

R O B K O L S T A D MOTD

motd

P E R H A P S A L L I S N O T R O S E S

Dr. Rob Kolstad has long served as editor of ;login:.
He is SAGE’s Executive Director, and also head coach
of the USENIX-sponsored USA Computing Olympiad.

kolstad@usenix.org

A S I E X A M I N E T H E E M P L O Y -
ment scene with the new SAGE
salary survey, I can’t help but be
struck by the hottest field
around: security.

I have given security tutorials and
the occasional apocalyptic
keynote, including warnings
about Internet kidnappings. No
question, the citizenry of the Net
includes an unsavory element.
However, I am continually frus-
trated at the amount of unseemly
behavior that permeates our
everyday computing experi-
ences—potentially running
through the entire IT industry.

Let’s try to take an unbiased look
at the current state of affairs.

First, let’s open our emailbox. Look at that. There are
about 45 legitimate messages mixed in among 403
unsolicited electronic mails. While the spam is educa-
tional in its way—what with its stock alerts, pharma-
ceutical announcements, beauty and body enhance-
ment tips, reminders that I could perform a bit better
in personal relationships, lottery winnings, and the
occasional plea to support our brethren in Nigeria—I
must confess that most of it lost interest for me after
the thousandth repetition.

How did this incredibly sorry situation emerge? My
guess is that no one person or entity feels sufficiently
harmed by it to make it stop. Important emails buried
(or hidden in a spam folder), decreased ability to find
important email, and, one must believe, a certain
amount of fraud: none of these is enough to warrant
more than an Act of Congress that has been, in my
humble opinion, not quite as effective as perhaps its
framers had hoped. The cost of spam is hard to deter-
mine, since the fundamental rule of accounting
(“Costs are as costs are accounted”) can lead to wildly
divergent answers. In my life, though, where I keep
track of the number of daily invasions of my privacy
and try to ensure that I don’t lose any important
email, spam is a truly depressing and time-consuming
part of every day.

I don’t think this is reasonable.

Let’s fire up the Web browser now.

A pop-up! It must be really important. Why else
would my time and attention be so violently taken
away?

It’s another home loan advertisement. I don’t need
another home loan. I don’t need another Web camera.
It’s astounding the number of things I don’t need.
Pop-ups might be a necessary evil like advertisements
on commercial television and radio, but I hate them.
Turning them off in my Web browser made me feel as
if my life had improved.

“My computer is so slow these days,” says my friend
John. A quick check reveals 600 viruses. Apparently,
he tends to let Web sites entice him to download soft-
ware that infects his computer. Removing all those
extra features brought his performance back in line.

By the way, the use of “infection,” “viruses,” and the
rest of the biological/health care vocabulary that sur-
rounds this part of a security discussion strikes me as
unfortunate. I think many people believe that, like
human germs, computer viruses just emerge some-
how in the wilderness and make their way to comput-
ers. We can’t cure the common cold, and computers
get sick, too. Makes sense, doesn’t it?

Nothing could be further from the truth, of course.
Humans engineer these viruses. The more helpful
humans not only teach others how to write them but

2 ; LO G I N : V O L . 3 0 , N O . 3

; LO G I N : J U N E 2 0 0 5 M OTD 3

also create Web sites that enable less skilled individu-
als to craft their own invaders by point-and-click. On
a bad day, viruses propagate through email dramati-
cally more quickly than through the Web.

I don’t think this is reasonable.

I asked my security officer how we were doing.
“Everything is great,” he replied. “The firewall is stop-
ping all the port-scans and we’re all patched as of yes-
terday’s new software.”

“Port scans?”

“Sure. A few thousand times every hour, various sys-
tems try to see if any of our network services will let
them break in. Sometimes we get more than one scan
per second.”

Now why in the world am I being scanned the as
many as 100,000 times per day? Why do articles
report that un-patched PCs can survive uninfected for
no more than ten minutes after being connected to
the Internet?

I just don’t think this is reasonable. Imagine finally
completing the driveway to your shiny new house.
Within seconds, a host of people surround your
manse rattling every doorknob, trying to open the
windows, peering into your basement. Would you put
up with this? Even if the people said, “We only want
to look”? Of course not.

I asked the security officer about any other anomalies.
“We did have a few zombied PCs, but we’ve reloaded
them.”

Zombied PCs are PCs whose resources are hijacked
by someone, usually for nefarious purposes such as
port scanning and spam transmission.

I don’t think this is reasonable.

How did all this come about?

I suppose it came a little at a time. Cantor and Siegel
opened the floodgates for “commercial use of net-
news.” Many well-intentioned folks didn’t want to
trample on free speech, so, after a few years of evolu-
tion my emailbox is inundated with offers I don’t care
to receive.

When challenged about innovative protocols that
enabled strangers to email executable code to unsus-
pecting users, the world’s most profitable software
vendor said, “Customers are demanding these fea-
tures” to enhance their experience. Those in power
ignored the security folks who said, “This is a bad
idea.” As predicted, here we are.

Maybe the world’s most profitable software company
could raise its priority level for security? Oh. Never
mind.

Perhaps we should heed those pundits who tell us
that FireFox, Linux, *BSD, etc., really just aren’t as

secure as more popular software. Maybe not. My
experiences simply don’t bear this out.

The hell of it all is: Everyone can pay (for a spam fil-
ter, a virus scanner, a firewall, or higher costs for net-
work bandwidth) to mitigate the security problem.
Don’t kid yourself if you’re an end user, though;
someone is paying the money on your behalf and,
ultimately, it comes out of your pocket.

What are we to do?

I am afraid that these problems will jeopardize our
industry’s progress. To start with, not only do we need
to educate ourselves and the public about the high
costs of security, but we need to understand an
important point: Adding security—with its expense
in time and money—only gets us back to where we
should have been in the first place. An ever-growing
security budget yields no growth in usability (usually
just the opposite) and no increase in performance or
return on investment (unless you count avoiding the
potential additional costs of incursion or data theft).
This seems wrong.

In addition to education, I believe we need to increase
social pressure to influence and to punish evil-doers
who penetrate systems, steal my time, and require an
entire new US$20B industry just to enable computer
users to employ their systems as they were intended
to be used.

Legal actions? Civil actions will not result in the
deterrent effect that a round-up of a dozen spammers
and system crackers might have. Put each of them in
jail for a decade or two, and I imagine would-be hack-
ers might think twice. This trend has begun with the
conviction and nine-year sentence of a U.S. spammer.

Do ISPs bear any responsibility? I think so. I think
they can detect some of the systems that are port-
scanning and shut down their communications. Aus-
tralian ISP Telstra Bigpond recently took an action
like this because their resources had been strained by
zombied PCs.

I am constantly amazed at the mindset of “Solve the
problem close to its manifestation” rather than “Solve
the problem at its source.” Why aren’t we going after
crackers and spammers with all the force we can
muster? Doesn’t it matter to anyone? Is the increased
cost of using computers just another small, irritating
cost? Does no one realize that security problems are
caused by actual people being malicious?

I don’t think we’re being reasonable.

letter to
the editor

letters to
the edi-
torto the
editor

To Rob Kolstad:

We’ve long admired Rob Kolstad.
He is a down-to-earth guy who is
not afraid to say what’s on his
mind. And what’s on his mind is
invariably worth hearing, unless
you happen to be the poor soul at
the podium when he’s stating his
mind at the aisle microphone.
However, when we read his edito-
rial in last month’s ;login:, the one
where he comes out in favor of
ISPs blocking port 25 of zombie
machines being used to send
spam, we decided we needed to do
something we thought we would
never do: suggest that Rob Kolstad
is wrong.

Well, maybe “wrong” is overstat-
ing it. It’s not that we think the
selective type of blocking Rob is
advocating won’t throttle the zom-
bies the way it’s supposed to do,
and it’s not that we think that
adding this to the anti-spammers’
bag of tricks is necessarily a bad
thing. But neither is it true that
this type of blocking or even the
bag-of-tricks approach as a whole
is the most effective or efficient
way to attack the problem, and
Rob should know that.

He should know it because, just
five months ago, he sat in the audi-
ence at LISA ’04 when we were
presented with the Best Paper
Award for our work on spam filter-
ing. Given that we won the award,
you might jump to the conclusion
that we created some genius filter,
or that our work was highly theo-
retical or very complex. Given that
multiple people at the conference
were heard to remark that we had
“solved the problem,” you might
think that we’d created some magi-
cal solution, and it just hasn’t
reached the practical masses yet.

You might think that way, but the
opposite is true. We didn’t create
anything. We won the award with
an implementation paper. That is,
we did what sysadmins are sup-
posed to do: we read the prior

work, took some commonly avail-
able components, made the adjust-
ments necessary for our own envi-
ronment, and implemented this
cobbled-together solution. Our
solution was to implement a sim-
ple Bayesian filter (an obsolete
one, by today’s standards), and—
surprise!—it worked. Our paper
just documents our implementa-
tion methodology and describes
how you can use it at your com-
pany right now to effectively solve
the spam problem for your user
base.

Yet here is Rob Kolstad expressing
his frustration at spam (a frustra-
tion we all share) and recommend-
ing, not a systematic or compre-
hensive solution, but yet another
filter-of-the-day approach to
today’s most popular spammer
trick, sending via zombies. Now,
Rob certainly isn’t alone in sug-
gesting that we need to look to
solutions other than filtering,
including extreme measures such
as port 25 blocks, selective and
otherwise. There are a veritable
circus of people like Rob—people
much smarter than we are—
screaming at the top of their lungs
about how we can’t win this fight
with the “outdated” protocols we
have today. They assure us that
SMTP needs to be rewritten, email
needs to be charged for, and access
to the Internet must be censored.
So how is it possible that two
sysadmins at a healthcare co-op
have already functionally solved
this problem for their user base
with a two-year-old version of a
Bayesian filter? How is it possible,
given that LISA ’04 also had an
invited Ph.D. from Microsoft
claiming that “the problem with
email is that it’s free”?

The answer is that today’s sysad-
mins appear to have acquired
something akin to Attention
Deficit Disorder wrapped in a
“Somebody Else’s Problem” field
when it comes to the spam prob-
lem. We see the symptoms in pre-

4 ; L O G I N : V O L . 3 0 , N O . 3

; LO G I N : J U N E 2 0 0 5 L E T TE R TO TH E E D ITO R 5

sentations and conversations at the
conferences we attend, in the
papers we read, and in articles like
Rob’s. We hear and see sysadmins
discussing federal anti-spam case
law. Sysadmins demanding SMTP
protocol rewrites and IETF draft
acceptances. Sysadmins begging
ISPs to shut off core Internet func-
tionality for their users. Sysadmins
talking about everyone in the world
needing to adopt DNS hacks to
send email. In short, a whole lot of
sysadmins demanding that other
people solve the problem for them
and just tell them what to do, and a
whole lot of “flavor of the week”
and “reinvent everything”
approaches born out of these
demands. We want them to tell us
that it isn’t our problem and to
explain how it’s the current way
things work that’s broken. And if
they want to charge us for some
black box or for recommending
that we redesign (or even turn off)
core functionality, that’s fine too.

What happened here? We are sys-
tem administrators. It is our job to
solve these kinds of problems using
the tools we have available, without
breaking interoperability. It’s our
job, and we used to enjoy it. We
used to be good at it, too.

If there was a single, non-utilitarian
point in our paper, a moral to our
20-page ramble, it was that we
don’t need censorship, FCC regula-
tions, protocol changes, protocol
kludges such as SPF, or ever-
smarter learning algorithms to
solve this problem. What we need
is more system administrators
doing competent implementations
of good learning filters such as
Bogofilter, crm114, and DSPAM.

We know that filters have been
“beaten.” There’s wordlist poison-
ing, nefarious HTML tricks,
microspam, an arms race, etc. etc.
We’ve heard the professors and fel-
lows, and professional smart peo-
ple. We know it’s impossible. The
difference between them and us is

that we see these attacks daily, we
see them in the wild, and we’ve
seen them in real time for two years
now. And we’ll summarize that
experience in three words: They
don’t work. Despite so many people
assuming these filters have been
broken, the data just isn’t there. To
our knowledge there is not a single
published paper that empirically
demonstrates fatal flaws in these fil-
ters or shows them to be less than
adequate at solving the problem
when they are implemented using a
sound methodology. Quite the con-
trary. Yes, they can be made to have
sub-par performance when people
are lazy and try to cut corners, but
if the cost of solving the problem is
a bit of homework and elbow
grease, system administrators are
the last ones who should be
complaining.

Yes, we know that filters aren’t the
utopian solution because the spam
isn’t blocked at the sender. But
while we argue about the ideal way
to do that, users are getting ever
more inundated with spam that is
increasingly offensive in nature,
and many of them are abandoning
email altogether. We have some-
thing that may well work perma-
nently to reduce spammers’ ability
to harass us and put us back on the
offensive. We should take full
advantage of this first and then
worry about cutting spam off at the
source.

Please, let’s turn down the volume
knob a few notches; let’s help as
many sysadmins as we can to get
good filtering implementations;
let’s do our jobs. Let’s see how deep
the filtering rabbit hole goes for
real before we chase after the next
shiny idea that offers to solve the
problem for us, only at the cost of a
little bit of core functionality.

D A V I D J O S E P H S E N A N D
J E R E M Y B L O S S E R

dave@homer.cymry.org

Rob Kolstad replies:

I stand by my comment that ISPs
should take measures to stop spam
at its source. Filtering at the deliv-
ery point does protect end users—
potentially at a high level—but it
still incurs what I believe are unac-
ceptable costs all down the line:
bandwidth, CPU cycles, adminis-
trative personnel costs, and (worst
of all) diluting the effectiveness of
email as a powerful tool. Email’s
effectiveness is diluted by losing
important messages (false positive
detection) and wasting the time of
readers (letting spam through). Of
course, filtering only works for
those who have filters installed.
The rest continue to suffer the
scourge, a scourge promulgated for
no ethical reason that I can discern.

I have good results with a Bayesian
filtering solution on my system, but
I think that’s only the beginning of
a total solution.

J O N F I N K E

when worlds
collide, 2
T H E T W O - S I D E D S W O R D O F
T E C H N O L O G Y I N T E G R AT I O N

Jon is a senior systems programmer at Rensselaer
Polytechnic Institute, using relational databases to
automate system administration and to facilitate
data flow between enterprise systems. A frequent
LISA author, Jon also dabbles in construction and the
building trades.

finkej@rpi.edu

T H E T E C H N O L O G Y U S E D T O P R O V I D E
telecommunication services has been
evolving over the years. This often yields
reduced equipment costs, increased flexi-
bility, enhanced functions, and other good
things. However, this can also drive up the
complexity of our systems, increasing—or
at least changing—our maintenance and
support requirements, in addition to
requiring expertise outside of our current
staff.

This problem became apparent at our site with our
new voicemail system (which uses MS Exchange as a
mail store) and, to a lesser extent, our Voice over IP
(VoIP) rollout.

Let me share with you a cautionary tale about the
direction that early adopters are taking.

Legacy World

Looking backward for a moment, the legacy world
includes equipment such as the PBX, which is based
on a special-purpose computer and lots of custom
hardware. This computer and its operating system
had only one design function: to provide telephone
service. Likewise, the voicemail system (Octel) was a
dedicated, custom computer with only the single
function of providing voicemail services. While these
systems may have been based on general-purpose
operating systems of the time, functions were much
simpler then.

This approach gave the vendors a very clean environ-
ment to support and administrators a focused system
to configure. They could control what operating sys-
tem and application updates were needed, and, best
of all, the rate of change was very low. With the
exception of presumably rare bug fixes and new fea-
tures, there wasn’t much need for frequent updates,
and those updates were driven by the application, not
the operating system. In 12 years of operation, we had
only a single patch for the voicemail system.

The New World

In the new paradigm (or at least the current para-
digm), things have become much more complex. Our
single-box voicemail system (Octel) was replaced by a
collection of five machines (the Unity Voicemail
server, the Exchange server, two domain controllers,
and a backup server). To complicate things further,
these systems are not running custom application-

6 ; L O G I N : V O L . 3 0 , N O . 3

; LO G I N : J U N E 2 0 0 5 W H E N WO R L D S CO L I D E , 2 7

specific operating systems but, rather, a general pur-
pose operating system (Windows 2000) supplied by
another vendor. We have also moved from having just
a single custom application from the primary vendor to
requiring additional general-purpose applications from
other vendors (including Exchange, Active Directory,
SQLServer, Veritas Backup, and more).

A steady stream of updates emanates from the vendors
for both the operating systems and all the other appli-
cations, including the voicemail system itself. Some of
these updates are bug fixes that might or might not
impact our functionality; others are security patches.
Unlike our old systems, these new systems operate in a
network-attached world. While we may be able to use
firewalls to ensure some protection, we can’t always
ignore the patches and bug fixes.

Our original deployment plan assumed that our new
voicemail system would use the existing, supported
Exchange service. Instead, we opted to install a stand-
alone Windows domain and Exchange server. This was
installed by the consultant who was assisting with the
overall voicemail deployment, who left once things
were up and running.

Now before you wonder how we bought such a trou-
blesome product, I’d like to point out that we did all
the proper reviews and evaluations; this all seemed rea-
sonable going into deployment. A number of other
voicemail systems we evaluated also provided unified
messaging. We knew our old voicemail system was
close to death, but then a 10-day outage due to a hard-
ware failure (the 10 days was in part spent searching
on eBay and elsewhere for replacement parts!) pushed
us into a crash deployment project. The sudden shift
from evaluation to installation led to some pushback
from the department providing the Exchange email
server, resulting in having to go it alone.

Challenges

The biggest challenge we face is that, as a department,
we do not have any staff members with significant
experience administering Windows 2000. Additionally,
we face the same problem with some of the other
things we need such as Exchange, Active Directory,
and SQLServer. These are not simple, easy-to-pick-up

systems to administer. It takes a lot of time and train-
ing for someone to become proficient in maintaining
these systems. In addition to applying patches and
upgrades as needed, these systems need to be moni-
tored for problems and also tuned and adjusted to keep
them operating well. This seems to be a component of
the total cost of ownership that wasn’t quite factored in
properly in our initial thoughts.

We are currently faced with error messages about
memory fragmentation on our Exchange server. Cer-
tain patches for Exchange seem to address this prob-
lem. Those, in turn, may require patches and updates
to the Windows OS upon which we are running the
Exchange server. There have been no updates to either
system since it was originally deployed. We are also
faced with the problem that attempting to get support
from the vendor of the voicemail system on this prob-
lem yields as a first response, “We don’t support
Exchange.” What is more, they won’t be able to pro-
vide support for their application unless all of the
other components are current with updates and
patches.

In researching the memory fragmentation issue, an
experienced Exchange administrator found 35 techni-
cal articles from Microsoft on this issue. However, he is
not available to work on our server, and no one in our
department has the background and training to readily
understand these articles; they are intended for some-
one familiar with Exchange and Active Directory.

Conclusion

Efforts are underway to address these support issues.
In the meantime, we are running a production service
with unpatched, unmonitored, and unsupported
software.

But what’s the big picture? Is every new high-tech
product going to demand its own administrator
(expert) or set of experts? Will these high-feature
products require the large sets of components that it
appears they might? I fear at this point that we’re dis-
covering a number of hidden costs for support that our
experience and background did not prepare us for.
Perhaps we are paying far too high a cost for the per-
ception of better features, but the problems remain.

H E I S O N C H A K

more Asterisk
tricks
Heison Chak is a system and network administrator at
SOMA Networks. He focuses on network management
and performance analysis of data and voice networks.
Heison has been an active member of the Asterisk
community since 2003.

heison@chak.ca

Asterisk provides an integrated platform for many
voice applications, ranging from a simple voice
gateway or conference server to a full-blown PBX.
The increase in Asterisk-compatible hardware
being shipped by vendors will enable rapid devel-
opment and deployment of voice applications to
meet various needs.

I N T H E F E B R U A R Y I S S U E O F ; L O G I N : ,
a number of interesting Asterisk topics
based on the dialplan and AGI (Asterisk
Gateway Interface) were revealed. The
dialplan (as described in extensions.conf) is
the heart of Asterisk; it uses exten => and
[context] to route calls, which integrates PBX
(private branch exchange), IVR (interactive
voice response), and external applications.
This article will start off with another
dialplan trick for a home office, followed by
a number of effective Caller ID applications
using Asterisk.

It has always been a challenge to run a PBX system in a
home office environment—family members are not
used to extensions and may dislike the fact that they
cannot pick up just any handset when a phone rings.
On the other hand, most do appreciate the privacy they
get with individual extensions. Those trying to ring the
house number often consider the IVR and the need to
remember extension numbers as troublesome and
unfriendly. To get around this, we have set up a
whitelisting for people who call us frequently. If the
telephone number of the caller matches an entry on
the whitelist, it will ring all handsets instead of playing
the IVR greeting.

This scheme significantly reduces the number of com-
plaints, while restoring a number of friendships, since
it bypasses the IVR altogether for frequent callers on
the whitelist. However, a caller listening to the IVR
greeting can easily mistake the voice prompt for an

8 ; L O G I N : V O L . 3 0 , N O . 3

HEISON=SIP/cisco1
CLARA=SIP/cisco2
KITCHEN=Zap/4
BEDROOM=IAX2/iaxy@iaxy
FAMILYROOM=SIP/grandstream1

HEISON_EXT=${HEISON}&${KITCHEN}&${BEDROOM}
CLARA_EXT=${CLARA}&${FAMILYROOM}&${KITCHEN}&${BEDROOM}
ALL_EXT=${HEISON}&${CLARA}&${KITCHEN}&${BEDROOM}&${FAMILYROOM}
;
; Whitelist—family members
;
exten => s,7,GotoIf($[${CALLERIDNUM} = 4161230123]?50:8) ; Dad's cell
exten => s,8,GotoIf($[${CALLERIDNUM} = 4161230124]?50:60) ; Mom's cell

;
; Calls from family rings all handsets
;
exten => s,50,Dial(${ALL_EXT},20,Tr)

;
; IVR starts here
;
exten => s,60,Background(home-greeting)

; LO G I N : J U N E 2 0 0 5 M O R E A STE R I S K TR I C KS 9

answering machine, because that is what most people are used to. If the caller
simply hangs up, the call info is lost unless someone examines the CDR (call
detail record).

Caller ID

Caller Line Identification, CLI, Caller ID, Caller Display, CID—all are different
names for the service that allows one to see who is calling. Caller ID carries
information about the caller, such as telephone number, name, and the network
timestamp. (Note: a caller may opt to not deliver his/her identity on outgoing
calls.) People often call themselves to generate CallerID in order to set the time
on telephone handsets that have been moved or power-cycled.

With Asterisk allowing logic to extend beyond the dialplan, Caller ID info can
easily be made available to TiVo, MythTV, any Windows PC, or Instant
Messenger.

Announcement

There are off-the-shelf products that perform simple TTS (text to speech) on the
incoming telephone number. They announce the caller’s telephone number
through built-in speakers after receiving Caller ID information. Some people
find it irritating, because the device may take a few seconds to read back the 10
or 11-digit telephone number. Others find it useful, as they can be anywhere in
the house and listen to the announcement before answering the call. Using the
AGI and a TTS program (e.g., Festival or Cepstral), one can easily report the
incoming telephone number via the system’s sound card.

MythTV

The Caller ID announcement may be disturbing to people watching TV or a
movie. MythTV is a suite of programs that provides a platform for watching
video (e.g., TV, DVD), listening to music (e.g., CD, mp3), Web browsing, etc.
Thanks to the thoughtful design of MythTV, the OSD (on-screen display)
subsystem and predefined XML tags for Caller ID provide hooks in delivering
information about your caller onto your television set:

exten => s,1,Wait(1)
exten => s,2,System(/usr/bin/mythtvosd

—template=../programs/mythtvosd/cid.xml
—caller_name="${CALLERIDNAME}"
—caller_number="${CALLERIDNUM}"
—caller_date="${DATETIME}"

exten => s,3,Answer

Note that the MythTV OSD can be run from a different host to your MythTV
server, where you may have tuner cards installed. The multicast nature of
MythTV OSD enables Caller ID to be distributed to all MythTV front ends.

As the popularity of IM (instant messaging) increases, more and more people
run multi-protocol IM clients on their machine. Using AGI and
Class.Jabber.php, Asterisk can send messages containing Caller ID informa-
tion to an IM client supporting the Jabber protocol:

exten => s,1,Wait(1)
exten => s,2,AGI(jabber.php)
exten => s,3,Answer

jabber.php:
#!/usr/bin/php

10 ; L O G I N : V O L . 3 0 , N O . 3

<?php
ini_set('display_errors', 0);
ini_set('include_path', '.:/usr/share/pear');
require_once('class.jabber.php');
$stdin = fopen('php://stdin', 'r');
$stdout = fopen('php://stdout', 'w');
$stdlog = fopen('my_agi.log', 'w');

while (!feof($stdin)) {
$temp = fgets($stdin);
$temp = str_replace("\n","",$temp);
$s = explode(":",$temp);
$agivar[$s[0]] = trim($s[1]);
if (($temp == "") || ($temp == "\n")) {

break;
}

}

$callerid=$agivar[agi_callerid];

$JABBER = new Jabber;

$JABBER->server = "jabber.org";
$JABBER->port = 5222;
$JABBER->username = "asterisk";
$JABBER->password = "MyPassword";
$JABBER->resource = "ClassJabberPHP";

$JABBER->enable_logging = TRUE;

$JABBER->Connect() or die("Couldn't connect!");
$JABBER->SendAuth() or die("Couldn't authenticate!");

$JABBER->SendPresence();

$JABBER->SendMessage("heison@jabber.org",
"normal",
NULL,
array(// body, thread... whatever

'body' => 'Incoming call from '.$callerid),
NULL
);

$JABBER->Disconnect();
exit;
?>

The biggest drawback to sending Caller ID info to an IM server is lag; Asterisk
waits for the AGI script to complete execution before answering the call. The
Asterisk dialplan was not designed to run commands in parallel. One possible
work around is to use System(jabber.php&) and run the process in the back-
ground. Of course, a better solution in this case would be to run a local Jabber
server on the same network to reduce the roundtrip time.

Windows PC

In case you haven’t noticed, all the above examples make Caller ID available
before answering the call. This brings the ability of knowing the caller’s identity
even before he/she gets to the IVR prompt in Asterisk. However, not everyone
uses IM, and only a small percentage of people have a TiVo-like system—and
some may dislike the announcement feature. To support Windows users, one
might choose to deliver Caller ID information through Samba messaging or with
third-party programs, such as YAC (Yet Another Caller ID program).

With the help of System() and netcat, Asterisk can push the values to a
Windows machine (e.g., 10.155.1.9) listening on TCP port 10629:

; LO G I N : J U N E 2 0 0 5 M O R E A STE R I S K TR I C KS 11

exten => s,1,Wait(1)
exten => s,2,System(/bin/echo -n -e "${CALLERIDNAME} ${CALLERID-
NUM}'" | nc -w 1 10.155.1.9 10629)
exten => s,3,Answer

As soon as the TCP connection tears down (set by -w timeout_value), YAC will
display the information received on the system icon tray.

Fix CIDName

Now that we know how to make Caller ID available by a number of different
means, we have a fundamental problem that needs to be discussed. Having
access to the caller’s telephone number may be useful if you recognize the num-
ber. We often examine the Caller ID name sent by the telco, which may not be
reliable.

With the PGSQL() command built into Asterisk, one can do several SQLy things,
such as querying and modifying the CALLERIDNAME based on the incoming
CALLERIDNUM:

exten => s,1,Wait,1
exten => s,2,Macro(fixcidname)
exten => s,3,Answer

[macro-fixcidname]
exten => s,1,GotoIF($[${LEN(${CALLERIDNUM})} = 0]?8)
exten => s,2,PGSQL(Connect id host=... port=... password=... user=...

dbname=...)
exten => s,3,PGSQL(Query rs ${id} SELECT fname\, lname FROM table

WHERE number =\'${CALLERIDNUM}\')
exten => s,4,PGSQL(Fetch status ${rs} fname lname)
exten => s,5,SetCIDName(${fname} ${lname})
exten => s,6,PGSQL(Clear ${rs})
exten => s,7,PGSQL(Disconnect ${id})
exten => s,8,NoOp(${CALLERIDNAME} ${CALLERIDNUM})

Conclusion

The examples above demonstrate how you can use Asterisk to enhance the
usefulness of the traditional Caller ID. They are all based on North American
on-hook CIDs. If you look into Caller ID for call waiting or international calls,
you will find that they are quite different. The Caller ID FAQ contains useful
resources on the topic (http://www.ainslie.org.uk/callerid.htm).

OTH E R U S E F U L U R LS

MythTV: http://www.mythtv.org

YAC: http://unflowerhead.com/software/yac

A N T H O N Y H O W E

shoot the
messenger
S O M E T E C H N I Q U E S
F O R S P A M C O N T R O L

Anthony is a Canadian software developer and
sometime system administrator working in the
south of France.

achowe@snert.com

This article is based on a SAGE Mailing List dis-
cussion entitled “Intrusive vs. Non-Intrusive Spam
Control.”

E V E R Y O N E H A S T H E I R F A V O R I T E
silver bullet for filtering unsolicited bulk
email, junk mail, and spam. Unfortunately,
those bullets are not perfect and can some-
times end up in your foot.

Each spam control technique has a variety of issues
associated with it (as I found after having imple-
mented nine different Sendmail mail filters
[http://www.milter.info/], called “milters” in Send-
mail-speak). I used them with varying degrees of suc-
cess for a small ISP in the south of France. I will dis-
cuss the techniques I’ve tried or know about, but the
following summary is by no means comprehensive.

SMTP in a Nutshell

The Simple Mail Transfer Protocol (SMTP), RFC
2821, operates based on trust (which is the cause of
most of our grief) and cannot be easily replaced with
something better for the foreseeable future. The IETF
and their Anti-Spam Research Group (ASRG, http://
asrg.sp.am/) agree on that much (as their mailing lists
reveal after dedicated searching).

Briefly, an SMTP session follows these steps: connec-
tion, HELO, MAIL, RCPT, DATA, content, QUIT. Of
those seven steps, only the IP address of the client
connection and each valid RCPT address specified
can be relied upon. Even then, the connecting IP
might be questionable; because it’s possibly in a
dynamic IP address pool, the reverse DNS of the IP is
often poorly configured or nonexistent, and now the
whois information about IP and domain assignment
might be restricted because of privacy concerns (RFC
3912).

As for the other steps, the HELO, MAIL, and message
content can be misrepresented or faked. Even QUIT
cannot be completely relied upon, since a lot of badly
written mail software simply drops the connection
when they are done, instead of sending the QUIT
command.

Most spam filtering techniques fall into two classes:
those that act on the client connection’s IP address
and envelope information (pre-DATA) and those that
act on the message content (post-DATA). The reason I
mention this is that once the DATA command is
accepted by the receiving server, it is generally com-
mitted to reading the entire message until the client
indicates it has finished. This, of course, consumes
bandwidth and system resources, so some filtering
techniques try to make a decision before accepting
DATA in order to avoid/reduce more expensive forms
of filtering after acceptance.

12 ; L O G I N : V O L . 3 0 , N O . 3

; LO G I N : J U N E 2 0 0 5 S H O OT TH E M E S S E N G E R 13

Challenge/Response

This technique looks at the sender of a message and, if
he is unknown to the recipient, accepts and quaran-
tines the message. The server then sends some sort of
challenge back to the sender (who must reply, and
reply correctly if it’s an are-you-human test) before the
server allows the quarantined message to be delivered
to the recipient. A successful result is typically cached
or stored indefinitely.

C/R seems to be the least welcomed of all the possible
methods to filter spam. A fair amount of spam and par-
ticularly viruses fake the mail address of a real person.
So one of two things happens: if the sender is known
to the recipient, the message gets through without
being caught; if the sender is not known, then odds are
the challenge message is sent to a perfect stranger, thus
creating even more spam. After a while, this gets to be
really annoying for the stranger whose address has
been abused. The SpamHaus DNS blacklist considers
C/R systems to be just as bad as spam and will blacklist
machines using C/R.

DNS Blacklists

Blacklists in one form or another have been used for
filtering for a long time, but site-specific lists can be
time-consuming to maintain. DNS blacklists make the
process simpler by centralizing lists and exploiting
DNS caching. The IP addresses of known sources of
junk mail are placed on specialized DNS servers. A
mail server then queries one or more of those blacklists
to see whether the connecting client IP is a known
spam source; if so, the connection is dropped or
rejected.

Blacklists can be problematic. They first have to receive
and identify junk mail or reports of such before they
can list the IP address. They must be reliable, respon-
sive, and responsible: you have to count on their infor-
mation being reasonably accurate, the blacklist service
should respond to valid de-list requests almost as fast
as they list an IP address, and they must be consistent
in their listing and de-listing policy.

Consider an ISP that, while altering the mail server
configuration, makes a mistake that goes unnoticed. It
is soon discovered to be an open mail relay, which is
quickly listed with ORDB (http://www.ordb.org/). The
ISP subsequently fixes the mistake and requests to be
tested and de-listed as a “spammer.” Those requests
should be acted upon in a timely, preferably auto-
mated, manner. This scenario actually happened at my
workplace once, but what was worse was that we con-
sulted ORDB ourselves to reject outside sources, only
to find that we had been listed and had started reject-

ing our own mail! ORDB is generally pretty accurate
but is slow to respond to de-list requests and, as a
result of a difference in time zones, we were listed as
spammers for an entire business day.

Consider what happens now with spam and viruses
originating from the dynamic IP pools often used with
broadband. One user will have a virus-infected
machine (or maybe a “zombie” computer) which sends
out a stream of rubbish that results in that IP address
being blacklisted. The next day a completely different
user connects and is assigned that blacklisted dynamic
IP; of course, the new user does not understand why
he cannot send any mail. If a DNS blacklist is slow to
respond or sets time-to-live values on blacklist entries
too long, that IP address can remain blocked for 24
hours or more.

I’ve tried a variety of DNS blacklists, and the one I rec-
ommend is SpamHaus (http://www.spamhaus.org/).
ORDB is good too, until it’s your machine that’s in the
blacklist. There are many other blacklists (http://www
.sdsc.edu/~jeff/spam/cbc.html), and care must be taken
in choosing which to use.

Electronic Postage (Hash Cash)

Hash cash (http://hashcash.org/) is a form of electronic
postage by which the sender pays postage in CPU time
by performing an intensive computation that is easy
for the recipient to validate. A trivial example would be
that the sender computes the square root of a large
number Y and sends the result and the number to the
recipient. The recipients can validate the computation
by multiplying the given answer with itself to see if it
does indeed yield Y. Hash cash uses some properties of
cryptographic hash functions to achieve the same
result. The sender mints a stamp consisting of version
number, timestamp, recipient, random data, and how
many bits of partial-collision the stamp is claimed to
have. Each message contains one hash cash header per
recipient.

The idea behind this technique is that the time neces-
sary to compute 1 or 10 hashes for a real person send-
ing mail is insignificant, whereas the time a spammer
would require to compute a hash for each recipient,
when you consider that they spam thousands or mil-
lions of people, would significantly slow down their
ability to send junk mail and thus increase their costs.

This is a very nice technique. The drawbacks are its
status as a post-DATA verification method, and that
both the sender and the receiver have to install soft-
ware to mint and verify stamps. Therefore, this tech-
nique would require wide adoption before it could be
used purely on its own to accept/reject messages. How-
ever, when combined with other content-filter tools

14 ; L O G I N : V O L . 3 0 , N O . 3

such as SpamAssassin, it can contribute a favorable
score toward the acceptance of a message.

Content Filtering

There are several techniques all related to content fil-
tering, where the entire message is received and fil-
tered according to a set of pattern rules, Bayesian sta-
tistical analysis, and/or other techniques or external
services to verify that a message is good or bad.

One content-filtering technique related to blacklists
looks at all the URL domains contained within a mes-
sage and looks up those domains in a DNS blacklist
containing domains appearing in spam messages
(http://www.surbl.org/). If a URL in the message con-
tains a blacklisted domain, it’s rejected or given a bad
score, depending on the filter making the request.

Another technique has the mail server compute a
checksum or signature for each message received,
then queries it with services that collect signatures for
all the spam that their honeypots and users report.
Vipul’s Razor (http://razor.sourceforge.net/) and DCC
(http://www.rhyolite.com/anti-spam/dcc/) are two
such services.

Bayesian analysis, as described by Paul Graham’s
“Plan for Spam” paper (http://www.paulgraham
.com/spam.html) and his “Better Bayesian Filtering”
(http://www.paulgraham.com/better.html), counts the
occurrences of all the words and short sequences
found in a large sample of good mail (ham) and an
equally large sample of bad mail (spam). The proba-
bilities of each of those words occurring in a spam
message are computed. When a new message arrives,
the words contained therein are looked up in the
probability tables and the top 10 or so of the most sig-
nificant are used to compute the combined probabil-
ity that the message is spam or ham.

Bayesian analysis works extremely well once it’s
trained with very user-specific messages. For exam-
ple, Mozilla and Thunderbird mail clients use
Bayesian identification to delete or redirect mail to a
junk folder, and they can be very accurate. But the
training has to be continued as spam messages evolve,
and “there be the rub.” For an individual using a mail
client such as Mozilla Thunderbird, it’s just a simple
matter of toggling an icon on incorrectly classified
mail, but if you apply a global Bayesian analysis on an
ISP mail server, which is possible, it can require regu-
lar maintenance, because the global statistics are not
as finely tuned as they would be for an individual.

Another issue with signature and Bayesisn methods is
that spammers have reacted by adding benign ran-
dom words at the top or end of their messages in an
effort to throw off the probabilities. Also a lot of spam

has gotten shorter in an effort to provide as little con-
tent as possible from which to compute a probability
and/or to throw off some pattern-based filters.

SpamAssassin (http://www.spamassassin.org/) is one
of the notable mail analysis tools. Perl-based, it’s a
kitchen sink of spam filtering techniques, combining
regular expression pattern rules, Bayesian, Razor,
DCC, a variety of DNS blacklists (IP, domain, URL),
hash cash, and I’m sure some other stuff I’ve not
noticed. Using the combined techniques, it computes
a score for each message, which must not exceed a
site-specific threshold so as not to be classified as
spam. This score can then be used by something like
milter-spamc to accept, tag, redirect, reject, or discard
a message.

Where I worked, we had a lot of success with Spa-
mAssassin, but it does have its problems—most
notably, it’s a pig of a Perl process. The process size
was about 27MB. I heard of another site that uses
SpamAssassin, and their process size was about
107MB. As I recall, SpamAssassin is not threaded,
because of Perl; therefore it forks when its message
queue gets too long. If you have a large and active
group of users (we have about 2,000), SpamAssassin
can bring your mail server to a crawl when too many
messages arrive in a small interval, such as with a
spam or virus attack. This is one of the reasons why
many sites use some form of pre-DATA filtering in
combination with content filtering, to filter the easy
stuff first. I’ve also heard of another C-based filter
called Dspam that can outperform SpamAssassin, so
I’m told, though I’ve not had a chance to look into it
yet.

As mentioned above concerning Bayes training, I’ve
learned from personal experience that SpamAssassin
can also require a fair amount of hand-holding. The
time might be justified if you are defending a large
user base, but it appears to require just as much effort
for a small number of users. SpamAssassin can re-
train/autolearn itself when messages are well above or
below the threshold, but when using the Bayes facility
sitewide, it’s a good idea to configure SpamAssassin to
defer rebuilding the Bayes statistical tables on each
message to a nightly cronjob, since those tables can
be very large (300MB).

Date Conformance and Coherency

The milter-date filter is another very specific form of
content filtering I’ve implemented. A mail message
contains several instances of date-and-time informa-
tion, such as when the message was originally writ-
ten, possibly when it was resent, and when each mail
server en route handled the message. Spam messages
often have incorrect timestamps, appear to be too old

; LO G I N : J U N E 2 0 0 5 S H O OT TH E M E S S E N G E R 15

or too far in the future, and/or demonstrate an incon-
sistent timeline. The milter-date filter verifies that the
date-and-time information within a message is format-
ted according to RFC 2822, that a message is delivered
within a configurable time frame, and that the transit
of a message across mail servers reflects a consistent
timeline. (Note that SpamAssassin has some date-and-
time verification too, though I’m not certain how
specific they get.)

One problem with this method is that, surprisingly, too
many people have workstations that are set with the
wrong time zone, clocks off by a whole year, or similar
nonsense. In the two weeks we used this milter, I saw
about a dozen or so French users with their Windows
workstations set to the Pacific time zone from the day
they installed Windows. They just accepted the
Microsoft defaults without paying attention. Also, too
few servers use Network Time Protocol to keep their
clock reasonably accurate, and only in Windows XP
has NTP been added as part of the OS. One milter-date
user reported that some of Cisco’s mail servers were off
at one stage and it took two weeks or so to convince a
sysadmin of this fact.

Content-Transfer-Encoding Conformance
and Coherency

Mail messages have a standard structure and format
that is covered by RFC 2822 and enhanced by RFC
2045 and related documents concerning Multipurpose
Internet Mail Extensions (MIME). A user’s mail soft-
ware is supposed to adhere to these documents for the
formatting and transmission of mail as 7-bit, 8-bit, or
binary data. A lot of spam, in particular that written in
foreign languages, fails to adhere to these standards,
containing unusual, often unprintable, 8-bit character
codes in messages that are only supposed to contain 7-
bit data for safe and correct transmission between mail
servers. Many mail exchanges are very forgiving or
careless in what they accept, and so this form of spam
gets through. The milter-7bit is another milter I wrote
(originally inspired by a mass-mailing worm) to
address this class of spam. It ensures that the content
of a mail message adheres to the expected or declared
Content-Transfer-Encoding as described by the related
RFC documents.

This technique is effective, but on its own only catches
about 3–5% of spam. The most notable problem with it
is that there are many mail-oriented services that fail to
correctly specify or encode their mail for transport. For
example, a French user might specify her real name
with accented letters, but her mail client fails to use
MIME word encoding in the From: header to properly
specify the name. Also, some legitimate sites such as
ebay.com and lhotellerie.fr send email with an explicit

Content-Transfer-Encoding: header set to 7-bit, yet
include 8-bit values!

Greylisting

Greylisting is a technique that uses the behavior of a
normal mail server to delay the acceptance of mail
temporarily. When a sending mail server initially con-
tacts a mail exchange to deliver a message, a tuple con-
sisting of an IP, HELO, MAIL, and/or RCPT details is
recorded and the mail exchange signals the sending
mail server that the message is temporarily rejected. A
normal mail server will place temporarily rejected mes-
sages into a retry queue and, after an appropriate delay,
attempt to resend the message to the mail exchange.
The mail exchange, upon seeing the retry from the
same tuple as previously recorded, accepts the mes-
sage. The underlying principle here is that spammers
use “mail cannons” to send as much mail as fast as
they can and so will not implement a retry queue, as
this is too time-consuming when sending millions of
messages.

Greylisting is a nice passive technique, and proponents
of the technique claim a 90% or better success rate.
However, while I’ve not conducted any statistical
analysis on it, from personal observation at my place of
work I’d say those success rates are exaggerated or site-
specific. And greylisting is not without its problems.

Many of our users work with the money markets
and/or they treat email like FTP and instant messaging
all in one. They cannot accept or understand that mail
might be delayed (just try to explain RFC 2821 limits
and delivery timeouts to a French user). Once the first
message succeeds, though, the result should be cached
for a week or two at the very least, and reset with con-
tinued correspondence, else you get an earful of grief
on a regular basis.

There are also some very poorly configured mail serv-
ers, I’m guessing the pointy-clicky variety, designed
and/or administered by people who have no clue about
how to get a clue. The four most common issues are:
(1) “Hey, I have a whizbang machine with all these
CPU cycles to burn, I’ll set my queue retry time to 10
seconds”; (2) “If it doesn’t get through on the first try,
or the second shortly thereafter, I’ll wait 12 or 24 hours
before retrying”; (3) “I won’t retry at all” (some servers
with eBay, Amazon, skynet.be, and Southwest Airlines,
to name a few: see http://cvs.puremagic.com/viewcvs
/greylisting/schema/whitelist_ip.txt); (4) finally, some
mail systems are designed to act as a pool—I think
gmail.com does this—in that any one of several
machines may process the mail queue, and so mes-
sages come from different IP addresses.

16 ; L O G I N : V O L . 3 0 , N O . 3

Greylisting also has the problem of penalizing legiti-
mate mailing list providers until message receivers
whitelist the mailing list.

Message Limits

Message limit accounting is a facility to control the
number of messages that traverse a mail exchange
according to domain, sender, and/or recipient. It could
be used on the outbound side, like Hotmail’s daily
message limits, to limit local users’ consumption (par-
ticularly if they appear to be infected by a mass-mailing
worm); it could be used inbound as an alternative to
greylisting; or it could be enabled and disabled as
needed during periods of peak mail activity, such as
during a virus outbreak or spam holiday season.

I found message limits to be fine for a specific purpose;
to be effective as a filtering method, however, they
would require more dynamic real-time tracking of
which senders are sending from where. For example, I
should be able to detect if anthony@example.com
attempts to send email from five different IP addresses
within the space of 10 minutes, or if the same HELO
argument is given for several different connecting
clients, or if the same message content arrives from
several different IPs.

Callback

A mail exchange that is processing an inbound SMTP
transaction looks up, via the domain name system, the
mail server responsible for the sender’s mail. The mail
exchange then opens an SMTP connection back to the
sender’s mail server and emulates an error return mes-
sage to the sender without actually completing the
transaction (i.e., never issues the DATA command).
The mail server being queried normally accepts or
rejects the sender’s mail address in the early stages of
the transaction. The idea here is that spammers use a
variety of false and often invalid sender addresses in
the SMTP transaction, such as false or nonexistent
domains, randomly generated user names from well-
known domains, facade mail systems that don’t accept
any mail, throw-away mailboxes that fill up with errors
and replies to unsubscribe, etc.

In order for the callback to work properly, the null
address must be accepted (i.e., <>) as required by RFC
2821. Many sites think they are being clever in block-
ing the null address to avoid spam. Often these sites
fail to use more than one filtering technique and look
for quick alternatives. Also, many fail to understand
why the null address is a requirement in the RFCs. I
have successfully educated most sites when this hap-
pens, but some others are just too enamored with their
lack of prowess to admit they are wrong.

There are also those who completely disagree with this
technique. They see it as some form of dictionary
attack or an abuse of their mail server’s resources
(CPU, memory, bandwidth) to have to answer this
form of automated C/R (even though the end user
will never see a challenge message). One of the argu-
ments against this form of filtering is the claim that
spammers are impersonating real email addresses with
ever-increasing frequency, so validating the sender’s
address will have diminishing returns over time and
become ineffective.

Call-Ahead

The milter-ahead is a milter that implements a “call-
forward” technique, which is similar to a “callback”
but intended for use by mail gateways that want to ver-
ify, before the gateway accepts the message, that the
recipient of a message exists on an authoritative mail
store. Think of it as a poor man’s LDAP. Many mail sys-
tems split the functions of mail transfer and that of
storage and retrieval over two or more systems.

Historically, a mail gateway would always blindly
accept and forward mail to their mail store, but spam-
mers will often send mail to a domain using a dictio-
nary of user names, resulting in many error message
returns, which can sometimes saturate the mail gate-
way. Often this situation is compounded by the mail
gateway queuing those useless error messages for days
as they attempt to send them back to spammers who
used throw-away domains or mail servers that are now
off, eventually resulting in hundreds of double-bounce
errors being sent to the mail gateway’s postmaster
mailbox.

Sequencing Delays

Sendmail 8.13 has a wonderfully simple feature, “greet
pause,” that catches its fair share of junk mail. When a
client connection is established, the SMTP server will
send back a welcome message to the client indicating
its readiness. The greet-pause feature imposes a site-
specified delay before it sends the welcome message.
During that time, if the connecting client sends any
data across the connection before it has read the
delayed welcome response, Sendmail drops the con-
nection. The concept assumes that all well-behaved
mail clients must wait until after an EHLO command
to determine whether the server supports pipelining.
It’s assumed that a lot of spam software, in an effort to
be quicker and more efficient, pipeline the whole
SMTP transaction from the moment the connection is
established and never read a response from the server,
essentially ignoring any and all errors.

; LO G I N : J U N E 2 0 0 5 S H O OT TH E M E S S E N G E R 17

While this method doesn’t catch all spam, it catches a
decent amount in the earlier stages of the SMTP trans-
action. I’ve often wondered why Sendmail hasn’t
extended the concept a little further to include the
other SMTP commands. At the very least it could be
applied to the EHLO command; if the mail client uses
the older HELO command, then all the SMTP com-
mands could be delayed one or two seconds before
returning a response. Slowing down each step of the
transaction increases the spammers’ costs and reduces
their efficiency.

Authorized Mail Sources

There have been several proposals put forward within
the ASRG and by independents to specify a means by
which a mail exchange can know whether an incoming
message comes from a known and authorized source of
mail. The idea here is an ISP or business declares the IP
addresses of the machines that are responsible for
sending outbound mail, then mail from other sources
within their IP block can be considered suspect. Solu-
tions like SPF (http://spf.pobox.com/), MTAmark,
Yahoo’s DomainKeys, and Microsoft’s Caller ID (which
merged with SPF to create Sender ID) are all variants
on a theme.

SPF (classic) and subsequently Sender ID are probably
the best known of these proposals. SPF uses specially
formatted DNS TXT records to document sources of
mail. It’s a nice, simple, and elegant solution that any
domain owner can manage. However, it has two signif-
icant drawbacks. First, all senders must send mail from
their domain’s SMTP servers, probably using SMTP
authentication, which can be tricky to implement or
get users to migrate to. But, more important, it breaks
any form of relay or mail forwarding where the enve-
lope sender is preserved (not sure if this applies to the
Sender ID format). The SPF folks, of course, propose a
solution for this: switch from mail forwarding to re-
mailing and use something like the Sender Rewriting
Scheme, VERP, VARA, etc., to rewrite the sender
address. But there is a catch: these rewriting schemes
can significantly increase the length of the user portion
of an email address and thus break RFC 2821 maxi-
mum limits on the length of the user portion and/or
overall address length. Therefore, any filtering tech-
niques that enforce strict conformance to RFC 2821
will see a marked increase in false positives.

MTAmark is similar in nature to SPF but uses reverse
DNS instead; it claims it won’t break existing mail-for-
warding semantics. While I haven’t read this Internet
draft completely, the one worry I have is that it uses
reverse DNS. A domain owner does not have direct
control of his IP assignment and must get his IP

provider to maintain the in-addr.arpa zone for him.
Some might see this as an advantage, by introducing
some third-party validation. Also, some IP address
assignments are resold several times over, yet the origi-
nal IP provider may still control the reverse assign-
ment. Therefore, for any legitimate business to modify
their reverse DNS, they may have to go up a chain of
several levels to get anything done to their in-addr.arpa
entries. The other issue with in-addr.arpa is that some
IP providers may not pay any attention to the merits of
the request, but blindly make the changes.

I know little about DomainKeys other than to say it’s
patented by Yahoo and involves some form of
encrypted signature added to the message headers.
This means, of course, that the method is post-DATA
and the mail server must accept and read the entire
message before it can verify DomainKeys.

It should also be noted that authorized mail source
schemes are more directed at “phishing” and “joe job”
scams, where the sender of an email message is faked.
By knowing the valid sources of mail, you can reject or
discredit email. For example, consider a connecting
client from aol.com IP space and a sender address of
joe@aol.com. With something like SPF you can tell
that the IP is not an official source of aol.com mail.
These methods can help with spam to a degree, but
that was not their original intent. The SPF Web FAQ
has an interesting and lengthy section about how SPF
can help with spam.

Reputation Filtering

Reputation filtering concerns a mail exchange that can
query one or more third-party services for a score
based on facts, trends, or reputation of a connecting
mail server’s IP address and/or the sender’s domain.
DNS blacklists are a basic form of this, but they pro-
vide only simple black/white answers. With reputation
filtering, some form of history is gathered concerning
the sources of mail and a score or grade is returned,
providing more shades of gray.

Meng Weng Wong, of SPF fame, sees reputation and
accreditation filtering as being necessary to any
authorized mail source scheme, because spammers will
publish SPF records, too (many already do). SPF and
its derivatives are driving spammers to use their own
domains, but they can still jump around the Net or dis-
card their domains at will. But with reputation and
accreditation (http://spf.pobox.com/aspen.html), you
have a third party that monitors where mail is from
and from whom. They can look at objective factors
such as longevity, stability, and identifiability. Several of
these services already exist, such as Cloud Mark, Out-
bound Index, and Return Path.

18 ; L O G I N : V O L . 3 0 , N O . 3

False Positives and Negatives

In my coverage of some of the filtering techniques in
use today, I’ve intentionally said little about false posi-
tive (legitimate mail wrongly identified) and false neg-
atives (the failure to identify mail as junk) for the sim-
ple reason that I have not collected any statistical data
or read any detailed analysis of the techniques. Most of
what I’ve covered here has come from personal experi-
ence, study of the techniques, and user feedback
related to my milter software.

Whatever methods you end up using, be sure to read
up further on the pros and cons, because there has
been a lot more said about each of the methods men-
tioned here than I can possibly convey.

Please Don’t Shoot Me

The only thing I can add to all this is, Use more than
one method of filtering. Remember, a silver bullet
works against werewolves, not against vampires,
ghosts, demons, or spam.

T H O M A S S L U Y T E R A N D
R O L A N D V A N M A A R S C H A L K E R W E E R D

when disaster
strikes
C A I L I N A N D R O L A N D D I S C U S S
C R I S I S M A N A G E M E N T

In daily life, Thomas (a.k.a. Cailin) is part of a small, yet
highly flexible, UNIX support department at ING Bank
in the Netherlands. He took his first steps as a junior
UNIX sysadmin in the year 2000. Thomas part-times
as an Apple Macintosh evangelist and as board mem-
ber of the J-Pop Foundation.

tsluyter@xs4all.nl

As a senior UNIX sysadmin, Roland van
Maarschalkerweerd delivered input for this article,
having over 20 years of experience dealing with all
kinds of OSes, but over the last decade specializing in
(Sun) UNIX. Besides working as a colleague of Thomas,
Roland mainly enjoys bringing up four kids, providing
an extra dimension in crisis-management experience.

joostb8@planet.nl

W E ’ V E A L L E X P E R I E N C E D T H AT S I N K -
ing feeling: blurry-eyed and not halfway
through your first cup of coffee, you’re star-
tled by the phone. Something’s gone horribly
wrong and your customers demand your
immediate attention!

From then on things usually only get worse. Every-
body’s working on the same problem. Nobody keeps
track of who’s doing what. The problem has more
depth to it than you ever imagined, and your cus-
tomers keep on calling back for updates. It doesn’t
matter whether the company is small or large: we’ve all
been there sometime.

The last time we encountered such an incident at our
company wasn’t too long ago; it wasn’t a pretty sight
and actually went pretty much as described above.
During the final analysis, our manager requested that
we produce a small checklist to prevent us from mak-
ing the same mistakes again. The small checklist
finally grew into this article, which we thought might
be useful for other system administrators.

Before we begin, we’d like to mention that this article
was written with our current employer in mind: large
support departments, multiple tiers of management, a
few hundred servers, and an organization styled after
ITIL (the IT Infrastructure Library). But most of the
principles described here also apply to smaller depart-
ments and companies, albeit in a more streamlined
form. Meetings will not be as formal, troubleshooting
will be more supple, and communication lines between
you and the customer will be shorter.

We have been told that ITIL is mostly a European phe-
nomenon and that it is still relatively unknown in the
US and Asia. The Web site of the British Office of Gov-
ernment Commerce (http://www.itil.co.uk) describes
ITIL as follows:

ITIL . . . is the most widely accepted approach
to IT Service Management in the world. ITIL
provides a cohesive set of best practice,
drawn from the public and private sectors
internationally.

ITIL is . . . supported by publications, qualifica-
tions and an international user group. ITIL is
intended to assist organizations to develop a
framework for IT Service Management.

Some readers may find our recommendations to be
strict, while others might find them completely over
the top. It is, of course, up to your discretion how you
deal with crises.

; LO G I N : J U N E 2 0 0 5 W H E N D I S A STE R STR I K E S 19

20 ; L O G I N : V O L . 3 0 , N O . 3

A Method to the Madness

The following paragraphs outline the phases one
should go through when managing a crisis. The way
we see things, phases 1 through 3 and phase 11 are all
parts of normal day-to-day operations. All steps in
between—4 through 10—are to be taken by the spe-
cially formed crisis team.

1. A fault is detected

2. First analysis

3. First crisis meeting

4. Deciding on a course of action

5. Assigning tasks

6. Troubleshooting

7. Second crisis meeting

8. Fixing the problems

9. Verification of functionality

10. Final analysis

11. Aftercare

1 . A FAU LT I S D E TE C TE D

“Oh, the humanity!”

—Reporter at the crash of the Hindenburg

It really doesn’t matter how this happens, but this is
naturally the beginning. Either you notice something
while v-grepping through a log file, a customer calls
you, or some alarm bell starts going off in your moni-
toring software. The end result will be the same:
something has gone wrong and people complain
about it.

In most cases, the occurrence will simply continue
through the normal incident process, since the situa-
tion is not on a grand scale. But every so often some-
thing very important breaks, and that’s when this pro-
cedure kicks in.

2 . F I R ST A N A LYS I S

“Elementary, my dear Watson.”
—The famous (yet imaginary) detective

Sherlock Holmes

To be sure of the scale of the situation, you’ll have to
make a quick inventory:

n Gather all incident cases, phone calls, and other
reports related to this particular problem.

n Make a tally of the number of servers, applica-
tions, and customers affected by the problem.

n Assess the impact on each individual customer
and on the company as a whole.

n Make a quick list of colleagues who are knowl-
edgeable on the subject at hand.

Once you have collected all of this information, you
will be able to provide your management with a clear
picture of the current situation. It will also form the
basis for the crisis meeting, which we will discuss
next.

This phase underlines the absolute need for detailed
and exhaustive documentation of your systems and
applications. Things will go so much smoother if you
have all of the required details available. If you
already have things like Disaster Recovery Plans lying
around, gather them now. If you don’t have any cen-
tralized documentation yet, we’d recommend that
you start right now to build a CMDB, lists of contacts,
and so-called build documents describing each server.

3 . F I R ST C R I S I S M E E TI N G

“Emergency family meeting!”
—Cheaper by the Dozen

Now the time has come to determine how to tackle
the problem at hand. In order to do this in an orderly
fashion you will need to have a small crisis meeting.

Make sure that you have a whiteboard handy, so you
can make a list of all of the detected defects. Later on
this will make it easier to keep track of progress, with
the added benefit that the rest of your department
won’t have to disturb you for updates.

Gather the following people:

n The operational supervisor or, your organization
has no ops supervisor, the department head

n The resident ITIL problem manager

n The current on-call team member, meaning the
one who took all the calls and who gathered the
information in phase 2

n One or two people who are especially knowledge-
able on the resources involved in the problem at
hand (you’ll select them from the short list you
made)

During this meeting the on-call team member brings
everybody up to speed. The supervisor is present in
order to prepare for any escalation from above, while
the problem manager needs to be able to inform the
rest of your company through the ITIL problem
process. Of course, it is clear why all of the other peo-
ple are invited.

4 . D E C I D I N G O N A CO U R S E O F AC TI O N

One of the goals of the first crisis meeting is to
determine a course of action. You will need to set out
a clear list of things that will be checked and of
actions that will need to be taken to prevent confu-
sion along the way.

; LO G I N : J U N E 2 0 0 5 W H E N D I S A STE R STR I K E S 21

It is possible that your department already has docu-
ments such as a Disaster Recovery Plan or notes from
a previous comparable crisis that describe how to
treat your current situation. If you do, follow them to
the letter. If you do not have these documents, you
will need to continue with the rest of our procedure.

5 . A S S I G N I N G TA S KS

Once a clear list of actions and checks has been cre-
ated, you will have to assign tasks to a number of peo-
ple. We have determined a number of standard roles:

n One or more troubleshooters. These people per-
form the grunt work by going over each check or
action on the list.

n One spokesperson who takes care of communica-
tions with your customers, management, and the
ITIL coordinators. This person also keeps the
problem record up-to-date. Basically, he’s there to
keep everybody out of the troubleshooters’ hair, so
they can do their work uninterrupted.

It is imperative that the spokesperson not be involved
with any troubleshooting whatsoever. Should the
need arise for the spokesperson to get involved, then
somebody else should assume the role of spokesper-
son in his or her place. This will ensure that lines of
communication don’t get muddled and that the real
work can continue.

6 . TRO U B L E S H O OTI N G

In this phase the designated troubleshooters go over
the list of possible checks determined in phase 4. The
results for each check need to be recorded, of course.

It might be that they find some obvious mistakes that
may have led to the situation at hand. We suggest that
you refrain from fixing any of these, unless they are
really minor. The point is that it would be wiser to
save these errors for the second crisis meeting.

This might seem counterintuitive, but it could be that
these errors aren’t related to the fault or that fixing
them might lead to other problems. This is why it’s
wiser to discuss these findings first.

7. S E CO N D C R I S I S M E E TI N G

Once the troubleshooters have gathered all of their
data, the crisis team can enter a second meeting.

At this point it is not necessary to have either the
supervisor or the problem manager present. The
spokesperson and the troubleshooters (perhaps
assisted by a specialist who’s not on the crisis team)
will decide on the new course of action.

Hopefully, you have found a number of bugs that are
related to the fault. If you haven’t, loop back to step 4
to decide on new things to check. If you did, now is
the time to decide how to go about fixing things and
in which order to tackle them.

Make a list of fixable errors and glance over possible
corrections. Don’t go into too much detail, since that
will take up too much time. Leave the details to the
person who’s going to fix that particular item. Assign
each item on the list to one of the troubleshooters,
and decide in which order they should be fixed.

Then start thinking about plan B. Yes, it’s true that
you have already invested a lot of time in trou-
bleshooting your problems, but it might be that you
will not be able to fix the problems in time. So decide
on a time limit, if one hasn’t been determined for you,
and start thinking worst-case scenario: “What if we
don’t make it? How are we going to make sure people
can do their work anyway?”

8 . F I X I N G TH E P RO B L E M S

Obviously, you’ll now tackle each error, one by one.
Make sure that you make note of all of the changes
that are made. Once more (I’m starting to feel like the
schoolteacher from The Wall), don’t be tempted to do
anything you shouldn’t be doing, such as fixing other
faults you’ve detected. And absolutely do not use the
downtime as a convenient window for performing
that upgrade you’d been planning on doing for a
while.

9. V E R I F I C ATI O N O F F U N C TI O N A L IT Y

Once you’ve gone over the list of errors and have
fixed everything, verify that peace has been brought
to the land, so to speak. Also, verify that your cus-
tomers can work again and that they experience no
more inconvenience. Strike every fixed item from the
whiteboard, so your colleagues are in the know.

If you find that there are still some problems left, or
that your fixes broke something else, add them to the
board and loop back to phase 3.

1 0. F I N A L A N A LYS I S

“Analysis not possible . . . We are lost in the
universe of Olympus.”
—Shirka, the board computer, from Ulysses31

Naturally, your customers will want some explanation
of all of the problems you caused them (so to speak).
So gather all the people involved with the crisis team
and hold one final meeting. Go over all the things
you’ve discovered and make a neat list. Cover how

22 ; L O G I N : V O L . 3 0 , N O . 3

each error was created and its repercussions. You may
also want to explain how you’ll prevent these errors
from happening again in the future.

What you do with this list depends entirely on the
demands made by your organization. It could be
that all your customers want is a simple email, while
ITIL-reliant organizations may require a full-blown
postmortem.

1 1 . A F TE R C A R E

“I don’t think any problem is solved unless, at
the end of the day, you’ve turned it into a non-
issue. I would say you’re not doing your job
properly if it’s possible to have the same crisis
twice.”

—Salvaico, Sysadmintalk.com forum member

Even after the postmortem, you may need to take care
of a few things. Maybe you’ve discovered that the
server in question is underpowered or that the faults
experienced were fixed in a newer version of the soft-
ware involved. Discoveries like these warrant starting a
new project. Or maybe you’ve found that your moni-
toring is lacking when it comes to the resource(s) that

failed. This, of course, will lead to an internal project
for your department.

All in all, aftercare covers all of the activities required
to make sure that such a crisis never occurs again. If
you cannot prevent such a crisis from happening
again, you should document it painstakingly, so that it
can be solved quickly in the future.

Final Thoughts

We sincerely hope that our article has provided you
with some valuable tips and ideas. Managing crises is
hard and confusing work, and it’s always a good idea to
take a structured approach. A clear and level head will
be the biggest help you can have.

O F I R A R K I N

demystifying passive
network discovery and
monitoring systems
Ofir Arkin is the CTO and co-founder of Insightix
(http://www.insightix.com), conducts research in the
information security field, and has published
research papers, advisories, and articles in the fields
of information warfare, VoIP security, and network
discovery & management. He is a member of the
honeynet project (http://www.honeynet.org) and is a
director and chairs the “security research” committee
at VoIPSA (http://www.voipsa.org).

ofir@sys-security.com

T H E Q U E S T I O N S O F W H AT A N D W H O
is on the enterprise network and what is
being done on and over the network has
captured the attention of many researchers
interested in finding appropriate network
discovery technology. Such technology
would not only allow these questions to be
answered accurately, completely, and in a
granular fashion but would allow this
information to be maintained in real time.

In the past several months a number of commercial
companies have hyped a new technological solution
for network discovery: passive network discovery.

This article sheds light on the weaknesses of passive
network discovery and monitoring systems. While
acknowledging the advantages of this technology, the
article explains its shortcomings, weakness by weak-
nesses, and demonstrates why it is unable to deliver
complete, accurate, and granular network discovery
and monitoring.

Passive Network Discovery

Passive network discovery and monitoring is a tech-
nology that processes captured packets from a moni-
tored network in order to gather information about
the network, its active elements, and their properties.
It is usually installed at a network chokepoint. The
roots of passive network discovery and monitoring
technology go back to the mid-1990s, where refer-
ences regarding use of the technology can be found
[1].

The kind of information collected through passive
network discovery and monitoring might include the
following:

n Active network elements and their properties
(e.g.., underlying operating system)

n Active network services and their versions

n The distances between active network elements
and the monitoring point on the network

n Active client-based software and their versions

n Network utilization information

n Vulnerabilities found for network elements resid-
ing on the monitored network

Such information can be used for the following
purposes:

n Building the layer 3–based topology of a moni-
tored network

; LO G I N : J U N E 2 0 0 5 D E MYSTI F Y I N G PA S S I V E N E T WO R K M O N ITO R I N G SYSTE M S 23

24 ; L O G I N : V O L . 3 0 , N O . 3

n Auditing

n Providing network utilization information

n Performing network forensics

n Performing vulnerability discovery

n Enhancing the operation of other security
and/or network management systems by provid-
ing context regarding the network they operate
in (information about the network, the active
elements found on the network, and their
properties)

Strengths

Passive network discovery and monitoring systems
have important advantages related to their mode of
operation.

Real-time operation: The operation (i.e., processing
received network traffic and providing relevant infor-
mation) is performed in real-time.

Zero performance impact: A passive network discovery
and monitoring system has zero impact on the per-
formance of the monitored network [2]. This is
because the monitored network’s traffic is copied and
fed into the system, the operation of which involves
no active querying. This all means that passive moni-
toring poses no risk to the stability of a monitored
network and can theoretically be installed on any net-
work.

Data processing: Passive network discovery and moni-
toring systems have the ability to gather information
from all TCP/IP layers of network traffic processed.

Detection of active network elements and their prop-
erties: A passive network discovery and monitoring
system is able to detect network elements along with
some of their properties, by observing network activ-
ity related to the network element, provided that it is
receiving and responding to network traffic. This
means a passive system can:

n Detect active network elements that transmit
and/or receive data over the monitored network

n Detect network elements as they become active
and transmit and/or receive data over the moni-
tored network

The ability to detect active network elements based
on their network activity allows passive network dis-
covery and monitoring systems to:

n Detect network elements that have low uptime

n Detect network elements that may transmit
and/or receive data only for short time periods

n Detect which network elements on the moni-
tored network are operational and serving

requests coming from network elements on other
networks

n Detect active network services running on non-
default ports

n Detect active client-based network software oper-
ating on network elements on the monitored net-
work

Detection of elements behind network obstacles: A pas-
sive system can detect active network elements that
operate behind network obstacles and send and/or
receive network traffic over the monitored network. A
network obstacle is a network element that connects
multiple networking elements to a network while fil-
tering traffic from that network to these network ele-
ments (which are logically hidden behind it). Net-
work obstacles include a network firewall, a NAT
device, and a load balancer.

Granular network utilization information: A passive
solution can provide information regarding the net-
work utilization of its monitored network link.
Unlike active monitoring solutions, which only pro-
vide basic network utilization information regarding
the amount of traffic observed over a certain amount
of time through SNMP [3], a passive network discov-
ery and monitoring system supplies network utiliza-
tion information by observing actual network traffic.
A passive system has the ability to supply more gran-
ular and detailed network utilization information
(i.e., per network element, per service, etc.) than
active solutions.

Network utilization abnormality detection: The ability
to provide statistical information regarding network
utilization information, per network element, per net-
work service, and the ability to gather information
from all TCP/IP layers, enables a passive solution to
build usage profiles for any element using the net-
work and for any service used over the monitored
network. These usage profiles can later be used to
detect network-related abnormalities.

Detection of NAT-enabled devices: A passive system
might be able to discover network address translation
(NAT)–enabled devices that operate on the monitored
network and to guess the number of network devices
they might hide behind them [4].

Weaknesses

Although associated with important advantages, pas-
sive network discovery and monitoring systems have
a number of critical weaknesses that affect their dis-
covery and monitoring capabilities.

What you see is only what you get: By definition, a pas-
sive system will analyze and draw conclusions about

; LO G I N : J U N E 2 0 0 5 D E MYSTI F Y I N G PA S S I V E N E T WO R K M O N ITO R I N G SYSTE M S 25

a monitored network, its elements, and their proper-
ties from network traffic observed at a monitoring
location on the network. Consequently, a passive
solution cannot draw conclusions about an element
and/or its properties if the related network traffic does
not go through the monitoring point. Moreover,
information that needs to be collected by a passive
system might never be gathered, if there is no net-
work activity to disclose the information. A passive
solution cannot detect idle elements, services, and
applications.

The discovery performed by a passive system will be
partial and incomplete, since it is unable, technologi-
cally, to detect all network assets and their respective
properties. Finally, A passive system is blind when it
comes to encrypted network traffic.

No control over the pace of discovery: A passive system
has no control over the type of information that
passes through its monitoring point and its initiation.
Statistically, certain packets might not pass through
the monitoring point for extended periods of time.

Limited IP address space coverage: Lacking control
over the type of information that passes through its
monitoring point, a passive network discovery system
can generically cover only a limited IP address space.

Not everything can be passively determined: In some
cases, information cannot be discovered by using pas-
sive network discovery. Passive vulnerability discov-
ery is a good example: not all vulnerabilities can be
determined passively, e.g., the vulnerabilities abused
by the Code Red worm [5], the Blaster worm [6], and
the Sasser worm [7].

Incomplete and partial network topology: A passive net-
work discovery and monitoring system gathers net-
work topology information based on the distances
discovered between network elements and the moni-
toring point on the network, by relying on the time-
to-live field value in the IP header of observed net-
work traffic. The time-to-live field value is
decremented from its default value by each routing-
enabled device that processes the IP header of the
packet on its way from the sender to its destination.
Some passive network discovery and monitoring sys-
tems first determine the underlying operating system
of a certain network element before relying on the
time-to-live field value found with network traffic ini-
tiated by this network element.

The network topology information provided by a pas-
sive system relates only to layer 3–based information,
i.e., routing-based information. A passive network
discovery system cannot detect the physical network
topology of a network it is monitoring, for several key
reasons:

n It cannot detect the network switches that oper-
ate on the network. Usually a network switch
will not generate network traffic other than the
spanning tree protocol, sent only to its adjunct
switches.

n A passive system cannot query switches for their
CAM tables, detecting which network element
(or elements) are connected to which switch
port.

Additionally, a passive system would supply an
incomplete and inaccurate network topology map,
because:

n It cannot uncover routing that does not pass
through its monitoring point.

n It cannot detect other routers operating on the
monitored network.

n It is unable to uncover all of the network assets
operating on the monitored network.

Deployment location and the number of sensors needed:
The deployment location of a passive solution deter-
mines the data quality of the network traffic it
receives. Network traffic data quality is relevant to the
information collection process and is maximized
when the deployment location is as close as possible
to the access layer (i.e., between layer 2 and layer 3).
A passive system loses some of its information collec-
tion abilities when it does not observe layer 2–based
traffic of its monitored network elements.

A number of passive systems must be deployed in an
enterprise implementation in order to have complete
coverage, with the highest quality data collection, of
the enterprise networks.

Network utilization–related issue: Although it is able to
receive network traffic from multiple monitoring
points passively, a passive system is unable to supply
per-link utilization information. Furthermore, a pas-
sive system cannot uncover communications between
network elements found on the same switch on the
monitoring network.

Limited service monitoring: A passive network discov-
ery system cannot monitor service condition state
transitions or uncover idle services. For example, a
network service might shut down soon after serving
network traffic observed by a passive system, which
will remain in the dark regarding this operational
state transition.

Lesser-Known and More Important Weaknesses

Some weaknesses have not had widespread publicity.
Here are details about some of them, showing why
they are so very important.

26 ; L O G I N : V O L . 3 0 , N O . 3

Cannot resist decoy and deception: Although a passive
system might have some conflict resolution policies, it
might be possible, although dependent on a number of
parameters, to trick the system into drawing wrong
conclusions about the network, its elements, and their
properties, by poisoning the observed network traffic.

A passive network discovery and monitoring system’s
conflict resolution policies might not be effective if the
monitoring location does not allow the system to
receive layer 2–based traffic from the monitored net-
work.

Influencing the accuracy of a passive network discov-
ery and monitoring system might influence other sys-
tems, such as network intrusion detection systems
(NIDS) or network intrusion prevention systems
(NIPS), that rely on the data collected by the passive
network discovery and monitoring system as their
input.

Example 1: Changing Location Information

Discovery relies on the time-to-live field value in the IP
header of observed network traffic. It is possible to
trick a passive network discovery and monitoring sys-
tem, under several conditions, to conclude that a cer-
tain network element is located closer to or further
away from a monitoring location simply by changing
the default time-to-live field value in the IP header. For
example, a Microsoft Windows 2000–based network-
ing element has the default time-to-live field value set
to 128. By changing the default value to the value of
126, a passive system would identify the operating sys-
tem underlying the network element as Windows, and
then trust the time-to-live field value information con-
tained within the IP header of examined packets of this
network element, placing it two hops further away
from the monitoring point.

Example 2: Influencing Network Traffic Utilization
Information

A network element can influence network traffic
utilization information by injecting bogus traffic into
the network and through the monitoring location.
There are many different factors that prevent a passive
network discovery and monitoring system from resist-
ing these and other more and less sophisticated types
of network traffic poisoning. Among them is the
inability of passive systems to validate collected
information.

Denial of service & remote code execution: The
need of passive systems to decode received packets
passively leaves them vulnerable to DoS and remote-
execution attacks, of which there have been numerous
examples [8].

Conclusion
This article has examined the strengths and weak-
nesses of passive network discovery and monitoring
technology. It has demonstrated that despite the tech-
nology’s advantages, it cannot, under any circum-
stances, perform complete, accurate, and granular net-
work discovery and monitoring due to limitations that
directly relate to the passive nature of the technology.

R E F E R E N C E S
[1] Vern Paxson, “Automated Packet Trace Analysis of TCP
Implementations,” 1997.

[2] Note that it is important not to overload a network
device’s backplane, in case port mirroring is being used. If the
network device’s backplane is overloaded, the network moni-
tored will suffer performance degradation. Another side effect
would be the network device’s inability to send all of the net-
work traffic which passes through the device and needs to be
monitored to the network discovery and monitoring system.

[3] For more information on active network monitoring
tools, see The Multi Router Traffic Grapher (MRTG) at
http://people.ee.ethz.ch/~oetiker/webtools/mrtg/.

[4] Steven M. Bellovin, “A Technique for Counting NATed
Hosts,” http://www.cs.columbia.edu/~smb/papers/fnat.pdf.

[5] Microsoft Security Bulletin MS01-44, Cumulative Patch
for IIS, August 15, 2001, http://www.microsoft.com/technet/
security/Bulletin/MS01-044.mspx.

[6] Microsoft Security Bulletin MS03-39, Buffer Overrun in
RPCSS Service Could Allow Code Execution (824146),
September 10, 2003, http://www.microsoft.com/technet/
security/Bulletin/MS03-039.mspx.

[7] Microsoft Security Bulletin MS04-011, Security Update
for Microsoft Windows (835732), April 13, 2004,
http://www.microsoft.com/technet/security/Bulletin/
MS04-011.mspx.

[8] For examples of DoS attacks, see “Unknown Vulnerability
in the Gnutella Dissector in Ethereal 0.10.6 through 0.10.8
Allows Remote Attackers to Cause a Denial of Service (Appli-
cation Crash),” CAN-2005-0009, http://cve.mitre.org/
cgi-bin/cvename.cgi?name=CAN-2005-0009; Marcin
Zgorecki, “Snort TCP/IP Options Bug Lets Remote Users
Deny Service,” post to Snort-devel mailing list, October 2004.
For an example of a remote code execution, see “Buffer Over-
flow in the X11 Dissector in Ethereal 0.8.10 through 0.10.8
Allows Remote Attackers to Execute Arbitrary Code via a
Crafted Packet,” CAN-2005-0084, http://cve.mitre.org/
cgi-bin/cvename.cgi?name=CAN-2005-0084.

A N D R E W H U M E

how’s your OS
these days?
Andrew Hume is a senior researcher at AT&T Labs.
Over the past 10 years or so, he has worked on big
data problems and the cluster infrastructure needed
to support such applications. He believes in end-to-
end checks, and in both the compelling price/per-
formance and utter fallibility of modern PC hard-
ware running UNIX-like operating systems.

andrew@research.att.com

I N 2 0 0 3 I G A V E A K E Y N O T E A D D R E S S
at HotOS IX about the reliability, or lack
thereof, of OSes commonly used to build
computing systems and clusters. I spent
much time detailing examples of aberrant
behavior, some of which were entertaining
(if it didn’t happen to you) and some just
outright perplexing. While certain people,
notably including those who sell software,
understood my points well, I think many
were not quite sure what to make of my
charges.

To be truthful, I was not sure what response I wanted
either. Certainly, I wanted to challenge the (often
smug) complacency of the FREENIX crowd who
believe in the technical superiority of their particular
OS. I put forward the notion that properties that let
you combine individual systems into clusters—for
example, predictable and bounded behavior—used to
be fairly common but nowadays seem less so.

The obvious question is, has anything changed over
the last two years? The answer is clearly yes. Every
release of every OS brings its own new set of “fea-
tures,” or bugs, as we used to call them. For example,
the egregious I/O problems we had with the 2.4 Linux
kernels seem to have gone away with the 2.6 kernels.
Of course, new problems appear; when we are pound-
ing away at writing to SCSI tape (at a massive 5MB/s),
the buffer cache seems to vanish and becomes very
slow to replenish, especially for pages read in nonse-
quential order. Scanning a 100MB gdbm database,
which normally takes 1 or 2 seconds, starts taking
anywhere from 5 to 50 minutes. I understand full well
the consequences of flushing the buffer cache, but
writing to a slow tape seems an inadequate reason.
We find fewer bugs with each release, but the number
is still decidedly nonzero.

I also want to make clear what I mean by “bug” here.
I do not just mean when the OS does something
wrong (more on this below), but when it does a right
thing in an untimely fashion. We saw one example
above, when the time needed to scan a modest data-
base averages 1 to 2 seconds but can take 50 minutes.

So what’s the problem? When we try, as my team
does, to build reliable and/or highly available com-
puting infrastructure out of nodes that are only mod-
estly reliable, it is necessary to detect node failure.
When we execute some work on a node, there is an
associated time limit (called a “lease”) for that work,
and if the lease expires before the work completes, we
assume that the node died and assign the work to

; LO G I N : J U N E 2 0 0 5 H OW ’ S YO U R O S TH E S E DAYS ? 27

28 ; L O G I N : V O L . 3 0 , N O . 3

another node. This allows the general workflow to
continue despite nodes failing—but we now have to
parameterize the leases. If the leases are too short,
there will be wasted work as we re-execute the work
unnecessarily. If the leases are too long, as in the case
of an actual node failure, we’ll spend unnecessary time
waiting for work to finish when it never will.

Another example of a time-related bug is recycling a
server. Recycling a server means halting a service
(which would result in the open port being closed).
On most UNIX-like OSes, one can simply unmount the
bind and exit; almost immediately (in a second or
less), one can re-execute the server process, which will
then be able to bind and proceed on. On all the Lin-
uxen we’ve tried, this just fails, and we end up waiting
a fairly long time before we can restart successfully (we
initially wait 15 seconds, and back off exponentially to
a maximum of 75 seconds). The variance of how long
a wait is required (again, it seems to depend on how
busy the system is) is annoying, and directly increases
service unavailability.

For outright bugs, two examples come to mind. The
first is the weakness of the FreeBSD SCSI system; we
cannot reliably write tapes on our FreeBSD nodes
(although at least we get told about the errors!). Again,
the tape is slow (5MB/s) and should not be an issue,
and we can reliably write them on Linux (on more or
less identical hardware). Although this is annoying, it
turns out reading a tape works just fine, so we’re not
too annoyed.

The other example is perhaps not an OS bug per se,
but rather, I think, a hardware weakness, so common
these days. We configure our PCs with a 3Ware con-
troller plugged into the PCI bus, and all our disks (2–7
per node) plug into the 3Ware. Because our nodes are
typically 1U systems, we need an extender board so
that we can mount the 3Ware controller horizontally. It
turns out that the 3Ware board is overly fussy about
termination and really only operates reliably when
actively terminated, not passively (as is the norm). We
didn’t really care which way it needed to be termi-
nated; what did piss us off was the complete lack of
error detection by everyone involved. No errors were
logged or detected by either drivers or diagnostics. Per-
haps the driver doesn’t see an error, or the hardware
doesn’t have ECC, but this is bad.

The only diagnostic that worked was “copy 2GB to
5GB of files and checksum every copy and verify that
the copies were good.” In many ways, this is an
admirable end-to-end test, but it also always seemed a
very gross test.

Which brings me to my final thought. Many people
have listened to my tales of woe, and the almost uni-
versal response is “Why are you so unlucky?” (because
they not only don’t see these problems, they’ve never
even heard of them before). Certainly, I pound on my
systems and work them hard. But I’m sure I’m not
alone in this (although relatively few people schedule
jobs in batches of 75,000–150,000, or move TBs of files
around a 10 to 12-node cluster). I think the significant
difference is that I check everything I can. All file
movement is md5summed and, where plausible, we
add consistency checks to verify our processing.

For example, we have a distributed logging system
where the logging routine ensures that at least three
systems got the log message. Each system then gener-
ates a file of the recent log messages every five minutes,
and these are collected and coalesced on a central node
into a single file per week. After the coalescing, we
check the result by sorting all the five-minute files into
an “input” pile, sorting all the weekly files we updated
into an “output” pile, and then verifying that the input
pile is a strict subset of the output file. You might think
this a tedious, expensive check of demonstrably cor-
rect code (the shell script that does this is quite sim-
ple). But so far this check has found at least seven bugs
that would have otherwise probably not been found.
This includes not only bugs in the five-minute file gen-
erator, but also rude behavior by the system sort utility
(returning success even though the temp file system
ran out of space), and even by rcp (copying to a full file
system not only returns success but also sets the file’s
length to the right amount, even though it failed ear-
lier on). And thus every time I think about taking out
this apparently redundant test, I think of how the sys-
tem is out to get me, and I leave the test in.

So my standard answer to the question, “Why do you
see so many errors?” is, “I care about the answers and
check that they’re right.” Sometimes I wonder why
more people don’t have the same answer. Don’t you?

A D A M T U R O F F

practical Perl
D AT E A N D T I M E
F O R M AT T I N G I N P E R L

Adam is a consultant who specializes in using Perl to
manage big data. He is a long-time Perl Monger, a
technical editor for The Perl Review, and a frequent
presenter at Perl conferences.

ziggy@panix.com

D E A L I N G W I T H D AT E S A N D T I M E S I S A
common source of needless errors. The
brute-force methods of dealing with dates
tend to ignore the many little details that
are easy to forget. Thankfully, there are bet-
ter alternatives. Using modules like POSIX
or DateTime not only makes date-handling
code easier to manage, but it also makes
programs much more featureful and
robust.

Date handling is one of those topics that is easily
overlooked in many programs. The vast majority of
programs I have written over the years do not need to
deal with dates and times. The most common use of
dates and times is simply informative, like putting a
timestamp on entries in a log file:

#!/usr/bin/perl -w

use strict;

Method 1: peppering print statements about
print STDERR "[" . localtime() . "] - process ".

"starting\n";
... do stuff ...
print STDERR "[" . localtime() . "] - process ".

"complete\n";

Method 2: use a logging function
sub logmsg ($) {

my $msg = shift;
my $time = localtime();
print STDERR "[$time] $msg\n";

}

Using localtime() to grab the current time is common
because it’s easy to use and its behavior is so simple.
In order to work properly, Perl assumes a lot of con-
text so that it can do the right thing. First, when the
localtime() built-in function is called with no parame-
ters, it assumes that you want to get the time right
now and operates on the value that would be supplied
by time(), a value representing the number of seconds
since the beginning of the UNIX epoch.

The second piece of context here is how localtime() is
used. Depending on how it is called, this function will
produce either a single scalar value (a timestamp
string) or a list of date-time components (seconds,
minutes, hours, etc.). In the instances above, the out-
put of localtime() is concatenated into a string, so it is
used in a scalar context and would produce output
like this:

[Fri Mar 25 12:35:28 2005] - process starting
[Fri Mar 25 12:48:02 2005] - process complete

Some common uses of date information are a little
more involved. For example, I might want to express

; LO G I N : J U N E 2 0 0 5 P R AC TI C A L P E R L 29

30 ; L O G I N : V O L . 3 0 , N O . 3

the current date in YYYY-MM-DD format for archiving log files. In a shell script
this is fairly trivial to do, with the date(1) utility:

#!/bin/sh
cd $APPHOME/logs
mv app.log app.log.'date +%Y-%m-%d'

In Perl, this kind of date formatting is possible, but a little more involved. To start,
localtime() needs to be called in list context to convert UNIX epoch time into val-
ues such as year, month, and day:

#!/usr/bin/perl -w

use strict;

my ($sec, $min, $hour, $day, $month, $year, $wday, $yday, $dst)
= localtime();

When trying to retrieve just date information, we can ignore the unnecessary val-
ues and focus on the year, month, and day values by using an array slice:

#!/usr/bin/perl -w

use strict;

my ($day, $month, $year) = (localtime())[3..5];

While localtime() does provide values for month and year, it mimics the format
returned by the standard C library functions. Month values fall in the range 0..11,
and years are the actual year minus 1900. In order to produce sensible values from
localtime(), these values must be adjusted after each and every call:

my ($day, $month, $year) = (localtime())[3..5];
$month++;
$year+=1900;

print "$year-$month-$day"; ## format as YYYY-MM-DD

However, even this isn’t quite correct. In order to produce a two-digit month,
these values must be formatted using a function such as sprintf or printf:

my ($day, $month, $year) = (localtime())[3..5];

format YYYY-MM-DD properly
printf ("%04d-%02d-%02d", $year+1900, $month+1, $day);

Clearly, this is a lot of work in order to do something that should be easy.

Formatting with the POSIX Module

These issues are typical of the kinds of small details that pervade handling dates
and times. Thankfully, correct date and time formatting is a solved problem. C
programmers may remember the strftime(3) function for handling this problem. A
version of this function is available by default in Perl and is provided in the POSIX
module. (This same behavior is exposed in the shell through the date(1) utility.)

Perl’s POSIX::strftime() function takes a date format string as its first argument and
a series of time components (seconds, minutes, . . . year, etc.) to produce a format-
ted date-time value. Fortunately, the order of the time values that strftime()
expects is precisely the order of values that localtime() produces. Therefore, pro-
ducing a date formatted as YYYY-MM-DD is as simple as:

#!/usr/bin/perl -w

use strict;
use POSIX qw(strftime);

print strftime("%Y-%m-%d", localtime()), "\n";

(The meaning of the formatting specifiers used in the first argument is described
in the strftime(3) man page.)

; LO G I N : J U N E 2 0 0 5 P R AC TI C A L P E R L 31

Another common requirement for producing date values is to use names for
months and days of the week. Frequently, programs that need to do this contain an
array with the relevant names:

my @months;
$months[0] = "January";
$months[1] = "February";
##....
$months[11] = "December";

Or, more succinctly:
my @months = qw(January February ... December);

Sadly, this is an antipattern common among programmers who do not deal with
dates and times on a regular basis—that is to say, most programmers. I know I’ve
done this more times than I care to count, and every time I feel guilty. The problem
here isn’t that defining an array of month or day names is necessarily wrong or bad,
but it is needlessly repetitive.

Instead of redefining these lookup tables in each and every script that needs them
(or, better, redefining them once in a module), why not just use the lookup tables
that are already predefined in the standard C library? Here are some common for-
mats, available through POSIX::strftime():

#!/usr/bin/perl -w

use strict;
use POSIX qw(strftime);

Friday, March 25, 2005
print strftime("%A, %B %m, %Y", localtime()), "\n";

Fri, Mar 25, 2005
print strftime("%a, %b %m, %Y", localtime()), "\n";

Creating Dates and Times POSIX-Style

Formatting times can be a tricky business, but not as tricky as performing arith-
metic on dates. All UNIX date handling is ultimately done in terms of seconds
since January 1, 1970, and the time() built-in function returns the current number
of seconds since the start of the UNIX epoch. Figuring out the count at midnight
this morning,or midnight tomorrow morning should be a simple process of adding
and subtracting seconds from the current time. (The output of localtime() in list
context can tell us how many hours, minutes, and seconds to fill in the missing
pieces.)

For example, determining the time a few days in the past or future is just a matter
of adding or subtracting multiples of the value 86,400 (that is, 24*60*60). While
this usually works, this brute-force solution isn’t quite accurate. In most time
zones, there is one day a year that has 23 hours, and another that has 25 hours,
marking the switch to and from Daylight Savings Time. Periodically, 86,400 sec-
onds ago could still be “today,” or it could be “two days ago.” A milder version of
this bug occurs when “three days after 9 a.m. Friday morning” becomes Monday
morning at 8 a.m., 9 a.m., or 10 a.m., depending on the week.

There are other complications to this method. How do you obtain the time value
for the beginning of next month? How do you add three months to a specific date?
How do you determine “three weeks ago”?

The simple solution is to use the mktime() function, also found in the POSIX mod-
ule. This function takes the same series of time components returned by local-
time() and expected by strftime() and returns the corresponding epoch time. That
is, the same caveats about month values being in the range 0..11 and year values
being year – 1900 still apply to the inputs to mktime().

32 ; L O G I N : V O L . 3 0 , N O . 3

#!/usr/bin/perl -w

use strict;
use POSIX qw(mktime strftime);

Print a timestamp for the start of 1999

print scalar(localtime(mktime(0,0,0,1,0,99))), "\n";

Fortunately, the values processed by mktime are not strictly limited in range. That
is, mktime expects days to start at 1, seconds, minutes, hours, and months to start
at 0, and so on. To ask for the time at one second before midnight midway through
2010, simply adjust the inputs accordingly:

sec min hr day mon year
print scalar(localtime(mktime(-1, 0, 0,183, 0, 110))), "\n";

Similarly, if I want to know what the epoch time was three weeks ago or will
be three weeks hence, I can add or subtract 21 days to the current day value
returned from localtime():

my @now = localtime(); ## get the current [sec, min, ...] values

my @past = @now;
$past[3] -= 21; ## same time, 3 weeks ago

my @future = @now;
$future[3] += 21; ## same time, 3 weeks from now

Print out all three dates, in chronological order
print scalar(localtime(mktime(@past))), "\n";
print scalar(localtime(mktime(@now))), "\n";
print scalar(localtime(mktime(@future))), "\n";

Output:
Fri Mar 4 12:52:23 2005
Fri Mar 25 12:52:23 2005
Fri Apr 15 13:52:23 2005

(Note the switch from standard time to daylight savings time between March 25
and April 15.)

Date Handling with the DateTime Modules

For casual uses, time(), localtime(), POSIX::mktime(), and POSIX::strftime() can be
used in conjunction to solve simple problems of creating and formatting time val-
ues. But there are still other problems that frequently arise when dealing with dates.
One limitation of localtime() and strftime() is that they only work in the current
time zone, whatever that may be. If you need to format the current time for a user
in another time zone, things start to get tricky.

Thankfully, these issues are easily solved with the DateTime family of modules. As
an added bonus, DateTime does away with the silliness of years being represented
as “year – 1900” and months falling in the range 0..11. Here is an example of how
to construct a new DateTime object that represents a single point in time:

#!/usr/bin/perl -w

use strict;
use DateTime;

Construct an object at a fixed point in time
my $date = new DateTime (

year => 2005,
month => 1, ## 1..12
day => 1,
hour => 12, ## 0..23
minute => 30,
time_zone => "America/New_York"

);

; LO G I N : J U N E 2 0 0 5 P R AC TI C A L P E R L 33

Construct an object for the current time
my $now = DateTime->now->set_time_zone("America/New_York");

The DateTime module handles a lot of details with dates and times, but it does not
assume what the current time zone might be. For best results, a time zone should
be specified whenever constructing a DateTime object. The time zone names that
DateTime recognizes are the same ones that are found in the Olsen database, a
public database of all time-zone information. (This is also the source data that is
used to build the files in /usr/share/zoneinfo.) A DateTime object that is con-
structed without a time zone is constructed in the GMT time zone; specifying a
time zone adjusts the component values accordingly.

DateTime objects can be formatted using the strftime() method, which accepts the
same format strings as the POSIX::strftime() function. Because a DateTime object
represents a fixed point in time, adjusting the time zone adjusts the formatted rep-
resentation as expected:

my $now = DateTime->now->set_time_zone("America/New_York");
print $now->strftime("%c"); ## prints 'Mar 25, 2005 12:52:23 PM'

Same time, different time zones
$now->set_time_zone("America/Los_Angeles");
print $now->strftime("%c"); ## prints 'Mar 25, 2005 9:52:23 AM'

$now->set_time_zone("Europe/London");
print $now->strftime("%c"); ## prints 'Mar 25, 2005 5:52:23 PM'

DateTime also handles many localization issues. For example, in French, not only
are the names of the days and months different, but the standard date formats are
different. Taking the same time value, we can display that time in Paris for an
American viewer, a British viewer, and a French viewer. To switch the localization
of a date, simply update the locale on that DateTime object:

Convert to Paris time
$now->set_time_zone("Europe/Paris");

Display, using the default (US English) localization
print $now->strftime("%c"); ## 'Mar 25, 2005 6:52:23 PM'

Convert to a British localization
$now->set_locale(“en_GB”);
print $now->strftime(“%c”); ## '25 Mar 2005 18:52:23'

Convert to a French localization
$now->set_locale("fr");
print $now->strftime("%c"); ## '25 mars 05 18:52:23'

The vagaries of time-zone arithmetic are handled through the
DateTime::TimeZone family of modules. Each of these modules define the offset
from GMT and the rules for switching to and from Daylight Savings Time. The
DateTime::Locale modules define the localization interfaces, and include data
such as the native formats for dates and the names of the days and months. Both
of these modules are installed with DateTime.

The Perl DateTime project has also built many other extensions to the core Date-
Time modules. Some of these modules provide calendar handling, formatting and
parsing of dates, date calculations, date spans, and many other features. Sadly, the
features provided by these modules are beyond the scope of this article; for more
information, please visit http://datetime.perl.org.

Conclusion

Date and time handling is an area that does not get a lot of attention in many Perl
programs. Using the simple and obvious brute-force techniques is actually quite
complicated and very error-prone. Using a standardized library to handle dates
makes the process easy and robust, whether you areusing the standard POSIX
module or the DateTime modules from CPAN.

A M R E L - K A D I , A H M E D N A S H E D , K A R E E M
E L G E B A L Y , M A H M O U D A B O D A O U D ,
N O H A E L S H A R A W Y , R A N I A N A Z M I , A N D
M O S T A F A M A Z E N

architecture and
internal design of the
AUC-Abyss Web server
Dr. Amr El-Kadi is an associate professor of computer
science at the American University in Cairo. He was a
member of the IEEE-CS/ACM Joint Task Force on
Software Engineering Ethics and Professional
Practices (SEEPP). Dr. El-Kadi is a senior member of
IEEE, ACM, and Eta Kappa Nu.

elkadi@aucegypt.edu

W I T H T H E A D V E N T O F T H E I N T E R N E T,
the need to deliver highly available scalable
e-business systems has grown exponentially.
The Web is transforming how companies
transact business, communicate with their
customers and business partners, and, ulti-
mately, compete. Information technology
departments are being asked to deliver and
maintain systems that transact with cus-
tomers around the clock, share data across
the Internet, and generate large amounts of
revenues. The penalty for downtime or slow
response times in this environment is
immense.

The term “Web service” describes specific functional-
ity, value delivered via Internet protocols, for the pur-
pose of providing a mechanism for another service or
application to use [22]. Web services enable the spe-
cialization and reuse of traditional Web applications by
exposing components of applications as Web services
and enabling businesses to invoke these components.
Web services will fundamentally transform Web-based
applications by enabling them to participate more
broadly as an integrated component of an e-business
solution.

The industry is attempting to take advantage of World
Wide Web Consortium (W3C: see http://www
.w3c.org) and Internet Engineering Task Force (IETF:
see http://www.ietf.org) standards, such as Extensible
Markup Language (XML), HTTP, and Domain Name
System (DNS) protocols to create specifications that
define a way to publish and discover information about
Web services. An example is the Universal Description,
Discovery, and Integration (UDDI) specification.

Developing a scalable Web service requires developing
an infrastructure to address a few fundamental chal-
lenges related to offering a service:

n Unpredictable loads, unreliable communications,
and unreliable access

n Hardware scaling (i.e., the ability to arbitrarily
throw hardware as scalability challenges)

n Integration (i.e., the ability to interoperate with
other systems and services)

Before the Web, most communications between appli-
cations in the client-server world were synchronous.
The client sent a message and then waited for the
server to respond. In most synchronous situations,
there was a predictable load, a simple response over a
reliable communication infrastructure with reliable
access (i.e., high service availability). For some situa-

; LO G I N : J U N E 2 0 0 5 TH E AU C - A BYS S W E B S E RV E R 35

36 ; L O G I N : V O L . 3 0 , N O . 3

tions now, a tightly coupled or synchronous service is acceptable. However, by
virtue of being on the Web, the service can be exposed to unpredictable loads
from unknown users over an unreliable communication infrastructure with
unreliable access (i.e., can’t predict the availability of other systems or Web serv-
ices). On the Web, synchronous applications are often too fragile and inefficient
to handle this level of uncertainty, and a loosely coupled, or messaging-based
infrastructure, architecture is required.

A scenario arises where a single machine, no matter how the service is archi-
tected, does not possess the processing power required to handle Web service
requests. In this scenario, Web services are deployed on a distributed multi-
server architecture. As developers apply more hardware to solve critical scaling
challenges, they potentially increase the complexity by introducing new factors
into the architecture. Key factors such as load distribution, state management,
and caching must be taken into account.

Web services are tautologically provided by Web servers, of which the Apache
Web server is known to be the most widely used. The October 2003 Netcraft Web
Server Survey reported that more than 64% of the Web sites on the Internet are
using Apache, thus making it more widely used than all other Web servers com-
bined. Since the 1.0 release (December 1, 1995), Apache has had a modular
architecture (a feature unchanged until today [1]). Other notable Web servers
include IIS (now IIS 6.0 for Windows Server 2003 [15,16]) with less than 40%
of the market share, Zeus [17,18], and Flash [2,19,20]. While these Web servers
outperform Apache in some aspects, they have some restrictions, such as being
tied to a specific operating system or having high cost.

Three primary techniques enable the Web to handle high traffic loads: replica-
tion (mirroring), distributed caching, and improving server performance. Repli-
cation is simply duplication of Web information (either as a whole or partially)
on multiple machines that either form a cluster [5] or are loosely coupled. Since
any one of the machines can serve requests independently, the load of each indi-
vidual server is reduced. Distributed caching includes client-side caching [6],
proxy caching [7,8,9,10], or dedicated cache servers [11,12,13]. These
approaches transparently cache documents closer to the clients, thereby reduc-
ing the network traffic as well as the overhead on the Web server. The effective-
ness of Web caching is sometimes deemed obsolete when Web owners use
cache-busting, that is, marking Web objects with a no-cache header, a technique
used whenever Web owners are interested in collecting hit counts to track
object popularity and usage patterns. Finally, improving server performance
includes using more powerful hardware (e.g., hardware with SMP [Symmetric
Multiprocessing] capability), better Web server software techniques (e.g., pre-
forking process pools [14]), and high-bandwidth network connections [4].

Web servers, being crucial software systems, should normally benefit from
advances in software engineering techniques and technology. Yet lots of software
developers feel that such techniques will restrict the creativity of the developers
as well as affect the performance of their products, so they elect not to use any
well-defined process. We wanted to experiment with new modeling languages
(such as UML), new iterative and incremental development methodologies
(such as the Unified Process), new software architectures for distributed systems
(such as peer-to-peer architectures), new testing techniques, and new perfor-
mance evaluation methods. Open source software provides great opportunities
for researchers not to start from scratch and for reuse, yet that is only possible
for minor changes; making major changes to Apache was impossible, as we only
have the code and neither models nor detailed designs.

Wanting to build a new Web server to experiment with all of the new technolo-
gies, we have reverse-engineered Apache and started to develop our own server.
It seemed logical to us to concentrate on stand-alone servers (not clustered or

; LO G I N : J U N E 2 0 0 5 TH E AU C - A BYS S W E B S E RV E R 37

distributed servers) as a starting point, and yet ensure that their architecture
would be extensible to support real businesses’ ability to implement serious Web
services. The beginning was a Web server called Artemis that reused many of
Apache’s modules and was written in C++. Artemis had good performance—
close to that of the Apache version when it was developed but with a cleaner
design. The goals of the AUC-Abyss project were to get rid of the many restric-
tions imposed by reusing Apache’s modules (as they were not object-oriented by
nature) and to be able to experiment freely with all of the new software develop-
ment technologies.

We had as our primary objective producing a well-engineered stand-alone Web
server that could outperform Apache 2.0 in comparable environments and at
least support static files, fully support HTTP 1.1 requests, provide a good server-
side caching mechanism, provide an efficient logging mechanism, and be both
reliable and extensible.

In the following discussion we first provide some background on how Web
servers function in general, while highlighting Apache’s internal architecture.
We then provide a summary of techniques available to handle incoming requests
in parallel, detailing the model used by AUC-Abyss. The architecture of our Web
server is then given and further details are revealed using static and dynamic
artifacts. Before concluding, we compare the performance of AUC-Abyss against
Apache.

Background

A centralized Web server, in the simplest form, could be perceived as a passive
process.1 Clients open TCP connections with the Web server and send their
requested content using the HTTP protocol [1]. Since several clients may be
issuing their requests in parallel, such requests are queued on the server’s port.
The server de-queues requests, finds the requested file, and (if found) sends an
HTTP response header followed by the requested data (see Figure 1). This sim-
ple sequence is followed for satisfying static content (content that is accessible
to a Web server in disk-file form). For clarity, we will not consider dynamic con-
tent (content that is generated dynamically by executing auxiliary applications)
in the following discussion.

F I G U R E 1 : H A N D L I N G O F H T T P R E Q U E S T S

The open source model has stimulated the development of Apache functions by
many volunteer programmers (and even recently by IBM), resulting in a fairly
rapid pace of functional enhancements. Apache’s modularity permits its users to
pick and choose modules to fit their requirements. It is claimed that it can serve
a large number of concurrent clients, limited only by the underlying hardware
and operating system. The hybrid threading/multiprocess model increases its
scalability. The Apache Portable Runtime layer (APR) means it can run at its

1. A passive process, as opposed to an
active one, is a process that does not ini-
tiate computation. Instead, it remains
dormant when there are no requests to
serve and is activated by the operating
system as soon as a request reaches its
ports.

38 ; L O G I N : V O L . 3 0 , N O . 3

best on multiple platforms, which now include everything from common UNIX
variants, the Microsoft Windows family, and NetWare, to OS/2.

The server can be configured easily (statically or dynamically) either by editing
text files or by using one of the many available GUIs. Its modularity allows
many features that are necessary within special application domains to be imple-
mented as add-on modules and plugged into the server. To support that, a well-
documented API is available for module developers. Its modularity and the exis-
tence of many free add-on modules make it easy to build a powerful Web server
without having to extend the server code. Using many of the available server-
based scripting languages, Web-based applications can be developed easily.
When using scripting languages or add-on modules, Apache can even work with
other server applications such as databases or application servers. Therefore,
Apache can be used in common multi-tier scenarios. Additionally, Apache is
completely HTTP 1.1 compliant in both of the current versions, and it also
supports the HTTP compression enhancement tool, thus saving bandwidth, a
feature heavily used by Google in running Apache as its Web server.

Since our target was to perform better than the Apache Web server, it was logical
to attempt to understand the issues that affect its performance [4]. The single
biggest hardware issue affecting Web server performance is RAM. A Web server
should never have to swap, since swapping increases the latency of each request
beyond a point that users consider “fast enough.” This causes users to hit “stop”
and “reload,” further increasing the load. Too many clients attempting to con-
nect to an Apache Server at one time can spawn child threads to the point where
the need for memory swapping leads to a severe performance problem.

Concerning the issue of process creation (thread spawning), Apache’s available
threads are not always sufficient to accept all incoming requests, so constant
per-second spawning is required. In addition, Apache’s parent and children com-
municate with each other through something called the scoreboard. Ideally, this
should be implemented via shared memory, which is the case for those operating
systems that the designers had insight into. The remaining implementation of
the Apache Web server defaults to using an on-disk file, which is both slow and
unreliable (and less featured).

F I G U R E 2 : T H R E E M A I N P R O C E S S I N G M O D E L S

Parallel Handling of Requests

Before we detail the AUC-Abyss Web server architecture, it is important to dis-
cuss how clients’ requests are actually handled. Web servers parallelize the han-

; LO G I N : J U N E 2 0 0 5 TH E AU C - A BYS S W E B S E RV E R 39

dling of clients’ requests to exploit interleaving processing with I/O requests,
thus reducing overall response time.

Two main issues greatly affect the performance of a Web server: the processing
model, and the pool size behavior [3]. The processing model describes the par-
allelism adopted by the Web server in terms of processes and/or threads, while
the pool size behavior specifies how the number of processes (or threads) varies
over time in response to workload.

Three main options for a processing model are used by Web servers: the process-
based model, the thread-based model, and a hybrid model (see Figure 2). In the
process-based model (see Figure 2a), a dispatcher process receives requests from
the queue and sends them to single-threaded processes for handling. In the
thread-based model (see Figure 2b), a single multi-threaded process receives
requests from the queue and assigns each to one of its own threads (lightweight
processes). The hybrid mode has a dispatcher (which is a single-threaded
process) that receives requests from the queue and sends them to multi-
threaded processes (see Figure 2c). Each of these models has advantages and
drawbacks, summarized in Table 1.

T A B L E 1 : P R O S A N D C O N S O F E A C H O F T H E
T H R E E M A I N P R O C E S S I N G M O D E L S

Any of the three processing models has one of two options for coping with vary-
ing workloads by controlling how the number of processes (or threads) varies
over time (i.e., pool size behavior). In the first approach, a static pool is used in
which a fixed number of processes (and/or threads) are created at startup. As a
request arrives, it is more likely that this request will find a process already
spawned ready to serve it, so no time is wasted on spawning or killing processes
or threads. However, when the load on the Web server is low, many processes
(or threads) will remain idle (wasting a lot of cycles and forming more switching
overhead, especially if they use polling and do not block). Also, if there are p
processes (or threads) already created and a request arrives finding other p
requests being processed, the request will wait in a queue. As the workload for
the Web server increases, the queue will get longer, increasing the response

Process-Based

Stability of the system. If a
process goes down, the only
effect would be the failure of
the client being served by that
process, without any other
effect on the system.

High cost for creation and destruc-
tion of processes.

Memory requirements are much less
because threads share the same
address space.

Huge context-switching overhead.

Not as stable as the process-based
model; one malfunctioning thread
will take down the whole server.

Memory requirements are much
less because threads share the
same address space.

Spawning threads within the
same process is much more effi-
cient than spawning new
processes.

Much efficient inter-thread com-
munication through the use of
the shared address space.

Thread-Based

It combines the pros of both models; if a thread crashes, it would take down
the process that created it and its sibling threads. This means that some of
the clients will be disconnected but not all of them.

Hybrid

Pros Cons

40 ; L O G I N : V O L . 3 0 , N O . 3

time. In the second approach, a dynamic pool is used in which the creation and
destruction of processes (and/or threads) varies dynamically according to the
workload. This means that when the load is increased, more requests will be
processed concurrently and the queue will be reduced. Yet at the same time, the
dynamic creation and destruction of processes (and/or threads) does introduce
an overhead for the server machine.

F I G U R E 3 : A U C - A B Y S S P R O C E S S M O D E L

We have decided to use the hybrid processing model for AUC-Abyss. In this
model, processes as well as threads do not need to interact at all, since each
thread serves a different request independently of the others. As our Web server
starts, a single-threaded process root loads a configuration file to set up and con-
figure its consequent operations. It starts to allocate and initialize pre-config-
ured memory in RAM for its use. Once this phase is concluded, the root process
forks another process and kills itself. That new process is the parent server (see
Figure 3), which, in turn, is responsible for forking more child servers, depend-
ing on the workload and the condition of the currently running child servers.
(See Figure 4a for the use-case diagram to serve an HTTP request.) Each child
server spawns a number of threads by which the requests are actually handled
(see Figure 4b for the use-case diagram of child servers). The fact that each
thread handles a request independently improves the robustness of the server by
reducing the likelihood of events that may cause a systemwide failure. However,
the acceptance of new requests is synchronized through a mutual execution
mechanism in order to make sure that each request is served only once. Further-
more, the child servers communicate with the parent server through the score-
board, a file in which each child saves its current state.

F I G U R E 4 : M A I N U S E - C A S E D I A G R A M S

; LO G I N : J U N E 2 0 0 5 TH E AU C - A BYS S W E B S E RV E R 41

Server Architecture

AUC-Abyss is based on a hybrid architecture in which many threads, spawned
by child server processes, serve requests in parallel; this might dramatically
decrease Web server performance, since file I/O operations are the most expen-
sive operations a thread can perform as it competes with other threads (at least
to access the log file). Thus, our primary concern was to find a way to reduce the
cost of repeated I/O operations that occur after each request-response cycle. Our
initial solution was to create a single global memory base buffer in which we
could temporarily store the logging information and to call a periodic dumping
function which would copy all this information to the log file on the hard disk.
This was thought to improve performance, since it reduced the overhead of
opening and closing a file stream for each single served request by buffering a
large number of entries together and writing them in one chunk.

Our second concern was to maintain the performance of the Web server: the
level at which a Web server is able to perform under a certain workload should
remain constant, even while the server is flushing logging information. This
raised a problem: once the flushing operation is underway, the memory buffer
locks and cannot be accessed, the threads therefore are all forcibly put to sleep
(since they cannot log after serving), and for a few seconds the server grinds to a
complete halt. This was unacceptable. We came up with a twofold solution to
this problem. First, and most important, it was decided that the flushing opera-
tion could not be performed by the threads themselves, since this reduces per-
formance dramatically. Either the parent server process would perform this
operation or a new twin thread (also known as a shadow thread) would be
spawned to perform this operation, then die. Second, we decided to implement a
mirror buffer, which performs exactly like the base buffer but is used as a
backup. When the base buffer is being flushed, logging is automatically shifted
to the mirror buffer and vice versa; thus request handling will never stop. Con-
cerning the dumping of the logs from the memory, once a buffer is filled, the
logging mechanism is responsible for spawning a twin thread for transferring
this information onto the disk concurrently with the normal operation of the
Web server, and therefore the performance of the Web server is not affected
(except for using up some extra clock cycles). This twin thread is considered a
twin to the threads in the process that made the final entry into the logging
buffer. The parent of this twin thread is random and is not specified a priori.

F I G U R E 5 : A U C - A B Y S S A R C H I T E C T U R E

42 ; L O G I N : V O L . 3 0 , N O . 3

Figure 5 shows the architecture of the AUC-Abyss Web server. Memory manage-
ment is the most important component; it interacts with or is used by all the dif-
ferent entities in order to utilize memory effectively, avoiding leakage and reduc-
ing system calls. The configuration layer is responsible for the different types of
configuration we handle in the system and is saved in a text file that is read
when the server starts to boot. It deals with almost all the other entities that
exist in our Web server.

The parent server controls the whole Web server. Since AUC-Abyss is a pre-
forking Web server, the parent server is responsible for creating the child servers
(processes) which spawn multiple threads that become responsible for handling
the request-response cycle. The parent server communicates with the memory
management, the configuration, and the child servers.

Once the child servers are forked, they handle all the request-response cycles of
the system. The request enters through the TCP/IP interface and the admission
control and is kept in a queue in the request pool. Child servers take requests
and handle them; they look for them in the caching subsystem and, when done,
log the operation through the logging subsystem. Finally, the TCP/IP layer pro-
vides the basic networking capabilities that the Web server needs to process its
different activities. It interacts with the parent server and the request-response
layer.

F I G U R E 6 : G E N E R A L C L A S S D I A G R A M

Logical View

Our general class diagram more or less maps the system architecture, using sev-
eral components (see Figure 6). The configuration subsystem consists of an
abstract virtual class (ACBasicConfiguration); all other classes implement this
basic class. This fosters extensibility by future addition of subconfiguration
components as long as such components inherit from the abstract class and
implement all its virtual functions. Two main ideas drive the existence of an
abstract class. First of all, reusability suggests that all common operations and
attributes be grouped into one class. Secondly, such a class facilitates adding
new directives if the administrator desires. For example, an admin can create a
new class in which each directive is saved with a function pointer to execute

; LO G I N : J U N E 2 0 0 5 TH E AU C - A BYS S W E B S E RV E R 43

when this directive is met in the configuration file. This class can be dynamically
linked to the server and provide the extra functionality needed.

The ACCache class communicates with ACRequest during the service of the
request; the logging class deals with the ACRequest class as well. The rest of the
classes (AServer, ACRequest, and ACHandler) handle the request-response
cycle. ACScoreboard is responsible for keeping track of the spawned processes
and threads (child servers).

F I G U R E 7 : C O N F I G U R A T I O N S U B S Y S T E M C L A S S D I A G R A M

44 ; L O G I N : V O L . 3 0 , N O . 3

The server cannot function properly without a configuration. There are two
types of server configuration: per server, or per directory. The configuration is
saved in a text file which is read when the server starts up. The configuration
layer is responsible for the configuration of the server (see Figure 7). This sub-
system deals with almost all the other entities that exist in the Web server. The
naming schema is uniform to differentiate between various subconfigurations:
those belonging to per-server configuration end with SC, whereas those belong-
ing to per-directory configuration end with DC. The server configuration can
either be a preloaded or an extra per-server configuration that can be added later
on. The per-directory configuration can be either default or special.

For per-server configuration, the parent server, after creating the pool of mem-
ory, interacts with the configuration object to initialize the server configuration
needed to process the various servers’ activities. For example, the port number
and document root are set by this object, among other variables needed by the
server to start processing different requests. A preloaded per-server configura-
tion is the basic configuration; the extra per-server configuration gives the user
the ability to customize some of the configurations after the default configura-
tion has been loaded.

F I G U R E 8 : H A N D L E R S C L A S S D I A G R A M

; LO G I N : J U N E 2 0 0 5 TH E AU C - A BYS S W E B S E RV E R 45

Per-directory configuration is responsible for initializing different directories
existing in the system, both default and special configurations. Once again, the
parent server interacts with the directory objects (directory, MIME, core, and
negotiation) to initialize the basic configuration of each. To set up the default
per-directory configuration, the parent server initializes first the server configu-
ration and then the necessary directory configuration. This configuration is to
be used when no special values are specified. For example, /usr/local/etc can use
the default configuration /usr/local directly. the user can save special directory
configurations, after the default initialization. These values will of course over-
ride the default values.

AUC-Abyss uses different handlers for different types of requests. The ACHan-
dler base class contains the basic methods needed by all handlers to respond to
requests. Each type of handler is a class inheriting from the base class. There are
two other classes that are not handlers per se in the diagram: ATVariant encap-
sulates information about a particular variant, and ATNegState deals with the
state of negotiation. AUC-Abyss deals with handlers as a linked list containing
an instance of each. Once the server receives a request, it will loop over all these
handlers and check the content type to know which one will be used in han-
dling this specific request. This design is useful for reusability purposes.

F I G U R E 9 : C O N F I G U R A T I O N S T A T E D I A G R A M

Dynamic Behavior

As the root server process is responsible for the configuration of the server, it
starts by executing configServer(). This function opens the configuration file
and reads the directives (see Figure 9). Reaching end of file means the configu-
ration was completed successfully. Each directive is read and then searched for
in the command list. If there is a match, the function associated with the direc-
tive is executed and the process is repeated for the next directive. If it is not
found, an error message is printed and the system is exited.

One important directive is “directory,” which specifies that the user wants to
create a special directory that should have a specific per-directory configuration.
The server creates a directory instance and then initializes it with the default
configuration by checking its parents’ configuration until we have a complete
directory configuration. The server then proceeds by reading another directive
from the file, but this time the search is made in the table of subdirectory
configurations. If a match is found, the associated function is executed and the

46 ; L O G I N : V O L . 3 0 , N O . 3

process is repeated until the closing tag for the directory is reached. This indi-
cates that the special directory configuration has ended, and the server goes
back to configuring the server.

F I G U R E 1 0 : M A I N S E R V E R A N D C H I L D S E R V E R S T A T E D I A G R A M

Figure 10 shows the overall state diagram of the Web server. It starts the execu-
tion of the root process that is responsible for the entire configuration. It then
opens a socket and keeps on listening for the incoming requests. Then it forks a
number of processes, each of which in turn spawns a number of threads and
updates the memory with the new status. Each of these threads represents a
child server class responsible for handling a request-response cycle. When a
thread is spawned, it updates its status in the scoreboard to “Ready” and counts
the number of idle children. If that number is more than the maximum number
allowed, the thread is killed and exits the connection; otherwise it starts the
request-response loop. At the beginning of this loop, the thread (or child) is
solely responsible for waiting on incoming requests on the socket; when a
request arrives it is accepted and then handled. It then goes back to the start of
the request-response loop. Meanwhile, the main server is in another infinite
loop, maintaining the child statuses and the scoreboard. Note the hierarchy of
the system: the main server represents the parent responsible for a number of
child servers, whereas each child server is responsible only for handling a
request.

; LO G I N : J U N E 2 0 0 5 TH E AU C - A BYS S W E B S E RV E R 47

Request-Response Sequence
The request-response cycle (shown in Figure 11) begins with an instance of the
AServer class (see Figure 12). This object is the main core controller of the Web
server and begins by creating instances of ACCache andACLogging, followed by
the ACHandler classes. The AServer is solely responsible for handling the
request-response cycle. It creates an ACRequest object and then loops infinitely,
waiting for a connection from a client through the WaitForConnection() func-
tion. Once it is notified of a pending request connection, it proceeds to open the
input/output connections through the ACRequest object initialized earlier
through the sockets (OpenInputConnection() and OpenOutputConnection()
functions). It is then concerned with processing the request by reading the
request, parsing the URL, and obtaining the content type of the request through
three functions: SendBasicHeader(), SendHttpHeader(), and SendFile(). Once
this is done, the ACChildServer asks the ACServer controller to get the handler
suitable for handling this type of request. Thus, the handler type is returned
through a response message. The child server then proceeds to ask the
ACHandler object to handle this specific type of request.

F I G U R E 1 1 : T Y P I C A L R E Q U E S T - R E S P O N S E C Y C L E

In responding, the ACHandler will first look up this request in the cache mem-
ory by using the lookup() function in the ACCache instance that was initialized
earlier by the ACServer. A response is then sent back to the handler from the
ACCache containing a pointer to the requested data in memory if it is found
there. If not, a pointer to its location on the hard disk is returned. The child
server uses this pointer to perform the response part of the cycle. This is
achieved by sending the Basic Header, the HTTP Header, and the file itself
through the functions previously mentioned in the ACRequest object back to
the client through the OpenOutputConnection() of the socket. After the
response is delivered, the child server is responsible for storing the transaction
in the log buffer. This is accomplished by using the insert() function in the
ACLogging object.

48 ; L O G I N : V O L . 3 0 , N O . 3

F I G U R E 1 2 : R E Q U E S T - R E S P O N S E S E Q U E N C E D I A G R A M

; LO G I N : J U N E 2 0 0 5 TH E AU C - A BYS S W E B S E RV E R 49

T A B L E 2 : R E Q U E S T - R E S P O N S E T I M E T E S T R E S U L T S

Performance Evaluation

The first set of performance evaluation benchmarks was concerned with testing
the request-response time of both Apache 2.0 and AUC-Abyss. We used httperf
(a standard benchmarking tool for evaluating Web servers), taking three sam-
ples for every file size and repeating the experiment for five different file sizes
(15KB, 256KB, 512KB, 1MB, and 2MB), each test running for 10 minutes. By
looking at the results (see Table 2), we notice that in small file sizes we outper-
formed Apache by a fairly obvious margin, but as file sizes grew in size, the per-
formance of Abyss converges with that of Apache. This is due to network satura-
tion as the network I/O reaches its maximum. It’s also important to note that a
file of 15k is the most common file size requested on the Internet in general, and
in that case AUC-Abyss outperformed Apache by an average of 22%.

ALICE 15 Kbytes Test 1 Test 2 Test 3 Average % Difference

AUC-Abyss 2 2 2 2 21.70%

Apache 2 3.3 2 2.4333333 -21.70%

The number of connections was 50,000 with a rate of 100 connections per second.

The Net I/O of the network was 12.5 Mbps.

BECKY 256 Kbytes Test 1 Test 2 Test 3 Average % Difference

AUC-Abyss 26 28.2 30.6 28.266667 2.90%

Apache 27.9 31.5 28.1 29.166667 -2.90%

The number of connections was 20,000 with a rate of 44 connections per second.

The Net I/O of the network was 92.3 Mbps.

CANDY 512 Kbytes Test 1 Test 2 Test 3 Average % Difference

AUC-Abyss 50.8 49 48.8 49.533333 1.55%

Apache 52.8 49.2 48.9 50.3 -1.55%

The number of connections was 10,000 with a rate of 22 connections per second.

The Net I/O of the network was 92.3 Mbps.

DOROTHY 1 Megabyte Test 1 Test 2 Test 3 Average % Difference

AUC-Abyss 95.8 97 97.2 96.666667 0.30%

Apache 97.2 97 96.7 96.966667 -0.30%

The number of connections was 5000 with a rate of 10 connections per second.

The Net I/O of the network was 88.3 Mbps.

EDITH 2 Megabyte Test 1 Test 2 Test 3 Average % Difference

AUC-Abyss 189.7 190.7 189.6 190 0.14%

Apache 189.6 190.6 190.6 190.26667 -0.14%

The number of connections was 2500 with a rate of 5 connections per second.

The Net I/O of the network was 88.3 Mbps.

50 ; L O G I N : V O L . 3 0 , N O . 3

We then moved on to the width tests, focusing on evaluating the server’s con-
currency performance when numerous small files were requested. Concurrency
is of vital importance here, especially for Web sites visited by millions of people
(e.g., google.com or hotmail.com). These tests were carried out on both AUC-
Abyss and Apache. Once again, each test was repeated three times and per-
formed using four small file sizes (20B, 1KB, 2KB, and 4KB). All tests were at a
constant rate of 2500 connections per second, which worked out to 150,000
total connections.

F I G U R E 1 3 : A V E R A G E R E S P O N S E T I M E

The results indicate that Abyss handled concurrency dramatically better than
Apache (see Figure 13). It is important to note that Apache was inconsistent in
its maximum number of concurrent users, which is unacceptable in an enter-
prise situation.

F I G U R E 1 4 : A V E R A G E N U M B E R O F E R R O R S

The error performance of AUC-Abyss was outstanding, as it produced the least
number of errors (zero errors, in fact) in comparison with Apache (see Figure
14). As a result of the number of errors, we can conclude that the Apache expe-
rienced denial of service whereas AUC-Abyss was still up and running.

Conclusion

We can safely state that our project met its goals. We have designed and imple-
mented an extensible Web server using state-of-the-art software engineering
technology that is on a par with the most widely used Web servers. But this is
just the starting point. Much more work needs to be done to make AUC-Abyss
as powerful as other Web servers. As yet, it does not provide sophisticated

; LO G I N : J U N E 2 0 0 5 TH E AU C - A BYS S W E B S E RV E R 51

admission control, it only supports static files, and it is a stand-alone, non-
portable server.

Most Web server architectures reject excess requests without discriminating
between different resource bottlenecks, or they use only one indicator for over-
load, often CPU utilization. Hence, they cannot take the potential resource con-
sumption of requests into account, but have to reduce the acceptance rate of all
requests when one resource is over-utilized [21]. Both high CPU utilization and
dropped packets on the networking interface can lead to long delays and low
throughput. Other resources that could be controlled are disk I/O bandwidth
and memory. The admission control mechanism adaptively determines the
client request acceptance rate to meet the Web servers’ performance require-
ments, while the load balancing or client request distribution mechanism deter-
mines the fraction of requests to be assigned to each Web server (in the case of a
distributed-based Web server architecture).

Adding admission control over and above basic load balancing reduces work-
load, increases server performance (faster response to users’ requests), and max-
imizes the usefulness of server arrays. It is observed that admission control
ensures that throughput is maintained at the highest possible level by control-
ling traffic to the Web servers when the servers’ resources are approaching
exhaustion. By controlling traffic before resources are exhausted, the chances of
server breakdown are minimized, and hence system sanity and graceful degrada-
tion, in the worst case, are guaranteed. In addition, if admission control allows a
user access to a Web server, the user will receive continuing priority access to
server resources, thereby ensuring that the service a user perceives is maintained
at an acceptable level.

To conclude, admission control plays a crucial role in ensuring that the servers
meet users’ quality-of-service requirements while maximizing site availability
and preventing server congestion/failure during heavy traffic. Our next step for
AUC-Abyss is to add admission control. The fundamental question here is, Is
admission control really necessary in Web server systems? In response, we note
that there are two ways to increase overall user utility, namely, increasing server
(farm or cluster) capacity or implementing intelligent traffic management mech-
anisms. Our experiments show that we can utilize resource-based admission
control to avoid over-utilization of critical Web server resources. We may also
provide service differentiation using token buckets with logical partitions. The
importance of having an admission control subsystem is accentuated with the
support of both static and dynamic requests, mainly because the first is network
intensive whereas the latter is CPU intensive. In a simple scenario the CPU
could be causing a bottleneck when serving a high load of requests based on
dynamic scripts, while the network and bandwidth are capable of serving static
requests.

Right now the server only supports static HTML files. However, to be able to
compete with Apache and other Web servers, AUC-Abyss needs to support
dynamic scripts and CGI, which are commonly used nowadays. Therefore, one
of the first possible future enhancements would be an add-on to support
dynamic behavior. In addition, our Web server was built with C++ on Linux.
Developing it in a standard programming language would make its portability
easier, yet an operating system’s dependency has to be architecturally addressed,
and there are a lot of approaches that we can learn here from the development of
portable operating systems to make AUC-Abyss portable across platforms. Other
future plans for our server include adapting its architecture to provide distrib-
uted-based Web services and support for virtual servers [23].

The authors plan to release the Abyss server in the spring of 2005 under the
GPL for research purposes only.

52 ; L O G I N : V O L . 3 0 , N O . 3

R E F E R E N C E S

[1] See http://apache.rcbowen.com/ApacheServer.html.

[2] V. Pai, P. Druschel, and W. Zwaenepoel, “Flash: An Efficient and Portable
Web Server,” Proceedings of the 1999 USENIX Annual Technical Conference
(Monterey, CA), June 1999, pp. 199–212.

[3] Daniel A. Menascé, “Web Server Software Architectures,” IEEE Internet
Computing, vol. 7, 2003, pp. 78–81.

[4] See http://www.ele.uri.edu/Research/hpcl/Apache/journal_CA.pdf.

[5] E.D. Katz, M. Butler, and R. McGrath, “A Scalable Web Server: The NCSA
Prototype,” Computer Networks and ISDN Systems, vol. 27, no. 2, November
1994, pp. 155–164.

[6] A. Bestavros, R.L. Carter, M.E. Crovella, C.R. Cunha, A. Heddaya, and S.A.
Mirdad, “Application-Level Document Caching in the Internet,” Proceedings of
the 2nd International Workshop on Services in Distributed and Networked Environ-
ments (SDNE), 1995.

[7] A. Luotonen and K. Altis, “World-Wide Web Proxies,” Proceedings of the
First International Conference on the World-Wide Web, 1994.

[8] M. Abrams, C.R. Standridge, G. Abdulla, S. Williams, and E.A. Fox,
“Caching Proxies: Limitations and Potentials,” Proceedings of the 4th Inter-
national Conference on the World-Wide Web (Boston, MA), December 1995.

[9] C. Maltzahn, K.J. Richardson, and D. Grunwald, “Performance Issues of
Enterprise Level Web Proxies,” Proceedings of the 1997 SIGMETRICS Conference
on Measurement and Modeling of Computer Systems, June 1997.

[10] P. Cao and S. Irani, “Cost-Aware WWW Proxy Caching Algorithms,”
Proceedings of the USENIX Symposium on Internet Technologies and Systems
(USITS), December 1997.

[11] J. Gwertzman and M. Seltzer, “The Case for Geographical Pushcaching,”
Proceedings of the 1995 Workshop on Hot Operating Systems, 1995.

[12] S. Glassman, “A Caching Relay for the World Wide Web,” Proceedings of the
First International Conference on the World-Wide Web, 1994.

[13] A. Chankhunthod, P.B. Danzig, C. Neerdaels, M.F. Schwartz, and K.J.
Worrell, “A Hierarchical Internet Object Cache,” Proceedings of the 1996 USENIX
Annual Technical Conference (San Diego, CA), January 1996.

[14] A. Cockcroft, “Watching Your Web Server,” http://www.sun.com/
sunworldonline/swol-03-1996/swol-03-perf.html, March 1996.

[15] See http://www.microsoft.com/windowsserver2003/evaluation/overview/
technologies/iis.mspx, April 2003.

[16] Brian Livingstone. “Intel Blows Bandwidth,” http://itmanagement
.earthWeb.com/columns/executive_tech/article.php/3068161, April 2003.

[17] See http://linuxtoday.com/news_story.php3?ltsn=2001-01-29-005-06
-PR-HE-SV.

[18] See http://www.zeus.com/products/zws/features.html, Web Server Feature
Comparison.

[19] See http://www.cs.princeton.edu/~vivek/flash/.

[20] See http://www.csse.monash.edu.au/~impp/Docs/Thesis%20Final.pdf.

[21] Thiemo Voigt and Per Gunningberg, “Adaptive Resource-Based Web Server
Admission Control,” Proceedings of the 7th International Symposium on Comput-
ers and Communications, 2002.

; LO G I N : J U N E 2 0 0 5 TH E AU C - A BYS S W E B S E RV E R 53

[22] Adam Bosworth, “Developing Web Services,” Proceedings of the 17th-
International Conference on Data Engineering, 2001.

[23] Valeria Cardellini, Emiliano Casalicchio, Michele Colajanni, and Philip S.
Yu, “The State of the Art in Locally Distributed Web-Server Systems,” ACM
Computing Surveys, vol. 34, no. 2, June 2002.

SAVE THE DATE!
2006 USENIX Annual Technical Conference

May 30–June 3, Boston, MA

Please join us at the 2006 USENIX Annual Technical Conference in Boston. USENIX has
always been the place to present groundbreaking research and cutting-edge practices in a
wide variety of technologies and environments and 2006 is no exception. Join the com-
munity of programmers, developers, and systems professionals in sharing solutions and
fresh ideas.

B O R I S L O Z A

under attack
D E A L I N G W I T H M I S S I N G
U N I X F I L E S

Boris Loza is a founder of Tego System Inc. and
HackerProof Technology, in addition to being a con-
tributor to many industry magazines. He holds sev-
eral patents and is an expert in computer security.
He loves nature, reading books, and watching
movies, and enjoys scuba diving and entomology.

bloza@hackerproofonline.com

A S E C U R I T Y B R E A C H C A N I N S P I R E
panic in administrators. This quick applica-
tion note explains some techniques to be
used to recover the names and contents of
files during an attack or shortly thereafter.

Takedown, by Tsutomu Shimomura and John Markoff,
describes the pursuit of Kevin Mitnick by Tsutomu
Shimomura. It notes: “I could make out patterns of
information still stored on my computer’s disk that
revealed the ghost of a file that had been created and
then erased. Finding it was a little like examining a
piece of paper on a yellow legal pad: even though the
top page has been torn off, the impression of what
was written on the missing sheet can be discerned on
the remaining page.”

In the UNIX and Linux worlds, just about everything
is a file. UNIX treats regular files, directories, hard
disks, printers, modems, and so on as files. When a
file is created, it is assigned an inode (an index struc-
ture that is quicker for finding on-disk data structures
than filename matching). When a file is deleted, the
inode number is cleared from the directory, but the
file does not vanish. The contents usually remain on
the disk, at least for a while, until the disk blocks con-
taining the contents are reused.

Listing Deleted Files

Because a directory is also a file, commands that
manipulate files can be used to examine a directory.
The od command performs an octal dump, which can
include an ASCII listing. Let’s consider an example of
a directory (all outputs are taken from Solaris 9,
except where otherwise indicated):

$ chdir testdir
$ ls -a
. .. Project status webstat.log

The ls command says the directory contains five enti-
ties: Project, status, webstat.log, an entry for the
directory itself (.), and an entry for the parent direc-
tory (..). The on-disk structure can be examined
using the od command (with a flag to display the
ASCII characters, if the octal code is reasonable). Cer-
tain non-graphic characters appear as the intuitive C-
language escapes; other non-printable characters
appear as 3-digit octal numbers.

54 ; L O G I N : V O L . 3 0 , N O . 3

; LO G I N : J U N E 2 0 0 5 U N D E R AT TAC K 55

$ od -c .
0000000 \0 \b 023 337 \0 \f \0 001 . \0 \0 \0 \0 013 006 P
0000020 \0 \f \0 002 . . \0 \0 \0 \b 023 340 \0 020 \0 007
0000040 P r o j e c t \0 \0 \b 023 341 \0 024 \0 013
0000060 w e b s t a t . l o g \0 \0 \b 023 342
0000100 001 304 \0 006 s t a t u s \0 \0 \0 \0 \0 \0
0000120 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
*
0001000
$

The output starts each line with the number of bytes, expressed in octal, shown
since the start of the file. The first line starts at byte 0. The second line starts at
byte 20 (that’s byte 16 in decimal, the way most of us count), and so on. One can
easily see the listed file names on this output. It is easy to see that each file name
is preceded by 8 bytes of some sort of file-system information. Additionally, file
names are padded to the next 32-bit boundary (maybe after a \0 that terminates
the file name).

Let’s delete the status file and compare the od -c output with the previous one.

$ rm status
$ ls -a
. .. Project webstat.log
$ od -c .
0000000 \0 \b 023 337 \0 \f \0 001 . \0 \0 \0 \0 013 006 P
0000020 \0 \f \0 002 . . \0 \0 \0 \b 023 340 \0 020 \0 007
0000040 Project \0 \0 \b 023 341 001 330 \0 013
0000060 webstat.log \0 \0 \0 \0 \0
0000100 001 304 \0 006 status \0 \0 \0 \0 \0 \0
0000120 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
*
0001000

Note that we still can see the status file, but four of the eight bytes that precede
it (\b, \023, and \342) have been replaced by NULs, a zeroing of the inode num-
ber that links the name to the on-disk storage.

Understanding the Output

To understand more about all these outputs, let’s take a look at the UNIX File
System (UFS) directory structure that can be found in
/usr/include/sys/ufs_fsdir.h:

struct direct {
uint32_t d_ino; /* inode number of entry */
u_short d_reclen; /* length of this record */
u_short d_namlen; /* length of string in d_name */
char d_name[MAXNAMELEN + 1]; /* name must be no longer than

this */
};

Now, we may better understand the output from od -c. We will analyze the ini-
tial output that was displayed above:

$ od -c .
0000000 \0 \b 023 337 \0 \f \0 001 . \0 \0 \0 \0 013 006 P
0000020 \0 \f \0 002 . . \0 \0 \0 \b 023 340 \0 020 \0 007
0000040 Project \0 \0 \b 023 341 \0 024 \0 013
0000060 webstat.log \0 \0 \b 023 342
0000100 001 304 \0 006 status \0 \0 \0 \0 \0 \0
0000120 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
*
0001000

56 ; L O G I N : V O L . 3 0 , N O . 3

As you can see from this output, and based on the UFS directory structure, one
can recognize the file names: d_name[MAXNAMELEN +1] (., .., Project, web-
status.log, and status). Before each file name, we can see a number that repre-
sents the length of string in d_name—001 for ., 002 for .., 007 for Project, 013
(11 decimal) for webstat.log, and 006 for status.

What can also be recognized in this output are two octal digits that represent the
inode number in the list of inodes, d_ino. This is 013 006 for .., \b 023 337 for .,
\b 023 340 for Project, and so on.

At this point, programmers might well think about writing a quick program to
traverse the directory structure to print the files, maybe even flagging those with
inode numbers of zero. Regrettably, the indexing information on some OSes is
adjusted when a file is deleted. A better approach is simply to text-process the
strings in the directory.

Probably the easiest way to do this is the strings command:

$ strings . > /tmp/a
$ cat /tmp/a
.
..
Project
webstat.log
status

It is quite possible to learn the names of deleted files (presuming the directory
slots haven’t already been reused). What about the data contained in deleting
files?

Recovering Certain Text Files

In most UNIX and UNIX-like file systems, files are not necessarily recoverable
after deletion. Sometimes, though, one can retrieve vital information.

LO G F I L E S

If you suspect that an intruder has modified or deleted your log file, you might
try to recover what has been deleted from this file. When a file is deleted under
the UNIX system, the inode number in the directory is set to 0, and disk blocks
belonging to a file are marked “free” and returned to a pool of blocks that may
be reused by the system. If the blocks of the deleted or altered file were not yet
reused, this information is still present on the hard disk—somewhere.

Let’s try to recover a log file. Assume that we log all network connections to
/var/adm/messages with inetd -t. We suspect that an intruder modified our
/var/adm/messages file to hide successful connections on June 4. Current out-
put from /var/adm/messages:

$ tail messages
Jun 3 10:49:42 birch inetd[132]: exec[25727] from 10.56.49.194 2199
Jun 3 11:29:25 birch inetd[132]: exec[28958] from 10.56.49.194 2254
Jun 3 11:35:14 birch inetd[132]: telnet[29398] from 10.56.49.194 2255
Jun 3 14:04:21 birch inetd[132]: telnet[9711] from 10.56.53.55 57779
Jun 3 14:21:30 birch inetd[132]: ftp[10914] from 10.56.49.194 2430
Jun 3 14:51:04 birch inetd[132]: telnet[17225] from 10.56.49.194 2486
Jun 3 14:56:35 birch inetd[132]: telnet[17622] from 10.56.49.194 2487
Jun 5 09:55:00 birch inetd[132]: exec[14029] from 10.56.49.194 3248
Jun 5 11:13:33 birch inetd[132]: exec[19439] from 10.56.49.194 3281
Jun 6 14:17:14 birch inetd[132]: telnet[10520] from 10.56.49.194 3747

; LO G I N : J U N E 2 0 0 5 U N D E R AT TAC K 57

We can see that entries from Jun 4 are missing, a suspicious circumstance.
Because, as we already know, almost everything in UNIX is a file, we can use
the grep utility against the raw disk device on which /var/adm/messages is
located for the string “Jun 4”.

First, we must deduce which disk device holds (or held) the /var/adm/messages
file (this output is produced on Solaris 2.6):

$ df /var/adm/messages
Filesystem Kbytes used avail capacity Mounted on
/dev/dsk/c0t0d0s4 290065 93826 167233 36% /var

We will use grep against the entire /dev/dsk/c0t0d0s4 partition, all 2.9GB of it:

$ su -
Password:
Sun Microsystems Inc. SunOS 5.6 Generic August 1997
grep 'Jun 4' /dev/dsk/c0t0d0s4 > /tmp/123
head /tmp/123
Jun 4 09:16:54 sundvl25 inetd[132]: telnet[2872] from 10.32.112.159

1137
Jun 4 09:23:06 sundvl25 inetd[132]: telnet[3306] from 10.32.112.159

1140
Jun 4 10:07:44 sundvl25 inetd[132]: ftp[6484] from 10.56.49.183 1072
Jun 4 10:08:17 sundvl25 inetd[132]: ftp[6519] from 10.56.49.183 1073
Jun 4 09:16:54 sundvl25 inetd[132]: telnet[2872] from 10.32.112.159

1137
Jun 4 09:23:06 sundvl25 inetd[132]: telnet[3306] from 10.32.112.159

1140
Jun 4 10:07:44 sundvl25 inetd[132]: ftp[6484] from 10.56.49.183 1072
Jun 4 10:08:17 sundvl25 inetd[132]: ftp[6519] from 10.56.49.183 1073

We redirected the output from the grep to the /tmp/123 file (choose any mean-
ingless name in case the intruder is on the system), which is stored on a differ-
ent partition of the hard disk. This will ensure that the data we are trying to
recover is not overwritten and will avoid an embarrassing grep feedback loop.

Now, while the blocks that contain the file’s contents might not be scanned in
the proper order (there are no relevant rules about order of disk block allocation
in a file system that has been in production for a while), we can see many of the
entries that had been deleted from the /var/adm/messages file (based on the for-
mat of the messages file) by our intruder.

This process is time-consuming. Be patient. On a busy system it could take a lot
of time to grep through the disk’s blocks.

R E COV E R I N G B I N A RY F I L E S

You may easily recover an executable file if it is still running as a process on your
system. There may be situations in which a hacker runs the application and
deletes an executable file. While the file’s name is removed from a directory, the
contents are still intact so that execution can proceed.

On Solaris and others, a link to the process exists in the /proc/[PID]/object/a.out
directory. You may identify the process number for the deleted file by using the
ps command or lsof utility.

For example, let’s assume that we are going to restore a file that belongs to the
process ID 22889 from the suspicious srg application that we found running on
our system:

58 ; L O G I N : V O L . 3 0 , N O . 3

ps -ef | more
UID PID PPID C STIME TTY TIME CMD
root 0 0 0 May 10 ? 0:00 sched
root 1 0 0 May 10 ? 2:21 /etc/init -
...
root 22889 16318 0 10:09:25 pts/1 0:00 ./srg
root 16318 25824 0 08:56:27 pts/1 0:00 csh

As long as the command is still running, use cp to recreate its executable:

cp /proc/2289/object/a.out /tmp/srg

The /proc directory connects to a pseudo-filesystem that abstracts the kernel’s
process architecture; /proc/2289/object/a.out is the process’s executable binary.

You may also want take a look at Dan Farmer and Wietse Venema’s The Coro-
ner’s Toolkit (TCT), which includes unrm and lazarus applications to automate
this process.

Conclusion

Do not be frustrated if you cannot recover a deleted or altered file. Sometimes
the odds of recovering a file are very slim. Be patient and take everything with a
sense of humor!

S T E V E N A L E X A N D E R

defeating compiler-
level buffer
overflow protection
Steven is a network test engineer at Front Porch in
Sonora, CA. He gets to break things and shoot Nerf
guns at people.

alexander.steven@sbcglobal.net

B U F F E R O V E R F L O W AT TA C K S A R E T H E
most popular method intruders use to gain
remote and privileged access to computer
systems. Programs that fail to use appropri-
ate bounds checking can allow an attacker
to write data beyond the intended bound-
aries of a buffer and thus possibly corrupt
control structures in the program. This
enables an attacker to execute arbitrary code
with the same privilege as the victim process.
An attacker’s preference is usually to over-
write the saved instruction pointer that is
pushed onto the stack before a function call
or to overwrite a function pointer that will
be used later in the program.

It is also possible to use these attacks simply to over-
write other data. This kind of attack is harder to pre-
vent but, fortunately, is less common than the previous
type and is not discussed here.

Buffer overflows first gained attention with the release
of the famed Morris worm which exploited a buffer
overflow in fingerd [1]. Despite the attack used in the
Morris worm, buffer overflows did not become popular
until the release of two papers that detailed the discov-
ery and exploitation of these vulnerabilities [2,3].

This paper discusses vulnerabilities in two compiler-
level protection mechanisms, StackGuard and Point-
Guard. While this paper takes a critical look at both of
these solutions, it does not intend to make them seem
insignificant. The attacks described in this paper help
to show how StackGuard and PointGuard should be
complemented to construct a more complete protec-
tion system.

The reader should also note that PointGuard has not
been publicly deployed. It was presented at the
USENIX Security Symposium in 2003. The design
might be changed before its release to correct func-
tionality problems with some real-world software [4].

The reader should also note that StackGuard has
reverted from the more advanced random XOR canary
protection method analyzed here to the simpler termi-
nator canary [5]. The justification for the change is
that the attack method that prompted the change also
enables an attacker to manipulate a program in ways
that StackGuard cannot, and was not designed to, pro-
tect against. Because StackGuard has reverted to a
weaker method and PointGuard is not available, the
attacks in this paper are mostly of importance to the
designers of new protection methods and have little
consequence for currently deployed systems.

; LO G I N : J U N E 2 0 0 5 D E F E ATI N G COM P I L E R- L EV E L B U F F E R OV E R F LOW P ROTE C TI O N 59

60 ; L O G I N : V O L . 3 0 , N O . 3

Exploiting a Buffer Overflow

To understand how a buffer overflow exploit works, we must first understand
how a function call occurs:

1. The calling procedure pushes any function arguments onto the stack in
reverse order.

2. The calling procedure executes a “call” instruction, which pushes the address
of the next sequential instruction onto the stack and tells the processor to
transfer execution to the target function.

3. Assuming that frame pointers are being used, the called function pushes the
old frame pointer onto the stack and copies the value stored in the stack
pointer over the frame pointer. Then, the stack pointer is decremented (the
stack grows down) to make room for local variables.

Figure 1 show the stack layout for a called function with a single variable (a
character array).

F I G U R E 1 : S T A C K L A Y O U T F O R A C A L L E D F U N C T I O N
W I T H C H A R A C T E R A R R A Y A R G U M E N T

The function epilogue consists of popping the saved frame pointer from the
stack and executing a return instruction. The return instruction causes the
processor to pop the saved instruction pointer from the stack into the program
counter and begin execution at that address. The saved instruction pointer is
supposed to hold the instruction address that was saved on the stack in step 2
above.

Consider the following code:

#include <stdio.h>

int main (int argc, char *argv[]) {
char buf[256];
if(argc < 2) {

printf("Oops.\n");
return -1;

}
strcpy(buf, argv[1]);
return 0;

}

This snippet of code is vulnerable to a trivial buffer overflow attack. The strcpy
function does not perform bounds checking (unlike its cousin strncpy), so the
program will copy characters from argv[1] to buf until the program crashes or
strcpy encounters a null character, \0. An attacker could find a way to provide a
carefully crafted input that will cause this function to execute his own code
instead.

First, such an attacker would assemble a small bit of code that will do something
useful such as the semantic equivalent of exec (“/bin/sh”). Such code is usually

; LO G I N : J U N E 2 0 0 5 D E F E ATI N G COM P I L E R- L EV E L B U F F E R OV E R F LOW P ROTE C TI O N 61

referred to as “shellcode” since the popular use is to execute a command shell.
Shellcode can be used to do more complicated things, such as open a network
connection or add a new root user. There are some restrictions as to how this
code can be constructed. For instance, there cannot be any null characters in the
resulting machine code. Aleph One discusses constructing workable shellcode
[3]. There is quite a lot of shellcode available online so, unfortunately, aspiring
exploit writers don’t have to start from scratch.

In order to execute some shellcode, an attacker provides the code as a part of
the input to a vulnerable program. The attacker crafts the input so that it will
exceed the bounds of the allocated buffer and overwrite the saved instruction
pointer with the address of the provided shellcode. If the attacker does not know
the exact address at which the shellcode will be stored, he can prepend a series
of null instructions (NOPs) to the shellcode. If the provided address points to
any location within the series of NOPs, execution will continue through the
NOPs and eventually reach the shellcode. If the attacker does not know the
exact location of the saved instruction pointer (common if the attacker doesn’t
have access to the source code), he may duplicate the shellcode address several
times. In such a case, it might take the attacker a few tries to overwrite the saved
instruction pointer on the correct 4-byte boundary.

It might also take the attacker a few extra tries to guess the correct shellcode
address. The address at which the shellcode is stored is usually not difficult to
guess, even in black-box analysis, since the stack begins at a known location.
This does not hold true if the target program runs on a system with good stack
randomization. Figure 2 shows the attacker’s input layout. Figure 3 depicts the
manner in which this input corresponds to the function stack layout.

F I G U R E 2 : A T T A C K E R ’ S S T A C K L A Y O U T A F T E R I N P U T

F I G U R E 3 : E X P L I C A T I O N O F F U N C T I O N S T A C K L A Y O U T
W I T H A T T A C K

62 ; L O G I N : V O L . 3 0 , N O . 3

Solutions, a Survey

Many methods have been proposed to prevent the execution of buffer overflow
attacks [6], some of which are discussed here. Papers about several solutions
and attacks are available on Purdue University’s SmashGuard buffer overflow
prevention page [7].

O S - L E V E L

N O N - E X E C UTA B L E STAC K

One of the first methods, the non-executable stack, was proposed by Solar
Designer [8]. A non-executable stack prevents the standard buffer overflow
attack which modifies the saved instruction pointer so that it points at the
attacker’s shellcode. The attacker’s shellcode is normally stored in the same
stack-allocated buffer that was overrun to change the instruction pointer. If the
stack is non-executable, the attempt to resume execution at this location will fail.

This defense can be defeated by injecting executable code into other data areas,
such as the standard .data and .bss sections. The defense was also defeated by
Solar Designer [9] and Rafal Wojtczuk [10] using the return-into-libc method.
In this method, the saved instruction pointer is modified so that the program
will return into an instruction sequence in the C library. It is not necessary that
the instruction pointer direct execution to the beginning of a function in the C
library. Often, an attacker will wish to point at a call to system() inside one of
the C library functions. An attacker can manipulate the stack so that his pro-
vided arguments will be used in the call to system().

PA X /A S L R

Randomizing the base address at which libraries are loaded can hinder return-
into-libc attacks (used to defeat non-executable restrictions such as those in
Solar Designer’s stack patch). This technique was introduced in [11] and used
by ASLR in PaX [12]. In early versions of PaX, an attacker could defeat this by
instead returning into the Process Linkage Table (PLT) [13,14]. The PLT is used
to resolve libc (and other) function addresses automatically. Currently, PaX can
also randomize the executable base for ELF executables [12]; this prevents the
return-into-PLT attack. There is another attack that can be used against
PaX/ASLR with the randomized executable base in effect [15]. The attack uses a
partial overwrite of the saved instruction pointer to gain control over the argu-
ments passed to printf, which allows an attacker to discover information about
the randomized library base using a format string attack so that a normal return-
into-libc attack can be performed. When used with PaX, StackGuard and Pro-
Police/SSP can both prevent these attacks. The OpenBSD project has imple-
mented W^X, which uses techniques similar to PaX. OpenBSD also uses address
randomization and ProPolice/SSP.

COM P I L E R- L E V E L

STAC KG UA R D A N D P RO P O L I C E / S S P

Another possible solution was proposed by Crispin Cowan and is used in Stack-
Guard [16,5]. StackGuard places a canary value between the saved frame and
instruction pointers and the local function arguments. Figure 4 shows the
revised stack layout. The canary value is set in the prologue to each function and
is checked for validity in the epilogue. If the canary value has been modified, a

; LO G I N : J U N E 2 0 0 5 D E F E ATI N G COM P I L E R- L EV E L B U F F E R OV E R F LOW P ROTE C TI O N 63

handler function is called and the program terminates. A direct attack will over-
write the canary value before it overwrites the saved instruction or frame point-
ers. Any of three types of canary can be used: a terminator canary, a random
canary, or a random XOR canary.

F I G U R E 4 : R E V I S E D S T A C K L A Y O U T W I T H C A N A R Y

A terminator canary contains multiple terminator values, such as a NULL byte
or newline, which are used to indicate the end of a string in the various C library
string functions. Because these values are used to terminate a string, an attacker
cannot avoid changing them with a direct buffer overrun. It is possible to repair
a terminator canary if an attacker has the opportunity to perform multiple over-
runs in one function. The first overrun can be used to change the instruction
pointer and the subsequent overrun can be used to repair the canary by lining
up the terminator in the string with the corresponding value in the terminator
canary.

A random canary is a random value chosen at runtime. The random value is
stored in a global variable and is used for each function in a program. It is stored
in the same manner as the terminator canary. It is assumed that an attacker will
be unable to overwrite the global value or to cause the program to leak the
value. In some circumstances it is possible, however, to force the program to
leak the random value using a format string attack. Overwriting the global vari-
able is not useful since an attacker could just as easily overwrite a function
pointer (.got entry, .dtors, etc.).

The random XOR canary was introduced into StackGuard to prevent an attack
published in Phrack Magazine [17]. Rather than directly overwriting the canary
and saved instruction pointers, an attacker can overwrite a data pointer that will
be used later in the function as the destination for a string or memory copy that
uses attacker-supplied data. The attacker can modify the pointer so that it points
directly at the saved instruction pointer. When the attacker’s data is copied to
that address later in the function, the saved instruction pointer will be overwrit-
ten without modifying the canary.

With the random XOR canary, a random value is again generated at runtime and
stored in a global variable. Rather than storing the random value on the stack,
the random value is XORed with the saved instruction pointer and the result is
stored on the stack. During the function epilogue, the saved canary is XORed
with the random value and the result is compared to the saved instruction

64 ; L O G I N : V O L . 3 0 , N O . 3

pointer. If the values do not match, the handler function is called and the pro-
gram terminates. The maintainers of StackGuard have reverted to using the ter-
minator canary because the attack used to defeat the terminator canary can also
be used to corrupt other important values such as function pointers.

SSP, previously known as ProPolice, is based on StackGuard and uses a random
canary [18]. SSP offers several improvements over StackGuard, however, and is
more difficult to defeat. SSP reorders local function variables so that pointers are
stored below buffers in memory (i.e., higher on the stack). This rearrangement
prevents an attacker from successfully employing attacks such as the one used
to defeat StackGuard. There is a limitation to this: the variables within a data
structure cannot be reordered, so it is possible for an attacker to exploit a buffer
overflow within a data structure and overwrite a pointer value within that same
structure. This does not seem (to me) to be a common problem.

SSP also copies function arguments to the local stack frame. An attacker can tar-
get the arguments of a function if they will be used inside the function after he
modifies them. In some cases, an attacker can use them (perhaps by overwriting
a pointer value) to write arbitrary data to any writable location in memory. The
canary value will be overwritten but, since an attacker can write anywhere, he
could also overwrite the address in .got of one of the functions used in the han-
dler function that is called to terminate the program. By copying the function
arguments to a local memory area below the local variables, SSP prevents this.

StackGuard and SSP cannot prevent attacks that occur in heap memory
[19,20,21]. Early versions of StackGuard did not attempt to protect the saved
frame pointer. If the frame pointer is not protected, StackGuard can be bypassed
by taking control of the stack frame [22].

PointGuard

PointGuard protects pointer values inside programs, a technique that promises
much better protection than using StackGuard alone [23]. PointGuard works by
XOR-encrypting pointer values with a random value determined at runtime and
stored in a global variable. Code is added to a protected program to decrypt
pointer values automatically before each use. Pointer values are decrypted only
in registers, and the decrypted pointer is not stored in memory. Without knowl-
edge of the random value used to encrypt the pointers in a program, an attacker
cannot overwrite a pointer and hope for a meaningful decryption. If an attacker
overwrites a pointer hoping to point to an exact location, his chances are 1 in
232, or about 1 in 4 billion. An attacker has a much better chance if he is trying
to point a function pointer at NOP-padded shellcode, but even with a 1-kilobyte
NOP buffer, his chances are only about 1 in 4 million. Dereferencing a random
pointer value is likely to cause a segmentation violation, which will cause the
targeted program to exit and dump core.

Unlike StackGuard and SSP, PointGuard does provide protection against heap
attacks. Note that in order to provide protection against malloc and free
attacks, libc must be compiled with PointGuard. Unfortunately, PointGuard can
be defeated using format string attacks, as discussed on Bugtraq [24] and using
an attack detailed below. An implementation of PointGuard has not been pub-
licly released.

Format String Vulnerabilities

Format string vulnerabilities arise when functions that accept format strings and
a variable number of arguments (e.g., printf) are used without a programmer-

; LO G I N : J U N E 2 0 0 5 D E F E ATI N G COM P I L E R- L EV E L B U F F E R OV E R F LOW P ROTE C TI O N 65

provided format string. If the function is used to process user-provided input, a
malicious user can supply his own format string. An attacker can use specially
crafted input to leak information from the victim program (most likely by walk-
ing the stack) or to overwrite arbitrary data. (For an introduction to format
string exploits, see [25]; for more advanced techniques, see [26] and [27].)

In the printf family of functions, data can be overwritten using the %n format
specifier. The %n specifier stores the number of bytes that printf has written so
far at the provided address. An attacker can use this feature to overwrite a
pointer (including a function pointer), a saved instruction address, an entry in
the Global Offset Table (GOT) [14], or any other value in memory that can be
changed to aid an attacker in diverting a program’s execution or elevating
privilege.

While some RISC systems have alignment requirements for writes that use the
%n specifier, Intel-based systems do not. Because of this, the %n specifier can
be used multiple times, with each write operation targeting an address just one
byte higher than the previous operation. In this case, only the least significant
byte of each count is used to construct a new value for a 32-bit word. This tech-
nique has the consequence that it will also overwrite three bytes adjacent to the
target value. This is usually not a problem for an attacker. If, for instance, an
attacker uses this method to overwrite a saved instruction pointer, the first three
bytes lower in the stack (at a higher memory address) will be corrupted. Nor-
mally, this value will be one of the arguments passed in to the current function.
If this value is dereferenced after the attacker corrupts it, the program may crash.
If, on the other hand, it is not, the attacker can cause the program to execute
arbitrary code when it exits from the current function. If this is a problem, the
attacker need only overwrite another value, such as _atexit or a GOT entry,
instead.

Attacker-provided format strings can also be used to leak information from the
currently running program. The %iii$ specifier is extremely useful in this
regard. In this specifier, iii is the number of the argument to print; for instance,
%2$08x will print the second argument on the stack in zero-padded hexadeci-
mal format. This can be used to “walk” the stack or to print arbitrary values
directly. This technique was crucial in gathering information for the return-into-
libc exploit used to defeat PaX [15]. In that particular case, the least significant
byte of the saved instruction pointer was overwritten by a buffer overflow to
cause a vulnerable function to return directly to a printf call in the middle of that
same function. In doing this, the author was able to cause his own arguments to
be provided to the printf function instead of those that were hard-coded into the
program. The author used this technique to force the program to leak the infor-
mation necessary to execute a return-into-libc exploit on a PaX protected system
with ASLR. The target function was not otherwise vulnerable to a format string
attack. The format string attack was made possible only by the buffer overflow,
which prevented the correct values from being placed on the stack before printf
was called.

A New Weakness in PointGuard

In addition to the previously discussed vulnerability to information leaking with
format strings, PointGuard is also vulnerable to buffer overflows and to data
manipulation with format strings. The claim given in the PointGuard paper [23]
is that an attacker can destroy a pointer value but cannot produce a predictable
pointer value. This is not completely true.

PointGuard is weak because pointer encryption is achieved by using a bitwise
exclusive-OR operation rather than a more complex nonlinear operation.
Because of this, any byte of the encrypted pointer that is not overwritten will

66 ; L O G I N : V O L . 3 0 , N O . 3

still decrypt correctly. This enables an attacker to make use of partially overwrit-
ing a pointer. If an attacker can find a situation in which it is advantageous to
redirect a pointer toward a location whose most significant one to three bytes are
the same as the location that the pointer originally referenced, he can, by brute
force, attempt to redirect the pointer to this new location with far less effort than
would be required to brute-force a 32-bit value.

On little-endian architectures, an attacker can use a simple buffer overflow to
overwrite the least significant bytes of a pointer value, since the least significant
bytes are stored at a lower address and thus overwritten first. Using format string
attacks, which allow considerable flexibility in the way a value is overwritten, an
attacker can bypass PointGuard on both little-endian and big-endian systems.

Consider the following code, a variation of the vulnerable “straw man” program
included in the PointGuard paper:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define ERROR -1
#define BUFSIZE 64

int goodfunc(const char *string) {
printf("%s\n", string);
return 0;

}

int main(int argc, char **argv) {
static char buf[BUFSIZE];
static int (*funcptr)(const char *str);
if(argc <= 2) {

fprintf(stderr, "Usage: %s <buf> <goodfunc arg>\n",
argv[0]);
exit(ERROR);

}
funcptr = (int (*)(const char *str))goodfunc;
memset(buf, 0, sizeof(buf));
strncpy(buf, argv[1], strlen(argv[1]));
(void)(*funcptr)(argv[2]);
return 0;

}

I compiled this code on an Athlon XP running FreeBSD 4.9. When the exe-
cutable is loaded, the goodfunc function is located at 0x080485c4 and the buf
buffer is located at 0x08049940. An attacker who loaded buf with his own exe-
cutable shellcode would only need to overwrite the two least significant bytes
of funcptr correctly in order to execute his code instead of goodfunc. Since
those two bytes are XOR-encrypted with 16 random bits, an attacker who
overwrites the two least significant bytes of funcptr will have a 1 in 65,536
chance of redirecting that pointer to the beginning of his shellcode. While this
might be difficult to accomplish remotely before the attack is noticed by a sys-
tem administrator, such an attack could be accomplished locally without any
trouble.

Obviously, this example is contrived and does not necessarily provide a realistic
memory layout for a real-life program. Instead, let us consider the layout infor-
mation (see Figure 5, below) from three real, privileged programs from FreeBSD
4.9: lpr, ftpd, and rcp. In the case of lpr, redirecting a vulnerable pointer in a
PointGuard-protected instance of the program would require an amount of
effort similar to our example, since the .text and both data sections are located
inside the same 16-bit segment. The other two programs would be more difficult
to subvert since the data sections and the .text section share only the most sig-
nificant eight bits of their addresses. An attacker would thus be required to over-

; LO G I N : J U N E 2 0 0 5 D E F E ATI N G COM P I L E R- L EV E L B U F F E R OV E R F LOW P ROTE C TI O N 67

write the lower 24 bits of a function pointer in order to redirect it to his injected
shellcode in one of these sections.

The odds of an attacker providing a 24-bit value that will correctly decrypt to
the address of his shellcode are slightly better than 1 in 17 million. The outlook
for an attacker is not quite so bleak, however. If the attacker is able to place
shellcode in more than one location or to prepend a long series of null opera-
tions (NOP) to his shellcode, he can increase his odds tremendously.

Assume that an attacker’s shellcode is only 50 bytes (a number well within the
normal range). Further, assume that he is able to place this shellcode at the end
of a one-kilobyte buffer after padding the buffer with NOPs. The attacker’s odds
increase to one in 17,000. In some situations, the attacker may be able to con-
struct an even longer series of NOPs by having access to a large character array
or by overwriting several data structures with the NOPs and shellcode without
that data being molested before the altered function pointer is dereferenced. In
highly favorable situations, an attacker might be able to guess a correct value
with only a few thousand guesses on average. Clearly, such situations do not
correspond with the argument in the PointGuard paper that an attacker cannot
meaningfully corrupt a pointer without knowledge of the PointGuard encryp-
tion key.

In general, the complexity of guessing a value that will successfully cause a
function pointer to reference NOP-padded shellcode is 2(X-ln(number of NOPs))

where X is the number of bits guessed.

On little-endian systems, the security of PointGuard can be improved slightly by
rotating a pointer value one byte to the left after the XOR encryption and rotat-
ing it back before the XOR decryption. In most situations, this would force an
attacker to overwrite the entire 32-bit value. Using format string attacks, it
would still be possible in some circumstances to overwrite only the least signifi-
cant three bytes. Still, such situations are likely to be far more rare than those in
which an attacker can corrupt a pointer with a simple buffer overflow. Unfortu-
nately, such a change is likely to at least double the current performance penalty
imposed by PointGuard.

Program .text .data .bss

/usr/bin/lpr 0x0804964c 0x0804f140 0x0804f400
/usr/libexec/ftpd 0x0804a974 0x08059ce0 0x0805a560
/bin/rcp 0x080480b8 0x08081ae0 0x080831a0

F I G U R E 5 : A C T U A L M E M O R Y L A Y O U T S F O R T H R E E
C O M M O N P R O G R A M S

A New Weakness in StackGuard

In this section, all references to StackGuard should be interpreted to mean
StackGuard with the random XOR canary [5,17].

StackGuard has a weakness that corresponds to the previously discussed vulner-
ability in PointGuard. The random XOR canary is the result of exclusive-ORing
a random canary value (generated at runtime) with the saved instruction
pointer. The result is stored on the stack after the saved instruction and frame
pointers and before the local function variables. Code in the function epilogue
exclusive-ORs the saved canary with the random value (thus canceling out the
effect of the random value) and compares the result to the saved instruction
pointer. If the two values do not match, the program exits.

Since exclusive-OR is a bitwise operation, if only some bytes of the saved
instruction pointer are modified, then only the corresponding bytes of the saved
canary value need to be modified. The bytes of the saved canary can be overwrit-
ten with any random value.

68 ; L O G I N : V O L . 3 0 , N O . 3

This weakness is more difficult to exploit than the one in PointGuard. The con-
ditions that must exist in a program’s code for exploitation to be possible are
more specific. The value used to overwrite the saved canary must be equal to the
result of exclusive-ORing the pertinent bytes of the random canary and the
attacker-supplied instruction pointer value, since a direct comparison is used in
the function epilogue to determine whether the exclusive-OR of the random
canary and the saved instruction pointer match the saved canary. It is still possi-
ble to overwrite the saved canary value with any random or fixed value, since
the random canary used by the program changes with each execution.

PointGuard offers more room for error because it does not perform a direct com-
parison; instead, PointGuard allows the pointer to be dereferenced, under the
assumption that a corrupted pointer will decrypt to a random value and most
likely reference an invalid memory region, which will cause the program to
crash. With PointGuard, an attacker can inject NOP-padded shellcode, which
allows him the opportunity to guess a value that will decrypt to any location
within the series of NOPs (or the first useful instruction in the shellcode).

If a format string overwrite attack is used to circumvent StackGuard, the attack
is fairly straightforward. The attacker uses the %n modifier to overwrite all or
part of the saved instruction pointer with a newly constructed value of his
choosing. The attacker also uses the %n modifier to overwrite the correspon-
ding bytes of the saved canary with any random or fixed value (probably fixed).

If an attacker overwrites the entire saved instruction pointer, he must also over-
write the entire saved canary. In this case, his attack has less than a 1 in 4 billion
chance of success. An attacker’s goal will be to find a situation in which he is
able to inject code at a location that shares one or two significant bytes with the
value of the original saved instruction pointer (as in the above PointGuard
attack).

In order to bypass StackGuard using traditional techniques, an attacker must
use a buffer overflow to overwrite the least significant bytes of the saved canary
value. The attacker can overwrite these bytes with any value, fixed or random.
He must also overwrite a data pointer so that it points directly at the saved
instruction pointer. This modified data pointer must later be used as the destina-
tion for a string or memory copy that uses user-supplied input. An attacker will
use the string or memory copy to point the saved instruction pointer at his
shellcode (or to perform a return-into-libc attack). The affected data pointer
must point directly at the saved instruction pointer; there is no margin for error
as when attempting to point at NOP-padded shellcode.

Assuming that an attacker is successful in overwriting a pointer value and that
he uses the corrupted pointer to correctly overwrite the saved instruction point-
er, this attack will fail in each instance that the saved canary value is not equal to
the exclusive-OR of the random canary (generated at each execution of the pro-
gram) and the attacker-supplied return address. Since the random canary chang-
es with each execution of the program, an attacker can supply any fixed or ran-
dom value to overwrite the least significant bytes of the saved canary and will
eventually succeed.

Consider the following source code:

int main(int argc, char **argv) {
char *ptr;
char buf[256];
...
strcpy(buf, argv[1]);
do_some_parsing(buf);
strcpy(ptr, buf);

}

; LO G I N : J U N E 2 0 0 5 D E F E ATI N G COM P I L E R- L EV E L B U F F E R OV E R F LOW P ROTE C TI O N 69

This program is vulnerable to a standard buffer overflow attack; an attacker can
provide input that will be copied beyond the boundaries of the buf array, poten-
tially overwriting the saved frame or instruction pointers that are stored on the
stack between the function arguments and the local variables.

StackGuard will prevent a generic buffer overflow attack against this code. If an
attacker attempts a standard buffer overflow attack against the saved instruction
pointer, the canary value will be overwritten, StackGuard will detect the modifi-
cation in the function epilogue, and the attack will fail.

In the versions of StackGuard that use a random or terminator canary, the previ-
ously published attack [17] applies and ptr can be overwritten instead. Instead
of attacking the saved instruction pointer, an attacker can use a stack overflow
to modify ptr so that it points at the return instruction pointer. The second
strcpy operation will then overwrite the instruction pointer with the contents of
buf without modifying the canary.

Although the random XOR canary prevents a direct application of this attack,
the attack remains possible with some modifications. An attacker can still use
ptr to overwrite part or all of the saved instruction pointer. In addition, he will
have to overwrite the bytes of the canary that correspond to the bytes of the
instruction pointer that he modifies. If he modifies every byte of the saved
instruction pointer, his chances of success are slim, because he will have to over-
write the entire canary and will have less than a 1 in 4 billion chance that he will
overwrite the canary with the correct value.

To improve his chances, the attacker will have to inject code into the .bss or
.data memory regions, which often share the one or two most significant bytes
of their addresses with the .text section. Alternatively, the attacker can attempt a
return-into-PLT attack, since the .plt section often shares the most significant
bytes of its address with the .text section. By using a return-into-PLT attack or
injecting code in the .bss or .data sections, an attacker can redirect control of
the program by only partially overwriting the saved instruction pointer and,
consequently, only partially overwriting the saved canary.

This attack is an extension of the technique used to bypass StackGuard [17]. In
the Phrack article, a string pointer was overwritten using a simple stack over-
flow. The pointer was later used as a destination pointer for a string copy which
overwrote the saved instruction pointer with the location of either attacker-
supplied shellcode or the address of a libc function (for a return-into-libc
attack). The attack in this paper carries the restrictions that the saved instruc-
tion pointer should only be partially overwritten in order to ensure a reasonable
chance of success and that corresponding bytes of the saved canary value must
also be overwritten.

Conclusion

The attack against StackGuard is easy to ameliorate since it depends on exact
knowledge of the location of the saved instruction pointer on the stack. Run-
time and load-time stack randomization [11] greatly increase the difficulty of
this attack. Load-time stack randomization can be implemented with only a few
lines of code on most operating systems [28]. The difficulty of this attack is mul-
tiplied by the amount of stack randomization applied. Thus, if an attacker con-
structs an exploit that has a 1 in 16 million chance of success (he modified three
bytes) and the attack is used against a system that uses 10 bytes of stack ran-
domization, the chance of success drops to less than 1 in 16 billion. PaX uses 24
bits of stack randomization; the code published in ;login: uses 18. Load-time
stack randomization carries a negligible performance penalty at load-time and
does not affect runtime performance at all.

70 ; L O G I N : V O L . 3 0 , N O . 3

The attack against StackGuard is not possible when PointGuard is used. Under
most circumstances, this attack would not be possible if StackGuard used local
variable reordering as in ProPolice/SSP.

The use of buffer overflows against PointGuard is possible only under specific
circumstances. SSP’s local variable reordering has no runtime performance
penalty and would make these circumstances extremely rare. FormatGuard can
likewise protect PointGuard against most format string attacks [29]. Unfortu-
nately, FormatGuard protects only calls to the C library. Programs such as
wu-ftpd, which use an alternative implementation of printf, would not be
protected. In some circumstances, the combination of SSP, PointGuard, and
FormatGuard would still be vulnerable. Replacing SSP with StackGuard makes
the combination even weaker.

The non-executable restrictions imposed by PaX and W^X would make the
attack against PointGuard difficult because an attacker would not be able to exe-
cute code injected into the .data or .bss sections. The various memory random-
ization features of ASLR would make it even more difficult for an attacker to
meaningfully redirect a pointer value.

The use of compiler-level stack protection, as in StackGuard and SSP, along with
PaX, can defeat the attacks that have been published for defeating PaX alone.
Some more advanced variations on these attacks may be possible, but the
pointer protection offered by SSP’s local variable reordering is likely to prevent
most of them. Even without the benefit of StackGuard or SSP, the attacks against
PaX are more difficult than the above attack against PointGuard.

Pointer encryption, canary protection methods, and execution restriction mech-
anisms have all been shown to be vulnerable to various attacks. The risk of a
successful attack against these systems can be reduced if a host intrusion detec-
tion mechanism such as Segvguard [13] is used to prevent a program from exe-
cuting after some number of crashes. A mechanism such as Segvguard is neces-
sary to complement PointGuard, PaX, W^X, or any address space randomization.

R E F E R E N C E S

[1] Eugene Spafford, “The Internet Worm Program: Analysis,” Computer Communications
Review (January 1989).

[2] Mudge, “How to Write Buffer Overflows” (October 1995)
http://www.insecure.org/stf/mudge_buffer_overflow_tutorial.html.

[3] Aleph One, “Smashing the Stack for Fun and Profit,” Phrack Magazine 49 (November
1996), http://www.phrack.org/49/P49-14.

[4] Crispin Cowan, personal communication, January 2004.

[5] Crispin Cowan and Perry Wagle, “StackGuard: Simple Stack Smash Protection for
GCC,” Proceedings of the GCC Developers Summit (May 2003).

[6] Crispin Cowan et al., “Buffer Overflows: Attacks and Defenses for the Vulnerability of
the Decade,” DARPA Information Survivability Conference and Expo (DISCEX), January
2000.

[7] See http://engineering.purdue.edu/ResearchGroups/SmashGuard/.

[8] Solar Designer, “Non-Executable User Stack,” http://www.openwall.com/linux/.

[9] Solar Designer, “Getting Around Non-Executable Stack (and Fix).” http://www
.securityfocus.com/archive/1/7480.

[10] Rafal Wojtczuk, “Defeating Solar Designer’s Non-Executable Stack Patch” (January
1998), http://www.securityfocus.com/archive/1/8470.

[11] Monica Chew and Dawn Song, “Mitigating Buffer Overflows by Operating System
Randomization,” Tech Report CMU-CS-02-197 (December 2002).

[12] See http://pax.grsecurity.net/docs/index.html.

[13] Nergal, “The Advanced return-into-lib(c) Exploits: PaX Case Study,” Phrack
Magazine 58 (December 2001), http://www.phrack.org/phrack/58/p58-0x04.

; LO G I N : J U N E 2 0 0 5 D E F E ATI N G COM P I L E R- L EV E L B U F F E R OV E R F LOW P ROTE C TI O N 71

[14] John R. Levine, Linkers and Loaders (San Diego: Academic Press, 2000).

[15] Anonymous, “Bypassing PaX ASLR Protection,” Phrack Magazine 59 (July 2002),
http://www.prhack.org/phrack/59/p59-0x09.

[16] Crispin Cowan et al., “StackGuard: Automatic Adaptive Detection and Prevention of
Buffer-Overflow Attacks,” 7th USENIX Security Symposium (January 1998), pp. 63–77.

[17] Bulba and Kil3r, “Bypassing StackGuard and StackShield,” Phrack Magazine 56 (May
2000), http://www.phrack.org/phrack/56/p56-0x05.

[18] Hiroaki Etoh, “ProPolice: GCC Extension for Protecting Applications from Stack-
Smashing Attacks,” IBM (April 2003), http://www.trl.ibm.com/projects/security/ssp/.

[19] Matt Conover, “w00w00 on Heap Overflows” (January 1999),
http://www.w00w00.org/files/articles/heaptut.txt.

[20] Michel Kaempf, “Vudo Malloc Tricks,” Phrack Magazine 57 (August 2001),
http://www.phrack.org/phrack/57/p57-0x0b.

[21] Anonymous, “Once upon a free(),” Phrack Magazine 57 (August 2001),
http://www.phrack.org/phrack/57/p57-0x0c.

[22] Gerardo Richarte, “Bypassing the StackShield and StackGuard Protection” (April
2002), http://www1.corest.com/corelabs/papers/index.php.

[23] Crispin Cowan et al., “PointGuard: Protecting Pointers from Buffer Overflow Vulner-
abilities,” 12th USENIX Security Symposium (August 2003), pp. 91–104.

[24] Crispin Cowan, “Re: PointGuard: It’s not the Size of the Buffer, it’s the Address.”
http://www.securityfocus.com/archive/1/333988.

[25] Pascal Bouchareine, “Format String Vulnerability” (July 2000),
http://www.hert.org/papers/format.html.

[26] scut and Team Teso, “Exploiting Format String Vulnerabilities” (September 2001),
http://www.team-teso.net/articles/formatstring/.

[27] gera and riq, “Advances in Format String Exploitation,” Phrack Magazine 59 (July
2002), http://www.phrack.org/phrack/59/p59-0x12.

[28] Steven Alexander, “Improving Security with Homebrew System Modifications,”
;login:, vol. 29, no. 6 (December 2004), pp. 26–32.

[29] Crispin Cowan et al., “FormatGuard: Automatic Protection from printf Format
String Vulnerabilities,” 10th USENIX Security Symposium (August 2001).

musings
R I K F A R R O W

musings
Rik Farrow provides UNIX and Internet security con-
sulting and training. He is the author of UNIX System
Security and System Administrator’s Guide to System V,
and editor of the SAGE Short Topics in System
Administration series.

rik@usenix.org

I T ’ S A B L U S T E R Y S P R I N G D AY A S I
write this column. I’ve been reading a great
new book about Internet Denial of Service
(see details in [1]), and I have to confess I am
depressed by what I am reading. The outlook
just isn’t very good, for so many reasons.

To top things off, some people in the German branch
of the Honeynet Project have published a new paper
about their experience collecting bots [2]. Their paper
describes some of the bots captured, as well as infor-
mation about the use of IRC for command and control
(C&C). The sizes of botnets uncovered were not that
enormous (well, just tens of thousands in some cases),
but as the paper points out, a botnet of 1000 agents,
with an average Internet connection speed of 128Kbps,
can easily swamp a target with a 100Mbps connection
to the Internet.

I haven’t really studied the newer distributed denial of
service (DDoS) agent software much in recent years,
not since the beginning of the century. Back in late
1999, people were worried about big DDoS attacks
being used to take out large parts of the Internet.
When New Year’s Eve passed without incident, people
breathed a sigh of relief. But that relief was short-lived,
as heavily publicized attacks on commercial Web sites
in February 2000 showed.

The early DDoS tools, like Trinoo and Tribe Flood
Network, have been replaced by newer, much more
flexible tools. Chief among these are descendants of
Agobot [3], a bot written in excellent C++ that can be
compiled for either Windows or Linux. Agobot uses
IRC channels for communications, unlike the earlier
DDoS agents that relied on receiving commands from
handlers. The commands used with older DDoS agents
had easily recognizable signatures that were soon
included in IDS software. Researchers also wrote tools
that could probe for DDoS agents. But the use of IRC
implies that any network that permits outgoing IRC
connections will also permit DDoS agents to receive
commands and report to the person running the
botnet.

I do need to step back for a moment and define my
terms. In the world of Internet Relay Chat (IRC), bots,
short for robots, were originally network programs
that would stay connected to an IRC server and thus
stay active in a particular channel. The bot would per-
form services for its owner—for example, bestowing
special privileges that the owner would lose if he left
the channel. Bots run on systems other than the bot
owner’s, so that a denial of service attack against the
bot owner’s system would leave the bot still running
[4].

72 ; L O G I N : V O L . 3 0 , N O . 3

; LO G I N : J U N E 2 0 0 5 M U S I N G S 73

Over time, bots gained additional abilities. Those who
frequent IRC channels like #hack often fight over con-
trol of the channel, and one proven method of knock-
ing someone out of a channel is to use DDoS attacks. A
person who can amass a large network of bots (a bot-
net) can use this network to flood any adversary’s
Internet connection at will.

But why stop there? The Honeynet paper goes on to
describe the many other features of advanced bots.
They include the ability to execute any command,
update their own software, hide themselves, sniff the
network, log keystrokes, launch worms (like the Witty
worm), and relay spam. Bots can be used to steal iden-
tity information, as well as license information for
games and software (Agobot is big on this). Agobot,
when running on Windows systems, also attempts to
disable firewall and anti-virus software.

Botnets have been used for other financial purposes
than simple identity theft. People have used them as a
blackmail threat, one that can easily be demonstrated
by launching a short flood against the target. Some bot-
net owners will hire out their botnets for DDoS attacks,
or to spammers for relaying email through the use of
SOCKS (the proxy server by David Koblas announced
during the 1992 USENIX Security Symposium).

The German Honeynet Project paper collected infor-
mation about bots by setting up several GenII [5] hon-
eynets with Windows victims. They had decided on
Windows systems as targets based on the amount of
scanning detected for Windows-specific services. In
their paper, the authors claim that Windows XP (SP1)
and Windows 2000 were, by far, the most popular
hosts for bots, followed by other Windows versions.
They would collect software installed on the honeypot
and reinstall the OS each day. On average, the Win-
dows box would be owned in 10 minutes. In one in-
stance, a box was compromised within three seconds
after being connected to the network.

The group later designed a special program,
mwcollect2, that simulated vulnerabilities and would
download malware when commanded to do so by the
exploit. This tool made it much easier to collect bots
and other malware.

Over four months of research, the German Honeynet
group tracked over 100 botnets that used IRC for
C&C. Through the use of IRC JOIN messages, they
saw 226,585 unique IP addresses of bots connecting to
the IRC channels the group was tracking. This number
is deceptive, in that there is no way of knowing if the
bot’s host was assigned a different IP address over time
by DHCP. Also, many of the IRC servers used, espe-
cially by the more sophisticated botnet owners, were
hacked so that they would not provide JOIN messages
or accept commands that could list the IP addresses of

participants. But the researchers estimate that at least
one million hosts have bots installed.

Defenses

The Honeynet Project paper discusses the attackers.
The Internet DoS book talks about attack tools, but
focuses on defensive techniques. Imagine that you
want to defend your site against DDoS attacks? What
will you do if the attacker wants to send, on average,
1Gbps of reasonable seeming traffic at your network.
Remember that this volume requires 10,000 bots and
does not appear to be impossible for some attackers.
The German researchers monitored one botnet with
50,000 hosts.

If you look at the information about the duration of
DDoS attacks [2,6], most, but not all, attacks are short-
lived. Most bots and agents accept time periods meas-
ured in seconds, with many attacks lasting only min-
utes. But some attacks can go on for weeks. I find this
distressing to consider.

Chapter 5 of the DoS book includes an excellent dis-
cussion of where to locate DDoS defenses. While it
would be ideal to filter out attacks at the source, for
example, you will quickly realize, as the authors point
out, that you do not control ISPs. If edge networks and
ISPs would, at the very minimum, enforce ingress fil-
tering by permitting only non-spoofed source
addresses from their clients’ systems, we could end
most source address spoofing. Ingress filtering is one of
the simplest technologies, one embodied in an RFC
back in 1998, but generally not implemented even
today.

Stopping attacks that don’t use spoofed source
addresses is much harder, even at the source. If the
botnet owner decides to launch an attack that uses spi-
dering of a Web site, just having thousands of clients
attempting to walk your Web directories will, in itself,
be a devastating attack (for most servers). And this
attack uses legitimate appearing traffic, not something
that an ISP would be able to filter out, if the ISP even
noticed.

The core routers appear to be a logical place to stop
floods. And while there is some research into this, as
well as some working examples, the Internet is a loose
federation of networks, and the companies that control
the core are competitors. Expecting these companies to
cooperate is expecting a lot. You might think that it
would be in the interest of the owners of core routers
to reduce floods, but the normal traffic seen by their
routers is a flood, and the noise of extra traffic gets
buried in the background.

That leaves defenses close to the target—your own site.
Like just about everything in security, it comes down

74 ; L O G I N : V O L . 3 0 , N O . 3

to you protecting your own site. The authors suggest
many things, including looking for network choke-
points, having excessive bandwidth, adding more
servers when the load is heavy, and installing patches
(some DoS relies on buggy software). But you should
also be prepared for a DoS attack. You need to be able
to monitor and analyze network traffic at the edge of
your networks. Monitoring implies that you have prac-
ticed doing this and can easily capture this information
and know how to interpret it.

With this information in hand, you can communicate
your plight accurately to your upstream ISP, who
should be willing to install temporary filters for you.
The ISP might even want to communicate with its own
providers, pushing back the attack even further.

I will not attempt to duplicate the information in the
Internet DoS book here. It has sections appropriate for
managers, as well as more technical chapters. I was
pleased with the clear and logical prose, even as I was
often depressed by the logical implications.

The Internet, as it is designed, accepts any traffic, as
long as it complies with minimum standards (a func-
tional IP header). It is fruitless to hope that there are
any easy solutions in sight. And that certainly includes
solutions that suggest revising IP to defeat DDoS. For
the most part, the Internet just works. DDoS and spam
are certainly enormous nuisances, but not ones that
will by themselves destroy the greatest network ever.

But they sure do make me wish that we had better
tools for combating these attacks.

R E F E R E N C E S

[1] Jelena Mirkovic, Sven Dietrich, David Dittrich, and
Peter Reiher, Internet Denial of Service (Prentice Hall,
2005), 372 pp.

[2] Honeynet Project, “Know Your Enemy: Tracking
Botnets,” http://www.honeynet.org/papers/bots/.

[3] I picked out one variant of Agobot. There are many
others: http://www.sophos.com/virusinfo/analyses/
w32agobotli.html.

[4] David Brumley, “Tracking Hackers on IRC,” ;login:,
http://www.usenix.org/publications/login/1999-11/
features/hackers.html.

[5] Honeynet Project, “Know Your Enemy: GenII
Honeynets,” http://www.honeynet.org/papers/
gen2/index.html.

[6] David Moore, Geoffrey Voelker, and Stefan Savage,
“Inferring Internet Denial of Service Activity,”
http://www.caida.org/outreach/papers/2001/
BackScatter/.

Æ L E E N F R I S C H

the bookworm
Æleen Frisch is a system adminis-
trator and writer living in
Connecticut (www.aeleen.com).

aeleen@usenix.org

B O O KS R EV I E W E D I N TH I S CO LU M N

A P P L E I R E P L I C A C R E ATI O N : BAC K
TO TH E GA R AG E

Tom Owad
Syngress, 2005, 1-931836-40-X, 359
pp. + CD.

TH E A RT O F COM P UTE R V I R U S
R E S E A RC H A N D D E F E N S E

Peter Szor
Symantec Press/Addison-Wesley, 2005,
0-321-30454-3, 741 pp.

C # P R E C I S E LY

Peter Sestoft and Henrik I. Hansen
The MIT Press, 2004, 0-262-69317-8,
214 pp.

C L A S S I C S H E L L S C R I PTI N G

Arnold Robbins and Nelson H.F.
Beebe
O’Reilly, 2005, 0-596-00595-4, 560 pp.

H I B E R N ATE : A J 2 E E D EV E LO P E R ’ S
G U I D E

Will Iverson
Addison-Wesley, 2005, 0-321-26819-9,
371 pp.

JA K A RTA STR UTS CO O K B O O K

Bill Siggelkow
O’Reilly, 2005, 0-596-00771-X, 533 pp.

J OTD : TH E WO R L D ’ S G R E ATE ST
COM P UTE R J O K E B O O K

Hershel Remer (“Rabbs”)
Rabbs Publishing (rabbs.com),
2004, 0-615-12449-6, 104 pp.

L I N UX D EV I C E D R I V E R S, 3 R D E D.

Jonathan Corbet, Alessandro
Rubini, and Greg Kroah-Hartman
O’Reilly, 2005, 0-596-00590-3, 633 pp.

L I N UX N E T WO R K A DM I N I STR ATO R ’ S
G U I D E , 3 R D E D.

Tony Bautts, Terry Dawson, and
Gregor N. Purdy
O’Reilly, 2005, 0-596-00548-2, 360 pp.

L I N UX Q U I C K F I X N OTE B O O K

Peter Harrison
Prentice Hall PTR, 2005,
0-13-186150-6, 696 pp.

L I N UX S E RV E R S E C U R IT Y, 2 N D E D.

Michael D. Bauer
O’Reilly, 2005, 0-596-00670-5, 539 pp.

F E ATU R E D TITL E : TH E A RT O F
COM P UTE R V I R U S R E S E A R C H
A N D D E F E N S E X X X X X X X X X X X

The Art of Computer Virus Research
and Defense, by Peter Szor, is a
meticulously researched treatment
of viruses, worms, and other types
of malicious self-propagating pro-
grams, both as entities in them-
selves and in the context of admin-
istering real-world computer
systems. The book treats its sub-
jects at an excellent level of detail.

The book’s first half provides a very
up-to-date description of the ways
that viruses and worms function. It
includes a thorough history of the
general topic as well as a study of
attacker strategies and their evolu-
tion over time. The second half of
the book focuses on responses to
them. It covers both infection pre-
vention and post-attack disinfec-
tion, including postmortem analy-
sis of the code (in terms of how it
the code operates and the obfusca-
tion techniques that it employs).

This book is very well written and
is interesting to read. Like all good
security works, it manages to get
across how the bad guys think and
operate in ways that are useful for
the good guys but without provid-
ing any help to black hat wannabes.
This book will be very useful for
system administrators and other
computer security professionals, as
well as computer scientists inter-
ested in this area of research. It also
contains information of interest to
programmers concerned about
writing secure code.

F O U R P L A N E TS I N TH E X X X
P RO G R A M M I N G U N I V E R S E

This month brings us four pro-
gramming titles, each focusing on a
specific, specialized programming
context.

Classic Shell Scripting, by Arnold
Robbins and Nelson H.F. Beebe, is
an excellent book in the classic tra-
dition of O’Reilly & Associates. It is
an accurate, comprehensive treat-
ment of writing shell scripts using
modern Bourne-style shells. The

; LO G I N : J U N E 2 0 0 5 TH E B O O KWO R M 75

76 ; L O G I N : V O L . 3 0 , N O . 3

authors explicitly model their work
after the Kerninghan and Plauger
classic Software Tools volumes, and
one could obviously not ask for a
better approach. The book also pro-
vides an excellent introduction/ref-
erence for regular expressions, sed,
awk, and many other standard
UNIX tools. Although the authors
occasionally go a bit too far—they
truly believe that the shell is the
best solution for virtually any pro-
gramming problem—this book is
nevertheless the definitive work on
shell scripting.

Bill Siggelkow’s Jakarta Struts Cook-
book provides useful information
and a plethora of helpful examples
for programmers creating Web
applications with Java. After some
preliminary information about
installing and configuring Struts,
the book contains a well chosen
and organized collection of code
excerpts. The examples are struc-
tured as problems (goals) and solu-
tions, a technique which results in
well-planned examples (rather than
merely a somewhat random collec-
tion of them). The solutions them-
selves usually cover not only the
specific task at hand but also sev-
eral variations. All in all, this is one
of the very best volumes in the
O’Reilly Cookbook series.

C# Precisely, by Peter Sestoft and
Henrik I. Hansen, is a reference for
the new version 2.0 of C#
(Microsoft’s Java-like object-ori-
ented programming language,
designed for use with its .NET
Framework). The book focuses on
the programming language itself,
choosing to ignore most of the
.NET class libraries. Language fea-
tures are discussed on lefthand
pages, with related examples on the
corresponding righthand pages.
The book will be found to be both
readable and useful for program-
mers who use C#.

Hibernate: A J2EE Developer’s Guide,
by Will Iverson, provides compre-
hensive coverage of Hibernate, a
widely used package designed to
automate the process of mapping

relational database structures to
ordinary Java objects (typically sav-
ing a lot of programming effort and
development time over using
JDBC). Unlike other works on
Hibernate, this book is organized
around building a real application
from the ground up. It begins with
discussions of creating schema and
mappings, the essential infrastruc-
ture required by every application.
Later chapters cover the resulting
Java classes, queries within the
Hibernate framework, transactions,
application performance, and so
on. I find this organizational struc-
ture to be both logical and natural
if the ultimate goal is to create real-
world Java applications.

A D I F F E R E NT A P P ROAC H TO X X X
L I N UX SYSTE M A DM I N I STR ATI O N

The Linux Quick Fix Notebook, by
Peter Harrison, takes an unusual
approach to Linux system adminis-
tration. Its audience is system
administrators who want to config-
ure a Linux system for use as a Web
server (although much of its dis-
cussion would also apply to a sys-
tem designed to be a file server). It
is designed to be useful to both
Linux users moving to this particu-
lar administration task and Win-
dows Web server administrators
who are moving to Linux. The
book uses the command line for
every configuration task in order to
sidestep the Linux distribution
quagmire, a clever tactic in my
opinion. The work is procedure-
oriented, avoiding most conceptual
discussions in favor of focusing on
how to get specific tasks done.
Nevertheless, the book provides
sufficient and accurate information
which will enable members of its
target audience to successfully con-
figure a Linux Web server.

N E W E D ITI O N S O F L I N UX C L A S S I C S

New editions of several Linux ref-
erences are now available. The third
edition of Linux Device Drivers, by
Jonathan Corbet, Alessandro
Rubini, and Greg Kroah-Hartman,
updates that work for the 2.6.10

kernel. The book remains the
definitive treatment of this topic,
and it provides an excellent means
for an experienced programmer to
write a device driver for the first
time.

The third edition of the Linux Net-
work Administrator’s Guide, by Tony
Bautts, Terry Dawson, and Gregor
N. Purdy, is an extensive rewrite.
The new version removes discus-
sions of outdated technologies
(e.g., IPX, uucp, Internet news-
groups) and adds brief overviews of
Apache, Samba, LDAP, IMAP, and
wireless networking. Existing dis-
cussions have also been updated to
cover IPv6 and iptables (instead of
earlier tools, in the latter case).

The second edition of Linux Server
Security, by Michael D. Bauer, is a
revision of Building Secure Servers
with Linux and is probably the least
extensive revision here. It adds cov-
erage of LDAP and databases to the
previous work.

WAY, WAY O F F TH E B E ATE N TR AC K

I’ll close this column with a brief
look at two quite eccentric works.
JOTD: The World’s Greatest Com-
puter Joke Book, by Hershel Remer
(a.k.a. UnixRabbi, a.k.a. Rabbs),
does not live up to the claim in its
subtitle, but it did provide me with
a fair amount of mild humor. I sus-
pect that readers with a greater tol-
erance for gender and ethnic
stereotype-based humor and
Microsoft bashing will find it quite
amusing.

I have a friend who recently came
across an IBM mainframe emulator
on the Internet and thus had an
urgent need for books on JCL (of
which there are, unbelievably, some
actually still in print). If that seems
cool rather than bizarre to you,
then Tom Owad’s Apple I Replica
Creation: Back to the Garage may be
of interest. The book takes you
through the process of building an
Apple I replica and then program-
ming it. It comes with a copy of the
McCAD EDS-SE400 integrated
design software. Happy building.

USENIX
notes

U S E N IX BO A RD O F DI R E C TO R S

Communicate directly with the
USENIX Board of Directors by
writing to board@usenix.org.

P R E S I D E NT

Michael B. Jones,
mike@usenix.org

V I C E P R E S I D E NT

Clem Cole,
clem@usenix.org

S E C R E TA RY

Alva Couch,
alva@usenix.org

TR E A S UR E R

Theodore Ts’o,
ted@usenix.org

D I R E C TO R S

Matt Blaze,
matt@usenix.org

Jon “maddog” Hall,
maddog@usenix.org

Geoff Halprin,
geoff@usenix.org

Marshall Kirk McKusick,
kirk@usenix.org

E XE C U TIV E D I R E CTO R

Ellie Young,
ellie@usenix.org

VA L E , R O B, ATQ U E AV E , R I K

Ellie Young
USENIX Executive Director

In the March/April 1992 issue of
this magazine (then still a newslet-
ter), an announcement appeared
on page 3 entitled “Welcome to the
New Improved ;login:.” The piece,
signed “Rob,” marked the begin-
ning of ;login: as we know it
today—conference reports, feature
articles, “how-to’s,” and an
expanded book review section.
Since that day, editor Rob Kolstad,
seeking out and working with con-
tributors, has continually
improved ;login:’s quality and inter-
est for you, the membership.

Now it is time for another change.
Beginning with the August issue,
Rik Farrow is taking over the
responsibility so well carried out
by Rob. Kolstad transformed ;login:
into a magazine that is now con-
sidered by the membership to be
one of the most valuable benefits
that USENIX provides. We are pro-
foundly grateful to him for his
hard work, goodwill, and effort
over the 15 years of his tenure. Rob
is not going away: he continues to
be our executive director of SAGE,
advisor to LISA conference organ-
izers, and typesetter of the pro-
ceedings for LISA, and to run the
USENIX-sponsored high school
Computing Olympiad, to host the
game shows at our events, and
more.

We have been fortunate in having
Rob serve for so many years as the
prime mover of ;login:. We are
doubly fortunate that he is still
engaged in the USENIX enterprise.

Rik Farrow, as many already know,
has long been involved in ;login:,
both as the author of a regular col-
umn, “Musings,” and, since 1996,
as the editor responsible for the
annual special issue on Security.
Rik has considerable experience as
an editor, both as editor of the
SAGE Short Topics series and as
technical editor of UNIXWorld

U S E N I X M E M B ER B E NE F I T S

Members of the USENIX Associa-
tion receive the following benefits:

F R E E S U B S C R I P T I O N to ; l o g i n :, the Associ-
a t i o n ’s magazine, published six times
a year, featuring technical art i c l e s ,
system administration articles, tips
and techniques, practical columns on
such topics as security, Perl, Java, and
operating systems, book reviews, and
summaries of sessions at USENIX
c o n f e re n c e s .

A C C E S S T O ; L O G I N : online from October
1997 to this month:
w w w. u s e n i x . o rg / p u b l i c a t i o n s / l o g i n / .

A C C E S S T O P A P E R S f rom USENIX c o n f e r-
ences online:
w w w. u s e n i x . o rg / p u b l i c a t i o n s /
l i b r a ry / p ro c e e d i n g s /

T H E R I G H T T O V O T E on matters aff e c t i n g
the Association, its bylaws, and elec-
tion of its directors and offic e r s .

D I S C O U N T S on registration fees for all
USENIX confere n c e s .

D I S C O U N T S on the purchase of proceed-
ings and CD-ROMs from USENIX
conferences.

S P E C I A L D I S C O U N T S on a variety of pro d-
ucts, books, software, and periodi-
cals. For details, see
w w w. u s e n i x . o rg /m e m b e r s h i p
/ s p e c i a l d i s c . h t m l .

F O R M O R E I N F O R M A T I O N re g a rd i n g
membership or benefits, please see
w w w. u s e n i x . o rg/membership/
or contact offic e @ u s e n i x . o rg .
Phone: 510-528-8649

; LO G I N : J U N E 20 05 U S E N I X N OT E S 77

S UM MA RY O F U S EN IX BO A RD O F I
D I R E CTO RS M E ETI N G S , D E C E M BE R
2 0 0 4 – A P R I L 2 0 05 X X X X X X X X X X X I

Tara Mulligan
USENIX Member Services Manager

M E M B E R S H I P
The Board voted to increase Insti-
tutional member benefits as fol-
lows:

Educational: Will receive up to 2
additional subscriptions to ;login:.

Corporate: Will receive up to 4
additional subscriptions to ;login:;
will be provided with five (5)
member-priced conference regis-
trations during the membership
term; will receive multiple-
employee discount registrations to
allow more staff to attend USENIX
conferences; and will be listed on a
page linked from our Membership
portal page during the member-
ship term.

Supporting: Will receive up to 4
additional subscriptions to;login:.

The new benefits will be imple-
mented over the next few months.
If you are interested in upgrading
your account or in learning more
about our classes of membership,
please see www.usenix.org/mem-
bership or contact us at member-
ship@usenix.org.

CO N F E RE N C E S
The USENIX Annual Technical
Conference will be moved back
into the early summer timeframe
in 2006. It will also be reformatted
to address current issues in
advanced computing systems.
Please check your USENIX news
email messages and conference

announcements for further devel-
opments.

The Board agreed to be a sponsor
of CodeCon 2005, which was held
in San Francisco in February.

USENIX will make a $20,000
donation to Stichting SANE for the
SANE 2006 conference and will
offer a guarantee in the event that
there is a deficit.

COM M IT TE E S
The Board will create a subcom-
mittee chaired by Matt Blaze to
look into fraudulent/dual paper
submissions to conferences.

N EX T ME E T I N G
The next regular meeting of the
Board of Directors will be held on
Tuesday, August 2, 2005, at the
USENIX Security Symposium in
Baltimore, MD.

from 1989 to 1994, and as a writer
and teacher on various security
topics.

It is once again our good fortune
that Rik is willing to take the helm
at ;login:. We look forward to his
long and successful tenure!

78 ; L O G I N : V O L . 3 0 , N O . 3

Dr. Michael Stonebraker has been
a leading database, operating sys-
tems, and expert systems designer,
both as an academic and as an
entrepreneur, for over thirty years.

He is well known for his work in
developing both the INGRES and
POSTGRES database systems
under a freely distributable BSD
license, then going on to form

companies (Ingres Corporation
and Illustra Information Technolo-
gies, Inc.) to market them as com-
mercial products. He also initiated
the Mariposa project, which
became the basis of another com-
pany called Cohera, later sold to
PeopleSoft. All three of these proj-
ects were developed at the Univer-
sity of California, Berkeley, where
Dr. Stonebraker served as a profes-
sor of computer science for 25
years.

Currently Dr. Stonebraker is an
adjunct professor of computer sci-
ence at M.I.T., where he has
helped build a stream processing
engine, Aurora. In 2003 he
founded StreamBase Systems to
market this technology, with him-
self as CTO.

He has authored and co-authored
scores of research papers on data-
base technology, operating systems
design, and expert systems. He has
been active in the ACM Special
Interest Group on Management of
Data (SIGMOD) both as a member
and a leader.

He has a B.S. from Princeton
(1965) and an M.S. (1967) and a

 (1971) from the UniversityPh.D.
of Michigan.

Dr. Stonebraker has also received
several other awards, including the
IEEE John von Neumann Medal in
2005, the ACM Software System
Award in 1988, and the ACM SIG-
MOD Innovations Award in 1994.
He was elected to the National
Academy of Engineering in 1998.

U S E N IX STU G (SO FT WA R E
TO O LS U S E R G R O U P) AWA R D
W I N N E R S 200 5: MAT TH I AS
E T T R I C H A N D M IG U EL D E
I C A Z A F OR K DE A N D G N OM E

The STUG award recognizes sig-
nificant contributions to the com-
munity that reflect the spirit and
character demonstrated by those
who came together in the Software
Tools User Group (STUG). Recipi-
ents of the annual STUG award

U S E N IX L I F E TIM E A C H I EV E -
M E N T (F L AM E) AWA R D
WI N N E R 2 005 : M I C H A E L
STO N E BR A K E R

Board President Michael B. Jones
presenting the Flame Award

A N N UA L AWA R D S

conspicuously exhibit a contribu-
tion to the reusable code-base avail-
able to all and/or the provision of a
significant enabling technology to
users in a widely available form.
The UNIX Command Line User
Interface (CLI), while widely rec-
ognized as being efficient, has often
been attacked by non-UNIX users
as not user-friendly. In response,
many GUIs have been added to
UNIX over the years, but most were
generally considered inferior to
non-UNIX GUIs.

In October of 1996 and August of
1997, two projects were started to
produce desktops that were easy to
use, adhered to traditional UNIX
philosophies, and gave access to all
of the underlying features of the
CLI.

While these desktops competed
with each other, they also lent
strength to each other and have
now produced a range of applica-
tions that we collectively call KDE
and GNOME. These applications
have eased implementations of the
UNIX operating system in the non-
technical marketplace. Most impor-
tant, by embracing the concepts of
free and open source software,
these two desktop projects offered
freely distributed code, which
allowed any distribution or soft-
ware developer to utilize these
graphical features.

The USENIX Association would
like to recognize both of these
groups for creating a very portable
set of libraries, tools, and applica-
tions.

A KDE mascot goes to GNOME

; LO G I N : J U N E 20 05 U S E N I X N OT E S 79

Y EA R S A N D Y EA R S AG O
Peter H. Salus
peter@usenix.org

This issue of ;login: is “volume 30,
number 3.” But, of course, it isn’t.

The purple ditto’ed sheets created
by Mel Ferentz in July 1975 were
headed “UNIX NEWS.” It was
years later, following a threatening
letter from a lawyer at Western
Electric, that the name of the
newsletter was changed.

My copy of “UNIX NEWS,” Num-
ber 1, is dated July 25, 1975, and
contains the notation “Circula-
tion 37.”

Dennis Ritchie and Ken Thompson
delivered the first UNIX paper in
October 1973. Lou Katz and Reidar
Bornholdt convened the first
“UNIX Users” meeting on May 15,
1974. The UNIX paper appeared in
the July 1974 CACM, and Mel sent
notices to 37 institutions of the
arrival of V6.

And a meeting, organized by Lou,
Reidar, and Mel and hosted at
CUNY by Ira Fuchs, was held on
June 18. Mel described it in that
first newsletter:

“The meeting on June 18 at City
University of New York was
attended by over 40 people from 20
institutions. Each institution
described briefly its function and
idiosyncrasies. . . . There was unan-
imous sentiment for keeping the
user’s group and its newsletter as
informal as possible.”

Over the decades both the “user’s
group” (now USENIX) and the
newsletter (now ;login:) have shed
a good deal of that informality. But
there’s a lot of the cohesive spirit
still there 30 years on.

	motd0506
	letter0506
	finke0506
	chak0506
	howe0506
	sluyter0506
	arkin0506
	hume0506
	turoff0506
	el-kadi0506
	loza0506
	alexander0506
	musings0506
	bookworm0506
	ave0506
	minutes0506
	awards0506
	history0506

