowing an entire class
of students to work at the same time during the lab session has been a
daunting task. About five years ago we installed a rack with about 20 com-
puters interconnected via a large switch with more than 100 ports. Each
computer had 3 or 4 Ethernet interfaces, and they were all connected to
the switch. By partitioning the switch ports into independent groups
(VLANSs) we could create various interconnection topologies for the rack
machines (Figure 2). On each machine, one of the interfaces was reserved
for management, allowing network access to the machine regardless of the
configuration of the other port interfaces. As a last resort, serial access to
the console ports of each machine was also provided.

Blue VLAN

n®
0069 0000

Green VLAN Black VLAN

FIGURE 2: VARIOUS TOPOLOGIES (LEFT DIAGRAM) CAN BE REP-
RESENTED BY CONFIGURING VLANS ON THE ETHERNET SWITCH
(RIGHT DIAGRAM)

However, the main problem with this approach was that reconfiguring the
switch was extremely laborious and error-prone, and, to make matters
worse, we had to provide special configurations for each machine.

;LOGIN: JUNE 2007

Scripts implementing canned configurations for the switch were developed
and the rack machines were configured to boot from the network and use
NES for their file systems, but still there were problems. For example, if we
allowed students to have access to their home directories on the depart-
mental server they would also have access to the files of other students.
Although NFSv4 supports user authentication, the version of NFS we had
at the time supported client-side authentication, so it was an all-or-nothing
solution. In addition, the number of the machines was inadequate for the
size of the class so we had to split students into groups. Finally, the stu-
dents complained that they did not have access to the machines outside
lab hours, so they could not work on their own.

VMWARE COMES TO THE RESCUE

To address the limitations of the hardware solution, about two years ago
we started migrating our security lab to VMware. The students use a lab
with Linux PCs connected to the campus LAN. There are sufficient PCs in
the room for each student to have his or her own workstation.

The topologies described in the previous section were implemented using
virtual machines (VMs) linked together via virtual networks (vmnets) that
are included in the VMware product. The vmnets may be used to connect
virtual machines together, to link them to the host workstation, or even to
provide direct access (via a virtual Ethernet bridge) to the physical net-
work. For the lab virtual machines we used exclusively host-only networks
that do not allow direct communications with the outside network. For
example, to create the layout in Figure l1a we created one host-only vmnet
and linked all the virtual machines together. For the layout shown in Fig-
ure 1b we created virtual machines with two or three virtual network inter-
faces each and linked them together via three vmnets (one for each side of
the triangle). Students use separate windows for each virtual machine and
so can see output from all three VMs at the same time.

Hosts A, B, and C in Figure 1 are instantiated as separate VMs, whereas
host G is the workstation hosting the VMware session. Each VM runs a
complete installation of OpenBSD 3.8, allowing students to develop pro-
grams and test them in the target environment. Previously, programs that
required administrator access to run (e.g., used raw sockets, low-numbered
ports, etc.) could not be run in the common servers used by the depart-
ment and many students could not run OpenBSD on their own PCs. This
forced students to carry out program debugging during the lab sessions,
which distracted them from the actual lab tasks. With VMware, students
have the option of running the security lab environment on their own per-
sonal computers and can rerun the assignments on their own.

A big problem with running three virtual machines per student is that dur-
ing the beginning of the class, 60 to 90 VMs are booted. Although the CPU
load is not important because students are running VMware on their work-
stations, the file I/O load on the NFS servers is tremendous. This not only
caused serious delays in the initial classes but caused many students to
exceed their disk quotas as they started using the disks associated with
their VMs. We addressed this problem by using a special feature of VM-
ware called “non-persistent virtual disks.” This allows a virtual disk to be
read-only, but in a way that does not cause problems with the operating
system running in the VM. Normally, an operating system expects its boot
disk to be writable, so simply making this disk read-only is bound to cause
problems. Instead, the VMware non-persistent disks allow full read/write

SUPPORTING A SECURITY LABORATORY

43

44

;LOGIN: VOL. 32, NO. 3

capability while the VM environment is running, but once the VM is shut
down, all changes are lost. We can even reboot the guest OS and it will still
see the modified image, as long as we do not restart the virtual machine
environment. More information on non-persistent virtual disks is available
on the VMware Web site [1].

Thus, we created three virtual disk images (one for each of the three ma-
chines in Figure 1) and we asked students to attach these images to their
virtual machines and mark them as non-persistent. Since the volumes are
read-only and belong to the teaching assistant, none of the students can
attach these disks read/write anyway. Using non-persistent disks in turn
necessitates providing some nonvolatile disk space that can be used by stu-
dents to save their work. We addressed this issue by allowing each student
to create another virtual disk, which is stored in the student’s home direc-
tory and is only big enough to contain the student’s personal files. The sec-
ond virtual disk can be mounted at any place in the file system (both man-
ually and automatically during boot), so its existence can be completely
transparent to the student.

Another advantage of using common virtual disks for the operating system
is that new VMs or changes to the configuration of existing machines can
be added quickly and applied to all students at the same time. This makes
it possible to create on short notice new experiments to demonstrate a new
technique or to provide an example for something discussed in class. For
example, in order to get students to carry out code injection attacks, we
created a new VM with an old version of FreeBSD containing a number of
vulnerabilities and asked students to come up with attacks. In this case,
rather than all the students attacking one machine and thus potentially
interfering with one another, we had each student boot a private VM with
the vulnerable system and attack it at leisure.

Running the Labs

With the environment ready and the lab sessions created, a key question
was whether to run them as homework assignments or as actual lab ses-
sions. The former has the advantage that students can go through the
assignments in their own time, and it also reduces the logistics associated
with the lab sessions (booking a room with 30 workstations, making sure
that VMware works correctly on every station, etc.). Moreover, students
prefer to be able to work on the lab sessions outside the (limited) lab
hours. Nevertheless, we feel that carrying out the experiments during the
lab sessions is very important as students who are stuck can be nudged
toward finding the solution. Otherwise, students will simply get the solu-
tion from fellow students and apply it blindly just to get on to the next
question rather than solving the problem.

The next question is how to structure the experiments and, more impor-
tant, how to phrase the instructions and questions to ensure that students
do not simply look ahead to the next steps in order to deduce the answer
to the question. This forced us to think about some way to prevent stu-
dents from looking ahead before they answered the questions.

Our first approach was to use an overhead projector with slides describing
one question at a time and wait till everybody had answered it before mov-
ing to the next one. This failed miserably, as students had to wait for the
slowest one to finish and hence either students were bored or slow stu-
dents were hurried along (or just given the correct answer so that the class
could go on). Also, students could not go back and look at previous ques-

;LOGIN: JUNE 2007

tions or review information given out earlier. We briefly tried handing out
the assignments in printed form, one question at a time, but this meant
that the lab assistants were spending more time distributing sheets of paper
than answering questions.

Finally, we decided to bite the bullet and use an on-line course work sys-
tem (WebCT). Each lab exercise is encoded as an online quiz that prevents
students from changing submitted answers to questions. In this way stu-
dents may proceed at their own pace, but since they receive no points for
skipped questions, they have a powerful disincentive to peek ahead.

Unfortunately, WebCT is a very temperamental system with a lot of obsta-
cles for casual users. For example, at one time, during the lab we found
that the text boxes that students would use to type in their responses were
limited to 100 characters. Since the lab was already in progress, we had no
way (or clue) how to fix this, so students were forced to be brief. (This is
not such a bad thing in retrospect, but one student remarked that the most
challenging aspect of some questions was the requirement that the reply
should be fewer than 100 characters.) Having used WebCT about 10 years
ago, I wish I could go back to that older version, which, while lacking all
the bells and whistles, actually let the user be in control.

Lessons Learned

= Using non-persistent virtual disks for booting the VMs and for storing
the bulk of the data needed for their operation is a clear winner. How-
ever, there have been instances where students lost work when they
shut down their VMware session without copying their work to their
private persistent partition. We are investigating various techniques for
reducing this risk. For example, on virtual machine B (the one used for
the firewall and man-in-the-middle experiments) we have moved most
of the system configuration normally stored in /etc to the private parti-
tion. Initially, students copy an existing partition (with the configura-
tion of B) to their home directory and attach this copy as the second
disk drive on host B. (OpenBSD sees this partition as wdla.) Since they
own this partition, they can make changes to it and these changes will
persist across VMware sessions. Students can always return to the ini-
tial configuration by copying the shared partition over their private
copy, thus destroying all the changes they have made. Of course, once
students start working on their private copy of the /etc directory, we
lose our ability to change virtual machine configurations globally. This
is why we provide this capability on only one of the VMs.

= The extremely rich environment supported by UNIX sometimes works
against us, as we cannot create a platform that contains all possible edi-
tors, shells, development environments, etc., that students are used to
working with. Students thus often have difficulties because they are
not familiar with a particular utility. For example, when we created the
original environment, the default installation of OpenBSD did not
include the emacs editor, and some students complained that they did
not know how to use vi to make changes to various files. Since the lab
environment is currently used only for the security course, students
cannot be expected to spend much time customizing their environ-
ment or learning how to live with its peculiarities.

= Support for graphical user interfaces (GUIs) is needed. Programs such
as Ethereal offer powerful ways of representing and managing captured
data using a GUL We believe that students would benefit from the use
of such programs, but the current lab environment only supports char-

SUPPORTING A SECURITY LABORATORY

45

acter-based consoles. Allowing the X11 window system to run on the
virtual machines is not difficult, but it causes a lot of headaches, such
as performance degradation; worse configuration issues than those dis-
cussed earlier, as students are forced to live with potentially different
window managers, X11 settings, etc.; and more lab assistant time to
help students.

= As practically all students now have powerful laptops or home com-
puters, we are considering the possibility of asking students to install
the entire environment on their own computers and use it to carry out
their regular assignments (i.e., use the security lab environment for all
security course homework). Unfortunately, VMware currently runs
only under Windows and Linux, which means that some students
(e.g., Apple users) will not be able to use the virtual environment. Staff
limitations make supporting multiple VM environments difficult, but
we hope to be able to support Parallels on the Mac in the near future.

= Despite the WebCT-related setbacks, we find the on-line quiz format
the best solution so far, but we are looking for alternatives to WebCT.

The security lab environment is a work-in-progress, as we always find
things that can be improved and we constantly add new experiments or
fine-tune existing ones. Despite the numerous issues we have had to
address over the past four to five years, students enjoy the labs and we

find (through exams and continuous assessment) that their understanding
of security concepts has been improved by the lab experience. We believe
that the same environment can be adapted for use in other systems cours-
es, such as computer networks and operating systems, and we are planning
to support such courses in the future.

REFERENCE

[1] http://www.vmware.com/support/gsx25/doc/disks_modes_gsx.html.

46 ;LOGIN: VOL. 32, NO. 3

DANIEL L. APPELMAN

spam and blogs

PART 2: BLOGS, FOR

GOOD OR ILL

Dan Appelman is legal counsel for the USENIX Asso-
ciation and practices technology law as a partner in
the Silicon Valley office of Heller Ehrman LLP.

dan@hewm.com

This is the second part of a two-part article based
on a tutorial I gave on spam and blogs at the LISA
’06 conference in Washington, D.C., in December
2006. The first part, on spam, appeared in the April
2007 issue of ;login:.

;LOGIN: JUNE 2007

THE EVER-INCREASING USE OF THE
Internet creates new challenges for the sys-
tem administrator. Many of these chal-
lenges have legal dimensions. This is partic-
ularly true of spam and blogs. By some
estimates, over 75% of all email traffic is
spam. In the United States and abroad,
laws have been enacted to regulate spam
with various remedies and varying success
in encouraging compliance. Blogs are
increasingly used not just for personal
expression but also for commercial pur-
poses. It often falls to the system adminis-
trator to design and enforce company poli-
cies to protect against spam, to limit
personal use of blogs using company facili-
ties, and to ensure that the company is in
full compliance with all applicable laws
and regulations.

Blogs have become increasingly popular and easy
to use just in the past few years. Unlike spam,
however, no body of laws has arisen that specifi-
cally addresses or attempts to regulate blogging.
This may be because blogs, unlike spam, do not
inherently impose themselves on unwilling recipi-
ents. Blogs are more passive: One can read them
or ignore them. Readers must search them out,
whereas spam arrives in one’s email inbox unso-
licited.

To a great extent, blogs are simply publications
like any other. The innovation in blogging is that
the Internet reduces the cost of publication to vir-
tually nothing while it enables distribution to the
widest possible audience. Blogging enables every-
one to be a publisher and provides everyone with
a means of reaching an audience with their ideas
and opinions.

Blogs raise the same legal issues that are common
to all other publications. This article focuses on
several of the most important of these: defama-
tion, intellectual property infringement, and
employer-employee relations.

Defa

mation

Defamation is a civil law cause of action where
one person sues another because some statement
made by the other has caused damage to his or
her reputation. To be actionable, the statement

SPAM AND BLOGS, PART 2

47

must be false, the person making it must know it
is false, and the statement must actually result in
injury to the reputation of the person suing.

Often, defamation arises in the context of the
publication of false statements by the media, such
as newspapers or radio or television broadcasting
stations. United States Supreme Court decisions
shield the media against suits by public figures
unless they can show that the defamatory state-
ments about them were made with malicious
intent. However, plaintiffs who are not public
figures only have to show that the injurious
statements were made with a knowledge of their
falsity.

There is every reason to believe that the same
standards applied to the media would apply to
bloggers. The constitutional right of free speech
will usually protect bloggers, even if they make
false statements about others. But the balance tips
toward protecting the reputations of others
against those false statements where the blogger
knows those statements are false and, in the case
of public figures, where the blogger has malicious
intent.

Intellectual Property Infringement—Copyrights

48

Federal copyright law protects authors against
unlawful copying of their articles or other works.
Obviously, copying an entire article written by
someone else and republishing it as one’s own

would be a blatant case of copyright infringement.

Even republishing it and giving the true author
appropriate attribution would still constitute
infringement unless the author gave his or her
consent.

The more difficult cases involve the “fair use”
doctrine. That doctrine balances the author’s right
to control the publication of his or her work with
the importance of a free press. For instance, jour-
nalists are permitted to republish portions of
copyrighted works without obtaining their
authors’ consent, in the interests of serving this
social objective.

However, the fair use doctrine has its limits. Even
journalists cannot republish whole works without
their authors’ consent; and the availability of the
privilege will be balanced against other considera-
tions, such as the purpose and character of the
copying, the nature of the copyrighted work, the
amount and substantiality of the copying, and
whether it will deprive the author of the value of
the original publication.

;LOGIN: VOL. 32, NO. 3

Blogs are publications, and the fair use doctrine
should be as available to them as to the publica-
tions of the mainstream media. Still, the rights of
bloggers to copy and reproduce works of others is
not absolute. Publishing without attribution,
copying whole or major portions of articles,
republishing for commercial gain, and republish-
ing that deprives the author of income are all
highly suspect.

A common practice among bloggers is to link to
third-party content instead of copying it. A few
lawsuits have been filed alleging that linking to
such content without the consent of the author of
that content is a copyright infringement. In one of
those lawsuits, Ticketmaster sued Tickets.com and
lost. Ticketmaster also sued Microsoft on the same
issue, and the suit was settled before a decision
could be reached. Thus far, no court in the United
States has ruled that linking to another’s Web site
content without the other’s consent is illegal.

Incidentally, some readers may wish to know how
to “copyright” their blogs. Since copyrights arise
from the creation of the work, blogs are protected
by copyright without doing anything at all. No
registration is required; neither is the inclusion of
a copyright notice. Nevertheless, I advise my
clients to put a copyright notice prominently on
their blog home pages.

Intellectual Property Infringement—Trade Secrets

Another kind of intellectual property right that
blogs call into question is the right of trade
secrecy. In the United States, state laws make it
illegal to misappropriate confidential information
that gives its owner a commercial advantage from
not being known to competitors. Publishing such
information without the consent of its owner can
certainly constitute a violation of these state laws
and may even result in the loss of that informa-
tion to the public domain.

Bloggers must be very careful not to reveal any
trade-secret information to which they have
access. The fair use doctrine will not shield them
from liability for publishing this category of infor-
mation, particularly if they were or should reason-
ably have been aware of the confidential nature of
this information prior to its publication. Violation
of the state laws protecting trade-secret informa-
tion can result in substantial fines and in some
cases the infringer can be required to reimburse
the plaintiff’s legal fees as well.

Employer-Employee Relations

No area has generated as much interest among
bloggers as the issues that arise in the context of
employer-employee relations. Bloggers write about
their jobs and their employers. They also blog
about unrelated topics during working hours,

thus detracting from the attention they are sup-
posed to be giving to their workplace responsibili-
ties. And increasingly, employers are using blogs
to promote their products and services and to
communicate with their customers.

What rights do employees have to blog about
their employers? Are there any limits to the free
speech rights of employees? To what extent do
employers have the right to prohibit personal
blogging by their employees while on the job?
And when can an employee refuse an employer’s
request to contribute to company blogs?

It is clear that employees can be terminated and
even sued for revealing confidential information
about their employers if that confidential informa-
tion rises to the status of trade secrets. Information
rises to the status of trade secrets when it gives the
employer a commercial advantage in not being
known by its competitors. Employees have a duty
to safeguard the confidential information of their
employers. Often, that duty is made explicit in a
nondisclosure agreement that the employee must
sign. But even without a nondisclosure agreement,
that duty is imposed by law.

Individuals who come upon trade secrets without
breaching any obligation to keep that information
confidential may not be in violation of the law if
they publish that information in blogs. However,
it is difficult for employees to take advantage of
this exception to liability. Employees who blog are
particularly vulnerable to allegations of trade-
secret misappropriation because of the access they
have to the confidential information of their
employers and the presumption that their duty to
keep it secret is absolute.

Employees charged with trade-secret infringement
by their employers often point to the “whistle-
blowing” effect of publication of the illegal or
unethical activities of their employers. There are
laws that reward rather than penalize employees
for disclosing their employers’ secret, but illegal,
activities. But these do not constitute legitimate
trade secrets. Often, activities that the employee
thinks are illegal are not, so the employee makes
that determination at his or her own risk. The
better advice for employees is to consult a lawyer

;LOGIN: JUNE 2007

before disclosing any confidential information
about their employers.

The balance between employer and employee
rights in the workplace differs greatly from state
to state. Some states, such as California and New
York, are very protective of employees and many
others, such as Texas, are much more protective of
employers. Generally, however, employers have a
right to expect their employees to devote com-
plete attention to their duties and responsibilities
during working hours. Employees who engage in
personal blogging during the working day can be
terminated after they receive reasonable notice
that those activities are inappropriate. The right to
pursue free speech in the workplace is trumped
by the employers’ interest in maintaining a prof-
itable and efficient business.

Some laws impose affirmative obligations on
employers to regulate certain kinds of speech.
Examples include content that may constitute
harassment of other employees or that contributes
to an unsafe work environment. Employers can
also curtail actions by their employees to the
extent necessary to protect themselves from suit
by third parties for unlawfully revealing the third
party’s trade secrets and confidential information.
But the employer’s powers in these circumstances
stem from laws of a more general purpose rather
than laws aimed specifically at blogging.

Implications for System Administrators

Many system administrators are aware of increas-
ing blogging activity by employees using their
employers’ systems. It is clear that the constitu-
tional rights of free speech and free press are not
unlimited. Those rights are always balanced
against countervailing rights and interests, such as
the right not to have one’s reputation injured by
false statements, the right to protect one’s intellec-
tual property, and an employer’s right to the undi-
luted loyalty and focus of its employees.

Employers should develop policies that address
employee blogging. At a minimum, these policies
should prohibit publishing content that harasses
other employees or damages their reputations and
content that jeopardizes the employer’s intellec-
tual property rights. Further, these policies should
address whether blogging using the employer’s
facilities is even a permitted activity.

It is often useful for employer blogging policies to
be developed with the input of the employer’s sys-
tem administrators, since they are the ones who

SPAM AND BLOGS, PART 2 49

50

are frequently tasked with monitoring compliance
with those policies. At a minimum, system admin-
istrators need to be familiar with those policies
and given the tools and authority to enforce them.
The system administrator should question any
policies that seem to be overreaching or that do
not adequately address any of the issues described
in this article.

As blogging becomes more prevalent in the work-
place and outside of it, system administrators will
often be expected to inform their employers of

any activities that appear to be illegal or that may
violate established employer policies. Often it will
not be easy to make the initial determination.
Clear policies will help, but the system adminis-
trator will always be working in an environment
of substantial ambiguity and legal uncertainty.
Asking for help from the employer or the com-
pany’s legal counsel at appropriate times will
relieve the system administrator from the full bur-
den of determining which blogging activities are
appropriate and which are not.

LinuxConf Europe 2007 K3

occo
°

[

At the start of September 2007, a series of Linux events will
take place in Cambridge, UK. From Sunday, Sept. 2, to Tuesday,
Sept. 4, there’ll be a significant new technical conference,
incorporating the best elements from the UK Unix User
Group’s Linux Developers’ Conferences (2006) and the
German Unix User Group’s Linux-Kongress (2006).

This event will be followed by the invitation-only 2007 Linux
Kernel Developers Summit, sponsored by USENIX, on
Sept. 4—6. Python enthusiasts may also wish to attend

PyCon UK in Birmingham on Sept. 8-9.

;LOGIN: VOL. 32, NO. 3

SYSADMINS HAVE TO KNOW MORE
than just their systems to do their jobs
well. You have to understand people,
finance, and your organization’s business
to spend its money wisely and protect it
from all sorts of threats. IT people tend to

SCﬁ pt k] dd] €5 think of threats using a preparation
W]th bT] efcase S /attack/response framework, even when

the threats are not malicious. You can then
compare risks and allocate resources ratio-

ALEXANDER MUENTZ

THE LEGAL SYSTEM AS THREAT nally. If threats can affect your systems,
Alexander Muentz is both a sysadmin (since 1999) your users, or their data, they should be on
and a lawyer (admitted to the bar in Pennsylvania your mind, even if most of the responsibil-
and New Jersey). He'd love to be a hacker public .

defender but has to earn his living helping law firms 1t)/ rests on someone else.

do electronic discovery. When he’s not lawgeeking,
he tries to spend time with his wife and his motor-
cycle. So why not think about legal processes in the

same way? Some resemble existing attacks (hav-
ing your systems seized is like a DoS attack),
whereas others are unique. I'll discuss search war-
rants, wiretaps, subpoenas, and discovery orders
and their effects on users, systems, and data.
Because this is a significantly deeper subject than
can be explained in a small book, let alone a sin-
gle article, I'll just be glossing over important
nuances to give you an overview of the issues.
This article only discusses U.S. federal law, but
many state laws resemble federal ones. This isn't
legal advice so much as it is the start of a conver-
sation that you can finish with your IT staff or
legal counsel. Let’s talk about a few threats.

lex@successfulseasons.com

The Search Warrant: Noisy, Disruptive, and
Potentially Destructive

A search warrant execution to an IT defender is
like an invasion and a DoS attack wrapped up
together. Law enforcement officers (LEOs) enter
the area with enough strength to control the area
and to prevent evidence or people of interest from
leaving. Intimidation is a second benefit to such
overwhelming force—scared people often
unknowingly waive their rights.

A search warrant is a legal document issued by a
neutral judicial officer such as a judge and speci-
fies both the area to be searched and what is to be
searched for and taken or seized [1]. There are
some specifics about how the warrant is obtained,
but I'll not delve into that, for two reasons: (1)
they're rather complex (even to lawyers); (2) you
can’t stop or interfere with a search while it's being
executed. Your concern should be limited to two

;LOGIN: JUNE 2007 SCRIPT KIDDIES WITH BRIEFCASES 51

52

;LOGIN: VOL. 32, NO. 3

potentially conflicting interests: preventing disruption to your organiza-
tion, and not waiving your rights.

It helps to focus on the three distinct phases of such a legal attack:

m Pre-attack: Defenses include redundant systems in multiple places,
good backups, and an attorney on retainer who is familiar with your
operations.

= During the attack: Either be quiet or be helpful. Protect your rights.
Don't interfere.

= Post-attack cleanup: Transfer over to untouched systems and restore
from backups. Attack the warrant and file suit for damages and/or
return of equipment or data.

During the Search

LEOs with a warrant to search and seize electronic evidence have some
discretion about the execution. They can take copies of the evidence,
media, or entire systems that they believe contain what they’re looking for
[2]. Although letting them take forensic copies of your systems may be
annoying, wholesale removal of several servers is far worse. There’s an
obvious temptation to assist the LEOs so that they don't feel the need to
truck your entire server room back to their office. Generally, I'd recom-
mend keeping the conversation to a minimum, both to stay safe and to
prevent expansion of the scope of the search. LEOs can expand the search
if you grant permission, which you may do during the course of the dis-
cussion. You may also unintentionally admit knowledge of or control over
evidence, which may make you “of interest” to the LEOs. That’s not a good
thing. Ever.

Imagine the following hypothetical situation: A LEO arrives with a warrant
to search system Al for Alice’s email. Bob is the sysadmin for Al and A2.
The LEO, while debating on whether or not to put Al on a hand truck,
asks Bob if he can look at Alice’s files on A2 or Abe’s files on Al. If Bob
doesn't clearly say no, the LEO may start looking. Or, imagine that the
LEO’ warrant includes A3, a system on which only Alice has a login. If
Bob, attempting to be helpful, knows Alice’s password on A3 and gives it
to the LEO, he’s now opened himself up to possessing whatever is on A3.

I want to end this section with two final ideas of what to do during the
search. First off, do not interfere with the search. Such behavior may subject
you to several criminal charges, in addition to charges related to whatever
the search was about. Second, have a witness or two available to watch.
You may want an additional person who can say what happened during the
search, in case your recollection disagrees with the LEO’s.

After the Search

If you have good backups or alternate sites, you can recover or cut over,
minimizing your total outage. If the LEO took any systems, your lawyer
can sue for their return [3] and also attempt to exclude the evidence from
trial if there’s a flaw in the search warrant (evidence gained from a incor-
rectly obtained or executed warrant can be suppressed prior to its admis-
sion in court).

;LOGIN: JUNE 2007

Wiretaps

IF YOU'RE THE TARGET

The attack profile: Quiet and incriminating.

= Pre-attack: Defenses include point-to-point encryption under your
control.

= During the attack: There’s no defense. If the wiretapping is done cor-
rectly, you won’t know until it’s too late.

= Post-attack cleanup: Suppress the evidence in court.

Wiretaps aren't just for phones anymore. LEOs may intercept IP traffic
with a valid wiretap warrant or with the permission of the intended recipi-
ent [4]. 'm not going to discuss Foreign Intelligence Surveillance Act
(FISA [5) wiretaps because I think that’s still a moving target. I hope it will
be rare for readers to be the target of a regular LEO wiretap (also known as
a Title III [6]), but I think it’s helpful to understand them.

A LEO with a warrant can request that a wiretap be placed somewhere on
a network where it can acquire all the traffic sent and received from the
target, without the target’s knowledge. It is unlawful for the wiretap to
acquire “innocent” traffic, and this responsibility falls to the provider of
the network, not the LEO. Encryption can shield the communications as
long as it takes to decrypt the traffic or acquire the key. If the service
provider has the key, the service provider can be forced to divulge it with a
court order. Although the key may be acquired with a search warrant or
subpoena, at least the target is informed of the lack of privacy.

IF YOU’RE THE PROVIDER OF THE SERVICE

The attack profile: Confusion, stress, and expense.

= Pre-attack: Defenses include the ability to carve out traffic to any host
or user.
= During the attack: Have network staff ready to assist the LEO.

Providers of electronic communication services must accommodate valid
wiretap warrants, allowing LEOs to remotely acquire targeted traffic while
ignoring innocent traffic [7]. The provider must carve out any requested IP
traffic or communications and forward them to law enforcement. If the
provider encrypts the traffic, it must also decrypt it or make the keys avail-
able as well. There’s some controversy about who is a “provider” under this
legislation, as well as whether or not the wiretap can be remotely activated
without the intervention or knowledge of the provider. But such contro-
versy is the subject of another article.

SUBPOENAS AND DISCOVERY

The attack profile: Slow but invasive.

= Pre-attack: Defenses include a data retention/destruction policy. You
need to be able to search all of your storage for relevant documents.

= During the attack: Work closely with legal representation.

= Post-attack cleanup: Expect repeat requests and be ready to explain
what you did.

SCRIPT KIDDIES WITH BRIEFCASES

53

54

;LOGIN: VOL. 32, NO. 3

Although there are some legal differences between subpoenas and discov-
ery, the two are similar from an IT defender’s point of view. They’re both
legal orders to provide information, and since more information is stored
electronically, you're going to be asked to help out if your organization is
served with a subpoena or is a party to a lawsuit. Being able to retrieve
information quickly and to honestly claim that you've searched all your
files will make you golden.

First off, a sensible data retention policy is important. Talk to your counsel
about what you have to keep and for how long. Be willing to explain how
backups work in layman’s terms. Once you have a retention policy that
you can live with, follow it. If it says keep data for no longer than three
years, make sure you've erased or destroyed older media. This dovetails
into the second half of your pre-attack defenses. Knowing what you have
prevents expensive mistakes.

A short war story is worth recounting here: When I was a backup admin, 1
was helping an outside law firm in searching through our archives. After
searching the backups that I knew about, I gave them all the documents
matching the search terms the form provided. Imagine my surprise when
someone found a crate of DLTs from before my time, but within the scope
of the request. The outside counsel almost had a heart attack. Lucky for
us, the tapes had been stored above a Nuclear Magnetic Resonance
machine, and they were all blank. Discovering relevant information later
makes you look dishonest, and hiding it would have made us dishonest.

SUBPOENAS AND DISCOVERY: WHERE THEY DIFFER

Subpoenas do the heavy lifting in legal investigations. Grand juries, regula-
tory agencies, and courts can all issue them. The two basic types of sub-
poenas are Duces Tecum (bring us stuff) and Ad Testificandum (come and
testify under oath). You can also get one if your organization has informa-
tion necessary to resolve a lawsuit between other people. Dealing with a
subpoena is less disruptive than a search warrant—at the minimum, you
usually have a few days to respond. If the request is difficult to comply
with, counsel may be able to narrow the scope to make it easier. (Don’t
you wish you could do that with your other projects?) Unfortunately, not
too much is protected from a subpoena other than trade secrets and some
client-attorney communications (for example, Rule 45 of the Federal Rules
of Civil Procedure protects trade secrets and communications normally
under some privilege). As long as it isn’t abusive, overly burdensome, or
not likely to lead to relevant evidence, it may have to be brought to the
issuer.

Discovery entails sharing of relevant information between parties. Simply
put, if you are in a lawsuit, you have to give the other side any information
(discovery) you have that may help your adversary’s case. You also have a
duty to preserve any of that information when litigation becomes likely. So
does your adversary. The only relevant information that you can withhold
are some attorney-related files. Under the new Federal Rules of Civil Pro-
cedure, litigants must either hand over discovery that is in electronic stor-
age or divulge the nature and location of that discovery fairly soon after
the lawsuit is filed [8].

;LOGIN: JUNE 2007

WORKING CLOSELY WITH YOUR LEGAL COUNSEL

When your organization has been served with a subpoena or discovery
request, someone has to collect all the information that “responds” to the
request. You'll be collecting a lot of it, and counsel will be reviewing it to
see whether it’s responsive. Your lawyers will be pulling long hours looking
through each file you bring them. They’ll need help with viewing, sorting,
and interpreting the mountain of data. This may require them to hire temp
workers or to export the files to their outside law firm. Being helpful here
will let your organization save money and effort.

You may be called on to explain what you did in collecting the informa-
tion, either to opposing counsel or at a grand jury or trial. If this is a dis-
covery request, there are a few additional ways you can help. First, you can
identify information that you hold that is very time-consuming or expen-
sive to deliver, such as data on obsolete or failing media [9]. Counsel can
go back to the court and exclude or reduce the amount of such discovery.

Conclusion

In closing, knowing what I just told you might allow you to be proactive
when dealing with your organization’s legal department, instead of waiting
for the lawyers to come and impose difficult rules upon you. Let them
know that you want to coordinate defenses and protect your users and the
organization as a whole. They may be pleasantly surprised.

REFERENCES

[1] U.S. Constitution, Amendment 4.

[2] “Searching and Seizing Computers and Obtaining Electronic Evidence
in Criminal Investigations,” CCIPS, Department of Justice (available at
www.cybercrime.gov/s&smanual2002.htm).

3] Federal Rules of Criminal Procedure, 41(e).
4] 18 U.S.C. 88 2518, 2511(2)(0).
5] FISA (50 U.S.C § 1801 et seq).

6] Title III of the 1968 Omnibus Crime Control Act. It's been modified by
subsequent legislation, including the Stored Communications Act (18
U.S.C. §82701-2722), Electronic Communications Privacy Act (18 U.S.C.
§§ 2501 et seq) and a few others you may have heard of.

[7] CALEA, 108 Stat 4729.
[8] See FRCP 26(a)(1)(B).
[9] See FRCP 26(b)(2)(B).

[
[
[
[

SCRIPT KIDDIES WITH BRIEFCASES

55

DAVID BLANK-EDELMAN

practical Perl tools:
impractical Perl
tools

David N. Blank-Edelman is the Director of Technology

I’'M WRITING THIS COLUMN RIGHT
around the unofficial U.S. holiday of April
Fool’s Day. | realize you won't be reading it
until several months after this day has
passed, but pretend the U.S. Congress was
so enamored with how well the daylight-
saving-time rules changes went that they
began moving around other dates on the
calendar willy-nilly.

at the Northeastern University College of Computer
and Information Science and the author of the book
Perl for System Administration (O'Reilly, 2000). He has
spent the past 20 years as a system/network admin-
istrator in large multi-platform environments,
including Brandeis University, Cambridge Technology
Group, and the MIT Media Laboratory. He was the
program chair of the LISA 'o5 conference and one of
the LISA ’06 Invited Talks co-chairs.

dnb@ccs.neu.edu

Given that you are now reading this column on
the new date for April Fool’s Day, I now have the
license to look at some of the least practical of the
Perl modules available. However, despite my best
attempts to the contrary, I fear you'll probably
learn something practical from this exploration
(but shh, don't tell anyone!).

The mother lode of impracticality in the Perl
world is the Acme:: namespace. In the gaggle of
modules whose name begins with Acme:: you can
find modules that extend the language in weird
and wacky ways or play around with various pro-
gramming ideas. These modules range from the
exceptionally clever to the downright stupid. But
sometimes even stupid code examples can teach
us something.

Cleaner, Brighter Code

56

;LOGIN: VOL. 32, NO. 3

The progenitor of the Acme:: namespace is the
module Acme::Bleach (originally just called
Bleach.pm) by Damian Conway. Written in slight-
ly cryptic code (there’s a good explanation of it at
http://www.perlmonks.org/?node_id=270023), the
Acme::Bleach module takes a script that consists
of perfectly ordinary looking Perl code like:

use Acme::Bleach;

open my SEXAMPLE, '<’, "example.txt’ or die
“Can't open example: $1\n";
while (<$SEXAMPLE>){
print;
}
close SEXAMPLE;

and transforms the file into:
use Acme::Bleach;

(plus another 107 lines of carefully selected
whitespace characters)

That file, believe it or not, actually runs and does the same thing as the
original program. This idea of a program that could rewrite itself into an
obfuscated form that is self-deobfuscating on the fly quickly caught on in
the Per]l community as a fun thing to try. Now there are a number of
modules like this available. Some of them are actually bordering on being
useful.

Let’s look at two examples. (1) Acme::PerlTidy runs the Perl::Tidy cleanup
process on itself every time it is run, thus assuring your code is always as

readable as possible. (2) Acme::PerIML takes your perl code and translates
it to an XML representation. For example, the sample code above (substi-

tuting Acme::PerIML for Acme::Bleach) becomes:

use Acme::PerIML;

<document><token_whitespace></token_whitespace>
<statement><token_word>open</token_word><token_whitespace></token_whitespace>
<token_word>my</token_word><token_whitespace></token_whitespace>
<token_symbol>$EXAMPLE</token_symbol>
<token_operator>,</token_operator><token_whitespace></token_whitespace>
<token_quote_single>'<'</token_quote_single>
<token_operator>,</token_operator><token_whitespace></token_whitespace>
<token_qguote_single>'example.txt'</token_quote_single>
<token_whitespace></token_whitespace>
<token_operator>or</token_operator><token_whitespace></token_whitespace>
<token_word>die</token_word><token_whitespace></token_whitespace>
<token_quote_double>&qguot;Can't open example:$\n"</token_quote_double>
<token_structure>;</token_structure>

</statement><token_whitespace></token_whitespace>
<statement_compound><token_word>while</token_word><token_whitespace></token_whitespace>
<structure_condition><token_structure>(</token_structure>
<statement_expression><token_quotelike_readline><$EXAMPLE> </token_quotelike_readline>
</statement_expression><token_structure>)</ token_structure>

</structure_condition>

<structure_block><token_structure>{</token_structure>< token_whitespace>

(plus more lines of a rather ugly XML representation of the Perl code).

You could imagine someone finding this transformation to be actually
helpful, perhaps in conjunction with an XML database or XML accelera-
tion appliance.

Before we leave the Acme::Bleach family to look at more useful modules, I
think it is worth pointing out that the general concept of messing with the
source code of a script right before it is executed is an interesting one that
opens up many possibilities.

Perl has had a feature to do this for some time (although it isn’t used by
the Acme::Bleach module) called “source filtering.” With source filtering
you can write code that processes the source code being read into the Perl
interpreter before it is executed. If you can fiddle with source like this before
handing it to Perl to interpret it gives you the power to write your source
in any form you'd like (just as long as it eventually can be transformed
back to basic Perl syntax). Just to show the power of the concept, Damian
Conway has written a module that allows you to program in Perl using
Latin. See the perlfilter man page if you are interested in this concept.

;LOGIN: JUNE 2007 PRACTICAL PERL TOOLS: IMPRACTICAL PERL TOOLS 57

58

;LOGIN: VOL. 32, NO. 3

Not Just Fun and Games

The set of Acme:: modules I tend to respect the most are those that play
with various language concepts or attempt to solve real problems while
still maintaining a sense of humor. An example of the latter is
Acme::RemoteINC, which describes itself as the “Slowest Possible Module
Loading.” That’s being overly modest. What it really does is fetch a module
using FTP from some repository in a transparent way if it isn’t available
when the program runs. Even if this turns out to be a slow operation, you
have to admit the concept is cool and ripe for further exploration.

Similarly strange but very clever in its own way is Acme::Scripticide, which
allows you to write scripts that delete themselves. Why is this useful? The
author explains this in the documentation:

Believe it or not this is handy if you have a one time job to execute:

$script uses Acme::Scripticide
system $script if -e $script;

or say to create static files from a database:

in flowers.pl (copy this to whatever names you want and execute:)
use Acme::Scripticide qw(good_bye_cruel_world);
good_bye_cruel_world(’.html’, get_html($0));

now flowers.pl does not exist and flowers.html is there.

You could have a directory full of those types of scripts and glob() them
in and execute each one; once that is done, you have a directory of cor-
responding static html files.

I get excited about stuff like this because it opens up a whole new avenue
of thinking for solving certain kinds of problems.

Mucking about with language constructs using Acme:: modules has a simi-
lar expanding action on one’s brain. For example, the Acme::BottomsUp
module lets you order your really long compound Perl statements closer to
the way you might explain the statement to someone. Once again I'm
going to quote from a module’s documentation, because it has a superb
example. It shows that a code fragment like this:

my @arr = (1..10);
print # lastly, display result

join ":", # and glue together

map { $_**3} # then cube each one
grep{$_% 2} # then get the odd ones
@arr # first, start with numbers

“reads better” if you use the Acme::BottomsUp module like so:
my @arr = (1..10);

use Acme::BottomsUp;

@arr # first, start w/ numbers
grep{$_% 2} # then get the odd ones
map { $_**3} # then cube each one
join ", # and glue together
print # lastly, display result

i

no Acme::BottomsUp;

;LOGIN: JUNE 2007

If you've worked with other programming languages that use a different
statement order, you won't find this idea to be particularly revolutionary.
But for someone who has only written code like the “before” sample here,
this module might provide a welcome ponderable about language design.

Let me give you one last titillating example in the language vein before we
move on: Acme::use::strict::with::pride. This module is designed (and I
quote) to “enforce bondage and discipline on very naughty modules.” As
soon as you load this module, all subsequent modules loaded by the script
via “use” or “require” will find themselves running with use strict and use
warnings turned on (and I quote again) “whether they like it or not.”

Azucsiwep provides us with two things:

1. The chance to enforce the same level of discipline on the modules you
import from someone else that you might impose on yourself when
writing code.

2. Another good ponderable about what other sorts of context or manip-
ulation could be applied to these external modules as they are loaded.

Getting More Entertaining

For a column with “impractical” in the name we’re drifting perilously close
to abject seriousness. Let’s get a little lighter by looking at two modules
that solve a “problem” that we may not have considered easily solvable.

The first module is actually not necessary as of this writing but it is nice to
know it exists. Acme::DNS::Correct was written to correct for a condition
that afflicted the Internet for a brief while back in 2003. This was the great
VeriSign SiteFinder debacle. At some point VeriSign decided it would help
the Internet by making sure that all domain names in the .COM and .NET
top-level domains would resolve to something when queried, even the
ones that didn't exist. This broke all sorts of things and so modules such as
Acme::DNS::Correct were developed.

Acme::DNS::Correct lets you do all of the standard Net::DNS resolution
stuff but is smart enough to remove all references to the SROOT_OF_EVIL,
VeriSign’s SiteFinder server, when it encounters them. Luckily that “service”
was quickly run out of town. Earthlink pulled a similar stunt earlier this
year (http://kb.earthlink.net/case.asp?article=187117), so it is good to know
that modules like this are still available should this idea rear its ugly head in
any substantial way again.

A second Acme:: problem-solver module is the Acme::MetaSyntactic breed
of modules. Acme::MetaSyntactic is dedicated to the problem of finding
good example variable names when “$foo” and “@bar” ceases to cut it.
tend to use “$fred”, “$barney”, and “@betty” when teaching but thanks to
this module it is clear that I've been limiting myself. The module has many,
many themes (there are 104 as of this writing) from many different
sources. It ships with a helper script called meta that allows you to say:

$ meta teletubbies 3 # give 3 example variable names using this theme
Noo_Noo

Laa_Laa

Tinky_Winky

$ meta sins 3
laziness
gluttony
pride

PRACTICAL PERL TOOLS: IMPRACTICAL PERL TOOLS

59

60

;LOGIN: VOL. 32, NO. 3

$ meta thunderbirds 3
Brains

Gordon_Tracy

Parker

You'll never be without interesting example variable names again.

OK, I Lied; It Is All Fun and Games

As a way of ending this month’s column with a smile, let me stick to my
guns and show you three modules that are legitimately of dubious practical
value but are amusing nonetheless.

The first is Acme::Test::Weather. Acme::Test::Weather is meant to be like
the other testing-oriented modules (Test::More, Test::Simple, etc.) I first
wrote about almost precisely a year ago in this column. The difference is
that instead of providing testing primitives that perform comparisons such
as “Is the result of subroutine() eq to this string?” it provides tests such as:

is_cloudy()
isnt_snowing()
eq_fahrenheit()
It_humidity()

The module allows you to write tests based on the current weather for the
machine running this test. Seriously. To make this happen it first attempts
to look up the IP address’s location using CAIDA::NetGeo::Client. With
this location it calls Weather::Underground to find the current weather for
that location. Why does it do this? The doc says, “Because, you know; it
may be important to your Perl module that it's raining outside.”

(As a related aside, I have to confess that in one of my classes 1 show peo-
ple Perl code that behaves a certain way based on the current phase of the
moon. Maybe I need to package this into its own Acme:: module?)

The second of our closing modules will mostly amuse the computer sci-
ence readers. Let me let it speak for itself:

Acme::HaltingProblem - A program to decide whether a given program
halts

I would show you some sample code that uses this module, but the docu-
mentation lists the following bug:

This code does not correctly deal with the case where the machine does
not halt.

And finally, there is Acme::Morse::Audible. Like Acme::Bleach, the first
time you run it it rewrites the script containing your original source code.
In this case the source code becomes a real MIDI file containing the origi-
nal source code: the original source code translated into Morse code, that
is. Once you strip out the leading “use Acme::Morse::Audible;” line any-
thing that can play back MIDI files will let you listen to your Perl code as
it would be rendered in dots and dashes. And yes, if you leave the first line
intact the obfuscated script still runs fine.

At best the idea of translating your programs into audible representations
may inspire some new great ideas (or some nostalgia for the days when lis-
tening to relays could help debug programs). At worst this module’s very
existence tickles me pink. On April Fool’s Day that’s good enough for me.
Take care, and I'll see you next time.

writing for
;login:

Writing is not easy for most of
us. Having your writing rejected,
for any reason, is no fun at all.
The way to get your articles pub-
lished in ;login:, with the least
effort on your part and on the
part of the staff of ;login:, is to
submit a proposal first.

PROPOSALS

In the world of publishing, writ-
ing a proposal is nothing new. If
you plan on writing a book, you
need to write one chapter, a pro-
posed table of contents, and the
proposal itself and send the
package to a book publisher.
Writing the entire book first is
asking for rejection, unless you
are a well-known, popular
writer.

;login: proposals are not like
paper submission abstracts. We
are not asking you to write a
draft of the article as the pro-
posal, but instead to describe the
article you wish to write. There
are some elements that you will
want to include in any proposal:

= What’s the topic of the article?

= What type of article is it (case
study, tutorial, editorial, mini-
paper, etc.)?

= Who is the intended audience
(syadmins, programmers, secu-
rity wonks, network admins,
etc.)?

= Why does this article need to
be read?

= What, if any, non-text ele-
ments (illustrations, code, dia-
grams, etc.) will be included?

= What is the approximate
length of the article?

Start out by answering each of
those six questions. In answering
the question about length, bear
in mind that a page in ;login: is
about 600 words. It is unusual
for us to publish a one-page arti-
cle or one over eight pages in
length, but it can happen, and it
will, if your article deserves it.
We suggest, however, that you
try to keep your article between
two and five pages, as this
matches the attention span of
many people.

The answer to the question
about why the article needs to be
read is the place to wax enthusi-
astic. We do not want marketing,
but your most eloquent explana-
tion of why this article is impor-
tant to the readership of ;login:,
which is also the membership of
USENIX.

UNACCEPTABLE ARTICLES

;login: will not publish certain
articles. These include but are
not limited to:

= Previously published
articles. A piece that has
appeared on your own
Web server but not been
posted to USENET or
slashdot is not consid-
ered to have been pub-
lished.

= Marketing pieces of any
type. We don’t accept
articles about products.
“Marketing” does not
include being enthusias-
tic about a new tool or
software that you can
download for free, and
you are encouraged to
write case studies of
hardware or software
that you helped install
and configure, as long

as you are not affiliated
with or paid by the
company you are
writing about.

= Personal attacks

FORMAT

The initial reading of your article
will be done by people using
UNIX systems. Later phases
involve Macs, but please send us
text/plain formatted documents
for the proposal. Send proposals
to login@usenix.org.

DEADLINES

For our publishing deadlines,
including the time you can
expect to be asked to read proofs
of your article, see the online
schedule at http://www.usenix
.org/publications/login/sched
html.

COPYRIGHT

You own the copyright to your
work and grant USENIX permis-
sion to publish it in ;login: and
on the Web. USENIX owns the
copyright on the collection that
is each issue of ;login:.

You have control over who may
reprint your text; financial nego-
tiations are a private matter
between you and any reprinter.

FOCUS ISSUES

In the past, there has been only
one focus issue per year, the
December Security edition. In
the future, each issue may have
one or more suggested focuses,
tied either to events that will
happen soon after ;login: has
been delivered or events that
are summarized in that edition.

ROBERT G.

FERRELL

/dev/random

Robert G. Ferrell is a chronically underemployed
information security geek who enjoys surfing (the
Internet), sashimi (it makes great bait), and long
walks (to the coffee machine and back).

rgferrell@gmail.com

OVER TOO MUCH FINE BELGIAN ALE
one night deep in my largely fictitious past,
| decided to create my own file system. It
wouldn’t be anything fancy, | thought, just
create a good, basic, reliable workhorse for
the OS | would never get around to writing,
either. | wanted to call it (the operating sys-
tem) OreOS because | had the munchies

at the time. Copyright issues seemed
inevitable, however, so, to avoid legal en-
tanglements and strike a blow for truth in
advertising, | next named it ZenOS. An
operating system that doesn't really oper-
ate anything is, after all, something of a
paradox. The logical name for this new file
system would therefore have been ZFS, but,
sadly, Sun had nabbed that one out from
under me. | finally settled on RGFS, on the
supposition that no one else would want to
name a file system using my initials.

;LOGIN: VOL. 32, NO. 3

Shortly thereafter I discovered that the German
company Actum had a product called Zenos,
although any durn fool can see this isn’t the same
thing as ZenOS. Their site was also in German,
unfortunately, and since all the Deutsche T know I
learned from Hogan’s Heroes, I wasn't able to make
heads or tails of what Zenos was supposed to do.
In the interest of clarity and because I could
already feel the hot, weaselly breath of intellectual
property lawyers wilting my 70% post-consumer
fiber shirt collar, I decided that discretion was the
better, or at least less litigious, part of valor.

Most vendors solve this branding conundrum by
just tacking “nix” onto the first syllable of some
company-related word in the established evolu-
tionary tradition of organisms mined from the
Mother Code. My OS wasn'’t likely to resemble
UNIX in any way, however, owing to the fact that
I really don’t understand how operating systems
work, so I decided to eschew this nomenclatural
methodology for something more novel and fit-
ting. Besides, who wants to run something called
“Robnix” (which sounds like a bad Web comic or
a direct-to-DVD family action movie, an oxy-
moron if ever I've seen one)?

“What,” I therefore inquired of myself, “would
one reasonably call an operating system like
mine—one still in the, um, formative stages?” The
answer came out of the blue, as epiphanies are

wont to, like unto the arrival of a sinus headache
shortly after stumbling into a field of blooming
goldenrod: EmbryOS! As a name this had it all: It
was descriptive, topical, vaguely biological, and
relatively easy to print diagonally across a box in
large, colorful letters. I had obviously missed my
Madison Avenue calling long ago, at an early stage
(probably between pupa and larva). Happily I sat
back and envisioned the Web 3.0 HD 1080i 64-bit
multimedia extravaganza (I figured 2.0 would be
passé by the time I get around to an actual re-
lease), the brochures, the full-page ads in slick
magazines, the IPO, and my eventual six-bedroom
cabania in the Bahamas, complete with fire-engine-
red Porsche Carrera GT in the garage. Must . . .
not . . . hyperventilate.

I put at least two full beers’ worth of thought into
the design of RGFS, and I came to the conclusion
that journaling is just so late *90s. It was time to
move file system architecture into the twenty-first
century, I decided, so RGFS should keep track of
changes not in a journal, but in a blog. That way,
the system itself can add comments and attach
still images, Flash presentations (what do you call
Flash contained in flash memory? HyperFlash?)
and even YouTube movies or streaming multime-
dia to the usual boring ol file information. I
might need to up the block size to, say, a terabyte
or so to accommodate this new architecture, and
that could perhaps slow down seek times a wee
bit, but progress requires sacrifice, right?

File Blogging, or Flogging, might well be the file
system wave of the future. It will render slack
space obsolete, since every last bit will now be at
a premium. Entire drives will need to be dedi-
cated, not to the actual primary data itself, but to
the metadata attached to it. We might even do
away with the primary data altogether. RAID pro-
tocols will have to be adjusted accordingly, as
well. Heck, let’s just drop the RAID nonsense and
ensure data redundancy using BitTorrent. Every
storage device in the network neighborhood can
host a stripe or mirror partition of every other

;LOGIN: JUNE 2007

one. SAN will now stand for Symbiotic Area Net-
work.

Once computers are free—nay, required—to keep
their own flogs, who knows what interesting and
useful intel we can gain from plumbing their
innermost ruminations? Will the dual-core
processors consider themselves superior to their
monolithic brethren? Will those employing LDAP
have DNS envy? Will they list their favorite bands
and complain endlessly about how we don’t
understand them?

While I'm on a roll, innovation-wise, I may as
well implement some other ideas I've been kick-
ing around, such as spanning the superblock
across several volumes and encrypting the magic
number. (Speaking of which, I'm thinking of
incorporating a separate hardware data path just
for passing around file system labels. T'll call it the
Magic Bus.) The whole inode thing is hopelessly
old-fashioned, too. 'm updating mine to iN0Od3z
and giving them their own MySpace page. Any
machine that wants to add content to a file system
can download them there.

EmbryOS/RGFS will of course be Open Source. In
fact, I'm going to take this one step further and
declare it to be Pro-Am Invitational Source, which
means that I invite any programmer, be he or she
professional or hobbyist, actually to create the
source for me in the first place. You'll receive full
credit for your input, naturally, in the End User
License Agreement just below “EXCLUSION OF
INCIDENTAL, CONSEQUENTIAL AND CER-
TAIN OTHER DAMAGES.”

I ask for help not because I'm lazy and incompe-
tent, but merely to protect the consumer. If I have
to do the coding myself it may end up a little
wonky. Inline-embedding GWBasic in Perl is just
so exacting . . .

Riddle me this: Why is coding an operating sys-
tem like being the parent of a young child on
Christmas Eve?

Some assembly required.

/DEV/RANDOM 63

book reviews

ELIZABETH ZWICKY, CHAOS
GOLUBITSKY, SAM STOVER,
AND RIK FARROW

WHAT TO DO WHEN YOU HAVE NO BOOK REVIEW

64

ELIZABETH ZWICKY

Periodically, I find myself in need of a technical
book on a subject I know almost nothing about (I
wouldn’t need a book if I knew what I was doing)
when reviews are not available to me for one rea-
son or another. There I am, standing in a book-
store, in front of a row of books of unknown qual-
ity. What do I do then?

Well, reviewing means I read a lot of books, and
not all of them are books I'd pick out myself. I
wish I could say they were all winners, but even
the books that I am unenthused about in print are
the winning tip of an iceberg. I often think with
great sympathy about the editors who have to
read the manuscripts out of which these are win-
nowed. The books I hate were selected out of
thousands of even worse books.

This experience with the good, the bad, and the
ugly has led me to some rules I can use to make
an educated guess about which is the best of the
available books on a subject. These rules work
best with physical books, where you can actually
read bits that you select, and of course they don’t
guarantee excellence. But I find they’re pretty reli-
able.

1. Start with the cover. It is a good thing if it is a
second edition or later; enough people bought
the first edition to make it worth doing again.
It is a bad thing if the number of authors (or
editors, in the case of an anthology) is greater
than the edition + 1 (so a first edition can have
two authors, a second edition three, and so
on). Books work best if there’s a strong unify-
ing force, and you can't achieve that kind of
unity well with more than two people. How-
ever, extra authors added for later editions usu-
ally mean that one or more of the original
authors dropped out. If a first edition has

;LOGIN: VOL. 32, NO. 3

enough authors to make up a sports team, I'm
usually ready to move on right there.

2. While you're still judging the book by its cover,
look at who published it. How do you feel
about that publisher? The fact is that there are
good books out there by every publisher, even
the ones that periodically make me wonder
whether they do actually reject books, but if
you're making guesses, it’s fair to predict based
on your previous experience. If you've never
heard of a publisher before, that's not necessar-
ily a bad thing; I'd prefer an unknown pub-
lisher to one I've tried and hated. Good new
presses do show up.

3. Open the book up. Stay superficial for another
moment, and flip through it. Look at the print;
is it a reasonable size? If you care about fonts,
now would be a moment to rise above your
prejudices. Some lovely books come in terrible,
terrible fonts. But a book that’s not marked
“large type” and is printed in big fonts and/or
with big margins is a flashing warning sign say-
ing “We wanted this book to look big and
important and it isn’t.”

4. OK, let’s actually think about the content now.
Start by looking for a section in the preface that
tells you who the audience for the book is.
There should be one. It should not say the
moral equivalent of “Everyone on earth, or at
least everyone who ever touches a computer,
should read this book.” You do not always need
to be in the target audience, although it’s a very
nice sign if you are. But there needs to be a tar-
get audience, or the book itself can’t be very
coherent.

5. Look at the illustrations. Once again, ignore
any graphic design tendencies you might have.
Some otherwise sane presses let authors do
their own illustrations, which tends to leave
them one step up from being drawn in crayon
on paper napkins. Regardless of what they look
like, and whether they are easily legible, think
about whether they have interesting, compre-
hensible content. If most of the illustrations are
graphs with no X and Y axis labels, or screen
shots of menus, this is a very bad sign.

6. Temporarily unleash any copy-editor instincts
you have, and look at 10-20 pages. If you can
find grammatical errors, spelling errors, or
typos on more than one-quarter of the pages
you look at (and I'm not talking forgivable end-
ing-sentences-with-a-preposition—type errors,
I'm talking “Excuse me, but thats three sen-

tences held together with randomly placed
commas”—type errors), you will go insane try-
ing to read the book. Please note that all books
go to press with some errors; the first one you
find might be your own good luck. But if
there’s a regular pattern, the editors were slack.

7. Find a section, any section, that you know
something about. Read that section, and see if
it gets the bits you already understand right.
This can occasionally be misleading if the sec-
tion you know is one that is truly very tangen-
tial to the main content to the book but, in
general, coverage is pretty even. If it's incoher-
ent or wrong in deep fundamental ways about
the stuff you know, it’s probably not right about
the stuff you don't.

These rules are of course no substitute for reviews
and recommendations from people you know and
trust, or even from published reviewers (which
I've got to say come a poor second to personalized
advice from sensible friends). But they’ll usually
find you the least horrible available option.

CODE QUALITY: THE OPEN SOURCE PERSPECTIVE
Diomidis Spinellis
Addison Wesley, 2006. 521 pages. ISBN 0-321-16607-8

I've enjoyed this book a lot, but can I blame it for
the shortage of reviews? It’s a very dense book,
with something to think about in every sentence.
If you carefully absorb everything it has to say
and manage to implement it, you will be a pro-
gramming wizard. If you try to skim it you will
have a very bad headache. (At all costs avoid the
“Advice to Take Home” sections, which at worst
run to more than five pages of bullet points, more
than the human brain can possibly take home.)
Fortunately, the chapters are relatively indepen-
dent, so you could just gnaw on whichever sub-
ject you're interested in at the moment and be
assured of getting as much out of it as you put in.

You will, however, need to be putting energy into
it. The author is willing to put all the dots down,
but it’s up to you to connect them. Sometimes I
suspect that this is because he doesn’t realize the
connections aren't intuitively obvious to every
reader; other times it seems intentional. Frankly,
with this many pages, there isn't the space to spell
everything out. It's amazing that he manages to do
a good job on such a wide range of topics as it is.

This is, unfortunately, a good example of a book
you should not try to judge by the usability of its
illustrations, which are heavy on content and light
on pixels. Some of them ought to come with a
magnifying glass.

;LOGIN: JUNE 2007

l BACKUP & RECOVERY: INEXPENSIVE BACKUP
SOLUTIONS FOR OPEN SYSTEMS

W. Curtis Preston
O'Reilly, 2007. 729 pages. ISBN 0-596-10246-1

REVIEWED BY CHAOS GOLUBITSKY

The problem with backups is that you can’t afford
to ignore them, but your knowledge about how to
do them is probably out of date. Backups are a
subproblem of data storage, and storage options
(as your users will tell you) change rapidly. This
book is designed to make sure you have the infor-
mation you need to perform your corporate back-
ups effectively and without risk of terrifying data
loss. Curtis Preston’s new edition is a rewrite and
significant expansion of the 1999 Unix Backup and
Recovery (but this version covers Windows as
well). The book’s secondary goal is to focus on
free and inexpensive backup solutions.

Preston is extremely knowledgeable about the
world of backups, and the book shines most when
he is showing off his experience. The overview
chapters are full of information on backup strate-
gies and considerations, on features to think
about when shopping for commercial backup
products, and on backup hardware. Highlights of
these sections range from neat tricks such as how
to use the Towers of Hanoi problem to improve
incremental backup scheduling, to great descrip-
tions of how several types of tape and optical
media work.

About a third of the book is dedicated to general
and specific commentary on database backup and
recovery, including blueprints for designing and
debugging instances of database servers from Ora-
cle to PostgreSQL. These chapters may contain
more about database implementation than you
wanted to know—a stated goal is to help sysad-
mins and DBAs communicate with each other
around the subject of backups—but the informa-
tion you need to get your server running again
after a disaster is almost certainly in there.

A number of chapters and sections are contrib-
uted by other authors or specialists, including
most of the chapters on Open Source backup sys-
tems. The best of these chapters, such as Leon
Towns-von Stauber’s fast and usable blueprint for
performing bare-metal recovery of a Mac OS X
machine, have “invaluable reference during some
future catastrophe” written all over them. Unfor-
tunately, the quality of the contributed chapters is
not consistent. I found it particularly frustrating
that the chapters on Amanda and Bacula focused
on different design features, preventing a head-to-

BOOK REVIEWS

65

head comparison of the two products. Bacula’s job
scheduling and volume management capabilities
got only a paragraph mention, whereas Amanda’s
had multiple pages. Having used Bacula, I know
that it can do some job scheduling, and that its
volume expiration facilities are sometimes confus-
ing. Those features would have benefited from
fuller treatment, and more careful editing would
have improved the book as a whole.

A related word of warning is in order: This is not
your grandmother’s backup book. I have friends
and relatives who don’t do home backups (or
whose backup schedule is “once every three years
whether it needs it or not”), and I hoped to aug-
ment my advice for them with some of the free or
cheap backup tools discussed in this book. Some
programs that could be used on home networks,
including rsync and BackupPC, are discussed, but
most configuration examples pertain to managed
networks. I would need to do other research to
decide whether these tools would be feasible for
non-savvy home users.

Unless your only data protection requirements fit
neatly into one of the scenarios for which blue-
prints are provided, Backup & Recovery is not the
last backup book you’ll ever have to read. How-
ever, by reading this book, you will learn some-
thing you didn’t know about the environment you
are backing up and the tools you already use and
gain perspective on what to think about when
designing or improving your backup process.

bot requires mobility and exploit code, while con-
trolling a botnet requires a Command and Control
(C&C) mechanism that’s intuitive and easy to use
(those poor, overworked bot-herders).

The next two chapters deal with C&C mecha-
nisms and how different bots function in different
botnets before we get to Chapter 5, which deals
with detecting botnets. The first four chapters
deal with understanding bots and botnets; the
remaining eight deal with detection and mitiga-
tion. One of the things that I really like about this
book is that the authors spend a lot of attention
on two very different response/detection mecha-
nisms. The first centers around the ourmon tool,
which monitors network traffic and produces
graphs to give you insight into how bots and bot-
nets are impacting your network. There’s just
enough installation instruction to get you started;
I'm running ourmon now, and it’s pretty painless if
you are running FreeBSD or Ubuntu—they have
tips for installing on both. Think of ourmon as
MRTG with a focus on detecting characteristics
inherent to bots and botnets. Even with my little
honeynet, I've found this tool to be very interest-
ing and can easily see how beneficial it would be
in an enterprise environment.

The second mechanism is called sandboxing,
which focuses on interacting with the bot directly
and performing analysis on the actions and capa-
bilities. This is the main reason I was interested in
this book. I've used Nepenthes (which is men-
tioned briefly several times), but I wanted to learn

BOTNETS: THE KILLER WEB APP . .
more about how sandboxing works—specifically,

CWSandbox. Since Willems wrote CWSandbox, 1
figured he’d be the person to write the chapter on

Craig Schiller, Jim Binkley, Gadi Evron, Carsten
Willems, Tony Bradley, David Harley, and Michael Cross

Syngress, 2007. 464 pages. ISBN: 978-1-59749-135-8

66

REVIEWED BY SAM STOVER

I wasn’t sure how this book was going to play out.
I thought it might end up not being technical
enough, but with the two names I did know from
the author list (Evron and Willems) I had high
hopes. I was not disappointed: I think this book is
an excellent read for just about anyone interested
in bots and botnets. I differentiate between bots
and botnets because there is ample focus on both
aspects of this new threat.

The book starts out with a fairly comprehensive
overview of bot evolution, which I found to be the
right mix of theory, history, and technical detail.
This sets the stage for Chapter Two, which lays
out the life cycle of a botnet. Since individual bots
comprise a botnet, it’s interesting to see how the
technologies between the two differ. Creating a

;LOGIN: VOL. 32, NO. 3

sandboxing, and I was right. Chapter 10 deals
exclusively with sandboxing, with a heavy empha-
sis on CWSandbox. This is probably the most
technical chapter in the book, and it’s quite a read.

The remaining two chapters deal with resources
available to learn more and communicate with
other concerned citizens. There is a good sam-
pling of various types of organizations and tools
to help the bot-stricken administrator.

There were a couple of spelling and grammatical
errors, as seems to be the trend in Syngress books,
but nothing to get spun up over. A fair bit of over-
lap between chapters makes it pretty evident that
multiple authors wrote the different chapters, but
this was only mildly annoying. The chapters on
ourmon and CWSandbox are worth the price of
admission alone, and while I would have liked to
see a bit more emphasis on Nepenthes, I can
always hope that will follow in the next edition.

Opverall, this was a great read. If you want to get a
jump on the botnet learning curve, I'd recom-
mend starting with this book.

l BUILD REAL-WORLD, END-TO-END, NETWORK MONITORING
SOLUTIONS WITH NAGIOS

David Josephsen
Prentice Hall, 2007. 230 pages. ISBN 978-0-13-223693-5

REVIEWED BY RIK FARROW

I came away from the 2006 LISA conference
determined to learn more about monitoring, and
Josephsen’s book seemed like a good way to get
my feet wet. I knew that Josephsen has a clear and
easy writing style from his articles in ;login:, and I
had hoped that would help me make the plunge
into learning about Nagios. I was right.

Nagios is a complex topic. Like any popular
example of Open Source Software, there is a lot of
information available online. What Josephsen
adds to the online documentation is a thorough
approach that starts by getting readers to consider
their goals in monitoring, not just what should be
monitored but how, as well as interrelationships
that affect monitoring. Josephsen applies his per-
sonal experience in monitoring a large, distributed
infrastructure to how he introduces the concepts,
a touch that he carries throughout his book.

His introduction to the software itself is gentle, so
that I am quickly convinced I can write my own
Nagios plug-ins if need be. He explains that
Nagios is really a scheduling and notification scaf-
fold, and what it can do is largely up to you. After
a short but mandatory chapter on installation, he
gets into the nitty-gritty of configuration. This is,
I expect, the place where most people who try
using Nagios soon give up, as there are many files
that must be edited. Although Josephsen does
focus on the editing of files, he also covers the
GUIs that can be used for configuring the Nagios
Web interface. Along the way, he provides practi-

;LOGIN: JUNE 2007

cal hints for making the management of the
Nagios configuration itself easier.

Josephsen concludes with chapters on visualiza-
tion and the new Nagios Event Broker interface.
We humans are very good at extracting data
quickly from visual information, and Josephsen
spends a lot of his page budget explaining how to
add useful graphs to Nagios, something that you
don’t get from just installing Nagio alone. Again,
using clear explanations and an appropriate dose
of humor, he explains how to start using RRDTool
to produce graphs that best utilize your mental
capabilities and impress managers everywhere.

The final chapter describes the Event Broker, a
method that allows you to extend Nagios by
adding in your own callbacks. As Josephsen
explained this, I quickly understood that the
Event Broker allows programmers to add to exist-
ing event handling by exposing internal global
variables and data structures. Although you can’t
create logical service groups, for example, a col-
lection of the hosts and services that provide a
Web farm with a database backend, you can cus-
tomize how Nagios deals with its events.

Three appendices round out the book: buildtime
options, the many configuration options in two
keys files (nagios.cfg and cgi.cfg), and command-
line and plug-in arguments.

I did have some problems with the typesetting of
this book. I find it amazing that Prentice Hall still
can't typeset single back-quotes after all these
years (having screwed this up in my first book 18
years ago), so what looks like a single-quoted
string (and makes no sense) is really a command
executed within a subshell, for example. That
aside, I can recommend this book to you if you
want to get started with Nagios or learn more
about how to best set up a monitoring system.

BOOK REVIEWS

67

68

USENIX MEMBER BENEFITS

Members of the USENIX Association
receive the following benefits:

FREE SUBSCRIPTION to ;login:, the Associ-

ation’s magazine, published six times
a year, featuring technical articles,
system administration articles, tips
and techniques, practical columns on
such topics as security, Perl, VoIP, and
operating systems, book reviews, and
summaries of sessions at USENIX
conferences.

ACCESS TO ;LOGIN: online from October

1997 to this month:
www.usenix.org/publications/login/.

ACCESS TO PAPERS from USENIX confer-

ences online:
www.usenix.org/publications/
library/proceedings/

THE RIGHT TO VOTE on matters affecting

the Association, its bylaws, and elec-
tion of its directors and officers.

DISCOUNTS on registration fees for all

USENIX conferences.

DISCOUNTS on the purchase of proceed-

ings and CD-ROMs from USENIX
conferences.

SPECIAL DISCOUNTS onavarietyof

products, books, software, and
periodicals. For details, see
www.usenix.org/membership
/specialdisc.html.

TO JOIN SAGE, see www.usenix.org/

membership/classes.html#sage.

FOR MORE INFORMATION regarding

membership or benefits, please see
www.usenix.org/membership/

or contact office@usenix.org.
Phone: 510-528-8649

;LOGIN: VOL. 32, NO. 3

USENIX BOARD OF DIRECTORS

Communicate directly with the
USENIX Board of Directors by
writing to board@usenix.org.

PRESIDENT

Michael B. Jones,
mike@usenix.org

VICE PRESIDENT

Clem Cole,
clem@usenix.org

SECRETARY

Alva Couch,
alva@usenix.org

TREASURER

Theodore Ts'o,
ted@usenix.org

DIRECTORS
Matt Blaze,
matt@usenix.org

Rémy Evard,
remy@usenix.org
Niels Provos,
niels@usenix.org

Margo Seltzer,
margo@usenix.org

EXECUTIVE DIRECTOR

Ellie Young,
ellie@usenix.org

NOTICE OF ANNUAL MEETING

The USENIX Association’s
Annual Meeting with the mem-
bership and the Board of Direc-
tors will be held during the 2007
USENIX Annual Technical Con-
ference, June 17-22, 2007, Santa
Clara, California. The time and
place of the meeting will be
announced on-site and on the
conference Web site, www.usenix
.org/usenix07.

IN MEMORIAM: JOHN W. BACKUS,
1924-2007

Alex Atken
Professor of Computer Science,
Stanford University

Computing has been such an
integral part of everyday life for
so long that many people alive
today don’t remember a time
when it wasn’t so. In the 1950s,
digital computers were only a
few years old, and very little of
what we take for granted about
modern computers had been
invented. One thing was already
apparent, however: the new,
powerful hardware needed
equally powerful software if it
was to be of use to anyone, and
software was turning out to be
surprisingly difficult, time-con-
suming, and expensive to write.

A big part of the problem was
that software at the time was
written directly in the machine’s
native assembly language. As
anyone who has ever written in
assembly knows, it takes a lot of
error-prone coding to get any-
thing done that way.

John Backus, who was working at
IBM at the time, had the idea that
programming could be greatly
improved if the programmer
could write more abstract and
less machine-specific commands
and if the program could be
organized in a way that seemed
more natural for humans. A spe-
cial program called a compiler
would take care of translating

from the higher-level language
into the machine’s language.

The obvious problem with this
idea, a difficulty that led some to
predict it would fail, was the
concern that the translation
would end up being much less
efficient than a carefully written
assembly program; since ma-
chines were very expensive,
computer time was a valuable
commodity.

But John was literally a vision-
ary; he had a vision of what
could be. He led a team that
spent three years (1954-1957)
designing and implementing the
programming language and its
compiler.

Within a few months of its first
release, FORTRAN (for FOR-
mula TRANslation) was a huge
success for IBM, dramatically
improving software productivity.
FORTRAN was an even greater
intellectual triumph, for it
changed forever the way people
thought about programming
computers and led directly to a

;LOGIN: JUNE 2007

surge of interest in the design
and implementation of high-
level computer languages.

John was also a prototype of the
modern computer science re-
search manager, an oxymoron if
there ever was one. John always
claimed that his contribution to
the FORTRAN project was only
breaking up the chess games
after lunch, that really he hadn’t
done anything himself.

His characteristic modesty aside,
his management style was one of
almost no management at all,
taking only the role of articulat-
ing the vision of where the proj-
ect should go, both to inspire
those working with him and to
convince his backers to continue
funding the project.

The key was to let the project be
guided by the technical con-
straints of the problem they
wanted to solve, which was
poorly understood at the time,
and not by a manager’ early
guess at what the solution
should be. It’s a great trick, but

really quite difficult to pull off,
since projects of FORTRAN’s
ambition succeed only after
many failures. It requires both
great technical ability and a gift
for connecting with people to
keep an effort like that on track,
but John made it look easy.

After FORTRAN, John went on
to invent BNF (or Backus-Naur
Form), the notation used univer-
sally today to describe the syntax
of programming languages. He
also was a major force behind the
early development of functional
languages, championing even
higher-level programming as
necessary to move beyond lan-
guages of the FORTRAN era.

For his work he won the Turing
Award and the Draper Prize,
among many other awards, but
he never stopped being a
researcher, always interested in
new ideas and ways to make pro-

gramming easier and more use-
ful.

USENIX NOTES

69

70

conference reports

THANKS TO OUR SUMMARIZERS

FAST’07 70

Andrew Leung
Michael Mesnier
Brandon Philips
Raja Sambasivan
Avishay Traeger
Charles Weddle

Brandon Philips

;LOGIN: VOL. 32, NO. 3

FAST ’07: 5th USENIX Conference on

File and Storage Technologies

San Jose, CA
February 13—-16, 2007

INVITED TALK

B A Crash Course on Some Recent Bug Finding Tricks
Dawson Engler, Stanford University
Summarized by Brandon Philips (brandon@ifup.org)

Storage systems have a simple and important con-
tract to keep: Given user data, they must save that
data to disk without loss or corruption even in the
face of system crashes. Dawson Engler and his
students at Stanford have created eXplode, a sys-
tematic approach to finding bugs in storage sys-
tems, to help root out the bugs that can break this
contract.

eXplode systematically explores all the possible
choices that can be made at each choice point in
the code to make low-probability events, or cor-
ner cases, just as probable as the main running
path. And it does this exploration on a real run-
ning system with minimal modifications.

This system has the advantage of being conceptu-
ally simple and very effective. Bugs were found in
every major Linux file system, including an fsync
bug that can cause data corruption on ext2. This
bug can be produced by doing the following: Cre-
ate a new file, B, which recycles an indirect block
from a recently truncated file, A, then call fsync
on file B and crash the system before file As trun-
cate gets to disk. There is now inconsistent data on
disk, and when e2fsck tries to fix the inconsisten-
cy it corrupts file B's data. A discussion of the bug
has been started on the linux-fsdevel mailing list.

EXE (EXecution generated Executions) is another
useful testing tool and was also briefly discussed.
A developer using the tool would annotate the ap-
plication to mark unrestrained input data. In the
case of file systems, the unrestrained input data is
a disk to mount. The annotated code is then run
through exe-cc, which instruments the code, and
then is compiled using gcc.

The added instrumentation will track all con-
straints on the input data to discover inputs that
can cause termination by a call to exit(), crash, as-
sertion failure, or error. The inputs that can lead
the code to terminate are recorded and used to
create an “input of death” or, in the case of a file
system, a “disk of death” that can crash the sys-
tem and uncover exploitable bugs.

Input sanitation on mounts is becoming more important as
USB flash drives become pervasive and nonroot users get
the ability to mount drives.

MEASURE THRICE

Summarized by Avishay Traeger (atraeger@cs.sunysb.edu)

B Disk Failures in the Real World: What Does an MTTF of
1,000,000 Hours Mean to You?

Bianca Schroeder and Garth A. Gibson, Carnegie Mellon
University

Awarded Best Paper!

Bianca Schroeder began by stating that understanding disk
failure frequencies has become increasingly important as
server clusters become larger. Disk replacement data shows
that what system administrators see in the real world is far
different from what we statistically predict based on manu-
facturer specifications. Better knowledge about the statisti-
cal properties of storage failure processes, such as the dis-
tribution of time between failures, can empower re-
searchers and designers to develop new, more reliable and
available storage systems.

The authors draw their conclusions from seven supercom-
puting and ISP data sets, which include more than 100,000
drives. Some factors for why disks are replaced more fre-
quently than predicted may be that administrators and
disk manufacturers may disagree on the definition of a
disk failure and that real-world operating conditions do
not match those used by the manufacturers in their accel-
erated stress tests.

Some of the interesting observations are that the MTTF
(Mean Time to Failure) is always much lower than the ob-
served time to disk replacement, that SATA is not necessar-
ily less reliable than FC and SCSI disks, and that, contrary
to popular belief, hard drive replacement rates do not
enter steady state after the first year of operation, but in
fact steadily increase over time. In addition, early onset of
wear-out has a stronger impact on replacement than does
infant mortality. The authors also show that the common
assumptions that times between failures follow an expo-
nential distribution and that failures are independent are
not correct. In addition to analyzing the data, they are cre-
ating a public failure data repository and hope that their
results will help build better systems—for example, by pre-
dicting the probability of a RAID failure.

With regard to RAID failures, where a second drive failed
during reconstruction, one questioner asked whether the
data includes information about failures in specific arrays.
The reply was that it does not, but the data that was used
should provide a conservative estimate. To the question of
whether the authors had a hypothesis about the correla-
tion of disk replacements, their reply was that the disks are
in the same physical environment and are probably under

;LOGIN: JUNE 2007

similar loads. Another question involved the accuracy of
the data, given that the authors used disk replacements in
their metrics, rather than actual failures. The authors said
that even if they assumed that half of the replacements
were unnecessary, the failure rate is still twice as much as
the MTTF indicates. Someone asked how disk batches af-
fected the data, and if it could account for all of the re-
sults, which would indicate that the data should be dis-
carded. Since customers do not have data regarding bad
disk batches, the authors said that this is difficult to esti-
mate, but it is unlikely that it had much effect. Another
person noted that since bad batches exist in the real world,
the data should not be discarded.

B Failure Trends in a Large Disk Drive Population

Eduardo Pinheiro, Wolf-Dietrich Weber; and Luiz André
Barroso, Google Inc.

Although magnetic media are used to store most of the
world’s information, there is little published work on the
failure patterns of disk drives and the key factors that af-
fect their lifetime. Eduardo Pinheiro and the authors pre-
sented failure statistics from Google and analyzed the cor-
relation between failures and several parameters generally
believed to impact longevity. This analysis is made possible
by a new highly parallel health data collection and analysis
infrastructure, along with the ample amount of data pro-
vided by the authors’ computing deployment. The hope is
that this analysis will help predict failures so that adminis-
trators can act preemptively, help diagnose problems, and
improve fault-tolerant techniques.

The authors found that there was no consistent correlation
between higher temperature drives (for the available data,
between 20 and 50 degrees Celsius) or drives at higher uti-
lization levels (normalized per drive model) with failure
rates. This indicated that other effects may be more promi-
nent in affecting disk drive reliability. They confirm that
some of the SMART parameters, such as scan errors, are
well-correlated with higher failure probabilities. However,
failure prediction models based on SMART parameters
alone are likely to be limited in their accuracy, since many
drives failed with no SMART errors.

Randal Burns (Johns Hopkins University) asked how this
research has affected disk replacement policies at Google.
The reply was they have not achieved high enough accu-
racy yet to base purchasing decisions on the data. Someone
asked about the kind of accuracy one could get by model-
ing the SMART data. It was explained that this would re-
sult in many false positives and not enough good predic-
tions, but it depends on the modeling techniques. In re-
sponse to whether it was worth replacing disks as soon as
an error was seen, the reply was that it would not be cost-
effective. Someone later noted that this is true for Google
since they have very good replication, but it is not true for
the common user. Rik Farrow (;login: editor) asked wheth-
er multiple SMART errors are a better indicator for disk

CONFERENCE SUMMARIES

failure, and the presenters admitted that this is in fact the
case. Someone inquired as to whether the data that was
collected included disk access patterns. Although this was
examined, no significant differences were found. Ying
Wang asked whether the type of disk failure was taken
into consideration (i.e., bad blocks, head crashes, etc.).
Eduardo replied that they did not include such data in
their analysis, and they used disk replacements to model
failures. Noting the correlation between SMART errors and
failures, another questioner asked why this can’t be used
for prediction, but it was explained that although the
drives will be more likely to fail after error, the rates are
not so much more likely that a prediction is possible. More
SMART data may help form predictions. Finally, the ques-
tion of whether the correlation between disk failures and
variation in temperatures was investigated came up. Al-
though it was, there was no strong correlation.

B A Five-Year Study of File-System Metadata

Nitin Agrawal, University of Wisconsin, Madison; William]J.
Bolosky, John R. Douceur; and Jacob R. Lorch, Microsoft
Research

Nitin Agrawal explained that metadata from over 60,000
Windows PC file systems at Microsoft collected over five
years was used to study how various file characteristics
changed over time. This data can prove useful for design-
ers of file systems and related software, testing hypotheses,
driving simulations, and validating benchmarks. The au-
thors also provided a generative, probabilistic model for
how directory trees are created, in terms of the depth of
the namespace tree and the distribution of subdirectories.
The authors plan to make their data set publicly available.

Some of their observations: (1) Both the mean file size and
the number of files have increased. (2) A few filename ex-
tensions account for a large percentage of files and storage
and have not changed much with time. (3) Less filesystem
content is created or modified locally over time. (4) Direc-
tory size distribution has not changed significantly, al-
though directory size is steadily increasing. (5) The frac-
tion of documents in the namespace subtree meant for
user documents and settings has increased in every year of
the study. (6) Although filesystem capacity has increased
dramatically, filesystem fullness has only slightly de-
creased. (7) Large files (e.g., binaries, movies, database
files) are contributing to an increasing fraction of filesys-
tem usage, but most files are still 4KB or smaller. (8) The
median file age is between 80 and 160 days, and this has
not changed with time.

Erez Zadok (Stony Brook University) asked whether there
were trends in how people were organizing their files. The
reply was that most files were being stored in the Win-
dows, Documents and Settings, and Program Files directo-
ries. Another question was about the types of systems and
workloads that were analyzed. Agrawal said that almost all
were Windows PCs and were mostly from developers.
Geoff Kuenning (Harvey Mudd College) asked how they

72 ;LOGIN: VOL. 32, NO. 3

considered machines where capacity was added, or the sit-
uation when a file system was migrated to a new machine.
The study considered these to be new file systems. There
was an inquiry about the presenter mentioning that most
files were less than 4KB but also saying that the median
size was 4KB. Agrawal joked that, in this case, most means
half, and the audience laughed. In response to whether dif-
ferences between developer and nondeveloper distribu-
tions were considered, the reply was that they considered
temporal trends and not workload types, but the data is
available for future analysis. Eduardo Pinheiro (Google)
inquired about the reason for 4KB being the median file
size, wondering whether this had something to do with
block sizes or application behavior. The presenter was un-
sure of the cause. Finally, John Wilkes (HP Labs) asked
about the amount of unique data present in the file system,
since all probably had similar installs. While admitting
that this data may be useful to analyze, they said they had
not done so.

WHO PUT THEIR NETWORK IN MY STORAGE?

Summarized by Michael Mesnier
(michael.mesnier@intel.com)

B Proportional-Share Scheduling for Distributed Storage
Systems

Yin Wang, University of Michigan; Arif Merchant, HP
Laboratories

Yin Wang began by saying that the advantage of distrib-
uted storage is the ability to scale out using cheap com-
modity hardware (storage bricks). HP’s Federated Array of
Bricks (FAB) is one example of such a distributed architec-
ture. However, the drawback is often unavoidable resource
contention, which is complicated by the fact that data is
typically distributed across multiple storage bricks and ac-
cessed by clients using different I/O patterns.

The goal of this work is to provide proportional-share
scheduling of storage resources based on a client’s
“weight,” which can be assigned by an administrator. No
previous work in this area has addressed multiple sched-
ulers with multiple resources (storage bricks). Of course, if
a scheduler is simply placed at every storage coordinator
or back-end storage device, no one scheduler will ever see
all of the I/O requests. For example, a scheduler at a stor-
age brick will not see requests to other storage bricks, and
a scheduler at a coordinator will not see requests to other
coordinators. Thus it would be difficult to determine a
client’s total service across all resources.

One naive solution is to broadcast all I/O requests to all
bricks or coordinators, but this of course introduces signif-
icant network overhead. However, the authors show that
only the service cost of each I/O needs to be broadcasted
to each coordinator. Such a broadcast includes a “delay
value” that allows a storage coordinator to delay 1/O re-
quests from a particular client in order to provide propor-

tional-share service across clients. In their architecture, co-
ordinators maintain FCFS queues and can therefore easily
incorporate the broadcasted delay values.

The authors present a new proportional-service scheduling
framework suitable for use in a distributed storage system
that uses such a delay-broadcast approach. Their approach
is an extension of SFQ(D), called Distributed Start-time
Fair Queuing (DSFQ). Two approaches are evaluated:
Total-DSFQ and Hybrid-DSFQ. The primary difference is
that Hybrid-DSFQ guarantees a minimum amount of ser-
vice to each client. In their evaluation, the authors showed
that Total-DSFQ works in the single-brick case, across
multiple bricks, and across multiple bricks with dependen-
cies among the I/O requests. They also showed that Hy-
brid-DSFQ, unlike Total-DSFQ, guarantees a minimum
share for each client stream for fluctuating workloads.

David Black (EMC) asked whether there was any negative
result with respect to disk striping; he believed that total
service was at odds with striping. Arif Merchant said that
the degree of proportional sharing can be adjusted to work
with striping. Wenguang Wang (Apple) then asked what
would happen if the client issued one stream with small
random I/O and another with sequential. Yin said that that
you can still maintain total proportional-service sharing.

B Argon: Performance Insulation for Shared Storage Servers

Matthew Wachs, Michael Abd-El-Malek, Eno Thereska, and
Gregory R. Ganget;, Carnegie Mellon University

Matthew Wachs stated that benefits of shared storage in-
clude the simplicity of a single infrastructure and the abil-
ity to better load-balance workloads across storage servers.
However, these benefits come at the cost of interference
among different workloads. When workloads share storage
resources without any regard to efficient I/O scheduling,
storage efficiency can plummet. Whereas processor and
network sharing is well understood, it is unclear how to
best share storage resources such as disk and cache. More-
over, it is unclear what a “time slice” even means for a re-
source such as a cache.

The goal of Argon is to provide better performance insula-
tion. In the ideal case, sharing a storage server among n
processes will result in each process receiving 1/n of its
stand-alone performance. Because this ideal may not al-
ways be achievable, Argon uses an “R-value” to force a
bound on lost efficiency. Once an R-value, such as 0.9, is
set, each of the processes will then have performance
within that fraction of the ideal. In general, typical disk
scheduling policies do not grant sequential workloads long
enough blocks of time, resulting in too much interference
from seeks. Therefore, one goal of Argon is to amortize the
cost of each seek by having larger request sizes for sequen-
tial workloads (using prefetching or write coalescing). For
a given R-value, Argon automatically determines at system
startup the optimal request size for a given storage server.

;LOGIN: JUNE 2007

Seek-cost amortization solves only part of the performance
insulation problem. The other part is cache pollution. To
address this, Argon statically partitions cache space among
n competing workloads, such that each workload is given
an amount of reserved cache space. The amount each
workload is given is determined through simulation:
Block-level traces are replayed through a cache simulator
in order to determine how a workload’s performance im-
proves with increased cache allocation. Again, the goal is
to achieve within an R-value of the ideal performance by
balancing the cache allocations for each workload.

Wenguang Wang (Apple) asked about the cache replace-
ment policy, believing something smarter than LRU could
be used. Matthew agreed, noting that although LRU was
used for the experiments, one could use different policies
for different workloads. Matthew further noted that for
certain combinations of workloads, more intelligent poli-
cies (e.g., ARC) may obviate the need to statically partition
the cache. Another attendee asked whether Argon yields
the remainder of a time slice to scheduled workloads.
Matthew replied by saying that Argon does not currently
implement yielding. The challenge is determining the
“right” time to yield, as application think time may make
it appear that a request stream is idle, when in fact more
1/0 is soon to be issued. Yin Wang (University of Michi-
gan) asked whether a trade-off exists between the length of
the time slice (request size) and the fairness. Matthew said
no, as fairness can also be achieved with larger time slices.
More strictly, fairness can be achieved with any length time
slice so long as the same length is given to each workload.
The purpose of longer time slices is to increase efficiency,
not change fairness. An attendee from IBM suggested that
better write scheduling (e.g., request coalescing) could im-
prove performance, and Matthew agreed. Another attendee
asked what would happen if the cache were not large
enough to store prefetched data for a large number of se-
quential workloads. Matthew said that the 1/O accesses
would degrade into random with a shared cache and that
Argon does nothing to change this fact. Finally, an at-
tendee from NetApp mentioned that a large variance in re-
sponse time might be unacceptable for certain applica-
tions. Matthew agreed, but he also noted that a low mean
response time is often more important than the variance
for many applications. Matthew further noted that applica-
tions that need low variance in response times might need
to have their own systems.

W Strong Accountability for Network Storage
Aydan R. Yumerefendi and Jeffrey S. Chase, Duke University

For network storage to be trustworthy, Adan Yumerefendi
declaimed that strong accountability is required for both
clients and servers. Servers must be able to track client ac-
cesses and guarantee nonrepudiation. Clients must be able
to verify that their actions against a server have been com-
mitted and verify that a server is faithful.

CONFERENCE SUMMARIES

3

The authors presented CATS, a rudimentary network stor-
age service with strong accountability properties. CATS
takes a “trust but verify” approach. The properties of their
threat model include authenticity and undeniability, fresh-
ness and consistency, and completeness and inclusion.
Confidentiality is also desired but is outside the scope of
this work. The mechanisms used by CATS to ensure strong
accountability include digital signatures, client action his-
tory, broadcasts of digital signatures of server memory
state, challenges and proofs, and auditing.

CATS is an object storage service and a state storage tool-
kit. Each stored object is annotated with action records
that reflect all state changes to the object. Versioning pre-
serves multiple versions of each object, and version stamps
allow clients and servers to agree on the ordering of up-
dates. Such stamps also make request replay/reordering de-
tectable. Servers must commit to their state and broadcast
a digital signature of their internal memory state to the
clients. Thus, a server can deny service but never subvert
the system. Moreover, servers can make provable state-
ments about their internal state. Freshness prevents a
server from reverting writes, as each accepted write is rep-
resented in the digest of a server’s internal memory state,
so a committed request cannot be removed without detec-
tion by the clients.

The CATS storage service presented by the authors is just
one example of a strongly accountable service that can be
built by using the CATS state storage toolkit. The authors’
evaluation shows that the cost of such a service can be
high but that the approach is practical when strong ac-
countability is required.

One attendee asked whether clients can exchange digests
directly to perform verification. Aydan answered yes, not-
ing that a common framework could be used to publish di-
gests. An attendee from HP labs asked how the systems
scales to large numbers of objects, specifically, whether one
can keep files from disappearing. Aydan said that a bound
on the probability of the file/object’s existence can be
given, but it depends on the age of the object.

WORK-IN-PROGRESS REPORTS (WIPS)

Summarized by Brandon Philips (brandon@ifup.org)
B Secure, Archival Storage with POTSHARDS

Mark Storer introduced POTSHARDS, a system to securely
store archival data. The system attempts to find a better so-
lution to long-term encrypted storage. It uses secret shar-
ing across a number of RAID archives and ensures that no
one archive gets enough shards to reconstruct the secret. It
also uses approximate pointers to ensure that an attacker
has to have access to the data on all archives in order to re-
construct the data set.

74 ;LOGIN: VOL. 32, NO. 3

B SeFS: Unleashing the Power of Full-Text Search on File
Systems

Stergios Anastasiadis proposed SeFS, a file system that is
designed to facilitate full-text search. The need for this
new file system was defended by the weaknesses in exist-
ing search technologies such as electronic journal data-
bases and Web searches. Journal database entries are im-
mutable once they are added to the database and Web
search engines index data infrequently, but on most file
systems files are modified frequently, making both ap-
proaches unacceptable for filesystem search.

B On the Scalability of Storage Sub-System Back-end Network

Yan Li presented progress on research concerning how
many disks a Fibre Channel Switched Bunch of Disks (FC
SBOD) can efficiently support. The workload will be simu-
lated using the Storage Performance Council SPC-1 bench-
mark. The initial findings show that a 2Gbps FC SBOD is
saturated by 48 disks under RAID5 and 53 disks under
RAIDG6 with a stripe size of 16KB. Future work includes
testing 4Gbps versus dual 2Gbps FC and the scalability of
FC SBOD with a cache system.

B Layout-aware Exhaustive Search

Aravindan Raghuveer presented the motivation and plan
for a layout-aware exhaustive search algorithm. The work
is motivated by Jim Gray’s keynote at FAST 05, where he
projected that future hard disks will take a day to read
10TB of data sequentially and 5 months with random ac-
cess and 8KB sectors. To get the fastest search possible an
exhaustive search algorithm will need two properties: It
must use physical layout information to compute a opti-
mal sequential search, and it must have the ability to sus-
pend and resume a search to provide service to real-time
requests. Two pieces of metadata will need to be main-
tained to achieve these goals: location metadata on data
object placement and state metadata on a suspended
search.

B Scaling Security for Big, Parallel File Systems

Andrew Leung proposed a new protocol, Maat, to scale /O
security to petabyte-scale parallel file systems used for
high-performance computing applications. Current sys-
tems rely on shared-key cryptography, which can be a
weakness in a large system. Maat uses extended capabili-
ties, automatic revocation, and secure delegations. Ex-
tended capabilities can authorize 1/O for a number of
clients and files, which reduces the number of capabilities
in the system. The small number of capabilities allows
asymmetric cryptography to be used efficiently. Each capa-
bility has an automatic revocation timeout and can be ex-
tended by using a small, efficient extension token. An im-
plementation is underway on top of the Ceph parallel file
system.

B CompulsiveFS: Making NVRAM Suitable for Extremely
Reliable Storage

Kevin Green presented CompulsiveFS, a file system that
stores persistent metadata directly to an erasure coded log
in NVRAM instead of a RAM cache. The file system per-
forms incremental erasure-encoding and signature compu-
tations over the contents of the log to create fault toler-
ance. The current prototype log is an order of magnitude
faster than page-protected caches for small writes of 10-50
bytes. CompulsiveFS is in the early stages of research, de-
sign, and implementation.

B Performance Evaluation of RAID6 Systems

Yan Li presented a plan for a three-piece study on the per-
formance characteristics of RAID6 under the Storage Per-
formance Council-1 benchmark. The study will simulate
the storage using SimRAID, which models and simulates
the RAID controller, cache, fibre-channel bus, and disks
and has been shown to have a maximum inaccuracy of 5%.
The study looks at RAID6 performance under fault-free
mode, degraded mode, and recovery mode. Of particular
interest is finding the ideal mix of handling requests versus
rebuilding a disk.

B GANESHA, a Multi-Usage with Large Cache NFSv4 Server

Philippe Deniel presented work on GANESHA, a user-
space NFSv4 server with a large cache and support for a
number of backend file systems. GANESHA has a filesys-
tem abstraction layer (FSAL) that makes writing plug-ins
for different backing file systems easy. Currently, there is
support for HPSS and POSIX backends. A number of inter-
esting backends are under development; these include an
NFSv4 client that will allow GANESHA to be a proxy, an
SNMP backend that will allow MIBS to be browsed, and
the LDAP backend that will allow browsing of trees. An-
nouncements to SourceForge and freshmeat are forthcom-
ing.

B FlexiCache: A Flexible Interface for Customizing Linux File
System Buffer Cache Replacement Policies

Pavan Konanki presented the initial work for FlexiCache,
an interface in the Linux kernel to accommodate different
buffer cache replacement algorithms. The motivation for
this work is to test new replacement algorithms, such as
ARC, PCC and LIRS, that have been shown to perform
better under certain access patterns. Also, this API would
accelerate the testing and development of new buffer cache
replacement algorithms. The key issue is trying to design
the system to support many replacement policies while
keeping the cache mechanics hidden. The performance im-
plications of this added generality are also unknown.

® Diamonds Are Forever, Files Are Not

Surendar Chandra talked about storage systems that use an
“importance number” to decide how to manage a data
store automatically. The experiments were motivated by a
storage server for video-recorded lectures where some of

;LOGIN: JUNE 2007

the data may be less important than new data coming in
and can be removed. To make the system successful, ad-
ministrators must be able to specify accurate object life-
times; therefore providing usage feedback is important.
Currently a system is being built to prototype this idea.

B RBF: A New Storage Structure for Space-Efficient Queries
for Multidimensional Metadata in OSS

Yu Hua presented RBE an r-tree with a bloom filter at each
node, a structure that allows for efficient point and range
queries. Point queries ask whether an object is in a data set
and a range query grabs the set of objects that match a
query. The application of this is to make efficient object-
based storage devices that can do point/range operations
on object metadata. Currently, a real 10TB storage system
has been implemented using a partial implementation of
the RBF structure.

B Storage Performance Isolation: An Investigation of Contem-
porary 1/O Schedulers

Sarala Arunagiri presented research on the performance
isolation characteristics of a number of modern I/0 sched-
ulers. This research is motivated by the quality of service
guarantees that large consolidated shared storage must
make. The findings suggest that many 1/O schedulers do
not provide performance isolation in all circumstances.

INVITED TALK

B Trends in Managing Data at the Petabyte Scale

Steve Kleiman, Senior VP and CTO, Network Appliance

Summarized by Michael Mesnier
(michael. mesnier@intel.com)

In the first three-quarters of 2006, approximately 900 PB
of storage was shipped worldwide by storage systems ven-
dors, including Dell, EMC, Hitachi, HP, IBM, and Network
Appliance. Of this total, Network Appliance shipped ap-
proximately 200 PB and is currently at a 100 PB/quarter
run rate.

The big challenge today is keeping pace with such growth.
A 50-100% yearly increase in storage capacity is not un-
common. Most of this growth is from unstructured data
(e.g., contracts, letters, memos) and semi-structured data
(e.g., email), but structured data (db) is also growing.
Managing this growth introduces hidden burdens (costs).

A common strategy is to overprovision, resulting in low
disk utilizations (with 25% or less being typical). Of
course, CIOs do not want to take chances when it comes
to safely storing company and/or customer data. Today’s
legal burdens (e.g., regulatory compliance) and social bur-
dens (e.g., losing data is bad press) underscore this point.
In general, overprovisioning stems from the “build-out”
manner in which most storage infrastructures are managed
today (i.e., within application-centric “silos”), including

CONFERENCE SUMMARIES

75

space for an application’s primary storage, disaster recov-
ery, testing and development, backup, and archive. Al-
though silos provide good QoS, they can result in different
processes for managing data, and they require too many
experts.

The key to reducing hidden costs is to separate data from
its physical containers and to use virtual copies of data
whenever possible (e.g., snapshots, clones, and data mir-
rors). This can help reduce the physical storage require-
ments and consolidate storage infrastructure. In turn, this
will reduce the number of processes and experts. Of
course, a new management paradigm is required to deal
with virtual copies. The approach taken by Network Appli-
ance is to consolidate all data and copies associated with a
particular application into a “data set.” Data sets can have
properties such as security, regulatory compliance, QoS,
and namespace management. Indeed, future systems will
see unified environments with user-specified properties on
data sets. As such, properties can remain constant while
the storage infrastructure adapts to advances in storage
technology.

In summary, much of this is already starting to happen.
“It’s good to be in storage!” Steve proclaimed. There is an-
other decade of interesting change (megatrends) ahead of
us.

Rik Farrow (USENIX) asked whether there will be a reduc-
tion in the amount of storage because of virtual copies,
and a similar question was posed by Chris Lumb (Data
Domain). Steve said yes, but he also pointed out that it
will be easier to create copies. Rik then asked if file sys-
tems will become more interesting. Steve said yes, as they
will be forced to use the new abstractions for storage.
Garth Gibson (Carnegie Mellon) made a comment in sup-
port of the Aperi open-source storage management frame-
work. David Black (EMC) asked how we can prevent users
from turning the QoS dials “all the way to the right.” Steve
said that, in practice, users will be presented with options
that they will have to pay for (e.g., bronze, silver, and
gold). Julian Satran asked how we can move forward to
content management, as users are not interested in manag-
ing storage. Steve replied that although he did not talk
about application integration, he expects storage to get
tighter with the application (e.g., data sets administered
through Oracle). An attendee from Berkeley asked how
support will work for a single management infrastructure.
Steve said that virtualization will make it difficult, but he
expects that most of the deployments will occur in a “two
worlds” scenario where applications can share the same
physical infrastructure but still be managed separately.

76 ;LOGIN: VOL. 32, NO. 3

THE LATEST VERSION

Summarized by Raja Sambasivan (rajas@andrew.cmu.edu)

B Design and Implementation of Verifiable Audit Trails for a
Versioning File System

Zachary N.J. Peterson, Randal Burns, Giuseppe Atensiese, and
Stephen Bono, Johns Hopkins University

Zach Peterson presented a system capable of creating,
managing, and verifying digital audit trails for versioning
file systems. The digital audit system he presented involves
three components: the file system, an authenticator, and an
escrow site. The file system generates new versions of files
and, when an audit trail is desired for a particular file ver-
sion, commits an authenticator of that file version to an es-
crow site. The authenticator stored by the escrow site is a
MAC that includes the authenticator of the previous ver-
sion of the file and the data contained in the current ver-
sion. An independent auditor can verify the contents of a
given version of a file by first requesting both the version
data and the previous version’s authenticator and then
comparing the auditor-constructed MAC based on this
data to the MAC stored on the escrow site.

During his talk, Peterson noted that a central challenge the
authors faced lay in finding a way to limit the amount of
I/O necessary when computing authenticators. Computing
an HMAC for a file, for example, requires that all of the
file’s data first be read into memory. To address this prob-
lem, the authors chose to use an XOR MAC as the authen-
ticator. XOR MACs allow incremental authentication and
thus allow the cost of authentication to scale with the size
of changes to the data, not the size of the file.

The authors implemented their digital audit system in the
ext3cow filesystem. Evaluation was performed using two
micro-benchmarks and a trace-driven study, all of which
showed significant gains for using an XOR MAC based

on SHA-1 versus an HMAC based on SHA-1. Most of
these gains were a result of the XOR MAC needing to
perform less I/O than the HMAC. Most interestingly, Peter-
son pointed out that XOR MACs outperform HMACS es-
pecially well when the workload seen is dominated by
small appends. These workloads can best take advantage
of the incremental nature of the XOR MAC. Peterson then
showed that write activity is dominated by appends via an
analysis of his trace data.

During the Q&A period, Bill Bolosky from Microsoft asked
whether the authors had considered using Merkle trees in-
stead of the XOR MAC for their authenticators. Peterson
responded by stating that they had considered Merkle
trees, but had decided to use the XOR MAC instead be-
cause it is more efficient for data that changes via small in-
cremental updates. David Black from EMC then asked
whether the XOR MAC reveals information about what
was authenticated and whether such transparency matters.
Peterson’s response was that it is the underlying MAC that

determines if any information is revealed. In this case the
underlying MAC, SHA-1, does not reveal any information.
Finally, Eduardo Pinheiro from Google wanted to know
the size of the trace data used. Peterson stated that the
trace data size was 4.2 gigabytes.

B Architectures for Controller Based CDP

Guy Laden, Paula Ta-Shma, Eitan Yaffe, Michael Factor, and
Shachar Fienblit, IBM Haifa Research Laboratory

The ability to roll back to any previous storage state is
clearly very useful and is exactly the functionality that
continuous data protection (CDP) techniques provide. In
this talk, Paula Ta-Shma compared four different storage
architectures and provided analytic equations for reasoning
about their cost when applied to different types of work-
loads. Finally, a trace-based study was used to validate the
equations and compare the architectures on real work-
loads.

Paula Ta-Shma started by stating that the cost of using
CDP is the number of user data device 1/Os per write re-
quest in the common case (when no data is being re-
verted). This cost depends on four variables: the CDP
granularity (specifically, the granularity of updates pre-
served), the workload (specifically, the temporal distance
distribution of writes), the controller write cache (specifi-
cally, the size and replacement policy), and the CDP archi-
tecture in use.

Next, she described four different architectures for CDP:
Logging, SlipStream, SplitDownStream, and Checkpoint-
ing. The Logging architecture is the simplest—the entire
history of writes is stored in a log. Only one user data /O
per write request is incurred. However, although this archi-
tecture works well for write-dominated workloads, it does
not allow for good read performance.

To remedy the read performance problem of the Logging
architecture, the next two architectures split the version
data into two volumes—a directly addressable “current
store” that holds the current data and a hidden, mapped
“history store” that holds all historical data, including the
current version. The first of these architectures, Split-
Stream, splits write data above the cache; one copy of the
write data is sent to each volume and thus a maximum of
two user data I/Os and a minimum of zero user data I/Os
are incurred per write request. Conversely, the SplitDown-
Stream architecture splits write data underneath the cache.
This architecture allows cache pages to be shared across
current and historical volumes, thereby conserving mem-
ory resources. Compared to the Logging architecture, both
the SlipStream and SlipDownStream architectures achieve
better read performance, but they incur more I/Os and use
more resources.

The Checkpointing architecture is similar to that of Split-
DownStream, except that the history store only holds pre-
vious versions of write data. When a write is evicted from

;LOGIN: JUNE 2007

cache, the previous version of that data is copied from the
current store to the history store. This architecture requires
a maximum of three user data I/Os and a minimum of one.

Next, Paula compared the CDP cost of the various archi-
tectures when applied to a trace of the SPC-1 benchmark,
which exhibits large temporal write distances, and the
Cello99 trace workload, which exhibits smaller temporal
write distances. For SPC-1, the results showed that Split-
DownStream costs less than Checkpointing for smaller
CDP granularities (i.e., less than 30 minutes). The same
trend was observed for Cello99, except the cutoff point oc-
curred near 5 minutes instead of 30 minutes. Additionally,
the cost of Checkpointing declined to that of Logging at
very coarse granularities.

At the end of the talk, an attendee asked whether the cost
of SlipStream and SlipDownStream was one, not two, user
data 1/Os per write, since the 1/Os to the current store and
to the history store occur in parallel. Keith Smith asked
whether different CDP architectures will need different
metadata structures and thus differ in the cost of accessing
metadata. Paula responded that in her CDP implementa-
tion, the underlying metadata structures for different archi-
tectures are the same, but they could be different.

B Jumbo Store: Providing Efficient Incremental Upload and
Versioning for a Utility Rendering Service

Kave Eshgi, Mark Lillibridge, Lawrence Wilcock, Guillaume
Belrose, and Rycharde Hawkes, HP Laboratories

Many providers would like to provide batch services to
customers, in which clients send some data to the provider
and the provider performs some large computation on the
data (e.g., finite element analysis, data mining) and then
sends the results back. However, providing batch services
is difficult because the links used to transfer data from the
customer to the provider (e.g., over the Internet via ADSL)
tend to be very slow. In this talk, Kave Eshgi addresses this
problem by describing a new storage system called Jumbo
Store, which uses Hash-Based Directed Acyclic Graphs
(HDAGS) to provide incremental upload of filesystem
snapshots from a Jumbo Store client to a Jumbo Store
server. The authors claim that incremental upload is a so-
lution to the transfer problem since, in many cases, new
client jobs use data that is only slightly different from pre-
vious jobs. Eshgi noted that Jumbo Store had been experi-
mentally evaluated by incorporating it into the HP Labs
prototype utility rendering service located in Palo Alto,
CA, and used by animators in England to create a number
of high-quality animated shorts.

To provide some intuition about HDAGs, Eshgi noted that
HDAGs are a generalization of Merkle trees. However, he
was adamant that HDAGs not be called Merkle trees, as
DAGs, unlike trees, can contain nodes with multiple par-
ents. Also, unlike Merkle trees, nonleaf nodes can contain
data in an HDAG.

CONFERENCE SUMMARIES

7

An HDAG is a directed acyclic graph (DAG) whose nodes
refer to other nodes by their hash rather than their loca-
tion in memory. Each node in a HDAG is comprised of two
fields: the pointer field, which is a possibly empty array of
hash pointers, and the data field, which is an application-
defined byte array. Jumbo Store encodes the directory
structure into an HDAG by representing each directory as
an HDAG node whose data field contains that directory’s
metadata and whose hash pointers point to the directory’s
members. Conversely, a single file is represented as a two-
level HDAG:; the first-level node’s data field contains the
metadata for the file and its pointer field points to a node
containing the file contents. To avoid having to send the
entire file contents every time a small portion is changed,
the file contents are broken into chunks via a technique
called content-based chunking.

Eshgi next described the utility rendering service (URS) in
which Jumbo Store was used. The URS is a batch utility
service that performs the calculations required to render a
3D movie. Animators in the U.K. would use the URS client
to submit rendering jobs to the URS in Palo Alto. To evalu-
ate Jumbo Store, a subset of the data uploaded by the ani-
mators was re-uploaded using rsync (with the compress
option turned on) and the difference in actual data trans-
ferred was noted. The authors found that Jumbo Store, on
average, transferred half as many bytes as rsync.

During the Q&A period, an attendee asked whether the
chunk sizes used to split up the file contents were static.
Eshgi responded affirmatively, stating that a static chunk
size of 4KB was used. Another attendee wanted to know
whether Jumbo Store was subject to large latencies when
uploading information. Eshgi answered that latency was
large, but that latency was a relatively inconsequential
metric given the usage scenario of Jumbo Store within the
URS. Specifically, the animators would often leave or work
on other things as soon as they were convinced that the
incremental upload had started. Finally, Keith Smith asked
whether the feedback from the animators using the system
had been positive. Eshgi responded that the animators
liked the system.

SCALABLE SYSTEMS

Summarized by Avishay Traeger (atraeger@cs.sunysb.edu)
B Data ONTAP GX: A Scalable Storage Cluster

Michael Eisler, Peter Corbett, Michael Kazar, and Daniel S.

Nydick, Network Appliance; J. Christopher Wagner; Ironport

Systems, Inc.
Peter Corbett began by describing Data ONTAP GX as a
scalable clustered network file server composed of a num-
ber of cooperating filers. The storage of a large number of

filers can be presented as a single shared storage pool. The
system’s key features are scalability (by allowing for the

78 ;LOGIN: VOL. 32, NO. 3

easy addition of filers to the cluster), location transparency
of data within the cluster, an extended namespace that can
span multiple filers, increased resiliency in the face of fail-
ures, and simplified load and capacity balancing.

The system exports both NFS and CIFS protocols to
clients via virtual interfaces (VIFs). Requests are initially
processed by the networking blade (N-Blade), which ter-
minates incoming NFS and CIFS connections and main-
tains protocol-specific state. The requests are translated
into SpinNP RPCs, which are transmitted over a cluster
fabric to the server responsible for the target volume,
where a volume is a filesystem subtree and volumes are
grouped into aggregates. SpinNP calls are processed by the
data blade (D-Blade) on the target server. Two cluster-wide
databases are used to route requests and responses. The
volume location database (VLDB) tracks the corresponding
aggregate for each volume, as well as the D-Blade currently
responsible for the aggregate. The VIF manager database
tracks which N-Blade is currently hosting each virtual in-
terface, so that D-Blades can send callbacks to clients.

Data ONTAP GX is the first system to achieve one million
operations/s on the SPEC SFS benchmark. In addition, it
scales linearly on all benchmarks up to 24 nodes. The
product is already deployed at customer sites and provides
a powerful set of features that go well beyond what a
stand-alone file server offers.

Gregory Touretsky (Intel) asked whether performance was
measured on single or multiple D-Blades, and the reply
was that benchmarks were run across multiple volumes
and multiple D-Blades. Someone asked what happens to
performance when they go beyond 24 nodes, and the audi-
ence laughed. The reply was that this is what is currently
being shipped, and they are working on expanding the sys-
tem further. There was a question about what was used to
benchmark performance via the CIFS interface, and if any
results were available. The reply was that there is no stan-
dard CIFS benchmark, and any results that they have are
not publicly available. Another questioner wondered why
write throughput was less than half of read throughput.
The answer was that it is probably the result of read-ahead.

B //TRACE: Parallel Trace Replay with Approximate Causal
Events

Michael P Mesniet; Intel Research with Carnegie Mellon Uni-
versity; Matthew Wachs, Raja R. Sambasivan, Julio Lopez,
James Hendricks, Gregory R. Ganger, and David O’Hallaron,
Carnegie Mellon University

Michael Mesnier stated that the goal of /TRACE is to ex-
tract traces of parallel applications and replay them in such
a way that the I/O behavior is true to the original work-
load. This is done by discovering internode data depend-
encies and inter-I/O compute times. Replaying the trace as
fast as possible is one classic option, but performance is
poor because it assumes an /O bottleneck, there is no idle

time, and dependencies are ignored. The other classic re-
playing option is to use the original timing, but with this
technique we would not see any changes in performance
when replaying on different hardware.

//TRACE is portable and treats the application and storage
system as a black box. To find the dependencies, the work-
load is run multiple times, each time adding delays to the
/O stream of a node. I/O dependencies can be found when
nodes block on the I/O that is currently being throttled.
This will also find computation times. It then annotates
the per-node traces with the dependencies. These annota-
tions allow a parallel replayer to closely mimic the behav-
ior of a traced application across a variety of storage sys-
tems. The number of runs and the rate at which I/O is
throttled determine how many data dependencies can be
discovered, as well as the time necessary to collect the
traces. (One can trade off running time and replay accu-
racy.) Once //TRACE has collected this information, it can
adjust with the speed of the storage system while enforcing
dependencies. This technique works well for parallel appli-
cations with deterministic I/O dependencies.

The causality engine that /TRACE utilizes is implemented
as an LD_PRELOAD library, allowing it to capture file-level
traces. This allows users to properly evaluate different file
and storage systems. Compared to other replay mecha-
nisms, /TRACE offers significant gains in replay accuracy.
Opverall, the average replay error for the three parallel ap-
plications evaluated is below 10% when throttling every
node and delaying every I/O. Trading off replay errors with
greater time in collecting the traces was explored.

One question was asked about how //TRACE orders events
within a node. Mesnier explained that it is actually the
threads that are being throttled, and so this is not an issue.
Another point raised was that most HPC workloads today
are performing nondeterministic I/O, where this technique
will not work. The reply was that there are many work-
loads of both types, and this work targets the deterministic
applications. A follow-up point was that many HPC cen-
ters have clusters that are being shared by several applica-
tions, so even a deterministic application will act in a non-
deterministic fashion. Mesnier responded that they are tar-
geting dedicated clusters, which are often used for larger
applications. Another question involved how one could
deal with bottlenecks within the applications. The answer
was that one could perform static analysis on the traces to
see if there are too many barriers, for example, or possibly
visualize the traces. In response to whether they had tried
replaying the traces on systems other than those where the
trace was collected, the reply was that this is what they
had in fact done in their evaluation.

;LOGIN: JUNE 2007

CACHE PRIZES

Summarized by Raja Sambasivan (rajas@andrew.cmu.edu)
B Karma: Know-It-All Replacement for a Multilevel Cache

Gala Yadgar, Technion; Michael Factor, IBM Haifa Research
Laboratories; Asaaf Schuster, Technion

Gala Yadgar introduced Karma, a system for optimizing
cache replacement in systems with multiple levels of
caching. Yadgar noted that multilevel cache hierarchies in-
troduce three major problems in cache replacement. First,
locality information is hidden from lower-level caches by
the upper-level caches. Second, cache space is wasted be-
cause blocks are often duplicated at multiple cache levels.
Finally, contextual information about blocks (e.g., the file
to which they belong, the application that issued the I/O
request, etc.) is also often hidden from the lower-level
caches. Karma addresses all of these problems in concert.
First, hints from applications are used in all cache levels to
divide disk blocks into ranges based on their expected ac-
cess pattern and access frequency; each range is allocated
its own cache partition (which may span multiple cache
levels) and replacement policy. The data blocks contained
in each partition are managed by Karma using the READ,
READ-SAVE, and DEMOTE operations. READ forces the
lower-level cache to delete a block whenever it is read by
an upper-level cache. Conversely, READ-SAVE allows a
lower-level cache to keep a block read by an upper-level
cache. Finally, DEMOTE sends a block evicted from an
upper-level cache back to the next lower-level cache. Over-
all, by using application hints and partitioning the cache,
Karma is able to use the optimal replacement policy for
each access pattern seen. As a result, it compares favorably
to all other cache replacement techniques (e.g., LRU, ARC,
MultiQQ).

There are two key design decisions in Karma. The first lies
in how it partitions the workload it sees into ranges. The
second revolves around the mechanism it uses to allocate a
cache partition for each range. Workloads are partitioned
into ranges based on application hints. Blocks in a given
range have similar access frequencies and are accessed in a
similar fashion. Application-level hints are propagated to
lower-level caches by attaching a range identifier to each
cache block. Karma allocates a cache partition for a given
range in such a way as to maximize the “normalized mar-
ginal gain” for that range. The marginal gain for an access
trace is the increase in hit rate that will be seen by this
trace if the cache size increases by a single block. For ex-
ample, for sequential accesses, the marginal gain is always
zero; conversely, for looping accesses, the marginal gain is
constant until the entire loop fits in cache and is zero af-
terward. Ranges with higher normalized gains are allocated
cache partitions in higher cache levels, since it is likely
that blocks in these ranges will be accessed more fre-
quently.

CONFERENCE SUMMARIES

79

During the Q&A session Jason Flinn from the University
of Michigan asked how Karma dealt with access patterns
that changed too quickly for Karma to optimize for them.
Yadgar explained that such access patterns are not handled
by Karma, but their effects are somewhat minimized be-
cause Karma does not yet perform any prefetching. John
Wilkes from HP Labs then asked whether the authors had
thought about using Karma in a multiple host setup. As
an example, Wilkes noted that several changes had to be
made to DEMOTE to adapt it to work with multiple hosts.
Yadgar responded by stating that this was future work and
that, for the multiple-host case, the authors would have to
look into replacement policies that take into account the
fact that blocks are not necessarily discarded when they
leave a given host.

B AMP: Adaptive Multi-Stream Prefetching in a Shared Cache

Binny S. Gill and Luis Angel D. Bathen, IBM Almaden
Research Center

In this very entertaining talk, Binny Gill provided an anal-
ysis of sequential prefetching algorithms for the case where
an LRU cache houses prefetched data for multiple concur-
rent sequential streams. He first separated current sequen-
tial prefetching algorithms into four different classes based
on two criteria: whether the prefetching algorithm chooses
the prefetch size in a fixed manner or in an adaptive man-
ner and whether the prefetching algorithm prefetches in a
synchronous or asynchronous manner. He then showed
that, of these classes, Adaptive Asynchronous (AA) pre-
fetching algorithms show the most promise for sequential
prefetching in terms of minimizing cache pollution and
wasted prefetches. Next, a formal analysis showing how to
best adaptively pick the parameters p (the prefetch dis-
tance) and g (the distance at which a prefetch is triggered)
for AA prefetching algorithms was shown. Finally, Binny
described AMP, an implementation of an AA algorithm,
and experimentally showed its superiority to other types of
prefetching algorithms for sequential workloads.

During the talk, Binny described his taxonomy of different
prefetching algorithms by using an animation showing
customers reaching for and eating donuts on a table while
a waiter strove to “prefetch” more donuts according to the
semantics of the various prefetching algorithm classes. His
taxonomy classifies prefetching algorithms into four differ-
ent classes: Fixed Synchronous (FS), Fixed Asynchronous
(FA), Adaptive Synchronous (AS), and Adaptive Asynchro-
nous (AA). The first term in this nomenclature refers to
whether the prefetching algorithm adaptively chooses the
prefetch size. The second term refers to whether prefetch-
ing is carried out synchronously or asynchronously. Binny
noted that although AA prefetching algorithms show the
most promise for sequential streams, they have rarely been
implemented in practice.

Next, Binny quickly described a formal analysis showing
how best to adaptively choose the prefetch size, p, and

8o ;LOGIN: VOL. 32, NO. 3

prefetch trigger distance, g, for each independent stream
when using an AA prefetching algorithm. This information
was then used to describe the Adaptive Multi-Prefetching
(AMP) algorithm. This algorithm adapts the prefetch size
by decreasing the value of p whenever a prefetched page
reaches the end of the LRU list unaccessed. To minimize
wasted prefetches, such unaccessed prefetched pages are
also moved back to the head of the LRU list and marked as
“old” when they fall off the end of the LRU list. Con-
versely, the value of p is incremented whenever the last
page read within a given read 1/O hits in cache and the
cache block hit is not “old.” The size by which p is incre-
mented is the size of the read operation in pages. The
prefetch trigger distance, g, is incremented whenever a
prefetch returns only to find that a read request is already
waiting for some page in the prefetch set. The value of g is
decremented when p is decremented.

Finally, Binny showed that the AMP algorithm easily out-
performs the other classes of prefetching algorithms on
several different workloads. These workloads included a
sequential stream workload, a workload with many short
sequential sequences, the SPC-1 Read workload, and the
SPC-2 Video on Demand workload.

During the Q&A session, John Wilkes from HP Labs asked
whether the authors had tried to use AMP on mixed work-
loads. Binny responded that they hadn’t explored this
space yet, but that the SPC-1 Read workload, on which
AMP performed well, is not a strictly sequential workload.

B Nache: Design and Implementation of a Caching Proxy for
NFSv4

Ajay Gulati, Rice University; Manoj Naik and Renu Tewari,
IBM Almaden Research Center

Sharing data across wide area networks (WANs) is becom-
ing very common; however, a common problem with WAN
file sharing is high latency. A common solution used to re-
duce latency in WANSs involves installing a caching proxy
close to the client, but many protocols available for use by
the caching proxy and the server, such as CIFS and
NFESv2/v3, are optimized for local area networks (LANSs),
not WANS. As a result, these protocols tend to be “chatty”
and result in suboptimal performance. In this talk, Ajay
Gulati described why NFSv4 is a good choice for the pro-
tocol that should be used between caching proxies and
servers and then proceeded to describe the design and im-
plementation of such a NFSv4 caching proxy (Nache).

Gulati stated that NFSv4 is useful in a caching proxy setup
because it provides read/write delegations and compound
requests. A write delegation for a file issued to a client by
an NFSv4 server gives the client the authority to modify
that file locally without interacting with the server until
the delegation is revoked. Similarly, a read delegation for a
file issued to a client allows the client to read the file with-
out continually checking cache consistency. For cases

where sharing of files among clients is uncommon, delega-
tions can greatly improve performance. Compound re-
quests allow multiple related requests to be batched into a
single request; such requests are suited for WANs as they
generate less overall network traffic and per-command
round-trip delays than the case in which each request con-
tained in the compound request is issued separately.

Ajay then described Nache, a caching proxy for NFSv4
that sits between local clients and a remote server. Nache,
in some sense, relies on receiving delegations from the
server for the files accessed by its clients. If it does receive
these delegations, it can proceed to serve the clients locally
without communicating with the server.

Nache is implemented via cascaded mounts. Nache
mounts the data exported by the remote server and then
re-exports this mount to clients. This means that when a
client request must be forwarded from the Nache to the re-
mote server, the request must first be translated from an
NESv4 request to a VES call and then back to an NFSv4 re-
quest. This translation works without issue in most cases;
however, some stateful NFSv4 requests (e.g., OPEN,
CLOSE, LOCK, REQUEST) require special handling.

Ajay then proceeded to provide an evaluation of both
Nache and delegation performance in NFSv4. He showed
that delegations can greatly reduce the number of opera-
tions at the remote server, but that the cost of issuing a
delegation is high. Hence, delegations are useful as long as
the server does not have to revoke them often (owing to
conflicting accesses, etc.). The authors evaluated Nache by
using the filebench benchmark, which was used to approx-
imate both a Web-based workload and an OLTP workload,
and by executing a software build on the clients. The re-
sults showed that as long as more than one client is used,
the fraction of total operations generated by clients sent to
the remote server was substantially reduced. Finally, the
authors measured response time over the WAN when exe-
cuting the software build. They found that the server re-
sponse time decreased as the number of clients used in-
creased.

One attendee asked what would happen if the remote
server were to revoke the delegations issued to Nache.
Ajay responded that Nache would then stop acting as a
proxy and start acting as a simple passthrough.

BEYOND THE MACHINE ROOM

Summarized by Andrew Leung (aleung@soe.ucsc.edu)
B TFS: A Transparent File System for Contributory Storage

James Cipar, Mark D. Corner; and Emery D. Berger, University
of Massachusetts, Amherst

Awarded Best Paper!

James Cipar discussed how contributory applications such
as Folding@home and Freenet utilize a user’s unused local

;LOGIN: JUNE 2007

disk space to contribute to a common distributed system.
This disk utilization intrudes on users’ personal free space
as well as impacting normal application performance.
Namely, as used disk space increases, the file system’s abil-
ity to make ideal block allocation decisions decreases. This
leads to disk layout fragmentation, which has a very nega-
tive impact on disk access times. James continued by say-
ing that for users to want to use contributory applications,
these applications must not consume too much disk space.

To address this issue the authors presented the Transparent
File System (TFS), an on-disk file system that allows users
to contribute disk space with minimal performance im-
pact. James outlined the goals of TFS: to make contribu-
tory data transparent, meaning their presence has no im-
pact on filesystem performance or capacity; to allow con-
tributory data to be overwritten when space for user data
is needed; and to make such data compatible with legacy
contributory applications. To facilitate overwriting of con-
tributory data, TFS uses five block allocation states to
specify whether data is contributory, contributory and
overwritten by user data, or overwritten contributory data
that has been deleted. James evaluates the contributions of
TFS with respect to a watermarking approach and using
fixed contribution space. The two key metrics are the
amount of storage capacity contributed and bandwidth.
Their figures show TFS is able to contribute more space, as
well as maintaining higher bandwidth. To examine local
filesystem performance, the Andrew Benchmark is used
against different amounts of data contribution. James pre-
sents the TFS run time for several benchmark phases, each
of which is better than or comparable to ext2 with or with-
out any contributory application running.

Brent Callaghan from Apple asked whether TFS could be
used as a Web browser cache. James replied that in fact
they had tried to use TES as a browser cache but that be-
cause browser cache size is generally small the effects are
negligible. Another question related to files that are open
for extended periods of time. Since TFS does not overwrite
contributory data from an open file it is conceivable that a
contributory application could cause fragmentation. James
confirmed that this is the case but that perhaps some effort
should be made to ensure that contributory applications
do not hold files open too long. Binny Gill from IBM Re-
search asked whether ext2 had to be modified. James said
that indeed ext2 was modified and that porting TFS to an-
other file system would require the source code. A second
question was whether movie data from sources such as
BitTorrent is affected by TFS. James answered that BitTor-
rent data is user data, rather than contributory data, and
therefore TES does not affect it; rather, BitTorrent con-
sumes other resources, such as bandwidth during uploads.
Finally, James provided a link to more TFS information
and source code: http:/prisms.cs.umass.edu/tcsm/.

CONFERENCE SUMMARIES

81

B Cobalt: Separating Content Distribution from Authorization
in Distributed File Systems

Kaushik Veeraraghaven, Andrew Myrick, and Jason Flinn,
University of Michigan

Kaushik Veeraraghavan presented a solution for secure
mobile content access. In addition to accessing digital con-
tent from personal devices, Kaushik said that users often
wish to access content from other devices to share media
with friends or family. He described how these ad hoc
clients, which are devices such as MP3 players or laptops
that a user does not own or rarely uses, make access to
digital data difficult. The current data distribution and
authorization model makes accessing data from ad hoc
clients difficult because the ad hoc client must be used to
explicitly locate and fetch remote content after searching
for it over a slow, wide-area link. Kaushik described how
digital rights management adds additional complexity by
forcing users to authenticate themselves at each ad hoc de-
vice, opening the door for possible abuse, and often re-
quires the user to jump through hoops to play back the
content. What makes protected content special is that the
goals of users and content providers are largely orthogonal.
Users desire easy and pervasive access to their data, where-
as providers do not want data leaked to any unauthorized
device or user.

To address this, Kaushik described a shift in paradigm
where people, rather than clients, are authenticated. Their
solution, Cobalt, relies on a Cobalt token, such as a cell
phone or PDA, which is carried by the user, allowing au-
thentication to be based on proximity. Kaushik said the
goal of Cobalt is to improve usability, privacy, and content
protection. This relies on trusting the Cobalt token and
ad hoc media players, each of which has a Trust Platform
Module (TPM) chip that allows content providers to verify
the integrity of the Cobalt token. Kaushik described their
current implementation on the Blue File System. The Co-
balt token manages content acquisition, where the provid-
er forwards encrypted content to either the token or a
more powerful helper computer. Playing the content re-
quires the token to identify all media players in range, se-
lect a specific media, and send either the data from the
token or the IP address of the helper computer to the
media player.

Evaluation of Cobalt aims at understanding the overhead
of content acquisition and content playback and any new
applications that Cobalt may enable. The content acquisi-
tion has a fixed 10-second overhead that scales linearly
with file size. Kaushik attributes most of this cost to the
establishment of a secure connection. Associating a media
player with the token and specifying content to share re-
quires about 12 seconds. Finally, Kaushik describes how
Cobalt can be used to adaptively merge many users’ play-
lists into a single playlist, enjoyable by all. Each user speci-
fies a query and only songs that appear in all query results
are played.

82 ;LOGIN: VOL. 32, NO. 3

Peter Honeyman from the University of Michigan asked
about clarifying whether it is the TPM or the media player
that is trusted, since the media player can still steal unen-
crypted content. Kaushik responded that the media player
must also be trusted and that ideally DRM is enforced all
the way until it reaches the user’s ear but that this obvi-
ously cannot be done. Brent Welch from Panasas asked if
Cobalt would make it possible to steal media from TiVo, to
which Kaushik replied that TiVo does not have a TPM
chip, which makes it untrusted. Daniel Ellard from Net-
work Appliance asked about how content can be retrieved
should the Cobalt token be lost. Kaushik said content
providers could deauthorize the token or one could en-
crypt the content key and resynchronize with a new token.
Finally, Craig Everhart from Network Appliance wondered
how Cobalt defined media players in range and whether it
would be possible to accidentally access a neighbor’s media
player. Kaushik responded that it is indeed possible but
that simply registering tokens with specific media players
could alleviate that problem.

MAKING THE RAID

Summarized by Charles Weddle (weddle@cs.fsu.edu)
B PARAID: A Gear-Shifting Power-Aware RAID

Charles Weddle, Mathew Oldham, Jin Qian, and An-1 Andy
Wang, Florida State University; Peter Reiher, University of
California, Los Angeles; Geoff Kuenning, Harvey Mudd
College

Charles Weddle began his talk by discussing the increasing
concern of energy consumption in server-class machines.
Storage systems account for a significant part of the energy
consumption in servers. In fact, storage systems account
for 24% of the power usage in Web servers and 27% of the
electricity cost for data centers. The authors hypothesize
that it is possible to reduce energy consumption in RAID
devices without degrading performance, while maintaining
reliability. The three main challenges in this problem are
finding opportunities to save energy in active servers, pre-
serving peak performance, and maintaining reliability. The
existing work mostly trades performance for energy sav-
ings directly, for example by varying the speeds of disks.
The authors took advantage of three observations to help
provide a solution to this problem. First, conventional
RAID overprovisions resources: A conventional RAID
keeps all disks spinning even under light load. Second, un-
used storage exists on storage servers because of overpro-
visioning. This unused storage can be used for energy sav-
ings. Third, workloads have a cyclic fluctuation. Infre-
quent disk power transitions during periods of light load
can save energy.

The authors present the power-aware RAID (PARAID) as a
solution to this problem. PARAID introduces skewed strip-
ing that allows PARAID to power off disks during periods
of light load. Skewed striping replicates blocks in unused

storage, allowing disks to be powered off. Skewed striping
creates sets of disks of varying sizes, where each disk set is
thought of as a gear. Skewed striping allows PARAID to
match performance to workload by switching into different
gears. PARAID preserves peak performance by operating in
the highest gear, with all disks in the array, when the sys-
tem is under peak load. PARAID maintains reliability by
reusing existing RAID levels, for example RAID level 5.
The authors implemented a PARAID prototype in Linux
2.6.5 for evaluation. The PARAID components reside be-
tween the conventional RAID device driver and the disk
device driver. The evaluation was performed by replaying a
Web trace and a Cello99 trace and running the Postmark
benchmark. For the Web trace experiments the PARAID
device, using RAID level 0, was compared to a conven-
tional RAID level 0 device and was found to reduce energy
consumption by up to 34%. For the Cello99 experiments
the PARAID device, using RAID level 5, was compared to a
conventional RAID level 5 device, yielding up to 13% en-
ergy savings. PARAID is ongoing work and the authors
would like to test PARAID under more workloads. Also,
the authors would like to put PARAID into a production
environment for live testing.

Bill Bolosky from Microsoft asked why the latency CDF
graphs for the Web trace experiments have sustained
peaks. Charles responded that this was caused by a small
number of Web requests never finishing owing to the way
the Web trace playback program handles certain errors.
Keith Smith from Network Appliance asked whether RAID
level 4 would make disk power transitions easier. Charles
responded that it might help alleviate the overhead of cas-
cading parity updates. Carl Waldspurger from VMware
asked how the optimal gear configuration is chosen.
Charles explained that gear optimization is ongoing work
and that iterating over gear configurations using simula-
tion might help with this problem.

B REO: A Generic RAID Engine and Optimizer

Deepak Kenchammana-Hosekote, IBM Almaden Research Cen-
ter; Dingshan He, Microsoft; James Lee Hafner, IBM Almaden
Research Center

Deepak Kenchammana began his talk by discussing the
need for a variety of RAID codes. No single RAID code sat-
isfies all aspects of data storage in terms of storage effi-
ciency, reliability, and performance. Also, as data sets grow,
using the same RAID code is not practical because disk
failures grow with capacity. A greater variety of RAID
codes are needed to provide high data reliability using less
reliable disks. This is challenging because it is expensive to
support several RAID codes. The current mindset is that
deploying new RAID codes is expensive and risky. The au-
thors present the RAID Engine Optimizer (REO) as a solu-
tion to this problem. REO can handle any XOR-based
RAID codes, including N-way mirroring. REO automati-
cally handles all RAID-related errors and leverages dy-

;LOGIN: JUNE 2007

namic-state-like current cache pages. REO offers competi-
tive performance, yielding ~8% speedup for SPC-1-like
workloads.

REO comprises a set of routines invoked by cache on read
(on miss), write (flush), rebuild, and migrate. REO rou-
tines deal with all necessary RAID translations and execu-
tions. REO extends the idea that it is efficient to simulta-
neously flush dirty pages in cache that belong to the same
stripe by defining a W-neighborhood for the victim page.
The W-neighborhood is defined as the set of all pages,
clean or dirty, in the data cache that are in a 2W + 1 stripe
window centered on the victim’s stripe. REO is made up of
a RAID engine and an execution engine. The RAID engine
determines the best strategy for what is to be done and the
execution engine figures out how it gets done. Input into
the execution engine from the RAID engine is an I/O plan
that contains the set of blocks to be read, a set of blocks to
be XOR-ed, and a set of blocks to be written. The read
strategy for fault-free read is straightforward: Just read it
from disk. The challenge with read is the reconstruct case.
The write strategy involves identifying all affected parity
elements for dirty elements to be written. For every af-
fected parity element there are two update strategies: Par-
ity Compute (PC) and Parity Increment (PI). The execu-
tion engine takes the 1/O plan and acquires stripe locks, al-
locates cache pages, submits reads in the read set, executes
XORs in the XOR set, and finally submits the writes in the
write set. If an error is detected during the execution of an
I/O plan, the execution engine aborts the 1/O plan and re-
submits the I/0 plan to the RAID engine. The RAID engine
contains an I/O plan optimizer that is responsible for pick-
ing the least-cost read or write strategy. Some metrics used
for optimization are the number of I/O commands (I0C)
submitted to the storage devices and the number of XOR
operations. REO was evaluated through trace-driven simu-
lations. The authors built the data cache and REO compo-
nents for evaluation; Disksim was used to simulate disk
/0. The optimization objective for evaluation was to mini-
mize disk I/O (I0C). Two measures were used in evalua-
tion: total access time and total memory bus usage. REO
showed a 10% improvement in disk access time for a fault-
free RAID 5 layout and a 7% improvement for a RAID 5
layout with one disk failure.

The first questioner asked what REO would do under page
pressure (thrashing). Deepak answered that REO would do
nothing worse than any other RAID firmware would do.
One way to reduce the additional pages needed to com-
plete in-progress writes is to reduce the window size. If
that does not help then you are really stuck with operating
at a point where things will complete, albeit slowly. To the
second question, whether the authors considered having
REO look more broadly into the file cache, Deepak an-
swered no. In response to whether there was any chance of
seeing the source code, Deepak stated that he is sure that
IBM has plans for it to be made public.

CONFERENCE SUMMARIES

83

B PRO: A Popularity-Based Multi-Threaded Reconstruction
Optimization for RAID-Structured Storage Systems

Lei Tian and Dan Feng, Huazhong University of Science and
Technology; Hong Jiang, University of Nebraska—Lincoln; Ke
Zhou, Lingfang Zeng, Jianxi Chen, and Zhikun Wang, Hua-
zhong University of Science and Technology and Wuhan
National Laboratory for Optoelectronics; Zhenlei Song,
Huazhong University of Science and Technology

Hong Jiang began his talk by discussing the importance of
data recovery. Disk failures have become more common in
RAID-structured storage systems. The improvement in
disk capacity has far outpaced improvements in disk band-
width, lengthening the overall RAID recovery time. Also,
disk drive reliability has improved slowly, resulting in a
very high overall failure rate in a large-scale RAID storage
system. Disk-oriented reconstruction (DOR) is one of the
existing 1/0 parallelism-based recovery mechanisms. DOR
follows a sequential order of stripes in reconstruction, re-
gardless of user access patterns. Workload access patterns
need to be considered because 80% of the accesses are di-
rected to 20% of the data, according to Pareto’s Principle,
and 10% of the files accessed on a Web server typically ac-
count for 90% of the server requests. The authors present
a popularity-based multi-threaded reconstruction opti-
mization (PRO) that takes advantage of data popularity to
improve reconstruction performance. PRO divides data
units on the spare disks into hot zones. Each hot zone has
a reconstruction thread. The priority of each thread is dy-
namically adjusted according to the current popularity of
its hot zone. PRO keeps track of the user accesses and ad-
justs the popularity of each hot zone accordingly. PRO se-
lects the reconstruction thread with the highest priority
and allocates a time slice to it. When a thread’s time slice
runs out, PRO assigns a time slice to the next highest pri-
ority thread. The process repeats until all of the data units
have been rebuilt. Priority-based scheduling is used so that
the reconstruction regions are always the hottest regions.
Time-slicing is used to exploit the I/O bandwidth of hard
disks and access locality.

PRO was compared to DOR in the evaluation because
DOR is arguably the most effective among the existing re-
construction algorithms. The evaluation of PRO examined
reconstruction performance by measuring user response
time, reconstruction time, and algorithm complexity. PRO
was integrated into the original DOR approach imple-
mented in the RAIDframe software to validate and evaluate
PRO. The evaluation was performed by replaying three dif-
ferent Web traces that consisted of read-only Web search
activity. It was found that PRO consistently outperformed
DOR in reconstruction and user response time by up to
44.7% and 23.9%, respectively. PRO’ effectiveness relies
on the existence of popularity and locality in the workload
as well as the intensity of the workload. PRO also uses
extra memory for each thread descriptor. The computation

84 ;LOGIN: VOL. 32, NO. 3

overhead of PRO is O(n), although if a priority queue is
used in the PRO algorithm the computation overhead can
be reduced to O(log n). The entire PRO implementation in
the RAIDFrame software only added 686 lines of code.
Work on PRO is ongoing. Future work includes optimiz-
ing the time slice, scheduling strategies, and hot zone
length. Currently, PRO is being ported into the Linux soft-
ware RAID. Finally, the authors plan on further investigat-
ing use of access patterns to help predict user accesses and
of filesystem semantic knowledge to explore accurate re-
construction.

The first questioner asked about the average rate of recov-
ery for PRO. Hong answered that the average reconstruc-
tion time is several hundred seconds in the experimental
setup. The second questioner asked how well PRO recon-
struction compares to DOR reconstruction under no work-
load. Hong commented that when there is no workload
the reconstruction performance for PRO and DOR is the
same. In response to a question about write overhead,
Hong stated that his research team is actively looking into
this. The last question involved the sensitivity of the re-
sults to the number of threads and to the time slice. Hong
explained that the impact of the number of threads and
time slice is negligible in the current experimental configu-
ration. However, a more elaborate sensitivity study is un-
derway in the project.

LSF '07: 2007 Linux Storage & Filesystem Workshop

San Jose, CA
February 12—13, 2007

Summarized by Brandon Philips (brandon@ifup.org)

Fifty members of the Linux storage and filesystem commu-
nities met in San Jose, California, to give status updates,
present new ideas, and discuss issues during the two-day
Linux Storage & Filesystem Workshop. The workshop was
chaired by Ric Wheeler and sponsored by EMC, NetApp,
Panasas, Seagate, and Oracle.

JOINT SESSION

Ric Wheeler opened the workshop by explaining the basic
contract that storage systems make with the user to guar-
antee that the complete set of data will be stored, bytes are
correct and in order, and raw capacity is utilized as com-
pletely as possible. It is so simple that it seems that there
should be no open issues, right?

Today, these basic demands are met most of the time, but
Ric posed a number of questions. How do we validate that
no files have been lost? How do we verify that bytes are
correctly stored? How can we utilize disks efficiently for
small files? How do errors get communicated between the
layers?

Through the course of the next two days some of these
questions were discussed, others were raised, and a few
ideas were proposed. Continue reading for the details.

B Ext4 Status Update

Mingming Cao gave a status update on ext4, the recent
fork of the ext3 file system. The primary goal of the fork
was the move to 48-bit block numbers; this change allows
the file system to support up to 1024 petabytes of storage.
This feature was originally designed to be merged into ext3
but was seen as too disruptive [1]. The patch is also built
on top of the patch set that replaces the indirect block map
and with extents [2] in ext4. Support for greater than 32K
directory entries will also be merged into ext4.

On top of these changes a number of ext3 options will be
enabled by default in ext4; these include directory index-
ing to improve file access for large directories, resize inode,
which reserves space in the block group descriptor for on-
line growing, and 256-byte inodes. Users of ext3 can use
these features today by using mkfs.ext3 -1 256 -O
resize_inode dir_index /dev/device.

A number of RFCs are also being considered for inclusion
into ext4. This includes a patch that will add nanosecond
timestamps [3] and the creation of persistent file alloca-
tions [4], which will be similar to posix_fallocate but
won't waste time writing zeros to the disk.

Currently, ext4 stores a limited number of extended attrib-
utes in-inode and has space for one additional block of ex-
tended attribute data, but this may not be enough to sat-
isfy xattr-hungry applications. For example, Samba needs
additional space to support Vista’s heavy use of ACLs, and
eCryptFS can store arbitrarily large keys in extended at-
tributes. This led everyone to the conclusion that someone
needs to collect data on how xattrs are being used, to help
developers decide how to best implement xattrs. Until
larger extended attributes are supported, application devel-
opers need to pay attention to the limits that exist on cur-
rent file systems (e.g., one block on ext3 and 64K on XFS).

Online shrinking and growing was briefly discussed and it
was suggested that online defragmentation, which is a
planned feature, will be the first step toward online shrink-
ing. A bigger issue, however, is storage management. Ted
T’so suggested that the Linux filesystem community can
learn from ZFS how to create easy-to-manage storage sys-
tems. Christoph Hellwig sees the disk management issue
as being a user-space problem that can be solved with ker-
nel hooks and sees ZFS as a layering violation. Either way,
it is clear that disk management should be improved.

B The fsck Problem

Zach Brown and Valerie Henson were slated to speak on
the topic of filesystem repair, but there was a slight delay
as Val’s laptop was booting. To pass the time she intro-
duced us to the latest fashion: laptop rhinestones. They
would make a great discussion piece if you are waiting on

;LOGIN: JUNE 2007

a fsck and, if Val’s fsck estimates for 2013 come true, hav-
ing a strategy to pass the time will become very important.

With her system booted Val presented an estimate of 2013
fsck times. She first measured a fsck of her 37-GB home
directory with 21 GB in use, which took 7.5 minutes and
read 1.3 GB of filesystem data. Next, she used projections
of disk technology from Seagate to estimate the time to
fsck a 2013 home directory, which will be 16 times larger.
Although 2013 disks will have a fivefold bandwidth in-
crease, seek times will only improve by 20%, to 10 ms,
leading to a fsck time of 80 minutes! The primary reason
for long fscks is seek latency, since fsck spends most of its
time seeking over the disk, discovering and fetching dy-
namic filesystem data such as directory entries, indirect
blocks, and extents.

Reducing seeks and avoiding the seek latency punishment
are key to reducing fsck times. Val suggested one solution:
Keeping a bitmap on disk that tracks the blocks that con-
tain filesystem metadata; this would allow for reading all
data in a single arm sweep. This optimization, in the best
case, would make a single sequential sweep over the disk
and on the 2013 disk reading all filesystem data would
only take around 134 seconds, which is a big improve-
ment. A full explanation of the findings and possible solu-
tions can be found in the paper Repair-Driven File System
Design [5]. Also, Val announced that she is working full
time on a file system called chunkfs [6] that will make
speed and ease of repair a primary design goal.

Zach Brown presented a blktrace of e2fsck. The basic out-
come of the trace is that the disk can stream data at 26
Mbps and fsck is achieving 12 Mbps. This situation could
be improved to some degree without on-disk layout
changes if the developers had a vectorized 1/O call. Zach
explained that in many cases you know the block locations
that you need, but with the current API you can only read
one at a time.

A vectorized read would take a number of buffers and a
list of blocks to read as arguments. Then the application
could submit all of the reads at once. Such a system call
could save a significant amount of time, since the I/O
scheduler can reorder requests to minimize seeks and
merge requests that are nearby. Also, reads to blocks that
are located on different disks could be parallelized. Al-
though a vectorized read could speed up the fsck, eventu-
ally filesystem layout changes will be needed to make fsck
really fast.

B Libata: Bringing the ATA Community Together

Jeff Garzik gave an update on the progress of libata, the in-
kernel library to support ATA hosts and devices. First, he
presented the ATAPI/SATA features that libata now sup-
ports: PATA+C/H/S, NCQ, FUA, SCSI SAT, and Compact-
Flash. The growing support for parallel ATA (PATA) drives
in libata will eventually deprecate the IDE driver, and Fe-

CONFERENCE SUMMARIES 85

dora developers are helping to accelerate testing and adop-
tion of the libata PATA code by disabling the IDE driver in
Fedora 7 test 1.

Native Command Queuing (NCQ) is a new command pro-
tocol introduced in the SATA II extensions and now sup-
ported under libata. With NCQ the host can have multiple
outstanding requests on the drive at once. The drive can
reorder and reschedule these requests to improve disk per-
formance. A useful feature of NCQ drives is the force unit
access (FUA) bit, which will ensure that data in write
commands with this bit set will be written to disk before
returning success. This has the potential of enabling the
kernel to have both synchronous and nonsynchronous
commands in flight. There was a recent discussion [7]
about both NCQ FUA and SATA FUA in libata.

Jeff briefly discussed libata’s support for SCSI ATA transla-
tion (SAT). SAT lets an ATA device appear to be a SCSI de-
vice to the system. The motivation for this translation is
the reuse of error handling and support for distro in-
stallers, which already know how to handle SCSI devices.

There are also a number of items slated as future work for
libata. Many drivers need better suspend/resume support,
and the driver API is due for a sane initialization model
using an allocate/register/unallocate/free system and use of
“Greg blessed” kobjects. Currently, libata is written under
the SCSI layer and debate continues on how to restructure
libata to minimize or eliminate its SCSI dependence. Error
handling has been substantially improved by Tejun Heo
and his changes are now in mainline. If you have had is-
sues with SATA or libata error handling, try an updated
kernel to see whether those issues have been resolved.
Tejun and others continue to add features and to tune the
libata stack.

B Communication Breakdown: 1/0 and File Systems

During the morning a number of conversations sprang up
about communication between I/O and file systems. In the
case of errors, file systems should be getting information
on nonretryable errors and passing that data up to user
space. Particularly bad can be situations where retries are
happening over and over when the 1/0 layer knows that an
entire range of blocks is missing.

A “pipe” abstraction was discussed to communicate data
on byte ranges that are currently in error, under perfor-
mance strain (because of a RAID5 disk failure), or tem-
porarily unplugged. If a file system was aware of ranges
that are currently handling a recoverable error, have unre-
coverable errors, or are temporarily slow, it might be able
to handle the situations more gracefully.

File systems currently do not receive unplug events, and
handling unplug situations can be tricky. For example, if

a fibre channel disk is pulled for a moment and plugged
back in, it may be down for only 30 seconds, but how
should the file system handle the situation? Currently, ext3

86 ;LOGIN: VOL. 32, NO. 3

remounts the entire file system as read only. XFS has a
configurable timeout for fibre channel disks that must be
reached before it sends an EIO error. And what should be
done with USB drives that are unplugged? Should the file
system save state and hope the device gets plugged back
in? How long should it wait, and should it still work if it is
plugged into a different hub? All of these questions were
raised but there are no clear answers.

FS TRACK

B Security Attributes

Michael Halcrow, eCryptFS developer, presented an idea
to leverage SELinux and make file encryption/decryption
based on application execution. For example, a policy
could be defined so that the data would be unencrypted
when OpenOffice is using the file but encrypted when the
user copies the file to a USB key. After presenting the
mechanism and mark-up language for this idea, Michael
opened the floor to the audience. The general feeling was
that SELinux is often disabled by users and that per-
mount-point encryption may be a more useful and easier-
to-understand user interface.

B Why Linux Sucks for Stacking

Josef Sipek, Unionfs [8] maintainer, went over some of the
issues involved with stacking file systems under Linux. A
stacking file system, such as Unionfs, provides an alterna-
tive view of a lower file system. For example, Unionfs
takes a number of mounted directories, which could be
NFS, ext3, etc., as arguments at mount time and merges
their name space.

The big unsolved issue with stacking file systems is han-
dling modifications to the lower file systems in the stack.
Several people suggested that leaving the lower file system
available to the user is just broken and that by default the
lower layers should only be mounted internally.

The new fs/stack.c file was discussed, too. This file cur-
rently contains a simple inode copy routine that is used by
Unionfs and eCryptfs, but in the future more stackable
filesystem routines should be pushed to this file.

Future work for Unionfs includes getting it working under
lockdep and additional experimentation with an on-disk
format. The on-disk format for Unionfs is currently under
development and will store white-out files and persistent
Unionfs inode data.

B B-trees for a Shadowed FS

Many file systems use b-trees to represent files and directo-
ries. These structures keep data sorted, are balanced, and
allow for insertion and deletion in logarithmic time. How-
ever, there are difficulties in using them with shadowing.
Ohad Rodeh presented his approach to using b-trees and
shadowing in an object storage device, but the methods
are general and useful for any application.

Shadowing may also be called copy-on-write (COW). The
basic idea is that when a write is made the block is read
into memory, modified, and written to a new location on
disk. Then the tree is recursively updated, starting at the
child and using COW, until the root node is atomically up-
dated. In this way the data is never in an inconsistent
state; if the system crashes before the root node is updated
then the write is lost but the previous contents remain in-
tact.

Replicating the details of his presentation would be a
wasted effort as his paper, “B-trees, Shadowing and Clone”
[9], is well written and easy to read. Enjoy!

B eXplode the Code

Storage systems have a simple and important contract to
keep: Given user data, they must save that data to disk
without loss or corruption even in the face of system
crashes. Can Sar gave an overview of eXplode [10], a sys-
tematic approach to finding bugs in storage systems, to
help root out the bugs that can break this contract.

eXplode systematically explores all possible choices that
can be made at each choice point in the code to make low-
probability events, or corner cases, just as probable as the
main running path. And it does this exploration on a real
running system with minimal modifications.

This system has the advantage of being conceptually sim-
ple and very effective. Bugs were found in every major
Linux file system, including a fsync bug that can cause
data corruption on ext2. This bug can be produced by
doing the following: Create a new file, B, which recycles an
indirect block from a recently truncated file, A, then call
fsync on file B and crash the system before file As truncate
gets to disk. There is now inconsistent data on disk and
when e2fsck tries to fix the inconsistency it corrupts file
B’s data. A discussion of the bug has been started on the
linux-fsdevel [11] mailing list.

FS TRACK

m NFS

The second day of the file systems track started with a dis-
cussion of an NFS race. The race appears when a client
opens up a file between two writes that occur during the
same second. The client that just opened the file is un-
aware of the second write and keeps an out-of-date version
of the file in cache. To fix the problem a change attribute
was suggested. This number would be consistent across re-
boots, would be unitless, and would increment on every
write.

In general everyone agreed that a change attribute is the
right solution; however, Val Henson pointed out that im-
plementing this on legacy file systems will be expensive
and will require on-disk format changes.

;LOGIN: JUNE 2007

Discussion then turned to NSFv4 access control lists
(ACLs). Trond Myklebust said they are becoming standard
and Linux should support them. Andreas Gruenbacher is
working on patches to add NFSv4 support to Linux but
currently only ext3 is supported; more information can be
found on the Native NFSv4 ACLs on the Linux [12] page.
A possibly difficult issue will be mapping current POSIX
ACLs to NFSv4 ACLs, but a draft document, “Mapping Be-
tween NFSv4 and Posix Draft ACLs” [13], lays out a map-
ping scheme.

B GFS Updates

Steven Whitehouse gave an overview of the recent changes
in the Global File System 2 (GFS2), a cluster file system
where a number of peers share one large file system. The
important changes include a new journal layout that can
support mmap, splice, and other system calls on journaled
files, page cache level locking, readpages() and partial
writepages() support, and ext3 standard ioctls Isattr and
chattr.

The readdir() function was discussed at some length, par-
ticularly the ways in which it is broken. A directory insert
on GFS2 may cause a reorder of the extendible hash struc-
ture GFS2 uses for directories. In order to support readdir,
every hash chain must be sorted. The audience generally
agreed that readdir is difficult to implement and Ted Ts’o
suggested that someone should try to go through commit-
tee to get telldir/seekdir/readdir fixed or eliminated.

® OCFS2

A brief OCFS2 status report was given by Mark Fasheh.
Like GFS2, OCFS2 is a cluster file system, designed to
share a file system across nodes in a cluster. The current
development focus is on adding features, as the basic
filesystem features are working well.

After the status update the audience asked a few questions.
The most requested OCFS2 feature is forced unmount and
several people suggested that this should be a future vir-
tual filesystem (vfs) feature. Mark also said that users re-
ally enjoy the easy setup of OCFS2 and the ability to use it
as a local file system. A performance hot button for OCFS2
is the large inodes that occupy an entire block.

In the future Mark would like to mix extent and extended
attribute data in-inode to utilize all of the available space.
However, as the audience pointed out, this optimization
can lead to some complex code. In the future Mark would
also like to move to GFS’s distribute lock manager.

B DualFS: A New Journaling File System for Linux

DualFS is a file system by Juan Piernas that separates data
and metadata into separate file systems. The on-disk for-
mat for the data disk is similar to ext2 without metadata
blocks. The metadata file system is a log file system, a de-
sign that allows for very fast writes, since they are always
made at the head of the log, which reduces expensive

CONFERENCE SUMMARIES 87

seeks. A few performance numbers were presented: under
a number of micro- and macro-benchmarks, DualFS per-
forms better than other Linux journaling file systems. In
its current form, DualFS uses separate partitions for data
and metadata; this forces the user to answer a difficult
question: How much metadata do I expect to have?

More information, including performance comparisons,
can be found on the DualFS LKML announcement page
[14] and the project homepage [15]. The currently avail-
able code is a patch on top of 2.4.19 and can be found on
SourceForge [16].

B pNES Object Storage Driver

Benny Halevy gave an overview of pNFS (parallel NFS),
which is part of the IETF NFSv4.1 draft [17] and tries to
solve the single-server performance bottleneck of NFS
storage systems. pNFS is a mechanism for an NFS client to
talk directly to a disk device without sending requests
through the NFS server, fanning the storage system out to
the number of SAN devices. There are many proprietary
systems that do a similar thing, including EMC’s High
Road, IBM’s TotalStorage SAN, SGI's CXFS, and Sun’s QFS.
Having an open protocol would be a good thing.

However, Jeff Garzik was skeptical of including pNFS in
the NFSv4.1 draft particularly because to support pNFS
the kernel will need to provide implementations of all
three access protocols: file storage, object storage, and
block storage. This will add significant complexity to the
Linux NFSv4 implementation.

Benny explained that the pNFS implementation in Linux is
modular to support multiple layout-type specific drivers,
which are optional. Each layout driver dynamically regis-
ters itself using its layout type and the NFS client calls it
across a well-defined API. Support for specific layout types
is optional. In the absence of a layout driver for some spe-
cific layout type, the NFS client falls back to doing /0
through the server.

After this overview Benny turned to the topic of OSDs: ob-
ject-based storage devices. These devices provide a more
abstract view of the disk than the classic “array of blocks”
abstraction seen in today’s disks. Instead of blocks, objects
are the basic unit of an OSD, and each object contains
both metadata and data. The disk manages the allocation
of the bytes on disk and presents the object data as a con-
tiguous array to the system. Having this abstraction in
hardware would make filesystem implementation much
simpler. To support OSDs in Linux Benny and others are
working to get bi-directional SCSI command support into
the kernel and support for variable-length command de-
scriptor blocks (CDBs).

88 ;LOGIN: VOL. 32, NO. 3

B Hybrid Disks

Hybrid disks with an NVCache (flash memory) will be in
consumers’ hands soon. Timothy Bisson gave an overview
of this new technology. The NVCache will have 128-256
MB of nonvolatile flash memory that the disk can manage
as a cache (unpinned) or the operating system can manage
by pinning specified blocks to the nonvolatile memory.
This technology can reduce power consumption or in-
crease disk performance.

To reduce power consumption, the block layer can enable
the NVCache Power Mode, which tells the disk to redirect
writes to the NVCache, thereby reducing disk spin-up op-
erations. In this mode the 10-minute write-back threshold
of Linux laptop mode can be removed. Another strategy is
to pin all filesystem metadata in the NVCache, but spin-
ups will still occur on nonmetadata reads. An open ques-
tion is how this pinning should be managed when two or
more file systems are using the same disk.

Performance can be increased by using the NVCache as a
cache for writes, resulting in a long seek. In this mode the
block layer would pin the target blocks, ensuring a write
to the cache instead of incurring the expensive seek. Also,
a file system can use the NVCache to store its journal and
boot files for additional performance and reduced system
start-up time.

If Linux developers decide to manage the NVCache there
are many open questions. Which layer should manage the
NVCache, the file system or block layer? And what type of
API should be created to leverage the cache? Another big
question is how much punishment these caches can take.
According to Timothy it takes about a year (using a desk-
top workload) to fry the cache if you are using it as a write
cache.

B Scaling Linux to Petabytes

Sage Weil presented Ceph, a network file system that is de-
signed to scale to petabytes of storage. Ceph is based on a
network of object-based storage devices, and complete
copies of each object are distributed across multiple nodes,
using an algorithm called CRUSH. This distribution makes
it possible for nodes to be added and removed from the
system dynamically. More information on the design and
implementation can be found on the Ceph homepage [18].

CONCLUSION

The workshop concluded with the general consensus that
bringing together SATA, SCSI, and filesystem people was a
good idea and that the status updates and conversations
were useful. However, the workshop was a bit too large for
code discussion. More targeted workshops will need to be
held to work out the details of some of the issues dis-
cussed at LSF ’07. Topics for future workshops include vir-
tual memory and filesystem issues and extensions that are
needed to the VFS.

REFERENCES

[1] http://lwn.net/Articles/187336/.
[2] http://lwn.net/Articles/187321/.

[3] http://article.gmane.org/gmane.comp.file-systems
.ext4/986.

[4] http://article.gmane.org/gmane.comp.file-systems
.ext4/899.

[5] http://infohost.nmt.edu/~val/review/repair.pdf.

[6] http://www.usenix.org/events/hotdep06/tech/
prelim_papers/henson/henson.pdf.

[7] http://article.gmane.org/gmane.linux.ide/15942/.
[8] http://unionfs.filesystems.org.

[9] http://www.cs.huji.ac.il/~orodeh/papers/
ibm-techreport/H-0245.pdf.

;LOGIN: JUNE 2007

[10] www.stanford.edu/~engler/explode-0sdi06.pdf.

[11] http://marc.theaimsgroup.com/?1=linux-fsdevel
&m=117148291716485&w=2.

[12] http://www.suse.de/~agruen/nfs4acl/.

[13] http://www.citi.umich.edu/projects/nfsv4/rfc/
draft-ietf-nfsv4-acl-mapping-03.txt.

[14] http:/lwn.net/Articles/221841/.
[15] http://ditec.um.es/~piernas/dualfs/.

[16] http://sourceforge.net/project/showfiles.php
?group_id=187143&package_id=218377.

[17] http://'www.nfsv4-editor.org/drafts/drafts.html.
[18] http://ceph.sourceforge.net/.

CONFERENCE SUMMARIES

89

Technologies (FAST '08)

G 25 .. | i W LY Announcement and Call for Papers USENIX

6th USENIX Conference on File and Storage

USENIX, the Advanced Computing Systems Association, in cooperation with ACM SIGOPS, IEEE Mass Storage

Systems Technical Committee (MSSTC), and IEEE TCOS
http://www.usenix.org/fast08

February 26-29, 2008

Important Dates

Paper submissions due: September 12, 2007, 9:00 p.m.
EDT (firm deadline)

Notification of acceptance: November 1, 2007

Final papers due: January 8, 2008

Work-in-Progress Reports/Poster Session proposals due:

January 16, 2008

Conference Organizers
Program Chairs

Mary Baker, Hewlett-Packard Labs
Erik Riedel, Seagate Research

Program Committee

Andrea C. Arpaci-Dusseau, University of Wisconsin,
Madison

Randal Burns, Johns Hopkins University

Howard Gobioff, Google

Christos Karamanolis, VMware

Kim Keeton, Hewlett-Packard Labs

Geoff Kuenning, Harvey Mudd College

Darrell Long, University of California, Santa Cruz

Petros Maniatis, Intel Research Berkeley

Robert Morris, Massachusetts Institute of Technology

Brian Noble, University of Michigan

Alma Riska, Seagate Research

Antony Rowstron, Microsoft Research, UK

Jiri Schindler, Network Appliance

Margo Seltzer, Harvard University

Doug Terry, Microsoft

Theodore Ts’o, IBM

Andrew Warfield, University of British Columbia

Ric Wheeler, EMC

Theodore Wong, /IBM Research

Erez Zadok, Stony Brook University

San Jose, CA, USA

Steering Committee

Andrea C. Arpaci-Dusseau, University of Wisconsin,
Madison

Remzi H. Arpaci-Dusseau, University of Wisconsin,
Madison

Jeff Chase, Duke University

Greg Ganger, Carnegie Mellon University

Garth Gibson, Carnegie Mellon University and Panasas

Peter Honeyman, CITI, University of Michigan, Ann
Arbor

Merritt Jones, MITRE Corporation

Darrell Long, University of California, Santa Cruz

Jai Menon, IBM Research

Margo Seltzer, Harvard University

Chandu Thekkah, Microsoft Research

John Wilkes, Hewlett-Packard Labs

Ellie Young, USENIX Association

Overview

The 6th USENIX Conference on File and Storage Tech-
nologies (FAST ’08) brings together storage system
researchers and practitioners to explore new directions
in the design, implementation, evaluation, and deploy-
ment of storage systems. The conference will consist of
two and a half days of technical presentations, including
refereed papers, Work-in-Progress reports, and a poster
session.

Topics
Topics of interest include but are not limited to:
* Archival storage systems
* Caching, replication, and consistency
* Database storage issues
* Distributed 1/O (wide-area, grid, peer-to-peer)
» Empirical evaluation of storage systems
* Experience with deployed systems
* Manageability
* Mobile and personal storage

* Parallel 1/0

* Performance

* Reliability, availability, disaster tolerance
* Scalability

* Security

* Storage networking

* Virtualization

Deadline and Submission Instructions
Submissions will be made electronically via a Web
form, which will be available on the FAST ’08 Call for
Papers Web site, http://www.usenix.org/fast08/cfp. The
Web form asks for contact information for the paper
and allows for the submission of your full paper file in
PDF format.

Submissions must be full papers (no extended
abstracts) and must be no longer than thirteen (13)
pages plus as many additional pages as are needed for
references (e.g., your paper can be 16 total pages, as
long as the last three or more are the bibliography).
Your paper should be typeset in two-column format in
10 point type on 12 point (single-spaced) leading, with
the text block being no more than 6.5" wide by 9"
deep. Submissions longer than this will not be
reviewed.

Authors must not be identified in the submissions,
either explicitly or by implication (e.g., through the ref-
erences or acknowledgments). Blind reviewing of full
papers will be done by the program committee, assisted
by outside referees. Accepted papers will be shep-
herded through an editorial review process by a
member of the program committee.

Simultaneous submission of the same work to mul-
tiple venues, submission of previously published work,
and plagiarism constitute dishonesty or fraud.
USENIX, like other scientific and technical confer-
ences and journals, prohibits these practices and may,
on the recommendation of a program chair, take action
against authors who have committed them. In some
cases, program committees may share information
about submitted papers with other conference chairs
and journal editors to ensure the integrity of papers
under consideration. If a violation of these principles is
found, sanctions may include, but are not limited to,
barring the authors from submitting to or participating
in USENIX conferences for a set period, contacting the
authors’ institutions, and publicizing the details of the
case.

Authors uncertain whether their submission meets
USENIX’s guidelines should contact the program
chairs, fastO8chairs@usenix.org, or the USENIX office,
submissionspolicy@usenix.org.

Accepted material may not be subsequently pub-
lished in other conferences or journals for one year
from the date of acceptance by USENIX. Papers
accompanied by nondisclosure agreement forms will
not be read or reviewed. All submissions will be held
in confidence prior to publication of the technical pro-
gram, both as a matter of policy and in accordance with
the U.S. Copyright Act of 1976. Submissions violating
these rules or the formatting guidelines will not be con-
sidered for publication.

One author per paper will receive a registration dis-
count of $200. USENIX will offer a complimentary
registration upon request.

Best Paper Awards
Awards will be given for the best paper(s) at the con-
ference.

Work-in-Progress Reports and Poster
Session

The FAST technical sessions will include slots for
Work-in-Progress reports, preliminary results, “outra-
geous” opinion statements, and a poster session. We
are particularly interested in presentations of student
work. Please send WiP submissions to fastO8wips@
usenix.org.

Birds-of-a-Feather Sessions
Birds-of-a-Feather sessions (BoFs) are informal gather-
ings organized by attendees interested in a particular
topic. BoFs will be held in the evening. BoFs may be
scheduled in advance by emailing the Conference
Department at bofs@usenix.org. BoFs may also be
scheduled at the conference.

Registration Materials

Complete program and registration information will be
available in November 2007 on the conference Web
site. The information will be in both HTML and a
printable PDF file. If you would like to receive the
latest USENIX conference information, please join our
mailing list: http://www.usenix.org/about/mailing.html.

Rev. 4/18/07

Announcement and Call for Papers “SEle

5th USENIX Symposium on Networked Systems
Design & Implementation (NSDI ‘08)

Sponsored by USENIX in cooperation with ACM SIGCOMM and ACM SIGOPS
http://www.usenix.org/nsdi08

April 16-18, 2008

Important Dates

Paper titles and abstracts due: October 2, 2007
Complete paper submissions due: October 9, 2007
Notification of acceptance: December 21, 2007
Papers due for shepherding: January 25, 2008
Final papers due: February 19, 2008

Conference Organizers

Program Chairs

Jon Crowcroft, University of Cambridge
Mike Dahlin, University of Texas at Austin

Program Committee

Paul Barham, Microsoft Research

Ken Birman, Cornell University

Miguel Castro, Microsoft Research

Jeff Chase, Duke University

Steve Gribble, University of Washington

Matthias Grossglauser, EPFL

Krishna Gummadi, Max Planck Institute for Software
Systems

Steven Hand, University of Cambridge

Brad Karp, University College, London

Dina Katabi, Massachusetts Institute of Technology

Eddie Kohler, University of California, Los Angeles

Sue Moon, KAIST

Robert Morris, Massachusetts Institute of Technology

Sylvia Ratnasamy, Intel Research

Luigi Rizzo, ICIR

Timothy Roscoe, ETH Ziirich

Srinivasan Seshan, Carnegie Mellon University

Emin Giin Sirer, Cornell University

Amin Vahdat, University of California, San Diego

Arun Venkataramani, University of Massachusetts Amherst

San Francisco, CA, USA

Steering Committee

Thomas Anderson, University of Washington

Mike Jones, Microsoft Research

Greg Minshall

Robert Morris, Massachusetts Institute of Technology
Mike Schroeder, Microsoft Research

Amin Vahdat, University of California, San Diego
Ellie Young, USENIX

Overview

NSDI focuses on the design principles and practical evalu-
ation of large-scale networked and distributed systems.
Systems as diverse as Internet routing, peer-to-peer and
overlay networks, sensor networks, Web-based systems,
and measurement infrastructures share a set of common
challenges. Progress in any of these areas requires a deep
understanding of how researchers are addressing the chal-
lenges of large-scale systems in other contexts. Our goal is
to bring together researchers from across the networking
and systems community—including communication, dis-
tributed systems, and operating systems—to foster a broad
approach to addressing our common research challenges.

Topics
NSDI will provide a high-quality, single-track forum for
presenting new results and discussing ideas that overlap
these disciplines. We seek a broad variety of work that fur-
thers the knowledge and understanding of the networked
systems community as a whole, continues a significant
research dialog, or pushes the architectural boundaries of
large-scale network services. We solicit papers describing
original and previously unpublished research. Specific
topics of interest include but are not limited to:

* Novel architectures for communications systems

* Mobility and wireless system architecture challenges

* Sensor networking and other energy-constrained sys-

tems
» Novel operating system support for networked systems

* Virtualization and resource management for net-
worked systems

* Highly available and reliable networked systems

* Security and resilience of networked systems

* Overlays and peer-to-peer systems

* Distributed storage, caching, and query processing

* Federated, autonomous, and self-configuring net-
worked systems

* Large-scale networked systems testbeds, design, and
evaluation

* Network measurements, workload, and topology char-
acterization

» Managing, debugging, and diagnosing problems in
networked systems

* Practical protocols and algorithms for networked sys-
tems

* Application experiences based on networked systems

What to Submit

Submissions must be full papers, at most 14 single-spaced
8.5" x 11" pages, including figures, tables, and references,
two-column format, using 10-point type on 12-point
(single-spaced) leading, with a maximum text-block of
6.5" wide x 9" deep. Papers that do not meet the require-
ments on size and format will not be reviewed. Submis-
sions will be judged on originality, significance, interest,
clarity, relevance, and correctness.

NSDI is single-blind, meaning that authors should
include their names on their paper submissions and do not
need to obscure references to their existing work.

Authors must submit their paper’s title and abstract by
October 2, 2007, and the corresponding full paper is due
by October 9, 2007. All papers must be submitted via the
Web form, which will be available on the Call for Papers
Web site, http://www.usenix.org/nsdi08/cfp. Accepted
papers may be shepherded through an editorial review
process by a member of the Program Committee. Based
on initial feedback from the Program Committee, authors
of shepherded papers will submit an editorial revision of
their paper to their Program Committee shepherd by Jan-
uary 25, 2008. The shepherd will review the paper and
give the author additional comments. All authors (shep-
herded or not) will produce a final, printable PDF and the
equivalent HTML by February 19, 2008, for the confer-
ence Proceedings.

Simultaneous submission of the same work to multiple
venues, submission of previously published work, and
plagiarism constitute dishonesty or fraud. USENIX, like
other scientific and technical conferences and journals,
prohibits these practices and may, on the recommendation
of a program chair, take action against authors who have
committed them. In some cases, program committees may
share information about submitted papers with other con-
ference chairs and journal editors to ensure the integrity
of papers under consideration.

Previous publication at a workshop is acceptable as
long as the NSDI submission includes substantial new
material. For instance, submitting a paper that provides a
full evaluation of an idea that was previously sketched in
a 5-page position paper is acceptable. Authors of such
papers should cite the prior workshop paper and clearly
state the submission’s contribution relative to the prior
workshop publication.

Authors uncertain whether their submission meets
USENIX’s guidelines should contact the Program Chairs,
nsdi08chairs@usenix.org, or the USENIX office,
submissionspolicy@usenix.org.

Best Paper Awards
Awards will be given for the best paper and the best paper
for which a student is the lead author.

Birds-of-a-Feather Sessions
Birds-of-a-Feather sessions (BoFs) are informal gather-
ings organized by attendees interested in a particular
topic. BoFs will be held in the evening. BoFs may be
scheduled in advance by emailing the USENIX Confer-
ence Department at bofs@usenix.org. BoFs may also be
scheduled at the conference.

Registration Materials

Complete program and registration information will be
available in January 2008 on the conference Web site.
The information will be in both HTML and a printable
PDF file. If you would like to receive the latest USENIX
conference information, please join our mailing list at
http://www.usenix.org/about/mailing.html.

Rev. 4/6/07

Designer clothes aren’t all that’s in
Fashion. Come see the latest trends in
open source at LinuxWorld.

From Linux/Windows interoperability to practical S development, you'll see
what's taking open source front and center. In fact, more companies use open
source than ever. For instance, one top American sportswear company now utilizes
Linux running on industry-leading servers for its global B2B portal. The company and
its specialty retailers can efficiently place, track and ship orders in minutes. It has
even shortened design-to-product time by linking its production Ffacilities worldwide.
So catch the excitement of open source, register at www.linuxworldexpo.com.

Open source
is everywhere.

5 B

LONUXWORLD

August 6-9, 2007
Moscone Center - San Francisco

Register now at
www.linuxworldexpo.com

Copyright @ 2007 IDG World Expo Corp. All rights reserved. LinuxWorld and LinuxWorld Conference & Expo are registered trademarks of International Data Group, Inc. All other trademarks are property of their respective owners.

Platinum Sponsors

ACGESS (1) motopey ORACLE"

The Motorola developer network

Gold Sponsor Silver Sponsor

Novell A"@

HPC Cluster Solutions

“IEEE Security & Privacy
is the publication of choice
for great security ideas

that you can 1 S, !! i‘ | \
put into practice immediately. _ ' ((”'de"‘ praNeryCIges: W.é_

Keep track of the
software security bleeding edge.”
—Gary McGraw, CTO, Cigital
Author of Software Security
and Exploiting Software

* Wireless security

¢ Designing the

security infrastructure D'A T A ‘»S U R V‘_Ei]il_‘l_ﬁ\lc E

* Privacy issues

* Policy

¢ Cybercrime
IEEE Security & Privacy
¢ Digital rights management

bridges the gap
* Intellectual property protection between theory and practice,
and piracy with peer-reviewed research articles,

case studies, tutorials, podcasts,

and regular columns from top experts!

Subscribe now o

for only $29! EIE[MPHWABY

www.computer.org/services/nonmem/spbnr

Save the Date!

LISAQ7

I ee

21st LARGE
INSTALLATION
SYSTEM
ADMINISTRATION
CONFERENCE

November 11-16, 2007, Dallas, TX

The annual LISA conference is the meeting place of choice for
system, network, database, storage, security, and all other
computers-related administrators. Join us in Dallas, TX,
November 11-16, 2007, for the most in-depth, real-world

system administration training and information available.

www.usenix.org/lisa07

eedy)

16th USENIX Securiky symposium

Rugust 610, 2007, Boston, MA

Join us in Boston, MA, August 6—10, 2007, for the 16th USENIX Security Symposium.
The USENIX Security Symposium brings together researchers, practitioners, system
administrators, system programmers, and others interested in the latest advances

in the security of computer systems and networks.

SECURITY 07 WILL FEATURE:
« An extensive Training Program, covering crucial topics and led by highly respected instructors
- Technical Sessions, featuring the Refereed Papers Track, Invited Talks, and a Poster Session

e Plus BoFs and more!

http://www.usenix.org/seco7/login

o
. logm : PERIODICALS POSTAGE
, PAID

AT BERKELEY, CALIFORNIA

USENIX Association
2560 Ninth Street, Suite 215 AND ADDITIONAL OFFICES

Berkeley, CA 94710

POSTMASTER

Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

